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Preface

There are many stories of Nasr Eddin, the “wise fool” at the centre of Sufi
lore of a thousand years past. In one of these, he spent his life trading across
a border post. Each day he’d walk to and fro with his donkeys, carrying bags
heavily laden with wool. The border guards were convinced he was smuggling
something, but no matter how much they searched, they could never discover
anything at all. After many years Nasr Eddin retired, and by this time, the
guards, long retired themselves, asked him to tell all. “We knew you were
smuggling something Nasr Eddin, but what was it?” they asked. “Oh that’s
very simple”, he replied. “I was smuggling donkeys”.

The physics teacher’s equivalent of smuggling donkeys has been my aim
throughout this book. The donkeys themselves are the language of physics,
which carries concepts that allow us to calculate things such as planetary
orbits, nuclear scattering statistics, and electromagnetic fields. In the follow-
ing chapters, you’ll find an array of carefully bundled goods, from Fisher
information to de Sitter event horizons, decaying nuclei to dashing across the
street in the rain. But, underlying all of these vastly different subjects, I wish
to show the elegance and unity of the mathematical language of physics and
do it in a way that I hope comes across almost unnoticed next to the subjects
on centre stage. The mathematical language, like Nasr Eddin’s donkeys, is
sometimes only thought to carry the goods of real importance; but it can be
seen as special in its own right, and it has been constructed and has evolved
along paths that give it an allure, as well as presenting a challenge to be seen
in ways that suit each individual according to his or her own style of thinking
about physics.

Navigating through physical ideas while paying attention to the mathe-
matical language used to describe them can sometimes seem like being lost
in the proverbial “forest and trees”. The reader should always ask what it
is that might be visible ahead. For example, you won’t learn much about
crystallography and Bragg scattering here, but the discussion of crystallog-
raphy that you will find is there to show how natural the idea of a cobasis
is (called a reciprocal basis in crystallography), an idea that resurfaces often
in tensor analysis. The discussion of Fourier theory using Dirac’s brackets is
not meant to teach Fourier analysis, which can be found in depth in so many
books. Rather, it’s designed to teach bracket notation within the familiar



VIII Preface

surroundings of Fourier analysis, as opposed to the more bizarre realm of
quantum mechanics in which Dirac’s brackets are usually first encountered.
On the other hand, the discussion of Heisenberg’s Uncertainty Principle has
been taken out of its usual quantum mechanical setting and placed within the
perhaps less familiar arena of classical wave theory—operators, commutators
and all—in order to show that some seemingly quantum mechanical concepts
are not really quantum mechanical after all.

Likewise, my discussion of nuclear decay serves not to teach Poisson statis-
tics, but to show how the numbers that crop up in technical discussions of
decay and growth have very intuitive meanings that go beyond simply stating
an exponential law. In posing the question of how fast we should run across a
rainy street to minimise how wet we get, my plan is not to solve the problem
for its own sake, but rather to show how the idea of a four-vector arises quite
naturally when such an everyday question is put into a relativistic context.
In labouring over proving that the frequency–wavenumber is a four-vector, I
wish to make the follow-on analysis in terms of covectors that much starker in
its simplicity by comparison. And, in asking how the uniformly accelerated
space-bound twin in relativity’s famous Twin Conundrum observes events,
I want to show just how the relevant language turns out to be useful for
thinking about gravity.

While following a meandering line through the subject of mathematical
physics, I decided to include anything of interest, following the style of what
I think is one of the best-ever reads on the history of Ancient Egypt, Tem-
ples, Tombs and Hieroglyphs: A Popular History of Ancient Egypt, by Bar-
bara Mertz. Hers is a book that tells a rivetting story of civilisation, replete
with three thousand years of mankind’s striving through triumph and defeat,
growth and pain. If a work like Mertz’s could be written about the language
of physics, it would weave together a host of different subjects far better
than I’ve done here. Even so, it might not tell a story in the way of a history
book—unless it was about the history of physics. While physics itself has an
interesting history full of all sorts of characters, glorious beginnings, and dead
ends, the subject itself is not very linear and becomes difficult to write about
without anticipating future results, assuming mathematical know-how, and
recalling past theorems.

In any book that tries to weave together different ideas, our need to
constantly flick back and forth to check on equations and sections that are
pointed to can be tedious on the one hand, but on the other can highlight
the coherence of the subject. It’s a difficult balance to achieve, and one that
I hope I have gotten at least partly right. Questions of which concept is the
more fundamental and which should be taught first will always remain, and
if nothing else they underline the different ways in which the subject can be
viewed or learnt.

So, because of its lack of a simple straight path through many different
subjects, this book is best read more than once and not in the selective
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manner of a textbook, which it is not. If the reader has time to read it more
than once, then the first time it should be read like a novel or a history
book, from start to finish, in order to assimilate what might be called a large
“coherence length”of the chapters and the subject as a whole. Only the second
time around should things be followed in more detail.

I have also tried to concentrate on using good, rigorous notation—but not
to the extent of adding every last bell and whistle. Properly used, like any
language, notation can aid us tremendously. Not only does the symmetry and
well-crafted style of good notation suggest ways to proceed in new directions
in a calculation, but it can also help to communicate the result to an audience
in a way that builds a solid foundation in their own minds. On the other hand,
if used incorrectly, notation does not help us solve a task and can become a
hindrance; and like any language, sloppy mathematical grammar only creates
difficulties in communication that negate the whole point of having a set of
rules in the first place.

Mathematical physics is about continually rewriting our approach as we
strive for ever-deeper insight, and as it evolves, original ways of viewing the
subject are sometimes discarded or lost. A good example of this is one of
Maxwell’s early theories of electromagnetism, which involved a field built from
ghostly meshing gears. Maxwell understood that this idea was provisional,
and once it had served its purpose as a scaffold, he discarded it, producing the
theory that we learn nowadays. Probably no one now uses his rotating vortices
to teach electromagnetism (although they are still worth studying for their
mathematical beauty), and instead, the subject is taught from starting points
that differ to varying degrees of abstraction. The foundations of physical
theories are often obscure enough to allow for this latitude in places from
which to begin, and to some extent there is also some latitude in how the
mathematical language is presented.

But I think this idea of discarding scaffolding can sometimes be taken too
far in a mathematical context, where we open a book about the physics of the
everyday world, only to find a first page that begins in a business-like way,
with a lemma, a theorem, and a corollary. Writing a clear set of postulates
for a subject can certainly help to sweep away the wood shavings and put
it on a clearer footing, but when taken to an extreme, it can show a kind
of snobbery, a refusal to acknowledge that the roots of some subjects are
quite indistinct. An edifice is built beautiful and solid, and then the rigging
is dismantled; and forever after, it’s a mystery to all but a few as to why one
corner is topped by a bronze gargoyle, while another side has a multitude of
windows that all show blue flags. This suits some, perhaps many, while there
are others who are content with a Proof by Repeated Exposure approach
to the subject. But there are plenty of aspiring physicists who would like to
know the motives for why some subjects are described in the way that they
are, and without necessarily having to follow a year-long course in each of
the details. This book is for them.
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As with all grey areas that separate the easy from the abstruse, it was very
difficult to decide what knowledge to assume of the reader in the chapters
ahead. There can never be a solid line drawn between what is assumed knowl-
edge and what is not; instead, the boundary is a grey zone within which there
are as many simple ideas that are explained as difficult ones that are not.

A note concerning my conventions is appropriate. I have avoided initial
capitals on commonly used words that are derived from names, such as New-
tonian and Lagrangian, preferring instead to write newtonian and lagrangian.
“Newton” is a name, but “Newtonian” is not, and perhaps the lack of a cap-
ital does Newton the honour of showing how well a word derived from his
name has been assimilated into English. I do, however, use capitals in the
mathematics, such as L for the quantity known as the lagrangian. This is
akin to the SI system of units, in which all units—even a “newton”—are low-
ercased, but when derived from a name, their symbols have an initial capital.
I also write “Green function” after the manner of Jackson’s well-known book
of electromagnetism, instead of the more common “Green’s function”. There
are many Green functions, just as there are many Bessel functions, Mozart
concertos, and Chaplin movies.

Presumably, every author hopes that their finished book will be, just like
Mary Poppins, practically perfect in every way; and contributing to my work
on the manuscript were many people who gave feedback or had some input
into the chapters ahead to help remove deficiencies and to provide polish. In
particular, for listening to my endless talk about the project as well as giving
general support, I wish to thank Ine Brummans, Jasmine Day, Suresh Dua,
and Juris Grevins. Thanks also go to John Costella (from whose Ph.D. thesis
I borrowed the“b”notation for canonical momentum) and Eugen Merzbacher
for their critical reading of various chapters together with the feedback they
provided.

I also thank Armin Ardekani, Eric Bos, Sam Drake, Scott Foster, Alex
Kalloniatis, Jim McCarthy, Tim Priest, Rob Purvinskis, Andy Rawlinson, and
Alice von Trojan for additional reading and feedback given, both in electronic
mail and over many coffee table conversations. I may not have acted on
their suggestions every time, but their input was always weighed and valued.
I appreciate the fine help given by Unix guru Jonathan Woithe that kept
my computer running smoothly throughout the project. I thank Springer for
having the confidence that my original raw manuscript could be improved
upon greatly, along with Frank Ganz for his LATEX typesetting help, Hal
Henglein for his meticulous proof reading, and Joseph Piliero for designing
the cover. Finally, I wish to thank my editors Ron Johnson, Jeanine Jordan,
and Francine McNeill for overseeing and producing the finished product.

Adelaide, Australia Don Koks
July 2006



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

1 The Language of Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 A Trip Down Linear Lane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Vector Spaces and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Crystallography and the Cobasis . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Finding Areas and Volumes: The Use of Determinants . . . . . . 16

2.4.1 Definition and Properties of the Determinant . . . . . . . . 18
2.4.2 Determinants, Handedness, and the n-Dimensional

Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Volume of a Parallelepiped in a

Higher-Dimensional Space . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 The Cobasis and the Wedge Product . . . . . . . . . . . . . . . . 25

2.5 Diagonalisation and Similar Matrices: Changing Spaces . . . . . 28
2.5.1 Diagonalising a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Dirac’s Bracket Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7 Brackets and Hermitian Operators . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8 Frequency and Wavenumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.9 Deriving the Fourier Transform Using Brackets . . . . . . . . . . . . . 52
2.10 Commutators and the Indeterminacy Principle . . . . . . . . . . . . . 58
2.11 Evolving Wave Functions in Time . . . . . . . . . . . . . . . . . . . . . . . . 65

2.11.1 Brackets and Wave Function Evolution . . . . . . . . . . . . . . 70
2.12 The Transition to Quantum Mechanics . . . . . . . . . . . . . . . . . . . . 71

3 The Natural Language of Random Processes . . . . . . . . . . . . . 77
3.1 From Bar Graphs to Histograms. . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 The Privileged Sum of Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.1 Sums of Squares and the Random Walk . . . . . . . . . . . . . 89
3.3 Least Squares Analysis, Bayes’ Theorem, and the Matrix

Pseudo Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3.1 Least Squares Analysis for Curve Fitting . . . . . . . . . . . . 95

3.4 Time Constants to Describe Growth and Decay . . . . . . . . . . . . 105
3.4.1 The Poisson Statistics of Radioactive Decay . . . . . . . . . 106
3.4.2 The Mean Life of the Decaying Nuclei . . . . . . . . . . . . . . 110



XII Contents

3.4.3 The Notion of a “Probability per Second”. . . . . . . . . . . . 112
3.5 Logarithms and Exponentials in Statistical Mechanics . . . . . . . 114

3.5.1 Entropy and Heat Flow Define Temperature . . . . . . . . . 114
3.5.2 The Boltzmann Factor: Chief Star of

Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.3 Logarithms and Decibels . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.6 Signal Processing and the z-Transform . . . . . . . . . . . . . . . . . . . . 122
3.6.1 Deriving the Fibonacci Sequence from

the z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.6.2 Convolving to Smoothen a Signal . . . . . . . . . . . . . . . . . . . 124

3.7 The Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.7.1 Sampling Using Nyquist’s Theorem . . . . . . . . . . . . . . . . . 129
3.7.2 Discretising the Fourier Transform . . . . . . . . . . . . . . . . . . 131
3.7.3 Interpolating Real Data with the DFT . . . . . . . . . . . . . . 135

3.8 Correct and Convincing: Presenting Solutions to Problems . . . 140
3.8.1 Tailoring a Formula to a Given Set of Units . . . . . . . . . 141
3.8.2 Calculating a Nuclear Scattering Rate . . . . . . . . . . . . . . 142

4 A Roundabout Route to Geometric Algebra . . . . . . . . . . . . . . 147
4.1 Matrix Representation of an Orientation . . . . . . . . . . . . . . . . . . 148

4.1.1 Describing an Orientation by a Rotation . . . . . . . . . . . . 150
4.2 Calculating the Matrix for an Arbitrary Rotation . . . . . . . . . . . 151

4.2.1 Deriving the Rotation Matrix Rn(θ) via
Diagonalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.2.2 Are Rotations Vectors? . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.3 Combining Two Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.4 Rotations Lead to Complex Numbers and Quaternions . . . . . . 158

4.4.1 Tidying Up the Placeholders . . . . . . . . . . . . . . . . . . . . . . . 163
4.5 Producing a “Geometric” Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.6 Rotations in Popular Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.6.1 Describing an Orientation by Using Three Rotations . . 171
4.6.2 Confusing Euler Angle Orientation with

Incremental Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.6.3 Quaternions Used in Computer Graphics . . . . . . . . . . . . 182

5 Special Relativity and the Lorentz Transform . . . . . . . . . . . . . 185
5.1 Deriving the Doppler Shift from an Invariance . . . . . . . . . . . . . 185
5.2 The Postulates of Special Relativity . . . . . . . . . . . . . . . . . . . . . . 186
5.3 The Lorentz Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.3.1 Paradoxes or Conundrums? . . . . . . . . . . . . . . . . . . . . . . . . 189
5.3.2 How Does Each Frame Measure the Other as

Ageing Slowly? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.4 The Symmetry of the Lorentz Transform . . . . . . . . . . . . . . . . . . 195
5.5 Using Radar to Derive Time Dilation . . . . . . . . . . . . . . . . . . . . . 197
5.6 Space–Time Becomes Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . 200



Contents XIII

5.7 Spacetime Diagrams and Hyperbolic Geometry . . . . . . . . . . . . . 202
5.8 The Lorentz Transform in an Arbitrary Direction . . . . . . . . . . . 204
5.9 Energy and Momentum in Special Relativity . . . . . . . . . . . . . . . 206

5.9.1 Einstein’s Relation of Mass and Energy . . . . . . . . . . . . . 210

6 Four-Vectors and the Road to Tensors . . . . . . . . . . . . . . . . . . . . 213
6.1 Number Density and Flux Density . . . . . . . . . . . . . . . . . . . . . . . . 213
6.2 Running Nonrelativistically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.3 Running Relativistically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.3.1 Combining Number and Flux Densities into
Something New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.3.2 The “Length” of the Four-Velocity . . . . . . . . . . . . . . . . . . 223
6.4 Examples of Other Four-Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.5 Introducing Covectors and Fully Covariant Notation . . . . . . . . 231

7 Accelerated Frames: Onward to the Principle
of Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.1 The Clock Postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.1.1 The Interval for Noninertial Observers . . . . . . . . . . . . . . 238
7.2 Coordinates for the Accelerated Frame . . . . . . . . . . . . . . . . . . . . 240
7.3 The Twin Conundrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7.3.1 Making Eve Accelerate Uniformly . . . . . . . . . . . . . . . . . . 256
7.3.2 How the Twins Record Each Other’s Trips . . . . . . . . . . 258

7.4 A Glance Ahead to Gauge Theory . . . . . . . . . . . . . . . . . . . . . . . . 263
7.5 Covariant Notation and Generalising the Clock Postulate . . . . 264
7.6 Appendix: Details of Setting Up Adam’s

and Eve’s Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

8 The Elegance and Power of Tensor Notation . . . . . . . . . . . . . . 271
8.1 Back to Vectors, in a More Generic Way . . . . . . . . . . . . . . . . . . 271

8.1.1 Honing the Vector Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
8.1.2 Two Types of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8.2 Vectors and Coordinate Changes . . . . . . . . . . . . . . . . . . . . . . . . . 278
8.3 Generalising the Idea of Vector Length . . . . . . . . . . . . . . . . . . . . 281

8.3.1 Coordinate Transformation of the Metric . . . . . . . . . . . . 283
8.4 A Natural Basis for Covectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

8.4.1 Raising and Lowering Indices . . . . . . . . . . . . . . . . . . . . . . 290
8.5 Tensor Components with More than Two Indices . . . . . . . . . . . 292

8.5.1 Bases for More General Tensors . . . . . . . . . . . . . . . . . . . . 294
8.5.2 The Metric Tensor Versus the Metric Matrix . . . . . . . . . 296

8.6 The Gradient Operator and the Cobasis . . . . . . . . . . . . . . . . . . . 297
8.6.1 The Gradient Operator in Fully Covariant Notation . . 301
8.6.2 Is a Metric Needed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

8.7 Normalised Basis Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
8.7.1 The Normalised Polar Basis in Celestial Mechanics . . . 310



XIV Contents

8.7.2 An Example of Using Vectors to Calculate an
Effective Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

8.7.3 Some Final Remarks on Vector Terminology . . . . . . . . . 315
8.8 Volume Elements, Determinants, and

Cross Products Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
8.8.1 A Final Word: The Cross Product in

General Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
8.9 From Vector Calculus to Tensor Calculus . . . . . . . . . . . . . . . . . . 322

8.9.1 The Divergence in Tensor Notation . . . . . . . . . . . . . . . . . 323
8.9.2 Christoffel Symbols for Cartesian Coordinates . . . . . . . . 326
8.9.3 Preparing to Make the Divergence Covariant . . . . . . . . . 329
8.9.4 The Covariant Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . 332
8.9.5 The Covariant Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

8.10 Exterior Calculus and the Theorems of Stokes and Gauss in
Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

9 Curvature and Differential Geometry . . . . . . . . . . . . . . . . . . . . . 349
9.1 Curvature in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

9.1.1 Curves on Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
9.2 Geodesics: Curves with No Geodesic Curvature . . . . . . . . . . . . . 359
9.3 The Curvature of a Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

9.3.1 The Method of Lagrange Multipliers . . . . . . . . . . . . . . . . 365
9.4 Gauss’s Extraordinary Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 369
9.5 Translating Vectors by Parallel Transport . . . . . . . . . . . . . . . . . 373
9.6 Relating Parallel Transport to Curvature . . . . . . . . . . . . . . . . . . 378
9.7 From Geometry to Topology: The Gauss–Bonnet Theorem

in Euclidean 3-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

10 Variational Calculus and Field Theory . . . . . . . . . . . . . . . . . . . . 387
10.1 The Story of the Fly and the Train . . . . . . . . . . . . . . . . . . . . . . . 387
10.2 The Concept of a Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

10.2.1 The Idea of a Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
10.3 The Lagrangian Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

10.3.1 Lagrange’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
10.3.2 Other Variational Approaches . . . . . . . . . . . . . . . . . . . . . . 395
10.3.3 Application to Mechanics: Hamilton’s Principle . . . . . . 396
10.3.4 Nöther’s Theorem and Lagrangian Invariances . . . . . . . 398
10.3.5 Continuous Systems: First Steps to a Field Theory . . . 399
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1 The Language of Physics

The opening decades of the nineteenth century witnessed a series of experi-
ments that introduced the world to the wonders of electromagnetism. In 1820,
Hans Christian Ørsted noticed that every time he switched on the electric
current in a wire in order to heat it, a nearby compass needle moved; and this
production of magnetism was later confirmed in experiments by André-Marie
Ampère. The year 1831 saw the discovery by Michael Faraday of a related,
almost complementary principle: that moving magnets produce electric cur-
rents.

Electricity and magnetism had been known since ancient times, and the
new idea that they were really just two sides of the same coin was one of the
truly great advances of modern science. Further work by Faraday and William
Thomson elaborated the new theories of electric and magnetic forces, with
the idea emerging that they were caused by an ethereal something known as
a field.

The idea that electric and magnetic forces might be exerted locally by
this field was by no means universally accepted at the time, and researchers
such as Ampère and Wilhelm Weber were more comfortable with action-
at-a-distance theories. Such theories had been known since Isaac Newton
introduced the first theory of gravity a century and a half earlier—although
Newton himself had thought it absurd that gravity could be a force able to be
communicated through a vacuum without the help of some kind of medium
to transfer it.

But action-at-a-distance ideas were doomed to give way to the field con-
cept. As the nineteenth century progressed, there was a creation and a honing
of the mathematical description of how fields influence their sources and how
those sources in turn modify their fields. The crowning achievement of this
work occurred around 1860, when James Clerk Maxwell unified the laws of
electric and magnetic fields in a single famous set of equations.

Electromagnetic theory has been a microcosm of the philosophy and prin-
ciples of mathematical physics over the past two centuries, as well as its dif-
ficulties and conundrums. A study of its history yields great insight into the
way that physics tends to advance in small steps: first, perhaps, by a lucky
experiment such as Ørsted’s, and then, one foot after the other, suggested by
new ideas such as Faraday’s principle of reciprocity between electricity and
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magnetism. And later, new results are predicted by the mathematical theory
that is slowly being built up.

In the coming chapters, we will trace a path that explains some of these
advances in the language of mathematical physics. We’ll begin by surveying
some of the important principles of linear algebra, along with the bracket no-
tation of Dirac that can be used for writing the equations of Fourier analysis
and quantum theory. We’ll show later how Fourier analysis is used in a more
“real-life” statistical context, along with the idea of how all-pervasive the ex-
ponential function is within the statistics of the everyday world. Following
this, we’ll study the theory of three-dimensional rotations—a surprisingly rich
subject that’s far easier than many approaches to it make out, and unfortu-
nately one beset by latter-day mythology that finds itself propagated widely
in the age of the Internet.

From there we’ll delve into the geometrical view of special relativity and
examine closely life in an accelerated frame, since this forms a good precursor
to a study of gravity. The ideas encountered here will give rise to the notion of
vectors and tensors, which we will explore further in the chapters that follow,
along with a study of curvature that will come in handy when we eventually
get to general relativity. We’ll then move on to the lagrangian formalism
of field theory, and will examine in detail some of the ways and pitfalls of
tackling the complex integrals that are used in that subject. Finally, we’ll
delve into gravity, a subject that draws many of the previous ideas together
in an elegant way.

Throughout these travels, our aim will be to show just how the modern
notation arises, why it was invented, and why it’s generally useful (with a
few exceptions along the way!). The standard physics education of today
unfortunately finds little time to linger over historical reasons for why things
are written in the way that they are. It’s often taken for granted that even
the most obscure mathematical vocabulary is best taken as given, and will
at some later time be seen to justify the initial effort put in to learn it.

Happily, such later appreciation over insights gained does happen, but
it may be that a long time passes between our first learning new notation
and our seeing just why it is so very useful. And on occasion we are still left
wondering just how some sleight of hand was performed. For example, how do
matrix determinants find their way into calculus? What do the complicated
multiplications of convolution have to do with smoothing data? Why should
the four-dimensional objects known as quaternions have anything to do with
rotations in three dimensions? Why are real definite integrals sometimes able
to be done by turning them into more complicated complex ones? And where
did the polar coordinate expression for the laplacian ∇2 originally come from?
Showing that it reduces to the far-simpler cartesian result gives no insight
into how it was derived in the first place. By trial and error, perhaps?

This last example is the tip of the iceberg of a whole class of problems
that have to do with changing coordinates. These lie at the heart of modern
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physics, with its emphasis on the requirement that physical laws should be
expressible in a way that is coordinate- and frame-independent. So in the
chapters to follow, we will not teach mathematical physics from the ground
up, but rather will assume a familiarity with the subject along with a desire
to explore the reasons that some of its building blocks have been assembled
in their well-known and traditional ways.

This, then, is the spirit in which this book should be read. It has many
derivations, but not all of them are written for the sake of deriving what is on
the surface. Rather, they are aimed at teaching something else: the formalism
and ways of thinking about and writing the language of mathematical physics.

Throughout the book, we will use the idea time and again that interesting
results often come from an extremisation procedure, or at least are related
to the stationary point of some significant quantity. Across the board, from
the relationship between the statistical mean and standard deviation to the
way in which new physics is predicted by the lagrangian approach to gravity,
stationarity is a powerful tool, and one with which we can identify on a human
level, since it could be said that everything we ever do as humans is done in
order to extremise something such as contentedness. Even when we walk
along a twisting path to get from one place to another, we are minimising
our effort in what is really a noneuclidean geometry, in the sense that we
follow a “shortest” path that itself is not a straight line when drawn on a
map.

Finding a good place to start with any subject in physics or mathematics
varies with taste. Mathematicians are only too aware that tinkering with the
fundamentals of mathematics, such as the famous Axiom of Choice, leads to
intriguing paradoxes, such as the Hausdorff–Banach–Tarski theorem.

In its simplest terms, the Axiom of Choice states that if we have any number
of bags, each containing some marbles, then it’s always possible to choose
a marble from each bag. Perfectly obvious, perhaps? But the Hausdorff–
Banach–Tarski theorem is concerned with countability, and states that if
the Axiom of Choice is assumed, then a ball can be dissected into as few
as five pieces that can then be reassembled to form two balls identical to
the original. The only reason a real ball cannot be dissected in this way is
because its atomic makeup ultimately means that it is not a continuum,
which is a spanner in the works for the theorem.

Physicists’ understanding of many areas of mathematical physics has pro-
gressed to the point where there are options for good starting points, and
certainly it does not seem reasonable to begin as far back as the Axiom of
Choice! As an example of a different point of view, far more emphasis is
placed on basis vectors here than is usual in books on mathematical physics.
This has been done with the aim of making the invariant nature of vectors,
and eventually tensors, much more transparent. The complete vector is not
simply an ordered set of numbers in some coordinate system, obeying an
unobvious rule concerning coordinate changes, but rather consists of compo-
nents and basis vectors in such a way that by making the roles of the two



4 1 The Language of Physics

entities explicit, the invariance of the complete vector under a change of coor-
dinates is more readily seen. This invariance is the key concept. Historically,
part of the goal of tensor analysis has been to organise definitions and proce-
dures in such a way that all references to the basis can be dropped. Modern
tensor analysis has become slightly less focussed on coordinates, which is a
good thing; after all, the main reason that vectors are useful is because they
include a basis, which allows them to be treated as arrows with an invariant
existence of their own. We have taken this idea further in the pages ahead. So
the ease with which equations to come, such as (8.225) and (12.41), produce
the usual component-wise results shows that tensor expressions that include
basis vectors have a useful, and thus very legitimate, role in the calculations.

A Note About Vector and Index Notation

It will be necessary to highlight our vector notation in three and four dimen-
sions. Our vectors in any number of dimensions are normally written in a bold
font. Sometimes we’ll want to split a four-dimensional vector up into its time
and space components (the first and last three components, respectively).
This is commonly done in the subject by all authors, because the spatial part
is often a familiar vector recognisable from newtonian mechanics—where it
would also conventionally be written in bold. To sidestep this potential for
a double use of bold fonts, any time that a distinction must be made, the
four-dimensional vector will be written with an arrow, such as �u = γ(1,v).
Alternative approaches have been avoided, such as swapping the functions of
arrow and bold to write u = γ(1,�v), or even writing u = γ(1,v). Any possi-
ble confusion is one of those things that’s probably inevitable when anything
is generalised into a higher number of dimensions, but we hope our use of the
occasional arrow will be transparent enough.

On the same note, vector indices are written in Greek when they refer to
the highest dimensional space, and written in Latin when referring to a subset
of that space. This is straightforward enough but needs to be borne in mind
when reading about differential geometry in Chap. 9. There the higher space
in which surfaces are embedded takes Greek indices as it should, while the
surfaces themselves use Latin indices. Again this is fine, but one of the morals
of the story in that chapter is that, in the end, the subspace with its Latin
indices turns out to be all that we need to consider in the physical world, and
it becomes recognised as our own spacetime—which of course has used Greek
indices elsewhere in the book because of the need to consider subspaces of
that, confined to space dimensions only. So there is no contradiction in the
notation, and any confusion that arises can be cleared up by the reader’s
keeping this index usage in mind, as shown in Fig. 1.1.

Students of pure mathematics find that as they learn more of their subject,
it becomes more and more unified, and the connections between its different
branches become increasingly evident. Students of physics, on the other hand,
often feel that the reverse is happening: their subject only seems to grow more
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Chapter 9 Elsewhere

Higher space

(Greek indices)

Subspace

(Latin indices)

Beyond spacetime!

Spacetime

Spacetime

Space

Fig. 1.1. Because there are three levels of dimensions being considered in this book
and conventionally just two fonts used to denote their vector indices, one overriding
rule is used: Greek indices refer to the higher-dimensional space, while Latin indices
refer to the subspace. Spacetime can play either role.

and more tendrils. Perhaps in the chapters to come, we can reverse some of
that trend by showing that at the heart of many seemingly diverse areas
in mathematical physics, there is a language that is as well thought out as
it is elegant.
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Mathematical physics was born four centuries ago in the research of Kepler,
Galileo, and Newton. For them and their peers, the geometry of the ancients
was the royal road to analysis and proof. But the new analyses of motion and
gravity created new needs, which were answered by methods such as those
of the calculus; and so it was that the calculus soon came to be regarded as
the most important subject to be learnt by aspiring analysts of the natural
world.

However, recent decades have seen the reappearance of geometry in uni-
versity physics courses, not so much in its original form but in the more
abstract form of linear algebra. The ideas of linearity form the canvas on
which we paint many of our current ideas of mathematical physics. At least
on a day-to-day level, Nature seems to prefer linearity, such as in her use of
electromagnetic and gravitational fields, the principles of circuit theory, and
the linear differential equations ubiquitous to mechanics. And in any field
of science, linear problems are very often the only ones able to be solved
analytically; even when we must resort to numerical techniques, we can still
be confident of avoiding the difficulties surrounding the solution of nonlinear
equations, such as ill-defined solutions or the onset of chaos.

When analysing these and many other problems, our hard-won techniques
of the calculus are often only implemented once a basic concrete founda-
tion has been laid that enables us to form a mental picture of what we are
analysing. For despite the abstract nature of much of modern physics, at its
heart it still relies on our forming useful mental pictures. Quantities such
as vectors and the curvature of higher-dimensional surfaces still rest upon
geometrical ideas.

To the theoretician, one thing becomes very obvious from a reading of
the history and language of electromagnetism; that is, that the language of
mathematics continually changes to keep up with the demands placed upon it
by a new science. An example is the expression for the Lorentz force, the force
exerted on a charge by electric and magnetic fields. In cartesian coordinates,
we might write the force in the direction of each axis in the following way:

F x = q (Ex + vyBz − vzBy) ,

F y = q (Ey + vzBx − vxBz) ,

F z = q (Ez + vxBy − vyBx) . (2.1)
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Of course, the force is seldom written this way. More usual is to employ the
geometrical language of vectors:

F = q(E + v × B) . (2.2)

The apparent complication of the three equations in (2.1) belies a symmetry
that can more concisely be expressed by the cross product of (2.2). But (2.2)
is more than just a tidy way of cramming the intricacies of (2.1) into one line
of mathematics. It is built on the idea that the fields are vector quantities:
that they add linearly and obey the various theorems that we know the
cross product introduces. This rewriting of three equations as one brings
with it an increased understanding of electromagnetic field theory, as well as
an ability to introduce nonmathematical rules of thumb for how charges move
in practice, such as a right-hand rule. Rules such as these are useful mainly
because they don’t depend on properties of the coordinates, unlike (2.1).

A study of the history of electromagnetic theory shows that it eventually
brought forth the ideas of special relativity, and these in turn gave birth to
general relativity, which brings gravity into its fold. In the tensor language
of relativity, the way of writing the Lorentz force looks completely different:

Dpα

dτ
= qFαβuβ . (2.3)

In fact, this way of writing the force incorporates gravity, although just how
that comes about really does need a lot of ink spent in the unwrapping.
But it’s a definite advance over earlier notation because it combines formerly
disparate areas of physics into one language. And at its core, it still uses
the language of vectors, adding new insight to the geometrical approach to
physics.

Much of this book uses the ideas of linear algebra, and it will be useful in
this chapter to survey the subject’s general principles. Rather than stopping
to prove everything, we will simply point out the basic language, concepts,
and notation that are used time and time again in the coming chapters. Any
proofs that are omitted can be found in most introductory linear algebra
texts.

2.1 Vector Spaces and Matrices

The ideas and philosophy of linearity are contained in the concept of a vector
space, a set of abstract entities that obey a small number of useful axioms
embodying the notion of linearity. These entities, vectors, can be acted upon
by some linear operator. We will assume the reader is familiar with the axioms
of vector spaces: addition, multiplication by a scalar, the existence of an
identity and inverses, and the rules of associativity.

The basic tool for calculations in linear algebra is gaussian elimination,
which is just the row reduction that converts matrices into other matrices that



2.1 Vector Spaces and Matrices 9

have similar or identical properties. Again, we assume the reader is familiar
with gaussian elimination and the ideas of matrix inversion that are so closely
allied with it.

Fundamental to forming a geometric view of linear algebra is the idea
of constructing a basis, a set of n linearly independent vectors that span an
n-dimensional vector space. Every vector in the space can always be written as
a unique linear combination of the basis vectors of that space. When this set
of coefficients is ordered to match the basis vectors, they form the coordinate
vector of that element with respect to the chosen basis. This coordinate vector
is itself a vector in the vector space of R

n.
The concept of a coordinate vector ensures that all vector spaces can be

represented by the“arrows” that we are all familiar with from basic geometry,
allowing us to form a very geometrical picture of a vector space. But coor-
dinate vectors are useful for another reason. Known as the Correspondence
Principle (of linear algebra), it states that even the most abstract linear op-
erator can always be represented by a matrix of numbers together with a set
of coordinate vectors in R

n that forms a basis for the relevant linear space.

The Correspondence Principle here is altogether different from the Cor-
respondence Principle of quantum mechanics that is more well-known to
physicists, which states that the expected value of an observable in quan-
tum mechanics behaves in the same way as the observable does in classical
mechanics.

Coordinate vectors are important because they are geometrical representa-
tions of a vector. But we should not confuse the two, and this is worth stating
separately:

The coordinate vector is an ordered set of numbers that represents
a vector with respect to some chosen basis, allowing us to picture
the vector as an arrow.

Changing the Basis

Just as a vector space will have an infinite number of different basis choices
(some more useful than others), each vector in it can be represented by a
different coordinate vector. If S and T are two bases of a given vector space,
then a vector α is associated with the two coordinate vectors [α]S and [α]T .
Given one of these, we can always produce the other, provided of course that
we know the bases. What needs to be done is for one basis to be written as a
linear combination of the other. For example, suppose we are given [α]S and
wish to calculate [α]T . If we know how each vector in S can be written as a
linear combination of the vectors of T , then the problem is solved. Changing
bases is a key idea in linear algebra, so that the ability to find linear relation-
ships between vectors in R

n is very important and useful. The fundamental
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and very useful procedure for doing this is known as the dependency relation-
ship algorithm. Because we assume a basis set has been found in the various
scenarios we will encounter, it makes good sense to examine just how such a
set is constructed, given a set that (we hope!) already contains more than we
need.

Like many procedures in linear algebra’s toolkit, the dependency rela-
tionship algorithm depends on the notion of row equivalence between two
matrices. Two matrices are row equivalent if one can be obtained from the
other by a finite series of any of the three elementary row operations:

1. swapping two rows,
2. multiplying a row by a nonzero real number, and
3. adding a nonzero multiple of any row to another row.

The algorithm states that if two matrices are row equivalent, then the linear
relationships among the columns of one are identical to the corresponding lin-
ear relationships among the columns of the other. An example will illustrate
the point. Suppose we are given four coordinate vectors in R

3:

α1 =

⎡⎣ 0
1
1

⎤⎦ , α2 =

⎡⎣ 1
0
1

⎤⎦ , α3 =

⎡⎣−1
2
1

⎤⎦ , α4 =

⎡⎣ 1
1
0

⎤⎦ . (2.4)

Note that if a vector is written bold as α, we might better write its co-
ordinate vector as [α]R3 to emphasise that we are focussing on the three
numbers that represent α in R

3. We’ll certainly do this in Chap. 8, but
there is no need to do so for the following discussion.

First build a matrix with these vectors as its columns and then row reduce it:⎡⎣ 0 1 −1 1
1 0 2 1
1 1 1 0

⎤⎦ row reduce

⎡⎣ 1 0 2 0
0 1 −1 0
0 0 0 1

⎤⎦ . (2.5)

Examining the right-hand matrix, we see instantly that α1,α2,α4 are lin-
early independent, while α3 = 2α1 − α2 is the dependent member of the set.
Of course, α3 is really no more redundant than α1 or α2. If we prefer to
choose α3 as a basis vector, then we need only put it farther to the left in the
starting matrix of the algorithm, and it will be given priority in the order of
linear independence when the set is row reduced.

2.2 Inner Products

To form a completely geometrical picture of a vector space, we need to supply
it with the notion of a distance, and this is tied to the concept of a dot product
between two vectors. When the space is R

n and distances within it obey
Pythagoras’s theorem, the vector space is called euclidean and denoted E

n.
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Whenever required, we will distinguish between these two spaces to stress
that one of them uses this notion of distance.

Although it’s not absolutely necessary, dot products are often reserved
for operations within a euclidean space, and their generalisation to all vector
spaces is the inner product. In fact, the two notations are quite interchange-
able, and we will certainly sometimes use a dot product for convenience even
when the space is not euclidean—as well as using tensor formalism for the
same purpose, which will be explained when the need arises.

But the inner product notation has its own uses, especially when gener-
alised to Dirac bracket notation, as we’ll see in Sect. 2.6. The inner product
of two vectors α,β is written 〈α|β〉. It has the following basic properties:

1. 〈α|α〉 � 0, with equality if and only if α = 0 (the zero vector).
2. 〈α|β〉 = 〈β|α〉∗, where the asterisk denotes the complex conjugate.
3. Standard mathematics usage is to write, for all complex numbers c,

〈cα|β〉 = c〈α|β〉 , in which case 〈α|cβ〉 = c∗〈α|β〉 . (2.6)

Physics usage is the other way around:

〈α|cβ〉 = c〈α|β〉 , in which case 〈cα|β〉 = c∗〈α|β〉 . (2.7)

We will adhere to the physics usage since we intend to use brackets to
discuss some quantum mechanics.

4. Finally, a distributive law holds:

〈α + β|γ〉 = 〈α|γ〉 + 〈β|γ〉 . (2.8)

Additionally, we note that a vector’s squared length |α|2 and the angle θ
between two vectors α and β are each defined by

|α|2 ≡ 〈α|α〉 , cos θ ≡ 〈α|β〉
|α| |β| . (2.9)

Orthogonality and Orthonormality

When the inner product of two vectors is zero, we say they are orthogonal.
When they are orthogonal and both normalised to unit length, they are called
orthonormal.

Basis vectors are often combined with each other to produce a new basis
composed of orthogonal vectors, enabling simpler inner product calculations
to be done with any vector pairs in the space. A useful way to do this is via
the Gram–Schmidt algorithm. Given a set of vectors {α1, . . . ,αn}, we pro-
duce an orthogonal set {γ1, . . . ,γn} in the following way. First, set γ1 ≡ α1.
Now, α2 is a sum of two components, one parallel and one orthogonal to γ1.
Eliminate the parallel component by subtracting from α2 its projection along
the unit vector γ̂1 (with the caret denoting unit length):
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α1, also γ1

α2

γ2

Fig. 2.1. Using the Gram–Schmidt algorithm to orthogonalise the {α1, α2} basis.
In this two-dimensional example, begin by setting the first orthogonalised basis
vector to be γ1 ≡ α1. The other orthogonalised basis vector γ2 is then formed
from α2 by subtracting α2’s projection on γ1, producing γ2 ≡ α2 − (α2 ·γ̂1) γ̂1.

γ2 ≡ α2 − 〈α2|γ̂1〉 γ̂1

= α2 −
〈α2|γ1〉
〈γ1|γ1〉

γ1 . (2.10)

The next vectors are found in the same way by subtracting their projections
along the unit vectors already established. For example,

γ3 ≡ α3 −
〈α3|γ1〉
〈γ1|γ1〉

γ1 −
〈α3|γ2〉
〈γ2|γ2〉

γ2 , (2.11)

and so on. In general,

γn = αn − orthogonal projection of αn onto space of {α1, . . . ,αn−1}.
(2.12)

A geometrical picture using the euclidean inner product is shown in Fig. 2.1.
But the algorithm applies to arbitrary inner products, as can be shown via
induction. However, the mathematics of higher dimensions in linear algebra
is well enough behaved that we can generally use our geometrical intuition
without really going awry.

Later in this chapter and in the next, we’ll encounter Fourier analysis
along with the method of least squares. Both of these are really no more than
applying the ideas of orthogonality in practical ways.

2.3 Crystallography and the Cobasis

An important concept of linear algebra and tensor analysis arises in crystal-
lography. One of the great uses of X rays is that their wavelengths tend to be
just the right size for use in probing crystal structure through Bragg diffrac-
tion. Bragg diffraction can be viewed as a process where incoming rays bounce
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Fig. 2.2. Left: An orthogonal lattice, with cartesian xyz-axes that are cut by a
crystal plane at x0, y0, z0. Right: A more general lattice, where the natural basis
vectors are no longer orthogonal.

off crystal planes to interfere constructively at certain angles that give infor-
mation about the orientation of these planes, and so the crystallographer’s
diffraction photographs are really giving information about crystal planes as
opposed to the atoms that make up the lattice. Yet it’s the atomic lattice
that is of real interest, so the crystallographer needs to relate information
about planes in the crystal to the positions of its atoms.

To see how this sort of crystal analysis gives rise to something new, con-
sider first the more intuitive case of a lattice whose atoms are arranged in a
simple “box” formation, whereby a basis of vectors {ex,ey,ez} joining them
can be chosen to be orthogonal, as shown on the left-hand side in Fig. 2.2.
We’ll employ the usual xyz cartesian axes to describe positions in this lattice.
A particular plane within the lattice cuts those axes at x0, y0, z0. First, we
ask: what is the equation for this plane?

Consider an arbitrary point r ≡ (x, y, z) of the plane. The plane itself
has normal vector n ≡ (nx, ny, nz) = nxex + nyey + nzez, in which case we
observe that

(r − x0 ex)·n = (r − y0 ey)·n = (r − z0 ez)·n = 0 . (2.13)

Thus,
r ·n = x0 nx = y0 ny = z0 nz ≡ N . (2.14)

Usually “a ≡ b”means “a is defined to equal b”. In (2.14) it is N that’s being
defined since it comes at the end of a train of equalities. Throughout this
book, when there are several equalities and the last is an “≡” sign, we will
mean that the last term is being defined, so that the “≡” is then read as
“which defines”. This will sometimes also be the case for expressions such as
a ≡ b, where the fact that b is being defined rather than a should be clear
from the context.
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The normal vector is then

n = N

(
1
x0

,
1
y0

,
1
z0

)
. (2.15)

Combining (2.14) with (2.15) gives the equation of the plane as

r ·
(

1
x0

,
1
y0

,
1
z0

)
= 1 , or

x

x0

+
y

y0

+
z

z0

= 1 . (2.16)

The normal to the plane is proportional to (1/x0, 1/y0, 1/z0). These three
numbers are usefully scaled by their least common multiple and are then
called Miller indices, integers that characterise the plane, although we need
not do that for this discussion. (Integers are useful for the crystallographer
because the atomic sites occur at discrete intervals in the plane.)

Now, in general, lattices do not have an orthogonal structure; the natural
basis vectors that describe the atomic positions are more like the set on the
right-hand side in Fig. 2.2. How can we adapt the calculation of (2.13)–(2.15)
to this more general basis? Suppose the axes are now labelled X,Y,Z, with
basis vectors eX ,eY ,eZ . A plane cuts these axes at distances X0, Y0, Z0

from some origin. This plane has normal vector n, and an arbitrary point
within the plane has position vector r ≡ X eX + Y eY + Z eZ . Analogously
to (2.13), we write

(r − X0 eX)·n = (r − Y0 eY )·n = (r − Z0 eZ)·n = 0 , (2.17)

giving
r ·n = X0 eX ·n = Y0 eY ·n = Z0 eZ ·n . (2.18)

But now some care is needed. In the orthogonal case, we were able to write
n ≡ nx ex + ny ey + nz ez to conclude that nx = n·ex and so on. But such
a statement actually makes use of the orthogonality property of ex,ey,ez,
which the set eX ,eY ,eZ does not have.

We can, however, still use orthogonality to calculate the components of r
by defining another basis related to the eX ,eY ,eZ vectors. Define three new
vectors eX,eY,eZ, each of which pairs with one of the subscripted set and is
orthogonal to the two others of that set. For example,

eX · eX ≡ 1 , eX · eY = eX · eZ ≡ 0 , (2.19)

and similarly for Y and Z. These requirements suffice to ensure that

eX =
eY × eZ

eX · (eY × eZ)
, (2.20)

with cyclic permutations on this for eY and eZ . Note that these three ex-
pressions for eX,eY,eZ all share the same denominator since eX ·(eY × eZ)
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is unchanged by cyclic permutations of X,Y,Z. This denominator is actu-
ally the signed volume of a parallelepiped with sides eX ,eY ,eZ , which we’ll
encounter in the next section.

The set of vectors {eX,eY,eZ} is called the cobasis; it’s also known as
the basis dual to {eX ,eY ,eZ}. Crystallographers refer to it as the recip-
rocal basis and use a different normalisation, eX ·eX ≡ 2π, owing to their
emphasis on waves and phases, where factors of 2π are common. Our nor-
malisation (2.19) will be more natural when we meet it later in a tensor
context, so we will keep it; in which case the cobasis allows us to write, for
any vector v = vXeX + vY eY + vZeZ ,

vα = v ·eα for α = X,Y,Z , (2.21)

so that
v =
∑
α

v ·eα eα . (2.22)

Writing the cobasis with “up” indices produces a good symmetry; this can
be seen by writing the vector v in terms of the cobasis. For this, define new
components vα:

v =
∑
α

vα eα ≡
∑
α

vα eα. (2.23)

The general cobasis component vα is easily calculated by using the orthogo-
nality of the cobasis with the basis:

v ·eα =
∑

β

vβ eβ ·eα = vα , so that v =
∑
α

v ·eα eα . (2.24)

Expressions such as (2.24) highlight the utility of the cobasis: it brings the
benefits of orthogonality to a basis that might not itself be orthogonal. Again,
we reiterate that expressions using the basis and cobasis are quite symmetri-
cal. For example,

vα = v ·eα , and vα = v ·eα. (2.25)

Using the cobasis means that indices in expressions such as (2.25) always
appear either all up or all down, while sums such as (2.23) have their dummy
indices arranged diagonally. As we’ll see in later chapters, this index book-
keeping is the bread and butter of tensor analysis. The idea of the cobasis
will streamline the discussion at the end of Chap. 6, and in Chap. 8 a tensor
approach will make the definition of the cobasis vectors more elegant and
general.

In the meantime, however, we return to the crystal lattice discussion,
using the notion of the cobasis to write n·eα = nα. Equation (2.18) can now
be written as

r ·n = X0 nX = Y0 nY = Z0 nZ ≡ N , (2.26)

giving the normal as



16 2 A Trip Down Linear Lane

n =
∑
α

nαeα =
N

X0

eX +
N

Y0

eY +
N

Z0

eZ . (2.27)

Finally, (2.26) becomes

r ·
(

eX

X0

+
eY

Y0

+
eZ

Z0

)
= 1 . (2.28)

This looks much like (2.16), of course, except that to continue to make the full
identification of the normal with the unscaled Miller indices (1/X0, 1/Y0, 1/Z0),
we need to be aware that these indices are actually the cobasis components
of the plane’s normal, not the basis components. Because crystallographers
use Miller indices extensively, they constantly use the cobasis to quantify
the orientations of planes through the crystal. And because the planes and
the cobasis are involved in a Fourier analysis of the crystal lattice, the space
spanned by the cobasis (or reciprocal basis) is sometimes called reciprocal
space. This term might imply a lack of physical reality for the space of the
cobasis. But the cobasis vectors are certainly real vectors in the crystal. A
difference between the cobasis and the usual basis is that the cobasis vectors
are not defined by pointing along actual lines of atoms in the crystal; but
nonetheless, they can always be drawn as orthogonal to the set {eX ,eY ,eZ}.

In Chap. 8 we’ll remark that the vectors of the cobasis are often replaced
by a set of new objects called one-forms, which are sometimes visualised as
sets of parallel planes. We will certainly neither use one-forms in this book
nor have any need of them; it’s arguable whether the point of view that
constructs them has any real use at all for physics. On the other hand, the
cobasis as constructed here is a set of vectors, which can certainly be drawn
as arrows. Its elements are used here to describe crystal planes, but they are
not themselves planes.

As a last observation, it should come as no surprise to find that the
euclidean basis is identical to its cobasis. For example,

ex =
ey × ez

ex · (ey × ez)
= ex , (2.29)

and similarly for ey and ez. No wonder, then, that the cobasis doesn’t make
itself apparent until we begin to consider nonorthogonal bases such as are
naturally found in crystal lattices. We’ll meet cobases again in the next section
and in later chapters.

2.4 Finding Areas and Volumes: The Use
of Determinants

If the ideas of linear algebra are designed to be useful geometrically, then
we expect them to be very applicable to concepts such as areas and vol-
umes. So we ask the question: as shown in Fig. 2.3, what is the volume of
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α1

α2
α3

Fig. 2.3. A parallelepiped in three-dimensional euclidean space E
3, delineated by

the vectors α1, . . . , α3. Its volume is a function of the three vectors, and is found
in this section. A general n-dimensional volume in E

n can also be defined, leading
to the notion of a determinant.

an n-dimensional parallelepiped in euclidean space E
n, whose sides are the

cartesian vectors α1, . . . ,αn? Cartesian coordinates are the easiest to deal
with, but we’ll encounter more general coordinates in Chap. 8.

The answer will be a function mapping these vectors to the real num-
bers, so if we build an n × n matrix that has as its rows each of the vectors
α1, . . . ,αn, then this function should act on the matrix to produce the re-
quired volume: ⎡⎢⎣ α1

...
αn

⎤⎥⎦ −→ real numbers. (2.30)

This function also allows for the idea of a negative volume, being simply an
indication of which ordering of the vectors α1, . . . ,αn was used to build the
parallelepiped. But more on that later.

A volume in n dimensions can be defined recursively in the same way as
the three-dimensional case, where the volume of a parallelepiped is given by
the area of its base, determined by two of the vectors, multiplied by its height;
this height is the length of a new vector that is the projection of the third
vector orthogonally to the base. In n dimensions, we follow the same idea by
stipulating that the volume of the n-dimensional parallelepiped be equal to
the length of a new vector γn that is orthogonal to the space of the other
n−1 vectors α1, . . . ,αn−1, multiplied by the volume of the n − 1-dimensional
parallelepiped that these vectors delineate.

But this new vector γn is orthogonal to α1, . . . ,αn−1, and can be con-
structed by the Gram–Schmidt algorithm. Just as the volume is unaltered by
changing αn to γn, it is sufficient to find a volume function that is unaffected
by linear operations of the matrix rows. Summarising, this function must have
several properties:
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1. Linearity in each row: If a vector’s length is doubled, the paral-
lelepiped’s volume is doubled.

2. Indifference to adding a multiple of one row to another row:
This ensures that its value is unchanged by the Gram–Schmidt αi → γi

procedure.
3. The function must be zero if one row is the zero vector: The

parallelepiped’s volume must collapse to zero if one of its rows has zero
length.

4. The identity matrix must map to 1: A box with orthogonal unit
sides should have unit volume.

There is actually a unique function with these four properties: the matrix
determinant. The relevant proofs of existence and uniqueness are not onerous,
but would involve a side excursion over several more pages than we have to
spare, being more suited to a pure linear algebra course. Here we’ll simply
define the determinant and demonstrate some of its properties.

2.4.1 Definition and Properties of the Determinant

Determinants make use of signs that depend on indices being permuted, so
their definition is simplified through the use of the Levi-Civita symbol εijk...n,

ε123...n ≡ 1 , (2.31)

and

εijk... ≡

⎧⎪⎨⎪⎩
0 if any two subscripts are equal
1 if ijk . . . is an even permutation of 123 . . .

−1 if ijk . . . is an odd permutation of 123 . . . .

(2.32)

The determinant of a matrix A is then defined as the sum of terms chosen
from unique row/column pairs:

|A| ≡ det A ≡
∑

all i,j,k...

εijk...A1i A2j . . . . (2.33)

In the 1 × 1 case, the determinant of a matrix
[
x
]

is just x. More interesting
is the 2 × 2 case, where∣∣∣∣A11 A12

A21 A22

∣∣∣∣ =∑ εijA1i A2j = ε12 A11 A22 + ε21 A12 A21

= A11 A22 − A12 A21 , (2.34)

as is well known.
All of the well-known properties of determinants follow from this defini-

tion. We’ll illustrate this by showing that detA = det At. Begin with
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det At =
∑

εijk...Ai1 Aj2 . . . . (2.35)

Now take each term of this sum and permute the factors so that they
have the order A1 something A2 something . . . . For example, consider the term
ε312 A31 A12 A23. Rearranging gives ε312 A12 A23 A31. We have really made
two rearrangements in parallel here, both with the same number of permu-
tations. We’ve converted the set of first indices 312 → 123, while at the same
time also converting the second ones, 123 → 231. But this also means that
ε312 = ε231, so that

ε312 A31 A12 A23 = ε231 A12 A23 A31 . (2.36)

But the right-hand side of (2.36) is now identical to one of the terms in the
expansion of detA, (2.33). All of the terms of (2.35) can be rewritten in
this way to correspond with a unique term in (2.33), so we conclude that
det A = det At. This equality is very useful because it means that any deter-
minant rule that applies to rows will also apply to columns.

Carrying on two parallel permutations like this is the key to using the
Levi-Civita symbol as an aid to proving determinant theorems. The four
requirements for the determinant listed on p. 18 can all be shown to be
satisfied by such arguments, so we’ll assume this has been done and instead
discuss the way determinants are calculated in practice. Expansion as a sum
using the Levi-Civita symbol is unwieldy for all but the smallest or sparsest
of matrices. But the Levi-Civita symbol can be used to derive a simplified
way of evaluating determinants, which proves to be highly useful both for
numerical work and for proving theorems involving determinants.

This way of reducing the work required to calculate a determinant comes
about as follows. Each element of a matrix A = (Aij) has associated with
it a number called its cofactor, or equivalently its signed minor. The minor
associated with Aij is the determinant of the new matrix formed by crossing
out each row and column of A that contain Aij . Here “signed” means that
we multiply the minor of Aij by (−1)i+j . Thus the cofactor, or signed minor,
belonging to A11 in a 2×2 matrix is +A22, while the cofactor of A12 is −A21,
and so on.

The theory of cofactors has two major theorems of great use to us. The
first says that the determinant of a matrix can be evaluated by choosing any
one row, or column, multiplying each element in it by its cofactor, and then
summing the n terms that result. (We’ll defer the second theorem until we
really need it, on p. 331.) For example, expand along, say, the second column
of the 2 × 2 matrix in (2.34):

det A = A12 × cofactor of A12 + A22 × cofactor of A22

= −A12 A21 + A22 A11 , (2.37)

again as expected. Now, this expansion by cofactors can be combined with the
two most important requirements we discussed earlier that the determinant
obeys:
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1. If a row is multiplied by a constant k, then the determinant is also mul-
tiplied by k.

2. The determinant is unchanged if we add a multiple of one row to another.

These properties of the determinant can be used, first, to simplify the ma-
trix using gaussian elimination, and then to expand along the most conve-
nient row or column by cofactors. An example serves to illustrate the point.
By “10 ← row 1” we mean “extract a factor of 10 from row 1”:∣∣∣∣∣∣

10 20 20
8 −3 15
3 4 6

∣∣∣∣∣∣ 10←row 1 10

∣∣∣∣∣∣
1 2 2
8 −3 15
3 4 6

∣∣∣∣∣∣ col. 3−2 col. 1 10

∣∣∣∣∣∣
1 2 0
8 −3 −1
3 4 0

∣∣∣∣∣∣
cofactor expand

along last column
10
∣∣∣∣ 1 2
3 4

∣∣∣∣ = −20 . (2.38)

Simplifying manipulations such as these are a whole lot easier than dealing
with the original matrix from first principles.

The fact that the volume of the parallelepiped is given by a determinant
can now be proved. First, we will set the volume of a box in E

n built from a set
of ordered mutually orthogonal vectors {γ1, . . . ,γn} to be |γ1| |γ2| . . . |γn|.
Now suppose that the vectors are written as the rows of a matrix:

A ≡

⎡⎢⎣ γ1
...

γn

⎤⎥⎦ . (2.39)

Then, using the fact that the determinant of a product equals the product of
determinants,

det2A =
(
detA

)(
det At

)
= det

(
AAt
)
. (2.40)

But AAt is diagonal:

AAt = diag
( |γ1|2, . . . |γn|2

)
, (2.41)

so that

|det A| =
√

det
(
AAt
)

= |γ1| |γ2| . . . |γn| = volume of box. (2.42)

So in this basic case of orthogonal vectors, the volume is the absolute value
of the determinant. Suppose now that the box has sides given by vectors
{α1, . . . ,αn} that are not necessarily orthogonal, and consider the new ma-
trix ⎡⎢⎣ α1

...
αn

⎤⎥⎦ . (2.43)
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We know that the volume is not changed if we use the Gram–Schmidt orthog-
onalisation algorithm to replace α1 by a vector γ1 orthogonal to the other
vectors and of just the right length:

γ1 = α1 − linear combination of α2, . . . ,αn . (2.44)

But likewise ∣∣∣∣∣∣∣∣∣
α1

α2
...

αn

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

γ1

α2
...

αn

∣∣∣∣∣∣∣∣∣ , (2.45)

since determinants are unchanged by this operation. The argument can be
applied over and over to orthogonalise all of the rows, and after each step the
determinant is unchanged. But of course the absolute value of the determinant
of the final matrix is precisely the volume of the box, which means that the
absolute value of the determinant of (2.43) must also be the volume of the
box:

Volume of parallelepiped
with sides α1, . . . ,αn

= abs

∣∣∣∣∣∣∣
α1
...

αn

∣∣∣∣∣∣∣ . (2.46)

The absolute value of a number, the norm of a vector, and the determinant
of a matrix are all often written |·|. If necessary, we’ll indicate them explicitly
with abs, norm, det.

Permuting the order of the rows (or columns) of a matrix merely changes
the sign of its determinant, so some ordering of the vectors {α1, . . . ,αn} will
produce a positive determinant (the required volume), while swapping any of
those vectors will only change the determinant’s sign. This then gives rise to
the idea of a signed volume of an ordered set of vectors, being the determinant
of the matrix of those vectors laid out in the row order in which they have
been specified.

2.4.2 Determinants, Handedness, and the n-Dimensional
Cross Product

The sign-changing behaviour of the determinant when its rows or columns are
swapped makes it perfect for specifying the handedness of a set of ordered,
linearly independent vectors in R

n. We define such a set {α1, . . . ,αn} to be
right handed if ∣∣∣∣∣∣∣

α1
...

αn

∣∣∣∣∣∣∣ > 0 (2.47)
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and left handed if the determinant is less than zero. (The determinant cannot
equal zero if the vectors are linearly independent.) Clearly, swapping any two
vectors will change the handedness. A simple example of handedness is that
of the xy cartesian axes, which are right handed with that ordering since
| 1 0
0 1 | > 0.

Cross products are very closely related to determinants. Both are antisym-
metric, and both have a geometrical interpretation. While the cross product
is usually applied to two vectors in three-dimensional euclidean space E

3

only, the ideas we have been laying out here can be used to generalise it to
higher dimensions. If the cartesian basis vectors {ex,ey,ez} for E

3 are writ-
ten {e1,e2,e3}, or in E

n are written more generally as {e1,e2, . . . ,en}, then
we can define the cross product of n − 1 linearly independent vectors in E

n,
{α1, . . . ,αn−1}, to be αn such that

αn = cross (α1, . . . ,αn−1) ≡

∣∣∣∣∣∣∣∣∣
α1
...

αn−1

e1 . . . en

∣∣∣∣∣∣∣∣∣ . (2.48)

In Chap. 8 we’ll see that this expression changes in a more general basis
by the inclusion of a multiplicative factor, which is 1 for euclidean space.
We’ll also see that in more general coordinates, the last row of (2.48) should
really be the cobasis {e1, . . . ,en}. Of course, in the euclidean case we are
considering here, the basis and cobasis are identical.

The usual cross product in E
3 is often defined with the ex ey ez as the

first row instead of the last. In an odd number of dimensions this makes no
difference, but in an even number of dimensions, it will give the wrong sign
and so make a left-handed set. Ensuring that the basis vectors form the last
row will always give the correct sign, in any number of dimensions.

In the common three-dimensional case with vectors a = (ax, ay, az) and
b = (bx, by, bz), equation (2.48) becomes

(ax, ay, az) × (bx, by, bz) =

∣∣∣∣∣∣
ax ay az

bx by bz

ex ey ez

∣∣∣∣∣∣
=
( ∣∣∣∣ay az

by bz

∣∣∣∣ , −
∣∣∣∣ax az

bx bz

∣∣∣∣ , ∣∣∣∣ax ay

bx by

∣∣∣∣ ) . (2.49)

Expanding along the bottom row in cofactors, as done here, is a far easier
way of calculating the cross product than the often-used alternative, the
slower approach of adding six separate terms calculated from first principles:
axbyez + aybzex + · · · .

For any vectors α1, . . . ,αn−1, along with their cross product αn defined
by (2.48), the set {α1, . . . ,αn} is always right handed. We can prove this
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using cofactors by expanding (2.47) along its bottom row. Write the µth

element of αn as αµ
n:∣∣∣∣∣∣∣

α1
...

αn

∣∣∣∣∣∣∣ =
∑

µ

αµ
n × cofactor belonging to αµ

n for

⎡⎢⎢⎢⎣
α1
...

αn−1

α1
n . . . αn

n

⎤⎥⎥⎥⎦

=
∑

µ

αµ
n × cofactor belonging to eµ for

⎡⎢⎢⎢⎣
α1
...

αn−1

e1 . . . en

⎤⎥⎥⎥⎦
=
∑

µ

(αµ
n)2 = |αn|2 > 0 , i.e. right handed; QED. (2.50)

This is very streamlined, yielding the answer far more quickly than if we had
started with the basic definition using the Levi-Civita symbol:

cross (α1, . . . ,αn−1) =
∑
µ...ω

εµ . . . ω︸ ︷︷ ︸
n indices

αµ
1 αν

2 . . . αψ
n−1 eω . (2.51)

We will have more to say about this particular expression in Sect. 8.8.1.
Working with the Levi-Civita symbol is really a first-principles approach;
using cofactors (if possible) is far more concise. And although we won’t stop
to give the details, the same sort of cofactor approach used in (2.50) will also
easily show that the cross product αn is orthogonal to α1, . . . ,αn−1, as is
familiar in three dimensions.

Magnitude of the Cross Product

Equation (2.50) shows that when αn = cross (α1, . . . ,αn−1), the volume of
the right-handed box defined by {α1, . . . ,αn} is |αn|2. But since αn is or-
thogonal to all the other vectors, the volume of the box must also be just
|αn|× the “area” of the cell composed of {α1, . . . ,αn−1}. Hence the area of
this cell must be |αn|.

When αn ≡ cross (α1, . . . ,αn−1),

“area” of α1, . . . ,αn−1 = |αn| , and

“volume” of α1, . . . ,αn = |αn|2.

(2.52)

We are familiar with this in two dimensions, where the parallelogram with
sides α1,α2 has area |α1 × α2|. This particular expression will be applied
to an infinitesimal parallelogram in Chap. 9 when we calculate areas on a
curved surface.
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2.4.3 Volume of a Parallelepiped in a Higher-Dimensional Space

The area of a parallelogram with side vectors (1, 2) and (5, 8) is just the ab-
solute value of the determinant | 1 2

5 8 |. But what is the area of a parallelogram
with sides (1, 2, 3) and (5, 8, 7)? The determinant of [ 1 2 3

5 8 7 ] is not defined;
in this case, (2.46) needs three vectors. We can certainly calculate the area
from the norm of the two vectors’ cross product, using (2.48) and (2.52):

Area of parallelogram with sides (1, 2, 3) and (5, 8, 7)

=
∣∣ (1, 2, 3) × (5, 8, 7)

∣∣ = norm

∣∣∣∣∣∣
1 2 3
5 8 7
ex ey ez

∣∣∣∣∣∣ = norm (−10, 8,−2) =
√

168 .

(2.53)

But this procedure will not suffice for two vectors in a space of dimen-
sion higher than 3, such as our requiring the area of a parallelogram with
sides (1, 2, 3, 4) and (5, 8, 7, 2), since we now require three vectors to make a
cross product, and we only have two. What can be done?

Suppose we are given two vectors α1,α2 in E
4. The following discus-

sion applies to any number of vectors in any higher-dimensional euclidean
space, but we’ll stay with this scenario to be concise. The parallelogram
spanned by α1,α2 is confined to a subspace spanned by an orthonormal ba-
sis Γ ≡ {γ1,γ2}. (We must use an orthonormal basis since the theory of the
last few pages has been built on these, as it assumed the usual cartesian ba-
sis of E

n, which is orthonormal.) In that case, the parallelogram’s area is the
determinant of a 2 × 2 matrix composed of the coordinate vectors of α1,α2

with respect to the Γ basis:

Area =

∣∣∣∣∣∣
[α1]Γ

[α2]Γ

∣∣∣∣∣∣ . (2.54)

We wish to relate this expression to the coordinate vectors of α1,α2 with
respect to the usual cartesian basis of E

4, here called E. These vectors have
four components. The clue is to realise that matrix multiplication is all about
dot products of rows and columns, and dot products give lengths—which are
independent of the orthonormal basis considered.

That the euclidean dot product a·b ≡∑i ai bi is really independent of the
orthonormal basis used can be shown by writing two arbitrary vectors as
coordinate vectors with respect to two arbitrary orthonormal bases, and
showing that the two sums of the pairwise coordinate products are identical.
But it could hardly be otherwise, since we use such an idea all the time when
depicting vectors on cartesian axes.

In that case, note that if P ≡
[

[α1]Γ

[α2]Γ

]
, then
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PP t =

⎡⎣α1 ·α1 α1 ·α2

α2 ·α1 α2 ·α2

⎤⎦ , (2.55)

and the area of the parallelogram can be calculated from (2.46):

area2 =
∣∣P ∣∣2 =

∣∣P ∣∣ ∣∣P t
∣∣ = ∣∣PP t

∣∣. (2.56)

But the dot products in (2.55) could just as well have been formed by dotting
the coordinate vectors [α1]E , [α2]E ! In other words, define a 2 × 4 matrix

A ≡
[

[α1]E

[α2]E

]
so that AAt = PP t. This allows us to write (replacing

“area” by “volume” to denote arbitrary dimensions being allowed)

Volume of parallelepiped defined by rows of A =
√

|AAt| , (2.57)

where the number of rows of A must be less than or equal to its number of
columns. This is the generalisation of (2.46), although we have seen it before
for a special case in (2.42). Reassuringly, (2.57) states that when A has just
one row, the resulting “volume” of that lone vector is simply its length, given
by Pythagoras’s theorem. A less trivial example is that of (2.53), which can
be redone using this approach:

Area of parallelogram with sides (1, 2, 3) and (5, 8, 7)

=

√√√√∣∣∣∣∣
[
1 2 3
5 8 7

] [
1 2 3
5 8 7

]t∣∣∣∣∣ =
√∣∣∣∣14 42

42 138

∣∣∣∣ = √
168 , (2.58)

as before. Equation (2.57) will tell us, for example, the four-dimensional vol-
ume of the parallelepiped whose sides are given by four vectors in E

6. In
this case the matrix A has size 4 × 6, so that the determinant of the 4 × 4
matrix AAt will be required. In general, as long as the sides of the paral-
lelepiped are not overspecified—A should be squat or square, but not tall—
then (2.57) gives its volume, and so in a sense extends the concept of the
determinant to nonsquare matrices.

The Gram matrix of dot products in (2.55) is the real quantifier of volumes
in a space, and we’ll encounter it in Chap. 8 as the metric matrix, when its
entries will be basis vectors. We will also encounter (2.57) again in that
chapter, in Sect. 8.8, when calculating infinitesimal volume elements. There
these will be related to

√
g, where g is the determinant of a metric matrix.

2.4.4 The Cobasis and the Wedge Product

If we dot a vector a with a basis vector that points in the same or opposite
direction, what results is the signed length of a: positive if the basis vector
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has the same direction as a, and negative otherwise. The same idea applies
to higher dimensions, and we’ll explore the notation further by remembering
from (2.23) that the αth basis component of a vector v is vα, while the
αth cobasis component of the same vector is vα.

So, for example, the signed area of the parallelogram bounded by the
vectors a and b in that order is∣∣∣∣ a

b

∣∣∣∣ = ∣∣∣∣a1 a2

b1 b2

∣∣∣∣ (2.25)
∣∣∣∣a·e1 a·e2

b·e1 b·e2

∣∣∣∣ , (2.59)

where the coordinates are superscripted by 1 and 2. Unlike in the one-
dimensional case, this signed area cannot simply be written as a single dot
product. But we can mimic the one-dimensional case by using a functional
notation, where for example an expression such as a ·b could be written as
either a(b) or b(a). Note that we are not redefining a vector to be a function
of another vector! Functional notation as used here is merely a useful way of
combining several entities together, and we’ll make more use of it in Chap. 8.
In two dimensions, then, write the signed area (2.59) as a wedge product of
a and b (also known as the exterior product):∣∣∣∣ a

b

∣∣∣∣ = ∣∣∣∣a·e1 a·e2

b·e1 b·e2

∣∣∣∣ ≡ a ∧ b (e1,e2) . (2.60)

The wedge product a ∧ b could be viewed as a function of e1 and e2, but
we take it simply to be a signed area, so that a ∧ b (e1,e2) merely indicates
that a∧b combines with the ordered pair of e1,e2 to give a real number: the
determinant on the left-hand side of (2.60). We can certainly write a new ex-
pression (a∧b)αβ ≡ a∧b (eα,eβ) and consider this to be the αβth component
of a∧b over the cobasis. Components with repeated indices such as (a∧b)11

will be zero, since they are given by determinants with repeated columns.
Similarly, (a ∧ b)αβ ≡ a ∧ b (eα,eβ) can be considered as the αβth compo-
nent of a ∧ b over the basis.

Notice how the sign-changing property of the determinant on a row or
column swap implies that

a ∧ b (e1,e2) = −a ∧ b (e2,e1) = −b ∧ a (e1,e2) = b ∧ a (e2,e1) . (2.61)

So just as in one dimension, a is a vector whose signed length is given by
dotting it with a unit vector parallel or antiparallel to it, or equivalently
supplying it with that unit vector as an argument, so in two dimensions a ∧ b
is a bivector whose signed area is produced by giving it the two basis vectors
as arguments, as shown in Fig. 2.4. Similarly, in three dimensions the signed
volume of the parallelepiped determined by vectors a, b, c is∣∣∣∣∣∣

a
b
c

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a·e1 a·e2 a·e3

b·e1 b·e2 b·e3

c·e1 c·e2 c·e3

∣∣∣∣∣∣ ≡ a ∧ b ∧ c (e1,e2,e3) , (2.62)
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a

a ∧ b

a

b

a ∧ b ∧ c

a

bc

Fig. 2.4. Picturing wedge products. Just as a vector a combines with ex to
give the component a(ex) ≡ a·ex = ax as its signed length in the x-direction, the
bivector a ∧ b is a two-dimensional element whose signed area is a ∧ b (ex, ey),
while the trivector a ∧ b ∧ c is a three-dimensional element whose signed volume is
a ∧ b ∧ c (ex, ey, ez).

so that a ∧ b ∧ c is a trivector determining the volume of the parallelepiped.
Because the determinant treats all of its rows or columns equally, and hence
expressions such as a∧ b∧ c look as if they have some assumed associativity,
wedge products between vectors and bivectors, or in general between two
multivectors, are defined in order to allow this associativity, in which case
a ∧ (b ∧ c) ≡ (a ∧ b) ∧ c ≡ a ∧ b ∧ c, and so on.

In two dimensions, the signed area a ∧ b (ex,ey) of the parallelogram
formed from a and b equals the z-component of a × b, or a × b (ez) using
the notation suggested just after (2.59). Thus,

a ∧ b (ex,ey) = a × b (ez) =
∣∣∣∣ a

b

∣∣∣∣ . (2.63)

Despite the similarity, there is a difference between a∧b and a×b. The most
obvious difference is that when each is written using functional notation, they
take different numbers of arguments. Also, the wedge product a∧b is an area
element with an associated direction. Since a ∧ b = −b ∧ a, swapping the
vectors reverses this direction. The cross product a× b is a vector normal to
the area element a ∧ b, and it, too, has a direction that reverses when the
vectors swap: a× b = −b× a. So we can consider a∧ b and a× b as able to
be mapped to each other.

In the next higher dimension, the first line of (2.52) shows that a similar
identification of, e.g., a ∧ b ∧ c with cross (a, b, c) can be made: a ∧ b ∧ c is a
signed volume element in three dimensions, while cross (a, b, c) is a vector in
four dimensions, orthogonal to the vectors a, b, c and“perpendicular” to their
volume element a ∧ b ∧ c. The same idea holds in any number of dimensions:
cross (a1,a2, . . . ,an) is a vector in n + 1 dimensions “perpendicular” to the
n-dimensional volume element a1 ∧ a2 ∧ · · · ∧ an. We’ll meet these multiple
wedge products known as multivectors again later, exploring this similarity
in Sect. 4.5 and using the distinction when unifying Stokes’ and Gauss’s
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theorems in Sect. 8.10. They will also be used in Chap. 12 in an efficient
method for calculating the curvature of spacetime.

One new piece of notation will be useful when we do consider Stokes’ and
Gauss’s theorems. That is, because

(a × b)·(p × q) =
∣∣∣∣a·p a·q
b·p b·q

∣∣∣∣ = a ∧ b (p, q) , (2.64)

it makes sense to define a new dot product as a generalisation of that for
vectors:

(a ∧ b)·(p ∧ q) ≡ a ∧ b (p, q) = (a × b)·(p × q) . (2.65)

This extends the analogy between the wedge and cross products. Similarly,

(a ∧ b ∧ c)·(p ∧ q ∧ r) ≡ a ∧ b ∧ c (p, q, r) =

∣∣∣∣∣∣
a·p a·q a·r
b·p b·q b·r
c·p c·q c·r

∣∣∣∣∣∣ . (2.66)

The wedge product can seem obscure at first, but the key point to remember is
that it relates to volumes in any number of dimensions, and its operations are
expressed in the everyday language of numbers via the use of determinants.

2.5 Diagonalisation and Similar Matrices:
Changing Spaces

Calculations in mathematical physics are often greatly simplified if we work
in some kind of different space. A simple example is a change of frame, such
as converting to a centre of mass frame in order to solve a mechanics problem.
Another example is the idea of writing a matrix as a product of other matrices
that include a diagonal one, since diagonal matrices have useful properties.
So for the purpose of our discussion, we’ll call such a space “diagonal space”.
In diagonal space, the equations of physics are simple and elegant. We wish
to demonstrate the idea of transforming some complicated expression to that
space, solving for whatever needs doing (which by definition is easier in di-
agonal space), and finally transforming back to the original space.

Linear algebra is useful for showing the general idea. Suppose, as in
Fig. 2.5, that in diagonal space a vector will evolve using a very simple op-
erator D (which will be a diagonal matrix). Denote by P the transformation
taking diagonal space to laboratory space. Given a vector v in our laboratory
that we wish to evolve, we must perform the following steps in order to use
the easy evolution of diagonal space.

1. Transform to diagonal space by operating with P−1 to get P−1v.
2. Evolve this (easy!): DP−1v.
3. Now transform back to the laboratory: PDP−1v.
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Diagonal space Laboratory

P−1v

DP−1v

v

PDP−1v

D = evolution ∴ PDP−1 = evolution

P

Fig. 2.5. An operator D in “diagonal space” is equivalent to the operator PDP−1

in the laboratory. Start with v at the top right, transform to diagonal space (upper
left, P−1v), evolve this (DP−1v), and finally return to the laboratory space, giving
PDP−1v.

The nett result is that the D of diagonal space is matched with, or in a
sense dual to, the PDP−1 of the laboratory; matrices representing the two
operations are said to be similar. Expressions like PDP−1 are very common
in mathematical physics, where the arenas in which problems are solved are
seldom the simplest possible.

Opening a Door and Turning Its Handle

A good example of this procedure appears in three-dimensional rotation the-
ory. We will look more closely at the very rich theory of rotations in Chap. 4,
but here we’ll briefly examine an aspect of the noncommutivity of rotations
around different axes. Rotating an object around two different axes is not
commutative, as can be seen by rotating, say, a box around first the spatial
x-axis by 90◦, then the spatial y-axis by 90◦, and then comparing the result-
ing orientation with what happens when the rotation order is swapped. The
two orientations are different. Things are somewhat different when we allow
the box to carry the axes along with it. We embed the spatial axes in the box,
like sticks, so that when it’s turned around the y-axis, the x-axis gets carried
along to become a new axis, called the x′-axis. In that case, it turns out that
the rotations can be thought of as almost commuting in a very restricted
way, as long as we’re prepared to use several different axes. Let’s investigate
this using the A = PDP−1 procedure above.

Consider what happens to the orientation of a door handle when opening
a door and then turning its handle. (This order is not really possible with
most doors—that’s what handles are for, after all—but we are free to imagine
it.) As shown in Fig. 2.6, the door’s hinges lie on the spatial z-axis, and when
the door is closed, its handle’s axle is aligned with the spatial x-axis. Denote
the operation of opening the door by a rotation around the z-axis through
angle α, written as Rz(α). (Of course, opening the door also rotates the handle
by Rz(α), but not around the handle’s axis.) Turning the handle through an
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z z

x x

x′α

α

Handle axle

parallel to x

Handle axle

parallel to x′

Fig. 2.6. Left: The closed door can open along the z-axis, and its handle turns
around the x-axis. Right: When opened, the handle’s axle now defines a new axis,
called the x′-axis.

angle β when the door is closed is equivalent to rotating the handle about
the x-axis, Rx(β). When the door is opened, the handle axle becomes a new
axis, called the x′-axis. The sequence of rotations will here be written from
right to left since they can all be treated as operators—and in fact they will
be written as matrices in Chap. 4.

Suppose that the door is standing open at an angle α, and we wish to
turn the handle through β. That is, we wish to orientate the handle by the
rotation operation Rx′(β). But for some reason we cannot do this; perhaps
the handle is in too awkward a position to be turned. Instead, what we are
able to do is close the door, turn the handle through β, and open it again.
This should accomplish the same result. In other words, reading from right
to left, close the door (P−1), now easily turn the handle (D), and open it
again (P ):

Rx′(β)︸ ︷︷ ︸
≡A

= Rz(α)︸ ︷︷ ︸
≡P

Rx(β)︸ ︷︷ ︸
≡D

Rz(−α)︸ ︷︷ ︸
= P−1

. (2.67)

If we postmultiply both sides by P , we have AP = PD, or

Rx′(β)Rz(α) = Rz(α)Rx(β) . (2.68)

This is all good common sense: the left-hand side of (2.68) is the operation
of opening the door and then turning its handle (if that were possible), while
the right-hand side is the operation of first turning the handle and then
opening the door. Of course, these operations should give the same result.
The almost-commutivity of the rotations shows up in the fact that while the
order of the angles has been reversed, we are using the x′-axis on one side
and the x-axis on the other. When the rotation angle α is small—even if β is
not—the x- and x′-axes almost coincide, so that in this limit rotation order
is indeed commutative.

There is nothing special about the axes used in this example. They could
have been any vectors at all and not necessarily perpendicular. We’ll meet up
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with (2.68) again in Chap. 4 in the context of applied rotation theory, where
we’ll find that it can help to create either an enlightened view or a confused
view of rotations.

2.5.1 Diagonalising a Matrix

Precisely what it is that makes diagonal space preferred is determined by
how easily or elegantly a vector can be evolved there or, in other words, how
simple D is. The simplest possible D is a diagonal matrix since it does not mix
the vector elements, and functions of it such as powers, the exponential, and
the logarithm are easily defined and calculated. And just as diagonal evolution
matrices D are singled out as preferable, some space-changing matrices P are
also special. Particularly useful is a P that preserves length. We’ll see more
of this in Sect. 2.7.

Given some evolution matrix A in the laboratory, can we convert to di-
agonal space by writing A as a product PDP−1, where D is diagonal? It
turns out that we can, at least for any square matrix A that is sufficiently
well-behaved. Evolution matrices must be square, and they usually will be
well-behaved.

The proof by construction that A can be diagonalised runs as follows. We
will start with the correct choice of P and then show how it leads to the
answer, along with a corresponding D. First, define an eigenvalue λ with a
corresponding eigenvector α of A to be a number and vector such that

Aα = λα . (2.69)

Suppose that A is an n × n matrix with n linearly independent eigenvec-
tors α1, . . . ,αn, allied in order with eigenvalues λ1, . . . , λn. They must be
linearly independent because we are about to form P by simply writing all
of the eigenvectors as columns placed next to each other:

P ≡ [α1 α2 · · · αn

]
. (2.70)

If the {αi} are linearly independent, then the dependency relationship algo-
rithm guarantees that P can be row-reduced to the identity matrix; but this
means that P is invertible. Certainly, for interesting matrices these eigenvec-
tors will be independent.

Now, given A and its associated P , we can use matrix block multiplication
to write the following. (Note that block-multiplying matrices is a powerful tool
in linear algebra. It can always be performed, provided that the individual
blocks have been marked out in a way that enables them to be multiplied.)

AP = A
[
α1 α2 · · · αn

]
=
[
Aα1 Aα2 · · · Aαn

]
=
[
λ1α1 λ2α2 · · · λnαn

]
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=
[
α1 α2 · · · αn

] ⎡⎢⎣λ1 · · · 0
. . .

0 · · · λn

⎤⎥⎦ ≡ PD . (2.71)

So if D is composed of the eigenvalues of A down its main diagonal, then
AP = PD, and since P is invertible it follows immediately that A = PDP−1.
The matrix A has been diagonalised, and in so doing, we have in a sense
constructed the diagonal space, accessed via P .

The eigenvectors and eigenvalues of this last proof hold great impor-
tance in linear algebra. Eigenvectors form points of unruffled calm amidst
the changes brought about by a linear operator. A good example of this is
the rotation operator in three dimensions, whose eigenvectors lie along its
axis of rotation. A similar idea applies to the derivative operator d/dx for
functions. A general form for its eigenvector—better called its eigenfunction
in this case—is the familiar exponential eλx, where λ is the corresponding
eigenvalue.

The eigenvalues of any operator are identical to the eigenvalues of its
matrix representative in any chosen basis. Likewise, the coordinate vectors
of the operator’s eigenvectors/eigenfunctions are given by the eigenvectors
of the matrix representative. Finding eigenvectors and eigenvalues of a ma-
trix is usually done via determinants. Any matrix A with eigenvector α and
associated eigenvalue λ must necessarily be square, and by definition

Aα = λα , (2.72)

so that
(A − λ1)α = 0 , (2.73)

where by 1 we mean the identity matrix. Now if A − λ1 were invertible,
this last equation would only have the trivial zero vector solution; so we
require A − λ1 to be noninvertible. But noninvertibility is equivalent to a
matrix having zero determinant (for which see the next paragraph). So, for
there to be nontrivial solutions to (2.73), we require

det (A − λ1) = 0 , (2.74)

and this enables the eigenvalues to be found, followed by their associated
eigenvectors.

Why is noninvertibility equivalent to a matrix having zero determinant? If
a matrix is not invertible, then any set of linear equations that it can be
used to represent must not be solvable. This implies that its rows cannot be
linearly independent, which means that the n-dimensional box whose edge
vectors are these rows must have zero volume, since one of its edges has
effectively collapsed to zero length. And of course zero volume means zero
determinant. This logic works in both directions.
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Diagonalisation itself is not just about the choice of a better space in which to
perform a calculation. Choosing such a space might imply that we could do
the calculation as it stands but perhaps for reasons of efficiency or elegance
would prefer not to. But the need to change spaces might be stronger than
a search for more elegance. In the next few pages, we’ll study four examples
of diagonalising matrices: in number theory, differential equations, classical
mechanics, and geometry. Examples abound throughout all of physics, but
these four are simple enough to examine briefly.

Number Theory: The Fibonacci Sequence

Calculate the nth term of the Fibonacci sequence 1, 1, 2, 3, 5, . . .

The Fibonacci sequence is defined by the recurrence relation that relates its
nth term un to the two terms immediately preceding it. Such a linear problem
lends itself very well to a matrix solution. Suppose we write the recurrence
relation as [

un+2

un+1

]
=
[
1 1
1 0

]
︸ ︷︷ ︸

≡A

[
un+1

un

]
. (2.75)

We have been a little redundant, inserting the second row which says nothing
more than un+1 = un+1; this is purely to make the matrix A square, which
is necessary in order to use the diagonalisation technique. Now, the first few
terms of the sequence can be found from[

u3

u2

]
= A

[
1
1

]
,

[
u4

u3

]
= A2

[
1
1

]
, . . . ,

[
un

un−1

]
= An−2

[
1
1

]
, (2.76)

so that

un =
[
1 0
]
An−2

[
1
1

]
(n > 3) . (2.77)

(The premultiplication by
[
1 0
]

is more than merely a way of specifying that
we require “the top element” of the remaining product; rather, since matrix
multiplication is associative, this matrix can be multiplied first by An−2 to
simplify the calculation straightaway.) Computing an arbitrary power of A
might be very difficult, but this is where diagonalisation comes to our aid.
Notice that

An =
(
PDP−1

)n
= PDP−1 PDP−1 . . . PDP−1 PDP−1

= PDnP−1, (2.78)

and because D is diagonal, its nth power is simply the nth power of each of
its terms, so that (2.77) is more usefully written

un =
[
1 0
]
PDn−2P−1

[
1
1

]
. (2.79)
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The matrices P and D are built from the eigenvectors and eigenvalues of A,
and these are found from our discussion around (2.73). So demand that A−λ1
have a zero determinant: ∣∣∣∣1 − λ 1

1 −λ

∣∣∣∣ = 0 . (2.80)

This has two solutions, best expressed in terms of the Golden Ratio φ, a
number known to the ancient Greeks from their use of it in mathematics if
not architectural aesthetics:1

λ1 =
1 +

√
5

2
≡ φ , λ2 =

1 −√
5

2
= −1/φ = 1 − φ . (2.81)

What are the associated eigenvectors, α1 and α2? For λ1 = φ, it’s easy to
solve

(A − φ1)α1 = 0 (2.82)

to give

α1 =
[

φ
1

]
. (2.83)

(This is really a basis eigenvector; that is, we could take any multiple of it
without affecting the final answer.) Similarly, a basis eigenvector correspond-
ing to λ2 = 1 − φ is found to be

α2 =
[
1 − φ

1

]
. (2.84)

As stipulated by (2.70), arrange these eigenvectors as columns to form P ,
together with the associated eigenvalues making up D:

P =
[
φ 1 − φ
1 1

]
, D =

[
φ 0
0 1 − φ

]
, P−1 =

1√
5

[
1 φ − 1

−1 φ

]
. (2.85)

The diagonalisation is finished, so we can replace P and D into (2.79) to
write

un =
[
1 0
]
PDn−2P−1

[
1
1

]
=
[
φ −1/φ

] [φn−2 0
0 (−1/φ)n−2

]
1√
5

[
φ

1/φ

]
=

1√
5

[
φn + (−1)n−1 1

φn

]
. (2.86)

Although we originally stipulated in (2.77) that n > 3, the result (2.86) also
gives the correct terms when n = 1 and 2, so that it holds for all n.
1 Intriguingly, since π

√
φ � 4 to an accuracy of one part in a thousand, any archi-

tectural method that uses wheels for measurement, along with right triangles,
could conceivably introduce what appears to be the Golden Ratio where it was
not intended.
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Coupled Linear Differential Equations

Our second example of diagonalisation shows a relationship between eigen-
values, eigenvectors, and the exponential number e. Suppose we wish to solve
for functions x(t) and y(t) satisfying the coupled linear differential equations
(with a prime denoting d/dt)[

x
y

]′
=
[
a b
c d

]
︸ ︷︷ ︸

≡A

[
x
y

]
︸︷︷︸
≡u

, (2.87)

where a, b, c, d are constants. If A is diagonable (meaning able to be diago-
nalised), then (2.87) becomes

u′ = Au = PDP−1u , so that P−1u′ = DP−1u . (2.88)

Setting v ≡ P−1u allows (2.88) to be written as

v′ = Dv . (2.89)

This is now trivial to solve. Since A diagonalises to give P and D,

P =
[
α1 α2

]
, D =

[
λ1 0
0 λ2

]
, (2.90)

it follows that for arbitrary constants c1, c2,

v =
[
c1 eλ1t

c2 eλ2t

]
, with u = Pv . (2.91)

The elegance of this solution is made more transparent by keeping the
different-eigenvalue parts separate:

u = Pv = c1 eλ1t P

[
1
0

]
+ c2 eλ2t P

[
0
1

]
= c1 α1 eλ1t + c2 α2 eλ2t . (2.92)

It follows that a basis solution of the original set (2.87) is expressed in terms
of the eigenvalues and eigenvectors of A:

basis solution = eigenvector × eeigenvalue×t, (2.93)

a particularly simple result. This study of eigenvalues and eigenvectors can
be extended to coupled nonlinear differential equations, by comparing the
nonlinear set with an associated linear set. Such a linear set is found by
Taylor-expanding the nonlinear equations about a so-called critical point of
the nonlinear system, at which each derivative equals zero.
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Classical Mechanics: Moment of Inertia and Principal Axes

The third application of diagonalisation concerns a solid body’s ability to spin
smoothly about some chosen axis. Introductory approaches to the mechanics
of spin usually begin by analysing only bodies with high symmetry, such as
wheels and spheres. Of central importance for such a symmetrical body is
its angular momentum L, related to its angular velocity ω by a constant of
proportionality known as the body’s moment of inertia I:

L = Iω . (2.94)

This is entirely equivalent to the p = mv that defines linear momentum in
terms of mass and velocity in one dimension.

But even a symmetrical body will not rotate smoothly about just any axis;
in general it pulls sideways on the axis while spinning, producing wear and
tear on the bearings. To deal with such motion, we require a more general ex-
pression for angular momentum that can cope with arbitrary axes of rotation.
Classical mechanics answers this need by defining the angular momentum of
a single particle about a point to be a vector defined as L ≡ r × p, where r
is the position vector of the particle relative to the point, and p = mv is its
linear momentum. To analyse the spin of a solid body, we imagine breaking
it up into particles labelled i, so that

L ≡
∑

i

Li =
∑

i

ri × pi

= mi ri × vi = mi ri × (ω × ri) (summation assumed), (2.95)

where the entire body rotates with angular velocity ω, now made into a vector
to encode the direction of the axis of rotation.

Double cross products such as in (2.95) are of course expandable as

(a × b) × c = a·c b − b·c a ,

a × (b × c) = a·c b − a·b c . (2.96)

Here is a convenient way to remember these identities. The vector (a×b)×c
is perpendicular to both a × b and c, so it must lie in the plane of a and b;
it must be a linear combination of these. The coefficients of a and b are
just the dot products of the two other vectors, where the coefficient of the
vector in the middle of the double cross product (i.e. b) is given a plus sign
and the other a minus sign. This mnemonic also works for a × (b × c).

Hence, the total angular momentum is

L = mi

(
r2
i ω − ri ·ω ri

)
(with ri ≡ |ri|) , (2.97)

whereupon writing r2
i = x2

i +y2
i +z2

i , we can expand all the terms to arrive at
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ω

L(t)

τ (t) dt

L(t + dt)

Fig. 2.7. The changing angular momentum of a potato spinning about an axis
that does not run through one of its principal axes of inertia. Although the angular
velocity ω is fixed, the angular momentum vector L moves rigidly with the potato
and so rotates about ω. The increase in L in an infinitesimal time dt is τ (t) dt,
where τ is the torque required to keep the body from trying to “straighten up”
along its axis, such that its moment of inertia would be maximised. The three
principal axes of inertia are shown.

L = mi

⎡⎣r2
i − x2

i −xiyi −xizi

−xiyi r2
i − y2

i −yizi

−xizi −yizi r2
i − z2

i

⎤⎦ω ≡ Iω . (2.98)

This is the rotational equivalent of extending the one-dimensional linear mo-
mentum p = mv to the three-dimensional p = mv. The big difference, of
course, is that while linear momentum p is always parallel to velocity v,
angular momentum L need not be parallel to angular velocity ω. An exam-
ple of these vectors for a rotating potato-shaped body is shown in Fig. 2.7.

As an example of using these ideas, the body’s total kinetic energy can be
written very concisely as

Ek ≡ 1

2
miv

2
i =

1

2
mivi ·(ω × ri) =

1

2
miω ·(ri × vi) =

1

2
ω ·L =

1

2
ωtIω . (2.99)

The fact that L is generally not parallel to ω is what causes the body to pull
on its axis as it spins. But all reasonable bodies have a moment of inertia
matrix I that is diagonable, which means there can be found a unique set of
three orthogonal axes X,Y,Z such that⎡⎣LX

LY

LZ

⎤⎦ =

⎡⎣IX 0
IY

0 IZ

⎤⎦⎡⎣ωX

ωY

ωZ

⎤⎦ . (2.100)

In other words, LX = IX ωX , and similarly for LY and LZ . If the body spins
about any of these three principal axes of inertia, the angular momentum L
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will point in the same direction as the angular velocity ω, so that the spin is
smooth; the body does not stress its bearings. This is a surprising result; even
potato-shaped bodies with no symmetry still have three principal axes—and
what is just as remarkable is that these axes are always mutually orthogonal.

Geometry: Plotting Conic Sections

Our last example of diagonalisation involves conic sections. The cartesian-
coordinate expressions for conic sections involve squares of the coordinates.
This allows matrix theory to be used to analyse these sections. As an example,
consider plotting the ellipse x2 + xy + y2 = 6 in the xy-plane. Because we will
eventually introduce a new set of coordinates, rewrite this equation for clarity
as x2

1 + x1x2 + x2
2 = 6, to be plotted in the x1x2-plane. An expression such as

x2
1 + x1x2 + x2

2, whose terms are each of second order, is known as a quadratic
form. The equation to be plotted can be written as

[
x1 x2

] [ 1 1/2
1/2 1

]
︸ ︷︷ ︸

≡A

[
x1

x2

]
= 6 . (2.101)

(It will soon become apparent that A is most usefully set to be symmetric,
which can always be done.) The fact that the first and last matrices in (2.101)
are transposes of one another leads us to suppose that it might be useful to
express A in the form PDP t (as opposed to PDP−1). That way, it will be
possible to define new coordinates[

y1

y2

]
≡ P t

[
x1

x2

]
, (2.102)

enabling (2.101) to be written as

[
y1 y2

]
D

[
y1

y2

]
= 6 , (2.103)

which contains no cross terms and so is trivial to plot. The matrix A can
certainly be written as PDP t using a straightforward technique known as
congruent diagonalisation, whose result is all that we require here. (The pro-
cedure is explained in linear algebra texts and is very similar to inverting a
matrix.) One pair of P,D produced by congruent diagonalisation is

P =

[
1 0

1/2
1/2

]
, D =

[
1 0
0 3

]
. (2.104)

We plan to overlay the y1y2-axes on the x1x2-plane, and plot the ellipse
using its simpler form (2.103). Unfortunately, there are two problems with
this: [Note that in the next equations we write P−t ≡ (P−1)t = (P t)−1.]
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1. We wish to ensure that the ruler defined by the x1x2-coordinates is identi-
cal to that of the y1y2-coordinates, to simplify plotting the ellipse. While
not an absolute requirement, this ensures that we do not accidentally
deform the ellipse. This ruler is called the metric. Unfortunately, here
the two coordinate systems do not share the same metric. After all, the
distance between two points in the original cartesian x1x2-coordinates
satisfies Pythagoras’s theorem, so that (2.102) gives

∆x2
1 + ∆x2

2 =
[
∆x1 ∆x2

] [∆x1

∆x2

]
=
[
∆y1 ∆y2

]
P−1P−t

[
∆y1

∆y2

]

=
[
∆y1 ∆y2

] [ 1 0
−1 2

]
︸ ︷︷ ︸

P−1

[
1 −1
0 2

]
︸ ︷︷ ︸

P−t

[
∆y1

∆y2

]
=
[
∆y1 ∆y2

] [ 1 −1
−1 5

] [
∆y1

∆y2

]

	= ∆y2
1 + ∆y2

2 . (2.105)

Thus the y1y2-coordinates do not satisfy Pythagoras’s theorem.
2. We prefer the y1-axis to be perpendicular to the y2-axis. But here they

are not, as can be shown by writing them as vectors in x1x2-coordinates.
The y1-axis is the set of points for which y2 = 0; these lie along the vector[

x1

x2

]
= P−t

[
y1

0

]
∝ first column of P−t =

[
1
0

]
. (2.106)

Similarly, the y2-axis is delineated by the second column of P−t, or
[−1 2

]t.
This is not perpendicular to

[
1 0
]t.

Fortunately, both of these difficulties can be eliminated at once. The first can
be fixed by requiring, if possible, P−1P−t = 1, which, by taking its inverse, is
equivalent to P tP = 1. Such a P has rows that form an orthonormal set, and
also columns that form an orthonormal set, and is known as orthogonal. A
well-known theorem of linear algebra states that any real symmetric matrix
can always be diagonalised with an orthogonal P . In that case, since P = P−t,
its orthonormal columns also fix the second difficulty above.

For a symmetric (and real) matrix A, the diagonalisation technique de-
scribed in the last few pages suffices to give a matrix that will serve as P
provided that its columns are first orthonormalised, using, say, the Gram–
Schmidt algorithm.

In fact, in most cases the columns will already be orthogonal, since it is
proved ahead in a slightly different setting [in the discussion around (2.131)–
(2.133)] that the eigenvectors belonging to distinct eigenvalues of A are
guaranteed to be orthogonal.

Using the A of (2.101), the relevant calculation gives
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x1

x2

y1

y2

2

−2
2 √

3

−
2 √

3

Fig. 2.8. Plotting the ellipse x2
1 + x1x2 + x2

2 = 6 by constructing a more amenable
set of coordinate axes, y1, y2, in which the plot becomes symmetric and hence more
easily drawn.

P =
1√
2

[
1 1
1 −1

]
, D =

[
3/2 0
0 1/2

]
. (2.107)

Now that P tP = 1, the two sets of axes share the same metric, allowing them
to be easily superimposed in one plot. The y1-axis is now the first column of P ,
or
[
1 1
]t, while the y2-axis is the second column of P , or

[
1 −1

]t, as shown
in Fig. 2.8. Which way does each axis point? Although it’s not necessary to
know this to plot the ellipse, the directions can be found by applying (2.106)
more studiously, by calculating the x1x2-coordinates of the unit basis vector
along each of the y-axes. For the y1-axis,[

x1

x2

]
= P

[
1
0

]
=

1√
2

[
1
1

]
, (2.108)

and similarly for the y2-axis. These directions are indicated in Fig. 2.8.
Finally, the ellipse itself can be plotted. In y1y2-coordinates it becomes,
from (2.103),

3

2
y2
1 + 1

2
y2
2 = 6 . (2.109)

This cuts the y1-axis at ±2 and the y2-axis at ±2
√

3, again as shown in the
figure.

Drawing the ellipse by constructing a new set of axes has highlighted
the notion of orthogonal diagonalisation. We began the task with the much
simpler idea of congruent diagonalisation, but found that, in fact, this was
not sufficient because it introduced a different metric and non-orthogonal
axes. Orthogonal diagonalisation solved these problems, and shows why this
procedure is very important in other areas of mathematical physics. We’ll
meet the related idea of an orthogonal operator in Sect. 2.7.
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2.6 Dirac’s Bracket Notation

The notion of an inner product 〈α|β〉 is central to linear algebra, and fol-
lowing on Dirac’s research into quantum mechanics, physicists have extended
this use of angle brackets to what has become known as bracket notation or
bra-ket notation. Although this use of brackets is usually reserved purely for
writing the equations of quantum mechanics (as we’ll see later), it actually
is very useful in other areas that involve linearity and summing, such as ma-
trix multiplication, Fourier analysis, and probability theory. To see how it all
works, we begin by looking at matrix multiplication using angle brackets.

Consider a general matrix A whose ijth element is Aij , and suppose we
write this element in the following way:

〈i|A|j〉 ≡ Aij . (2.110)

We have done more here than just write the indices on each side of the matrix.
Because matrices go hand in hand with linearity, it becomes possible to con-
sider (2.110) to be a “product” of three things unambiguously: 〈i| × A × |j〉
(that is, the associative law holds, as we shall see). The splitting of the angle
brackets in (2.110) leads to 〈i| being called a bra while |j〉 is called a ket, so
that bracket formalism is sometimes called the language of bra-kets.

The operation of prepending with 〈i| singles out the ith row, while the
operation of appending with |j〉 singles out the jth column, so that 〈i|A|j〉
becomes the ijth element of A. Thus we can extract the element 〈i|A|j〉
from A in either of two ways:

1. We can first form 〈i|A, the ith row of A, and then extract its jth column
(element) by appending |j〉, or

2. we can first form A|j〉, the jth column of A, and then extract its ith row
(element) by prepending 〈i|.

The fact that both ways give the same result is the reason we can split the
expression 〈i|A|j〉, without ambiguity, into a sort of product of three elements:
〈i|, A, and |j〉.

Since premultiplication with the bra 〈i| singles out a row, it must be
equivalent to premultiplying by a row vector whose only nonzero entry is
a one in the ith position. Similarly, postmultiplying by a ket |j〉 must be
equivalent to postmultiplying by a column vector whose only nonzero entry
is a one in the jth position:

〈i| =
[
0 0 · · · 1 · · · 0

]
, |j〉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
1
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.111)
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Two new products result immediately from making these identifications. The
first is our friend the inner product, now of a bra with a ket, where we simply
multiply the two matrices and denote the product as a bracket with one of
the vertical bars removed,

inner product: 〈i|j〉 = δij , (2.112)

where δij is the usual Kronecker delta function. The second, outer product,
comes from multiplying a ket with a bra:

outer product: |j〉〈i| =
[

a matrix of zeroes
with a 1 in the jith position

]
. (2.113)

A first use for this bracket formalism comes by way of matrix multiplication.
Remember that the product AB of matrices A and B is defined in the usual
way as a matrix of dot products of each row with each column:

(AB)ij ≡
∑

k

AikBkj . (2.114)

Here k indexes the columns of A and the rows of B. In bracket notation,
(2.114) is written as

〈i|AB|j〉 ≡
∑

k

〈i|A|k〉 〈k|B|j〉 . (2.115)

Evidently, the core of matrix multiplication is the following identity, known
as a completeness relation: ∑

k

|k〉〈k| = 1 . (2.116)

This identity encapsulates the multiplication because it can be inserted be-
tween the A and B on the left-hand side of (2.115) to produce its right-hand
side. It also follows from the outer product in (2.113) by setting i = j = k and
summing, although we need to remember that the number of columns of A
and the number of rows of B must be the same if they are to be multiplied,
to ensure that the number of kets in (2.116) really does equal the number
of bras so that the sum does indeed make sense. Completeness relations are
very common in mathematical physics, and we’ll encounter them often in the
coming chapters.

Being adventurous now, prepending (2.116) to a ket gives

|j〉 =
∑

k

|k〉〈k|j〉 =
∑

k

|k〉 δkj , (2.117)

which is consistent with the Kronecker delta of (2.112). (Appending the
summed outer product to a bra produces the same result.) These rules,
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distilled to the inner product of (2.112) and the summed outer product
of (2.116), form the essence of bracket notation. Simple though they are,
they form a powerful tool that is especially useful when we realise that the
angle brackets can serve as containers to hold labels such as eigenvalues,
as we’ll see in the next section. This makes them very useful for describing
physical states in statistical mechanics and quantum mechanics.

2.7 Brackets and Hermitian Operators

Up until now, we have written 〈i|A|j〉 for the ijth element of a matrix A, so
that it could be read to mean the row vector 〈i| times the matrix A times the
column vector |j〉. Using this associativity, in general the notation can stand
for the action of any linear operator sandwiched in between any two vectors:

〈α|A|β〉 ≡ 〈α|Aβ〉 , (2.118)

which implies that
A|β〉 = |Aβ〉 . (2.119)

Bracket notation writes a vector α as |α〉. This might look like extraneous
notation, but the ket can“contain”more than just one symbol. It is especially
useful for holding eigenvalues of multiple operators, so that for example |�,m〉
can be understood as the eigenvector corresponding to the eigenvalues �,m
of two (commuting) operators.

What can be said about 〈Aα|? Extracting A from this requires the notion
of the adjoint A† of an operator A, defined by

〈α|A†|β〉 ≡ 〈α|A†β〉 ≡ 〈Aα|β〉 , (2.120)

so we see immediately that

〈α|A† = 〈Aα| . (2.121)

Compare this with (2.119). From the basic properties of the inner product,
we also see that

〈A†α|β〉 = 〈β|A†α〉∗ = 〈Aβ|α〉∗ = 〈α|Aβ〉 , (2.122)

so that the action of taking the adjoint is quite symmetrical: the dagger
superscript appears or vanishes when A jumps from one side of the in-
ner product to the other. This symmetry also implies that A†† = A, since
〈α|A††β〉 = 〈A†α|β〉 = 〈α|Aβ〉.

It’s very helpful to keep the axiomatic associativity of bracket notation in
mind when using it. For any α, β and any operator A, the following holds:(

〈α|A
)
|β〉 = 〈α|

(
A|β〉

)
≡ 〈α|A|β〉 . (2.123)
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Of especially simple form are the adjoints of complex numbers under scalar
multiplication and those of operator products. For the complex number c,

〈α|c†β〉 = 〈cα|β〉 = c∗〈α|β〉 = 〈α|c∗β〉 , (2.124)

which means that c† = c∗. Thus the adjoint of a complex number under scalar
multiplication is just its complex conjugate—which is also true under the
alternative inner product usage favoured by mathematicians (see p. 11). For
the product AB of two operators, we can write

〈(AB)†α|β〉 = 〈α|ABβ〉 = 〈A†α|Bβ〉 = 〈B†A†α|β〉 , (2.125)

giving (AB)† = B†A†. Of course, the same proof generalises to a product of
any number of operators.

The notion of an adjoint also allows us to view bras and kets as dual to
each other in the sense of forming a natural pair. Write

〈α| dual←→ |α〉 , (2.126)

and note that in particular 〈Aα| is dual to |Aα〉. Thus we can use (2.119)
and (2.121) to rewrite this last duality as

〈α|A† dual←→ A|α〉 . (2.127)

These are known as hermitian conjugates of each other. The reason is that
the hermitian conjugate of a matrix is simply defined to be its conjugate
transpose, and for the vectors that usually represent bras and kets, forming
the dual means taking the conjugate transpose:

〈α| =
[
a∗ b∗

] ⇐⇒ |α〉 =
[
a
b

]
, (2.128)

since this ensures that |α|2 ≡ 〈α|α〉 = |a|2 + |b|2, as required. So the idea of
taking the adjoint of an operator is mirrored in its matrix representative by
taking the hermitian conjugate of the matrix. (And as a reminder of this, in
practice the adjoint is often called the hermitian adjoint, although the word
hermitian here is superfluous). As an example, the hermitian conjugate of
a matrix-vector product Aα is (Aα)† = α†A†. In bracket language this is
written as

(
A|α〉)† = |Aα〉† = 〈α|A†. With hindsight, defining the hermitian

conjugate of a matrix to be its conjugate transpose is quite reasonable given
that the transpose of a matrix product is (AB)t = BtAt, reminiscent of the
(AB)† = B†A† that we saw just after (2.125).

The duality between bras and kets is entirely equivalent to the duality be-
tween the cobasis and basis. Thus (2.22) and (2.24) are equivalent to writing
expressions such as

|v〉 =
∑
α

|α〉〈α|v〉 , 〈v| =
∑
α

〈v|α〉〈α| , (2.129)
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Table 2.1. Terms describing matrices in the context of orthogonalisation.

A is: Complex Real

A is called:

A† = A−1 unitary orthogonal

A† = A hermitian symmetric

which are dual to each other, and are none other than the completeness
relation

∑
α |α〉〈α| = 1.

An important class of operator A is one that preserves length. The squared
length of a complex vector α is α†α, or 〈α|α〉. So demanding that length be
preserved is equivalent to demanding that |α|2 = |Aα|2 for all vectors α, or
〈α|α〉 = 〈α|A†A|α〉 in bracket language. This implies that

A†A = 1 . (2.130)

A matrix or operator A with such a property is called unitary (or orthogonal
if A is real). If A itself, rather than its inverse, is equal to A†, then A is called
hermitian (or symmetric for real A). (These common but perhaps confusing
terms are summarised in Table 2.1.) Expressions involving hermitian conju-
gates arise frequently in quantum mechanics, where such length-preserving
matrices are needed to ensure that expressions involving probability are al-
ways correctly normalised.

Hermitian Operators in Quantum Mechanics

Hermitian operators—those that are identical to their own adjoints—find ma-
jor use in quantum mechanics, where the theory seeks out hermitian operators
to represent physical observables. To see why this might be, it’s useful to de-
rive some properties of hermitian operators that will also demonstrate the
economy of using brackets. A good example is a standard theorem of linear
algebra that states that the eigenvalues of hermitian operators are real, while
the eigenvectors corresponding to distinct eigenvalues are orthogonal. (We
saw an example of these orthogonal eigenvectors on p. 39 in the discussion
of drawing the ellipse.) To prove this using brackets, consider two eigenvec-
tor/eigenvalue pairs of any operator A. The eigenvalues are called m,n, with
corresponding eigenvectors |m〉, |n〉, where each ket is labelled by the eigen-
value it holds, and no other vector notation need be introduced (such is the
economy of brackets). Since

A|m〉 = m|m〉 , A|n〉 = n|n〉 , (2.131)

it must follow that

〈n|A|m〉 = m〈n|m〉 ,

〈m|A|n〉 = n〈m|n〉 complex

conjugate
〈n|A†|m〉 = n∗〈n|m〉 . (2.132)



46 2 A Trip Down Linear Lane

A subtraction then gives

〈n|A − A†|m〉 = (m − n∗)〈n|m〉 . (2.133)

Suppose that A is hermitian: A = A†. Then it follows that (m − n∗)〈n|m〉 = 0,
and the following arguments revolve around this last expression. Setting m=n
produces n = n∗ since 〈n|n〉 	= 0, so the eigenvalues are real. Now, for dis-
tinct eigenvalues, m 	= n, in which case 〈n|m〉 = 0, so that the corresponding
eigenvectors are orthogonal and the theorem is proved.

Just as A† = A defines a hermitian operator, A† = −A defines an antiher-
mitian operator. And by an argument similar to that of the previous para-
graphs, it’s straightforward to show that antihermitian operators have pure
imaginary eigenvalues.

That the eigenvalues of hermitian operators are real, while those of antihermi-
tian operators are pure imaginary, is of central importance in the discussion of
Sect. 2.10, where we calculate how the degree of localisation of a wave depends
on what variable is used to describe it. But this property of eigenvalues finds
especial importance in quantum mechanics, where a measurement of a phys-
ical system is postulated to be represented by an operator acting on a state
ket, a normalised ket that encodes the system’s state. This ket can be written
as a linear combination of the operator’s orthonormal eigenvectors (“eigen-
kets”), whose eigenvalues are postulated to be the only allowable results of
the measurement. Since these results must be real numbers, it is sufficient
that operators representing physical measurements be hermitian. Although
the logic doesn’t actually require it, hermiticity has historically been seen as
a requirement for such operators (i.e. hermiticity is not necessary, but it is
sufficient).

The bread and butter of hermitian operators in quantum mechanics are
those that act on functions. To see a common example (whose hermiticity is
certainly not obvious at first), consider the inner product in function space,
defined by

〈f |g〉 ≡
∫ b

a

f∗(x) g(x) dx , (2.134)

where x is real, and f, g are functions with value zero at the integration
end points. Suppose that we have a derivative operator A = cd/dx for some
complex number c. This certainly arises in quantum mechanics, and we wish
to find any restriction needed if A is to be hermitian (i.e., if A is to represent
the action of a measurement). The hermiticity implies that 〈f |Ag〉 = 〈Af |g〉,
or ∫ b

a

f∗(x) c g′(x) dx =
∫ b

a

c∗f ′∗(x) g(x) dx . (2.135)

Integrate the left-hand side of (2.135) by parts to write

−
∫ b

a

f∗′(x) c g(x) dx =
∫ b

a

c∗f ′∗(x) g(x) dx . (2.136)
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Since f∗′ = f ′∗, we infer that c∗ = −c, so that c must be pure imaginary:
c = ia for some real a. Hence iad/dx is hermitian. Finally, because a whole
number power and any real multiple of a hermitian operator are also her-
mitian (the proofs are straightforward), in particular d2/dx2 must also be
hermitian. This last, the laplacian operator, finds frequent use in quantum
mechanics.

Quantum mechanics uses the bracket 〈f |i〉 to denote the amplitude for
a system to be measured to be in some final state |f〉 given some initial
state |i〉, where the absolute square of the amplitude gives the probability
for that process to occur. So, for example, suppose that we have some sort
of quantum mechanical coin that after being tossed is in a superposition of
states heads or tails, represented by orthonormal eigenvectors |H〉 and |T 〉.
Its state might be

|ψ〉 =
√

0.4 |H〉 − i
√

0.6 |T 〉 , (2.137)

for which 〈ψ|ψ〉 certainly equals one. Possible results of a measurement are
represented by prepending the state |ψ〉 with the appropriate bra, so that the
amplitude for the coin to be measured as having landed heads-up is then

〈H|ψ〉 =
√

0.4 , (2.138)

which gives a probability of 0.4, while the amplitude for the coin to be mea-
sured as having landed tails-up is 〈T |ψ〉 = −√

0.6 i, giving a probability of 0.6.
We’ll see more of this notation when we look at the evolution of quantum
mechanical states under a measurement in Sect. 10.9.

2.8 Frequency and Wavenumber

The two major attributes of a wave that allow wave motion to be quantified
are frequency and the wavenumber vector. Why is it that we never talk
about a “wavelength vector” as opposed to the wavenumber vector? It would
seem that wavelength is a more basic concept than wavenumber, and yet
the issue somehow seems to become complicated by the introduction of the
wavenumber. Of course, there is a good reason, which will emerge over the
next few pages.

Consider a general wave moving along the x-axis without dispersion at
some velocity v; that is, it consists of an unchanging shape which moves
at this velocity. Let u(t, x) measure the amount by which the medium is
“waving” (i.e. displaced from its equilibrium position). This quantity might
be air pressure, displacement of the air molecules from equilibrium for a sound
wave, or transverse displacement for a wave on a string. For light, which has
no medium, u might be chosen to be the strength of the electromagnetic field
that defines the wave. We can always write

u(t, x) = f(x − vt) . (2.139)
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∆ = “increase in”, not “change in”

Symbols such as ∂/∂x, d, and ∆ are almost always read as “the change in”.
But what is much more meaningful is to specify whether this change is a
gain or a loss; after all, nobody speaks of their bank balance as “changing” by
such-and-such an amount. The symbols ∆ and d really refer to a gain:

∆A ≡ Afinal − Ainitial ≡ gain in A ,

−∆A = loss in A , (2.140)

and similarly for partial derivatives. This is no mere toying with the language.
As Richard Feynman once remarked, physics is all about knowing where to
put the minus sign; and words such as gain or loss figure in how we translate
from a linguistic description of a problem to a useful mathematical statement.
Other examples are common. Ohm’s rule is written as V = IR, but only by
remembering that V is a drop in potential across a resistance, or −∆Φ, are
we able to relate this to Maxwell’s equations, as well as apply Kirchhoff’s laws
correctly around an electric circuit. Similarly, in the theory of heat flow the
time rate of loss of thermal energy, −dQ/dt, is proportional (with positive
constant) to the area A of the surfaces in contact and the space rate of loss of
temperature −∇T . Here the minus signs cancel, giving dQ/dt = κA∇T , but
our ability to translate the physics into an English statement, and then into
mathematics, hinges on an understanding of the signs involved. This can be
seen clearly in equations such as (3.91), (10.7), (10.165), and (12.42).

Another example where this understanding is crucial is when we wish to
convert a spectrum as a function of frequency, u(f), to a function of wave-
length, ũ(λ). Increasing values of f map to decreasing values of λ; so the fre-
quency interval [f, f + df ] corresponds to the wavelength interval [λ + dλ, λ],
where dλ is negative. Given the frequency spectrum u(f), the wavelength
spectrum ũ(λ) is defined by equating infinitesimal areas under the graphs
of u(f) and ũ(λ). Thus the two spectra are related by setting ũ(λ) ×−dλ
equal to u(f) df .

The phase of a wave of constant amplitude can be defined using this function.
We certainly have an intuitive idea of the phase of a sine wave, meaning the
argument of the sine function: the angle that the associated phasor currently
makes with a reference axis. At any one moment, the phase φ of a sine wave
increases with x, and the faster it increases, the more“ripply”the wave is. This
suggests that we define a measure of this rippliness called the wavenumber k:

k ≡ ∂φ

∂x
. (2.141)

Choosing now some position x, then as the wave moves, say, to the right,
its phase decreases. Define the wave’s circular frequency (often just called
frequency) to be this rate of decrease:
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origin

n·x

direction of n

x

Fig. 2.9. A surface of constant phase for a three-dimensional wave. The wave moves
in the direction of its unit normal n.

ω ≡ −∂φ

∂t
, (2.142)

where the minus sign ensures that we are specifying a decrease, not an in-
crease. (See the box on the facing page.)

At first glance, this seems to imply that we have designed ω to be positive
for a right-mover and negative for a left-mover, but actually that depends on
the sign of the phase. There is a certain amount of ambiguity in our definitions
that is really not so important. Also, the circular frequency measures the
number of radians per unit time through which the phasor turns, so we must
divide this by 2π to get the number of cycles per unit time, which we’ll simply
call the frequency f . Thus f = ω/2π.

From their definitions, a wave with a constant frequency and wavenumber
must have a phase of kx − ωt. That is, for some function g,

u(t, x) = g(kx − ωt) = g
(
k[x − vt]

) ≡ f(x − vt) , (2.143)

so that ω = kv. This relation between frequency and wavenumber is called
the dispersion relation of the wave. What are the wavelength and period of
the wave? Unlike the wavenumber and frequency, we will really take these
two quantities to be always positive, and a simple analysis of how the wave
moves produces

λ =
2π

|k| , T =
2π

|ω| . (2.144)

So much for motion in one dimension. A plane wave in three dimensions can
be converted to a single dimension by referring to Fig. 2.9, in which we show
a side view of a surface of constant phase for the wave, which moves in the
direction of its unit normal n. Analogously to the one-dimensional case, the
function describing the wave has the form

u(t,x) = f(n·x − vt) . (2.145)

With reference to (2.143), we can always define a function g by

u = g
(
k(n·x − vt)

)
, (2.146)
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Drawing the Wavenumber k and a Unit Vector n

Equation (2.147) defines the wavenumber k and relates it to a unit vector n.
But an interesting difficulty presents itself here: how can we draw these vectors
as arrows? Unlike a position vector x, their lengths are not measured in units
such as metres. The vector k carries units of, e.g., metres−1, while in a slight
linguistic twist, the unit vector n has no units at all!

Having no units, n cannot be drawn as an arrow because its length is not
one metre or one light-year or one anything else, but simply one. If the arrow
conventionally drawn as representing n is to have a length of one metre, then
what we are really drawing is not n but n×1 metre. Likewise, the arrow drawn
as representing k on the same axes is not k at all, but rather k × 1 metre2.

This apparent clash of what can be drawn and what meaning it carries
really presents no problems. After all, we could represent a product such as
mass × acceleration by the area of a rectangle whose sides have lengths“equal”
to the mass and acceleration; and yet neither of these has units of metres. It
is perfectly well understood that the line segments being drawn are not really
mass and acceleration but rather mass × 1m/kg and acceleration × 1 s2. Units
are an integral part of how entities are visualised geometrically, but once a
convention of what will be used is established, then we can be confident that
units will look after themselves.

In Chap. 8 we’ll see that for something like the wavenumber k, the actual
entity with an existence independent of coordinates is not the set of compo-
nents (kx, ky, kz) but rather these components together with a basis. This is a
very important and fruitful idea that will be used frequently in Chap. 8 and
later chapters.

where k is defined as in the one-dimensional case. This suggests a three-
dimensional version of the wavenumber, a new vector k defined as

k ≡ ∇φ = kn , along with ω ≡ −∂φ

∂t
= kv as before, (2.147)

so that u = g(k·x−ωt). We’ll make use of this definition of the wavenumber
and frequency in Chap. 6 when we join them together to make something
new.

Equation (2.147) generalises the wavenumber to a vector. Does it make
sense to talk about a wavelength vector λ ≡ λn? We can always define
such a thing, but this needs care if the definition is to be useful. To see
why, consider a set of plane waves moving along their normal vector n, as
depicted in Fig. 2.10. If the vector λ is to have intuitive meaning, we would
surely require that each of its components be the wavelength of the waves as
seen on the corresponding axis. But such is not the case! As can be seen in
Fig. 2.10, the wavelength on the x-axis, being the distance between points of
equal phase, is
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Fig. 2.10. Two phase fronts (surfaces of constant phase) of a three-dimensional
plane wave moving along its unit normal n. This construction shows why we cannot
construct a meaningful wavelength vector as λ ≡ λn.

λ

| cos(n,ex)| , (2.148)

where ex denotes the unit vector along the x-axis, (n,ex) denotes the angle
between n and ex, and we need to use an absolute value in case this angle is
greater than 90◦. But contrast (2.148) with the x-component of λ,

λx = λnx = λ cos(n,ex) , (2.149)

which is not the wavelength (2.148) seen on the x-axis! So defining λ ≡ λn
is problematical and best avoided. On the other hand, the jumping of the
cosine from denominator to numerator led us to suspect that it might be
better to design a vector based on 1/λ instead of λ; and this is exactly what
the wavenumber k is. For example, the modulus of the wavenumber of the
waves along the x-axis is

|k seen on x-axis| =
2π

λ on x-axis
=

2π

λ
| cos(n,ex)| = |k cos(n,ex)| = |kx| .

(2.150)
This is just what we might reasonably expect the x-component of a vector
to be: the length of its projection on the x-axis. So here we have a first
reason that the vector wavenumber k is so useful: because it accords with
our intuition. In Chap. 6 we will encounter a more compelling reason: k pairs
very naturally with ω to form a new quantity with new and useful properties.

Similarly, it makes no sense to define a vector ω = ωn because the fre-
quency seen on the x-axis is ω, not ωnx. Again, on the same note, it’s also
not necessarily a good idea to define a velocity for the wave as v = vn since
this has x-component vnx, while the velocity of the wave as seen on the
x-axis is v/nx. (If this is not clear, remember that the velocity of the wave
as seen on the x-axis is the velocity of a wave crest’s intersection with that
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axis. When nx is very small, the wave is almost parallel to the axis and so
this intersection can move arbitrarily quickly.) So while we can always define
new entities freely, it pays to ensure that new definitions allow us to use our
intuition in a useful way. The concept of a wavenumber does just that.

2.9 Deriving the Fourier Transform Using Brackets

Fourier theory is built upon the ideas we have discussed previously: linearity,
diagonalisation, and the notions of frequency and wavenumber. It also is
naturally expressed using bracket symbolism, which is what we’ll show in
this section. Fourier theory is concerned with expressing a function as a sum
of simple components, each of whose behaviour we are familiar with; so we
gain knowledge of the function itself through studying the behaviour of these
components.

The starting point for building the Fourier transform is the observation
that a function is an entity that exists outside of its functional notation. That
is, if f(x) ≡ sin x, and we define a new variable y such that y = x2, then we
know it becomes somewhat ambiguous to ask for the value of f(y). Do we

– simply take the sine of the argument, giving sin y, or
– find the value of x that corresponds to y and take the sine of that, giving

sin
√

y ?

If by f we simply mean a mechanical procedure that takes the sine of its ar-
gument, then we can happily write f(x) = sinx, f(y) = sin y; and this is cer-
tainly assumed in mathematics and computer programming. But the meaning
given to a function symbol by mathematical physicists is usually a little more
subtle. Changes of variables are quite meaningful and common, so we would
like the definition of the function to change somehow to be “aware” of this.
We could use a new symbol, f̃ , where f̃(y) ≡ f(x) ≡ sin x = sin

√
y. But now

the underlying function has two names: f when its argument is x, and f̃ when
its argument is y. (We did something similar in the box on p. 48, although
there the two functions u(f), ũ(λ) were not actually equal.) More generally
applicable names such as fy(y) ≡ fx(x) ≡ sin x = sin

√
y are perhaps better

and are also used in practice, but they do give the impression of a doubling-up
occurring in the notation with x and y.

Often—but not always—physicists will use the single letter f to stand for
both forms of the function, and indeed any other instances of it that depend
on new variables such as z = x2 + x, etc. There is seldom any confusion.
But we have drawn attention to the difficulty because not only can it be
fixed by using bracket formalism when occasion demands, but also the use of
brackets in this way serves as a natural stepping-off point into the formalism
of quantum mechanics.
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To apply brackets to the various instances of a function f , associate it
with the ket |f〉. We make a rule that if we prepend this with a bra con-
taining whatever argument we require, then the mechanism of the function
will change accordingly. This idea of widening the definition of a function
so that it does the right thing depending on what argument it takes is not
new. After all, the same symbol “+” is used for addition regardless of whether
we are adding numbers or matrices; similarly the exponential of a matrix is
completely well-determined without a separate function name being reserved
for the exponential with a matrix argument.

With this philosophy in mind, we do away with the multiple names for
the various guises of f through defining

〈x|f〉 ≡ f(x) = sinx , 〈y|f〉 ≡ f̃(y) = sin
√

y . (2.151)

It will also prove useful to define 〈f |x〉 as the complex conjugate of 〈x|f〉, so
that 〈f |x〉 ≡ f∗(x).

As an aside, it might be asked why we did not instead define 〈f |x〉 to
equal f(x). One reason is because we are following long-established quan-
tum mechanical formalism, and this formalism, too, must be read from right
to left. For example, we have already mentioned the quantum mechanical ex-
pression 〈f |i〉, denoting the amplitude for a system to be found in some final
state |f〉 given that it was originally in some initial state |i〉. Another reason
is that the same convention is followed in probability theory. In Sect. 3.3
we’ll see that the probability for some final event f to occur, given some
initial event i, is denoted p(f |i) or simply (f |i).
Dirac brackets are thus containers, and examples of what they can hold

are coordinates x, y, eigenvalues m,n, or functions f, g. Because all of these
arguments belong to different name spaces, there is no problem with widening
the definition of the bras and kets to include them all. Another simple exam-
ple of this “container” use of brackets is the spherical harmonics Y�m(θ, φ),
orthonormal eigenfunctions useful in both classical and quantum mechanics
when spherical coordinates are used. Writing a spherical harmonic in “pre-
coordinate” form as the vector |�m〉 allows its usual spherical polar functional
form to be denoted

〈θ φ | �m〉 ≡ Y�m(θ, φ) , (2.152)

which would be 〈x y z | �m〉 in cartesian coordinates. We will see how spherical
harmonics’ orthonormality relation can be written later in (2.160).

Let’s set about defining various expressions involving brackets. First is
the fundamental notion of the inner product for functions, as first seen in
Sect. 2.7. Fourier analysis needs well-specified limits:

〈f |g〉 ≡
∫ L

−L

f∗(x) g(x) dx =
∫ L

−L

〈f |x〉〈x|g〉 dx . (2.153)

Just as a completeness relation was arrived at in (2.116), we can follow the
same ideas here by omitting 〈f | and |g〉 from (2.153) to write
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−L

|x〉〈x| dx = 1 . (2.154)

This last identity now allows us to write

〈x|f〉 =
∫ L

−L

〈x|x′〉〈x′|f〉 dx′ (2.155)

and so conclude that
〈x|x′〉 = δ(x − x′) . (2.156)

Fourier analysis needs the notion of an orthonormal set of basis functions. As
usual, a set of functions {fn(x)} is called orthonormal over the domain [−L,L]
if 〈fm|fn〉 = δmn. This set should also be complete, meaning that any “well-
behaved” function can be written as a linear combination over this set.
The restriction to well-behaved functions is needed because Fourier analy-
sis can really only be easily applied to square-integrable functions, also called
L2 functions. To see what these are, define the L2 norm of a function f(x)
over [−L,L] to be ‖f‖, such that

‖f‖2 ≡ 〈f |f〉 =
∫ L

−L

〈f |x〉〈x|f〉 dx =
∫ L

−L

|f(x)|2 dx . (2.157)

(The L in L2 has nothing to do with the limits of integration.) In that case,
a square-integrable function is any function with a finite L2 norm; i.e., it de-
creases sufficiently quickly as x → ∞. There are many choices of orthonormal
basis sets used in Fourier theory, but we’ll focus on just one:

Our orthonormal basis on [−L,L] is
{

φn(x) ≡ 1√
2L

e
inπx

L

}∞

n=−∞
(2.158)

These functions are easily shown to be orthonormal on [−L,L] by carrying out
the integration. And although we will not show it here, this set of functions
is complete as a basis for square-integrable functions.

For brevity, write these basis functions as 〈x|n〉 ≡ 〈x|φn〉, in which case
we can express the orthonormality of the basis set using (2.154) as

〈m|n〉 =
∫ L

−L

〈m|x〉〈x|n〉 dx =
∫ L

−L

φ∗
m(x)φn(x) dx = δmn , (2.159)

a rule that is just the same as (2.112)!

On the same note, the orthonormality relation for the spherical harmonics
of (2.152) can be written neatly as

〈� m |�′m′〉 ≡
∫ 2π

0

dφ

∫ π

0

dθ sin θ 〈� m | θ φ〉〈θ φ | �′m′〉 = δ��′ δmm′ . (2.160)
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Why Sinusoids?

Why should we prefer sinusoids to describe waves when any other basis set
would be just as valid? Second-order linear differential equations are ubiquitous
in models of physical systems, and these often have sinusoidal eigenfunctions.
Sinusoids are easy to deal with mathematically, but there is also a physical
reason, which can be seen by examining resonance in an electrical circuit.
This is fundamentally sinusoidal, so that the excitation of an antenna forms a
useful picture. The space around us carries just one vastly complicated elec-
tromagnetic field, but this one field contains information from the very lowest
frequencies to the very highest; from the one-off movement of a charged piece
of amber to the arrival of the highest-energy cosmic ray photons. In between,
there are radio and television broadcasts with whose frequency any simple
circuit can be set to resonate. So the sinusoidal basis does have a reality; phys-
ically, the antenna circuit is resonating with, or picking out, a sine component
of the field. In that sense, the capacitance being altered as we tune a radio
dial is acting as a very physical projection operator onto the sinusoidal basis.

Now, what meaning can be given to 〈n|f〉? Again make use of the complete-
ness relation (2.154):

〈n|f〉 =
∫ L

−L

〈n|x〉〈x|f〉 dx =
∫ L

−L

φ∗
n(x) f(x) dx . (2.161)

But this last expression is just the nth coefficient of f(x) over the basis (which
is trivial to show), or in other words

〈x|f〉 =
∞∑

n=−∞
〈x|n〉〈n|f〉 . (2.162)

With f(x) being arbitrary, it follows that a new completeness relation must
hold: ∞∑

n=−∞
|n〉〈n| = 1 , (2.163)

which by now might not be too surprising. Simple though it might appear,
(2.163) encapsulates Fourier analysis and shows how that subject really re-
sembles matrix multiplication. This might come as no surprise, because both
subjects are concerned with projecting vectors or functions onto bases. We
see why an identity such as (2.163) is called a completeness relation: because
it expresses the completeness of the basis {|n〉} that enables an arbitrary
function to be expanded over that basis.

So far, what we have written is all just notation, and it must prove itself
useful if we are to give it any real weight. The bracket formalism may well find
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Table 2.2. Definitions of bracket entities.

|f〉 ≡ the unique entity corresponding to a function f.

〈x|f〉 ≡ f(x) (with the caveat discussed above for another variable y).

|n〉 ≡ |φn〉 = a Fourier basis function, where 〈x|n〉 is defined in (2.158).

〈f |g〉 ≡
∫ L

−L

f∗(x) g(x) dx .

〈a|b〉 ≡ 〈b|a〉∗ regardless of what a and b are.

its major use in quantum mechanics, but it has been introduced here in the
context of Fourier theory as a way of showing just how brackets work. Later
we’ll see how it can be used to dovetail quantum mechanics with Fourier
theory. But for now, we demonstrate just how useful the formalism is by
reproducing the Fourier transform using brackets.

To do this, begin by applying the two completeness relations (2.154)
and (2.163) to project a square-integrable function f(x) onto the φn(x) basis:

f(x) = 〈x|f〉 =
∑

n

〈x|n〉 〈n|f〉

=
∞∑

n=−∞

1√
2L

e
inπx

L 〈n|f〉 . (2.164)

The function f(x) has been transformed to a new one, 〈n|f〉. (This new func-
tion might sometimes be called f̃(n) in texts, but now we see the simplicity
of using the |f〉 formalism.) What is the inverse transform?

〈n|f〉 =
∫ L

−L

〈n|x〉 〈x|f〉 dx

=
∫ L

−L

1√
2L

e
−inπx

L f(x) dx . (2.165)

The completeness relation of bracket notation expresses the Fourier integral
and its inverse very concisely, and the necessary complex conjugation of the
basis functions comes about automatically. The relevant expressions used
here, plus others we’ll use later, have been summarised in Table 2.3.

Normally, we wish to apply the Fourier transform to a function over the
whole x-axis, not just the interval [−L,L]. This requires considering the limit
L → ∞. To do so, first combine (2.164) with (2.165):

f(x) =
∞∑

n=−∞

1

2L
e

inπx
L

∫ L

−L

e
−inπx′

L f(x′) dx′ . (2.166)
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Table 2.3. Useful Identities of Fourier Theory.

〈x|f〉 ≡ f(x) , 〈x|f, t〉 ≡ f(x, t) .

〈x|n〉 ≡ 〈x|φn〉 =
1√
2L

exp
inπx

L
.

〈x|k〉 ≡
√

|α|
2π

e
iαkx for any real α.

〈f |g〉 ≡
∫ L

−L

f∗(x) g(x) dx .

〈a|b〉 ≡ 〈b|a〉∗ regardless of what a and b are.

〈x|x′〉 = δ(x − x′) , 〈m|n〉 = δmn .∫ L

−L

|x〉〈x| dx = 1 ,

∞∑
n=−∞

|n〉〈n| = 1 ,

∫ ∞

−∞
|k〉〈k| dk = 1 .

Suppose we make a change of variables in the summation:

k ≡ nπ

L
, so that ∆k =

π

L
∆n =

π

L
. (2.167)

Then (2.166) becomes (leaving n in the summation for now)

f(x) =
∞∑

n=−∞

1
2π

∆k eikx

∫ L

−L

e−ikx′
f(x′) dx′ . (2.168)

Now let L → ∞ so that ∆k → 0 and the sum becomes an integral:

f(x) =
∫ ∞

−∞

dk

2π
eikx

∫ ∞

−∞
e−ikx′

f(x′) dx′ . (2.169)

The equations of Fourier analysis have a certain latitude that allows different
conventions to exist. These can all be accommodated by making another
change of variables of k → αk (α real) to write (2.169) as follows:

f(x) =
|α|
2π

∫ ∞

−∞
dk eiαkx

∫ ∞

−∞
e−iαkx′

f(x′) dx′ . (2.170)

The main conventions in use are then reproduced by choosing α = ±2π and
α = ±1. The factor of |α|/(2π) can be distributed evenly or otherwise, as
two factors, one in front of each integral. This partly corresponds to our
defining 〈x|k〉 as in Table 2.3:

〈x|k〉 ≡
√

|α|
2π

eiαkx. (2.171)
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But (2.170) also allows us to put any factor β in front of the integral in the
Fourier transform, provided that 1/β is also included in front of the integral
in the inverse transform.

As a side note, the use of (2.171) gives a meaning to
∫∞
−∞ |k〉〈k|dk. Begin

with ∫ ∞

−∞
〈f |k〉 〈k|g〉dk , (2.172)

insert completeness relations over x and x′, and then use (2.171). The result
shows that (2.172) can be written as 〈f |g〉, which means that∫ ∞

−∞
|k〉〈k|dk = 1 , (2.173)

forming yet another useful completeness relation.

The Fundamental Fourier Identity

If we choose α = 1 for simplicity and set f(x) = δ(x) in (2.170), we obtain
the fundamental Fourier identity∫ ∞

−∞
eikx dk = 2πδ(x) . (2.174)

(Any other choice of α does not give a different identity; the α simply cancels
internally.) This is an interesting integral because, strictly speaking, Fourier
theory is only valid for square-integrable functions, and a constant is cer-
tainly not square integrable. It then must be that the identity (2.174) has
invisibly incorporated some sort of limiting procedure. The delta function is a
generalised function or functional, meaning that it is taken as given that an-
other integration will always be carried out with some other square-integrable
function, known as a test function.

The delta function is not the only functional appearing in Fourier theory.
Another comes about by considering the following integral:∫ ∞

0

eikx dk = ? (2.175)

We’ll have occasion to use this much later when delving into Green function
theory in Chap. 11. Its value, whatever that might be (if indeed it exists),
should surely incorporate or be related to the delta function in some way, since
summing two of these one-sided integrals with an appropriate sign change
should yield (2.174) again.

2.10 Commutators and the Indeterminacy Principle

The fundamental Fourier identity (2.174) shows that the delta function and
the constant function 1 form a Fourier pair, so that the Fourier transform of
a spike is a flat, constant function; and vice versa.
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Now, just as the Fourier transform establishes a correspondence between
position x and wavenumber k = 2π/λ (being a measure of the spatial rippli-
ness of the wave), it also pairs time t with rotational frequency ω = 2πf , a
measure of the wave’s temporal rippliness. We can appreciate this by asking
what frequencies are present in a sound, using (2.174) as a guide to con-
sider two extreme cases of the noisy collision of two objects. When two hard
marbles collide, the audible “clack” means that the sound wave f(t) is ap-
proximately a delta function. The spread of frequencies f(ω) produced by
the marbles must then be a constant, the Fourier transform of f(t). So the
clack of the bouncing marbles is composed of a flat spectrum that has, at
least in principle, equal amounts of all frequencies. In practice, the very high-
est frequencies are unphysical and not present, which means that f(ω) → 0
for |ω| → ∞. In hindsight, we might well expect “nearly” all frequencies to
be present, because the tiny dwell time, or time in contact, of the marbles
ensures that only the very highest frequencies of their ringing surfaces will
be suppressed during that time.

On the other hand, the collision of two fuzzy objects is anything but a
delta function in time, since their long dwell time dampens out all but the very
lowest frequencies. In the limit of a very long dwell time, the only surviving
frequency is the zero frequency, so that f(ω) is approximately a delta function.
(Thus, the relative amount of the zero frequency present is δ(ω) dω, which
is 1 for ω = 0, as expected.) In that case, the sound wave f(t) produced is a
constant. In that sense it does not really represent a sound at all; it’s merely
the infinite-wavelength limit of a sound. The limiting-case assumption that
only the zero frequency is present is somewhat unphysical, but we see that
the resulting sound “wave” is quite flat in time, which is reasonable.

These two cases are actually just the extremes of a more general principle
applying to a function and its Fourier transform, in that when one is very
localised, the other is spread out. Its application to quantum mechanics is
known as the Heisenberg Uncertainty Principle, or sometimes the Heisenberg
Indeterminacy Principle. “Indeterminacy” is perhaps a better title than “Un-
certainty” because the principle does not refer to some kind of uncertainty
that we are obliged to have about an otherwise well-defined property of a
system. Rather, the principle refers to properties of a system that are not
well defined in the first place. The standard interpretation of quantum me-
chanics uses the idea that a system might not possess a well-defined value for
some quantity of interest until we make a measurement of that quantity. But
that discussion can be left until Sect. 10.9. In the meantime, let’s see how
the same principle also applies to very classical waves. In the process, we will
create some new formalism that becomes very useful in quantum mechanics,
as well as in more advanced calculations involving linearity in general.

The duality of a function’s being localised in one variable while spread out
in the Fourier-partner variable is more commonly discussed with wavenum-
ber k and spatial coordinate x, as opposed to the ω and t of the last few
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paragraphs. We’ll follow suit here. If a function has a large bandwidth, mean-
ing it is composed of many basis plane waves over a large range of wavenum-
bers, then the various peaks and troughs can be expected to cancel over large
tracts of space, leaving the function nonzero only in very widely spaced re-
gions. Including all wavenumbers ensures there is always a trough to balance
a peak, so that the function becomes a spike at the origin, the only place
where the Fourier basis functions always add constructively. Here we wish to
quantify how some useful measure of bandwidth is related to how localised
the function is.

To do so, we require a measure of the spatial width of the function. Such
an idea is developed to a high degree in statistical theory as the standard
deviation, examined in great detail in the next chapter. So begin with a nor-
malised function f(x); normalisation makes the notation cleaner. Choosing
some probability distribution, define its width to be the standard deviation σx

of the values of x in its domain. That is, σx is the root-mean-squared deviation
of x from the mean x̄ of x:

σ2
x ≡ 〈∆x2

〉 ≡ 〈(x − x̄)2
〉
, (2.176)

where the deviation of x from its mean is ∆x ≡ x−x̄, and 〈·〉 denotes the mean
(so that x̄ ≡ 〈x〉, but x̄ is slightly simpler to write in these expressions). An-
ticipating a result in quantum mechanics, we’ll define the appropriate prob-
ability distribution needed to calculate the mean in (2.176) as |f(x)|2, since
in general f(x) might be complex.

A mean can be expressed in bracket notation by defining operators with
continuous spectra of eigenvalues that are just x and k:

x̂ |x〉 ≡ x |x〉 , k̂ |k〉 ≡ k |k〉 . (2.177)

These particular operators are hermitian since they have real eigenvalues.
Using them, the mean of x can be written as

x̄ = 〈x〉 ≡
∫ ∞

−∞
x |f(x)|2 dx =

∫
x 〈f |x〉 〈x|f〉dx

=
∫
〈f | x̂ |x〉 〈x|f〉dx = 〈f | x̂ |f〉 . (2.178)

Similarly,
〈
x2
〉

=
〈
f | x̂2 |f〉 and so on, while the same expressions also hold

for k. The variances in x and k become

σ2
x =
〈
∆x2
〉

=
〈
f
∣∣∆x̂2

∣∣f〉 , σ2
k =
〈
∆k2
〉

=
〈
f
∣∣∆k̂2

∣∣f〉 . (2.179)

Using bracket notation is more than just a convenient shorthand for the
integrations used to calculate the mean. In particular, σ2

x is actually an inner
product of ∆x̂ |f〉 with its hermitian conjugate, and similarly for σ2

k . This fact
invokes the Cauchy–Schwarz inequality of linear algebra, which finds many
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applications in mathematical physics. The Cauchy–Schwarz inequality says
that for any vectors α,β,

〈α|α〉 〈β|β〉 � |〈α|β〉|2 (2.180)

(with strict equality if and only if α and β are linearly dependent). The proof
of the inequality is actually very simple, but we will not stop to look at it
because it’s almost identical to the next chapter’s proof of a result in the
theory of cross correlation: (3.134)–(3.136).

Setting |α〉 = ∆x̂ |f〉 and |β〉 = ∆k̂ |f〉, the Cauchy–Schwarz inequality
gives the following relation between the widths of a function and its Fourier
transform: 〈

f
∣∣∆x̂2

∣∣f〉 〈f ∣∣∆k̂2
∣∣f〉 �

∣∣〈f ∣∣∆x̂∆k̂
∣∣f〉∣∣2, (2.181)

or in other words
σ2

x σ2
k �
∣∣〈∆x ∆k

〉∣∣2. (2.182)

What are we to make of this?

As an aside for the statistics discussion of the next chapter,
〈
∆x ∆k

〉
is

actually the covariance of x and k, also written σxk (with no exponent 2).

In general, the value of
〈
∆x ∆k

〉
depends on f . But it turns out that〈

∆x ∆k
〉

can be split into two parts: one that does not depend on f and
another that does—but which can be shown to be zero for one type of func-
tion (a gaussian). Hence the part that does not depend on f forms the abso-
lute lower bound for the product σxσk. This part has to do with commutator
brackets [A,B] ≡ AB − BA, which measure the extent to which the order-
ing of two operators is important. Together with commutator brackets go
anticommutator braces {A,B} ≡ AB + BA, and it’s not hard to see that

∆x̂ ∆k̂ = 1

2

[
∆x̂, ∆k̂

]
+ 1

2

{
∆x̂, ∆k̂

}
= 1

2

[
x̂, k̂
]︸ ︷︷ ︸

antihermitian

+ 1

2

{
∆x̂, ∆k̂

}︸ ︷︷ ︸
hermitian

, (2.183)

where the second line follows from the first by using ∆x̂ = x̂−x̄ (and similarly
for k) and then expanding the brackets. That the operators are antihermitian
and hermitian can be shown by, e.g.,[

x̂, k̂
]† =

(
x̂ k̂ − k̂ x̂

)† = k̂ x̂ − x̂ k̂ = −[x̂, k̂
]
, (2.184)

with only a marginally different calculation to show that
{
∆x̂, ∆k̂

}
is hermi-

tian. The reason that
〈
∆x ∆k

〉
has been split in this way, quite apart from the

fact that the commutator brackets turn out to give the constant contribution
referred to a moment ago, is that because antihermitian operators have pure
imaginary eigenvalues, they must give pure imaginary means; and because
hermitian operators have real eigenvalues, they must give real means.
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Alternatively, these results can be seen by examining a general hermitian
operator Ĥ belonging to some variable H, through writing

〈H〉∗ =
〈
f
∣∣ Ĥ ∣∣f〉∗ =

〈
f
∣∣ Ĥ† ∣∣f〉 =

〈
f
∣∣ Ĥ ∣∣f〉 = 〈H〉 , (2.185)

so that 〈H〉 is real. A similar argument shows that for any antihermitian

operator Â, the mean 〈A〉 is pure imaginary.

These ideas prove useful when we take the mean of (2.183), which is needed
for (2.182): 〈

∆x ∆k
〉

=
〈
f
∣∣∆x̂ ∆k̂

∣∣f〉
= 1

2

〈
f
∣∣[x̂, k̂

]∣∣f〉︸ ︷︷ ︸
pure imaginary

+ 1

2

〈
f
∣∣{∆x̂, ∆k̂

}∣∣f〉︸ ︷︷ ︸
real

. (2.186)

This useful separation lets us use Pythagoras’s theorem to calculate the ab-
solute value:∣∣〈∆x ∆k

〉∣∣2 = 1

4

∣∣〈f ∣∣[x̂, k̂
]∣∣f〉∣∣2 + 1

4

∣∣〈f ∣∣{∆x̂, ∆k̂
}∣∣f〉∣∣2 . (2.187)

The first term in this sum will be the most important—what is
〈
f
∣∣[x̂, k̂

]∣∣f〉?〈
f
∣∣[x̂, k̂

]∣∣f〉 =
〈
f
∣∣ x̂ k̂ − k̂ x̂

∣∣f〉 . (2.188)

Evidently, to proceed we will need to expand the last line using completeness
relations for x and/or k. It suffices to choose one basis, or representation
(the term used in quantum mechanics). Let’s choose the x-basis. Expressions
such as

〈
x
∣∣x̂∣∣f〉 are no problem, since with x̂ hermitian and thus having real

eigenvalues,〈
x
∣∣ x̂ ∣∣f〉 =

〈
f
∣∣ x̂ ∣∣x〉∗ = x 〈f |x〉∗ = x 〈x|f〉 = x f(x) . (2.189)

But what about an expression such as
〈
x
∣∣ k̂ ∣∣f〉, which will be used to eval-

uate (2.188)? Remember to read these brackets from right to left using the
ideas behind expressions such as (2.151). For example,

〈
x
∣∣ x̂ ∣∣f〉 tells us to

act on a ket |f〉 with x̂, and then project the resulting ket onto x-space. The
result gives the x-representation of the operator x̂, which is now an operator
on the function f(x)—and from (2.189) we see that the x-representation of x̂
is just multiplication by x. Be aware that there are two types of operators
here: one acts on a ket, while the other acts on a function. An expression such
as (2.189) takes us from one to the other. The distinction between these two
operator types becomes more interesting when we ask for the representation
of an operator in a different basis. In particular,

〈
x
∣∣ k̂ ∣∣f〉 =

∫
〈x|k〉 〈k∣∣ k̂ ∣∣f〉dk

(2.171)
∫ √ |α|

2π
eiαkx k 〈k|f〉dk
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〈
x
∣∣ x̂ ∣∣f〉 = x 〈x|f〉

“ x̂
x-rep.

x ”

〈
x
∣∣ k̂ ∣∣f〉 = −i

α
d
dx 〈x|f〉

“ k̂
x-rep. −i

α
d
dx ”

Fig. 2.11. The distinction between an operator in ket space and its representation
over some basis in function space. This representation is equivalent to the operator’s
coordinate vector of p. 9 over that basis. Left: The x̂-operator’s x-representation
is just multiplication by x. Right: In contrast, the k̂-operator’s x-representation is
a differentiation. Alternative language relating each pair of operators is shown in
the second line of the figure.

=
−i

α

d
dx

∫ √ |α|
2π

eiαkx 〈k|f〉dk =
−i

α

d
dx

∫
〈x|k〉 〈k|f〉dk

=
−i

α

d
dx

f(x) . (2.190)

We say“the x-representation of k̂ is −i/α d/dx”. The distinction between the
two types of operators is very important and is shown again in Fig. 2.11.

It’s worth pointing out a possible source of confusion with these operators.
The generic function f had a passive role as a kind of spectator in (2.190), and
as a way of shortening the notation, it might be removed from the expression〈
x
∣∣ x̂ ∣∣f〉 = x 〈x|f〉 and its complex conjugate

〈
f
∣∣ x̂ ∣∣x〉 = x 〈f |x〉 to produce,

respectively,
〈x| x̂ = x 〈x| , x̂ |x〉 = x |x〉 . (2.191)

This is certainly done. The same procedure gives the analogous expres-
sion for k̂ in the x-representation, but this requires a little more attention.
Removing f from

〈
x
∣∣ k̂ ∣∣f〉 = −i/α d/dx 〈x|f〉 and its complex conjugate〈

f
∣∣ k̂ ∣∣x〉 = +i/α d/dx 〈f |x〉 produces

〈x| k̂ =
−i

α

d
dx

〈x| , k̂ |x〉 =
+i

α

d
dx

|x〉 . (2.192)

The derivative operator is not really acting on the bra and ket; such an idea
makes no sense since differentiation is only defined for functions, not bras
or kets. The expressions in (2.192) are really just a way of indicating the
x-representation of k̂—they are waiting for a function f to be introduced in
the form of |f〉 or 〈f |. Note also that the x-representation of k̂ as written in
Fig. 2.11 refers to the 〈x| k̂ form, not the k̂ |x〉 form. The difference is a minus
sign, and it’s important to be aware of it.

Return now to the task of calculating (2.188). The analysis of the last few
paragraphs implies that the operators x̂, k̂ do not commute, because their
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x-representations do not commute. This can be seen in detail by letting these
representations act on a function f(x):

(The first line in the following equation is suggestive, but not obvious, and
is left as an exercise for the reader to prove. It can be shown by using
completeness over x, as well as an integration by parts.)〈

x
∣∣[x̂, k̂

]∣∣f〉 =
[
x,

−i

α

d
dx

]
f(x) =

−i

α
x f ′(x) +

i

α

d
dx

(
xf(x)

)
=

i

α
f(x) =

〈
x
∣∣ i

α

∣∣f〉 , (2.193)

so that the x-representation of
[
x̂, k̂
]

is i/α. (Using completeness, it is
straightforward to show that this result does not depend on the represen-
tation, and so it’s more usual to simply say

[
x̂, k̂
]

= i/α.) We can now use
this to calculate the lower limit in (2.182) by way of (2.187). We can either
use it as an x-representation directly to write〈

f
∣∣[x̂, k̂

]∣∣f〉 =
∫
〈f |x〉〈x∣∣[x̂, k̂

]∣∣f〉dx

=
∫
〈f |x〉 i

α
〈x|f〉dx =

i

α
, (2.194)

or we could write〈
f
∣∣[x̂, k̂

]∣∣f〉 =
〈
f
∣∣ i
α

∣∣f〉 =
i

α

〈
f |f〉 =

i

α
. (2.195)

Either way, the commutator brackets have turned out to give a mean that
is independent of the actual function f used, a result that was forecast just
after (2.182). Equations (2.182), (2.187), and (2.194) now give

σ2
x σ2

k � 1
4α2

+ 1

4

∣∣〈f ∣∣{∆x̂, ∆k̂
}∣∣f〉∣∣2 . (2.196)

We will not concern ourselves with the second term on the right-hand side
of (2.196) because it can easily be shown to vanish when f(x) has a gaussian
form, since there the standard deviations of x and k can be directly calculated.
Hence

σk σx � 1
2|α| , (2.197)

with equality for a gaussian function—a result related to gaussians’ privileged
role in the study of wave functions.

As a side note, what we have called σx ≡
√〈

∆x2
〉

is usually denoted sim-

ply ∆x in the dialect of quantum mechanics. This differs from our more
generally conventional use of ∆x in this section. The required quantity is
a standard deviation, and for the sake of clarity we have used the usual
statistical term σx for it.
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So the product of the widths of a function when expressed over a spatial
coordinate x and wavenumber k has a lower limit greater than zero. The
constant α is essentially a scale factor, introduced back in (2.170) to account
for different Fourier conventions in use. There is also nothing special about
the variables x, k used here. Any Fourier pair could have done just as well,
so that for example σω σt � 1/(2|α|) as well.

What we have shown here is that the more localised a function is in one
variable, the more spread out it is in the dual Fourier variable. This agrees
with the limiting case of a spike and a constant seen at the start of this section.
This duality of spreading and bunching is central to quantum mechanics,
where the function f used in this section becomes the wave function Ψ(x, t).

2.11 Evolving Wave Functions in Time

One of the main reasons that Fourier analysis is so useful is because, like di-
agonalisation, it allows us to transform a difficult problem to a simpler space.
Many linear differential equations in all branches of physics and engineering
can be solved by beginning with the trial solution ei(kx−ωt). If this is to sat-
isfy the equation, k and ω will need to be related in some way: the dispersion
relation that we met earlier. A good example is the beam equation known to
engineers:

∂2φ

∂t2
+ γ2 ∂4φ

∂x4
= 0 . (2.198)

Substituting φ = ei(kx−ωt) into this yields a dispersion relation ω2 = γ2k4.
Another example is the more well-known equation of many waves such as
light:

1
c2

∂2φ

∂t2
− ∂2φ

∂x2
= 0 , (2.199)

whose dispersion relation is ω2 = c2k2. The equations’ linearity guarantees
that any linear combination of ei(kx−ωt) will also be a solution, and this is
precisely what a Fourier decomposition is.

We are used to applying Newton’s second law F = ma in mechanics prob-
lems to produce a differential equation that describes a system. In the same
way, F = ma produces a wave equation for a mechanical system with wave
properties, such as a taut string. Beginning approaches to the wave equation
sometimes reverse this flow of logic, starting from a sine wave and showing
that such a wave has the property expressed in (2.199), which is then called
a wave equation; but just why we should want to start with the solution
to an equation and then work backward to the equation itself might be left
unstated. What should be remembered is that the wave equation is always
the starting point, since it results from some physical model.

Setting t = 0 in such a linear combination of ei(kx−ωt) yields the x-space
Fourier transform of the wave function at the initial time, implying that the
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Heisenberg Picture

eikx

ei(kx−ωt)

f(x, 0) =
∫

eikxa(k) dk

[defines a(k)]

f(x, t) =
∫

ei(kx−ωt)a(k) dk

←− initial time −→

←− final time −→

Basis functions evolve Solution evolves

Fig. 2.12. The Heisenberg picture takes the basis functions to evolve in time, while
the amount a(k) of each remains constant.

new factor of e−iω(k)t for each basis function gives the time evolution of that
function. This is no different from the diagonalisation of Sect. 2.5. If the
matrix A of that section denotes the evolution of a complicated solution to
a wave equation, then writing it as PDP−1 (and reading this matrix from
right to left) corresponds exactly to our Fourier decomposition, evolution,
and recomposition:

1. P −1 signals going back from the usual laboratory (x-space) to diagonal
space (k-space); that is, decomposing the solution at the initial time into
basis functions eikx.

2. Diagonal matrix D denotes the “easy” evolution in this space: just
multiply each basis function by e−iω(k)t. (What could be easier?)

3. Finally, P corresponds to Fourier transforming back to the laboratory to
rebuild our function, now evolved forward in time as required.

There are actually two ways to view this diagonalisation, known in quan-
tum mechanics as the Heisenberg and Schrödinger pictures. The view we took
in the previous paragraph was the Heisenberg picture shown in Fig. 2.12,
where the basis functions eikx evolve while the amplitude density of each
one, a(k), does not. An alternative view is to regard the basis vectors as un-
changing, and instead associate the evolution factor e−iωt with the amplitude
density of each one. This is the Schrödinger picture, shown in Fig. 2.13. Of
course, the end result is the same. But small though the difference looks, in
quantum mechanics choosing one view over the other gives rise to different,
fruitful ways of approaching and extending the physics.

The dispersion relation relating ω to k is the guide to Fourier-analysing
the solution to an equation. In general, the following steps are taken:

1. Start with a mechanical analysis for the system of interest and derive an
appropriate wave equation.
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Schrödinger Picture

a(k)

a(k) e−iωt

f(x, 0) =
∫

eikxa(k) dk

[defines a(k)]

f(x, t) =
∫

eikxa(k) e−iωt dk

←− initial time −→

←− final time −→

Amplitudes evolve Solution evolves

Fig. 2.13. In contrast to the Heisenberg picture, the Schrödinger picture sets the
basis functions to be constant, while evolving their amplitudes in time.

2. Substitute a trial solution ei(kx−ωt) into the wave equation to obtain the
dispersion relation. This defines one or more frequencies as functions of
wavenumber: say, ω1(k), . . . , ωn(k).

3. Superpose these to build a general solution, φ(x, t), by summing over
all ωj and all allowed values of k. With no physical constraints on the
allowed wavenumbers k, all must be used, with infinitesimal weight-
ings aj(k) dk:

φ(x, t) =
n∑

j=1

∫ ∞

−∞
aj(k) eikx−iωj(k)t dk . (2.200)

If the physical problem constrains k to discrete values (such as the exis-
tence of boundary conditions), the previous expression simplifies to

φ(x, t) =
n∑

j=1

∑
k

aj(k) eikx−iωj(k)t . (2.201)

(In this discrete case it’s conventional to write ajk for aj(k) and ωjk

for ωj(k), but there is nothing deep about this.)

As will be discussed in Sect. 3.7.1, there is no essential difference between the
components for positive and negative wavenumbers, but they must both be
present. Both signs of k are required as a complete set to build the general
wave function solution. Related to this is the fact that complex quantities are
often used in physics and engineering to solve what are plainly real-number
problems, because complex exponentials can be solutions to real differential
equations. They are simple to use, being written as one set (2.158) with
just one derivative; whereas if we insisted on using real functions from the
outset, we would need to write (2.158) in terms of sines and cosines, as well
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Complex Electric Fields?

Complex expressions for the electric field, such as

Ey = E0 sin kxx exp [i (ωt − kyy)] , (2.202)

can look obscure. After all, isn’t the field supposed to be real? But (2.202) is
really just one simple solution to a real, linear wave equation. Such an equation
must also have the complex conjugate E∗

y as a solution, since otherwise it
would discriminate between i and −i, which a real equation cannot do. Thus,
we know that any linear combination of Ey and E∗

y must also be a solution.
In particular,

(
Ey + E∗

y

)
/2 is a solution, and this is none other than the real

part of Ey. So the reason that complex-number solutions are routinely used
in linear theory is that they are easy to manipulate, and provided everything
is linear, two can always be legitimately superposed when a real (physical)
quantity is needed—which corresponds to taking the real part.

as writing the derivatives separately (i.e. sin → cos, cos → − sin). As long
as we combine the complex exponentials in such a way as to produce a real
solution (which we can certainly do if the wave equation is linear), then it’s
perfectly acceptable to use a complex approach. Although this is equivalent to
“taking the real part of the solution”, as it’s often described, what might not
immediately be apparent is why taking the real part should be a reasonable
thing to do at all. What is really happening when we take a real part is that
we are superposing two complex solutions to build a real one, and this is a
bona fide thing to do if the governing equation is linear.

But some care is required. If the wave function is required to be real,
it follows that the sum of the positive and negative frequency components
should also be real:

aj(k) eikx−iωj(k)t + aj(−k) e−ikx−iωj(−k)t is real. (2.203)

In this expression, and the resulting one with t = 0, examining the real and
imaginary parts gives rise to the following two important relations:

aj(−k) = a∗
j (k) ; this aj is called hermitian,

meaning even real and odd imaginary parts;

ωj(−k) = −ω∗
j (k) ; this ωj is called antihermitian,

meaning odd real and even imaginary parts. (2.204)

As an example, for the wave equation (2.199), the dispersion relation ω2 = c2k2

implies that there are two real choices for ω(k):

ω1(k) = ck , ω2(k) = −ck . (2.205)
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These are both odd, consistent with the requirements of (2.204). The full
Fourier decomposition is

φ(x, t) =
∫ ∞

−∞
a1(k) eik(x−ct) dk +

∫ ∞

−∞
a2(k) eik(x+ct) dk . (2.206)

This is consistent with d’Alembert’s general solution of the wave equation,
which is written as a sum of right- and left-moving waves. If boundary condi-
tions are present whose effect is to quantise the wavenumber, (2.206) becomes

φ(x, t) =
∑

k

a1(k) eik(x−ct) + a2(k) eik(x+ct). (2.207)

Is (2.207) reasonable? We can verify that it does indeed give the usual re-
sult for a plucked string fixed at both ends. Begin with (2.199), which results
from applying Newton’s laws to such a string. (The derivation of (2.199) using
F = ma is easily found in textbooks, but we also derive it using a lagrangian
approach in Chap. 10.) Take the more general expression (2.206) as our so-
lution for the string motion (suspecting nothing as yet about any possible
quantisation of k), and produce real functions by converting the integrals to
positive wavenumbers only, using the hermiticity of a1, a2 in (2.204):

φ(x, t) =
∫ ∞

−∞
dk
[
a1(k) eik(x−ct) + a2(k) eik(x+ct)

]
=
∫ ∞

0

dk
[
a1(k) eik(x−ct) + a1(−k) e−ik(x−ct)

+ a2(k) eik(x+ct) + a2(−k) e−ik(x+ct)
]

=
∫ ∞

0

dk
[
2Re

{
a1(k) eik(x−ct)

}
+ 2 Re

{
a2(k) eik(x+ct)

}]
.

(2.208)

The a1, a2 and the complex exponentials can be written in terms of real and
imaginary parts. These then multiply to produce all the various sine-cosine
combinations, which can then be factored to produce

φ(x, t) =
∫ ∞

0

dk
[
a3(k) sin kx + a4(k) cos kx

][
a5(k) sin kct + a6(k) cos kct

]
.

(2.209)
Now the string’s boundary conditions can be brought in. If one end is fixed
at x = 0, we can set a4 = 0. Similarly, if the other is fixed at x = L, then
k can only take the values k = nπ/L for n in the natural numbers. The
integrals, which were only superpositions of solutions, now become sums with
noninfinitesimal weightings, and the wave function is

φ(x, t) =
∞∑

n=1

sin
nπx

L

[
An cos

nπct

L
+ Bn sin

nπct

L

]
. (2.210)
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For a plucked string, the initial velocity is ∂φ(x, 0)/∂t = 0, which sets all
the Bn = 0 to give the well-known expression

φ(x, t) =
∞∑

n=1

An sin
nπx

L
cos

nπct

L
. (2.211)

Of course, the wave function above is usually derived using a separation of
variables approach, which is certainly simpler for this case of a plucked string.
Here we have followed a more roundabout approach that brings together the
more general ideas of Fourier analysis via bracket notation. We’ll return to
the wave function (2.211) for a plucked string in Chap. 10, when we use it as
a simple starting point in discussing the quantisation of field theories.

The hermitian/antihermitian nature (2.204) of the weightings and fre-
quencies often seems mysterious when first encountered, especially in the
light of dispersion relations that do not seem to fulfill them. An example is
the dispersion relation of water waves, ω2 = gk tanh kh, where g is the grav-
itational acceleration and h is the water depth. For deep water, in which the
hyperbolic tangent tends to one, this is sometimes rewritten as ω =

√
gk. But

for the exponential basis functions that we are using, this expression does not
tell the whole story. Rather, ω has two functional forms: ω± = ±√g|k| sgn k.

The function sgn is conventionally pronounced“signum”. The pronunciation
“sign” sometimes encountered only clashes with the sine function.

However, if we rewrite the complex exponentials in terms of sines and cosines,
then the integrals over negative k values can be converted to integrals over
positive k values. In that case, it will be sufficient to write the dispersion
relation for water as ω =

√
gk. But the fact that this reasoning or process is

being followed needs to be kept in mind to give meaning to the new, simplified
dispersion relation.

On the other hand, in quantum mechanics the wave function solution to
the Schrödinger equation need not be real, so we can drop the requirement
for a hermitian amplitude and antihermitian frequency.

2.11.1 Brackets and Wave Function Evolution

Given that the theory of evolving wave functions is quite linear, it comes as
no surprise to find that brackets describe it very well. First, we need a new
definition from Table 2.3:

〈x|f, t〉 ≡ f(x, t) . (2.212)

To describe wave function theory using brackets, begin with the function to
be evolved and define the initial amplitudes of the basis functions by writing
the initial wave function as

f(x, t = 0) ≡ 〈x|f, 0〉 =
∫
〈x|k〉 〈k|f, 0〉dk . (2.213)
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The amplitude of the basis function 〈x|k〉 is 〈k|f, 0〉. Using a mode of speech
that will be useful later when we look at quantum mechanics, we might read
this from right to left (as usual) as “the amplitude that the initial wave
function |f, 0〉 will have a wavenumber k”. (The word “amplitude” here is
used grammatically in a similar sense to the word “probability”.)

Instead of speaking of the amplitude 〈k|f, 0〉, it is more correct to say
amplitude density. The true amplitude is how much of each basis func-
tion 〈x|k〉 there is, which is an infinitesimal: 〈k|f, 0〉dk. The density of this
over wavenumber is then 〈k|f, 0〉. But there’s no ambiguity in dropping the
word density, and this is always done.

This Fourier decomposition of the initial function can now be evolved forward
in time using either Fig. 2.12 or Fig. 2.13:

〈x|f, t〉 =
∫
〈x|k〉 〈k|f, 0〉 e−iω(k)t dk . (2.214)

The 〈x| common to both sides of this equation really has just a passive role,
so it can be omitted to yield an equation relating kets alone. But due to the
presence of ω(k), we cannot go further to remove the integral over k here.
However, in the Schrödinger picture we certainly can establish the existence
of a linear operator L̂ that acts on a ket to produce a new ket whose amplitude
to have wavenumber k is〈

k
∣∣ L̂ ∣∣f, 0

〉 ≡ 〈k|f, 0〉 e−iω(k)t , (2.215)

so that the k-representation of L̂ is multiplication by e−iω(k)t. Now (2.214)
can be rewritten as

|f, t〉 =
∫

|k〉〈k∣∣ L̂ ∣∣f, 0
〉
dk = L̂ |f, 0〉 . (2.216)

The evolution of a wave function has been encapsulated as |f, t〉 = L̂ |f, 0〉.
But is this new operator L̂ anything more than just an idle piece of nota-
tion? After all, it depends completely on the wave equation being solved.
This question finds a place in the transition from a classical wave theory to
quantum mechanics.

2.12 The Transition to Quantum Mechanics

The early history of quantum mechanics was built upon several disparate
ideas, all of which were unified by postulating a new way in which the world
seems to behave. Central to these new postulates was Louis de Broglie’s idea
in the early 1920s that particles are associated with, or perhaps in a sense
built from, waves, and a plane wave with wavenumber k carries a momen-
tum p = �k, where � is a fundamental constant of nature. This plane wave
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also has an energy of E = �ω. These two equations are related, for in Chap. 6
we’ll see that energy and momentum can be joined together naturally to form
a new entity, a “four-vector”, as can frequency and wavenumber, giving a cor-
respondence between four-vectors: (E,p) = �(ω,k).

Equations (2.215) and (2.216) lend themselves to the language of quantum
mechanics, in which the state of a system is denoted by a ket |Ψ, t〉 that
evolves deterministically. Our aim is to find an expression for the operator L̂
in (2.215) and (2.216) that describes this evolution.

Just as Fourier theory builds an arbitrary wave by superposing plane
waves, by de Broglie’s postulate the quantum mechanical waves associated
with particles can be considered as linear superpositions of plane waves,
each of which has a well-defined wavenumber k and energy E = �ω(k). Us-
ing (2.215), suppose then that we conjecture L̂ acts on the ket |k, 0〉 describing
one of these plane waves at t = 0, to give a new ket e−iω(k)t|k, 0〉. In that case,
introduce a hermitian energy operator Ê that acts on that energy eigenstate
via

Ê |k, t〉 ≡ �ω(k) |k, t〉 (2.217)

to return the associated energy eigenvalue (i.e., the wave’s energy!). The ket
describing a plane wave at time t is then

|k, t〉 = L̂ |k, 0〉 = e−iωt |k, 0〉
=
[
1 − iωt + (−iωt)2/2! + · · · ]|k, 0〉

=
[
1 − itÊ/� + (−itÊ/�)2/2! + · · · ]|k, 0〉

≡ e−itÊ/�|k, 0〉 . (2.218)

When an arbitrary quantum mechanical state |Ψ, t〉 is written as a linear su-
perposition of the energy eigenstates |k, t〉, equation (2.218) applies to each
component. The operator e−itÊ/� doesn’t depend on each component’s en-
ergy so it factors out of the superposition, allowing us to write

|Ψ, t〉 = e−itÊ/�|Ψ, 0〉 . (2.219)

So, time evolution of a quantum state is accomplished by the operator e−itÊ/�.
The energy operator Ê was defined to act on a state of well-defined energy
to give that energy as its eigenvalue. This is its energy representation; but
what is its x-representation—in what sense can Ê be applied to a wave func-
tion Ψ(x, t) ≡ 〈x|Ψ, t〉? First, write (2.219) as

|Ψ, t + ∆t〉 = e−iÊ∆t/�|Ψ, t〉 . (2.220)

Now observe that Taylor’s theorem allows us to write the time evolution of
an arbitrary function (and specifically the wave function), with ∂t ≡ ∂/∂t, as

〈x|Ψ, t + ∆t〉 ≡ Ψ(x, t + ∆t)
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= Ψ(x, t) + ∂t Ψ(x, t)∆t + ∂2
t Ψ(x, t)∆t2/2! + · · ·

=
[
1 + ∆t ∂t + ∆t2 ∂2

t /2! + · · · ]Ψ(x, t)

≡ e∆t ∂tΨ(x, t) = e∆t ∂t〈x|Ψ, t〉 = 〈x|e∆t ∂t |Ψ, t〉 . (2.221)

Omitting the 〈x|, we might write the time evolution of a state ket as

|Ψ, t + ∆t〉 = e∆t ∂t |Ψ, t〉 , (2.222)

but this comes with the important proviso that the “invisible” 〈x| is under-
stood to be present on both sides of this equation. After all, ∂t acts on the
wave function, while (2.222) is written in terms of state kets only. So (2.222)
is a concise mixture of functional and state ket notation, and is not to be
taken literally without 〈x| being included.

Now comparing (2.220) with (2.222) gives the x-representation of the
energy operator:

−iÊ∆t/�
x-rep.

∆t ∂t , so Ê
x-rep.

i� ∂t . (2.223)

Normally (2.223) is written simply as an equality, but we should not forget
that the energy operator Ê acts on a state, as opposed to its spatial represen-
tation i� ∂t, which acts on a wave function. Equation (2.223) is the evolution
operator central to quantum mechanics. In Chap. 10 we’ll meet the Ê op-
erator again in a more general context under the name of the hamiltonian,
where it’s renamed to the very standard H.

An Expression for the Momentum Operator in Quantum Mechanics

Besides the operator for time evolution, the other important operator in el-
ementary quantum mechanics is that describing a momentum measurement
applied to a state. Again, we use de Broglie’s idea of momentum being pro-
portional to wavenumber, so that corresponding to the plane waves that make
up the Fourier basis functions, we postulate that it is possible to introduce a
new set of kets |p〉 corresponding to plane waves with momentum p (in one
dimension for simplicity), forming an orthonormal basis,

〈p|p′〉 ≡ δ(p − p′) , (2.224)

in which case a completeness relation holds for momenta, too:∫
|p〉〈p|dp = 1 . (2.225)

The quantum mechanical version of (2.171) has a unique conventional form:

〈x|p〉 ≡ 1√
2π�

eipx/� . (2.226)
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Now, just as the energy operator Ê is defined by its return of an energy eigen-
value when applied to an energy eigenket, a hermitian momentum operator p̂
can be defined by its return of a momentum eigenvalue when applied to a
momentum eigenket, giving the corresponding momentum measurement:

p̂ |p〉 ≡ p |p〉 . (2.227)

As with the energy eigenstates, if an arbitrary wave function is expressed as
a linear combination of momentum eigenstates using the momentum com-
pleteness relation, then we can write

〈p| p̂ |Ψ, t〉 = 〈p| p̂
∫

|p′〉 〈p′|Ψ, t〉 dp′ = 〈p|
∫

p′|p′〉 〈p′|Ψ, t〉 dp′

= p 〈p|Ψ, t〉 . (2.228)

Alternatively, the |Ψ, t〉 can be omitted to express this last equation as

〈p| p̂ = p 〈p| , (2.229)

which is just the hermitian conjugate of (2.227). Equations (2.228) and (2.229)
give a projection onto momentum space by prepending the momentum bra to
a momentum operator (which acts on the invisible |Ψ, t〉). The momentum op-
erator represents a measurement, while prepending everything with 〈p| gives
the amplitude for the result to be p.

What is the x-representation of p̂ ? It’s just 〈x| p̂, and is derived precisely
as was done in (2.190) for 〈x| k̂. Write ∂x ≡ ∂/∂x:

〈x| p̂ |Ψ, t〉 =
∫
〈x|p〉 〈p| p̂ |Ψ, t〉 dp

(2.226)
∫

eipx/�

√
2π�

p 〈p|Ψ, t〉 dp

= −i� ∂x

∫
eipx/�

√
2π�

〈p|Ψ, t〉 dp = −i� ∂x

∫
〈x|p〉 〈p|Ψ, t〉 dp

= −i� ∂x 〈x|Ψ, t〉 . (2.230)

So the x-representation of the momentum operator is −i� ∂x. We could write
p̂

x-rep. −i� ∂x, although the“x-rep.” is always taken as understood. Remem-
ber that, as shown in Sect. 2.7, −i� ∂x is hermitian and thus has real eigen-
values, as is required of operators in quantum mechanics. The commutation
relation between the position and momentum operators is now easily calcu-
lated to be [

x̂, p̂
]

= i� . (2.231)

In general, the xyz-representation of p̂ for one particle will be −i�∇.
The discussion around (2.192) is important enough to repeat here for p̂.

Equation (2.230) can be abbreviated by omitting |Ψ, t〉 to write

〈x| p̂ = −i� ∂x 〈x| (2.232)
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(since |Ψ, t〉 had a passive spectator role), with the implicit understanding
that |Ψ, t〉 must always be re-appended to each side of (2.232) to produce the
correct expression (2.230). This is just notation; ∂x operates on a function—
it makes no sense to differentiate a bra or a ket. So we must not just equate p̂
and −i� ∂x blindly. If we were to do so, there might be a temptation to write

“ p̂ |x〉 = −i� ∂x |x〉 ” (Wrong!), (2.233)

especially since both p̂ and −i� ∂x are hermitian. But this equation gives
the wrong answer if we prepend both sides with 〈Ψ, t|. To see why, write the
complex conjugate of (2.230) as

〈Ψ, t| p̂ |x〉 = +i� ∂x 〈Ψ, t|x〉 , (2.234)

where the sign of i has changed, since these expressions are just numbers.
Now omit the 〈Ψ, t| to write

p̂ |x〉 = +i� ∂x |x〉 , (2.235)

which of course differs from the incorrect (2.233). Equation (2.235) is correct,
as long as we realise that ∂x does not operate on the ket |x〉! All of this is just
formalism, and clearly it pays to be aware of what this abbreviated notation
means, and of the difference between an operator and its representative in
some basis. Remember that while expressions such as (2.232) and (2.235)
combine the derivative of a function with a state ket, the derivative does not
simply act on the ket; such an operation has no meaning.

The momentum operator’s x-representation appears in a different way
that will shed more light on this transition to quantum mechanics in Chap. 8.
Suppose that analogously to our use of Taylor’s theorem in (2.221) to write
the time evolution of Ψ(x, t), we again write the same function’s“space trans-
lation” as

Ψ(x + ∆x, t) = Ψ(x, t) + (∆x·∇) Ψ + (∆x·∇)2 /2! Ψ + · · ·
=
[
1 + ∆x·∇ + (∆x·∇)2 /2! + · · ·

]
Ψ(x, t)

≡ e∆x·∇Ψ(x, t) . (2.236)

But ∆x·∇ x-rep.
∆x·ip̂/�, so that e∆x·∇ x-rep.

ei∆x·p̂/�. Summing up,
there is a correspondence between time evolution and space translation in
quantum mechanics:

e−iÊ∆t/� ←→ time evolution,
eip̂·∆x/� ←→ space translation. (2.237)

The associations of energy with evolution, and momentum with translation,
are fundamental ones that were known in the lagrangian theory of classical
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The Logical Flow of Operators in this Section

The logic of how coordinate representatives of the energy and momentum
operators are being related to time evolution and space translation in this
section is as follows:

Fourier analysis → time evolution op. = exp(−i∆tÊ/�)

Taylor expansion → time evolution op. = exp (∆t ∂t)

⎫⎬⎭ ⇒ Ê = i� ∂t .

(2.238)

Fourier analysis → p̂
x-rep. −i�∇

Taylor expansion → space trans. op. = exp (∆x·∇)

⎫⎬⎭ ⇒
{

space trans. op.

= exp(i∆x·p̂/�)

(2.239)

mechanics long before they appeared in quantum mechanics, as we’ll see in
Chap. 10. This knowledge is indeed what drove some of the early research
in quantum theory. Energy and momentum are called the “generators” of
time evolution and space translation, respectively, and the classical mechan-
ics analogy is the fact that a system displaying time invariance conserves
its energy, and a system displaying space invariance conserves its momen-
tum. But, in general, the conserved momentum of classical mechanics is the
canonical momentum, which we’ll meet in Chap. 10. Canonical momentum
is a more encompassing version of the mv that itself only applies to the free
particles allied with the plane waves central to the last several pages, so it
will be the canonical momentum whose spatial representation is −i�∇ for a
general particle in quantum mechanics.

We will return to these results in Chap. 10 to merge them with others from
that chapter to create the Schrödinger equation, the main equation of quan-
tum mechanics, which describes its wave functions in the xyz-representation.

The ideas and techniques of linearity pervade many branches of physics,
and the subject is very rich in its applications. As a result, the language that
we have encountered in this chapter is very common in mathematical physics,
and there will be many opportunities to use it in the coming chapters.
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In this chapter, we take a tour of some of the ideas of statistics and signal
processing, with a view toward examining how the language and notation
revolve around a few well-related ideas that turn up time and again in diverse
areas. An example of such a close relationship in statistics is the idea of
summing squares, something that is universally used to quantify how well a
parameter has been estimated. But why sum squares? Why not sum absolute
values, or fourth powers, or any other of an infinite number of functions of the
data? In fact, tied to ideas of summing squares is the very intuitive notion of
finding an arithmetic mean, and these two things join with the exponential
function to form the gaussian distribution that describes so much of the
statistics found in Nature. Ideas such as these form the basis of many related
entities that we’ll examine in the pages to follow.

3.1 From Bar Graphs to Histograms

When first introduced to the ideas of probability and statistics, we learn to
plot bar graphs that show probabilities on the y-axis as a function of some
discrete variable on the x-axis. Later we advance from discrete to continuous
variables, and the graph becomes a histogram: still outwardly a bar graph, but
now representing the probabilities by the areas of the bars. The reason for this
switch in the philosophy of how best to plot the data is seldom investigated
in texts, which usually discuss the histogram in various ways without giving
a unique recipe for how to draw one. And yet the histogram is the important
link between the basic idea of a bar graph and the rather sophisticated idea
of a probability density curve.

For example, some texts will demand, unnecessarily, that the bars (data
bins) of a histogram be of equal width. Others will say, correctly, that
different-width bars are certainly allowed but should have a height that is
corrected, in some proportional way, for the data that they represent. But
even these will probably either give no units to the heights of the histogram
bars, or they will plot the bars using the same units as the bar graph from
which the histogram was derived. Histograms do not in general have the same
units as their parent bar graphs, for the simple reason that they hold their
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information as an area, not a height. This fact is central to the transition in
plotting philosophy from bar graphs to densities.

It certainly is a reasonable idea that using areas might be the only way
in which probabilities can be represented when the domain is a continuous
variable. And yet it’s only natural to expect to find a smooth transition in the
method of plotting probabilities, for the case where the variable of interest
can be made to change smoothly from discrete to continuous. How, then,
can the bar graph’s height probabilities change in a continuous way to the
histogram’s area probabilities?

Just how this occurs is best seen through an example. Suppose we are
required to find the distribution of lifetimes of the light bulbs produced by
a certain factory. The proportion falling in each of five bins is given on the
left-hand side of Table 3.1. These are interpreted as probabilities for any
particular bulb to burn out in a certain age range; most bulbs are seen to
last for around three years. The probabilities can easily be plotted on the
bar graph on the left-hand side in Fig. 3.1. Each bar has the same width
irrespective of bin size (although this is a pictorial point only; the bin size is
the important quantity to consider), and the height of each bar is just the
fraction of bulbs burning out within the specified time window. Notice that
the 3–5 year window represents a larger number of bulbs compared with the
other bins because it spans two years instead of one. Merging bins like this
when collecting data exaggerates their weight, and can certainly misrepresent
the information in these graphs.

We can fix this problem of a misleading bar height by temporarily doing
something quite different: we can plot a cumulative graph of the fraction that
burns out after some time, versus that time. These fractions are tabulated
on the right-hand side of Table 3.1 and are interpreted as cumulative prob-
abilities. The cumulative graph is a set of points plotted for whole-number
years. Nevertheless, we know that it makes complete sense to talk about the
fraction of bulbs that burn out within, say, 2.2 years, and that implies that

Table 3.1. The proportions of bulbs burning out in the left-hand table translate
to cumulative figures in the right-hand table.

Life expectancy

Lifetime Proportion
(years)

0–1 5%
1–2 10%
2–3 40%
3–5 35%
> 5 10%

Total 100%

Cumulative proportions

Lifetime Proportion
(years)

< 0 0%
< 1 5%
< 2 15%
< 3 55%
< 5 90%
< ∞ 100%
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Fig. 3.1. The bar graph on the left shows the probability of a bulb burning out
from Table 3.1 for the age ranges in that table. The age 3–5 bin contains two years’
worth of data, and so skews the look of the plot somewhat. This is cured by plotting
the histogram at the right: probabilities per year on a continuous time axis (and
setting the last bin to have a five year width). Now the data are spread across
the bins more democratically. An estimate of the actual probability density curve
(solid) is superimposed on this graph and uses the same units as the bars. The
cumulative curve (dotted) is also superimposed, but it carries different units so its
scale is arbitrary here.

the cumulative graph should really be continuous. Of course, we could always
interpolate a smooth curve through the half dozen data points, but to pro-
duce a more accurate graph, the width of the time intervals that make up
the data bins really needs to be decreased. That means the corresponding
bars on the probability bar graph will get narrower, and the height of each
will also shrink. After all, if we halve the bin width, then we are also roughly
halving the fraction of bulbs in each bin.

If we are really to construct a continuous cumulative curve, the bin size
must shrink to zero. But in that case the height of each bar shrinks to zero—
which makes it impossible to draw. A simple way to remedy this is to magnify
these ever-shrinking heights. We do this by plotting not the fraction of bulbs
in each bin, but rather that fraction divided by the bin width. That way the
two quantities (fraction of bulbs and bin width) are decreasing in tandem,
so that their ratio is largely unaffected. When we halve the bin widths, the
fraction in each bin in also roughly halved, so that the quantity

fraction in bin
width of bin

is roughly unchanged—and it changes less and less as the bin width decreases
to zero. This process of magnification is really the essence of differential cal-
culus: we are able to plot something whose size drops to zero by continuously
magnifying it.

For example, consider a bin that covers the period from t = 2.2 years
to t = 2.2 + 10−6. This bin contains roughly one millionth of the fraction of
bulbs burning out in the period t = 2 years to t = 3 years. Its height is fairly
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constant over its width, and its height is just the fraction of bulbs burning
out in this interval divided by the bin width 10−6. So dividing by 10−6 has
thus magnified its height a million times, which has been necessary to keep
the scale of the graph more or less unchanging.

So instead of plotting fractions (probabilities), we are doing something
new: we’re plotting probabilities per unit bin width, or in this example prob-
abilities per year. And that is the unique and simple recipe for plotting a
histogram. We take the parent bar graph’s heights, divide each height by the
associated bin width, and plot the result. Although the name given to the
graph changes from bar graph to histogram, it’s more usually called a prob-
ability density, because a probability per unit time is a temporal density of
probability. (The analogous way of plotting, say, the mass of a string versus
its length would be to plot the linear mass density versus its length param-
eter x. The mass between two points x1, x2 on the string would then be the
area under the curve.)

The histogram of the data in Table 3.1 is shown on the right-hand side
in Fig. 3.1. Note that while the numbers on the two vertical axes look the
same, their units are quite different. The most prominent new feature is that
the height of the bar in the range 3–5 years has been halved to compensate
for splitting that bin into two halves. Also, the last bin in Table 3.1 has, in
principle, infinite width, so to be realistic we have treated it as representing
5–10 years (and then divided the corresponding height in the bar graph by
5 years); perhaps the manufacturer has not been taking data for longer than
that. The solid curve on the right-hand axes shows the limit of the density
as the bin width goes to zero (if we have more data to approximate this),
while the dashed curve approximates the cumulative plot. This plot has dif-
ferent units from the histogram and density curve, and is merely shown for
comparison.

Now, because by the definition of the histogram

height of bar =
fraction of bulbs

width of bar
, (3.1)

it follows that

fraction of bulbs = height of bar × width of bar
= area of bar , (3.2)

so that the probability of a bulb’s surviving for any interval, or equivalently
the fraction of bulbs expiring in that interval, will be given by the total area
of the histogram bars covering that interval. So the way of expressing the
information has changed in a histogram. As the bin width drops to zero, we
cease bothering to draw vertical lines separating the strips, and the graph
becomes truly continuous.

The transition between bar graph and histogram now becomes clear: they
are visually identical—but with different y-axis units—when the bin width
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is one unit. This changeover, accompanied by an important change of y-axis
units and the introduction of the idea of a density, is perhaps seldom given
the emphasis that it deserves in textbooks that present histograms from first
principles. These books tend to concentrate on plotting probabilities alone,
with a dramatic switch in philosophy for continuous variables, justified in
hindsight because areas seem to be necessary for representing continuous
data. But for any continuous quantity, if we begin by plotting a probability
per unit bin width, then the modified bar graph, now called a histogram, will
embody probability as an area from the outset; it will already be a density
graph, and will tend continuously to a density curve as the bin width shrinks
to zero.

The relationship between the probability density and its associated cu-
mulative distribution embodies the Fundamental Theorem of Calculus, which
says that finding the sum of an infinite number of infinitesimal quantities (in-
tegration) is the reverse process of finding a rate of increase (differentiation).
To see this, suppose we ask what fraction of bulbs expires in the interval
t to t + ∆t years. Divide this interval into an infinite number of strips and
add all the strip areas. With a strip height of p(t) and an associated infinites-
imal width of dt, the summed area is written using the Old English symbol

∫
for S (“sum”):

fraction of bulbs burning out in t → t + ∆t =
∫ t+∆t

t

p(t′) dt′. (3.3)

The next step asks: what is the cumulative plot, and how is it related to p(t)?
Call this plot C(t). Then, by definition, C(t) must equal the fraction of bulbs
burning out at any age less than t. In other words,

C(t) ≡
∫ t

0

p(t′) dt′. (3.4)

Being cumulative, C(t) cannot decrease: it starts from 0 and climbs to 1. The
slope of the cumulative distribution is

dC

dt
≡ lim

∆t→0

C(t + ∆t) − C(t)
∆t

. (3.5)

But

C(t + ∆t) = fraction of bulbs lasting < t + ∆t ,

C(t) = fraction of bulbs lasting < t , (3.6)

in which case it follows that

C(t + ∆t) − C(t) = fraction of bulbs lasting from t to t + ∆t . (3.7)

So dC/dt is the small-bin limit of the fraction of bulbs in the t → t + ∆t
bin divided by that bin’s width. But this was just how we constructed p(t)!
Consequently,
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dC

dt
= p(t) . (3.8)

Equation (3.8), taken together with (3.4), shows how a density is related to
a cumulative plot:

p = slope of C,

C = area under p. (3.9)

And, of course, this is nothing more than the Fundamental Theorem of Cal-
culus: slopes and areas (or sums) form a natural pair.

3.2 The Privileged Sum of Squares

One of the most basic concepts taught in statistics courses is the idea of
gaining insight into a set of data by defining measures of its centre and
spread. Most useful for this are the data’s mean and standard deviation. The
mean seldom calls for any motivation or explanation, being identical to the
average, an everyday intuitive idea. Nevertheless, there are an infinite number
of possible choices for the mean m, such as any expression that treats all n
data points homogeneously. So, given any function f(x), we could define the
mean m in such a way that

n f(m) ≡
n∑

i=1

f(xi) . (3.10)

The simplest choice of the function is also the one universally used: a con-
stant f(x) ≡ 1.

In contrast with the mean, the standard deviation can appear quite mys-
terious. At first, the manipulations involved in calculating it seem a little
arbitrary and laborious. Eventually the student comes to accept the great
utility of this root-mean-squared, or rms, deviation of the numbers from their
mean, and finds it used extensively throughout physics, along with sums of
squares in general.

However, as a measure of spread, why not just use an average distance of
the data points from the mean? On the face of it, this is much simpler than
finding the square root of the mean of a squared distance. We would only need
to ensure that a distance is used (a positive number by definition) instead of
a deviation (which might be positive or negative: i.e., distance ≡ |deviation|).
This is because the average deviation of the data points from their mean will
always be zero. (Why? Because the mean of the deviations is the mean of
xi − m, which is the mean of all the xi minus the mean of m, which equals
m − m, or zero.)

It is certainly possible to work with the mean of the distances of all the
data from their mean; the result is called the absolute deviation:
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absolute deviation ≡
∑ |xi − m|

n
. (3.11)

But the absolute deviation tends not to be used in practice. The reason
is sometimes given that the absolute values in (3.11) are difficult to treat
mathematically, since the function y = |x| has a kink at x = 0. Certainly
this lack of differentiability at the origin makes the absolute value function
difficult to treat analytically, but this does not explain why a root-mean-
square approach to quantifying spread should be more useful or meaningful
than an absolute value approach.

Let’s turn the question on its head. Conventionally, the mean m of a
sample is first defined and is then used to define the sample’s standard devi-
ation s:

m ≡
∑

xi

n
, then s ≡

√∑
(xi − m)2

n
. (3.12)

(The square of the standard deviation is called the variance.) Suppose instead
that we define the standard deviation first without any reference to a mean,
and then use that standard deviation to define an appropriate mean. That
also makes sense: we already have an intuitive idea of the “spread” of a set
of numbers as being, for example, the distance from the minimum to the
maximum of the set, which does not rest on any concept of a mean. But
such a trivial quantity is not very useful. For a more sophisticated approach,
define the spread with reference to this as yet undefined mean in such a way
that the spread is minimised for some appropriate choice of the mean. At this
stage we have no idea what the mean should be. It is not necessarily the sum
of the data divided by their total number as in (3.12); in our new approach,
(3.12) doesn’t exist yet. The mean will be a number to be determined purely
through requiring that it minimise some choice of the spread. Relating the
result of such a minimisation to meaningful processes in Nature is an idea
we’ll encounter often in the chapters ahead.

So our programme is to choose several different definitions of the spread
and see what mean results from each. One simple definition is the absolute
deviation (3.11). Consider this now to be a function of some variable λ:

s(λ) ≡
∑ |xi − λ|

n
. (3.13)

The choice of mean corresponding to this definition of spread is the value
of λ that minimises s(λ) for some set of data points. At first thought, we
might try a calculus approach by setting s′(λ) = 0. But that will fail because
the absolute value function is not everywhere differentiable. The failure is the
same problem as that of minimising y = |x| by calculating dy/dx and solving
for where it equals zero:

dy

dx
=

|x|
x

= 0 . (3.14)

Of course the minimum occurs at x = 0, but this is just the value of x for
which (3.14) fails! So we cannot use the calculus to minimise s(λ) with respect
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to λ in (3.13). A different approach is needed. For simplicity, assume the xi

are all different and plot them on a number line:

λ

x1 x2x3 x4 xn−2 xn−1 xn

Focus now on the variable λ which lies anywhere on the line. We’ll move it
back and forth until the absolute deviation s(λ) is minimised.

For example, suppose λ lies far to the right of all the data, so that we
decrease its value by a small amount ε. This decreases its distance equally
from every data point. But what happens once it moves left of the rightmost
data point xn?

λ

x1 x2x3 x4 xn−2 xn−1 xn

Once this happens, as we continue to move λ farther to the left, its distance
from the points x2 . . . xn−1 still decreases, but now it recedes from xn by just
the same amount that it approaches x1. So the values of the outer two data
points no longer have any effect on the value of the spread s(λ).

Similarly, as the choice of λ moves ever farther to the left, the deviation
keeps decreasing as, pair by pair, the outside data pairs that form a kind of
zero-dimensional shell outside of λ no longer contribute to the spread s(λ),
while all pairs on the inside exert a kind of pull that lessens this spread.1

Once the position of λ is within the innermost pair (if the number of data
points is even), moving it still farther to the left inside the innermost pair
will no longer change s(λ). Or, if the number of data points is odd, then the
minimum of s(λ) is reached when λ equals the middle value, the so-called
median of the data. So for an odd number of different points, we have found
a unique value to be called the mean m: the median or midpoint of the data.
If the number of points is even, then we can choose m to be any value within
the innermost pair.

What this demonstrates is that medians and absolute deviations form
a natural pair. The absolute deviation will be a minimum provided that
we understand the notion of mean to be the median of the data (or some
midpoint found in the way of the previous paragraph if some data points
are the same or there are an even number). This apparently back-to-front
approach of defining the mean after the spread brings together these two
previously disparate quantities. We have found that a choice of median for
the mean implies that the absolute deviation has real meaning for the spread.
1 There is a good analogy to the gravity produced by a spherical shell here. Outside

of it, its gravity is the same as if all of its mass were concentrated at its centre.
However, everywhere inside the shell, its gravity is zero.
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But as we have just seen, if the number of data points is even, then the mean
(i.e., the midpoint) is not particularly well defined. So more sophistication in
defining the spread is called for.

Our next measure of the spread is slightly more complicated than (3.13):
we will square the distances before adding them, and retain the correct units
for the spread by including a square root in its definition. So define the new
spread s(λ) as follows:

s(λ) ≡
√∑

(xi − λ)2

n
. (3.15)

This function will always be differentiable, so we can safely use a calculus
approach to minimise it. Minimising s2(λ) is equivalent but easier since it
eliminates the square root. The resulting λ will be the new choice of mean m:

d
dλ

s2(λ) =
−2
∑

(xi − λ)
n

= 0 , so that λ =
∑

xi

n
≡ m. (3.16)

What appears is the familiar average, or arithmetic mean (cf. the geometric
mean, defined for n numbers as the nth root of their product; the geometric
mean is always less than or equal to the arithmetic mean). This definition
of the mean, then, pairs naturally with the root-mean-square definition of
spread in (3.15), now called the standard deviation because it’s so closely
linked with our intuitive notion of the mean, (3.16).

Finally, it’s apparent that the reason that the standard deviation involves
squared deviations is because by starting with the reasonable, tractable, and
useful requirement that the expression for the mean be linear, the minimi-
sation procedure we have just discussed, followed in reverse, will then re-
quire a measure of spread involving powers that are one more than linear:
i.e., squares.

We now have two natural pairings of measures of mean and spread:

median ←→ absolute deviation,

arithmetic mean ←→ standard deviation. (3.17)

Choosing more complicated definitions of the spread can of course be done,
but this only serves to produce ever more complicated expressions for the
mean. There are really an infinite number of different means and deviations
able to be defined for a data set, but the most useful are the usual (arithmetic)
mean and standard deviation. And as we’ll show next, these two partners
completely characterise the normal distribution, the statistical distribution
so frequently observed in Nature.

The Mean, Standard Deviation, and Normal Distribution

The normal, or gaussian, distribution is the “top dog” of statistics, both as
a distribution in its own right and as an approximation of other distribu-
tions. We have already encountered one of its important characteristics in
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n or n−1 in the Denominator?

Should the denominator of the standard deviation in (3.12) be n or n − 1?
The standard deviation is an averaged deviation, and an average is defined to
use n. So the denominator of (3.12) must be n. But the basic aim of statisti-
cal theory is to estimate parameters describing the population knowing only
something about a sample; any number produced from a sample that can help
us to estimate a parameter of the population is called a statistic. We wish to
estimate the standard deviation σ of the whole population, given the standard
deviation s of a sample (i.e. s is the relevant statistic). In practice, it tends to
be impossible or impractical to determine the population spread σ exactly—
that is, after all, why statistical theory was invented in the first place. It so
happens that when the population is much larger than the sample size, the best
estimate of the population variance, here denoted (σ2)be, that can be inferred
from a sample of size n is related to that sample’s variance s2 through

(σ2)be = s2 n

n − 1
. (3.18)

The best estimate of the population variance, (σ2)be, almost but not quite
equals the square of the best estimate of the population standard devia-
tion, (σbe)

2; thus we can only say

σbe � s

√
n

n − 1
, which means σbe �

√∑
(xi − m)2

n − 1
. (3.19)

σbe differs from s because the expression for s uses m, which itself is only an es-
timate of the population mean µ—albeit the best estimate of µ (i.e. µbe = m).
(With hindsight, it’s reasonable that s might be slightly smaller than σ since
the value of s is such that the sum of squares of deviations from m is a mini-
mum.) So the best estimate of the population standard deviation has an n − 1
in its denominator. This is a derived expression for σbe; there is nothing fun-
damental about it. It’s not a standard deviation but rather only the best
estimate of one based on a limited sample. The expression for a standard de-
viation, whether s for a sample or σ for a population, always has an n in its
denominator.

the previous chapter, where it was noted that a measure of the width of a
gaussian is as economical as it can be, in the sense that (2.197) is an equality
for gaussians. We will derive the gaussian distribution here using the same
technique that was used to derive the sum-of-squares expression in (3.16).
That is, we’ll consider the mean of a data set to be a quantity whose value
is to be determined via a minimisation.

Consider, then, a situation in which the true value µ of a quantity x is the
mean of a large number of observed values xi. (We are now considering an
entire population. The m and s relate to sample mean and standard deviation,
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Gaussian Integrals

Gaussian integrals are frequently needed in physics, and it is very useful to
have a general expression capable of handling any one that presents itself. The
following is a rare and useful identity that uses (and essentially defines) the
error function erf x:∫

e
−ax2+bx dx =

1

2

√
π

a
e

b2
4a erf

(√
a x − b

2
√

a

)
. (3.20)

This expression is true for all values of a and b (even complex ones). In par-
ticular, erf is an odd, strictly increasing function over the reals, that when
plotted resembles an inverse tangent function, but with erf ∞ = 1. Hence∫ ∞

−∞
e
−ax2+bx dx =

√
π

a
e

b2
4a . (3.21)

When dealing with a complex integration, as on p. 437, it’s useful to remember
that erf(−z) = − erf z for all complex z, and erf z → 1 as |z| → ∞, as long as
| arg z| < π/4.

An analogous definite integral in higher dimensions is also useful. If the
n variables are held in a column vector x ≡ [x1 . . . xn

]t
, while A is a real

symmetric n × n matrix and b is a column vector, then∫ ∞

−∞
exp
(−xtAx + btx

)
dnx =

πn/2 exp
(
btA−1b/4

)
√

det A
. (3.22)

while the corresponding values for a population, usually unknowable, are µ
and σ.) This is entirely consistent with what our intuition demands, of course;
after all, if the mean of a large number of values did not tend toward the true
value of the quantity, we would suspect some bias in our measurements, or a
badly defined mean. When there is no bias, we can write2

lim
n→∞

n∑
i=1

(xi − µ)
req.

0 for all choices of the data xi . (3.23)

Suppose that we are required to find the probability density p(x) associated
with the random variable x. This can always be written as a function f(x−µ),
which we do here since it will prove useful in a comparison with (3.23):

p(x) = f(x − µ) . (3.24)

The probability of obtaining the set of measurements xi must be the product
of individual probabilities:

2 In (3.23) and throughout this book, we use a
req.

b to mean “a is required to
equal b”. This is a demand, as opposed to a simple statement of equality.
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p(x1, . . . , xn, µ) =
∏

i

p(xi) =
∏

i

f(xi − µ) . (3.25)

Now, as before, at this point we take the mean to be the value we must fix
for a variable λ. Consider (3.25) as giving a sort of generalised probability as
a function of λ:

p(x1, . . . , xn, λ) =
∏

i

f(xi − λ) . (3.26)

We demand that x be distributed in such a way that its most probable value
is µ itself, so that p(x) is a maximum at λ = µ. In that case, ∂p/∂λ

req.
0

when λ = µ. Take the natural logarithm of both sides of (3.26) to facilitate
the differentiation, writing

1
p

∂p

∂λ

∣∣∣∣
λ=µ

=
∑

i

−f ′(xi − µ)
f(xi − µ)

req.
0 for all choices of xi . (3.27)

The only way that (3.23) and (3.27) can both hold for any arbitrary set of xi

as n → ∞ is if −f ′(x − µ)
f(x − µ)

∝ x − µ . (3.28)

Writing ξ ≡ x − µ, this means that for some proportionality constant k,

f ′(ξ)
f(ξ)

= kξ , (3.29)

which has a normalised solution of

f(ξ) =

√
−k

2π
ekξ2/2 (3.30)

using (3.21). We can express k in terms of the population variance σ2 of x
(which equals the population variance of ξ since shifting the data does not
alter its spread), by using an alternative form for the variance: the variance of
a data set equals the mean of the squares of the data values minus the square
of the mean of the data values (which is easily proved from first principles).
Denoting the mean by 〈·〉,

σ2 = 〈ξ2〉 − 〈ξ〉2︸︷︷︸
= 0

=
∫ ∞

−∞
ξ2f(ξ) dξ =

−1
k

. (3.31)

This allows us to write

f(ξ) =
1

σ
√

2π
exp

−ξ2

2σ2
. (3.32)

Finally, since the function f is just the required probability density p shifted
to centre on µ, the required probability density must be
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Fig. 3.2. A random walk of 25 steps, each of length L. Over an ensemble of these
walks, the root-mean-square distance from start to end positions will be 5L. The
actual distance in the single trial pictured is about 5.2L.

p(x) =
1

σ
√

2π
exp

−(x − µ)2

2σ2
. (3.33)

As can be seen, a few basic assumptions about a probability density lead
naturally to a function that incorporates the population mean and standard
deviation, and this elevates the sum of squares to a leading status in sta-
tistical theory. Again, we can see that squares arise quite naturally because,
as in (3.29), we frequently find ourselves writing a differential equation for a
quantity that appears linearly in that equation. So it’s only natural that the
solutions appearing should contain the integral of this first power, which is
of course a square.

3.2.1 Sums of Squares and the Random Walk

Sums of squares feature in the classic random walk scenario. If a drunken
man stumbles away from a start point, taking steps of uniform length L in
arbitrary directions, then how far from the start will he be after n steps? The
problem, being statistical, can only produce some sort of average answer. So
we need to take the view that there is a whole collection, an ensemble, of
drunken men all walking away from their own start points. We’ll calculate
an average over this ensemble.

With the start point taken as the origin, let the ith step be a vector Li.
After n steps, the man’s position relative to the start point is given by the
vector sum

position = L1 + · · · + Ln , (3.34)

as shown in Fig. 3.2. The square of the final distance from the start point is
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Calculating the rms and Mean Speeds of Ideal Gas Particles

A good example of the differences in difficulty and approach to calculating the
rms value of a quantity, versus calculating its mean value, lies in analysing
the spread of speeds of gas particles. Their rms speed can be found by the
procedure of Sect. 12.4, in which we consider how many gas particles bounce
off the walls of the gas’s container in some time interval, transferring a certain
momentum that relates to the pressure exerted, which can then be related to
the gas’s temperature via the Ideal Gas Law, PV = nRT . The expression for
the momentum transferred contains a velocity term, as does the expression
for the time taken for the transferral. Thus velocity appears in the equations
as a square. So when appropriate averages are taken, the mean of the square
of the particle speeds appears, giving an rms speed of

√
3kT/m, where k is

Boltzmann’s constant.
In contrast, calculating the mean speed of the particles requires an ap-

plication of statistical mechanics, along with the Boltzmann factor e−E/(kT ),
which gives the spread of particle energies. We’ll discuss this in Sect. 3.5.2.
The velocity vectors of the gas particles are gathered together, and by consid-
ering the density at which they fan out from the origin of velocity space, we
can calculate the number of gas particles per unit speed interval. This is the
famous Maxwell distribution of gas particle speeds. Being a simple function of
speed (in fact, proportional to the square of the speed and a gaussian function
of the speed), it is easy to deal with analytically, allowing the mean speed to
be calculated as

√
8kT/(πm).

Yet another related quantity is the most probable speed of the particles,
where the Maxwell distribution peaks. This turns out to be

√
2kT/m.

distance2 ≡ |position|2 = (L1 + · · · + Ln)·(L1 + · · · + Ln)
= nL2 + L1 ·L2 + L1 ·L3 + · · · . (3.35)

In averaging over the ensemble, the cross terms are just as likely to be positive
as negative since there is no correlation from one step to the next. They
therefore make no contribution to the average, and the mean of the squared
distances becomes 〈

distance2
〉

= nL2. (3.36)

Thus the root-mean-squared distance from start to end is

rms distance ≡
√〈

distance2
〉

=
√

nL . (3.37)

Here we have the famous result that the rms distance from the start point
only increases as the square root of the number of steps. Calculating the true
mean distance is a good deal more complicated, and that’s why the rms value
is usually used.

The random walk is featured in the constructive interference of light, and
so it figures in the explanation of why laser light is so bright. Suppose we



3.2 The Privileged Sum of Squares 91

have n incoherent light sources, such as incandescent bulbs. By “incoherent”
we mean that, like the steps of the drunken man, phase information is not
preserved over time or space, and this is the case for incandescent bulbs that
use a hot filament to generate their light. At any particular place and time,
the strength of the electric field due to light from the ith bulb is represented
by a phasor (a vector Ei of magnitude E). Light intensity is proportional to
the square of the amplitude of the total electric field. The total electric field
is found by adding the phasors as vectors, so the total intensity at the point
of interest must be

Itot ∝
∣∣∣∑

i

Ei

∣∣∣2. (3.38)

We are back to a sum of squares and the random walk (where Ei has the role
of the step Li), since the incoherent light bulbs produce electric vectors Ei

that have no relation to each other. Over the integration time of the human
eye, the total intensity smoothens out just like the steps of the random walk,
and its average Itot becomes proportional to nE2, or n times the average
intensity due to one light bulb alone. This is expected, of course, from our
everyday experience, and it shows why the concepts of rms value and the
random walk are so closely allied with our physical perceptions.

If the light sources are coherent—which is to say that the “steps” are
correlated from one to the next, such as in a laser (the drunk sobers up!)—
then the random walk picture no longer applies. If n lasers are carefully tuned
to be in phase with one another, their electric field vectors at the screen will
add constructively, so that

Itot ∝
∣∣∣∑

i

Ei

∣∣∣2 = |nE1|2 = n2E2. (3.39)

The average Itot is now n2 times the average intensity due to one laser alone,
as contrasted with the n-fold multiplication for incandescent bulbs. In a lone
laser, the sources are really lasing atoms, so that here again the sum of squares
shows why the coherency of a single laser makes it so very bright.

Fluctuation, Dissipation, and
√

dt

One of the odd features of random walks is that they lead us to write differ-
ential equations that involve square roots of infinitesimals. To see why this
might be, consider the simple case of a random walk in which each step has
length ∆L and takes a time ∆t. In a unit time, the number of steps taken
is 1/∆t, so that the rms distance from the origin is, from (3.37),

rms distance =
√

number of steps × ∆L =
∆L√
∆t

. (3.40)

Suppose we require that this rms distance tend to a constant k as ∆t → 0.
In that case, the speed of the particle is given by
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dL

dt
→ k

√
dt

dt
=

k√
dt

. (3.41)

The limit idea of this Wiener process really describes a series of ever-finer
models of brownian motion. This is the motion of a particle that is much
larger or more massive than the molecules that surround it, while still small
or light by laboratory standards. In (3.41), the particle has been required to
move at whatever speed is necessary to match real-world observations of the
slow, steady drift characteristic of brownian motion.

A more detailed analysis of such motion produces a model in which the
particle’s velocity can certainly change. This, a stochastic model, represents
the environment’s effect on the particle by a statistical distribution. The force
on the particle is composed of two terms: a zero-mean fluctuation term that’s
uncorrelated over time, and a dissipation term that describes a steady drag.
The fluctuation term is stochastic, meaning that its value is drawn from a
probability distribution. Thus Newton’s force-acceleration law itself becomes
stochastic when approximated in this brownian motion realm. The effect is
that this law might appear to suffer from some amount of indeterminacy,
but that is purely a result of the model; there is no implication of anything
inherently unpredictable about the physical laws that the meandering particle
obeys.

The
√

dt that appeared in (3.41) finds its way into the force-acceleration
law obeyed by a brownian particle. In one dimension, the infinitesimal in-
crease m dv in the particle’s momentum after a time dt can be written as

m dv =
√

2γkT N(0, 1)
√

dt︸ ︷︷ ︸
fluctuation term

− γv dt︸ ︷︷ ︸
dissipation term

, (3.42)

where the constant γ is the drag coefficient, k is Boltzmann’s constant, T is
the temperature of the bath through which the mass m is moving, and the
fluctuations’ stochastic nature is represented by including a term drawn from
a normal distribution N(0, 1) with zero mean and unit standard deviation.
Should the dt term be omitted as negligible compared with the

√
dt term? No,

because the fluctuation has zero mean and so over a long time produces about
as much effect as the dt term, which does not fluctuate and so is more steady
in its effect. Finally, the fact that the drag coefficient γ is present in both terms
shows that fluctuation and dissipation must both be present; we cannot have
one without the other. The theory of stochastic processes—which is really
just an abbreviated name for the theory of stochastic models of completely
deterministic processes—builds on expressions such as (3.42), using them to
make predictions for situations that are too complicated in their details to be
studied by more classical methods. We’ll encounter fluctuation–dissipation
again in Sect. 11.5.
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3.3 Least Squares Analysis, Bayes’ Theorem, and the
Matrix Pseudo Inverse

In Sect. 3.2, we saw how a sum-of-squares definition for the spread of data
points ties naturally with the mean, leading to the normal distribution that
governs so many statistical aspects of Nature. In this section, we will examine
how best to fit a curve to a set of data points along with what the idea of a
best fit really means. The idea of fitting a curve to a set of data is fundamental
in statistical theory, and it turns out that a sum of squares is the best tool
for the job. In order to study this a little more closely and see why it should
be so, we pause to look back at the completeness relation that we first met
in the previous chapter.

Completeness Relations Again

As we have seen, a completeness relation concisely expresses a great many
results of linearity, and so appears in matrix theory, Fourier analysis, and
quantum mechanics. A very similar-looking identity can also be written down
for probability theory. Suppose an event a can occur with probability p(a).
Since we are only dealing with probabilities here, the ubiquitous p can be
omitted, and we write (a) for the probability of the outcome a. Besides sav-
ing some effort, this will also allude to the bracket notation of the previous
chapter.

Consider a set of events {bi} that are separate from a, and ask the ques-
tion: what is the probability (a, bk) of both outcomes a and bk? This is the
product of two probabilities: the probability (a|bk) of event a occurring given
that bk occurred, times the probability (bk) that bk itself occurs:

(a, bk) = (a|bk)(bk) . (3.43)

As a further aid with the notation, introduce a statement that is true by
definition, or equivalently an event that occurs with absolute certainty. Call
this event “1”. Then it must certainly be true that (a, 1) = (a) and also that
(a|1) = (a). Equation (3.43) writes this as

(a, 1) = (a|1)(1) , (3.44)

which is certainly true since (1) must be equal to 1. Our notation is self-
consistent so far! But now notice something. If the set of bi’s is exhaustive,
so that

∑
(bi) = 1, then the probability that event a occurs is just the sum

over all the probabilities that a happens together with one of the set of bi’s:

(a) =
∑

i

(a, bi) , (3.45)

which using (3.43) can be written as
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(a) =
∑

i

(a|bi)(bi) ; (3.46)

and this in turn can be rewritten by introducing event 1:

(a|1) =
∑

i

(a|bi)(bi|1) . (3.47)

At this point we allow ourselves some licence with the notation, to match
the brackets of the previous chapter. The quantity (p|q) will be considered
to be a “product” of two new entities, (p| and |q), and also each of these can
be “multiplied” by the number 1 without being changed. In that case, the
essence of (3.47) becomes ∑

i

|bi)(bi| = 1 . (3.48)

So this is really just a completeness relation, and links together conditional
probabilities such as in (3.46). Thus, it enables us very quickly to write
down (3.46) with only a moment’s consideration about whether the set of bi’s
is complete; but its real significance is in the fact that it encapsulates the
linearity of probability theory, so that the mathematics of conditional prob-
ability is well represented by matrix formalism.

As an aside, if (a|1) = (a), then what meaning does (1|a) have? The prob-
ability that event 1 occurs given some a must be 1, but we can also derive it
as follows. Notice that (bk, a) = (a, bk), so (3.43) gives

(bk|a)(a) = (a|bk)(bk) , (3.49)

or

(bk|a) =
(a|bk)(bk)

(a)
=

(a|bk)(bk)∑
i(a|bi)(bi)

. (3.50)

This is Bayes’ theorem, which has many applications in probability theory
and signal processing, the modern field that is concerned with studying how
noisy signals can be processed to extract a maximum of information from
them. Setting bk = 1 in Bayes’ theorem indeed yields the expected (1|a) = 1.

To see Bayes’ theorem in action, consider the following scenario. A certain
disease is known to strike 0.01% of the population. A test has been developed
to screen for it. Apparently it is quite a successful test because it correctly
identifies 99 out of 100 people who have the disease, while returning a false
alarm result for just one person in a thousand. We ask the question: if the
test returns a positive result (i.e. disease detected), what is the chance that
the person tested really has the disease?

The above scenario describes two errors that the test can make. The prob-
ability of a false alarm is 1/1000 (“one person in a thousand”). Contrast
this with the probability of a missed detection, which is 1 − 99/100 = 1/100.
Statisticians traditionally call a false alarm a Type 1 error, and call a missed
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detection a Type 2 error. These uninsightful labels obscure the fact that we
are constantly balancing the chances of making these two errors in every
aspect of life. In general, any process that lowers the chance of our making
one of these errors will raise the chance of our making the other error. In the
courtroom, these two errors are the acts of finding an innocent man guilty,
and finding a guilty man innocent, respectively. (This is not to imply that
statistical theory is necessarily understood by the court system; in fact, a
lack of understanding of it can easily put innocent people in jail.)

An everyday example of this balance lies in the simple act of setting the
volume of a transistor radio. Set it to loud, and we hear all the music, but
we also hear noise crackles (high probability of false alarms). Set it to soft,
and we hear no crackles—but now, listening to the music is more difficult
(high probability of missed detections).

Let h stand for a healthy state, d stand for the disease being present, and +
stand for a positive test result. We require the probability that the disease is
present given a positive test result, or (d |+). We know that

(d) = 0.01% , (+|d) = 99% , (+|h) = 0.1% . (3.51)

Bayes’ theorem gives

(d |+) =
(+|d)(d)

(+)
=

(+|d)(d)
(+|d)(d) + (+|h)(h)

=
0.99 × 10−4

0.99 × 10−4 + 0.001 × (1 − 10−4)
� 9% . (3.52)

Perhaps surprisingly, when the test returns a positive result, there is only a
9% chance that the patient really has the disease. What has happened here
is that although the test gives a false positive for only 0.1% of patients, the
overwhelming number of patients will be healthy, providing many opportu-
nities for the test to register a false alarm. So the difference between (d |+)
and (+|d) is crucial to an understanding of the power of the test. Here we
see a good example of how the old saying “There are lies, damned lies, and
statistics” can apply when a proper analysis of statistical statements is not
made.

3.3.1 Least Squares Analysis for Curve Fitting

Another example of this difference between (d |+) and (+|d) occurs when we
require the best estimate of an unknown quantity x given a set of data. There
are divided opinions among statisticians as to what exactly constitutes a best
estimate. Two important definitions of the best value of x are:

Maximum likelihood estimate of x: the value of x that
maximises (data |x);

Maximum a posteriori estimate of x: the value of x that
maximises (x |data).
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Bayes’ theorem states that there can be a difference between these two es-
timates. As an example, consider fitting a gaussian to one peak of an X ray
spectrum produced by bombarding a rock sample with energetic protons. The
protons knock out inner electrons from elements in the sample, exciting the
atoms which quickly decay by emitting characteristic X and γ rays. These
rays are then counted by detectors subject to statistical fluctuations, produc-
ing plots of photon numbers detected versus their energies. Different elements
in the sample produce peaks of detected photons at different energies, allow-
ing the rock’s elemental makeup to be inferred. By fitting an appropriate
curve to each peak, we are able to isolate the peaks and so subtract whatever
remains as noise. How are these curves to be fitted?

Suppose each curve specifies some sort of mean energy E0 and a charac-
teristic width σ. Consider each of the following fitting methods in turn.

Maximum Likelihood Fit. Consider first the maximum likelihood esti-
mates of E0, σ. Given these, we wish to maximise the probability (data |E0, σ)
that the measured data could result, when the expected number of counts in
each energy bin E is given by the fitted curve fE0,σ(E). There are two differ-
ent statistical processes to keep track of here. The fit predicts the counts in
each bin based on the fitting function fE0,σ(E), but we are concerned with
the departure of the measured number of counts in each bin from this pre-
dicted number. Generally each bin itself introduces gaussian statistics, and
the value of (data |E0, σ) is given by a product of gaussian expressions, one
for each of the energy bins. As shown in Fig. 3.3, we must therefore mul-
tiply exponentials of negative squares of deviations from the predicted fit
(one for each bin), and then maximise that product over all values of E0, σ.
This is equivalent to summing the squares themselves, and then minimising
this sum.

But this is just the method of least squares, and so we have come full
circle. Earlier in this chapter we showed that a measure of spread that incor-
porates a sum of squares (the standard deviation) forms a natural pair with
the usual definition of a mean; then we found that the ubiquitous normal
distribution is expressed in terms of these two quantities; and finally we used
this normal distribution to show again that a natural way to best-fit a curve
is by minimising a sum of squares.

Maximum a Posteriori Fit. The maximum a posteriori estimate of E0, σ
chooses the best estimate of the fitting parameters E0, σ to be those that
maximise (E0, σ |data). Bayes’ theorem (3.50) helps us along here:

(E0, σ |data) =
(data |E0, σ)(E0, σ)∑

ij(data |E0i, σj)(E0i, σj)
. (3.53)

Now, at this point we ask: what is the value of (E0i, σj), the probability of
occurrence of any two parameters E0i, σj? This is called the prior probability
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E

fE0,σ(E)

∆y1

∆y2

∆y3 ∆y4

Fig. 3.3. Fitting a curve to a set of points using the maximum likelihood phi-
losophy. Suppose we have a model that predicts that due to statistical variation,
the points will depart from the curve with a gaussian spread (which is typically the
case). Given the arbitrary hypothesised curve shown, the probability that the points
really could have resulted is the product of the probabilities that each could have
resulted separately. Assuming that the points are independent, this probability is

(data | curve) ∝ e−k∆y2
1 e−k∆y2

2 . . . e−k∆y2
4 for some k. Adjusting the curve in order

to maximise this product is equivalent to minimising ∆y2
1 +∆y2

2 + · · ·+∆y2
4 , which

is none other than the method of least squares.

(or just prior for short): the chance that the rock sample really does have an
element that could produce a peak of emitted photons at energy E0i with
width σj . This is information we probably do not have in any real situation,
and it’s even debatable to what extent these priors can be considered as
well-defined probabilities at all.

Without such prior information, the most even-handed approach is to set
all the priors equal, in which case they will cancel in (3.53), producing a
maximum a posteriori estimate exactly the same as the maximum likelihood
estimate. On the other hand, if we do have knowledge of the priors, per-
haps because we know in advance some of the elements that the rock sample
contains, then the curve fitted by the maximum a posteriori method can be
different from that found via maximum likelihood.

Linear Least Squares Fitting: More than Just Straight Lines

Least squares analysis is one area that tends to be seen as thoroughly within
the domain of calculus, being all about minimisation. In fact, it forms a good
example of the interface between linear algebra and calculus, because min-
imising a sum of squares is equivalent to minimising a distance in euclidean
space. So the data to be fitted can be arranged in a matrix, which makes
for very concise and efficient computation. This use of matrices to shuffle
data about in highly efficient ways is the bread and butter of modern signal
processing theory. Here we use the example of least squares fitting to give a
flavour of some of the ideas.
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A common misconception on first encountering least squares theory is
to think that it concerns only fitting a line to a set of points. This is not
so; the linearity concerns not the data but the coefficients of the fit: these
must occur linearly in the equation of the curve to be fitted. So a parabola
y = ax2 + bx + c can be fitted just as well as the straight line y = mx + c,
since in both cases the coefficients a, b, c or m, c occur linearly. This linear
requirement is a second reason why matrices have a natural place in least
squares theory.

Imagine that we are given a set of data points (x1, y1), . . . , (xn, yn) to
which a curve is to be fitted, say y = ax2 + bx + c. If the curve did fit the
points perfectly, then it would certainly be true that⎡⎢⎣y1

...
yn

⎤⎥⎦
︸ ︷︷ ︸
≡ y

=

⎡⎢⎣x2
1 x1 1
...

...
...

x2
n xn 1

⎤⎥⎦
︸ ︷︷ ︸

≡ A

⎡⎣a
b
c

⎤⎦
︸︷︷︸
≡ z

. (3.54)

More generally, if the curve does not fit the points exactly, then the two
sides of (3.54) won’t be identical. There will be some small noise present
represented by the addition of a vector ν, so that (3.54) becomes y = Az + ν.
This, then, is the essence of a least squares fit: we must choose a, b, c so that
the noise ν = y −Az is minimised in a least squares sense. That means that
the sum of the squares of the elements of ν is minimised.

But such a sum of squares is really a distance in euclidean geometry, the
length of ν, so that given y and A, we are required to find the value of z,
comprised of “three least squares estimates of a, b, c”, that will minimise the
distance between the n-dimensional vectors y and Az.

As usual, rather than deal directly with the length |y −Az|, it’s easier to
minimise its square—an entirely equivalent problem. This is easily written in
matrix form:

|y − Az|2 = (y − Az)t(y − Az) =
(
yt − ztAt

)
(y − Az)

= yty − ztAty − ytAz + ztAtAz

= yty − 2ytAz + ztAtAz . (3.55)

(The last line follows because all of the terms in the line before are scalars
and so are equal to their transposes.) Minimising the right-hand side of the
last line with respect to each of the elements of z requires that its gradient
be calculated with respect to those elements and then set equal to zero. For
this, two theorems are useful. The first says:

For all column vectors a, ∇z

(
atz
)

= at, (3.56)

where ∇z is the row vector of derivatives with respect to the elements of z.
The proof is very straightforward. For tidiness, use the convention that re-
peated indices are summed over.
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∇z

(
atz
)

= ∇z(aizi) = [a1, . . . , an] = at. QED. (3.57)

The second theorem is very similar but involves matrices instead of vectors:

For all square matrices B, ∇z

(
ztBz

)
= zt

(
B + Bt

)
. (3.58)

The proof is a little more involved but is done in exactly the same way: we
calculate the kth element of the gradient on the left-hand side of (3.58), and
use it to build the right-hand side of (3.58):

[∇z

(
ztBz

)]
k

=
∂

∂zk
Bij zi zj = Bij (δik zj + ziδjk) = Bkj zj + Bik zi

= (Bz)k + (ztB)k . (3.59)

Now, Bz is a column vector and ztB is a row vector. We want the gradient
to be a row vector, so we should write (Bz)k = (ztBt)k, which then gives[∇z

(
ztBz

)]
k

= (ztBt)k + (ztB)k , (3.60)

so that
∇z

(
ztBz

)
= ztBt + ztB = zt

(
Bt + B

)
. QED. (3.61)

Returning to the original expression in (3.55), we use the two theorems (3.56)
and (3.58) to write

∇z |y − Az|2 = ∇z

(
yty − 2ytAz + ztAtAz

)
= −2ytA + 2ztAtA , (3.62)

and this must be equated with the zero matrix to yield the required minimum,
defining the best fit z in the process as z̄. Thus

z̄tAtA = ytA . (3.63)

Transposing both sides renders this equation somewhat cleaner, in that the
result is exactly the same as what would have been written had we (mistak-
enly!) written the equations to be solved as Az = y (an overspecified set) and
then premultiplied both sides by At:

AtAz̄ = Aty . (3.64)

(That’s an elegant point that makes it easy to recreate (3.64) from memory.)
Finally, AtA will be invertible for any reasonable set of data, so

z̄ = (AtA)−1Aty ≡ A#y . (3.65)

The expression (AtA)−1At is known as the pseudo inverse of A (written A#),
since it left-multiplies A to give the identity matrix; the same cannot be guar-
anteed to happen for right-multiplication. The pseudo inverse is an apt name
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because, as stated above, in a sense we have started with the over-specified
equation Az = y and then “inverted” it as best we could, by using not A−1

but A# (cf. if A were square, then A−1 = A#). The resulting expression (3.65)
is not only an elegant use of matrices, but also is used very often in the field
of signal processing when data are being fitted, such as in tracking moving
objects, where we are presented with a lot of data and need to find the best
solution to a set of equations that might result from a trigonometric analysis
of the scenario.

Actually, the pseudo inverse is defined a little more generically than this,
but certainly (AtA)−1At satisfies the more general definition. The definition
used here can be badly behaved numerically for certain ill-conditioned data
sets, and building better alternatives is an area of linear algebra that is es-
pecially important to numerical computation software.

Covariance Matrices and Correlation

When doing calculations involving lots of sums, it is very helpful to realise
that the operation of summation is linear. This means that for constants a, b
and variables x, y, we have

∑
(axi + byi) = a

∑
xi + b

∑
yi, as is easily proved

by writing out the sums term by term. Of course, this also implies that
the calculation of a mean m(·) is linear: m(ax + by) = am(x) + bm(y), since
these means are calculated using summations.

In contrast, the standard deviation is not linear, since it involves a square
root, which has no linear properties. In that case, might the process of calcu-
lating a variance s2(·) be linear instead? Let’s calculate s2(ax + by) and see
how it relates to s2(x) and s2(y).

Note that s2(x) and s2(y) are more usually called s2
x, s2

y. We have used
parentheses here and in the mean above merely to stress the fact that the
mean and variance are being considered as operators on a set of data.

We will suppress all summation indices on x, y, and denote the means of x, y
by mx,my, respectively:

s2(ax + by) ≡ 1
n

∑
(ax + by − amx − bmy)2

=
1
n

∑[
a (x − mx) + b (y − my)

]2
= a2s2(x) + b2s2(y) +

2ab

n

∑
(x − mx)(y − my) . (3.66)

The variance certainly is not linear. Along with the coefficients a, b being
squared, an extra term combining the x and y data has appeared. This extra
term (without the 2ab) is called the covariance sxy of x and y:

sxy ≡ 1
n

∑
(x − mx)(y − my) . (3.67)
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Nonlinear Least Squares Fitting: The Gauss–Newton Algorithm

Suppose that the set of data points (x1, y1), . . . , (xn, yn) is to be fitted not by
some linear-coefficient curve such as y = a1x

2 +a2x+a3, but rather by one in
which the coefficients occur nonlinearly: y = f(x; a1, . . . , an) ≡ f(x; z). There
are various approaches to finding the function y = f(x; z), and in general
the problem can be quite difficult, especially if the fit is destined to be poor.
One approach utilising the work of the preceding pages, known as the Gauss–
Newton algorithm, linearises f(x; z) about some starting estimate z0 of the
coefficients a1, . . . , an (where z, z0 are column vectors). Begin by relating the
data to the fit, with a noise term ν added, and then Taylor-expand to first
order:⎡⎢⎣y1

...
yn

⎤⎥⎦ =

⎡⎢⎣f(x1; z)
...

f(xn; z)

⎤⎥⎦ + ν �

⎡⎢⎣f(x1; z0) + ∇zf(x1; z0)(z − z0)
...

f(xn; z0) + ∇zf(xn; z0)(z − z0)

⎤⎥⎦ + ν . (3.68)

In other words,⎡⎢⎣y1 − f(x1; z0)
...

yn − f(xn; z0)

⎤⎥⎦ �

⎡⎢⎣∇zf(x1; z0)
...

∇zf(xn; z0)

⎤⎥⎦ (z − z0) + ν , (3.69)

which when solved for z will give a new estimate of z, since truncating the
Taylor series means the results are only approximate. Equation (3.69) now
resembles (3.54), so that an updated estimate of z can immediately be written
down via a least squares solution using the pseudo inverse defined on p. 99:

z � z0 +

⎡⎢⎣∇zf(x1; z0)
...

∇zf(xn; z0)

⎤⎥⎦
# ⎡⎢⎣y1 − f(x1; z0)

...
yn − f(xn; z0)

⎤⎥⎦ . (3.70)

Equation (3.70) can be iterated by replacing z0 with the new estimate, and
will often converge to a solution. For a similar approach to solving nonlinear
simultaneous equations, see the box on p. 367. In practice, nonlinear least
squares fits often involve weighting the contributions from some points more
than others, which might better reflect the way the data have been gathered.

(sxy conventionally is not written as a square; it suffices to have two indices.)
We can see immediately that the covariance of x with itself is the variance
of x: sxx = s2

x, so the covariance is a generalisation of the variance to multiple
variables. If the covariance of x and y is zero, meaning the two variables are
uncorrelated, then the expression for the variance s2(ax + by) comes as close
to being linear as it can:
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s2(ax + by)
x,y

uncorr.
a2s2(x) + b2s2(y) . (3.71)

When more than two variables are involved, the set of covariances among all
the pairs can be written as a matrix P :

P =

⎡⎣ s2
x sxy sxz . . .

s2
y syz . . .

(symmetric) s2
z . . .

⎤⎦ , (3.72)

which finds a major use in the field of signal processing when estimating the
values of variables based on noisy data.

A simple expression for the covariance can be found by expanding the
parentheses in (3.67) to obtain

sxy = mxy − mx my , (3.73)

which is similar to the simplified expression for the variance s2
x = mx2 − m2

x

that we noted in the paragraph before (3.31). Two variables are thus uncor-
related when the mean of their product equals the product of their means.

Note that this is not quite the same as the variables being independent, by
which is meant that the probability of obtaining given values of x and y
can be factored: p(x, y) = p1(x) p2(y). Independence certainly does imply
noncorrelation, but the converse is not true.

The idea of the covariance appears under the different name of regression
analysis, which is concerned with how well a least squares line fits a set of
data. Let’s look briefly at how this comes about.

Quantifying Least Squares Fits of Lines Using the Covariance

Two variables are defined to be uncorrelated if their covariance is zero. Not
surprisingly, this idea of correlation also relates to the idea of plotting a set
of data points and fitting a least squares line through it. Suppose we plot
y versus x for the set (x1, y1), . . . , (xn, yn), and then fit a least squares line
y = mx + c by writing, similar to (3.54),⎡⎢⎣y1

...
yn

⎤⎥⎦
︸ ︷︷ ︸
≡ y

�

⎡⎢⎣x1 1
...

...
xn 1

⎤⎥⎦
︸ ︷︷ ︸

≡ A

[
m
c

]
, (3.74)

with the “�” sign showing that we are aware that (3.74) is not exact but can
be “pseudo-inverted” to give an exact solution for m and c using the ideas of
the previous few pages. In particular, (3.65) gives[

m
c

]
= A#y = (AtA)−1Aty =

[
sxy/s2

x

my − mx sxy/s2
x

]
. (3.75)
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This equation is not symmetric in x and y because the least squares fit seeks
to minimise the sum of the squared vertical distances of the data points from
the line, as opposed to, say, horizontal distances or closest distances. How
well does the line fit? We need only calculate this sum I2 of squared vertical
deviations; for a perfect fit it will be zero:

I2 =
1
n

∑
(yi − mxi − c)2

(3.75)
s2

y

(
1 − s2

xy

s2
x s2

y

)
≡ s2

y

(
1 − r2

)
, where r ≡ sxy

sx sy
. (3.76)

The parameter r is called the regression coefficient for the data, and is really
just a normalised covariance. We can see this by noting that

s2
xy � s2

x s2
y , (3.77)

which is certainly true, because expanding each side of (3.77) in terms of x
and y deviations from their means shows that the right-hand side of (3.77)
is just equal to its left-hand side with the addition of positive cross terms.
As a consequence, r2 � 1, so that the regression coefficient r is nothing more
than a normalised covariance.

When x and y are uncorrelated, r = 0, and the rms deviation of the points
from the line is then I = sy. But this is exactly to be expected; after all,
r = 0 implies that m = 0 and c = my, so that the best-fit line is horizontal and
divides the y data exactly at their mean. Also, when r = ±1 the rms deviation
is I = 0. Thus the points all lie on the line: they are perfectly correlated.
Finally, since m and r share the same sign, the sign of r determines whether
the points are positively or negatively correlated (i.e., positive for r > 0).

As a last note, if we plot the points the other way around (x versus y),
the least squares fit is still done by minimising the sum of squared vertical
deviations, so that the roles of x and y simply interchange in (3.74)–(3.77).
It follows that the product of the slopes of the best-fit lines (x versus y and
y versus x) will be r2. So if the points are perfectly positively correlated
(r = 1), then interchanging the roles of x and y will flip the best-fit line about
the y = x line, as we might expect. (Likewise, if the points are perfectly
negatively correlated, r = −1 and the best-fit line flips about y = −x). But
if the points are perfectly uncorrelated, then r = 0, and the best-fit line is
horizontal in both plots.

Fisher Information and a Special Covariance Matrix

A special covariance matrix that finds a use in signal processing is the inverse
of the Fisher information matrix, and here we give a brief discussion about
what it is and why it should be useful, omitting the relevant proofs. Suppose
the results of some measurements form a set of numbers x ≡ x0, . . . xn from
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which we require to extract a parameter θ of interest. For example, θ might be
the average age of a population, the position of a spacecraft, or the predicted
cost of a commodity. To make use of the data, we wish to find an estimator
θ̂ ≡ θ̂(x). An unbiassed estimator θ̂ is one that takes on the correct value θ
on the average, or, in statistical language, the expected value over the data
set is Ex

{
θ̂
}

= θ. (Note that in the box on p. 86, µbe and σbe are unbiassed.)
The probability that, given some particular θ, the measurements x will be

observed is the likelihood (x|θ) referred to on p. 95, although of more use here
is the negative logarithm of the likelihood: L ≡ − ln(x|θ). It can be shown in
a few lines of algebra that a well-behaved likelihood will be regular, meaning
that

Ex

{
∂L/∂θ

}
= 0 for all θ, (3.78)

which is really a statement that differentiation with respect to θ and sum-
ming over the values x0, . . . , xn commute. The Fisher information F is then
defined as

F ≡ Ex

{
∂2L

∂θ2

}
pθ(x)

regular
Ex

{(
∂L

∂θ

)2}
. (3.79)

The Fisher information acts to set a lower limit on how well the system
giving the data set can be characterised. If F is near zero, then the variance
of any unbiassed estimator θ̂ must necessarily be large, meaning that it’s
impossible to estimate the parameter θ very well. This is an indeterminacy
principle, just like the more well-known Heisenberg Indeterminacy Principle
in quantum mechanics. The actual principle is given by the Cramér–Rao
theorem, which states that the variance var θ̂ of any unbiassed estimator θ̂
must satisfy

var θ̂ � 1/F ≡“Cramér–Rao lower bound”, (3.80)

where the derivative in the Fisher information is evaluated at the true value
of θ. An unbiassed estimator can even be found that gives exact equality
in (3.80), as long as a function θ̂(x) exists that satisfies

∂L

∂θ
= F

[
θ − θ̂(x)

]
, (3.81)

in which case the estimator will then be θ̂(x).
As an example, suppose we are modelling the incoming data as gaussian

with unknown mean θ but known variance σ2. How well can we estimate the
mean θ? The likelihood is

(x|θ) =
1(

σ
√

2π
)n exp

[
−1
2σ2

n∑
i=1

(xi − θ)2
]

, (3.82)

so that

L =
1

2σ2

n∑
i=1

(xi − θ)2 + constant. (3.83)
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The Fisher information is

F = Ex

{
∂2L

∂θ2

}
= Ex

{ n

σ2

}
=

n

σ2
, (3.84)

from which it follows that more data implies more Fisher information. Equa-
tion (3.80) becomes var θ̂ � σ2/n. So no matter what weird and wonderful
expression could possibly be concocted to model the parameter θ, when we
use it to create many estimates of θ—one from each data set that we have
sampled—the variance of those estimates must be at least as large as σ2/n.
And we can certainly find an unbiassed estimator θ̂ that actually attains the
Cramér–Rao lower bound. Write (3.81) as

n

σ2

(
θ −
∑

xi

n

)
︸ ︷︷ ︸

∂L/∂θ

=
n

σ2︸︷︷︸
F

(
θ − θ̂

)
, (3.85)

which sets the best estimator of the mean to be θ̂ ≡ ∑xi/n—the usual
arithmetic mean—which is probably what we expected all along. Again, this
underlines the dominance of the arithmetic mean in statistics.

If both the mean and the variance of the data in the previous example are
required to be modelled by parameters θ1 and θ2, then the Fisher information
becomes a 2 × 2 matrix with ijth component

Fij ≡ Ex

{
∂2L

∂θi ∂θj

}
regularity

Ex

{
∂L

∂θi

∂L

∂θj

}
, (3.86)

where the derivatives are evaluated at the true values of θ1, θ2. Now the
Cramér–Rao theorem becomes

var θ̂i �
(
F−1
)
ii

. (3.87)

The Cramér–Rao bound F−1 is a covariance matrix, and is the “best” one
obtainable from an unbiassed estimator of θ1, θ2. This means that no matter
what expressions we can produce to estimate θ1, θ2, the covariance matrix P
of those estimates will be “greater than or equal to” F−1. In matrix language
this means that P − F−1 will be positive semidefinite: any nonzero vector v
will satisfy vt

(
P − F−1

)
v � 0.

So the Fisher information sets a fundamental limit on how much infor-
mation can be gleaned from a set of data, and in certain situations (usually
related to gaussian densities!) that limit can be attained in practice.

3.4 Time Constants to Describe Growth and Decay

In the previous sections, we saw how the exponential number e appears quite
naturally in the normal distribution so applicable to the statistics of the ev-
eryday world, and how it’s tied closely in that distribution with the mean and
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standard deviation, which are themselves tied to ideas of linearity. Linearity
and the intuitive notion of a mean lifetime also relate e to ideas of growth
and decay. We will explore this relationship further in this section, where we
concentrate on radioactive decay and growth.

3.4.1 The Poisson Statistics of Radioactive Decay

The decay of a radioactive element forms a good example of an exponential
law, and the various terms involved with the process, such as time constant,
mean life, and probability per second, shed light on how intuitive ideas are
attached to mathematical language.

The half life of a radioactive element is, of course, the time required for
half of it to decay. A half life of one hour means that one half of the element
will decay in one hour. But the remaining half does not decay after another
hour, which raises the question: is the element somehow slowing the internal
processes that govern its decay rate, over time?

On a macroscopic level, many processes in Nature tend to go to their com-
pletion only asymptotically. The most predictable and well-behaved are those
that are built from a large number of discrete microscopic processes. Perhaps
the most well known of these is the characteristic time for radioactive decay;
another example is the characteristic distance of penetration of uncharged
particles through matter. Both of these processes are concerned with excep-
tionally large numbers of particles with a sort of binary nature that either do
or don’t behave in a certain way. In the radioactive element, any particular
atom may or may not decay in a set time interval, while in a beam of neutral
particles (such as light passing through matter), any particular particle may
or may not interact in a set distance interval, being completely removed from
the beam when it does interact.

This binary behaviour is not guaranteed for all large-number processes.
A beam of charged particles passing through matter travels a well-defined
distance at which more or less all of the particles come to rest (although this
point is not as well defined for less massive particles such as electrons). This
is because charged particles do not interact with the medium in a binary
way; they lose tiny fractions of their energy in multiple collisions, so that all
lose energy at a similar rate, which brings them all to rest at about the same
distance from their point of entry. An exponential type of behaviour is only
applicable to particles acting in an all-or-nothing way.

Given the lack of a well-defined end to such a binary process (at least in
principle), the ideas of a half life, and the mean life that we’ll encounter soon,
are a useful way of quantifying how fast the process occurs. While we focus on
radioactive decay and growth here, examples from other fields can be found,
such as the recovery of a muscle after some exertion, the cooling of a hot
body, mixing problems that use constant flow rates, the filling of a cistern,
and the behaviour of currents and voltages in resistor-capacitor and resistor-
inductor circuits in electrical theory. A system need not even behave strictly
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To Explain or to Predict?

Science is often thought to proceed by our logically deducing the laws that
govern the world. But there are limits to what we can deduce, especially about
things in which we cannot directly participate, such as radioactive decay. We
cannot use a microscope to watch the events that make an element decay;
the process is quite mysterious. But what we can do is make a theory of how
decay might work, and then use that theory to predict what measurements
we can expect. If sometimes these predictions turn out to be wrong, then the
theory needs improvement, perhaps to be relegated to one particular regime
of application or perhaps discarded outright.

So the hallmark of a good scientific theory is not what it seems to explain,
but rather what it predicts. A theory can always be built that explains, in
some sense, whatever we want. But if it is unable to make any predictions,
then from a scientific point of view it has no use, because it contains nothing
that allows its truth to be tested. On the other hand, while it’s arguable that
the theory of quantum mechanics explains anything at all, it certainly does
predict a huge number of different phenomena that have been observed; and
that is just what makes it a very useful theory.

exponentially in order to have a characteristic time or distance associated
with it.

Deriving the exponential expression for radioactive decay is a straightfor-
ward exercise in introductory calculus, and is usually quickly passed over in
favour of looking at some real-world examples. And yet it shows the classic
paradigm of how research in science is carried out. Regardless of how we
might expect an element to behave—where perhaps the second half might be
expected to decay in the same amount of time as the first half—this simply
does not happen. We must search for a theory that predicts this.

For radioactive decay, our theory is that the nuclei decay quite sponta-
neously, for reasons unknown. We postulate that the nuclei decay indepen-
dently of whether their neighbours are decaying, and also that their tendency
to decay is independent of how old they are. A given nucleus might decay af-
ter one microsecond or one million years; however long it has survived makes
no difference to its ability to decay right now. If the mechanism behind its
decay is strong, in the sense that the nucleus has a large chance of decaying,
then chances are that it will soon decay. After all, the chance that it does
not decay in some time interval is small, so the chance that it survives for
any appreciable amount of time is then even smaller. This is an exercise in
probability; we simply multiply together, for a string of time intervals, the
probabilities that the nucleus does not decay in each interval.

The statistics of decay, such as the mean and standard deviation of the
number of nuclei decaying in a given time interval, were measured soon after
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radioactivity was discovered. They were found to match those predicted by
this idea of random decay, called Poisson statistics. Whenever a binary event
has a small chance of happening but has lots of opportunities to occur, Poisson
statistics result.

A mnemonic for the Poisson decay law is the word “mnemonic” itself. If the
probability of a decay in a given time interval is very small, but there are a
large number of nuclei so that the mean number of decays expected is m,
then the probability of n decays in that interval is m raised to n (times) e

raised to −m over n factorial (an upside-down “i”):

P (n decays) =
mne−m

n!
. (3.88)

(The last mnemonic letter, “c”, wasn’t used—but then again perhaps we
could rescale everything by the speed of light.)

Although processes such as cooling and muscle recovery follow exponen-
tial laws, there is a fundamental difference between them and radioactivity.
Cooling involves an interaction with an environment: the more a hot body
cools to approach the temperature of its environment, the slower is the rate
of energy transfer to that environment. Similarly, with muscle recovery, the
rate of chemical transfer to recharge a muscle is determined by the total sys-
tem of muscle plus biochemical environment. Again, the filling of a cistern is
governed by an interaction with a water bath that slowly closes a valve. But
experimentally, radioactive decay does not depend on an element’s environ-
ment. It proceeds at a constant rate regardless of temperature, gravitational
force, or electrical gradients, and so seems to be governed by something in-
ternal to the nucleus that has no “contact” with the outside world, so to
speak.

Certainly no experiment or theoretical result has proven that this stand-
alone-nucleus theory of nuclear decay is valid. The logical statement is that
if nuclei decay randomly, then Poisson statistics result. Experiments show
that Poisson statistics do indeed result, but logically this does not imply
that nuclei decay randomly. Nevertheless, the way of science is that we do
postulate that nuclei decay randomly, until a further experiment calls this
into question—which has yet to happen.

This reverse use of logic has a good pedigree in the field of mechanics.
Ideas of gravity, mass, and acceleration were originally produced by Newton
through the same process: because they predicted planetary orbital periods
that could be verified experimentally. Because of this great success, expres-
sions such as F = ma and F = GMm/r2 came to be canonical in physics.
The logic was indeed being used in reverse; but no one was surprised when,
three centuries later, one of the Apollo astronauts dropped a feather and a
hammer together in the Moon’s vacuum and found that they both fell at
the same rate (although it was still beautiful and dramatic to watch!). That
reverse logic had, after all, allowed him to get to the Moon in the first place.
So this way of conducting science works very well.
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The Factorial and the Gamma Function

The factorial function n! finds wide application, not just in combinatorics and
statistical theory, but in the whole of mathematics and physics; and it has
been studied by many mathematicians over the centuries. When the theory
of interpolation was coming to the fore at the start of the eighteenth century,
one of the areas that attracted interest was how to generalise the factorial to
real numbers. The exclamation mark in x! is impractical for writing expres-
sions such as derivatives, and as every student of mathematical physics knows,
eventually the gamma function Γ (x) became established. For positive x,

Γ (x) ≡
∫ ∞

0

e
−ttx−1 dt = (x − 1)! . (3.89)

The most obvious thing here is that apart from equalling (x − 1)!, the func-
tion Γ (x) is defined in terms of x − 1. This apparently anomalous unit shift
seems to be due to Euler, but its reason appears to be unknown. Certainly
the great majority of the common expressions involving the gamma function
would be cleaner if this shift by 1 had never occurred in its definition. As an
alternative to x!, the functional notation Π(x) for the factorial is sometimes
used, eliminating the unit shift in (3.89):

Π(x) ≡
∫ ∞

0

e
−ttx dt = x! . (3.90)

Despite the neatness of Π(x), still it is Γ (x + 1) that has mostly continued
to be written today as the generalisation of the factorial to real and complex
numbers. But in most work involving factorials, converting all appearances
of Γ (x + 1) to Π(x) simplifies the expressions, aiding readability. This unit
shift appears to be nothing more than a historical quirk.

A “People” Experiment to Simulate Radioactive Decay

A simple test of this theory of radioactive decay uses a group of people nu-
merous enough to assure good statistics. Put 1000 people into a hall and give
each a coin. Each person represents a radioactive nucleus, and the coin repre-
sents their ability to decay. They must each toss their coin once per minute.
If the result is heads, then the person should immediately leave the hall, cor-
responding to the nucleus decaying. If tails, they take no action, except to
wait for another minute to elapse, and then flip their coin again.

What happens? After one minute, roughly half of the people get up and
walk out because their coins landed heads up. After another minute, everyone
again flips their coin, and about half the remainder will walk out. Of course,
we don’t expect everyone to leave after the second minute; as each minute
goes by, roughly half of the group walks out. So this simple model of random
behaviour has produced a half life; this particular “element” has a half life of
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one minute. For a smoother simulation, we might ask everyone to flip their
coin continually while stipulating a different probability, such as leaving the
hall only if four heads in a row result.

Any particular person will flip their coin for a length of time unaffected by
how many of their neighbours have now left the hall. They might even sit for
years, endlessly flipping their coin only to find that it always lands tails up.
The chance that they leave the hall at any time is completely independent of
how long they have been there.

3.4.2 The Mean Life of the Decaying Nuclei

Suppose we are given a radioactive element and wish to analyse the statistics
of its decay. If we hypothesise that, in a time interval dt, the fractional loss in
the number of nuclei N present is −dN/N with positive proportionality con-
stant λ (see the note on p. 48 for a discussion of the signs of these quantities),
then the resulting differential equation and its solution are straightforward:

−dN/N = λ dt ; solution: N = N0 e−λt. (3.91)

The decaying nuclei have a spread of lifetimes, but their mean life can cer-
tainly be calculated. In a time interval dt, the number of nuclei that decay
is −dN , and each of these had a lifetime equal to t. We need only sum these
lifetimes and divide by the original number to get the mean life:

mean life ≡ τ =
1

N0

∫ ∞

t=0

−t dN =
1
λ

. (3.92)

This simple result allows the concept of the mean to be tied to the number e

in a particularly simple way:

N = N0 e−t/τ . (3.93)

After one mean life τ , the number N of nuclei remaining falls by a factor of e.
So e has a very close relationship to the concept of the arithmetic mean, since
any other choice of base would complicate the analogous expression to (3.93)
by introducing a factor of the natural logarithm of that base.

Any general process that follows an e−t/τ law might have nothing to do
with a large number of individual entities, in which case τ will not be a mean
life. Nevertheless, τ is still a characteristic time for the process, called the
time constant. But even in such a process, the time constant still has an
intuitive meaning, and once again we use the language of nuclear decay to
see what this is.

Plotting the amount of a radioactive element remaining as a function of
time shows that it drops in the manner of Fig. 3.4. Suppose that the laws of
Nature were such that the element decayed not exponentially but linearly, so
that its rate of decay was always equal to its initial rate. In such a world, the
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Fig. 3.4. The mean life τ is not just an average lifetime; it also quantifies an initial
rate of decay, which is very different from the meaning of the half life T1/2. If the
element kept decaying at its initial rate, it would vanish completely after a time τ .

second half really would decay in the same length of time as the first half. For
this idealised case, how long would the whole take to vanish completely? That
is, suppose we have 1000 radioactive nuclei, and initially there are 10 decays
per second. If they were to keep decaying at this rate, then how long would
they take to vanish completely? The answer is, of course, 100 seconds. But
notice that the initial rate of decay is

initial decay rate = −dN/dt
∣∣
t=0

= N0/τ , (3.94)

which implies that, in such a linear world, all N0 nuclei would decay after
a time τ in Fig. 3.4. So the time constant of an arbitrary process—which
happens to equal the mean life in the case of decaying nuclei—has a very
intuitive meaning: it is the time the process would take to terminate if it
evolved at a constant rate equal to its initial rate. So for the 1000 nuclei
decaying at 10 decays per second, we see immediately that τ = 100 seconds.
As an afterthought, we can also surmise straightaway that the real element’s
half life is 69.3 seconds, since T1/2 = τ ln 2 � 100 × 0.693.

The näıvely reasonable idea that the “whole life” of a radioactive element
might be twice its half life suggests that there can be a certain linearity in
our ideas of how the world works. And so it turns out that to some extent
we can appeal to this sort of linear intuition. If the nuclei were to behave in
this simple linear way, then the time needed for all of them to decay would
be exactly equal to the mean life of the actual real-world element.
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3.4.3 The Notion of a “Probability per Second”

The concept of an initial rate of change also applies to the growth of the
daughter element. Suppose for simplicity that the daughter is not radioactive.
Initially there are no daughter nuclei, but gradually their numbers grow as the
parent nuclei decay. The daughter element’s growth must eventually flatten
out over the same time that it takes for the parent element to fully decay. The
sum of the parent and daughter nuclei is a constant, so that the daughter’s
growth curve is essentially just the parent’s decay curve flipped upside down.
In that case, if the growth of the daughter were to continue linearly at its
initial rate, then the time it would take for the sample to be completely
composed of daughter atoms would be just the mean life of the parent.

This way of using the time constant for the growth of the daughter pro-
duces a turn of phrase that can at first seem quite mysterious. Given a single
radioactive nucleus, what is the probability that it decays before a time t?
This probability will grow, tending toward one as t → ∞. The actual expres-
sion turns out to be 1− e−t/τ , as can be shown by examining the probability
for decay in an infinitesimal time interval and applying the rules of probabil-
ity as follows. The meaning of “the probability per second of decay is p” is: “in
the next ε seconds, the probability of decay is pε”. In that case, what is the
chance of a given nucleus decaying in the time interval 0 → t? Writing the
probability of x occurring as (x), divide t into N equal intervals of length ε
so that t = Nε, in which case the chance of decay for the given nucleus is

lim
ε→0

(decay in 0 → ε) + (no decay in 0 → ε)(decay in ε → 2ε)

+ (no decay in 0 → 2ε)(decay in 2ε → 3ε) + · · ·
+
(
no decay in 0 → (N − 1)ε

)(
decay in (N − 1)ε → Nε

)
= lim

ε→0
pε + (1 − pε) pε + (1 − pε)2pε + · · · + (1 − pε)N−1

pε

= lim
ε→0

1 − (1 − pε)N = lim
N→∞

1 −
(

1 − pt

N

)N

= 1 − e−pt. (3.95)

This means that the fraction of nuclei decaying in the interval 0 → t is 1−e−pt,
so that the fraction left over must be e−pt, which we already know is e−t/τ ;
thus the decay probability per second is p = 1/τ . The plot of 1 − e−t/τ is
shown in Fig. 3.5.

Now, although the chance that the nucleus has decayed after one second
is 1− e−1/τ , this is not entirely illuminating. So, as before, we ask a different
(but related) question. If the world was such that the probability of decaying
within time t continued to increase linearly at its initial rate, then how long
would it take for the nucleus to have definitely decayed—after what time
would this probability reach one? Again, simple differentiation determines
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Fig. 3.5. Analogously to the decay case, the time constant or mean life here carries
the meaning of an initial rate of growth of the daughter element. If the (nonde-
caying) daughter kept growing at its initial rate, then the sample would be entirely
composed of daughter atoms after a time τ .

this time interval to be just the mean life τ . So if our simplified “linear
nucleus” attains a decay probability of one after a time τ , then it must reach
probability 1/τ after a unit time.

In the example above with 1000 nuclei and initially 10 decays per second,
we concluded that the mean life was τ = 100 seconds. So, if the chance that
any particular nucleus had decayed was to keep increasing uniformly at its
initial rate, then after one second, the chance that it had decayed would
be 1/τ , or 1/100. This makes sense: 1/100 of the initial 1000 nuclei is the
10 nuclei measured to have decayed after each second. So we say “the nucleus
has a probability of decay of 1/100 per second”. Of course this does not mean
that after 100 seconds our nucleus will definitely have decayed! That would
only be true if the nucleus were to behave in a linear way. It’s analogous to
stating the speed of a trolley as 1/100 metres per second. After 100 seconds
the trolley will have covered one metre only if it continues to move linearly,
and this is understood in the definition of speed. Unlike the trolley, however,
the “speed” of the nucleus is immutable, set by the laws of Nature.

The fact that the nucleus’s probability of having decayed is in a sense
“slowing down”, is just like this trolley starting out with a speed of 1/100
metres per second, but decelerating due to friction. If there were no friction,
so that it moved at a constant velocity, then it would take 100 seconds to
travel one metre. It doesn’t do this, of course—it might never cover a me-
tre because it is decelerating—but 1/100 ms−1 refers to its initial rate of
distance increase. And likewise for our generic nucleus that represents the
whole population of nuclei, “1/100 per second” refers to its initial rate of
“decay-probability increase”. In an average sense for the whole population,
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that decay probability will never quite reach one, although it will eventually
reach one for any particular nucleus.

Finally, then, a time constant can be defined for a system that grows or
decays in a nonexponential way, in accord with our intuition, by being set
equal to the time it would take the system to grow or decay fully if it kept
evolving at its initial rate. Nevertheless, Nature’s simplest and most basic
systems often do follow an exponential law.

3.5 Logarithms and Exponentials in Statistical
Mechanics

The other side of the exponential coin, the logarithm, is usually seen as being
useful in describing quantities that range over several orders of magnitude,
or allowing products to become sums in order to deal with them more easily.
But sometimes this notion of additivity can give insight into quantities that
Nature herself seems to regard as fundamentally additive. Here we look at the
concept of entropy as an example, and examine how the famous Boltzmann
factor of statistical mechanics arises.

3.5.1 Entropy and Heat Flow Define Temperature

Statistical mechanics regards as fundamental the concept of entropy. Entropy
is defined as a logarithm, but this is not because we want to reduce large
numbers in size. The definition is quite natural and paves the way for the
idea that entropy is something tangible that can be identified with the notion
of heat.3

The motivation for defining entropy comes from the worldview of statis-
tical mechanics, which considers a system at any one time as occupying one
of a possibly large number of microstates. A microstate is simply a quantifi-
able configuration of the system’s basic constituents. To fully describe the
microstate of a gas at any one moment, for example, would entail specify-
ing the positions and velocities of each of its molecules. Needless to say, this
might be for all intents and purposes impossible, so that it becomes the job
of statistical mechanics (and on a more macroscopic level, thermodynamics)
to describe such systems. Generally we are not concerned with quantifying
each microstate. Instead, we are usually content to consider only the set of
all microstates that have equal amounts of some easily quantified properties,
such as pressure and volume for a gas. This set of all “similar” microstates
is called a macrostate of the system. But it is microstates that play the key
3 There has long been discussion over the nature of heat in physics, and in par-

ticular whether it is a verb or a noun. The idea that it be considered as a noun
synonymous with entropy is put forward in The Dynamics of Heat by H.U. Fuchs
(1996, Springer).
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Initially, each in
separate equilibria

Finally, both in
one equilibrium

E′
1 E′

2

E1 E2

Fig. 3.6. Two systems with initial energies E′
1, E

′
2 are placed in contact via a

diathermic wall, so that only energy can be exchanged between them. Their final
energies E1, E2 can be different, though of course the total is conserved.

role in developing the subject’s basic ideas. The fundamental assumption of
statistical mechanics is that:

A closed system is equally likely to be in any of the microstates
accessible to it.

Just which microstates are accessible is governed by the system’s total en-
ergy. For any given energy E, a closed system might have a large number of
microstates it can occupy. This important number is called the multiplicity
of its microstates, g(E).

Suppose that two systems with energies E′
1, E

′
2 are placed in contact

in such a way that energy, but no particles, can flow between them, as
in Fig. 3.6. Their final energies are E1, E2, with the total unchanged:
E ≡ E′

1 + E′
2 = E1 + E2. Each system is in some microstate. When they are

placed in contact, another of the fundamental principles of statistical me-
chanics is called upon. This one is an extremisation principle that defines
thermodynamic equilibrium: we postulate that the total energy will redis-
tribute itself in such a way as to maximise the multiplicity of microstates in
the combined configuration:

At equilibrium, g(E) = g1(E1) g2(E2) is maximised. (3.96)

Since the total energy E is constant, express (3.96) using just one variable,
which allows us to maximise g(E) = g1(E1) g2(E − E1) with respect to E1:

dg

dE1

= g′1(E1) g2 − g1 g′2(E2) . (3.97)

This is required to equal zero when the two systems are in equilibrium. Thus,
when equilibrium has been reached,

g′1(E1) g2 = g1 g′2(E2) , (3.98)



116 3 The Natural Language of Random Processes

so that
g′1(E1)

g1

=
g′2(E2)

g2

. (3.99)

This implies that
d

dE1

ln g1 =
d

dE2

ln g2 . (3.100)

If we define the statistical entropy of each system to be a measure of its
multiplicity of states,

statistical entropy σ ≡ ln g , (3.101)

then (3.96) implies that this entropy will be maximised in thermal equilib-
rium, and the quantity dσ/dE will be identical for each system.

A notion of statistical entropy allows the statistical temperature τ of a system
to be defined:

1

τ
≡ ∂σ

∂E
(3.102)

(where partial derivatives are needed because σ might depend on other state
variables), so that in equilibrium the temperatures of the two systems are
necessarily equal. In terms of everyday physical units, the quantity τ/k is
more useful, where k is Boltzmann’s constant; so we define the thermody-
namic temperature T and the thermodynamic entropy S by

T ≡ τ/k , S ≡ kσ . (3.103)

Experiments and thermodynamical considerations show that T is identical
to the everyday temperature measured by thermometers.

For our purposes, the main point to note is that since g = g1 g2, it must fol-
low that σ = σ1 + σ2. Thermodynamically, an additive quantity is interesting
since the sum σ1 + σ2 suggests that entropy is something quite tangible: the
total entropy of two systems before they come into contact is just the sum
of their individual entropies. However, when they do come into contact and
their temperatures begin to equalise, their total entropy increases. Entropy
comes into existence from nowhere.

A simple example of this entropy increase occurs when the two systems
are boxes of coins to be shaken together, shown in Fig. 3.7. Since the funda-
mental assumption of statistical mechanics is that a system is equally likely
to be found in any of its accessible microstates, if the number of ways we can
order, say, half of the coins to show heads is large (i.e. if the multiplicity of
that configuration is large), then a box of coins will very likely have about
half of its heads up. If there are many coins in each box, then a calculation
using the binomial distribution shows that the number of combinations of
having a 50/50 mix of heads and tails in each box is much larger than any
other fraction, such as a 51/49 configuration—and stupendously larger when
the number of coins approaches real-world numbers such as the number of
molecules in a gas. So physical systems with around Avogadro’s number of



3.5 Logarithms and Exponentials in Statistical Mechanics 117

particles (say, 1024 particles) fulfill this “half-heads” condition very well. But
to keep the calculation simple, imagine that each box holds just ten coins,
with five heads up, and that when all twenty coins are mixed randomly to-
gether, ten heads turn up as a result. This mimics a large physical system
very well.

The total entropy for both boxes, each with five heads up before coming
into contact, is 2 ln 10C5, or about 11. When the boxes are put together
and shaken up, and we assume that ten heads face up, the total entropy
is now ln 20C10 � 12. So there has been a slight increase in entropy, in line
with thermodynamical ideas that the universe’s total entropy always increases
over time. This is the statistical basis for the famous Arrow of Time. At their
heart, the equations of physics are, for the most part, time-reversible (an
exception involves the weak interaction), but the growth of entropy in any
process makes it clear which way time’s arrow is pointing—whether the movie
is being run forward or backward, so to speak.

3.5.2 The Boltzmann Factor: Chief Star of Statistical Mechanics

Having spoken of the ubiquity of exponentials and logarithms in statistics, it
is an easy step to derive the famous Boltzmann factor. This factor appears
in the central result of statistical mechanics. Suppose we have a system S
that’s able to be placed in any of several macrostates of different energies.
These macrostates define the various energy levels of S. Suppose we place S
in contact with a huge heat reservoir R that is so large that its fundamental
temperature τ = kT is essentially fixed, regardless of what energy it imparts
to S. We ask the question: what is the chance that S will be forced into any
given microstate of energy E?

The entire closed system of S+R, with total (fixed) energy U , is postulated
to be equally likely to occupy any of its available microstates. That means
that regardless of how many microstates of S have energy E, the chance
that S occupies a particular one of them is determined by how easily the
reservoir R allows itself to lose that energy E, which is given by the number
of ways in which this loss can be accomplished. That is, the probability that
S occupies a particular microstate is proportional to the multiplicity of R
at energy U − E, or gR(U − E). From (3.101), this equals expσR(U − E),
where σR(U − E) is the entropy of the reservoir at energy U − E:

σR(U − E) = σR(U) − E
∂σR

∂U
+ · · · . (3.104)

Since E � U , and the huge reservoir’s temperature is approximately con-
stant, so that 1/τ = ∂σR/∂U is approximately constant, (3.104) becomes

σR(U − E) � σR(U) − E

kT
. (3.105)

Thus, the multiplicity of R at energy U − E is
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Combine and shake:
entropy increases for a

50/50 heads–tails result

Fig. 3.7. Top: Two boxes, each with ten coins, form a simplified representation
of a system that involves a stupendously large number of objects. Half of the coins
in each box show heads, and so in each box there are 10C5 ways that five heads
can appear. This gives each box an entropy of ln 10C5, making a total entropy
of 2 ln 10C5 � 11. Bottom: A good representation of random mixing happening
in a very large system is if all the coins were to be mixed together randomly into
one box and again half were to show heads, which could happen in 20C10 different
ways. The total entropy would now be ln 20C10 � 12. Mixing the coins has created
a small amount of entropy, suggesting a forward direction in time.

gR(U − E) = eσR(U−E) � exp
[
σR(U) − E

kT

]
∝ exp

−E

kT
. (3.106)

Since the probability that S occupies the given microstate is proportional
to gR(U − E), we have shown the following:

The probability that a system in contact with a large heat reservoir is
found in a given microstate of energy E is proportional to the famous
Boltzmann factor e−E/(kT ).



3.5 Logarithms and Exponentials in Statistical Mechanics 119

This is, in fact, the central result of statistical mechanics, and as in so many of
the major equations of physics, the exponential function plays an important
role in shaping its character.

3.5.3 Logarithms and Decibels

Logarithms are useful not only for giving insight into a physical quantity by
emphasising its additivity (such as with entropy), but they also are able to
reduce numbers that span many orders of magnitude, in a way that might
imitate the response of some measuring apparatus. Engineers make good use
of a logarithmic scale when keeping track of a signal’s power as it works its
way through a system that introduces gains and losses, a procedure known
as a power budget in telecommunications.

More everyday examples of logarithmic scales are those used to measure
hearing and visual responses. Our hearing relates roughly logarithmically
to sound intensity, it will be useful to reduce the huge spectrum of sound
intensity levels down to manageable numbers by taking logarithms. So, con-
ventionally, a unit loudness is assigned to a sound that causes an intensity of
I0 ≡ 10−12 Wm−2 at our ears. Another sound, of intensity I, will then have
a loudness of

m ≡ log10
I

I0
, so that I = 10m I0 . (3.107)

Historically, this unitless “loudness magnitude” m has been assigned a unit
of the bel, an alternative name for an old unit of logarithms called the dex
(so that for example 6 dex equals the number 106). While the dex is simply
the logarithm of any number, the use of the bel acknowledges the fact that
in acoustics, the number whose logarithm is being taken is really a ratio: the
absolute intensity divided by 10−12 Wm−2. So we speak of a sound whose
intensity is, say, 10−8 Wm−2 as having a loudness of 4 bels, or more com-
monly 40 decibels (40 dB) since the bel is a large unit and more conveniently
divided into tenths. Thus, if a sound is described as being −20 dB, we know
immediately that this is just −2 bels, or −2 dex, or 10−2 times the base
intensity, or finally 10−14 Wm−2.

Just as our ears relate logarithmically to sound intensity, our eyes relate at
least approximately logarithmically to brightness, and a logarithmic approach
has been used from ancient times to quantify the brightness of stars. In
modern times, this old concept of apparent magnitude has been quantified
in the following way. As usual, the arbitrary-looking constants are chosen
to make the mathematical definition of magnitude conform closely to its
historical use. Astronomers assign a base intensity I0 to a star delivering
2.48 × 10−8 Wm−2 to the top of Earth’s atmosphere. A star of intensity I
then has an apparent magnitude defined as

m ≡ −2.5 log10
I

I0
, so that I = 10−0.4m I0 � 2.512−m I0 . (3.108)
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“Bar” Notation in Logarithms

Notation used for computing logarithms to base 10 is no longer known to a
generation of scientists brought up on electronic calculators. When computing
decibels mentally, bar notation is a useful tool worth reviewing.

The notation rests on our separating the logarithm into its integer and
decimal parts. Specifically, if the logarithm is negative, then we wish to be
able to write it quickly with a positive decimal part. The integer part will still
be negative, and is written with an overbar to remind us of that. Thus, for
example,

2̄.3 ≡ −2 + 0.3 = −1.7 . (3.109)

This is a useful way to handle logarithms, because it keeps the fractional part
positive and so economises on what logarithms need memorising to allow us to
perform common calculations quickly. If we need to visualise just how large,
say, −17 dB is, we need only realise that

−17 dB = −1.7 B = 10−1.7 = 102̄.3 = 10−2 × 100.3 � 2/100 , (3.110)

which in practice is a very quick mental process. The reverse is also useful
when converting to decibels:

0.005 = 5 × 10−3 = 3̄.7 B = −2.3 B = −23 dB. (3.111)

(A coincidental closeness often causes the two numbers 2.5 and 2.512 to be
confused.) This scale is useful and intuitive after a little use, though it might
seem archaic and obscure when first encountered. Unlike acoustic magni-
tudes, which decrease as the loudness drops, stellar magnitudes increase as
the brightness drops—a historical oddity that is perfectly justified, since over
time astronomers have had to catalogue ever-fainter objects, and there is after
all no sense in having to carry around minus signs all the time. While the Sun
has an apparent magnitude of about −27 and the full Moon about −12, the
brightest stars have magnitudes of around 0 or 1. Conventionally, the faintest
ones visible to the naked eye were once around magnitude 6, but the current
levels of city light pollution and backyard motion-sensor lights that unfortu-
nately do so much to extinguish backyard astronomy have reduced this to 3
or 4. The faintest objects yet photographed are around magnitude 30.

Engineers use logarithms to enable easy bookkeeping in systems that am-
plify signals. Suppose an electrical signal loses 90% of its strength when sent
down a one metre line, so that it has dropped from one unit to 1/10 of a
unit at the end: a drop from, say, 0 B to −1 B. Equivalently, it loses 10 dB
along that metre length. But suppose it’s now sent down a line of length five
metres. If it drops to 1/10 of its power along each metre, then it must be
reduced to 1/105 of its original strength at the very end, which corresponds
to a drop of 50 dB. That is, the multiplicative drop in power is more easily
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Logarithms and Prime Numbers

One of the fascinations of number theory is the way in which all manner of
seemingly unrelated functions appear in unexpected places. Logarithms are
very closely related to prime numbers, and here we show two intriguing exam-
ples, both of which use a double logarithm. The first is the curious result that
the nth prime is asymptotically given by

nth prime ∼ n(ln n + ln ln n − 1) , (3.112)

where by the asymptotic convergence f(n) ∼ g(n) of two functions f(n)
and g(n) is meant that the ratio f(n)/g(n) → 1 as n → ∞; however, it does
not imply that f(n) − g(n) → 0.

The second example of a double logarithm concerns the question: what is
the number of prime factors Ω(n) of any given natural number n, where these
factors need not be distinct? So, for example, Ω(20) = 3 since 20 = 22 × 5.

Plotting Ω(n) versus the natural numbers n shows that, not unexpectedly,
the number of factors bounces up and down extremely erratically. It can be
high: Ω(1024) = 10, but it certainly comes back down to one infinitely often
(whenever n is prime), so that over a large enough domain the plot looks very
noisy. The plot can be smoothened by changing the question above slightly:
what is the average number of prime factors for all natural numbers less than
or equal to a given natural number n? This turns out to be an example of
the fact that many problems involving natural numbers are rendered more
tractable by altering them to involve the real numbers.

It can be shown that as n grows, this average number of prime factors very
quickly asymptotically approaches a double logarithm:

1

n

n∑
i=1

Ω(i) ∼ ln ln n + 1.03465 . . . (3.113)

As a consequence, the average number of prime factors increases stupen-
dously slowly over the natural numbers. For example, over all the numbers
up to one thousand million, this average number of prime factors is still only
about four.

expressed as an additive loss in decibels; so the line loss is 10 dB per metre,
making it especially easy for a back-of-the-envelope calculation to develop a
link power budget over a communications line, for example.

Again, suppose a signal loses 10 dB in one medium and 35 dB in another.
In that case, the combined loss when the signal traverses both media in
succession is 45 dB. So by quantifying power drops in decibels, we can easily
add simple numbers to quantify a whole chain of power absorbers, which in
practice is far easier than multiplying several factors together. And, of course,
the same idea holds when discussing the exponential absorption of light in a
medium.
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In this context, another way the decibel is used is when the reference level
is built into the new unit created. Thus we have “dBW”, meaning decibels re-
ferred to a power level of one watt, or “dBm”, referring them to one milliwatt.
Thus 30 dBm equals one watt, equals 0 dBW, and so on.

3.6 Signal Processing and the z-Transform

Transform methods form an important part of signal processing theory, but
apart from the well-known use of Fourier analysis, the uses of other trans-
forms are not always so transparent at the outset. Transforms are useful fun-
damentally because their linearity allows us to invert their equations easily.
This promotes them in other areas that might be more purely mathemati-
cal. In this section, we will discuss an example of one such transform, known
as the z-transform, used both in signal processing and, as we’ll see, in pure
mathematics.

Signal processing concerns itself with extracting useful data from a noisy
signal. Signals are, in their rawest form, just sequences of numbers. The goal
of a signal processor is to reveal any hidden trends that might be lurking
in this sequence: to check for the presence of real information that might be
hiding amongst or perhaps even below the ambient noise level.

Whether we are dealing with a sequence of numbers that forms a data
set, or perhaps with a purely mathematical sequence, it’s of very great use to
be able to characterise that sequence in a compact way. A very simple way of
doing this represents the sequence of numbers by a polynomial having those
numbers as coefficients, and this is just what the z-transform does. There
is a one-to-one relationship between sequences and polynomials: given one,
we can always reconstruct the other. This relationship is linear; for example,
adding two sequences term by term is equivalent to adding their polynomi-
als. Mapping a sequence to a function allows clever operations to be done,
such as differentiating the function, which are equivalent to operating on the
sequence in some way. While transforming the set of numbers {3,−2, 5} to
the polynomial 3x2 − 2x + 5 might seem like a pointless exercise, the utility
of the z-transform appears when the sequence has infinite extent in one or
both directions:{

xn

}∞
n=−∞ ≡ . . . , x−2, x−1, x0, x1, x2, . . . . (3.114)

The z-transform of this sequence is defined to be the sum

Z({xn}
) ≡ X(z) ≡ · · · + x−2z

2 + x−1z + x0 +
x1

z
+

x2

z2
+ · · · . (3.115)

(An alternative convention sets s ≡ 1/z in (3.115).) The variable z is a place-
holder only and doesn’t take on any values, but its real use is that now the
polynomial can be treated analytically, and we hope even summed to produce
a compact expression.
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3.6.1 Deriving the Fibonacci Sequence from the z-Transform

An idea of the z-transform’s usefulness can be obtained by using it to again
find an expression for the nth term of the Fibonacci sequence, as an alternative
to the approach of Sect. 2.5. The sequence is described by

xn+2 = xn+1 + xn , with x0 = x1 = 1 . (3.116)

This relation suggests that adding the Fibonacci sequence term by term to a
copy of itself shifted one to the left will result in another copy of itself shifted
two to the left:

1 1 2 3 5 . . .
+ 1 2 3 5 8 . . .
= 2 3 5 8 13 . . .

(3.117)

So if the z-transforms of the shifted sequences can be related to the trans-
form X(z) of the original sequence, then (3.116) will yield an equation that
can be solved for X(z); inverting X(z) will then produce an expression for
the nth term of the original sequence, and the task will be finished.

How, then, do we relate the shifted sequence to the original one? Begin
by transforming the Fibonacci sequence:

x0, x1, x2, . . .
transform x0 +

x1

z
+

x2

z2
+ · · · ≡ X(z) . (3.118)

Equations (3.114) and (3.115) show that shifting the sequence by one and
two places changes its z-transform in a simple way:

x1, x2, x3, . . .
transform x1 +

x2

z
+ · · · = z[X(z) − x0] ,

x2, x3, x4, . . .
transform x2 +

x3

z
+ · · · = z2

[
X(z) − x0 −

x1

z

]
. (3.119)

Equation (3.117) sums two sequences, and the z-transform of this sum is
found by transforming each sequence and adding the results:

X(z) + z[X(z) − 1] = z2[X(z) − 1 − 1/z] , (3.120)

which gives

X(z) =
z2

z2 − z − 1
. (3.121)

It now remains to recover the actual Fibonacci sequence from X(z), which
requires finding the inverse transform of X(z). Inspecting (3.115), we see the
need to convert X(z) to a function of 1/z since we know that there are no
“negative index” terms. Follow this with a separation by partial fractions to
write (3.121) in terms of the Golden Ratio φ as

X(z) =
1

1 − 1/z − 1/z2
=

1√
5

[ −1
−1/φ + 1/z

+
1

φ + 1/z

]
. (3.122)
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The reason for this separation is that now each of the two bracketed terms
in (3.122) is a geometric series and so is easily inverted. And because the
inverse transform is also linear, each term can be inverted separately and the
results added. Invert by using the usual formula for summing a geometric
series:

a

b + 1/z
=

a/b

1 + 1
bz

=
a

b
+

a

b

(−1
bz

)
+

a

b

(−1
bz

)2

+ · · · . (3.123)

The coefficient of 1/zn in this last series is −a(−1/b)n+1. Denoting the inverse
transform by Z−1, the relation between this particular z-transform and its
series becomes

Z−1

(
a

b + 1/z

)
=
{
−a(−1/b)n+1

}∞
n=0

. (3.124)

This allows (3.122) to be inverted to give

Z−1(X) =
1√
5

[
Z−1

( −1
−1/φ + 1/z

)
+ Z−1

(
1

φ + 1/z

)]
=

1√
5

{
φn+1 − (−1/φ)n+1

}∞
n=0

=
1√
5

{
φn − (−1/φ)n

}∞
n=1

, (3.125)

where we have re-indexed the last line to start from n = 1 to give the sequence
a more intuitive feel, and to allow a comparison with the same result arrived
at previously in Sect. 2.5. The last line of (3.125) shows the nth term of
the Fibonacci sequence, obtained with only a small amount of effort and
investment. It shows the power of the transform idea.

3.6.2 Convolving to Smoothen a Signal

A common signal processing task is the smoothening of a signal. Suppose
that some property of a system is measured by the noisy reading on a gauge
as a sequence of numbers, produced once per second. Our task is to look for
trends in this incoming data from which we hope to make predictions about
the future behaviour of the system.

Fluctuations in the data can be smoothened by the use of a moving mean.
Such an idea is simple but powerful. For example, make a pass through the
data, replacing each number with the average of a set of, say, three numbers:
itself and the number on each side. (At the start and end, this procedure
fails, so we are limited to averaging two numbers. This sort of edge effect
is common in signal processing but won’t concern us here.) While trends in
the data do not tend to change their signs quickly, the noise certainly will,
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Fig. 3.8. A noisy signal, smoothened by moving means of two widths. The signal
is composed of 100 points of a sinusoid, with added gaussian random noise. The
lighter, jagged curve is the result of applying a moving mean of width 5 to these
data, meaning that every five neighbouring data points are averaged to produce one
point of the curve. (These new points are not shown but have been joined, which is
why the curve is apparently continuous.) The heavier, smoother curve is the result
of applying a moving mean of width 20 to the original data (again, it connects
points which themselves are not shown). The sinusoid buried in the noisy data is
quite evident in this heavily smoothened curve. The two curves extend beyond the
data simply because the moving mean is beginning to “fall off the end”, so to speak,
so that the last smoothened points are not really relevant to the data themselves.

so this averaging will generally serve to add fluctuations of opposite signs,
thereby mostly removing them from the signal. An example of noisy data
with moving means of two different widths applied is shown in Fig. 3.8.

We could average more than three numbers at a time, of course. Choosing
such a number appropriately is an art, but it should not be too large, since
that will not only cancel noisy fluctuations from one number to the next, but
will also begin to destroy any real trends that should be left intact. (This art
of choosing the right averaging window is a good example of balancing the
two types of error described on p. 95.) For the purpose of an example, we’ll
use a three-term moving mean, which can be represented by a smoothening
sequence such as {1/3,

1/3,
1/3}, each number being the factor used to multiply

one of the numbers of the data sequence. Additionally we will allow a different
bias to be given to older data; perhaps there is an inbuilt correlation that
such a bias can offset or accentuate.

Begin with a sequence x of observations infinitely long at both ends to
reduce any irrelevant edge effects. We are at liberty to take element zero of
each sequence to be any of its members, since the only effect of such a shift is
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to introduce an unimportant final shift in all the elements of the smoothened
sequence:

x ≡ . . . , x−2, x−1, x0, x1, x2, . . . , (3.126)

which we’ll smoothen in a weighted way with another sequence such as

. . . , 0, 0, 0,
3

6
,

2

6
,

1

6
, 0, 0, 0, . . . . (3.127)

In general, this three-term smoothening sequence can be written as

s ≡ . . . , 0, 0, 0, s0, s1, s2, 0, 0, 0, . . . , (3.128)

which is required to produce the following moving mean:

. . . , s0x−2 +s1x−1 +s2x0, s0x−1 +s1x0 +s2x1, s0x0 +s1x1 +s2x2, . . . .
(3.129)

This new sequence is denoted in signal processing as s � x (or sometimes
by x � s). The multiplication of terms from each sequence suggests that a
related task might be to multiply the corresponding z-transforms. But it
quickly becomes apparent that for this to work, we need to reverse the order
of the s-sequence:

s̃ ≡ . . . , 0, 0, 0, s2, s1, s0, 0, 0, 0, . . . . (3.130)

The reason for this becomes clear when we actually multiply the transform
of x with that of s̃. To see why, first transform each sequence to produce S̃(z)
and X(z), respectively:

S̃ = s2 +
s1

z
+

s0

z2
,

X = · · · + x−2z
2 + x−1z + x0 +

x1

z
+

x2

z2
+ · · · . (3.131)

On multiplying these two series, the coefficient of each power of z is found by
pairing terms crosswise, which is why we needed to reverse the s-sequence:

S̃X = · · · + (s0x−3 + s1x−2 + s2x−1

)
z + s0x−2 + s1x−1 + s2x0

+
(
s0x−1 + s1x0 + s2x1

) 1
z

+ · · · . (3.132)

It is evident that the sequence corresponding to this last expression is ex-
actly what we set out to calculate: the moving mean shown in (3.129). This
smoothened sequence is known as the convolution of the two sequences s̃
and x, and is also written s̃ ∗ x or x ∗ s̃; convolution is commutative because
the corresponding multiplication is commutative (S̃X = XS̃).

The two notations just described are related by s � x = s̃ ∗ x. Insight into
the various permutations of what can be smoothened with what is obtained
by listing these smoothenings with their associated notation:
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– the result of smoothening x with s is written s � x = s̃ ∗ x ,
– the result of smoothening s with x is written x � s = x̃ ∗ s ,
– the result of smoothening x with s̃ is written s̃ � x = s ∗ x , and
– the result of smoothening s with x̃ is written x̃ � s = x ∗ s .

In particular, since s ∗ x = x ∗ s, it follows from the last two statements that
smoothening x with the reverse of s gives the same result as smoothening s
with the reverse of x.

In summary, to apply a moving mean s to a sequence x, we convolve s̃
(the reversed version of s) with x. And to convolve two sequences, we simply
multiply their z-transforms and take the inverse transform. The convolution
of two sequences is really nothing more mysterious than using the reverse of
either sequence to smoothen the other via a moving mean.

In fact, the z-transform is really just an intermediate step in the whole
process; the convolution of two sequences x and y can simply be written in
terms of its nth element as

(x ∗ y)n ≡
∞∑

k=−∞
xk yn−k , while (x � y)n =

∞∑
k=−∞

xk yn+k . (3.133)

Although it might not be apparent at first glance why combining two se-
quences via (3.133) should be a meaningful thing to do, we’ve seen that there
is nothing more mysterious underlying this procedure than an everyday intu-
itive smoothening of noisy data, along with the powerful fact that convolution
and multiplication of transforms go hand in hand.

Cross Correlation of Sequences

The identities in (3.133) can be used to show various interesting theorems
that involve the use of convolution, such as the fact that x � y is just the
reverse of y � x (which accounts for the two ways in which the � is commonly
defined). But let’s ask an interesting question: what results when we smoothen
a sequence with itself to give x � x? It’s not difficult to show that term zero
of x � x is its largest. We can see this by beginning with the expression∑

k

(
xk + λxn+k

)2
> 0 , (3.134)

which is trivially true for all λ and n, except when λ = −1 and n = 0 simul-
taneously. Now expand (3.134) and refer to (3.133) to write it as

(x � x)0 + 2λ (x � x)n + λ2(x � x)0 > 0 . (3.135)

If the left-hand side of this inequality is to have no roots over λ for n 	= 0, its
discriminant must be negative, and that implies∣∣(x � x)n
=0

∣∣ < (x � x)0 , (3.136)
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in which case we conclude that (x � x)0 must be positive. Equation (3.136) is
what we set out to prove (and is actually an example of the Cauchy–Schwarz
inequality used in the previous chapter). It says that when the sequence
“matches up with itself”, the moving mean is globally maximised, and this
indicates a best fit in the sense of a correlation. This motivates us to call x � x
the autocorrelation of x, while x � y is the cross correlation of x and y.

Autocorrelation and cross correlation are very important ideas in signal
processing. Comparing a signal x with a template y by calculating x � y allows
us to quantify the extent to which the template is present in the signal, so
that details of signals can often be extracted even when they are well below
the noise level. This sort of processing makes heavy demands on computing
power, which is why signal processing has only really come of age in the last
few decades; the very elegant but complex analogue electronic circuitry of
former years has nowadays given way to digital processing of data, which in
turn has opened up new uses for signal processing.

3.7 The Discrete Fourier Transform

The correspondence between convolution of sequences and multiplication of
their transforms appears more generally in other transform contexts, such as
the Fourier transform. And just as the z-transform acts on real data (dis-
crete numbers as opposed to a continuous function), the Fourier transform
of Chap. 2 can be remodelled to act on a sequence of data, where it goes by
the name of the discrete Fourier transform. This discrete transform is very
useful for analysing data; after all, it’s one thing to transform a continuous,
well-behaved function on paper, but quite another to do something meaning-
ful with a set of numbers that has been generated in the laboratory! And,
in recent years, the use of computers together with a very fast and efficient
way of calculating the discrete Fourier transform, known as the fast Fourier
transform, has revolutionised signal processing, a field that makes heavy use
of transform methods.

Because the Fourier transform projects an arbitrary function onto its basis
functions φn(x)—each of which has a well-defined frequency—what it’s doing
is separating a signal into a spectrum of frequencies, just as a prism does for
light. In practice, the only signal we might have at our disposal is one that
has been sampled (i.e., a function whose values we know only at discrete
values of x). What we wish to do in order to extract the spectrum from such
a collection of data is in fact the reverse of what we did in going from (2.166)
to (2.169). That is, rather than change the sum in (2.166) to an integral, we
will instead convert the integral to a sum.

But it must be realised that a finite number of samples can never reconsti-
tute a function exactly. It turns out, however, that if we sample a continuous
signal at some given rate, then we can know all of the frequencies present
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with values up to half of that sampling rate. This is Nyquist’s theorem. Let’s
see how it comes about.

3.7.1 Sampling Using Nyquist’s Theorem

Frequency, like many words in the physicist’s vocabulary, has a slightly more
specific meaning than that of its everyday use, which takes frequencies to be
only positive. In signal processing they can also be negative, being set by
the direction of rotation of the phasor describing the relevant oscillation. In
order to distinguish between frequencies and their moduli, we’ll refer to the
positive value as the repetition rate:

Repetition rate ≡ |frequency| . (3.137)

A given repetition rate corresponds to both positive and negative frequencies,
in the same way that we cannot distinguish the rotation direction of a spin-
ning phasor by only viewing its projection on one axis in the phasor plane.
For example, if between measurements a phasor appears to advance by 3/4 of
a clockwise revolution, then it might be said that 3/4 of a cycle had passed.
However, we could add any integer to this value since the extra one or more
cycles occurs between measurements, rendering those cycles effectively invis-
ible. So the phasor might well have turned through 13/4 cycles, or −1/4 cycle,
or −11/4 cycles, and so on. We cannot know whether the phasor has really
turned clockwise or counterclockwise.

Speak, then, of repetition rate instead of frequency, and ask: for a given
sampling rate, what is the highest repetition rate that we can detect? (The
answer to this question will constitute Nyquist’s theorem.) As an example,
consider the cycle of the number of sunspots, which happens to have a period
of 11 years. How often must we count the number of sunspots in order to be
able to detect this period (i.e., a repetition rate of 1/11 year−1)?

Repetition rate = |freq.| =
|cycles|

unit time
=

|cycles|
no. samples

× no. samples
unit time

.

(3.138)
Call the number of samples taken per unit time the sampling rate fs. Equa-
tion (3.138) then becomes

Repetition rate = fs |cycles/sample| . (3.139)

Nyquist’s question then becomes: what is the largest repetition rate we can
know about, given a sampling rate fs?

Largest repetition rate we can detect = fs |cycles/sample|max . (3.140)

In that case, what is the maximum number of cycles per sampling period that
is able to be detected? Suppose that we make one sunspot count per year:
fs = 1 year−1. Our question becomes: what is the finest detail that we can
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see in these data? If we can detect a large number of cycles per year, then we
are doing very well—we are observing fine detail in the Sun’s behaviour. So
let’s make a wild guess:

– Is this repetition rate, this number of cycles per year, perhaps, say, 10? No,
it cannot be 10 because the frequencies corresponding to this number, 10
and −10, “look” like zero, being integers. If the phasor turns through
10 revolutions in either direction while our backs are turned, then we
have no way of inferring that it has done so when we look at it again.

– So the repetition rate, the number of cycles per year, must be smaller
than any integer. If it were not—if it were really, say, 1.2—then in be-
tween samplings we would effectively look away and then look again to
find that it had advanced 0.2 of a revolution. But we would have no way of
knowing whether this advance was any of 0.2, 1.2, 2.2, etc. So the number
of cycles per year that we can unequivocally say occurred cannot even
be 1.2, let alone 10. It must be less than 1.

– Could it be 0.9? If |cycles/sample| = 0.9, then cycles/sample = either 0.9
or −0.9. But what looks like 0.9 might really be −0.1; if the phasor has
advanced 0.9 of a turn, then we might think it really has gone backward
0.1 of a turn. So we cannot detect 0.9 of a turn. And similarly −0.9 looks
like +0.1. So a repetition rate of 0.9 is indistinguishable from a rate of 0.1
(i.e., 0.9 gets aliased to 0.1).

– Similarly, 0.8 is indistinguishable from 0.2, and 0.7 is indistinguishable
from 0.3. It follows that the largest number of cycles per sample that we
can measure is 1/2; anything higher is ambiguous.

In that case we have, from (3.140),

Largest repetition rate we can detect = fs/2 . (3.141)

So the highest repetition rate that can be extracted from sampled data is
just half of the frequency that was used to obtain that data. (Or, by taking
reciprocals, the smallest period we can know about is twice the sampling
period.) In fact, this statement is actually just half of Nyquist’s theorem.
Not only is fs/2 the largest repetition rate that can be detected, but it’s also
the largest repetition rate that will be detected. That is, while we have shown
that sampling at frequency fs is necessary to detect a repetition rate of fs/2,
it also turns out that sampling at this frequency is sufficient to detect that
repetition rate, but we will not stop to prove this; it can be found in books
on signal processing.

Thus, if we wish to verify that the Sun indeed has an 11 year periodicity
in its sunspot numbers, then we need to sample solar activity at least once
every 5.5 years. Of course, if we sample at a higher rate, say every year, then
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Fig. 3.9. Approximating the integral in (2.166) by a Riemann sum, as used
in (3.142). The interval t = −L → L is divided into N strips, each of width ∆t.

we’ll do even better. Not only will we see the 11 year cycle, but we’ll also
detect shorter cycles down to a 2 year period. Any cycles with a period less
than this cannot be detected unless we sample more frequently.

3.7.2 Discretising the Fourier Transform

Once an appropriate sampling rate has been determined to analyse the fre-
quency spectrum of something like the solar cycle, we can begin to analyse
the measured data by returning to the Fourier theory of Chap. 2. But be-
cause a real signal generally occurs over time rather than space, the discrete
Fourier transform is normally couched in terms of t instead of x.

So begin by writing (2.166) with the integral approximated by a sum and
with x → t. Do this in the usual Riemann way shown in Fig. 3.9. Divide the
domain into N steps of length ∆t, and define the sequence t0, . . . , tN , where

t0 ≡ −L , tN = L ,

N∆t = 2L , tk = t0 + k∆t . (3.142)

In that case, (2.166) approximates to

f(t) �
∞∑

n=−∞

1
2L

exp
inπt

L

N−1∑
k=0

f(tk)
2L

N
exp

−inπ(t0 + k∆t)
L

=
∞∑

n=−∞
exp

inπt

L
einπ × 1

N

N−1∑
k=0

f(tk) exp
−i2πnk

N︸ ︷︷ ︸
≡ element n of discrete Fourier
transform of {f(tk)}N−1

k=0 , up
to some conventional factor α
in (3.144)

. (3.143)
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Writing fk ≡ f(tk), the discrete Fourier transform, or DFT, maps a sequence
of N numbers {f0, . . . , fN−1} into another sequence (whose size is yet to be
determined),

Fn ≡ α

N

N−1∑
k=0

fk exp
−i2πnk

N
, (3.144)

where we have inserted an arbitrary real factor called α to accommodate
other common definitions of the DFT in the discussion that follows, where
for example α might equal N or

√
N . Thus (3.143) becomes

f(t) � 1
α

∞∑
n=−∞

(−1)nFn exp
inπt

L
. (3.145)

It might appear from (3.143) that the sequence {Fn} must be infinitely long,
but in fact it can also be reduced to length N , as we’ll see shortly.

The DFT in (3.143) is the coefficient of a particular spectral component
indexed by n, so that it tells us how much of that component is present in the
signal. Nyquist’s theorem stipulates how often we need to sample in order to
extract information about the frequencies present. So, in principle, we could
vary the value of the number of samples N depending upon the index n of
the spectral component we wish to isolate. But, in practice, that requires
a different set of samples for each spectral component, and that is just not
practical in a real situation. We are seldom at liberty to sample a signal
every which way we choose. Even with such freedom, producing set after set
of evenly spaced samples, with sizes determined by which frequency we wish
to study, would necessitate a huge amount of sampling. In practice, there is
almost always just one set of sampled values of the signal available, so that
we must let N be the size of this set, using it in each sum over k in (3.143).
Nyquist’s theorem then tells us that there is a maximum value of n of which
we are able to have any knowledge.

Given N , what is this value of n, called nmax? The sampling frequency
is fs, where (3.142) gives

fs =
1

∆t
=

N

2L
. (3.146)

If n in (3.145) were continuous with a maximum value n̂ set by Nyquist’s
theorem, then the n̂π/L in that equation would be the angular frequency
corresponding to half of fs:

n̂π

L
= 2π

fs

2
, (3.147)

giving
n̂ = N/2 . (3.148)

Since n takes on integer values only, and its maximum is positive, nmax must
be the largest natural number less than or equal to n̂, written as
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nmax = [ n̂ ] = [N/2] . (3.149)

So, for any given N , the highest frequency component that can be detected
corresponds to n = [N/2]. When N is odd, this presents no problems, but
when N is even, [N/2] lies just on the boundary between frequencies that are
detectable and those that are not. So we can expect to have to tread carefully
in that case, as will be evident in the next few pages.

Incorporating nmax = [N/2] into (3.145) might indicate that the best ap-
proximation to the signal f(t) that can be made is

f(t) � 1
α

nmax∑
n=−nmax

(−1)nFn exp
inπt

L
. (3.150)

But the two approximations that have been made (truncating the sum and
discretising the integral) turn out not to give the best approximation to the
signal, and in fact we can do better in encapsulating a data set by a more
useful set of numbers.

To see how, let’s go back to the drawing board. Equation (3.150) rewrites
the set of N data points in terms of another set of approximately N numbers.
(We say “approximately” since we have not stopped to count properly by
checking what redundancy might be present in the new set of numbers.)
Of course, it’s trivially possible to encapsulate the information contained
in the N data numbers by a set of N numbers: just use the data! More
analytically, however, it is always possible to find the N coefficients of the
unique N−1th-order polynomial that passes through N points; we need only
write this polynomial down with its N unknown coefficients to be determined.
Fitting it to the N points gives a set of N linear equations, and these can
be solved.4 Something has been gained: although we have simply swapped
N data numbers for N polynomial coefficients, the polynomial is smooth—
and that allows it to interpolate the data more meaningfully.

In fact, a similar fit can be made to the sequence f0, . . . , fN−1, but using
sinusoids (complex exponentials) instead of a polynomial. Remember that
Nyquist’s theorem only allows knowledge of frequencies corresponding to
n = −[N/2] → [N/2], so restrict the DFT for this sequence to just those val-
ues. This might look like the DFT sequence has, for example, five numbers for
both N = 4 and N = 5, but in fact this is not so. When N is even, the DFT
sum (3.144) is calculated for n running from −N/2 to N/2, or N + 1 num-
bers; but a moment’s inspection makes it clear that the sum for the last value
n = N/2 is the same as that for the first, n = −N/2:

N even =⇒ F−N/2 = FN/2 . (3.151)

4 As a side note, this polynomial can always be written down immediately—with
no equations to be solved—in a particularly intuitive and straightforward way,
in a form known as a Lagrange polynomial.
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Thus the last value FN/2 is extraneous, and the DFT need really only be
calculated N times. So it transforms N numbers to another set of N num-
bers. On the other hand, when N is odd, the DFT sum uses n running
from n = −(N−1)/2 to (N−1)/2, or N numbers; but the sum (3.144) for
n = (N−1)/2 is not the same as that sum for n = −(N−1)/2 and so is not
extraneous. Thus the DFT can always be used to transform N numbers to
N numbers. For that reason, write the discrete Fourier transform as

Fn =
α

N

N−1∑
k=0

fk exp
−i2πnk

N
, for N values of n = −[N/2], . . . (3.152)

This set of equations can be inverted to express fk as a function of the set
of Fn in the usual way, through making use of the orthogonality of the basis
functions. Write

Fn exp
i2πn�

N
=

α

N

N−1∑
k=0

fk exp
i2πn(�−k)

N
, 0 � � � N−1 . (3.153)

When N is even, sum both sides over the N numbers of the DFT:

N/2−1∑
n=−N/2

Fn exp
i2πn�

N
=

α

N

N−1∑
k=0

fk

N/2−1∑
n=−N/2

exp
i2πn(�−k)

N︸ ︷︷ ︸
= Nδk�

= αf� . (3.154)

The underbraced sum in (3.154) equates to the Kronecker delta by virtue of
being a geometric series. Finally, we obtain

f� =
1
α

N/2−1∑
n=−N/2

Fn exp
i2πn�

N
, 0 � � � N−1 . (3.155)

Likewise, (3.152) can be inverted when N is odd: repeat the procedure, again
summing over the N numbers of the DFT, n = −(N−1)/2 to (N−1)/2. The
proof follows the same steps and is omitted. Both even and odd N can be writ-
ten in one formula, known as the inverse discrete Fourier transform (IDFT):

f� =
1
α

N numbers∑
n=−[N/2]

Fn exp
i2πn�

N
, 0 � � � N−1 . (3.156)

Compare this with (3.152). The IDFT maps the N numbers of the DFT back
to the N data points. What has been gained by transforming N numbers to
N numbers? The basis exponentials are smooth functions of � if � is extended
from integer values to real values; so besides showing frequencies present in
the data, the DFT and IDFT allow the data to be interpolated, which we
focus on next.
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3.7.3 Interpolating Real Data with the DFT

Although the main use of the DFT lies in analysing a signal for its frequency
spectrum, studying how it can be used to interpolate real data is a useful exer-
cise in familiarity with Fourier theory in general. How can (3.152) and (3.156)
be used to interpolate such a set? It turns out that we need to consider odd
and even N separately here, so let’s look at each in turn.

Simpler Case: When N is Odd

For odd N , the IDFT is

αf� =
(N−1)/2∑

n=−(N−1)/2

Fn exp
i2πn�

N
, 0 � � � N−1 . (3.157)

Since (3.152) gives F−n = F ∗
n when both the data and α are real (which we’ll

always assume), (3.157) incorporates positive and negative frequencies sym-
metrically, and so will always be real (remember the discussion of Sect. 2.11).
To interpolate to any value of t, write

t�−t0 = �∆t , (3.158)

in which case

αf(t�) =
(N−1)/2∑

n=−(N−1)/2

Fn exp
i2πn(t�−t0)

N∆t
. (3.159)

Because this is real and returns the data points exactly, it can be used for an
interpolating function fint for any t in the interval [t0, tN ]:

αfint(t) ≡
(N−1)/2∑

n=−(N−1)/2

Fn exp
i2πn(t−t0)

N∆t

= F0 +
(N−1)/2∑

n=1

2Re
(

Fn exp
i2πn(t−t0)

N∆t

)
. (3.160)

Harder Case: When N is Even

When N is even, a minor complication occurs that we predicted might happen
in the discussion following (3.149). Now the IDFT is (3.155), but this is not
quite symmetric in its positive and negative frequencies—the first term is
an odd one out, and so the sum will not always be real. It will certainly be
real for integral � since such values just return the (real) data points. But
for general interpolation of the data, � need not be an integer, and so the
IDFT need not be real. Even so, the remedy is straightforward. We are free



136 3 The Natural Language of Random Processes

to substitute any other term in the sum (3.155) as long as, ultimately, the
data points are still returned. So we need only ensure that this new term is
identical to the one being replaced, when � is an integer.

The first term of (3.155), which is to be replaced, is

1
α

F−N/2 exp
i2π(−N/2)�

N
=

1
α

F−N/2 (−1)� . (3.161)

Equation (3.152) ensures that F−N/2 is real. In that case, replace (3.161)
with a term that is real for all � and agrees with (3.161) for integral �. Such
a term is

1
α

F−N/2 cos π� . (3.162)

Now replace the first term of (3.155) with (3.162), which gives a real func-
tion that also returns the data points exactly. Thus, in the even-N case the
interpolating function for any value of t in [t0, tN ] is

αfint(t) ≡ F−N/2 cos
π(t−t0)

∆t
+

N/2−1∑
n=−N/2+1

Fn exp
i2πn(t−t0)

N∆t

= F−N/2 cos
π(t−t0)

∆t
+ F0 +

N/2−1∑
n=1

2Re
(

Fn exp
i2πn(t−t0)

N∆t

)
.

(3.163)

This expression is not as complicated as it looks, as can be seen in a simple
example.

Example: Transforming a Small Data Set. Suppose we use the DFT in (3.152)
to transform a simple signal, such as the four numbers {2, 3, 5, 7}. This
is a useful exercise in exploring what the resulting four numbers mean.
Here N = 4 with the Fourier index n running from −2 to 1. We will set α = 1.

{2, 3, 5, 7} = {f0, f1, f2, f3}
DFT (3.150) {−3/4,

−3/4 − i, 17/4,
−3/4 + i

}
= {F−2, F−1, F0, F1} .

(3.164)

This new sequence then inserts into (3.163) to give

fint(t) =
−3
4

cos
π(t−t0)

∆t
+

17
4

− 3
2

cos
π(t−t0)

2∆t
− 2 sin

π(t−t0)
2∆t

. (3.165)

The value of ∆t is unspecified; it can be anything set by the original scenario.
So, for example,

fint(t3) = fint(t0 + 3∆t)
(3.165)

7 , (3.166)
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as expected. Finally, (3.165) is a function that reproduces the sampled data
{2, 3, 5, 7} as well as interpolating and expressing it in terms of Fourier basis
functions that show something of the frequencies present. Comparing each of
the sinusoid arguments in (3.165) with a template of ωt ≡ 2πft, we see that
the frequencies that Nyquist’s theorem allows us to know about are

1
2∆t

, 0 , and
1

4∆t
, (3.167)

where the zero frequency belongs to the constant 17/4, called the DC compo-
nent in analogy with the time dependence of direct and alternating currents.
Four data points might not really constitute a meaningful signal, but they
serve to illustrate what the numbers comprising the DFT really mean.

One final point worth noting is that several conventions for calculating
the DFT and its inverse are widely used. For example, a change of variables
in the sum over n in (3.155) might be done so that the sum is over the val-
ues 0, . . . , N−1. These changes must be made with care when working with
a computer programme that implements the DFT using a different conven-
tion. Here we have followed a minimalist approach, by working from the first
principles of Chap. 2 and changing the notation as little as possible.

A More Realistic Signal

A more realistic scenario might generate data that really do have inbuilt
periodicities. Consider sampling a 5 Hz signal. (We could use a signal with
multiple frequencies, but that would produce more peaks in the plotted spec-
tra of Figs 3.10 and 3.11, which would only obscure the main point of this
discussion.) By Nyquist’s theorem, we need to sample the signal at higher
than 10 Hz to actually detect this frequency to be present in the Fourier
transform. Sampling for two seconds amounts to ten periods, which might be
sufficient for an accurate analysis; plotting the DFT will be the real test of
whether this is so. Results are shown in Fig. 3.10 for two choices of sampling
frequency. The horizontal axes in these plots measure frequency. How were
their units chosen? The basis functions of (3.143) are

exp
inπt

L
≡ eiωt = ei2πft , (3.168)

so that frequency f and Fourier index n relate via f = n/(2L). Thus the data
points increase in frequency steps of

∆f =
∆n

2L
=

1
2L

=
1

width of sampled interval
. (3.169)

The plots are symmetrical about zero frequency, so we plot the points likewise
and set the frequency interval from one point to the next to be as in (3.169).
The plots show the 5 Hz peak very well, together with its Fourier partner
of −5 Hz. It’s clear that sampling at a higher rate gives less ambiguity in the
measured frequencies present: we do expect two sharp peaks.
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50Hz
sampling

Frequency (Hz)

|D
F
T
|
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Fig. 3.10. Sampling a 5 Hz signal for two seconds at rates that are above the
Nyquist lower limit for correct detection of the 5Hz frequency. The elements of
the DFT are complex, so their absolute values have been plotted (but are not
important here). Left: Sampling at 50Hz produces sharp peaks at the expected
values of ±5 Hz. The total spectral domain encompasses the Nyquist frequency
of 25Hz, and so is −25 Hz to 25Hz. Right: Sampling at a lower rate of 15Hz
produces coarser peaks in frequency. The domain is now −7.5 Hz to 7.5Hz.

Aliasing: Peaks Under Assumed Names (or Frequencies)

What frequency spectra result if the signal is sampled less frequently than
the 10 Hz demanded by Nyquist’s theorem? We can expect problems when
sampling at such lower frequencies. Figure 3.11 shows the results for sampling
at 8 Hz (left) and 3 Hz (right). These rates of sampling are so low that we have
sampled for 20 seconds to produce this figure. These plots show that below
the Nyquist sampling rate, the ±5 Hz peaks masquerade as other frequencies.
When sampling falls below the Nyquist 10 Hz rate, the actual frequencies
present in the signal are aliased to lower ones: they shift by integer multiples
of the “allowed” spectrum width until they fall into it. For example, the left
plot of Fig. 3.11 shows the result of sampling at 8 Hz. This sampling rate
can only give us information about frequencies from −4 to 4 Hz, by Nyquist’s
theorem. The 5 Hz signal thus shifts down by 8 Hz to become −3 Hz, while
the −5 Hz signal shifts up by 8 Hz to become +3 Hz. The two peaks at ±3 Hz
can be seen in the plot.

Similarly, sampling at a still lower frequency of 3 Hz can only yield in-
formation about frequencies from −1.5 to 1.5 Hz. The 5 Hz signal now shifts
down by 6 Hz to −1 Hz, and this peak along with its +1 Hz companion is
visible in the right-hand plot of Fig. 3.11.

Aliasing certainly can make it seem that an unexpected frequency is
present in the signal, and we have no way of knowing otherwise. The only way
around the problem is to prevent frequencies higher than half the sampling
rate from being present in the processed signal from the start. In practice,
such high-frequency filtering is included in the design of the hardware that
collects the signals. Of course, this is fine when we are the ones who collect
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8Hz
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Frequency (Hz)
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3Hz
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Frequency (Hz)
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T
|

−1.5 −1 −0.5 0 0.5 1 1.5

Fig. 3.11. Sampling a 5 Hz signal for 20 seconds, now at rates that are below the
Nyquist lower limit for correct detection of the 5Hz frequency. Again the absolute
values of the DFT elements are plotted versus frequency. We expect, and get, spu-
rious results here. Left: Sampling at 8Hz shows peaks at spurious frequencies of
±3 Hz. Right: Sampling at 3Hz shows peaks at other spurious frequencies, this
time at ±1 Hz.

the data, but if they have been bequeathed to us by history, then we don’t
have such freedom.

Eliminating the Negative Frequencies

The negative frequencies in the spectra of Figs 3.10 and 3.11 are useful for
helping us understand the mathematics behind the discrete Fourier trans-
form. For example, including negative frequencies ensures that the DFT of
a sampled gaussian function gives a result that again looks like a gaussian,
since it peaks at zero frequency. This transformation of a gaussian to a gaus-
sian is just what we expect of the Fourier transform; we have come across it
already in (3.21).

Even so, negative frequencies do not really give any more information than
is contained in the positive frequencies. In fact, the sequence of DFT elements
is often calculated in a way that swaps its two halves (i.e., swaps its negative-
and positive-frequency domains). This brings the zero frequency to the left-
hand end of the DFT sequence, but it then shifts the negative frequencies to
higher positive ones. The frequency spectrum is still symmetrical about its
middle, but the entire set of negative frequencies is now shifted by the width
of the sampled interval to high positive ones—all higher than the Nyquist
frequency. This Nyquist frequency is now in the middle of the plot, if indeed
the new right-hand half of the spectrum is plotted at all; there is no need for
it to be. For example, the −5 Hz peak in the left-hand plot of Fig. 3.10 gets
shifted to −5 + 15 = 10 Hz, while the same peak in the right-hand plot of
Fig. 3.10 gets shifted to −5 + 50 = 45 Hz. These are higher than the Nyquist
frequency and so can be discounted. They have not really been aliased to
higher frequencies, since we may well have sampled above the Nyquist fre-
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quency. The shift is purely a choice in presenting the DFT, and indeed there
is no real necessity to show this right-hand part of the frequency spectrum.

The intricacies of swapping the two halves of the DFT sequence are con-
trolled by the fact that the exponentials in the DFT (3.144) have a modulo N
equivalence:

exp
−i2π(n + N)k

N
= exp

−i2πnk

N
when k is an integer. (3.170)

So, instead of choosing −[N/2] � n < [N/2], we can choose it as follows. The
negative values of n are increased by N , while the zero and positive values
remain unaltered. This way the original interval of N numbers is divided
into two halves, which are then swapped. For example, if N = 4, the set of
n = −2,−1, 0, 1 becomes n = 2, 3, 0, 1, whose two halves are swapped to give
a plot with a domain of n = 0, 1, 2, 3. Although the DFT sequence is often
written in this fashion, we need to remember that its right-hand half is then
really the negative frequencies shifted upward, beyond the Nyquist frequency.

The discrete Fourier transform is the bread and butter of much sampling
theory, although it has only become really useful in recent years with the
growth of computer processing power. But its ability to give information on
how the frequency spectrum of a signal changes over time is limited. This is
because we must “window” the data, in the sense of analysing short pieces
of it for their frequency content. But how short is short? For this type of
analysis, other techniques such as the use of wavelets have recently grown in
popularity. Wavelets are essentially a different set of basis functions that fall
to exactly zero for different widths. Thus they have their own inbuilt ability
to window the data, and so can be used to inspect the data on various scales,
unlike the infinite-extent basis functions of Fourier theory. But no matter
what techniques are used to sample and analyse data, the idea of sampling
lies at the interface between the smoothly continuous functions of physical
theory and the noisy data of the real world.

3.8 Correct and Convincing: Presenting Solutions
to Problems

We wish to end this chapter on a lighter and completely different note (though
still in an experimental vein), having to do with the pedagogy of working a
numerical exercise. Two examples have been chosen here. The first has to do
with presenting a version of a formula that incorporates some set of desired
units. The second example is concerned with a nuclear scattering experiment
in which protons are fired at an iron foil. Given appropriate information, we
must predict the number of scattered protons striking a detector.

Solving problems can be an underrated area in a physics degree. While
it’s possible to learn lots of formalism, how to actually solve a problem is so
much more subjective, and different people have very different approaches.
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In the everyday world, when we’re given such a well-defined task as this,
we will probably assemble all manner of concepts that relate to the task
and the information we have been given, and then endeavour somehow to
knit everything together into an overall structure that just might get to the
answer. Unless we are thoroughly familiar with the task at hand, we might
experiment with different concepts, try various approaches, and hopefully
converge on the solution.

Even so, getting there is only half the job. Regardless of how the solution
was arrived at, we must still convince our audience that the problem has
indeed been solved correctly. Presenting the analysis in a logical way can
do just that, whether or not it was the approach we actually used. The two
problems worked through in this section are given as examples of a structured
way of presenting an analysis.

3.8.1 Tailoring a Formula to a Given Set of Units

The first example of presenting a solution in a structured way is the following.
Given the period of a pendulum

T = 2π
√

L/g , (3.171)

we wish to present a version of this equation that specifies T in years, L in feet,
and g in kilometres per hour squared.

Calculating and presenting a structured solution to this sort of “units”
problem revolves around using a clear method of indicating that each of the
quantities is indeed specified in its required units. Writing “T (in years)” is
appropriate for the final formula, but it’s of no help in deriving that formula.
Luckily, there is a simple piece of notation that does everything for us. Just
as “6/2” means “the number of twos in six”, “T/(1 yr)” means “the number of
years in T”. This is a pure number—it carries no units. In such an expression,
T does not even have to be specified in years because the expression itself is
a mini-formula that converts T to years.

In that case, to convert (3.171) to the required units, we need only
rewrite it with T replaced by T/(1 yr), L replaced by L/(1 ft), and g re-
placed by g/(1 km hr−2). The following shows the calculation with part of
the scaffolding still in place to show some of the intermediate steps. All we
are doing is dividing and multiplying by whatever is necessary to preserve
the form of the original expression.

T = 2π

√
L

g
, so

T

1 yr
· 1 yr = 2π

√√√√ L

1 ft
· 1 ft · 1

g

1 km hr−2 · 1 km hr−2
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= 2π

√
L/(1 ft)

g/
(
1 km hr−2

) · 1 ft
1 km

· 1 hr2

= 2π

√
L/(1 ft)

g/
(
1 km hr−2

) · 1 ft
1 km

· 1 hr . (3.172)

Thus,
T

1 yr
· 1 yr
1 hr

= 2π

√
L/(1 ft)

g/
(
1 km hr−2

) · 1 ft
1 km

. (3.173)

Now, “1 yr/(1 hr)” is a pure number, the number of hours in a year, or
about 8742 (depending on how we define a year!). Likewise, “1 ft/(1 km)”
is also a pure number, the number of kilometres in a foot:

1 km = 1000m � 3281 ft , so
1

3281
� 1 ft

1 km
. (3.174)

In that case, (3.173) becomes

T

1 yr
· 8742 � 2π

√
L/(1 ft)

g/
(
1 km hr−2

) · 1
3281

, (3.175)

or finally
T

1 yr
� 1.25 × 10−5

√
L/(1 ft)

g/
(
1 km hr−2

) . (3.176)

This allows us to write

“T � 1.25 × 10−5
√

L/g , with T in years, L in feet, g in kmhr−2”.
(3.177)

Of course, presenting such a line-by-line solution might seem tedious, and it
has been elaborated here for clarity. But as far as convincing a skeptical au-
dience is concerned, it presents all the information and gives ample structure
for any subsequent changes or investigation into difficulties encountered.

3.8.2 Calculating a Nuclear Scattering Rate

Scattering experiments have a long history in nuclear physics, going back to
the work of Rutherford, Marsden, and Geiger in the early twentieth century.
At that time, the Thomson model of the atom was in vogue, in which the
atom was believed to be a sphere of positive charge with embedded electrons.
To test this theory, Rutherford and his colleagues directed alpha particles
onto gold foil, finding to their complete amazement that some of the alpha
particles bounced completely backward. This could not have occurred with
any reasonable likelihood if the Thomson model were correct. It seemed that
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there must be an almost point-like nucleus with which alpha particles could
collide head-on, and so be repelled from very strongly.

The statistics of scattering particles into some given solid angle is handled
using the concept of a cross section. The cross section of a target is defined
to be an area, in such a way that this area divided by the total uniformly
illuminated area of the target is the probability that an incident particle
will be scattered into a specified solid angle. Let’s see how it works, and
in the process write down the solution to the following question in a very
structured way.5

A piece of 54Fe foil is bombarded by a 100 nA current of 60MeV
protons. The foil has a mass per unit area of 10mg cm−2, and the
incident protons scatter inelastically from its iron nuclei. Some of
them are scattered through a 40 ◦angle into a detector placed 10 cm
from the foil. The detector has an area of 0.1 cm2.

Given that the differential cross section per target nucleus (i.e. cross
section per target nucleus per unit solid angle) for scattering at 40 ◦ is
dσ/dΩ =1.3mbarn sr−1, find the number of protons per second that
strike the detector. (Note that 1 barn ≡ 10−28 m2.)

How might we go about tackling this? There is a lot of information with
which we might not be immediately familiar, and assembling it into a coherent
structure to get at the answer may well be a difficult task. The job can be
approached in various ways, but whatever approach is used, here is a very
logical way of at least writing down the analysis and perhaps approaching
it in the first place. We ask what it is we wish to calculate, and begin by
making this clear first of all. We then examine its constituents and burrow
down through layers like those of an onion, to see what lies beneath in terms of
more basic concepts. Hopefully the scenario will contain enough information
to feed the requirements of each of those layers and, if all goes well, home in
on the answer very directly.

The scenario is shown in Fig. 3.12. We wish to find the rate at which
protons leave the foil to strike the detector: the scattering rate. Working
backward, we know that not every proton incident on the foil will end up
being scattered at around 40◦, so we need to know both the incident rate and
the probability that a scattering event will occur:

scattering rate = incident rate ×
[

probability of a
scatter occurring

]
. (3.178)

First, the incident proton rate is indirectly given in the specifications, being
equal to the incident current divided by the charge of a single proton:
5 The example problem to be solved in this section has been paraphrased from

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles by R. Eis-
berg and R. Resnick, 2nd edition (1985, John Wiley and Sons). Reprinted with
permission of John Wiley and Sons, Inc.
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Fig. 3.12. Setup for the scattering experiment. Protons normally incident on the
iron foil are scattered in all directions. We wish to predict how many will arrive at
the detector.

scattering rate =
inc. current

proton charge
×
[

probability of a
scatter occurring

]
. (3.179)

The probability of a scatter is expressed in terms of the target’s cross section,
where the required probability is given by the cross section of the target as a
fraction of its real area illuminated by the beam. So we write

scattering rate =
inc. current

proton charge
× cross section of target

target area (i.e. illuminated area)
.

(3.180)
The illuminated target area is unknown—so we hope it will cancel somewhere!
Let’s look more closely at the target’s cross section. The scattering is some-
thing that happens on an individual nucleus basis, so we express this cross
section as the cross section per target nucleus times the number of nuclei in
the target. (Remember, too, that the target is just the illuminated area of
the foil, which we take to be uniform; anything outside that region does not
count as part of the target.)

scattering rate =
inc. current

proton charge
×

[
cross section per
target nucleus

]
×
[

number of nuclei
in target

]
target area

.

(3.181)
The cross section per target nucleus σ(θ) is a function of the scattering an-
gle θ, which is specified as 40◦. Since the process of scattering is axially
symmetric, we need only ask how many protons are scattered into an in-
finitesimally narrow cone with solid angle dΩ, whose axis lies at 40◦ to the
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main beam. So we write the cross section per target nucleus σ(θ) as the in-
tegral across the detector area of an infinitesimal quantity: the cross section
per nucleus per unit solid angle (dσ/dΩ) multiplied by an infinitesimal solid
angle dΩ subtended in the direction of the detector:

scattering rate =
inc. current

proton charge
×
∫

dσ

dΩ
dΩ×

[
number of nuclei
per unit area

]
. (3.182)

At this point we inject some knowledge of the physics of the experiment to
realise that the differential cross section dσ/dΩ does not change dramatically
with angle over the area of a typical detector. So, since we can always write
an integral in terms of an average 〈·〉 over the region of integration,〈

dσ

dΩ

〉
∆Ω ≡

∫
dσ

dΩ
dΩ , (3.183)

we need only recognise that this average of dσ/dΩ over the small area sub-
tended by the detector is quite accurately the value at 40◦ that was supplied
in the original statement of the problem. So now we can drop the reference
to the averaging and use this supplied value, writing

scattering rate � inc. current
proton charge

× dσ

dΩ
∆Ω ×

[
number of nuclei
per unit area

]
. (3.184)

The number of nuclei per unit target area is just the mass per unit area of
the target (given) divided by the mass per nucleus (easily worked out):

scattering rate � inc. current
proton charge

× dσ

dΩ
∆Ω × mass per unit area

mass per nucleus
. (3.185)

Finally, the solid angle subtended by the small area of the detector at the
scattering centre is just approximately that area divided by the square of its
distance from the scattering centre:

scattering rate � inc. current
proton charge

× dσ

dΩ
× detector area

(det. distance from foil)2

× mass per unit area
mass per nucleus

. (3.186)

It only remains to insert the supplied parameters. We are given the incident
current, the proton charge is a standard value, the differential cross section
at 40◦ is supplied, the detector’s illuminated area is given, and the detector
distance from the foil is given. So is the mass per unit area of the foil, and the
mass of a nucleus can be worked out from the mass number of iron (where
to the accuracy required here, the proton and neutron rest masses can be
considered to be the same). Using the following values:
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proton charge � 1.6 × 10−19 C,
nucleon mass � 1.7 × 10−27 kg, (3.187)

the scattering rate is found by inserting the relevant numbers into (3.186),
using SI units for simplicity. The one place where we need not convert to
SI units is when calculating the solid angle ∆Ω, since this is unitless. The
scattering rate is approximately

10−7

1.6 × 10−19
× 1.3 × 10−31 × 0.1 cm2

(10 cm)2
× 10 × 10−6/(10−2)2

54 × 1.7 × 10−27
� 90 . (3.188)

So the detector sees about 90 protons per second. Working through this
exercise has, on paper at least, been a smooth process of peeling away layers.
But it doesn’t necessarily follow what tends to be done in the everyday world,
which might be more haphazard. Still, regardless of how the answer was
originally obtained, presenting the analysis in a very structured way is much
more likely to convince an audience of its correctness.

Generally, of course, physics research is not about finding a single number.
It is more about following one’s nose to see where it will lead, and perhaps
the end product is the reverse of any of the neat flows of logic above. The real
process of research is often quite erratic, and the same can be said for the
history of physics in general, with its many blind alleyways and not always
useful notations, which might not be discarded as the subject evolves. Like
a chess game, the path to be followed is seldom clear or unique beyond the
next few steps. But the beauty of mathematical physics can be seen by asking
questions that we suspect might have interesting answers.



4 A Roundabout Route to Geometric Algebra

When first encountering matrix theory, one of the most useful things we learn
is how to rotate a vector in the xy-plane, by multiplying it by a 2× 2 matrix
derived from the angle through which it is turned. We quickly see by rotating
a vector through two angles α and β in succession, and representing each
rotation by a matrix, the very useful result that quantities such as sin(α+β)
can be written in terms of the sine and cosine of α and β individually.

This is all easy to understand, mostly because these rotations are easy
to draw. In contrast, rotations in three dimensions often seem more difficult,
perhaps because it can be hard to make a faithful drawing of the rotation.
Another reason that three-dimensional rotations carry an aura of obscurity
is because, unlike the two-dimensional case, rotations in three dimensions
generally do not commute, and there are also more ways to describe and think
about three-dimensional rotations. But they are really not difficult at heart—
and perhaps the best way to come to understand them is to refrain from
trying to make too many drawings! We will leave that to the artists, because
pictures of all manner of arrows and axes in three dimensions are not overly
necessary for understanding three-dimensional rotations. Some imagination
is needed, and a set of axes fashioned from wire is very handy for helping to
visualise how a body is orientated by multiple rotations.

There are two results from the theory of three-dimensional rotations that
we will study in this chapter. The first is the purely mathematical exploration
that comes from considering the entities involved, how they interact, how they
can be simplified, and what they might tell us about the world when applied
to physics in a novel way. Following this, we’ll take a moment to look at
how rotations are applied in some situations, because in an age of computers,
being able to rotate a vector around a given axis is an old art that is being
used in new ways, but not always correctly, as we’ll see.

Three-dimensional rotation theory is centred on one result that will be
proved shortly. Suppose, as in Fig. 4.1, that an axis is defined by a unit
vector n, and originating on this axis is a vector r. To rotate r about n in a
right-handed sense to produce a new vector r′, a matrix multiplication can
be used, where n, r, r′ are columns:

r′ = Rn(θ) r , where

Rn(θ) = (1 − cos θ) nnt + cos θ 1 + sin θ n×, (4.1)
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n r

r′

θ

Fig. 4.1. The central result of three-dimensional rotation theory is a matrix mul-
tiplication that rotates a vector r in a right-handed sense around the vector n to
produce r′.

in which “1” is the 3 × 3 identity matrix, and n× is a very simple matrix
derived from n, as we’ll see later. All of rotation theory is aimed at either
producing, using, or analysing this result. Let’s see how it all comes about.

4.1 Matrix Representation of an Orientation

In the two dimensions of the xy-plane, rotating a body while keeping one
point fixed is entirely equivalent to changing its orientation. But, in three di-
mensions, the relationship between rotation and orientation is not so obvious.
How are these two ideas related, if at all?

Begin by leaving rotations aside for a moment, and instead ask how to
represent any arbitrary orientation of a body in three dimensions. Just as for
orientations in the plane, we can only do it in a relative way, by specifying
how the body has been moved from some initial, or base, position. Suppose
that the body is not moved sideways; some point in it stays in the same
position, but otherwise the body can be moved in some arbitrary way from
its initial position.

In the initial position, we specify three linearly independent vectors
e1,e2,e3 to arbitrary points in the body, and ask how they change as the
body’s orientation is changed. That is, under some change in orientation, the
three column vectors e1,e2,e3 become e′

1,e
′
2,e

′
3, respectively. Now, suppose

we construct a matrix A from the six column vectors:

A ≡ [e′
1 e′

2 e′
3

] [
e1 e2 e3

]−1
. (4.2)

In that case, A correctly changes the orientation of e1,e2,e3:

A
[
e1 e2 e3

]
=
[
e′

1 e′
2 e′

3

]
. (4.3)

The reason is that matrix multiplication proceeds column by column, so that
the last equation is equivalent to Ae1 = e′

1, and similarly for e2 and e3.
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e1

e2

e3

e′
1

e′
2

e′
3

Fig. 4.2. Specifying a change in orientation of a body. Left: The base orientation
is described by any three linearly independent vectors e1, e2, e3 in some frame that
is fixed for all changes in orientation. The vectors here have been chosen to lie along
axes of symmetry for clarity, but need not be. Right: In the new orientation, the
three vectors have been mapped to e′

1, e
′
2, e

′
3, respectively, in the same frame as

before.

If the body is rigid, then linearity ensures that A will suffice to describe
the orientation of the whole body. By this we mean that any other point in
the base-positioned body that’s described by a certain linear combination of
the basis vectors e1,e2,e3, will be described by the same linear combination
of the new basis vectors e′

1,e
′
2,e

′
3 in the new orientation because

A (αe1 + βe2 + γe3) = αe′
1 + βe′

2 + γe′
3 . (4.4)

So A multiplies any vector to produce its orientated form. In particular,
if e1,e2,e3 are chosen to be the three orthonormal cartesian basis vectors
ex,ey,ez, which are orientated to produce e′

x,e′
y,e′

z respectively, then the
matrix describing the orientation will be

A =
[
e′

x e′
y e′

z

]
. (4.5)

Since any element of the A in (4.5) is a dot product of an initial and a final
basis vector of the two orthonormal sets, it will be the cosine of the angle
between the corresponding axes. Hence this A is often called a direction
cosine matrix.

As mentioned at the start of this chapter, a familiar example of using (4.5)
to construct A in two dimensions is when a planar body is orientated by
rotating it through an angle θ in the xy-plane, keeping one point fixed. The
orthonormal basis vectors then map as

ex =
[
1
0

]
−→
[
cos θ
sin θ

]
≡ e′

x , ey =
[
0
1

]
−→
[− sin θ

cos θ

]
≡ e′

y , (4.6)

giving the familiar rotation matrix

A =
[
e′

x e′
y

]
=
[
cos θ − sin θ
sin θ cos θ

]
. (4.7)
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4.1.1 Describing an Orientation by a Rotation

In two dimensions, orientating a body while keeping one point fixed can
only be a rotation, but whether a change of orientation in three dimensions
can always be represented by one or more rotations is not so obvious; the
transformation (4.2) simply produces a final orientation given some initial
orientation. Nevertheless, it is not hard to show that any final orientation
can be produced from some initial orientation by just one rotation about
some axis, where that axis need not be any of the x-, y-, or z-axes (and in
general won’t be). This is known as Euler’s theorem of rotation. The matrix A
in (4.2) describes this rotation, although what is not obvious is what the axis
and angle are. But we’ll come to that in due course.

The proof of Euler’s rotation theorem involves some elegant linear algebra.
Set the origin to be the body’s fixed point as it changes orientation, and since
the body is rigid, all distances from the origin are preserved as the body
changes orientation. That is, for any position vector r in the body (again
written as a column), |Ar| = |r|. Squaring both sides gives

rtAtAr = rtr , (4.8)

or AtA = 1. We encountered this in Chap. 2; the matrix A is orthogonal.
(Since its rows and columns clearly form orthonormal sets, calling it or-
thonormal would be more apt, but orthogonal is the conventional term.)
Taking determinants then gives

det
(
AtA
)

= det2A = 1 , (4.9)

so that det A = ±1. But A should vary smoothly from the identity matrix as
the body is orientated out of its base position, and since the identity matrix
has determinant +1, then A must have this determinant, because there is
no reason why the sign of detA should change abruptly at any orientation.
Thus we infer that detA = +1 always. Now notice that since AtA = 1, we
can write

AtA − A = 1 − A , or
(
At − 1

)
A = 1 − A . (4.10)

Taking the determinant of each side of the last equation, and noting that

det
(
At − 1

)
= det

[
(A − 1)t

]
= det (A − 1) , (4.11)

produces

det (A − 1) = det (1 − A)
= (−1)n det (A − 1) for n dimensions. (4.12)

In three dimensions, we can then infer that det (A − 1) = 0. But standard
linear algebra tells us that

det (A − 1) = 0 ⇐⇒ (A − 1) n = 0 for some nonzero n. (4.13)
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For a discussion of why this is so, see the small text on p. 32. A zero deter-
minant of A − 1 implies linear dependence of the rows of A − 1, in which
case it’s trivial to solve (A − 1) n = 0 for some nonzero n.

Thus An = n (so A has an eigenvalue of 1 with corresponding eigenvector n).
Since the body is rigid, the only way that n can be unchanged by A is if A
causes a rotation around n. This proves Euler’s theorem.

Euler’s theorem allows us to “compose” (i.e. add) rotations. Since any two
rotations simply change a body’s orientation, thus producing a new A matrix,
they must be equivalent to a single rotation. This being the case, we can
say that the set of matrices describing rotations about arbitrary axes forms
a group, known as the special (+1 determinant) orthogonal group in three
dimensions: SO3, or O+

3 . (Showing that a product of rotations is another
rotation was the main requirement for showing that rotations form a group;
the other requirements, of associativity and the existence of an identity and
inverses, are straightforward.)

4.2 Calculating the Matrix for an Arbitrary Rotation

The matrix A in (4.2) describes the rotation that changes a body’s orienta-
tion, provided we know how the basis vectors change their orientation. But
usually we do not know the final vector positions. Since an arbitrary orien-
tation can be described by just one rotation, it is useful to determine how to
rotate an arbitrary vector about an arbitrary axis. It will turn out that this
rotation can be accomplished by a matrix multiplication, and is the central
result of rotation theory.

So let’s calculate this matrix that describes a rotation through some an-
gle θ about an arbitrary axis along a unit vector n using the right-hand
rule, as shown on the left-hand side of Fig. 4.3. (Demanding that n have unit
length will simplify the following expressions.) Suppose that the rotation acts
on a vector r to give r′. Writing r = r + r , a sum of components parallel
and perpendicular to n, as on the right-hand side of Fig. 4.3, we see that
only the perpendicular component is rotated. Hence

r′ = r + r rotated through θ . (4.14)

Rotating r through θ is equivalent to reducing its length by a factor of cos θ
while introducing a new component in the direction of n × r with length
|r | sin θ. Thus

r′ = r + r cos θ + |r | sin θ
n × r

|n × r| . (4.15)

The two components of r are easily expressed in terms of r and n, where the
expressions are simplest if we stipulate that n is a unit vector.
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n

r′ r

θ

∆r

r

n

n × r

r

r

Fig. 4.3. Left: Rotating r around n by angle θ to produce r′. Right: Resolving r
into components parallel and perpendicular to n.

r = r ·n n and r = r − r ·n n ; (4.16)

|n × r| = |r| sin(n, r) = |r | , (4.17)

where (n, r) denotes the angle between n and r. Using these last identities,
(4.15) can be written as

r′ = r ·n n + (r − r ·n n) cos θ + n × r sin θ . (4.18)

So r′ is a linear combination of the components of r, and by writing (4.18) in
terms of its vectors’ components, we arrive at a matrix form for the rotation
(where the vectors are columns):

r′ = Rn(θ) r . (4.19)

Writing

n =

⎡⎣n1

n2

n3

⎤⎦ (4.20)

allows the rotation matrix to be written as

Rn(θ) = (1−cos θ)

⎡⎣ (n1)2 n1n2 n1n3

n2n1 (n2)2 n2n3

n3n1 n3n2 (n3)2

⎤⎦+cos θ 1+sin θ

⎡⎣ 0 −n3 n2

n3 0 −n1

−n2 n1 0

⎤⎦ ,

(4.21)
which can be expressed more concisely as

Rn(θ) = (1 − cos θ) nnt + cos θ 1 + sin θ n×, (4.22)

where “1” is unambiguously the 3 × 3 identity matrix and

n× ≡
⎡⎣ 0 −n3 n2

n3 0 −n1

−n2 n1 0

⎤⎦ . (4.23)



4.2 Calculating the Matrix for an Arbitrary Rotation 153

The last matrix is so named because

n×r = n × r , (4.24)

with the n written nonbold on the left to emphasise that n× is a matrix, not
a vector. It appears generally in rotational calculations and satisfies useful
identities, such as

nntn× = 0 and (n×)2 = nnt − 1 . (4.25)

These identities make it easy to check that the rotation matrix as written
in (4.22) is indeed orthogonal. The matrix nnt is sometimes called a dyadic
in older literature and written as nn. This of course doesn’t fit with modern
matrix terminology, and the term and notation have mostly disappeared now.

Writing the fundamental rotation equation (4.18) in matrix form is very
useful because it brings with it the full power of matrix algebra when doing
rotations. As an example of the use of (4.22), rotate the vector (0, 1, 1) by
90◦ about the y-axis. What vector results? We need Ry(90◦). Equation (4.22)
gives it as

Ry(90◦) = nnt + n× =

⎡⎣0
1
0

⎤⎦ [0 1 0
]
+

⎡⎣ 0 0 1
0 0 0

−1 0 0

⎤⎦ =

⎡⎣ 0 0 1
0 1 0

−1 0 0

⎤⎦ . (4.26)

(In this very simple example, we can calculate Ry(90◦) alternatively us-
ing (4.5). Simply note that the basis vectors rotate as⎡⎣1

0
0

⎤⎦ −→
⎡⎣ 0

0
−1

⎤⎦ ,

⎡⎣0
1
0

⎤⎦ −→
⎡⎣0

1
0

⎤⎦ ,

⎡⎣0
0
1

⎤⎦ −→
⎡⎣1

0
0

⎤⎦ , (4.27)

so that (4.5) yields Ry(90◦) trivially.) The required rotated vector is then

Ry(90◦)

⎡⎣0
1
1

⎤⎦ =

⎡⎣ 0 0 1
0 1 0

−1 0 0

⎤⎦⎡⎣0
1
1

⎤⎦ =

⎡⎣1
1
0

⎤⎦ , (4.28)

as expected.

4.2.1 Deriving the Rotation Matrix Rn(θ) via Diagonalisation

An alternative way of deriving (4.22) brings out the elegance of the diago-
nalisation procedure that we covered in Sect. 2.5. Figure 4.3 shows that in
the limit of an infinitesimal rotation dθ, the increase dr from the original
vector r to the rotated vector r′ is perpendicular to both n and r, as well as
having length |r |dθ. So it must be true that

dr = dθ n × r . (4.29)
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This means we can write the infinitesimally rotated vector in the following
way, with “1” meaning the identity matrix:

r′ =
(
1 + dθ n×) r . (4.30)

(In hindsight, this expression agrees with the limits of either (4.18) or (4.22) to
first order in dθ, but of course we’re assuming that neither of those equations
are at our disposal.)

So an infinitesimal rotation is obtained by multiplying by 1 + dθ n×. If a
noninfinitesimal rotation through θ is interpreted as the result of composing
a large number N of rotations through θ/N (with N → ∞), then we can
multiply N infinitesimal rotation matrices to write the now noninfinitesimally
rotated vector r′ as

r′ = lim
N→∞

(
1 + θ

N
n×
)N

r . (4.31)

This resembles the well-known useful identity for real numbers,

lim
N→∞

(
1 + x

N

)N

= ex , (4.32)

and provided that we assume a similar expression also holds for matrices,
equation (4.31) produces

Rn(θ) = eθ n×
, (4.33)

which is certainly a very compact form for the rotation matrix! A matrix
exponential is defined in the expected way:

eA ≡ 1 + A + A2/2! + A3/3! + · · · . (4.34)

This looks to be a difficult sum for matrices, but we remember from (2.78)
that a diagonalisation enables us to write An = PDnP−1, so that an arbitrary
matrix exponential can be expressed as

eA = PP−1 + PDP−1 + PD2P−1/2! + · · ·
= PeDP−1. (4.35)

This is very useful because we know from (4.34) that, for any diagonal matrix,

exp

⎡⎢⎣d1 · · · 0
. . .

0 · · · dn

⎤⎥⎦ =

⎡⎢⎣ed1 · · · 0
. . .

0 · · · edn

⎤⎥⎦ . (4.36)

So we need only diagonalise the matrix θ n×. The process is lengthy, but after
finding its eigenvalues and eigenvectors, we can write θ n× = PDP−1, where

P =

⎡⎣n1 −n2 + in1n3 −n2 − in1n3

n2 n1 + in2n3 n1 − in2n3

n3 −i
[
1 − (n3)2

]
i
[
1 − (n3)2

]
⎤⎦ , D = diag(0, iθ, −iθ) , (4.37)

and Rn(θ) = PeDP−1. Inverting P and multiplying the factors yields (4.22),
as expected. While this was not the most straightforward way of deriv-
ing (4.22), it’s reassuring to know that it works!
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4.2.2 Are Rotations Vectors?

A rotation is sometimes loosely represented by a vector whose direction de-
fines the rotation axis (via a right-hand rule), and whose length is the angle
turned through. This is not quite valid, for the simple reason that rotations
through noninfinitesimal angles do not commute, whereas vector addition
certainly does commute. The noncommutivity of rotations was discussed pre-
viously in Sect. 2.5. There we saw that rotations through infinitesimal angles
do commute in some sense, and this makes them candidates for being rep-
resented by vectors. We can show this more quantitatively as follows. Define
dθ ≡ dθ n, enabling (4.29) and (4.30) to be written more compactly as

dr = dθ × r , r′ = (1 + dθ×) r . (4.38)

In that case, two infinitesimal rotations of dθ1,dθ2 around different axes n1,n2

combine to give

R1R2 =
(
1 + dθ×1

) (
1 + dθ×2

)
= 1 + dθ×1 + dθ×2 to first order,
= R2R1 . (4.39)

So infinitesimal rotations do commute, which means that dθ can be consid-
ered as a candidate for a vector. But (4.39) also implies that, to first order,

R1R2 = 1 + (dθ1 + dθ2)
×

, (4.40)

so that after the two infinitesimal rotations, the increase in r is

dr = R1R2 r − r = (dθ1 + dθ2) × r . (4.41)

Comparing this with (4.38) shows that the resultant rotation is given by
simply adding the vectors dθ1,dθ2 of the individual rotations! This is why
an infinitesimal rotation can be treated as a vector.

In the everyday world, where infinitesimals are not used, situations involv-
ing rotational motion can usefully be described by rescaling the infinitesimal
rotation to construct the angular velocity vector ω ≡ dθ/dt, which finds fre-
quent application in classical mechanics. One such use occurs in the study
of vectors in rotating frames, such as vectors on Earth that represent global
phenomena such as wind flow. Because the frame of the rotating Earth is not
inertial, applying Newton’s laws to such phenomena can be difficult. What is
much simpler is to calculate within the frame of the solar system, which to a
good approximation is inertial. In that case, consider the motion of a small
air cell. Suppose this cell is at a position r in Earth’s frame (relative to some
origin that can be any point on Earth’s axis). In a small time interval dt,
any step Dr taken by the cell in the solar system’s inertial frame is the sum
of the step dr it took on Earth, and the step dθ × r that Earth’s rotation
provided in the solar system frame:
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Dr︸︷︷︸
cell’s step in
solar system

= dr︸︷︷︸
cell’s step
on Earth

+ dθ × r︸ ︷︷ ︸
step due to Earth’s

rotation in solar system

. (4.42)

Thus
Dr

dt
=

dr

dt
+ ω × r . (4.43)

So the wind velocity Dr/dt in the inertial frame of the solar system differs
from the velocity dr/dt on the noninertial Earth by the addition of a cross
product. We see here a kind of “inertial differentiation”:

D
dt

≡ d
dt

+ ω×. (4.44)

The ω× is, in a sense, a correction to restore inertiality, and in Chap. 8 we’ll
encounter a similar idea under the name covariant differentiation. There we
will find a kind of analogy to the ω× matrix: the “Christoffel symbols”, which
play a major role in tensor calculus and differential geometry, as well as
encoding the gravitational field in general relativity.

In order to write down Newton’s laws for wind motion on Earth, we might
start out by differentiating (4.43) again to produce accelerations, which can
then be related to forces. But we must be careful to again use the inertial dif-
ferentiation, since Newton’s force–acceleration relation only applies to inertial
frames. Writing v and a for velocity and acceleration, (4.43) becomes

vinertial ≡
Dr

dt
=

dr

dt
+ ω × r ≡ vEarth + ω × r , (4.45)

so that the next inertial differentiation gives, with an overdot ˙ meaning d/dt,

ainertial ≡
Dvinertial

dt
=
(
d/dt + ω×) (vEarth + ω × r)

=
dvEarth

dt
+ ω̇ × r + 2ω × vEarth + ω × (ω × r)

≡ aEarth + ω̇ × r + 2ω × vEarth + ω × (ω × r) . (4.46)

If we wish to enforce Newton’s law that force = mass × acceleration in both
frames—even the noninertial Earth frame—then we must introduce a fic-
titious force to “fix up” this law on the noninertial Earth frame. The role
of this new force is purely one of keeping the books balanced, so to speak.
Rearranging (4.46) and multiplying by the mass m of the air cell produces

maEarth = mainertial − m ω̇ × r − 2mω × vEarth − mω × (ω × r)︸ ︷︷ ︸
≡ required fictitious force enabling Newton’s laws to hold

.

(4.47)
Earth’s rotation is constant, so ω̇ = 0. Although there is really only one
fictitious force in (4.47), its two remaining nonzero terms are conventionally
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split into a “Coriolis force” (which depends on the air cell’s velocity over
Earth) and a “centrifugal force” (which does not):

Coriolis force ≡ −2mω × vEarth ,

Centrifugal force ≡ −mω × (ω × r) . (4.48)

This is a direct analogy with the conventional splitting of the electromagnetic
force on a charge into one that depends on its velocity (the magnetic force)
and one that does not (the electric force). There, as here, only one force is
really present. The Coriolis force only arises when the air cell moves, whereas
the centrifugal force is always present. They are both simply forces that we
invent to enable us to continue to apply Newton’s laws in the noninertial
frame of a laboratory tied to a rotating body, such as Earth’s surface.

4.3 Combining Two Rotations

Earlier, we invoked Euler’s theorem of rotation to say that two rotations
will always combine to give a new rotation. This is, of course, equivalent to
multiplying the two rotation matrices. But what are the axis and angle of
the new rotation? For example, suppose we rotate a vector twice:

1. First rotate it by 90◦ about the x-axis (call the matrix Rx).
2. Then rotate the result by 90◦ about the y-axis (call the matrix Ry).

What is the corresponding axis and angle of the combined rotation RyRx?
The two rotation matrices and their product are easily found:

First, Rx: θ = 90◦, n =

⎡⎣1
0
0

⎤⎦ , so Rx =

⎡⎣1 0 0
0 0 −1
0 1 0

⎤⎦ .

Second, Ry: θ = 90◦, n =

⎡⎣0
1
0

⎤⎦ , so Ry =

⎡⎣ 0 0 1
0 1 0

−1 0 0

⎤⎦ .

Result: RyRx =

⎡⎣ 0 1 0
0 0 −1

−1 0 0

⎤⎦ . (4.49)

To find the angle and axis of the single rotation that is equivalent to RyRx, we
can of course compare each element of RyRx with the general expression (4.21),
but this is arduous and inelegant. It is much easier to employ (4.21) to write
down two properties of the general rotation matrix Rn(θ) that involve its
trace and transpose:
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All Rotations Have One Basic Procedure

Occasionally, users of rotation matrices can trip up on what is meant by the
second rotation in (4.49): whether it’s supposed to mean a rotation about the
spatially fixed y-axis or about the latest incarnation of the y-axis—the result of
the original y-axis being carried along with the body during the first rotation.

There need never be any confusion, since each rotation is about a basis
vector and we have used a single frame to write the coordinates of all of the
vectors, which is good practice in general; using multiple coordinate systems
here is a recipe for disaster. So there is only one y-axis, the spatially fixed one,
which is what the second rotation in (4.49) is about. If we really wished to
rotate about the new axis (call it the y′-axis), then we would need to calculate
the vector n representing the y′-axis. But that is not being done in (4.49).

Always remember that the fundamental procedure of rotation is that one
vector is rotated about another, and that the matrices being multiplied to
combine several rotations must all be calculated in the same frame. We will
discuss this in more detail in Sect. 4.6.1.

tr Rn(θ) = 1 + 2 cos θ ,

Rn(θ) − Rt
n(θ) = 2 sin θ n×. (4.50)

In that case, the combined rotation is about some unit vector n through
angle θ, where

1 + 2 cos θ = 0 , 2 sin θ n× =

⎡⎣ 0 1 1
−1 0 −1
−1 1 0

⎤⎦ . (4.51)

There appear to be two solutions for n and θ here, but they both represent
the same rotation so that we can always choose the unique positive value of θ
together with its corresponding n. In this case,

θ = 120◦ , n = (1, 1,−1)/
√

3 (4.52)

(where n should really be written as a column vector in actual use, but we
are saving space here). This simple example makes it evident that the single
angle and axis resulting from combining two rotations generally do not bear
any obvious relation to the two original angle–axis pairs.

4.4 Rotations Lead to Complex Numbers and
Quaternions

Historically, rotations have been closely related to complex numbers. To see
why this should be so, suppose that we rotate a vector in the xy-plane about
the origin through an angle θ:
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x′

y′

]
=
[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=
[
x cos θ − y sin θ
x sin θ + y cos θ

]
. (4.53)

There is a redundancy here with the repeated sine and cosine. Perhaps we
could just isolate the essential parts of (4.53) to write a new kind of vector
multiplication,

(x′, y′) = (cos θ, sin θ) (x, y)
≡ (x cos θ − y sin θ, x sin θ + y cos θ) , (4.54)

where this multiplication of the vectors (a1, a2) and (b1, b2) is defined by

(a1, a2) (b1, b2) ≡ (a1b1 − a2b2, a1b2 + a2b1) . (4.55)

Alternatively, if we dislike the idea of introducing a new type of multiplica-
tion for vectors, we might choose to employ a placeholder, a new symbol “i”
together with conventional multiplication, so that (4.54) would become

x′ + iy′ = (cos θ + i sin θ)(x + iy) , provided that i2 ≡ −1. (4.56)

Of course, the rotation cos θ + i sin θ is usually written eiθ, and in this form
a connection can be made between (4.56) and the general rotation matrix
in (4.33).

The new, complicated, multiplication has now been completely invested in the
much simpler relation i2 = −1, while the presence of the i also acts as a way
of keeping the vector components separate. The requirement that i2 = −1 is
the algebra of our planar rotation formalism, in the sense of being a rule to be
applied mechanically that allows (4.56) to give the right answer when rewrit-
ten as a vector. Figure 4.4 shows the rotation in the plane, now christened
the complex plane.

Another alternative to eliminating the redundancy of the original matrix
multiplication (4.53) is to rewrite it to resemble (4.56):[

x′

y′

]
=
(

cos θ 1 + sin θ

[
0 −1
1 0

])[
x
y

]
, (4.57)

which makes it clear that
[

0 −1
1 0

]
is a matrix representation of i. (Try squaring

this matrix, which corresponds to two successive rotations through 90◦ in the
plane that combine to give one rotation of 180◦.)

In what is one of the most important equalities in physics, the rotation
factor cos θ + i sin θ is identical to eiθ, if eiθ is defined by a series with the
same form as (4.34). Leaving aside any subtleties of the finer points of this
identification, equating the two allows us to bring any amount of complex
analysis to bear on a rotation scenario. But is there any similar idea that
works for an arbitrary rotation in three dimensions? We can reasonably ex-
pect something like the set {1, i}, where the elements are placeholders to
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1

i
θ

x + iy

x′ + iy′

x

y

Fig. 4.4. The rotation of (4.56) can be viewed as assigning a number x + iy to the
vector (or point) (x, y). The rotation of the vector by θ is then effected by multiply-
ing the number x + iy by cos θ+ i sin θ to give the number x′ + iy′ corresponding to
the vector (x′, y′). In order for this to work using the usual rules of multiplication,
the symbol i requires the property i2 = −1.

keep the two vector components apart, and their algebra provides the cor-
rect combinations of those components. Different algebras are possible, the
major criterion being how useful and elegant they are. Without trying to be
exhaustive, here we will develop one such system created a century and a half
ago by William Hamilton.

In two dimensions, there are only the two quantities cos θ, sin θ to consider.
But three dimensions brings fully nine different and complicated coefficients
of x, y, z to work with: the entries of Rn(θ). All of these must be derived
from θ, n1, n2, n3. Of course, we can always define a multiplication analogous
to (4.54), but there is a question of whether such a procedure is useful, and
this is a path we won’t take. Instead, we notice from (4.21) that a major part
of Rn(θ) consists of terms quadratic in the set of ni. This suggests that we
might be able to write down some new sort of rotation factor more simply than
that of (4.21), as long as we are prepared to multiply twice by an expression
that only has the ni linearly. Two multiplications suggest using θ/2, since
products of half-angles will give the required sin θ, cos θ terms. (For example,
sin θ = 2 sin θ/2 cos θ/2.)

The presence of both dot and cross products in (4.18) suggests that a
way forward is to make use of some sort of identity involving both of these
products. To this end, consider three abstract placeholders σ1, σ2, σ3, and
two vectors a, b. For brevity, also write σ ≡ (σ1, σ2, σ3). This is not a vector,
but merely a convenient way to write the three placeholders in one ordered
set. We will analyse the expression a·σ b·σ, granting the σ1, σ2, σ3 whatever
properties they need in order to create both a dot and a cross product.
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a·σ b·σ =
∑
ij

aiσi bjσj

=
∑

i

ai bi σ2
i︸ ︷︷ ︸=>>>>

A dot product, as long as
the σ2

i are all equal.
So set σ2

i ≡ α, a constant.

+
∑

ij, i 
=j

ai bj σi σj︸ ︷︷ ︸=>>>>
Will be a cross product, as long as
swapping i, j swaps the sign of σi σj .
So require σi σj = −σj σi.

. (4.58)

An identity linking dots and crosses now begins to take shape:

a·σ b·σ = α a·b + (a2 b3 − a3 b2)σ2 σ3

+ (a3 b1 − a1 b3)σ3 σ1

+ (a1 b2 − a2 b1)σ1 σ2

= α a·b + (a × b) · (σ2 σ3, σ3 σ1, σ1 σ2)︸ ︷︷ ︸=>
Define σ1 σ2 ≡ βσ3 and cyclic per-
mutations, where β is a constant.

= α a·b + β(a × b)·σ . (4.59)

We will try to use this identity to rewrite (4.18) in a simpler way. Because
we plan to make use of half-angles, define for brevity

s ≡ sin θ

2
, c ≡ cos θ

2
. (4.60)

Equation (4.18) becomes

r′ = r ·n n(1 − cos θ) + r cos θ + n × r sin θ

= r ·n n 2s2 + r(c2 − s2) + n × r 2sc . (4.61)

Dotting both sides of this with σ produces

r′·σ = c2r ·σ + 2sc(n × r)·σ + s2n·r n·σ − s2(r − n·r n)·σ . (4.62)

The last term, r − n·r n, can be written as a double cross product (see the
discussion on p. 36); we will also add an extra term of α(n × r)·n, which is
zero but is used to facilitate the following lines by making use of (4.59):

r′·σ = c2r ·σ +
sc

β
[αn·r + β(n × r)·σ] − sc

β
[αr ·n + β(r × n)·σ]

+ s2n·r n·σ − s2

β
{α(n × r)·n + β [(n × r) × n]·σ} . (4.63)



162 4 A Roundabout Route to Geometric Algebra

This can be rewritten in the form

r′·σ = c2r ·σ +
sc

β
n·σ r ·σ − sc

β
r ·σ n·σ

− s2

β2

[−β2n·r + β(n × r)·σ]n·σ . (4.64)

We still have the freedom to relate α and β; so set α = −β2, which allows
the brackets in (4.64) to be written as n·σ r ·σ. In that case

r′·σ = c2r ·σ +
sc

β
n·σ r ·σ − sc

β
r ·σ n·σ − s2

β2
n·σ r ·σ n·σ

=
(
c + s

β
n·σ
)

︸ ︷︷ ︸
≡Qn(θ)

r ·σ
(
c − s

β
n·σ
)

︸ ︷︷ ︸
= Qn(−θ) = Q−1

n (θ)

. (4.65)

Hence

r′·σ = Qn(θ) r ·σ Q−1
n (θ) , where Qn(θ) = cos θ

2
+ 1

β
n·σ sin θ

2
. (4.66)

Equation (4.66) is an alternative version of the basic rotation equation (4.22),
and uses half angles along with the placeholders σ1, σ2, σ3. The only demands
we made on these placeholders are that they anticommute and that

σ2
1 = σ2

2 = σ2
3 = −β2 and σ1σ2 = βσ3 (and cyclic permutations), (4.67)

which is what forms their algebra. What choices can be made for β? Two
that are generally used are β = 1 and β = i, as in Table 4.1. Historically, the
β = 1 case of quaternions was the first example of this algebra, invented by
Hamilton in 1843. Hamilton used the notation i2 = j2 = k2 = −1 to empha-
sise that he was trying to extend (4.56) to form a superset of the complex
numbers.

Table 4.1. Choices of the algebra in (4.59), where α = −β2.

Quaternions Pauli matrices

β = ? 1 i

a·σ b·σ =? −a·b + (a × b)·σ a·b + i(a × b)·σ
σ2

1 = −1 σ2
1 = +1Algebra (both are cyclic

and anticommutative): σ1σ2 = σ3 σ1σ2 = iσ3

R = ? cos θ
2

+ n·σ sin θ
2

cos θ
2
− i n·σ sin θ

2

Alternative
representation:

i ≡ σ1

j ≡ σ2

k ≡ σ3

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0

0 −1

]



4.4 Rotations Lead to Complex Numbers and Quaternions 163

If we choose to use quaternions in an effort to reproduce (4.56), we find
that (4.66) becomes

x′i + y′j =
(
cos θ

2
+ k sin θ

2

)
(x i + y j)

(
cos θ

2
− k sin θ

2

)
. (4.68)

This is more complicated than we might have hoped. But the placeholders
{i, j,k} are, in a sense, more evenly balanced than the choice of {1, i} be-
cause i, j, and k all have similar properties; for example, they all square to
give −1. So they reinforce the fact that the vector components (x, y, z) all
share an equal footing. Equation (4.68) also shows that the quaternion i is
not the extension to three dimensions of the complex number i. Rather, the
quaternion k has this role because a rotation in the xy-plane, written as x+iy
in (4.56), is really a rotation about the z-axis. There is nothing mysterious
about this; it is just the way the naming in the subject evolved. If the imagi-
nary number i had been called k from the start, there would be no confusion,
but, without the wisdom of hindsight, the naming conventions bestowed by
history are not always straightforward.

Perhaps, since (a·σ)2 = −β2|a|2, it might be more natural to set β = i.
As we’ll see in Sect. 4.5, modern usage certainly favours this choice, having
been heavily influenced by the matrix representation of spin in quantum me-
chanics. That formalism employs a matrix representation of σ1, σ2, σ3 called
Pauli matrices, which allows everyday multiplication to be used, as discussed
previously in the context of (4.57). The Pauli matrices are not the only ma-
trix choice that can represent the algebra of (4.59), but they are commonly
used. We will meet other choices in the next section.

Although (4.66) splits a rotation into two steps, each using half the ro-
tation angle, we are not free to interpret this to mean that Qn(θ) rotates a
vector by θ/2. This sort of idea surfaces in the spin formalism of quantum
mechanics. The quantum mechanical concept of spin is usually described us-
ing Pauli matrices that multiply vector representations of spin kets, known as
spinors. Equation (4.66) shows that to rotate a vector, these matrices must
be used in pairs. But in spin formalism they appear singly. Thus, acting on
a spin ket with, say, Qz(360◦) is equivalent to implementing only one step of
the two needed to actually rotate the vector through 360◦. However, this is
not the same as rotating the vector through 180◦; equation (4.66) cannot be
interpreted in that way.

4.4.1 Tidying Up the Placeholders

Obviously, we never write a numerical multiplication by including all of the
factors of 10, such as

12 × 34 = (1 × 10 + 2)(3 × 10 + 4) = etc. (4.69)

So, also, the tedious algebra of the quaternions σi is much more usefully hid-
den inside a new multiplication rule akin to the two-dimensional case (4.55),
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by defining a four-component entity that is also always called a quaternion,

(a0,a) ≡ a0 + a·σ . (4.70)

(Perhaps the set of {1, σ1, σ2, σ3} might better be called basis quaternions,
but there is no real confusion if they are not.) Multiply these quaternions
using standard rules of algebra:

(a0,a) (b0, b) ≡ (a0 + a·σ) (b0 + b·σ)

= a0b0 − β2a·b +
(
a0b + b0a + β a × b

)·σ
=
(
a0b0 − β2a·b, a0b + b0a + β a × b

)
. (4.71)

Although not commutative, this multiplication certainly is associative. It is a
natural extension of the complex number case (4.55). Choosing β = 1 defines
what is conventionally called quaternion multiplication. To rotate a vector r
through θ around unit vector n using quaternions, (4.66) becomes

(0, r′) =
(
cos θ

2
,n sin θ

2

)
(0, r)

(
cos θ

2
,−n sin θ

2

)
. (4.72)

As an example, on p. 153 we used a matrix to rotate (0, 1, 1) by 90◦ about
the y-axis, giving (1, 1, 0). In contrast, the quaternion approach gives

(0, r′) =
(

1√
2
,

1√
2
(0, 1, 0)

)
(0, 0, 1, 1)

(
1√
2
,
−1√

2
(0, 1, 0)

)
=

1
2

(1, 0, 1, 0) (0, 0, 1, 1) (1, 0,−1, 0)

= (0, 1, 1, 0) , (4.73)

so that the result is (1, 1, 0) as expected.
Combining two rotations using quaternions is straightforward. A rotation

of Q1 followed by Q2 gives

(0, r′) = Q2 Q1 (0, r)Q−1
1 Q−1

2 = Q2 Q1 (0, r) (Q2 Q1)−1, (4.74)

so that the corresponding rotation quaternion is Q2Q1 (i.e., simply a product,
just as for matrices). This allows us to use quaternions to redo the example of
Sect. 4.3 in which two 90◦ rotations around the x- and y-axes were combined
into a single resultant:

resultant quaternion =
(

1√
2
,

1√
2
(0, 1, 0)

) (
1√
2
,

1√
2
(1, 0, 0)

)
=

1
2

(1, 0, 1, 0) (1, 1, 0, 0) =
1
2

(1, 1, 1,−1)
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=

(
1
2
,

√
3

2
(1, 1,−1)√

3

)
=
(

cos 60◦,
(1, 1,−1)√

3
sin 60◦

)
, (4.75)

which implies θ = 120◦ and n = (1, 1,−1)/
√

3, just as we found in (4.52).

Quaternion Identity and Length. It can easily be seen that the identity for
the multiplication of (4.71) is (1,0) regardless of β, in which case (a0,a) has
multiplicative inverse

(a0,a)−1 =
(a0,−a)

(a0)2 + β2|a|2 . (4.76)

If we define the conjugate of (a0,a) to be (a0,a)∗ ≡ (a0,−a), then by analogy
to complex numbers, the product (a0,a)(a0,a)∗ should be the squared length
of (a0,a) times the identity, and this serves to define the length

∣∣(a0,a)
∣∣:

(a0,a)(a0,a)∗ = (a0,a)(a0,−a) =
[
(a0)2 + β2|a|2] (1,0) ≡ ∣∣(a0,a)

∣∣2 (1,0) .
(4.77)

In that case, (4.76) can be written as

(a0,a)−1 =
(a0,a)∗

|(a0,a)|2 . (4.78)

(It’s written in this way with the conjugate to highlight the similarity with
the reciprocal of a complex number z, being z−1 = z∗/|z|2.) With the choice
β = 1 for quaternion multiplication,

∣∣(a0,a)
∣∣2 = (a0)2 + |a|2, which is just

the squared length of a vector in four-dimensional euclidean space E
4. In

particular, rotation quaternions (cos θ/2, n sin θ/2) have unit length, forming
the quaternion analogy to the unit determinant and orthogonality of a rota-
tion matrix. This will have an important use in Sect. 4.6.3, where we treat
quaternions as vectors in E

4.

Matrix Representatives of Quaternions

The choice of β = 1 for quaternions in Table 4.1 can be combined with a
matrix representation of the placeholders σ1 to σ3 to produce a 2× 2 matrix
representation of quaternions, simply by writing the quaternion (a0,a) as the
sum in (4.70). We could use the Pauli choice of matrices, but there are others.
A more symmetric choice in terms of a natural grouping of the quaternion
elements a0 to a3 results if we choose

σ1 = i

[
1 0
0 −1

]
, σ2 = i

[
0 −i

i 0

]
, σ3 = i

[
0 1
1 0

]
, (4.79)

which again obey σ1σ2 = σ3 and cyclic permutations, along with σ2
i = −1,

the correct algebra for quaternions. In that case, (4.70) becomes
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(a0,a) = a0 + a·σ =
[

a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

]
=
[

z w
−w∗ z∗

]
,

where z ≡ a0 + ia1 , w ≡ a2 + ia3 . (4.80)

Rotation quaternions having unit length implies that |z|2 + |w|2 = 1. These
numbers z and w are known as Cayley–Klein parameters, used historically in
rotational motion calculations.

With this 2 × 2 matrix representation, the rotation example in (4.73) is
written as

(0, r′) =
(

1√
2
,

1√
2
(0, 1, 0)

)
(0, 0, 1, 1)

(
1√
2
,
−1√

2
(0, 1, 0)

)
=

1
2

(1, 0, 1, 0) (0, 0, 1, 1) (1, 0,−1, 0)

=
1
2

[
1 1

−1 1

] [
0 1 + i

−1 + i 0

] [
1 −1
1 1

]
=
[

i 1
−1 −i

]
= (0, 1, 1, 0) , (4.81)

so that the rotated vector is (1, 1, 0) as before.
Finally, quaternions can be represented by 4× 4 matrices (along with the

usual matrix multiplication), such as

(a0,a) =

⎡⎢⎢⎣
a0 a1 a2 a3

−a1 a0 −a3 a2

−a2 a3 a0 −a1

−a3 −a2 a1 a0

⎤⎥⎥⎦ , (4.82)

although this is a very redundant way to encode the information necessary
for a rotation. Even so, this last matrix is seen to be composed of four blocks:
a0,a,−at, and a0 + a×, the last of which shows its rotation pedigree.

4.5 Producing a “Geometric” Algebra

Although we have used the language of vectors to develop quaternion ideas,
historically it happened the other way around. Quaternion algebra was in-
vented first, by Hamilton, and enjoyed a great popularity as well as giving
birth to much important work in physics. Vectors came later, and with the
invention of the dot and cross products for vectors, users of quaternions and
vectors split into two camps. This is partly an accident of history, since it’s
only natural that the beginnings of this type of analysis should have seen dif-
ferent versions of what were essentially the same structures. Confusion and
arguments over how everything was related saw quaternion algebra begin to
fade into obscurity.
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Adding to the emerging view that quaternions were “just” a mathemati-
cal curiosity was the invention of an eight-dimensional set of objects called
octonions, which happened immediately after quaternions first appeared and
was directly due to them. But while quaternions are not commutative, oc-
tonions are neither commutative nor associative. This lack of associativity
makes them very difficult to use (try inverting a simple octonion equation!),
and what role octonions might play in physics, if any, remains unclear.

But the idea of reuniting quaternion and vector ideas has been worked
on heavily in recent years by David Hestenes, and in this section we wish to
outline some introductory ideas of the geometric algebra that he has popu-
larised.1

We saw earlier in this chapter that the Pauli matrices can be used to
represent the set {σ1, σ2, σ3}, and together with the identity matrix they
form a basis for 2× 2 matrices. But σ1, σ2, σ3 are abstract entities that obey
a certain algebra and are not matrices per se; we can represent them by
anything useful. For example, representing them by matrices allows matrix
multiplication to be used in their algebra, making the various theorems of
matrix analysis available to us.

But it’s not hard to show that if we are prepared to invent a new sort of
multiplication, we can represent σ1, σ2, σ3 by the familiar basis vectors of R

3.
The many expressions in Sect. 4.4 with the form a·σ, as well as the approach
of writing quaternions as four-component entities, suggest that σ1, σ2, σ3

might usefully be considered as basis vectors in some new space, so that
a·σ = a1σ1 + a2σ2 + a3σ3 implies that the components of the vector a in
this new space are (a1, a2, a3). In that case, (4.59) could be written much
more elegantly as

ab ≡ −β2a·b + β a × b . (4.83)

This amounts to a new form of vector multiplication. The Pauli choice of β = i

gives one form of the geometric vector product (which we’ll refine on p. 169):

ab ≡ a·b + i a × b (“early” definition). (4.84)

The fact that we are adding a number to a (complex) vector presents no diffi-
culty, since this equation just encapsulates everything we have done up until
now but in a tidier format. Adding dissimilar entities is no different from
adding real and imaginary parts when forming complex numbers; such an
addition is simply a device to process two entities in parallel using techniques
with which we are comfortable, such as real-number multiplication. Equa-
tion (4.84) forms the entry point into the modern field of geometric algebra,
which makes one of its aims the simplification and unification of diverse fields
1 See, for example, New Foundations for Classical Mechanics by David Hestenes

(1986, D. Reidel Publishing), and also Hestenes’ paper “Oersted Medal Lec-
ture 2002: Reforming the mathematical language of physics” in the American
Journal of Physics, 71, 104–121 (February 2003).
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in mathematical physics. As a simple example, the rotation of (4.66) can now
be written

r′ =
(
cos θ

2
− in sin θ

2

)
r
(
cos θ

2
+ in sin θ

2

)
= e−inθ/2 r einθ/2 , (4.85)

where the exponential form follows by considering the relevant exponential
series, making use of the geometric vector product.

In the geometric vector product (4.84), σ1, σ2, σ3 have disappeared en-
tirely and need not be considered again; their algebra has been taken over by
the basis vectors e1,e2,e3, since, for example, (4.84) gives

e2
k = ek ·ek + i ek × ek = 1 for all k, and

e1e2 = e1 ·e2 + i e1 × e2 = i e3 (and cyclic permutations), (4.86)

exactly mimicking the algebra of σ1, σ2, σ3. Thus, we can even discard the
idea of a new space mentioned just before (4.83). The vectors exist in the
usual space with basis vectors e1,e2,e3, and the new algebra (4.86) of the
basis is what supports the geometric product.

The Geometric Product and Maxwell’s Equations

The electromagnetic field forms a good instance of the unifying power of the
geometric product. In Chap. 8 we’ll see that the nabla operator ∇ (also called
del) actually behaves as a vector, so in that case write

∇E = ∇·E + i∇×E . (4.87)

Nabla acting on a cartesian vector is usually understood to act on each
of its components individually; that is, usually ∇E is understood to mean
(∇Ex,∇Ey,∇Ez). But here we are using it in the novel way of geometric
algebra. If we now write Maxwell’s equations,

∇·E =
�

ε0

, ∇×E =
−∂B

∂t
,

∇·B = 0 , ∇×B =
j

ε0c
2

+
1
c2

∂E

∂t
, (4.88)

we see that they combine to give

∇E =
�

ε0

− i
∂B

∂t
, ∇B = i

j

ε0c
2

+
i

c2

∂E

∂t
. (4.89)

Suppose we form a new vector F ≡ E + kB, where k is some constant, so
that ∇F is determined by (4.89). It’s useful to mimic the wave equation for
the electromagnetic field, albeit with first derivatives instead of second ones,
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and to do this we wish to relate ∇F to ∂F /∂t. Calculating ∇F from (4.89)
shows that this can be arranged if k2 = −c2, so set k = ic and write

F ≡ E + icB , (4.90)

in which case Maxwell’s equations can be written as one expression:(
∇ +

1
c

∂

∂t

)
F =

1
ε0

(
� − j

c

)
. (4.91)

The goal of the modern field of geometric algebra is to gain insight into
physical laws based on such simple unifying expressions. As an example of
the usefulness of F , consider mimicking the expression for the electric field
density ε0|E|2/2, but now for F , where we make use of the complex conjugate
F ∗ ≡ E − icB:

ε0

2
FF ∗ =

ε0

2
(F ·F ∗ + i F × F ∗)

=
ε0

2
(|E|2 + c2|B|2)︸ ︷︷ ︸
= energy density

+ ε0cE × B︸ ︷︷ ︸
= Poynting vector/c

. (4.92)

Besides the energy density for the entire field now appearing, what has also
emerged for free is the Poynting vector, the flux density of field energy! (Flux
density will be defined in Chap. 6, where again it will be seen to pair naturally
with a spatial density.) Of course, we cannot know without experimental
input that this new vector term should very well be a flux density, but the
fact that it has appeared hand in hand with the spatial energy density is very
suggestive that some sort of unification has taken place. We’ll meet a similar
idea with the continuity equation in (10.165). And, in the coming chapters,
we will investigate the tensor approach to unifying spatial and flux densities,
such as those of rainfall, along with the charge and current densities � and j.
We’ll also see the tensor approach to unifying the fields E and B.

A More Refined Geometric Product

In fact, the basic definition of the product used in geometric algebra is a little
different from (4.84). Using the wedge product that we first met in Sect. 2.4.4,
the geometric product can be defined more generally as

ab ≡ a·b + a ∧ b , (4.93)

and like the wedge product, is defined to be associative. How does this defini-
tion relate to (4.84)? Write a and b as linear combinations over their bases,
so that their product is

ab =
∑
ij

aiei bjej =
∑
ij

aibjeiej . (4.94)
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However,
e1e2 = e1 ∧ e2 = −e2 ∧ e1 = −e2e1 (4.95)

along with cyclic permutations, so that swapping basis vectors changes the
sign of the product. Also, e2

i = 1 for all i, so that we can write

e1e2 = e1e2e3e3 . (4.96)

But the product e1e2e3 can be squared by permuting its factors to bring like
ones together, and then using the fact that e2

i = 1 for all i:

e1e2e3 e1e2e3 = −e1e2e3e3e2e1 = −e1e2e2e1 = −e1e1 = −1 . (4.97)

So because (e1e2e3)
2 = −1, we make the identification

e1e2e3 = i . (4.98)

This identity allow (4.96) and its cyclic permutations to be written as

e1e2 = ie3 , e2e3 = ie1 , e3e1 = ie2 , (4.99)

which we have already seen in (4.86). The product (4.94) becomes, for exam-
ple with (a × b)1 denoting the x-component of a × b,

ab = a·b +
(
a1b2 − a2b1

)
e1e2 +

(
a3b1 − a1b3

)
e3e1 +

(
a2b3 − a3b2

)
e2e3

= a·b + (a × b)3 ie3 + (a × b)2 ie2 + (a × b)1 ie1

= a·b + i a × b , (4.100)

which now matches (4.84)! So the identification of e1e2e3 with i forms the
bridge that relates the two definitions (4.84) and (4.93) of the geometric
product. Such correspondences between different concepts form the bread
and butter of geometric algebra.

The language and ideas of geometric algebra have gained in acceptance in
the few decades since it was first popularised, and a large amount of mathe-
matical physics has been converted to its language. Hopefully the insights it
provides will find themselves incorporated into the“common”physics tongue,
helping it to evolve in a useful direction.

4.6 Rotations in Popular Usage

(The rest of the material in this chapter is very applied in its nature, and
apart from briefly mentioning the idea of parallel transport, does not intro-
duce any new concepts that are central to mathematical physics. However,
it has been included to address some points and misconceptions that are
common in rotation literature. For some, these misconceptions even inspire
strange ideas of a breakdown of the relevant mathematics, but it is nothing
more than a result of rotation theory being applied incorrectly.)
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Users of rotation theory in applied work, such as the aerospace industry
and computer graphics programming, rarely have the luxury of delving into
the subject’s intricacies. They usually need to perform rotations for quite
complicated scenarios and often have no more than recipes to guide them.
What they find in the literature is a large amount of information about
rotations around fixed axes, nonfixed axes, active rotations, passive rotations,
and apparent problems with rotations, together with intricacies of the use of
matrices and quaternions, conjugate operations, and any number of other
ideas all of which act to obfuscate the subject and make it seem harder than
it really is. In this section we will briefly consider some of these ideas in the
light of the fundamental building block of rotation that was given at the start
of this chapter and stressed in the box on p. 158: that every rotation consists
simply of turning one vector about another.

4.6.1 Describing an Orientation by Using Three Rotations

An important concept in aerospace theory is the fact that an arbitrary orien-
tation of a body can be produced by at most three successive rotations around
the space-fixed x, y, z-axes, through angles known as Euler angles. To prove
this, it’s perhaps easier to visualise the process in reverse. Start by visualising
the orientated body, where arrows aligned with the basis vectors ex,ey,ez

were frozen into the body in its base position, and they had eventually been
transformed into eX ,eY ,eZ as the body’s orientation was changed. Return
the body to its base position, and ask how these eX ,eY ,eZ vectors can be
mapped back onto the ex,ey,ez vectors using three rotations. We have not
drawn a picture, since Euler angle pictures of three-dimensional rotations are
notoriously difficult to comprehend; what is very useful is for the reader to
make a set of wire axes with labels to help follow the sequence of rotations.

1. First rotate the body around the z-axis such that eX comes to rest in
the xz-plane.

2. Now rotate the result around the y-axis such that eX lines up with the
x-axis.

3. Finally, rotate the result around the x-axis such that the newly rotated
eY ,eZ line up with the y- and z-axes, respectively.

This procedure will return the body to its base orientation in three rotations
around the space-fixed axes. The reverse operation yields the correct order
that we have chosen to rotate through the Euler angles. In practice, there
are many different conventions for specifying Euler angles, but three angles
are always sufficient. Some authors leave one axis out and repeat another,
so that the orientations are performed around, for example, the x-axis, then
the y-axis, and then the x-axis again. All similar choices of three distinct
rotations will also work, such as z, y, z, etc.—but not, e.g., z, y, y, since this
is really only two distinct rotations.
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A set of three Euler angles around fixed axes is fine for specifying the
orientation of a body. But turning through these angles is certainly not what
the pilot of a manoeuvring aircraft does. An aircraft carries three orthogonal
basis vectors with it as it flies. Conventionally,

– ex points through its nose in the forward direction,
– ey points out along its right wing, and
– their cross product ez points below the aircraft.

These three vectors are specified in some fixed, global frame within which
all calculations can be performed, and they can change continuously in that
frame. The pilot can roll around ex, pitch around ey, and yaw around ez. Any
combination of yaw–pitch–roll angles will reorientate the aircraft, and these
three angles are also referred to as Euler angles, even though they describe
rotations around the latest positions of ex,ey,ez, not the space-fixed axes. A
more everyday example of this type of Euler set is provided by orientating a
telescope. We might sight a star by first rotating the telescope to the correct
azimuth (the astronomical term for bearing), and then rotating about the
latest position of the elevation axis to set the correct elevation.

The various manoeuvres of an aircraft are easy to follow in a global, fixed
frame, such as the Earth-centred, Earth-fixed frame. For example, when the
aircraft rolls, we simply rotate each of its basis vectors around the latest ex,
giving three new vectors (one of which, ex, is unchanged, but is still part
of the new trio). Similarly, a pitch entails rotating each basis vector around
the latest ey to give three new ones, and a yaw does the same for the lat-
est ez. Finally and importantly, the coordinates of, say, the Moon in the
frame of the aircraft are then simply found by forming three dot products of
the vector from the aircraft to the Moon (in the global frame), with the basis
vectors that specify the latest orientation of the aircraft in the global frame.
In practice, these three dot products can be calculated using a 3 × 3 matrix
multiplication.

Confusing Which Frame is Being Used for the Rotation

This is a convenient place to point out some rotation terminology. Rotating
a vector in, say, the xy-plane is sometimes called an active rotation. Equiv-
alently, we might leave the vector fixed and rotate the x- and y-axes in the
opposite direction; this is sometimes called a passive rotation. In the author’s
opinion the distinction is neither natural nor useful, and in more complicated
scenarios it is not even particularly well defined. We have dealt solely with
active rotations in this chapter (and will continue doing so). Ultimately, ev-
ery rotation is implemented by rotating one vector around another, and this
includes rotating the basis vectors that determine the axes of a frame. Thus
any passive rotation must be implemented by an active rotation, so we will
not use these terms any further.

Now, consider rotating the set of axes that are tied to the body of a
manoeuvring aircraft. In the example above of finding the position of the
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Moon in the manoeuvring aircraft’s frame, we rotated the aircraft’s basis
vectors in a global frame, and found the Moon’s coordinates with respect to
the reorientated basis vectors by using dot products. This is necessary if we
are to use Newton’s laws to follow the motion of the aircraft in an inertial,
or approximately inertial, frame attached to Earth. On the other hand, if we
know how the aircraft manoeuvres, we might mentally sit inside it, treating
it as stationary, and rotate the Moon around it.

So, when we remain in the aircraft’s frame, which is by definition fixed,
the vector from this frame’s origin to the Moon turns around the aircraft.
After each yaw, pitch, and roll, the updated version of this vector is found
by rotating it around one of three fixed axes—because the aircraft does not
move in its own frame. (The Moon will also translate as the aircraft flies, but
this is not important to the current discussion.) Thus, the Earth frame’s view
of rotating the plane’s basis vectors around latest versions of each other, and
then finding dot products of these with the vector pointing from the aircraft
to the Moon, is identical to rotating this “aircraft-to-Moon” vector around
space-fixed axes in the same order but in the opposite direction. All that we
have done is switch our frame from, e.g., an Earth-centred Earth-fixed frame
to that of the aircraft.

Many users of rotation theory rotate vectors in the aircraft’s frame, so
that their rotation matrices tend to be the well-known simple ones ob-
tained from (4.22) by setting n to be each of the aircraft’s axes in its own
frame. These are, by definition, the unchanging basis vectors

[
1 0 0

]t
,
[
0 1 0

]t
and
[
0 0 1

]t. But despite the fact that the three resulting rotation matrices
deal with a manoeuvring aircraft from the frame of the aircraft, they are com-
monly described as rotating around the latest versions of moving axes. This
is misleading. The three matrices rotate around an unchanging set of three
body axes; it is just that the frame being used is that of the aircraft, and this
frame defines these body axes to be fixed in (the body’s) space. The world is
now considered to rotate around the aircraft. This is an important point to
be aware of when reading aerospace rotation literature. Such literature might
describe an aircraft being rotated in an Earth-centred, Earth-fixed frame,
and then, in an apparently contradictory fashion, will derive results using
matrices for the three simple space-fixed axes a few lines up (which imply
computations in the aircraft’s frame). Mixing the use of the two frames in
such a way requires a careful description of the procedure being followed. This
is seldom, if ever, given. Relevant here is the discussion in the box on p. 158.

Making Rotation Almost Commutative

Let’s revisit a rotation result first calculated in Sect. 2.5. There, it was shown
that two noninfinitesimal rotations can be swapped in a restricted sense, with
the proviso that we modify one of the axes. The result was expressed in (2.68):

Rx′(β)Rz(α) = Rz(α)Rx(β) . (4.101)
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In the case of rotating any vector in an aircraft, and working in, say, an
Earth-centred, Earth-fixed frame, (4.101) describes

– via its left-hand side, a yaw around the below-aircraft vector ez (i.e. a ro-
tation Rz(α) of any vector fixed to the aircraft), followed by a roll Rx′(β)
around the aircraft’s latest nose direction, ex′ , the result of which is iden-
tical to

– the rotations of its right-hand side, which are both about initial basis vec-
tors: first a roll around the nose direction ex, and then a rotation around
the initial below-aircraft direction, ez, which, if the roll was nonzero, is
not a yaw.

Although the rotations have been changed from being around latest axes to
being around initial axes, the procedure of (4.101) is not the same idea as
the use of the above Earth and aircraft frames involving the Moon, since
the rotations of (4.101) rotate the same vector in the same frame, and have
reversed their order from one side of that equation to the other. In contrast,
the scenario involving the Moon was different. It dealt with rotating different
vectors in different frames, but keeping the order of rotations unchanged:

– rotating the aircraft’s basis vectors around latest versions of one another
in an Earth-centred, Earth-fixed frame, versus

– rotating the aircraft-to-Moon vector, in the same order but in opposite
directions, around body axes in the aircraft’s frame. These axes are, by
definition, space-fixed in that frame.

The rotation reordering of (4.101) can be extended to any number of
Euler rotations. For example, suppose the pilot yaws through angle α about
the below-aircraft direction, ez, then pitches by β about the new right wing
direction, ey′ , and then rolls by γ about the latest forward direction, ex′′ :

Rx′′(γ)Ry′(β)Rz(α) . (4.102)

We can swap rotations in pairs by way of (4.101) to reverse this sequence:

Rx′′(γ)Ry′(β)Rz(α) = Ry′(β)Rx′(γ)Rz(α)

= Ry′(β)Rz(α)Rx(γ)

= Rz(α)Ry(β)Rx(γ) . (4.103)

So, the final orientation of the aircraft could also have been obtained by
rotating about the initial vectors ex,ey,ez in that order, with the angle
order reversed. No pilot flies this way, but (4.103) proves the important point
that the order of specifying Euler angles is somewhat reversible, as long as all
of the initial axes are used in place of always rotating about the latest ones.
This theorem is useful, but it can cause confusion if invoked without warning.
Certainly rotation literature is not above speaking of rotation about the latest
basis vectors, just as a pilot would fly—and then using rotation formalism
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that only uses the initial vectors, along with a rotation order that has been
reversed for no apparent reason. Or, it might keep the original rotation order
but now rotate in the opposite direction around space-fixed axes (as in the
above Moon discussion)—with the switched direction perhaps hidden behind
a left-handed rotation convention. We see now why it all works, although
probably there are times in the literature where rotations have been ordered
in whatever ad hoc way will give the “right” answer!

Additionally, a convention is sometimes used that reads expressions such
as Rx(α)Ry(β) as acting from left to right, which can make it appear as if the
rotation order of the previous paragraph had not been reversed after all. The
matrix expressions of the whole rotation formalism might also be transposed
from what we have written in this chapter, which not only transposes each
matrix, but reverses their order, because (AB)t = BtAt. The resulting matrix
then postmultiplies a row vector to rotate it. Not surprisingly, confusion is
common in this topic due to different conventions not always being defined.
The bottom line is that we should always make clear precisely what is being
done when a three-dimensional rotation is carried out: what vectors are being
rotated about what axis vectors, in what frame, and in what order.

An Alternative View of Rotation Noncommutivity

Picturing the various rotations involved with Euler angles can be difficult,
whether rotating around original axes or new axes. Easier to visualise is the
method shown in Fig. 4.5. In this figure, we show the idea of this restricted
commutivity for y and z rotations through angles α (like a latitude on Earth)
and ω (like a longitude).2 Path 1© consists of first rotating each of ex,ey,ez

around ez by ω (equivalent to rotating them all around the z-axis in the
figure), and then rotating the resulting vectors ex1 ,ey1 ,ez1 around ey1 by −α;
the minus sign is immaterial, being an artifact of the sign convention for
latitude.

In contrast, path 2© consists of first rotating the initial vectors ex,ey,ez

around ey by −α to give ex2 ,ey2 ,ez2 , and then rotating each of these
around ez (not ez2 !) by ω. The results are identical:

Ry1(−α)Rz(ω)︸ ︷︷ ︸
path 1©

= Rz(ω)Ry(−α)︸ ︷︷ ︸
path 2©

. (4.104)

This just matches (4.101), as we might expect. This way of visualising rota-
tions can be applied to any sort of convoluted rotation path connecting the
initial and final basis sets. There can be all manner of zig-zags and switch-
backs to the path. We can also picture an additional rotation: the initial and
final bases being rotated by a bearing angle β around their x- and X-axes.
To do the three rotations via path 1©, some study of the figure shows that
2 Since latitude and longitude both start with the same letter, we have chosen the

Greek variables to match the second letter of each word.



176 4 A Roundabout Route to Geometric Algebra

x

y

z

ex

ey

ez

ex2
ey2

ez2

ex1

ey1

ez1

eX

eY
eZ

2©
2©

1©

1©
α

α
ω

initial
orientation

final
orientation

Fig. 4.5. The“almost-commutivity”of rotations can be seen by picturing a rotation
as sliding the basis-vector set over a sphere. Compare dashed path 1© with dotted
path 2© as representing alternative rotation methods converting the set ex, ey, ez

to eX , eY , eZ . Both paths give the same result but by way of different rotations,
producing the intermediate basis sets ex1 , ey1 , ez1 and ex2 , ey2 , ez2 . Path 1© is
actually an example of parallel transport, which we’ll meet again in Chap. 9.

this bearing turn must be left until last, while in path 2© it must be done
prior to any other rotation. Hence,

RX(β)Ry1(−α)Rz(ω)︸ ︷︷ ︸
path 1©

= Rz(ω)Ry(−α)Rx(β)︸ ︷︷ ︸
path 2©

. (4.105)

As expected, the rotation orders of (4.105) match the reversal seen in (4.103).
And as a side note, the movement of vectors along path 1© is actually an
example of the notion of parallel transport, an idea that we’ll investigate
properly in Chap. 9.

4.6.2 Confusing Euler Angle Orientation with
Incremental Rotation

As we have seen, an object’s orientation can be specified by three Euler
angles through which the object can be turned in some preset order from
a base position, which will result in the required orientation. This is useful
and unambiguous, but it leads to much confusion when implemented in a
particularly rigid way.
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The situation can be shown as follows. Suppose we have written a com-
puter programme that draws some object that we require to rotate at will.
Attached to the computer are three levers each of which can be moved along
a scale that reads 0◦ to 360◦. These levers allow us to rotate the object about
each of the fixed x, y, z-axes. Moving each lever by itself should have the ef-
fect of rotating the object about the appropriate axis. We can move any of
these levers at any time, and the software, using very fast processing, will
calculate the rotations so quickly that the response is effectively immediate.
Modern computers do this very easily. To simplify the discussion, we will as-
sume that the computer only redraws the object after the lever being moved
has come to rest. (In practice, the lever positions are sensed almost continu-
ously by the computer, so that the object seems to move continuously. But
our simplification suffices for the following discussion.)

The scenario is shown in Fig. 4.6. When we start the programme run-
ning, the object is drawn in its base position, and each of the three levers
is automatically parked at its home position, corresponding to 0◦. If we now
move the x-lever to read 10◦ and leave the two other levers at zero, then the
programme should read the 10◦ and apply a rotation of Rx(10◦) to the ob-
ject. If we wish to rotate the object through a further 5◦, we move the x-lever
to 15◦. The programme should sense the increment of 5◦ and apply a rotation
of Rx(5◦) to the already rotated object. If it does this, the object will rotate
to match our intuition. So moving the x-lever backward and forward along
its whole range will have the required effect: the object will rotate backward
and forward about the x-axis. Similarly, if we shift only the y-lever back and
forth, or only the z-lever, the same sort of intuitive results occur.

Suppose we now shift two of the levers; we’ll ignore the z-lever, as it’s
not needed in the following discussion. Start with all levers at zero and with
the object drawn in its base orientation. Then move the x-lever to 10◦. The
rotation is Rx(10◦), so the object rotates around x by 10◦. Now set the y-lever
to 10◦. This rotates the already rotated object about the y-axis by 10◦. So
far, the behaviour matches what we expect. The history of the rotations can
be summed up in the factor Ry(10◦)Rx(10◦), rotating the object from its
base orientation. Of course, there is no need to rerotate the object through
the whole history from its base position each time we move a lever; the latest
lever increment is all that is needed. But keeping a close eye on the history
is useful for understanding what happens next.

Now suppose we wish to rotate the object a further 5◦ about the x-axis.
So, we move the x-lever a little further over to the 15◦ mark. The rotation
history now should be the factor Rx(5◦)Ry(10◦)Rx(10◦), again rotating the
object from its base orientation.

Unfortunately, and perhaps surprisingly, computer programmes that pur-
port to do the above in fact often do something quite different. What they
do is interpret the three lever positions as Euler angles that are to be used to
specify an orientation from an unchanging base position. Each time any one
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Fig. 4.6. Widespread confusion over the use of Euler angles to display and change
an object’s orientation within a graphical computer programming environment is
shown by the two scenarios depicted, above and below the dashed line. Above:
What the programmer requires, which corresponds to good common sense, is the
ability to alter sliders that change the orientation of an object around the x- and
y-axes. Changing one slider at a time performs one incremental rotation of the
current orientation. The results always match our intuition, and no problems are
encountered. Below: What is typically programmed into software is that every time
one of the sliders is moved, all slider settings are read and treated as Euler angles,
and the resulting three rotations (or two in the example shown) are then applied in
an unchanging order (x, then y above) to the base orientation. This is an unnatural
way to allow a computer user to change an object’s orientation, and because it does
not apply the rotations in the order that the user applied them to the sliders, wrong
orientations will eventually result. This simple mistake in applying rotation order
is conventionally blamed on Euler angles instead of where the fault really lies: with
an incorrect use of rotations.

lever is moved, the programme rereads all of the current lever positions. It
then applies all of the rotations in a set order, arbitrarily chosen but rigidly
adhered to.

Suppose that this order is first the x-rotation, then the y-rotation (and fi-
nally z, which we’re ignoring here). In the case above, the first two lever
movements work well. The rotations performed are first Ry(0◦)Rx(10◦)
on the base orientation and then Ry(10◦)Rx(10◦) on the base orientation.
Now, what happens with the third slider movement? It produces a rotation
of Ry(10◦)Rx(15◦) on the base orientation. But this is not what we wanted!
This rotation is equivalent to Ry(10◦)Rx(5◦)Rx(10◦) on the base orienta-
tion, which differs from what we wanted [Rx(5◦)Ry(10◦)Rx(10◦)]. A careful
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comparison shows that two of the rotations have become swapped. And be-
cause rotations are not generally commutative, such a swap will only result in
behaviour that differs from what we wanted. Also, the high processing speed
of modern computers means that this wrong behaviour is so responsive to the
sliders that it’s all too easy to think that the object really is being rotated
according to the incremental slider adjustments, as opposed to their latest
positions.

It should be clear that the more we push the levers to and fro, the more
the resulting rotations of the object will depart from what we require the pro-
gramme to be doing. Although the mathematics and the computer software
have done exactly what was asked of them, the programme does not match
what we normally expect levers to do, especially after we have experimented
with each lever individually. Using this approach to changing an object’s ori-
entation interactively is like adding up a restaurant bill using the modulo-12
system of clock arithmetic: while the mathematics is valid and correct, and is
doing what it’s asked to do with no singularities and no problems, the answer
that we will get is completely unrelated to what we set out to compute. But
the blame certainly does not lie with clock arithmetic.

If the programme has really been written not to rotate incrementally,
but rather to read all three lever positions and apply a rotation about the
base orientation (i.e., giving unintuitive results), then any confusion over the
effects of the levers will probably reach its worst if now all three levers are
used. The x-lever is set to an angle α, the y-lever is set to −90◦, and the
z-lever is set to γ; these can be set in any order because after each lever
is moved, the programme rotates the base orientation by the latest values
it reads from all of the lever settings. So when the third lever is moved,
irrespective of which one it was, the programme rotates the base orientation
by Rz(γ)Ry(−90◦)Rx(α). However, because the following identity holds for
all angles α, γ,

Rz(γ) Ry(−90◦) Rx(α) =

⎡⎣0 − sin(α + γ) − cos(α + γ)
0 cos(α + γ) − sin(α + γ)
1 0 0

⎤⎦ , (4.106)

the total rotation—being a function only of the sum of the x- and z-lever
angles—will not distinguish between the positions of the x- and z-levers.
Thus, moving either of the x- and z-levers has the same effect, making it
appear that we have lost one rotation axis somewhere, as if, to use an oft-
quoted phrase, “the x-axis has been rotated onto the z-axis” (!) But the x-,
y-, and z-axes are always perpendicular of course; they are not collapsible,
and the idea that one has somehow been rotated onto another is nonsense.
The software is doing exactly what it was designed to do, but unfortunately
that design often matches neither our intuition nor what the programmer
really intended in the first place.
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Fig. 4.7. A spinning flywheel forms a simple inertial navigation system, where the
flywheel’s axis defines the vertical direction used by the autopilot. From the attitude
pictured, the aircraft can pitch (nose up/down) and yaw (nose left/right), but any
attempt to roll (wing tips up/down) will force the flywheel out of its spin plane,
causing the inertial navigation system to react strongly. This is a very schematic
and simplified example of gimbal lock, which is sometimes wrongly thought to be a
fault inherent in describing rotation about fixed axes. Rather, gimbal lock is purely
a mechanical problem, albeit one that lends its name to numerical instabilities in
some algorithms used to perform complex rotational calculations.

Additionally, because Euler angles were used incorrectly in performing
what we thought would be incremental rotations, they routinely get blamed
for what is purely a wrong use of rotation theory.

The apparent loss of one axial degree of freedom resulting from this pro-
cedure is often erroneously labelled gimbal lock, being confused with a real
mechanical problem suffered by some gyroscopes that give directional stabil-
ity to aircraft. In a real gyroscope, axes are set on hinges and can line up;
this can sometimes act to remove a degree of freedom from the system that
uses the gyroscope.

To picture why this might be, imagine a very simple (and not very useful)
example of a system that helps an aircraft be stable: a horizontal spinning
flywheel carried on a yoke attached to hinges at each side of the fuselage as
in Fig. 4.7, and held underneath the aircraft as it flies straight and level. The
flywheel’s spin axis determines the up/down direction used by the autopilot
to help keep the aircraft on course. The aircraft can pitch up and down and
change its heading from straight and level without affecting the flywheel’s
motion. But if the human pilot tries to tilt one wingtip up and the other
down, the flywheel will be forced out of its spin plane, with perhaps disastrous
consequences as the autopilot tries to correct what it thinks is a serious
instability. This is an oversimplification of a real system, because we have not
provided a whole set of flywheels on movable axes (“gimbals”) of which two can
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line up. But it certainly does encapsulate the problem that can happen with
some gyroscopes when the aircraft’s attitude reaches some extreme position.

An everyday example of gimbal lock occurs when we tighten a nut with a
universal joint ratchet spanner. These spanners incorporate two small hinges
at right angles to each other, and are very useful for tightening nuts around
corners, where the axis of the ratchet motion does not line up with the nut’s
rotation axis. But as the relative position of these two axes approaches a
right angle, it becomes more difficult to turn the spanner; and when the
axes are at a right angle, the mechanism locks up entirely.

Two Euler angles also describe how we sight a telescope with a standard “al-
tazimuth” tripod. When the telescope is pointed nearly overhead, it becomes
difficult to move easily because the closer we come to pointing it at the zenith,
the more its azimuthal motion (motion about the vertical axis) constrains its
tube to making smaller movements. This means that small movements around
the zenith translate to large changes in the azimuthal angle, which can be
difficult to achieve evenly. Mechanically, this constriction of the movement is
also an example of gimbal lock.

If the telescope is tracking a fast-moving aircraft, rapid changes in the
azimuth angle can be difficult to cope with in any numerical processing that
goes with the tracking, so the term gimbal lock has also come to be applied to
instabilities or difficulties in any numerical algorithms used. The problem is
purely one of numerical stability when one of the angles changes quickly. As
shown in Fig. 4.5, Euler angles are no different to using latitude and longitude
for specifying locations on Earth. When flying near a pole, the longitude of
an aircraft changes quickly. That requires attention to the numerics of the
coordinates, but it does not render latitude–longitude a bad coordinate set
for specifying locations on Earth.

So, gimbal lock is a mechanical problem inherent in some gyroscopes, and
the term is also used to describe the numerical instabilities of specifying an
orientation using Euler angles. But there is no such problem with Euler angles
in software rotations such as described above if implemented properly, and
it’s wrong to blame gimbal lock and Euler angles for their misapplication in
that way, or for natural numerical difficulties that form the bread and butter
of numerical analysis. Gimbal lock’s supposed appearance in the software
rotations just described has become one of the great enduring myths of three-
dimensional rotation theory.

Unfortunately, historically these misinterpretations went hand in hand
with using matrices to perform rotations, with the result that matrices and
Euler angles are sometimes seen as being intrinsically badly behaved in ro-
tation theory. This is quite incorrect. Euler angles need care in numerical
analysis when they change rapidly, but attention to rapidly changing num-
bers in numerical analysis across the whole of physics is normal and accepted.

Part of the ongoing confusion lies with the fact that comparisons are often
made between quaternions and Euler angles in rotation literature. This is like
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comparing apples and oranges. Quaternions should be compared with matri-
ces, since both can be used to rotate one vector about another. In contrast,
an orientation is specified by how the body has been rotated from some base
orientation. The rotation, or set of rotations, is a recipe for reconstructing
the body’s orientation from the base orientation. Some ways in which this
can be done are by specifying the following quantities.

– The angle and axis of a single rotation from the base orientation (by
Euler’s theorem), carried out using either a quaternion or a matrix, and
called the angle–axis representation. The angle and axis are trivially used
to construct a quaternion (cos θ/2, n sin θ/2) for this rotation, so that it is
sometimes called the “quaternion representation”.

– Three rotations from the base position (Euler angles) around either space-
fixed or carried-along axes. Each of these three rotations can be specified
and performed using either a quaternion or a matrix.

– The three basis vectors in the final orientation, being the final images of
the three initial basis vectors. Equations (4.2)–(4.5) tell us that a matrix
comprised of these is the rotation matrix taking initial to final bases. It is
unique, so encodes both the angle–axis representation and is the product
of the Euler matrices.

So quaternions and matrices are tools for rotating a vector about another
vector, whereas angle–axis numbers, Euler angles, and final basis vectors
specify an orientation, which is a different, though related, concept.

This mixing of different concepts is one reason why rotation literature is
notoriously difficult to follow. Books on rotation theory are full of recipes
that work in practice, and each has its disciples. But the reasons why these
recipes work do not always follow logically from the explanations those books
provide. Being very clear in our own minds about what is being rotated is
the essential ingredient to understanding rotation theory.

4.6.3 Quaternions Used in Computer Graphics

Computer graphics routines utilise rotations very heavily and commonly em-
ploy both matrices and quaternions for the job. One problem that all com-
puter algorithms suffer from is the inevitable creeping in of numerical errors
due to rounding. The effect this has on a varying rotation matrix Rn(θ) is to
make it slowly depart from being orthogonal, so that in practice a periodic
correction for these rounding errors needs to be applied, which calls for extra
computer processing. Rotation quaternions, which are normally more com-
plicated to implement, have an advantage here because as their length slowly
departs from one due to rounding errors, it can always easily be reset to one
simply by dividing the four numbers of the quaternion by it, as calculated
in (4.77).
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initial orientation
(1, 0, 0, 0)

way point
(0.9, 0.1, 0.1, 0.4)

final orientation
(0.7, 0.6, 0.2, 0.3)

Fig. 4.8. Schematic representation of a sphere in four dimensions, each surface
point of which represents a quaternion. Orientations of some system are represented
by quaternions that rotate, say, the initial orientation. Given way-point orientations,
the task is to find a path connecting them that is described by a set of intermediate
quaternions, that can then be used to generate smoothly changing intermediate
orientations of the system by always multiplying the initial orientation by each
quaternion on the path. That is, incremental changes to the orientation of the
system are not required here.

Of course, in principle, matrices and quaternions can always be converted
one to the other for the best of all worlds by calculating the rotation an-
gle and axis vector, but in practice numerical inaccuracies can muddy the
process. For example, in (4.50) we calculated the rotation angle by taking
the trace of the rotation matrix, but the trace only makes use of the three
diagonal entries. This is fine in a perfect world but is not guaranteed to give
the best result when numerical inaccuracies are present.

An important use of rotation theory lies in generating a smooth fly-through
of a scene by interpolation of camera orientations between specified key lo-
cations (known as way points). If a camera’s orientation is specified at each
way point by a rotation matrix or quaternion that has generated that orien-
tation by rotating some base orientation, then the question arises how best to
interpolate the matrices or quaternions, in order to generate rotations that
act on the base orientation to give acceptable intermediate orientations of
the camera. Matrices are not so easy to interpolate. In contrast, the unit
length of quaternions allows them to be treated as points on the surface of
a unit-radius “sphere” in four dimensions, as shown in Fig. 4.8. In this fig-
ure, the initial orientation is taken as the base orientation, in which case it
must be represented by the quaternion (1, 0, 0, 0) because this is the identity
quaternion that does not rotate anything, as shown by applying (4.72):

(0, r′) = (1, 0, 0, 0) (0, r) (1, 0, 0, 0) = (0, r) . (4.107)

We wish to visit the way-point orientation (0.9, 0.1, 0.1, 0.4) and arrive at the
final orientation (0.7, 0.6, 0.2, 0.3). The very simplest way is to make a linear



184 4 A Roundabout Route to Geometric Algebra

q1

q2

q

θ

tθ

Fig. 4.9. The quaternion q is interpolated between quaternions q1 and q2 us-
ing (4.109).

interpolation in angle between way points on the sphere’s surface, known as
spherical linear interpolation, or slerp. To see how slerp is used to inter-
polate between two quaternions, draw them as vectors q1 and q2 lying in a
plane in Fig. 4.9. The angle θ between them is given by the usual dot product
in E

4,
cos θ =

q1 ·q2

|q1| |q2|
= q1 ·q2 . (4.108)

Use a parameter t that runs from zero to one, values of which generate in-
termediate quaternions such as the q shown in Fig. 4.9. Straightforward two-
dimensional vector analysis and a use of the sine rule results in

q =
sin (1 − t)θ

sin θ
q1 +

sin tθ

sin θ
q2 . (4.109)

This is the standard formula for generating intermediate orientations using
slerp. In Fig. 4.8 we would first interpolate for various values of t between
the initial orientation and the way point, and then do the same for the way
point and the final orientation. Note that the process is not incremental.
That is, each quaternion generated does not multiply the orientation just
produced; rather, it multiplies the initial orientation.

slerp is popular in computer graphics programming, but there are cer-
tainly other ways of interpolating the quaternions, each of which gives a
different flavour to the “fly-through”. But that is a specialised subject, the
domain of computer graphics programmers.

The subject of three-dimensional rotations is a very fruitful one. Its main
entity is the rotation matrix (4.22), and with this we can rotate anything and
describe any orientation. This is a good ability for a mathematical physicist
to have because the calculations of physics sometimes demand rotations in
space. At its heart, the subject is simpler than is often thought, but it’s
certainly very rich in its consequences.
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5.1 Deriving the Doppler Shift from an Invariance

Deriving the nonrelativistic Doppler shift for sound is a common elementary
physics problem, where we follow waves from a possibly moving source on
their way to a possibly moving observer, carefully accounting for the different
path lengths followed by successive waves. The calculation changes depending
on who is moving relative to the air that carries the sound—and perhaps the
air is moving, too. The resulting equation has terms that depend on these
relative velocities. What we learn from working through examples of Doppler
shifts shows that observers and emitters measure different frequencies for
the sound, and this manifests as the different pitches that characterise the
Doppler shift.

There is another way of analysing the Doppler shift that uses a very
simple fact. Suppose we could make the air visible so that all the ripples
of the sound waves’ compressions and rarefactions could be seen. In that
case, we would notice that regardless of who is moving in what direction,
both emitter and observer must always agree on the wavelength of the sound,
because the wavelength is a physical property of the air. The distance between
neighbouring ripples is a well-defined number, independent of who is moving
where and with what velocity. Such a frame-independent quantity is called a
scalar ; it’s more than just a number such as was used in previous chapters.
This, then, is our first contact with the utility of knowing how a quantity
transforms from one frame to another. The scalar is the simplest case of
this—it does not change at all.

Knowing that the wavelength of the sound emitted is a scalar enables us
to derive the Doppler shift in a simple way by realising that wavelength is
just equal to wave speed divided by frequency.

Question: A car horn is built to sound a frequency of 400Hz. What
is the frequency received (heard) by a stationary observer whom the
car moves directly toward at 30m/s? Take the speed of sound to be
340m/s with no wind blowing.

Since both observer and emitter measure the same wavelength for the sound,
we have
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ve (sound vel. in emitter frame)
fe (freq. in emitter frame)

=
vr (sound vel. in receiver frame)

fr (freq. in receiver frame)
, (5.1)

so that
fr =

fevr

ve
. (5.2)

We know that fe = 400 Hz and vr = 340 m/s in the Earth frame, where the
air is at rest. Since the emitter (the car horn) then feels a wind moving
over it at 30 m/s, retarding the progress of its sound waves, we must have
ve = 340 − 30 m/s. Finally,

fr =
400 Hz × 340 m/s

310 m/s
= 439 Hz. (5.3)

This is a much simpler way of doing the standard calculation, and is based
on the useful notion that the wavelength of sound waves is a scalar.

5.2 The Postulates of Special Relativity

Up until now, implicit in our discussion of the Doppler shift for sound has
been the fact that in the Earth frame, it really does make a difference whether
the source moves and the observer is at rest, whether the observer moves while
the source is at rest, or whether they both move. The reason is due to the
air that carries the sound waves. If the observer is at rest on Earth with no
wind, then the speed of sound he measures will be independent of the source’s
velocity, purely because the sound is carried by the air, and the mechanism
for that is independent of the motion of the source. But if the observer moves
in the Earth frame, then he feels that air flowing past him and so measures
a different speed for the sound waves that it carries.

Why is it that since its earliest days relativity theory has always been
constructed using a discussion of light? Surely, couldn’t it be constructed
from the same sort of textbook arguments but applied to sound instead? In
fact, it turns out that we would only be successful in doing so if we could be
confident that the calculation above with the 400 Hz car horn was correct to
the highest accuracy. But experiment tells us that it is not quite correct. It is
certainly very accurate, but it turns out—with hindsight, and based purely
on experiment—that, to be fully accurate, we are not allowed to just sub-
tract the 30 m/s from the 340 m/s to obtain the sound velocity in the emitter
frame. Intuition suggests that surely we can do this, but experiment proves
that we cannot. If we knew just what calculation was needed to replace the
subtraction of 30 m/s from 340 m/s, then we certainly could obtain the equa-
tions of relativity by thinking about sound waves. But it turns out that the
necessary calculation for sound is completely unobvious, and it only becomes
transparent if we consider light instead of sound because the relevant laws
are simpler for light.
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A textbook discussion of special relativity therefore generally begins by
considering light because it has the wisdom of hindsight. And as every text-
book shows, special relativity is built on a set of postulates. In the absence
of gravity, what we find are experimental results that have given rise to these
postulates. Now what exactly is a postulate? It’s not necessarily an exper-
imental observation. It is also not an axiom, which is a rule that a mathe-
matical system is built upon and is correct by definition; an axiom defines
the mathematical system. In a sense, a postulate is a kind of “physical ax-
iom” in that the postulate is taken to be a foundation upon which to build a
theory, while being something that may or may not later be proven correct.
It is a statement that, given its truth, allows us to build a theory that can
then be tested. Perhaps the postulates will need to be modified, but that
doesn’t matter, because it can certainly be done if necessary. The kinematics
of special relativity are built upon three postulates. It is quite customary to
give two at the outset, leaving the third for a more advanced discussion. In
fact, the third postulate is very necessary in that it forms a stepping stone
into general relativity, but we’ll leave that for later. Additionally, the dynam-
ics of relativity—the notions of energy and momentum—require additional
postulated forms for momentum and the calculation of energy.

The first two postulates of special relativity deal with inertial frames. An
inertial frame is, by definition, one in which Newton’s laws hold without the
need to introduce a gravity force. That is, the tell-tale sign that the frame is
inertial is that a thrown ball moves away from us with a constant velocity.
That means the everyday frame that each of us inhabits on Earth’s surface
is not inertial, although we can treat it as inertial by introducing a gravity
force to account for “why” the ball curves as it flies through the air. But
that complicates the issue, since we must then also ask how gravity affects
all the other laws of physics—which is not an easy thing to do, and a subject
we’ll postpone until later. Begin, then, with the first two postulates of special
relativity:

1. The laws of physics are the same in all inertial frames.
2. The speed of light is the same in all inertial frames.

On these is built the Lorentz transform that relates times and positions across
inertial frames.

5.3 The Lorentz Transform

Most relativity texts derive the Lorentz transform by using the two postu-
lates above to produce a set of equations that converts times and positions
in one inertial frame to those of another with the same orientation, moving
with constant velocity relative to the first. The procedure is straightforward,
and we will not rederive it here. It begins by writing a generic set of equa-
tions that are linear in both sets of coordinates, since linearity ensures their
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S

x

y

z

S′

x′

y′

z′

v

Fig. 5.1. The two-frame setup used in describing the basic Lorentz transform (5.5).
The S′-frame moves with velocity v relative to S. All events are given spatial
coordinates in either frame together with time coordinates t, t′.

invertibility—and by the first postulate, we know they should be invertible
simply by changing the sign of the velocity wherever it appears. The un-
known coefficients can then be fixed by considering just a few scenarios in
each frame: the motion of a particle at rest in the other frame, a set of si-
multaneous events in one frame, and the motion of a light ray in one frame.
These allow both postulates to be used, and the transform that results is
the following. Suppose we have two inertial frames, S and S′, as drawn in
Fig. 5.1. An event is assigned coordinates (t, x, y, z) in S, and (t′, x′, y′, z′)
in S′. The frames have their axes aligned so that, in the S-frame, S′ moves
with velocity v along the x-axis. With the definition

γ ≡ 1/
√

1 − v2/c2 , (5.4)

the Lorentz transform relates the two frames’ coordinates by

t′ = γ
(
t − vx/c2

)
+ constant,

x′ = γ (x − vt) + constant,
y′ = y + constant,
z′ = z + constant. (5.5)

One part of the Lorentz transform that texts sometimes leave unexplained
is the derivation of the y and z equations in (5.5). Why are lengths perpen-
dicular to the direction of motion unchanged?

We can see why they should be unchanged by considering two hollow
cylinders of slightly different diameters, each with its rotation axis along
the coincident x-axis (≡ x′-axis), with one tube sliding within the other and
maintaining contact throughout. If relativity required a dilation in the radial
direction (i.e., the y- and z-coordinates), then there would be a contradiction
in the measurements made by observers at rest on one tube with those of
observers at rest on the other. One set would predict a tightening and the
other a loosening of the tubes. This cannot be, so we infer that there can
be no dilation in the radial direction.
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Usually, the frames are calibrated to coincide at t = t′ = 0, so that the con-
stants can all be set to zero. But, after all, when solving real-life problems
in relativity using the Lorentz transform, there is no reason that clocks at
the coincident origins should both read zero. It’s an arbitrary choice that we
might make of when time “starts”, or when the clocks read zero. The same
can be said for our choice of calibrating the space axes. To be more general,
we should only consider changes in coordinates. This is completely normal;
in everyday life we are only concerned with lengths of objects (changes in
space coordinates) or the time it takes to do something (changes in the time
coordinate). Specifying some absolute origin in space or some absolute start
point in time is of no concern to us. Consequently, even if nonzero constants
do appear in (5.5), we can always eliminate them by writing the Lorentz
transform using increments in the coordinates:

∆t′ = γ
(
∆t − v ∆x/c2

)
,

∆x′ = γ(∆x − v ∆t) ,

∆y′ = ∆y , ∆z′ = ∆z .

(5.6)

This transformation can always be inverted by simply swapping the sign of v,
which we’ll do freely in the pages to follow.

5.3.1 Paradoxes or Conundrums?

Special relativity is famous for its so-called paradoxes, but the word paradox is
misleading since it implies unresolved problems. Although there are everyday
phenomena that depend for their understanding on the principles of relativity,
such as the way a magnet works, life is lived at speeds that reduce the Lorentz
transform to its nonrelativistic limit of c → ∞ in (5.5), known as the Galilei
transform. Our lack of experience with high speeds renders relativistic effects
very unintuitive. But so as not to perpetuate the idea that there is something
wrong with the theory, we will instead refer to these apparently illogical
results as conundrums. They rest on three well-known consequences of the
Lorentz transform. We will review the first two only briefly, concentrating
instead on the third—probably the most important, yet the least discussed.
Lorentz transform calculations, such as the following, always hinge on our
specifying very carefully two events, 1 and 2, and we will always define the
increase ∆ to mean “2 minus 1”; e.g., ∆t ≡ t2 − t1.

First: Time Dilation

An observer measures the period of a clock passing him at velocity v. If the
clock has period T0 in its rest frame (i.e. T0 is the “factory setting”, called the
proper period), what period does the observer measure? We place the observer
in S and the clock at rest in S′. Define two events: event 1 is a particular tick
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of the clock, and event 2 is the next tick. By definition, T0 ≡ t′2 − t′1 ≡ ∆t′.
We require ∆t:

∆t = γ
(
∆t′ + v∆x′/c2

)
= γ T0 , (5.7)

since ∆x′ = 0 (the clock is at rest in its own frame). So the S-observer mea-
sures the moving clock to be ageing slowly by a factor of γ.

Second: Length Contraction

An observer measures the length of a rod moving past him along its length
at velocity v. If the rod has length L0 in its rest frame (also called its proper
length), what length does the observer measure? As before, the observer is
in S, with the rod at rest in S′. Define two events: event 1 is a particular
observation of the x-coordinate of the trailing end of the rod, and event 2 is
the simultaneous observation of the x-coordinate of the leading end. So we
require ∆x, where ∆x′ = L0 and ∆t = 0:

∆x = γ (∆x′ + v∆t′) . (5.8)

Unfortunately, we don’t know ∆t′. But now try the analogous equation from
the inverse transform:

∆x′ = γ (∆x − v∆t) ,

or L0 = γ∆x , (5.9)

which yields ∆x = L0/γ. The rod’s length is contracted.
These two effects are the first two surprising results of the Lorentz trans-

form usually encountered in textbooks. But the effect considered next is by
far the most dominant when it comes to resolving the famous conundrums of
special relativity.

Last but Most Important: The Lack of Synchronicity

Clocks that are fixed along a rod and synchronised in the rod’s rest frame
will be measured to be out of synchronisation by an observer past whom the
rod moves along its length.

To better illustrate this, describe the rod as a train that moves past us
as we stand on the station platform (the S-frame). The train is at rest in
the S′-frame and passes us by, moving along our x-axis in the direction of
increasing x with velocity v. If a clock in the front of the train reads time
zero, what does a clock in the rear of the train read? The clocks are synchro-
nised as far as the train’s passengers are concerned, but they turn out to be
unsynchronised for us in S.

To show this, again define two events. Call the trailing clock on the last
carriage “clock 1” and the driver’s clock “clock 2”. We require the difference
in coordinates of two simultaneous events:
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Event 1 = our observation of the coordinates of clock 1.
Event 2 = our observation of the coordinates of clock 2.

Note carefully that by “observation”, we are not talking about sighting the
clocks, and having to account for the noninfinite speed of the light signal that
we receive from each clock. The observations that we make need not depend
on such complications, and if they do, we must certainly account for things
such as signal transit times in the calculations. Each observation could simply
be the recording of a clock’s coordinates by a device placed arbitrarily close
to that clock, and we can read these coordinates later at our leisure.

Given t′2 ≡ 0, we are required to find t′1, or just −∆t′ (since ∆t′ ≡ t′2−t′1).
We dive right into the Lorentz transform to write

t′1 = −∆t′ = −γ
(
∆t − v ∆x/c2

)
= γv ∆x/c2 , since ∆t ≡ 0 . (5.10)

Now we need ∆x. Remember that if the proper distance between the clocks
(i.e. the distance as measured in their rest frame S′) is L0, then we must
measure their distance to be contracted, so that ∆x = L0/γ, and finally

t′1 = vL0/c2. (5.11)

So the trailing clock leads in time by vL0/c2. In a manner of speaking, the
trailing clock is always older than the driver’s clock.

This calculation is correct but a little inelegant, since we had to remember
that the train is contracted in the S-frame. An alternative approach begins
with the other frame rather than that which our intuition might expect. Since
we wish to find ∆t′, begin with the expression for ∆t:

∆t = γ
(
∆t′ + v ∆x′/c2

)
, (5.12)

in which case
0 = γ

(
∆t′ + vL0/c2

)
, (5.13)

so that t′1 = −∆t′ = vL0/c2 again. Not only is this approach shorter, but it
eliminates the potential source of error if we forget about taking the length
contraction into account.“Start with the other frame” is a good rule of thumb
for applying the Lorentz transform.

The fact that trailing clocks lead in time by vL0/c2 is well worth remem-
bering when dealing with exercises involving simultaneity, such as:

Two clocks are synchronised in their rest frame and are held 40 light-
minutes apart. If they are viewed from a frame moving along their line
of separation at 0.8 c and the spatially leading clock reads 12:00 pm,
what does the spatially trailing clock read?

The trailing clock leads in time by an amount vL0/c2. A light-minute is the
distance that light travels in one minute, or c× one minute. So we know that
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v = 0.8 c , and L0 = 40 c minutes. (5.14)

Thus, the time by which the trailing clock leads is

0.8 c × 40 c minutes
c2

= 32 minutes. (5.15)

The trailing clock reads 12:32 pm. We’ll use this example in the following
discussion.

5.3.2 How Does Each Frame Measure the Other as
Ageing Slowly?

Probably the earliest and most famous conundrum of special relativity en-
countered by the student is the question of how it is possible that two frames
can each measure the other as ageing slowly. Along with the Twin Conun-
drum, which we’ll meet in Chap. 7, the notion that both frames surely cannot
measure each other as ageing more slowly has led to many attempts over the
last century to show that relativity just cannot be correct. Actually, while
time dilation and length contraction both play a role in explaining the conun-
drum, by far the most important cause is the loss of synchronicity of clocks
in motion despite these clocks being held synchronised in their own shared
rest frame.

The following discussion uses Fig. 5.2. Consider two pairs of clocks
mounted on the ends of two identical rods. The rods ensure that each clock
pair is held rigidly separated by 40 light-minutes in its rest frame. Each pair
of clocks is synchronised in its own rest frame. The rods are passing each
other at a speed of 0.8 c (so γ = 5/3), and one of them has a jagged edge to
distinguish it in our discussion. We will analyse the situation from the jagged
rod’s frame, and this will suffice to explain the conundrum.

First the straight rod begins to pass the jagged rod at a “jagged time”
of 0. Jagged observers measure the straight clocks to be out of synchroni-
sation, with the trailing straight clock reading a time of 32 minutes, as was
calculated in (5.14) and (5.15). Since the straight rod is Lorentz-contracted
in the jagged frame, the left-hand clocks line up before the right-hand clocks
do. The straight rod’s length is 40/γ = 24 light-minutes, so it takes a jagged
time of 24/0.8 = 30 jagged minutes for the left ends to align, during which
time each clock on the straight rod has aged by 30/γ = 18 minutes.

Finally, the right-hand clocks line up. The jagged time for the top rod to
traverse the bottom rod is 40 c minutes/(0.8 c) = 50 minutes, so that the
jagged clocks have aged 50 minutes in total. In contrast, the straight clocks
aged just 50/γ = 30 minutes.

So far, there is no problem with this scenario, since we have used time
dilation to ensure only that the jagged clocks measure the straight ones as
ageing slowly. But how are we to conclude that the straight clocks measure
the jagged ones as ageing slowly? The analysis of the straight observer must
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0.8 c32 0

0 0

50 18

30 30

62 30

50 50

Fig. 5.2. Clocks used in Sect. 5.3.2. The three time steps (top to bottom) are
drawn in the “jagged frame”, in which the jagged rod is at rest. The straight rod
moves from left to right past the jagged rod. This figure ties together the three
phenomena of length contraction, time dilation, and loss of simultaneity and shows
how they work together to give a consistent picture across the two frames.

be identical to that of the jagged observer, of course, so let’s assume a straight
observer’s role and follow the progress of the left-hand jagged clock. As the
top picture of Fig. 5.2 shows, the straight observer measures the left-hand
jagged clock to begin to pass by when both the coincident clocks read zero.

We are using here the fact that two events that are virtually coincident in
space and time—such as the close passage of the straight and jagged clocks
both reading zero—are agreed by everyone to be simultaneous. After all, we
could arrange for each event to leave a mark on a passing (third) clock. In
such a case, all observers would have to agree that the two events left their
marks simultaneously, because the evidence is right there on the third clock.

Now remember that the straight ruler’s clocks, while not synchronised in the
jagged frame of Fig. 5.2, are synchronised in the straight frame. Then, as
shown in the middle picture of Fig. 5.2, the left-hand jagged clock finishes
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its transit of the straight ruler when it reads 30 (jagged) versus the close-by
straight clock’s 50. Since these clocks are adjacent, there is no complication
introduced by light-travel times; so because the straight clocks are synchro-
nised in the straight frame, the straight observer concludes that the left-hand
jagged clock aged 30 minutes during 50 straight minutes. The straight ob-
server does indeed conclude that the jagged clocks are ageing slowly—by the
same factor, γ = 5/3.

The way we resolved the conundrum was to enforce two points. The first
was that in order to determine how moving clocks are ageing, we must ensure
that the time reading on the same clock is measured, no matter which clock
it is. The jagged observer chose to concentrate on the right-hand straight
clock for this, while the straight observer concentrated on the left-hand jagged
clock. There is nothing special about these clocks, of course. The second point
we enforced was that for an observer to make pronouncements easily about a
moving clock, he may wish to avoid the complication of having to account for
light-travel times. For this very reason, we only considered adjacent clocks in
the analysis above.

This analysis highlights the need to make a distinction between seeing—
the stuff of optical illusions, which does not take into account light-travel
times—and measuring or observing, which certainly does account for light-
travel times. In special relativity, the standard depiction of a frame is a lattice
of clocks held together by rigid rods, where the clocks are used to note the
time of events happening in their vicinity. In fact there is really a continuum
of clocks, so that an alternative way of picturing a frame populates it with
a continuum of observers, each of whom is at rest relative to all the others.
Each of them makes notes carefully indexed by the time on their clock. This
time is global for the frame, but the observers do not look at anyone else’s
clock since that involves the needless hard work of correcting for light-travel
times. So to eliminate the need for these time corrections, each observer
only records what happens right next to him and sends his set of notes to
a “headquarters” of the frame, where everything is collated and the frame’s
global view of events is reconstructed. This is a very fruitful idea, which we’ll
meet again in Chap. 7. There it will be very important in helping us to make
sense of life in an accelerated frame, forming a bridge to the ideas of general
relativity and gauge theory.

An easy way to understand the distinction between seeing and measuring
is through the familiar red- and blueshifts. We see a receding clock ageing
slowly by the redshift factor of γ(1 − v/c) (where v > 0) when it recedes,
and likewise we see it ageing quickly by this same factor (v < 0) when it
approaches. But if we account carefully for light-travel times, in both cases
we measure the clock to be ageing slowly by a factor of γ.



5.4 The Symmetry of the Lorentz Transform 195

Rescuing Our Intuition

Our intuitive idea that the frames should be asymmetric with regard to how
they measure each other as ageing does have some correspondence with what
each sees. Consider the left-hand jagged observer again in Fig. 5.2 (i.e. the
one who stands next to the left-hand jagged clock), who notes that as the
jagged clocks show 0, the straight clock opposite him also shows 0. The right-
hand jagged observer then notes that 50 jagged minutes later, this same
straight clock shows 30 minutes, corresponding to the adage of“moving clocks
run slow”. This is a good measurement, since the two jagged observers are
synchronised, and they are seeing only what a specific straight clock reads
and only when it’s adjacent to each of them.

Contrast this with an altogether different scenario. Again, the left-hand
jagged observer notes the jagged time to be 0 when the straight clock opposite
him shows 0. He then closes his eyes for 30 jagged minutes. Now he opens his
eyes and looks across to the straight clock adjacent to him, noting that it now
reads 50 minutes. He concludes that the moving clocks are actually ageing
quickly by a factor of γ! But his mistake lies in comparing apples with oranges:
he is comparing the time on the straight right-hand clock (0) with the time
on the straight left-hand clock (50) and concluding that 50 straight minutes
have elapsed. He is comparing two different clocks that, in his jagged frame,
were never synchronised! What he should have realised was that the trailing
straight clock always led by 32 minutes, so that it only aged 18 minutes
when his clock aged 30 minutes. The leading straight clock also aged just
18 minutes—and this ratio 30/18 is just the expected γ slowing factor. So, in
a sense, the moving frame appears to age in fast motion by a factor of γ, and
it’s only by ensuring that we keep track of the same clock that we discover
that the real ageing is slow, not fast, by the same factor.

5.4 The Symmetry of the Lorentz Transform

Conventionally in relativity, factors of c are absorbed into time and velocity,
because time always appears multiplied by c while velocity always appears
divided by c. We will do the same here. The t and v that we have been using
up until now have had conventional units and so will be renamed tconv, vconv.
Their new definitions are

t ≡ c tconv (units of distance),
v ≡ vconv/c (no units). (5.16)

It is as if c has been set to equal 1, but that is not the real reason for
writing (5.16). The change is not made just to avoid writing repetitive factors
of c, and neither is it made because c is in some sense a“big”number. Rather,
absorbing c reflects a fundamental symmetry in the Lorentz transform. With
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the redefinitions above, the Lorentz transform (5.5) and (5.6) becomes

t′ = γ(t − vx) + constant,
x′ = γ(x − vt) + constant,
y′ = y + constant, z′ = z + constant.

(5.17)

∆t′ = γ(∆t − v ∆x) ,

∆x′ = γ(∆x − v ∆t) ,

∆y′ = ∆y , ∆z′ = ∆z .

(5.18)

There is now a complete symmetry between the space coordinate x whose
axis S′ moves along, and the time coordinate t.

This symmetry between time and space also appears in the ideas of si-
multaneity that we have been studying. For example, consider the following
statement familiar from everyday life:1

Two events that occur at the same place at different times for one
observer occur at different places for another observer moving relative
to the first.

This accords with our everyday experience, but it can also be seen by applying
the Lorentz transform: if S observes the events with ∆x = 0, ∆t 	= 0, then
(5.18) shows that S′ observes ∆x′ 	= 0 (as well as ∆t′ 	= 0).

But now swap “time” and “place” in the above statement, as suggested by
the symmetry in the Lorentz transform:

Two events that occur at the same time at different places for one
observer occur at different times for another observer moving relative
to the first.

This is proved by again applying (5.18). S observes the events with ∆t = 0,
∆x 	= 0, while S′ observes ∆t′ 	= 0 (as well as ∆x′ 	= 0). Though quite unob-
vious, this statement is also true and embodies the very important idea of
the lack of simultaneity between two frames.

The Lorentz Transform Using a Complex Rotation

An alternative view of the Lorentz transform is based around the notion of
quaternions. Defining θ ≡ tanh−1 v allows (5.18) to be written as⎡⎢⎢⎣

i ∆t′

∆x′

∆y′

∆z′

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cos iθ − sin iθ 0 0
sin iθ cos iθ 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

i ∆t
∆x
∆y
∆z

⎤⎥⎥⎦ . (5.19)

The 4 × 4 matrix applies a rotation through a complex angle—whatever that
might actually mean. The rotation can be written in terms of quaternions by
1 This example of space–time symmetry is paraphrased from Differential Geometry

and Relativity Theory by R.L. Faber (1983, Marcel Dekker). Reproduced by
permission of Routledge/Taylor & Francis Group, LLC.
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Fig. 5.3. Using radar in the derivation of the Lorentz γ-factor. Two pulses of light
are shown, each of which bounces off a possibly moving target to return to the
emitter.

the theory of Chap. 4. This idea of using quaternions is commonly known as
the spinor approach to the Lorentz transform. It is a topic addressed in the
study of geometric algebra, although we will not pursue it further here.

5.5 Using Radar to Derive Time Dilation

Absorbing factors of c into the Lorentz transform allows for a geometrisation
of space and time. To see this, consider the following scenario. We are aboard
a possibly moving radar carrier and wish to locate an object by bouncing
radio waves from it and measuring the time for their return trip. But perhaps
our target is moving, and if so, then Doppler information can be obtained
and we can calculate its velocity. So let’s disregard range information and
instead concentrate on the target’s velocity, asking for the Doppler shift in
frequency sent out versus that received after the radio waves have bounced
off the target.

To derive the relationship between target velocity and emitted radar fre-
quency, we draw a time versus distance diagram. For no particular reason, in
relativity these diagrams are usually drawn with the time axis pointing up
and the space axis to the right, as in Fig. 5.3. This diagram shows our frame
with the emitter moving radially away from us—only one space dimension
need be drawn.
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These time–distance diagrams are conventionally calibrated so that a ray
of light makes a track, a worldline, at 45◦ to each axis. So if one unit of
(conventional) time is a year, then one unit of time as redefined in (5.16) will
be a light-year, and one unit of the space axis can be conveniently chosen to
be a light-year also. Plotting this redefined time ensures that both axes have
units of distance, and thus the figure becomes purely geometrical. This is a
very powerful way to visualise relativity calculations.

Suppose that the target recedes radially with velocity v > 0. (In the ap-
proach case of v < 0, the diagram changes a little, but otherwise the calcu-
lation is almost unchanged and we will not consider it.) We send out pulses
of radio waves at a pulse repetition frequency fe, and receive them Doppler-
shifted at a new pulse repetition frequency fr. Consider two of these pulses.
Since the time between pulses is the reciprocal of the pulse repetition fre-
quency, we can immediately write down the times between emission and re-
ception of the pulses in Fig. 5.3.

Now work closely with the geometry of the figure, in particular noting
that constant velocities mean straight lines, and all light rays make 45◦ angles
with the axes. In that case, the received interpulse period 1/fr relates to the
emitted interpulse period 1/fe by the amount a that the target moves away
in the interval of time between its reception of the two pulses:

1

fr
= 1

fe
+ 2a . (5.20)

But that amount a is also just the target speed multiplied by the time between
successive receptions:

a = v
(

1

fe
+ a
)

. (5.21)

Eliminating a from these two equations yields

fr = fe
1 − v

1 + v
. (5.22)

This is the required Doppler shift, so knowing the emitted and received fre-
quencies tells us the velocity of the target.

Now something important emerges. This scenario has been a two-way af-
fair: we emitted signals, they bounced off the target, and then they returned
to us. We should be able to solve the problem in two stages by considering first
the emission and then the reception of the pulses. By the postulates of rela-
tivity, the two stages should be entirely symmetrical. If the emitted frequency
has been multiplied by a factor of (1−v)/(1+v) by the time we get the pulses
back again, then it must have been multiplied by

√
(1 − v)/(1 + v) on each

leg, outbound and inbound. In other words, the target must see the frequency
of our emitted radio waves multiplied by a factor of

√
(1 − v)/(1 + v).

But this implies something remarkable: that we measure a moving target’s
clock to be timing (ageing) slowly. To see why this should be so, refer to
Fig. 5.4. This figure shows a one-way transmission of two light pulses from
us to the target, which moves at velocity v as before.
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Fig. 5.4. Deriving the γ-factor by following the passage of two pulses of light,
keeping careful track of the readings on the emitter and target clocks.

Suppose we send out the pulses at one-second intervals. The target sees
these at time intervals of the reciprocal of the frequency

√
(1 − v)/(1 + v)

above, or
√

(1 + v)/(1 − v). Now, given that the target’s clock shows this
time interval from one pulse to the next as marked in Fig. 5.4—and mak-
ing no assumption that the target’s clock runs at the same rate as our
own—we ask what time interval we measure between the target’s times zero
and
√

(1 + v)/(1 − v). From the geometry of the figure, it must be 1/(1− v)
since this gives the correct slope of 1/v for the target’s worldline. So when
the target’s clock ages

√
(1 + v)/(1 − v) seconds, our clock ages 1/(1 − v)

seconds. The ratio of these is just γ:

our clock rate
target clock rate

=
1

1 − v

/√
1 + v

1 − v
=

1√
1 − v2

. (5.23)

That is,
our clock rate = γ × target clock rate. (5.24)

The radar approach used here to derive the γ-factor was first introduced by
Hermann Bondi under the name of k-calculus. It can be extended to derive
the entire Lorentz transform, but that is not our aim here. We have only
wished to show the idea of using the geometry of a space–time diagram to
facilitate calculations involving light signals.

It should be noted that although this analysis must also apply to the rate at
which the target measures its clock to be running relative to ours, the target
cannot glibly say that for it this ratio is

√
(1 + v)/(1 − v) : 1 as opposed

to γ : 1, because this time interval
√

(1 + v)/(1 − v) marks what the target
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sees, which is complicated by the fact that the light signals it receives are
Doppler-shifted. We need to remember the distinction between the target’s
seeing our clock age one second while it ages

√
(1 + v)/(1 − v) seconds, as

shown in Fig. 5.4, and the target’s measuring or observing our clock to age
one second while it ages γ �=√(1 + v)/(1 − v) seconds. This distinction is
not evident from the figure but must result from the analysis above from our
point of view, coupled with the principle of relativity that says the target’s
viewpoint is just as good as our own. This point was alluded to previously
on p. 194.

The analysis above makes it evident why the mathematics of relativity,
such as the γ-factor and the Lorentz transform, is always derived using light
signals. As discussed earlier, if we did try to use sound signals, we would hit
some snags along the way. First, since sound is carried by air, we would be
unable to make use of the symmetry above between the target’s view of the
world and our own to derive the square root in the discussion following (5.22),
since there would be no such symmetry. We and the target would measure
different speeds for sound, since we cannot both be at rest in the air.

The second problem would arise if we decided to be very careful and
take into account the fact that the air that carries the sound waves must be
moving in at least one of the frames, ours or the target’s. At some point, we
would need to add the velocity of the sound waves in the air to the velocity
of the air itself (with respect to, say, the target). If we just added these two
velocities as vectors in the usual (pre-relativity) way, then the result would
disagree with the analysis above that uses light waves; we then could only
surmise that something somewhere was wrong. But since experiment verifies
the result derived through using light signals, the conclusion would have to
be that velocities cannot be added with the usual vector addition in special
relativity. And indeed the set of correct equations for the relativistic addition
of velocities is one of the triumphs of the Lorentz transform. Equation (5.18)
gives

dx′

dt′
=

γ (dx − v dt)
γ (dt − v dx)

=
dx/dt − v

1 − v dx/dt
. (5.25)

Contrast this with the nonrelativistic result of the Galilei transform, which
is dx′/dt′ = dx/dt − v.

5.6 Space–Time Becomes Spacetime

In normal euclidean geometry, the distance between two points is independent
of the coordinate system used to calculate it. Two cartesian systems that
apply Pythagoras’s theorem to the coordinate differences will agree on the
points’ separation ∆�, even though they might disagree on the coordinates
ascribed to the points. Thus,

∆�2 = ∆x2 + ∆y2 + ∆z2 = ∆x′2 + ∆y′2 + ∆z′2. (5.26)
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Fig. 5.5. Here is a geometrical way to view the γ-factor. Because v2 + 1/γ2 = 1, it
follows that if we draw a right-angled triangle of unit hypotenuse length, then if one
side has length v, the other will have length 1/γ. Since any triangle drawn inside
a semicircle must always be right angled, we have here a good way of visualising
how γ changes as the speed of an object approaches that of light (i.e. v → 1). As
v approaches one, even though it changes less and less (the “v-arm” in the figure is
mostly just rotating and only slightly increasing its length toward one), the length of
the other arm, 1/γ, is changing dramatically. So even a small change in v translates
to a very big change in γ, and finally γ increases without limit as v → 1.

In other “curvilinear” systems where the basis vectors depend upon position,
such as polar coordinates, no such simple relation for any two points holds.
However, we can always find such a relation if we consider the distance be-
tween two infinitesimally separated points, in which case, for example,

d�2 = dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θ dφ2. (5.27)

This invariant quantity is called the line element for the coordinate system
used, while the coefficients of the infinitesimals are called the metric. These
two terms tend to be used interchangeably. We first met the idea of a met-
ric when setting out to plot the quadratic form on p. 38. The line element
has an analogue in special relativity, where, owing to length contraction,
the distance between two events is definitely not frame-independent. What
is frame-independent is the following expression, again called the metric or
interval, and easily verified by inspection of (5.18) (or also more generally
the Lorentz transform (5.45) in an arbitrary direction, as will be derived in
Sect. 5.8):

∆t2 − ∆x2 − ∆y2 − ∆z2 = ∆t′2 − ∆x′2 − ∆y′2 − ∆z′2. (5.28)

In preparation for dealing with different coordinate systems, as in (5.27), we
will write all expressions for the metric using infinitesimals:

dt2 − dx2 − dy2 − dz2 = dt′2 − dx′2 − dy′2 − dz′2. (5.29)

In particular, the interval is related to the proper time dτ , the time that
elapses on the unique inertial clock that is present at both events. Because
the inertial clock measures the events’ spatial separation to be zero, that sep-
aration contributes nothing to the interval, in which case this clock measures
the interval to be just dτ2. Since all frames agree on the interval, we have
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dτ2 = dt2 − dx2 − dy2 − dz2 . (5.30)

So the interval is just the square of the proper time, and the amount of ageing
of an inertial clock visiting each of the two events becomes the analogue, for
those events, of the notion of distance for two points in standard geometry.
Also, in a frame in which two events are simultaneous, the interval between
them is

dτ2 = −dx2 − dy2 − dz2 ≡ −d�2, (5.31)

where d� is the proper distance between the two events. The sequence of
signs in the metric (+−−−) is loosely referred to as its signature (being very
closely related to an analogous use of the term in linear algebra). We are of
course free to multiply the interval by any constant; −1 is frequently chosen,
which flips the signs of its signature but unfortunately has the very confus-
ing effect of reversing some—but not all!—signs in all manner of equations.
No one standard sign convention is preferred by the mathematical physics
community.

Because all inertial observers agree on the value of the interval between
any two events, we can think of the three space axes together with the time
axis as the axes of a fundamental new entity called spacetime. The metric
quantifies the geometry of this spacetime, and for the type of spacetime we
are considering, (5.30) is called the Minkowski metric. So it is that spacetime
is not just the depiction of time and space axes that has always been such a
fundamental tool for describing kinematics—for how projectiles move, and so
on. Ideologically, the interval is what separates the mere “space–time” plot of
Fig. 5.3 from the unified entity spacetime, which of course is graphed using
the same axes.

In the next chapter we’ll see how this invariance of the interval allows the
spatial vectors of three-dimensional euclidean geometry to be generalised to
spacetime vectors in four dimensions.

5.7 Spacetime Diagrams and Hyperbolic Geometry

Given a spacetime diagram for the S-frame with its t- and x-axes, how do we
go about plotting the S′-frame’s axes on the same diagram?

Consider just the space coordinate x′ for ease of drawing the diagrams—
the other space coordinates are unaffected by the Lorentz transform. For
simplicity, set the frames to share a common origin:

(t, x) = (0, 0) ⇐⇒ (t′, x′) = (0, 0) . (5.32)

In that case the Lorentz transform (5.5) becomes

t′ = γ(t − vx) ,

x′ = γ(x − vt) . (5.33)
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Fig. 5.6. Calibrating the t′- and x′-axes. The length of a one-second “tick” on the
x-axis cannot simply be transferred to the x′-axis. The key to calibrating the primed
axes correctly is to make use of the invariance of the interval, as in (5.34).

The primed axes are constructed in the following way:

The t′-axis is the set of all events that have x′ = 0. Thus S draws it as the
line t = x/v, which is a line through the origin of the spacetime diagram
with slope 1/v. This is just the worldline of the S′-origin. Any time axis
on a spacetime diagram is the worldline of an observer with that time
coordinate.

The x′-axis is the set of all events with t′ = 0, so S draws it as the line t = vx,
which is a line through the origin of the spacetime diagram with slope v.

These primed axes, of slopes 1/v and v, are “orthogonal”, by which is meant
that they both make equal angles to the line at 45◦ to the t- and x-axes.
The unprimed axes are orthogonal, too; all pairs of spacetime axes must be.
This orthogonality ensures that, in the S-frame, the worldline of a photon
will bisect the angle between the t′- and x′-axes, just as it does for the t- and
x-axes. This demonstrates and ensures that, like S, the observers of S′ will
also measure light to have unit speed (i.e. c).

At any one time, each observer connects all events that are simultane-
ous by a line parallel to their space axis; for example, the set of events for
which t′ = 0 is the x′-axis. This is an important device for making sense of
spacetime diagrams and for unravelling the typical conundrums that arise in
relativity. An important device is the technique that different observers use
to calibrate their axes, shown in Fig. 5.6. There, the S′-frame is moving to
the right in S with velocity v = 0.8. Because the S′-clocks run slowly in S,
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the “tick” interval on the x′-axis must be longer than that of the x-axis. We
can calibrate the x′-axis graphically as follows. The invariance of the interval
between the origin and any point of interest gives

t′2 − x′2 = t2 − x2. (5.34)

Short pieces of the hyperbolae t2 − x2 = ±1 are drawn in Fig. 5.6. The
t2 − x2 = +1 hyperbola must cut the t-axis at t = 1 since at that point x = 0.
But, for the same reason, it must also cut the t′-axis at t′ = 1 since that hy-
perbola is also the set of all events for which t′2 − x′2 = 1. This calibrates
the t′-axis. The same idea using t2 − x2 = −1 serves to calibrate the x′-axis,
although it’s easier to borrow the t′-axis tick length and simply transfer it to
the x′-axis.

The immediate consequence of these differing calibrations is that each
frame measures the other to be ageing slowly. To see why this should be,
note that the S line of simultaneity for t = 1 intersects the t′-axis at t′ = 0.6,
while the S′ line of simultaneity for t′ = 1 intersects the t-axis at t = 0.6.
This geometric view has a simplicity and symmetry that are not so evident
when the same scenario is described using trains passing each other, as was
drawn in Fig. 5.2.

If a rule of the form (note the plus sign) ∆t2 + ∆x2 = constant were
obeyed by all of the events on spacetime diagrams, spacetime geometry would
simply be euclidean. But with the invariant interval ∆t2 − ∆x2 = constant,
the geometry is instead called hyperbolic or lorentzian. In the next chapter,
we’ll meet hyperbolic geometry again in the guise of the energy–momentum
diagram. Spacetime diagrams with lines of simultaneity will be used in much
more detail in Chap. 7, where the ideas of inertial frames, the interval, and
simultaneity will be extended to serve as the stepping stone to the more
advanced ideas of general relativity.

5.8 The Lorentz Transform in an Arbitrary Direction

In the next chapter, we use the Lorentz transform to analyse a scenario in-
volving three inertial frames. To make life easy there, we have chosen all
motions at right angles to each other, so that by suitable cyclic permutations
of the axis labelling, we can still apply (5.18). But frames’ relative veloci-
ties are seldom so contrived. How can we extend the Lorentz transform to
arbitrary directions without having to rederive it each time?

Do it as follows. Suppose that at t = t′ = 0 the axes line up on top of
each other. The S′-frame is moving with velocity v in S,

v ≡ (v1, v2, v3) ≡ v n , (5.35)

where n is a unit vector with components (n1, n2, n3). We need not pay at-
tention to the sign of v; the following discussion and equations are unchanged
if v,n → −v,−n.
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Fig. 5.7. Deriving the general Lorentz transform for the case where S′ moves in
an arbitrary direction n in S. Two sets of intermediate axes are constructed whose
X- and X ′-axes coincide, to which (5.17) will certainly apply. These are then related
to the xyz- and x′y′z′-axes by simple geometry.

Define a new S-frame axis parallel to v along which the S′-frame moves,
which allows us to make use of (5.17). We’ll call this axis X, with the corre-
sponding axis X ′ in S′, so that X and X ′ are always collinear. By supplement-
ing these with other axes T, Y, Z to form a right-handed spatial coordinate
system, together with the analogous set T ′, Y ′, Z ′, we know that (5.17) will
relate T,X, Y, Z to T ′, X ′, Y ′, Z ′. So it is sufficient to specify how T,X, Y, Z
relate to t, x, y, z.

First, T ≡ t since we’re only rotating the space axes. Now put r ≡ (x, y, z),
and use the notation (a, b) ≡ the angle between vectors a and b.

Then X = r ·n , while
√

Y 2 + Z2 = |r| sin(r,n) = |r × n| .
Also X ′ = r′·n , and

√
Y ′2 + Z ′2 = |r′× n| . (5.36)

The new axes obey the usual Lorentz transform:

X ′ = γ(X − vT ) = γ(X − vt) , (5.37)√
Y ′2 + Z ′2 =

√
Y 2 + Z2 , (5.38)

t′ = γ(t − vX) . (5.39)

We need only convert these three equations back to r, r′ language:

r′·n (5.36,5.37)
γ(r ·n − vt) , (5.40)
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|r′× n| (5.36,5.38) |r × n| , so that r′× n = r × n

(since these vectors are parallel), (5.41)

t′
(5.36,5.39)

γ(t − v r ·n) . (5.42)

These are linear equations for the S′-coordinates in terms of the S-coordinates.
They can easily be solved to give

t′ = γ(t − v ·r) ,

r′ =
[
I + (γ − 1)nnt

]
r − γvt ,

(5.43)

where in the last equation r, r′, v, and n are column vectors, I is the 3 × 3
unit matrix, and nnt is a 3 × 3 matrix with ijth element ninj . Two alternative
representations of (5.43) each have their own advantages, depending on the
problem to be solved:

t′ = γ(t − v ·r) ,

x′ = x − n1n·r + γn1(n·r − vt) ,

y′ = y − n2n·r + γn2(n·r − vt) ,

z′ = z − n3n·r + γn3(n·r − vt) ; (5.44)

⎡⎢⎢⎣
t′

x′

y′

z′

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
γ −γv1 −γv2 −γv3

1 +
(
n1
)2 (γ − 1) n1n2(γ − 1) n1n3(γ − 1)

1 +
(
n2
)2 (γ − 1) n2n3(γ − 1)

(symmetric) 1 +
(
n3
)2 (γ − 1)

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

t
x
y
z

⎤⎥⎥⎦ .

(5.45)
We will use (5.45) in the next chapter, which employs matrix formalism for
the Lorentz transform.

5.9 Energy and Momentum in Special Relativity

Using the Lorentz transform, it’s easy to concoct a scenario where our usual
idea of momentum conservation fails. Because of this, momentum must be
redefined in special relativity, and such a modification has a flow-on effect on
our notion of energy.

The scenario we’ll analyse is the very standard one shown in Fig. 5.8.
Two identical particles collide in S in a symmetrical way that allows us to
immediately write down their final velocities. The x-component of each is
unchanged, while the y-component of each changes sign. Each particle has a
mass m.
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In Fig. 5.8 we have been careful in drawing the arrows that indicate mo-
tion. The initial direction of each arrow is the direction of increase of the coor-
dinate, while the final direction of each arrow is more heuristic: it’s drawn to
show the direction in which each mass moves, component-wise. If the arrows
were not folded, it would be easy to confuse the calculation. Suppose, for ex-
ample, that we drew mass number 1 with a downward-pointing arrow. What
would we write next to the arrow? It’s natural to point the arrow down to in-
dicate that the mass’s y-component is decreasing as it moves downward. But
if uy is drawn next to this arrow and subsequently we find that uy = 1 m/s,
does that mean the mass has a velocity of 1 m/s downward? It is easy to
think so—and is potentially even more misleading if the 1 m/s is explicitly
written next to the downward arrow. But uy = 1 m/s is a velocity, and being
positive really means the mass is moving upward. Writing −1 m/s next to
the downward arrow would then be more reasonable but is never done. The
directions of arrows can easily cause such confusion here and in any similar
diagram of mechanics, and we have used an approach of combining the axis
direction and the actual motion in the one arrow.

Construct the S′-frame in the usual way by moving with velocity v along
the x-axis of S. The interaction looks different now. The velocities are calcu-
lated from (5.18):

dx′

dt′
=

γ (dx − v dt)
γ (dt − v dx)

=
dx/dt − v

1 − v dx/dt
,

S-frame
x

y

1

2

ux

uy

−ux

−uy

v

S′-frame
x′

y′

m1

m2

ux−v
1−uxv

uy

γ(1−uxv)

−ux−v
1+uxv

−uy

γ(1+uxv)

Fig. 5.8. Left: A symmetrical collision in S of two identical particles. The collision’s
symmetry tells us how the particles bounce from each other. Right: The same
collision seen from S′, with velocities calculated from (5.46). If we insist on defining
momentum as mass × velocity, then the idea of mass must be altered in order
for momentum to be conserved. The meaning of the curved arrows is described in
the text.
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dy′

dt′
=

dy

γ (dt − v dx)
=

dy/dt

γ (1 − v dx/dt)
. (5.46)

In S, the masses are identical, so the total y-momentum is zero since the
particles’ y-velocities differ only by a sign. Thus it’s conserved in the collision.
But, in S′, if we take the momentum of each particle to be m times its
velocity, then the total y-momentum before colliding will not be zero since
the velocities are now quite different from each other, which means that when
this momentum flips sign in the collision, it cannot be conserved—unless we
redefine momentum in some way.

To do this, suppose we call the magnitude of momentum divided by that
of velocity the relativistic mass of a particle, in which case the relativistic
masses of the particles 1 and 2 are denoted m1,m2 in S′. We will demand
a definition of momentum that ensures it is conserved in the collision. Since
symmetry dictates that the y-velocities in S′ switch sign in the collision, the
total y-momentum can only be zero. In that case,

m1u
y

γ(1 − uxv)
+

m2(−uy)
γ(1 + uxv)

= 0 , or
m1

m2
=

1 − uxv

1 + uxv
. (5.47)

If we “freeze” mass number 1 by setting v = ux and taking the limit uy → 0,
then we expect that m1 → m, so that

m2 =
1 + v2

1 − v2
m =

m√
1 − α2

, where α ≡ 2v

1 + v2
, (5.48)

and α is also the speed of mass number 2, which is now only moving hori-
zontally to the left in S′. So if the relativistic mass mrel of a body moving
with any arbitrary velocity (vector) V is defined to be the γ-factor for that
velocity multiplied by the body’s rest mass m, then we might have a good
candidate for a body’s relativistic momentum by defining it to be

p ≡ mrelV =
mV√
1 − V 2

= γ(V )mV . (5.49)

Certainly, the ratio of the relativistic masses defined in this way for the veloc-
ities of Fig. 5.8 will be as in (5.47) for any frame velocity v. In other words,
this definition implies that momentum will be conserved in every frame S′, no
matter what v is. The definition of momentum (5.49) has only been derived
from a very symmetrical interaction, but experiments suggest that, when so
defined, momentum is conserved quite generally.

Force and Newton’s Second Law

Does F = ma still hold relativistically? Clearly it cannot since a constant
force applied to a body would give it an arbitrarily large speed. Speeds higher
than c are ruled out by relativity because they produce causality problems, as
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can be shown by drawing lines of simultaneity on a spacetime diagram. But
Newton’s second law in the form F = dp/dt is not prone to such a problem,
since the relativistic momentum of a particle can become arbitrarily large.
So the relativistic force on a body is defined to be the rate of increase of
its relativistic momentum; but, of course, whether this means that the usual
expressions for force still hold is another thing entirely!

What, then, is the relativistic version of F = ma? In Newton’s theory,
the force on a mass is always parallel to the resulting acceleration. The cor-
responding equation in special relativity is a little more complicated. It turns
out that the force F is not always parallel to the acceleration a! As usual,
set m to be the rest mass and v as its velocity (a column vector), and let I be
the 3 × 3 identity matrix. Then if F ≡ dp/dt ≡ m d(γv)/dt, some algebra
produces

F = γm
(
I + γ2vvt

)
a , (5.50)

which inverts to give

a =
I − vvt

γm
F . (5.51)

(There is actually a good correspondence with the one-dimensional case here.
Just as γ2 can be written as 1 + γ2v2, and its reciprocal is 1− v2, the matrix
I + γ2vvt has determinant γ2 as well as inverse I − vvt.)

In (5.50) and (5.51), the rest mass m is always accompanied by a factor
of γ. This suggests that the relativistic mass γm, which is normally seen as
just something derived from the rest mass m, really does have a fundamental
existence or identity of its own. On the other hand, (5.50) and (5.51) show
that it’s easier to accelerate a mass perpendicular to its motion than to ac-
celerate it in the direction of its motion. To see this, choose the velocity v to
be along the x-axis for convenience, in which case (5.50) becomes

F = m

⎡⎣γ3ax

γay

γaz

⎤⎦ . (5.52)

This leads to a longitudinal mass being defined as γ3m, with a transverse
mass defined as γm. Thus, as the particle’s speed approaches that of light,
its resistance to acceleration in its direction of motion γ3m will be much
higher than its resistance γm to acceleration transverse to this direction.

These sorts of ideas of relativistic mass are useful in that they help us
develop an intuition of how a mass responds to a force. Conventionally, when
doing calculations, the mass is taken to be the invariant quantity m, and
any directional information is put into the separate matrix factors of (5.50)
and (5.51). (We will always use m to mean the rest mass.) A matrix such
as γm

(
I + γ2vvt

)
that relates force to acceleration accounts for why mass

is sometimes said to have a tensor character in special relativity. We’ll meet
tensors later in situations where they have more meaning, but for now it
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suffices to say that such a statement about mass is not especially useful,
and merely serves to indicate that force and acceleration vectors relate via a
matrix multiplication.

5.9.1 Einstein’s Relation of Mass and Energy

Prior to any notion of relativity theory, we know that if a force accelerates a
body from velocity v1 to v2, during which it moves from position r1 to r2,
then the force does work on the body by an amount equal to∫ r2

r1

F ·dr = m

∫ r2

r1

dv

dt
·dr = m

∫ v2

v1

v ·dv

= m

∫ v2

v1

(vxdvx + vydvy + vzdvz) = 1

2
m
[
(vx)2+ (vy)2+ (vz)2

]v2

v1

= 1

2
m
[
v2
]v2

v1
= 1

2
mv2

2 − 1

2
mv2

1 . (5.53)

This line of thought associates an energy mv2/2 with a body that has speed v.
(For simplicity we are ignoring any internal energy the body might have.)
Since this energy vanishes when the body is at rest, it must be an energy of
motion: kinetic energy.

In relativity, the same sort of idea is applied. This time, define the work
done as F ·dr, where now we must be careful to use the relativistic form of
the force:

work done =
∫ r2

r1

F ·dr =
∫ r2

r1

d(γmv)
dt

· dr = m

∫ v2

v=v1

v ·d(γv) . (5.54)

The last integral can be evaluated by noting that

v ·d(γv) = v ·(dγ v + γ dv) , (5.55)

so that using
dγ = d

[
(1 − v ·v)−1/2

]
= γ3v ·dv , (5.56)

we obtain
v ·d(γv) = γ3v ·dv = dγ . (5.57)

Looking carefully, we see a suggestion of the longitudinal mass of (5.52)
here, care of the γ3 term. This should come as no surprise; the fact that a
dot product was used in the expression for work (5.54) has the consequence
that the transverse mass will not enter into the calculation.

The total work done is therefore

m

∫ v2

v=v1

v ·d(γv) = m [γ]v2
v1

=
m√

1 − v2
2

− m√
1 − v2

1

. (5.58)
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Comparing this result with (5.53) shows that we might associate an en-
ergy γ(v)m with a body that has speed v. But this is just the relativistic
mass, which reduces to the rest mass when v = 0. Einstein interpreted this
relativistic mass (times c2 for the correct units) as the body’s total energy E,
so that even when at rest, the body has energy equal to its rest mass. Notice
that the square of the total energy minus the square of the momentum is

E2 − p2 = (γm)2 − (γmv)2 = m2, (5.59)

and of course m2 is a constant, being the body’s rest mass. So, like the
interval, all observers agree on the value of E2 − p2. This is an idea we will
investigate more fully in the next chapter when we use the Lorentz transform
in a very different context. There we’ll find that an important language called
covariant notation arises quite naturally when we use relativity to describe
the everyday idea of crossing the street in the rain.



6 Four-Vectors and the Road to Tensors

When crossing a rainy street, should we walk or run? Walking takes time,
during which we get very wet, but while running reduces our time spent in the
rain, it does force us to sweep through the raindrops more quickly, since the
rain will be falling at a different angle and thus pounding into the front of our
body in a way that it wasn’t when we walked slowly. Probably most people
would choose to run as fast as possible every time, and that’s what we’ll find,
too, for the case of vertical rain and a simple “boxy” model of a human in
the coming pages. (For other angles of rainfall, such as when it ploughs into
our back, and for other bodily angles of running, we might adopt a different
strategy. But the case of vertical rain will suffice for our needs here.)

The problem of just how fast we should walk in the rain is interesting
because it introduces two quantities that become fused into one when we
take a relativistic viewpoint. These quantities are number density, which is
how many raindrops there are in a unit volume (the more there are, the wetter
we are going to get), and flux density, which is how many of those drops are
crossing a unit area in a unit time (pouring rain delivers more water than
light rain).

That these two types of density become fused into one might only be of
passing interest if it were not for the fact that this new quantity, a four-
vector—as well as the bigger family of which it is a part, called tensors—also
appears in a great many other diverse areas of physics. Understanding how
four-vectors arise makes it possible to see how useful they are in those other
areas, too.

So we’ll look more closely at these number and flux densities. This ques-
tion of how fast to run in the rain is a great example of the utility of taking a
whimsical problem to an extreme—in this case, the relativistic limit. Despite
the apparent irrelevance of taking such a limit, we find that when we do, this
fusion of two quantities into one happens, and we learn something interesting
about Nature. Let’s do just that.

6.1 Number Density and Flux Density

First, we need to define these two densities. If we have a collection of particles
such as raindrops, their number density n is the number that inhabit a unit
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x

y

vx ∆t

end area A

flow of particles

v

Fig. 6.1. The thin vertical line is the edge of a plane perpendicular to the x-axis,
and through this plane we wish to count the number of particles flowing. A tube has
been drawn that follows the passage of drops in some area A in a time interval ∆t.

volume. Their flux density is a little more complicated, being a vector. Its
x-component is the number of particles flowing across a unit plane area at
constant x in unit time, and likewise for its y- and z-components. For instance,
if all of the particles are moving along the x-axis in a direction of increasing x,
then their flux density will equal some positive number times (1, 0, 0).

The flux density vector is useful because its three numbers determine the
flux through any surface at all, no matter what its orientation. And such a
surface need not be planar, since we can always use calculus to break such
a curved surface into infinitesimal elements that can be treated as planar.
To calculate the three components, imagine as in Fig. 6.1 a plane drawn at
right angles to the x-axis with some area A, through which the rain moves
with velocity v. The x-component of the flux density will be the number of
particles passing through this surface in a time ∆t divided by its area A and
the time interval ∆t. This is

x-component of flux density =[
static number
density

]
×
[

volume of swept tube
of end area A

]
A∆t

=
n vx ∆tA

A∆t
= nvx . (6.1)

Similarly, the two other components are nvy, nvz, so the total flux density
vector is nv.

These expressions for the number and flux densities, n and nv, will only
be valid nonrelativistically since at high speeds of rainfall, the length con-
traction of special relativity changes the relevant geometry; but we’ll get to
the relativistic versions later. In the meantime:

(nonrelativistic) number density = n ,

(nonrelativistic) flux density is Φ = nv . (6.2)
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A

A

θ
v

unit normal N

Fig. 6.2. A general plane across which a tube of particles flows. The tube has end
area A, and the particles flow with velocity v for a time ∆t.

Now imagine that the surface through which the particles flow is a plane
orientated such that its unit normal vector is the N of Fig. 6.2. There are,
of course, two choices for N , but we will show in a moment that each is as
good as the other. The flux density through this plane is given by the number
of particles passing through its area A in a time ∆t divided by A∆t. Again,
this is the number density times the volume of a swept tube of end area A
divided by this area and the time interval ∆t. With θ the angle between v
and N , we have

flux density through plane =

n ×
[

perpendicular height
(not length!) of tube

]
× A

A∆t
=

n v ∆t cos θ A

A∆t

= nv cos θ = nv ·N . (6.3)

So we have shown that the flux density nv suffices to give the flux in every
direction N , which is what makes it useful.

It makes no difference whether we choose the unit normal vector N to
point “into” or “out of” the surface. Changing the sign of N will change the
sign of the dot product nv·N , which just embodies the reversal of the choice
of preferred direction. That is, a flux of, say, 5 particles in one direction
through a surface is exactly the same as a flux of −5 particles in the opposite
direction.

Once we know the flux density of the rain, we can calculate how many
drops will flow through any surface at all. The number density n and flux
density Φ = nv completely determine how much rain there is and how fast
it is falling. Summing up,
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n = number of drops per unit volume,
Φ·N = number of drops passing through unit area in unit time. (6.4)

Now that we have written the flux density as a vector, the calculation becomes
easy to do for the case where the rain falls at an arbitrary angle. So such an
angle is no more complicated, but it also gives no more insight, and so we’ll
stay with vertical rain.

6.2 Running Nonrelativistically

The surface in Fig. 6.2 through which we drew the rain falling was not moving.
Because of this restriction, we need to analyse the rainfall scenario in our own
frame as we cross the road, because we never move in our own frame.

When changing frames, we ask: what quantities will change? If the speeds
of our walk and the rainfall are slow enough, then the whole exercise will
be nonrelativistic, and that of course means that we’ll perceive there to be
no change in the properties of space and time. The number density of the
raindrops will not change because the volume we measure them to inhabit
has not changed. On the other hand, their flux density will change because,
when we run, the rain will fall at an angle in our frame instead of falling
vertically as it does in the street frame.

So let’s calculate how many drops we encounter as a function of our
speed across the street. Once this has been done, we’ll repeat the calculation
relativistically to find the promised insight by fusing the number and flux
densities into one.

To analyse the rainfall scenario, use the three frames shown in Fig. 6.3:

– the street frame, Sstreet, since the whole scenario takes place there;
– the rain frame, Srain, in which the number density and flux density have

their simplest forms; and
– the body frame, Sbody, since the expression Φ·N requires the surface

of interest to be at rest. (Φ·N was developed in the frame of the surface
through which the rain travels.)

We’ll also use the following notation:

v
A←B

≡ velocity of A relative to B

= v
A←C

− v
B←C

(where C is any third point)
= v

A←C
+ v

C←B
. (6.5)

We require the flux density of the rain in the body frame, or nv
rain←body

,
where

v
rain←body

= v
rain←street

− v
body←street

= (0, vr) − (vb, 0) (refer to Fig. 6.3)
= (−vb, vr) . (6.6)
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Sstreet

street frame
Srain

rain frame
(rain at rest in this frame)

Sbody

body frame
(body at rest in this frame)

x

y

xr

yr

xb

yb

vb in Sstreet

vr in Sstreet

Fig. 6.3. The street and body frames are used for the nonrelativistic case, while
the rain frame is really only needed later for the relativistic calculation. The street
frame is at rest on the printed page, so to speak.

The flux density of the rain in the body frame is then

Φ = n(−vb, vr) . (6.7)

Assume our head to be flat with area Ah, and our front to be flat with area Af .
How many raindrops will hit our head? This is just the absolute value of the
flux through that flat surface. Refer to (6.4):

number of drops hitting our head = |flux across head|
= |flux density across head × Ah × time to cross street|
= |n(−vb, vr)·(0, 1) × Ah × time to cross street|
= |vr/vb| nAh s (6.8)

since the time to cross the street is s/|vb|. Similarly,

number of drops
stopped by our front =

∣∣∣∣n(−vb, vr)·(1, 0)Af
s

|vb|
∣∣∣∣ = nAf s . (6.9)

The total number of drops we intercept is, of course, the sum of (6.8)
and (6.9):

total number intercepted = ns
(
|vr/vb|Ah + Af

)
. (6.10)

The total number of drops that strike us is a decreasing function of our
running speed |vb|, reducing asymptotically to nsAf as we run ever faster. So
we should run as fast as possible!—although there is a minimum amount of
rain that must hit us no matter how fast we run (nonrelativistically). This



218 6 Four-Vectors and the Road to Tensors

limiting amount is just the constant number of drops that hit our front, which
is reasonable since the faster we run, the more the falling drops are“frozen” in
flight and thus the fewer of them will hit our head. The fact that the number
of drops hitting our front is constant shows that while we do sweep through
more of them as we run faster, we also spend less time in the rain, and these
two factors cancel.

6.3 Running Relativistically

Having solved the rainfall problem nonrelativistically, it’s time to ask what
insight might be gained by considering the relativistic version. The basic
calculation is much the same, provided we amend the definitions of number
density and flux density to incorporate the effect of relativity. It is understood
that the rain, or our speed, need not actually be relativistic for the following
calculation to apply.

In a relativistic treatment, lengths will be contracted, implying that par-
ticle densities must increase. The number density is easily corrected: if the
n particles inhabit a box of unit volume in their own rest frame, then we who
measure them as moving with some speed v will measure that box’s volume
to have decreased by a factor of γ = 1/

√
1 − v2 because its side in the direc-

tion of its motion is Lorentz-contracted by γ. So we’ll observe an increased
number density of γn.

The γ-factor also finds its way into (6.1) for the same reason, since the
number density n there must be replaced by the relativistic value γn. The
volume of the swept tube in Fig. 6.1 is unchanged; it just contains more
raindrops. Including the extra factor of γ in (6.1) then produces the fully
relativistic definitions of the densities:

fully correct number density = γn ,

fully correct flux density Φ = γnv .
(6.11)

These quantities allow a relativistic analysis with the approach of (6.6), where
the velocities are now to be transformed relativistically.

However, while the corrected densities in (6.11) suffice, we can gain further
insight by taking a slightly different path. Just as the Lorentz transform mixes
space and time from one frame to another, it must also mix the number and
flux densities, since the first is defined using space (the volume of a box) while
the second is defined using time (the flow of the raindrops). So let’s examine
just how the Lorentz transform mixes number and flux densities.

6.3.1 Combining Number and Flux Densities into Something New

In Chap. 5, we wrote down the Lorentz transform that relates time and
space between inertial frames. Its form used in this chapter can be written
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from (5.45), but we will restrict all motion to the x- and y-directions, making
the much simpler (5.17), together with its corresponding version for motion
along the y-axis, quite adequate for our needs.

However, as was pointed out in Chap. 5, by treating increases in the co-
ordinates, we can bypass having to keep track of arbitrary zero calibrations
of the axes. And, in fact, to be fully general for the noninertial case of ac-
celeration (where v is changing, as described in the next chapter), we really
wish to consider the infinitesimal form of the Lorentz transform. For example,
if the primed frame moves with velocity v in the positive-x direction of the
unprimed frame, (5.18) becomes

dt′ = γ(dt − v dx) ,

dx′ = γ(dx − v dt) ,

dy′ = dy , dz′ = dz . (6.12)

Just how dt,dx,dy,dz transform between frames is the central result of spe-
cial relativity, and we mark this by considering the four infinitesimals to be a
single unit called a four-vector. If this name was reserved for these four quan-
tities alone, there would hardly be any point in inventing it. But the surprise
is that we can find other quantities that also transform between frames in
just the same way as dt,dx,dy,dz. We also bundle those together and call
the new ordered set a four-vector. Obeying the Lorentz transform is precisely
what defines a four-vector. Once we have investigated the properties of the
fundamental four-vector (dt,dx,dy,dz), we will have begun to explore all of
the four-vectors of physics.

It must be said here that we’ll reserve the name four-vector for an ordered
set of numbers such as (dt,dx,dy,dz), with nothing yet being said about why
such a set should be called a vector, apart from the fact that its spatial part
has the components of a vector in euclidean 3-space. In Chap. 8, we will look
more closely at this important point and introduce basis vectors that, when
combined with the four-vector components, produce a more general object
called a proper vector, which itself will be a special case of the larger set called
tensors. But, for now, it suffices to be aware that the four-vector is really just
an ordered set of components that obey the Lorentz transform.

Some further points should be noted. First, a euclidean vector with four
components is not a four-vector. A four-vector is a physical quantity; it trans-
forms in a certain well-defined way when we change frames. Euclidean vectors
are not obliged to obey the Lorentz transform! Second, the term four-vector
doesn’t naturally imply that there are also five-vectors, six-vectors, and so
on. A five-vector certainly could be defined by joining dt to a euclidean four-
component vector (dx,dy,dz,dw) together with an appropriate transform.
This is done in some descriptions of cosmological models, but it’s not an
important idea for our purposes, and we need not consider it.

Last, the set of coordinates of an event (t, x, y, z) is not a four-vector,
since it does not obey the Lorentz transform in general. Usually, in special
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relativity, the origins of the two inertial frames are chosen to coincide at
t = t′ = 0, in which case (t, x, y, z) certainly will obey the Lorentz transform.
But while pedagogically useful, this is a very restrictive condition that cannot
be expected to hold in general. In contrast, the components of true four-
vectors obey all Lorentz transforms.

The fundamental four-vector (dt,dx,dy,dz) involves infinitesimals. A use-
ful exercise is to factor one of these out, leaving the rest as ratios and hence
noninfinitesimal, so that we are dealing with as many physical quantities as
possible. The natural choice is to factor out dt since the remaining ratios will
then be well-understood velocities.

So picture two events separated by time and space intervals dt,dx,dy,dz.
We have arranged for a clock to travel at constant velocity from the first
event to the second. By definition, the clock will tick out the proper time dτ
between the events. This is the time interval that the clock shows, and all
observers must agree on that regardless of their state of motion (because there
is only one clock that can move in such a way, and it reads dτ !). So dτ must be
a frame-independent quantity, another example of a scalar. We measure the
time between the two events to be dt = γ dτ , where γ = 1/

√
1 − v2 relates to

the speed v of the clock connecting the events since “moving clocks run slow”.

Alternatively, we can see that dt = γ dτ without applying the“moving clocks
run slow”rule of thumb by applying the inverse of (6.12) to the moving clock,
which inhabits the primed frame and moves with its x′-axis joining the two
events. The inverse of (6.12) for the time coordinate is dt = γ(dt′ + v dx′).
Since the events take place at the same spot for that clock, dx′ = 0 and
dt′ ≡ dτ . Hence dt = γ dτ . We might have been inclined to apply (6.12) as
it is, since the required dt′ ≡ dτ is already isolated on one side of the first
equation. This actually would not be such a good idea, leading to more effort
than we spent by using the other frame above [i.e. first inverting (6.12)]. As
discussed in Sect. 5.3.1, the moral here is that in special relativity analyses,
we should be prepared to apply the Lorentz transform not from the frame
that might seem intuitively more direct or simple, but from the other frame.

In the unprimed frame, the clock travelling between the two events has
velocity v ≡ (dx/dt,dy/dt,dz/dt). Factoring out dt gives

(dt,dx,dy,dz) = dt (1, vx, vy, vz)
= the scalar dτ × γ (1, vx, vy, vz) . (6.13)

Now realise that if four numbers transform in the way of (6.12), then a
scalar multiple of those numbers will also transform in that way because
the equations are linear. So because dτ is a scalar, we have established an
important fact:

�u ≡ γ (1,v) is a four-vector. (6.14)

Not surprisingly, this four-vector is an important one, and it is given the
name four-velocity or proper velocity �u. The arrow is a reminder that we
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are dealing with four dimensions, as opposed to a bold font denoting three
dimensions. (In later chapters, where the concept of a vector is generalised, a
bold font will be sufficient to denote a vector in any number of dimensions,
but here we wish to be more explicit while the concepts are introduced.)
The four components of �u, such as ut = γ, ux = γvx, etc., are conventionally
indexed by a Greek superscript, so that although the four-vector is really �u,
we tend to call it uα by referring to all of its components at once. The indices
can equally well be referred to by the numbers 0 to 3, which is equivalent to
renaming the coordinates

t, x, y, z −→ x0, x1, x2, x3. (6.15)

However, the generic names of x0, x1, x2, x3 can also be used to denote any
other system of spacetime coordinates, such as t, r, θ, φ.

The appearance of γ and γv in (6.14) is beginning to look suspiciously
like the number and flux densities of (6.11). With an eye on this, we try
something new and bold: we put the number and flux densities together into
a set of four numbers:

(number density,flux density) = γn (1,v)
= n × four-velocity. (6.16)

But n is a scalar; the density of raindrops in those drops’ rest frame is a
number that all observers must agree upon. That means that this number–
flux density, n�u, is a four-vector! So the Lorentz transform gives the correct
recipe for how number and flux densities transform in special relativity.

This new four-dimensional density allows us to calculate how many rain-
drops hit our head and front in the relativistic case, by using the number–flux
density in our body frame. Its value in the rain frame, easily calculated, is
converted to our body frame via the street frame, because only in the street
frame do we know the relevant velocities. So we need two Lorentz transforms:

Srain =>>>>
v
rain←street

= (0, vr, 0) ,

∴ v
street←rain

= (0,−vr, 0) .

Using (5.45), the transform is⎡⎢⎢⎣
γr 0 γrvr 0
0 1 0 0

γrvr 0 γr 0
0 0 0 1

⎤⎥⎥⎦ .

Sstreet =>>>>
v
body←street

= (vb, 0, 0) .

The transform is⎡⎢⎢⎣
γb −γbvb 0 0

−γbvb γb 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

Sbody

(6.17)



222 6 Four-Vectors and the Road to Tensors

The number density in the rain frame is simply n, while the flux density in
that frame is the zero vector. (The rain does not move in its own frame.)
Thus, the number–flux density in the body frame is built from two Lorentz
transforms:

[
nb

Φb

]
=

⎡⎢⎢⎣
γb −γbvb 0 0

−γbvb γb 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

γr 0 γrvr 0
0 1 0 0

γrvr 0 γr 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

n
0
0
0

⎤⎥⎥⎦ = nγr

⎡⎢⎢⎣
γb

−γbvb

vr

0

⎤⎥⎥⎦ .

(6.18)
Finally, we take the flux density and use it to calculate how many raindrops
the body intercepts, in the way of (6.8) to (6.10):

number of drops hitting our head = |flux across head|
= |flux density across head × Ah × time to cross street|

=

∣∣∣∣∣∣nγr

⎡⎣−γbvb

vr

0

⎤⎦·
⎡⎣0

1
0

⎤⎦× Ah × time to cross street

∣∣∣∣∣∣ , (6.19)

where the time to cross the street is

contracted road width
running speed

=
s

γb|vb| . (6.20)

Care is needed in remembering to contract the road width, but even in a
more complex problem we would hardly be distracted from doing this be-
cause we would need to apply a Lorentz transform to calculate the time
interval. Here, we don’t need the full machinery because the problem is sim-
ple enough, but we do need to remember the end result of that machinery:
length contraction.

Combining (6.19) with (6.20) gives

number of drops hitting our head =
γr

γb

∣∣∣∣vr

vb

∣∣∣∣ nAh s . (6.21)

In a similar way,

number of drops hitting our front = γr nAf s . (6.22)

The total number of drops we encounter is the sum of (6.21) and (6.22):

Total number = nsγr

( ∣∣∣∣vr

vb

∣∣∣∣ Ah

γb
+ Af

)
. (6.23)

Compare this with the nonrelativistic (6.10). The factor γb|vb| increases as
we run faster, so the conclusion is identical to that of the nonrelativistic case:
cross the street as fast as possible. This is all well and good, but the real jewel
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here is not about keeping dry, but rather the new idea of the number–flux
density four-vector and the knowledge of how it can be calculated in any
frame when known in one. This knowledge of how numbers change between
frames is the fundamental idea behind four-vectors and their larger tensor
family.

6.3.2 The “Length” of the Four-Velocity

Four-vectors have different components in different frames, and although they
are four-dimensional entities, their euclidean length is not invariant from one
frame to the next. Rather, what is invariant is the new measure of length
as determined by the idea of the metric that we encountered in Sect. 5.6. In
general, the squared length of any four-vector �a is defined to be

|�a|2 ≡ at2 − ax2 − ay2 − az2. (6.24)

Applying this to the four-velocity (6.14) shows that its length is always one,
regardless of frame:

|�u|2 ≡ γ2
(
1 − vx2 − vy2 − vz2

)
= γ2

(
1 − v2

)
= 1 . (6.25)

We’ll use the invariance of the vector length in the next section.
As discussed in the previous chapter, we have not joined space and time

together artificially; they really were always two parts of a single structure
with a metric dτ2 = dt2 − dx2 − dy2 − dz2. Written with infinitesimals, the
metric applies to all observers, even noninertial ones—as we’ll see when we
study an accelerated observer in the next chapter.

6.4 Examples of Other Four-Vectors

Besides the four-velocity and number–flux density, other four-vectors arise
in physics with important uses, and in this section we will study three no-
table examples. The first, energy–momentum, will be familiar from the end
of the previous chapter. The second example is the charge–current density, of
importance in studying electromagnetism. The last four-vector, frequency–
wavenumber for light, will not quite fit the mould and will force us to extend
our ideas of four-vectors.

Energy–Momentum

In Sect. 5.9 we saw how a particle of rest mass m is postulated to have total
energy and momentum of

E = γm , p = γmv . (6.26)
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px

E

m

Fig. 6.4. In one space dimension, all particles of rest mass m are represented
by four-vectors whose heads lie on the positive-energy branch of the hyperbola
E2 − px2 = m2.

It follows immediately that (E,p) is a four-vector since it equals a scalar m
times the four-velocity:

�p ≡ (E,p) = γ m(1,v) = m�u . (6.27)

This, the energy–momentum four-vector, is written as �p with components pα.
Thus we can straightaway write down how energy and momentum transform
in special relativity since they mimic the four-velocity. For example, when
the S′-frame moves along the x-axis with velocity v, refer to (6.12) to write

E′ = γ (E − v px) ,

p′x = γ (px − v E) ,

p′y = py , p′z = pz. (6.28)

Knowledge of the energy–momentum �p is used frequently in relativity and
particle physics, because it allows an analysis of dynamic processes in any
frame we choose. To see why, we introduce a somewhat under-used device in
the theory of interactions, called the energy–momentum diagram, shown in
Fig. 6.4. Because the summed energies and momenta of all the particles in an
interaction are conserved, any interaction on such a diagram can be depicted
as a vector addition of the energy–momentum four-vectors for the interacting
particles, in a way akin to a spacetime plot. We just substitute energy and
momentum for time and space, respectively, now with the speed of light c
absorbed into the definition of energy. Because a photon satisfies E = pc,
or just E = px in one space dimension (with c absorbed), it is represented
on such a plot as a 45◦ wavy line, just as it is on the usual t–x spacetime
diagram.

The axes of the energy–momentum diagram need calibration. After all, the
lengths of its vectors are meant in the scalar sense of (6.24). Recall from (5.59)
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px

E

m

mass > m

Fig. 6.5. A particle’s energy–momentum plus a photon’s energy–momentum gives
a resulting vector that lies off the E2 − px2 = m2 hyperbola, or off shell. Thus, if
the photon is to disappear in the interaction, the particle’s rest mass must change,
regardless of its resulting motion.

that E2−px2 = m2, a scalar, so that the rest mass m is an energy–momentum
vector’s length in the hyperbolic geometry of the energy–momentum diagram.
Further, since all known particles have real mass, they must all obey the rela-
tion E > p, so that their vectors on the energy–momentum diagram must be
sloped more steeply than that of light, which itself has zero rest mass (E = p).
This forms a good analogy to the fact that all worldlines on a spacetime dia-
gram slope more steeply than a light ray’s worldline. And it implies that all
particles with rest mass m—regardless of their motion—can be represented
as vectors, with tail at the origin and head on the hyperbola E2 − p2 = m2,
as shown in Fig. 6.4. We see on that diagram that the energy of a particle at
rest (px = 0) is indeed its rest mass m.

A good example of the power of energy–momentum diagrams in analysing
collisions is shown in the following scenario. Our task is to prove that a
particle cannot simply absorb a photon that strikes it, without some change
occurring to the particle’s internal structure. All we need do is work in the
rest frame of the particle before the collision, adding its four-vector to that of
the photon as shown in Fig. 6.5. The particle at rest has zero momentum, and
energy equal to its rest mass m. When it absorbs the photon, the resulting
excited particle must have a different rest mass because the head of the total
vector simply can no longer lie on the hyperbola E2 − px2 = m2. So the
particle resulting from the collision must have a different rest mass, implying
there has been a restructuring of its internal constituents. QED! An energy–
momentum diagram lets us balance energy and momentum in one fell swoop.
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Charge–Current Density

The second four-vector that we’ll consider has great use in electromagnetism,
and can be built out of the number–flux density. Suppose that we are ex-
amining not raindrops but charge carriers, each with charge q, that flow in
a current. In their rest frame, they have a number density of n charges per
unit volume and hence a proper charge density of �0 ≡ nq. In that case, the
charge density � in our frame is � = γnq. It must be larger than �0 by a factor
of γ since the charges now occupy a box with side length contracted by γ.
(Why is q a scalar? Because everyone agrees on its value. Experimentally,
charge is not observed to change from one reference frame to the next.)

The current density j is the flux density of the charges times their charge,
or γnv × q. So now we have a new four-vector, the charge–current density �j :

�j ≡ (�, j) = (γnq, γnvq) = q × γn(1,v) = �0�u , (6.29)

with its four components jα = �0u
α. The charge–current density �j is just a

scalar q times the number–flux density n�u, or equivalently a scalar �0 times
the four-velocity �u.

We now know how charge and current densities transform between frames.
Because charges produce the electric field and currents the magnetic field,
much of the machinery is now in place to begin to analyse how electric and
magnetic fields mix under a Lorentz transform. We’ll see later in Sects 10.4.1
and 11.3 when deriving and solving Maxwell’s equations, that if the electro-
static potential Φ is combined with the vector potential A, then the result is
closely related to �j in a way that makes a new four-vector,

�A ≡ (Φ,A) , (6.30)

called simply the electromagnetic potential. This combination of charge and
current densities, as well as the two potentials of electromagnetism, is a great
unification, and these ideas will be used throughout the coming chapters.

Frequency–Wavenumber for Light

Our last four-vector will be something quite different: one that does not
lean on the four-velocity for its definition. With the tools we’ve been using
until now, the calculations of this section will be a little onerous; but this
is deliberate because a way to streamline them through the use of covariant
notation will emerge. This new notation will then serve to introduce a new
set of numbers closely related to the idea of the cobasis that was introduced
in Sect. 2.3.

So consider the frequency and wavenumber of a wave as defined in terms
of the phase φ in (2.147):

ω ≡ −∂φ

∂t
, k ≡ ∇φ . (6.31)
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The frequency depends on time, while the wavenumber depends on space. It
might not come as a surprise, then, to find that frequency and wavenumber
can be joined to make a new four-vector �k ≡ (ω,k). To prove that �k is indeed
a four-vector, we need to show that its components kα transform correctly
through the Lorentz transform. A little more work is required here than for
the charge–current density �j , since �k is not proportional to any four-velocity
in the way that �j was in (6.29).

Here is what we do. The Lorentz transform for a general velocity v = vn
was written in (5.45). Remember that to eliminate the need to include any
calibration constants in our axes, the matrix in (5.45) can be applied to
differentials of the coordinates. So write (5.45) in the following way:⎡⎢⎢⎣

dt′

dx′

dy′

dz′

⎤⎥⎥⎦ =

⎡⎢⎢⎣
γ −γv1 −γv2 −γv3

1 + n2
1(γ − 1) n1n2(γ − 1) n1n3(γ − 1)

1 + n2
2(γ − 1) n2n3(γ − 1)

(symmetric) 1 + n2
3(γ − 1)

⎤⎥⎥⎦
⎡⎢⎢⎣

dt
dx
dy
dz

⎤⎥⎥⎦ .

(6.32)
This matrix equation can be expressed more conveniently by writing it in
terms of its components, while introducing a new and very useful notation
where the indices indicate a frame change:

dxα′
= Λα′

β dxβ . (6.33)

Such compact notation needs some explanation. We used the usual vector
notation of a raised index, but the prime was placed not on the dx but
instead on its index. The 4 × 4 Lorentz transform matrix in (6.32) has been
denoted by its (α, β)th component, again with the prime placed over the
upper index, indicating that it transforms unprimed indices to primed ones
(i.e. frames S → S′).

Also making its debut in (6.33) is the Einstein summation convention,
which requires any index that appears both raised and lowered to be auto-
matically summed over. This is of immediate use here because matrix mul-
tiplication uses a sum over adjoining repeated indices, such as in (2.114). To
annotate the entries of a general matrix A, we denote Ai

k as the element of
row i, column k, so that Einstein’s summation convention would then allow
the generic matrix multiplication (2.114) to be written as

(AB)i
j = Ai

k Bk
j . (6.34)

The practice of putting the prime on the index eliminates the need to write
a plethora of different symbols. For example, the four-vector of components
uses the symbols dx in each frame, but the prime tells us that dxα′

refers
to the S′-frame while dxα refers to the S-frame. If we want to write the
four-vectors as complete entities, without explicit mention of components,
we then do need to write the prime explicitly. In that case, we might write−→
dx ≡ (dt,dx) ≡ (dt,dx,dy,dz) and

−→
dx′ ≡ (dt′,dx′) ≡ (dt′,dx′,dy′,dz′).



228 6 Four-Vectors and the Road to Tensors

So dxα′
is really the αth component of

−→
dx′. Calling it the α′th component

is usually harmless, but can sometimes be unwise if we want to keep track of
the indices when working with matrix expressions. [For an example of where
care is needed, see the discussion around (8.160).] When all is said and done,
the four-vector

−→
dx is usually just referred to by its general component dxα.

But much more will be said about this in Chap. 8.
The term Λα′

β is also understood to refer to the whole Lorentz transform
matrix, despite really referring to just its (α, β)th component. What is the
inverse transform? We could work it out the hard way by inverting (6.32),
but we can make do with much less effort simply by switching the signs of
all velocity terms.

We denote the fact that the Lorentz transform matrix has been inverted,
by writing the inverse with the prime now only on the subscript, since the
inverse matrix transforms the primed frame to the unprimed frame:

dxα = Λα
β′ dxβ′

, (6.35)

with

Λα
β′ =

⎡⎢⎢⎣
γ γv1 γv2 γv3

1 + n2
1(γ − 1) n1n2(γ − 1) n1n3(γ − 1)

1 + n2
2(γ − 1) n2n3(γ − 1)

(symmetric) 1 + n2
3(γ − 1)

⎤⎥⎥⎦ =
(
Λα′

β

)−1

.

(6.36)
A close look at (6.33) and (6.35) reveals something else. It follows from these
equations that the partial derivative of any coordinate of one frame with re-
spect to any coordinate of the other must be the appropriate Lorentz trans-
form matrix element:

∂xα′

∂xβ
= Λα′

β , and similarly
∂xα

∂xβ′ = Λα
β′ . (6.37)

The product of these matrices that represent opposite Lorentz transforms
must be the unit matrix, since one Lorentz transform undoes the other:

Λα′
β Λβ

γ′ = δα′
γ′ . (6.38)

Here, the frame-independent Kronecker delta could equally well have been
written as δα

γ , but by writing the indices as α′, γ′, with each holding its up-
down position on both sides of the equation, a sort of positional invariance
of the components allows for an efficient visual bookkeeping to check that no
mistakes have been made.

The product (6.38) is true for the physical reason of representing oppo-
site Lorentz transforms, but it also holds due to the chain rule for the partial
derivatives of (6.37). For the same reason, with general changes of coordinates
(not just Lorentz transforms), the product of these matrices of partial deriva-
tives, known as jacobian matrices, will always be one (i.e., the multiplicative
identity matrix). We will see more of jacobian matrices in Chap. 8.



6.4 Examples of Other Four-Vectors 229

Returning to our candidate four-vector kα, we wish to show that it trans-
forms under a Lorentz transform in just the way that a four-vector should, as

kα′
= Λα′

β kβ . (6.39)

We’ll do so by starting with the left-hand side of (6.39). The following proof
is inelegant, but deliberately so. What it shows is that in the case of the
frequency–wavenumber, something is missing in the four-vector formalism,
which will be remedied at the end of the proof in a very simple and elegant
way.

The phase of the wave must be a scalar since all observers must agree on
how far through its cycle a sine wave is; so the phase φ needs no prime, and
the resulting primed frequency–wavenumber is

kα′
=
(−∂φ

∂t′
,

∂φ

∂x′ ,
∂φ

∂y′ ,
∂φ

∂z′

)
. (6.40)

The minus sign in the first term will make the following calculation quite
awkward. It has upset the symmetry, requiring us to treat the temporal part
separately, and that can only be a bad sign as far as our goal of unifying space
and time goes! Using the chain rule for partial derivatives along with (6.37),
we write

kt′ =
−∂φ

∂t′
=

−∂φ

∂xβ
Λβ

t′ . (6.41)

Comparing this with (6.39), it seems that the t′ index is in the wrong place
here. The Einstein summation convention, along with the notation of having
some indices raised and some lowered, really demands that all equal indices
should be either raised or lowered. The t′ “should”be raised on the right-hand
side of (6.41) just as it is on the left. We seem to have been forced into using
the inverse Lorentz transform matrix.

The only way out of our predicament is to employ some symmetries in
the matrices (6.32) and (6.36) to try to raise that t′ index. To write them,
here and throughout this book we’ll use Greek indices to denote all of the
coordinates, in this case 0 to 3, while Latin indices will denote a subset, which
here will be the space coordinates 1 to 3. (This is a fairly standard but not
universal convention, and in particular some authors will swap the roles of
Greek and Latin.) The necessary symmetries are (where t is of course time,
and not an index)

Λt
t′ = Λt′

t , Λa
t′ = −Λt′

a ,

Λt
a′ = −Λa′

t , Λb
a′ = Λa′

b . (6.42)

Returning to (6.41), we treat its time and space components separately to
try to make sense of those minus signs:

kt′ =
−∂φ

∂t
Λt

t′ −
∂φ

∂xa
Λa

t′ = kt Λt
t′ −
∑

a

ka Λa
t′
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= kt Λt′
t + ka Λt′

a [using the symmetries (6.42)]

= kβ Λt′
β . (6.43)

So far, so good: we see that (6.39) holds for α = t. The space components are
treated in just the same way, so omitting the details, the result for them is

ka′
= kβ Λa′

β . (6.44)

Finally, combine (6.43) with (6.44) to give Greek indices throughout:

kα′
= kβ Λα′

β . (6.45)

The proof is finished. �k changes between frames via the Lorentz transform Λα′
β

and so is indeed a four-vector.

This four-vector character relates two of the fundamental postulates of quan-
tum mechanics: E = �ω and p = �k. We have shown that both of these
involve four-vectors:

(E, p) = �(ω, k) , or �p = ��k , or pα = �kα. (6.46)

But this last expression cannot be used to show that (ω, k) is a four-vector
based on our earlier result that (E, p) is a four-vector, because (6.46) is
a postulate: a statement of physics. Each of the entities E, p, ω, k is well
defined independently of quantum mechanics, and it makes no sense to use
any postulate to establish a relationship between them.

A useful corollary to the result that �k is a four-vector is the elegance with
which the well-known expression for the relativistic Doppler shift can be
derived:

Calculate the relativistic radial redshift. That is, a spacecraft is reced-
ing from us at velocity v and it sends us a signal. How is its frequency
changed?

The frequency change is usually derived by considering how the light waves
change in frequency as they “wash over” us, being careful to remember that
we also measure the spacecraft’s clock to be timing slowly! But the power
of four-vectors can be used to produce the result far more elegantly and
economically now that we have done the groundwork.

We on Earth occupy the frame S, while the spacecraft occupies S′, moving
along our x-axis (which is radial) with velocity v (which can be negative—
the craft can be approaching us). Since the spacecraft has been designed
to emit a frequency f ′ in its own frame, we can immediately write down
the components of the frequency–wavenumber for S′ (remembering that k is
pointing back to us):

ω′ = 2πf ′ , k′ = −(2π/λ′, 0, 0) = (−2πf ′, 0, 0) , (6.47)
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using c = 1 as usual. Thus kα′
= (2πf ′,−2πf ′, 0, 0), and it’s a simple exercise

to transform to the S-frame using the inverse Lorentz transform:

ω = kt = γ(kt′ + vkx′
) = γ2πf ′(1 − v) . (6.48)

This very straightforward derivation shows that the Doppler-shifted fre-
quency received on Earth is f = f ′γ(1 − v).

6.5 Introducing Covectors and Fully Covariant Notation

There were two awkward spots in the proof of (6.39)–(6.45) that kα is a four-
vector. The first was that the appearance of the minus sign in the definition
of ω in (6.31) seemed to throw a spanner in the works, forcing us to treat
time and space components separately. The second was that we needed to take
advantage of symmetries in the Lorentz transform. Although we succeeded,
our aim ultimately is to discuss how physical laws are subject to general
changes of coordinates, not just the Lorentz transform. In those more general
cases, we cannot count on there being symmetries to take advantage of.

We will try to combine ω and k again, but this time changing the trou-
blesome sign of ω. So define something new, called Kα ≡ (−ω,k), which
together with (6.31) means that Kα = ∂φ/∂xα. This cannot be a four-vector
since we can already relate ω and k by a Lorentz transform, and we would
need to switch all of the signs to keep that relation correct, not just the sign
of ω. How then does Kα transform? Use the chain rule for partial derivatives
in (6.37):

Kα′
=

∂φ

∂xα′ =
∂φ

∂xβ
Λβ

α′ =
∑

β

Kβ Λβ
α′ . (6.49)

The transformation is very straightforward, with time and space components
needing no separation—except that Kα transforms by the inverse of the
transpose of the Lorentz transform! In a sense it’s a kind of inverse to the
four-vector kα, so we write it as kα with a lowered index to emphasise this
point, discarding the capital K to save on notation. Now (6.49) is written
much more elegantly:

kα′ = kβ Λβ
α′ . (6.50)

These lowered-index quantities might remind us of the cobasis components
in Chap. 2. Just as the ordered set of numbers kα is called a four-vector, the
ordered set of numbers kα is called a covector. And just as the name four-
vector was reserved on p. 219 for the numbers kα only, with no mention of any
basis vectors, we will reserve the name covector for the ordered set of kα, again
with no mention of any basis. In Chap. 8 it will be shown that the four-vector
components kα and the covector set kα are in fact the components of the same
object in two different bases that are related in just the same orthonormal
way as were the basis and cobasis discussed in Sect. 2.3. But for now and the
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remainder of this book, four-vectors and covectors are understood to mean
ordered sets of numbers only; when we eventually introduce the appropriate
bases, the new objects combining components with bases will be called proper
vectors (or just simply vectors).

Note that in many books the term “covector” is synonymous with an object
called a “one-form”, which we’ll meet briefly in Chap. 8 but will not be
useful to us. The two words covector and one-form are not synonymous in
this book. We take a covector to denote an ordered set of numbers with the
properties investigated here.

Just as four-vectors are produced naturally from quantities related to
infinitesimals of spacetime coordinates (such as the four-velocity), covectors
are produced naturally from quantities that result from differentiation with
respect to those coordinates. If we want to write (6.50) as a matrix equation,
we need to bear in mind that it indicates matrix multiplication only as long as
the repeated index β is written on the“inside”as in (2.114). Because of this, a
covector set should be written as a row vector to enable kβ to be interpreted
as its (1, β)th element, which is the only way to keep the β’s adjacent to each
other as per (2.114). So four-vectors are naturally written as columns, and
covectors as rows. Analogously, if A is a one-row and B a one-column matrix,
then their product has a single element, so (6.34) can be written

AB = AkBk. (6.51)

This reinforces the idea that sets of numbers described by lowered indices
(covectors) are represented by single-row matrices, while sets of numbers
described by raised indices (four-vectors) are represented by single-column
matrices.

By denoting four-vectors with raised indices and covectors with lowered
indices, expressions such as (6.39) and (6.50) preserve the up or down posi-
tions of like indices, which makes them easy to check quickly for correct index
bookkeeping. They also take advantage of the simplicity of the Einstein sum-
mation convention. This highly compact notation is termed covariant, and
forms the main language of mathematical physics when we are dealing with
changes in frames and coordinates. In the next chapter, we’ll reinforce co-
variant notation by showing how it helps us apply the Lorentz transform to
analyse frames with changing velocities.



7 Accelerated Frames: Onward to the Principle
of Covariance

Two chapters back, in (5.11), we saw that when two clocks synchronised in
their shared rest frame move past us with constant velocity v, the spatially
trailing clock leads its partner by a time vL0/c2, where their proper separation
is L0.

But on some reflection this leads to a difficulty. Suppose that one of
the synchronised clocks sits by our side, while the other lies in a distant
galaxy, one thousand million light-years away. Leaving aside questions as to
the meaning of distance on a cosmological scale, set their proper separation
to be L0 = 109 light-years. Now suppose that we on Earth pace slowly to and
fro, moving with speed v = 10−9c in each direction.

In that case, the clock next to us alternately leads and trails its partner
by one year. But because it’s right next to us, we can see that its time is
not changing at all by any more than the few seconds we spend pacing. That
implies that the clock in the distant galaxy is alternately jumping ahead of us
by one year and then suddenly dropping behind by the same amount; and this
see-sawing continues for as long as we pace to and fro. Can this apparently
nonsensical state of affairs really be happening?

Yes, the time we measure on the distant clock really is swinging back and
forth wildly, as we accelerate periodically to switch our walking direction.
This is a symptom of the fact that as we pace to and fro, we no longer
inhabit a single inertial frame; in fact, we no longer inhabit even a single
accelerated frame.

Inertial frames were the subject of the previous two chapters and form
the backbone of special relativity. They are the only type of frame in which
physical processes take on a certain simplicity. For instance, a thrown object
will maintain a constant velocity, as will a beam of light.

For very small distances and times, the frame of a laboratory is approx-
imately inertial. In a small laboratory, there is almost no deviation between
the paths of two neighbouring falling objects, and those objects maintain a
fairly constant velocity over a short time period. The classic undergraduate
physics task of analysing the explosion of a projectile in terms of the momenta
of the resulting fragments is able to be done because in the very small time
interval of the explosion, gravity has very little effect on the projectile, both
before and after it breaks apart. The calculation can then be done assuming



234 7 Accelerated Frames: Onward to the Principle of Covariance

an inertial frame, and gravity need not be taken into account—unless we wish
to track the fragments over longer times.

But our day-to-day experience of the world is that we are not inertial.
Here on Earth, an object thrown in the air soon falls down, and the speed of
light turns out to be influenced by gravity. It’s as if we are living in a rocket
permanently accelerated at one Earth gravity. This is the heart of Einstein’s
Equivalence Principle, which states that when we confine our attention to a
small volume of space for a short period of time, the gravitational field there
will be identical in its effects to a uniformly accelerated frame.

So apparently we can imagine that on Earth we inhabit a uniformly ac-
celerated frame. As such, it is the most natural frame we have. Apart from
the few occasions on which we might jump into the air (during which we
are weightless), our whole life is lived within the confines of an accelerated
frame, not an inertial one. So it is that we would like to investigate accelerated
frames by deriving the transformation equations that relate their description
of events to an inertial frame’s description of the same events.

Our aim here is to use special relativity to build the basic framework that
allows us to write the laws of physics in an accelerated frame, and to use this
to get an introductory feel for some of the relativistic effects of gravity via
the Equivalence Principle.

Accelerated frames are seldom explored in any depth in textbooks. This
is mostly because the laws of physics quickly become complicated even in this
first departure from the comfortable inertial frame. But discussing the form
taken by those laws in an accelerated frame is very useful for furthering an
understanding of relativity.

What exactly constitutes a frame? A frame is a collection of observers,
each taking notes about what happens in their immediate vicinity. Why only
their immediate vicinity? When we are analysing the events of the world
around us, we should not worry about distant events ourselves—information
from them takes time to reach us, and if we don’t know how far away they are,
then we cannot correct for this time interval. Our frame consists of an infinite
number of synchronised observers, all at rest with respect to us, and each only
concerned with writing down the time that an event occurs provided only that
it happens right under their nose. None of them care about distant events.
Each only looks after their own vicinity and reports back to us periodically,
allowing us to collate their observations and so construct a coherent picture
of the events happening throughout the frame.

It is sometimes said that to describe physics properly in an accelerated
frame, special relativity is insufficient, and the full machinery of general rela-
tivity is necessary for the job. This is quite wrong. Special relativity is entirely
sufficient to derive the physics of an accelerated frame.

In the frame local to Earth’s surface, in which we live our everyday lives,
we notice a constant push on our bodies from the ground. Anything unsup-
ported or throw in the air will fall down, and inside a closed room we can
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well imagine that we are not really on Earth at all. Rather, we could well be
in a rocket that constantly accelerates at one Earth gravity in deep space.
The rocket does not form an inertial frame, so we would like to go beyond
the Lorentz transform to discover the equations that relate measurements in
our rocket frame to those of inertial observers.

The first step in constructing this new transform is to locate the events of
our rocket frame in the “outside” inertial frame. The simplest scenario is to
take our acceleration as truly constant, which means we have been accelerat-
ing forever—if this is allowed by special relativity. Fuel considerations aside,
such an acceleration is possible. It’s made possible by the third postulate of
special relativity, called the Clock Postulate.

7.1 The Clock Postulate

We saw the first two postulates of special relativity on p. 187. First, all
inertial frames are equally valid, and second, light travels at the same speed
in all inertial frames. But what happens if we wish to use special relativity
to describe an object that doesn’t have a constant velocity?

As we accelerate in our rocket, our worldline in the inertial frame of an
outside observer is not straight, not even in any limit. Its curvature does not
go away as we focus on smaller and smaller segments of the worldline, just as
the dizzying acceleration that we feel on a roller-coaster ride does not go away
just because we might want to concentrate on shorter and shorter segments
of the ride.

Nevertheless, the Clock Postulate does state that our curved worldline can
be considered to be, in a sense, a kind of joining together of a series of inertial
frames, each one different, but with no acceleration terms appearing at all.
It says that the physics we observe to be happening around us can always
be analysed by asking only what is observed at some instant by an inertial
observer who at that moment shares our position and velocity: a momentarily
comoving inertial observer, who is at rest in a momentarily comoving inertial
frame, or MCIF. (It turns out that this postulate also applies when gravity
is present, as we’ll see in Chap. 12.) An accelerated observer, together with
one of his MCIFs, is shown in Fig. 7.1.

So, for instance, our accelerated clock’s rate is identical to the clock rate
in the MCIF. We can imagine this frame as holding an inertial clock that
for a brief moment is moving alongside us, so that our relative velocity is
momentarily zero. At that moment, both accelerated and inertial clocks are
ticking at the same rate—and both must agree on this fact, since they can
always be placed together so that their mechanisms are working in unison,
where we could arrange an experiment where they physically interact with
each other to confirm this. A moment later, our accelerated clock has a new
MCIF, again one that matches our velocity just at that moment, and there is a
new inertial clock that briefly slows to a stop alongside us and our accelerated
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Fig. 7.1. The Clock Postulate states that the physics described by an accelerated
observer at time t0 is identical to that described by a momentarily comoving inertial
observer at this time. That observer, as shown, is only momentarily comoving at t0
and so forms a valid MCIF only at that moment. For earlier and later times, a
different observer and MCIF must be used.

clock. And again, the rates of our accelerated clock and the new inertial one
will be momentarily the same.

An alternative way of stating the Clock Postulate is to say that the timing
rate of the accelerated clock slows compared with an inertial clock according
to the usual γ-factor of special relativity, γ = 1/

√
1 − v2, where v is the speed

that the inertial observer measures our accelerated clock to have. In other
words, our acceleration does not enter into the calculation at all. This is a
postulate because we cannot be sure that the “correct” expression for γ is
really lacking an acceleration term that goes to zero in the usual derivations
of special relativity, since these derivations only deal with nonaccelerating
observers. We just postulate that γ is not a function of acceleration.

Not only does the postulate say that a clock’s timing is not affected by its
acceleration, but it also states that neither do higher derivatives of velocity
have any effect. The γ-factor of the accelerating clock is now a function of
time, but at any instant it equals precisely the γ-factor of its MCIF. And
as well as time intervals, the Clock Postulate also applies to the shortening
of rods and the relativistic mass of a moving object, since these are both
measurements set by the MCIF’s γ-factor.

Of course, the ultimate test of any postulate is whether or not it stands up
to experiment. The Clock Postulate does phenomenally well. It has stood the
test of experiment with accelerations as high as 1018 times Earth’s gravity.

We should understand the Clock Postulate well. While it says that the
timing rate of an accelerated clock doesn’t depend on its acceleration, it does
not say that this rate is unaffected by the clock’s acceleration. The timing
rate will certainly be affected if the acceleration changes the clock’s speed of
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motion, because its speed determines how fast it counts out its time—i.e., by
the γ-factor. But the timing rate won’t be affected by the accelerations felt
along non-straight-line motion at constant speed.

If this choice of words sounds paradoxical, consider an everyday analogy.
When riding your bicycle on an icy morning, you get very cold due to the
wind chill factor: the faster you go, the colder your hands get. This wind
chill is a function of your speed but not your acceleration. Nevertheless, it is
affected by your acceleration when your acceleration changes your speed. But
irrespective of whether you have a low or a high acceleration, the only thing
that matters as far as your cold hands are concerned is your current speed.
So, for example, in circular motion, two cyclists who follow different-diameter
circles at the same speed will feel the same wind chill, even though they have
different accelerations.

Another example of such a dependence comes from electromagnetism.
The force on a charge q when moving with velocity v in electric and magnetic
fields E and B is F = q(E + v × B). This force is independent of the charge’s
acceleration. But any acceleration that the charge might have will certainly
change its velocity and so change the force. So although the force is not an
explicit function of the acceleration, it certainly is affected by the acceleration.

A last simpler example concerns the value of the local civilian times that
we encounter while flying around the world. This is a function of our position
but not our flight speed. But again, it certainly is affected by our flight speed
because that speed changes our position.

The Clock Postulate is not meant to be obvious, and it cannot be proved.
It is just a postulate. For instance, we cannot magically verify it by noting
that the Lorentz transform is only a function of speed, because the Lorentz
transform is something that’s built before the Clock Postulate enters the pic-
ture. Also, we cannot simply wave our arms and maintain that an acceleration
can be treated as a sequence of constant velocities, each of which exists only
for an infinitesimal time interval. After all, an accelerating body (away from
gravity) feels a force, while a constant-velocity body does not. Although the
Clock Postulate does speak in terms of constant velocities and infinitesimal
time intervals, there is no a priori reason why that should be meaningful or
correct. This is just like the fact that even though a 1000-sided polygon looks
a lot like a circle, a small piece of a circle cannot always be treated as an
infinitesimal straight line. For, no matter how small the circular arc is that
we take from the circle, it will always have the same radius of curvature as
the circle, whereas a straight line has an infinite radius of curvature. Also, it
won’t do to simply define a clock to be a device whose timing is unaffected
by its acceleration, because it’s not clear what such a device has to do with
the real world; that is, it’s not clear how well it approximates the mechanism
that chimes on the wall, or that we wear on our wrist.

The Clock Postulate is important and deserves more attention than it
usually gets because it allows us to geometrise relativity, and this is the first
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step toward creating the theory of general relativity. And as we shall see at
the end of this chapter, it also allows us to develop further the notion of
covariance introduced at the end of the previous chapter, which enables the
equations of physics to be written in a frame-independent way.

7.1.1 The Interval for Noninertial Observers

In Sect. 5.6, we saw the idea of the interval or metric as applied to inertial
observers. But what is the time elapsing on a noninertial (i.e. accelerated)
clock connecting two widely separated events? We don’t expect an expression
as simple as ∆t2−∆x2−∆y2−∆z2 because that expression is only a function
of the endpoints, and encodes no information about the path that the clock
took and its speed at various points. The assumption we make, that the
Clock Postulate holds, is something that really leans on experiment for its
ultimate justification. It was first postulated by Einstein in the following
way. He considered a curved worldline to be the limiting case of part of a
polygon, in essence considering two neighbouring observers: one traversing
the curved worldline and the other traversing the polygonal worldline. These
observers are always very close to each other, with a relative speed that tends
to zero in the limit as the number of polygonal segments tends to infinity.
It’s unreasonable to expect that the measurements of one should be different
from those of the other. Additionally, the polygonal observer’s clock is inertial
while it traverses each straight segment of that polygon, and the only effect
the acceleration could possibly have would have to occur at the vertices where
it changes direction. But such an effect can only last for the zero time that the
clock takes to change direction at the vertex. So, no matter how many vertices
we give the polygonal worldline, any effect of acceleration would happen for
a total time of zero, and so a clock travelling on such a worldline cannot be
affected by those accelerations. The real step into the unknown that Einstein
took was to postulate that the curved worldline really can be considered to
be the limiting case of a polygonal worldline in such a physical way.

Postulating this, we can infer that when an accelerating clock moves from
one event to another that is infinitesimally close, the infinitesimal time dτ
elapsed is given by

dτ2 = dt2 − dx2 − dy2 − dz2 (7.1)

since this is just the time that elapses on a clock in the MCIF. And we
can now integrate this dτ along the accelerated clock’s worldline to get the
actual elapsed time ∆τ that it reads. The fact that we can calculate the time
elapsed on a moving clock purely by reference to its path through spacetime
allows spacetime to be imbued with a structure of its own, and this is why
the postulate opens up the possibility of the geometrisation of spacetime that
leads to general relativity.

This sort of idea is exactly analogous to the idea of calculating the
length ∆� of a space curve by dividing it into a large number of short
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segments, each of which is“almost straight”, and then summing the lengths d�
of each of those using Pythagoras’s theorem:

∆� =
∫

d� , where d�2 = dx2 + dy2 + dz2. (7.2)

That, of course, is a basic tenet of integral calculus. Despite the fact that we
are treating each short segment as straight, we know that it definitely is not,
not even in the limit. It still has some curvature that does not go away as we
divide it into ever-smaller segments. But the usual theorems of calculus show
that the total error introduced, as we approximate the segments as straight,
gets ever smaller when the number of segments becomes larger and larger,
each one tending to zero length.

So, the idea of calculating the total time elapsed on a clock that accelerates
from one event to another is just the same as calculating the total length
of a curve with an integration. We are dividing the clock’s worldline into
small segments that the Clock Postulate lets us work with. And just as the
curvatures of small curve segments in the euclidean geometry never become
zero (and yet we can ignore them), the acceleration of the clock along its
worldline never becomes zero either—but analogously, we ignore it, too.

This, then, is why we can give some structure to spacetime, because it’s
possible to talk about the“length”of a curved worldline as being just the time
shown on a clock moving along it, even though the clock itself is accelerating.
If the “length”of such a curve depended upon its curvature, then it would not
be an intrinsically geometric thing. The Clock Postulate geometrises space-
time.

Ultimately, this is why the interval is usually written using infinitesimals.
It has nothing to do with notions of curved spacetime; we use infinitesimals
even if the spacetime is flat. We use them because in this infinitesimal form the
interval embodies the Clock Postulate. But now the grand thing is that this
idea of spacetime structure enables us to speak of spacetime as a separate
entity with its own metric—an idea that allows the eventual transition to
general relativity to occur when gravity is considered in more detail.

The great success of general relativity lends plausibility to the parts that
make it up—and one of these is the Clock Postulate. Even if the postulate
had never been tested experimentally, we would still have confidence in it
because the theory towards which it paves the way—general relativity—has
been tested experimentally and verified to an extraordinarily high accuracy.
(But see the discussion of reverse logic on p. 108.) Although once thought to
be a theory that only found application in rarefied areas such as light bending
around the Sun and eccentric planetary orbits, general relativity is now used
and verified daily all over the world, since its application forms an integral
part of the global satellite systems that determine the positions of all manner
of vehicles, from aircraft to taxis.
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Fig. 7.2. The fixed inertial frame together with our MCIF. Note that both of these
frames are inertial: v is constant.

7.2 Coordinates for the Accelerated Frame

Finding a set of coordinates that relate our accelerated frame to an inertial
one is a very useful exercise, partly as a gentle introduction to the ideas of
general relativity in a special relativity setting, and partly because the result-
ing coordinates have a lot in common with the description of a Schwarzschild
black hole, as we’ll see later in Fig. 12.6 and also when comparing Figs 7.6
and 12.5.

So the plan is to find these coordinates that relate an accelerated frame
to an inertial one. The very first thing to do is to establish our worldline in
that inertial frame.

What does it really mean to have a constant acceleration forever? Is there
no problem with exceeding the speed of light? There would certainly be a
problem if the inertial observer measured us to be accelerating constantly.
But this actually is not what we are demanding. We wish for our rocket’s
engine to apply a constant force, felt by us as a constant weight that presses
us into our seats with a force of, say, one Earth gravity. What this means
is that our acceleration as measured in our MCIF is constant, since in the
MCIF our tendency is to coast at constant velocity as dictated by Newton’s
first law of motion. Anything on top of this we will feel as an applied force.
So our acceleration must be referred to our MCIF, and there is certainly no
problem at all with firing our rocket motors in such a way that we always
accelerate in our MCIF.

To analyse such a motion, refer to Fig. 7.2, which shows the“fixed” inertial
frame S of the outside observer along with our MCIF S′ at some moment. We
wish to draw our worldline in the inertial frame S, which we’ll do by finding
the S coordinates t, x of our motion parametrised as functions of the time τ
shown on our clock. For us to feel a constant force, our acceleration must be
some constant g in the MCIF:

d2x′

dt′2
= g . (7.3)
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If we can express t′, x′ in terms of t, x, then the resulting differential equation
will describe our motion in S; we can do that through the Lorentz transform
that relates S to S′. Note carefully that γ and v must be treated as constants
here because we are only considering inertial frames. The MCIF we have
drawn in Fig. 7.2 might only be momentarily comoving, but it is certainly
an inertial frame forever, by definition. Our motion is described by x(t), so
write, from (5.17) or (6.12) with an overdot meaning d/dt,

dx′

dt′
=

dx′/dt

dt′/dt
=

ẋ − v

1 − vẋ
. (7.4)

Similarly, the next derivative is

d2x′

dt′2
=

d
(

ẋ−v
1−vẋ

)
/dt

dt′/dt
=

ẍ

γ3(1 − vẋ)3
. (7.5)

The next step is to realise that the MCIF is just that: momentarily comoving,
so to incorporate the succession of our MCIFs we must replace v by ẋ. If it
seems odd that we are replacing a constant by something that is not constant,
realise that what we are doing is first applying the Lorentz transform, which
applies to the MCIF (which by definition has a constant v), and only then are
we incorporating the bigger picture of a succession of MCIFs by replacing v
with the nonconstant ẋ.

Equations (7.3) and (7.5) together give the final differential equation to
be solved:

g =
ẍ

(1 − ẋ2)3/2
. (7.6)

This has the parametrised solution in terms of hyperbolic functions

t = g−1 sh aλ + b ,

x = g−1 ch aλ + c , (7.7)

for some constants a, b, c and some parameter λ.

The hyperbolic functions are commonly written sinh, cosh, tanh, and some-
times sh, ch, th, as here. These abbreviations are not aimed at saving ink;
rather, such notation is all about developing a useful mathematical style
when we need to write calculations by hand over many pages. After all,
writing cosh as ch loses no information and is not confusing. On the other
hand, severe shortening of notation can certainly be confusing when it takes
over notation that already exists, as we’ll see with the case of the exterior
derivative at the end of Chap. 8.

Ideally, the parameter λ is best related to the time shown on our clock, since
that is the one obvious parameter that increases along our worldline. From
moment to moment, the time elapsing on our clock is the proper time dτ ,
where (7.7) gives
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dτ2 = dt2 − dx2 =
a2

g2
dλ2. (7.8)

There is freedom to set a ≡ g and λ ≡ τ + k for some constant k. Note that

dx/dt = th[g(τ + k)] , (7.9)

and also, calibrate our clock by ensuring that

τ = τ0 ⇐⇒ (t, x) = (t0, x0) . (7.10)

In that case, (7.7) can be written in terms of these initial conditions as

t = g−1 sh [g(τ + k)] + t0 − g−1 sh [g(τ0 + k)] ,
x = g−1 ch [g(τ + k)] + x0 − g−1 ch [g(τ0 + k)] ,

where dx/dt|τ=τ0
= th[g(τ0 + k)] determines k. (7.11)

Choose some simplifying conditions. At t = t0 ≡ 0, our velocity is zero and
our clocks read τ = 0. Further, set x0 ≡ 1/g to give the simplest possible
expression for our worldline [but see the aside around (7.30)]:

t = g−1 sh gτ ,

x = g−1 ch gτ . (7.12)

These equations describe the hyperbolic worldline of a uniformly accelerated
observer, ourselves, who are firing our rocket motors to accelerate forever.
That is, we start out far in the past and move toward the origin x = 0 of
the inertial frame S, always firing our rocket to produce a fixed acceleration
away from this origin along the positive-x direction. Eventually we slow to a
stop at t = τ = 0, x = 1/g, reverse direction, and pick up speed again, now
moving away from the origin. Our worldline is shown in Fig. 7.3.

Figure 7.3 also shows the MCIFs at various times. These have been drawn
by reference to the discussion in Sect. 5.7. They are the coordinate axes in S
of a moving inertial observer, whose S-frame worldline must be straight. Any
inertial frame such as the single-primed MCIF in Fig. 7.3 will be described
by the Lorentz transform, and in that case the primed axes will be such
that S will draw the t′-axis with slope 1/v, where v is the velocity of S′ (as
referred to on p. 203). Thus the t′-axis is just the worldline of the MCIF
at the event where t′ = x′ = 0. Likewise, S draws the x′-axis with slope v.
These primed axes are orthogonal in the sense of Sect. 5.7. So at any point
on our hyperbolic worldline, the time axis of the MCIF is just the tangent to
our worldline since we are, by definition, always momentarily at rest in our
MCIF. And orthogonal to this time axis is the MCIF’s space axis.

Now that we have derived (7.12), which describes our accelerated world-
line in S in terms of the time τ on our clock, we need to find coordinates (t̄, x̄)
relating our frame S̄ to the inertial frame S, if indeed such a set can be de-
fined. These barred coordinates are not those of any MCIF such as S′, S′′, S′′′.
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Fig. 7.3. Our hyperbolic worldline in the outside inertial frame S together with
axes of some of the MCIFs, S′, S′′, S′′′, as described in the text. The positive-x
direction is “up” for us, in the sense that we feel a force pressing us into our seats
“downward” in the negative-x direction.

Rather, they form a single, global set of coordinates describing our frame S̄,
and as yet there is no guarantee that they even exist at all.

How do we go about finding such a coordinate set? As with constructing
any frame, we need to find a set of observers all of whom agree with us on the
simultaneity of events. If nobody can be found who agrees with our timing
of events, then a global coordinate system (t̄, x̄) cannot be constructed. But
happily it turns out that there is such a set of observers, and we can find
their worldlines in the following way.

First, remember that the line of simultaneity of an inertial observer at any
event P , which connects and defines the set of events that are simultaneous
with P , is just the inertial space axis drawn at P , because it is precisely
for all events along this space axis that the inertial time coordinate has a
constant value. All lines of simultaneity in S are thus horizontal in Fig. 7.3,
while those of our MCIFs (and therefore ourselves) are orthogonal to our
worldline’s tangent at each point.

Now, let’s draw this line of simultaneity through an arbitrary point of
our hyperbolic worldline. The tangent has slope dt/dx, so the corresponding
orthogonal line has slope dx/dt. From (7.12), dx/dt = t/x, in which case the
line of simultaneity for any event on our worldline must pass through the
origin of S, (t, x) = (0, 0).

This common intersection point of every line of simultaneity gives rise to a
wildly odd state of affairs, since it means that we find the event (t, x) = (0, 0)



244 7 Accelerated Frames: Onward to the Principle of Covariance

S-frame

main
S̄-observer (us)

t

x1/g

t = 0

t =
∞

t = −∞A
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C

Fig. 7.4. Our worldline in the outside inertial frame S, together with some events
of interest. We can see event A but cannot ascribe a time to it! On the other hand,
we can never see events B and C, but in our frame C happens before B, even if B
caused C.

to be simultaneous with every event on our worldline, past and future. But
the situation gets worse! Consider event A in Fig. 7.4. We can see this event;
light from it reaches us just before we come to a halt and reverse direction.
But we cannot ascribe a time to it because it is not simultaneous with any
time on our clock! And more is to come: although we can never see or be
affected by events B and C—since light from them can never reach us—our
line of simultaneity in the region of those two events is actually tilting more
and more downward (increasing its slope) as we age, implying that we must
insist that C happened before B.

The record of events from the inertial S-frame shows no such bizarre
behaviour, and such gentle manners give inertial frames their preferred status
among frames in general. But we who accelerate will say that C precedes B,
even if B plainly caused C. The fact that we cannot be influenced by those two
events seems to be scant consolation for the fact that their causal relationship
is wrong.

This worrying state of affairs is partly rescued by virtue of the extremely
unphysical nature of our worldline. To say that we are accelerating forever
is a very strong statement about the entire universe and time in general. By
changing our worldline sometime in our far past, we can certainly arrange for
our line of simultaneity to pass through A at some time, making it possible
to ascribe a time to event A. Similarly, changing our motion in our distant
future can undo the wrong causality of B and C. Our line of simultaneity
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The Four-Acceleration aα

Suppose a particle is moving on some arbitrary worldline. At any event, an
MCIF can be drawn; its time axis will be tangent to the worldline, and its
space axis or axes will be orthogonal to this. We can show that these axes
point along four-vectors: the time axis along the particle’s four-velocity, and
(in one dimension) the space axis along the particle’s four-acceleration, in the
following way. In the absence of gravity and using t, x, y, z-coordinates, define
the particle’s four-acceleration aα by

aα =
duα

dτ
, where uα is the particle’s four-velocity. (7.13)

(This will be modified in Sect. 12.3.2 when we consider arbitrary coordinates
and gravity, but the new expression there reduces to (7.13) in the absence of
gravity, such as we have here.) The four-acceleration is a four-vector because

since uα′
= Λα′

β uβ , it follows that

aα′
=

d

dτ

(
Λα′

β uβ
)

= Λα′
β

duβ

dτ
= Λα′

β aβ . (7.14)

(Remember that the Lorentz transform Λα′
β is not being differentiated because

it uses the (constant) MCIF velocity, not the changing particle velocity.) Now,
recall from (6.25) that the length of the four-velocity is always one, irrespective
of which inertial frame is used:

u02 − u12 − u22 − u32
= 1 , (7.15)

so that differentiating both sides with respect to τ yields

u0a0 − u1a1 − u2a2 − u3a3 = 0 . (7.16)

This relation holds for any four-velocity. In every one of the particle’s MCIFs,
its three-velocity is v = 0 so that γ = 1, implying that any MCIF measures the
particle’s four-velocity to be uα = γ(1, v) = (1, 0, 0, 0). Thus uα is a unit vector
pointing along the time axis of any MCIF. But since (7.16) holds in any inertial
frame, in particular it means that, in the MCIF, the time component of the
four-acceleration is a0 = 0, where superscript 0 means the time component in
that MCIF’s coordinates. That implies uα and aα are orthogonal; and since uα

is tangent to the worldline, aα must always point along the MCIF’s space axis,
which is also the MCIF’s line of simultaneity at every event. (In two and three
spatial dimensions, this line becomes a plane and a volume, respectively.) We’ll
apply this same orthogonality argument again in a different context in (9.6).
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can even see-saw across B and C several times, depending on how we change
our acceleration. (See the further discussion of this on p. 262.)

There is, then, a fundamental difference between accelerating from the
infinite past to the infinite future, and having accelerated only for some finite
time. Relevant to this is an old problem in classical electrodynamics concern-
ing the question of whether an electric charge that is constantly accelerated in
a straight line will radiate. Charges with a nonuniform acceleration—such as
oscillating electrons—do radiate, producing light. Also, charges moving with
constant speed in a circle radiate, producing synchrotron radiation. But there
is as yet no clear agreement as to whether a constantly linearly accelerated
charge also radiates. Besides the calculation being very difficult and the def-
inition of just what constitutes radiation being complex, part of the problem
is that we must make this distinction between really accelerating forever and
accelerating only for the last million years or so. As has been stated, in the
former case we can never allocate a time to event A, while in the latter case
we certainly can.

Questions of this nature aside, the fact that events like B and C of Fig. 7.4
are recorded by us to be happening in reverse causal order is a problem
inherent in ascribing coordinates to accelerated frames. But at least those
events cannot influence us! With this caveat in mind, let’s search for a set
of observers who will help us to make observations of the events around us,
because such a set does exist.

The members of this set of observers must agree with us and each other
about the synchronicity of events: what happened when. Remember that our
S̄-frame is a collection of observers all of whom report back to us about what
is happening in their vicinity. That way we need not concern ourselves with
the complexities of allowing for light-travel times from events we see visually
(and as we shall find, light has a position-dependent speed in an accelerated
frame). If everyone were to disagree on the timing of events, then they would
really be useless as far as being “observing agents” for us is concerned, since
we would have no chance of making sense of their reports.

While such a set of observers in general won’t exist for an arbitrary rocket
motion, constant acceleration is actually quite a special case. Three of these
observers’ worldlines are drawn in Fig. 7.5. Just as our worldline is defined
by the fact that we come to rest at x = 1/g (where g is our acceleration), we
can populate space with observers labelled i, each of whom has a constant
acceleration gi in S, such that their turnaround point is x = 1/gi (or c2/gi in
conventional units). If this can be arranged, then they will all share lines of
simultaneity (the crucial requirement), since these lines are just the ones that
pass through the origin of S. At any one event that they and we all agree is
happening at the same moment for us all, their four-velocities are all parallel
to ours (since all of these four-velocities are orthogonal to the common line
of simultaneity). So in each observer’s MCIF, the worldlines of all the other
observers maintain a constant position, and so a constant separation. Thus
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Fig. 7.5. Three of the continuum of observers who help us make measurements in
our accelerated frame. If we give them accelerations such that they cross the x-axis
at positions given by those accelerations’ reciprocals (really c2/g1, etc., in conven-
tional units), then the geometry of hyperbolae guarantees that these observers will
always share a common line of simultaneity, which is precisely what a single frame’s
observers require.

they all always measure each other to be at rest with respect to them and
ourselves. In other words, as far as they are concerned, they form a rigid
lattice of observers; a perfect way for a frame to be!

The clocks of the set of observers who can constitute a frame for us now
need calibration. We command the ship: our clock dictates what everyone
else’s should read. When our clock reads time zero [τ = 0, which happens
at t = 0 from (7.12)], we and all of the observers of our frame are crossing
the x-axis, and all agree on this. So set all of their clocks to read zero when
t = 0, and set x̄i, the unchanging position of each observer in our frame S̄, to
be their value of x at this time. This value of x is just 1/gi, so that observers
stationed far “above” us (large x or x̄) need to accelerate much less strongly
than ourselves.

When our clock reads one second (τ = 1), again all of our barred observers
agree on this, so we’ll calibrate their clocks so each reads one second (t̄ ≡ 1).
Thus, shared simultaneity implies that we can provide all observers with one
coordinate time t̄—not one proper time. Each has a different proper time,
but they all share the same coordinate time. As for position, there is no need
to change what we have decided to be the observers’ positions because none
of them is moving with respect to any of the others or ourselves.



248 7 Accelerated Frames: Onward to the Principle of Covariance

t

x
X1/g

A

B

τ = 1

τ = 10

t̄ = 10

t̄ = 1

t̄ = 0
τ = 0

t̄ = −1

t̄ =
τ
=
∞

t̄ =
τ
= −∞

x̄
=

X

x̄
=

1/g

Fig. 7.6. The t̄-coordinate that our team of observers ascribes to a set of simul-
taneous events is defined to be the proper time τ shown on our clock when these
events occur for them and us. The x̄-coordinate they ascribe to any event is given
by the x-coordinate, at t = 0, of the observer who is present at that event.

Now, when our clock reads two seconds, what will the clocks of our barred
observers read? (We hope two seconds also, if they are to form a meaningful
frame!) Refer to Fig. 7.6 and consider the events A and B, which are simul-
taneous in S̄. Of course, in S they are not simultaneous and so are labelled
(tA, xA) and (tB , xB). Since their common line of simultaneity passes through
the S-origin, it must be true that

tA
xA

=
tB
xB

. (7.17)

But if the accelerations of the observers present at A and B are gA, gB ,
then (7.12) gives{

tA

xA

}
=

1
gA

{
sh

ch

}
gAτA and

{
tB

xB

}
=

1
gB

{
sh

ch

}
gBτB , (7.18)

where τA is the time shown on the clock present at event A and similarly
for B. Thus (7.17) and (7.18) together imply that

th gAτA = th gBτB , or gAτA = gBτB , and so
dτB

dτA

=
gA

gB

=
x̄B

x̄A

. (7.19)

But dτB/dτA is the rate at which the observer at event B ages compared
with the observer at event A, so the observer at B ages gA/gB times as fast
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as the observer at event A. Of course, here dτB/dτA = τB/τA, but this is
only true for our choice of origin. In general, the ageing rate is dτB/dτA and
not simply τB/τA.

Let’s take the observer at A to be ourselves. In principle, B’s clock is
counting out its seconds faster than ours by this factor of gA/gB ; but we are
still free to make its reading always agree with our own by gearing it down by
the same factor. Then it will read two seconds when ours does, as required.
For example, if we and observer B cross the x-axis at x = 1/g and x = 3/g,
respectively, then B’s clock is accelerating at one third of our acceleration,
and it counts out its seconds three times as quickly, ageing three times as
fast as us. So we gear it down by a factor of three. How about a clock at
x = 1/(3g)? This accelerates three times as fast as us, so it counts out its
time one third as fast as our clock—i.e., it ages one third as quickly as us. In
that case we need to gear it up by a factor of three.

As we consider altering the gearing of clocks closer and closer to the
S-origin (1/g “below” us), we need to make them tick faster and faster if
they are to agree with our own as required. Nothing can be done to alter
their rate of ageing, which will be very slow indeed below us and very fast
for clocks above us; but that does not prevent us from gearing them all to
match what our clocks read. By so doing, we have ensured that t̄ is a global
time coordinate.

How much the clocks really age is their proper time τ , which is different
for each clock. What is shown on their dials—the result of internal gearing up
or down relative to ours—is the coordinate time t̄ (identical for each clock),
which we have defined to be our proper time. We could do this because all of
our observers share a common standard of simultaneity with us. This idea of
a clock’s ageing, as opposed to the simple timing procedure of counting out
seconds, is an important one. There is nothing to stop us from gearing the
clocks in the accelerated frame by some possibly weird position-dependent
factor. The time they show is just a label that we are free to make evolve
in whatever way we choose, although some choices will be more useful and
meaningful than others. But by the clock’s ageing we also mean the physical,
biological ageing of the observer who holds the clock:

τ = ageing: physical, biological time,
t̄ = clock display produced by gearing. (7.20)

According to the Clock Postulate, the real, biological age of an observer is
the sum of the age increments of his series of MCIFs:

∆Age ≡ ∆τ =
∫

observer’s
worldline

dτ . (7.21)

To reiterate, (7.19) shows that an observer at x̄ = 3/g really ages three times
as fast as ourselves at x̄ = 1/g:



250 7 Accelerated Frames: Onward to the Principle of Covariance

dτobs. at 3/g

dτobs. at 1/g

(7.19) gobs. at 1/g

gobs. at 3/g

=
g

g/3
= 3 , (7.22)

so that
∆τobs. at 3/g = 3∆τobs. at 1/g . (7.23)

So the rates of ageing of two observers A and B are set by dτA/dτB . The bio-
logical, proper time τ can be expressed in terms of the coordinate times t or t̄,
but the coordinate times themselves have no bearing on biological ageing.
We are free to define our coordinates in other ways, but the relationship
of time coordinates to space coordinates—the metric—will adjust itself ac-
cordingly to absorb the new definition and keep the elapsed proper time dτ
unaltered, as it should be. After all, biological ageing has nothing to do with
coordinate choices. Later we will express this central fact in tensor notation
as dτ2 = gαβ dxαdxβ .

Our final task is to write down a set of coordinates for our S̄-frame relating
(t̄, x̄) of Fig. 7.6 to (t, x). Note that (7.18) and (7.19) imply that if we are the
observer present at event A, then{

tB

xB

}
=

1
gB

{
sh

ch

}
gBτB =

1
gB

{
sh

ch

}
gτA = x̄B

{
sh

ch

}
gt̄B , (7.24)

since x̄B is defined to be the value of x where the observer at B crossed the
x-axis (i.e. 1/gB), and t̄B is defined to be the value of τ shown on our clock
at the event A (i.e. τA), which we and our observers agree is simultaneous
with event B. And the observer at B has geared his clock to match ours, to
give a single time coordinate t̄ for the whole frame. Finally, since event B is
quite arbitrary, the sought-after transform relating inertial and accelerated
frames is

t = x̄ sh gt̄ ,

x = x̄ ch gt̄ ,

y = ȳ , z = z̄ ,

(7.25)

where the y- and z-coordinates are unaffected by our motion perpendicular to
their axes in the Lorentz transform, hence in the MCIF, and hence in (7.25).
The inverse transform to (7.25) is

t̄ =
1
g

th−1 t

x
=

1
2g

ln
x + t

x − t
,

x̄ =
√

x2 − t2 ,

ȳ = y , z̄ = z . (7.26)

The metrics for the two coordinate systems are

dτ2 = dt2 − dx2 − dy2 − dz2

= g2x̄2dt̄
2 − dx̄2 − dȳ2 − dz̄2.

(7.27)
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Close to us (i.e. when x̄ ≈ 1/g), the accelerated frame’s metric is approxi-
mately Minkowski, for then gx̄ ≈ 1 and

dτ2 � dt̄
2 − dx̄2 − dȳ2 − dz̄2. (7.28)

(The y- and z-coordinates are really extraneous to this discussion, so we’ll
drop further mention of them—equivalent to setting them to have particular
constant values.) We can use this familiar form of the metric as long as we
do not try to quantify events too far away from our position. The meaning of
“too far” is the length scale 1/g, or c2/g in more conventional length units.
For a comfortable one Earth-gravity acceleration, c2/g turns out to be just
under one light-year:

c2

g
� 9 × 1016 m2s−2

10 ms−2
= 9 × 1015 m � 0.97 light-years. (7.29)

The form (7.28) of the accelerated frame’s metric also clearly shows that
locally we measure the speed of light to have the usual value of 1: since light
connects events whose interval dτ2 is zero, (7.28) implies that c = dx̄/dt̄ � 1.
In general, setting the interval to zero in (7.27) means that we will measure
the speed of light at some arbitrary x̄ to be gx̄.

How fast do we and all of the observers who make up our S̄-frame age
compared with what our clocks show? This ageing rate can be found by
reference to clocks that are stationary in our frame and is just ∂τ/∂t̄, given
by (7.27) as gx̄, coincidentally the same as the light speed.

The coordinate system we have set up for the accelerated frame takes us,
based at x̄ = 1/g, to be “in command” in the sense that we have dictated
what all the clocks of the frame read. Our clock is the only one requiring no
gearing to change its display. It can be useful to make a coordinate change to
place ourselves at the origin of the frame, a simple shift in space coordinates
by 1/g that defines double-barred coordinates:

¯̄x ≡ x̄ − 1/g ,
¯̄t ≡ t̄ ,

dτ2 (7.27)
(1 + g ¯̄x)2 d¯̄t

2 − d¯̄x2. (7.30)

We’ll give these new coordinates to the traveller Eve in Sect. 7.3.2.

Imagine that we are in deep space far from any gravity, in a spaceship with
a one Earth-gravity acceleration, where the natural notion of “up” defines
the positive-x̄ direction. Our spaceship is the heart of the S̄-frame, so our
position in this frame is x̄ = 1/g � 1 light-year, as shown in Fig. 7.4. One
light-year below us lies the mysterious origin of our S̄-frame, really a plane
containing events that are simultaneous with everything we do. Closer and
closer to that plane (i.e. as x̄ → 0) time is passing ever more slowly for all
physical processes, and the clocks of our frame in that region must be geared
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to run ever faster to keep up with our own. One light-year below us, time has
stopped completely; the events on that plane are eternally frozen.

Farther than one light-year below us, where the events B and C lie on
Fig. 7.4, time runs in reverse. We cannot know anything about events there,
however; signals from them will never reach us. This idea of a kind of “edge”
to what we can see or know about gives rise to the term event horizon for
the plane one light-year below us. It is the set of events that divide all events
we can eventually see from those we can never see. If our acceleration were,
say, n Earth gravities, then the event horizon would lie only about 1/n light-
years below us. The stronger our acceleration, the closer below us lies the
event horizon, where time slows to a stop.

But while below us time slows, above us it quickens. One light-year above
us, x̄ � 2 light-years, so (7.27) says that ∂τ/∂t̄ � 2. Clocks there are ageing—
all physical processes are occurring—at about twice the rate of our own. Of
course, we have geared those clocks down to keep them ticking at the same
pace (t̄) as our own, as mentioned several paragraphs back. But time (τ) still
“runs” faster for them; they age more quickly than we do. Two light-years
above us, x̄ � 3 light-years and ∂τ/∂t̄ � 3, so clocks are ageing at three
times the rate of our own but again are geared down to always agree with
our displayed time, and so on.

As we saw in Fig. 7.4, when uniformly accelerated, we cannot see all of
spacetime. The region covered by the barred coordinates is called Rindler
spacetime (or Rindler space) and is characterised by its event horizon and
position-dependent ageings. But as we have seen, Rindler spacetime is re-
ally just a different coordinatisation of a part of the Minkowski spacetime
of Chap. 5. In particular, we have been focussing on the right-hand Rindler
wedge, the section between t = +x and t = −x shown in most of the figures
in this chapter. A more graphic picture of Rindler spacetime will be drawn
in Fig. 7.12, and it’s the construction and use of such a figure that we turn
to next.

7.3 The Twin Conundrum

Although physical laws are generally complicated in any noninertial frame,
the transformation equations of an accelerated frame can be used to develop
a better feel for the famous Twin Conundrum.

The Twin Conundrum reads like this. Twins Adam and Eve wish to test
what their special relativity textbook tells them about how moving systems
age slowly. They arrange for Adam to stay within an inertial frame, which
is usually taken to be Earth. The fact that frames on Earth are not quite
inertial is irrelevant to the story, so we can and will take Adam’s frame to
be inertial. (We can always replace Earth by a far-flung space station where
gravity is essentially zero.) Eve, the intrepid space traveller, then blasts off
from Earth and travels to a distant star before turning around and heading



7.3 The Twin Conundrum 253

x

t

Adam Eve

t = 0

1

2

3

4

5

6

7

8

9

t = 10

t′ = 0

t′ = 1

2

3

4

5

t′ = 6

Fig. 7.7. The worldlines of Adam and Eve. Eve has speed 0.8 c on both outbound
and inbound legs. Adam’s horizontal lines of simultaneity when he has aged 5 and
10 years are shown as dashed.

back to Earth to be reunited with Adam some years later. Apart from small
periods of acceleration and deceleration, her speed is a constant 0.8 c. The
worldlines of the twins are drawn in Fig. 7.7.

Adam reasons that on both outbound and inbound legs, Eve will age more
slowly than he does by a factor of 1/γ, or 3/5 in this case. If Eve is gone for
ten of Adam’s years, then on her return she should have aged only six years.
This is correct, and is a consequence of the fact that the twins have travelled
along two different paths in spacetime.

That their ageings differ is reasonable when we remember that special rela-
tivity places space and time on an equal footing, as was discussed in Sect. 5.4.
Eve travels a different number of light-years than Adam, so it is not sur-
prising that she also ages a different number of years than he does. Our
intuition has no problem with the idea that the length of a journey between
two cities will change if a side trip to a third city is included along the way.
We need to realise that Eve’s “side trip” involved movement through space
and time, while Adam’s trip only involved movement through time.

The famous conundrum states that surely Eve might want to consider Adam
as the one who moves away and back at 0.8 c, so that in her six years away
he will be the one to have aged less: 3/5 of 6 years, or 3.6 years. They cannot
both be right!

Textbooks that explore this well-known story of the twins who decide to
test special relativity for themselves usually, if not always, make the worldlines
of the travelling twin straight, with a single kink at the point of return. In a
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Fig. 7.8. Eve has t′, x′-axes at the start and end of her outbound leg, and t′′, x′′-axes
at the start and end of her inbound leg. Note that her x′-axis at the end of her
outbound leg is not the same as the x′′-axis she switches to at the start of her
inbound leg. Her time axes are just her worldlines, while her space axes are her lines
of simultaneity. A piece of the axis-calibrating hyperbola is shown, as discussed in
the text.

moment we will see why this can actually serve to obscure the discussion
rather than clarify it.

First, however, we’ll follow that standard easy approach and analyse the
problem while neglecting the periods during which Eve accelerates. We know
she does have periods of acceleration, but we will consider her trip to consist of
two legs, outbound from and inbound to Adam, on both of which her speed
is absolutely constant at 0.8 c. Thus she accelerates only for infinitesimal
periods at the start, midpoint, and end of her trip. Hence all worldlines
drawn in Adam’s inertial frame will be straight.

In Fig. 7.7, Adam’s lines of simultaneity are always horizontal, so that
after 5 of his years, he will know that Eve has aged 3, and after 10 years Eve
will rejoin him 6 years older. To see Eve’s point of view, we need to draw her
lines of simultaneity. Just how to do this was explained on p. 203, and Eve’s
lines of simultaneity (her space axes) have been plotted in Fig. 7.8. These
always have a slope equal to her current velocity.

Care must be used when calibrating Eve’s axes, which is done by the
procedure of Sect. 5.7. A short piece of the calibrating hyperbola t2 − x2 = 1
has been drawn in Fig. 7.8. This cuts both Adam’s and Eve’s time axes at
t = 1 and t′ = 1, respectively.

It is immediately apparent from Fig. 7.9 that Adam and Eve will each
measure the other as ageing slowly. We have encountered this line of rea-
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Fig. 7.9. A detail of the beginning of Eve’s trip. When Adam has aged one year,
his line of simultaneity indicates that Eve has aged only 0.6 years. But Eve has a
different standard of simultaneity, and after one of her years she notes that Adam
is the one to have aged only 0.6 years.

soning already in Chap. 5. Adam’s line of simultaneity for t = 1 intersects
Eve’s worldline (the t′-axis) at t′ = 0.6, expressing the Lorentz transform’s
insistence that Eve ages 3/5 as fast as Adam. Likewise, when Eve has aged
one year, her line of simultaneity with t′ = 1 intersects Adam’s worldline (the
t-axis) at t = 0.6. Each measures the other as ageing slowly simply because
each has their own personal line (i.e. standard) of simultaneity at every event.

This idea of differing lines of simultaneity is the key to resolving the Twin
Conundrum. Figure 7.8 shows that on Eve’s outbound leg, Adam ages by
5 years and measures Eve to age by 3 years. Likewise, after Eve has travelled
for 3 years and is about to turn around, she measures Adam to have aged by
3/γ = 1.8 years. She then quickly decelerates, turns, and accelerates to 0.8 c
again, now on the inbound leg. Again Adam will measure her to age by 3 years
for his 5. On the other hand, when Eve swaps from outbound to inbound,
she changes inertial frames. In her inbound frame, Adam is now no longer
1.8 years older than he was on their parting, but 8.2 years older!

Eve ascribes this odd change in affairs to having been handed a new set of
bookkeeping figures by the observers who make up her new t′′x′′-frame on the
inbound leg. Unlike her, these observers always have been, and always will
be, inertial. Eve inherits a new set of observers whenever she changes frames.
The set of these observers that Eve inherits at the start of her inbound
leg is entirely different from the t′x′-set that she left behind at the end of
her outbound leg, and it is these two sets of observers who record different
values for Adam’s age, which is not surprising because they comprise different
frames.

Still, Adam’s age has jumped by 6.4 years during Eve’s turnaround, a
fact that unsettles her. Nevertheless, she accepts it and on her 3 year return
leg again measures Adam to age by 1.8 years. So on her arrival he is indeed
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Fig. 7.10. Eve now travels with a constant acceleration. At each event on her
worldline, we can draw the space and time axes of her MCIF analogously to Fig. 7.3.

1.8 + 6.4 + 1.8 = 10 years older than when she last saw him, while she is
just 6 years older—and both she and Adam agree that their bookkeeping
tallies. But while Adam noted nothing unusual during Eve’s trip, Eve can
only scratch her head in puzzlement at why Adam’s age jumped by 6.4 years
at the moment when she turned around to begin her trip home.

7.3.1 Making Eve Accelerate Uniformly

Eve can gain insight into Adam’s “missing years”by redoing her trip in a way
that goes against our intuition of what might serve to simplify the problem: by
accelerating more realistically than has just been described. Figure 7.10 shows
a redrawing of Fig. 7.7, this time allowing Eve’s worldline to curve gently all
the way throughout her trip. (We could also allow a gentle acceleration on her
departure and return to Earth, but one piece of acceleration will be enough
to shed light on the conundrum.)

The Clock Postulate says that at any moment, Eve can analyse events by
drawing the space and time axes of her MCIF. Her line of simultaneity is, as
usual, her MCIF’s space axis, which is orthogonal to her MCIF’s time axis,
which itself is always tangent to her worldline. This is the crucial idea that al-
lows Eve to better understand her bookkeeping as she accelerates throughout
her trip. Her calculations are more complicated now because she depends on
a continuous succession of different MCIFs to supply her bookkeeping entries.
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On the other hand, the insight gained is that Adam now ages quite smoothly,
never mysteriously jumping ahead by 6.4 years. Eve records his age at any
moment to be the time of the particular event on Adam’s worldline that lies
on her line of simultaneity.

Although Eve is only consulting with her MCIFs—each of which always
measures Adam to be ageing slowly—the nett result is that she measures him
to be

1. first ageing slowly as her line of simultaneity slowly slides up the t-axis
in a mostly translational way,

2. then ageing quickly as she slows, the distance between them increases,
and her line of simultaneity begins to rotate somewhat and sweep very
quickly up the t-axis, and

3. finally, ageing slowly again as their reunion approaches, and the sweep of
the simultaneity line is again mostly translational.

So there are two competing effects that determine the rate at which Eve
notes Adam to be ageing: the normal slowing that occurs because of his
motion relative to her, and a quickening because of the fact that Eve’s line
of simultaneity is now rotating through spacetime.

This is all very satisfying for Eve because she can keep continuous track
of Adam’s age all the way throughout her trip. But what she cannot do is
demand that in fact she never accelerated and that rather it was Adam who
accelerated. This becomes evident if she and Adam are each given a bucket
of water on their farewell. Adam holds onto the bucket for ten years, and
the water sits placidly still. Eve, on the other hand, finds that the water in
her bucket mysteriously climbs up the bucket’s side and might slosh over
her rocket’s floor. One thing is for sure: she and Adam have very different
experiences with their buckets.

It’s important to realise that the oft-quoted but wrong aphorism “all mo-
tion is relative” was never a part of Einstein’s relativity. Einstein was well-
aware of the simple fact that if I spin around while you remain stationary,
then I am the one who becomes dizzy. I cannot maintain that because you
circled around me for the duration, you should be dizzy instead. I might pos-
tulate that when I decided to spin around, a complex force field suddenly
permeated the universe that pulled dizzyingly on the fluids within my inner
ear responsible for passing body-orientation signals to my brain, and this field
was arranged in such a way that it had no effect on anything turning around
me. That would explain why the rest of the universe that circled about me
did not become dizzy. But it is certainly a very strange thing for such a field
to appear instantaneously throughout all of space just on my whim. It also
turns out to be impossible to establish a set of coordinates that correctly
describes the physics of such a rotating frame, because there exists no set of
observers who all agree on the simultaneity of events.

It is not true, then, that all motion is relative. Eve knows this. She is
aware that while accelerating, she is no longer inertial and so cannot use
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simple inertial frame machinery, such as the Lorentz transform, to describe
the physics around her (unless, of course, she uses our analysis of the last few
pages—but our analysis was really performed in Adam’s frame, not Eve’s).
But she does find that everything works out right if she continuously consults
with her MCIF, since her textbook’s Lorentz theory does apply to that frame.

This is all very well, but Eve does not really want to consult with a
continuously changing set of inertial observers. That’s just too hard to do
in practice. As far as she is concerned, she would like to be able to quantify
her trip in terms of just one set of coordinates: the S̄-coordinates of her
accelerated frame, in which she is always at rest. And so she can, if she is
uniformly accelerated—as we have established in this chapter. So we now ask
how a uniformly accelerated Eve views the events of her trip.

7.3.2 How the Twins Record Each Other’s Trips

A good way to explore the asymmetric ageing of the twins is to record the
trip from both of their points of view. We plotted Eve’s voyage in Adam’s
frame in Fig. 7.7, but only for the case where her travel consists solely of two
constant-velocity legs. Now we’ll make her accelerate uniformly, but in such
a way that she still ages six years while Adam ages ten.

The scenario of the trip is modelled upon the simpler one already used
in Fig. 7.7. We wish to plot the two worldlines in both frames with yearly
intervals marked out, as well as light signals that Adam and Eve send to each
other at the start of every new year. To prevent confusion with what we have
already done, Adam’s inertial coordinate system is now relabelled ta, xa, while
Eve’s is te, xe. Both distance and time will be measured in years, so that a
distance of, say, two years can be directly interpreted to mean two light-years.
The twins part when ta = te = 0 and reunite when ta = 10, te = 6.

The details of setting up the two sets of coordinates are based upon what
we have already covered in (7.25) and (7.26), and though not difficult, they
detract from the main discussion here. We will simply quote them and leave
the work of translations and scaling as an appendix in Sect. 7.6.

Eve’s Trip as Observed in Adam’s Frame

As shown in Sect. 7.6, Eve’s worldline in Adam’s frame turns out to be
given by

ta = 5 +
1
g

sh [g(te − 3)] ,

xa = b − 1
g

ch [g(te − 3)] , (7.31)

where ta, xa now label each point of Eve’s worldline (in Adam’s frame—hence
the “a” subscript), and te parametrises Eve’s motion, going from 0 to 6 years.
The constant b and Eve’s acceleration g are approximately
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Fig. 7.11. Eve’s trip from the viewpoint of Adam’s inertial frame. Also shown are
light signals that Adam and Eve send to each other once per year. Standards of
simultaneity are not shown: Adam’s is determined by all the horizontal lines, while
Eve’s is determined by (7.53) with te held constant, which also produces lines that
are everywhere orthogonal to Eve’s worldline.

b � 5.26 years , g � 0.613 years−1. (7.32)

To get a feel for just how strongly Eve must accelerate, express her accelera-
tion g in conventional units by multiplying by c:

gconventional ≡ gc =
0.613 yr−1

31.5 × 106 s/yr
× 3 × 108 ms−1 � 5.8 ms−2, (7.33)

or a little less than the familiar force of gravity on Earth. Her worldline
in Adam’s inertial frame is shown in Fig. 7.11. Each year the twins have
arranged to send a light signal to each other, and these are shown as 45◦

dashed lines. Adam does not see Eve’s first signal until almost five years have
passed for him; that is, he sees her signals as redshifted. Eve’s second signal
only reaches Adam just after his year 7, with the remaining four of Eve’s
signals coming in more frequently in the last three of Adam’s years, forming
the familiar blueshift.

In contrast, Eve does not see Adam’s first signal until 2.6 years have
elapsed for her, and thereafter she sees him ageing with increasing rapid-
ity. We should point out here a commonly held misconception that relativity
theory is all somehow a trick of the light, something to do with light’s finite
speed and the apparent reordering of spatially separated events solely due to
the differing transit times of the light signals they send out. Surprisingly, this
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näıve and quite wrong idea finds its way into physics books and encyclopae-
dias. To stress this point we again distinguish what Adam “sees” from what
he “observes” or “measures”, as was done originally on p. 194. From Fig. 7.11
we know that Adam will see Eve to be 1 year older when he is 4.7 years
older. This is just a trick of the light caused by Eve’s distance from him.
What he observes or measures, however, is that she had aged 1 year when
he was about 2.5 years older. (Remember that Adam’s line of simultaneity
is horizontal in his frame.) When he sees Eve to be 1 year older, he knows
she is really about 2.8 years older and that her large distance from him has
merely delayed the light from her current age in reaching him.

Just how Adam makes his observations in practice might be difficult tech-
nically, but he does not base them simply on what he sees. Rather, he must
collate what each of his band of synchronised observers sees, as explained on
p. 234. They can certainly rely on their sight alone since they only concern
themselves with events that happen right under their noses, so that there are
no complications introduced by nonzero light-travel times.

Adam’s “Trip” as Observed in Eve’s Frame

Adam might not feel that he went anywhere (a reflection of the fact that he
never departed from his original inertial frame), but Eve considers that he
certainly is the one who went away and came back. Her record of his worldline
as recorded in her frame is given by the set of events (te, xe). From Sect. 7.6
these turn out to be

te =
1
g

th−1 ta − 5
b

+ 3 ,

xe =
√

b2 − (ta − 5)2 − 1/g , (7.34)

where ta parametrises Adam’s motion. Note carefully that these equations
are not the inverse of (7.31)! This is fine because it reflects the fact that
Adam and Eve have different standards of simultaneity. Adam’s worldline is
plotted in Fig. 7.12. (We have drawn him in Fig. 7.12 to be moving to the
right just as we did for Eve in Fig. 7.11, to emphasise the similarity between
the two frames’ points of view.)

Eve remains at rest in her frame for 6 years while Adam departs, returning
to her when he is 10 years older. Again they swap signals, and a comparison
of Figs 7.11 and 7.12 shows the consistency of those signals’ arrival times,
as must be the case. After all, Adam’s signal saying “I am one year older” is
received by Eve after 2.6 of her years regardless of whose frame we consult;
her age on reception of this message must be frame-independent. (Just how
the curved light signals have been drawn in Eve’s frame is explained shortly.)

Adam’s “trip” in Eve’s frame looks similar to her trip in his frame, except
that he begins to age faster the farther he travels “above” Eve. What is
this ageing rate that Eve measures for all physical processes? As discussed
on p. 249, this is given by the rate of ageing of an observer stationary in
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Fig. 7.12. Adam’s “trip” from Eve’s noninertial frame. (This diagram has been
orientated so that, as in Fig. 7.11, the travelling twin is on the right, making for a
more suggestive comparison between the two figures.) The light signals that they
send to one another now have a position-dependent velocity! Everything is drawn
to scale, including the light cones at the top of the picture. There is a horizon at
Eve’s space origin, 1.6 light-years “below” her, where time and light slow to a stop,
closing up the cones. Simultaneity standards are not shown. Eve’s standard consists
of all horizontal lines, while Adam’s is determined by (7.54) with ta held constant,
and is now a set of curves (cf. the inertial case where all simultaneity is mapped
out by lines). Note that Eve’s signals to Adam speed up as they climb “upward”
in what seems to her to be something like a gravitational field, while the signals
that Adam sends to her slow down as they “fall” toward Eve (the opposite of what
might at first be expected). All of the light signals (dashed curves) in the picture,
if continued “below” Eve, would approach the horizon asymptotically.

Eve’s frame compared with Eve’s own rate of ageing, or dτ/dτEve. But Eve’s
ageing rate is just her time coordinate by construction, so the required ratio
is just ∂τ/∂te. Equation (7.30) gives the metric as

dτ2 = dt2a − dx2
a = (1 + gxe)

2dt2e − dx2
e , (7.35)

so that
∂τ/∂te = 1 + gxe . (7.36)

The rate of flow of time in Eve’s frame is then 1 + gxe. (The negative choice
of the square root giving ∂τ/∂te = −(1 + gxe) applies to the backward flow
of time of the inaccessible events that lie below Eve’s event horizon.) That is,
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since Eve remains at xe = 0, her clock is ageing (by dτ) just exactly as fast as
it is timing (by dte). Clocks “higher up” in her frame (xe > 0) are ageing (dτ)
faster than they are timing (dte), since their timekeeping mechanisms have
been slowed to keep pace with Eve’s clock. We see the reason that Eve gives for
Adam’s accelerated ageing as he moves away from her: he is moving through
a part of her frame where time flows more quickly. And below Eve (xe < 0),
clocks are ageing (dτ) slower than they are timing (dte) since their timing
mechanisms have been mechanically sped up to keep pace with Eve’s clock.

In Fig. 7.12 are also shown representative light cones. The worldlines of
light rays in Eve’s frame are the null curves of her metric; that is, curves
along which the interval is zero. In Adam’s frame, we can write

dτ2 = dt2a − dx2
a = 0 , so that speed of light = |dxa/dta| = 1 (7.37)

as expected, since his frame is inertial. In Eve’s frame, we write

dτ2 = (1+ gxe)
2dt2e −dx2

e = 0 , so that speed of light = |dxe/dte| = 1+ gxe .
(7.38)

In Eve’s vicinity (xe � 0), light has the familiar speed of 1, but far above
her (in Adam’s direction) this speed is greater than 1, indicated by the light
cones opening up in Fig. 7.12. Equation (7.38) is a differential equation that
can be solved analytically for the worldlines of light signals. They turn out
to be simple exponentials, and that’s just how they were drawn in Fig. 7.12.

Below Eve is an event horizon where the light cones close up as the light
speed tends toward zero and time slows to a halt. This horizon at xe = −1/g,
or 1.6 light-years below Eve, is intriguing. Eve observes not just Adam but the
whole visible universe to be falling toward but never quite reaching it, since
every worldline must lie within the light cones, and these are closing up the
nearer they are to the horizon. On this mysterious plane, she observes that
time itself has stopped, and although she cannot see what lies beyond, she
knows from our previous discussion that behind the horizon time is flowing
in reverse!

What happens if Eve has a short-lived change of heart about returning to
Earth? A short while after commencing her return trip, she fires her rockets
and accelerates for a time away from Earth again, before reversing her deci-
sion and again heading back for a reunion with Adam, so that her worldline
in his frame now has a shape. If she accelerates strongly enough away from
Adam, then we might think that an event horizon should form between them
for the duration. In fact, no horizon forms because that would imply that
Adam had become invisible to her. But he never does because Eve does not
accelerate forever, which is the only way that she would be assured of always
outrunning his light signals. The event horizon is a global phenomenon; it
cannot be something that forms locally for a short time.

Even so, on such a vacillating trip Eve’s line of simultaneity will see-
saw backward and forward, and she will conclude that for a while Adam
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will be growing younger—but that he’ll grow older again on her return at a
compensating rate, so that on their reunion he is still the older of the two.

This wild see-sawing of Eve’s line of simultaneity brings us full circle
to where we began this chapter. It’s a problem inherent in constructing a
frame for an observer with a changing acceleration (as measured in some
inertial frame). Even a uniformly accelerated Eve is aware of the backward
flow of time below her horizon, but in practice this does not present much
of a problem. She cannot be influenced by any of those acausal events, since
signals from them can never reach her. And if she or Adam were to move
with arbitrarily complicated accelerations, we can see by drawing arbitrary
worldlines that they both would always see each other ageing in the normal
forward fashion, because neither can ever travel faster than light. This visible
ageing of each might have some variable rate depending on how the other
moves, but it still only happens in the forward direction. Eve might conclude
that Adam is ageing in reverse for part of her trip, but she never sees such
weird events unfold.

Psychological Versus Physical Ageing

Throughout this chapter, we have implicitly assumed that psychological age-
ing is tied to physical ageing. This is conventional in relativity, reflecting
an assumption that consciousness is anchored to brain chemistry, a physical
process that must slow down in a moving frame to obey the postulates of
relativity, that prefer no one inertial frame to another.

But perhaps consciousness actually favours one particular frame—be it
that of Earth, or some frame set by the distant stars, or indeed something
more esoteric that is not part of this physical universe at all. Current time
dilation experiments using decaying subatomic particles and clocks on board
aircraft and satellites do not shed any light on this, and probably will not for
the foreseeable future.

7.4 A Glance Ahead to Gauge Theory

The asymmetry of the twins’ frames suggests a new principle that we will
explore in Chap. 10. When we change from one inertial frame to another
via the Lorentz transform, the change is linear and global, and there is not
a great deal of difference in the way the world looks in one frame or the
other. Quantities that are conserved in one frame are conserved in both, and
indeed this existence of conservation principles is related to such a global
transformation.

But the general transform (7.25) between an inertial and uniformly accel-
erated frame is not linear, with the result that a noninertial Eve experiences
events quite differently from an inertial Adam, depending on where in her
frame they occur. Clocks “below” her run slow, while those “above” her run
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fast. The speed of light depends on its height above her, and so on. The
most obvious manifestation of this more local aspect to the transformation
between inertial and accelerated frames is that Eve feels a force that deter-
mines a down direction for her. Adam would refer to it as a pseudo force,
but for Eve it is real enough. She can only keep cherished notions about such
things as Newton’s laws if she holds that this force is responsible for driving
free particles off their constant-velocity courses. So this local character to the
Adam–Eve frame transformation has introduced for Eve the idea of a force
that prevents a free particle’s momentum from being conserved in her frame.

We might reasonably ask whether it is possible to write down other trans-
formations that might have nothing to do with changing frames but that do
give rise to other forces of Nature. It turns out that in quantum mechanics we
can. There, a constant phase φ of a wave function can be chosen arbitrarily,
and transforming the wave function by multiplying it by eiφ does not alter
the physics. All constant values of φ are equally valid, in the same way that
all inertial frames are equally valid for describing a physical system. But, as
we shall see in Chap. 10, making the phase of a wave function depend on
position introduces a local character to the transformation that results in an
interaction such as electromagnetism, which is reminiscent of the switch to
an accelerated frame that introduces a pseudo-gravity force. The study of
such transformations is known as gauge theory. So accelerated frames are not
just a stopping point on the way to general relativity, but they also serve to
point the way to gauge theory.

7.5 Covariant Notation and Generalising
the Clock Postulate

We now bid farewell to Adam and Eve and, aware of the Clock Postulate
and with more insight into frame changes, return once again to the subject
of covariant analysis. In Chap. 6, covariant notation was introduced as a neat
and concise way of showing how four-vectors and covectors transform from
one inertial frame to another. We wish now to show how this notation can
be extended to cover the relationships between quantities when one or both
of the frames is not inertial, as a first step toward writing the language of
physics in a way that applies to all frames, noninertial as well as inertial.

The Clock Postulate can be generalised to say something about measure-
ments made in a noninertial frame. First, it tells us that any measurements
made in a noninertial frame that use rods and clocks will be identical to
measurements made in the MCIF. (It should be remembered that although
different regions of the noninertial frame might have different MCIFs, a mea-
surement is necessarily something that happens locally.) But we now choose
to extend the postulate to include all measurements—though perhaps it can
be argued that, at their very heart, all measurements only ever use rods and
clocks anyway.
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Consider, then, a general four-vector field whose unprimed components Aα

have been determined by measurements that were made in an inertial
frame S. We know from the previous chapter that because Aα is a four-
vector, it transforms from S to another inertial frame S′ through the Lorentz
transform Λα′

β :
Aα′

= Λα′
β Aβ . (7.39)

The question is, using this language, what are the four-vector field compo-
nents in a noninertial frame?

Earlier we obtained the coordinate transform (7.25) for an accelerated
frame by using the MCIF as an intermediate step, after which it was dis-
carded. We would like to do the same here. Suppose that we are using a
noninertial frame S̄ and wish to calculate the components Aᾱ, given that the
components are Aα in S. The extended Clock Postulate says that the field in
our frame, Aᾱ, will be identical to the field Aα′

measured by our MCIF (call
this S′). Because S′ is inertial, we know how to calculate Aα′

: it’s just given
by (7.39). We wish to transform coordinates in the order

S −→ S′(mcif) −→ S̄ . (7.40)

The Clock Postulate says that measurements of distance and time in S̄ are
identical to those of our MCIF S′:

dxᾱ = dxα′
. (7.41)

But this is just another way of saying that for any α, β,

∂xᾱ

∂xβ
=

∂xα′

∂xβ

(6.37)
Λα′

β . (7.42)

The field components in S̄ can now be written in the following way:

Aᾱ = Aα′ ←− (field we measure = MCIF field
by the extended Clock Postulate)

= Λα′
β Aβ ←− (Lorentz transform from S to S′)

=
∂xᾱ

∂xβ
Aβ ←− (by (7.42), the Clock Postulate again). (7.43)

In the last line of (7.43), the MCIF S′ has disappeared entirely! In (6.37) we
related Lorentz transform coefficients Λ to partial derivatives, but now we
choose to generalise the Λ notation to mean a partial derivative between any
two sets of coordinates, with no need for either set to be inertial:

Λᾱ
β ≡ ∂xᾱ

∂xβ
. (7.44)

This more general definition of Λ allows the last line of (7.43) to be written
in a familiar way:
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Aᾱ = Λᾱ
β Aβ . (7.45)

Equation (7.45) is just like the Lorentz transform between two inertial frames
of (7.39), except that now it applies to an arbitrary frame S̄, which need not
be inertial. There is still the inertial frame S present in (7.45), but we can
even remove all reference to that. Consider another noninertial frame ¯̄S, in
which the field must have components

A
¯̄α = Λ

¯̄α
β Aβ . (7.46)

This equation can be inverted easily by multiplying both sides by Λγ
¯̄α and

summing over the repeated index (called contracting both sides with Λγ
¯̄α),

and using the chain rule for partial derivatives:

Λγ
¯̄α A

¯̄α = Λγ
¯̄α Λ

¯̄α
β Aβ = δγ

β Aβ = Aγ . (7.47)

Finally, combine (7.45) and (7.47) to give

Aᾱ (7.45)
Λᾱ

β Aβ (7.47)
Λᾱ

β Λβ
¯̄γ A

¯̄γ = Λᾱ
¯̄γ A

¯̄γ , (7.48)

which now relates the field components between two completely arbitrary
frames. Neither need be inertial!

Since (7.48) looks so much like the Lorentz transform, it might be taken
for granted as being trivially correct. But it is not trivial at all. Yes, four-
vectors transform like infinitesimals between inertial frames, but we cannot
expect a priori that four-vectors will also transform in the same way between
arbitrary frames. However, we have shown that they do, provided only that
the Clock Postulate holds.

The covariant language of up and down indices pays no heed to the nature
of the frames, and this makes it so useful for writing physical laws in a frame-
independent way. That’s why covariance is a natural language of physics.

7.6 Appendix: Details of Setting Up Adam’s and
Eve’s Coordinates

Our last task in this chapter is to describe the details of drawing Eve’s world-
line in Adam’s frame and vice versa, as required in Sect. 7.3.2.

Begin by plotting Eve’s worldline in Adam’s frame, in which the events
take on their simplest form. Refer to Fig. 7.13 for the details. As in Sect. 7.3.2,
rename Adam’s coordinates t, x to be ta, xa.

The basic coordinate transform in (7.25) and (7.26) relates to the acceler-
ated observer of Fig. 7.3. Eve’s worldline is found by reflecting the hyperbola
in Fig. 7.3 left to right and shifting it somewhat. So introduce an interme-
diate set of axes T,X in Fig. 7.13 since these match the unbarred (inertial)
coordinates of (7.25) and (7.26):
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Fig. 7.13. Using an intermediate T -X frame to help define a useful set of coordi-
nates for Eve.

T ≡ ta − a , X ≡ b − xa . (7.49)

T and X must be used in place of t and x in (7.25) and (7.26). In the interests
of symmetry, it’s also preferable if, like Adam, Eve has a space coordinate of
zero in her own frame—not the 1/g that we used in Figs 7.3, 7.4, and 7.6. In
that case, form a new space coordinate xe for her by subtracting 1/g from
the x̄-coordinate of (7.25): xe ≡ x̄ − 1/g. Equations (7.25) and (7.26) then
become

ta = a + (xe + 1/g) sh gt̄ ,

xa = b − (xe + 1/g) ch gt̄ (7.50)

and

t̄ =
1
g

th−1 ta − a

b − xa

,

xe =
√

(b − xa)2 − (ta − a)2 − 1/g . (7.51)

The time coordinate t̄ still does not quite serve for Eve, since again, in the
interests of symmetry, we wish Adam’s worldline in Eve’s frame to resemble
her worldline in his frame—so that he leaves Eve not only at his time zero but
also at her time zero. But the t̄ of (7.50) and (7.51) won’t lead to this; it was
defined somewhat differently. This difference is just a shift by a constant, since
if we draw Adam’s worldline in Eve’s t̄xe-frame by using (7.51) to plot t̄, xe as
functions of ta for xa = 0, we find that Adam’s worldline is symmetrical about
the xe-axis and cuts the t̄-axis at t̄ = −1/g ch−1 gb. So shift his worldline up
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to put the departure at Eve’s time of zero, which means we’ll need to add
1/g ch−1gb onto the t̄-coordinate to make a new coordinate te. Remember,
this is purely a shift in time origin for Eve to make her picture of events look
more analogous to Fig. 7.7:

te ≡ t̄ +
1
g

ch−1 gb . (7.52)

Now we have coordinates ta, xa for Adam and te, xe for Eve. The final trans-
formations relating the two frames are

ta = a + (xe + 1/g) sh
(
gte − ch−1 gb

)
,

xa = b − (xe + 1/g) ch
(
gte − ch−1 gb

)
(7.53)

and

te =
1
g

[
th−1 ta − a

b − xa

+ ch−1 gb

]
,

xe =
√

(b − xa)2 − (ta − a)2 − 1/g , (7.54)

which are inverse to one another. For the following calculations, it’s helpful
to use sh−1ag = ch−1bg = th−1a/b, and in the given scenario these equal 3g.
Adam and Eve are together at the start of the journey, so that the departure
event has coordinates in the two frames:

(ta, xa) = (0, 0) , (te, xe) = (0, 0) . (7.55)

Similarly, the reunion event has coordinates

(te, xe) = (6, 0) , (ta, xa) = (10, 0) . (7.56)

Then, either (7.53) or (7.54) leads to√
b2 − 1/g2 = a = 5 (from Fig. 7.13) , (7.57)

and incorporating this into (7.54) for the reunion event (7.56) gives√
b2 − 25 th−1 5

b
= 3 . (7.58)

Finally, (7.57) and (7.58) yield

b � 5.26 years, g � 0.613 years−1. (7.59)

Eve’s worldline in Adam’s frame is given by (7.53) with xe = 0:

ta = 5 +
1
g

sh [g(te − 3)] , xa = b − 1
g

ch [g(te − 3)] , (7.60)
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and is shown in Fig. 7.11.
The equations describing Adam’s worldline in Eve’s frame are given

by (7.54) with xa = 0:

te =
1
g

th−1 ta − 5
b

+ 3 , xe =
√

b2 − (ta − 5)2 − 1/g , (7.61)

as shown in Fig. 7.12. Equations (7.60) and (7.61) are not simply inverses
of each other, since in each case only one variable of the relevant coordinate
pair is being used as a parameter for the worldline.

The calculations of this appendix underline the careful bookkeeping that
must be used to show how an inertial-frame scenario looks in an accelerated
frame. While an attention to detail is required, the results, Figs 7.11 and 7.12,
are highly illuminating.
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8.1 Back to Vectors, in a More Generic Way

Using the Lorentz transform given in the last two chapters, changing inertial
frames in special relativity turned out to be identical to simply changing
coordinates in a particular way in four dimensions. This suggests that it
might be useful to study general coordinate transformations in the hope that
they’ll prove useful in expanding our view of physical laws. The main demand
to make is that the physics we are describing must be independent of our
choice of coordinates. For example, although cartesian and polar coordinates
are two different tools for describing the motion of a particle, that motion
in itself cannot depend upon which of these coordinate systems we choose to
work within.

Previously, we evolved the concepts of four-vectors and covectors, sets of
quantities that transform under a change of coordinates in such a way that,
in a sense, they can be considered to describe a“something” that has a reality
of its own. This property makes them independent of our coordinate choice,
and so makes them ideal contenders with which to describe physical laws.

The independence of coordinate choice is illustrated in Fig. 8.1. A func-
tion X(u, v) takes two parameters and specifies a position relative to the ori-
gin of the uv-coordinate system. Any increment in u and v results in a new po-
sition, X(u + ∆u, v + ∆v). Likewise, the same can be done for another func-
tion X̃ for a different coordinate system, x-y. The start and end points drawn
as dots in Fig. 8.1 are now specified by X̃(x, y) and X̃(x + ∆x, y + ∆y). The
two functions X, X̃ are, in general, quite different. But the displacement
between the two points is a well-defined entity, irrespective of the different
coordinate systems used. Its physical relevance is due to the fact that it em-
bodies our very intuitive notion that the dimensions and age of an object are
independent of where we choose to place our ruler’s origin or our clock’s zero
time. The physically meaningful quantities are differences in the coordinates,
not the coordinates themselves.

However, what is more useful is to consider only infinitesimal displace-
ments, since these have a far greater range of applicability to physical sys-
tems, and are also more easily described when the two coordinate systems are
related nonlinearly. Some of the geometrical structure that can be given to
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u

v

X(u, v)

X(u + ∆u, v + ∆v)

x

yX̃(x, y)

X̃(x + ∆x, y + ∆y)

∆X = ∆X̃

Fig. 8.1. Coordinate values of the start and end positions of the solid-line “dis-
placement arrow” depend on the choice of coordinates. But the arrow itself has
an independent existence, unlike the dashed arrows that denote its start and end
points, which depend fully on the origin of their coordinate systems. In the limit of
infinitesimal length, the solid displacement arrow becomes dX = dX̃ and is called
a proper vector, while the dashed arrows are position vectors, or relative vectors.

physical laws relates to our considering what happens along paths that con-
nect two points in spacetime. Discarding information about events between
the points—which is what the ∆ is effectively doing—is not necessarily very
useful. Rather, by focussing our attention on infinitesimal displacements, we
are better able to describe the geometry of a space and to quantify laws
that are a function of paths that join those widely separated points. These
infinitesimal displacements are called proper vectors.

Contrast these proper vectors with the dotted arrows of Fig. 8.1, all of
which must anchor their tails at the origins of either the uv-axes or the
xy-axes. They are vectors in the uv and xy vector spaces. These vector spaces
are not so important physically because the origins of their coordinate systems
have generally been chosen arbitrarily. The dotted arrows (corresponding to
the functions X and X̃) are called relative vectors or position vectors. They
are of secondary importance to proper vectors.

Proper vectors, the subject of this chapter, are always specified with re-
spect to some coordinate transform. In Fig. 8.1, we can see that the ar-
row ∆X moves as an arrow should if the scene is rotated about a single
point or translated by some amount. Compare this behaviour with that of
the position vector X or X̃ to any one of the points, which always extends
outward from its origin regardless of how the point in positioned relative to
a new set of axes. (E.g., X will change to X̃ under the coordinate change in
the figure.) That is, ∆X = ∆X̃, but X 	= X̃. This “less absolute” behaviour
of position vectors makes them less useful for describing physical laws.
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Proper vectors are something like arrows pointing from each star to its
neighbour. Although observers standing on planets orbiting a multitude of
stars each describe their sky differently, their descriptions are consistent, and
indeed differ in exactly the way we would predict if we were to assume that
the starry heavens exist independently of where each observer stands. All of
the observers certainly recognise the arrows connecting the stars. Contrast
this with the stars’ position vectors, which are simply arrows pointing to the
stars from each observer’s planet. Each observer has a unique set of position
vectors, and although that set is useful, it applies to that observer alone.

We’ll find that four-vectors can be considered as examples of proper vec-
tors under the Lorentz transform (a transform must always be specified, as
we’ll see), provided we can find a suitable basis for them. That will be done
in this chapter (amongst other things).

In the familiar three dimensions, the coordinate-independence of physical
quantities is typified by the velocity field that describes ocean currents or
air flows, commonly seen in meteorology. We recognise that each vector of
such a field describes the motion of an element of the fluid and so has an
existence independent of the coordinate system. Nevertheless, any calculation
concerning this field requires us to quantify the vectors within a particular
system of coordinates xα. How might this be done?

Suppose the velocity causes an element to change its position by a vec-
tor dX in a time dt. This might happen, for example, in an ocean current,
where the fluid element is changing its position over time. The element’s veloc-
ity v ≡ dX/dt is a vector proportional to its infinitesimal displacement dX;
that is, this displacement has been rescaled to a noninfinitesimal size. Ve-
locity, of course, concerns itself with infinitesimal changes in the element’s
position; this is just the same reasoning as was applied back in Sect. 3.1 when
we spoke of how an ever-decreasing quantity (the fraction of light bulbs in
each bin in that section) can be rescaled by dividing it by another quantity
(the bin width) that is also decreasing as part of the same process. This is also
the same reasoning that led us to use an infinitesimal version of the metric
in our study of the Clock Postulate.

At any point in space, the velocity vector points in the direction of the
flow, with a magnitude that is just the flow speed at that point. (The only
reason velocity vectors are drawn with small lengths in, for example, a picture
of fluid flow is because longer ones would snag each other and clutter the
diagram. But they certainly don’t have an infinitesimal length.) It will prove
very useful to sift out and pair up the components of the velocity with their
associated directions that the velocity field codifies at each point, and this
can be done using the chain rule of partial derivatives. Letting α sum over the
three space coordinates (the Einstein summation convention), the velocity is
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v ≡ dX

dt
=

∂X

∂xα︸︷︷︸
direction

× dxα

dt︸︷︷︸
velocity

components vα

. (8.1)

The velocity components are just the usual components vα of the velocity
vector, while the directions with which they are paired are given by the basis
vectors eα:

eα ≡ ∂X

∂xα
. (8.2)

The index α, being a subscript on the left-hand side of (8.2), is also consid-
ered to be a subscript on the right-hand side. The dt in (8.1) is really just a
scaling factor. As such, we’ll stop writing it, saying simply that the small in-
crease dX in position equals dxαeα, a linear combination of basis vectors eα.
Of course, we are always free to put the dt back in to convert the quantities
back to macroscopic ones able to be used in numerical calculations—such as
the velocity v in this case—just as we did when introducing the four-velocity
back in (6.13). The fact that our rescaling has produced a noninfinitesimal
arrow that points along an element of flow, even right out of the fluid, gives
rise to the idea that v is a tangent vector to the flow.

Although v has an existence of its own independent of any coordinate
system, in order to specify it in component form we need to specify the set of
axes referred to by these components. So, the vα go together with the set of
basis vectors eα. In the flow example above, the basis vectors might change
depending on where the fluid element is (i.e. where X is), but at that point
they determine the local set of axes.

8.1.1 Honing the Vector Idea

Up until now, we’ve taken X to be the position of a point on some surface.
Quantify this by making X a function that maps one set of coordinates to
another. An example is shown in Fig. 8.2, where the function X : R

2 → E
3

maps the two variables u, v into a euclidean 3-space, producing a 2-surface
(since it needs just two variables to describe it). If X is known, then the basis
vectors eu and ev are calculated using (8.2).

An instructive way to study the basis vectors is by way of the more con-
crete example of a sphere of radius R, parametrised by the usual spherical
polar coordinates that resemble latitude and longitude, in Fig. 8.3. The map-
ping function is X(θ, φ) = (x, y, z):

x = R sin θ cos φ ,

y = R sin θ sin φ ,

z = R cos θ . (8.3)

Equation (8.2) tells us that in xyz-space, the basis vectors are therefore
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u

v

X

x

y

z

eu

ev

Fig. 8.2. The function X maps the uv-plane into a euclidean 3-space, and the basis
vectors eu, ev track the motion of the point X(u, v) under an increase in the coor-
dinates u, v. So, for example, eu points in the direction in which X(u, v) increases
for an infinitesimal increase in u.

eθ =
∂X

∂θ
=

∂

∂θ

⎡⎣x(θ, φ)
y(θ, φ)
z(θ, φ)

⎤⎦ =

⎡⎣R cos θ cos φ
R cos θ sin φ
−R sin θ

⎤⎦ ,

eφ =
∂X

∂φ
=

∂

∂φ

⎡⎣x
y
z

⎤⎦ =

⎡⎣−R sin θ sin φ
R sin θ cos φ

0

⎤⎦ . (8.4)

These calculations aside, a very important point in visualising eθ,eφ as shown
in Fig. 8.3 is that we do not need to do any calculation like (8.4) to find their
direction. For example, to visualise eθ we need only follow what happens to

0 π θ
0

2π

φ

φ

θ

x

y

z

eθ

eφ

X

Fig. 8.3. Calculating the basis vectors eθ, eφ for a sphere. Here, the relevant map
is X(θ, φ) = (x, y, z). If the sphere is imagined to be Earth, with the z-axis parallel
to Earth’s rotation axis, then at any point on the sphere eθ points south and
eφ points east.
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the position vector X as θ increases by a small amount:

eθ ≡ ∂X

∂θ
=

dX
∣∣
φ const.

dθ
∝ dX

∣∣
φ const.

, (8.5)

with a positive constant of proportionality if dθ is positive. Thus eθ points
in the direction in which the head of the position vector X moves when θ
increases by a positive infinitesimal amount. If the sphere were Earth, with
the z-axis parallel to Earth’s rotation axis, then θ would increase along a
meridian heading south, so that eθ would point south everywhere. Similarly,
eφ would point east. It’s a simple yet instructive exercise to use (8.4) to
show that at every point, eθ · eφ = 0, while eθ × eφ is parallel to the radial
direction—“up”on a spherical Earth. And, of course, this is all as it should be.

Abstracting the Function X

So far, the discussion of vectors has used a map X that takes a given set of
coordinates, such as θ, φ, and embeds the resulting surface into a euclidean
3-space. More generally, X could map into a more exotic space, or it might not
even be specified at all. Omitting it from expressions such as (8.1) and (8.2)
doesn’t stop vectors from being defined; we just leave vacant the position
that X would normally occupy. The usual interpretation for this procedure
is that the vector is now defined to be a derivative operator that acts on any
given function X to produce what we have been deriving up until now. In
that case, (8.1) and (8.2) will be written as

“ v = vα ∂

∂xα
”, (8.6)

with the basis vectors now regarded as operators:

“ eα ≡ ∂

∂xα
”. (8.7)

These operators are then available to act on a function X if there is any
requirement or freedom to embed the surface in a higher-dimensional space.
We will not be so abstract in our discussion. Instead, we take the more prag-
matic view that the surface certainly can be embedded in such a space, so
that the operating has already been done, so to speak. Our proper vectors
are arrows, not operators.

8.1.2 Two Types of Vectors

Confusion often arises from the fact that physicists give the name “vector” to
two distinct entities. To reiterate:
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Vectors: Arrows or Operators?

It can be disconcerting to find that vectors lose their “arrow” character in
texts that treat the subject very abstractly, instead seeming somehow to turn
into derivative operators in the way of (8.7). And as every archer knows, an
arrow is not an operator. They are certainly different things. Notationally,
there is a one-to-one correspondence between writing a basis vector eα as
an arrow ∂X/∂xα and omitting the embedding function X to write eα as
an operator ∂/∂xα; and derivative operators are elements of a vector space,
even though they are not arrows. The identification of arrows and operators
is no deeper than that. The fact is, that an arrow is a picture, and a picture
is something concrete that requires an embedding. In this book, we always
assume the existence of an embedding function X , which allows vectors to be
treated as arrows.

Position vectors, also called relative vectors or radius vectors, are elements
of a vector space in the mathematical sense. They typically locate a par-
ticle in some reference frame, and are the sort of vector commonly used
in physics texts to deal with classical mechanics scenarios, such as the
position of a planet relative to the Sun, or the position of a ball on a
table. They are also the vectors r being rotated around arbitrary axes in
Chap. 4.

Proper vectors are based on the idea of infinitesimal displacements as de-
scribed in the current chapter. They are also elements of a vector space,
but as we shall see, proper vectors are also required to transform appro-
priately under a specified change of coordinates. Proper vectors, whose
components might form, for example, the four-vectors of the Lorentz
transform, are the main sort of vector used in mathematical physics.
We’ll drop the adjective “proper” and just refer to these as vectors un-
less a distinction must be made. Position vectors are proper vectors un-
der a rotation about the origin, while derivatives of position vectors in
cartesian coordinates are proper vectors with respect to translations and
rotations. Noninfinitesimal displacements are generally not counted as
proper vectors for the reason described at the start of this chapter. As it
turns out, they are not guaranteed to transform linearly with nonlinear
changes in coordinates, as opposed to infinitesimal displacements, which
always will. However, if we restrict ourselves to linear changes in coordi-
nates, then noninfinitesimal displacements are certainly proper vectors.
But since they are not generally useful in a world best described by cal-
culus, they are generally avoided in vector analysis.
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8.2 Vectors and Coordinate Changes

Suppose we wish to transform coordinates in order to see how the fluid flow
vectors of the previous section are quantified in some other frame. In this
example, we are using the three dimensions of ordinary space. It would do no
good to try to make this four-dimensional by introducing a time parameter,
since that would allow a Galilei transform to reduce a constant-velocity vector
field to zero—which is contrary to our notion of a vector since a vector is
meant to be frame-independent. After all, in previous chapters, if we had
a set of vector components vα that were all zero in some frame, then they
would have to transform to zero in all other frames, since their values in any
other frame are just linear combinations: vµ′

= Λµ′
α vα = 0. Zero vectors are

zero in all frames! But in the four dimensions of spacetime, we do consider
time to stand on an equal footing with the space axes, and the great thing
that we have seen emerging in previous chapters is that relativity introduces
us to objects that do transform as vectors (under the Lorentz transform),
even when time is included.

A familiar example of basis vectors is the set {ex,ey,ez}, each of which
points along one of the cartesian axes that describe our everyday three dimen-
sions. These are especially useful because they do not change with position,
a fact that we’ll often put to good use in this chapter. How can we relate
each of these vectors to the more familiar forms, such as (1, 0, 0)? Remember
from p. 9 that the ordered set of three numbers (1, 0, 0) is a coordinate vector
with respect to some basis. Trivially then, the coordinate vector of ex with
respect to the usual cartesian basis {ex,ey,ez} will be (1, 0, 0) because

ex = 1ex + 0ey + 0ez . (8.8)

This is an important distinction; ex does not “equal” (1, 0, 0). Rather, the
coordinate vector of ex with respect to the {ex,ey,ez} basis is (1, 0, 0). Far
from being a pedantic point, this is an important concept to keep in mind. The
coordinate vector of ex with respect to a different basis will be a different set
of three numbers, and we are free to use whatever basis is convenient. While
tensor analysis was originally constructed to deal with coordinate vectors only
(“components” is the more common term), these are only representatives of
the actual vector with respect to some chosen basis.

Alternatively to (8.8), note that an arbitrary step in space can be writ-
ten as

dX =
∂X

∂x
dx +

∂X

∂y
dy +

∂X

∂z
dz

= ex dx + ey dy + ez dz , (8.9)

whose coordinate vector with respect to {ex,ey,ez} is

(dx,dy,dz) = dx (1, 0, 0) + dy (0, 1, 0) + dz (0, 0, 1) , (8.10)



8.2 Vectors and Coordinate Changes 279

and again we see the familiar forms of (1, 0, 0), etc., appearing.
The definitions of vector components and basis vectors in (8.1) and (8.2)

are completely general in any number of dimensions with any type of co-
ordinates; the definition of a vector does not favour cartesian coordinates.
For example, if we have a set of vector components dxβ , then in a different
frame marked by bars over the coordinate labels, the corresponding vector
components are

dxᾱ =
∂xᾱ

∂xβ
dxβ = Λᾱ

β dxβ , (8.11)

where we’ve used the familiar Λ notation introduced in (6.37) and properly
generalised in (7.44). The new (barred) basis vectors are

eᾱ ≡ ∂X

∂xᾱ
=

∂X

∂xβ

∂xβ

∂xᾱ
= Λβ

ᾱ eβ . (8.12)

Although infinitesimals dxᾱ,dxβ were used in (8.11), we know from (8.1) and
the discussion following (8.2) that the vector components vᾱ behave in the
same way as dxᾱ. So (8.11) can be rewritten for vector components vᾱ as

vᾱ = Λᾱ
β vβ . (8.13)

Equations (8.11) [or (8.13)] and (8.12) ensure that a vector v has the same
form in tensor notation, irrespective of coordinate system:

v = vᾱ eᾱ = Λᾱ
β vβ × Λµ

ᾱ eµ

= δµ
β vβ eµ = vµ eµ . (8.14)

To preserve the up–down index positions, the Kronecker delta function has
been written with one index up and one down. It must always be written this
way in tensor analysis. Later we’ll see what happens if it is written with both
indices up or both down.

Equations (8.11) and (8.12) are very basic to any study of tensor analysis,
and something quite fundamental is being demonstrated in (8.14). That is,
whenever an index appears both up and down (and therefore is summed over),
that index can be switched to one of any other set of coordinates, indicating
a frame independence that allows us to construct a geometrical picture of
vectors. This is called contracting over that index. This is perhaps our first
indication of the utility of tensor notation. The quantities (and ultimately
equations) that we write down have the same form in any set of coordinates—
which makes them ideal for describing physical laws, since these laws must be
independent of coordinate systems. Physical frame choices (such as inertial
or accelerated) are not as arbitrary as coordinate choices within a frame, but
we can expect the covariant language of raised and lowered indices to give,
or suggest, the new form of a law in a different frame. In Sect. 8.7 we’ll draw
more attention to the distinction between frames and coordinates.
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“Invariance” versus “Covariance”

The words invariance and covariance are sometimes confused. What does
each mean? Invariance refers to the desirable notion that a quantity will not
change when the coordinate system or frame is changed. The simplest such
quantities—pure numbers that everyone agrees on, such as temperature—are
called scalars. But more complicated entities do change under the same circum-
stances. However, as outlined in the previous chapters and this one, although
tensor components and basis vectors change, they change with coordinates in
such a way—through multiplication by matrices of partial derivatives, as in
(8.11) and (8.12)—that the more refined concept of a full tensor of components
plus basis is invariant.

This idea of varying with (“co”) coordinates is what gives the index notation
of tensor components and basis vectors the name“covariant”. The word denotes
our acknowledgement that although some quantities are not invariant, they are
not arbitrary either, and the way that they change is constrained in a certain
way. But the overriding concept is invariance—whether of a scalar or of a
complete tensor (components together with basis vectors). Invariance of any
object implies (in fact, defines) covariance of the elements that make it up,
which in the case of tensors are the components and basis vectors. Invariance
is the key concept; covariance is a description of how the notation of vectors
and tensors recognises invariance.

Although the whole index notation is termed covariant, the word is also
given a meaning within that context. To ensure the overall invariance of a
vector v (components and basis vectors), its components must transform op-
positely from the basis vectors. Historically, the index-down set of components
has come to be designated as changing “with” the coordinate transformation
(covariant) (where “with” clearly does not mean “identically to” here!). The
other set (index up) has then been designated as changing “against” the co-
ordinate transformation (contravariant). So, for example, the term covariant
vector is traditionally used to denote vα, the coordinate vector with respect
to the cobasis of Sect. 8.4, whereas contravariant vector is similarly used to
denote vα, the coordinate vector with respect to a basis.

Fundamental to the idea of frame changing with vectors is that the co-
ordinate vector (the ordered set of components) vα—such as the four-vector
of special relativity—is not frame-independent, but those components to-
gether with a basis, vαeα, certainly are frame-independent, as demonstrated
by (8.14). The word “vector” is somewhat overused in tensor analysis. The
components vα constitute the coordinate vector with respect to the eα basis,
and are simply called a vector. They depend on frame choice: {vα} 	= {vβ̄} in
general. But the sum vαeα is also called a vector, and is independent of frame
choice: vαeα = vβ̄e

β̄
. Most tensor analysis concentrates on components only;

indeed, we’ll see that concepts such as the metric and the covariant derivative
(both defined later in this chapter) were created to allow us to forget about
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the basis vectors entirely, by bundling any effects due to them into the com-
ponent manipulations. Even so, it’s wise to remember that the basis vectors
do form the other side of the coin and are sometimes too easily forgotten.
Explicitly including them in a calculation is often a very useful thing to do.

Two types of indices are sometimes needed, using Greek and Latin letters,
to distinguish vectors vαeα that exist in some higher-dimensional space, say
the four dimensions of spacetime, from those confined to a subspace and writ-
ten vaea, where the subspace might be the familiar three spatial dimensions.
In this book, Greek indices indicate a summation over the whole space, while
Latin letters indicate a sum over a subspace. So, for example, in spacetime,
Greek indices mean 0 to 3 (e.g., t, x, y, z, or t, r, θ, φ), while Latin denote 1 to 3
(e.g., x, y, z, or r, θ, φ). We have not yet needed to make this distinction but
will certainly do so in Chap. 9. In some texts, the roles of Latin and Greek
indices are reversed.

We should check that basis vectors eα are really vectors; i.e., that their
components transform as vectors. This requires showing that their compo-
nents in a barred frame are related to their components in an unbarred frame
by the usual relation (8.11): (eα)µ̄ = Λµ̄

β (eα)β . First realise that eα = Λµ̄
α eµ̄,

so that the components of eα in the barred frame are Λµ̄
α. Next, write

eα = δβ
α eβ , so the components of eα in the unbarred frame are δβ

α. Hence,

µth component of eα in barred frame = (eα)µ̄

= Λµ̄
α = Λµ̄

β δβ
α = Λµ̄

β (eα)β

= Λµ̄
β × βth component of eα in unbarred frame. (8.15)

The components of eα transform in the way of (8.11) as required, and so eα

is indeed a vector.
We are beginning to see that four-vectors are not really the separate breed

that they first appeared to be. They form part of a larger set of proper vectors
that includes other transformations. These proper vectors are always defined
by the way that their components transform: through the partial derivatives
of coordinates, Λᾱ

β and Λβ
ᾱ, of (8.11) and (8.12). (The basis vectors always

transform correctly, by construction.) We cannot call a set of numbers a
vector unless we also specify how it transforms. So four-vectors together with
their basis are proper vectors under the Lorentz transform and, as such, are
also called Lorentz vectors. From now on, we will refer to them simply as
vectors, realising that they fit into this much bigger scheme in which a vector
transforms via the general equations (8.11) and (8.12).

8.3 Generalising the Idea of Vector Length

In Sect. 5.6, we introduced the idea, originally due to Minkowski, that space-
time could be considered as a unified entity. This was done by showing that
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all observers agree on the value of a unique number attached to each four-
vector, and that this “scalar” is a natural extension to the three-dimensional
idea of length. We calculated this length for the four-velocity in Sect. 6.3.2.
It appears, then, that just as the familiar dot product in three dimensions
allows us to calculate the euclidean length of a vector, so might a similar
idea be applicable to higher dimensions. A higher-dimensional dot product
or norm can be defined to give a vector length (not necessarily euclidean)
through the metric:

|v|2 ≡ v ·v = vαeα ·vβeβ = vαvβ eα ·eβ ≡ vαvβgαβ . (8.16)

The action of the metric in combining pairs of vector components into an
overall norm is encoded in the metric components gαβ , which obey the key
identity

gαβ ≡ eα ·eβ . (8.17)

Now, since each length is a scalar (i.e., independent of reference frame) and
since v is a vector (i.e., having a reality independent of frame), we can infer
that the numbers gαβ are also the components of a new object that also has
a reality independent of frame.

Our making this inference is an example of the use of the quotient theorem
of tensor analysis, which is a rigorous statement involving tensor indices
that effectively states what we have just said.

This new object, the metric tensor, is our first generalisation of proper vectors
to the larger set of objects that need more than one index to describe their
components. These are the tensors, and have an existence independent of
frame when coupled to an appropriate basis. In general, tensors can have any
number of up and down indices, and so rather than have a separate notation
for each type, we tend to refer to each by their components. Notice that the
metric is symmetric, simply because the dot product is: gαβ = eα ·eβ = gβα;
so we can, and will, swap the indices freely whenever convenient. And just as
is done for vectors, the word“tensor”can refer to the whole set of components,
such as gαβ , it can refer to that set together with a basis (which we’ll consider
in Sect. 8.5.1), or it can refer to one of those basis elements.

The metric tensor is the real quantifier of a space’s geometry. An exam-
ple is the familiar euclidean metric for cartesian coordinates. Pythagoras’s
theorem tells us that d�2 = dx2 + dy2 + dz2, so writing

d�2 = |dx|2 = dxαeα · dxβeβ = dxαdxβgαβ

= dx2 + dy2 + dz2 (8.18)

implies that the euclidean metric has components

gxx = gyy = gzz = 1 , gxy = gxz = · · · = 0 . (8.19)
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(Strictly speaking, d�2 is the line element, while the set gαβ is the metric,
but the terms are often mixed. This is harmless.) Being a quadratic form, the
metric components are naturally written as a matrix:

d�2 =
[
dx dy dz

] ⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦⎡⎣dx
dy
dz

⎤⎦ . (8.20)

Having said this, the metric is not a matrix; rather, its elements can be
written in a matrix to allow them to be manipulated easily. A matrix is
purely a set of numbers written in a tableau that enables us to manipulate
them according to useful rules. We’ll see more of this distinction later in
Sect. 8.5.2.

An example of a metric for a different space is that of special relativity with
cartesian coordinates. This metric is always written ηαβ . A look at (6.24)
shows that the sixteen entries of ηαβ must be

ηtt = 1, ηxx = ηyy = ηzz = −1; all other ηαβ = 0. (8.21)

The alternative sign choice (−+++) is commonly used also. Both sign con-
ventions can be accommodated in any one expression by writing the matrix
of ηαβ as ηtt diag(1,−1,−1,−1). We’ll do this in Chap. 10.

8.3.1 Coordinate Transformation of the Metric

What are the components of the metric tensor in another frame? They follow
straightaway from the definition of the metric:

gµ̄ν̄ = eµ̄ ·eν̄ = Λα
µ̄ eα · Λβ

ν̄ eβ = Λα
µ̄ Λβ

ν̄ gαβ . (8.22)

This transformation law is just an extension of the covector law that we first
met in Sect. 6.5 and equation (6.50). It generalises to define a tensor with
any number of up and down components. For each component, there should
be a Λ-factor with appropriate indices, so that all indices not being summed
over appear in the same up or down positions on both sides of any tensor
equation. When changing frames, the various Λ-factors will ultimately be
multiplied together, and when they do, the same sort of cancellation occurs
as in (8.14). This ensures frame independence; summing over all up and down
indices will always produce a quantity that is independent of frame, be it a
proper vector (vector components with basis) in (8.14) or a scalar in (8.16).
No other positioning of indices makes sense in tensor analysis.

The Basis and Metric for Polar Coordinates

Polar coordinates in the plane are very useful for developing good sense with
the ideas of vectors and metrics. For example, what are the basis vectors and
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er

eθ

er

eθ

Fig. 8.4. Polar coordinate basis vectors at various points. Not surprisingly, all
the er’s point radially outward and have unit length. Why? Because they are
just ∂X/∂r, which means we need only ask for the step dX taken when r is
increased by dr > 0 with θ held constant. This step is radially outward for a dis-
tance of dr, so that the ratio |dX |/dr = 1. Similarly, the step dX taken when θ is
increased by dθ > 0 and r held constant is tangential to a circle of radius r, and has
length r dθ. Thus the ratio |dX |/dθ = r, so that eθ has length r. Naturally, these
lengths and directions agree with those calculated from (8.25). Bear in mind that
the units of these vectors are different; see the box on p. 50.

metric in polar coordinates? Start with what we do know: the cartesian basis
vectors ex,ey with their euclidean metric. The polar basis is given by (8.12):

er =
∂x

∂r
ex +

∂y

∂r
ey ,

eθ =
∂x

∂θ
ex +

∂y

∂θ
ey . (8.23)

Polar and cartesian bases are related by

x = r cos θ , y = r sin θ , (8.24)

in which case the polar basis vectors become

er = cos θ ex + sin θ ey ,

eθ = −r sin θ ex + r cos θ ey . (8.25)

The polar basis vectors at various points are shown in Fig. 8.4. Using these,
we can calculate the polar metric to be
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grr = er ·er = (cos θ ex + sin θ ey) · (same) = 1 ,

grθ = gθr = er ·eθ = (cos θ ex + sin θ ey) · (−r sin θ ex + r cos θ ey) = 0 ,

gθθ = eθ ·eθ = (−r sin θ ex + r cos θ ey) · (same) = r2 , (8.26)

so that the polar line element is

d�2 = dr2 + r2dθ2 . (8.27)

Of course, the polar line element is usually calculated in a much more straight-
forward way through a geometric, pictorial procedure of applying Pythago-
ras’s theorem to the right triangle formed by increases of dr and r dθ. It can
also be calculated by writing

d�2 = dx2 + dy2 =
(

∂x

∂r
dr +

∂x

∂θ
dθ

)2

+
(

∂y

∂r
dr +

∂y

∂θ
dθ

)2

(8.28)

and then inserting the various partial derivatives. These approaches don’t
use basis vectors, of course, but following the procedure of (8.26) is a useful
exercise in learning how everything fits together.

8.4 A Natural Basis for Covectors

The set of basis vectors {eα} pairs naturally with the single coordinate vec-
tor vα, producing a single vector v ≡ vαeα. In Sect. 2.3 we introduced another
basis vector set {eα} together with its corresponding coordinate vector vα.
These cobasis vectors had the property shown in (2.19) of being orthonormal
to the basis {eα}, and were calculated using a cross product in (2.20). We
wish to generalise eα now to an arbitrary space using tensor notation. The
cobasis {eα} is defined by how it relates to the basis {eα}:

eα ·eβ ≡ δα
β . (8.29)

Being vectors, the eα are expressible as linear combinations of the basis
set {eβ}, and the goal is to find these linear combinations. Prepare for
this by defining some quantities that will be very useful for the required
manipulations, as well as giving meaning to the notation that results. Just
as gαβ ≡ eα ·eβ , define

gα
β ≡ eα ·eβ = δα

β = eβ ·eα = gβ
α ,

gαβ ≡ eα ·eβ = eβ ·eα = gβα .
(8.30)

The spacing in the gα
β indices is not really necessary, but we have written it

this way only to mimic those indices’ positions in eα ·eβ .
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Note that the set of gαβ is usually defined in such a way that a matrix
composed of them is the inverse of the matrix composed of the gαβ . We
have not done that because at this stage there is no motivation for doing
so. Rather, the definitions in (8.30) are all about symmetry in the notation.
But we’ll shortly find in (8.35) that matrices composed of gαβ and gαβ are
indeed inverses of one other.

If the eα are to be written as linear combinations of the basis set {eµ},
define the coefficients as Gαµ:

eα = Gαµeµ . (8.31)

Now use (8.29) to write

δα
β = eα ·eβ = Gαµeµ ·eβ = Gαµgµβ , (8.32)

in which case this last expression together with (8.30) and (8.31) produces

gαβ = Gαµeµ ·Gβνeν = GαµGβνgµν = Gαµδβ
µ = Gαβ . (8.33)

So the coefficients Gαβ are just equal to gαβ , allowing us to write

eα = gαµeµ , (8.34)

where (8.32) becomes
gαµgµβ = δα

β . (8.35)

This last relation shows the fundamental result that the matrix with αµth en-
try gαµ is the inverse of the matrix with µβth entry gµβ . Note also that (8.34)
inverts easily by multiplying by the metric and summing:

gβαeα = gβαgαµeµ = δµ
βeµ = eβ . (8.36)

Since eα is a vector, its components should transform as required of vector
components, and indeed they do:

µth component of eα in barred frame = (eα)µ̄

=
(
gαβΛν̄

β eν̄

)µ̄
= gαβΛµ̄

β = Λµ̄
β (gαγeγ)β = Λµ̄

β (eα)β

= Λµ̄
β × βth component of eα in unbarred frame. (8.37)

This is the behaviour required of raised components.

Are gαβ and gα
β really tensors just like gαβ? They are, and to prove this, we

must show that they transform in the required way. Consider gαβ , beginning
with a guess at its transformation in the parentheses in (8.38), where it is
certainly true that(

Λᾱ
µ Λβ̄

ν gµν
)

gβ̄γ̄ = Λᾱ
µ Λβ̄

ν gµν Λ�

β̄
Λσ

γ̄ g�σ = δᾱ
γ̄ . (8.38)
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Thus we can infer that the term in parentheses is the inverse of the metric:

Λᾱ
µ Λβ̄

ν gµν = gᾱβ̄ . (8.39)

QED; this is the expected transformation for a tensor with both indices
up (known as a (2, 0) tensor). A similar argument shows that gα

β also
transforms in the appropriate way.

Finally, do the eα really form a basis? They will if they are linearly
independent. We can prove that they are by contradiction. Assume there
exists a set cα not all equal to zero such that cα eα = 0. Then cα gαβ eβ = 0.

But, because the eβ are linearly independent, this means cα gαβ = 0 for
all β, and so on multiplying by gβγ , we arrive at cγ = 0 for all γ, which is a
contradiction. So the eα really do form a basis.

In three-dimensional euclidean space, the basis vectors eα are exactly the
cobasis of Sect. 2.3 used in crystallography. We see here the compactness of
tensor notation: the expression for the cobasis in (8.34) is in fact equivalent
to the more complicated crystallography version, (2.20). The fact that the
two are identical follows from the fact that they both express orthonormality
between the basis and the cobasis, as in (2.19) and (8.29).

A simple example shows how a cobasis is constructed and what it looks
like. Work in the xy-plane with the usual cartesian basis ex,ey, and consider
another basis of two vectors, e1,e2, with coordinates in the ex,ey basis of

e1 =
[
1 0
]
, e2 =

[
1 1
]
. (8.40)

(Whether we write the coordinate vectors as rows or columns in this example
is immaterial; here we are only interested in their components.) Refer to
Fig. 8.5. The metric in this new basis has components g11 ≡ e1 ·e1 = 1, etc.
Letting α, β stand for any index in the set {1, 2}, insert these components
into a matrix and invert it to find the gαβ :

gαβ =
[
1 1
1 2

]
, gαβ =

[
2 −1

−1 1

]
. (8.41)

Thus

e1 = g1αeα = 2e1 − e2 =
[
1 −1

]
,

e2 = g2αeα = −e1 + e2 =
[
0 1
]
. (8.42)

As a check, e1 ·e1 = 2 = g11 as expected, and similarly for the other elements
of the inverse metric matrix. The vectors e1,e2,e

1,e2 are drawn in Fig. 8.5.
Note that e1 ·e2 = e2 ·e1 = 0, as expected from (8.29).

Although the eα are vectors, there is certainly a fundamental difference
between them and the set of eα under a frame change:

eµ̄ = Λα
µ̄ eα , while

eµ̄ = gµ̄ν̄ eν̄ = Λµ̄
α Λν̄

β gαβ Λσ
ν̄ eσ = Λµ̄

α gασeσ = Λµ̄
α eα. (8.43)
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x

y

1

1

e1

e2

e1

e2

Fig. 8.5. The basis e1, e2 together with its cobasis e1, e2, discussed in (8.40)–(8.42).
As expected, e1 ⊥ e2 and e1⊥ e2.

Let’s look closely to find the essential difference between the two transforma-
tions of (8.43). A good magnifying glass is needed here, so we’ll take the time
to do the calculation slowly and carefully. It can be done very neatly by using
a matrix formalism to write the two contractions of (8.43). Remember that
matrix multiplication does not distinguish between up and down indices; a
matrix is, after all, just a tableau of numbers subject to certain rules. For
example, Λα

β̄
is really the αβth component of the jacobian (6.37), so define a

jacobian matrix Λ with αβth component Λα
β̄

as follows:

matrix Λ has αβth component (Λ)αβ ≡ Λα
β̄ . (8.44)

The mixture of barred and unbarred indices is no mistake in the notation.
It allows us to write (8.43) as a matrix multiplication by ensuring that the
summed indices appear as neighbours, so to speak. This implies that

matrix Λt has αβth component (Λt)αβ = (Λ)βα = Λβ
ᾱ , and

matrix Λ−1 has αβth component (Λ−1)αβ = Λᾱ
β ,

since then (Λ−1Λ)µν =
∑
α

(Λ−1)µα(Λ)αν = Λµ̄
α Λα

ν̄ = δµ̄
ν̄

= (1)µν as expected, (8.45)

where “1” is the unit matrix. Also needed are matrices that hold not numbers
but basis or cobasis vectors. This is not as strange as it sounds, since all
we are doing is arranging all the objects into neat tableaux to allow easy
manipulation via matrix formalism:
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matrix e has α1th component (e)α1 ≡ eα ,

matrix ē has α1th component (ē)α1 ≡ eᾱ ,

matrix E has α1th component (E)α1 ≡ eα,

matrix Ē has α1th component (Ē)α1 ≡ eᾱ. (8.46)

Now we can write the basis vector transform in (8.43) as (where repeated
matrix indices are assumed to be summed over)

(ē)µ1 = eµ̄ = Λα
µ̄ eα = (Λ)αµ (e)α1 = (Λt)µα (e)α1 = (Λte)µ1 , (8.47)

or in other words
ē = Λte . (8.48)

Similarly, the cobasis vector transform in (8.43) is written as

(Ē)µ1 = eµ̄ = Λµ̄
α eα = (Λ−1)µα (E)α1 = (Λ−1E)µ1 , (8.49)

so that
Ē = Λ−1E . (8.50)

Now compare the basis transformation (8.48) with the cobasis transforma-
tion (8.50). One uses the matrix Λt while the other uses Λ−1. This is the
sense in which basis vectors and cobasis vectors differ. When the coordinate
transformation is a two-dimensional rotation (4.7), the jacobian is just the
rotation matrix, whose inverse and transpose are identical. Thus, under a
rotation, the basis and cobasis vectors rotate in exactly the same way, in the
manner of arrows.

An important lesson can be seen in this analysis. That is, when writing
tensor components such as Aα

β̄ , we should avoid repeating an index in two
different coordinates, so that“Aα

ᾱ” is avoided. The reason is that Aα
ᾱ clashes

with the idea of writing these components in a matrix, since an expression
like (8.44) then appears to be dealing with the ααth component of a matrix,
which is a diagonal entry only. In contrast, Aα

β̄ is unambiguously the αβth

component of a matrix, which is not confined to the diagonal.

Generalising Matrix Multiplication?

Matrix multiplication consists of forming euclidean dot products between
rows and columns. In fact, a more general inner product could be used instead.
The use of such an inner product is equivalent to a choice of metric with,
say, the summed index appearing only in a down position. This renders the
contraction equivalent to the inner product of two sets of numbers. These
sets can be written as the row of a first matrix and a column of a second.
However, by absorbing the metric through the raising or lowering of the
summation index, the contraction is effectively reduced to the use of the
euclidean dot product. Because of this, there is never any need to generalise
matrix multiplication to arbitrary inner products. Raising or lowering indices
converts those inner products to the euclidean one, which is equivalent to our
only using the usual form of matrix multiplication.
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ereθ

er

eθ

Fig. 8.6. Polar cobasis vectors at various points, drawn as a comparison with
the basis vectors in Fig. 8.4. The radial cobasis vectors are identical to the radial
basis vectors: er = er. In contrast, the transverse cobasis vectors are parallel to
the transverse basis vectors but with different lengths; eθ = eθ/r2, so their lengths
are inversely proportional to r. For a discussion of the length units, see the box
on p. 50.

The Cobasis for Polar Coordinates

What is the polar coordinate cobasis? Equation (8.34) gives

er = grαeα , eθ = gθαeα . (8.51)

Now use the polar metric given in (8.26) to calculate the inverse matrix of
the metric elements:[

grr grθ

gθr gθθ

]
=
[
grr grθ

gθr gθθ

]−1

=
[
1 0
0 r2

]−1

=
[
1 0
0 1/r2

]
. (8.52)

The inverse metric matrix is also diagonal, which means the cobasis is

er = grrer = er , eθ = gθθeθ = eθ/r2. (8.53)

A sample of cobasis vectors at various points are shown in Fig. 8.6.

8.4.1 Raising and Lowering Indices

Of great notational importance in the previous few pages is the idea that
the metric “raises and lowers indices” on the basis vectors and on itself, with
expressions such as

eα = gαβeβ , eα = gαβeβ , gαµgµβ = gα
β . (8.54)



8.4 A Natural Basis for Covectors 291

The same idea turns out also to apply to components. Given a vector v, we
defined the set of numbers vα to be its coordinate vector over the cobasis:

vαeα ≡ v = vαeα . (8.55)

But we would like to show that the set of vα transforms as a covector, to
match the previous usage of a lowered index in (6.50). How do the vα relate
to vα? Use the first identity of (8.54) to write (8.55) as

vαgαβeβ
req.

vβeβ , (8.56)

so that the linear independence of the eβ gives

vαgαβ = vβ . (8.57)

Thus, the metric “raises” component indices too. This last result inverts to
give

vα = vβgαβ , (8.58)

which means that the metric also “lowers” component indices. So given the
metric, not only can we switch freely between basis and cobasis, but we can
also switch between a basis coordinate vector and the corresponding cobasis
coordinate vector.

As a side note, in (8.16) a vector’s length was expressed in an almost eu-
clidean way. The components still appeared quadratically, but the metric gαβ

seems to have complicated the issue. It’s more elegant to absorb the metric
into one of the components by using it to lower the β index in (8.16), giving
a more suggestive expression for the vector length as a contraction:

|v|2 = vαvα . (8.59)

This is a sum over quadratic-like terms, much as we are used to from
Pythagoras’s theorem. Notation like (8.59) allows the line element to be
written in a kind of euclidean way. For instance, the contraction is a sum of
products, which is equivalent to using the euclidean metric.

We can now show, as mentioned just after (8.55), that the set of vα trans-
forms as a covector in the manner of (6.50).

vµ̄ = vν̄gν̄µ̄ = Λν̄
α vα Λβ

ν̄Λγ
µ̄ gβγ = vβ Λγ

µ̄ gβγ = Λγ
µ̄ vγ . (8.60)

The names “covector”, referring to the coordinate vector vα over the cobasis,
and “cobasis vector”, or sometimes “basis covector”, referring to eα, were not
created to imply that vαeα is a new object called a “covector” and somehow
different from the vector vαeα. These are just alternative ways to write the
vector v, which is why the terms “contravariant component” and “covariant
component”of v were originally created for vα and vα. The boxes on pages 280
and 293 discuss this in more detail. Remember that the cobasis is nothing
more than a basis; it is given its own name purely because of its special
relationship to a partner basis in (8.29).
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It is worth noting that lowered indices are traditionally defined in terms of
raised ones via the metric, although it might not immediately be clear just
why such a definition should be useful. Our approach has been to define
raised- and lowered-index notation quite symmetrically from the start in
Chap. 2, long before the ideas of a metric or a tensor were encountered.

8.5 Tensor Components with More than Two Indices

Later, we’ll meet tensors whose components have more than two indices. By
definition, such components written as, e.g., Aα

β
γδ must transform as

Aµ̄
ν̄

�̄σ̄ = Λα
µ̄ Λν̄

β Λγ
�̄ Λδ

σ̄ Aα
β

γδ (8.61)

in order to be called tensor components; this property is then what defines
the components of a general tensor. The duality between raised and lowered
indices guarantees that a new set of tensor components can be built by shifting
the components up and down as we see fit, by using the metric. For example,
lowering the second index of Aα

β
γδ gives

Aαµγδ ≡ gµβ Aα
β

γδ , (8.62)

and these new components are guaranteed to transform as they should. The
various jacobians and metric components conspire to make sure of that. A
set of tensor components such as Aα

β
γδ is generally not the same as the

tensor components Aαβ
γ

δ created from it using the metric. Because of this,
we must always be careful to space the indices in such a way that they
can be raised or lowered unambiguously. Nevertheless, in the next section
we show that by including an appropriate basis, the various sets of compo-
nents Aα

β
γδ, Aαβ

γ
δ, etc., can all be regarded as components of the same

object, A, which is simply the tensor with these various component sets over
various basis choices.

An exception to the rule of keeping indices correctly spaced is the Kro-
necker delta δα

β , which (in tensor use) is always defined with one index up
and one down, with no spacing necessary since its meaning is unambiguous.
Notationally, when we wear our covariant hats and thus are careful to keep
all indices in their correct up and down positions, we must never write the
Kronecker delta as δαβ . If we do wish to play the raising-lowering game with
the Kronecker delta, then we are free to define

δαβ ≡ δγ
β gγα = gβα = gαβ . (8.63)

So beware: the usual Kronecker delta must be written with one index up
and one down if it’s to retain its usual “zero or one” meaning. With both
indices down, the Kronecker delta is really just another name for the metric!
That is, when using covariant index notation, δ and g mean exactly the same
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Our Terminology of Vectors and Their Components

The terms used to describe four-vectors, covectors, and their respective bases
can be confusing since the word“vector” is heavily used in physics. Throughout
this book, we use the following language. First, position vectors and proper
vectors are both denoted with boldface, e.g. v; this is standard, and there
should never be any real confusion in using the same symbol since the two
objects are both “arrows”, and are both elements of a vector space. They also
tend to be used in different contexts. At the start of Chap. 2 we already
referred to the linear algebra term “coordinate vector” as the set of coefficients
of v relative to some chosen basis. Sets of vector components are generally
known by different but equivalent names:

– The vector is the coordinate vector over a basis, or a “basis coordinate
vector”. Also known as the “contravariant components of v” and called
a four-vector when we restrict ourselves to the Lorentz transform.

– The covector is the coordinate vector over a cobasis, or a “cobasis
coordinate vector”. Also known as the “covariant components of v”.

Note also that referring to a basis vector as eα means just one vector, such as e0

or e1, as opposed to the whole set (in, say, four dimensions) {e0, e1, e2, e3}.
Referring to a vector as vα always means the whole coordinate vector: the
ordered set {vα}, such as

(
v0, v1, v2, v3

)
. A similar remark will apply later

in this chapter, where a cobasis vector, also sometimes called a “basis cov-
ector” eα, will mean just one vector of the cobasis, such as e0, whereas “a
covector vα” will always mean the whole coordinate vector with respect to the
cobasis, e.g. (v0, v1, v2, v3).

Later, these remarks will also apply to tensors since these are just
straightforward generalisations of vectors. The whole set of components of
a tensor is usually called a tensor, but that set together with a basis is also
called a tensor. This practice is common, and no real confusion should result.
Occasionally, if we want to stress the spatial part of a four-dimensional
vector in relativity such as in Chap. 6, we’ll write the coordinate vector
as �v =

(
v0, v

)
=
(
v0, v1, v2, v3

)
, with the three-dimensional spatial part bold.

In summary, use the terms

– vector or coordinate vector over a basis for {vα},
– covector or coordinate vector over a cobasis for {vα},
– basis vector for eα,
– cobasis vector, or occasionally basis covector, for eα, and
– vector or proper vector for v = vαeα = vαeα.
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thing when taking indices in the same positions. A good example of this
can be found in Sect. 10.3.6 when defining the lowered-indices version of the
energy–momentum tensor.

Another point worth noting is that the notation of the jacobian matrix
elements is very closely related to the metric notation, as is evident when we
consider expressions such as

eᾱ ·eβ = Λᾱ
µ eµ ·eβ = Λᾱ

β and eα ·eβ = δα
β =

∂xα

∂xβ
= Λα

β . (8.64)

These can be compared with the definitions of the metric in its various guises,
(8.17) and (8.30).

8.5.1 Bases for More General Tensors

Previously, we made the point that along with vector components vα and vα,
the metric coefficients gαβ , gα

β , and gαβ are all tensor components because
they transform in the appropriate way. In the one-index case, we found that
the basis and cobasis could be used to construct a frame-independent object,
the proper vector. Now we wish to extend this idea to sets of tensor compo-
nents having two or more indices. We’ll pave the way by reiterating the idea
of linear independence of the basis. Write a general vector again as

v = vαeα = vαeα , with eα = gαβeβ . (8.65)

Consider (2.25):
v ·eα = vβeβ ·eα = vα. (8.66)

“Dotting” with eα picks out vα, the component of eα. Now suppose that
v = 0. An axiom of linear algebra then allows us to write v ·eα = 0. In that
case, (8.66) implies that vα = 0, so the zero vector must have all components
equal to zero, a desirable property that goes hand in hand with the linear
independence of the basis. Similar remarks apply to the cobasis.

This idea of linear independence helps us to construct a basis for a general
second-order tensor T . First, in analogy with the two alternative bases {eα}
and {eα}, we simply define four bases using a new operator“⊗”that combines
basis vectors as

{
eα ⊗eβ

}
,
{
eα ⊗eβ

}
,
{
eα ⊗eβ

}
, and

{
eα ⊗eβ

}
, so that the

analogy with the first part of (8.65) is

T = Tαβ eα ⊗eβ = Tα
β eα ⊗eβ

= Tα
β eα ⊗eβ = Tαβ eα ⊗eβ . (8.67)

Let’s analyse one of these expressions by asking: just what is eα ⊗eβ—how
does it behave? First, note that we require linear behaviour from this new
basis:

Tαβeα ⊗eβ = T µ̄ν̄Λα
µ̄ Λβ

ν̄ eα ⊗eβ
req.

T µ̄ν̄
(
Λα

µ̄eα

)
⊗
(
Λβ

ν̄eβ

)
= T µ̄ν̄eµ̄ ⊗eν̄ , (8.68)
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in which case it must follow that for any constant c,

(ceα) ⊗eβ = eα ⊗
(
ceβ

)
= c
(
eα ⊗eβ

)
. (8.69)

It’s possible to show that the set of eα ⊗eβ is linearly independent by analogy
with the dot product discussion around (8.66). To do so, more than two basis
vectors need to be combined at once, so the dot product, being a binary
operator, is now insufficient for the job. We will replace it by the functional
notation first used in Sect. 2.4.4. Using this notation, the orthonormality
of basis and cobasis vectors, written as eα ·eβ = δβ

α, could just as well be
expressed as

eα

(
eβ
) ≡ eβ (eα) ≡ δβ

α . (8.70)

It should be stressed that we are not redefining basis and cobasis vectors to
be functions of each other! As was pointed out on p. 26, this sort of functional
notation is just a way of combining more than two vectors. (Some texts do
use an expression like (8.70) as functional notation, but whether they really
mean to be circular is not clear.) For a second-order tensor, then, define

eα ⊗eβ (eµ,eν) ≡ eα (eµ) eβ (eν) = δµ
α δν

β . (8.71)

This approach enables the tensor T to be treated as a function of the basis
vectors that picks out Tµν in analogy with (8.66). Just as (8.66) could have
been written as v (eα) = vα, more generally we can write

T (eµ,eν) = Tαβ eα ⊗eβ (eµ,eν)

= Tαβ δµ
α δν

β = Tµν . (8.72)

So far, so good. And now to answer the question: is the set
{
eα ⊗eβ

}
lin-

early independent? As for the vector case, consider the zero tensor T = 0,
and demand that T (eµ,eν) = 0. But from what we have just done, this is
equivalent to demanding that Tµν = 0, in which case

{
eα ⊗eβ

}
is certainly

linearly independent.
Similar arguments apply to other basis tensors, such as eα ⊗eβ . The sym-

bol ⊗ is tedious to write but can be necessary to prevent an equation such
as (8.69) from looking like functional notation. Still, it really is nothing more
than a kind of spacer, and after serving a pedagogical purpose here, and if
there’s no ambiguity, it can be dropped in practice—as long as the result is
not confused with the geometric product (4.93)! Thus T = Tαβ eα eβ or even
T = Tαβ eαβ , where

eαβ ≡ eαeβ ≡ eα ⊗eβ . (8.73)

Similarly, eαβ ,eα
β , and eα

β can also be defined.
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Wedge Products Again. In Sect. 2.4.4, we met with the idea of using a wedge
product to define “multivectors”, objects that produce signed volumes when
combined with cobasis vectors. Based on what has been done in the last few
paragraphs, we could equally well consider the signed area of (2.60) to be the
raised (1, 2)-component of the bivector a ∧ b. More generally, this bivector
has a raised (α, β)-component of

a ∧ b
(
eα,eβ

)
=
∣∣∣∣a·eα a·eβ

b·eα b·eβ

∣∣∣∣ = a⊗b
(
eα,eβ

)− b⊗a
(
eα,eβ

)
. (8.74)

In that case,
a ∧ b = a⊗b − b⊗a . (8.75)

Similarly, the signed volume that we met in (2.62) can be considered as the
(1, 2, 3)-component of

a ∧ b ∧ c = a⊗b⊗c − b⊗a⊗c + b⊗c⊗a − · · · , (8.76)

where the sum is over all permutations of a, b, c, with a plus sign for an even
permutation and a minus sign for an odd permutation. Since wedge products
are intimately tied to volumes in n dimensions, permutations with associated
signs appear frequently when tensor analysis is used in geometry.

8.5.2 The Metric Tensor Versus the Metric Matrix

It might seem strange that the metric tensor g = gαβ eαβ = gαβeαβ has
components gαβ and gαβ , depending on the basis chosen. After all, the matrix
of gαβ is the inverse of the matrix of gαβ !

But some reflection shows that there is nothing unreasonable about this.
Rather, it even underlines the fact that matrices and tensors are two different
things. The matrix of tensor components is simply an array of numbers de-
signed for efficient bookkeeping in linear algebra manipulations. The tensor g
includes a basis, but the matrix g of components gαβ does not. Similarly, the
inverse matrix g−1 of components gαβ incorporates no basis. Remember that
there is no tensor called g−1; the matrix g−1 simply holds the components
of g over the basis eαβ .

Further insight into this distinction comes by considering an analogy
purely within the context of matrix algebra. Write the (symmetric) metric
matrix g and its inverse g−1 as

g =
[
g11 g12

g12 g22

]
, g−1 ≡

[
g11 g12

g21 g22

]
=

1
∆

[
g22 −g12

−g12 g11

]
, (8.77)

where the metric determinant is ∆ ≡ g11g22 − g2
12, and g−1 is also seen to be

symmetric. Now suppose we write g in terms of a matrix basis as g = gαβeαβ ,
so that
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e11 ≡
[
1 0
0 0

]
, e12 ≡

[
0 1
0 0

]
, e21 ≡

[
0 0
1 0

]
, e22 ≡

[
0 0
0 1

]
. (8.78)

The question is: if a new basis eαβ is defined by lowering the indices of
the eαβ using the metric, will we be able to write g = gαβeαβ? We hope that
the answer is yes since this is the way covariant notation has been defined;
raising one set of indices and lowering another must involve the metric and
its inverse, which cancel internally to give no change. But we can see that
the answer will be yes quite explicitly with the basis matrices of (8.78). For
example,

e11 ≡ e1 ⊗e1 = g1α eα ⊗g1β eβ = g1α g1β eαβ =
[

g2
11 g11 g12

g11 g12 g2
12

]
. (8.79)

The other basis matrices follow similarly. If we then form the product gαβeαβ

of the inverse elements from (8.77) and the matrix basis from (8.79), the result
is indeed the matrix g, as expected. So not only can g be expressed as a linear
combination of basis matrices using its elements gαβ as the coefficients, but
the same can also be done using the elements gαβ of its inverse. To reiterate,
there is no such tensor as g−1.

In the last example, the bases were matrices. But in a tensor space, the
bases are sets of more abstract entities such as eαβ , and so matrices of tensor
components do not themselves constitute the whole tensor. Thus the metric
tensor g has components gαβ that comprise a matrix called g, and compo-
nents gαβ that comprise a matrix called g−1. It even has the unit matrix
components δα

β over the eα
β and eβ

α bases! That is,

g = gα
β eα

β = δα
β eα

β = eα
α , and similarly g = eα

α . (8.80)

For general tensors, as long as we know the positions of the indices (whether
raised or lowered), any of the matrices of tensor components contain exactly
the same information that the complete tensor holds.

8.6 The Gradient Operator and the Cobasis

Some of the real power of tensor notation can be seen when we begin to do
differential calculus in general coordinates. Fundamental here is the notion of
the gradient of a function. Let’s begin by calculating the gradient operator ∇
in polar coordinates but using noncovariant notation, since this is a good way
to make a comparison with the covariant version and ultimately to motivate
the use of covariant language by demonstrating its power and elegance. We’ll
define the gradient more carefully a few pages hence, but for now we simply
use the well-known expression for it in terms of cartesian coordinates.

The symbol ∇ used as part of the gradient, divergence, and curl operators
was originally called “nabla” (a type of ancient Near-Eastern harp), and
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still is, but is also often read as “del”. Usage varies, but in the author’s
opinion del might perhaps better be left to refer to the partial derivative
operator ∂, which itself is often called “partial”.

To save notation in what follows, partial derivatives of a function of all the
coordinates f(xα) in tensor theory are usually written in the shortened form

f,α ≡ ∂αf ≡ ∂f

∂xα
, (8.81)

each having the α in a down position. Now, in cartesian coordinates, we know
that the gradient operator gives derivatives

f(x + dx, y + dy) − f(x, y) = ∇f ·(dx,dy) = f,x dx + f,y dy , (8.82)

so that
∇f = f,x ex + f,y ey (noncovariant!) (8.83)

or
∇ = ex ∂x + ey ∂y (also noncovariant). (8.84)

Expressions (8.83) and (8.84) are not covariant because the summed indices
are everywhere down. Convert all terms to polar by using the chain rule for
partial derivatives:

ex =
∂r

∂x
er +

∂θ

∂x
eθ ,

∂

∂x
=

∂r

∂x

∂

∂r
+

∂θ

∂x

∂

∂θ
, (8.85)

and similarly for the y-components. Notice that the basis vectors transform in
exactly the same way as the partial derivative operators, which is reasonable
because that is just how basis vectors were defined in (8.2). The presence
of terms such as ∂r/∂x brings up an interesting point. The cartesian polar
coordinate transform is

x = r cos θ , y = r sin θ , (8.86)

so we can easily calculate ∂x/∂r and so on. But what is ∂r/∂x? (The com-
mon first guess that it’s just the reciprocal of ∂x/∂r is not true.) In this
particular example, (8.86) can be solved for r and θ, which are then simple
to differentiate; but in general the defining equations might be difficult to
invert. Is there some other way?

Equation (8.86) is not difficult to invert, although the inverse tangent needs
some thought to map θ onto a complete 2π radians. Perhaps the simplest
solution is

r =
√

x2 + y2 , θ = tan−1 y
x + {π if x < 0} , (8.87)
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which puts θ into the interval (−π/2, 3π/2). These can be differentiated to
obtain the correct answers for ∂r/∂x and so on. But beware of a subtle trap.
A common way of inverting (8.86) omits the constant in θ to write

r =
√

x2 + y2 , θ = tan−1 y
x . (8.88)

Of course, the forgotten constant doesn’t affect any differentiation of θ,
which is why this näıve expression gives the right answer. But if used for
numerical work in trigonometry, (8.88) can place θ into the wrong quadrant
and so is liable to fail—sometimes catastrophically.

In elementary calculus, we are certainly aware that for a function of one
variable, y = f(x), an inverse relationship holds for the derivatives:

dx

dy
=

1
dy/dx

. (8.89)

In fact, the multivariate problem also involves inverses—matrix inverses.
Why? Looking back to (6.37), it’s not hard to see that the product of two
jacobian matrices (partial derivatives from one coordinate system to another)
is the identity ⎡⎢⎢⎣

∂r

∂x

∂r

∂y

∂θ

∂x

∂θ

∂y

⎤⎥⎥⎦
⎡⎢⎢⎣

∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

⎤⎥⎥⎦ =

[
1 0
0 1

]
. (8.90)

This matrix multiplication is transparent enough to be obviously true in
general when applied to the jacobian matrices relating any two different co-
ordinate systems in any number of dimensions. This is a very useful and
often overlooked fact. Its covariant form uses the Λα

β̄
notation, as discussed

back on p. 228. Writing polar coordinates unbarred and cartesian coordinates
barred, (8.90) is equivalent to

Λα
β̄ Λβ̄

γ = δα
γ , (8.91)

which is just the usual chain rule, but written covariantly. Returning to the
task of calculating partial derivatives such as ∂r/∂x, the first step is to use
the basic defining equations for polar coordinates (8.86) to write⎡⎢⎢⎣

∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

⎤⎥⎥⎦ =

[
cos θ −r sin θ

sin θ r cos θ

]
. (8.92)

Then, by (8.90) we need only invert to find the other jacobian matrix:⎡⎢⎢⎣
∂r

∂x

∂r

∂y

∂θ

∂x

∂θ

∂y

⎤⎥⎥⎦ =

⎡⎣ cos θ sin θ

− sin θ

r

cos θ

r

⎤⎦ . (8.93)
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So, in particular, ∂r/∂x = ∂x/∂r = cos θ, and this inversion of partial deriva-
tives highlights the fact that the numerator and denominator of an expression
such as ∂r/∂x do not behave as parts of a fraction—as opposed to the dy/dx
of single-variable calculus, where dy and dx do behave as parts of a fraction.

We now have what is needed to express ∇ in polar coordinates. Incorpo-
rate (8.85) into (8.84) using these partial derivatives:

∇ =
(

cos θ er −
sin θ

r
eθ

)(
cos θ ∂r −

sin θ

r
∂θ

)
+
(

sin θ er +
cos θ

r
eθ

)(
sin θ ∂r +

cos θ

r
∂θ

)
= er ∂r +

eθ

r2
∂θ . (8.94)

In practice, the polar basis vectors are usually normalised; this has its advan-
tages and is physically meaningful, as we’ll see shortly. To convert er,eθ to
unit basis vectors er̂,eθ̂, we need only divide er,eθ by their own lengths. A
very direct way of calculating these lengths is via a dot product in cartesian
coordinates. We did this before in (8.26):

|er|2 = er ·er = grr = 1 ,

|eθ|2 = eθ ·eθ = gθθ = r2. (8.95)

In this simple case, we can also opt for what is perhaps a more intuitive
approach, as pointed out in Fig. 8.4. Since er = ∂X/∂r and similarly for eθ,
it must be true that

|er| =
|dX |θ const.

|dr| =
|dr|
|dr| = 1 ,

|eθ| =
|dX |r const.

|dθ| =
r|dθ|
|dθ| = r , (8.96)

in agreement with (8.95).

The basis vectors now can be normalised:

er̂ =
er

|er|
= er , eθ̂ =

eθ

|eθ|
=

eθ

r
. (8.97)

The normalised form of the gradient operator in polar coordinates then be-
comes, from (8.94),

∇ = er̂ ∂r +
eθ̂

r
∂θ . (8.98)

Contrast this with (8.94). Equation (8.98) tends to be the preferred form
in reference books, but in fact few will write it covariantly. Instead, for an
arbitrary function f , they will probably write it in the following noncovariant
way, with lowered indices that have nothing to do with covectors, and also
no carets:
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“ (∇f)r =
∂f

∂r
, (∇f)θ =

1
r

∂f

∂θ
”. (8.99)

Clearly, it’s important to be aware of the convention being used in tabled
formulae such as these.

8.6.1 The Gradient Operator in Fully Covariant Notation

Looking back, this whole gradient calculation was a little cumbersome and
apparently not generalisable to arbitrary coordinates. For one thing, there
were lots of sums over the coordinates to be made: a situation ripe for the
summation convention, which we were not able to make use of because the
notation was not truly covariant. But we also cannot fail to be reminded of
the frequency–wavenumber in Sect. 6.4 which, like ∇, was also defined using
partial derivatives. There we found that a more elegant, natural, and gener-
alisable treatment was to use a covector approach by making sure that kα

was specified with lowered indices, just like the f,α in (8.81). After all, like
the gradient, the frequency–wavenumber was defined using partial derivatives
in (2.147) or (6.31).

But what exactly is the gradient? We have democratised the basis vectors
as regards up/down indices, so consider again the arbitrary function f(xα)
introduced at the start of this section. A small increase in f is df = f,αdxα.
This must be a scalar, independent of whatever coordinates are used. Why?
Because we are inducing an increase, df , in the function by taking an in-
finitesimal step to a neighbouring point in its domain. Coordinates have no
bearing on how much the function’s value changes, which is well defined for
the step that we took. (For example, the temperature difference between two
points in a room must be independent of whether we choose cartesian or
polar coordinates to locate those points.) So df = f,αdxα is a scalar. If we
define the gradient ∇f via

df = ∇f ·dx , (8.100)

then we can rewrite (8.100) as

f,αdxα︸ ︷︷ ︸
df

= f,αdxβ δα
β = f,αdxβ eα ·eβ

= f,αeα︸ ︷︷ ︸
∴ ≡ ∇f

· dxβeβ︸ ︷︷ ︸
dx

. (8.101)

This shows that the gradient is in fact ∇f = f,αeα. But the set of deriva-
tives f,α forms a covector because they transform in the required way, as can
be seen by simply applying the chain rule for partial derivatives:

f,β̄ = Λα
β̄ f,α . (8.102)
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f = 5

f = 10∇f

∇f ∇f

∇f

∇f

Fig. 8.7. The gradient vector of some function f is always perpendicular to the
surfaces of constant f , pointing in the direction where f is increasing most rapidly.
The reason comes from df = ∇f ·dx. First, the perpendicularity is ensured because
a step dx taken along the constant-f surface must give df = 0, which will be the case
if this step is perpendicular to ∇f , so that ∇f must be perpendicular to the surface.
Second, that f is increasing most rapidly in the direction of ∇f is ensured because
a step dx taken in the direction of ∇f will maximise ∇f ·dx, which implies df is
maximised in this direction.

Thus the gradient ∇f is a proper vector, and is most naturally expressed
over a cobasis as in (8.101). The use of the cobasis shows that the gradient
operator itself is quite naturally written as

∇ = eα∂α . (8.103)

This is a very important and useful expression that we’ll use extensively later
in this chapter, as well as in Chap. 12. It is the central identity connecting
vector notation with tensor notation in any coordinates. Contrast it with the
less useful noncovariant form (8.84). The difference is academic in the case
of cartesians (where raised indices are no different from lowered ones), but
assumes its full power when other bases are considered.

On the strength of the fact that the set of components f,α of ∇f is a
covector, the gradient is often referred to as a covector and is said to be
something quite different from a vector. But the discussion of the previous
pages, and in particular (8.55), shows that ∇f is certainly a vector, as has
been drawn in Fig. 8.7. In fact, there is nothing to stop us from raising the
derivative index along with its comma by defining a new set of numbers
called f ,α, also written ∂αf :

∇f = f,αeα = gαµf ,µgανeν = f ,µeµ . (8.104)

So f,αeα is identical to f ,αeα, and indeed it’s trivial to show that the f ,α

transform as vector components should.
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As is shown in Fig. 8.7, the gradient of a function f always points in the
direction in which f is increasing the most rapidly. A simple example of this
is when f(r, θ) = r, in which case

∇r = r,re
r + r,θe

θ = er = er = er̂ , (8.105)

which is no different in three dimensions:

∇r = r,re
r + r,θe

θ + r,φeφ = er = er = er̂ . (8.106)

Indeed, er always points radially away from the origin. No more complicated
is the case of f(r, θ) = θ:

∇θ = θ,αeα = eθ = eθ/r2 = eθ̂/r . (8.107)

Note that ∇r = er and ∇θ = eθ. This is true for any general coordinate xα:

∇xα = xα
,β eβ = δα

β eβ = eα. (8.108)

On the strength of this, the cobasis vector eα could be written ∇xα. We’ll
meet this expression again on p. 307 and at the end of this chapter.

The Inverse-Square Force in Polar Coordinates

A common example of a polar coordinate gradient is encountered in field
theory, where the gradient of the potential function 1/r must be calculated.
While the calculation in cartesian coordinates is more lengthy (though not
difficult), it becomes quite trivial in polar coordinates:

∇1
r

=
(

1
r

)
,α

eα =
−1
r2

er =
−1
r2

er =
−1
r2

er̂ . (8.109)

This expression is related to the concept of an inverse-square force law, which
we’ll have occasion to employ in (10.80).

Finally, the nabla operator can be applied to tensors of any order at all.
For example, for a second-order tensor,

∇T = eα∂α (Tµνeµν) ≡ eα ⊗∂α (Tµνeµν) . (8.110)

The techniques to come in this chapter will show how to calculate this tensor
derivative. In fact, in Sects 8.10 and 12.7 we’ll concentrate heavily on a more
advanced idea: the very useful marriage of nabla with a wedge product to
give the operator ∇∧, known as the exterior derivative.
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Many Sign Changes Make Hard Work

The expression for the nabla operator, ∇ = eα∂α, is valid for any coordinate
system in any number of dimensions. What results when it’s expressed in the
txyz-coordinates of Minkowski spacetime using basis vectors?

∇ = et∂t + ex∂x + ey∂y + ez∂z

= ηttet∂t + ηxxex∂x + ηyyey∂y + ηzzez∂z

= ηtt

(
et∂t − ex∂x − ey∂y − ez∂z

)
. (8.111)

There is now a mixture of signs. Unfortunately, the four-dimensional nabla is
often defined as the last line of (8.111) (and written as a box � in analogy to the
three sides of ∇, which was originally a three-dimensional operator only). This
definition is really as nongeneralisable as the noncovariant euclidean 3-space
nabla (8.84). Neither expression lends itself to being converted to arbitrary
coordinates, so these noncovariant definitions should be seen for what they
are: useful for cartesian coordinates only—and provided we don’t trip up on
the sign changes.

A similar noncovariance happens when considering the Minkowski dot prod-
uct. The correct expression is

A·B = Aαeα · Bβeβ = ηαβAαBβ =
∑

α

ηααAαBα

= ηttA
tBt + ηxxAxBx + ηyyAyBy + ηzzAzBz

= ηtt

(
AtBt − AxBx − AyBy − AzBz) . (8.112)

Again, unfortunately, the Minkowski dot product is often defined noncovari-
antly as the last line in (8.112) (with ηtt = +1 and −1 both used), which
makes for difficulty in seeing how it might be written in general coordinates;
and there are more mixed signs to watch out for. Perhaps not surprisingly,
these noncovariant expressions for the Minkowski nabla and dot product find
little use in practice; tensor notation tends to be the preferred approach. We
can always use nabla and the dot product with impunity by writing them co-
variantly. Only then are we guaranteed to get everything right for any metric
at all. A good example is the divergence calculation in (12.41).

Taylor’s Theorem in Various Guises

On the subject of the gradient, it’s useful to write down Taylor’s theorem us-
ing both tensor and nontensor notation. Taylor’s theorem is used extensively
in mathematical physics, but its n-dimensional form is seldom written explic-
itly. We saw it briefly for one dimension in (2.221) and for three dimensions
(really n dimensions) in (2.236). Here we show that this n-dimensional form
is compact and elegant using both vector and tensor notation.
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That the basic first-order increase in a scalar function f(xα) is df = f,α dxα

can be seen heuristically, by using cartesian coordinates with the analogy of
climbing a staircase with 90◦ turns at its corners on a ground defined by the
xy-plane. Starting at (x, y), climbing in the x-direction is akin to increasing f
in the x-direction, holding y constant, so the height we gain is f,x dx. We turn
the corner and gain more height by increasing f in the y-direction with x held
constant, further increasing the height by f,y dy.

We are now standing right above (x + dx, y + dy), and the total height
gained has been f,x dx+f,y dy. But each factor in this expression df = f,α dxα

in cartesian coordinates transforms to any other coordinates by way of a
jacobian matrix, and so df = f,α dxα holds in all coordinates. The same
expression holds in an arbitrary number of dimensions, which is not hard
to prove by applying a succession of one-dimensional Taylor expansions
to f(x1 + dx1, x2 + dx2, . . . ).

In vector form, the increase df is, of course,

df = f,α dxα = (∇f)α dxα = ∇f ·dx . (8.113)

Taylor’s theorem extends this result to the case of a noninfinitesimal step.
For appropriately well-behaved functions, it can be written in the following
ways, where x ≡ (x1, . . . , xn) and f is always evaluated at x. First,

f(x + ∆x) = f(x) + f,α ∆xα +
1
2!

f,αβ ∆xα ∆xβ

+
1
3!

f,αβγ ∆xα ∆xβ ∆xγ + · · · . (8.114)

All terms in this expansion are scalars. The zeroth-order term f(x) is obvi-
ously so, the first-order term is a dot product between two vectors, and the
second-order term is a quadratic form, and so can be written as a matrix
multiplication. The matrix of second derivatives is called the hessian of f .
The higher-order terms are not easily expressed using vectors or matrices.
Because of this, the terms of the Taylor series are often described as being of
“scalar, vector, matrix, and tensor” nature, but this is a little overdone and
gives the wrong impression that there is some dramatic increase in abstrac-
tion in the terms as the sequence progresses. The point is only that there is
no commonly used notation for the third- and higher-order terms that avoids
indices; but those terms are not fundamentally any more complicated than
the first three terms.

With gradient notation, the theorem has a different sort of symmetry.
Again f is understood to be evaluated at x:

f(x + ∆x) = f(x) + ∇f ·∆x +
1

2!
∇[∇f ·∆x

]·∆x

+
1

3!
∇[∇[∇f ·∆x

]·∆x
]·∆x + · · · . (8.115)
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As a novelty, this can also be written as in (8.116), with no factorial signs,
and where the gradient is taken before the “previous term” is numerically
evaluated, of course!

f(x + ∆x) = f(x) + ∇(previous term)·∆x

+
1

2
∇(previous term)·∆x +

1

3
∇(previous term)·∆x + · · · . (8.116)

8.6.2 Is a Metric Needed?

Equation (8.113) calculates the infinitesimal increase df in a function f along
a step dx by using the dot product: df = ∇f ·dx. The dot product makes
use of the metric, and yet the increase df is independent of any metric
since df = f,αdxα. That might imply that involving a metric in any dis-
cussion of ∇, via the use of the cobasis, is unnecessary.

Traditionally, the lack of need for a metric to calculate df has been sig-
nalled by regarding the gradient not as a vector but as a new object called
a one-form. A one-form is defined to be a function mapping vectors to real
numbers. Thus ∇f might be regarded as a one-form function that takes a
single vector argument dx, producing the real number df .

The one-form function tends to be considered as a separate object (more
usually denoted ωα instead of eα), visualised not as an arrow but as a set of
parallel planes. These planes need labelling to distinguish the one-form from
its negative, but this appears to be seldom, if ever, done. The operation of
the one-form on a vector is then imagined as the arrow piercing the planes;
the number of planes pierced denotes the real number output by the one-form
function. We saw the appearance of sets of planes in Sect. 2.3 and made the
point there that a cobasis vector, while not a set of planes, does help describe
the orientation of lattice planes in a crystal.

Users of the one-form as a function would regard (8.29) not as a dot
product between two vectors eα and eβ but rather as a functional re-
lationship: ωα(eβ) ≡ δα

β . Some will write it as an inner product expres-
sion, 〈ωα|eβ〉 ≡ δα

β . The use of the inner product is perhaps meant to em-
phasise the one-form as a separate object, just as a vector is an object. But
certainly this use of the inner product does come very close to the dot product
expression of (8.29).

Our view is that introducing a new set of objects ωα, in order to omit the
metric, is not especially useful in physics. A good analogy lies in computing
the length of a line segment in elementary euclidean geometry. While this
length can be calculated by introducing a cartesian set of coordinates and
applying Pythagoras’s theorem, its value is nevertheless independent of that
coordinate choice. Even so, that does not mean we should make a point of
discarding coordinates and devising a theory that doesn’t use them or replaces
them with something new that ultimately is only equivalent to their use. It
is perfectly understood that coordinates are very useful for calculating things
that are independent of the coordinate choice; this is done all the time in
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Is Force a Vector or a One-Form?

One-forms are not absolutely necessary in physics, and insisting on their use
when a metric is present can lead to problems of interpretation. An example
lies in calculating the infinitesimal work dW done by a force F that accelerates
a mass through some infinitesimal displacement dx. Written as dW = F ·dx, it
is sometimes interpreted that force is a one-form that combines with, or acts
on, the vector dx to produce a scalar dW . But then, since Newton tells us
that F = ma, and acceleration is a vector (being derived from the vector dx),
we might conclude that force is a vector. So is force a vector or a one-form?

For us the question does not arise, since we always take the pragmatic view
that a metric exists, and so there are only vectors. After all, every laboratory
has at least one ruler! Physicists measure things, so a metric is a natural place
from which to start. Furthermore, a metric is always eventually introduced in
any textbook on tensor theory in physics, and this metric then has the effect
of rendering the idea of one-forms superfluous.

physics. Likewise, the cobasis and metric can do everything that one-forms
can do.

The cobasis was defined more generally by (8.29), and because we have
always used a metric in all of our tensor discussions, we have been free to
generate the cobasis vectors from the basis vectors by way of the important
expression (8.34). Users of one-forms cannot benefit from this expression and
so need to find alternative paths through the calculations of the next few
sections, calculations that are here rendered very transparent through our
being able to use (8.34) to switch from basis to cobasis at will.

A major difficulty with using a one-form basis ωα, visualised as sets of
parallel planes, along with a never-specified definition of just what it means
to add these sets of planes, is that the object vαωα is necessarily distinct
from vαeα. The former is a linear combination of sets of parallel planes,
while the latter is a linear combination of arrows. Such an arbitrary distinc-
tion between basis and cobasis destroys all of the enormous power gained by
relating the two.

In (8.108), we saw that the cobasis vector eα is equal to ∇xα. This resem-
bles the established notation for one-forms, which takes a synonymous name
for ωα as dxα, which is (apparently) supposed to define a rigorous notion of
an infinitesimal. This sort of identification would presumably demand that a
simple derivative such as dy/dx be considered a ratio of sets of parallel lines,
although it is entirely unclear what that’s supposed to mean. Needless to say,
we do not view things in this way, and we certainly only use infinitesimal
notation to mean infinitesimals; it has nothing to do with one-forms. And,
of course, ∇xα does not equal dxα; they are related through the well-known
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identity dxα = ∇xα ·dx. The “d” notation is discussed further at the end of
this chapter.

Typically, the infinitesimal notation dxα for a one-form may or may not be
normalised, carry a tilde, or be written in a different font. This plethora of
symbols makes for fantastic typesetting in some books on tensor analysis,
but the main effect it seems to have is to engender a discomfort and vague-
ness about what one-forms really are, as well as giving rise to the traditional
view that tensor analysis is a difficult subject.

Finally, we reiterate the point made on p. 232, that although many books
use the words covector and one-form interchangeably, for us they are separate
objects. Our covector is an ordered set of numbers {vα}, a coordinate vector
over a particular set of basis vectors called the cobasis.

8.7 Normalised Basis Vectors

Basis vectors that have been normalised to unit length are very useful and
tend to be de rigueur in texts covering vector calculus in euclidean space
with different coordinate systems. As we noted in (8.99), this sometime lack
of indicating the normalisation is a trap for young players when referring to
tables of vector identities using, for example, polar coordinates. Just as we
did for the polar basis, normalise a general basis vector by dividing by its
length, indicated by placing a caret over the index:

eα̂ ≡ eα

|eα| (no sum over α). (8.117)

(A lowered index in a denominator counts as a raised index overall and so
would normally be summed over in (8.117). But we are not summing in
this equation.) In order to preserve the usual covariant notation that writes
v = vα̂eα̂ = vαeα, it must follow that the components vα̂ of a vector v are

vα̂ = vα |eα| (no sum). (8.118)

Similarly,

eα̂ ≡ eα

|eα| , vα̂ = vα |eα| (no sums). (8.119)

Expressions such as these show that a careted index is not quite covariant
notation—and it will not obey rules such as raising and lowering of indices.
(We can certainly define careted quantities that do obey such rules by defini-
tion, as will be done in Sect. 12.7.) In texts that don’t use covariant notation,
these normalised basis vectors might be called, in the case of polar coordi-
nates, r̂ for er̂ and θ̂ for eθ̂. They are generally the basis vectors of choice,
and the caretless subscripts r, θ will be written on the components, in con-
trast to true covariant notation, which would demand r̂, θ̂ superscripts on the
components.
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The fact that the careted indices are not fully covariant gives a hint that
normalised basis vectors are a slightly different breed from the usual sort.
The lack of covariance suggests that there might not exist new coordinates
called, in the polar case, r̂ and θ̂. We can show this explicitly as follows. If
there really were such coordinates r̂, θ̂, then we could write basis-changing
expressions involving Λr̂

x, etc. Could this really be done? If so, then

er̂ = er would imply that Λr̂
r = 1 , Λr̂

θ = 0 ,

and eθ̂ = reθ would imply that Λθ̂
r = 0 , Λθ̂

θ = r . (8.120)

But the equality of mixed partial derivatives implies that, in particular,
Λθ̂

r,θ = 0 would have to be identical to Λθ̂
θ,r = 1—which clearly is not the

case. So there really do not exist coordinates called r̂ and θ̂. The set {er̂,eθ̂}
is called a noncoordinate basis. It is in fact quite meaningful physically be-
cause, after all, we make our day-to-day measurements using normalised basis
vectors; the very ruler we use to measure the dimensions of this book is part of
a normalised basis. So although up until now we have not been overly careful
to distinguish between frames and coordinates, we now make the distinction
that a frame is a physical system within which measurements are made. It
can be normalised, having a set of normalised basis vectors at each point in
space (or spacetime). Coordinates, on the other hand, are a set of numbers
at each point in spacetime; they might cover the whole of spacetime or just
parts of it, so that several coordinate systems might be required to cover all
of spacetime, depending on how they are defined.

Although the normalised basis vectors eα̂ described in (8.117) were par-
allel to eα, they certainly don’t have to be, and if the coordinate basis is
not orthogonal, then we might wish to orthogonalise it before normalising.
Call the set of orthonormalised basis vectors {eα̂}, where α̂ is any label that
denotes a basis vector. In that case, every vector of either set is a linear
combination of the vectors of the other set:

eα̂ = Λµ
α̂ eµ , eµ = Λα̂

µ eα̂ . (8.121)

Note that Λµ
α̂ and Λα̂

µ will only be partial derivatives as used in (7.44) if both
indices refer to coordinate bases, which in general will not be the case. So,
e.g., here Λµ

α̂ just denotes the µ-component of eα̂ over the {eµ} basis, and we
could equally well have written

eα̂ = (eα̂)µ
eµ , eµ = (eµ)α̂

eα̂ . (8.122)

This notation is common, but certainly quite awkward.
The set of vectors {eα̂} that can be constructed at each point, whether

or not it constitutes a coordinate basis, is really what is meant by a frame.
In particular, the metric of the orthonormal frame is

ηα̂β̂ = eα̂ · eβ̂ = Λµ
α̂ Λν

β̂
eµ ·eν = Λµ

α̂ Λν
β̂

gµν . (8.123)
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er̂

ėr̂ = velocity times eθ̂

= θ̇ eθ̂

eθ̂

ėθ̂ = velocity times −er̂

= −θ̇ er̂

Fig. 8.8. Left: The head of a normalised radial basis vector er̂ turns with velocity θ̇,
so that the vector’s tangent is θ̇ eθ̂. The word “velocity” here is used in its one-
dimensional sense, a signed speed as opposed to a vector, so that the multiplication
is the ordinary “number × vector” type. Right: Similarly, the head of a normalised
angular basis vector eθ̂ turns with the same velocity θ̇, producing a tangent −θ̇ er̂.

We’ll see more of these orthonormal basis vectors in a general relativity con-
text in Chap. 12.

8.7.1 The Normalised Polar Basis in Celestial Mechanics

A great example of the utility of normalised basis vectors arises when studying
planetary motion. Here we wish to find the motion of a small mass m subject
to a central gravity force produced by a large mass M using F = ma. Polar
coordinates are most useful since the force F is radial only, in which case
the acceleration a must be expressed in terms of polar coordinates. This can
be done in quite a long-winded way by changing to a cartesian basis, time-
differentiating the position vector twice (easily done since the cartesians have
zero time derivatives), and then converting back to polar coordinates.

But the same result is much more simply achieved by using a normalised
polar basis. To see why, realise that no matter what motion a planet or comet
might have, the normalised polar basis vectors always turn in circles—they
have constant length. We need only know how fast their heads turn, which
is easy. The velocity of these equals the vectors’ (unit) length multiplied by
their angular velocity θ̇ ≡ dθ/dt, as shown in Fig. 8.8.

Now, from the last section, we know that er̂ and eθ̂ are orthogonal. Thus
the time derivative of er̂ is proportional to eθ̂ since the tangent to a circle is
always orthogonal to its radius vector. (This same idea of a tangent to a unit
circle is used frequently in differential geometry, as we’ll see in Chap. 9.)

The constant of proportionality is just the velocity with which the head
of er̂ moves, which is θ̇ for a unit circle, giving ėr̂ = θ̇ eθ̂. A similar argu-
ment produces ėθ̂ = −θ̇ er̂, the only difference being the minus sign that was
introduced because we effectively turned two right angles to the original er̂.

The acceleration is the second time derivative of the position vector r,
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sun

planet

r

r + ∆r

∆θ
Shaded area � 1

2r(r + ∆r)∆θ in time ∆t

−→ 1
2r2dθ in time dt

Fig. 8.9. Kepler’s second law. As a planet moves around its sun, its position vector
sweeps out some area in a given time interval. The shaded region is approximately
a triangle of base r and height (r +∆r)∆θ, with area half × base × height. Hence,
in a time dt, the area swept out by a planet’s position vector is 1

2r2dθ. So the area
swept per unit time equals 1

2r2θ̇. But (8.127) says that this quantity is a constant.
Thus a planet’s position vector sweeps out equal areas in equal times.

a ≡ r̈ = d2(rer̂)/dt2

= r̈ er̂ + 2 ṙ ėr̂ + r ër̂ , (8.124)

so that using the basis vector derivatives in Fig. 8.8, we can write

ėr̂ = θ̇ eθ̂ ,

ër̂ = θ̈ eθ̂ + θ̇ ėθ̂ = θ̈ eθ̂ − θ̇2 ėr̂ . (8.125)

The acceleration then becomes

a =
(
r̈ − r θ̇2

)
er̂ +

(
2 ṙ θ̇ + r θ̈

)
eθ̂ , (8.126)

without any hard work. Newton tells us that this acceleration vector equals
the force per unit mass, −GM/r2 er̂, in which case equating components of
this with those of a in (8.126) gives

r̈ − r θ̇2 = −GM/r2 ,

2 ṙ θ̇ + r θ̈ = 0 , i.e.
d(r2θ̇)

dt
= 0 , (8.127)

from which the standard analysis of orbits can be deduced. For example,
the last equation of (8.127) says that r2θ̇ is constant in time, so that
r2dθ = constant × dt. Figure 8.9 shows how this implies that the infinites-
imal area, 1/2 r2dθ, swept out by a planet’s position vector (extending from
its sun) in a time dt is proportional to dt. This is, of course, Kepler’s law of
equal areas swept in equal times.
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These normalised polar vectors also make it very easy to see how angular
momentum is related to orbital motion. With no basis-changing fuss, we can
straightaway write

L ≡ r × p = r × m ṙ

= r er̂ × m
(
ṙ er̂ + r θ̇ eθ̂

)
= mr2θ̇ er̂ × eθ̂ = mr2θ̇ ez , (8.128)

where ez points perpendicular to the plane of the orbit and has unit length.
Thus the angular momentum has magnitude L = mr2θ̇. This, together with
the second equation of (8.127), shows that orbital angular momentum is con-
served over time. The calculation has been quite simple; in contrast, working
with the cross product r × p in cartesians is much more laborious.

8.7.2 An Example of Using Vectors to Calculate an
Effective Potential

A good example of some of the important ideas covered so far in this chapter
lies in answering the following question. Chapter 4 derived expressions for
the Coriolis and centrifugal forces felt by a mass on the surface of a rotating
body. Excluding the Coriolis force with its velocity dependence, what is the
effective potential felt by someone at rest on Earth’s surface (assumed to be
a sphere)? We will investigate the idea of a potential more fully in Chap. 10,
but for now will just quote the main result that defines the potential in terms
of the force felt.

Call this potential Φ. It relates to the force F experienced by a mass m
via −∇Φ = F /m. In (4.48) we saw an expression for the centrifugal force in
terms of Earth’s angular velocity ω and the position vector r of the mass,
and by adding the force due to gravity and using spherical polar coordinates,
the force per unit mass experienced at any point on Earth’s surface can be
written as

−∇Φ =
−GM

r2
er̂ − ω × (ω × r) . (8.129)

This equation must be solved for the scalar Φ as a function of position. The
idea is to write (8.129) in terms of any basis (or cobasis, which is really just a
basis anyway!) and then equate the coefficients of each basis vector. A useful
set might be the spherical polar basis since (8.129) already uses these coor-
dinates, so we’ll express both sides of (8.129) in terms of the basis er,eθ,eφ.
These are easy to use because at any point on the surface of a spherical Earth,
er points up (i.e, radially outward from Earth’s centre), eθ points south, and
eφ points east. The last two of these are shown in Fig. 8.3.

Since the gradient ∇Φ is naturally expressed in terms of the cobasis, we
require the spherical polar metric to convert cobasis to basis. Spherical polar
coordinates are related to cartesians by
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x = r sin θ cos φ ,

y = r sin θ sin φ ,

z = r cos θ , (8.130)

so that the line element is dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θ dφ2.
If the coordinates are ordered as r, θ, φ, the metric and its inverse will have
elements

(gαβ) = diag
(
1, r2, r2 sin2 θ

)
,(

gαβ
)

= diag
(

1,
1
r2

,
1

r2 sin2 θ

)
. (8.131)

These allow the cobasis and basis to be related:

er = er , eθ =
eθ

r2
, eφ =

eφ

r2 sin2 θ
, (8.132)

which allows the fundamental gradient expression (8.103) to be converted
from a cobasis to a basis:

∇Φ = Φ,r er + Φ,θ eθ + Φ,φ eφ

= Φ,r er +
Φ,θ

r2
eθ +

Φ,φ

r2 sin2 θ
eφ . (8.133)

We could of course have avoided a basis entirely and left ∇Φ written over
a cobasis, although then the right-hand side of (8.129) would have to be
converted to a cobasis. The choice between using the basis or cobasis is
quite arbitrary.

This takes care of the left-hand side of (8.129). For its right-hand side, we
are required to calculate

ω × (ω × r) = ωez× (ωez× rer̂) = ω2r sin θ ez× eφ̂ . (8.134)

Note that normalised basis vectors have automatically appeared here. We can
easily convert back and forth between them using the metric, giving

er̂ = er , e
θ̂

=
eθ

r
, eφ̂ =

eφ

r sin θ
, (8.135)

but there is no need to do so until it becomes really necessary.
The last cross product in (8.134) is a mixture of a cartesian basis vector

and a polar basis vector, but it will be easier to calculate if we can convert
it either to all cartesian or all polar. Let’s choose polar, so that we must
express ez in the polar basis:

ez = Λr
z er + Λθ

z eθ + Λφ
z eφ . (8.136)
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The partial derivatives can be calculated either by expressing r, θ, φ in terms
of cartesians, which is actually not difficult, or by the more general route that
was outlined in Sect. 8.6, which writes⎡⎢⎢⎢⎢⎣

Λr
x Λr

y Λr
z

Λθ
x Λθ

y Λθ
z

Λφ
x Λφ

y Λφ
z

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Λx

r Λx
θ Λx

φ

Λy
r Λy

θ Λy
φ

Λz
r Λz

θ Λz
φ

⎤⎥⎥⎥⎥⎦
−1

=

⎡⎢⎢⎢⎢⎣
sin θ cos φ r cos θ cos φ −r sin θ sin φ

sin θ sin φ r cos θ sin φ r sin θ cos φ

cos θ −r sin θ 0

⎤⎥⎥⎥⎥⎦
−1

=

⎡⎢⎢⎢⎢⎢⎢⎣
sin θ cos φ sin θ sin φ cos θ

1

r
cos θ cos φ

1

r
cos θ sin φ

−1

r
sin θ

− sin φ

r sin θ

cos φ

r sin θ
0

⎤⎥⎥⎥⎥⎥⎥⎦ . (8.137)

Hence (8.136) gives

ez = cos θ er −
sin θ

r
eθ , (8.138)

in which case (8.134) becomes

ω × (ω × r) = ω2r sin θ

(
cos θ er −

sin θ

r
eθ

)
× eφ̂

= ω2r sin θ
(− cos θ eθ̂ − sin θ er̂

)
= ω2r sin θ

(− cos θ

r
eθ − sin θ er

)
. (8.139)

We now have everything needed to rewrite (8.129) in terms of a single basis.
Equations (8.133) and (8.139) together give

−Φ,r er −
Φ,θ

r2
eθ −

Φ,φ

r2 sin2 θ
eφ =

(−GM

r2
+ ω2r sin2 θ

)
er +ω2 sin θ cos θ eθ .

(8.140)
This equation is really three separate ones:

Φ,r =
GM

r2
− ω2r sin2 θ ,
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Φ,θ = −ω2r2 sin θ cos θ , Φ,φ = 0 . (8.141)

These are readily integrated, giving the required effective potential:

Φ =
−GM

r
− 1

2
ω2r2 sin2 θ + constant. (8.142)

Although somewhat lengthy, the calculation has been straightforward. We
made liberal use of the metric to convert to and from normalised basis vectors
when needed, which made the cross products trivial. The calculation of the
required jacobian matrix took some effort, which could have been avoided had
we expressed the polar coordinates in terms of cartesians; but for the sake
of the example, it was assumed here that, in general, the relevant coordinate
transformation might be difficult to invert. There are other approaches to
calculating Φ, but the procedure we have followed here is certainly broadly
useful and ties together several ideas.

8.7.3 Some Final Remarks on Vector Terminology

In the previous sections, such as the box on p. 307, we have taken the approach
that physicists make measurements, so that it’s completely natural to begin
tensor analysis with the idea of a metric already in place. Because of this,
we have not needed the idea of a one-form at all. It should be noted that
the conventional use of one-forms does not simply take our eα and rename
it a one-form ωα. After all, one-forms are not supposed to be related to basis
vectors, whereas our eα certainly is: eα = gαβeβ . Divorcing one-forms from
basis vectors loses the power of equations such as (8.132), which can make
vector analysis more difficult.

Although we have been careful to define the terminology used in this
chapter, the various terms collected on p. 293 are not meant to give any
impression that vector analysis is complicated by terminology. In the end,
one of the important reasons why linear algebra introduces the idea of a
basis is that it does give us the freedom to choose any basis that makes a
task simpler. The cobasis is just another basis. The main point to remember
is that vectors and tensors are invariant objects, and they are expressible as
components with a basis, irrespective of any terminology used. There is just
one entity v, and whether it’s expressed as vαeα or as vαeα is entirely our
choice. One version might be more useful than the other in rendering a given
problem more tractable, and certainly the ability to switch between them
lends great power to the analyses we make.

8.8 Volume Elements, Determinants, and
Cross Products Again

Having begun to establish derivative formalism in tensor language, this is a
good opportunity to take a side trip to lay the foundation for some ideas we
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r

θ X

x

y

dr

dθ

∂X

∂θ
dθ

or eθdθ ∂X

∂r
dr

or erdr
dθ

r

Fig. 8.10. A rectangular tiling of the rθ-plane induces a corresponding tiling of
the xy-plane. The area of this new tile, in the infinitesimal limit, is the area of a
rectangle with sides dr and r dθ; or it can be calculated from a cross product of
the vectors shown.

use later when treating tensor derivatives in more detail, and to build on the
theory of volumes and determinants from Chap. 2.

We wish to investigate changing variables in a multidimensional integra-
tion using the idea of vectors as arrows that delineate a volume of integration
in any number of dimensions. So consider an integral

I =
∫∫

f(x, y) dxdy , (8.143)

which is required, for example, to be converted to polar coordinates. The
task is more involved than simply expressing the product dxdy in terms
of dr and dθ using x = r cos θ, y = r sin θ, since such a product will produce
a sum of dr2,dr dθ, and dθ2 terms, which is not appropriate for an integra-
tion in polar coordinates. Rather, we wish to tile the plane in a way to suit
the r, θ integration. So we need to find an expression only involving dr dθ,
and must tile the rθ-plane with dr dθ rectangles in polar coordinates, ask-
ing what these look like when transformed to x, y-coordinates. Only in this
way can we be assured of not “over integrating”, i.e. not over counting the
infinitesimal integration measures over the xy-plane; there must be a one-to-
one correspondence between the integration areas in each set of coordinates.
For small increases dr and dθ, the resulting tesselation is shown in Fig. 8.10,
which shows a map

(x, y) = X(r, θ) = (r cos θ, r sin θ) . (8.144)

The resulting tile on the cartesian plane has sides of lengths dr and r dθ,
giving a total area of r dr dθ, which becomes the corresponding measure for
the polar integration:

I =
∫∫

f(r cos θ, r sin θ) r dr dθ . (8.145)

The area of this tile was calculated by treating it as an infinitesimal rectangle
of side lengths dr and r dθ. But we could also have treated it as a small
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parallelogram with side vectors ∂X/∂r dr and ∂X/∂θ dθ, and then used
the determinant idea of Chap. 2 to calculate the area of this parallelogram.
Specifically, (2.46) gives

area = abs

∣∣∣∣∣∣∣∣∣
∂X

∂r
dr

...
∂X

∂θ
dθ

∣∣∣∣∣∣∣∣∣ = abs

∣∣∣∣∣∣
Λx

r Λy
r

Λx
θ Λy

θ

∣∣∣∣∣∣dr dθ

= abs
∣∣∣∣ cos θ sin θ
−r sin θ r cos θ

∣∣∣∣dr dθ = r dr dθ . (8.146)

The absolute value of the determinant must be used in case we had swapped
the order of r and θ, which would have swapped the matrix rows and changed
the sign of its determinant.

How is this extended to higher dimensions? The clue lies in the fact that
the xy-tile has sides given by the vectors ∂X/∂r dr and ∂X/∂θ dθ. In n di-
mensions, use the generic variables

x1′
, . . . , xn′

instead of r, θ ,

x1, . . . , xn instead of x, y , (8.147)

where the set x1, . . . , xn still uses a euclidean metric, since the theory of
determinants from Chap. 2 was only described for that metric. Suppose that
an integral

I =
∫

f(x1, . . . , xn) dx1 . . . dxn (8.148)

must be transformed to the new variables x1′
. . . xn′

related by

X(x1′
, . . . , xn′

) = (x1, . . . , xn) . (8.149)

By analogy with the polar coordinate case in Fig. 8.10, the correct integra-
tion measure must be the volume of the n-sided parallelepiped with sides in
euclidean space of

∂X

∂x1′ dx1′
, . . . ,

∂X

∂xn′ dxn′
. (8.150)

Again, by (2.46), the volume of this parallelepiped is

abs

∣∣∣∣∣∣∣∣∣
∂X

∂x1′ dx1′

...
∂X

∂xn′ dxn′

∣∣∣∣∣∣∣∣∣ = abs

∣∣∣∣∣∣∣
Λ1

1′ . . . Λn
1′

...
Λ1

n′ . . . Λn
n′

∣∣∣∣∣∣∣ dx1′
. . . dxn′

, (8.151)

where the integration is such that the dxα′
are always positive—just as

the dr,dθ were in Fig. 8.10. The transpose of the last matrix in (8.151)
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is the jacobian matrix for this coordinate transformation. We encountered
these matrices earlier in (6.38) and (8.90). The determinant of the jacobian
matrix is the jacobian determinant :

∂(x1, . . . , xn)
∂(x1′ , . . . , xn′)

≡

∣∣∣∣∣∣∣
Λ1

1′ . . . Λ1
n′

...
Λn

1′ . . . Λn
n′

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
Λ1

1′ . . . Λn
1′

...
Λ1

n′ . . . Λn
n′

∣∣∣∣∣∣∣ . (8.152)

(The fact that the transpose of the last matrix in (8.151) is used in the
definition of the jacobian matrix is not important; we are only interested
in its determinant, and any nonsingular matrix and its transpose have the
same determinant anyway.)

So the volume element required in the integration is∣∣∣∣ ∂(x1, . . . , xn)
∂(x1′ , . . . , xn′)

∣∣∣∣ dx1′
. . . dxn′

, (8.153)

and the integral in (8.148) becomes

∫
f(x1, . . . , xn) dx1 . . . dxn =

∫
f(x1′

, . . . , xn′
)
∣∣∣∣ ∂(x1, . . . , xn)
∂(x1′ , . . . , xn′)

∣∣∣∣ dx1′
. . . dxn′

,

(8.154)
where the notation f(x1′

, . . . , xn′
) is shorthand for what is really a new func-

tion, equivalent to writing the f(r cos θ, r sin θ) of (8.145) as f(r, θ). (See
further the discussion at the start of Sect. 2.9.)

Equation (8.154) was developed using a euclidean metric for the variables
x1, . . . , xn. But, in fact, it holds quite generally even when these variables
do not have a euclidean metric, as can be seen from the behaviour of the
jacobian determinant. To prove this, it is first of all straightforward to show
that the chain rule of partial derivatives can be written as a product of the
relevant jacobian matrices. The reason is simply that the jacobian matrix
relating two sets of variables x1, . . . , xn and x1′

, . . . , xn′
is

(
Λα

β′
) ≡
⎡⎢⎣Λ1

1′ . . . Λ1
n′

...
Λn

1′ . . . Λn
n′

⎤⎥⎦ , (8.155)

so that a multiplication of jacobian matrices for general coordinates xα, xβ′
, xµ′′

can be written as (
Λα

µ′′
)

=
(
Λα

β′
)(

Λβ′
µ′′
)
, (8.156)

from which the chain rule is apparent. In that case, taking the determinant of
both sides of this last equation gives the following relation for any completely
general coordinates (i.e., none of them need be cartesian):
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∂(x1, . . . , xn)
∂(x1′′ , . . . , xn′′)

=
∂(x1, . . . , xn)
∂(x1′ , . . . , xn′)

∂(x1′
, . . . , xn′

)
∂(x1′′ , . . . , xn′′)

. (8.157)

Now, to show that (8.154) holds for any general coordinates, let’s use a
two-dimensional case as an example, purely to avoid a cumbersome discus-
sion regarding the notation. Suppose an integration over two variables α, β
is to be converted to two other variables µ, ν. We can make use of (8.154)
and (8.157) by employing cartesians as a kind of guide rail, eventually to be
let go. For arbitrary f ,∫

f dα dβ
(8.157)

∫
f

∣∣∣∣∂(α, β)
∂(x, y)

∣∣∣∣ ∣∣∣∣ ∂(x, y)
∂(α, β)

∣∣∣∣ dα dβ
(8.154)

∫
f

∣∣∣∣∂(α, β)
∂(x, y)

∣∣∣∣dxdy

(8.154)
∫

f

∣∣∣∣∂(α, β)
∂(x, y)

∣∣∣∣ ∣∣∣∣∂(x, y)
∂(µ, ν)

∣∣∣∣dµdν
(8.157)

∫
f

∣∣∣∣∂(α, β)
∂(µ, ν)

∣∣∣∣dµdν .

(8.158)

All reference to x, y has disappeared entirely, so we conclude that, in general,
(8.154) holds for any coordinates.

The jacobian determinant ∂(·)/∂(·) can be written in an alternative and
very useful way. As it’s related to volumes, we expect it should also be related
to the relevant metrics. They can be introduced via

gα′β′ = Λµ
α′Λ

ν
β′ gµν . (8.159)

Convert this expression to a matrix multiplication, which will then directly
allow the jacobian determinant to be calculated and related to the metrics.
The mixture of raised and lowered indices requires some care, but we have
encountered this before in (8.44) and (8.45). So define the following three
matrices, remembering that gα′β′ is really the αβth component of the metric
matrix g′, and notice that the frame-changing Λ matrix is just the jacobian
matrix of (8.152):

matrix g has αβth component (g)αβ ≡ gαβ ,

matrix g′ has αβth component (g′)αβ ≡ gα′β′ ,

matrix Λ has αβth component (Λ)αβ ≡ Λα
β′ . (8.160)

These allow (8.159) to be written as a matrix multiplication:

(g′)αβ =
∑
µν

(Λ)µα (Λ)νβ (g)µν =
∑
µν

(Λt)αµ (g)µν (Λ)νβ

= (Λt g Λ)αβ , (8.161)

or in other words,
g′ = Λt g Λ . (8.162)
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This, the matrix version of (8.159), is very useful because forming its deter-
minant and taking an absolute value produces∣∣∣∣ ∂(x1, . . . , xn)

∂(x1′ , . . . , xn′)

∣∣∣∣ = |det Λ| =

√
det g′

det g
. (8.163)

This is just what is needed to write the change of variables in (8.154). Also,
there is no real ambiguity in writing g to mean the determinant of the metric
matrix g; this is universally done. In that case, the integral (8.154) can be
written as∫

f(x1, . . . , xn) dx1 . . . dxn =
∫

f(x1′
, . . . , xn′

)
√

g′/g dx1′
. . . dxn′

.

(8.164)
We’ll use this expression in Sect. 12.8 when integrating over spacetime. An
example of it here is when the unprimed coordinates are x, y and the primed
coordinates are r, θ. In that case, g = 1 and g′ = r2, so that

√
g′/g = r, and

the polar volume measure is r dr dθ, as expected.

Note that although the volume elements are related by

dx1 . . . dxn ←→
√

g′/g dx1′ . . . dxn′
, (8.165)

we must remember that because they are integration measures, they relate
to limits on different coordinates and so need not be equal. This can be
seen easily in the polar case: it makes no sense to equate r dr dθ with dx dy,
since the tile of area r dr dθ in Fig. 8.10 bears no relation to a rectangle in
the xy-plane of area dx dy. The tiles correspond with each other, but their
areas are not required to be equal and in general won’t be, even though
some books will treat (8.165) as an equality.

That the square root of the metric appears in relation to higher-dimensional
volumes might not be surprising here: we first encountered it back in
Sect. 2.4.3, where the Gram matrix was introduced. The Gram matrix as
constructed from basis vectors is none other than the metric matrix.

8.8.1 A Final Word: The Cross Product in General Coordinates

In Chap. 2, we saw the Levi-Civita way of writing the cross product in (2.51),
where cartesian coordinates were used. But cartesian coordinates in euclidean
space have identical basis and cobasis vectors. To begin to make a form of the
cross product that is valid in all coordinates, write (2.51) so that it obeys the
Einstein summation convention, which just means changing the basis vectors
in the sum to cobasis vectors:

cross(α1, . . . ,αn−1) = εµ . . . ω︸ ︷︷ ︸
n indices

αµ
1 αν

2 . . . αψ
n−1 eω. (8.166)
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It now becomes apparent that, for general coordinates, we actually might
better focus on the cobasis {e1 . . . en}, and of course in general coordinates
the basis and cobasis will not be the same. Consider again the n − 1 linearly
independent vectors {α1, . . . ,αn−1} of (2.48) in E

n. This time we will be
using unprimed and primed coordinates, so write their coordinate vectors as,
e.g., [α1], [α1]′ in unprimed and primed coordinates (cf. the more relaxed
notation of Sect. 2.4, which only used one set of coordinates). Let the un-
primed coordinates be cartesian. Because using the cobasis appears to be
more reasonable in general coordinates, write

cross(α1, . . . ,αn−1) ≡

∣∣∣∣∣∣∣∣∣
[α1]

...
[αn−1]

e1 . . . en

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

α1
1 . . . αn

1
...

α1
n−1 . . . αn

n−1

e1 . . . en

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

Λ1
µ′ αµ′

1 . . . Λn
µ′ αµ′

1
...

Λ1
µ′ αµ′

n−1 . . . Λn
µ′ αµ′

n−1

Λ1
µ′ eµ′

. . . Λn
µ′ eµ′

∣∣∣∣∣∣∣∣∣∣∣∣
. (8.167)

We get a hint now of just why a cobasis should be useful in the last row
of (8.167): because that way the basis vectors transform in exactly the same
way as the vector components in the other rows, which gives the matrices
a uniformity without which the analysis would not get very far. The last
determinant of (8.167) can now be factored to give

cross(α1, . . . ,αn−1) ≡

∣∣∣∣∣∣∣∣∣
[α1]

′
...

[αn−1]
′

e1′
. . . en′

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Λ1

1′ . . . Λn
1′

...
Λ1

n′ . . . Λn
n′

∣∣∣∣∣∣∣

=
∂(x1, . . . , xn)
∂(x1′ , . . . , xn′)

∣∣∣∣∣∣∣∣∣
[α1]

′
...

[αn−1]
′

e1′
. . . en′

∣∣∣∣∣∣∣∣∣ = (±)

√
g′

g

∣∣∣∣∣∣∣∣∣
[α1]

′
...

[αn−1]
′

e1′
. . . en′

∣∣∣∣∣∣∣∣∣ ,

(8.168)

where the plus sign in front of the last square root is used if the handedness
is unchanged by the coordinate transformation (which is usually the case).
The unprimed indices are cartesian: g = 1, and so the general expression for
the n-dimensional cross product becomes
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Vector
language

∇
Tensor

language

eα∂α

Fig. 8.11. Expressing ∇ over a vector cobasis as eα∂α enables sometimes-
convoluted vector expressions to be written in streamlined tensor language.

cross(α1, . . . ,αn−1) = (±)
√

g′

∣∣∣∣∣∣∣∣∣
[α1]

′
...

[αn−1]
′

e1′
. . . en′

∣∣∣∣∣∣∣∣∣
(2.33)

(±)
√

g′ εµ
′
. . . ω

′︸ ︷︷ ︸
n indices

αµ′
1 αν′

2 . . . αψ′
n−1 eω′

. (8.169)

Comparing this with the expressions (8.166) and (8.167) for the cartesian
case, we see that the Levi-Civita symbol has become (dropping the primes)√

g εµν...ω in general coordinates. The matrix part of (8.169) will be used in
Sect. 8.9.5 when writing the general expression for a curl.

8.9 From Vector Calculus to Tensor Calculus

The standard, sometimes arcane “div-grad-curl” identities of vector calculus
can be derived very elegantly and quickly from (8.103) (see Fig. 8.11). This
covariant form makes the nabla operator far more useful than the noncovari-
ant cartesian-specific form of (8.84). To convert (8.103) to the more common
noncovariant notation that uses normalised basis vectors, we need only write

∇f = eα ∂αf = f,α eα = f,α gαβ eβ . (8.170)

The metric is often diagonal, so that gαα = 1/gαα with all other metric
coefficients zero. In that case write, without any implied summation,

∇f = f,α gαα eα =
f,α

gαα
eα (no sum)

=
f,α√
gαα

eα̂ (no sum). (8.171)

For general orthogonal coordinate systems (i.e. those with a diagonal metric),
(8.171) is usually the form appearing in reference books—although as we said
earlier, the basis is seldom written, let alone including a caret.
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8.9.1 The Divergence in Tensor Notation

Once we are accustomed to the gradient operator ∇, the next such operator
to focus on is the divergence:

∇·A = (eα ∂α)·(Aµ eµ) = eα·∂α(Aµ eµ) = eα·(Aµ
,α eµ + Aµ eµ,α) . (8.172)

At this point, we are faced with the challenge of calculating changes in basis
vectors over the coordinate system itself, eµ,α. This is never encountered
when using cartesian coordinates due to the fact that ex,ey,ez don’t change
with position. Changing basis vectors are encountered when Newton’s laws
are invoked to describe planetary motion. Orbital mechanics is far more easily
worked out in polar coordinates and hence uses nonvanishing expressions such
as eθ,r. These polar coordinate expressions are particularly straightforward
to manipulate because we have the advantage of being able to draw a picture
and think geometrically, which is what we did on p. 310 in applying Newton’s
laws to orbits. The tensor approach comes into its own for more general
coordinates.

Let’s explore the task of calculating eµ,α using polar coordinates as a
specific example, following two different paths:

1. If the general coordinates can be related to cartesians, then we are in luck;
we can express everything in terms of ex,ey,ez since these are constant.

2. But if only the metric is known (as is the case in general relativity), then
a more cunning approach will be required.

First Method of Calculating eµ,α: If Related to Cartesians

Focus on calculating eθ,r in polar coordinates in the plane by referring the
problem back to cartesian coordinates with their zero derivatives. Let polar
coordinates be unprimed, with cartesian coordinates primed. We have

eθ = Λκ′
θ eκ′ . (8.173)

It’s now straightforward to differentiate both sides with respect to r:

eθ,r = Λκ′
θ,r eκ′ . (8.174)

Now that the cartesian basis vectors have served their purpose of being con-
stant in the differentiation, revert to the unprimed indices of the polar basis:

eθ,r = Λκ′
θ,r Λµ

κ′ eµ (κ′ must be cartesian). (8.175)

It’s instructive to write out all the components for this exercise, although we
won’t do that here. The various partial derivatives were calculated in (8.92)
and (8.93). Using these, (8.175) becomes

eθ,r = eθ/r . (8.176)
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Second Method of Calculating eµ,α: When Only the Metric Is Known

The second approach to calculating eθ,r doesn’t depend on cartesian co-
ordinates, although they will turn up here in the final stage. First, note
that (8.175) writes the derivatives of basis vectors as linear combinations
over the same basis.

This can be done because the function X maps a space into itself, which is
really what we are doing when changing coordinates. In this case, a coor-
dinate change like (8.86) is represented by a function X:{r, θ} → {x, y} or
X:R2 → E

2. In the next chapter, we’ll consider cases such as X:R2 → E
3

that embed a surface into a euclidean 3-space. In that case, the original two
basis vectors will no longer be sufficient to span the 3-space. See (9.18) for
the extended version of (8.177).

Writing the derivative of a basis vector as a linear combination over the same
basis (and not just cartesian or polar) defines Christoffel symbols Γµ

αβ :

eα,β ≡ Γµ
αβ eµ . (8.177)

In particular, the same analysis that led to (8.175) allows us to write the
Christoffel symbols immediately by using cartesian coordinates:

Γµ
αβ = Λκ′

α,β Λµ
κ′ (κ′ must be cartesian). (8.178)

But, in general, we might not be able to use cartesian coordinates to calculate
the Christoffel symbols. By exploiting a particular symmetry, the Christoffel
symbols can be expressed in terms of the metric in the following way. First
consider the dot product

eµ ·eα,β = eµ · (Γ ν
αβ eν) = Γ ν

αβ gµν ≡ Γµαβ , (8.179)

where as a notational convenience we have lowered the first Christoffel index.

It will be shown in (8.195) that the Christoffel symbols are not tensors:
they do not transform under a change of coordinates in the way that a
tensor must. Even so, there is nothing to stop us from raising or lowering
their indices if that suits us notationally. The Γµαβ are known as Christoffel
symbols of the first kind, while Γ µ

αβ are known as Christoffel symbols of the
second kind.

Now notice that the order of the α, β indices in (8.179) doesn’t matter since

eα,β =
∂2X

∂xβ ∂xα
=

∂2X

∂xα ∂xβ
= eβ,α . (8.180)

This yields two useful symmetries:

Γµαβ = Γµβα , Γµ
αβ = Γµ

βα . (8.181)

Now relate the Christoffel symbols to the metric by writing
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gµβ,γ = ∂γ(eµ ·eβ) = eµ,γ ·eβ + eµ ·eβ,γ

= Γβµγ + Γµβγ . (8.182)

The swapping of indices occurring here gives a hint that if we write out all
permutations, we just might arrive at a set of equations that has just enough
cancellation to isolate the Christoffel symbols. And that is precisely what
happens:

gµβ,γ − gβγ,µ + gγµ,β = 2Γµβγ . (8.183)

Raising the first Christoffel index produces the required expression

Γα
βγ =

gαµ

2
(
gµβ,γ − gβγ,µ + gγµ,β

)
, (8.184)

which is highly useful, since it gives the Christoffel symbols for any metric
without the need to refer to a cartesian basis. It’s worth committing to mem-
ory, which is made easier by the cyclic subscripts and symmetrical + − +
signs.

Returning to the original task of calculating eθ,r requires that we write

eθ,r = Γα
θr eα (α is a polar index). (8.185)

Calculating the necessary Christoffel symbols Γ r
θr, Γ

θ
θr via (8.184) requires

the polar metric. We did this on p. 284, but will cover it again here. From
the polar line element

d�2 = dr2 + r2dθ2, (8.186)

we know immediately that

grr = 1 , grθ = gθr = 0 , gθθ = r2. (8.187)

But it’s instructive to be more pedestrian about calculating this metric. At
this point, because the polar coordinates are defined in terms of cartesians,
we will need to refer back to x and y. For example,

grr = er ·er =
(
Λx

r ex + Λy
r ey

) · (same) = 1 , (8.188)

just as we found in (8.26). But (8.188) is none other than the metric tensor
transformation:

grr = Λα
r Λβ

r gαβ

= (Λx
r )2 + (Λy

r)2 = 1 , using (8.92). (8.189)

The same approach gives the other metric components in (8.187). Equa-
tion (8.184) also requires the inverse of the metric matrix. For the index
ordering r, θ, we have
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g ≡ (gαβ) =
[
1 0
0 r2

]
so

(
gαβ
) ≡ g−1 =

[
1 0
0 1/r2

]
, (8.190)

so that
grr = 1 , grθ = gθr = 0 , gθθ = 1/r2 . (8.191)

It now becomes a simple exercise to apply (8.184), giving

Γ r
θr = 0 , Γ θ

θr = 1/r , (8.192)

in which case
eθ,r = Γ r

θrer + Γ θ
θreθ = eθ/r . (8.193)

This agrees of course with the first approach in (8.176). This second method
of using Christoffel symbols is necessary to know because, in general, there
might not be a cartesian basis that can enable the first method on p. 323 to be
used. The Christoffel symbols are of fundamental importance to differential
geometry in that they encapsulate how basis vectors change over a surface.
In the next chapter, we’ll see how this enables us to calculate the curvature
of that surface, as well as giving meaning to curvature in higher dimensions,
where cartesian coordinates might play no role at all. And because gravity
is associated with spacetime curvature in general relativity, the Christoffel
symbols are ultimately the things that describe the gravitational field in that
theory, where again we don’t have the luxury of a natural cartesian frame.

8.9.2 Christoffel Symbols for Cartesian Coordinates

What are the Christoffel symbols for cartesian coordinates? Because the ba-
sis vectors are constant in space, their derivatives are zero, and so (8.177)
implies that the Christoffel symbols must vanish. Alternatively, the cartesian
metric tensor is constant and so has zero derivatives, again leading to zero
Christoffel symbols from (8.184). We see then that the Christoffel symbols
cannot be tensor components because if they were, then being zero in one
coordinate set would imply that they were zero in all others (after all, the
tensor transformation rules write the components of any tensor as a linear
combination of components in another set of coordinates). But we know they
are not necessarily zero in other coordinates, so they cannot form a tensor.

This nontensorial nature can be quantified by expressing eα,β in terms of
a general set of (primed) coordinates. Writing

Γ �
αβ e� = eα,β =

(
Λµ′

α eµ′
)
,β

=
(
Λµ′

α,β + Λλ′
α Λγ′

β Γµ′
λ′γ′
)

e� Λ�
µ′ (8.194)

means it must follow that

Γ �
αβ = Λ�

µ′ Λµ′
α,β + Λ�

µ′ Λλ′
α Λγ′

β Γµ′
λ′γ′ . (8.195)
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The second term in (8.195) is the usual tensor transformation that we would
expect if Christoffel symbols were tensors; but the first term in (8.195) is the
extra part that muddies the water, ensuring they are not. And indeed the
first term is the only one that survives when the unprimed coordinates are
cartesian, just as we saw in (8.178). Later, in Sect. 12.3.2, we’ll encounter
the idea of forcing the Christoffel symbols to be zero by way of a suitable
coordinate transformation, an idea that corresponds to a freely falling labo-
ratory. It will bring us as close as possible to “removing” gravity from that
laboratory.

Following from (8.177), what is the Christoffel expression for eα
,β? It can

be calculated by writing eα
,β = (gαµeµ),β and then expanding by the product

rule. But a simpler approach starts with the orthonormality of basis with
cobasis to write (eα ·eµ),β = 0. Differentiation of the dot product then gives

eα
,β · eµ = −eα · eµ,β = −eα ·Γ ν

µβ eν = −Γα
µβ . (8.196)

Remembering (2.24) then allows us to write

eα
,β = (eα

,β · eµ) eµ = −Γα
βµ eµ. (8.197)

We’ll have need of this expression in the next few pages.
We have yet to produce a tensor expression for the divergence (8.172).

While developing that equation, we encountered the vector component deriva-
tive Aµ

,α. This derivative can be shown not to be a tensor by using just
the same sort of direct approach that was used for the Christoffel sym-
bols in (8.194) and (8.195). We also saw the need in the divergence expres-
sion (8.172) for differentiating basis vectors. Nonconstant basis vectors are so
common in differential geometry and general relativity that the language has
been arranged to enable us to forget about them—in a sense it allows us to
pretend that the basis vectors are constant, and so carry out calculations with
the same sense of abandon as if we were simply using cartesian coordinates.
For example, in an elementary physics course we might encounter cartesian
expressions such as

d
dt

(t, t2) = (1, 2t) . (8.198)

In such a course it’s not always appropriate to stress that the basis vectors
should also be differentiated, and indeed have been—but are constant. Just
as a comma subscript denotes partial differentiation, a semicolon subscript
is defined to allow us to forget about basis vector derivatives, by defining a
covariant derivative:

∂A

∂xν
= (Aµ eµ),ν ≡ Aµ

;ν eµ

= (Aµ eµ),ν ≡ Aµ;ν eµ. (8.199)

These semicoloned components are elements of a tensor. To see this, consider,
for example,
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Aα′
;β′ eα′ =

∂A

∂xβ′ = Λµ
β′

∂A

∂xµ
= Λµ

β′ Aν
;µ eν = Λµ

β′ Λα′
ν Aν

;µ eα′ , (8.200)

so that
Aα′

;β′ = Λµ
β′ Λα′

ν Aν
;µ , (8.201)

which is, of course, just the transformation that tensor components must
obey. The covariant derivative is the key to generalising any derivative ex-
pression from cartesian coordinates to arbitrary coordinates. Because the
Christoffel symbols are zero in cartesian coordinates, covariant differentiation
(semicolons) is idential to partial differentiation (commas) in these coordi-
nates. So, in cartesian coordinates only, we can always change all commas
to semicolons. However, such an expression will then become a true tensor
expression, and so will be valid in any coordinates. Thus, we can convert any
derivative expression in cartesian coordinates to general coordinates simply
by changing all commas to semicolons. This is often called the comma-goes-
to-semicolon rule.

The Aµ
;ν can be viewed as the components of the derivative of the vec-

tor Aµ, and we have not needed the basis at all. Naturally, this simplicity
comes at a price—the covariant derivative is going to be more complicated
than the usual sort. It must incorporate Christoffel symbols to take account
of the changing basis:

Aµ
;ν eµ = Aµ

,ν eµ + Aµ eµ,ν

= Aµ
,ν eµ + Aµ Γα

µν eα

= (Aµ
,ν + Γµ

ανAα)eµ . (8.202)

(The need to swap α and µ indices in this expression is very common in tensor
algebra, especially when moving common factors outside parentheses.) Thus
we have

Aµ
;ν = Aµ

,ν + Γµ
ανAα, (8.203)

and similarly
Aµ;ν = Aµ,ν − Γα

µνAα . (8.204)

This more complicated derivative reminds us of what was called “inertial
differentiation” in Chap. 4, where we modified the time derivative in (4.43)
and (4.44) to take Earth’s rotation into account, so that the rotation was
automatically and seamlessly included in expressions such as (4.47).

Covariant differentiation can be defined for tensor indices of any order.
For scalars it’s simply defined to be partial differentiation, since no basis
vectors are involved. It must therefore obey a product rule when operating
on scalars. Begin with this to write

(AµBµ);α ≡ (AµBµ),α

= Aµ
,αBµ + AµBµ,α . (8.205)
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Now add and subtract equal Christoffel terms to write (while taking care to
interchange µ and β dummy indices as necessary)

(AµBµ);α =
(
Aµ

,α + Γµ
αβAβ

)
Bµ + Aβ (Bβ,α − Γµ

βαBµ)

= Aµ
;αBµ + AµBµ;α , (8.206)

so that the covariant derivative also obeys a product rule when operating on
vectors.

Covariant derivatives of higher-order tensor components are built upon
these few expressions. For example, what is Aµ

ν;α? Introduce a tensor ba-
sis eµeν , and from the definition of covariant differentiation write

Aµ
ν;α eµ eν ≡ (Aµ

ν eµ eν),α

= Aµ
ν,α eµ eν + Aµ

ν eµ,α︸︷︷︸
≡Γ β

µαeβ

eν + Aµ
ν eµ eν

,α︸︷︷︸
=−Γ ν

αµeµ

. (8.207)

Substituting in the Christoffel expressions and factoring out the basis vectors
leads to

Aµ
ν;α = Aµ

ν,α + Γµ
βαAβ

ν − Γ β
ναAµ

β . (8.208)

The general rule extends to tensors of any order: every “up” index produces
an added Christoffel term that replaces that index with a summation index,
and every “down” index calls for a subtracted Christoffel term in the same
way.

Covariant derivatives of the metric are always zero:

gαβ;γ = gαβ,γ − Γµ
αγ gµβ − Γµ

βγ gαµ

(8.182)
Γαβγ + Γβαγ − Γβαγ − Γαβγ

= 0 . (8.209)

Likewise, gαβ
;γ = gα

β;γ = 0. These expressions are useful because they imply
that indices can be raised or lowered“within a semicolon”, reinforcing the idea
that unlike partial differentiation, covariant differentiation produces tensor
components:

gαµ Aα
;β = (gαµ Aα);β = Aµ;β . (8.210)

8.9.3 Preparing to Make the Divergence Covariant

Finally, we are in a position to express (8.172) in a covariant form. The
covariant derivative simplifies the expressions heavily:

∇·A = (eα ∂α)·(Aµ eµ)
= Aµ

;α eµ ·eα = Aµ
;α δα

µ

= Aα
;α . (8.211)
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Why the Covariant Derivative is Useful

The covariant derivative is highly useful in tensor analysis. Two reasons for this
are as follows. Firstly, it invests the differentiation process completely in the
tensor components, such as in (8.211), thus enabling us to treat basis vectors
in a differentiation as if they were constant, just as we are accustomed to
doing with the cartesian basis. Secondly, the covariant derivative enables any
partial derivative expression calculated in cartesian coordinates to be written
in arbitrary coordinates simply by replacing all commas with semicolons. These
two ideas are interrelated in expressions such as (8.199).

Has anything been gained by writing ∇·A in this way, or has the work of cal-
culating the divergence merely been condensed into a slick notation that just
has to be “unpacked” whenever we want to do anything with it? It turns out
that this notation really has simplified the calculation, due to the following
two theorems involving the metric determinant g:

For all vectors Aα: √
|g|Aα

;α =
(√

|g|Aα
)

,α
. (8.212)

For all antisymmetric tensors Fαβ (i.e. Fαβ = −F βα):√
|g|Fαβ

;β =
(√

|g|Fαβ
)

,β
. (8.213)

Proving these involves the following useful identity:

Γα
αβ = ∂β ln

√
|g| . (8.214)

We prove (8.214) using some index manipulation. Use (8.184) to write the
left-hand side as

Γα
αβ =

1
2
gαµgαµ,β . (8.215)

Differentiating ln
√|g| involves more work. In particular, we need to know g,β .

The answer to this builds usefully on work we’ve done previously, since the
differentiation is accomplished with the aid of some determinant theory. Sup-
pose we have a matrix A = (Aαβ) with determinant |A|, for which we must
calculate ∂|A|/∂Aαβ . Of use is the adjugate of A, adjA, a low-profile linear
algebra concept seldom found in a physics context. But here we have a perfect
use for it. The adjugate is the transposed matrix of the cofactors of A. As an
example, the adjugate of a general 2× 2 matrix (Aij) is easily written down:

adj
[
A11 A12

A21 A22

]
=
[

A22 −A12

−A21 A11

]
. (8.216)
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In general, the following result holds for any square matrix A, where I is the
same-sized identity:

|A| I = A adj A . (8.217)

(This is the second important theorem involving cofactors referred to on
p. 19.) The proof involves expanding A adjA about a general row, as well as
examining what happens when one row of A is replaced by another. Although
not difficult, it’s omitted as being more suited to a linear algebra course. The
elements on the diagonal of |A|I are then

|A| = (A adj A)αα =
∑

β

Aαβ (adjA)βα . (8.218)

The utility of using the adjugate is that (adjA)βα is a function of all but one
of the elements of A. Conspicuously, it’s not a function of Aαβ since, after
all, (adjA)βα was obtained by crossing Aαβ out from A. With this in mind,
we can immediately use (8.218) to write

∂|A|
∂Aαβ

= (adjA)βα
(8.217) |A| (A−1

)
βα

. (8.219)

This is true for any square matrix at all. In particular, it holds for A−1,
leading to

∂|A|
∂(A−1)αβ

= −|A|Aβα . (8.220)

Specifically, choose A to be the metric (gαβ), with determinant g. In that
case (8.219) and (8.220) produce the following covariant results—remembering
that the metric and its inverse are symmetric in their indices:

∂g

∂gαβ
= g gαβ and

∂g

∂gαβ
= −g gαβ . (8.221)

(Notice that because of the useful way in which gαβ was defined, these equa-
tions are covariant for the metric. That is, the up/down position of the indices
is the same on both sides of each equation.)

With the required derivatives, we can now evaluate the right-hand side
of (8.214). The chain rule, using d|x|/dx = |x|/x, gives

∂β ln
√
|g| =

1√|g|
1

2
√|g|

|g|
g

∂g

∂gαµ
gαµ,β

(8.221) 1
2

gαµ gαµ,β

(8.215)
Γα

αβ . (8.222)

This proves (8.214). Equations (8.212) and (8.213) are then proved by ex-
panding the left-hand side “semicolon” part of each in terms of commas and
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Christoffel symbols. For the case of Fαβ , we need to invoke the antisymmetry
of Fαβ and the symmetry of the Christoffel terms and swap two indices; the
work is left as a straightforward exercise for the reader. Here we concentrate
on giving an example of (8.211) and (8.212) to calculate the divergence for
polar coordinates in the plane. The metric for (x1, x2) ≡ (r, θ) is

gαβ =
[
1 0
0 r2

]
, (8.223)

so that g = r2, and

∇·A = Aα
;α =

1√
g

(√
g Aα
)
,α

=
1
r

(
rAα
)
,α

=
1
r

(
rAr
)
,r

+ Aθ
,θ

=
1
r

(
rAr̂
)
,r

+
1
r
Aθ̂

,θ , (8.224)

where the last line is written using (8.118) by way of (8.96), since normalised
components are commonly used in practice.

8.9.4 The Covariant Laplacian

Much of the work of the last few pages comes together when we require the
covariant form of the laplacian ∇2. Again, the fundamental identity (8.103)
gives

∇2Φ = ∇·∇Φ = (eα∂α) · (eµΦ,µ)
= eα ·eµ Φ,µ;α = gαµ Φ,µ;α = Φ,α

;α , (8.225)

which can also be written as Φ;α
;α since Φ is a scalar. We infer that ∇2Φ is

also a scalar.
As an example of the use of (8.225), calculate the laplacian in spherical

polar coordinates r, θ, φ. Here

gαβ = diag(1, r2, r2 sin2 θ) , (8.226)

so that g = r4 sin2 θ, and

∇2Φ = Φ,α
;α =

1√
g

√
g Φ,α

;α
(8.212) 1√

g

(√
g Φ,α

)
,α

=
1√
g

(√
g gαβ Φ,β

)
,α

sum over β,

diagonal metric

∑
α

1√
g

(√
g gαα Φ,α

)
,α

=
∑
α

1
r2 sin θ

(
r2 sin θ gαα Φ,α

)
,α

=
1
r2

(
r2 Φ,r

)
,r

+
(sin θ Φ,θ),θ

r2 sin θ
+

Φ,φφ

r2 sin2 θ
. (8.227)
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It’s pleasing that such a complicated result can be derived by the various
tensor manipulation theorems—and no Christoffel symbols were required!

8.9.5 The Covariant Curl

Writing the curl covariantly requires some care, but is not difficult based
on what we have done up until now. One approach is to apply (8.169) by
considering the curl to be the cross product of ∇ and a vector A. First, in
any coordinates,

∇×A = eα∂α × (Aβeβ) = eα∂α × (Aβeβ) . (8.228)

As we have seen in the last few pages, the basis vectors can be lifted outside
the parentheses provided the derivative becomes covariant. A simple way of
writing this uses the notation

Dαf ≡ f;α , Dαf ≡ f ;α . (8.229)

Using this, (8.228) becomes

∇×A = eα∂α × (Aβeβ) = eαDα × Aβeβ , (8.230)

where Dα only acts on Aβ . Equation (8.169) then writes this as (with the
sign chosen as positive to make the curl right handed)

∇×A =
√

g

∣∣∣∣∣∣
D1 D2 D3

A1 A2 A3

e1 e2 e3

∣∣∣∣∣∣ . (8.231)

It is perhaps more natural to lower the indices on the covariant derivatives,
although the resulting expression is more symmetrical if all indices are low-
ered. Do this by realising that metric coefficients can slip in and out of the
covariant derivatives with impunity, enabling (8.231) to be written as

∇×A =
√

g

∣∣∣∣∣∣∣
g1αDα g2αDα g3αDα

g1αAα g2αAα g3αAα

g1αeα g2αeα g3αeα

∣∣∣∣∣∣∣ =
√

g

∣∣∣∣∣∣
D1 D2 D3

A1 A2 A3

e1 e2 e3

∣∣∣∣∣∣
∣∣∣∣∣∣∣
g11 g21 g31

g12 g22 g32

g13 g23 g33

∣∣∣∣∣∣∣
=

1√
g

∣∣∣∣∣∣
D1 D2 D3

A1 A2 A3

e1 e2 e3

∣∣∣∣∣∣ . (8.232)

Equations (8.231) and (8.232) are expressions for the curl in general coordi-
nates. But note that in (8.232) the components are of the form Aα;β −Aβ;α.
This expression equals Aα,β −Aβ,α (because the relevant Christoffel terms
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cancel due to the symmetry of their lower two indices), so that the expres-
sion for the curl with lowered indices is more easily written as

∇×A =
1√
g

∣∣∣∣∣∣
∂1 ∂2 ∂3

A1 A2 A3

e1 e2 e3

∣∣∣∣∣∣ . (8.233)

The cancelling of Christoffel terms would not have occurred had we dealt with
the Aα;β−Aβ;α of (8.231) instead; this does not equal Aα,β−Aβ,α in general.
Thus (8.231) is not so simply written using partials ∂1, ∂2, ∂3. (We cannot
simply raise the indices in (8.233) using the reverse procedure of (8.231)
and (8.232) because in doing so, the partials would also act on the metric coef-
ficients, leading to complications.) The antisymmetric expression Aα,β−Aβ,α

is the hallmark of a curl in tensor notation.
A slightly different approach offers further insight into covariant notation

for the curl. As in (8.228), start by exploring some of the up/down index
combinations:

∇×A = eα∂α × (Aβeβ) = eα × eβ Aβ
;α = eα × eβ Aβ;α = eα × eβ Aβ;α .

(8.234)
The cross product of eα and eβ produces a vector orthogonal to both, so
for simplicity we’ll restrict the following discussion to orthogonal coordinates
(i.e. those with a diagonal metric), specifically those that are right handed,
for which e1̂×e2̂ = e3̂ with cyclic permutations. But since, a moment ago, we
saw the Christoffel symbols cancel for lowered indices, it might be more useful
to make the cobasis-vector choice eα × eβ in (8.234). So translate between
basis and cobasis with

eα = gααeα (no sum) =
1

gαα

√
gαα eα̂ =

eα̂√
gαα

, (8.235)

in which case

e1 × e2 =
e3√
g

(and cyclic permutations), (8.236)

as well as the usual eα × eα = 0. The result in (8.236) is written as a basis
vector, as opposed to a cobasis vector, since we wish to express the curl here
using the basis. (That need not be confusing. All we are doing is choosing to
work with either a basis or a cobasis, depending on which is more suitable
for whatever we need to calculate.)

In order to collect components together, write the curl in (8.234) as

∇×A = (Aβ;α−Aα;β) eα × eβ (α < β)
= (Aβ,α−Aα,β) eα × eβ (α < β) . (8.237)

Rewrite this last expression using (8.236):
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∇×A = (A2,1−A1,2) e1 × e2 + (A3,1−A1,3) e1 × e3 + (A3,2−A2,3) e2 × e3

=
1√
g

[
(A2,1−A1,2) e3 + (A3,1−A1,3) e2 + (A3,2−A2,3) e1

]
=

1√
g

∣∣∣∣∣∣
∂1 ∂2 ∂3

A1 A2 A3

e1 e2 e3

∣∣∣∣∣∣ , which is (8.233), as expected. (8.238)

The use of both basis and cobasis vectors has enabled us to specify different
forms for the curl, each having a symmetry of its own, which is all valuable
pedagogically.

In Chap. 10, we will find that the electromagnetic potential can be written
as a vector Aα, and it will also be convenient to define the Faraday tensor Fαβ ,

Fαβ ≡ Aβ;α−Aα;β = Aβ,α−Aα,β , (8.239)

whose components will turn out to be just the electric and magnetic fields.
As might be expected, the Faraday tensor appears in the covariant approach
to the Lorentz force and Maxwell’s equations, a subject we’ll explore further
in that chapter.

8.10 Exterior Calculus and the Theorems of Stokes and
Gauss in Higher Dimensions

Stokes’ and Gauss’s theorems are the main tools that aid us in developing a
physical intuition for Maxwell’s equations, since these two theorems enable
integrals over lines or surfaces to be converted into integrals over surfaces and
volumes, respectively. They are highly adapted to the concepts of circulation
and flux. We met flux in Chap. 6 in the context of rainfall. The flux of
rain passing through a surface was defined to be the amount of rain passing
through the surface in a given time interval. The flux through a surface is
defined more generally for any vector field:

flux of A through surface S ≡
∫

S

A·n dS , (8.240)

where n is a unit vector normal to the infinitesimal surface element, which
itself has area dS. In contrast, the circulation is a concept we have not needed
up until now, but it, too, pervades electromagnetic theory. For any vector
field A, the circulation around a closed, not necessarily planar loop � in three
dimensions is defined to be

circulation of A around loop � ≡
∫

A·d� , (8.241)

where d� measures an infinitesimal segment of the loop (using a bold font to
show that it’s a vector).
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We start the discussion of the theorems’ generalisation by stating each of
them as they are used in electromagnetism. Pictured in Fig. 8.12 on p. 339,
Stokes’ theorem (which in fact was originally formulated by Kelvin) says that
the circulation of A around a loop in three dimensions is equal to the flux
of ∇×A through any surface that the loop encloses:∫

A·d� =
∫∫

S

∇×A · n dS . (8.242)

Incidentally, this allows a picture of the curl to be formed. If the loop is
chosen to be of infinitesimal size and planar, then (8.242) says that

circulation
area of loop

= normal component of ∇×A , (8.243)

where the normal component is defined in a right-handed sense; that is, if the
fingers of the right hand curl around the loop in the direction of increasing �,
then the thumb points in the direction of n. So the curl gives the circulation
per unit area, and it points in the direction normal to the plane in which the
circulation is a maximum.

Whereas Stokes’ theorem is concerned with circulation around a closed
loop, Gauss’s theorem says that the flux of A through a closed surface S is
equal to the divergence of A integrated over the enclosed volume V :∫∫

S

A·n dS =
∫∫∫

V

∇·A dV . (8.244)

We can picture the divergence by considering an infinitesimal volume. For
this, Gauss’s theorem says

total flux out of surface
volume enclosed

= ∇·A , (8.245)

so that ∇·A gives the amount of flux emanating from a closed surface per
unit volume. For example, one of Maxwell’s equations says that the diver-
gence of the magnetic field is ∇·B = 0, which means, from (8.245), that the
magnetic flux coming out of any closed surface is equal to that going in, since
the different directions contribute opposite signs to the total, and the total
emanating from the volume enclosed is zero. Thus there are no sources of a
magnetic field in Maxwell’s theory, and this gives rise to a picture of unbroken
curves representing that field. Of course, the remaining equations of Maxwell
are interpreted in similar ways.

Stokes’ and Gauss’s theorems are actually two cases of a more general
theorem that applies to higher dimensions. We will state the theorem, while
leaving its proof to advanced texts and instead focussing on showing how
it reduces to Stokes’ and Gauss’s theorems as special cases. The theorem is
not so much quoted for its own sake; instead, by showing how Stokes’ and
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The Magic of Electromagnetic Field Lines

A common tutorial question in introductory electromagnetism asks the student
to show that the electric field due to a uniformly charged flat plate of infinite
extent is independent of the distance from the plate. The student draws electric
field lines emanating from the plate and reasons that, due to symmetry, the
only way the lines can “flow” is perpendicular to the plate. Since the strength
of the field equals the areal density of the lines, the field must be a constant
everywhere outside the plate.

It’s the right answer, but what an answer! Apparently based on nothing
more than a simple sketch, something quite astounding has been inferred about
the electric field. Where did the magic happen?

The magic had happened long before the student ever sat down. The only
way the usual idea of field lines can be applied to a field in the sense of
emanating from a point is if the field falls off as an inverse square. That
happens to be the case for the electric field, of course. Close to the infinite
flat plate, the forces on a test charge caused by charges in the plate are strong
but are mostly cancelled by being set against each other. Far from the plate,
the forces are weaker but mostly act in the same direction. It’s a marvellous
special property of an inverse-square law that these things are exactly balanced
to the effect that the field is the same both near and far from the plate. And
the language of electromagnetism, with its pictures of field lines and vectors,
embodies this magic property so very simply that we don’t even know it’s
happening. (The box on p. 498 discusses another example of how special the
inverse-square law is.)

In contrast, field lines cannot quite be drawn for a strong gravitational field
because the field is stronger than inverse square near the source of the gravity,
as we’ll see in Chap. 12. (On a newtonian level, inverse-square forces give rise
to nonprecessing orbits, but the tiny amount of “extra”gravity close to the Sun
is what slowly pulls Mercury’s orbit around to give its well-studied precession.)
If we insist on drawing field lines for the Sun’s gravity, we might have to draw
just a few more of them closer to the Sun (but then how do they terminate?),
or perhaps modify their meaning in some way by giving them some thickness
or some structure that embodies the right strength of gravity. It wouldn’t be
easy, but it might just be able to be done with the right imagination.

Gauss’s theorems result, we will gain insight into the techniques of this area
of mathematics, called exterior calculus.

Before doing so, two important points must be noted. The first is that,
apart from scalars and vectors, tensors of higher order used by the theo-
rem must be antisymmetric. Why is antisymmetry so important? Because
when dealing with volumes and areas, antisymmetry appears from the very
beginning, in the properties of the determinant that we saw in Chap. 2.

We’ve come across antisymmetry already in the previous section, in the
case of a curl, where Fαβ = −Fβα. Similarly, antisymmetry for the lowered
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components of higher-order tensors means that all index permutations in-
troduce a minus sign. So, for example, a third-order tensor F is said to be
antisymmetric if

Fαβγ = −Fαγβ = +Fβγα = . . . . (8.246)

Although any tensor T (not necessarily antisymmetric) can always be written
over a cobasis as T = Tαβγ eαeβeγ , for antisymmetric tensors, we can make
use of expressions such as (8.75) and (8.76) to use wedge products of cobasis
vectors as a basis—and these are just the multivectors of Sect. 2.4.4. For
example, in the case of F in (8.246), write

F = Fαβγ eαeβeγ (true for any tensor)

= 1/3!
(
Fαβγ eαeβeγ + Fαγβ eαeγeβ + · · · ) (just relabelling indices)

= 1/3!
(
Fαβγ eαeβeγ − Fαβγ eαeγeβ + · · · ) (using antisymmetry)

= 1/3! Fαβγ eα ∧ eβ ∧ eγ . (8.247)

That is, F can be expanded over a trivector basis eα ∧ eβ ∧ eγ . This idea
allows a general antisymmetric tensor to be written as a multivector. They
are the same thing.1

In contrast, users of one-forms will expand F over a basis of one-forms, writ-
ing each line of (8.247) using one-forms ωα instead of cobasis vectors eα.
Thus they consider wedge products ωα ∧ ωβ ∧ ωγ , calling these three-forms.
In the language of forms, the curl Fαβ of the last section, or really the
associated tensor F , is referred to as a two-form. (Unfortunately, the word
“form”can be misleading; the first and second“fundamental forms”of differ-
ential geometry in the next chapter are both symmetric tensors. But when
the word “form” is used in the current context, it signifies an antisymmetric
tensor.)

The second important point to note is that the generalised Stokes–Gauss
theorem involves a more sophisticated version of the curl that uses a wedge
product instead of a cross product. In Sect. 2.4.4, we saw the similarity be-
tween a ∧ b and a × b, noting that a ∧ b combines with two vectors, while
a × b can only be dotted with one. Although the wedge and cross products
are essentially the same, the cross product is conventionally reserved for vec-
tors only. Likewise, here we’ll write the curl as ∇∧A instead of ∇×A. The
generalised curl ∇∧ is so important in forming a geometrical view of tensors
that it has been given the name exterior derivative. It is, in fact, nothing
more than a higher-dimensional version of the curl and divergence operators.
1 Note that while a four-component antisymmetric tensor might be called a

quadrivector, it is definitely not a four-vector, since a four-vector is described
by just one index, not four! Similarly, an n-component antisymmetric tensor is
more meaningfully called an n-multivector rather than an n-vector.
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Fig. 8.12. Stokes’ theorem is concerned with equating the circulation of a vector
field around the loop � with the flux of the field through any surface S enclosed
by the loop. A real calculation requires us to construct the boundary curve and
its interior (the surface) by way of some parametrisation u, v using two maps, one
determining the boundary and the other the interior.

The generalised Stokes–Gauss theorem rests on our being aware of the
maps that specify the various contours, surfaces, and volumes being inte-
grated over. An example for Stokes’ theorem is shown in Fig. 8.12. The
boundary-creating map XB takes a loop parametrised by u into a not nec-
essarily planar boundary loop in euclidean 3-space. The domain loop (in the
uv-plane) needs just one parameter to specify it, since v is a function of u in
this case. The interior-creating map, XI , uses u, v as independent parameters
and takes the encircled region in the uv-plane into a 2-surface interior to the
loop in the same euclidean 3-space. The maps are related by

XB(u) ≡ XI
(
u, v(u)

)
, (8.248)

where v = v(u) describes the boundary in the uv-plane. The 2-surface S can
be any surface bounded by the loop; mathematically, this means that the
surface integral (i.e. the flux) is independent of the parametrisation XI . The
loop and surface in the euclidean 3-space are integrated over in (8.242).

Suppose we are given an n-component antisymmetric tensor F n along
with the following maps that take u-space into x-space:

XB: u1, . . . , un −→ x1, . . . , xm�n+1 ,

XI: u1, . . . , un+1 −→ x1, . . . , xm. (8.249)

These maps, along with the parameters u1, . . . , un+1, define basis vectors in
x-space:

eB
i ≡ ∂XB

∂ui
(i = 1 . . . n) , eI

i ≡ ∂XI

∂ui
(i = 1 . . . n + 1) . (8.250)
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So, XB maps an n-dimensional boundary from u-space into x-space, and
XI maps its n + 1-dimensional interior into x-space. (We’ll see examples of
these in a moment.) The generalised Stokes–Gauss theorem states that

∫
n-dim. boundary

F n

(
eB

1 , . . . ,eB
n

)
du1. . . dun =

∫
n+1-dim. interior

(∇∧ F n)
(
eI

1, . . . ,e
I
n+1

)
du1. . . dun+1,

(8.251)
in which the left-hand side really has n integral signs and the right-hand side
has n + 1 integral signs. This can be rewritten by using the idea of the dot
product for wedges in (2.65) and (2.66):∫
n-dim. boundary

F n ·
(
eB

1 ∧ · · · ∧ eB
n

)
du1. . . dun =

∫
n+1-dim. interior

(∇∧F n)·(eI
1 ∧ · · · ∧ eI

n+1

)
du1. . . dun+1.

(8.252)
Let’s see how it all works by studying the cases of n = 0, 1, and 2.

n = 0: The Line Integral. This is a special case since (8.249) demands n > 0.
But the generalised Stokes–Gauss theorem is still meaningful here. It equates
the “integral” over a 0-dimensional boundary (really no integral at all!) with
the line integral along a curve. The 0-order tensor F 0 is simply a scalar
function, which we’ll call f ; the notion of antisymmetry is irrelevant here.
Since the boundary is 0-dimensional, there is no map XB and the left-hand
side of (8.251) has no integral signs. It is to be interpreted as the increase in
the function over the 0-dimensional boundary, which is the two end points.
The map XI: u → x, y, z creates a 1-dimensional “interior” (a curve), so that
the right-hand side of (8.251) or (8.252) is an integral along this curve, and
the theorem becomes

∆f =
∫

curve

(∇∧ f)·eI
u du . (8.253)

What is ∇∧f? Since f is a scalar, the wedge is superfluous. Write ∇∧f = ∇f ,
while eI

u du is more commonly called d�, a step along the curve in xyz-space.
Thus

(∇∧ f)·eI
u du = ∇f ·d� , (8.254)

and finally, (8.253) becomes

∆f =
∫

curve

∇f ·d� , (8.255)

which is the familiar expression for a line integral.
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n = 1: Stokes’ Theorem. The first-order tensor F 1 is now a vector, so call
it A. The maps are XB: u → x, y, z, creating a 1-dimensional boundary, and
XI: u, v → x, y, z, giving the 2-surface interior to the boundary. This sur-
face can be embedded in two or three dimensions in xyz-space. Here and
in Fig. 8.12, we have chosen three dimensions for the embedding, but if the
boundary and surface are embedded in the plane, then Green’s theorem re-
sults, which is thus a reduced version of Stokes’ theorem.

We have seen the left-hand side of (8.251) already in the n = 0 case: it’s
the circulation of A around the closed loop boundary. Thus, (8.251) says∫

A·d� =
∫∫

(∇∧ A)
(
eI

u,eI
v

)
du dv . (8.256)

As for ∇∧A, this combines with two basis vectors and so is better expressed
in terms of a cobasis. This eliminates the need to deal with the metric (which
would happen if a basis were used exclusively, since then we’d have expres-
sions such as eα ·eβ = gαβ). So write A over a cobasis, using Greek indices
for x-space:

∇∧ A = eα∂α ∧ (Aβ eβ
)

= Aβ;α eα ∧ eβ

= Aβ;α

(
eαeβ− eβeα

)
= (Aβ;α−Aα;β) eαeβ

= (Aβ,α−Aα,β) eαeβ = Aβ,α eα ∧ eβ . (8.257)

In other words,

∇∧ A = (Az,y−Ay,z) ey ∧ ez + (Ax,z−Az,x) ez ∧ ex

+ (Ay,x−Ax,y) ex ∧ ey

≡ (∇×A) · (ey ∧ ez, ez ∧ ex, ex ∧ ey) , (8.258)

where the last line is written for notational convenience using the dot product
notation, although the three wedge products certainly do not form a real
vector. To calculate (∇∧ A)

(
eI

u,eI
v

)
, we need, e.g.,

ey ∧ ez
(
eI

u,eI
v

)
=

∣∣∣∣∣∣
ey ·eI

u ey ·eI
v

ez ·eI
u ez ·eI

v

∣∣∣∣∣∣ =
∣∣∣∣∣∣
(
eI

u

)y (
eI

v

)y
(
eI

u

)z (
eI

v

)z
∣∣∣∣∣∣ = (eI

u × eI
v

)x
, (8.259)

and similarly for cyclic permutations of x, y, z. Hence

(∇∧ A)
(
eI

u,eI
v

)
= (∇× A) · (eI

u × eI
v

)
, (8.260)

which we might also have written down straightaway by recalling (2.63). Now,
remember that

eI
u =

∂XI

∂u
=
(

∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
(8.261)
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and similarly for eI
v, so

eI
u × eI

v du dv =
(

∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
×
(

∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
du dv

=
(

∂(y, z)
∂(u, v)

,
∂(z, x)
∂(u, v)

,
∂(x, y)
∂(u, v)

)
du dv . (8.262)

But notice that this is precisely equal to the product of the normal vector n
to the surface in x-space and an infinitesimal area. To see this, make eI

u,eI
v,n

a right-handed set, and write such a product as

ndS ≡ eI
u × eI

v

|eI
u × eI

v|
∣∣eI

u du × eI
v dv
∣∣ = eI

u × eI
v du dv . (8.263)

In that case, (8.260) becomes

(∇∧ A)
(
eI

u,eI
v

)
du dv = ∇×A · ndS , (8.264)

allowing (8.256) to be written more recognisably as Stokes’ theorem (8.242).
In passing, note that, for example, (8.259) and (8.262) give

ey ∧ ez
(
eI

u,eI
v

)
du dv =

∂(y, z)
∂(u, v)

du dv = a signed area, (8.265)

with a handedness-dependent sign. This signed area is independent of any
parametrisation when integrated, and so is usually simply called dy ∧ dz.
Also, if x, y, z and u, v have the same handedness (which will almost always
be the case), then the sign of this area is +1, and it can be written simply
as dy dz.

n = 2: Gauss’s Theorem. Here we are integrating a second-order tensor F 2

and now must pay attention to the required antisymmetry. Expand over a
cobasis, writing F 2 = Fαβ eαeβ with Fαβ = −Fβα. A cobasis has been used
to make combining with a basis easier, just as we did for Stokes’ theorem.

The maps XB ,XI now deal with a closed 2-dimensional boundary en-
closing a 3-surface in uvw-space, and this surface can be embedded in three
or more dimensions in x-space. We will stay with three dimensions in x-space
to produce Gauss’s theorem. The maps are

XB: u, v −→ x, y, z , XI: u, v, w −→ x, y, z , (8.266)

with XB(u, v) ≡ XI
(
u, v, w(u, v)

)
, since w is constrained to be a function

of u, v on the boundary. The Stokes–Gauss theorem (8.251) becomes∫∫
F 2

(
eB

u ,eB
v

)
du dv =

∫∫∫
(∇∧ F 2)

(
eI

u,eI
v,eI

w

)
du dv dw . (8.267)
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All of this requires careful unravelling. Start with the left-hand side of (8.267).
Again using Greek indices for x-space, write

F 2 = Fαβ eαeβ = 1/2 Fαβ eαeβ + 1/2 Fβα eβeα = 1/2 Fαβ

(
eαeβ− eβeα

)
= 1/2 Fαβ eα ∧ eβ = 1/2 (Fxy ex ∧ ey + Fyx ey ∧ ex + · · · )
= (Fyz, Fzx, Fxy)︸ ︷︷ ︸

≡ G

· (ey ∧ ez, ez ∧ ex, ex ∧ ey) , (8.268)

where we have used the antisymmetry of Fαβ as necessary. Repeating the
calculations we did for Stokes’ theorem allows the left-hand side of (8.267)
to be written as ∫∫

F 2

(
eB

u ,eB
v

)
du dv =

∫∫
G·n dS . (8.269)

Although it seems that only three components of Fαβ have been singled out
to make G, they do in fact encapsulate all of the information in Fαβ owing
to its antisymmetry. The integral in (8.269) is now a flux through a closed
surface.

Unravelling the right-hand side of (8.267) presents a little more work. It
follows much the same ideas as in Stokes’ theorem except there are now more
indices to deal with, so we’ll search for a more general method of handling
the manipulations. Write

∇∧ F 2 = eγ∂γ ∧ (1/2 Fαβ eα ∧ eβ
)

= 1/2 Fαβ;γ eγ ∧ eα ∧ eβ . (8.270)

As occurred in (8.257), the semicolon here also can be replaced with a comma.
This is a very important fact that we’ll take the time to prove, since it sheds
light on the index manipulations that are typical of exterior calculus. First,
define, for any tensor (say third order as an example),

T[abc] ≡ Tabc − Tbac + Tbca − · · · , (8.271)

where the sum is over all signed permutations. We will prove the following:

T[123...n; n+1] = T[123...n, n+1] . (8.272)

Use the Levi-Civita permutation symbol ε from Chap. 2, but write it with
indices raised in order to use the summation convention. (They have not been
raised with any metric: it’s still the case that ε123... ≡ 1.) The left-hand side
of (8.272) is

εαβ...ω Tαβ...; ω = εαβ...ω (Tαβ..., ω − Γµ
αωTµβ... − Γµ

βωTαµ... − · · · ) . (8.273)

The antisymmetry of the Levi-Civita symbol combined with the symmetry
of the Christoffel terms ensures that each of the ΓT terms in the parentheses
vanishes, so that
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LHS of (8.272) = εαβ...ω Tαβ...; ω = εαβ...ω Tαβ..., ω = RHS of (8.272).
(8.274)

Now, (8.272) enables us to calculate the general exterior derivative

∇∧ (Tαβ...ζ eα ∧ eβ ∧ · · · ∧ eζ
)
. (8.275)

To see how, note that using the same permutation manipulation that ap-
peared in the discussion around (2.36) allows the wedge product in (8.275)
to be written as

eω∂ω ∧ (Tαβ...ζ eα ∧ eβ ∧ · · · ∧ eζ
)

= Tαβ...ζ; ω eω ∧ eα ∧ · · · ∧ eζ

= T123...n; n+1 en+1 ∧ e1 ∧ e2 ∧ · · · ∧ en

+ T213...n; n+1 en+1 ∧ e2 ∧ e1 ∧ · · · ∧ en + · · ·

= T123...n; n+1 en+1 ∧ e1 ∧ e2 ∧ · · · ∧ en

− T213...n; n+1 en+1 ∧ e1 ∧ e2 ∧ · · · ∧ en + · · ·

= T[123...n; n+1] e
n+1 ∧ e1 ∧ e2 ∧ · · · ∧ en

= T[123...n, n+1] e
n+1 ∧ e1 ∧ e2 ∧ · · · ∧ en (and now work backward)

= Tαβ...ζ, ω eω ∧ eα ∧ · · · ∧ eζ . (8.276)

So we have shown that

∇∧ (Tαβ...ζ eα ∧ eβ ∧ · · · ∧ eζ
)

= Tαβ...ζ, ω eω ∧ eα ∧ · · · ∧ eζ . (8.277)

This proof might appear to be long but really only involves permutations.
It is certainly useful to understand because some texts take (8.277) as a
definition—which is certainly not an obvious thing to do, not only because
the comma does not guarantee a tensor but also because a different notation
is typically used (the “d” notation, which we’ll encounter soon). However, the
antisymmetry guarantees that the comma is allowed, as we have seen.

Now we are able to simplify the right-hand side of (8.267) by way
of (8.270). Converting the semicolon to a comma and using the antisym-
metry of Fαβ gives

∇∧ F 2 = 1/2 Fαβ;γ eγ ∧ eα ∧ eβ = 1/2 Fαβ,γ eγ ∧ eα ∧ eβ

= 1/2 (Fyz,x − Fzy,x + · · · ) ex ∧ ey ∧ ez

= (Fyz,x + Fzx,y + Fxy,z) ex ∧ ey ∧ ez

= ∇·G ex ∧ ey ∧ ez. (8.278)



8.10 Exterior Calculus and the Theorems of Stokes and Gauss 345

So the right-hand side of (8.267) is∫∫∫
∇·G ex ∧ ey ∧ ez

(
eI

u,eI
v,eI

w

)
du dv dw . (8.279)

Also,

ex ∧ ey ∧ ez
(
eI

u,eI
v,eI

w

)
du dv dw =

∣∣∣∣∣∣∣
ex ·eI

u . . . ex ·eI
w

...
ez ·eI

u . . . ez ·eI
w

∣∣∣∣∣∣∣ du dv dw

=

∣∣∣∣∣∣∣
Λx

u . . . Λx
w

...
Λz

u . . . Λz
w

∣∣∣∣∣∣∣ du dv dw =
∂(x, y, z)
∂(u, v, w)

du dv dw . (8.280)

This is a signed volume and is independent of parametrisation when inte-
grated, so is usually denoted dx ∧ dy ∧ dz. Again, x, y, z and u, v, w will usu-
ally have the same handedness, so that the sign of this area is +1 and it can
be written simply as dxdy dz.

Finally, combining (8.267), (8.269), (8.279), and (8.280) gives∫∫
G·n dS =

∫∫∫
∇·G dV , (8.281)

which is Gauss’s theorem.

Alternative Notation for the Exterior Derivative

Exterior calculus texts generally abbreviate the manipulations involved with
the generalised Stokes–Gauss theorem. Consider, for example, (8.259) to-
gether with (8.262), writing

ey ∧ ez
(
eI

u,eI
v

)
du dv =

∂(y, z)
∂(u, v)

du dv ≡ dy ∧ dz . (8.282)

The abbreviation dy ∧ dz means that effectively the terms involving u and v
have vanished, and the cobasis vectors ey,ez have metamorphosed into dy,dz.
This is true, but pedagogy can suffer heavily when the entire calculation is
shortened considerably in most exterior calculus texts, which essentially begin
by treating their cobasis vectors as a new breed of object, a one-form, and
calling them dy,dz (even though these are not infinitesimals). In the light
of our previous discussion of one-forms in Sect. 8.6.2, we suggest that this
presents a great deal of needless confusion.

Unfortunately, from there, in a sort of chain reaction, several increasingly
obscure things tend to be written. First, the vector A, which would normally
be written over a cobasis as Aαeα, is instead written as Aαdxα, even though A
is not an infinitesimal. Next, the curl operator ∇∧ needs to act on the Aαdxα
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to produce Aβ,αdxα ∧ dxβ . This tends to be arranged by simply defining it
to be so; the notion that a covariant derivative might need to be used is not
always mentioned, although, as we showed in (8.276), it’s true that partial
differentiation does suffice. But this means that the operator ∇∧ ≡ eα∂α∧
is replaced by dxα∂α∧. The dxα∂α is then reinterpreted as almost the usual
infinitesimal operator “d”, based on the identity df = dxα∂αf , while at the
same time not really being an infinitesimal at all.

At the end of this convoluted path, the exterior product ∇∧ becomes
written as “d”, and (8.277) is typically written as a definition:

“ d
(
Tαβ...ζ eα ∧ eβ ∧ · · · ∧ eζ

) ≡ Tαβ...ζ, ω eω ∧ eα ∧ · · · ∧ eζ ”. (8.283)

We can see a correspondence with the notation of this chapter in that, while
we might write (for no particular reason)

∇∧ xα = eβ∂β ∧ xα ≡ eβ∂βxα = eα, (8.284)

users of the“d”, in contrast, would simply replace the ∇∧ xα with dxα. If they
were using one-forms ωα, instead of our cobasis vectors eα, this replacement
would have the effect of either converting (8.284) to the odd-looking iden-
tity “dxα = ωα” as mentioned earlier on p. 307, or else reducing (8.284) to a
triviality, since the cobasis vectors eα, or rather the one-forms ωα, would have
been written as dxα from the very beginning anyway. None of this renders“d”
a good notation for the exterior derivative.

Another example of the use of “d” is that our fundamental expres-
sion eα ·eβ ≡ δα

β is written in “d” notation—and referring to the discussion
around (8.7)—as “ 〈dxα| ∂β〉 ≡ δα

β ”, which has none of the symmetry of the
basis-cobasis expression. With the wisdom of hindsight, we can see what is
happening; but without that wisdom, using the “d” in this way is nothing if
not obtuse. We saw this sort of notation earlier in (8.108) together with the
discussion following that equation.

Further obscurity follows when the d is used to relate a tensor to an
exterior derivative (which, remember, is just a generalised curl). For example,
(8.257) shows that the Faraday tensor F can be written as a generalised curl
of the electromagnetic vector potential A:

∇∧ A = (Aβ,α−Aα,β) eαeβ = Fαβ eαeβ = F . (8.285)

Texts using the d notation for a generalised curl will write this as F = dA
(even though there are no u, v terms present). As far as notation is concerned,
this has an odd look about it, seeming to mix a noninfinitesimal with what
appears to be an infinitesimal (but is not), and so has quite a potential to mis-
lead. It tends to be justified by describing the d as supplying the underlying
rigor when using infinitesimals—although what this really means is not at all
clear. Infinitesimals pervade both mathematical physics and pure mathemat-
ics quite deeply, and physicists and mathematicians use them all the time.
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Although the idea of a rigorous way to treat infinitesimals is interesting and
has a place within mathematics, the idea that they are something very small
is never misleading and always highly useful—especially when they appear
alone in an integral, as opposed to occurring in pairs for derivatives, where
there is less need to think of them as having infinitesimal size.

So, we choose not to redefine d to mean an exterior derivative. The d
in (8.283) is not denoting an infinitesimal, and the a priori use of the comma
in that definition has a very untensorial look about it, which is not satisfying
from a notational point of view. And while it all works for the Stokes–Gauss
theorem—since this has the required (eu,ev) du dv term in it from the outset,
which was the necessary ingredient to produce expressions such as dy ∧ dz—
there is no reason that it should be more generally useful.

Of course, the use of d means that the expressions that we have calcu-
lated in this section via determinants can appear top-heavy because, while
we write (8.282) as it stands, users of the d notation will simply omit the(
eI

u,eI
v

)
du dv and write dy ∧ dz straightaway since they already write ey,ez

as dy, dz from the outset. This is certainly concise, and abbreviating notation
in meaningful and useful ways is of course an important concept in mathemat-
ical physics. But pedagogically, abbreviating the language too soon, before
the concepts have been understood, does not give the student any opportu-
nity to understand why the subject has been built in the way that it has. It’s
true that F = ∇∧ A can be cumbersome to write over and over, and short-
ening it to, e.g., “F = ∂A” can be useful, especially if it suggests that partial
differentiations are happening without looking too much like an infinitesimal
(cf. F = dA on the previous page). Notation should not confuse or mislead.

Finally, the “d” notation is conventionally used to write the generalised
Stokes–Gauss theorem (8.251) or (8.252) as

“
∫

boundary

F =
∫

interior

dF ”. (8.286)

This has a deceptively simple form that requires a lot of work to decrypt, as
we have seen in this section.

Divs of Curls, and Curls of Grads

The result of operating twice with the exterior derivative ∇∧ on any multi-
vector is zero because each operator brings in a partial derivative, and the
two partial derivatives commute while the wedges anticommute. That is, for
any n-index antisymmetric tensor F ,

F (being antisymmetric) = 1/n! Fα...ζ eα ∧ · · · ∧ eζ , (8.287)

so that

∇∧ F = 1/n! Fα...ζ, ω eω ∧ eα ∧ · · · ∧ eζ ,

∇∧ (∇∧ F ) = 1/n! Fα...ζ, ωη eη ∧ eω ∧ eα ∧ · · · ∧ eζ = 0 . (8.288)
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It is straightforward to show that the identity ∇∧ (∇∧ F ) = 0 also holds
when F is a scalar or vector function, even though the notion of anti-
symmetry does not apply to these. For a scalar function, it reduces to the
very well-known “curl(grad) = 0”, while if F is a vector function, we obtain
“div(curl) = 0”. So if we consider scalars and vectors to be the simplest types
of multivectors, then the following general identity holds:

∇∧ (∇∧ multivector) = 0 . (8.289)

In hindsight this might well seem reasonable (or at least easily memorised)
since we already know that the wedge product vanishes when two of its factors
are identical, for the same reason that a determinant vanishes when two of
its rows (or columns) are identical. Even so, we must remember that beyond
scalars and vectors, (8.289) requires antisymmetry in the tensor indices. It
becomes shortened to “d2 = 0” in exterior calculus texts (where the d2 acts
on an n-form), which is certainly obscure.

The various theorems and index manipulations of this section are part of
the subject of exterior calculus, which seeks to bring a geometrical view to
bear on tensor analysis, thereby shedding light on subjects such as electro-
magnetism and relativity. We have already seen in (8.285) that the Faraday
tensor is the exterior derivative—that is, the generalised curl—of the elec-
tromagnetic vector potential: F = ∇∧ A. And in Chap. 12 we’ll encounter
the exterior derivative again, using it as a shortcut in deriving the quantities
needed to calculate gravitational fields.



9 Curvature and Differential Geometry

We spent the last chapter building up the notation of tensor calculus and
developing a feel for covariant notation. Now we wish to look at some of the
basic ideas behind differential geometry, the detailed study of curvature, since
these will prove valuable in paving the way to general relativity.

9.1 Curvature in the Plane

A natural place to begin to think of curvature is to ask how much we need
to turn the steering wheel of a car in order to drive along a curved road on
a flat plane, shown on the left in Fig. 9.1. For a given distance travelled, ∆s,
the greater the angle ∆θ through which we must turn the steering wheel,
then intuitively the more curved the road must be. The curvature at a single
point is defined as the limit of this angle turned through per unit of distance
travelled:

curvature k ≡ dθ

ds
. (9.1)

Being one-dimensional, the curve has just one parameter to quantify it, and
this is arc length s or any parameter related to s. Parametrisations using
arc length turn up again and again in differential geometry. Their analogy
in the geometrical view of relativity is the proper time used in spacetime

∆s

∆θ

circular arc,
radius R

∆s

∆θ

∆θ

Fig. 9.1. Left: Curvature is defined by how far we must turn a steering wheel to
get around a corner. Right: In the case of a circle, the curvature is constant and
equal to the reciprocal of its radius.
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Fig. 9.2. Any three noncollinear points can always be joined by a circle. The proof
is by construction. Use a compass and ruler to draw perpendicular bisectors through
pairs of points. These lines must intersect at the circle’s centre.

diagrams, which we know is the invariant interval between events. An element
of arc length for a general curve in the xy-plane is given by Pythagoras’s
theorem as ds =

√
dx2 + dy2 =

√
1 + (dy/dx)2 dx. In general, this is difficult

or impossible to integrate analytically in terms of simple functions, even for
the most basic curves, but we’ll have no need to do so in this chapter.

On the right-hand side in Fig. 9.1 is shown the case of driving around
a circle of radius R. Here ∆θ/∆s = 1/R, and this doesn’t change in the
limit as ∆s → 0, which matches our intuition that a circular road requires
a constant turn on the steering wheel. So a good quantity to help develop a
feel for curvature is

curvature k of a circle = 1/radius. (9.2)

The idea that a circle has a constant curvature can be applied to any point
of an arbitrary curve in the plane to give the concept of the osculating circle
at that point. Choose any three points on the curve. As shown in Fig. 9.2,
a circle can always be drawn through them since its centre must lie at the
intersection of the perpendicular bisectors of any two pairs of the points.
Fig. 9.2 shows this construction using a compass and ruler. By letting all
three points approach the point at which we wish to know the curvature, this
circle drawn through them tends toward a unique circle at that point, known
as the osculating circle (from the Latin “to kiss”). We’ll omit the long but
straightforward exercise of proving that the curvature k = dθ/ds is indeed
the reciprocal of the osculating circle’s radius.

If the tangent vectors are all drawn with unit length (a procedure we’ll
quantify shortly), they can be collected along a curve and placed with their
tails all at one point, shown in Fig. 9.3. This is a circle map, which allows
us to visualise the swept angle much as was done in Fig. 9.1 for the circle.
The angle swept through is just the length of the arc, with no units since the
circle is an abstract entity:
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P

∆s
∆θ

∆θ

collect tangent vectors circle map

unit radius

Fig. 9.3. Collecting the tangent vectors (arranged to have unit length) along the
curve in the vicinity of a point P makes a circle map of that curve to a unit circle.
For clarity, the three representative vectors drawn have been given three different
arrowheads to show where each lies in the circle map. (Thus, all vectors with any
one arrowhead are parallel across the three pictures above.) The angle ∆θ is also
just the length of the arc that the vectors encompass on this circle.

k =
dθ

ds
= lim

∆s→0

[
dimensionless arc length swept out on unit
circle by tangents or normals

]
corresponding arc length ∆s of actual curve

. (9.3)

For nonplanar curves in euclidean 3-space, this notion of curvature still
applies. But the plane containing the osculating circle at any point of the
curve, known as the osculating plane, will now twist about as it follows the
curve’s meanderings through space. To quantify this further, we’ll take our
basic curve to be a one-parameter map, embedded in any number of higher
dimensions (three for the sake of a picture), as shown in Fig. 9.4. The vec-
tor ∆α might have any length, depending on the parameter s describing the
curve. But there are advantages to having s measure the curve length, or
at least something proportional to it, and this choice is the main one in the

x

y

z

∆α

α(s)

α(s + ∆s)

Fig. 9.4. A particle moving along a curve has a velocity vector that’s independent
of any coordinates. Dispensing with the particle leaves us with a tangent vector.
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study of differential geometry. The analogous parameter in the spacetime of
relativity is proper time—the time measured by a clock traversing a given
worldline. But this, too, is a “length” for a particle’s worldline, as was dis-
cussed on p. 201.

So the parameter s might be geometrical length or proper time. That
means that in the limit ∆s → 0, the velocity vector has a length that is just
the length of the curve element. Thus scaling the vector by ds ensures it will
always have unit length, again a desirable property. And sure enough, this is
exactly what we did when defining the four-velocity in (6.13), where proper
time dτ had the same role as ds.

To eliminate the need for drawing an osculating circle at a point of inter-
est on a given curve, we can approach curvature slightly differently by way
of the curve’s tangent vector. The special, and useful, property of a curve
parametrised by arc length is that its tangent vector always has unit length,
which follows from Fig. 9.4:

|α′(s)| = lim
∆s→0

|α(s + ∆s) − α(s)|
∆s

=
|dα|
ds

=
ds

ds
= 1 . (9.4)

(Compare this with the four-velocity of relativity, which for the same reason
always has unit length.) For a general parametrisation α(t), where t is not
necessarily arc length, the tangent vector is α′(t), and in general the tangent
vector’s length depends on this parametrisation since

α′(t) = α′(s)
ds

dt
. (9.5)

In that case, the length of the tangent for an arbitrary parametrisation is
|α′(t)| = |ds/dt|. If t is thought of as time, then |ds/dt| is the speed that a
particle traversing the curve would have. In essence we’re saying that if we
measure time in terms of distance travelled, then no matter how fast we go,
our “speed” is always one—since it’s the distance travelled divided by itself.

It certainly makes sense to concentrate on a parametrisation where the
speed is at least constant (if not unity), since that endows higher derivatives
with geometric significance. Why? Because if |α′(t)| = constant, then

α′(t)·α′(t) = constant,
i.e. α′(t)·α′′(t) = 0 (by differentiating)
or α′(t) ⊥ α′′(t) , (9.6)

so that for such a parameter t, α′′(t) is normal to the curve. (We’ve seen this
procedure before when relating four-velocity to four-acceleration in the box
on p. 245.) Thus α′′(t) points toward the centre of the osculating circle. For
a particle tracing out the curve with constant speed, this vector is none other
than the centripetal acceleration familiar from newtonian kinematics. So, for
example, if a particle moves in a circle at constant speed,
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α(t) =
(
r cos(ωt + θ0), r sin(ωt + θ0)

)
, (9.7)

then its centripetal acceleration is

α′′(t) = −ω2 α(t) , (9.8)

which clearly does point toward the centre of the circle.
We could equally well consider other constant speeds. For these, t can be

written in terms of arc length s using two constants c1, c2, as

t = c1s + c2 . (9.9)

Here c1 is really a measure of the units used and c2 sets a starting time.
The relationship (9.9) sets t to be an affine parameter. Neither of the con-
stants c1, c2 is relevant physically, so we can restrict ourselves to the special
parametrisation of arc length s, corresponding to the particle traversing the
curve with unit speed. (Many of the results in this chapter hold, or are easily
extended to hold, for affine parameters since the derivative ds/dt is constant
and so changes the equations only trivially.)

To summarise, the unit tangent vector is

T (s) ≡ α′(s) , (9.10)

and the principal normal vector (also of unit length) is defined as

N(s) ≡ α′′(s)
|α′′(s)| =

T ′(s)∣∣T ′(s)
∣∣ , (9.11)

which lies in the osculating plane. (The basis set is completed by defining the
binormal vector as B ≡ T × N , which is normal to the osculating plane.)
We defined the curvature as the rate of increase of the tangent vector angle
with respect to arc length; but for a unit tangent vector T (s), this angular
increase is just the arc length that T (s) traces out as it turns, or |dT (s)|.
Thus

k =
1
r

=
dθ

ds
=

|dT (s)|
ds

= |T ′(s)| = |α′′(s)| , (9.12)

and this general expression for the curvature no longer depends on construct-
ing an osculating circle. The vector α′′(s) is called the curvature vector and
always points toward the centre of curvature. Sometimes it’s called the ac-
celeration vector, which is misleading since it is really only the acceleration
when a particle traversing the curve has unit speed. The vector α′′(s) will
not always point toward the centre of curvature if the particle’s speed varies.

On that note, the usual expressions for velocity and acceleration can now
easily be produced in the following way. The position vector α(t) differentiates
to give the proper vectors α′(t) and α′′(t):

α′(t) = α′(s)
ds

dt
=

ds

dt
T ≡ v T ; (9.13)
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i.e., the velocity is tangential, while the acceleration is

α′′(t) =
dv

dt
T + v2 T ′(s)

=
dv

dt
T +

v2

r
N , (9.14)

where r is the radius of curvature. So the acceleration is a mixture of cen-
tripetal and tangential components, a concept familiar from classical mechan-
ics.

9.1.1 Curves on Surfaces

Up until now, our discussion has been restricted to curves in euclidean
3-space. But suppose that such a curve actually resides on a surface within
that space. Because such a surface needs only two parameters to describe it,
it’s called a 2-surface, and is produced by a map X:R2 → E

3 such as shown in
Figs 8.2, 8.3, and 9.5. We will here label the two parameters as u1, u2, so that
the map is X:

{
u1, u2

}→ {x, y, z}, giving the surface two basis vectors e1,e2.
As is fairly conventional, Latin subscripts are used throughout the following
calculations to emphasise that we are only using the variables u1, u2; that is,
a subset of the surrounding 3-space:

ea ≡ ∂X

∂ua
. (9.15)

These basis vectors are tangential to the surface. For the 2-sphere of Fig. 8.3,
eθ points everywhere south and eφ points everywhere east, but in general they
can point anywhere tangentially and need not be orthogonal. The euclidean
3-space itself is spanned by the two basis vectors of the embedded 2-surface
along with one more vector (set to have unit length): the vector U normal
to the surface:

U ≡ e1 × e2

|e1 × e2| . (9.16)

The curve α is now the image of a curve in the u1-u2 space and is shown in
Fig. 9.5.

We can investigate how the tangent and curvature vectors relate to cur-
vature by writing1

α(s) = X
(
u1(s), u2(s)

)
,

α′(s) = ua′(s)
∂X

∂ua
= ua′ ea , where ua′ ≡ ua′(s) ≡ dua/ds ,

α′′(s) = ua′′ ea + ua′ ub′ ea,b . (9.17)

1 Don’t confuse the derivatives ua′ with ua′
, which are components in a primed

basis! We won’t be using the latter.
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u1

u2

X

x

y

z

α(s)

e1

e2

U

Fig. 9.5. The function X :
{
u1, u2

} → {x, y, z} maps a curve
(
u1(s), u2(s)

)
in R

2

into another curve α(s) in E
3 on the 2-surface embedded in euclidean 3-space.

(Notice how different the expressions are for the position vector α as op-
posed to the proper vectors α′ and α′′, which make use of components, a
basis, and the summation convention.) We have seen the expression ea,b pre-
viously in (8.177), except that there it was introduced without a context of
embedding. Now we must alter it to ensure that the entire 3-space is spanned,
by adding a normal contribution, giving what are known as Gauss’s formulae:

ea,b ≡ Γ c
ab ec + Lab U . (9.18)

The set of new coefficients Lab is known as the second fundamental form.
(The metric is sometimes called the first fundamental form; see the comment
on p. 338.) The second fundamental form is easily determined from (9.18) by
dotting each side with U to give

Lab = ea,b ·U . (9.19)

Like the Christoffel symbols, Lab is symmetric since ea,b = eb,a.
Figure 9.6 shows the relationships among the derivatives of α(s) and

their components. We can see in this figure that the curvature vector α′′(s)
resolves into two components, tangential and normal to the surface. Evidently,
the tangential component α′′

tan(s) measures how the curve bends within the
surface, while the normal component α′′

nor(s) is due to the bending of the
surface itself within the ambient euclidean 3-space. So write the curvature
vector in (9.17) as

α′′(s) =
(
uc′′ + Γ c

ab ua′ ub′) ec︸ ︷︷ ︸
≡ α′′

tan

+Lab ua′ ub′ U︸ ︷︷ ︸
≡ α′′

nor

. (9.20)

The two components of the curvature vector can now be seen explicitly. First
is the geodesic curvature of the curve, kg:

α′′
tan =

(
uc′′ + Γ c

ab ua′ ub′)ec ≡ kg U × α′︸ ︷︷ ︸
“geodesic normal vector”

. (9.21)
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U

α(s)

α′′(s)

α′′
nor(s)

α′′
tan(s)

α′(s)

Fig. 9.6. Relationships of the various derivatives along a curve α(s), with reference
to (9.20). The tangent or velocity vector α′(s) points out of the page. The curvature
or acceleration vector α′′(s) points toward the centre of the osculating circle of α
at the point of interest. The curvature vector α′′(s) resolves into components α′′

nor

normal to, and α′′
tan tangential to, the surface. The normal vector U is shown, while

e1, e2 are omitted for clarity. They span the tangent plane, as do α′ and α′′
tan. It’s

evident that α′′
nor ∝ U , while α′′

tan ⊥ U . Also, it must be true that α′′
tan ⊥ α′ since

α′′
tan · α′ = (α′′

tan + α′′
nor) · α′ = α′′·α′ = 0. Thus, because α′′

tan is perpendicular to
both U and α′, we conclude that α′′

tan ∝ U × α′. This relationship is used in (9.21).

The geodesic curvature quantifies how the curve bends within the surface and
so is known as intrinsic to the surface.

The second component of the curvature vector is the normal curvature
of the surface in the α′(s) direction, defined as kn(α′) (which we’ll write
as kn):

α′′
nor = Lab ua′ ub′ U ≡ knU . (9.22)

The normal curvature of the surface as a function of direction has nothing to
do with the curve α(s): it’s a property of the surface alone, measuring how
the surface bends within the surrounding euclidean 3-space. This is termed
extrinsic curvature. The study of intrinsic and extrinsic curvatures is fun-
damental to gaining an understanding of the curved spacetime of general
relativity.

We have now defined three curvatures: k from (9.12) and earlier equations,
kg from (9.21), and kn from (9.22). Useful for visualising these is the fact
that they are related via Pythagoras’s theorem. To see this, note that (9.20)
becomes

α′′(s) = kg U × α′ + kn U . (9.23)

But the vectors U and U ×α′ are orthogonal, so we can apply Pythagoras’s
theorem to write

k2 = k2
g + k2

n , (9.24)
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which is useful to keep in mind in developing an intuitive feel for the vari-
ous curvatures, especially as we are usually only interested in their absolute
values.

The two curvature components of (9.23) can be extracted simply by taking
the dot product of its left-hand side with each of its right-hand side’s unit
vectors (and permuting the mixed dot/cross product that results):

kn = U · α′′ ,

kg = U · α′×α′′ .
(9.25)

So the normal curvature of the surface in the direction of the curve’s tangent
is the normal component of the curvature vector α′′, while the geodesic cur-
vature of the curve itself is the normal component of the crossed tangent and
curvature vectors α′× α′′. For example, if the surface is a plane, then α′′

must lie within it and be everywhere orthogonal to U , so that the normal
curvature must vanish in all directions at every point. All of the curvature of
a plane curve must therefore be geodesic curvature.

The normal curvature in some direction has another interpretation. Sup-
pose that, at some point P of interest, we draw a new curve β whose oscu-
lating plane is normal to the surface. In that case, β′′ is parallel to U so

kn = U ·β′′ = U ·(± ∣∣β′′∣∣U) = ±|β′′| , (9.26)

where the plus sign indicates that the centripetal acceleration of a point
traversing the curve at constant speed is parallel to U , and a minus sign
indicates it is antiparallel. This gives a more intuitive feel for the normal
curvature of the surface in a given direction at P . We merely draw a new
curve on the surface in a normal plane, with its tangent pointing in the
given direction, and measure the curvature k of the curve at P . This will
equal kn (up to a sign that doesn’t concern us). This new curve has no
geodesic curvature (kg = 0).

To illustrate these points, let’s calculate k, kn, kg for a circle of constant
latitude on Earth, known as a small circle. Refer to Fig. 9.7 for the map,
where Earth is modelled as a sphere of radius R:

X(θ, φ) = (R sin θ cos φ, R sin θ sin φ, R cos θ) . (9.27)

The small circle runs around from φ = 0 → 2π, where φ itself is a function
of the curve length s:

α(s) ≡ X
(
θ0, φ(s)

)
= (R sin θ0 cos φ(s), R sin θ0 sin φ(s), R cos θ0) ,

(9.28)
with ds = R sin θ0 dφ. The derivatives needed for (9.25) are easily calculated:
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X

θθ0

φ

0

2π

x

y

z

φ

θ0

α(s)

R

Fig. 9.7. Defining a path following a circle of constant latitude on a sphere enables
us to calculate the normal curvature kn of the sphere along the path, along with
the path’s geodesic curvature kg, as well as verifying that k2 = k2

n + k2
g .

α′(s) = (− sin φ, cos φ, 0) ,

α′′(s) =
1

R sin θ0
(− cos φ,− sin φ, 0) ,

α′× α′′ =
1

R sin θ0
(0, 0, 1) . (9.29)

The normal vector to the surface at θ = θ0 is

U =
eθ × eφ

|eθ × eφ|
(8.4)

(sin θ0 cos φ, sin θ0 sin φ, cos θ0) . (9.30)

Hence, (9.25) gives

kn = U · α′′ =
−1
R

, kg = U · α′×α′′ =
cot θ0

R
. (9.31)

The curvature of the small circle in the euclidean 3-space is the positive
quantity k = 1/(R sin θ0). The signs of kn and kg are sensitive to the choices
of the sign of U and the direction of the path, but as can easily be verified,
the relation k2 = k2

n + k2
g does certainly hold.

Notice that the normal curvature in the direction of the path, kn, is con-
stant regardless of the latitude of the small circle, as expected from our dis-
cussion immediately following (9.26). We expect that |kn| = 1/R because
kn measures the curvature of a great circle, which we know has k = 1/R on a
sphere. On the other hand, the geodesic curvature kg certainly changes sign
as we move from the Northern Hemisphere to the Southern Hemisphere. For
our choice of normal U and path direction, kg tends to +∞ near the North
Pole, reduces to zero at the equator, then switches sign in the Southern Hemi-
sphere, tending to −∞ near the South Pole. It measures the amount by which
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Fig. 9.8. A curve parametrised by length s in 2-space, mapped to an image α(s)
on a surface in 3-space. The lighter curve is a perturbation αε(s).

we would have to turn the steering wheel in a car travelling east along the
small circle: turning constantly to the left in the Northern Hemisphere, trav-
elling straight ahead at the equator, and turning constantly to the right in
the Southern Hemisphere.

9.2 Geodesics: Curves with No Geodesic Curvature

The geodesic and normal curvatures serve to introduce two important con-
cepts that will become useful for thinking about general relativity. Geodesic
curvature kg is a property of the curve alone, and the lack of it defines a
geodesic curve. On the other hand, normal curvature kn is a property of the
surface alone and appears when we define the curvature of the surface itself,
which we’ll do shortly.

As a curve meanders over a surface, its curvature k might vary between be-
ing mostly normal and mostly geodesic. A curve with no geodesic curvature is
called a geodesic; its curvature is all normal, being completely inherited from
the way the surface curves in its ambient 3-space. (Perhaps this is confusing
terminology, but we can think of geodesic curvature as being the amount by
which a curve veers away from being geodesic.) This definition means that
either of the following equations determines a geodesic. All derivatives are
taken, as usual, with respect to arc length s:

uc′′ + Γ c
ab ua′ ub′ = 0 for all c , (9.32)

U · α′×α′′ = 0 . (9.33)

We’ll concentrate on the first expression since it serves to define a geodesic in
any number of dimensions, unlike the second. The first expression can be used
to show the most important property of a geodesic: a curve is a geodesic if
and only if it has stationary length with respect to perturbations of the curve
when the two end points are held fixed, such as shown in Fig. 9.8.
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To prove this assertion, first set up the scenario. The curve α(s) results
from the usual map X:

{
u1, u2

}→ {x, y, z}:

α(s) ≡ X
(
ua(s)

)
. (9.34)

Perturb α(s) by constructing another curve anchored to the end points,

αε(s) ≡ X
(
ξa(s, ε)

)
, (9.35)

which adds a small amount ε of a perturbing function ηa(s) to the main
curve α(s). Describe this curve using perturbed parameters ξa:

ξa(s, ε) ≡ ua(s) + ε ηa(s) , (9.36)

ηa(s1) = ηa(s2) = 0 (end-point anchoring). (9.37)

Suppose L(ε) is the length of αε(s) from s = s1 → s2. Then

dL(ε) = |dαε| =
∣∣∣∣∂X

∂ξa
dξa

∣∣∣∣ . (9.38)

But (9.36) implies that
∂X

∂ξa
=

∂X

∂ua
≡ ea , (9.39)

so that
dL(ε) = |dξa ea| =

√
gab dξa dξb , (9.40)

where gab ≡ ea ·eb is the metric on the surface. Thus

L(ε) =
∫ s2

s1

[
gab

∂ξa

∂s

∂ξb

∂s

]1/2

ds ≡
∫ s2

s1

λ(s, ε) ds . (9.41)

Requiring the geodesic length to be stationary means requiring L′(0) = 0.
What is L′(0)? Since λ and ∂λ/∂ε are continuous, we can differentiate under
the integral sign to give

L′(0) =
∫ s2

s1

∂λ(s, 0)
∂ε

ds , (9.42)

where (with a prime meaning d/ds as usual)

∂λ(s, ε)
∂ε

=
1

2λ(s, ε)

[
∂gab

∂ξc
ηc ∂ξa

∂s

∂ξb

∂s
+ 2 gab ηa′ ∂ξb

∂s

]
. (9.43)

Setting ε = 0 converts the ξa to ua, while λ(s, 0) = 1 since s is, after all, the
length parameter:

∂λ(s, 0)
∂ε

=
1
2

gab,c ηc ua′ ub′ + gab ηa′ ub′, where gab,c ≡ ∂gab/∂uc . (9.44)
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Thus

L′(0) =
∫ s2

s1

[
1
2

gab,c ηc ua′ ub′ + gab ηa′ ub′
]

ds . (9.45)

The second term in the brackets integrates by parts:

L′(0) =
∫ s2

s1

1
2

gab,c ηc ua′ ub′ ds +
[
gab ηa ub′

]s2

s1︸ ︷︷ ︸=>
equals zero because
ηa(s1) = ηa(s2) = 0

−
∫ s2

s1

d
ds

(
gab ub′)ηa ds

=
∫ s2

s1

[
1
2

gab,c ua′ ub′ − d
ds

(
gcb ub′)] ηc ds

=
∫ s2

s1

[
1
2

gab,c ua′ ub′ − gcb,a ua′ ub′ − gcb ub′′
]

ηc ds . (9.46)

The expression in the brackets can be further simplified. The metric deriva-
tives recall the Christoffel symbol of (8.182) together with its symmetries:

gab,c = Γabc + Γbac , Γabc = Γacb . (9.47)

Using these, swapping some dummy indices, and finally raising the c sub-
script on the Christoffel symbols—as well as lowering it on the perturbing
function—produces

L′(0) = −
∫ s2

s1

[
Γ c

ab ua′ ub′ + uc′′ ]ηc ds . (9.48)

Now the hard work is done and we’re in a position to prove the original
assertion. If a curve is a geodesic, then (9.32) holds, so that (9.48) trivially
produces L′(0) = 0, and the curve α(s) has stationary length. Conversely,
if α(s) has stationary length, then L′(0) must equal zero for any perturba-
tion ηc in (9.48). That implies that the brackets in the integrand of (9.48)
must be zero, which means that (9.32) holds, so α(s) is a geodesic and the
assertion is proved. (Equation (9.32) will also hold for an affine parameter,
since such a parameter only introduces a multiplicative constant that can be
divided away.)

So it is that a curve with stationary length on a surface must have no
geodesic curvature—in essence it has no curvature of its own. All of its cur-
vature is normal curvature, inherited from the surface itself.

It’s not difficult to prove that, given a point P on a surface together
with a unit tangent vector v at that point, it is always possible to draw a
unique geodesic through P whose tangent equals v. That is, a point and a
direction suffice to determine a unique geodesic. Why? Referring to (9.17),
the geodesic will be α(s) ≡ X

(
u1(s), u2(s)

)
with α′(0) = v, so we wish to
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show that there exist functions ua(s) with a length parameter s, such that
for the initial condition parameters u1

0, u
2
0, v

1, v2 satisfying

P ≡ X(u1
0, u

2
0) , and v ≡ vaea(u1

0, u
2
0) , (9.49)

the functions will satisfy

ua′′ + Γ a
ij ui′ uj′ = 0 ,

ua(0) = ua
0 , ua′(0) = va. (9.50)

The theory of differential equations guarantees that unique functions ua(s)
satisfying (9.50) do exist in a neighbourhood of P , so we need only show
that s is indeed a length parameter. To do this, consider the squared length
of the tangent vector:

|α′(s)|2 = gab ua′(s)ub′(s) . (9.51)

First, |α′(0)| = |v| = 1. Second, the derivative of gab ua′(s)ub′(s) with respect
to s, using (9.50), is zero, which shows that |α′(s)| is a constant for all s.
Thus |α′(s)| always equals one, or |dα| = ds, and so s is indeed arc length
and the theorem is proved. We’ll use this theorem in the next section.

9.3 The Curvature of a Surface

In the discussion around Fig. 9.6 and equation (9.22), we discussed the idea
of measuring the normal curvature of a surface in a given direction at some
point P , since this was just the curvature of a curve drawn on the surface in
a plane containing the normal vector U , with that curve’s tangent pointing
in the given direction. We see now that, locally at least, such a curve is a
geodesic, and it can always be drawn, by the theorem we proved at the end
of the last section. Its curvature k at P is equal to kn since kg = 0.

How does the normal curvature at P depend on direction? Since it is the
curvature k of a locally geodesic curve, we can imagine the infinite number
of such curves through P , each lying in a different normal plane. If we slowly
rotate this plane through 360◦ around the normal through P , the sequence of
curvatures k of the local geodesics varies smoothly as a function of angle, and
so must attain maximal and minimal values in what are known as principal
directions. (These, we will show later, are happily always orthogonal.) These
extremal values of k are known as the principal normal curvatures at P .

It turns out that the whole set of normal curvatures can be condensed in
a simple way to define just one number quantifying the extrinsic curvature of
the surface at P . Before doing this, however, we’ll follow a different approach
by extending the notion of the curvature of a one-parameter curve to a two-
parameter surface.
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dA
P

sphere map

unit radius

dΩ

Fig. 9.9. The 2-surface analogy of Fig. 9.3. The normals for all points in a small
area dA on a surface encompass a solid angle dΩ, which equals the normals’ swept
area on a unit sphere. This is called a sphere map or a Gauss map.

Here is how that’s done. In Fig. 9.3, we pictured a curve in the neighbour-
hood of some point P as having a set of tangent vectors along it (or, equiv-
alently, principal normal vectors), fanning out as it were. Its curvature k
was defined in (9.3) to be the angle made by the fan per unit arc length:
thus k = dθ/ds. Equivalently, since any angle equals its corresponding arc
length on a unit-radius circle, the curvature k was equal to the dimensionless
arc length swept out on a unit-radius circle by the curve’s tangent (or nor-
mal) vector per unit real arc length of the curve itself. A circle turned out to
have a constant curvature of 1/radius.

The same idea applies to a 2-surface. Referring to Fig. 9.9, define the
Gauss curvature K(P ) of the surface at the point P to be the solid angle
swept out by the normals in a vanishing neighbourhood of P per unit real
area of the surface. (Remember that the solid angle subtended by a set of
rays is defined to be equal to the dimensionless area that those rays sweep
out over the surface of a unit-radius sphere—or equivalently, the area swept
out on any sphere divided by the square of that sphere’s radius.)

K(P ) ≡ dΩ

dA
= lim

∆A→0

[
dimensionless area swept out
on unit sphere by normals

]
corresponding area ∆A of actual surface

. (9.52)

Figure 9.9 defines the sphere map as the generalisation of Fig. 9.3’s circle map.
We can see immediately that a sphere of radius r has a Gauss curvature of
4π/(4πr2) = 1/r2, which is a reasonable extension of the one-parameter case
of a circle (which has k = 1/r).

This is all intuitive but needs to be further quantified. To do so, we need to
know how to measure an arbitrary surface area. Remember that the surface
area is given by the cross product in (2.52). In Fig. 9.5, an infinitesimal
parallelogram drawn in the curved surface along directions of constant ua has
edge vectors ∂X/∂u1 du1 and ∂X/∂u2 du2, written as X ,1 du1 and X ,2 du2.
The area of the surface element on the left in Fig. 9.9 is thus

dA = |X ,1 × X ,2| du1 du2 = |e1 × e2| du1 du2. (9.53)
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What about the area dΩ of the corresponding element in the spherical im-
age in Fig. 9.9? Vectors that bound an infinitesimal parallelogram in the
image’s spherical surface are always perpendicular to its radius vectors. But
these radius vectors are just the unit normals U(u1, u2). The parallelogram
must therefore have edge vectors ∂U/∂u1 du1 and ∂U/∂u2 du2, written as
U ,1 du1 and U ,2 du2. The area of the surface element will be the magnitude
of their cross product, or |U,1 du1 × U,2 du2|. The cross product itself must
be proportional to U since the normal to the sphere’s surface is everywhere
proportional to its radius vector U . Thus U,1 × U,2 ∝ U .

Actually, we can improve on this result by introducing a signed area corre-
sponding to whether the ordered set {U ,1, U ,2, U} is right- or left handed. A
change in handedness corresponds to the left-hand surface in Fig. 9.9 chang-
ing its curvature in such a way that its normal vectors fan in instead of out.
These normals still trace out an area on the image sphere but their ordering
has changed. (We could have done this in (9.3) for the one-dimensional case
but decided against it to keep the discussion simple.) This all means that

U = ± U,1 × U,2

|U,1 × U,2| , (9.54)

with ± corresponding to whether {U,1, U,2, U} is right- or left handed, re-
spectively. In that case, define the signed area as

dΩ ≡ ±|U,1 × U,2| du1 du2

= U ·(U,1 × U,2) du1 du2, (9.55)

so that the Gauss curvature becomes

K =
dΩ

dA
=

U ·(U,1 × U,2)
|e1 × e2| . (9.56)

What is U,i in terms of the basis e1,e2? A clue comes from (9.19), which has
all of the ingredients. So begin with the product rule for differentiation:

(ea ·U),b = ea,b ·U + ea ·U,b . (9.57)

But U is perpendicular to e1,e2, so this last equation combined with (9.19)
gives

ea ·U,b = −Lab . (9.58)

Now introduce coefficients γc
b to write U,b as a linear combination of basis

vectors:
U,b = γc

b ec . (9.59)

Dotting this with ea then leads to γab = −Lab, bringing us to the equations
of Weingarten:

U,b = −Lc
b ec . (9.60)
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In that case, writing
(
Li

j

)
as a matrix whose ijth element is Li

j ,

U,1 × U,2 = La
1 ea × Lb

2 eb

= det
(
Li

j

)
e1 × e2 . (9.61)

But, since Li
j = giaLaj , it must be that

det
(
Li

j

)
= L/g , where L ≡ det (Lij) (9.62)

and g is the usual surface metric determinant, det (gij). The Gauss curvature
becomes

K =
L
g U ·(e1 × e2)

|e1 × e2| =
L

g
(9.63)

using (9.16). So we see that the Gauss curvature is related to the first and
second fundamental forms.

The Gauss curvature, being a measure of how the surface bends within
the surrounding 3-space, should be related to the set of normal curvatures
referred to at the start of this section on p. 362. (Remember that the normal
curvature kn(v) was defined in a given tangent direction v.) With the benefit
of hindsight, this relationship can be found by determining the extremal
values of the normal curvature. We know that because the surface is smooth,
the normal curvature must take on a continuum of values as the tangent
vector v is rotated through a full 360◦, and so kn must attain a maximum
and a minimum. How do we do this? Earlier, in (9.22), we defined the normal
curvature in a direction v as

kn(v) = Lab va vb, (9.64)

where v is a unit vector tangent to the surface. We must extremise kn(v) sub-
ject to gab va vb = 1. The calculation actually becomes difficult if we simply
write

kn = L11

(
v1
)2

+ 2L12 v1 v2 + L22

(
v2
)2

(9.65)

and then express, say, v2 in terms of v1 to convert the extremisation to an
exercise in single-variable calculus. An alternative approach uses the method
of Lagrange multipliers, so we’ll digress for a moment to discuss this.

9.3.1 The Method of Lagrange Multipliers

As a simple example of the method, suppose we wish to extremise the value
of f(x, y) = x+y subject to a constraint x2 +y2 = 1. In Fig. 9.10 are plotted
contours of f = constant, together with the constraint x2 + y2 = 1. Our only
interest is the contours that intersect the constraint; in particular, we wish
to find the extremal contour that just touches the constraint. Continuity of
the functions involved guarantees that such a contour exists.
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Fig. 9.10. A simple exercise in Lagrange multipliers. Extremising f(x, y) = x + y
subject to the constraint x2 +y2 = 1 involves choosing a contour of f that not only
touches the constraint circle but is tangential to it. Thus, at the point(s) of interest,
normal vectors of the function and the constraint must point in the same direction.

How do we find this tangential contour? A small step in any direction dx
gives rise to an increase in f of df = ∇f ·dx. If we step along a contour of
constant f , it must be true that df = 0, so that ∇f ⊥ dx. So the gradient ∇f
always points perpendicular to the contours of constant f , precisely as we
saw in Fig. 8.7. Of course, this orthogonality of the gradient applies to any
constraint as well, in which case at the extremal points the gradients of f and
the constraint must line up—they must be proportional. So, in more formal
terms, to extremise the value of f(x, y) subject to a constraint g(x, y) = 0,
we must solve

∇f(x, y) = λ∇g(x, y) ,

g(x, y) = 0 . (9.66)

This is the method of Lagrange multipliers. The parameter λ is called the
Lagrange multiplier and embodies the proportionality of the gradient vec-
tors, but apart from that we’re not interested in its value. In the case of
Fig. 9.10, the function to extremise is f(x, y) = x + y, while the constraint is
g(x, y) = x2 + y2 − 1, so (9.66) becomes

(1, 1) = λ(2x, 2y) ,

x2 + y2 = 1 . (9.67)

These give (x, y) = ±(1/
√

2, 1/
√

2), together with the extremal values of ±√
2

for f . Details of solving nonlinear simultaneous equations are in the box on
the following page.
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Solving Nonlinear Simultaneous Equations

How do we solve a set of three nonlinear simultaneous equations such as (9.67)?
First, write them as

f1(x, y, λ) = 0 ,

f2(x, y, λ) = 0 ,

f3(x, y, λ) = 0 . (9.68)

There are three equations in three unknowns here. Set x ≡ [x y λ]t (a column
vector), and write them as f1(x) = 0, etc. For some x0 not too far from x,
we can Taylor-expand the functions to first order, writing (and remembering
that ∇f1, . . .∇f3 are row vectors)⎡⎣f1(x)

f2(x)
f3(x)

⎤⎦ �
⎡⎣f1(x0)

f2(x0)
f3(x0)

⎤⎦ +

⎡⎣∇f1(x0)
∇f2(x0)
∇f3(x0)

⎤⎦
︸ ︷︷ ︸

≡ J(x0)

(x − x0) . (9.69)

But the left-hand side of this equation is the zero vector, in which case

0 �
⎡⎣f1(x0)

f2(x0)
f3(x0)

⎤⎦ + J(x0) (x − x0) , (9.70)

which rearranges to give

x � x0 − J−1(x0)

⎡⎣f1(x0)
f2(x0)
f3(x0)

⎤⎦ . (9.71)

This last equation can be used iteratively, hopefully converging to the solution:
the initial estimate of the parameters x, y, λ is x0, and the new estimate is given
by the right-hand side of (9.71). The linearisation used here is reminiscent of
the approach taken for nonlinear least squares fitting in the box on p. 101.

For the case of three variables, suppose we must extremise f(x, y, z) sub-
ject to constraints g1(x, y, z) = 0 and g2(x, y, z) = 0. The constraints now
describe surfaces in the xyz-space that intersect in a curve. Any surface of
constant f must intersect this curve, and the extremal one must touch it tan-
gentially. This implies that ∇f must lie in the plane formed by ∇g1 and ∇g2.
So we must solve

∇f(x, y, z) = λ1∇g1(x, y, z) + λ2∇g2(x, y, z) ,

g1(x, y, z) = 0 ,

g2(x, y, z) = 0 . (9.72)



368 9 Curvature and Differential Geometry

With more variables, the method extends quite easily: ∇f must be a linear
combination of ∇g1, . . . ,∇gn, and of course the constraints themselves must
always be included. A rigorous proof in higher dimensions can be found in
advanced calculus texts.

For the case at hand, we must extremise the normal curvature in a direc-
tion given by a unit vector v:

Extremise kn = Lab va vb subject to gab va vb = 1 . (9.73)

Write these as

kn = L11

(
v1
)2

+ 2L12 v1 v2 + L22

(
v2
)2

,

g11

(
v1
)2

+ 2g12 v1 v2 + g22

(
v2
)2

= 1 . (9.74)

The gradient part of Lagrange’s method is[
2L11 v1 + 2L12 v2

2L12 v1 + 2L22 v2

]
= λ

[
2g11 v1 + 2g12 v2

2g12 v1 + 2g22 v2

]
. (9.75)

Writing the matrices (Lab) and (gab) as L̂ and ĝ allows us to write (9.75)
more tidily as

L̂v = λĝ v , (9.76)

so that
(
L̂ − λĝ

)
v = 0, which implies that the determinant

∣∣L̂ − λĝ
∣∣ = 0

since v 	= 0: ∣∣∣∣L11 − λg11 L12 − λg12

L12 − λg12 L22 − λg22

∣∣∣∣ = 0 . (9.77)

(Remember that both L̂ and ĝ are symmetric.) Writing (as usual) the deter-
minants of L̂ and ĝ as L and g, this last equation becomes

λ2 − λ

g
(L11 g22 + 2L12 g12 + L22 g11) +

L

g
= 0 . (9.78)

There are two Lagrange multiplier roots to this quadratic, but at this point
we notice something: their product must be L/g, which is just the Gauss
curvature. But since kn = Lab va vb, it must follow that

kn = vt L̂v = vt λĝ v = λ gab va vb = λ . (9.79)

Thus, the Lagrange multipliers happen to equal the corresponding maximal
and minimal normal curvatures (call these k1 and k2), so their product is
therefore

k1 k2 = L/g . (9.80)

This is an elegant result, so we decide not to carry through the solution
of (9.78); we’re content to note that the product of the maximal and minimal
normal curvatures is the Gauss curvature.
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What about the two principal directions, vectors v1 and v2 that cor-
respond to k1, k2? We can show these are orthogonal by a commonly used
technique in this type of analysis. First, it’s certainly true that

vt
1 L̂v2 = vt

2 L̂v1 . (9.81)

The reason is that these expressions are scalars, so the left-hand side must
equal its transpose, which, because L̂ is symmetric, equals the right-hand
side. However, we can also eliminate L̂ using (9.76) with λ → k:

vt
1 L̂v2 = vt

1 k2 ĝ v2 = k2 v1 ·v2

and vt
2 L̂v1 = vt

2 k1 ĝ v1 = k1v2 ·v1 . (9.82)

So k2 v1 ·v2 = k1 v2 ·v1. If k1, k2 differ, then necessarily v1 ⊥ v2, which means
that the principal directions will be orthogonal. If k1 = k2, the normal curva-
tures are everywhere equal, so any two orthogonal directions serve as principal
directions.

In summary, the Gauss curvature can be visualised in a simple way. We
consider all of the normal plane sections of our surface at the point of interest,
each one producing a curve with curvature equal to 1/radius of its osculat-
ing circle. By rotating the normal plane through 360◦ around the point of
interest, the curvatures attain maximal and minimal values in the principal
directions, which are orthogonal if the curvature changes throughout the 360◦.
The product of these two curvatures is the Gauss curvature. Examples are
shown in Fig. 9.11.

It might be thought that somehow the Gauss curvature favours the prin-
cipal directions together with their curvatures. After all, as we vary the unit
vector v along which we measure normal curvature, there is a continuum
of curvature values in between the principal curvatures v1 and v2. Shouldn’t
these intermediate normal curvatures also have a say in quantifying the Gauss
curvature? In a sense, they do—because they can all be derived from the
principal curvatures! If we call (v,v1) the angle between v and v1 and like-
wise (v,v2) the angle between v and v2 (so that (v,v1) + (v,v2) = 90◦),
then (9.64) together with some arguments from this section can be used to
show that all intermediate normal curvatures kn(v) are given by Euler’s for-
mula:

kn(v) = k1 cos2(v,v1) + k2 cos2(v,v2) . (9.83)

This has a pleasing symmetry and shows that, despite appearances, the Gauss
curvature does not really “favour” the principal normal curvatures over their
intermediate values.

9.4 Gauss’s Extraordinary Theorem

So far, the Gauss curvature K = L/g looks to be a mixture of extrinsic cur-
vature (characterised by L) and intrinsic curvature (characterised by g). But
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Fig. 9.11. Pairs of curves having the principal normal curvatures at their point
of intersection and thus showing the principal directions at that point. The Gauss
curvature at the intersection is the product of the two principal normal curvatures.
Shown are surfaces of everywhere positive, zero, and negative Gauss curvature.
Left: All slices of the sphere through any normal have constant normal curvature
equal to 1/R, where R is the sphere’s radius. The two principal normal curvatures
are thus everywhere 1/R, so the sphere’s Gauss curvature is 1/R2 at every point.
Middle: The cylinder of radius R has its principal directions horizontal and ver-
tical, with principal normal curvatures 1/R and zero, respectively. Thus its Gauss
curvature is zero at every point. This indicates it can be unrolled into a plane with-
out being deformed (see p. 372). Right: The saddle surface has principal normal
curvatures of opposite sign, so its Gauss curvature at any point must be negative.

something quite remarkable soon appears; Gauss found it so remarkable that
he christened it his Theorema Egregium, or Extraordinary Theorem.

To see what so impressed Gauss, consider the first derivatives of basis
vectors, ea,b and eb,a. These must be equal since each is really the second
derivative of the map X, and we know that the order of differentiation is
immaterial. We originally used this, together with Gauss’s formulae (9.18),

ea,b = Γ c
ab ec + Lab U , (9.84)

to infer that Γ c
ab and Lab are symmetric in a and b. Now, what happens if

we consider the next higher order of derivative? The same reasoning gives

ea,mn − ea,nm = 0 , (9.85)

which we shorten to
ea,mn = 0 , (9.86)

where the underbracket points to the two indices that are swapped to make
a new expression, which is then subtracted from the first. (This notation is
useful because, for example, it encapsulates linearity: if Aαβ = bBαβ + cCαβ ,
then Aαβ = bBαβ + cCαβ.) Expanding this using Gauss’s equations (9.84)
and Weingarten’s equations (9.60) produces[

Γ b
am,n + Γ c

amΓ b
cn − LamLb

n

]
eb +

[
Γ b

amLbn + Lam,n

]
U = 0 . (9.87)

We conclude that each of the brackets equals zero. In particular, the first one
is the most interesting since it separates the Γ and the L. Setting it equal to
zero results in
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LamLb
n = Γ b

am,n + Γ c
amΓ b

cn ≡ Rb
anm . (9.88)

Expression (9.88) will soon be shown to be a tensor and is called the Riemann
tensor. A more convenient ordering of the indices makes it easier to memorise,
albeit now with minus signs:

Ra
bcd = −Γ a

bc,d − Γ z
bcΓ

a
dz = −LbcL

a
d . (9.89)

Upon lowering the first index, the Riemann tensor becomes

Rabcd =
∣∣∣∣Lac Lad

Lbc Lbd

∣∣∣∣ , (9.90)

which is a useful expression since it indicates the tensor’s three symmetries,
distinguishing its first pair of indices from its last pair:

Rbacd = −Rabcd ,

Rabdc = −Rabcd ,

Rcdab = Rabcd . (9.91)

In fact, for 2-surfaces these symmetries mean that most of the Riemann
components vanish: the only nonzero ones are R1212 and three others with
permuted indices, which all have the same magnitude. In particular,

R1212 =
∣∣∣∣L11 L12

L21 L22

∣∣∣∣ = L , (9.92)

which means the Gauss curvature is

K = R1212/g . (9.93)

But the Riemann tensor is a function of the metric only, from (9.88), imply-
ing that the Gauss curvature is also a function of the metric alone. So this
curvature that we defined as a measure of how the surface bends within its
exterior space, the Gauss curvature, is intrinsic—it’s purely a function of the
metric and its derivatives! This is the content of the Theorema Egregium,
and it enables us to dispense with imagining the surface as curving in a
higher-dimensional space.

Dispensing with the higher embedding space brings about a change in
philosophy. A nonexistent normal vector U can give no contribution to (9.18),
which then becomes

ea,b = Γ c
ab ec . (9.94)

(Equivalently, (9.19) gives a zero second fundamental form Lab.) Because
we have always reserved Latin indices for an index subset, we signal the
dispensing of the embedding space by using Greek indices to write (9.94) as
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eα,β = Γµ
αβ eµ , (9.95)

which of course was introduced in (8.177) and used extensively in the last
chapter. The notion of covariant differentiation, since it uses (9.95), enables
us to avoid constantly having to account for the basis vectors in derivatives
because covariant differentiation allows the basis to be treated as constant.
So in practice the basis is often ignored or even forgotten, which is one rea-
son that vectors are usually held to be synonymous with their coordinate
vectors (i.e. components) in physics texts. They are not really synonymous,
and the identification is a subtlety that can easily be missed, but some of its
roots lie in the Theorema Egregium as we’ve seen here. We’ll use this idea in
the next section when we further examine the covariant derivative using the
form Aα

;β = Aα
,β + Γα

βµ Aµ that was produced when (9.95) was included
in (8.202).

Because the curvature of a surface is intrinsic, any operation that preserves
the metric must also preserve the curvature. Bending a sheet of paper alters
no distances between infinitesimally separated points, so does not change the
metric on its surface, and thus we can see that the intrinsic curvature of
the resulting cylinder should still be zero, as shown in Fig. 9.11. Of course,
the cylinder does have extrinsic curvature—it curves within the surrounding
3-space after all. So, when standing on Earth’s surface, a measurement of
the amount by which the horizon drops below eye level in one direction is
enough to detect an extrinsic curvature: perhaps Earth is a cylinder. But to
show that it has intrinsic curvature (such as a spherical surface), we need to
measure a drop below eye level in two directions, as of course we do.

The Riemann Tensor from Anticommuting Covariant Derivatives

The swapping of indices that produced the Riemann tensor brings up another
way of seeing how it arises: it measures the degree to which two successive
covariant derivatives don’t commute. That is, if we write

Aα
;µν = Aα

;µ,ν + Γα
βνAβ

;µ − Γ β
µνAα

;β , (9.96)

then expand the covariant derivatives that remain and anticommute over
µ and ν, we find that

Aα
;µν = Rα

βνµAβ . (9.97)

This shows that the Riemann tensor really is a tensor, because it appears
here in an equality whose left-hand side is a tensor, and we know that Aβ is
a tensor. This is another example of the tensor quotient theorem referred to
on p. 282.

In fact, expressions like (9.97) hold for any tensor, just as (8.208) uses
Christoffel symbols to convert covariant differentiation to normal differenti-
ation, with a separate Christoffel term for each index, using a plus sign for
raised indices and a minus sign for lowered indices. That is, for the case of
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A

A parallel transported

B

A + B

Fig. 9.12. To add vectors at different points in a flat space, we think nothing of
translating one of them—“parallel transporting it”—to where the other is located.

anticommuting covariant derivatives, there is a separate Riemann term for
each index, again added for raised indices and subtracted for lowered ones.
For example,

Aα
βγ;µν = Rα

λνµAλ
βγ − Rλ

βνµAα
λγ − Rλ

γνµAα
βλ . (9.98)

9.5 Translating Vectors by Parallel Transport

In general, vectors cannot be added at different points. This is easy to see by
checking whether the sum of the components transforms in the required way:

Aα(P ) + Bα(Q) = Λα
β̄(P )Aβ̄(P ) + Λα

β̄(Q)Bβ̄(Q)
?= Λα

β̄(?)
(
Aβ̄(P ) + Bβ̄(Q)

)
. (9.99)

The second line in (9.99) with its question-marked argument of Λα
β̄

cannot be
precisely defined. Thus the sum does not obey the basic tensor transformation
law—unless Λα

β̄
is a constant—so we must conclude that the sum is not a

vector.
In a flat space, we’re used to adding vectors at different points by trans-

lating them to where we need them, as shown in Fig. 9.12. Is it possible to
mimic this on a curved surface and so define some kind of addition for vectors
there? In other words, given Aα at some point, can we shift it around so that
in some sense it remains constant?

Changing Aα continuously requires a knowledge of how vectors can be
differentiated. Consider a curve xα(s) parametrised by its length s, together
with a vector field A. How do the components Aα change along the curve?
They change as

dAα

ds
= Aα

,β︸︷︷︸
Is not a tensor

× dxβ

ds︸︷︷︸
Is a tensor

. (9.100)
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We must conclude that dAα/ds is not a vector (that is, dAα/ds are not the
components of any vector). So how does the vector A itself change?

dA

ds
=

d (Aαeα)
ds

= (Aαeα),β

dxβ

ds
= Aα

;β eα
dxβ

ds
. (9.101)

This prompts us to define a new set of numbers in analogy to (9.100):

DAα

ds
≡ Aα

;β

dxβ

ds︸ ︷︷ ︸
Both tensors

. (9.102)

Since the right-hand side of (9.102) is a tensor, then so also is DAα/ds. The
vector field derivative (9.101) becomes

dA

ds
=

DAα

ds
eα , or dA = DAα eα . (9.103)

In this way we’re able to treat the changing basis vectors as if they were
constant by investing all of the change of A in the DAα/ds components. The
components of this change are

DAα = Aα
;γ dxγ

(
cf. dAα = Aα

,γ dxγ
)

=
(
Aα

,γ + Γα
βγ Aβ

)
dxγ

= dAα + Γα
βγ Aβ dxγ . (9.104)

Note that in the interest of symmetry in the first line of (9.104), it might
be useful to define DAα/dxγ ≡ Aα

;γ [also written DγAα in (8.229)]. That
way, a shift of the dxγ from one side to the other in “DAα/dxγ = Aα

;γ”
will return the correct expression DAα = Aα

;γ dxγ . But we must remember
that the last of these two expressions contains a sum over γ, while the first
does not. And, of course, writing the correct dAα = Aα

,γ dxγ certainly does
not lead to dAα/dxγ being defined as equal to Aα

,γ . Rather, the correct
expression here is ∂Aα/∂xγ = Aα

,γ .
As long as this is understood, defining DAα/dxγ ≡ Aα

;γ is useful. In
fact, we’ll see a similar idea in (12.110) and (12.111) when we discuss vari-
ational calculus in general relativity. See also the note on p. 518.

To define a notion of parallel transport, we asked at the start of this section
whether a vector Aα could be moved about in such a way that it remains as
constant as possible. So set dA = DAα eα = 0; i.e., DAα = 0 in (9.104). We
obtain

dAα = −Γα
βγ Aβ dxγ . (9.105)

This is a prescription for how Aα is required to change when stepping from xα

to xα + dxα in order to have a notion of parallelness. But in general the
Christoffel symbols are functions of position, so a parallel transport from P
to a distant point Q demands that
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Aα(Q) = Aα(P ) +
∫ Q

P

dAα

= Aα(P ) −
∫ Q

P

Γα
βγ Aβ dxγ︸ ︷︷ ︸

Depends on the path!

. (9.106)

The difference in field values at points P and Q is path dependent, so we
cannot in general define a unique vector field composed of lots of copies
of Aα, parallel transported to every point. The best we can do is parallel
transport A from P to Q along some path; the result depends on the path
chosen.

If coordinates can be found such that the Christoffel symbols are zero
everywhere (such as in euclidean geometry), then the result is not path de-
pendent: it’s just a simple translation. This can be used to define flatness: a
path-independent result means that the space is flat.

The Christoffel symbols and infinitesimals involved in parallel transport
might recall to mind the equation for a geodesic, (9.32). To recap, a geodesic
with affine parameter t and tangent vector uα ≡ dxα/dt satisfies2

duα

dt
+ Γα

βγ uβ uγ = 0 , (9.107)

or in other words
duα = −Γα

βγ uβ dxγ , (9.108)

so that comparing this with (9.105), we see that a geodesic parallel transports
its own tangent vector. (It’s also not hard to show the converse: any curve
that parallel transports its own tangent vector must be a geodesic.) This
makes geodesics special on curved surfaces. They occupy a privileged role in
giving a useful meaning to adding vectors at widely separated points.

Picturing Parallel Transport

We can parallel transport a vector along a given path exactly by using (9.106).
But what does it all look like—what intuition can be gained? Two theorems
are useful in helping us to build an intuitive picture.

Theorem 9.1. If vectors A and B are parallel transported along any curve,
then their lengths, as well as the angle between them, remain constant.

Prove this by writing down the parallel-transport increment in A·B:

d (A·B) ≡ d (AαBα) = d
(
Aα Bβ gαβ

)
. (9.109)

2 To keep with accepted formalism in both differential geometry and general rel-
ativity, we have run into a minor clash of symbols here. The coordinates uc

in (9.32) are here replaced by xα.
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Differentiating, replacing infinitesimals with (9.105), and also using (8.182)
produces a sum of Christoffel terms that equates to zero. Thus d(A·B) = 0,
so that A·B does not change along the path. In particular, this means
that |A|2 does not change along the path. That is, a parallel-transported
vector keeps its length constant. Also, since the angle between the vectors is

cos−1 A·B
|A| |B| , (9.110)

each of whose terms is constant along the path, then the angle remains con-
stant along the path, too.

Theorem 9.2. If a vector A is parallel transported along a geodesic, then it
keeps a constant angle to the geodesic’s tangent vector.

This is easy to see by setting B in Theorem 9.1 to be the geodesic’s tan-
gent vector, which is already being parallel transported by the geodesic.
(That is, the geodesic’s tangent vector, when parallel transported, remains
the geodesic’s tangent vector.) Hence, A keeps a constant angle to B, and
the theorem is proved.

Now picture the transport as follows. To parallel transport a vector along
an arbitrary curve, approximate the curve with infinitesimal geodesic seg-
ments; then parallel transport along each segment by keeping the vector in
the surface and holding a fixed angle between the vector and the segment.
We still have the problem of parallel transporting along a segment (unless
it’s infinitesimally short), but we can do this by drawing a small parallelo-
gram with geodesic diagonals. The construction is shown in Fig. 9.13, and is
known as Schild’s ladder. It enables us to form a very intuitive idea of parallel
transport.

As a concrete example, envisage parallel transporting a vector on Earth’s
curved surface over some specified arc. We’ll assume Earth has no oceans,
and we will drive a car to transport the vector. The vector is represented
by an arrow attached to the floor of the car in some way that will be made
explicit in what follows.

First, imagine parallel transporting the vector over the arc of a great circle
from Adelaide to Amsterdam. We simply lay the arrow on the car floor and
drive from Adelaide to Amsterdam following that arc, which, because it’s a
geodesic, means we never have to turn the car’s steering wheel. Thus the car
never tries to turn the arrow in the plane of the floor, and on arriving in
Amsterdam, the arrow is the parallel-transported vector.

Next we decide to drive from Amsterdam back to Adelaide, but this time
following a more convoluted route with all manner of twists and turns. Now
we’ll certainly have to turn the steering wheel, and will need to float the arrow
in some way on the car floor to decouple it from the left and right turns the
car will be making—although it’s always constrained to lie in the plane of
the floor. We can approximate the route by driving along short geodesic
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A

A p.t.’ed

A p.t.’ed

A p.t.’ed

A

A p.t.’ed

Fig. 9.13. On the left, we parallel transport A along an arbitrary curve by parallel
transporting it along the short geodesic segments (drawn straight) connecting close
neighbouring points. Do this by maintaining a constant angle between A and each
geodesic segment. The construction here uses a flat surface and straight geodesics,
but only to show the correspondence with our intuition. On the right, we see fur-
ther under the microscope in a construction known as Schild’s ladder. The actual
transport along a segment can be accomplished by drawing a parallelogram with
geodesic diagonals. First draw the solid geodesic, then bisect it, and then draw
the dashed geodesic through the bisection point. Extending this an equal distance
farther results in the new parallel-transported vector’s end point.

segments, stopping at the corners to aim the car in the new direction while
taking care that the floating arrow does not inadvertently get turned in the
process. In fact, with this arrow being completely decoupled from the turns
the car makes (but always constrained to lie in the floor plane), we need not
even be so careful: we just drive along the designated route, and now, on
arriving in Adelaide, the arrow, or vector, has been parallel transported in
the required way.

A Picture of DAα

While dAα eα is not a vector, DAα eα certainly is and so should be able
to be drawn in the usual way as an arrow. Figure 9.14 shows how this is
done. First parallel transport Aα(P ) an infinitesimal distance from P to Q,
giving Aα(Q). This new vector forms a kind of baseline against which the
actual vector Aα(Q) can be compared—it soaks up the extrinsic curvature,
as it were. What is left over is the actual increase in the vector, which is DAα.
So DAα is the real measure of how Aα is changing along the curve.

Finally, since parallel transport along a curve is accomplished by breaking
up the curve into infinitesimal segments, then for the case where P and Q are
widely separated, they must be connected by a curve C, and the difference
between Aα at Q and its parallel-transported version there is just determined
by how much Aα is “really” changing along C:
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P Qinfinitesimal dx

parallel transport

Aα(P )

Aα(Q) = Aα(P ) + dAα

Aα(Q)
= Aα(P ) − Γ α

βγAβ(P ) dxγ DAα

= dAα + Γ α
βγAβ(P ) dxγ

Fig. 9.14. Visualising the vector components DAα that carry the real change
in Aα(P ). Remember that the parallel-transported vector Aα(Q) only looks as
much like Aα(P ) as we have drawn when the surface is flat!

Aα(Q) − Aα(Q) = Aα(P ) +
∫

C

dAα −
[
Aα(P ) +

∫
C

−Γα
βγ Aβ dxγ

]
=
∫

C

dAα + Γα
βγ Aβ dxγ =

∫
C

DAα. (9.111)

9.6 Relating Parallel Transport to Curvature

While a difference in vectors might not be well defined over C, a difference in
vector components always is. If a vector’s components change as it’s parallel
transported along a curve, how much do they change on a round trip? To
answer this important question, choose the curved surface’s version of a rect-
angle for simplicity, where each of the coordinates in turn is constant along
each side, and the rectangle joins points 0 → 1 → 2 → 3 → 4. The end
point 4 coincides with the start point 0, shown in Fig. 9.15. We will parallel
transport a vector Aα around this loop by calculating the line integral

∫
dAα,

where dAα is given by (9.105). The task will be made easier if we consider
each segment separately, as shown on the next page.

(x, y) (x + ∆x, y)

(x + ∆x, y + ∆y)(x, y + ∆y)

0 & 4 1

23

Fig. 9.15. A path along which we wish to parallel transport a vector.
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∫
= + + +

0 1 1

2 23 3

4

.

The integral is given by the increase in Aα from the start to the end, or
point 0 to point 4. Write it as∫

dAα = Aα(point 4) − Aα(point 0) . (9.112)

It might be thought that we could consider the four path legs in two pairs,
where each pair consists of opposite legs of the path; then perhaps Aα could
be Taylor-expanded “across the void” of the path’s interior, so to speak, and
various cancellations might occur. In fact, this cannot be done because by
its very nature Aα is not a function of position, since its value at any point
is dependent on the history of how we got to that point. So Aα cannot
just be differentiated with abandon; it can only be differentiated along a
path that forms part of the parallel transport. If we do try this approach of
differentiating across the void where no path ever went, the calculation will
be quite meaningless. It will give results that depend on the order in which
the parts of the calculation are assembled, and it can even be arranged to give
the right result, with hindsight! But, of course, in no way does that validate
the method.

Done correctly, the integral (9.112) can be calculated by stepping Aα along
the path from point 0 to point 4 using (9.105) to calculate the increase dAα

at each step. But with hindsight it proves more economical to start at point 4
and work backward, calculating the contribution to the integral along each
of the four legs of the path. We’ll expand Aα along each leg from that leg’s
start point by using a Taylor expansion with terms up to second order in ∆x
and ∆y. (That is, the rectangle in Fig. 9.15 should be small.) Each time
we encounter a derivative, we’ll use (9.105) to replace it with Christoffel
terms. For clarity, as the next few expressions will be cluttered, we’ll indicate
evaluation at, e.g., point 3 by a superscript such as Aα(3). So begin with the
Taylor expansion of Aα(4) about Aα(3):

Aα(4) = Aα(3) + Aα(3)
,y (−∆y) + Aα(3)

,yy ∆y2/2 + · · · , (9.113)

where the dots indicate terms of third order and higher. But (9.105) specifies
that, in parallel transport, the required derivatives are given by

Aα
,y = −Γα

yβ Aβ , Aα
,yy = (−Γα

yβ,y + Γα
yγΓ γ

yβ) Aβ , (9.114)

although we won’t need the full expression for Aα
,yy. That’s because it only

appears in (9.113) to order ∆y2 anyway, and so can be expanded to zeroth
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order, meaning that its value can be successively changed from A
α(3)
,yy to A

α(2)
,yy

and so on as we go around the path. Substituting Aα
,y from (9.114) into (9.113)

gives

Aα(4) = Aα(3) + Γ
α(3)
yβ Aβ(3)∆y + Aα(3)

,yy ∆y2/2 + · · · . (9.115)

Now that Aα(4) is expressed using terms all evaluated at point 3 with no
derivatives, we again step backward one leg, this time Taylor-expanding all
terms from point 2. The calculation becomes more involved because we also
need to include derivatives of the Christoffel symbols.

Aα(4) = Aα(2) + Aα(2)
,x (−∆x) + Aα(2)

,xx ∆x2/2 + Γ
α(2)
yβ Aβ(2)∆y

+
[
Γ

α(2)
yβ,x Aβ(2) − Γ

α(2)
yβ Γ β(2)

xγ Aγ(2)
]
(−∆x)∆y + Aα(2)

,yy ∆y2/2 + · · ·

= Aα(2) + Γ
α(2)
xβ Aβ(2)∆x + Aα(2)

,xx ∆x2/2 + Γ
α(2)
yβ Aβ(2)∆y

−
[
Γ

α(2)
yβ,x − Γα(2)

yγ Γ
γ(2)
xβ

]
Aβ(2)∆x ∆y + Aα(2)

,yy ∆y2/2 + · · · . (9.116)

Remember that all we are doing is Taylor-expanding to at most second order.
On stepping back to point 1, some cancellation begins to occur, and terms

begin to appear in the coefficient of ∆x∆y that form precisely the Riemann
tensor. Omitting the laborious details (which are straightforward to fill in),
we obtain

Aα(4) = Aα(1) + Γ
α(1)
xβ Aβ(1)∆x + R

α(1)
βyxAβ(1)∆x ∆y + Aα(1)

,xx ∆x2/2 + · · · .

(9.117)

On stepping back to the start point 0, we omit further straightforward details
to write

Aα(4) = Aα(0) + R
α(0)
βyxAβ(0)∆x ∆y + · · · . (9.118)

Finally, the line integral becomes∫
dAα = Aα(4) − Aα(0) = R

α(0)
βyxAβ(0)∆x ∆y + · · · . (9.119)

The contraction of the Riemann tensor with vector components measures
the increase in those components when parallel transported around a loop
per unit area of the loop. Of course, the third-order terms in (9.119) can
be neglected for small loops. But we cannot break a big loop into lots of
small ones that share common boundaries in the usual way that’s done when
proving Stokes’ theorem. This is because the value of Aα is not a single-
valued function of position (unlike the Stokes’ theorem case), so integrals
along common boundaries between neighbouring cells cannot be expected to
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cancel. After all, the whole point of parallel transport is that it gives a sort
of hysteresis, or memory, to the vector, making its value path-dependent.

More generally, in the xγ-xδ plane we can write∫
dAα = Rα

βγδA
β ∆xγ ∆xδ + 3rd order terms, with no sum on γ, δ.

(9.120)
A surface will be flat if it has a zero Riemann tensor, since the zero tensor
implies no change to the vector components around the loop—which was,
after all, our starting point for beginning to think of parallel transport. So
a precise definition of flatness states that a surface of arbitrary dimension is
flat if

∫
dAα = 0 for all values of α, independently of the Aα and the plane

chosen for the parallel transport. In that case, write∫
dAα = 0 ⇐⇒ Rα

βγδ = 0 ∀α, β, γ, δ . (9.121)

Because the Riemann tensor is a tensor, being zero in one coordinate system
implies that it must be zero in all others, making flatness an absolute property
of a surface.

Parallel transport is an interesting procedure, but it’s not an absolute
necessity for beginning a study of curved spaces. The key players of differential
geometry, such as geodesics and curvature, were all defined and derived in
this chapter without a notion of parallel transport.

The Ricci Tensor and Ricci Scalar

A contraction of the Riemann tensor is the Ricci tensor Rαβ , which forms
the basic geometrical part of Einstein’s equations that relate the curvature
of spacetime to its matter content. The choice of which indices to contract
over varies, but the following is commonly used:

Rαβ ≡ Rλ
αλβ . (9.122)

No matter what the convention, the Ricci tensor can be contracted to produce
the Ricci scalar :

R ≡ Rα
α . (9.123)

Using (9.93), it’s a straightforward exercise to show that, for a 2-surface, the
Ricci scalar and Gauss curvature are simply related:

R = 2K . (9.124)

So, for example, we know immediately that the Ricci scalar at any point
on the surface of a standard sphere (a 2-sphere) of radius r is 2/r2. The
Ricci tensor Rαβ is sometimes defined as Rλ

αβλ by contracting over the last
Riemann index. Not surprisingly, this just changes signs in various places; for
example, (9.124) becomes R = −2K.
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∆θ ∆θ

Fig. 9.16. Integrating the curvature k along a curve gives the total angle turned
through by its tangent vector, which will be the same for each curve above if the
beginning and ending slopes are arranged to be the same. That is, the integral of
the curvature is insensitive to the local geometry of each curve.

Although in two dimensions the Gauss curvature relates so simply to the
Riemann tensor (9.93), and hence to the Ricci tensor and scalar, in general
the Ricci tensor and scalar do not represent a sort of rendered-down version
of the curvature. For example, a zero Ricci tensor does not guarantee a zero
Riemann tensor, so a zero Ricci tensor does not imply zero curvature. We’ll
see a good example of this in general relativity in Chap. 12. There, empty
space turns out to have a zero Ricci tensor and scalar, but its Riemann tensor
(and hence curvature) need not be zero.

9.7 From Geometry to Topology: The Gauss–Bonnet
Theorem in Euclidean 3-Space

At the start of this chapter, the curvature of a curve in the plane was defined
to be k = dθ/ds. Because this is a rate of angular increase of the curve’s
tangent vector, integrating it along the curve will give the total angle turned
through by that vector: ∫

k ds = ∆θ . (9.125)

At first sight, this might seem to be a trivial result. The curvature that proved
so fruitful when analysed in higher dimensions reduces to a single number that
simply tells how much the curve turned in total. But a moment’s thought
shows that actually we can use this simplicity to our advantage. As seen in
Fig. 9.16, if we integrate the curvature along a different curve (possibly with
different length), then provided that the difference between the beginning
and ending slopes is the same for both curves, the total angle turned through
will also be the same, so that

∫
k ds will be identical for both curves. So the

curvature integral does not pay heed to any wiggles placed in a curve.
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kg > 0

kg = 0

kg < 0
No kg exists

Fig. 9.17. Integrating the Gauss curvature K = 1/R2 for a sphere of radius R
over larger and larger areas. Although

∫
K dA grows from left to right, the geodesic

curvature is becoming larger negatively at just the right rate to offset the increasing
value of

∫
K dA. That is, as the edge is shifted from the northern to southern

hemispheres, we who drive along it from west to east in a car will need to change
the direction of turn of our steering wheel from left to right. But a topological
change occurs when we integrate over the entire sphere.

We can expect the same result from thinking about the circle map. Chang-
ing the wiggliness of the curve being integrated along will fan the unit vectors
of the circle map out and in, but if the slopes of both ends of the curve are
fixed, then the start and end unit vectors won’t change their positions on the
unit circle, which means the length of the subtended arc of the unit circle
won’t change either. And, by (9.3), this length is just

∫
k ds.

The same sort of idea also applies to the Gauss curvature K. If we in-
tegrate K over a 2-surface, then the result is independent of the surface’s
local geometry, as long as its edges are held at an unchanging slope. This
result follows from the sphere map in the same way that we applied the circle
map in the previous paragraph. The unit vectors extending from the centre
of the sphere will fan out and in depending on how the surface is deformed,
but if the edge slope is everywhere held fixed, then a constant area of the
unit sphere will be mapped to, and so we expect

∫
K dA to be a constant

independent of the deformations.
But what happens if the edges are not held fixed? Consider, for example,

integrating K = 1/R2 over larger and larger areas of a sphere of radius R,
where the edge of the integration is taken for simplicity as a small circle
of constant latitude, as in Fig. 9.17. Parametrising the sphere using polar
coordinates such that the small circles that bound it are at constant θ, the
area of a surface element is given by (9.53), or

dA = |eθ × eφ| dθ dφ = R2 sin θ dθ dφ , (9.126)

where we have used the parametrisation of (9.27), and will ensure that dθ
and dφ are always positive by integrating in the increasing direction of each.

That is, the surface element is a parallelogram (in this case a rectangle) with
side vectors dX |φ const. and dX |θ const.. These are, respectively, ∂X/∂θ dθ
and ∂X/∂φ dφ, or, in other words, eθ dθ and eφ dφ. Its area dA is the norm
of the cross product of these.
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Thus the area of the surface out to some θ0 is

A =
∫ 2π

0

∫ θ0

0

R2 sin θ dθ dφ = 2πR2 (1 − cos θ0) , (9.127)

in which case ∫
K dA = 2π (1 − cos θ0) . (9.128)

This integral grows with θ0. However, the fact that the edges are not being
held at a constant slope goes hand in hand with a change in their geodesic
curvature kg. Referring to the calculation at the end of Sect. 9.1.1, we see
that, indeed, around a small circle at constant latitude,∫

kg ds =
cot θ0

R
2πR sin θ0 = 2π cos θ0 . (9.129)

Comparing (9.128) with (9.129) shows that, on the sphere, the two integrals
add to give a constant: ∫

K dA +
∫

kg ds = 2π . (9.130)

That is, the fact that the area is growing while holding a constant Gauss
curvature has been offset by the fact that the geodesic curvature along the
boundary is becoming more negative. If we were to drive along the edge
heading east, the turn required of our steering wheel would change from left
in the northern hemisphere, to straight ahead at the equator, to right in the
southern hemisphere.

In fact, this idea of the two curvature integrals changing in tandem to
sum to a constant turns out to be more generally true, and is known as the
Gauss–Bonnet theorem. For a more general 2-surface bounded by a more
general curve, the Gauss–Bonnet theorem states that

∫
K dA +

∫
kg ds = 2πχ , (9.131)

where the curve is traversed in the appropriate direction, as we have done
here, and χ is the Euler characteristic of the surface: a topological invariant.
For a polygon or polyhedron, the Euler characteristic is

χ ≡ F − E + V , (9.132)

where F,E, and V are the number of faces, edges, and vertices, respectively.
For a nonpolyhedral surface, the value we calculate for χ is independent of
the way in which we triangulate the surface; that is, the way we deform it
into a polyhedron in order to calculate F,E, and V .
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The sum of any “jump angles”—discontinuous changes in the boundary’s
tangent vector—can be added to the left-hand side of (9.131), but alterna-
tively, these angles can just be considered as limiting cases of

∫
kg ds and so

it is not necessary to write them explicitly.
The incomplete circle is topologically equivalent to a disk, or any poly-

gon, and so has one face (F = 1) and one vertex for every edge (E = V ),
so that χ = 1 and the Gauss–Bonnet theorem (9.131) reduces to (9.130), as
expected.

A common textbook example of the Gauss–Bonnet theorem on the surface
of a sphere connects three geodesic segments, each a quarter of the circum-
ference in length, to make a spherical triangle that covers one eighth of the
sphere’s surface, with all three internal angles being 90◦. Since the segments
are geodesics, kg = 0 along them. The three jump angles at the corners each
contribute π/2 to the integration of (9.131). Thus the Gauss–Bonnet theorem
becomes

1
R2

4πR2

8
+

3π

2
= 2π , (9.133)

which is certainly true.
What happens when we integrate the Gauss curvature over the entire

sphere? Now there is no boundary to supply the kg that would normally act
to offset the growing area integral. However, a full sphere is topologically
equivalent to two disks joined at their edges. In that case, F = 2 and E = V ,
giving χ = 2, and the Gauss–Bonnet theorem gives∫

K dA = 4π , (9.134)

which of course is true, since K = 1/R2 and the surface area is 4πR2. So the
Euler characteristic accounts for the change in topology as the open spherical
surfaces in Fig. 9.17 close up to become the rightmost full sphere, with the
small-circle boundary shrinking and finally vanishing in the process.

That χ = 2 for the sphere, and hence for anything topologically equiva-
lent to a sphere, is none other than the well-known rule F − E + V = 2 for
polyhedra.

The Gauss–Bonnet theorem (9.131) is a staple of differential geometry,
linking local geometry with global topology, which is an elegant identifica-
tion that is sometimes described as unintuitive or perhaps startling. But the
theorem is not as unintuitive as it might at first seem. After all, the fluctu-
ations of the local geometry are being integrated over, and it should not be
too surprising to find that the result is a topological invariant, insensitive to
the local geometry of the surface. This is not really different from finding the
average of a set of noisy measurements. The average is a kind of topological
invariant, too, in the sense that lots of measurements of some fluctuating
quantity will tend always to have roughly the same average. The whole point
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of adding them up (or, in a sense, integrating over them) to produce the av-
erage is to allow randomly alternating signs for the noise to cancel. Likewise
for the Gauss–Bonnet theorem, integrating over local geometry gives a result
that’s topologically invariant.

The techniques of differential geometry can take a metric of some space
and paint a picture of it as a surface by giving us a feel for whether, where,
and how much it is curved. The subject builds heavily on our intuitive ideas
of what it means to be curved, and so provides some elegant insight into
physical theories. We’ll meet some of these theories in the chapters to come.
At the head of the list is general relativity, with its key player being a curved
spacetime, but any theory that uses a metric can also be analysed in terms
of curvature. Two examples that we’ll encounter are field theory, with its
lagrangians that are closely related to a spacetime metric, and gauge theory,
with its covariant derivatives that also admit structure and concepts such as
parallel transport. All of these demonstrate just how great a part geometry
plays in fundamental physics.



10 Variational Calculus and Field Theory

10.1 The Story of the Fly and the Train

Picture this: a train is steaming along at full tilt along its track when suddenly
it encounters, head-on, a fly that happens to be buzzing in the opposite
direction. The fly is quite naturally bounced backward by the train, which
continues on as if nothing had happened. Now the question often put runs
as follows: “Since the fly has had its forward motion changed to backward
motion, there must have been a moment in time when it was at rest, when
it was in contact with the train. Surely if the fly was at rest then, and yet in
contact with the train, then mustn’t the train necessarily have been at rest,
too, if only for a moment?”

It’s a good question and is sometimes discussed in terms of the make-up of
the fly’s body, the issue of conservation of momentum, the thicknesses of the
layers of the fly and train that get compressed during the collision, the atomic
theory of what atoms are moving where, binding forces between atoms, and
so on. But none of these address the key issue: two particles have a head-on
collision using pure newtonian mechanics, and one of them bounces back.
Shouldn’t both be at rest at some instant?

The problem posed runs deeper than any kind of many-particle treatment,
so we will imagine the train to be a single particle that obeys Newton’s laws
and likewise for the fly. And we lose nothing by doing this because that’s
what the original question is really all about: the validity and intuitiveness
of Newton’s laws as applied to structureless particles.

The train moves from the left to right along its track, while the fly moves
in the opposite direction. We can plot this on the distance-time graphs of
Figs 10.1 and 10.2. There are two basic choices we have in considering how
the train and fly actually interact. The first is that the worldlines of each on
the distance-time graph will suffer a kink, a point of nondifferentiability, at
the moment of impact, as shown in Fig. 10.1. Each has a certain velocity just
before impact, and suddenly each has a different velocity. The infinitesimal
time it takes for the impact to occur manifests in the fact that each worldline
has a kink instead of curving smoothly from its initial to its final slope.

In this scenario, the conundrum is resolved because the fly does not stop
the train. Just before the impact, the fly is moving with negative velocity;
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Fig. 10.1. When the fly and train interact instantaneously, they never have zero
velocity since neither worldline is ever vertical.

just after impact, it moves with positive velocity. But at no time does its
velocity pass through zero: at no time is its worldline vertical!

But there is now a problem of a different kind. The velocities of both fly
and train change in an instant, so that for an infinitesimal period of time they
undergo infinite accelerations. So we have resolved the conundrum—but at
the expense of introducing an infinite acceleration (and so an infinite force),
albeit for an infinitesimal time interval. There is a sense of something not
right here with really only one way to back out of it, which is to make the
worldlines curved, as shown in Fig. 10.2.

Now that the worldlines of both fly and train are curved, we have cleared
both the conundrum and the acceleration problem. On the left-hand side in
Fig. 10.2 we see that although the fly’s velocity does become zero at some
moment—since its worldline is then vertical—it’s not in contact with the
train at that moment, and the train’s velocity need never be zero. In fact, the
fly and train can even touch, as shown on the right-hand side in Fig. 10.2.
When they do, they will share the same velocity since the two curves are tan-
gential at the point of contact. And because there are never any kinks in the
worldlines of both fly and train, neither ever suffers an infinite acceleration.

So we have resolved the Fly and Train Conundrum, with the benefit of
learning something deep and new about Nature; that is, that if Nature wishes
to avoid the oddness of an infinite acceleration, then even in a newtonian
world of particles interacting with other particles, those interactions must
take place via a ghostly action at a distance—or, in modern parlance, a field.

The very successful theories of gravity and electromagnetism have already
introduced us to the idea of a field, and it’s a fairly easy thing to discard
the notion of an infinite acceleration, concentrating instead on the idea that
forces are mediated by fields alone. Of course, what a field actually is is quite
another story, one that we won’t attempt to answer.
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Fly is at rest at
this moment,
but train is not!
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Fly and train share
equal velocities at
this moment

Fig. 10.2. Left: Now the fly does come to rest, but the train does not. Right: The
fly and train can even touch, sharing the same velocity when they do.

10.2 The Concept of a Field

While the interaction between a fly and a train still has something in the way
of contact about it at a macroscopic level, this is not always the case. When
an object falls, nothing seems to push it, yet it accelerates to the ground
nonetheless. In his analysis of gravity, Newton recognised the need for the
gravitational pull of one body on another as not so much mediated by any
contact of the bodies but rather as a property of the space between them. He
understood that the gravitational force exerted on the Moon by Earth was
nevertheless a property of the Moon’s position alone, and did not seem to
be communicated to it by anything coming out of Earth. And so he was led
to the field concept, an invisible “thing” permeating space. Newton remarked
that the idea seemed preposterous, but he needed it as part of the framework
he had built up to make calculations and predictions using his supremely
successful theory of gravity.

Gravity and electromagnetism are always cited as the two early examples
of fields. But as we have seen, the field idea enters newtonian mechanics at a
very basic level even prior to these.

10.2.1 The Idea of a Potential

Our experience of fields of different types is that they single out distinct
quantities on which to act. Gravity only acts on mass (or really energy, which
we can view as mass in another guise), while the electromagnetic field acts
on charge. What mass and charge are is quite mysterious, but they are the
properties that quantify how strongly the appropriate field acts on the object.
And to be even more precise we might say that gravity acts on gravitational
mass, as opposed to the inertial mass that is the property of a body that
resists acceleration. (Einstein’s Equivalence Principle postulates that these
two masses are identical, and experiments have verified this to around one
part in 1012.)
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Fields are defined by our quantifying the force they produce. Experiments
indicate that the gravitational force on a body is proportional to its mass,
and likewise the electromagnetic force is proportional to charge—although the
definitions of mass and charge are tightly bound up in these observations. So
focus for now on the gravitational field, and define its strength at any point
in space to be the force per unit mass for a mass placed at that point:

g ≡ F

m
. (10.1)

The field is that ghostly thing that produces a force mg on a mass m and as
such is a vector field. In our effort to understand just what the field actually
is, it’s useful to relate it to another quantity: we think of space being filled
with another field, this time a scalar field called the gravitational potential Φ.
The potential is defined such that the resulting force points in the direction
in which Φ decreases most rapidly.

Given Φ, what is this direction? We saw the answer previously in Fig. 8.7
but will review the argument here. When stepping along a vector dx, the loss
in the potential is

−dΦ = −∇Φ·dx

= |∇Φ| |dx| cos(−∇Φ,dx) , (10.2)

where “(−∇Φ,dx)” denotes the angle between the vectors −∇Φ and dx.
Thus, the loss in potential is maximised for a step dx parallel to −∇Φ; that
is, the potential decreases most rapidly in the direction of −∇Φ. So the field is
proportional to −∇Φ, and by absorbing the proportionality constant into Φ,
we have the freedom to make this an equality:

gravitational field = g = −∇Φgravity . (10.3)

The same is true for a static electric field:

E = −∇Φelectric . (10.4)

It is not, however, true for more complicated fields such as a time-varying elec-
tric field; nor for the magnetic field, since the force applied by this depends on
the velocity of the charge. Nevertheless, both of these can be accommodated
by introducing the magnetic vector potential A, via

E = −∇Φelectric − ∂A/∂t , B = ∇×A , (10.5)

which we’ll meet again later.
Note that (10.1) and (10.3) give the force on a mass as

F = −∇(mΦgravity) ≡ −∇V , where V ≡ mΦgravity , (10.6)

with V the potential energy of the mass. It’s important to bear in mind that
since the potential was only defined by the way it changes spatially, it is only
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defined up to some arbitrary additive constant of integration, and the same
is true for potential energy.

We can define the infinitesimal work done by a field when it accelerates
a particle as the loss in the associated potential energy:

dW ≡ −dV = −∇V ·dx = F ·dx . (10.7)

This is an example of the boxed point made on page 48: the infinitesimal “d”
means an increase, so that the loss in potential energy is −dV .

10.3 The Lagrangian Formalism

Much of modern physics leans on the idea that Nature is constantly extrem-
ising various interesting quantities. This might just be something as simple as
minimising potential energy: we know that things tend to settle as far “down”
as they can. In the case of light travelling between two given points, the ray’s
path is such that its travel time is minimised. We humans also tend to use
this principle in our everyday lives. The ways in which we carry out daily
tasks might be many and varied, but they will tend to maximise reward, or
perhaps minimise discomfort or cost. Minimising the one does not necessarily
maximise the other; perhaps there will be one overriding quantity that is a
complicated mixture of the two.

The search for such a variational principle has become very fruitful in
mathematical physics. It was applied originally to light by Fermat, coming to
be called Fermat’s Principle, and then to mechanics by Lagrange, although
it was Hamilton who really appreciated the underlying principle involved.
Finally, it has been applied to theoretical physics under the famous name of
the Principle of Least Action.

As an example of a variational principle, consider a simple geometrical
problem: what is the equation of the shortest curve joining two given points?
Of course it’s a straight line, but considering what we mean by the “shortest
curve” will be useful in piecing together the salient ideas. So consider a curve
joining two points (x1, y1) and (x2, y2). We know that an element of path
length d� along the curve obeys Pythagoras’s theorem, d�2 = dx2 + dy2, or

d� =
√

1 + y′2(x) dx , (10.8)

so that the total length of the curve is

S ≡
∫

d� =
∫ x2

x1

√
1 + y′2 dx . (10.9)

The question is, given that S must be a minimum, what is y as a function
of x? This is not simply an exercise in one-dimensional calculus: instead of
the usual calculus approach of changing x and watching how y changes, we
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x

y

x1 x2

y(x)

y(x) + η(x)y(x) + 2η(x)

y(x) − η(x)

Fig. 10.3. Begin with a function y(x) whose precise form is to be determined,
and add any amount of some arbitrary perturbing function η(x) to it. The scheme
of variational calculus is to demand that some scalar S of interest that is calcu-
lated for each of these new functions should have a stationary value for the actual
function y(x)—irrespective of the form of η(x).

now wish to vary the entire function y(x) and watch how S changes. How
can this be done?

Take our cue from basic calculus: if a function y(x) has a stationary point
for some x, then the usual way of describing this is to say that the slope of y
is zero at that value of x. But this really means that if we move away from
the stationary point by any amount ∆x, then the corresponding y-increase
of ∆y goes to zero much faster than ∆x, as ∆x → 0. The ratio ∆y/∆x finally
becomes zero at the stationary point. Given that the increase in y arbitrarily
close to the stationary point is

dy = y′(x) dx , (10.10)

it must be that at the stationary point, y′(x) has become zero.
Apply this way of thinking to this new “variational calculus” problem of

finding the right curve by reasoning as follows. The function y(x) can be
changed by adding some amount λ of an arbitrary perturbing function η(x),
as shown in Fig. 10.3. This perturbation can be anything, with the only
proviso that it be smooth and equal to zero at the end points x1 and x2 since
the requisite curve is anchored to those points. So consider S(λ), the length
of the new curve that results when y(x) is replaced by y(x) + λη(x):

S(λ) ≡
∫ x2

x1

√
1 + (y + λη)′2 dx . (10.11)

The original curve length S is now more fully written as S(0). Require that
as λ → 0, the value of S(λ) changes less and less for all functions η:

S′(0) = 0 ∀ η(x) . (10.12)
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Now the task has been reduced to the application of some straightforward
calculus—although we will take as given that we can differentiate under the
integral sign in the next few lines.

S′(λ) =
∫ x2

x1

(y′ + λη′) η′√
1 + (y + λη)′2

dx , (10.13)

so that S′(0) is calculated via an integration by parts:

S′(0) =
∫

y′√
1 + y′2

η′ dx

=
y′√

1 + y′2
η(x)

∣∣∣∣∣
x2

x1

−
∫ x2

x1

[
y′′√

1 + y′2
− y′2y′′

(1 + y′2)3/2

]
η(x) dx .

(10.14)

The first term in the last line of (10.14) is zero since η(x1) ≡ η(x2) ≡ 0. If
S′(0) is to vanish for all choices of η, then the integrand in the second term
in the last line of (10.14) must also vanish:

y′′√
1 + y′2

− y′2y′′

(1 + y′2)3/2
= 0 . (10.15)

This simplifies neatly to
y′′(x) = 0 , (10.16)

which is, of course, just the differential equation for a straight line. The
two arbitrary coefficients are now fixed by applying the boundary conditions
y(x1) = y1, y(x2) = y2, and the problem is solved.

10.3.1 Lagrange’s Equation

General problems in the calculus of variations also use the approach of the
last few equations. The quantity to be made stationary is called the action:

S =
∫ x2

x1

L(y, y′) dx . (10.17)

The action usually depends both on the curve y(x) and its derivative y′(x).
With the curve anchored at its end points, perturb it to write

S(λ) ≡
∫ x2

x1

L
(
y + λη, (y + λη)′

)
dx , (10.18)

and require S′(0) = 0 for all functions η(x), as well as η(x1) = η(x2) = 0:



394 10 Variational Calculus and Field Theory

S′(λ) =
∫ x2

x1

[
∂L

∂(y + λη)
d(y + λη)

dλ
+

∂L

∂(y′ + λη′)
d(y′ + λη′)

dλ

]
dx

=
∫ x2

x1

[
∂L

∂(y + λη)
η +

∂L

∂(y′ + λη′)
η′
]

dx . (10.19)

Those partial derivatives might look troubling. Does it really make sense to
differentiate with respect to η while holding η′ constant? Surely, if η changes,
then mustn’t η′ also? That’s true, but it is not what partial differentiation is
all about. After all, when we write an expression such as

df(x, y)
dλ

=
∂f

∂x

dx

dλ
+

∂f

∂y

dy

dλ
, (10.20)

it might well be that there is some functional dependence between x and y.
But that doesn’t matter; we can still calculate df/dλ by applying this expres-
sion to the function f(x, y). That’s because if z = f(x, y) is plotted in three
dimensions to give a 2-surface, then this surface also contains any points that
have been singled out by a dependence between x and y. So rates of increase
of f over this subset are calculated in just the same way as rates of increase
over the general surface. The two partial derivatives of (10.20) are really
telling us to differentiate f with respect to its first argument and then with
respect to its second argument.

In that respect, partial derivative notation such as ∂f(x, y)/∂x is used in
physics to mean“differentiate mechanically with respect to the first argument
of f , disregarding the fact that y might depend on x”. It differs from that
used by many mathematicians, who generally explicitly indicate the same
procedure by writing D1f(x, y) and will avoid an expression like ∂f(x, y)/∂x
if there is any possibility of ambiguity.

Thus, in (10.19) the variable λ appears in both arguments of the function,
and all we are doing is applying the chain rule (10.20) by differentiating with
respect to both arguments.

Now set λ = 0 and integrate (10.19) by parts to eliminate η′, as we did
for the straight-line calculation in (10.14):

S′(0) =
∫ x2

x1

[
∂L

∂y
η +

∂L

∂y′ η′
]

dx

=
∫ x2

x1

∂L

∂y
η dx +

∂L

∂y′ η

∣∣∣∣x2

x1︸ ︷︷ ︸
Boundary
condition:

this vanishes!

−
∫ x2

x1

d
dx

(
∂L

∂y′

)
η dx

=
∫ x2

x1

[
∂L

∂y
− d

dx

∂L

∂y′

]
η dx . (10.21)

Requiring S′(0) to be zero for all η(x) implies that
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∂L

∂y
− d

dx

∂L

∂y′ = 0 . (10.22)

This is Lagrange’s equation, the fundamental equation of variational calculus.
The quantity L(y, y′) in the action is called the lagrangian for the scenario
being considered.

10.3.2 Other Variational Approaches

For the sake of pedagogy, we have pursued a slightly different route to the
lagrangian than what is usually followed. Other notations are frequently used,
however, so let’s pause for a moment to look at them. The most common
writes our S(λ) as S + δS, where S is identical to our S(0). The variation
is labelled δy, equalling our λη(x). A Taylor expansion shows the variation
to be

δS = S′(0)λ + O(λ2) . (10.23)

Working only to first order in the variation (since it eventually goes to zero
anyway), and following the same line of argument that produced (10.21),
gives an equation analogous to (10.21):

δS =
∫ x2

x1

[
∂L

∂y
− d

dx

∂L

∂y′

]
δy dx . (10.24)

Notice that since δL is defined such that

δS =
∫ x2

x1

δL(y, y′) dx , (10.25)

the integrands of these last two equations are usually equated to write

δL

δy
=

∂L

∂y
− d

dx

∂L

∂y′ , (10.26)

although this only holds when L is a function of y and y′ only. Although ex-
pressions of the form δ(·)/δ(·), known as functional derivatives, are routinely
written in variational calculations (see, for example, the general relativistic
analogue on p. 515), we should not forget that they presuppose that an inte-
gration will eventually be performed using the boundary condition, such as
shown in (10.21). Unfortunately, some authors write δS/δy in place of δL/δy.
This gains nothing, producing only an equation with incorrect units.

An interesting point in this second approach is a possible ambiguity. When
the variation is written

δS =
∫

δL(y, y′) dx =
∫ [

∂L

∂y
δy +

∂L

∂y′ δy′
]

dx , (10.27)
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we need to realise that δy′ could be either (δy)′ or δ(y′). But these two are
identical since

δ(y′) = (y + δy)′ − y′ = y′ + (δy)′ − y′ = (δy)′ . (10.28)

A third type of variational calculus notation employs the Dirac delta func-
tion. In this case, the basic variation η(x) is much more constrained, being
a delta function with its spike at some arbitrary value of x. We demand a
stationary value of S over all of these spike positions:

η(x) = δ(x − a) with S′(0)
req.

0 ∀ a . (10.29)

Here, the delta function derivative is needed, defined by how it acts on a
sufficiently well-behaved test function T (x):∫ ∞

−∞
T (x) δ′(x − a) dx = T (x) δ(x − a)

∣∣∣∞
−∞

−
∫ ∞

−∞
T ′(x) δ(x − a) dx

= −T ′(a) . (10.30)

Using this approach, the Lagrange equation is very economically recovered—
although the groundwork has really been hidden inside the mechanism of the
delta function and its derivative. Begin with

Sa(λ) ≡
∫ x2

x1

L
(
y + λ δ(x − a), y′ + λ δ′(x − a)

)
dx , (10.31)

so that

S′
a(0) =

∫ x2

x1

[
∂L

∂y
δ(x − a) +

∂L

∂y′ δ′(x − a)
]

dx

=
∂L

∂y
− d

dx

∂L

∂y′

∣∣∣∣
x=a

req.
0 ∀ a , (10.32)

which again gives Lagrange’s equation.

10.3.3 Application to Mechanics: Hamilton’s Principle

When a system is constrained in some way, Newton’s laws, with their vector
forces and accelerations, might not be economical for producing its equation of
motion. For example, a bead sliding down a curved wire can never leave that
wire, so the situation is one-dimensional, leading to a hope that a knowledge
of the force applied by the wire on the bead might not be necessary to solve
for the resulting motion.

Such a lagrangian approach to mechanics is catered for by variational
calculus, and it can be shown that such an approach is equivalent to applying
Newton’s laws. The variable x that we have used up until now in equations
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such as (10.17) is replaced by time, while the range y is replaced by any
quantity useful for describing the system. This is often a space coordinate
but can just as well be anything else that quantifies the system dynamics.
Corresponding to (10.17), the action for some set of coordinates {xi} is

S =
∫ t2

t1

L(xi, ẋi) dt , (10.33)

where if there are two particles, each with three degrees of freedom, then the
index i counts 1 to 6, and so on. For a conservative field (i.e. one for which
we can define a potential), the nonrelativistic lagrangian L(xi, ẋi) turns out
to be

L = total kinetic energy − total potential energy. (10.34)

A justification for L having this form is that it leads to Newton’s equation of
motion, which can be seen in the following way. Consider the simplest case: a
particle moving subject to some potential energy V (x, y, z) that is a function
of position only. The lagrangian is

L(x, y, z, ẋ, ẏ, ż) = 1

2
mv2 − V (x, y, z) . (10.35)

Lagrange’s equation for the x coordinate is

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 , (10.36)

which leads to
−∂V/∂x = mẍ . (10.37)

Similar equations are produced for the y and z coordinates, and the three
can be combined to give

−∇V = m(ẍ, ÿ, z̈) . (10.38)

But this is just Newton’s force law if we identify the force with the rate of
loss of potential energy with position as in (10.6). Conversely, it can also be
shown that Newton’s force law gives rise to Lagrange’s equation, although
we won’t do that here.

Whereas Newton’s theory of mechanics is couched in terms of forces acting
on an object to produce an acceleration, the lagrangian approach takes an
entirely different view, speaking only of energy, while considering all at once
the entire path of the object in space and time. Nature chooses this path
to minimise the action. So while Newton considers that a particle responds
to whatever push it receives from one moment to the next, the Principle of
Least Action considers the particle’s path holistically. This way of describing
the physical world works very well—and not just for mechanical problems
but for all of physics. In a way, modern physics is a search for lagrangians to
describe ever more fundamental systems, along with finding ways to extract
information from those lagrangians.
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10.3.4 Nöther’s Theorem and Lagrangian Invariances

A prime importance of the lagrangian lies in its ability to embody invariances
of the system, since these can be shown to give rise to conserved quantities.
This famous theorem was expressed in general form by the mathematician
Emmy Nöther.

In the case of space and time invariances, Nöther’s theorem produces two
conserved quantities of fundamental importance in classical and quantum me-
chanics: the generalised momentum b and the hamiltonian H. These actually
date from early in the history of lagrangian mechanics, long before Nöther
wrote down her theorem.

The Generalised or Canonical Momentum b

If we write the Lagrange equation for the coordinate xi as

∂L

∂xi
=

d
dt

∂L

∂ẋi
, (10.39)

then it suggests the existence of a conserved quantity. To see this, define the
canonical or generalised momentum for the coordinate xi as

bi ≡ ∂L

∂ẋi
, (10.40)

in which case the Lagrange equation implies that

b
.
i ≡

∂L

∂xi
. (10.41)

So if the lagrangian is independent of some coordinate xi, then the corre-
sponding canonical momentum bi will be a constant of the motion: that is,
conserved over time. A case in point is a single particle with some potential
energy V (t) that depends at most on time. Here the canonical momentum
equals the usual more elementary momentum mv. The lagrangian in this case
has no spatial dependence, so it must be that mv is conserved in time, as
we know is true from Newton’s laws. As we shall see later, the canonical mo-
mentum is particularly important in the transition from classical mechanics
to quantum mechanics.

The single-particle canonical momentum b is really just a generalisation of
the elementary momentum p ≡ mv to more sophisticated lagrangians, and
both are usually denoted by p. This is a reasonable thing to do, but can
sometimes cause confusion when we need to deal with both quantities in
one equation, which we’ll do in (10.130). It is the canonical momentum that
finds especial use in quantum mechanics, and in this text b has been used for
canonical momentum purely to highlight the care needed in such a situation.
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The Hamiltonian H

The time derivative of the lagrangian is

dL

dt
=

∂L

∂xi
ẋi +

∂L

∂ẋi
ẍi +

∂L

∂t
(sum over i and over all particles)

=
d
dt

(
∂L

∂ẋi
ẋi

)
+

∂L

∂t

=
d
dt

(biv
i) +

∂L

∂t

(
vi ≡ ẋi

)
, (10.42)

so that
d
dt

(
L − biv

i
)

=
∂L

∂t
. (10.43)

This relation motivates the definition of a hamiltonian,

H ≡ biv
i − L (sum over i and all particles), (10.44)

which implies that

Ḣ =
−∂L

∂t
. (10.45)

Compare this with (10.41). If the lagrangian is independent of time, the hamil-
tonian becomes a constant of the motion and is then called the total energy
of the system. This, then, is a principal use of the lagrangian: through (10.40)
and (10.44) it produces candidates for constants of the motion, and similarly
for more general “internal” coordinates via Nöther’s theorem. In Sect. 10.5,
we will see how b and H find a central use in quantum mechanics.

10.3.5 Continuous Systems: First Steps to a Field Theory

The fact that the total lagrangian is just the sum of the lagrangians for each
particle enables us to construct the lagrangian for a continuous system. For
example, what is the lagrangian of a vibrating string, and how does it produce
the expected equation of motion?

Parametrise the string by x along its length, where its displacement from
equilibrium is φ. Consider it as made up of many particles, each of infinitesi-
mal mass µdx, where µ is the string’s linear mass density. Finally, calculate
the total lagrangian by summing the contributions of all the masses. A real-
istic simplification is that the vibrating particles only move transversely to
the string’s length, so that the kinetic energy of each will be

kinetic energy = 1

2
µdx φ̇2, (10.46)

where φ̇ ≡ ∂φ/∂t. The potential energy of each small mass is the work done
against the tension T to stretch the string by an amount ds − dx, where ds is
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Fig. 10.4. Calculating the potential energy of a guitar string, shown here with
a heavily exaggerated displacement. Any element of the string is stretched by an
amount ∆s − ∆x, where ∆s2 � ∆x2 + ∆φ2. In the infinitesimal limit, this stretch
becomes ds − dx =

(√
1 + (φ′(x))2 − 1

)
dx. Small displacements mean the string’s

slope φ′ is also small, so that the stretch becomes ds − dx = 1/2 φ′2 dx. The result-
ing potential energy is the work done by the tension T in displacing the element by
this amount, or 1/2 Tφ′2 dx.

its stretched length, given by (10.8) and shown in Fig. 10.4. For φ′ ≡ ∂φ/∂x
small, we then have

potential energy = 1

2
Tφ′2 dx . (10.47)

The lagrangian for each mass is therefore

1

2
µdx φ̇2 − 1

2
Tφ′2 dx . (10.48)

Hence, the lagrangian for the whole string of length L is, by summing the
individual elements,

L =
∫ L

0

1

2

[
µ φ̇2 − Tφ′2

]
dx . (10.49)

The lagrangian is now itself an integral, unlike that for the single-particle
case (10.35). So, we can interpret the integrand in (10.49) as a lagrangian per
unit distance, the lagrangian density L:

L(φ, φ̇, φ′) = 1

2

[
µ φ̇2 − Tφ′2

]
. (10.50)

Thus, even in this nonrelativistic case, the action now puts space and time
on an equal footing:

S =
∫

L dt =
∫∫

L(φ, φ̇, φ′) dt dx . (10.51)

How do we vary this action? Follow the same ideas as before, except now the
perturbation function is η(t, x) with a more stringent anchoring:
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η(t1, x) = η(t2, x) = η(t, x1) = η(t, x2)
req.

0 . (10.52)

The perturbed action is

S(λ) ≡
∫∫

L(φ + λη, ∂t(φ + λη), ∂x(φ + λη)
)

dt dx . (10.53)

In that case, the calculation analogous to (10.21) is

S′(0) =
∫∫ [

∂L
∂φ

η +
∂L
∂φ̇

η̇ +
∂L
∂φ′ η′

]
dt dx

=
∫∫

∂L
∂φ

η dtdx +
∫ [

∂L
∂φ̇

η

∣∣∣∣t2
t1︸ ︷︷ ︸

Boundary conditions:
this vanishes

−
∫

d
dt

(
∂L
∂φ̇

)
η dt

]
dx

+
∫ [

∂L
∂φ′ η

∣∣∣∣x2

x1︸ ︷︷ ︸
This also vanishes

−
∫

d
dx

(
∂L
∂φ′

)
η dx

]
dt

=
∫∫ [

∂L
∂φ

− d
dt

∂L
∂φ̇

− d
dx

∂L
∂φ′

]
η dtdx

req.
0 ∀ η . (10.54)

It follows that the equation of motion for the string is

∂L
∂φ

− d
dt

∂L
∂φ̇

− d
dx

∂L
∂φ′ = 0 . (10.55)

Applying this to the lagrangian density of (10.50) easily produces the usual
wave equation for a string that has been given a small sideways displacement:

∂2φ

∂x2
=

µ

T

∂2φ

∂t2
, (10.56)

which leads to the usual wave speed of c =
√

T/µ .

Finally: The Variational Principle for a Field Theory

The previous example dealt with a function of one space and one time dimen-
sion, φ(t, x). It generalises quite easily to a field φ(t, x, y, z) with cartesian
coordinates xα, as well as no gravity, because it turns out that gravity alters
the volume element in the integration in a way that we’ll leave for Chap. 12.
We will also only use a scalar field here since it has no indices to keep track
of, but the same formalism also applies to tensor fields. Beginning with the
action
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S =
∫

L(φ, φ,α) d4x , α = 0 → 3 , (10.57)

use the summation convention to write

S′(0) =
∫ [

∂L
∂φ

η +
∂L

∂φ,α
η,α

]
d4x , (10.58)

remembering that ∂φ,α ≡ ∂ (φ,α). The second term can be integrated by
parts as we have done previously, and requiring η to vanish on all boundaries
leads to

∂L
∂φ

− ∂α

∂L
∂φ,α

= 0 . (10.59)

Last, we wish to generalise (10.59) to arbitrary coordinates. This is not really
any more difficult or different from what we have already done, but it’s a task
more suited to Chap. 12, where it will be needed to investigate how gravity
affects other fields. The relevant details are explained in Sects 12.8 and 12.8.1.
There we will find the correct expression to be any one of (12.117)–(12.119).

10.3.6 Nöther’s Theorem for a Scalar Field

The hamiltonian and generalised momentum that we saw previously become
fused into a single tensor in the case of a scalar field. This comes about by our
almost mimicking the previous derivation of the hamiltonian for point parti-
cles, although to shorten the calculation we’ll assume here that the lagrangian
density has no explicit coordinate dependence. Hence,

∂βL =
∂L
∂φ

φ,β +
∂L

∂φ,α
φ,αβ

(10.59)
∂α

(
∂L

∂φ,α

)
φ,β +

∂L
∂φ,α

φ,αβ

= ∂α

(
∂L

∂φ,α
φ,β

)
. (10.60)

We can get the same differentiation subscript on each side by rewriting the
last line above using a Kronecker delta,

δα
β ∂αL = ∂α

(
∂L

∂φ,α
φ,β

)
, (10.61)

in which case

∂α

(
∂L

∂φ,α
φ,β − δα

βL
)

︸ ︷︷ ︸
≡T α

β

= 0 . (10.62)

In a generalisation of the energy and momentum discussions for the point
particle lagrangian, the quantity Tα

β inside the parentheses is termed the
energy–momentum tensor.
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The discussion around (8.63) is very pertinent here. If we wish to lower
the α in T α

β to produce an expression for Tαβ , then we need to realise
that the δα

β in (10.62) becomes the metric, which in Minkowski spacetime
is ηαβ . Plus, we have deliberately written the Kronecker delta not as δα

β

but instead with indices spaced apart, which amounts to a choice of index
order in the definition of the energy–momentum tensor. Also, it’s desirable
for the energy–momentum tensor to be symmetric; the definition here is not
explicitly so. Alternative approaches to constructing a symmetric energy–
momentum tensor are found in the literature.

What is the field generalisation of the conservation of energy and momentum
for point particles? Because the four-divergence Tα

β,α is zero, the energy–
momentum tensor is called divergence-free, and in a cartesian basis (no co-
variant derivatives needed) we can write

−T 0
β,0 = T i

β,i = ∇·(T 1
β , T 2

β , T 3
β

) ≡ ∇·Tβ . (10.63)

Alternatively, note that (10.63) could have been written

−T 0
β,0 = T i

β,i ≡ ∂i

(
Tβ ·ei) ei const. (

∂iTβ

)·ei = ∇·Tβ . (10.64)

Constant cobasis vectors have been assumed, which is why we stipulated
that the calculation must use cartesian coordinates.

Integrating (10.63) over a closed volume gives

−
∫

volume

T 0
β,0 dV =

∫
volume

∇·Tβ dV , (10.65)

and Gauss’s theorem from vector calculus then converts the integral of the
divergence on the right-hand side of (10.65) to a surface integral:

−∂0

∫
volume

T 0
β dV

︸ ︷︷ ︸
Rate of loss of

“something” in the
enclosed volume

=
∫

surface

Tβ ·n dS

︸ ︷︷ ︸
Rate of flow out of that

volume, where Tβ is a flux

density (i.e. flow of something
per unit area per unit time)

. (10.66)

Figure 10.5 shows the meaning of the terms. What has resulted is a conserved
quantity, which in this case defines the field energy, related to the field mo-
mentum flux entering the volume. So the field has an energy density of T00

and three momentum densities of T0i (where the first index has been lowered
for convenience). In general, the quantity

∫
T0β dV is called a Nöther charge,

while the flux term is the associated Nöther current. So the lagrangian for-
malism for fields allows us to predict the forms of these conserved quantities.
We will meet a different formulation of the energy–momentum tensor in the
context of general relativity in Chap. 12.
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total lost in dt

= −d
∫

volume

T 0
β dV

dS
n

amount out of dS in dt

= Tβ ·n dS dt

total out in dt

= dt
∫

surface

Tβ ·n dS

Fig. 10.5. Interpreting (10.66). As an aid, multiply both sides of that equation
by dt to give −d

∫
V

T 0
β dV = dt

∫
S

Tβ ·n dS. These can now be interpreted as the
loss of “something” in a time dt from a closed volume, along with the amount of
that something escaping through the surface. Thus T 0

β is a density, while Tβ is a
flux density, being the flow of that something per unit area per unit time. These two
quantities form a natural pair, as we saw at the start of Chap. 6, in particular (6.11).

10.4 Building a Lagrangian

Why should the lagrangian have the form that it does? A clue is provided by
the motion of a free particle in special relativity (and also, as it turns out,
in general relativity). Such a particle moves along a path that maximises a
particular scalar, the proper time between the starting and ending events:∫

path taken

dτ is a maximum. (10.67)

We can see that the path really must maximise the proper time since, for
example, in just one space dimension with no gravity, the metric is

dτ2 = dt2 − dx2. (10.68)

In the frame in which the particle is at rest, its worldline runs along the
time axis and dτ = dt. Any departure from this axis will introduce a dx2 into
the proper time interval, being subtracted from dt2 and so acting to reduce
the total proper time experienced by the particle. So the worldline that runs
along the time axis must maximise the particle’s proper time. Now notice
what happens if we multiply the proper time by the particle’s negative rest
mass −m:

−m

∫
dτ = −

∫
m dt

γ
�
∫ (

1

2
mv2 − m

)
dt (10.69)
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The m in the parentheses is a constant and so does not affect any extrem-
isation. So relativity explains why the nonrelativistic lagrangian for a free
particle is just its kinetic energy. Notice that the actual lagrangian to be in-
tegrated over the time coordinate t is not a scalar, because dt is not a scalar
either. But the action in (10.69) certainly is a scalar (composed of rest mass
and proper time, both scalars), at least insofar as the binomial approximation
doesn’t change it too much.

More generally, being a scalar is a demand we place on the action be-
cause that way its stationary value will be guaranteed independent of the
coordinate system. Plus, having all observers agree on its value is an impor-
tant property that surfaces in other areas, such as in Sect. 10.4.1, where we
use it to build the electromagnetic potential four-vector, and in Sect. 10.8,
where the action assumes the central role in the path-integral formulation of
quantum mechanics.

Most particles are not free but subject to some force, which suggests in-
cluding a potential energy term in (10.69). To look more closely at such a
term, remain for the moment nonrelativistic and write down the lagrangian
for a mass m in a newtonian gravitational field with potential Φ. The discus-
sion of Sect. 10.3.3 prescribes a lagrangian

L = 1

2
mv2 − mΦ . (10.70)

But potential energy is not a property of the mass alone; rather, it is a
property of the two gravitating bodies. It’s an interaction, and as is clear
from (10.70), it is linear in both mass and potential. This suggests that we
could make the lagrangian more complete and symmetrical by adding a new
term that involves the gravitational potential Φ alone. Because mv2/2 is
quadratic in the time derivative of the coordinate describing the particle,
we’ll try adding a term quadratic in space derivatives of Φ since, in newto-
nian gravity, Φ depends only on space. We suggest the following in cartesian
coordinates: ∑

i

(Φ,i)
2

, or alternatively |∇Φ|2 . (10.71)

The field is spread over space, so we integrate this new term over all space, in-
cluding a relative weighting factor of −1/(8πG) in hindsight. The lagrangian
becomes

L = 1

2
mv2︸ ︷︷ ︸

free particle

− 1
8πG

∫
|∇Φ|2 d3x︸ ︷︷ ︸

free field

− mΦ︸ ︷︷ ︸
interaction

. (10.72)

The new term involving the field alone now has no space dependence, so
varying the action with respect to the space coordinates of the particle’s
trajectory will give Newton’s force law −∇ (mΦ) = ma as before. This law
describes how the mass is acted upon by the field. But by symmetry we
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expect a new result. By varying the lagrangian with respect to Φ, we might
obtain the “equation of motion” of the field: how the field is influenced by
the mass. This is indeed what results. To show this, write the lagrangian as a
density, as was done in Sect. 10.3.5. The mv2/2 term has no relevance here,
being independent of Φ; so extract from the rest of the lagrangian (10.72) the
density

Lgrav =
−1
8πG

|∇Φ(x)|2 − �(t,x)Φ(x) , (10.73)

where the density of the mass is now specified by �(t,x), which for a parti-
cle will be a time-dependent delta function. Now apply the Lagrange equa-
tion (10.59), writing

∂Lgrav

∂Φ
− ∂α

∂Lgrav

∂Φ,α
= 0 , (10.74)

ignoring the case α = 0 (≡ t) since Lgrav has no time dependence. Equa-
tions (10.73) and (10.74) combine to produce Poisson’s equation,

∇2Φ(t,x) = 4πG�(t,x) . (10.75)

We will show that this has a spherically symmetric solution Φ(r) for a point
mass at rest at the origin: � = mδ(x). Use (8.227) to write Poisson’s equa-
tion as

1
r2

(
r2Φ,r

)
,r

= 4πGmδ(x) . (10.76)

For a potential required to vanish at r → ∞, a solution for r > 0 is

Φ = a/r for some constant a, with r 	= 0 . (10.77)

The constant a can be fixed by first integrating (10.75) over space:∫
∇2Φ d3x = 4πGm . (10.78)

Use Gauss’s theorem to convert (10.78) to a flux integral over a sphere of
radius R with surface element dS:

4πGm =
∫

∇·∇Φ d3x
Gauss’s theorem

∫
∇Φ · er dS

(10.77)
∫ −a

r2
dS =

−a

R2
4πR2 = −4πa . (10.79)

So a = −Gm and the solution is

Φ =
−Gm

r
, with the field g = −∇Φ =

−Gm

r2
er , (10.80)

as expected. The programme is a success: a lagrangian can be built as the
sum of terms for the free mass, the free field, and an interaction.
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L =
1

2
mv2 −

∫
� Φ d3x − 1

8πG

∫
|∇Φ|2 d3x

Vary x → free mass Vary Φ → free field

Vary x → field acts on mass

(Gravitational force on a mass)

Vary Φ → mass acts on field

(Gravity due to a mass)

interaction

Fig. 10.6. The variation of terms that gives the two “equations of motion” when a
mass interacts with a newtonian gravitational field. The lagrangian is (10.72).

Something really new has emerged here. We only added a free field to the
lagrangian describing how the field affects the particle, and yet the formalism
has told us correctly how the particle affects the field. The single interaction
term −mΦ describes correctly how the mass and the gravitational field affect
each other. The overall scenario is shown in Fig. 10.6.

And therein lies some of the beauty of the lagrangian approach to field
theory. Where previously Newton’s force law was seen as something com-
pletely separate from his law describing the gravitational field produced by
a point mass, the lagrangian (10.72) has united these two things into one
coherent whole. Finally, the current philosophy of modern physics emerges:
to search for a lagrangian describing as much of the physical world as possi-
ble and, in choosing terms that lead to experimentally verifiable results, to
predict new laws in just the same way as we have here been led to the law of
gravity for a point mass.

10.4.1 A Relativistic Lagrangian for a Charge in an EM Field

The next step in our study of lagrangians is to make everything relativis-
tic. We’ll leave gravity until Chap. 12. Instead, here we will focus on the
lagrangian for a charge q in an electromagnetic field. Again, the free parti-
cle part of the scalar lagrangian is −m. Statically, the interaction term is
the potential energy q Φ. But the presence of Φ reminds us that in electro-
magnetism, Φ tends to appear along with the vector potential A in a highly
symmetrical way, and these two together give the electric and magnetic fields
by way of (10.5):

E = −∇Φ − ∂A/∂t , B = ∇×A . (10.81)
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Because the physical fields depend on the derivatives of Φ and A, these two
potentials have a certain amount of freedom in their definitions. We’ll consider
the possibility that there might well be a valid set of Φ and A that belong
together in a lagrangian, and indeed that they might even form a vector Aαeα,
the electromagnetic potential, whose time component is Φ and whose space
projection is A. So, for example, in cartesian coordinates(

At, Ax, Ay, Az
) ≡ (Φ,A) . (10.82)

Let’s see where such an assumption leads. If the interaction is required to
be a scalar in the action integration over τ , then we wish to include all of
the Aα components in the lagrangian and not just the potential Φ. In analogy
to the mΦ interaction for gravity, but with an eye toward introducing the
charge’s velocity (which we know interacts with the magnetic field), try a
scalar interaction of quαAα, including a factor from the metric of sgn η00 for
extra clarity, as we’ll explain in a moment:

S =
∫

(−m − quαAα sgn η00) dτ

=
∫ (−m

γ
− q

γ
uαAα sgn η00

)
dt . (10.83)

Actually the term uα/γ in (10.83) just equals (1,v), so we will write it as vα

for conciseness, where v0 ≡ 1 (although vα is not a tensor!). The (fully rela-
tivistic) lagrangian is thus

L = −m/γ − sgn η00 qvαAα . (10.84)

The factor of sgn η00 has been included because raising or lowering indices
involves the metric, but unfortunately there is no common convention for the
choice of signs in the metric. It’s useful to leave that sign choice unspeci-
fied for now, partly because the different choices make for confusing reading
across different books. However, since we’ll want to raise and lower indices
in the following discussion, we’ll work with cartesians for simplicity, where
sgn η00 = ηtt and the metric is simply ηtt diag(1,−1,−1,−1), where ηtt can
be chosen as either ±1. The end result will be covariant for cartesian coor-
dinates, and so will easily be modified to apply to all other coordinates by
converting all ordinary partial derivatives into covariant derivatives.

Thus, for all vector components V α,

V k = −ηtt Vk , Vk = −ηtt V k,

V t = ηtt Vt , Vt = ηtt V t. (10.85)

Regardless of the choice of ηtt, the nonrelativistic limit of L in (10.84) is
easily found to be

L → 1

2
mv2 − q Φ + qv ·A , (10.86)
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which we can see is no longer a simple kinetic energy minus potential energy
expression. Showing how the equation of motion for the nonrelativistic charge
results from this is only slightly simpler than doing the same for the relativis-
tic version (10.84); so we will only consider the relativistic case. Lagrange’s
equations require

∂L

∂xk
= −ηtt qvβAβ,k , (k = x → z) , (10.87)

∂L

∂vk
= γmvk − ηtt qAk

= pk − ηtt qAk = −ηtt (pk + qAk) , (10.88)

where pk ≡ γmvk is the relativistic momentum defined in (5.49), and where
the superscript of pk was lowered in (10.88) to match the qAk there, ensuring
that the sum pk + qAk is covariant (i.e., the k appears either as a superscript
or a subscript, but not a mixture of both). This is a good rule of thumb to
use when aiming for simplification. The required time derivative is

d
dt

∂L

∂vk
= −ηtt

(
pk,t + qAk,t + qAk,� v�

)
, (� = x → z) . (10.89)

The Lagrange equations combine (10.87) with (10.89) to give

1
q

dpk

dt
= vβAβ,k − Ak,t − Ak,� v�. (10.90)

This expression will be more covariant if we write it using the proper time τ ,
where

dt = γ dτ = utdτ , (10.91)

so that
dpk

dτ
= quβ (Aβ,k − Ak,β) . (10.92)

But we have seen the expression in the last parentheses before: it’s part
of the generalised curl, Fαβ , that was foreseen in (8.239), whose cartesian
components are listed in (10.94) and (10.95) in the box on the next page.

Note that in (10.94) we have included an arbitrary factor of s ∈ {±1} since
again sign conventions differ, although the most common choice (including
this book) seems to be s = +1. We’ll set s = 1 in what follows. The factor s
can always be included in the following calculations with the replacements
F αβ → sF αβ and Fαβ → sFαβ . Equivalently, a sign change to s = −1 simply
swaps the indices of both F αβ and Fαβ .

Equation (10.92) becomes

dpk

dτ
= quβFkβ . (10.93)
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The Components of the Faraday Tensor are E and B

The Faraday tensor was defined in (8.239), where Aα was the electromagnetic
potential. Sometimes it’s defined as the negative of our definition. In general,
if we define it as

Fαβ ≡ s (Aβ,α − Aα,β) , (10.94)

where the sign s is usually +1 but sometimes −1, then inspection of (10.81)
shows that the Faraday tensor has the following cartesian components written
in matrix form, where α = row index and β = column index:

(Fαβ) = s ηtt

⎡⎢⎢⎣
0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎤⎥⎥⎦ , (F α
β) = s

⎡⎢⎢⎣
0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

⎤⎥⎥⎦ ,

(Fα
β) = s

⎡⎢⎢⎣
0 −Ex −Ey −Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

⎤⎥⎥⎦ , (F αβ) = s ηtt

⎡⎢⎢⎣
0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎤⎥⎥⎦ .

(10.95)

Note that while E appears as three simple components, B is more complicated:
it appears with alternating signs in a form like the “cross matrix” of (4.23),
alluding to the fact that B has a rotational nature. (E is traditionally called
a polar vector, while B is an axial vector.)

Transforming electric and magnetic fields under frame and coordinate
changes is easily done using the Faraday tensor. Less useful is to transform Aα

itself, since there is some ambiguity in the definition of Aα; given E and B,
we would first need to find Aα by solving (10.81), then transform the Aα, and
then apply (10.81) to the resulting new components to get the transformed E
and B. Contrast this with transforming Fαβ in the usual tensor way, which is
much more direct.

This is the Lorentz force in cartesian coordinates. We can show it reduces to
the more familiar expression by setting k = x; the expressions for k = y, z
follow similarly:

dpx

dt
= −ηtt

γ

dpx

dτ
= −ηtt

γ
quβFxβ

(10.95)
q
[
Ex + (v × B)x]

. (10.96)

This combines with the matching expressions for k = y, z to give the familiar
vector form of the Lorentz force,

dp/dt = q(E + v × B) . (10.97)

Experiments verify that this equation of motion also holds relativistically
(even though it contains t instead of τ !). The nonrelativistic lagrangian (10.86)
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actually gives almost the same equation of motion, except that the force
term dp/dt, which has the relativistic form m d(γv)/dt, is replaced by its non-
relativistic version m dv/dt. So the lagrangian that we have chosen, (10.84),
does indeed give the correct dynamics for a relativistic charged particle.

Equation (10.93) looks as if the index k (= x to z) might be replaceable
by α (= t to z). Could this be true? Again using (10.95), we have

quβFtβ = qγ v ·(Ftx, Fty, Ftz) = ηttγ v ·qE , (10.98)

where v ·qE is the rate of work done on a charge. (The Lorentz force is ev-
erywhere at right angles to the magnetic field, so that B contributes nothing
to this work.) The rate of work done must equal the increase in the charge’s
energy, so

quβFtβ = ηttγ
dpt

dt
=

dpt

dτ
, (10.99)

which makes it evident that (10.93) holds generally in an almost covariant
form (that is, but still only for cartesians):

dpα

dτ
= quβFαβ . (10.100)

This is the cartesian expression for the rate of work done (α = t) and
the Lorentz force (α = x, y, z) on a charge. For full covariance—that is, to
write (10.100) in general coordinates—we require that all commas become
semicolons, as discussed on p. 328. This doesn’t change Fαβ due to (8.239),
but it certainly does change the derivative in (10.100). Comparing (9.100)
with (9.102) means that, in arbitrary coordinates, the Lorentz force and rate
of work done are given by

Dpα

dτ
= quβFαβ . (10.101)

Adding a Term for the Free Electromagnetic Field

The lagrangian (10.84) is still one-sided in that it only describes the effect of
the field on the charge. As in the gravity case, a term must be added for the
free field, which will then conspire with the interaction term to quantify how
the charge affects the field (i.e. Maxwell’s equations). Just as we were able
to write down a gravitational field lagrangian density using a quadratic term
in first derivatives of the potential, we can do the same for the electromag-
netic potentials (Φ,A). This should be a term like Aα,βAα,β . But retaining
covariance demands a semicolon, so an expression like Aα;βAα;β would be
more suitable (see Sect. 8.9.5). However, this turns out not to give the cor-
rect physical theory. We know that Maxwell’s equations involve the Faraday
tensor, so it might come as no surprise that the correct quadratic expression
turns out to be the scalar
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L = −m/γ − sgn η00

∫
jαAα d3x − ε0

4

∫
F 2 d3x

Vary x → free charge Vary Aα → free field

Vary x → field acts on charge

(Lorentz force)

Vary Aα → charge acts on field

(Maxwell’s equations)

interaction

Fig. 10.7. The variation of terms that gives the two equations of motion when a
charge interacts with an electromagnetic field. The lagrangian is (10.103), incorpo-
rating the jα notation of (10.104).

F 2 ≡ FαβFαβ . (10.102)

Integrating (10.102) over space and adding to the lagrangian (10.84) gives
the overall lagrangian for a charge in an electromagnetic field. Ever-useful
hindsight provides a weighting factor of the permittivity constant:

L = −m/γ︸ ︷︷ ︸
free charge

− ε0

4

∫
F 2 d3x︸ ︷︷ ︸

free field

− sgn η00 qvαAα︸ ︷︷ ︸
interaction

. (10.103)

The term for the free charge here is not the quadratic expression that we
might have expected. In fact, in Sect. 10.6.2, we will find that in the more
correct version (10.175) that treats the charged particle as representable by
its own quantum field ψ, this field does occur quadratically.

In (10.87)–(10.100) we varied the charge and interaction terms of the la-
grangian (10.103) with respect to the space coordinates of the particle’s
trajectory and obtained the Lorentz force. Now we will vary the field and
interaction terms of that lagrangian with respect to the field coordinates,
hoping that the field equations of motion—Maxwell’s equations—will result.
The programme is shown in Fig. 10.7. Again, work in cartesian coordinates
for simplicity, in which case sgn η00 is replaced by ηtt.

Just as we did for gravity, express the terms in (10.103) as densities.
Replace the charge q by a charge density �, noting that �vα = �0u

α = jα, the
current density defined back in Sect. 6.4. The free-charge lagrangian −m/γ
has no relevance here, so corresponding to (10.73), write the electromagnetic
part of the lagrangian density alone as

Lem = −ε0

4
F 2 − ηttj

αAα . (10.104)
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There will be four Lagrange equations for the field. Equation (10.59) produces

∂Lem

∂Aβ
− ∂α

∂Lem

∂Aβ,α
= 0 . (10.105)

The first required derivative is easy:

∂Lem

∂Aβ
= −ηttj

β . (10.106)

Differentiating Lem with respect to Aβ,α requires more work. We must ex-
press F 2 in terms of Aβ,α terms, treating raised indices as shorthand notation
for terms involving lowered indices:

F 2 = ηµ�ηνσ (Aσ,� − A�,σ) (Aν,µ − Aµ,ν) , (10.107)

so that with some care we can write

∂
(
F 2
)

∂Aβ,α
= ηµ�ηνσ

[(
δβ
σδα

� − δβ
� δα

σ

)
Fµν + F�σ

(
δβ
ν δα

µ − δβ
µ δα

ν

)]
= 4Fαβ . (10.108)

It follows that
∂α

∂Lem

∂Aβ,α
= −ε0F

αβ
,α , (10.109)

and so the four Lagrange equations (10.105) become

Fαβ
,α = ηtt

jβ

ε0

. (10.110)

That these really are equivalent to Maxwell’s equations can be shown by
writing time and space components explicitly, remembering that we are using
cartesian coordinates to allow for a simpler treatment of the vector notation.
The time component (β = t) expands to

Φ,α
,α − ηttA

α
,tα = ηtt

�

ε0

. (10.111)

The identities

Φ,α
,α = ηβαΦ,βα = ηtt

(
Φ,tt −∇2Φ

)
,

ηttA
α

,tα = ηtt

(
Φ,tt + ∂/∂t ∇·A) (10.112)

convert (10.111) to vector form,

∇·
(
−∇Φ − ∂A

∂t

)
︸ ︷︷ ︸

≡E

=
�

ε0

, (10.113)
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which is the first of Maxwell’s equations. The remaining three equations of
motion are the spatial parts of (10.110):

Ai,α
,α − Aα,i

,α = ηtt

ji

ε0

. (10.114)

Lowering comma indices eliminates ηtt so that the resulting equations can be
converted to a single vector expression,

∂2A

∂t2
−∇2A + ∇∂Φ

∂t
+ ∇ (∇·A) =

j

ε0

, (10.115)

where ∇2A conventionally means (∇2Ax,∇2Ay,∇2Az), and j is the spatial
current density �v. Defining B ≡ ∇×A and using the identity

∇×B = ∇× (∇×A) = ∇(∇·A) −∇2A (10.116)

converts (10.115) to the simpler

∇×B =
∂E

∂t
+

j

ε0

. (10.117)

This is the second of the four Maxwell equations. The remaining two equa-
tions follow easily from the definitions of E and B:

∇·B = ∇·(∇×A) = 0
(since the divergence of a curl is always zero) ,

∇×E = ∇×
(
−∇Φ − ∂A

∂t

)
=

−∂B

∂t

(since the curl of a gradient is always zero) . (10.118)

It seems that our initial guess has paid off: if a Φ and A can be specified
that together form a vector Aαeα, then they will be part of an action that
leads to the Lorentz force and Maxwell’s equations. We’ll see more of the
electromagnetic potential in later sections and will solve for it explicitly in
the next chapter.

It’s a curious fact that experimentally Maxwell’s equations hold relativis-
tically (although the form in (10.110) is changed when gravity is present),
even though the free field lagrangian density F 2 was simply written in a
quadratic analogy to the nonrelativistic mv2/2 for a free particle. The rea-
son is beyond our scope here, but its roots may be sought in a quantum
field theoretic treatment using an arbitrary function of F 2 in the lagrangian
density.

A convenient mnemonic for remembering div-curl-grad identities runs like
this. Write“d c g” (for div, curl, grad), and consider neighbouring pairs only,
placing a zero before and after each right-hand letter:
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d 0 c , d c 0 , c 0 g , c g 0 . (10.119)

Now read each from left to right. The first expression, d 0 c, reminds us
that if a div is zero, then the relevant function must be a curl. The second
one says that the div of a curl is zero. The third says that if a curl is zero,
then the relevant function must be a grad. The fourth says that the curl of
a grad is zero.

10.5 Producing the Schrödinger Equation

The lagrangian approach to classical mechanics provides a good path to the
Schrödinger equation of quantum mechanics. At the end of Chap. 2, we
showed how the basics of Fourier theory could accommodate the ideas of
x- and p-space so central to quantum mechanics, using (2.230) to show how
the x-representation of the momentum operator p̂x might be written as

p̂x
x-rep. −i� ∂x , (10.120)

at least in the realm of plane waves that forms de Broglie’s original idea. This
spatial differentiation reminds us of the canonical momentum in Sect. 10.3.4;
specifically (10.40) and (10.41):

bi ≡ ∂L

∂ẋi
, b

.
i ≡

∂L

∂xi
. (10.121)

Spatial differentiation of the lagrangian indicates whether the corresponding
component of the canonical momentum is conserved. So perhaps (10.120)
only holds for plane waves, and in general it might better be replaced with
an expression involving the canonical momentum,

b̂x
x-rep. −i� ∂x , (10.122)

or, for one particle,
b̂

x-rep. −i� ∇ . (10.123)

Paired with the canonical momentum was the hamiltonian H, which we saw
in (10.45) varies temporally as

Ḣ =
−∂L

∂t
. (10.124)

Now just as (10.121) and (10.122) imply that b̂i is an operator that acts on
the lagrangian to give the time derivative of bi, or b̂iL = −i� b

.
i, we can define

an operator Ĥ that acts on the lagrangian to give the time derivative of H,
or ĤL = −i� Ḣ, giving rise to

Ĥ ≡ i� ∂t . (10.125)
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Canonical Versus Elementary Momentum in Quantum Mechanics

When reading textbooks in classical mechanics, quantum mechanics, and rel-
ativity, it is possible to confuse canonical momentum with the more elemen-
tary momentum mv, considering that the same symbol p is usually reserved
for both. In quantum mechanics it’s the canonical momentum, denoted here
by b, that is represented by the spatial operator −i�∇, as opposed to the
more elementary momentum p = mv of classical mechanics and its relativis-
tic version pα = muα. The famous commutation relation is then [x, bx] = i�.
The canonical momentum is almost always called p in quantum mechanics
texts. We have chosen to use b in this text to highlight the care needed when
canonical and elementary momenta are related in one equation, such as the
expression of energy conservation in (10.130). We hope that the use of b makes
an equation like (10.130) more transparent.

Equations (10.123) and (10.125) were used in quantum mechanics from early
on in its history to give a prescription for constructing a quantum system’s
equation of motion: the Schrödinger equation. The equation of energy con-
servation for the system to be quantised is written down and the replace-
ments (10.123) and (10.125) are made, converting it to an operator equation
that acts on the wave function Ψ(x, t). The simplest case in point is that
of a single particle of mass m with some potential energy V dependent only
on space coordinates. Such a particle has identical canonical and elementary
momenta, as well as a time-independent lagrangian, so H is its energy and
we can write

H =
b·b
2m

+ V . (10.126)

The Schrödinger equation prescription makes the relevant operator replace-
ments (10.123) and (10.125):

i�
∂Ψ

∂t
=
(−�

2

2m
∇2 + V

)
Ψ . (10.127)

In Sect. 10.8.1, we’ll see how the Schrödinger equation comes about through
a totally different approach: that of Feynman’s path-integral formalism.

As a side point, in analogy to (2.230) and (2.232), we could first write the
Schrödinger equation as

HΨ(x, t) = i�
∂Ψ

∂t
, or H〈x|Ψ, t〉 = i�

∂

∂t
〈x|Ψ, t〉 , (10.128)

and then omit 〈x| to give

H|Ψ, t〉 = i�
∂

∂t
|Ψ, t〉 . (10.129)
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But as with the discussion around (2.222) and (2.232), we should always
remember that the state |Ψ, t〉 is not really being differentiated here. Rather,
〈x| is understood to be invisibly present, and the differentiation applies to
the wave function, the amplitude 〈x|Ψ, t〉, as opposed to the state ket.

The Schrödinger Equation for a Charged Particle in an EM Field

While the canonical and elementary momenta happen to be equal in the
previous example, they will not be so in general. As an example, construct
the Schrödinger equation for a charged particle in an electromagnetic field.
The nonrelativistic lagrangian (10.86) and other relevant quantities are

L = 1

2
mv2 − q Φ + qv ·A ,

p = mv ,

b = p + qA ,

H =
p·p
2m

+ q Φ =
(b − qA)·(b − qA)

2m
+ q Φ . (10.130)

Replacements (10.123) and (10.125) give the Schrödinger equation for this
system:

i�
∂Ψ

∂t
=
[
(−i�∇− qA)·(−i�∇− qA)

2m
+ q Φ

]
Ψ(x, t) . (10.131)

So the canonical momentum b has introduced the field A into the dynamics.
This forms the starting point for a quantum mechanical treatment of the
interaction of atoms with radiation.

10.6 Quantising Field Theory: Fields Describe
Particles, Too!

To illustrate the ideas of field theory using a lagrangian approach, we have
until now concentrated on constructing the relativistic lagrangian (10.103) for
a charged particle interacting with an electromagnetic field. In the context of
quantum mechanics, it was realised historically that since the electromagnetic
field has a particle nature (as demonstrated by photon experiments such as
the photoelectric effect), particles such as electrons might well have a field
nature. Ascribing a particle character to fields is the domain of quantum field
theory.

The quantisation of field theory has its roots in classical mechanics, with
the idea of the energy ascribable to degrees of freedom. When we write the
kinetic energy of a particle as

E = 1

2
mv2 = 1

2
mv2

x + 1

2
mv2

y + 1

2
mv2

z , (10.132)
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thanks to the magic of Pythagoras, the energy can be decomposed into three
parts, corresponding to the particle’s motion along each of the cartesian axes.
The same sort of idea is true of the Equipartition of Energy Principle of
classical statistical mechanics, which states that for a certain reasonable set of
assumptions (such as Maxwell–Boltzmann statistics), each degree of freedom
in a system at temperature T will contribute, on average, 1

2kT to the system’s
total energy, where k is Boltzmann’s constant.

This idea of being able to add the energies for different motions of a
system as if they were really separate is even more impressive in the case
of a vibrating string. The motion of a plucked guitar string can be Fourier-
decomposed into a sum of eigenfunctions of the basic wave equation, called
modes, as was done in (2.211). On paper, the string’s motion is a sum of
these modes, and yet that same motion looks nothing like a set of sinusoids.
Plucking a guitar string by stretching and releasing it near one end forms
a peak in the string’s displacement that bounces back and forth along the
string, reversing its sign at each end. This sign reversal is easily seen by
pulling the string upward over the guitar’s sound hole and then releasing;
the initial peak evolves to a trough over the frets and slaps against them.
The same sort of procedure when done over the frets themselves produces
no slap at all, since the trough then forms harmlessly over the sound hole.
So instead of really looking like an oscillation of sinusoids, the motion of the
string is much more readily seen as composed of two peaked waves travelling
in opposite directions on the string, reversing their signs as they bounce off
the fixed ends, and always superposing to give the actual string shape. This
shape might be quite skewed if the string was plucked far from its midpoint.

But, despite appearances, the energy of the string can also be written
simply as the sum of the energies of its sinusoidal modes. To see why, return
to the guitar string’s motion (2.211), where φ(x, t) describes the string’s small
sideways displacement from equilibrium:

φ(x, t) =
∞∑

n=1

An sin
nπx

L
cos

nπct

L
. (10.133)

Let’s calculate the total energy of vibration of this string. As we saw in (10.46)
and (10.47), its kinetic and potential energies can be summed to give

E =
∫ L

0

dx

[
µ

2
(φ,t)

2 +
T

2
(φ,x)2

]
, (10.134)

which with c =
√

T/µ becomes

E =
µ

2

∫ L

0

dx
[
(φ,t)

2 + c2 (φ,x)2
]
. (10.135)

Substituting φ as a sum of modes from (10.133) into (10.135) produces vari-
ous products of sinusoids. They are easily integrated using the orthogonality
relations
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0

sin
mπx

L
sin

nπx

L
dx =

∫ L

0

cos
mπx

L
cos

nπx

L
dx =

L

2
δmn (10.136)

to give the simple expression

E =
µπ2c2L

4

∑
n

n2

(
An

L

)2

, (10.137)

where An/L is unitless. The important point here is that because the sum-
mation and integration of (10.133) and (10.134) commute, each term of the
energy sum (10.137) is just the energy of each mode of (10.133). So in this
sense each mode has a separate existence, and the total energy of the string’s
motion is the sum of the energies of each of those modes. Classical guitarists
are used to treating the modes as a collection of entities: plucking a string near
its centre excites the lower-frequency modes (smaller n values of the Fourier
series), producing a very mellow sound, while plucking it nearer the string’s
end excites higher-frequency modes (larger n), giving a harsher sound.

We can perhaps think of the nth mode as having a basic unit of en-
ergy µπ2c2Ln2/4, and the amount of this energy present—the loudness of
the mode—is determined by the square of the relative amplitude An/L. Typ-
ically this square will be proportional to 1/n4.

Second Quantisation: Quantising the String Modes

So far, our discussion of the string’s motion has been purely classical. But
the sinusoidal modes remind us of a basic exercise in quantum mechanics: the
quantisation of a harmonic oscillator. Is it meaningful to apply a quantum
mechanical treatment to the string modes? Let’s reiterate the quantisation
of a single mass m, oscillating over a position variable q(t) with spring con-
stant k, so that more generally it can be considered to have a potential energy
of V = kq2/2. Classically, the force on the mass is −kq, so its equation of
motion will be

q̈ =
−k

m
q ≡ −ω2q . (10.138)

When the system is quantised, the Schrödinger equation for the wave function
Ψ(q, t) = ψ(q) e−iEt/� becomes(

kq2

2
− �

2

2m

d2

dq2

)
ψ(q) = Eψ . (10.139)

A change of variables

z ≡
√

mω

�
q ≡ α q (10.140)

produces

ψ′′(z) +
(

2E

�ω
− z2

)
ψ = 0 . (10.141)



420 10 Variational Calculus and Field Theory

The solution of this differential equation is a standard exercise in the
mathematics of quantum theory; there turn out to be multiple wave func-
tions ψN (z), each written as products of gaussians and hermite polynomials.

Although the precise forms of these functions are not needed here, it’s useful
to write them down. In terms of q, the wave functions are

ψN (q) =

√
α

2NN !
√

π
HN (α q) e

−α2q2/2, (10.142)

where HN are hermite polynomials:

HN (z) = (−1)N
e

z2 dN

dzN
e
−z2

. (10.143)

The important point is that the total energy E of the oscillator turns out to
be quantised with values EN ≡ (N + 1/2)�ω.

Return now to the string modes (10.133), treating each of them heuristi-
cally like an oscillator of mass mn. The nth mode is

φn(x, t) = An sin
nπx

L
cos

nπct

L
, (10.144)

whose time-dependent part is

qn(t) ≡ An cos
nπct

L
. (10.145)

Writing ωn ≡ nπc/L, equation (10.145) gives

q̈n = −ω2
n qn , (10.146)

which is reminiscent of (10.138), so that this qn(t) is the string mode equiv-
alent of the variable q(t) for the oscillator of mass m of (10.138). Without
looking too closely at the meaning of the mass mn, we now see that the
nth string mode will have quantised energy levels of

En,N ≡ (N + 1/2) �ωn . (10.147)

It appears that each mode has a zero-point energy of �ωn/2, and if the
nth mode is excited to the energy level En,N , then we can consider that mode
to be composed of N phonons, each of energy �ωn and frequency ωn/(2π),
that in some sense reside in the string. So the excitation of the string as
a whole is tied to the presence of phonons of different frequencies, and the
mix of these frequencies in various proportions gives the string its “colour”.
(Colour is an apt musical term, being entirely analogous to the visual colour
of a hot body that is caused by photons of different frequencies.) Of course, in
a vibrating string, the modes don’t actually have a mass mn, which renders
our treatment of the oscillating string somewhat heuristic; but then neither
does the phonon energy depend on mn. The idea of phonons being present
in crystal excitations is important in solid state physics.
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This idea of decomposing a string motion, or more generally a field, into
modes that are then quantised via the Schrödinger equation is the key idea
of quantum field theory. In general, we are solving a wave equation (be it
Schrödinger’s or a classical one) and then second quantising by treating each
degree of freedom as a new variable whose equation of motion will be the
Schrödinger equation. These degrees of freedom might be the field value at
each spacetime point, in the case of a field not tied to a boundary, or they
might be field modes if the field is constrained at a boundary, as was the
case with our guitar string. In quantum electrodynamics (QED), the phonons
of the vibrating string become the photons of the quantised electromagnetic
field, and indeed quantum electrodynamics is one of the most successfully
tested theories in all of physics. We profit by regarding all particles, not
just phonons and photons, as quanta of their associated fields. The fields’
properties must be chosen to give those quanta their appropriate properties
(mass, spin, etc.) since, except for electromagnetism and gravity, we don’t
actually observe the field itself.

But there is one problem. Already, with the guitar string, the �ωn/2
zero-point energy of each mode implies that if an infinite number of modes
are considered to be present, then the string must have infinite energy even
without vibrating. In practice, of course, a guitar string cannot support modes
of arbitrarily high frequency; these would necessitate its being able to bend
arbitrarily tightly, which a real nylon string cannot do. The situation for a
quantum field is not so clear-cut, but the idea of infinite zero-point energies is
better understood nowadays, and researchers’ confidence in its technicalities
continues to grow.

Zero-point energy aside, when particles can be created or absorbed (such
as in nuclear reactions), the simple single-particle wave function description
breaks down, and the idea of associating particles with fields becomes more
necessary. Historically, this need to describe interactions led to attempts to
write down a relativistic version of the Schrödinger equation, and the first
such attempt produced the Klein–Gordon equation.

10.6.1 First Steps: The Klein–Gordon Equation

As we have seen in the previous pages, the nonrelativistic Schrödinger equa-
tion for a particle in a velocity-independent potential with a time-independent
lagrangian is obtained from the nonrelativistic conservation of energy by the
substitutions of (10.123) and (10.125).

Is it possible to produce a relativistic version of the Schrödinger equation
by converting a relativistic energy expression into an operator expression?
Let’s try to do that. Begin with the relativistic conservation of energy, and
for simplicity choose a lagrangian for which the canonical and elementary
momenta are equal, so that b = p. Also set � = c = 1, although for clarity
we’ll include those two constants in the following two equations. First is the
relativistic conservation of energy, from (5.59):
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E2 = p2c2 + m2c4 , or just E2 = p2 + m2 = p·p + m2, (10.148)

where m is the particle’s (rest) mass. Now make the substitutions p → −i�∇
and E → i� ∂t that each act on a wave function Ψ(x, t), giving

−∂2
t Ψ =

(
−c2∇2 +

m2c4

�2

)
Ψ , or just −∂2

t Ψ =
(−∇2 + m2

)
Ψ .

(10.149)
This is the Klein–Gordon equation. It can be written covariantly for cartesian
coordinates by noting that

∂t = ηtt∂
t , ∂k = −ηtt∂

k, (10.150)

which together produce (
ηtt∂

µ∂µ + m2
)
Ψ = 0 . (10.151)

This equation predicts negative energies, but more importantly, the quantum
mechanical probability derived from it is not relativistically invariant, a fact
that is related to its being of second order in time. Historical attempts at
a cure postulated different forms for the probability, but these all failed; for
example, forms that were relativistically invariant were not always positive,
and so on.

10.6.2 A Route to the Dirac Equation

The Klein–Gordon equation dates from the early days of quantum mechanics,
but almost from its inception, the second time derivative was seen as not in
keeping with fundamental quantum mechanical ideas, which suggested a first
derivative in time might be necessary. Acknowledging the energy–momentum
four-vector, we can group the energy and momentum together in (10.148),
write the momentum as a covector to make eventual use of (10.122) (since,
e.g., px2 = p2

x), and finally take the square root to give

±
√

E2 − p2
x − p2

y − p2
z = m. (10.152)

(The ± means that in principle the mass, or energy, might be negative; but
in practice the minus sign is not written, and instead the energy eigenvalues
that the theory produces are given both signs, leading to the concept of
antiparticles.) The plan was to convert (10.152) to a wave equation by first
writing √

E2 − p2
x − p2

y − p2
z Ψ(x, t) = mΨ(x, t) (10.153)

and then making the replacements E → i∂t, pk → −i∂k. But how do we take
the square root to give an expression involving the energy and momenta
linearly? Dirac did this by taking a cue from the behaviour of the Pauli
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matrices, which in effect allow the square root of a sum of squares to be
taken. That is, for any numbers a1, a2, a3 (see Table 4.1),(

a1σ1 + a2σ2 + a3σ3

)2
=
(
a1
)2

+
(
a2
)2

+
(
a3
)2

. (10.154)

The three Pauli matrices were too few in number to take a square root of
the four terms in (10.152), so Dirac just introduced a new set of quantities
that were essentially equivalent to the modern notation of γ0 → γ3, where
the indices are raised in order to keep covariance with the lowered momenta
indices. The properties of the γα needed only to be such as to copy the idea
of (10.154). Write√

E2 − p2
x − p2

y − p2
z = γ0E − γ1px − γ2py − γ3pz , (10.155)

where we have used minus signs with the pk to take eventual account of
the sign difference in energy and momentum operators [compare (10.122)
with (10.125)]. The only demands made on the set of γα are that(

γ0
)2 ≡ 1 ,

(
γk
)2 ≡ −1 , γαγβ ≡ −γβγα, (10.156)

since these are sufficient to allow both sides of (10.155) to square to the same
quantity. Then(

γ0E − γ1px − γ2py − γ3pz

)
Ψ(x, t) = mΨ(x, t) , (10.157)

in which case with E → i∂t = i∂0, pk → −i∂k we obtain(
iγ0∂0 + iγk∂k

)
Ψ = mΨ , (10.158)

or more covariantly, but still using cartesian coordinates,

(iγα∂α − m) Ψ = 0 . (10.159)

This is the celebrated Dirac equation. It can be convenient to use the
anticommutator {γα, γβ} ≡ γαγβ + γβγα, along with a +−−− metric, so
that (10.156) could be written as {γα, γβ} = 2ηαβ . This is not quite a good
idea, though, because it suggests that the definition of the γα depends on
the metric signature, which is not true. The algebra of the γα, (10.156), is a
definition rooted in history and was not made to follow metric sign choices.

What matrix representation of the γα might be found to mimic the Pauli
choices in Table 4.1? Dirac decided to go for matrices that used the Pauli
matrices in a block form and so settled on 4 × 4, where in the following, “0”
and “I” are 2 × 2 zero and unit matrices, respectively:

γ0 =
[
I 0
0 −I

]
, γk =

[
0 σk

−σk 0

]
. (10.160)
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In fact, there are an infinite number of matrix forms for the γα, but the really
important identity is the algebra that they must all satisfy, (10.156).

Note that if α 	= β, then clearly

γαγβ = −γβγα. (10.161)

Forgetting for the moment the size that Dirac postulated for the matri-
ces, if we consider them as n × n, then taking the determinant of each side
of (10.161) gives ∣∣γα

∣∣∣∣γβ
∣∣ = (−1)n

∣∣γα
∣∣∣∣γβ
∣∣ , (10.162)

in which case n must be even if the matrices are not all to have zero determi-
nant, which might be seen as an undesirable property. Since there is no set
of four anticommuting 2 × 2 matrices, the next size up to try would have to
be 4 × 4.

The multiplication of a four-component vector by the set of γα occurs
so frequently in Dirac’s theory that a new symbol was made up by Feynman
from the typewriters of the day, as well as lowering the index on γ being done
in the usual way using the metric:

A/ ≡ γαAα = γαAα. (10.163)

The wave function is conventionally written bold to emphasise its four com-
ponents, and in lowercase, so the Dirac equation is thus written

(i∂/ − m) ψ = 0 , or (i� ∂/ − mc)ψ = 0 with the correct units. (10.164)

This“first quantised”Dirac equation (i.e. a Schrödinger-type equation) turned
out to have four-component solutions ψ that were interpreted as fields de-
scribing spin-1/2 particles and their antiparticles. Just as the Klein–Gordon
equation exhibited negative energies, so, too, did these antiparticles, giving
rise to an idea that antiparticles might be the physical manifestation of“holes”
in a sea of energy states that could be equated with the vacuum. So even a
vacuum began to suggest a multiparticle theory, and that suggested the idea
of second quantising the Dirac equation.

Although the second quantisation is beyond our scope here, its effect was
that the Dirac field ψ no longer represented just one particle; it described
many such particles that were the equivalent of the phonons and photons
we described earlier with the guitar string. Either way, the Dirac particles
correspond to electrons and positrons, but these are free particles; they have
no interaction with any electromagnetic field at all. In order to fully describe
them, the idea of a current of such particles still needed to be carefully defined.

When the wave function in basic quantum mechanics is a scalar Ψ , the
probability density is postulated to be |Ψ |2 = Ψ∗Ψ . It stands to reason that
when the wave function becomes a vector ψ (still a function of space and time,
but conventionally written lowercase), we must use the hermitian adjoint and
work with expressions such as ψ†ψ, since a probability defined this way will
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certainly be positive. But any expression for probability forces us to consider
the continuity equation, which is a statement of conservation relating the
amount of material crossing any closed surface to the loss of that material
from the volume enclosed, using Gauss’s theorem. We first met this discussion
in the context of Nöther’s theorem in Sect. 10.3.6. If the flux density of
material out of the volume is J (i.e., J = material flow rate per unit area
per unit time), and the material itself has density J0 ≡ �, then Jα will be a
proper vector and

rate of loss of material in volume = rate of material emerging

i.e., −∂t

∫
�dV =

∫
J ·n dS

=
∫

∇·J dV (Gauss’s theorem),

or
∫

(∂t� + ∇·J) dV = 0 , (10.165)

implying that ∂t� +∇·J = 0. Tensor notation shortens this to the statement
that the four-divergence equals zero:

Jα
,α = 0 . (10.166)

Suppose that we define Jα for the Dirac field ψ in the following way:

Jα ≡ ηtt ψ†γ0γ
αψ . (10.167)

This Jα immediately gives a density of � ≡ J0 = ψ†ψ, as well as satisfying the
continuity equation, and so is of key importance in describing the movement
of particles governed by the Dirac equation. (Jα can also be predicted from
Nöther’s theorem.) The term ψ†γ0 is so common in this theory that a new
symbol was introduced:

ψ ≡ ψ†γ0 , so that Jα = ηtt ψγαψ . (10.168)

With this modified treatment of probability, the Dirac equation was able to
accommodate spin-1/2 particles into a working field formalism. But it still
remained to write a lagrangian corresponding to (10.103) for the interaction
of an electron field ψ with an electromagnetic field Aµ. This marked the
beginning of quantum electrodynamics, one of the most successfully tested
theories in physics.

In the end, although the problems of the Klein–Gordon equation pushed
research onward to the Dirac equation, the particle-hole picture, and finally
second quantisation, the wheel has turned full circle: second quantisation can
also be applied to the Klein–Gordon equation, giving it a physical meaning
after all—although it’s the Dirac equation that applies to electrons.
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Local Versus Global Conservation

Equation (10.165) embodies the idea of local conservation, which is stronger
than global conservation. Globally, something like energy could well be con-
served in that it might disappear in one place only to reappear in another a
long way away. But this seems never to be observed in Nature; if energy does
disappear in one place and reappear in another, we always observe a current
of energy in between those places. That is, energy is conserved locally, which is
a much stronger idea than mere global conservation. Even so, it might well be
that something can appear from nowhere in an apparent example of nonconser-
vation. “Flatlanders”—beings who are confined to a 2-surface—might observe
the arrival of a 2-sphere (i.e. a common garden-variety sphere that needs to
be embedded in three dimensions) that passes through their world. What will
they see? First, a dot appears, which rapidly grows into a circle before growing
smaller again to eventually vanish. The Flatlanders have witnessed a higher-
dimensional object passing through their world; they might well be perplexed,
since the circle seemed to come out of the void before vanishing back into it.

A Lagrangian for the Dirac Equation. The Dirac equation is derivable from
the lagrangian density

L = ψ(i∂/ − m)ψ , (10.169)

which can be shown by applying Lagrange’s equation for a field, (10.59):

∂L
∂ψ

− ∂α

∂L
∂ψ,α

= 0 . (10.170)

For this, the expressions

γ0† = γ0 , γk† = −γk, (10.171)

are needed, and also ψ and ψ must be treated as independent quantities in
order to apply the partial differentiation. The relevant results are

∂L
∂ψ

= −mψ ,
∂L

∂ψ,α

= iψγα, (10.172)

and the Dirac equation results. (Alternatively, the same result comes out
much more directly by varying L with respect to ψ , but it’s wise to show
that both variations agree.)

It seems, then, that from our previous work, the lagrangian density for a
charge together with a noninteracting electromagnetic field must be

Lno int.(x) = ψ(i∂/ − m)ψ − ε0

4
F 2, (10.173)
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where the old current density interaction −ηttj
αAα from (10.104) does not

quite fit now, since it refers to a classical particle. But we can re-express
the interaction in the language of the electron field ψ. To do so, remember
that jα is a current density for the electron, so write

current density = charge × probability current (10.168)
or jα = qJα = ηtt q ψγαψ . (10.174)

In that case, the old interaction becomes −ηttj
αAα = −q ψA/ψ, and the total

lagrangian is
L = ψ(i∂/ − m)ψ︸ ︷︷ ︸

free particle

− ε0

4
F 2︸ ︷︷ ︸

free field

− q ψA/ψ︸ ︷︷ ︸
interaction

. (10.175)

In fact, the charge-field interaction can be calculated by following a com-
pletely different route that shows an elegant aspect of how Nature behaves.
We follow that path next.

10.7 Gauge Theory and Quantum Electrodynamics

In previous chapters, we have seen that physical laws can be written in a
frame-independent way, and we have the freedom to choose a frame and
coordinates that simplify the equations we are trying to solve.

In Sect. 7.4, we discussed the fact that this sort of invariance with respect
to a choice of frame appears in another way in Nature. This time, though, it
is an invariance not with respect to a choice of spatial frame but rather with
respect to a quantum mechanical phase. Historically, the term “gauge” was
originally used to describe this choice, as when speaking of the width of a
railway track in the sense of a choice of scale. But it’s just a historical label;
we are not really choosing a scale for our system.

This idea of choosing a gauge, or really a phase, turns out to have stel-
lar significance in quantum electrodynamics. By starting out with a known
theory and then postulating that Nature behaves in a certain way, we arrive
at something genuinely new and, importantly, verifiable experimentally to
spectacular accuracy.

10.7.1 The Starting Point: Classical Gauge Theory

Gauge theory has its roots in electromagnetism, where it was noticed that
if we change the scalar and vector potentials in a particular way, then the
E and B fields calculated from these will be unaltered. Suppose the poten-
tials Φ,A describe a given electromagnetic field. Given an arbitrary func-
tion χ(t,x), define new potentials Φ′,A′ with the following gauge transform:

Φ′ = Φ + ∂χ/∂t ,

A′ = A −∇χ . (10.176)
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In calculating the derived fields E′,B′ from these new potentials, the contri-
butions from χ cancel and we arrive at

E′ ≡ −∇Φ′ − ∂A′/∂t = −∇Φ − ∂A/∂t = E ,

B′ ≡ ∇×A′ = ∇×A = B , (10.177)

so that the physical fields are certainly unaltered by a gauge transform.
The derivatives with respect to space and time here are a good indication

that we are dealing with something that could better be written covariantly.
So write Aα ≡ (Φ,A), and raise and lower indices with the Minkowski metric:

Aα = ηαβAβ = ηααAα (no sum). (10.178)

With cartesian coordinates and ηαβ = ηtt(1,−1,−1,−1), equation (10.176)
becomes the much more elegant1

A′
α = Aα + ηttχ,α . (10.179)

The sign ηtt can always be absorbed into χ, so we will do this from now on,
essentially setting ηtt = 1 in (10.179). The new field A′

α gives us precisely the
same physics as the old Aα. Choosing an appropriate χ to simplify the form
of the potentials—“choosing a gauge”—is the direct analogy to choosing an
appropriate frame to solve a given problem in mechanics.

Gauge choices can lead to very strange-looking functions for the poten-
tials. The most obvious example occurs if we consider a charge q moving in
the field produced by a stationary point charge Q. Here the potentials have
the well-known forms, with k ≡ 1/(4πε0),

Φ =
kQ

r
, A = 0 . (10.180)

A gauge choice χ = −kQ t/r leads to new potentials

Φ′ = 0 , A′ =
−kQ t

r2
er̂ . (10.181)

It’s simple and instructive to verify that these produce the usual forms of
the electric and magnetic fields. Nevertheless, they don’t seem to match our
intuitive idea of what form a potential should take! In particular, the total
energy of the charge q is certainly the usual expression mv2/2+ q Φ, but this
does not equal mv2/2+ q Φ′. Does this suggest a conflict with the new choice
of gauge as regards an expression for the energy?
1 It should be stressed that A′

α is not the same as Aα′ . The tensor components
that interest us, A′

α, are the values of a new field (Φ′, A′). Contrast these with
the components Aα′ of the old field (Φ, A) in a different frame. The latter are
not relevant to this discussion.
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Referring to Sect. 10.3.4, the hamiltonian H is called the total energy
provided H is a constant of the motion. This will be the case as long as
the lagrangian is time-independent. This is indeed the case for the poten-
tials (10.180), so the hamiltonian is then mv2/2 + kQq/r, conserved, and
thus called the total energy. For the potentials (10.181), the lagrangian is a
function of time, so the hamiltonian is not guaranteed to be conserved and
so cannot be called an energy.

Just as choosing a suitable frame within which to solve a set of equations
can simplify them enormously, choosing an appropriate gauge can simplify
electromagnetic calculations. If we raise the indices in (10.179), then differ-
entiate and contract, we obtain

A′α
,α = Aα

,α + χ,α
,α . (10.182)

The term χ,α
,α is just the four-dimensional laplacian of χ in cartesian coor-

dinates (in general coordinates it’s χ,α
;α). Equation (10.182) is a wave equa-

tion for χ, and it turns out that this equation will always have a solution if
A and A′ are well-behaved. In particular, we can choose A′α

,α to be anything
that helps to simplify the problem at hand. The prime is always dropped
when such a choice is made, since the point of choosing a gauge is to specify
one useful expression that gives the electromagnetic field. For magnetostatics,
perhaps the best choice is the so-called Coulomb gauge (remember the prime
has been dropped):

Aα
,α ≡ ∂Φ/∂t , or ∇·A = 0 . (10.183)

In general nonstatic situations, a more useful gauge is the Lorenz gauge
(also called the Lorentz gauge, since although the Danish physicist Ludwig
Lorenz specified it originally in 1867, the Dutch physicist Hendrik Lorentz
also worked with it):

Aα
,α ≡ 0 , or ∇·A = −∂Φ/∂t . (10.184)

We’ll use this gauge to solve Maxwell’s equations in Sect. 11.3.

10.7.2 A Gauge Transformation for the Dirac Lagrangian

From the basic postulates of quantum mechanics, we know that if a wave func-
tion Ψ(t,x) is multiplied by any phase factor, the actual probability density
that it produces is unchanged because the only physically relevant quantity
is |Ψ |2. So, the Dirac equation and its lagrangian density are unchanged by
the transform

ψ −→ ψ eiθ (10.185)

for any real number θ independent of x. This is a “global” gauge transform.
Historically, a real scale factor of eθ was initially considered, which was a
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change of scale, and hence of gauge, in the same sense that the gauge of a
railway track is a measure of its size. With the factor now changed to eiθ,
a more appropriate term would be a phase transform, but the name gauge
has stuck. It is a global transform because the number θ is independent of
spacetime position. We first came across this idea of a gauge transform back
in Sect. 7.4.

Now, in the context of the solution ψ of the Dirac equation, we decide to
do something new and investigate what results: we make θ depend upon x.
This is a“local”gauge transform and is the heart of gauge theory. To make the
notation a little more useful later on, rewrite θ as some arbitrary constant −q
times a function of spacetime χ(t, x, y, z) [shortened to χ(x)]. So make the
transform

ψ −→ ψ′ ≡ ψ e−iqχ(x) . (10.186)

Unfortunately, the Dirac field lagrangian density (10.169) is not invariant
under this transform. The spacetime dependence of χ complicates the deriva-
tives, destroying the invariance. Omitting the straightforward details, the
transformed lagrangian density is

L′ ≡ ψ′(i∂/ − m)ψ′

= ψ(i∂/ − m)ψ + q ψ(∂/χ)ψ , (10.187)

and the extra term can only vanish in the trivial case of q = 0 or a constant χ.
However, we have such a strong feeling that the gauge transform (10.186)
should make no difference to the physics, that we accept it and change our
equations—our model of the physics—so that it really does not make a dif-
ference! The invariance under (10.186) can be restored if the partial deriva-
tive ∂α of (10.169) is replaced by a new type of covariant derivative Dα,
reminiscent of (8.203) for coordinate transforms but here defined for gauge
transforms as

Dα ≡ ∂α + iqAα(x) , (10.188)

where Aα(x) is a real four-vector with dimension of the electromagnetic po-
tential (in which case the dimension of q turns out to be that of electric
charge), provided that, when we transform the ψ according to (10.186), we
also transform the Aα as follows:

Aα(x) −→ A′
α(x) ≡ Aα(x) + χ,α . (10.189)

So in our stubborn requirement that Nature be invariant under the local
gauge transform (10.186), we must modify our equations by replacing ∂α

with Dα (which is okay, as the equations always only constitute a working
model). We have now been forced to include an extra quantity Aα suspiciously
resembling an electromagnetic field undergoing the gauge change of (10.179),
together with a constant q with the role of an electric charge. Thus the total
gauge transform is given by (10.186) and (10.189), together with a modified
Dirac lagrangian
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Lmodified = ψ(iD/ − m)ψ . (10.190)

This new lagrangian will be invariant if we change ψ, Aα to ψ′, A′
α. But notice

how this looks on expanding D/ :

Lmodified = ψ(i∂/ − m)ψ − q ψA/ψ . (10.191)

This is just the lagrangian (10.175) but without the free-field term −ε0F
2/4.

Yet −ε0F
2/4 is certainly required for a complete description of the elec-

tromagnetic field and should be added in. But notice from (10.189) that
F 2 is unchanged by the substitution of Aα with A′

α (since χ,αβ = χ,βα),
which means that the lagrangian for the free electromagnetic field is already
invariant under the gauge transform (10.176). We conclude then that the
lagrangian (10.175)

L = ψ(i∂/ − m)ψ − ε0

4
F 2 − q ψA/ψ (10.192)

is gauge invariant. But, we can put this in another way—and this is where it
all comes together: we can say that if the sum of the lagrangian densities of
a free electron and an EM field

Lfree = ψ(i∂/ − m)ψ − ε0

4
F 2 (10.193)

is required to be gauge invariant, then we must alter it, and the new version
will be obtained by adding the term −q ψA/ψ, which will then describe the in-
teraction between a charge q and the electromagnetic field. Equation (10.193)
is the classical lagrangian that forms the starting point for the study of quan-
tum electrodynamics. While it specifies a quantum field, it is still in a sense
classical in that the modes of the field must yet be (second) quantised, just
as we did for the guitar string in Sect. 10.6.

This way of treating the lagrangian density takes gauge invariance as fun-
damental, and we derive the extra interaction term as a consequence of replac-
ing a partial derivative by a covariant derivative, just as is done to embody
frame and coordinate invariances. So by postulating that Nature has this
requirement of local gauge invariance, we have derived the electron–photon
interaction! This new approach enables us to write down the lagrangian for a
system without having to deal with a classical limit first, and so it becomes
a new way of building theories for new particles and their interactions.

The quantities eiα(x) can be considered as unitary 1 × 1 matrices, and
in the conventional language, at each point x in spacetime they form a one-
dimensional abelian Lie group U(1), so we describe quantum electrodynamics
as a U(1) gauge theory.2 Other gauge theories use more complicated trans-
forms than (10.186) and (10.189).

2 The group operation is ordinary multiplication. “Abelian” means the group ele-
ments commute, while a “Lie group” has a continuum of elements.



432 10 Variational Calculus and Field Theory

Aα

photon

eγα

ψ incoming electron

ψ outgoing electron

Fig. 10.8. A basic Feynman diagram showing an electron interacting with a pho-
ton. The incoming and outgoing electrons are represented by their Dirac fields
ψ and ψ , respectively. The photon field is Aα, while at the vertex the interaction
is represented by eγα. Diagrams like these are computational aids that help us to
calculate cross sections for such interactions to occur.

It remains to place an electron into the electromagnetic field, in which case
q = −e and the interaction is eψA/ψ, or eψγαAαψ. As shown in the Feynman
diagram in Fig. 10.8, the various terms can be attached to a picture of the
process in spacetime, and this sort of diagram is very useful for calculating
cross sections for this and other interactions.

10.8 The Path-Integral Approach to
Quantum Mechanics

The lagrangian viewpoint was extended within the realm of quantum mechan-
ics by Richard Feynman in the 1940s. He applied a kind of democratisation
principle to mechanics through the following reasoning.

We are aware that, within classical mechanics, a particle will follow a path
for which the action is stationary. If we knew nothing of physics and drew all
the paths that the particle might conceivably follow—one of which will be the
actual one it takes, with the remainder unphysical—we could work out the
action for each path and choose the one about which the action is stationary.
That path would turn out to be the actual classical path that the particle
follows. Because of the continuous nature of the quantities involved in the
action, the multitude of spacetime paths that differ by only a small amount
from the actual path taken by the particle all have similar action values, with
the fractional difference in action from the classical value tending to zero as
the paths deviate less and less from the classical path.

What, then, will result if we allocate a vector to each path, setting the
vector’s angle (from some arbitrary reference direction) to be proportional to
the action of that path, and then add all the vectors corresponding to an un-
countably infinite number of paths? We’ll find that for paths resembling the
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classical one, the vectors have very similar angles, so that they add construc-
tively. On the other hand, since the action changes more and more quickly
as the paths depart ever more from the classical one, the directions in which
the vectors of those paths point essentially become randomised, leading to
a destructive interference over those paths. This procedure treats all paths
equally, while singling out the classical one from the infinite set of paths that
are drawn.

Actually, and equivalently, what Feynman did was ascribe to each path
a complex number whose argument was proportional to the action and then
add these complex numbers. This tallies with the idea mentioned in Chap. 2
that quantum mechanics allocates an amplitude for each way that a process
can occur, so long as there is no way of distinguishing that way from another
way. The absolute square of the summed amplitudes is the probability (or
probability density for a continuous system) that the process occurs. On the
other hand, if a process can happen in several distinguishable ways, then we
must add the probabilities for each to obtain the final probability for it to
occur.

From a quantum mechanical perspective, a particle can be viewed as trav-
elling from one spacetime point to another over all possible paths in some
kind of ghostly simultaneous sense. Since we cannot distinguish one path from
another, we must add the amplitudes together to get the final amplitude for
the particle to make the specified trip, and form its absolute square to ob-
tain the associated probability density. So Feynman’s complex number is a
candidate for the amplitude of each path.

Here is what we do to formalise this procedure. Refer to Fig. 10.9, which
shows several paths of the set that a particle might take to go from some
initial event (x0, t0) to some final event (xn, tn), where we have broken the
path up into n intervals. The reason for this division into intervals is twofold.
First, breaking the path up into infinitesimal intervals hearkens back to the
discussion of the Clock Postulate on p. 239. Despite the fact that the paths
are in general curved, we are postulating that an amplitude can be ascribed
to each infinitesimal segment of the path, in effect by treating that segment
as straight, since we are defining it only by its start and end points. Of course,
the segment is not straight, not even in the limit, and the fact that we can
ascribe an amplitude in this way is purely a postulate.

The second reason for the division of paths into intervals is that by
considering the intermediate events, we can expand the transition ampli-
tude 〈xn, tn |x0, t0〉. Do this by repeatedly applying the position basis com-
pleteness relation:

〈xn, tn |x0, t0〉 =

∞∫
−∞

. . .

∞∫
−∞

〈xn, tn |xn−1, tn−1〉 ×

〈xn−1, tn−1 |xn−2, tn−2〉 . . . 〈x1, t1 |x0, t0〉 dx1 . . . dxn−1 .

(10.194)
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x

t

t1

t2

t3

(x0, t0)

(xn, tn)

〈x3, t3 |x2, t2〉

Fig. 10.9. Some of the many spacetime paths that a particle can take to go from
(x0, t0) to (xn, tn). Each path can be broken up into infinitesimal segments, which
enables a completeness relation to be applied as in (10.194).

The amplitude has been expressed as an uncountable number of integrals—no
small task to compute!

Next we look closely at the segment joining two infinitesimally separated
events (xk−1, tk−1) and (xk, tk), calculate the action S(k, k − 1) for that seg-
ment, and associate this with the amplitude for the particle to traverse the
segment. Do this by making S proportional to the argument of a complex
number as discussed above:

〈xk, tk |xk−1, tk−1〉 ∝ e
i
�

S(k,k−1). (10.195)

Including � in the exponent leads to the usual results of quantum mechanics,
but it’s also a very reasonable thing to do since it allows the quantum theory
to transit smoothly to the classical realm. That’s because when included in
this way, � takes on its usual role of determining the degree to which the sys-
tem behaves quantum mechanically. If � were large in (10.195), there would
be only little variation in the argument of the right-hand side over all paths,
so that all paths would contribute significantly to the total amplitude and
the world would be very quantum mechanical. Conversely, if � were vanish-
ingly small, then the argument of the complex amplitude would effectively be
randomised as soon as the paths began to depart from the classical one, so
that only paths immediately adjacent to the classical one would contribute
to the final amplitude—which is just the classical limit. This is one meaning
of the oft-quoted phrase “� → 0 gives the classical limit.”

Now combine (10.194) with (10.195) to write the total amplitude as

〈xn, tn |x0, t0〉 ∝
∫

. . .

∫
e

i
�

S(n,n−1)e
i
�

S(n−1,n−2) . . . e
i
�

S(1,0) dx1 . . . dxn−1

=
∫

. . .

∫
e

i
�

S(n,0) dx1 . . . dxn−1 . (10.196)
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The nett result is that the amplitude has been written as a multiple integral
over all paths. Effectively, the action is being calculated for every path x(t)
that can be drawn joining (x0, t0) to (xn, tn), and these actions are being
added with an appropriate infinitesimal weighting. Here we are not concerned
with the details of computing this weighting, but we can include it in a generic
way with the dx1 . . . dxn−1 measure in (10.196), and rewrite the new weight-
ing as Dx or Dx(t) (or even Dx, but don’t confuse this with the covariant
derivative in (9.102); the two are not related). Finally, a general path-integral
expression for the amplitude for a system to evolve from some start point to
some end point can be written as

〈xn, tn |x0, t0〉 =
∫ (xn,tn)

(x0,t0)

e
i
�

S[x(t)] Dx . (10.197)

Path integrals are examples of a more general type of integral over spaces of
infinite dimension, known as a functional integral. In fact, despite the useful-
ness of path integrals, functional integration is not an entirely well-defined
subject, in the sense that any attempts to define it completely rigorously fall
short of being generally applicable.

10.8.1 Path Integrals Give the Schrödinger Equation

Section 10.5 showed how the Schrödinger equation arises when we substitute
certain derivatives for the canonical momentum and the hamiltonian in an
energy conservation equation. One of the great successes of the path-integral
formalism was its ability to reproduce the Schrödinger equation via an appar-
ently simpler, yet very different, approach to the prescription of Sect. 10.5.

Let’s see how this is done for a single particle with potential energy V .
Since the Schrödinger equation is a differential equation, consider the ampli-
tude for a particle to arrive at (x, t) given a state |Ψ〉 by focussing on the
infinitesimal time interval t − ε just before it arrives. Refer to Fig. 10.10,
where we make the approximation of only considering each straight path
shown, since for ε → 0 the potential V won’t change the fact that the am-
plitude for a straight path will approximately dominate all other paths in its
vicinity.

Start by expanding the amplitude Ψ(x, t) via the position basis complete-
ness relation at the earlier time t − ε:

Ψ(x, t) = 〈x, t |Ψ〉 =
∫ ∞

−∞
〈x, t |x+ξ, t−ε〉〈x+ξ, t−ε |Ψ〉 d(x+ξ) . (10.198)

In this integral, x is being treated as a constant, in which case d(x + ξ) = dξ
and (10.198) becomes

Ψ(x, t) =
∫ ∞

−∞
〈x, t |x + ξ, t − ε〉 Ψ(x + ξ, t − ε) dξ . (10.199)
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t

t − ε

x x + ξ

ξ = −∞ → ∞

(x, t)

Fig. 10.10. Deriving the Schrödinger equation for a particle by focussing on the
small time interval just before it arrives at (x, t). All arrival paths must be consid-
ered, although we make the approximation that each straight one is dominant over
all other paths in its immediate vicinity.

The amplitude 〈x, t |x + ξ, t − ε〉 to travel the last short leg can be approx-
imated by the action due to the particle’s travelling at constant velocity
between these two points. The action for such a short interval is just the
lagrangian times the elapsed time, so

〈x, t |x + ξ, t − ε〉 � N exp
[

i

�

(
m

2
ξ2

ε2
− V

)
ε

]
, (N ≡ normalisation)

= N exp
[
imξ2

2�ε

]
exp
[−iV ε

�

]
. (10.200)

This amplitude oscillates increasingly rapidly as ξ → ∞, so when integrat-
ing (10.199) over ξ, the main contribution will come from the ξ-domain over
which these oscillations are not too rapid. (This is known as the method of
stationary phase and is a powerful tool in calculating some difficult integrals
of mathematical physics.) So we are only concerned with values of ξ and ε
for which ξ2/ε is not large. In that case, Taylor-expand (10.199) and (10.200)
to orders ξ2 and ε around Ψ(x, t):

Ψ(x, t) � N

∫ ∞

−∞
exp
[
imξ2

2�ε

]
×[

Ψ(x, t) + ε

(−iV Ψ

�
− Ψ,t

)
+ ξΨ,x +

1
2
ξ2Ψ,xx

]
dξ . (10.201)

The ξΨ,x term can be dropped since it contributes an integral of an odd
function, which is zero. For the other integrals, we need the following:∫ ∞

−∞
eiλξ2

dξ =

√
πi

λ
,

∫ ∞

−∞
ξ2eiλξ2

dξ =
i

2

√
πi λ−3/2 . (10.202)
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The Fresnel integrals of (10.202) are also used frequently in the theory of
Fresnel diffraction. How are they calculated? The second can be written by
differentiating the first with respect to λ. The first can be done in various
ways. We can use (3.20), taking some care with the convergence, which is
borderline. Alternatively, we can use Cauchy–Riemann integration to inte-
grate from 0 to ∞, by following a pie-shaped path in the complex plane that
first runs straight from the origin out to some distance R, then follows a
circular arc for 45◦, and finally returns along a straight path to the origin.
Calculate or bound the integral on each leg, and let R → ∞.

The integrals in (10.202) allow (10.201) to be calculated, giving

Ψ � N

√
2πi�ε

m︸ ︷︷ ︸
Infer this term = 1

[
Ψ + ε

(−iV Ψ

�
− Ψ,t +

i�

2m
Ψ,xx

)
︸ ︷︷ ︸

Infer this term = 0

]
. (10.203)

This equation produces the normalisation N . Also, setting the coefficient of ε
to zero produces (

V − �
2

2m

∂2

∂x2

)
Ψ(x, t) = i�

∂Ψ

∂t
, (10.204)

which is, of course, Schrödinger’s famous equation in one dimension. Were the
two inferences in (10.203) really justified, considering that the equation itself
is just an approximation? In hindsight the answer is apparently yes, although
the approximations made in the whole analysis underline the complexity of
the path-integral approach.

The measure of classicality shown by the path-integral method is actu-
ally determined not so much by � → 0 as by �/m → 0. To see this, observe
that because the action S is linear in the particle mass, the factor � only ap-
pears as �/m in the path-integral formalism, including the normalisation N
in (10.203). This same ratio is also what appears in the Schrödinger equation,
since that equation can always be written in terms of the potential energy
per unit mass (i.e. the potential):(

V

m
− �

2

2m2
∇2

)
Ψ(x, t) =

i�

m

∂Ψ

∂t
. (10.205)

It seems, then, that the classicality emerging when � → 0 might also appear
for large enough masses, even if � were not small. Certainly a heavy ball
thrown through the air looks only classical; �/m is so small here as to ensure
that only spacetime paths extremely close to the classical one will contribute
to its dynamics. (The same sort of conclusion can be drawn from de Broglie’s
λ = h/p = h/(mv).) Even so, it cannot quite be argued that a large mass will
always ensure classicality. After all, the mass of Schrödinger’s famous para-
doxical cat—whose life depends on the outcome of a fully quantum process
and so would seem to have to exist in a superposition of “alive” and “dead”
states—does not enter into that paradox at all. Perhaps it is the mass of
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the constituents of the quantum process upon which the cat’s life hangs that
enters into the factor of �/m, but the transition to classicality is really not
understood at all. In the next section, we outline the ideas for a tool that can
help to further the study of the quantum-to-classical transition.

10.9 Density Matrices: The Language of Decoherence

Quantum mechanics uses the ideas of probability theory to predict outcomes
when we make a measurement of a system. The system might be an electron
with spin “z up”, by which we mean that the z-component of its spin—which
can only take on the values ±�/2—has been measured to be +�/2. Such
an electron is in an eigenstate of the z-spin measurement operator, so label
its state |z+〉. If we wish to know the probability that a measurement of
the x-component of its spin will be, say, +�/2, then we write the associated
amplitude as 〈x+|z+〉, giving the probability as |〈x+|z+〉|2. (Further theory
of quantum mechanics is needed to set a value for 〈x+|z+〉, but that’s not
relevant here.)

If the system only consists of one electron in a state |z+〉, then in order
to use the language of probability theory, we need to appeal to the idea of an
ensemble, a collection of such electrons all in the state |z+〉. To each measure-
ment, quantum mechanics ascribes an operator that has for its eigenvalues
all of the possible results. The expected value of that operator is by definition
the expected value of those measurements. When we make a measurement of
the x-spin of these z-up electrons, then we expect to find that 50% of the set
are projected onto the state |x+〉, with the remaining 50% becoming |x−〉.
And so it is that we can then consider just one electron and say that there is
a 50% chance of its being measured to have x-spin up, and 50% x-spin down.

Consider an ensemble, and suppose first that it’s pure, meaning that each
of its electrons is described by the same state |ψ〉 (which needn’t be an eigen-
state of any operator). We make a measurement on this ensemble with some
apparatus described by an operator A that has a set of eigenvalues ai, mean-
ing A|ai〉 ≡ ai|ai〉. We ask: what answer can be expected for the measure-
ment? By a quantum mechanical postulate, only the eigenvalues of A can
result, so the expected value 〈A〉 is a sum over the eigenvalues of A weighted
by their associated probabilities; it can be concisely expressed using a com-
pleteness relation:

〈A〉 ≡
∑

i

ai|〈ai|ψ〉|2 =
∑

ai〈ψ|ai〉〈ai|ψ〉

=
∑

〈ψ|A |ai〉〈ai|ψ〉 = 〈ψ|A |ψ〉 . (10.206)

This expectation is a standard expression in quantum mechanics (and we
came across it previously in Sect. 2.10 and specifically (2.178), where we
needed the idea of a mean, which is also just an expected value). But it
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can only be used for a pure ensemble, since only then will all the electrons
be described by the same state ket |ψ〉. What if the electrons exist in a
multitude of states? Some have been prepared with z-spin up while others
have x up, and others have had no preparation at all. Such a mixed ensemble
cannot be described by a single ket. (Note that pure and mixed ensembles
are sometimes erroneously called pure and mixed states.) Right from the
beginnings of quantum mechanics, the need to describe such a mixture using
state vectors was recognised. Luckily, (10.206) can be rewritten in a way
suited to describing mixed ensembles. First, consider a pure ensemble and
reverse the factors in the second line of (10.206):

〈A〉 =
∑

〈ai|ψ〉〈ψ|A |ai〉
= tr (�A) , where � ≡ |ψ〉〈ψ|
= tr (A�) , since tr (AB) = tr (BA) for any A,B . (10.207)

This alternative form of the expected value 〈A〉 is written in terms of the
density matrix for the state |ψ〉:

density matrix � ≡ |ψ〉〈ψ| . (10.208)

Suppose now that the system is a mixed ensemble comprising electrons in
states |ψi〉 with proportions wi, where these states can, in general, be lin-
ear combinations of eigenstates of many different operators. In that case,
the electrons in state |ψi〉 have density matrix �i ≡ |ψi〉〈ψi| and expected
value 〈A〉i, so

〈A〉 ≡
∑

i

wi 〈A〉i =
∑

wi tr
(
A�i

)
from (10.207)

=
∑

wi tr
(
A |ψi〉〈ψi|

)
= tr

(
A
∑

wi |ψi〉〈ψi|
)

(since the trace is a sum, and sums commute)

≡ tr (A�) , where � ≡
∑

i

wi |ψi〉〈ψi| . (10.209)

Through defining a mixed ensemble density matrix � that encapsulates the
whole ensemble as a weighted sum of the density matrices for each state in
the mixture, the general expression 〈A〉 = trA� becomes valid for both pure
and mixed ensembles. This makes it very useful for multiple-particle quantum
mechanics.

The density matrix of an ensemble of electrons all with z-spin up is given
by � = |z+〉〈z+|. In the z-basis {|1〉, |2〉} ≡ {|z+〉, |z−〉}, this matrix has
components

�ij
z-basis 〈i| � |j〉 =

[〈1| � |1〉 〈1| � |2〉
〈2| � |1〉 〈2| � |2〉

]
=
[〈z+| � |z+〉 〈z+| � |z−〉
〈z−| � |z+〉 〈z−| � |z−〉

]
=
[
1 0
0 0

]
.

(10.210)
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Obviously, the matrix for such a pure ensemble, in the basis of its measured
states, will have a one somewhere on its main diagonal with zeroes everywhere
else. If the electrons have been prepared as a mixed ensemble, with, say,
10% z-spin up and the rest with x up, then the density matrix for the mixture
must be

� = 1/10 |z+〉〈z+| + 9/10 |x+〉〈x+| . (10.211)

The appearance of explicit probabilities as weightings in density matrices, as
well as the ability of density matrices to describe whole sets of systems, gives
an indication that perhaps they might shed light on the most fundamental
conundrum of quantum mechanics: how a quantum system becomes classical
when it interacts with a detector. This is the Measurement Problem, and
with a conspicuous lack of insight provided by the accepted rules of quantum
mechanics, the Measurement Problem has in recent years been worked on in
various ways.

For example, if a z-spin measurement is made on a mixed ensemble of
electrons, then they will all be projected onto one or the other of the two
eigenstates of the z-spin operator, with the result that their density matrix
in the z-basis will have become diagonal. So the idea that a zeroing of the
off-diagonal entries of the density matrix might signal the emergence of clas-
sicality has prompted the use of density matrix formalism in studies of the
Measurement Problem.

Probably leading the field of competing ideas is the notion that the density
matrix is able to encode the action of an environment on a system in a way
that enables us to use the matrix to answer questions about the system
without having to work explicitly with the environment.

To see how all of this might come about, consider a system labelled by x,
interacting with an environment labelled by q (really, for example, a bath of
oscillators labelled by q1, . . . , qn). Suppose we require the expected value of a
system observable A(x). The system–environment combination is described
by a density matrix �. A straightforward extension of the ideas of this section
is that tracing over both the system x and environment q gives the expected
value of A(x):

〈A〉 = trq,x (�A) =
∫

dxdq 〈x q| �A |x q〉 . (10.212)

Expand using completeness:

〈A〉 =
∫

dxdx′ dq dq′ 〈x q| � |x′ q′〉〈x′ q′|A |x q〉 . (10.213)

Because A is independent of the environment and so doesn’t depend on q,
the bracket containing it can be split into constituent brackets:

〈A〉 =
∫

dxdx′ dq dq′ 〈x q| � |x′ q′〉〈x′|A |x〉 δ(q − q′)
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=
∫

dxdx′
∫

dq 〈x q| � |x′ q〉︸ ︷︷ ︸
≡〈x| �r |x′〉

〈x′|A |x〉

=
∫

dxdx′ 〈x| �r |x′〉〈x′|A |x〉
= trx (�rA) . (10.214)

A new quantity has been defined here: the reduced density matrix �r that en-
capsulates how the system interacts with its environment. Equipped with �r,
we need only trace over the system variable x and need never refer to the
environment at all. Of course, the difficulty lies in constructing the reduced
density matrix, but once we have it, we can begin to investigate the system’s
evolution.

An example of such a system is one with two eigenstates, |1〉, |2〉, currently
in some state |ψs〉:

|ψs〉 = α|1〉 + β|2〉 , with |α|2 + |β|2 = 1 . (10.215)

Suppose this system interacts with a detector that itself has two eigen-
states: |d1〉, indicating the system has been measured to be in state 1; and |d2〉,
which shows the system to be in state 2. Just before the interaction, the de-
tector is in some state |d〉. Measurement theory suggests that just before the
measurement occurs, the composite system–detector is in a new state,

|ψsd〉 ≡ |ψs〉 |d〉 = α|1〉 |d〉 + β|2〉 |d〉 . (10.216)

The act of measurement itself is a mysterious process on which the stan-
dard interpretation of quantum mechanics, theCopenhagen Interpretation, is
silent. But suppose that after it has occurred, the system–detector is in a new
correlated state in which the detector recognises the system eigenstates:

|ψ′
sd〉 = α|1〉 |d1〉 + β|2〉 |d2〉 . (10.217)

(The system and detector are also called entangled since their kets in (10.217)
are not able to be factorised into a product of system and detector states.)
This process is shown in Fig. 10.11. The density matrix for this correlated
state is

�′sd ≡ |ψ′
sd〉〈ψ′

sd| = |α|2|1〉〈1| |d1〉〈d1| + βα∗|2〉〈1| |d2〉〈d1|
+ αβ∗|1〉〈2| |d1〉〈d2| + |β|2|2〉〈2| |d2〉〈d2| . (10.218)

Early in the history of quantum mechanics, it was postulated that there now
occurs another mysterious process called decoherence, which destroys the off-
diagonal elements of �′sd to leave the new density matrix

�′′sd ≡ |α|2|1〉〈1| |d1〉〈d1| + |β|2|2〉〈2| |d2〉〈d2| . (10.219)
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system |ψs〉

coupling |ψsd〉

detector |d〉

interaction
(mysterious)

correlated
state |ψ′

sd〉, �′
sd

decoherence:

ad hoc: off-diag.
terms vanish

diagonal �′′
sd

Fig. 10.11. Ad hoc decoherence applied to the correlated state of a system plus a
detector. Refer to equations (10.216) to (10.219).

All that remains are the two probabilities |α|2, |β|2: the hoped-for signature
of a transition to classicality, as well as a correlation between the detector’s
measuring of state 1 and the system really being in state 1 (and similarly for
state 2).

But this postulated decoherence is completely ad hoc. It can be improved
upon by introducing an environment that brings a further interaction with
the system–detector correlated state |ψ′

sd〉, as shown in Fig. 10.12. With the
environment in a state |E〉, the new composite system–detector–environment
state will be

|ψ′
sdE〉 ≡ |ψ′

sd〉 |E〉 = α|1〉 |d1〉 |E〉 + β|2〉 |d2〉 |E〉 . (10.220)

Another mysterious interaction produces a correlated state of system–detector–
environment:

|ψ′′
sdE〉 ≡ α|1〉 |d1〉 |E1〉 + β|2〉 |d2〉 |E2〉 . (10.221)

Now, the reduced density matrix for this last state is, from (10.214), just a
trace over the environment:

trE |ψ′′
sdE〉〈ψ′′

sdE | =
∑

i

〈Ei|ψ′′
sdE〉 〈ψ′′

sdE |Ei〉

= α|1〉 |d1〉α∗ 〈d1| 〈1| + β|2〉 |d2〉β∗ 〈d2| 〈2|
= �′′sd again! (10.222)

But �′′sd is exactly what was obtained through the earlier ad hoc procedure.
It seems then that we can eliminate a very arbitrary setting-to-zero of off-
diagonal density matrix elements by keeping track of the system–detector’s
interaction with its environment, and such an interaction must inevitably
happen in any real system.

Of course, it might be argued that the off-diagonal terms are being“swept
under the rug” as it were, since what exactly defines the environment is a
somewhat arbitrary choice. We might attempt to get around this objection
by introducing a succession of ever-larger environments that describe the
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system |ψs〉

coupling |ψsd〉

detector |d〉

interaction
(mysterious)

correlated
state |ψ′

sd〉

coupling |ψ′
sdE〉

environment |E〉

interaction
(mysterious)

correlated
state

|ψ′′
sdE〉

decoherence:

trace over
environment

�′′
sd

again!

Fig. 10.12. Introducing an environment allows for a mathematical description
of decoherence, laying the foundation for further work in quantum measurement
theory.

interaction more and more comprehensively, but of course this cannot be
done indefinitely. In the modern study of quantum cosmology, the quantum
mechanics of the universe as a whole comes to the fore, and we run out of
rugs under which to sweep the off-diagonal terms. Various refinements on the
model of decoherence we have described here have been put forward, but the
process is still very much a mystery.

Nevertheless, we’ll describe here one result of some of the work being
done in this new field. The concept of entropy was defined in Chap. 3 as
the logarithm of the number of accessible states of a system. This is fine
for a system with a finite number of degrees of freedom, but for systems
such as fields that have an infinite number of degrees of freedom, we must
resort to another definition. Luckily, statistical mechanics already has another
construction that we can bend to our needs. Suppose a classical system can
exist in one of any number of states |s〉, each with probability of occupation ps.
In that case, for a large number of accessible states, a careful count of their
multiplicity determines the entropy of the system to be

σ = −
∑

s

ps ln ps . (10.223)

But the density matrix � for such a system will be a matrix with p1, p2, . . .
along its diagonal, so that the entropy can also be written as

σ = − tr � ln � , (10.224)

where the logarithm of a matrix can be found by diagonalising it. This ex-
pression now defines the entropy of a completely quantum system. It is zero
for a pure ensemble, since this has a density matrix composed of only a one
somewhere on its diagonal. But in general, this entropy σ will be greater
than zero.

What is the entropy of the universe as a whole? If the universe evolves as a
closed system, then its entropy is always zero. This is not entirely useful, and
more appropriate is an attempt to relate some kind of local entropy growth to
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an Arrow of Time, as we discussed in Sect. 3.5. If we decompose the universe
into a system of modes (modelled as a set of oscillators in its lagrangian)
interacting with an environment (modelled by more oscillator modes), then
the system’s entropy alone can be calculated by using its reduced density
matrix in (10.224). Path integrals can be used to do this, and the result is
that the entropy of the system is indeed found to grow over time as expected,
while it interacts with its environment. So the language of density matrices
seems to be useful in shedding light on some of the mystery that surrounds
the Arrow of Time.



11 The Green Function Approach to
Solving Field Equations

11.1 The Idea of a Green Function

The differential equations that govern most physical laws tend to be second
order in space and time. A good example is the pair of equations that govern
how a body falls in a nonrelativistic field. The motion of the body is given
by Newton’s law F (x) = mẍ, which is comparatively easy to solve. Much
harder to solve is the equation that describes the force F (x), or equivalently
the gravitational field. In Sect. 10.4, we produced Poisson’s equation (10.75)
as the equation of motion for the newtonian gravitational field:

∇2Φ(t,x) = 4πG�(t,x) . (11.1)

We assumed a radial solution for a point mass m at the origin, and calculated
the form that Φ should take. The result was (10.80):

Φ = −Gm/r + constant. (11.2)

However, because we demanded early on that Φ vanish as r → ∞, the con-
stant never explicitly appeared in our solution. But in general it is needed to
satisfy any boundary conditions, such as the one we imposed.

The solution to (11.2) is composed of two terms: −Gm/r is known in dif-
ferential equation literature as the particular integral (we’ll call this the PI),
while the constant is the complementary function (here called the CF). El-
ementary differential equation theory shows that the general solution to a
linear differential equation is the sum of these two things. The complemen-
tary function is the general solution for the homogeneous equation (that is, for
no source), and always involves arbitrary constants. Often, it’s not difficult to
find, and it can always be found for linear differential equations. On the other
hand, the particular integral is one solution for the actual source, involves no
arbitrary constants at all, and can be very difficult to find. But once we have
it, the most general solution of a linear differential equation will be the sum of
the particular integral and the complementary function. The proof of this is
very easy. Suppose we have a linear differential equation L(y) = f for a linear
differential operator L and source term f . Certainly it’s true that y = PI+CF
is one solution, because
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L(y) = L(PI + CF) = L(PI) + L(CF) ≡ f + 0 = f , (11.3)

as required. Now suppose there is another solution y1. Then

L(y − y1) = L(y) − L(y1) = f − f = 0 , (11.4)

in which case y − y1 equals some constant times the CF. Thus,

y1 = y + constant × CF , (11.5)

which means that y1 itself is a sum of the PI and the CF—since the CF
involves an arbitrary constant that allows any amount of it to be added to
the PI. So the most general solution to the equation has the form PI + CF,
just as we set out to prove.

It’s a curious fact that for all of the usual difficulty in finding a particular
integral, it can actually creep up on us. For example, suppose we set out to
solve Poisson’s equation for no source at all, expecting to find the constant
that got set to zero in the gravity case. This constant is the complemen-
tary function by definition. Let’s see what really happens. Assuming a radial
solution, use (8.227) to write Poisson’s equation as

∇2Φ(r) =
1
r2

(
r2Φ,r

)
,r

= 0 . (11.6)

This is easily integrated by inspection to give

Φ =
a

r
+ b , where a, b are constants. (11.7)

We have found the complementary function b, but another solution has also
slipped in—the very solution we found on p. 406 for a point source at the
origin. Of course, this can be removed by setting a = 0, but nevertheless a
particular integral for a point source has somehow surfaced in the solution. As
we’ll see in the next chapter on p. 497, the same thing happens when solving
Einstein’s equations for empty space: a constant of integration appears whose
physical effect is that of a point mass at the origin. It’s as if our use of polar
coordinates has enabled a point mass to appear almost unnoticed at r = 0,
a point that in a sense is right on the edge of our coordinate system. So
point sources have a way of appearing unannounced, and it might be to
our advantage to harness their power. Including them in the form of delta
functions might render more complicated differential equations solvable. This
is indeed what happens, and in this chapter we make it our aim to use the
delta function in solving Maxwell’s equations for a general source. But first
we’ll tackle a much simpler problem: we will again solve Poisson’s equation
for gravity but this time for a general mass source, and we’ll follow a more
general route than the one used for the point source in equations (10.75)–
(10.80).
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So return to (11.1), and for simplicity, absorb the 4πG term by dividing
it into the field Φ; we are free to multiply the solution by 4πG at the end.
Hence, essentially we wish to solve

∇2Φ(x) = �(x) (11.8)

for an arbitrary mass distribution �(x). Remember that in Sect. 10.4 we
solved this equation for Φ due to δ(x), and then multiplied the solution by m
(because of linearity) to give the required solution for a point mass at rest
at x = 0.

To apply this approach to a general mass distribution, again make use
of the additivity of solutions to linear differential equations. The required
solution is simply the sum of the solutions due to infinitesimal masses placed
at every point in space. The solution for the infinitesimal mass �(x′) d3x′

at x = x′ is given by solving for Φ due to a unit mass δ(x − x′), and then
weighting this solution by the actual mass �(x′) d3x′. The bottom-line so-
lution is then given by adding all of these solutions over the whole space
of x′.

The solution for Φ due to a unit source δ(x − x′) is called the Green
function G(x,x′) for the differential operator ∇2. The final value of the field
is thus

Φ(x) =
∫

G(x,x′)︸ ︷︷ ︸
Solution for unit source at x′

�(x′) d3x′

︸ ︷︷ ︸
Solution for infinitesimal source at x′︸ ︷︷ ︸

Superposition of solutions due to all sources

. (11.9)

We can verify that this solution does indeed yield Φ by substituting it into
the original equation (11.8). Remember that ∇2 acts on x, not x′ (often
indicated by writing ∇2

x):

∇2Φ(x) =
∫

∇2G(x,x′)�(x′) d3x′

=
∫

δ(x − x′)�(x′) d3x′

= �(x) , as required. (11.10)

The solution to (11.8) is often written as Φ = ∇−2�, so that the Green
function is ∇−2δ(x − x′). We can use this notation to recreate the Green
function definition in case we forget it. Begin with Poisson’s equation, writing

Φ(x) = ∇−2
x �(x) = ∇−2

x

∫
�(x′) δ(x − x′) d3x′

=
∫

�(x′) ∇−2
x δ(x − x′)︸ ︷︷ ︸
≡G(x,x′)

d3x′ , (11.11)
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which is just (11.9) again.
The Green function for the radial part of ∇2 was easy to calculate, which

is really what we did in Sect. 10.4; on dividing by 4πG, equations (10.75)
and (10.80) imply that

∇2
x

( −1
4π|x|

)
= δ(x) , so that ∇2

x

( −1
4π|x − x′|

)
= δ(x − x′) , (11.12)

where the second expression in (11.12) follows from the general result for a
linear change of variables: ∇2

xf(ax + b) = a2∇2
xf(x)

∣∣
x→ax+b

. The Green
function for ∇2 is then

∇−2
x δ(x − x′) =

−1
4π|x − x′| . (11.13)

Next, substituting G(x,x′) into (11.9) yields the full solution for the gravi-
tational potential Φ—remembering to multiply by the gravitational constant
factor 4πG absorbed earlier. Additionally, because Newton’s theory assumes
that changes in the gravity field propagate at infinite speed, we have the free-
dom to insert a time dependence into the density and hence the field in the
following expression, without changing our analysis in any way:

Φ(t,x) =
∫ −G�(t,x′) d3x′

|x − x′| . (11.14)

(The G in this equation is the gravitational constant, not the Green function.)
As a check, we can see that for a point mass at the origin, �(t,x′) = mδ(x′),
and the potential becomes Φ = −Gm/|x| = −Gm/r as expected.

This is all well and good, but a general linear operator can be compli-
cated. There are more general ways to calculate G(x,x′), and we’ll concen-
trate on one such method that employs Fourier theory. For this, we deal
not with G(x,x′) but with its Fourier transform, in effect writing the Green
function as a superposition of plane waves and focusing attention on their
amplitudes. This method is well illustrated by calculating the Green function
for ∇2. The procedure treads a very thin line mathematically because we
know already that the Green function for ∇2 diverges as |x − x′| → 0, and
Fourier theory is not applicable to functions that are not square integrable,
let alone functions that diverge! Nevertheless, we hope that the ever-useful
ideas of generalised functions will lend a hand in resolving any difficulties.
In the next section, we rederive the Green function for ∇2 using this Fourier
approach and show that it agrees with (11.13).
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11.2 Deriving the Green Function for ∇2 via
Fourier Theory

The Green function for ∇2 is defined by

∇2G(x,x′) ≡ δ(x − x′) . (11.15)

Begin by Fourier-decomposing G into exponential functions of x. This gives
the laplacian something concrete on which to operate.

G(x,x′) ≡
∫

eik·xg(k,x′) d3k . (11.16)

Substituting the Fourier decomposition of G(x,x′) into (11.15) allows the
laplacian ∇2 to act only on the plane wave components eik·x, producing∫

−k2 eik·xg(k,x′) d3k = δ(x − x′) , where k ≡ |k| . (11.17)

This Fourier-inverts to give

−k2 g(k,x′) =
1

(2π)3

∫
e−ik·xδ(x − x′) d3x =

e−ik·x′

(2π)3
. (11.18)

Finally, isolating g and substituting it into (11.16) produces G:

G(x,x′) =
−1

(2π)3

∫
eik·(x−x′)

k2
d3k . (11.19)

To perform this integration, switch to k-space polar coordinates (k, θ, φ),
which come with the freedom to set the k-space “z-axis” parallel to x − x′.
The squared radial distance k2 in the denominator presents no problem
near the k-space origin, since it is weighted by the infinitesimal volume
d3k = k2 sin θ dk dθ dφ. For simplicity, set X ≡ |x − x′|, and write

G(x,x′) =
−1

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞

0

dk eikX cos θ

=
−1
4π2

∫ π

0

dθ sin θ

∫ ∞

0

dk eikX cos θ . (11.20)

In which order might it be best to evaluate these integrals? The simplest
approach is to integrate first over θ, since the integration is then quite well
defined. Harder is to integrate first over k, an exercise that we’ll leave until
Sect. 11.2.1. The integration over θ gives

G(x,x′) =
−1
4π2

∫ ∞

0

dk

∫ π

0

dθ sin θ eikX cos θ
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=
−1
4π2

∫ ∞

0

dk

[
eikX cos θ

−ikX

]π
θ=0

=
−1

2π2X

∫ ∞

0

dk
sin kX

k
. (11.21)

We’ll calculate the last integral shortly, but for now we just use the result
that it equals π/2. Using this, the Green function for ∇2 becomes

G(x,x′) =
−1

4π|x − x′| , (11.22)

which agrees with (11.13), as expected. So we have some confidence in this
method of calculating Green functions.

The integral in (11.20) can also be evaluated by integrating over k first.
But before we do that, it will prove useful to examine in some detail how the
value of π/2 was derived for the last integral in (11.21):∫ ∞

0

sin ax

x
dx =

π

2
sgn a . (11.23)

This is a standard example of an integral calculated using complex variable
theory in undergraduate mathematics courses, but it forms a very good test
bed to begin a discussion of the complex integration usually used in Green
function theory. Without loss of generality, set a = 1, as it’s a factor that can
always be absorbed via a change of variables. We wish then to calculate the
real integral

I ≡
∫ ∞

−∞

sin x

x
dx . (11.24)

This integral certainly exists (and we expect to show that it equals π since the
integrand is even), because while the integrand has a discontinuity at x = 0,
this discontinuity is removable. That is, the left and right limits of the in-
tegrand as x → 0 are equal, so that the single point absent in a plot of the
integrand has no effect on the integral. This easy-to-miss singularity can al-
ways be removed by redefining the integrand with the limit value; hence the
term removable, and although the singularity is quite benign in that the in-
tegration is insensitive to its presence, it is still a singularity of the integrand
as it stands.

In the next few pages we’ll examine various approaches to calculating I
that all require converting the integrand into a complex exponential. By so
doing, we can appeal to the following lemma from complex analysis. The
paths used in a complex integration can be drawn fairly arbitrarily, but of
course some paths are more useful than others. The following lemma concerns
two of these useful paths.

Jordan’s lemma: Suppose we are Fourier-integrating a rational function
composed of polynomials P (z), Q(z), where the degree of Q is at least one
more than the degree of P :
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eiaz P (z)

Q(z)
dz = ? (11.25)

If a > 0, draw as a path of integration a semicircle in the upper half complex
plane with radius R. Call this path C+

R . Then

lim
R→∞

∫
C+

R

eiaz P (z)
Q(z)

dz = 0 . (11.26)

If a < 0 and the path of integration is a semicircle C−
R in the lower half

plane, then the same thing happens: the integral over C−
R tends toward zero

as R → ∞.
Jordan’s lemma can be proved by using the triangle inequality (often

used in complex analysis) to put an upper bound on the integral (11.25).
This inequality states that∣∣∣∣∫ eiaz P (z)

Q(z)
dz

∣∣∣∣ ≤ ∫ ∣∣eiaz
∣∣ ∣∣∣∣P (z)

Q(z)

∣∣∣∣ |dz| . (11.27)

For the a > 0 case, parametrise the path by z = Reiθ for θ = 0 → π, which
traces the path counterclockwise. When R is large enough, the highest-
order term in each of the polynomials P,Q dominates them, rendering P/Q
bounded above by M/R for some constant M . In that case, the right-hand
side of (11.27) is then also bounded above:∫ ∣∣eiaz

∣∣ ∣∣∣∣P (z)
Q(z)

∣∣∣∣ |dz| ≤
∫ π

0

e−aR sin θ M

R
R dθ . (11.28)

Since a > 0, the exponential factor e−aR sin θ mostly reduces the size of the
last integrand as R → ∞, except near θ = 0 and π; but these parts of the
domain contribute less and less to the integral as R → ∞ anyway. So the
upper bound that is the right-hand side of (11.28) shrinks to zero, proving
the lemma. The a < 0 case is proved similarly. It’s apparent that the lemma
could be stated more generally, since P/Q could be replaced by any function
of z whose large-R behaviour is sufficient to offset R e−aR sin θ; but the lemma
as it stands will suffice for our needs.

Using this lemma and the path choices it provides, let’s look at each of
several approaches to evaluating I in (11.24), some of which are successful
and others of which fail. Always and everywhere, we’ll be guided by the fol-
lowing Golden Rule:

When evaluating a complex integral, the path of integration
must never be drawn through a pole, since this makes no sense.
Also, creating such a path but swerving around the pole does
not validate such a procedure.
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We will evaluate the integrals using the Cauchy residue theorem. This the-
orem is perhaps the most famous and useful in complex analysis. It says that
for any function f(z) that is analytic on and inside some non-self-intersecting
curve Γ except for finitely many singularities σ1, . . . , σn inside Γ ,∫

Γ

f(z) dz = 2πi

n∑
i=1

Res
z=σi

f(z) . (11.29)

Residues are straightforward to calculate—and for everything that follows
here they are very easy, because all of the poles σ that we encounter will be
simple, meaning that (z −σ)f(z) is analytic and nonzero at σ. In such cases,
the residue is

Res
z=σ

f(z) = (z − σ)f(z)
∣∣∣
z=σ

. (11.30)

First Successful Approach to Evaluating I in (11.24)

We will invoke the Cauchy residue theorem to evaluate the integral (11.24).
The theorem requires a closed contour. We will limit the contour running
along the real axis in (11.24) to have a finite extent (−R → R), and then
close it by adding another contour. The required integral will result in the
limit R → ∞. It’s expedient for the added contour to give a zero contribution,
so we refer to Jordan’s lemma to arrange for this to happen. Jordan’s lemma
requires the integrand to have a complex exponential, which we can arrange
by splitting (11.24) into its two exponential parts:

I = lim
ε→0

∫ ∞

−∞

sin x

x + iε
dx =

1
2i

lim
ε→0

∫
eix − e−ix

x + iε
dx

=
1
2i

lim
ε→0

[ ∫
eix

x + iε
dx︸ ︷︷ ︸

≡ I1

−
∫

e−ix

x + iε
dx︸ ︷︷ ︸

≡ I2

]
. (11.31)

The integrals I1 and I2 are effectively being treated as complex, so that the
dummy variable x might better be replaced by z for clarity. Each integrand
thus has a pole at z = −iε. The paths of integration are shown in Fig. 11.1.
The semicircular parts added are guaranteed to give zero contribution as
R → ∞, by Jordan’s lemma.

Neither path runs into the poles, so the Golden Rule is satisfied and we
can apply the Cauchy residue theorem with confidence. Hence I1 = 0 trivially
(since no poles are enclosed), while

I2 = −2πi Res
z=−iε

e−iz

z + iε
= −2πi e−ε. (11.32)

Equation (11.31) then yields the correct result I = π.
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−R R

I1

−R R

I2

Fig. 11.1. Contours for I1 and I2 used in the first approach to calculating I,
equation (11.31).

Second Successful Approach to Evaluating I in (11.24)

Another way of arranging to use Jordan’s lemma is to convert the integrand
sin x/x into a complex exponential directly by adding a cosine contribution.
Unfortunately,

∫∞
−∞

cos x
x dx diverges, but because its integrand is odd, we

know that the principal value of this latter integral is zero. The principal
value defines a symmetrical integration, with particular attention to the can-
cellation happening around a singularity:

PV
∫ ∞

−∞
f(x) dx ≡ lim

ε→0
R→∞

[∫ −ε

−R

+
∫ R

ε

]
f(x) dx . (11.33)

(Linguistically it may seem a little odd that the principal value of an unde-
fined integral can itself exist, but the term is quite standard.) We also know
that because I is well defined, the precise manner of integration shouldn’t
matter, so in particular it must equal its principal value. Hence

I =
∫ ∞

−∞

sin x

x
dx = PV

∫ ∞

−∞

sin x

x
dx

=
1
i

[
PV
∫ ∞

−∞

cos x

x
dx︸ ︷︷ ︸

= 0

+i PV
∫ ∞

−∞

sin x

x
dx

]

=
1
i

PV
∫ ∞

−∞

eix

x
dx . (11.34)

We will calculate the last principal value integral of (11.34) by again adding
an extra path to close it up and then applying the Cauchy residue theorem.
A contour is shown in Fig. 11.2. As usual, the real integration is initially
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−R −r r R

Fig. 11.2. Contour used in the second approach to calculating I in (11.34). Note
that we are abiding by the Golden Rule on p. 451: the contour is not set to run
through the pole, and the small semicircle is not a last-minute swerve to avoid
a collision. Although the pole was deliberately inserted from the start to convert
the integral to something that could make use of the Cauchy residue theorem, by
construction it was never on the path of integration. See the further discussion
after (11.34).

limited to −R → R. Jordan’s lemma ensures that the large semicircle gives
a vanishing contribution as R → ∞.

The presence of the small semicircle in Fig. 11.2 might make it seem that
we have gone against the Golden Rule on p. 451, because that semicircle
seems to be swerving around the origin to avoid the pole there. But we have
not gone against the Golden Rule, because the small semicircle’s role was
never to sidestep a pole on our path. The pole was simply never on our path;
the semicircle came into being as soon as we decided to use a principal value
approach. This is a very important point, but also a very subtle one that is
missed in most treatments of contour integration. Let’s examine it in detail
by reviewing what has been done.

1. We wished to invoke the Cauchy residue theorem to calculate the inte-
gral (11.24). This theorem uses a closed contour. So we needed to add
a contour to the one running along the real axis in (11.24). We decided
to add a contour that gave a zero contribution, so planned to make use
of Jordan’s lemma. That lemma required a complex exponential in the
integrand.

2. One way to convert the integrand of (11.24) to a complex exponential
is to add a cosine term. But the integral of this added term diverges.
However, the principal value of the cosine integral equals zero. Since the
principal value of the original integral I in (11.24) equals I, we can add
the principal value of a cosine integral to it, which converts (11.24) to the
principal value of an integral of a complex exponential.
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3. By definition, the principal value of an integral excludes, symmetrically,
any point of discontinuity. So the pole at the origin was never on our
path.

Thus there is nothing ad hoc about the path in Fig. 11.2 because it is not
set to run through the pole, and we are not making a last-minute swerve to
avoid a collision. We have adhered to the Golden Rule.

The integral I is sometimes calculated by converting it to a complex ex-
ponential for no apparent reason; suddenly a pole has appeared at the origin
toward which the path is headed, and that must be avoided in an ad hoc
manner by going around it—which begs the question of why such symmet-
rical integration limits should be better, necessary, or any more correct than
asymmetrical ones. We now see why this approach gives the right answer.
But our careful analysis will come in very handy later in this chapter when
we use a complex integration to solve Maxwell’s equations.

Return now to the last principal value integral of (11.34). In the large-R
limit, the principal value is the integral along the x-axis, going around the
pole at the origin (intentionally!). Ignoring the vanishing contribution from
the large semicircle (by Jordan’s lemma), we have

PV
∫ ∞

−∞

eix

x
dx + lim

r→0

∫
semicircle r
clockwise

eiz

z
dz = 0 . (11.35)

Parametrise the small semicircle by z = reiθ with θ = π → 0. Then∫
semicircle r
clockwise

eiz

z
dz =

∫ 0

π

exp
(
ir eiθ

)
i dθ

r→0−→ −iπ . (11.36)

Equations (11.34)–(11.36) then combine to give the correct result I = π.
It’s worth pointing out that if the integration path used in Fig. 11.2 were

to be changed to include the pole by running the small semicircle under the
x-axis, the answer would be unchanged. Whether or not we include a pole
in a complex integration cannot affect the answer, since the nett difference
between the two paths amounts to completely encircling the pole—which is
exactly balanced by the fact that the residue is included in one calculation
but not the other. The moral of this story is that we should include no poles
at all if possible, since that way no residues will need to be calculated. The
proverbial free lunch can indeed be eaten by evaluating a contour integral
without enclosing any poles at all.

Unsuccessful Approaches to Evaluating I in (11.24)

Care is required to avoid using näıve contours when evaluating complex inte-
grals. The following analyses fail, but are worth discussing to show how not
to draw contours. As in (11.34), write
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Fig. 11.3. Invalid contours for evaluating the principal value integral in (11.34).
Neither of these recognises the fact that we are taking a principal value. Contours
like these are conventionally used to “evaluate” the divergent integral that we’ll
encounter later in (11.66).

I =
1
i

PV
∫ ∞

−∞

eix

x
dx 	= 1

i

∫ ∞

−∞

eix

x
dx︸ ︷︷ ︸

this diverges!

. (11.37)

Because the last integral is not defined, we must not be tempted to try to
evaluate it as the limit

lim
ε→0

∫ ∞

−∞

eix

x + iε
dx . (11.38)

This integral is just I1 from the first approach, and is well defined (equalling
zero). But we have run into a problem by discarding the use of the principal
value.

Another unsuccessful approach on the same theme is to obtain the correct
equation (11.34), but then attempt to evaluate it using contours that don’t
run along the x-axis. Two such contours are shown in Fig. 11.3. Neither of
these gives the correct answer since neither calculates the principal value. The
first contains no poles and so produces I = 0, while the second contains the
pole at the origin and produces I = 2π. And neither of these values changes
as we make the separation of the path from the real axis tend toward zero. In
fact, we’ll see later in this chapter (p. 469) that these two contours are conven-
tionally used in solving Maxwell’s equations in a mathematically ill-defined
way. The fact that they give the right answers is not so much due to math-
ematical rigor, as to the fact that they mimic a physically more meaningful
approach where the integrals are always ensured to be well defined.

11.2.1 The Other Way of Calculating the Integral (11.20)

When we derived the Green function for ∇2 at the start of Sect. 11.2, we
needed to evaluate the integral (11.20). We did this by the very standard
approach of first integrating over θ. It is possible to first integrate over k
instead, but a convergence subtlety arises. The integral to evaluate is
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0

eikX cos θ dk . (11.39)

This diverges, and so presents something of an obstacle since we know that
the double integral (11.20) is well defined. But at this point we remember
that the integral (11.39) was first mentioned on p. 58, where we asked:∫ ∞

0

eikx dk = ? (11.40)

One way of giving this integral physical meaning is to introduce a damp-
ing factor inspired by other such factors that exist in physical theories; this
damping can then be set to zero in the limit. Such a procedure ultimately
gives rise to the fundamental Fourier identity (2.174). Define the damping by∫ ∞

0

eikx dk ≡ lim
ε→0+

∫ ∞

0

eikx−εk dk . (11.41)

This new integral converges:∫ ∞

0

eikxdk ≡ lim
ε→0+

∫ ∞

0

eik(x+iε)dk = lim
ε

i

x + iε

= lim
ε

ε

x2 + ε2︸ ︷︷ ︸
≡L1(x)

+ i lim
ε

x

x2 + ε2︸ ︷︷ ︸
≡L2(x)

. (11.42)

The two real limits L1, L2 can be evaluated by introducing a square-integrable
test function T (x). We’ll integrate T (x) with L1 and L2 in turn, freely swap-
ping limits and integrations where necessary. First, L1:∫ ∞

−∞
T (x)L1(x) dx = lim

ε→0+

∫
T (x) ε

x2 + ε2
dx

= lim
ε

[
T (x) tan−1 x

ε

]∞
x=−∞

− lim
ε

∫
T ′(x) tan−1 x

ε
dx . (11.43)

The first term equals zero by virtue of the test function’s tending to zero at
x = ±∞. The second tends toward ±π/2:∫ ∞

−∞
T (x)L1(x) dx = −

∫ ∞

−∞
T ′(x)

π

2
sgn xdx = π T (0)

=
∫ ∞

−∞
T (x) π δ(x) dx . (11.44)

L1(x) has the same effect on a test function as does π δ(x), so that in the
language of generalised functions they are defined to be equal.

A similar approach gives L2. Here we break the limit up symmetrically,
paying particular attention to x = 0:
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−∞
T (x)L2(x) dx = lim

ε→0+

∫ ∞

−∞

T (x)x

x2 + ε2
dx

= lim
ε

lim
η→0+

[∫ −η

−∞
+
∫ η

−η

+
∫ ∞

η

]
T (x)x

x2 + ε2
dx

= lim
ε

lim
η

[∫ −η

−∞
+
∫ ∞

η

]
T (x)x

x2 + ε2
dx + lim

ε
lim

η

∫ η

−η

T (x)x

x2 + ε2
dx

= PV
∫ ∞

−∞

T (x)
x

dx + lim
ε

T (0) lim
η

∫ η

−η

x

x2 + ε2
dx︸ ︷︷ ︸

= 0 as integrand is odd

= PV
∫ ∞

−∞

T (x)
x

dx ≡
∫ ∞

−∞
T (x) P (1/x) dx . (11.45)

The principal-part generalised function, conventionally written P (1/x), is
defined so that it produces a principal value when integrated with a test
function. A more useful notation is σ(x) ≡ P (1/x), in which case the final
expression for the original one-sided integral is, from (11.42),∫ ∞

0

eikx dk = π δ(x) + i σ(x) . (11.46)

The principal part has effectively been defined as a limit of a sequence of
functions,

σ(x) = P (1/x) ≡ lim
ε→0+

x

x2 + ε2
, (11.47)

so that it forms a natural partner to the lorentzian form of the delta function
calculated in (11.42)–(11.44):

π δ(x) = lim
ε→0+

ε

x2 + ε2
. (11.48)

Just as the delta function can be visualised as a spike, being the limit of a
sequence of bell-shaped functions that become ever more peaked as ε → 0,
the principal part can be visualised as an odd function identical to 1/x for
x 	= 0, while continuous at x = 0 and equal to zero there. Figure 11.4 shows
it as the limit of a sequence of functions determined by (11.47) for various
values of ε > 0. It’s common practice in engineering and signal processing
texts to identify σ(x) completely with 1/x. But this is only true for x 	= 0,
and such an error will cause convergence difficulties that tend to be ignored
in the integrations that result. This does nothing for the pedagogy of the
subject.

Our introduction of the exponential damping in (11.41) has evidently been
useful. In particular, we can recover the usual Fourier identity (2.174) by
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ε = 10−4

ε = 10−3

ε = 10−2

ε = 10−1

Fig. 11.4. Sequence of functions y = x
x2+ε2 that tend toward the principal-part

generalised function y = σ(x). The functions are all odd, intersecting at the origin.
The generalised function y = σ(x) is identical to 1/x for x �= 0, but continuous at
x = 0 with σ(0) = 0.

splitting it into two integrals. Being odd, σ(x) vanishes through cancellation
by a sign change, and only the even δ(x) survives:∫ ∞

−∞
eikx dk =

∫ 0

−∞
eikx dk +

∫ ∞

0

eikx dk

=
∫ ∞

0

e−ikx dk +
∫ ∞

0

eikx dk

= π δ(−x) + iσ(−x) + π δ(x) + i σ(x)
= 2π δ(x) , as expected. (11.49)

To use the principal part in evaluating the Poisson Green function (11.20),
where the integral over k is done first, begin by writing∫ ∞

0

eikX cos θ dk = π δ(X cos θ) + i σ(X cos θ)

=
1
X

[π δ(cos θ) + i σ(cos θ)] , (11.50)

where the identities used in the last line are well known for the delta function
and obvious for the principal part. The original integral (11.20) then becomes

G(x,x′) =
−1

4π2X

∫ π

0

dθ sin θ [π δ(cos θ) + i σ(cos θ)]
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=
−1

4π2X

[
π

∫ π

0

sin θ δ(cos θ) dθ + i PV
∫ π

0

tan θ dθ

]
. (11.51)

The delta function integral equals 1 (use a change of variable u = cos θ),
while the principal value equals zero, since the tangent function is odd
around θ = π/2. Thus the Green function is

G(x,x′) =
−1

4πX
, (11.52)

just as we found earlier in (11.13) and (11.22). So the principal-part gen-
eralised function is very useful in that it can handle convergence subtleties,
and enable double integrations like (11.20) to be performed without regard
to integration order.

11.3 Solving Maxwell’s Equations via the
Green Function Approach

Now that we have some practice in the complex integrals and convergence
subtleties of Green functions, along with calculating the gravitational field
for an arbitrary mass distribution, it’s time to tackle the harder problem of
solving Maxwell’s equations for an arbitrary charge distribution.

Back in Chap. 6 when discussing the Lorentz transform, we saw that
electric and magnetic fields could be unified once the proper-vector nature of
the charge–current density jα(t,x) was recognised. This led to the charge–
current density becoming part of the lagrangian density for the interacting
electromagnetic field, equation (10.104). The resulting field equations were
those of Maxwell (10.110), as required or expected. We wish now to solve
these equations for a general source jα(t,x).

Begin with (10.113) and (10.115), and remember that these two equa-
tions really contain the whole set of four Maxwell equations because of the
identities E = −∇Φ − ∂A/∂t and B = ∇×A.

−∇2Φ − ∂

∂t
∇·A =

�

ε0

,

∂2A

∂t2
−∇2A + ∇∂Φ

∂t
+ ∇ (∇·A) =

j

ε0

. (11.53)

Note that in the following discussion, ∇2 will be the 3-space laplacian. Al-
though expressions such as (8.103) and (8.225) show that ∇2 is a sufficient
notation for the laplacian in any number of dimensions, we will reserve
it here for three dimensions to allow the following analysis to be compared
with electromagnetism texts, which tend to use ∇2 to mean only the 3-space
laplacian.



11.3 Solving Maxwell’s Equations via the Green Function Approach 461

Working in the Lorenz gauge (∇·A = −∂Φ/∂t, Sect. 10.7.1) simplifies these
and allows them to be combined into one equation in cartesians:(

∂2
t −∇2

)
Aα = jα/ε0 , i.e. ηµνAα

,µν = ηtt jα/ε0 . (11.54)

The elegance of the tensor symbolism becomes apparent here: the component
equations in (11.54) for the scalar and vector potentials both have the same
form. In arbitrary coordinates, (11.54) becomes

gµνAα
;µν = jα/ε0 sgn g00 , (11.55)

but we’ll restrict ourselves to cartesian coordinates only, and will use a Green
function approach to solve (11.54). First, define position vectors

�x ≡ (t, x, y, z) ≡ (t,x) , �x′ ≡ (t′, x′, y′, z′) ≡ (t,x′) . (11.56)

We are not Lorentz-transforming here; �x and �x′ are sets of coordinates in the
same frame. Despite the arrow, �x and �x′ are merely position vectors and not
proper vectors; we denote them with an arrow only to show that they use all
four spacetime indices.

Next, electromagnetism texts will often write the four-dimensional lapla-
cian ∂2

t −∇2 as � (or even �2), calling it the d’Alembertian. For comparison
with those texts, we will do likewise, noting that � will always differentiate
with respect to unprimed coordinates, and we’ll write it as ��x as a reminder.

Last, the Green function approach gives the particular integral only. For
the full solution, we need to add the complementary function, which will
describe any field that has its source beyond the region of interest—such as
waves that are just passing through, as it were.

We can see this in another way as follows. Equation (11.54) can be written as

��xAα = jα/ε0 . (11.57)

Suppose we make a Lorentz transform to new, barred, coordinates. We learnt
back in Sect. 6.4 that the charge–current density jα is a vector. Also, the
d’Alembertian is just the contraction over the µ, ν in (11.54), and so is
coordinate-independent: ��x = ��̄x ≡ �. (Alternatively, it’s trivial to show
that ∂2

t̄ − ∂2
x̄ − · · · = ∂2

t − ∂2
x − · · · by using the Lorentz transform.) Thus,

�Aα = jα/ε0 = Λα
β̄ jβ̄/ε0 = Λα

β̄ �Aβ̄

= �
(
Λα

β̄ Aβ̄
)

,

so that �
(
Aα − Λα

β̄ Aβ̄
)

= 0 . (11.58)

Calling the term in parentheses ξα, we can only conclude that Aα=Λα
β̄ Aβ̄ +ξα,

where �ξα = 0. That is, ξα is a field with no source in the region of interest;
i.e., the complementary function that was already inherent in (11.57). We
can see here that the electromagnetic potential Aα only transforms as a
vector if these extra source-free terms are excluded.
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In what follows, we only deal with the particular integral as if it were the
whole solution of Maxwell’s equations, all the while remembering the omit-
ted complementary function. Of course, since the field of the complementary
function is just due to charges that are a great distance away, we can al-
ways include it in the particular integral by simply widening the region of
integration.

In analogy with the discussion of solving Poisson’s equation at the start
of this chapter, we can introduce the Green function for the d’Alembertian
by inverting (11.54). (And, in the equations that follow, all integrals lacking
explicit limits are understood to run from −∞ to ∞.)

Aα(t,x) ≡ �−1
�x

jα(�x)
ε0

= �−1
�x

∫
d4x′ jα(�x′)

ε0

δ(�x − �x′)

=
∫

d4x′ jα(�x′)
ε0

× �−1
�x δ(�x − �x′)︸ ︷︷ ︸

≡G(�x,�x′), the Green function for �
x

. (11.59)

Now the task has been reduced to finding G. Again, transform to Fourier
space by defining a new function g with the four-dimensional version of (11.16).
We will make use of new variables �k ≡ (ω,k) (a frequency–wavenumber vec-
tor, but this is not really important). For conciseness, write

�k ·�x ≡ ωt − k·x . (11.60)

This is just notation since �x is not a four-vector, although it does resemble
the Minkowski dot product referred to on p. 304. In analogy with (11.16),
g is defined by

G(�x,�x′) =
∫

ei�k·�xg(�k,�x′) d4k . (11.61)

Similar to (11.17), use (11.61) to write ��x G(�x,�x′) = δ(�x−�x′) as (remember
that k ≡ |k|) ∫

− (ω2 − k2
)
ei�k·�xg(�k,�x′) d4k = δ(�x − �x′) . (11.62)

Inverse Fourier transforming (11.62) produces the analogue to (11.18):

− (ω2 − k2
)
g(�k,�x′) =

e−i�k·�x′

(2π)4
. (11.63)

Substituting g back into (11.61) gives the analogue to (11.19):

G(�x,�x′) =
−1

(2π)4

∫
ei�k·(�x−�x′)

ω2 − k2
d4k . (11.64)

Finally, it’s customary to separate this integral into integrations over fre-
quency and wavenumber:
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G(�x,�x′) =
−1

(2π)4

∫
d3k e−ik·(x−x′)

∫
dω

eiω(t−t′)

ω2 − k2
. (11.65)

Once this integral is evaluated, G can be reinserted into (11.59) to determine
the field Aα, and Maxwell’s equations will then be solved.

The Integral over ω in (11.65)

The first integral to tackle is that over ω:

I ≡
∫ ∞

−∞
dω

eiω(t−t′)

ω2 − k2
. (11.66)

This has two singularities at ω = ±k. Thus I diverges, and a real problem has
arisen. Our functions have become just too singular, so that a Fourier analysis
approach is losing its applicability. Although the generalised functions of
Fourier analysis can handle some non-square-integrable functions, for more
general situations they appear to be insufficient.

Conventionally, the poles in (11.66) are avoided by using the contours
of Fig. 11.3, which then gives two solutions to Maxwell’s equations. But
this cannot make any sense because I diverges, and no amount of careful
contouring can rescue a divergent integral. It also goes completely against
our Golden Rule of how not to do a complex integral on p. 451.

Luckily, the problem can be overcome through a physical approach. Sup-
pose that we temporarily perturb Maxwell’s equations in some physically
reasonable way that can be reduced to zero when required. The equations as
written in (11.54) are time-symmetric, implying that the solutions should not
only include waves radiating out from a point source, but also waves radiating
in from infinity to that source. In the real world, waves don’t seem to do this,
and this is a clue that we might experiment by adding a dissipative term to
Maxwell’s equations; perhaps then (11.66) will be well defined. Dissipation
is not a fundamental part of Maxwell’s theory, so we must arrange for it to
vanish in the limit once the equations are solved.

Add, then, a damping term to (11.54). We take our cue from the case of
damped harmonic motion in classical mechanics, where the effect of damping,
for example, a mass suspended from a spring and moving in an oil bath,
is incorporated by adding a velocity term to its equation of motion. For
Maxwell’s equations, the corresponding “velocity” term is a first derivative
of Aα with respect to time, with some weight λ:

(∂2
t + λ∂t −∇2)Aα = jα/ε0 . (11.67)

Consequently, (11.59) becomes, in the zero-damping limit,

Aα(t,x) = lim
λ→0

∫
d4x′ jα(�x′)

ε0

× (∂2
t + λ∂t −∇2)−1δ(�x − �x′)︸ ︷︷ ︸

λ→0
G(�x,�x′), our new Green function

. (11.68)
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iλ/2 − k iλ/2 + k

Im ω

Re ω

Fig. 11.5. Location of the poles of (11.70) for λ > 0.

Proceeding as in the discussion following (11.59), the new Green function
becomes, in analogy with (11.65),

G(�x,�x′) =
−1

(2π)4

∫
d3k e−ik·(x−x′) lim

λ→0

∫
dω

eiω(t−t′)

ω2 − k2 − iλω
. (11.69)

Compare this with (11.65). The dissipation has pushed the singularities off
the real axis in the complex ω-plane, rendering the integrals well defined. The
sign of λ should be positive to model dissipation—the expected “real-world”
effect. A negative λ is unphysical in the sense that the opposite of dissipation
would cause runaway effects not seen in Nature. We will evaluate the integral
over ω in (11.69) for both signs of λ. Corresponding to these two signs are
the integrals I± in the new version of (11.66):

I± ≡ lim
λ→0±

∫
dω

eiω(t−t′)

ω2 − k2 − iλω
. (11.70)

The integrand’s singularities occur at

ω = iλ/2 ±
√

k2 − λ2/4 . (11.71)

To be strictly rigorous, we should consider separate cases where k2 is either
larger or smaller than λ2/4, especially because these choices turn out to
affect the large-time behaviour of the equations. But the discussion is greatly
simplified if we assume that the limit λ → 0 is ultimately dominant; this
simplifies the singularities to

ω = iλ/2 ± k . (11.72)

When λ > 0 (real physical dissipation), the poles are as drawn in Fig. 11.5.
Evaluate the integral in the usual way by changing the integration path to a
semicircle in the complex ω-plane. For t−t′ > 0, Jordan’s lemma (p. 450) dic-
tates closing the real axis contour with a semicircle above the two poles, whose
contribution vanishes as usual, as its radius tends to infinity. The residues
must then be calculated, but they are straightforward because the poles
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are simple; see (11.29) and (11.30). For the t − t′ < 0 case, the vanishing-
contribution semicircle is below the real axis; this leads to the trivial result
of zero since no poles are then included. Both of these time regimes can be
incorporated into one expression with a step function:1

I+ = −θ(t − t′)
2π

k
sin k(t − t′) , (11.74)

where, as noted previously, we have assumed that the limit λ → 0 dominates
the large-time behaviour.

A similar calculation can be done for I− (λ < 0)—which must be remem-
bered as being unphysical in that it implies amplification, the opposite of
damping. The final result is

I− = θ(t′ − t)
2π

k
sin k(t − t′) . (11.75)

Returning to (11.69) and (11.70), we see that I+ and I− lead to two values G±
of the Green function:

G± ≡ −1
(2π)4

∫
d3k e−ik·(x−x′)I± . (11.76)

This integral can be evaluated by following the same procedure that was used
for (11.19). Switch to k-space polar coordinates (k, θ, φ) with the k-space
“z-axis” parallel to x − x′. Also set X ≡ |x − x′|, to give

G± =
−1
8π3

∫ ∞

0

dk k2 I±
∫ π

0

dθ sin θ e−ikX cos θ

=
±θ
(± (t − t′)

)
2π2X

∫ ∞

0

dk sin k(t − t′) sin kX . (11.77)

The integral over k is a generalised function, and can be evaluated using the
real parts of two complex exponentials. A general identity is∫ ∞

0

dx sin ax sin bx =
−1
2

∫ ∞

0

dx [cos(a + b)x − cos(a − b)x]

1 The step function θ(x) is defined by

θ(x) ≡
{

0 for x < 0

1 for x > 0
. (11.73)

Ascribing a value to θ(0) is a little problematical, and it may or may not be
useful to any specific instance. Setting θ(0) ≡ 1/2 is a good choice if required
in a physical problem, since this is the value produced if θ(x) is expanded as a
Fourier series. This allows the function to more meaningfully represent physical
quantities.
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=
−1
2

Re
∫ ∞

0

dx
[
ei(a+b)x − ei(a−b)x

]
=

−π

2
[
δ(a + b) − δ(a − b)

]
, (11.78)

with the last result following from either (2.174) or (11.46). Finally, the Green
functions are

G± =
δ(t − t′ ∓ X)

4πX
, (11.79)

where the step functions have eliminated each of the deltas of (11.78) in
the appropriate time regimes. Substituting G± into (11.59) gives two poten-
tials Aα

±:

Aα
±(t,x) =

∫
d3x′
∫

dt′
jα(t′,x′)

ε0

δ(t − t′ ∓ X)
4πX

. (11.80)

The delta functions render the time integrals easy, and (11.80) reduces to

Aα
±(t,x) =

1
4πε0

∫
d3x′ jα(t ∓ |x − x′|,x′)

|x − x′| . (11.81)

The two solutions Aα
+ and Aα

− are the celebrated retarded and advanced
solutions, respectively, of Maxwell’s equations, corresponding to the physical
and unphysical regimes of λ. They have these names because of the way in
which they allow the field at one point in spacetime to be influenced by that
at another, as shown in Fig. 11.6. In the retarded case, the field at (t,x) is
determined by all events (t′,x′) that are separated in space from x at just
such a distance that they can be connected by a light ray that travels forward
in time from (t′,x′) to (t,x). This shows that the field is not determined
instantaneously at any event, but is composed of all of the effects that reach
it from all points on the event’s “past light cone”, where these effects travel
at the speed of light. The electromagnetic field adjusts itself as charges move,
by propagating their influence outward in space and forward in time at the
speed of light. This behaviour is entirely reasonable and accords with the
Special Relativistic notion of causality.

The advanced solution has been problematic historically. It implies that
the field at any event (t,x) is determined by all future events (t′,x′) that
lie on its “future light cone”, whose influence propagates backward in time
to arrive at (t,x). This seems to be highly unphysical, and the advanced so-
lution is usually discarded when solving Maxwell’s equations—although its
value has been discussed extensively ever since it was first discovered. But
we can see here a reason why it might well be considered unphysical. It is,
after all, the limiting solution of a very unphysical set of equations: Maxwell’s
equations with a term that gives the opposite effect of damping. Neverthe-
less, Feynman and Wheeler researched solutions comprising half-advanced,
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Fig. 11.6. Left: The retarded field Aα
+(t, x) is determined by any accelerations

of the charges at all (t′, x′) on the past light cone of (t, x). Thus we must have
knowledge of the past in order to apply (11.81). The shaken charge at (t′, x′) sends
out light that influences all events on its future light cone as shown. This light is
perceived by us as “ripples” expanding outward from the charge that created them,
like rings on a pond when a stone hits the water. Right: Likewise, the advanced
field Aα

−(t, x) is determined by any accelerating charges at all events (t′, x′) on the
future light cone of (t, x). This requires knowledge of the future to apply (11.81). In
some sense, the shaken charge at (t′, x′) sends light backward in time, which influ-
ences all events on its past light cone, again as shown. This light would presumably
be seen by us as ripples that contract and converge onto the charge that created
them, although nothing of the kind has ever been observed.

half-retarded expressions, from which they derived some novel results in elec-
trodynamics. They concluded that the advanced solution needn’t present the
difficulties that one might expect.

Maxwell’s theory of electromagnetism has a long history of being applied
to calculations of the radiation emitted by an accelerating charge, but with
mixed success. Some scenarios that are otherwise quite valid and well behaved
give rise to nonphysical solutions; causality can also be violated on timescales
of the order of 10−23 seconds. In fact, including a suitably damped advanced
solution can restore order to some of the calculations, rendering them math-
ematically convergent. But in Chap. 7, and specifically Fig. 7.4, we saw the
paradoxes that can arise by taking too simplistic a model of an accelerating
charge. A charge that accelerates uniformly forever may be easy to deal with,
but its worldline becomes like that of the S̄ observer in Fig. 7.4, and problems
of causality are bound to occur. Even a subject as apparently straightforward
as using Maxwell’s equations to calculate the radiation produced by a single
accelerating charge is fraught with difficulty!

Normally, in the absence of a derivation using a vanishing damping factor,
the two solutions of Maxwell’s equations are tied to boundary conditions
in spacetime. In the retarded case, the motion of a charge here and now
affects the behaviour of all the charges in the universe at spatial and temporal
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infinity, which is expected and reasonable. But in the advanced case where a
wave coming in from spatial infinity and temporal minus-infinity is required
to converge on a charge just as that charge accelerates, there is an implication
of a careful act of setting up being necessary for the motions of the multitude
of charges at spatial infinity and temporal minus-infinity, in order to achieve
the observed effect. This setting up of far-away charges would seem to have
to work in such a way as to produce just the right incoming wave, which
converges on the charge at just the right moment. This intuitive notion of
a possible problem in getting boundary conditions just right does, however,
use the retarded solution as part of its argument, which is not necessarily a
reasonable thing to do.

11.4 Variations on the Green Function Solution of
Maxwell’s Equations

The approach we have discussed here differs somewhat from the more usual
method of solving Maxwell’s equations. There, the Fourier approach is used
without adding any damping term, and the divergent integral (11.64) is tack-
led directly via (11.65). But we know that (11.64) is divergent, because it
has singularities in its domain. No amount of complex integration theory can
mend an integral that was broken from the start: a singularity is a singularity.
Part of the problem is that the basic potentials of electromagnetism are not
square-integrable, and so are not always amenable to Fourier analysis. The
same could be said of the newtonian gravitational potential; certainly we en-
countered difficulties in evaluating (11.20) for Poisson’s equation describing
the gravity due to a static charge, but the generalised functions that came
to our aid turned out to be sufficient for the job. But those same functions
seem not to be sufficient for the more complicated advanced and retarded
solutions of Maxwell’s equations.

In spite of this, various approaches are conventionally taken to solve
Maxwell’s equations using a Fourier approach to arrive at (11.65), and we’ll
outline three of them here. The first (the principal-value approach) is an at-
tempt to rescue something from the divergent integrals, while the two other
approaches shift the contour slightly to move it away from the poles.

Principal-Value Approach

There is no a priori reason to use a principal-value approach, in contrast to
the sin x/x case that we considered earlier, where in (11.34) we deliberately
introduced a sort of “helper” integral,

∫
cos x/xdx, whose principal value was

zero. Introducing this principal value was purely a means to an end, in that
it enabled us to use the Cauchy residue theorem.

However, if we do attempt to calculate the principal value of I in (11.66),
then we’ll close the contours in the complex ω-plane again with a large semi-
circle, while avoiding the poles with small semicircles whose radii will tend
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toward zero. Omitting the details, the principal value of I turns out to be

PV I =
−π

k
sin k|t − t′| , (11.82)

while the Green function becomes

G(�x,�x′) =
−1

8πX
[δ
(|t − t′| + X

)− δ
(|t − t′| − X

)
] . (11.83)

The final result for the field Aα turns out to be the average of the advanced
and retarded solutions. This “half advanced, half retarded” expression found
a use historically in the study of electrodynamics, as a way of investigating
difficulties in Maxwell’s theory having to do with why accelerating charges
radiate. But we should realise that because the advanced and retarded so-
lutions of Maxwell’s equations are both particular integrals (i.e. solutions
that are completely determined by the physical charge distribution jα), we
have no a priori freedom to simply add them. And in terms of actually solv-
ing Maxwell’s equations, it should be borne in mind that this solution has
resulted from the use of a principal value, for which there is really no math-
ematical justification.

Shifting the Contour

As we discussed after (11.66), the divergent integral I in that equation is
usually given some kind of meaning using the contours of Fig. 11.3, where
the separation of the straight paths from the real axis tends toward zero.

In fact, the effect of running the integration path above the real-ω axis is
similar to introducing a negative damping term as we have done, because the
negative damping term pushes the poles down below that axis. Shifting the
poles down via physical reasoning is legitimate because it keeps the integral
along the real-ω axis well defined. But, in contrast, running the integration
path above the axis doesn’t change the fact that any integral that includes
a nonremovable singularity is undefined from the outset. So the paths of
Fig. 11.3 cannot fix the fact that the integral I in (11.66) is undefined.

Because running the integration path above the real-ω axis ultimately
has the same effect as introducing the negative damping term—all arguments
about validity of the integrals aside—what results is the advanced solution
that we found in (11.81). Similarly, running the path below the axis is akin to
introducing a positive damping, and the retarded solution certainly results. So
this approach gives the right answers with an incorrect method; and because
of its no-fuss approach, it has become the accepted way of solving Maxwell’s
equations using Green functions. But a quick arrival at an answer that looks
good in hindsight should never be taken to justify the method used, and the
continued use of these contours only makes it difficult for a new generation of
physicists to understand the mathematics of Green function theory. Perhaps
the biggest criticism of the contours in Fig. 11.3 is that they give no insight
into the two solutions that result, and do not explain why one solution should
be physical and the other apparently not.
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Shifting the Poles

Instead of shifting the contour, the poles are sometimes shifted one up and
one down by a small amount. The calculation here is more complicated than
previously because it involves principal parts, and we will not include it.
Nevertheless, a half-advanced half-retarded solution can be produced by this
approach, which is not surprising since, in essence, we have included a van-
ishing damping that is half positive and half negative—whatever this might
mean physically. However, the solution is only one of many that can be pro-
duced that involve principal parts.

11.5 Fluctuation–Dissipation and Time’s Arrow

Adding a vanishing damping that alters Maxwell’s equations just enough to
enable their solution via Fourier analysis suggests a consequence for the Ar-
row of Time. In Sects 3.5 and 10.9, we discussed the use of entropy growth in
defining such an Arrow of Time. Entropy growth itself is a product of the sta-
tistical processes that play such an integral part in the physical world. These
processes go hand in hand with the phenomenon of fluctuation–dissipation
such as we saw in the last part of Sect. 3.2.1.

Fluctuation gives rise to entropy growth that provides an Arrow of Time,
while its partner, dissipation (or damping), is what appears to single out the
retarded solution of Maxwell’s equations over the advanced solution. The di-
rection of time’s arrow is certainly shown by the fact that we only observe
waves coming out from an oscillating charge, and never waves impinging on
it from all directions that cause it to accelerate. Perhaps underlying this
apparent asymmetry of the world are the forever-entangled phenomena of
fluctuation and dissipation, together with the entropy growth that they pro-
duce.



12 Airliners, Black Holes, and Cosmology:
The ABC of General Relativity

A defining moment in the early age of the jet airliner occurred in 1954, when
the four-engined prototype of the Boeing 707 first took to the skies, flown by
the expert test pilot Tex Johnston. But the inaugural flight of the “Dash-80”
is probably less remembered than its most famous moment the following year.
Tex was to fly the big jet over a crowd of many thousands of spectators at a
fair, to which officials from major airlines had been invited in a bid by Boeing
to sell the new jet transport commercially. The astonished spectators couldn’t
believe their eyes when Tex appeared, barrel-rolling the aircraft through a
full 360◦, and not once but twice. Company officials reached for their heart
pills; prospective buyers reached for their cheque books.

Later, hauled over the coals, Tex couldn’t understand what all the fuss
was about. He was an expert pilot who could initiate and hold a 1 g roll,
during which the plane was under no more stress than when flying straight
and level. As Tex remarked, the plane never even knew it was upside down.
The Dash-80, given a voice, might have been the first to acknowledge the
significance of Einstein’s Equivalence Principle, which we first discussed in
Chap. 7. The difficult manoeuvre combined just enough free fall (partly an-
nulling gravity onboard) with just enough rotation about a point far beyond
the body of the plane (as though it were following a spiral on the surface of a
barrel, creating a centrifugal force onboard), to give an overall 1 g force from
the plane’s point of view that was always directed perpendicular to its floor,
just as if it had been at rest on the tarmac within Earth’s 1 g gravity.

12.1 The Equivalence Principle

The correspondence between uniform acceleration in deep space and apparent
gravity forms one side of the Equivalence Principle coin. The other side,
shown in Fig. 12.1, is the correspondence between free fall in a gravity field,
and inertial motion. If we jump into the air, we are weightless for the whole
time we’re off the ground, and relative to us, other objects thrown into the
air in our immediate vicinity move in straight lines at constant speed. The
idea that the frame of a freely falling observer is approximately inertial gives
an easy answer to an old question. A monkey sits in a tree, and a hunter who
knows nothing of parabolic motion fires a dart directly at the monkey. The
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Equivalence
Principle

Uniform acceleration
in deep space

= apparent gravity felt

Free fall near Earth
= no gravity felt

Fig. 12.1. The Equivalence Principle has two sides. One is that uniform accelera-
tion far from any source of real gravity will be felt as an apparent gravity,“apparent”
because the pseudo-potential is constant. The other side of the principle says that
during free fall in a real gravity field, no gravity at all will be felt; in a small region,
our frame will be inertial.

monkey sees the dart leave the gun and immediately drops to the ground to
avoid it. Will the dart hit the monkey? While we can analyse the kinematics
of both dart and monkey as they accelerate to the ground (the dart in a
parabola and the monkey in a straight line), it’s far easier to switch to the
monkey’s inertial frame after it drops. In this frame, the dart has a constant
velocity, and since it was initially fired directly at the monkey, it will fly in a
straight line in the monkey’s inertial frame and indeed hit the monkey.

The inertial nature of the free fall associated with jumping in the air is
routinely used to train astronauts to cope with weightlessness. An aircraft
with astronauts aboard flies in an arching parabolic path, which is nothing
more than free fall with a constant sideways component of the velocity that
has no effect. (The plane, of course, must be powered to overcome air resis-
tance.) During the half minute or so that it follows the parabola, including
the climb, the aircraft’s occupants float freely in the cabin, which is small
enough to approximate an inertial frame very well. Far from the aircraft,
things are not that simple. Freely falling objects on either side of Earth cer-
tainly don’t measure each other as moving with constant velocity. The inertial
frame attached to a freely falling body has only a limited extent.

But free fall is not an everyday activity; the ground soon rushes up to meet
us catastrophically, reminding us that life seemingly is lived within an accel-
erated frame, not an inertial one. In Chap. 7 we looked closely at accelerated
frames using the Clock Postulate, and found that in our rocket-laboratory ref-
erence frame in deep space, far from any gravity and accelerating“upward”at,
say, 1 g due to a rocket engine below us, time runs at different rates at different
heights. Clocks above us (i.e. higher up in the pseudo-gravitational potential
that we feel) run more quickly, while those below us run more slowly, eventu-
ally slowing to a stop about one light-year below us, where there is an event
horizon. So the physics of accelerated reference frames provides a glimpse into
the workings of gravity, paving the way for the ideas of general relativity.

But, on first glance, the Clock Postulate might seem to contradict the
Equivalence Principle. After all, if a clock’s rate does not depend on its ac-
celeration, then how can it be that it does depend on the strength of gravity,
as verified by experiment? No, there is no conflict at all with the Equivalence
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Principle. The difficulty here arises because of the confusion between accel-
eration and the effect of acceleration: changing velocity. It’s precisely what
was referred to on p. 237 when we spoke about the wind chill factor. Let’s
look a little more closely to see just what is happening.

Sitting on a launch pad is a rocket with no fuel and carrying two occu-
pants, astronauts who cannot see outside and who believe they’re accelerating
at 1 g in deep space, far from any gravity. One of the astronauts sits at the
base of the rocket and the other sits at its top, and each sends a light beam
to the other.

Energy conservation demands that light loses energy as it climbs up a
gravitational field, so we know that the top astronaut will see a redshifted
signal. Likewise, the bottom astronaut will see a blueshifted signal, because
the light coming down has fallen down the gravitational well and gained some
energy en route.

The astronauts believe they are accelerating in deep space, so how do they
describe what is happening? The top astronaut reasons“By the time the light
from the bottom astronaut reaches me, I will have gained some speed relative
to my original inertial frame, so that I’ll be receding from the light at a higher
speed than previously as I receive it. So it should be redshifted, as indeed
it is.” The bottom astronaut reasons very similarly: “By the time the light
from the top astronaut reaches me, I will have gained speed relative to my
original inertial frame, and I’ll be approaching the light at a higher speed
than previously as I receive it. So I predict that it should be blueshifted; and
so it is.”

Despite the fact that they’ve started from an incorrect assumption—that
they’re accelerating in deep space when in fact they are really at rest in a
gravitational field—the Equivalence Principle ensures that they both calcu-
late just the right amount of red- or blueshift in the light they receive. But
their analysis only used their speed, not their acceleration as such. So just
like the wind chill factor that we spoke of earlier, applying the Equivalence
Principle to the case of the rocket doesn’t depend on acceleration per se, but
it does depend on the result of acceleration: changing speeds. We discuss this
further at the end of the next section, after describing the Pound–Rebka–
Snider experiments that measured this predicted frequency shift.

Mach’s Principle

Ideas of what can be considered absolute have never really been straightened
out within the context of relativity. In his creation of the theory, Einstein
was much intrigued by Mach’s Principle: the idea that inertia—the tendency
of mass to keep moving at constant velocity in an inertial frame—is due to
the mass somehow “knowing” of the existence of the rest of the universe. Yet
whether or how this principle finds a place within general relativity is still a
matter of debate.



474 12 Airliners, Black Holes, and Cosmology: The ABC of General Relativity

The absoluteness of acceleration also results from applying Ockham’s Ra-
zor to experimental observations. The astronomer Jean Foucault’s famous
demonstration in 1851 that Earth was turning used a 67-metre-long pendu-
lum suspended inside the vast dome of the stately Panthéon in Paris. As the
pendulum slowly swung to and fro, its swing plane gradually rotated, as pre-
dicted by the idea that Earth turns within some larger inertial frame within
which that plane does not rotate; this seems to be the frame of the distant
stars. On a turning globe, the pendulum changes its plane of swing at a rate
that depends on its latitude—the crucial point of which modern visitors to
the Panthéon are not made aware. After all, why should a pendulum’s swing
plane not rotate? But if we really were to insist that Earth does not turn,
then we would need to build a theory of the universe that included a new
force making the pendulum change its swing plane at a rate that depends on
the latitude at which it’s placed. This is not something anyone bothers to do
because it’s far simpler to assume that there is no such force, that the pen-
dulum maintains a fixed plane of swing relative to the distant stars, and that
the world really does turn within that larger, apparently fixed and inertial
frame.

12.2 The Pound–Rebka–Snider Experiments

Ideas of the Equivalence Principle and accelerated frames were put to the test
in the 1960s by Pound, Rebka, and Snider in a set of experiments that used
the Mössbauer Effect, a sophisticated technique that measures the energy of
γ rays emitted by an 57Fe source. In this case, the rays were sent from a sta-
tionary source at the bottom of a 22.5 metre tower to a stationary detector at
its top. In the Mössbauer Effect, the 57Fe source is actually made to vibrate,
and the tiny periodic changes in its velocity alter the frequency of its emitted
γ rays via a Doppler shift (by very small amounts!). Searching for a detec-
tion resonance allows the frequency of those rays to be measured after they
have travelled to the detector. In the Pound–Rebka–Snider experiments, the
correctly predicted frequency drop of the emitted γ rays was indeed observed
after the rays had climbed up the gravitational potential.

We can predict the value of this redshift by using the idea that this ex-
periment on Earth is equivalent to the same one performed in an accelerated
frame far from any gravity. The basic idea is shown in Fig. 12.2. A clock sits
on the floor of an accelerating rocket (i.e. closest to the rocket’s engine), and
sends light signals up to us who sit on the ceiling with an identical clock.
Both clocks have been designed to “tick” (send out a light pulse) at intervals
of their proper time of T . As we saw in Chap. 7, this accelerated frame can
be given a global time coordinate, which we choose to be our own, identical
to the time τceil shown on the ceiling clock next to which we sit. Finally,
suppose for the sake of labelling the figure that the floor clock is ageing at
half the rate of the ceiling clock. We know this rate is certainly reasonable
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Fig. 12.2. Using the redshift of received signals to infer that clocks on the floor of a
building are ageing slower than clocks on the ceiling, by appealing to an accelerated
frame far from any gravity. The floor and ceiling clocks are now the floor and ceiling
clocks, respectively, of an accelerating rocket. For the sake of illustration, suppose
that the floor clock ages half as fast as the ceiling clock, and that the light signals
are slowing as in Fig. 7.12, although their precise shape (logarithmic) isn’t relevant
here. We sit next to the ceiling clock and dictate a global time coordinate τceil

for the frame—which we know from Chap. 7 can always be done in a uniformly
accelerated frame.

based on the work of Chap. 7. There we saw that floor clocks do indeed age
more slowly in such a frame.

Everyone must agree on how many pulses were emitted (the sort of argu-
ment used in Sect. 5.1). If frec is the received frequency and fem the emitted
frequency, this number will be

total pulses emitted = frec ∆τceil = fem ∆τfloor . (12.1)

(In Fig. 12.2, this amounts to 3 = 1
2T ×6T = 1

T ×3T .) The ratio of frequencies
is then

frec

fem

=
∆τfloor

∆τceil

(7.19) x̄floor

x̄ceil

, (12.2)

where x̄ measures the clocks’ positions in the accelerated frame relative to
the horizon at x̄ = 0. Our position (the ceiling clock) is x̄ = c2/g � 0.97 light-
years, while the floor clock is 22.5 metres below us. The predicted redshift is
thus

frec

fem

=
0.97 l.y. − 22.5m

0.97 l.y.
� 1 − 22.5

9.15 × 1015
� 1 − 2.5 × 10−15, (12.3)
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which agrees with the Pound–Rebka–Snider results to about 1% accuracy.
The Equivalence Principle works very well. Later, we’ll redo this calculation to
the same level of accuracy using the more accurate theory of general relativity,
and will obtain the same result, in (12.56).

This calculation of the differing clock rates in an accelerated frame shows
once again why a clock can be influenced by gravity yet not by accelera-
tion, while still obeying the Equivalence Principle. In measuring the different
ageings between the floor clock and ceiling clock in a uniformly accelerated
frame, two effects are occurring, both of which can be seen in Fig. 7.5 as we
compare all events along the common line of simultaneity in that figure. The
first is that, at any time t, the ceiling clock (farther from the t-axis in the
figure) is moving more slowly than the floor clock. Their velocities are only
equal along the common line of simultaneity. Thus the ceiling clock is less
affected by the special relativistic time-slowing γ-factor. The second effect
is that the comparison of ageings is made when the ceiling clock has been
moving for longer in the S-frame, allowing it to have aged even more.

These two effects add, ensuring that all observers will measure the ceil-
ing clock to be ageing faster than the floor clock. So acceleration was not
involved per se; rather, the result of acceleration—changing speeds—is solely
responsible for the different ageings. The Pound–Rebka–Snider experiment
compares clocks in a real gravitational field, but they are still just like the
floor and ceiling clocks of an accelerated frame, and they age in just the same
way.

12.3 A Space or Spacetime Description of Gravity?

We certainly expect that a proper description of gravity should be relativistic,
given the success of the Equivalence Principle in predicting the outcome of
the Pound–Rebka–Snider experiments. There is another way of seeing this,
too, based on something less esoteric: the curvature of the trajectory of an
arbitrary mass in both space and spacetime.

Throw a projectile and analyse its path with two space dimensions: height
and horizontal distance. Figure 12.3 shows the trajectories, in both space and
spacetime, of a mass that is airborne for some time t. In this time it travels
some horizontal distance d, and attains some maximum height h. (None of
these numbers are prior constraints; any thrown mass will do.) The “height
above ground” axis points out of the page, as does the initial part of the
worldline. The dashed curve is the parabolic path in space of the projectile.
This is the projection of its (solid) worldline onto the plane spanned by the
two space axes. Clearly, the space trajectory is a parabola and can have any
amount of “squashing”, depending on how the mass is originally thrown.

We’ll calculate the approximate radius of curvature of the worldline by
approximating it as a small piece of a large circle. It’s very easy to show (using
Pythagoras’s theorem) that this radius is given by r � �2/(8h), where � and h
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are defined in the figure. It’s also easy to see, using basic newtonian kinemat-
ics, that the maximum height of the projectile will be h � gt2/8, where g is
the acceleration due to gravity. These expressions for r and h imply that the
radius of curvature r of the worldline is

r � �2

gt2
=

d2 + c2t2

gt2
=

d2

gt2
+

c2

g
� c2

g
� 0.97 light-years near Earth. (12.4)

This radius, c2/g, is now familiar to us from our accelerated frame work: it’s
the distance to the event horizon of the accelerated frame, the length scale
beyond which that frame’s coordinates begin to break down, as mentioned
in (7.29). Loosely speaking, it’s as if, while airborne, the mass is orbiting a
point on the event horizon.

Perhaps surprisingly, the radius of curvature r of the worldline is inde-
pendent of the initial conditions. It shows that while a ball and a bullet, or
even two identical balls, can have completely different trajectories in space,
their worldlines in spacetime near Earth’s surface will always have a radius of
curvature of about one light-year. This suggests that gravity will almost cer-
tainly look simpler when studied within spacetime as opposed to space and
time separately. It also quantifies how close our laboratory frame on Earth’s
surface really is to being inertial: a curve with a radius of one light-year is very
close to being straight over the spacetime of a typical laboratory experiment.
So gravity near our planet’s surface is actually very weak.
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Fig. 12.3. Suppressing one horizontal space dimension, throw a mass into the air
and plot its trajectory in both space and spacetime. Its space trajectory can be any
shape of parabola, depending on the initial conditions. In contrast, a back-of-the-
envelope calculation shows its spacetime trajectory to have an invariable curvature:
the famous c2/g, or about one light-year near Earth’s surface.



478 12 Airliners, Black Holes, and Cosmology: The ABC of General Relativity

12.3.1 A Route to Curved Spacetime from Lagrangian Mechanics

In previous chapters, we considered the fact that special relativity creates
a single entity from space and time via the concept of a metric. But the
lagrangian formalism shows that the Minkowski metric of special relativity
appears to have some competition from another metric when we are near a
source of gravity, in the following way.

In Sect. 10.3.3, we discussed the fact that the lagrangian that gives the
correct kinematics for a simple system is its kinetic energy minus potential
energy. In Sect. 10.4, we saw that a free particle in special relativity follows
a path in spacetime that maximises the proper time between its start and
end points. (This is just another illustration of the Twin Conundrum, since
in the inertial frame of the free particle it is always at rest and so, like the
stay-at-home twin, ages the most.)

Now, we know that in the absence of all forces, including gravity, a free
particle follows a straight line in both space and spacetime. When gravity is
present, the Equivalence Principle tells us that although the particle’s path
in space might not be straight as seen by an observer who feels the gravity,
an inertial observer must certainly measure it to be straight over a short time
interval. But the analysis of the last two pages shows that while a ball and
a bullet might follow paths in space with different radii of curvature, their
tracks in spacetime have the same radius of curvature. This suggests that it
might be more useful to focus on the particle’s path through spacetime. This
path will also be as straight as it can be; a geodesic, but now with the space-
time having some non-Minkowski metric (i.e. dτ2 	= dt2 − dx2 − dy2 − dz2).
So the particle still follows a spacetime path of both an extremal action and
a maximal proper time between its start and end events. Let’s explore this
further. As in (10.70), the action for a single particle can be written as

S =
∫

m

(
v2

2
− Φ

)
dt =

∫
m

(
1

2

d�2

dt2
− Φ

)
dt . (12.5)

We wish to take the integrand of (12.5) and relate it to the proper time dτ
by which the particle ages. Any other action that gives the same dynamics
as (12.5) can be used; in particular we can multiply S by −2/m and consider
extremising ∫ (

2Φ − d�2

dt2

)
dt . (12.6)

The potential Φ is defined up to an additive constant, so if we set 2Φ → 1 in
the zero-gravity limit, as well as demanding low speeds, then 2Φ− d�2/dt2 is
positive. In that case it’s more useful to deal with its square root, extremising∫ √

2Φ − d�2

dt2
dt , or

∫ √
2Φdt2 − d�2 . (12.7)

But in the zero-gravity limit, dτ2 = dt2 − d�2. Perhaps (12.7) suggests that in
the presence of gravity, or at least the weak gravity with low particle speeds
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in which the laws of mechanics were developed, a more correct expression
involving proper time might be

dτ2 � 2Φdt2 − d�2 , (12.8)

which does indeed allow the elapsed proper time ∆τ to be maximised, as
required. The potential outside any spherically symmetric mass M is usually
written −GM/r up to an additive constant. To obtain a limit of 2Φ → 1
as r → ∞, we’ll set Φ = 1/2 − GM/r, so that the metric becomes

dτ2 �
(
1 − 2GM

r

)
dt2 − d�2

=
(
1 − 2GM

r

)
dt2 − dr2 − r2 dθ2 − r2 sin2 θ dφ2 , (12.9)

in spherical polar coordinates, defined in (9.27) and Fig. 8.3.

Equation (12.7) tells us that the right-hand side of (12.8) or (12.9) is a
metric exactly describing newtonian gravity; it is being postulated here to
approximately equal dτ2, to ensure the correct zero-gravity limit.

This result is quite remarkable: it’s a description of spacetime within which
the trajectories of newtonian mechanics have become geodesics. We expect
the expression for proper time in (12.9) to be only approximately correct,
since this equation has been derived from expressions for kinetic and potential
energy that are based on our experience of the world at low speeds and weak
gravity. (In fact, we’ll see later that (12.9) is actually very similar to the
correct metric predicted by general relativity for the same situation, known
as the Schwarzschild solution.) But even so, we have been led to a new metric
for spacetime that describes motion in a gravity field in a very elegant way.

Suppose that we know nothing of the lagrangian origin of (12.9), and wish
to show that it predicts an inverse-square gravitational force law. We might
examine the case of a freely falling particle by working through the intricacies
of calculating geodesics, to show finally that the resulting motion is equiva-
lent to the particle’s being acted on by an inverse-square force. However, a
shorter route is just to run the preceding analysis backward. We began with
a lagrangian L = mv2/2 − mΦ in (12.5), and decided to focus on

−2L

m
dt2 = 2Φdt2 − d�2. (12.10)

We postulated this to be at least approximately dτ2, in which case

L � −m

2
dτ2

dt2
=

−m

2γ2
, (12.11)

where γ ≡ dt/dτ , as used in special relativity. Equation (12.11) is an approx-
imate relation that has been derived in the low-speed, low-gravity limit, to
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be applied to the metric (12.9) in order to generate a potential energy whose
gradient will give the force on a particle. Do this by writing, from (12.9),

dτ2

dt2
� 1 − 2GM

r
− v2 , (12.12)

which inserts into (12.11) to give

L � −m

2
+ GMm

r
+ mv2

2
. (12.13)

A potential energy of m/2 − GMm/r can be read off from this lagrangian,
whose gradient produces a “downward” force of GMm/r2, as expected.

This force can be derived with only minor effort. The force is the negative
spatial gradient of the (purely radial) potential energy: −∇ (m/2 − GMm/r),
or just −er∂r (m/2 − GMm/r). Take care to write the spatial part of (12.9)
with the correct signs; it is d�2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2, which is diag-
onal. For this spatial metric, grr = +1, so that er = er = er̂. Hence

force = −∇ (m/2 − GMm/r) = −er∂r (m/2 − GMm/r)

= −er̂ GMm/r2, (12.14)

which is GMm/r2 toward r = 0, or “downward”.

As a side point, note that, unlike in special relativity, the particle’s total
energy is not simply given by γm � m + GMm/r + mv2/2; this clearly has
the wrong sign for its potential energy part.

To reiterate, (12.11) is merely a way to estimate the potential energy from
a given metric in a newtonian limit. Other lagrangians could also be used.
We could, for example, refer to (10.69) to experiment with the lagrangian
of a relativistic free particle, −m/γ; to first order, this produces a potential
energy from (12.9) of m − GMm/r, which still gives the expected inverse-
square force. Aside from the fact that some approximation has been made
in the last two pages in identifying the newtonian metric (12.9) with proper
time, we see again that newtonian gravity is weak enough to allow an inverse-
square force law to emerge even from the free-particle lagrangian.

We have changed our view of gravity by modelling a mass in free fall
in a gravity field as following a geodesic on a spacetime endowed, at least
approximately, with the metric (12.9). But is this fundamentally any different
from a simple change of coordinates, such as was done when we switched to
an accelerated frame in Chap. 7? To see that it is, we need only calculate the
curvature associated with (12.9). The Minkowski metric has zero curvature,
as does any metric calculated from it by a change of coordinates, such as the
accelerated-frame metrics of Chap. 7. But for (12.9), not all of the Riemann
tensor components vanish. Here is one of those components, along with the
Ricci scalar (where G has been absorbed into M ; i.e. GM is now written
as M):
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Rtrtr =
M

r3

2r − 3M

r − 2M
, R =

−2M2

r2(r − 2M)2
. (12.15)

Being nonzero, these show that the new metric actually describes a curved
spacetime. (A zero Ricci scalar can also be attached to a curved spacetime
if there are nonzero Riemann components that happen to cancel in just the
right way, as we’ll see occurs later for the Schwarzschild metric.)

The curvatures in (12.15) show that the metric diverges as r → 2M ,
or 2GM/c2 in conventional units. The idea that this value of r is special
was, in fact, first put forward by Laplace in 1795. Using basic newtonian
dynamics, he found it to be the radius of a (spherically symmetric) sphere of
mass M from which a particle requires the speed of light to escape to infin-
ity. This suggested that there might exist objects that emit no light. As we’ll
see in Sect. 12.6, the same idea and value of r are also predicted by general
relativity.

Just as a rotating Earth is not mandatory to describe why a pendulum
changes its swing plane as a function of latitude (except that it simplifies the
required explanation enormously), a curved spacetime is not mandatory for
describing gravity—except that it points to a simple basis underlying gravi-
tational phenomena. Curved spacetime also turns out to be very successful in
making predictions that have been tested to fantastic accuracy in astronomy.
The arguments of this section show that the notion of curved spacetime is
quite reasonable, an idea that Einstein placed onto a very firm footing, as
described in the sections to follow. As well, on p. 371 we saw that Gauss’s
Theorema Egregium releases us from any obligation to specify an appropriate
embedding for a curved spacetime. This means that questions as to the “real”
nature of spacetime curvature don’t affect the theory as it stands.

It needs to be stressed that Rindler spacetime—the spacetime seen by an
accelerated observer such as Eve in Chap. 7, and pictured in Fig. 7.12—is
flat. We know that it is through calculating the Riemann tensor, which is
trivially done. Why? Because the Riemann tensor is just that, a tensor,
so that its components in Rindler coordinates [ t̄, x̄, ȳ, z̄ of (7.25)] are linear
combinations of its components in any other set of coordinates. In particular,
its components as calculated in Minkowski spacetime are all zero, because
the Minkowski metric has no spacetime dependence (Minkowski spacetime
is flat!). Thus the Riemann components in any other set of coordinates must
also be zero: a spacetime that’s flat for one is flat for all.

An all too common misconception of the Twin Conundrum is that its
events as recorded by the accelerated observer require general relativity to
be properly understood. But the spacetime of the Twin Conundrum is flat,
and so general relativity is certainly not needed, being the study of curved
spacetime. In contrast, covariant language is useful in any study of the Twin
Conundrum—but covariant language on its own is not general relativity.

Einstein postulated that the metric of spacetime can always be written as
a quadratic form such as in (12.9): a sum of squares of infinitesimal changes
in the coordinates. (Such a metric with all signs positive is called riemannian,
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or pseudo-riemannian if not all of its signs are positive.) Could the universe
have been created with a different metric—perhaps a sum of fourth powers?
Possibly; it’s a difficult question and, like discussions of Mach’s Principle,
involves imagining a universe quite different from our own. A quadratic spatial
metric is so ingrained in our notion of geometry that it’s difficult to imagine
how we might evolve in, or perceive, a world in which Pythagoras’s theorem
involved fourth powers. But the fact that the Lorentz transform embodies an
invariance involving a sum of squares that gives rise to the Minkowski metric,
whether a happy fluke or otherwise, allows us to use the Equivalence Principle
to geometrise space and time in a way that’s close to our experience, by being
able to write an arbitrary spacetime metric as a sum of squares, too. The
situation has a chicken-or-egg character about it. If spacetime is inherently
geometric, then it quite naturally admits a metric. Conversely, if a metric can
be inferred or formed from a fortuitous invariance of the Lorentz transform,
then we are able to geometrise space and time to “make” spacetime. Which
came first, real geometry or fortuitous invariance, is not clear at all.

Why have we only allowed a gravitational potential to be present in the
discussion of the last few pages, as opposed, for example, to an electric poten-
tial? The answer is because we know that although a free mass in a gravita-
tional field will follow a spacetime geodesic, a free mass carrying charge in an
electric field will be deflected from that geodesic, so that proper time will not
be extremised on its spacetime path, even though the action is extremised
for this path. So for a general nongravitational force, extremising the action
does not correspond to extremising proper time; but when gravity alone is
present, both proper time and the action are extremised together.

In fact, if a primed-coordinate frame can be defined in which a clock is at
rest, leading to an effective gravitational potential Φeff that includes the
effect of any pseudo-forces (which are an artifact of the coordinates cho-
sen, as opposed to being real like an electric field), then (12.8) becomes
dτ2 � 2Φeff dt′2. Thus, for weak gravity, the rate of ageing of a clock is
dτ/dt′ � √

2Φeff, which depends on the effective potential alone. More con-
ventionally, remember that we shifted the potential by 1/2 on p. 479 to allow
the appropriate large-r limit needed in that discussion. Writing the conven-
tional potential (vanishing at infinity) with a tilde so that Φeff = 1/2 + Φ̃eff,
the rate of ageing of a clock becomes

dτ

dt′
� √

2Φeff =

√
1 + 2Φ̃eff � 1 + Φ̃eff < 1 . (12.16)

We have here the prediction that clock rates are everywhere equal on an
equipotential surface (or at least approximately so), and ageing more slowly

than those at spatial infinity by a factor of 1 + Φ̃eff. It has been verified
experimentally to a very high accuracy for clocks at rest on the nonspherical
rotating Earth, whose surface does approximately follow an equipotential.

Such a prediction is also reasonable when referred to the discussion of
Sect. 12.2. After all, if two clocks are at rest in different places on the same
equipotential surface and a photon is sent from one clock to the other, then
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energy conservation demands that the photon’s frequency be measured as
unchanged on arrival. This implies that the two clocks tick at exactly the
same rate. We’ll meet this idea again when using the Schwarzschild metric
to calculate clock rates in Sect. 12.5.1.

Einstein’s geometric description of spacetime uses a metric based on the
presence of gravity alone; other forces, such as electromagnetism, only affect
spacetime curvature insofar as their energy density creates gravity (as we’ll
investigate further in Sect. 12.4). The use of an extremal action in classical
mechanics—as opposed to the extremal proper time of spacetime geodesics—
is what differentiates the kinematics of, e.g., charged particles from the kine-
matics of masses that only respond to spacetime curvature. Einstein did at-
tempt a unification of other forces with gravity, but never fully succeeded in
his programme.

Finally, the Twin Conundrum, with its maximisation of proper time for
inertial motion, is not just the stuff of stories about space travellers. It is
happening all around us every time a leaf falls from a tree, a frog leaps from
the ground, or Earth moves along her orbit to enter a new season. It lies at
the very heart of motion in a gravitational field.

12.3.2 Free Particles, Geodesics, and Locally Inertial Frames

Free particles are postulated to follow the geodesics of a possibly curved
spacetime. (They may still curve in a flat spacetime, which is exactly what
they do in an accelerated frame, but this is only because the choice of coordi-
nates has rendered the geodesics as curved.) How does this geodesic motion
relate to the traditional newtonian view that they experience a zero force and
hence a zero acceleration?

Recall that the components of the four-acceleration were defined for
Minkowski space in (7.13) as aα ≡ duα/dτ . With hindsight, we see that the
(constant) basis vectors could also have been included by writing the defi-
nition in terms of complete vectors. That won’t change (7.13) since it was
defined for the Minkowski metric; but for arbitrary coordinates and an ar-
bitrary metric, we can define the four-acceleration more generally to incor-
porate (7.13) as a special case. (Here we write a four-dimensional vector as,
e.g., �a, to distinguish it from its three-dimensional counterpart a used later
in this section; however, we always write the basis vectors bold.)

�a ≡ d�u

dτ
=

d (uαeα)
dτ

(9.103) Duα

dτ
eα ≡ aαeα . (12.17)

So, the more general expression for the four-acceleration in terms of compo-
nents is aα = Duα/dτ . Now we are incorporating any more general metric
describing a gravitational field. Of course, Duα and duα are equal in the
absence of gravity, because then the Christoffel symbols vanish globally and
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covariant differentiation reduces to partial differentiation. And by the Equiv-
alence Principle they are also equal in the vicinity of a momentarily comoving
inertial observer.

What, then, is the motion of a particle whose four-acceleration vanishes?

0 = aα =
Duα

dτ

(9.102)
uα

;β uβ = uα
,β uβ + Γα

γβ uγ uβ

=
d2xα

dτ2
+ Γα

βγ
dxβ

dτ

dxγ

dτ
, (12.18)

which is just the geodesic equation (9.32) again! (There is a slight clash of
symbols: the u in (9.32) is our x here.) The steps of (12.18) also work in
reverse, so that a vanishing four-acceleration is equivalent to geodesic mo-
tion. Thus, free particles in a gravity field are postulated via the Equivalence
Principle to have no four-acceleration. Finally, the definition of three-force
on p. 209, F ≡ dp/dt, translates to four dimensions by introducing a four-
force �F through the relation �p = m�u:

�F ≡ d�p
dτ

=
d (pαeα)

dτ
=

Dpα

dτ
eα = m

Duα

dτ
eα = maαeα = m�a . (12.19)

So although F 	= ma relativistically because of complications with the chang-
ing relativistic mass γm, it’s certainly true that �F = m�a, where m is constant.

This geometrical view of gravity turns Newton’s view of force on its head.
While Newton would maintain that a particle in free fall in a gravity field
accelerates due to the gravity it experiences, Einstein’s view is quite different:
a freely falling particle follows a geodesic, and hence has no (four-)acceleration
and feels no (four-)force, which is why freely falling observers are (and feel!)
weightless. The only force on a particle comes from other things such as
the electromagnetic force; all reference to a gravity force has been dropped
entirely.

The Equivalence Principle states that momentarily comoving inertial ob-
servers will observe events in a small enough volume to be governed by the
laws of special relativity only, regardless of what gravity is present. Any other
observer moving at constant velocity relative to the momentarily comoving
inertial observer will also make such observations in that small volume, and
in particular will measure freely falling particles there to be momentarily fol-
lowing straight lines. Such observers form a superset to the MCIFs of Chap. 7
and are called locally inertial, and each carries with it a locally inertial frame.

Locally inertial frames bring us as close as possible to annulling gravity;
they correspond to the Equivalence Principle idea that there is no gravity
inside a small, freely falling laboratory, but that gravity cannot be made to
vanish everywhere inside a large laboratory.

To obtain the straight-line motion followed by a freely falling particle in
a small laboratory—a small neighbourhood of the particle—a locally inertial
observer must be able to write the geodesic equation (12.18) as d2xα/dτ2 = 0.



12.3 A Space or Spacetime Description of Gravity? 485

But this means that at least at that point of interest, the observer needs the
ability to set the Christoffel symbols all to be zero. That this can really be
done is quantified as follows. At any point P in a riemannian or pseudo-
riemannian space, a coordinate system xα can always be found whose origin
is at P , such that the metric at P is almost Minkowski in the sense that
first-order corrections in the coordinates xα vanish:

gαβ(P ) = ηαβ(P ) + second-order corrections. (12.20)

This can be shown by expanding the metric as a Taylor series in arbitrary
coordinates and counting the number of free parameters versus specified con-
stants. It turns out that we have ample freedom to obtain ηαβ , only just
enough freedom to ensure there are no first-order terms, and no freedom to
make all of the second-order terms vanish. (Alternatively, the same theo-
rem can be proved by specifying a transformation whose Christoffel symbols
vanish and applying some linear algebra arguments.)

By differentiating (12.20) once, we see that gαβ,γ(P ) = 0, so that the
Christoffel symbols can always be made to vanish at P with an appropriate
coordinate choice. Again, this demonstrates that they don’t form a tensor,
as was discussed on p. 326. But differentiating (12.20) a second time shows
that, in general, gαβ,γδ(P ) 	= 0. Since the Riemann tensor (i.e. curvature) is
a function of gαβ,γδ, this implies that curvature cannot be made to vanish by
a suitable coordinate choice. Christoffel symbols can be made to vanish; Rie-
mann components cannot. So if a spacetime is flat, it’s flat for all coordinate
choices; and if curved, it’s curved for all coordinate choices. Curvature can
no more be made to go away than an orange peel can be laid out flat, and
this is precisely what puts the idea of curvature on a higher rung than mere
coordinate choices. It also means that our metric (12.9) is not just about a
change in coordinates; it’s also about a spacetime curvature that is curvature
for all.

Theorem (12.20) is sometimes said to describe “local flatness”, and now
we see why this is a misnomer. It can give the impression that somehow
curvature has been removed at P , which is not the case. After all, the nonva-
nishing second-order terms are precisely what determine curvature! A simple
analogy is that of taking ever-smaller arcs of a given circle. Each arc departs
from a straight line less and less, but nevertheless each arc has the same cur-
vature (equal to one divided by its radius), even in the limit as its length goes
to zero. Never does this constant curvature approach the line’s zero curva-
ture. Perhaps the term “locally Minkowski” for the frame of a locally inertial
observer is useful, but the term “locally flat” is quite misleading.

We have spoken about locally inertial observers and their frames. The
use of the word “frame” can be a little vague in relativity. If we envisage
a separate frame—a separate set of axes—at every event, then the locally
inertial frame might better be called a locally inertial moving frame, or maybe
simply referred to as a locally inertial observer, because it’s something that
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must be defined over a time interval. But beside this is a related notion:
the orthonormal frame, or rather set of orthonormal frames, one at each
point, where each comprises four orthonormal vectors (axes) that can always
be constructed at every event. We can make an orthonormal frame at any
point by joining three space axes together (three orthogonal rulers), along
with a clock. An orthonormal frame or basis need not belong to a locally
inertial observer (although unfortunately some authors do equate the two).
Orthonormal frames are used to make physical measurements; after all, we
don’t employ freely falling observers to make our day-to-day measurements.
It would be a fine thing if we had to jump in the air every time we wanted
to measure the length of a table.

But just how do measurements made in an orthonormal frame relate to
physical (i.e. proper) measurements? Imagine that, for a moment, right next
to an observer A who uses the orthonormal rulers and clock to make mea-
surements, there is another observer B who has jumped up from a trampoline
and reached his maximum height, momentarily coming to rest next to A. By
the free-fall part of the Equivalence Principle (Fig. 12.1), B is inertial. Next,
by the acceleration part of the Equivalence Principle, A can be likened to an
accelerated observer in flat spacetime. The Clock Postulate then says that
B is the MCIF of A, and so both make identical measurements for the brief
time that B is this MCIF. Since the measurements made by B are by defi-
nition proper, the measurements made by A must be also; so measurements
made in an orthonormal frame are proper measurements.

We’ll see more of these orthonormal frames soon. In the meantime, the
fact that the measurements made by observer A and trampoline expert B
are identical underlines something that’s inherent in the whole formalism
of special and general relativity by way of the Clock Postulate (although
Einstein took it as self evident). That is that when two observers are at rest
relative to and right next to each other, even if only for a moment, each
observes events in their immediate vicinity in the same way, and both age at
the same rate.

Geodesic Deviation

Free particles that move on different straight lines on a flat surface will nat-
urally move toward or away from each other. But the rate of change of their
separation increase is constant. That is, if they are separated by ξα, then
d2ξα/dτ2 = 0.

On a curved surface, things are different since the separations are only
well defined for geodesics that are infinitesimally close. In such a case, for
coordinates xα and where each geodesic uses an affine parameter τ , it turns
out through differentiating twice and using careful Christoffel bookkeeping
(which we omit to avoid a digression), that

D2ξα

dτ2
= Rα

βγδ
dxβ

dτ

dxγ

dτ
ξδ. (12.21)



12.3 A Space or Spacetime Description of Gravity? 487

This equation of geodesic deviation is the relativistic version of Newton’s
gravitational tidal force, and employs the full Riemann tensor as opposed
to the Ricci tensor used in Einstein’s equation. Newton would attribute the
bulges of water that line up with the Moon on each side of Earth to the
falloff of the inverse-square gravity force across Earth’s diameter due to the
Moon. (Internal friction caused by the motion of the corresponding bulges
in the Moon, anciently induced by Earth, across the Moon’s surface as it
rotates, have long since frozen its rotation with respect to Earth, so that now
it presents the same face to us perpetually.) Einstein, on the other hand,
would drop all reference to this gravity force. Instead, he would attribute
the bulges on Earth to the natural separation of geodesic worldlines of the
water molecules in a curved spacetime, combined with electromagnetic forces
of their neighbours that push them off these geodesics. Again, all mention of
a gravity force is absent in general relativity.

The Equivalence Principle and Covariant Derivatives

Locally inertial frames and the Equivalence Principle tell us how to formulate
the laws of physics in arbitrary coordinates, whether they belong to a flat or
a curved spacetime. We saw this sort of idea before with the comma-goes-
to-semicolon rule on pages 328 and 411. Because the Christoffel symbols
vanish in a locally inertial frame, any law that can be written in terms of
tensor components and partial derivatives (commas on the tensor indices) will
equally well be written using covariant derivatives (semicolons on the tensor
indices). But a tensor expression that uses covariant derivatives is valid in
all frames, and so is the generalisation of that law to arbitrary coordinates
and a curved spacetime. This idea lies at the heart of writing the equations
of physics for gravitational fields.

But there is one problem with converting commas to semicolons in a
curved spacetime: although the order of partial derivatives makes no differ-
ence, the order of covariant derivatives certainly does, as evidenced by (9.97),
where we see that swapping that order is equivalent to coupling physical
quantities to spacetime curvature. This is a difficult problem with no known
general solution, although it’s often possible to argue that a coupling to cur-
vature might be unreasonable.

What Goes Up Must Come Down

The idea that free particles travel on geodesics can be graphically illustrated
by imagining we are on Earth and throw a ball into the air. If it follows a
geodesic on a curved spacetime, can we show in a simple schematic way why
it might go up and then come down again?

The idea is shown in Fig. 12.4. We are constrained to draw the figure in
three dimensions. The spacetime surface must curve into one of those dimen-
sions. Another of the three dimensions is used for time. That leaves us with
only one space axis able to be plotted, which will be vertical height. We are at
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Fig. 12.4. Schematic with one space dimension of why things that go up eventually
come down, in a curved spacetime. Once the ball is released, it follows a geodesic
worldline. We on Earth’s surface cannot follow a geodesic worldline due to the solid
ground stopping us from falling. Instead we “take the long way around” to again
eventually meet with the ball; this we interpret as its having fallen back down to
the ground. Two axes are shown, height h and time t, which are upside down on
the opposite side of the spacetime surface. The ball is thrown up at 1, ascends at 2,
reaches maximum height at 3, descends at 4, and lands at 5. Its motion is simple
in spacetime; we are the ones who have a complicated (i.e. nongeodesic) motion.

rest on Earth’s surface, so that our worldline is not a geodesic. If the ground
were suddenly to vanish from beneath our feet, we would drop, following the
geodesic indicated in Fig. 12.4 as the one we normally are prevented from
following.

Initially we hold the ball and it follows our worldline. When thrown, it’s
free to take the “short way around” the curved spacetime surface by following
a geodesic worldline. We can draw a new set of spacetime axes at every event
that allow us to track where the ball is. Its separation from us on the space
axis (i.e. its height) increases initially, and then begins to decrease as our
worldline heads for a rendezvous with that of the ball. Finally, our worldlines
intersect: the ball lands at our feet. On Earth we thought we didn’t move
and that the ball followed a complicated motion in space and time governed
by Newton’s laws. In spacetime, however, the ball moved in the simplest way
possible, and it was we who followed a complicated path, constrained by
Earth’s surface to forever veer away from a geodesic path in spacetime.
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12.3.3 Quantities That Are Conserved on Geodesics

When we looked at the lagrangian approach to classical mechanics in Chap. 10,
we found that if the lagrangian is independent of a coordinate xa, then the cor-
responding canonical momentum ba is conserved. It turns out that a similar
law holds in arbitrary coordinates using the metric instead of the lagrangian,
which points to a close relationship between the two.

To see how it comes about, focus on a free particle of rest mass m
moving in a possibly curved spacetime, and ask for the rate of increase of
four-momentum over proper time: dpα/dτ . We know that a free particle
has Dpα/dτ = 0 (that’s just the geodesic equation). But what is dpα/dτ?
Start with the geodesic equation, writing

Dpα

dτ
= pα

;β uβ = 0 . (12.22)

Bringing in Christoffel symbols and cancelling symmetric terms leads to

dpα

dτ
= −m

2
gαµgµβ,γ uβuγ . (12.23)

It’s not clear what this is telling us, so instead we ask for dpα/dτ , beginning
with the lowered-index form of the geodesic equation:

Dpα

dτ
= pα;β uβ = 0 . (12.24)

Writing this in terms of Christoffel symbols and cancelling terms produces

dpα

dτ
= m

2
gµν,α uµuν . (12.25)

Now, if the metric is independent of xα, then it follows that dpα/dτ = 0 on a
geodesic. So pα is conserved rather than pα. In this case, the basis vector eα

is called a Killing vector, and the conserved quantity is just the dot product
of the four-momentum with the relevant Killing vector.

An example is a time-independent metric, for which p0 is conserved on a
geodesic; hence it makes sense in general relativity to define the energy of a
system to be p0 rather than p0. (Of course, in flat spacetime with cartesian
coordinates, these two will only possibly differ by a sign.) The metric of an
expanding universe depends on time, in which case energy is generally not
conserved on geodesics.

Quantities that are conserved on geodesics give an easy way to compute
geodesics, as opposed to the use of the geodesic equation (although of course
the geodesic equation will have to be used if the metric has no coordinate
independence to exploit). As an example, the spacetime of the solar system
can be approximated by a metric we’ll encounter in Sect. 12.5, called the
Schwarzschild metric. By symmetry, in polar coordinates we can confine at-
tention to the orbital plane of a planet (or a passing light ray) and set θ = π/2.
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The metric turns out to be independent of t and φ, so that pt and pφ are
conserved on geodesics in this plane. (Equivalently, et and eφ are Killing
vectors.) We’ve already seen that pt is the planet’s energy. Also, pφ can be
interpreted as its angular momentum. This is because for the Schwarzschild
metric (12.50) with θ = π/2, we have gφφ = −r2, giving

pφ = gφφ pφ = −r2 muφ = −mr2 dφ

dτ
, (12.26)

which is thus conserved on geodesics. So, setting r2dφ/dτ = constant is one
equation of a set that can be solved simultaneously to produce geodesics.
Evident here is a close similarity with the newtonian angular momentum for
the planet, mr2 dφ/dt, as in (8.128). (The negative sign in (12.26) is a relic
of the metric signature and has no significance.)

Finally, the conservation of energy or momentum on geodesics that is
due to some coordinate independence of the metric matches the ideas of
Sect. 10.3.4. There, we found that the hamiltonian or canonical momentum
are conserved when the lagrangian is independent of a coordinate:

metric independent of xα =⇒ dpα/dτ = 0 on a geodesic, versus

lagrangian independent of t =⇒ dH/dt = 0 ,

lagrangian independent of xi =⇒ dbi/dt = 0 . (12.27)

This close similarity between the metric and lagrangian is not altogether
surprising. In classical mechanics (Sect. 10.3), extremising the action over all
paths in space and time produces an equation for the actual path followed.
In the differential geometry of general relativity (Sect. 9.2), maximising the
proper time over all paths in spacetime produces an equation for a geodesic.
And indeed, as we saw in (10.69), there is a close relationship between the
action and the proper time.

12.4 A Path to Einstein’s Equation

As well as giving a prescription for how free particles move, any candidate
for a theory of curved spacetime must specify the spacetime curvature, which
we expect to be related to the distribution of mass. Recall Poisson’s equa-
tion (10.75) that relates the newtonian gravity potential Φ to the mass den-
sity � :

∇2Φ(t,x) = 4πG�(t,x) . (12.28)

We wish to search for some sort of relativistic version of this, but with the
potential replaced by a function related to the curvature, and the mass density
altered to be more appropriately relativistic:

spacetime curvature = mass density distribution. (12.29)
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Consider first the mass density distribution. A simple mass distribution is an
ideal gas, also called a perfect fluid in relativity, and the simplest perfect fluid,
such as the rain of Chap. 6, is one that has no internal pressure, called dust.
Dust can have internal random motions, so that the whole of it does not have
to be at rest in one frame. We only demand that it can be partitioned into
possibly overlapping subunits, in each of which the drops have no random
velocities. This allows us to use the flux ideas that we previously applied to
rainfall. It’s a conceptual simplification that will help us begin to think about
mass distributions in general relativity.

To quantify mass density, or equivalently energy density, our work with
raindrops in Chap. 6 suggests that a fully relativistic description of dust must
combine two things:

– its four-momentum �p ≡ m�u of (6.27), since p0 is the relativistic mass
(energy) per particle, and

– its number–flux density �N ≡ n�u in (6.16), since N0 is the number of
particles per unit volume.

In particular, the product of these two zero-components in the laboratory
frame is

p0N0 = energy per particle × number of particles per unit volume
= total energy per unit volume
≡ energy density. (12.30)

The Lorentz transform alters both energy and volume by a factor of γ, and
the resulting γ2 needed to transform energy density indicates that a second -
order tensor is necessary to encode information about the mass distribution.
This prompts us to define the stress–energy tensor (also called the energy–
momentum tensor) Tαβ for dust as

Tαβ ≡ pαNβ = mnuαuβ ≡ � uαuβ = T βα, (12.31)

so that, for example, T 00 is the dust’s energy density γ2mn. In general, the
components of the stress–energy tensor for dust can be calculated by noting
that in the laboratory frame,

pα = muα = mγ(1,v) = (energy/particle, momentum/particle) ,

Nα = nuα = nγ(1,v)

=

⎛⎜⎝[ number of particles
per unit volume

]
,

⎡⎢⎣
(three) numbers of particles
passing through the planes
x, y, and z = constant per
unit area per unit time.

⎤⎥⎦
⎞⎟⎠ ,

(12.32)

and the individual components are listed in the box on the following page.
Although these components apply from first principles just to dust, they can
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Components of the Stress-Energy Tensor for Dust

The general stress–energy tensor can be defined such that its components
match those calculated using (12.31) for dust, which are listed here, where
a, b are space indices. The “a-momentum” is just pa, while the “b-plane” is the
plane xb = constant. It’s useful to remember that T αβ is symmetric, so that
two different interpretations of its components are possible when the indices
are unequal.

T 00 = p0N0 = energy/particle × number of particles/unit volume

= energy density.

T 0b = p0Nb = energy/particle × number of particles passing through b-plane

per unit area per unit time

= energy flux density through b-plane.

T a0 = paN0 = a-momentum/particle × number of particles/unit volume

≡ a-momentum density.

T ab = paNb = a-momentum/particle × number of particles passing through

b-plane per unit area per unit time

= total a-momentum passing through b-plane

per unit area per unit time

≡ a-momentum flux density through b-plane. (12.33)

be used to define the stress–energy tensor for a general mass distribution. We
encountered the field version of this tensor in Sect. 10.3.6.

A more general perfect fluid results when the particles are able to pro-
duce an internal pressure P . How does this relate to Tαβ? Consider a box of
sides �x, �y, �z, containing a perfect fluid whose random motions exert a pres-
sure on the walls of the box. What is the pressure on the wall x = constant?
Partition the fluid into subunits indexed by i, where the ith cell contains
dust with rest mass per particle mi, four-velocity per particle of uα

i , and
proper number density ni, so that the number–flux density of this cell
is Nα

i = niu
α
i = niγi(1,vi). The subunits are allowed to overlap in space.

We’ll drop the i subscript for clarity in the following calculation.
Now, in a time 2�x/vx, every particle has bounced off the wall, transferring

a momentum of 2γmvx in the process. So the total momentum transferred
is this momentum multiplied by the total number of particles in the cell, or

total momentum transferred = 2γmvx × γn �x�y�z . (12.34)

Thus, the pressure due to cell i is

pressure =
force
area

=
total momentum transferred/time taken

�y�z
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=
2γmvx γn �x�y�z

�y�z × 2�x/vx
= γmvx × γnvx. (12.35)

The total pressure P is the sum of this over all the cells. But this sum is
just T xx! Why? Because

T xx =
∑

all cells

pxNx =
∑

i

γmvx × γnvx = P . (12.36)

What are the other stress–energy components for the perfect fluid?

T 00 =
∑

i

p0
i N

0
i =
∑

energy densities , (12.37)

which is just the total energy density as before. Finally,

T 0b =
∑

i

p0
i N

b
i =
∑

i

γimi γiniv
b
i . (12.38)

Statistically, we can say that in the laboratory frame (in which we take the
fluid’s centre of mass to be at rest), for every cell with velocity v, there is an
overlapping cell with velocity −v. This gives a pairwise cancellation in (12.38)
that results in T 0b = T b0 = 0. The off-diagonal elements such as T xy describe,
for example, the total x-momentum passing through the plane y = constant,
which is related to shear forces that are assumed absent in a perfect fluid.
Also, in a perfect fluid, we expect the pressure to be the same in all directions,
so that the stress–energy tensor is diagonal and contains only one pressure, P .
In the locally inertial frame of the fluid, we can write

Tαβ =

⎡⎢⎢⎣
� 0

P
P

0 P

⎤⎥⎥⎦ = (� + P )uαuβ − ηαβP sgn η00 , (12.39)

so that in a general frame it must be that

Tαβ = (� + P )uαuβ − gαβP sgn g00 . (12.40)

Referring to Sect. 8.5.1, we can attach a basis eαβ to the tensor components
in (12.40) to write it as T = (� + P ) u⊗u − gP sgn g00. Some texts will
write the g as g−1 here. But recall the discussion of Sect. 8.5.2, which stresses
that there is no such thing as an inverse of the metric tensor, but that there
is such a thing as the inverse of the matrix of metric components gαβ .

For more complex energy distributions that can be described by a lagrangian,
such as fields, an alternative form of the stress–energy tensor will be given
in (12.115).

On p. 426, and specifically (10.166), we saw the idea of local conservation
as the expression of a vanishing divergence. The stress–energy tensor also has
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a vanishing divergence ∇ · T . To see why, first calculate the components of
the divergence:

∇ · T = eα∂α · (Tµνeµeν

)
= Tµν

;α eα · eµeν = Tµν
;α δα

µeν = Tµν
;µeν .
(12.41)

Now note that in the locally inertial frame, the integral of the divergence
of the stress–energy over an arbitrary volume, using the divergence theo-
rem (8.244) to convert the volume integral to a surface integral with mea-
sure n dS, is∫

Tµν
,µ dV =

∫ (
T 0ν

,0 + T aν
,a

)
dV

= ∂t

∫
T 0ν dV +

∫
∇·(T 1ν , T 2ν , T 3ν

)
dV

= ∂t

∫
T 0ν dV +

∫ (
T 1ν , T 2ν , T 3ν

)·n dS

= ∂t

(
total

{
energy or

momentum

})
+
∫ ({

energy or

momentum

}
flux density

)
·n dS

= 0 , (12.42)

since the total flux of energy or momentum out of the surface equals the rate
of drop of energy or momentum contained in the volume, a local conservation
argument we’ve used before in (10.66) and (10.165) (and see the box on p. 48).
Since (12.42) holds for an arbitrary volume, it must follow that in a locally
inertial frame Tµν

,µ = 0 everywhere. In that case, the Equivalence Principle
says that in an arbitrary frame Tµν

;µ = 0, so that the divergence vanishes.
If we postulate that the right-hand side of (12.29) will be the stress–energy
tensor, then we can infer that the left-hand side of that equation should also
be divergence-free, and this is an important prompt for what that left-hand
side might be.

Different Forms of Einstein’s Equation, and the Einstein Tensor

The left-hand side of (12.29) is expected to be something related to the
spacetime curvature. After some work, Einstein suspected that it might just
be the Ricci tensor Rαβ , and using this he was able to explain the precession
of Mercury’s orbit. This was a great achievement since this precession had
been attributed to a hitherto unknown planet, christened Vulcan, that was
presumed to orbit close enough to the Sun to both perturb Mercury’s orbit
and forever be lost in the Sun’s glare.

But with Rαβ on the left-hand side (12.29), Einstein found that some hy-
pothesising about Tαβ was necessary. He eventually found that this hypoth-
esising could be abandoned if he changed the right-hand side of his equation
by adding a term involving the trace of the stress–energy T ≡ Tα

α, and this
became the final form of his equation:
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Rαβ = 8π
(
Tαβ − 1

2
T gαβ

)
, (12.43)

where the 8π allows newtonian theory to be correctly recovered in the weak
field limit. So this, Einstein’s famous and foremost equation of general rel-
ativity, governs how spacetime is affected by matter. That is, given some
arbitrary distribution of matter encoded by Tαβ , equation (12.43) allows the
metric to be calculated. Einstein was never happy that the geometrical sim-
plicity of curvature on the left should be equated with an apparently messy
stress–energy tensor for matter on the right, but this is the way the equation
remains.

Einstein’s equation is usually written in a slightly different way. Raising
the first index of (12.43) and contracting gives the Ricci scalar R = −8π T .
Inserting this expression for T back into (12.43) gives

Rαβ − 1

2
R gαβ = 8π Tαβ . (12.44)

The left-hand side of this is known as the Einstein tensor Gαβ , producing
the most well-known form of Einstein’s equation:

Gαβ = 8π Tαβ , or simply G = 8πT . (12.45)

The Einstein tensor turns out to be unique in a sense: Gαβ plus a constant
times gαβ is the only symmetric second-order tensor with zero divergence,
vanishing in flat spacetime, that can be built from gαβ , gαβ,µ, and gαβ,µν .
Alternatively, Gαβ is the only tensor able to be built from the Riemann tensor
and the metric while being linear in the Riemann tensor. These requirements
have a certain simplicity, to which we’ll add weight by showing in Sect. 12.8
that the Einstein tensor can be derived using a lagrangian approach that
varies an action based on the Ricci scalar with respect to the metric. But
when all is said and done, the justification for the Einstein equation lies in
its considerable experimental success.

The metric and its derivatives are contained inside Gαβ in a highly nonlin-
ear way, and as a result, Einstein’s equation has not been solved for anything
beyond simple cases. We’ll see some of those cases in the following sections.

12.5 Solving Einstein’s Equation for an Empty
Spacetime: The Schwarzschild Metric

Let’s outline how Einstein’s equation is solved for the simplest of all scenarios:
a vacuum spacetime, being one that’s empty of all stress–energy. We’ll also
look for a solution with spherical symmetry, so begin with a generic metric
that embodies this symmetry (writing the radial coordinate as r′ since we’ll
redefine it in a moment) using three undetermined functions:
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dτ2 = f(r′) dt2 − g(r′) dr′2 − h(r′) r′2
(
dθ2 + sin2 θ dφ2

)
. (12.46)

This can be simplified by redefining the radial coordinate as r2 ≡ h(r′) r′2,
giving

dτ2 = a(r) dt2 − b(r) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
, (12.47)

which now has just two functions to be found. Is this redefinition of the
radial coordinate meaningful, and, if so, what new meaning does it give that
coordinate? More generally, what meaning can be given to the spatial part
of any metric?

Write (12.47) as dτ2 = a(r)dt2 − d�2, so that the interval between two
events measured as simultaneous by an observer A (i.e. that share the
same t) is dτ2 = −d�2. Now, as we discussed on p. 486, observer A mea-
sures identically to his momentarily comoving inertial observer B, and so
in particular both measure the same interval. But B uses a Minkowski in-
terval dτ2 = dT 2 − dX2 − dY 2 − dZ2, and also measures the two events as
simultaneous. Thus B records the same T for them to write the interval as
dτ2 = −dX2 − dY 2 − dZ2. In that case,

d�2 = dX2 + dY 2 + dZ2. (12.48)

But dX2+dY 2+dZ2 is the proper (i.e., physical) distance between the events,
which is therefore the spatial part d�2 of the original metric. So using (12.47),
an observer at constant r and θ = 90◦ will measure the proper circumference
of a circle of radius r to be∫

d� =
∫ 2π

0

r dφ = 2πr . (12.49)

So, the new radial coordinate r is just 1/(2π) of the circumference of a circle
of radius r. This is not a trivial geometrical result, because r does not have its
usual meaning of the proper radial distance. For two points separated by dr
at constant θ and φ, (12.47) gives the proper radial distance as d� =

√
b(r) dr,

which is not necessarily equal to dr.
Now that we have a suitably simplified metric, we can set about solving

Einstein’s equation (12.43). The zero stress–energy means Tαβ = 0, in which
case (12.43) gives a zero Ricci tensor, Rαβ = 0. This, in turn, determines the
two unknown functions a(r), b(r) of (12.47). The method consists of calculat-
ing the Ricci tensor components, setting them all to zero, and then solving
for a(r) and b(r). The straightforward details are omitted here but can be
found in most books on general relativity, and the resulting metric is the fa-
mous Schwarzschild solution, where M is a constant of integration introduced
in the process of solving the equations:

dτ2 =
(
1 − 2M

r

)
dt2 − dr2

1 − 2M
r

− r2
(
dθ2 + sin2 θ dφ2

)
. (12.50)



12.5 The Schwarzschild Metric 497

This is the most studied solution to Einstein’s equation, which, considering
it’s the spherically symmetric solution for empty space, shows how difficult
the equation is to solve for more realistic mass distributions.

Compare the Schwarzschild metric with the one that we calculated from
lagrangian mechanics, (12.9). The only difference is in the coefficient of dr2.
It appears that the mechanics of Newton and Lagrange is really only sensitive
to the temporal part of the metric. Presumably this is because the worldlines
of everyday “slow” particles are more closely aligned with the time axis, so
that, in a manner of speaking, they “sample” the temporal part of the metric
much more than the spatial part.

Given that the Schwarzschild metric describes an empty spacetime, what
meaning can be given to M? An analysis of the geodesics in this spacetime
shows that, at large r, test particles orbit as if there were a point mass M
at r = 0 that attracts them with a newtonian gravitational force that drops
as r−2. Although we arranged for an empty space, it seems that a point mass
has crept in unnoticed, exactly as occurred in the previous chapter when solv-
ing Poisson’s equation for nonrelativistic gravity in (11.7). What has really
happened is that Einstein’s equation is local, and if we assume that the grav-
itational field due to a spherically symmetric mass is everywhere radial, then
the Schwarzschild solution must also give the metric at any empty point in a
space with such a spherically symmetric mass distribution. This is known as
Birkhoff’s theorem, and in particular it means that the Schwarzschild metric
also describes a spacetime containing one nonrotating star. We’ll assume in
the next section that it does also at least approximately describe the space-
time around the very slowly rotating Earth.

There are of course problems with (12.50) at r = 0 and r = 2M (which
is r = 2GM/c2 in conventional units), where the metric becomes singular.
The difficulty at r = 0 is not altogether different from that of standard new-
tonian gravity near a point mass, where the inverse-square force begins to
diverge. (The Schwarzschild singularity can be argued as being a stronger
type in that, as we’ll see, normal matter lying within r = 2M must fall to-
ward r = 0, which need not be the case in newtonian theory given a suffi-
cient counteracting pressure.) Rather, the new problem occurs at r = 2M ,
and it shows that the difficulty in choosing an appropriate radial coordinate
when solving Einstein’s equation in (12.47) should not be underestimated.
In fact, the radial coordinate originally introduced by Schwarzschild differs
somewhat from the r in the solution that now bears his name, and the com-
plexities surrounding what happens when r = 2M took many years to iron
out. For typical astronomical bodies such as stars and planets, r � 2M and
no problem arises, although we’ll look more closely at this in Sect. 12.6.

The inverse-square law for newtonian gravity is recoverable from the
Schwarzschild metric just as we found in Sect. 12.3.1 for the metric (12.9),
provided r � 2M so that we can approximately relate a velocity to the spatial
polar coordinates. Write, with ˙≡ d/dt,



498 12 Airliners, Black Holes, and Cosmology: The ABC of General Relativity

The Magical Inverse-Square Force

Newtonian mechanics is mostly sufficient to describe planetary orbits, and in
particular the inverse-square force of newtonian gravity governs orbital motion
to a very high accuracy. But, in fact, besides being special from the point of
view of allowing field lines to be drawn (as discussed in the box on p. 337), an
inverse-square central force is really extremely special for a universe that has
stars with orbiting planets. It turns out that stable planetary orbits are not
something we get for free for just any central force.

There are two general requirements we might make for a well-behaved orbit.
The first is that it’s a stable equilibrium: any perturbations of the planet will
not throw it off its orbit. The second requirement is that the orbit maps onto
itself: it doesn’t precess.

Analysis using newtonian mechanics shows that a central force law such
as rn (with n not necessarily an integer) will only produce a stable equilibrium
when n > −3. But the requirement for no precession is stronger. For this, n
must equal the square of a natural number (1, 2, . . . ) minus 3. So we expect
stable, nonprecessing orbits for n=12−3=−2, n=22−3=1, n = 32−3=6,
etc. That is, the forces look like 1/r2, r, r6, etc. The only one of these that
decreases with r is 1/r2. So the inverse-square force really is quite special. Real
gravity is not quite 1/r2, and sure enough, orbits do precess; but quite slowly
since the departure from inverse square is extremely small.

dτ2/dt2 = 1 − 2M/r − (1 − 2M/r)−1 ṙ2 − r2 θ̇2 − r2 sin2 θ φ̇2

� 1 − 2M/r − v2, (12.51)

which brings us back to (12.12) and its attendant discussion.

12.5.1 Deriving Gravitational Redshift Again

Earlier in this chapter, when describing the Pound–Rebka–Snider experi-
ments, we calculated the redshift of light that climbs up a 22.5 metre well,
using the Equivalence Principle to bring in the accelerated-frame ideas of
Chap. 7.

By now it should come as no surprise to find that the same result is pro-
duced by the Schwarzschild metric. The same analysis of emitted and received
frequencies is again used to arrive at (12.3), but now using the Schwarzschild
metric instead of the accelerated-frame metric. To show this, it’s permissible
to use the small-time limit since the frequency ratios are quite static:

frec

fem

=
∆τfloor

∆τceil

=
dτfloor

dτceil

. (12.52)

To a first approximation, we’ll suppose that Earth does not rotate, so that
the emitters and receivers in the Pound–Rebka–Snider experiments are at
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rest in the Schwarzschild spacetime. It follows that dr = dθ = dφ = 0 for each
clock, so use the Schwarzschild metric (12.50) to write the interval between
successive pulse emissions or receptions as

dτ2 =
(
1 − 2M

r

)
dt2, (12.53)

so that

frec

fem

=
dτfloor

dτceil

�

(
1 − M

rfloor

)
dtfloor(

1 − M

rceil

)
dtceil

These are equal!
(See below.) (12.54)

Why are the two time intervals dtfloor and dtceil equal? Since the Schwarzschild
metric has no time dependence, the scenario of pulses being sent and received
is just like that of Fig. 12.2. But the Schwarzschild t defines a global time
coordinate, being analogous to the global time coordinate t̄ in the accelerated
frame metric (7.27), which in turn was defined as the time τceil in Fig. 12.2.
So just as Fig. 12.2 shows the pulses being sent and received at equal inter-
vals of the global time coordinate t̄ ≡ τceil, so, too, here in the Schwarzschild
case, these equal time intervals are dtfloor and dtceil, respectively, and so
dtfloor = dtceil.

The correspondence between the accelerated frame’s t̄ and Schwarzschild’s t
can also be seen by comparing the lines of constant t̄ in the accelerated frame,
in Fig. 7.6, with those of constant t in Schwarzschild spacetime, in Fig. 12.5.

With a floor-to-ceiling distance of h = 22.5 m for the Pound–Rebka–Snider
experiments, (12.54) becomes

frec

fem

�
1 − M

rfloor

1 − M

rfloor + h

� 1 − Mh

r2
floor

. (12.55)

In conventional units, this is

frec

fem

� 1 − GMh

c2r2
floor

= 1 − gh

c2
,
(
g is the usual 10ms−2

)
� 1 − 10ms−2 × 22.5m

9 × 1016 m2s−2
� 1 − 2.5 × 10−15, (12.56)

agreeing with the result of (12.3).
For more precision, we should realise that Earth’s gravity has been ap-

proximated by the Schwarzschild metric in a “bigger”, almost inertial frame
in which Earth rotates but its centre is at rest at Schwarzschild r = 0. So the
receiver and emitter are actually moving within the Schwarzschild spacetime,
and with different velocities, owing to their different distances from Earth’s
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centre. This more precise calculation was confirmed in 1971 by Hafele and
Keating, who compared the time elapsed on clocks flown aboard two aircraft,
one of which travelled east and the other west. Even with equal speeds rel-
ative to the ground, we expect different clock rates in these aircraft because
they have different speeds in the almost inertial frame we just discussed,
within which the Schwarzschild solution has been used as an approximation
to the spacetime metric. For flight at a constant height and latitude, the
Schwarzschild metric gives

dτ2 =
(
1 − 2M

r

)
dt2 − r2 sin2 θ dφ2. (12.57)

The square of the ageing rate of a flying clock compared with a laboratory
clock is then

dτ2
plane

dτ2
lab

=
1 − 2M/rplane − sin2 θplane v2

plane

1 − 2M/rlab − sin2 θlab v2
lab

, (12.58)

where the speeds of the clocks in the almost inertial frame above are given
by v � r dφ/dt. Since the speeds of the east- and westbound clocks will in
general be different in this frame even if the two aircraft have the same ground
speed, their clocks will age differently, and these different rates of ageing
were indeed observed in the Hafele–Keating experiment. A moment’s thought
shows that the eastbound clock should age less than the westbound clock,
since while both are at the same height, the eastbound clock is travelling
faster in the almost inertial frame. And that is precisely what happened:

– the eastbound clock was predicted to lose 40±23 ns during the trip, and
was measured to have actually lost 59±10 ns, and

– the westbound clock was predicted to gain 275±21 ns, and actually
gained 273±7 ns.

So the agreement with theory is very good. The different ageings in the Twin
Conundrum have been verified experimentally.

The gain/lose nature of the results above is interesting. A plane’s height
serves to increase its ageing rate compared with the laboratory, while its
flight speed serves to decrease that ageing rate. The fact that one of the
flying clocks gained time while the other lost time shows that at the heights
and speeds of commercial aircraft, these effects compete. The effect of height
on a clock is similar in magnitude, but opposite in sign, to the effect of the
flight speed.

12.6 The Schwarzschild Black Hole

The breakdown of the Schwarzschild metric at r = 2M suggests that either
there is a problem with spacetime there, or perhaps the coordinates t, r, θ, φ
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are “bad” in some sense and the spacetime is perfectly well behaved. We
must decide which is the case. In this section, we’ll meet an alternative set
of coordinates for Schwarzschild spacetime that settles the question, while
in Sect. 12.6.1 we’ll follow an alternative path of calculating the curvature
at r = 2M .

First, given the Equivalence Principle, we might expect to draw a picture
of Schwarzschild spacetime related to that of an accelerated frame. As we saw
in Fig. 7.12, in the accelerated frame there is a horizon close to which time
slows and light cones close up. This is exactly what happens with t, r, θ, φ
coordinates in Schwarzschild spacetime. A clock hovering just above r = 2M
ages at a rate of dτ/dt =

√
1 − 2M/r, which is close to zero. Furthermore,

light cones are determined by setting dτ = 0, so that light moving radially
obeys dr/dt = ±(1 − 2M/r), which means that as far as the coordinates are
concerned, it slows to zero as it approaches r = 2M , which thus defines the
Schwarzschild horizon.

What can be done to ascertain what is happening here? Just as in flat
space the accelerated frame is not a preferred frame (in the sense that every-
thing is simpler when viewed from the frame of an inertial observer, such as
Adam instead of Eve in Chap. 7), in 1960 there were discovered more suitable
coordinates for describing Schwarzschild spacetime, called Kruskal–Szekeres
coordinates, T,R, θ, φ (where θ and φ are the same as in Schwarzschild coor-
dinates). The T and R are defined differently above and below the r = 2M
horizon, so combine the two cases by writing, for r ≷ 2M ,

T ≡
√∣∣∣1 − r

2M

∣∣∣ exp
( r

4M

) {
sh

ch

}
t

4M
,

R ≡
√∣∣∣1 − r

2M

∣∣∣ exp
( r

4M

) {
ch

sh

}
t

4M
. (12.59)

The metric in these T,R, θ, φ coordinates has no problems at r = 2M , where
r is now considered to be a function of R and T :

dτ2 =
32M3

r
e−r/(2M)

(
dT 2 − dR2

)− r2
(
dθ2 + sin2 θ dφ2

)
. (12.60)

Although the metric does break down at r = 0, the more serious problem
at r = 2M has vanished. In this set of coordinates there is no horizon, as
can be seen in Fig. 12.5, which shows a picture of Schwarzschild spacetime
using Kruskal–Szekeres coordinates. Also, the light cones don’t close up any-
more. In fact, all light cones are once again 45◦ lines since when dτ = 0
we have dR/dT = ±1. So Kruskal–Szekeres coordinates are analogous to the
usual polar coordinates of an inertial frame in flat spacetime. The analogies
between the various coordinates are shown in Fig. 12.6.

Notice that when r < 2M all light rays will eventually hit r = 0; there
is no escaping the singularity within this Schwarzschild radius. And because
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far away

Fig. 12.5. Schwarzschild spacetime drawn with the Kruskal–Szekeres T, R
coordinates, for constant θ, φ. Only the white regions correspond to r > 0
and −∞ < T < ∞. What was the horizon in t, r coordinates is now two 45◦ lines.
Light cones are everywhere identical and open at 45◦, so we can see immediately
that light whose worldline coincides with either of the r = 2M lines will never leave
it, again indicating that r = 2M forms a horizon. Matter falling in toward r = 0
crosses r = 2M in finite proper time. Far away the space and time axes are al-
most perpendicular and almost straight, tending toward those of Minkowski space
as r → ∞. Compare this picture with Fig. 7.6 to see a similarity with the uniformly
accelerated observer as drawn in an inertial frame.

all particle worldlines must stay within the light cone at each event (corre-
sponding to local physics being that of special relativity for a freely falling
particle), it must be that all particles that fall inside the Schwarzschild radius
can never escape. This staying within the light cone corresponds to the fact
that a particle must always move forward in the time coordinate of any locally
inertial observer; that is, its worldline must always be timelike (as opposed to
spacelike, where the worldline strays outside the light cone). However, notice
that while freely falling particles relentlessly move forward in time defined
by t outside the Schwarzschild radius, within the radius they must relent-
lessly move toward r = 0. And at the horizon the signs of both gtt and grr

swap, forcing us to conclude that inside the Schwarzschild radius the t co-
ordinate in fact describes space, while the r coordinate describes time. We’ll
see more of this in a moment.

While Schwarzschild spacetime does exist around a lone spherically sym-
metric mass, as long as the radius of the mass is greater than 2M there will
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Accelerated
(Rindler)

Schwarzschild

“nicer” direction

of coordinate choice

Inertial
(Minkowski)

Kruskal–Szekeres

Horizon exists.

Light cones
close up.

No horizon exists.

Light cones at 45◦.

Fig. 12.6. The usual coordinates of accelerated frames (Rindler spacetime) and
Schwarzschild spacetime both exhibit anomalies that are removed by a better choice
of coordinates. In the accelerated case, this is trivial: we just use the inertial coor-
dinates with which we began Chap. 7. Finding better coordinates for Schwarzschild
spacetime is not so easy, but they certainly exist, as discovered by Kruskal and
Szekeres.

be no horizon. This Schwarzschild radius is so small (e.g. 3 km for a solar
mass) that matter is not expected to be crammed into it in any but that
most cataclysmic of astrophysical processes: a supernova explosion. Super-
novae are thought to mark the death of extremely massive stars, occurring
when such stars’ nuclear fires can no longer counteract the pull of gravity, so
that a collapse occurs to what is possibly an internal bounce that results in
the explosion. The physics of such a process that might squeeze the remain-
ing stellar matter to within its Schwarzschild radius to form a black hole is
by no means understood, but it is conjectured to be possible in sufficiently
massive stars. When the singularity theorems of standard general relativity
are applied to matter that is in some sense well enough behaved (satisfy-
ing reasonable conditions on its energy and pressure), they state that if this
matter were concentrated into a small enough volume, then a moment of no
return would occur where gravity must take over and pull the matter into a
point.

Like the acausal oddities that we discussed in Chap. 7 and Fig. 7.4, how
the notion of simultaneity in a Schwarzschild spacetime might be defined
is problematic. Part of the difficulty lies with any ideas we might have of
extrapolating time to infinity, which is not necessarily physically possible
or meaningful. An observer outside the Schwarzschild radius might define
simultaneity by the set of all events of equal t (which is certainly the case far
from the hole); but what can be said of a particle that falls into the hole?
According to the outside observer, the particle never falls past the horizon,
because it can only reach the horizon at t = ∞, as is evident in Fig. 12.5.
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The experience of the infalling particle is completely different: it falls into the
singularity in a finite (and very short) proper time. Difficulties of this sort
exist in general relativity, and we can only wonder what the ancient Greek
philosopher Zeno would have made of them.

Representing Schwarzschild Space by a Curved Surface

How might we visualise the curved spacetime of the Schwarzschild metric?
Apart from the heuristic picture of Fig. 12.4, this is problematic because the
interval is not everywhere positive. Instead, we can draw the curved space
at one particular time since the metric is time independent. The simplest
such picture takes the slice of space at θ = 90◦, and draws a surface that
represents the proper distance between two points (r, φ) and (r +dr, φ+dφ).
This proper distance is given by the euclidean distance between those two
points as projected onto the surface.

The proper distance squared between the two points is the spatial part of
the Schwarzschild metric,

d�2 =
(
1 − 2M

r

)−1

dr2 + r2dφ2, (12.61)

and we wish to draw the surface z = z(r, φ) in cylindrical polar coordinates
such that d� equals the euclidean distance between those two points when
they are projected vertically onto the surface:

d�2 = dr2 + r2dφ2 + dz2. (12.62)

Equating (12.61) with (12.62) yields(
dz

dr

)2
=

2M

r − 2M
. (12.63)

We’re only seeking a surface that encodes distances on the plane, so we are
free to take the positive square root of (12.63), solving for z to give

z(r, φ) = 2
√

2M
√

r − 2M . (12.64)

The rotational symmetry ensures that z is really only a function of r. But we
have been forced into considering only r � 2M , as shown by the plot of the
surface z = z(r, φ) in Fig. 12.7. The proper distance between any two points
increases as they approach r = 2M , although it certainly remains finite. But
the breakdown of the usual Schwarzschild coordinates in this region is appar-
ent: no surface at all has come out of the mathematics for r < 2M , and the
surface we have drawn simply stops there.

If both signs were used for the square root in (12.64), then, rather
than stopping abruptly, the surface would fold symmetrically beneath the
xy-plane. This sort of topology is called a wormhole. Although this folding
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rφ

r = 2M

x

y

z
(r, φ)

(r + dr, φ + dφ)

Fig. 12.7. A surface in three-dimensional euclidean space that gives the proper
distance between any two points (r, φ) and (r + dr, φ + dφ) in Schwarzschild space
for θ = 90◦. It terminates at r = 2M ; the t, r, θ, φ Schwarzschild metric doesn’t
allow anything further to be plotted for r < 2M .

might suggest a more complicated global structure than at first appears from
the metric (which simply tells us the line element at any point), it does not
get around the fact that our calculation has produced no surface for drawing
inside the horizon, and yet presumably space still does exist there. Attempt-
ing to solve the problem by swapping the roles of t and r inside the horizon is
possible but not very clear cut. The nature of Schwarzschild spacetime is still
not well understood, and there is no reason why it should have anything to
do with wormholes; certainly the Kruskal–Szekeres diagram in Fig. 12.5 does
not suggest them. Whether wormholes exist in spacetime because of other
mass distributions, or are even able to exist at all, is another question that
currently remains unanswered.

The curved space surface (12.64) (i.e. for the positive square root only)
is sometimes erroneously drawn with its funnel stretching down to z = −∞
at r = 0. As we can see, that’s not correct, and its walls are already vertical
at the horizon. The surface we have drawn is often related to similar-looking
ones made of plaster with rolling balls, which have been used many times to
portray the orbit of a planet around a star according to general relativity.
While suggestive, they don’t really reflect the true situation, because the
actual geodesic motion of the planet through a curved spacetime is being
modelled somewhat trivially by an angled surface that simply uses Earth’s
gravity to give a centripetal force, directing the ball to swing about the central
throat. What analogy to relativity there is here arises from the dependence
of the ball’s motion on the shape of the surface around it, as opposed to any
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invisible spring pulling it toward the centre of its motion—although gravity
and the inward-curving plaster surface still conspire to provide that spring!

12.6.1 Tensor Components and Physical Measurements

Let’s return to the problem of the Schwarzschild horizon and ask the question:
if we did not have a good set of coordinates (such as Kruskal–Szekeres), how
could we tell if the horizon was real or not? One way might be to calculate the
value of the curvature on it. But if we do this using the t, r, θ, φ coordinates—
which we know from hindsight are bad—then it comes as no surprise to find
that the Riemann components diverge at r = 2M . For example,

Rt
rtr =

2M

r3

(
1 − 2M

r

)−1

, Rθ
φθφ =

2M

r
sin2 θ . (12.65)

Does this mean the curvature really diverges at both r = 0 and r = 2M?
In fact, while the complete Riemann tensor (sum of the products of com-

ponents and basis vectors) does turn out to diverge at r = 0, it doesn’t really
diverge at r = 2M ; there, the component divergence of (12.65) is just an
artifact of the bad coordinates, and goes hand in hand with shrinking basis
vector lengths that cancel component divergences. But we cannot know this
just by looking at the Riemann components. The way to deal with appar-
ent component divergences is to keep track of basis vector lengths. This is
related to the question of how tensor components reflect physical measure-
ments. When we measure anything at all, ultimately we are using rulers and
clocks. The height of a chair is measured using a ruler physically laid against
it; we certainly don’t go about laying down a set of possibly bad coordinates
centred on the Sun with arbitrarily defined behaviour. Rather, we use a frame
with normalised basis vectors that are usually orthogonal: the orthonormal
frame that was discussed back in Sects 8.7 and 12.3.2.

While normalised basis vectors are described more generally by (8.121),
the most convenient set is the normalised version of the already orthogonal
Schwarzschild coordinate basis, so that the simpler (8.117) can be used, al-
lowing a vector v = vαeα = vβeβ to be written over the normalised basis and
cobasis as

v = vα̂eα̂ = vα̂ eα

|eα|
, and v = v

β̂
eβ̂ = v

β̂

eβ

|eβ | , (12.66)

which implies

vα̂ = vα |eα| , vβ̂ = vβ

∣∣eβ
∣∣ (no sums). (12.67)

The orthonormal set of four basis vectors—our set of measuring rods and
a clock—is often called a tetrad or vierbein in relativity. The corresponding
normalised components of vectors or tensors are the proper quantities that we
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actually measure. If these diverge at r = 2M in Schwarzschild spacetime, then
there must be some sort of real divergence at r = 2M , because the normalised
basis vectors are now well behaved and not shrinking to zero length. For
example, if the normalised Riemann components diverge at r = 2M , then we
can conclude that there is a real curvature divergence there.

To illustrate the procedure, focus on just one of the Riemann components,
Rt

rtr in (12.65). It diverges at both r = 0 and r = 2M , so we must check the
corresponding behaviour of Rt̂

r̂t̂r̂. A point of notation is important here:
putting carets on each of the indices is tedious and guarantees tired muscles;
we’ll write this component as R̂t

rtr instead, even though that necessitates
writing eα̂ as êα to allow the summation convention still to apply. (First and
foremost, notation should always be useful as opposed to taxing, and writing
dozens of carets is definitely taxing.)

First, we need to know the corresponding versions of (12.67) for higher-
order tensors. In general, everything is calculated from (8.121), but for the
orthogonal coordinate basis it’s easier to do it explicitly in the following way.
Write a general second-order tensor as

T = Tαβeαeβ
req.

T̂αβ êαêβ = T̂αβ eα

|eα|
eβ

|eβ | , (12.68)

so that
T̂αβ = Tαβ |eα|

∣∣eβ

∣∣ (no sums), (12.69)

and similarly T̂α
β = Tα

β |eα|
∣∣eβ
∣∣ (no sums), and so on. Further, what

are the values of |eα| and |eα|? For a positive definite metric (one hav-
ing all plus signs), we’re familiar with the basis vector lengths calculated
from |eα|2 = eα ·eα = gαα. But this is insufficient for the mixed signs of the
metrics encountered in relativity. We require that any normalisation preserve
the metric signature (i.e., the signs +−−− or −+++ of the metric should be
preserved). In that case, demand the normalised metric to have signs given
by ĝαα ≡ sgn gαα. But that implies

sgn gαα = ĝαα = êα · êα =
eα

|eα|
· eα

|eα|
=

gαα

|eα|2
, (12.70)

in which case
|eα|2 =

gαα

sgn gαα

= |gαα| = |eα · eα| . (12.71)

Of course, this is no different from |eα|2 = eα · eα = gαα in a positive definite
metric, but additionally it ensures that the signature of the normalised metric
is unchanged. Thus, the required basis vector lengths are

|eα| =
√

|gαα| , and similarly |eα| =
√

|gαα| . (12.72)

Now that we know how to normalise tensor components, focus once more
on Rt

rtr and R̂t
rtr.
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R̂t
rtr = Rt

rtr |et| |er| ∣∣et
∣∣ |er| (no sum)

= Rt
rtr

√
|gtt grrgttgrr| = Rt

rtr |grr| =
2M

r3
sgn
(
1 − 2M

r

)
. (12.73)

The final expression in (12.73) doesn’t diverge at r = 2M , but unfortunately
it switches sign there! However, we remember that the roles of t and r also
swap inside the Schwarzschild radius. This suggests we should also calcu-
late R̂r

trt. The calculation is straightforward: Rr
trt is related to Rt

rtr via
the metric and Riemann symmetries (9.91), and the result is

R̂r
trt =

−2M

r3
sgn
(
1 − 2M

r

)
. (12.74)

Equations (12.73) and (12.74) can be combined if we define a coordinate τ
(not to be confused with proper time) and a coordinate �, that swap time
and space inside the Schwarzschild radius:

τ, � ≡
{

t, r r > 2M

r, t r < 2M
. (12.75)

Since gττ is always positive both outside and inside the Schwarzschild radius,
τ is timelike: it describes the spacetime direction in which a free particle
moves. Similarly, � is spacelike because g�� is always negative both outside
and inside the Schwarzschild radius. Using these, the Riemann components
become

R̂τ
�τ� =

2M

r3
, R̂�

τ�τ =
−2M

r3
(12.76)

over the whole of Schwarzschild spacetime. So with this time–space swap
incorporated, the normalised Riemann components don’t diverge at r = 2M ,
and we know for certain that spacetime is perfectly well behaved there. The
normalised Riemann components still diverge at r = 0, meaning that this
point is a spacetime singularity. But what happens when a real star collapses
is as yet unknown, and this singularity that signals a breakdown of general
relativity might presumably fail to form for some other reason that is part of
new physics yet to be discovered.

12.7 Calculating Curvature More Efficiently:
Cartan’s Structural Equations

Solving Einstein’s equation requires us to begin with some general metric,
perhaps simplified due to an imposition such as spherical symmetry, and
then calculate the Ricci tensor from it. The procedure that was developed in
Chap. 9 first calculates the Christoffel symbols and then uses them to build
the Riemann components. It is of course quite labour-intensive; but luckily
another approach, due to Cartan, exploits symmetries in the Riemann tensor
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to make some of the work easier. We’ll omit the proof of Cartan’s method,
and instead will focus here on how to use it to calculate the Riemann tensor
given the Schwarzschild metric.

Not surprisingly, because the Riemann tensor is antisymmetric in various
pairs of its indices (9.91), an approach using the wedge product (also an-
tisymmetric) shortens the work required. The notation of this section uses
the exterior derivative ∇∧ that we introduced in Sect. 8.10. In texts, the
exterior derivative is more usually written as “d”, but for the reasons given
in Sect. 8.10 we’ll avoid that notation. As mentioned on p. 347, a suitable
alternative might be ∂. Here we’ll continue to write it as the bulkier ∇∧ only
to emphasise the inner workings of the exterior derivative.

The relevant equations are Cartan’s first and second structural equations.
Essentially, the Cartan approach relies on calculations being done in an or-
thonormal frame, so that index raising and lowering can be done using the
Minkowski metric. The central quantities of Cartan’s equations are a set
of vectors Γ α̂

β̂ that are indexed by the orthonormal frame and related to
Christoffel symbols. (For the sake of careful clarity, we’ll include all carets
on the indices here as opposed to the more relaxed approach of Sect. 12.6.1.)
Cartan’s first equation allows us to calculate the Γ α̂

β̂ indirectly by way of

eβ̂ ∧ Γ α̂
β̂ = ∇∧ eα̂ . (12.77)

The Γ α̂
β̂ have the following properties, for spatial indices a, b:

Γ t̂
â = Γ â

t̂
, Γ â

b̂ = −Γ b̂
â ,

Γ α̂
α̂ = 0 (no sum, for all α). (12.78)

The second of Cartan’s equations uses the Γ α̂
β̂ to give a prescription for

calculating the Riemann components. We’ll employ a small device for writing
antisymmetric tensors Fαβ that saves tedious index manipulation or the need
to include numerical factors. This defines

F|αβ| eα ∧ eβ ≡
[

the sum over all combinations of α, β,
as opposed to permutations.

]
(12.79)

As an example of this notation using two coordinates x, y for simplicity, the
usual wedge expression for an antisymmetric tensor Fαβ is, following the
argument of (8.247),

F = 1/2 Fαβ eα ∧ eβ = 1/2 (Fxy ex ∧ ey + Fyx ey ∧ ex)

= Fxy ex ∧ ey = F|αβ| e
α ∧ eβ . (12.80)

In general, an n-index antisymmetric tensor F (i.e., an n-multivector) can
be written in any of the following three ways, each of which has its uses:
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F = Fαβ...ω eαeβ . . . eω

=
1

n!
Fαβ...ω eα ∧ eβ ∧ · · · ∧ eω

= F|αβ...ω| e
α ∧ eβ ∧ · · · ∧ eω. (12.81)

With this notation, the second of Cartan’s equations is

Rα̂
β̂|µ̂ν̂| e

µ̂ ∧ eν̂ = ∇∧ Γ α̂
β̂ + Γ α̂

λ̂ ∧ Γ λ̂
β̂ . (12.82)

Let’s see how (12.77), (12.78), and (12.82) are used to calculate the curvature
generated by the Schwarzschild metric. Setting κ ≡ 1 − 2M/r, the nonzero
metric elements are

gtt = κ , grr = −1/κ , gθθ = −r2, gφφ = −r2 sin2 θ ,

gtt = 1/κ , grr = −κ , gθθ = −1

r2
, gφφ = −1

r2 sin2 θ
. (12.83)

Using (12.72), these give cobasis vector lengths of∣∣et
∣∣ = |κ|−1/2 , |er| = |κ|1/2 ,

∣∣eθ
∣∣ = 1

r
,
∣∣eφ
∣∣ = 1

r sin θ
, (12.84)

so that the simplest orthonormal cobasis is

et̂ = |κ|1/2et , er̂ = |κ|−1/2er , eθ̂ = reθ , eφ̂ = r sin θ eφ. (12.85)

The exterior derivatives of these orthonormalised vectors are needed for (12.77).
Remembering that κ is a function of r only, the first is

∇∧ et̂ = eα∂α ∧ (|κ|1/2et
)

= ∂r

(|κ|1/2
)
er ∧ et = ∂r

(|κ|1/2
)
er̂ ∧ et̂. (12.86)

Similarly, the three other derivatives are

∇∧ er̂ = 0 ,

∇∧ eθ̂ = |κ|1/2

r
er̂ ∧ eθ̂ ,

∇∧ eφ̂ = |κ|1/2

r
er̂ ∧ eφ̂ + cot θ

r
eθ̂ ∧ eφ̂. (12.87)

The Γ α̂
β̂ are found by writing (12.77) out in full, remembering from (12.78)

that all Γ α̂
α̂ = 0 (no sum):

∇∧ et̂ = er̂ ∧ Γ t̂
r̂ + eθ̂ ∧ Γ t̂

θ̂ + eφ̂ ∧ Γ t̂
φ̂ = ∂r

(|κ|1/2
)
er̂ ∧ et̂ ,

∇∧ er̂ = et̂ ∧ Γ r̂
t̂ + eθ̂ ∧ Γ r̂

θ̂ + eφ̂ ∧ Γ r̂
φ̂ = 0 ,

∇∧ eθ̂ = et̂ ∧ Γ θ̂
t̂ + er̂ ∧ Γ θ̂

r̂ + eφ̂ ∧ Γ θ̂
φ̂ = |κ|1/2

r
er̂ ∧ eθ̂ ,

∇∧ eφ̂ = et̂ ∧ Γ φ̂
t̂ + er̂ ∧ Γ φ̂

r̂ + eθ̂ ∧ Γ φ̂
θ̂ = |κ|1/2

r
er̂ ∧ eθ̂ + cot θ

r
eθ̂ ∧ eφ̂.

(12.88)
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The identities of (12.78) allow us to study (12.88) to find the values of the
various Γ α̂

β̂ . Some detective work is required, since usually two equations of

the set (12.88) need to be compared to find each Γ α̂
β̂ . The results are

Γ t̂
r̂ = ∂r

(|κ|1/2
)
et̂ = Γ r̂

t̂ , Γ t̂
θ̂ = 0 = Γ t̂

φ̂ = Γ θ̂
t̂ = Γ φ̂

t̂ ,

Γ θ̂
r̂ = |κ|1/2

r
eθ̂ = −Γ r̂

θ̂ , Γ φ̂
r̂ = |κ|1/2

r
eφ̂ = −Γ r̂

φ̂ ,

Γ φ̂

θ̂
= cot θ

r
eφ̂ = −Γ θ̂

φ̂ . (12.89)

The terms, though many, are straightforward to write and the work is not
onerous. All of the required quantities are now in place to calculate the Rie-
mann components. Suppose we wish to find Rt

rαβ for all α, β. Apply (12.82)
to first calculate the normalised components:

Rt̂
r̂|α̂β̂| e

α̂ ∧ eβ̂ = ∇∧ Γ t̂
r̂ + zero terms

= eα∂α ∧
[
∂r

(|κ|1/2
)|κ|1/2 et

]
= 2M

r3
sgn κ et̂ ∧ er̂, (12.90)

and this implies that Rt̂
r̂t̂r̂ = 2M

r3
sgn κ as we saw earlier in (12.73), along

with Rt̂
r̂r̂t̂ = −Rt̂

r̂t̂r̂. Finally, (12.73) converts between the two bases:

Rt
rtr =

Rt̂
r̂t̂r̂

|et| |er| |et| |er| =
Rt̂

r̂t̂r̂√|gttg
rrgttgrr| = 2M

r3κ
. (12.91)

And, of course, all of the other Riemann components are now easily found
because the hard work has all been done in calculating the Γ α̂

β̂ . The Car-
tan approach shows how orthonormal bases are very useful in simplifying
the calculations of differential geometry, along with their use in interpreting
measurements in general relativity.

12.8 The Variational Approach to Einstein’s Equation

Einstein originally postulated his field equation (12.45), that governs how
spacetime curvature is produced by matter, by considering what the most
reasonable tensors describing these quantities might be. In fact, at about the
same time that these ideas were publicised, and building on Einstein’s earlier
work, Hilbert derived the field equation quite differently by way of a varia-
tional approach. We’ll describe that approach in this section. The usefulness
of Hilbert’s method lies in its opening the door to other theories of gravity,
still based on Einstein’s but governed by different field equations. These al-
ternative theories still drive experiments today. Even so, Einstein’s equation
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is possibly the simplest that can result from a variational approach, and as
yet no experimental evidence has decided against it in favour of competing,
but more complex, field equations.

For simplicity, begin by considering an empty universe; later we’ll add a
term to the lagrangian to incorporate any other fields present. It’s easy to see
the elegance of Hilbert’s approach immediately, because the lagrangian den-
sity that produces Einstein’s equation is just the Ricci curvature multiplied
by a factor related to the metric:

L = R
√−g . (12.92)

The use of the Ricci scalar is elegant, but before we focus on it, let’s examine
why the extra factor of

√−g must be present. In order to have a fully covariant
lagrangian, we must ensure that the correct integration measure has been
included. This is not simply d4x ≡ dx0 . . . dx3 for any coordinates xα; there
will need to be a scale factor derived from the metric, since it is the metric that
defines the notion of a volume. We calculated this measure when studying
tensors, finding in (8.165) that the correct measure in primed coordinates as
compared with unprimed coordinates is

dx0 . . . dx3 ←→
√

g′/g dx0′
. . . dx3′

, (12.93)

where g, g′ are the metric determinants. We know that the left-hand side
of (12.93) is the correct spacetime volume for a locally inertial observer, whose
metric is that of Minkowski space: gαβ = ηαβ = ηtt(1,−1,−1,−1). In that
case, g = −1 and the right-hand side of (12.93) becomes the correct volume
for an arbitrary observer:

√−g′ dx0′
. . . dx3′

. We’ll drop the primes on the
indices from now on.

Returning to Hilbert’s approach, let’s see how Einstein’s equation results
from varying the Hilbert action S with respect to the metric,

S =
∫

4-volume

R
√−g d4x , (12.94)

where the constraint on the boundary 3-surface is that variations in the metric
and its first derivatives go to zero there. That is, δgαβ = 0 = δΓα

βγ on the
boundary. (The factor of

√−g is so commonplace in variational calculations
that it’s often absorbed into the rest of the integrand, which is then written
in a Gothic font in some texts.)

The approach we’ll take is to set the action variation δS to zero, as was
described in Sect. 10.3.2. But because the lagrangian is a very complicated
function of the metric and its first and second derivatives, we’ll follow a
different line than the usual Lagrange equation approach of calculating lots
of partial derivatives, and instead will break the Ricci scalar and volume
element up into more manageable units. Begin with
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δS =
∫

δ
(
R
√−g

)
d4x =

∫
δ
(
gαβ Rαβ

√−g
)
d4x

=
∫ [

δgαβ Rαβ

√−g + gαβ δRαβ

√−g + R δ
√−g

]
d4x . (12.95)

Our strategy is to bring the metric variation δgαβ outside the brackets, just
as was done in (10.24). It will need to be factored out of each of the three
terms in the brackets of (12.95).

The first term in the brackets of (12.95) already has δgαβ present
and so needs no further attention. The second term in the brackets
of (12.95) includes a variation in the Ricci tensor, defined in (9.122) as

Rαβ = Rλ
αλβ

(9.89) −Γλ
αλ,β − Γµ

αλ Γλ
βµ . (12.96)

A first-order variation in the Ricci tensor is then

δRαβ = −δΓλ
αλ,β − δΓµ

αλ Γλ
βµ− Γµ

αλ δΓλ
βµ , (12.97)

remembering that, as in (10.28), we need not include parentheses in the first
term on the right-hand side of (12.97), because an expression such as δΓλ

αλ,β

is unambiguous. Further tensor analysis will be easier if we convert the com-
mas of that first term to semicolons by including Christoffel symbols in the
usual way. But that can only be done if δΓλ

αλ is a tensor. In fact, it certainly
is a tensor, as can be shown by starting with (8.195) and varying the met-
ric as gµν → gµν + δgµν . Omitting the indices in (8.195) suffices to prove the
point:

Γ = ΛΛ + ΛΛΛ Γ ′ ,
Γ + δΓ = ΛΛ + ΛΛΛ (Γ ′ + δΓ ′) , (12.98)

where the indices are the same in both expressions, and the term ΛΛΛ Γ ′ is
the normal tensor transformation term. A subtraction then ensures that only
the last term,

δΓ = ΛΛΛ δΓ ′ , (12.99)

survives, which means δΓ transforms in the way required of a tensor. So it
certainly is a tensor. It follows that we’re able to write

δΓλ
αλ;β = δΓλ

αλ,β + Γλ
µβ δΓµ

αλ − Γµ
αβ δΓλ

µλ − Γµ
λβ δΓλ

αµ . (12.100)

The last term here vanishes due to the symmetry of its first Christoffel sym-
bol’s lower indices. What remains gives an expression for δΓλ

αλ,β , and on
substituting this into (12.97), nearly everything cancels to give

δRαβ = δΓλ
αβ;λ . (12.101)
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With hindsight, this bulk cancellation is quite reasonable. Because δRαβ is
a tensor (using the same argument as was done for the Christoffel varia-
tions δΓ ), we are free to calculate (12.97) in any coordinates. Specifically,
choose ones in which the Christoffel symbols vanish at the point of interest,
so that in these coordinates δRαβ = δΓλ

αβ,λ . This can then be generalised
to any other coordinate system by changing the comma to a semicolon to
give (12.101).

Finally, the second term in (12.95) is (incorporating a β ↔ λ swap in the
following brackets for readability)

gαβ δRαβ

√−g =
√−g

[
gαβ δΓλ

αβ − gαλ δΓ β
αβ

]
;λ

≡ √−g Aλ
;λ (12.102)

for some Aλ. Although the metric variation δgαβ has not been brought out-
side the brackets, we’ll have no need to do so, since the last expression
in (12.102) is a four-dimensional divergence, and so can be integrated via
the four-dimensional version of Gauss’s theorem:∫

4-volume

Aλ
;λ

√−g d4x =
∫

3-surface

Aλnλ

√−g d3x , (12.103)

where again proper measures are used, and nλ is a unit normal of the
3-surface.

This four-dimensional Gauss theorem is not the same as the generalised
Stokes–Gauss theorem in Sect. 8.10, which would integrate a trivector—a
3-index antisymmetric tensor—over the 3-surface, along with its exterior
derivative over the enclosed 4-volume.

But remember that the Christoffel variations (making up Aλ) are stipulated
to vanish on the 3-surface, which means that the right-hand side of (12.103)
vanishes. Hence the second term of (12.95) is zero.

Last, focus on the third term in the brackets of (12.95), where
√−g

is varied with respect to gαβ . Because
√−g is just a function of the metric

but not the metric’s derivatives, this variation is relatively easy, since we can
just make use of partial derivatives by writing the analogue of (10.26) as

δ
√−g

δgαβ
=

∂
√−g

∂gαβ
. (12.104)

The differentiation is accomplished with the aid of results derived in Chap. 8.
There, in (8.221), we found that

∂g

∂gαβ

= g gαβ , and
∂g

∂gαβ
= −g gαβ . (12.105)

Using (12.104) and (12.105), the third term of the action variation inte-
grand (12.95) becomes
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R δ
√−g = −R

2

√−g gαβ δgαβ . (12.106)

Now the three bracketed terms of (12.95) can be gathered together. The
first required no work on our part because the metric variation was already
present. The second term integrated to zero back in (12.102) and (12.103),
while the third term is in (12.106). Putting it all together,

δS =
∫ (

Rαβ − R

2
gαβ

)
δgαβ √−g d4x

=
∫

Gαβ δgαβ √−g d4x . (12.107)

Requiring δS = 0 for all metric variations δgαβ that go smoothly to zero at
the boundary thus produces

Gαβ = 0 , (12.108)

which is exactly Einstein’s equation describing the curved spacetime of an
empty universe! This has resulted from varying what is perhaps the most
rendered-down description of curvature: the Ricci scalar.

A comment about the notation is needed here in the same vein as was
discussed earlier on p. 395. Because the beginning and end of our variational
calculation are written as

δS =
∫

δ
(
R
√−g

)
d4x = · · · =

∫
Gαβ δgαβ√−g d4x , (12.109)

a convention has arisen that equates the integrands to give

δ
(
R
√−g

)
= Gαβ δgαβ√−g (summation implied), (12.110)

and even “divides” by δgαβ to give

δ (R
√−g )

δgαβ
= Gαβ

√−g , (12.111)

which has no summation, but is still covariant. But always remember that
these expressions are rather like identities involving the Dirac delta function:
they always presuppose an integration to be done wherein the boundary terms
will disappear, such as occurred with (12.102) and (12.103). Only in this sense
can they be considered as equalities. Notice how useful the tensor notation
is here. By “dividing” each side of (12.110) by δgαβ and ignoring the implied
summation, the result (12.111) holds, even though it contains no sum. We
saw this previously, in the discussion just after (9.104).

12.8.1 Adding Extra Field Terms to the Lagrangian Density

What results if further fields are added to the lagrangian density in (12.94)?
We saw this idea in Chap. 10 when discussing field theories, and we can do the
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L =
R

16π
(spacetime) + Lm (all other fields)

No free fields:
all involve metric

Vary gαβ → empty spacetime
(Schwarzschild metric)

Vary field → gravity affects field:
modified Lagrange eqns (12.117)–(12.119)

Vary gαβ → field affects spacetime:
Einstein equation (12.114)

Fig. 12.8. Adding extra terms Lm to the Hilbert lagrangian density. Varying the
metric determines how the fields affect spacetime. Conversely, varying each field
determines how curved spacetime affects that field.

same for gravity to investigate how something like an electromagnetic field
might behave in a curved spacetime. Because we’re now dealing solely with
fields, the added terms will be density terms, so that for example incorporat-
ing an electromagnetic field necessitates including −ε0F

2/4 as opposed to the
integral of this that appeared in Fig. 10.7. A map of the process of adding
a new term is shown in Fig. 12.8. With hindsight, to produce the correct
field equations, while keeping the established weightings for lagrangian terms
describing other fields, requires that the newcomer R be scaled by 1/(16π).
Suppose then that all other matter/field contributions are described by a
lagrangian density Lm, so that the new action is

S =
∫ (

R

16π
+ Lm

)√−g d4x . (12.112)

The variation of this is

δS =
∫ (

1

16π
Gαβ δgαβ√−g + δ

(Lm

√−g
))

d4x

=
∫ (

Gαβ

16π
+

1√−g

δ (Lm
√−g )

δgαβ

)
δgαβ√−g d4x , (12.113)

where the variation of the matter lagrangian might well require some work
dealing with a forest of indices, as we’ll soon see in Sect. 12.8.3. Demanding
that δS vanish for all metric variations δgαβ produces the field equation

Gαβ =
−16π√−g

δ (Lm
√−g )

δgαβ
. (12.114)
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Comparing this with Einstein’s original form, Gαβ = 8πTαβ , suggests that
corresponding to the extra matter/field lagrangian density, there is a new
stress–energy tensor defined as

Tαβ ≡ −2√−g

δ (Lm
√−g )

δgαβ
. (12.115)

So this lagrangian approach enables a stress–energy tensor to be calculated for
more than just a perfect fluid. We are free to include terms in the lagrangian
density for other fields, and by coupling them to spacetime, new models can
be produced of how gravity might interact with those fields.

The stress–energy tensor is not confined to general relativity, and in fact
the canonical energy–momentum tensor is defined using the lagrangian
for a field in the classical mechanics of flat spacetime, which we did in
Sect. 10.3.6. (The names stress–energy and energy–momentum are inter-
changeable.) But the canonical stress–energy tensor is not related to the one
defined in (12.115). The canonical tensor is not guaranteed to be symmetri-
cal, and this causes problems in its implementation. Comparisons between
both tensors, along with prescriptions for symmetrising the canonical one,
are guided by experiments and can be found in the literature.

Determining how the new field affects spacetime means finding the resulting
metric, which requires solving (12.114). Conversely, how does spacetime af-
fect the field? Varying the field just follows the same procedure we used in
Sect. 10.3.5 for a field in flat spacetime. Now, however, in general coordinates
we must use the correct volume element:

S =
∫

L (φ, φ,α)
√−g d4x . (12.116)

What is being varied is not L but L√−g, and so the Lagrange equa-
tion (10.59) becomes

∂ (L√−g )
∂φ

− ∂α

∂ (L√−g )
∂φ,α

= 0 . (12.117)

Here, φ can be any tensor field (i.e. it may contain indices). Since
√−g is

independent of φ and φ,α, we can divide (12.117) by
√−g to get

∂L
∂φ

− 1√−g
∂α

(√−g
∂L

∂φ,α

)
= 0 . (12.118)

This can be made to resemble (12.117) by using the notation Dαf ≡ f;α for
any f , which we first met in (8.229), and then referring to (8.212) to write
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∂L
∂φ

− Dα

∂L
∂φ,α

= 0 . (12.119)

Any of (12.117)–(12.119) is the spacetime generalisation of the flat-space
cartesian lagrangian (10.59). So general coordinates require modifying (10.59)
with either L → L√−g (12.117), or ∂α → Dα (12.119) (but not both!). And,
of course, since the Ricci scalar doesn’t contain the field of interest, we can
replace L in these equations by Lm.

Note that common usage denotes our Dαf by ∇αf . The ∇ symbol is quite
overloaded with different meanings in relativity texts, and we won’t use it
that way. Since we have already written a vector operator ∇ = eα∂α several
chapters back, it must follow that its αth covariant component ∇α is just ∂α

for us. In that case, it’s more reasonable to refrain from giving ∇α any
additional meaning. Instead, define Dαf ≡ f;α since this recalls two things:
first, the D of (9.102), which is common notation both in this book and
elsewhere; and second, the covariant derivative D of gauge theory, defined
in (10.188) and probably universally used.

Generally, the field φ is specified as minimally coupled to gravity, meaning
that its lagrangian has no curvature terms such as R φαφα. Including terms
like this that contain curvature make the field nonminimally coupled. Such
terms are excluded by the Equivalence Principle, but can certainly be in-
cluded in the lagrangian in a search for new physics.

12.8.2 Adding a Simple Field: The Cosmological Constant

Consider the simplest example of an extra term, Lm, which when added to the
lagrangian density produces a new physical model. In newtonian dynamics,
we cannot know of the possible existence of a spatially constant potential
field pervading all of space because such a field can produce no force—since
the force equals the rate of loss of field potential energy with distance, which
is zero for such a field.

But the situation turns out to be different in a curved spacetime. Add
a constant term conventionally called −Λ/(8π) to the lagrangian density,
where Λ is the cosmological constant, and ask whether it can have any effect
on spacetime. That is, set Lm = −Λ/(8π) in (12.115). Taking the metric
variation from (12.106) (i.e. just ignore R in that equation), we are easily
able to calculate the stress–energy tensor (times 8π for convenience):

8πTαβ =
−16π√−g

· −Λ

8π
· δ

√−g

δgαβ

(12.106) −Λgαβ , (12.120)

so that Einstein’s field equation becomes

Gαβ + Λgαβ = 0 . (12.121)
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In general relativity, a constant potential really does change the spacetime
physics by unevenly “stretching” the spacetime manifold, and this manifests
as a force. We saw a similar idea back in Sect. 7.4 when discussing accelerated
frames and gauge theory.

Whether there really is any such field Λ in the universe is difficult to
ascertain. Current observational evidence based on supernovae and the cos-
mic microwave background radiation suggests that in fact there is, and that
Λ � 10−34 s−2. It turns out that this might well account for as much as 70%
of the universe’s energy content.

Einstein originally added the Λgαβ term explicitly to his field equation so
as to produce the current model of the universe at that time: a static one. This
was good physics—he was constructing a theory based on current ideas that
were at least partly rooted in measurements, thereby keeping his feet on the
ground. But in the early part of the twentieth century, very large telescopes
with good cameras were beginning to peer ever deeper into the heavens, and
subsequent astronomical observations presented new evidence for a nonstatic
universe. Given those observations, the cosmological constant was no longer
necessary, and Einstein retracted it—again good physics, despite his wish
that he’d never included it in the first place. (Einstein used sound logic all
the way, but because he regretted ever including it, many books still persist
in describing it as an infamous error on his part.)

But it appears that Λ may well be there after all, and there is certainly
no real argument for why it should be exactly zero. In the end, there was no
absolute reason to retract it, since a lagrangian approach implies that a con-
stant potential is just one of many terms that could be present in Einstein’s
field equation, depending on what is included in the lagrangian.

12.8.3 Joining Electromagnetism to Gravity

We finish this discussion of lagrangians with a more concrete example: cou-
pling the electromagnetic field to a curved spacetime, as shown in Fig. 12.9.
The standard electromagnetic lagrangian density −ε0F

2/4 from (10.103) is
used, although it’s quite usual to absorb the ε0 into the F 2, and we’ll follow
suit. Also included is a term that adds mass to the carrier of the electromag-
netic field, referred to as a massive photon. (We’ll see why later.)

There is no need to vary the lagrangian with respect to the metric to
give Einstein’s equation, since we have already done that in all generality
to produce (12.114). Equivalently, we can calculate the stress–energy ten-
sor from (12.115) and use this in the alternative form of Einstein’s equa-
tion (12.43). As well, varying the lagrangian with respect to Aµ gives the
modified version of Maxwell’s equations. Without giving every detail, let’s
see how it all comes together.

The total lagrangian is shown in Fig. 12.9, in which case

Lm = −F 2

4
+ 1

2
m2AαAα . (12.122)
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L =
R

16π
(spacetime) − F 2

4
+

1

2
m2AαAα

No free fields:
all involve metric

Vary gαβ → empty spacetime
(Schwarzschild metric)

Vary Aα → gravity affects EM field:
(12.117)–(12.119) =⇒ Proca equations

Vary gαβ → EM field affects spacetime:
(12.114) =⇒ Reissner–Nordstrøm metric

Fig. 12.9. An example of placing an electromagnetic field with a “massive photon”
into a curved spacetime. Conventional electromagnetism would set m = 0. The re-
sulting Reissner–Nordstrøm metric can be interpreted as describing a charged black
hole, while the presence of the mass coupling m modifies the Maxwell equations to
produce the Proca equations, which themselves become modified by the presence of
gravity.

This will provide the stress–energy tensor, giving Einstein’s equation that
establishes the metric, as well as being used in Lagrange’s equation establish-
ing the electromagnetic field Aµ. Start with the stress–energy tensor (12.115),
writing

δ
(Lm

√−g
)

= δLm

√−g + Lm δ
√−g . (12.123)

We saw earlier in (12.106) that δ
√−g = −1

2

√−g gαβ δgαβ . Now write the
lagrangian with all metric terms made explicit:

Lm = −1

4
Fµν Fαβ gµαgνβ + 1

2
m2AµAα gµα , (12.124)

from which it follows that

δLm = −1

4
Fµν Fαβ

(
δgµα gνβ + gµα δgνβ

)
+ 1

2
m2AµAα δgµα. (12.125)

This combines with the expression for δ
√−g a few lines up to give δ (Lm

√−g )
in (12.123). With some index relabelling, we can single out a factor of δgµν

and divide by it, while remembering the discussion on p. 515 about this
division. Finally, the stress–energy tensor becomes

Tαβ = 1

2
gαβ

(
−F 2

2
+ m2AµAµ

)
+ FαµFβ

µ − m2AαAβ . (12.126)

Contracting this gives T , and Einstein’s equation (12.43) becomes
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Rαβ = 8π
(
−F 2

4
gαβ + Fαµ Fβ

µ + m2AαAβ

)
. (12.127)

Next, we need the Lagrange equation for the electromagnetic field Aα.
Use (12.119):

∂L
∂Aα

− Dµ

∂Lm

∂Aα,µ
= 0 . (12.128)

The lagrangian density Lm must be written in terms of Aα and Aα,β to allow
the partial differentiations to be done. Note that not only does the simple
expression

∂Bα

∂Bµ
= δα

µ = gα
µ (12.129)

hold for any vector Bα, but also more general expressions hold with the
appropriate metric indices raised or lowered, such as

∂Bα

∂Bµ
=

∂

∂Bµ
(gανBν) = gαν δµ

ν = gαµ ,

∂Bα,β

∂Bµ,ν
=

∂

∂Bµ,ν

(
gα� gβσB�,σ

)
= gαµ gβν , (12.130)

and the same rules apply quite generally to tensors with any number of
components, with or without commas or semicolons. This allows the dif-
ferentiations of (12.128) to be done, and after some tidying the result is
the curved spacetime version of the Proca equations, themselves being the
massive-photon equivalent of the Maxwell equations:

Fαβ
;β − m2Aα = 0 . (12.131)

Compare this with (10.110), which, with jβ = 0, gives the source-free form of
the classical Maxwell equations: Fαβ

,β = 0. Besides the mass term in (12.131),
the comma for the Minkowski metric has become a semicolon as expected,
embodying the Equivalence Principle.

Equations (12.127) and (12.131) govern the entire system of gravity plus
electromagnetic field. Solving them is complicated, and we’ll only write the
solution for two regimes. As in the Schwarzschild case, impose spherical sym-
metry and begin with a metric of the form (12.47) for the two unknown
functions a(r), b(r). The semicolon in (12.131) is converted to a comma by
way of the ever-useful (8.213), using

√−g =
√

ab r2 sin θ. We’ll also suppose
the electromagnetic field is static, meaning that it consists only of a time-
independent potential Φ. Skipping over the details, we quote solutions for the
metric and Φ in two special regimes.
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Solution for m = 0 and Spherical Symmetry. As with the Schwarzschild case,
the integrations involved here not only introduce a constant M that’s inter-
preted as a mass, but also a constant Q interpreted as a charge associated
with that mass:

dτ2 =
(

1 − 2M

r
+ Q2

r2

)
dt2 −

(
1 − 2M

r
+ Q2

r2

)−1

dr2 − r2
(
dθ2 + sin2 θ dφ2

)
,

(12.132)
and

Φ =
(

1 − 2M

r
+ Q2

r2

)−1
Q

4πε0 r
. (12.133)

This solution is interpreted as describing a static charged black hole. Equa-
tion (12.132) is called the Reissner–Nordstrøm metric.

Solution for r → ∞ and Spherical Symmetry. A simplifying condition when
m 	= 0 is to consider large r, where the metric tends toward the Minkowski
form. The electric potential becomes

Φ → Q

4πε0 r
e−mr. (12.134)

That exponential decay over distance suppresses the electrostatic force for
large m, in the same way as the Yukawa potential that describes the strong
force between nucleons. The term “massive photon” actually arises in field
theory when the Proca equations are quantised, but we can already see here
an indication that m will be the mass of the virtual photons that mediate
the Proca field.

Motion of a Charge Placed in the Spacetime. Finally, what is the equation of
motion of a charge q moving in this massive electromagnetic field in curved
spacetime? Rather than add more terms to the lagrangian and re-invent the
wheel, we can just use the result of (10.101):

Dpα

dτ
= quβFαβ . (12.135)

Needed for this are the metric to calculate the covariant derivative, and the
electromagnetic field Aα to calculate the Faraday tensor. And, at least for
the two limiting cases above, we have them both.

As a side note about the notation, an equation such as (12.135) could be
written without indices by first contracting each side with eα and then
remembering (9.103). If bold symbols stand for general tensors and a dot
product is just a contraction over neighbouring indices, the result becomes

dp

dτ
= −qu·F , (12.136)
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where the minus sign arose because we needed to swap the indices of the
antisymmetric Faraday tensor to get like indices to be neighbours. This is
fine, although we should not mistake p for its 3-space counterpart! A safe bet
is to write all tensors in bold as we have done, and carefully distinguish any
3-space counterparts if they’re used. But although an equation like (12.136)
might look to be more index free than (12.135), this is partly an illusion.
After all, (12.135) holds in all coordinate systems, so in a sense it is already
index free.

12.8.4 Path Integrals in General Relativity

In Sect. 10.8, we discussed the path-integral idea, which views the amplitude
for a particle to travel from one point to another as a sum of amplitudes over
all possible (and impossible!) paths in spacetime, and where each amplitude
is given by a complex exponential of the action for that path. This idea has
also been applied to the lagrangian approach to general relativity, although
the result is certainly not in keeping with Ockham’s Razor.

To illustrate the idea, imagine an infinite number of spacetimes, each
with different curvature characteristics. Ascribe to each spacetime an am-
plitude exp iS/�, where the action S is calculated by integrating the Ricci
scalar plus some matter lagrangian Lm over the spacetime from (12.112). In
the path-integral approach, the spacetime that is actually realised in a quan-
tum mechanical sense is the one around which the action is stationary, and
this is the one that Einstein’s equation actually describes—that is, ours.

Nevertheless, anything to which an action principle applies can also be
described in this quantum mechanical way of multiple systems, so although
the idea is useful in quantum mechanics, whether it’s meaningful when ap-
plied to larger systems such as the universe is unknown. Such an application
is also fraught with difficulty since it’s not clear that any experiments can be
done, and without these the subject does not have a solid footing.

The idea of summing over an infinity of spacetimes is not the same thing as
the Many Histories interpretation of quantum mechanics. The Many Histories
approach comes in many flavours, but generally is a way of stating that when
the wave function of, e.g., a two-state quantum system “collapses” with a
0.6–0.4 probability, what has really happened is that there are a multitude
of universes, in 60% of which the system is forced into one of the states upon
a measurement, and in 40% the system is forced into the other. This idea is
not in keeping with Ockham’s Razor either, and in no way does it explain
why the collapse of the wave function appears to be probabilistic in the first
place.
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12.9 A Metric for the Universe: Proper Distances
in Cosmology

We end this chapter with some remarks about cosmological metrics and how
they find a use in portraying our universe. Just as the Schwarzschild metric
is an especially basic solution to Einstein’s equation, being determined by a
zero stress–energy tensor and spherical symmetry, another basic solution is
the metric approximately describing the geometry of the universe as a whole.
This, the Friedmann–Robertson–Walker, or FRW, metric, is calculated in
the same way as the Schwarzschild metric: start with a general metric having
some imposed symmetry, and then consider any interesting form of the stress–
energy tensor, which then determines the metric via Einstein’s equation.

The most important assumption placed on how symmetrical the universe
might be is the Copernican Principle, which postulates that we occupy no
especially privileged position in the cosmos. Another assumption is that of
isotropy at every point: the universe looks the same in all directions, ev-
erywhere. A consequence of this is that the universe must be homogeneous
on a large scale. Of course, it’s not homogeneous on galactic scales, but the
FRW metric takes a far larger view that smoothens over the “small” matter
peaks that comprise galaxies.

In this view, each galaxy is a coordinate marker; we are at r = 0, while
every other galaxy lies at some constant r, θ, φ by definition of those coordi-
nates. And what of the time coordinate? Could we construct one as was done
for the accelerated frame in Chap. 7? There, in Fig. 7.6, we made use of the
global simultaneity that could still be defined for the case of uniform accel-
eration, to define the time everywhere as being that which was simultaneous
with the time shown on a primary observer’s clock. But the universe does not
have such a global standard of simultaneity based on special relativity, so we
cannot define a time as being the same everywhere “now”. Instead, the time
coordinate t for the FRW metric is defined at each event as the proper time
of the galaxy that, in principle, is present at that event. This time coordinate
then defines a universal measure of simultaneity, and isotropy at all points is
postulated to hold at each moment of this time. Using these considerations
to solve Einstein’s equation, the Friedmann–Robertson–Walker metric turns
out to be

dτ2 = dt2 − a2(t)
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θ dφ2

)
, (12.137)

where the positive function a(t) is to be determined, and k ∈ {0,±1} is the
sign of the spatial Ricci scalar Ra

a. Thus, this metric describes three types
of universes:

– those with positive spatial curvature (Ra
a), which, it turns out, must

necessarily be closed,
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– those with zero spatial curvature, which can be closed or open, and
– those with negative spatial curvature, which can also be closed or

open, but are almost always assumed by cosmologists to be necessarily
open.

If the matter content of the universe at large is modelled as a perfect fluid,
then these three spatial geometries correspond to high, borderline, and low
densities of matter, respectively. Modelling the universe in this way and re-
lating density, pressure, curvature, and the function a(t) comprise a large
part of the modern subject of cosmology. We’ll stop here without specifying
any stress–energy tensor; that’s for cosmology texts to explore. Instead we’ll
be content to make some remarks on proper distances as specified by the
FRW metric.

The function a(t) is especially interesting in that it leads to the notion
of what at first appears to be a faster-than-light expansion of the universe.
Let’s examine how this comes about. Remember from Sect. 12.5 that the
spatial part of any metric gives the proper, or physical, distance squared, d�2,
between two simultaneous events. For the FRW metric, this is

d�2 = a2(t)
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θ dφ2

)
︸ ︷︷ ︸

≡ dL2, coordinate separation squared

. (12.138)

In that case,

a(t) =
d�

dL

←− physical separation of galaxies
←− coordinate separation of galaxies.

(12.139)

So a(t) is a ratio of physical to coordinate separations. This ratio also gives a
physical meaning to the radial coordinate. We in the Milky Way Galaxy
are at r = 0. The proper radial distance at time t to a galaxy at some
point (r, θ, φ) is

�(t, r) =
∫ r

0

d� = a(t)
∫ r

0

dr′√
1 − kr′2

≡ a(t) bk(r) . (12.140)

The ratio of proper distances from the Milky Way out to a radial coordinate-
distance r at different times t and t0 is, from (12.140),

�(t, r)
�(t0, r)

=
a(t)
a(t0)

. (12.141)

Again, we see that a(t) is a scale factor. The FRW metric allows the universe
to be nonstatic. As an example, the proper distances to other galaxies can
be increasing; this defines an expanding universe. We might wish to think of
the expansion rate as manifesting in a recession velocity of those galaxies.
But such an idea needs to be treated thoughtfully. For a galaxy at (t, r), this
velocity is
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v(t, r) ≡ ∂�(t, r)
∂t

= a′(t) bk(r) . (12.142)

The ratio of recession velocity to physical distance, the Hubble parame-
ter H(t), or just H, is of great importance in cosmology in that it helps
quantify cosmological dynamics:

H ≡ v(t, r)
�(t, r)

=
a′(t)
a(t)

. (12.143)

Historically, H was assumed constant and is still called the Hubble constant,
but this is an old term that doesn’t take account of modern cosmological mod-
els. Its value is currently measured at anywhere between 15 and 30 km/s per
megalight-year. Even so, it is very difficult to ascertain whether H is changing,
and a constant H might well describe our universe. Equation (12.143) shows
that its being constant would require a(t) = a0 eHt for some constant a0, and
combined with a spatially flat metric (k = 0), this describes an important
model of the universe called de Sitter space.

Imagine the universe is indeed de Sitter, and calculate the recession
speed of a galaxy at r. Inserting k = 0 into (12.140) gives b0(r) = r, so that
(12.142) becomes

v = Ha0 eHtr . (12.144)
Thus the recession speed v can become arbitrarily large. This might appear
to pose a problem with travel faster than light, but in fact it does not. Al-
though the galaxy’s physical distance from us is growing ever more quickly
without limit, this has nothing to do with the speed of light, which must be
a constant in an inertial frame. The FRW metric does not specify one global
inertial frame. The old picture of the universe as a pudding that expands
while baking is very apt, because it says that while the galaxies (raisins em-
bedded in the pudding) are separating as the pudding expands, they are not
actually moving through the pudding. (Equivalently, in two spatial dimen-
sions, galaxies are sometimes drawn on an expanding balloon whose surface
represents the 2-space. They are separating, but are not moving across the
surface of the balloon.) So both the Milky Way and the distant galaxy are
at rest relative to the local inertial frame of each (the pudding around them,
or the balloon surface). Not only is neither galaxy moving faster than light,
but each is actually at rest in the cosmological frame! It’s only the global
expansion of the “pudding” that separates the galaxies at any large speed,
and there is certainly no problem with that.1

Horizons in Cosmology

Like accelerated frames and black holes, models of the universe can also have
their horizons. To see why, calculate the coordinate velocity of radially moving
1 A very readable paper describing a classroom experiment in galactic recession

using stretching rubber to represent the universe is “Cosmological expansion in
the classroom” by R. Price and E. Grover in the American Journal of Physics,
69, 125–128 (February 2001).
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t

r

now

us

observable universe now

largest universe we’ll ever see

particle horizon now

event horizon
≡ lim

t→∞
particle horizon

Fig. 12.10. Light arriving at Earth from distant regions of a de Sitter universe.
Right “now”, the farthest things we can see define our particle horizon. In de Sitter
space, because light follows worldlines that have vertical asymptotes, there is a
farthest distance beyond which we’ll never see: an event horizon, just as for a black
hole or for an accelerated frame in flat spacetime.

light in the de Sitter metric. Light follows a null geodesic, so setting dτ = 0
in (12.137) gives

dt

dr
= ±a0 eHt. (12.145)

The paths of these light rays are shown in Fig. 12.10. Corresponding to the
present moment, there is a value of r whose light is only now arriving on
Earth. This defines our particle horizon, which for the de Sitter universe
is expanding outward so that we can see deeper and deeper into space as
time passes. However, as shown in Fig. 12.10, the de Sitter metric produces
exponential null curves having vertical asymptotes (12.145). So there is a
maximum value of r at which the light emitted from a galaxy and heading
toward Earth just asymptotes to our t-axis. That light will take forever to
reach us, in which case that value of r denotes an event horizon beyond which
we can never see, and to which the particle horizon will expand outward
asymptotically. So it is that Einstein’s metric description of gravity allows us
to draw spacetime diagrams that aid in picturing the universe in such exotic
ways as were never imagined a century ago.
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With the exponential term in the de Sitter metric reminding us of the
exponential first encountered many chapters back in radioactive decay, this
chapter and the book draw to a close. There is always a feeling of familiarity
when we meet with the same themes and functions in such vastly different
arenas in mathematical physics. Sometimes that signals a deeper common
level, while at other times it might just be due to simplifications that use
concepts such as linearity, gaussians, and first-order differential equations,
although the fact that we can make such simplifications in diverse areas is
itself interesting. To what extent these links across different areas must grow
or weaken as the language of mathematical physics evolves is something that
only time will tell.

Additionally, the question of whether some of the subject’s more complex
notations are really necessary or useful is a difficult one. That two disparate
fields share a common notation might indicate that they are related at a deep
level, but it might not follow that further ideas from one of the fields can then
be applied usefully to the other. The real test is probably the extent to which
the conclusions that we draw are useful. The best conventions interrelate
different fields and make abstract ideas transparent, but even the most gawdy
or abominable notations have their champions who insist that the subject
would be otherwise incomplete.

Still, there are choices in how to write mathematical physics, and the
language does continue to evolve. It has been said that new ideas and fashions
in science are never actually accepted by anyone; rather, the old guard retires,
and the new generation does not know any better. So it is for us to ensure
that the language evolves in an intelligent direction, and not be blown off
course by short-term fashions similar to those that, nowadays more than
ever, wreak havoc on the spoken languages of the world. (Evolution is not
always positive—the current devolution of the English language is proof of
that!)

The great thing about the language of physics is that it has been very
cleverly put together over a long time, slowly but surely, and the result can
sometimes be used to perform magic (and sometimes magic tricks!) that
shows it at its best. Our current language often hints at deep relationships
between concepts, relationships that might resist being pinned down. Can
a level of language ever be attained that converts all possible theorems to
a streamlined series of logical connections, rendering them all more or less
obvious?

Perhaps a deeper level of understanding requires a complete shift in the
way the language is constructed. Systems for calculating and expressing math-
ematical ideas do change slowly, of course. The ancient Egyptians had a way
of dealing with fractions that only allowed unit numerators (the one excep-
tion being 2/3) and no repetition, so that if asked to divide 2 by 5, they would
write the answer as 1/3 + 1/15 (and not 1/5 + 1/5). We who write the answer
as 2/5 might find their way of thinking to be otherworldly, and certainly it’s
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difficult to do arithmetic in this way. It was so difficult for the Egyptians that
they needed to refer to tables of fraction identities that they had discovered
one by one, either by serendipity or else through sheer hard work.

Today we still have our version of those Egyptian tables that recorded
identities used time and again. For us they are tables of integrals, series,
and transforms. Perhaps people of the future who have a completely differ-
ent system of mathematics will wonder why we chose to do things in such
an arduous way as indicated by these tables. But profound improvements in
physics language will never happen for a new generation brought up to rely
upon ever-increasing computing power. Rather, such changes require people
to take the time, and have the time, to think about the very concepts that
the language is designed to portray, elucidate, and weave together at various
levels; and then maybe at some stage a quantum shift in the language and
our understanding of physics will occur. Feynman once posed the question
of whether advances in physics require someone to know all that has gone
before—or nothing that has gone before. It’s a good question, and one for
which he had no answer. But we shouldn’t be afraid to tinker with the lan-
guage of physics if that can further our understanding, and we shouldn’t be
afraid to think about the basics from first principles. Such adventuring is part
and parcel of creating ever finer viewpoints.
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field

energy and momentum 403
minimally coupled 518
need for concept of 388
quantisation of 417–422

field lines, magic of 337
Fisher information 103
Flatlanders’ view of their world 426
flatness 375, 381

indicated by Riemann tensor 381
fluctuation–dissipation 92
flux density 213
flux of vector field 335
fly and train 387–389
Foucault’s pendulum 474
four-vector 219

charge–current density 226
electromagnetic potential 408
energy–momentum 223
four-acceleration 245, 483
four-divergence 403, 425
four-force 484
four-velocity 220, 223
frequency–wavenumber 226–232

Fourier coefficients
hermitian and antihermitian 68

Fourier transform
derived using brackets 52–71
discrete (DFT) 128–140
fast (FFT) 128
inverse DFT 134
sinusoids as preferred basis functions

55
useful identities 57

frame
accelerated 233–269

coordinates for 240–252
cosmological 474, 524
Earth and solar system 155
Earth-centred, Earth-fixed 172
inertial 187

locally inertial 484
momentarily comoving inertial 235
noninertial, measurements in

264–266
orthonormal 309–312, 486, 506–511

free fall, inertial nature of 471
frequency

negative 139
of wave 48
spectra of colliding marbles 58

frequency-to-wavelength spectral
conversion 48

Fresnel integrals 437
functional derivative 395, 515
functional integral 435
functional or generalised function 58
fundamental forms, first and second

355
Fundamental Theorem of Calculus 81

Galilei transform 189
gamma function 109
gauge choices 429
gauge theory 263, 427–432
gauge transform 427

global versus local 429
Gauss map 363
Gauss’s formulae 355
Gauss’s theorem 336, 342

in four dimensions 514
Gauss–Bonnet theorem 382–386
Gauss–Newton algorithm 101
gaussian elimination 8
gaussian integral 87
generalised function or functional 58
generators of evolution and translation

76
geodesic curve 359

and zero four-acceleration 483–484
geodesic deviation 486
geometric algebra 166–170
gimbal lock 180, 181
Golden Ratio 34
Gothic font and

√−g 512
gradient 301

bad notation in Minkowski space
304

physical picture of 390
Gram matrix 25, 320
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Gram–Schmidt algorithm 11
gravitational redshift

from Equivalence Principle 474
from Schwarzschild metric 498

gravity joined to electromagnetism
519

gravity of spherical shell related to
median and absolute deviation
84

Green function 445–448
for d’Alembertian 462–466
for ∇2 449–450

Green’s theorem 341
groups

abelian and Lie 431
guitar string

lagrangian density for 400–401
modes of 418
quantising 419–421

gyroscope used in autopilot 180

Hafele–Keating experiment 500
half life 106
Hamilton’s Principle 396
hamiltonian 73, 399

relation to energy 399, 429
handedness of vectors 21
Hausdorff–Banach–Tarski theorem 3
heat as synonymous with entropy 114
heat flow 48
Heisenberg picture of wave function

evolution 66
Heisenberg Uncertainty Principle 59
hermite polynomials 420
hermitian operators 43–47, 61

in quantum mechanics 45
hessian matrix 305
Hestenes, David 167
histograms and bar graphs 77–82
horizon

event
cosmological 527
in accelerated frame 252, 262
of black hole 501, 501–506

particle 527
Hubble parameter 526
hyperbolic geometry 204

incoherence of waves 91

independent variables 102
indices

Greek versus Latin 4, 281
raising and lowering 290

inertial differentiation 156
inner product 11
interval in relativity 201

and Clock Postulate 238
invariance and covariance, distinction

between 280
inverse-square force

and orbital stability 498
recovered from Schwarzschild 497

jacobian determinant 318
jacobian matrix 228

for Lorentz transform 227–230
Jordan’s lemma 450

k-calculus 199
Kepler’s second law 311
Killing vector 489
Kirchhoff’s laws 48
Klein–Gordon equation 421
Kruskal–Szekeres coordinates and

metric 501

Lagrange multipliers 365–368
Lagrange polynomial 133
Lagrange’s equation 395
lagrangian density 400

of gravitational field 405–407
of guitar string 400–401
of relativistic charge in EM field

407–415
via gauge invariance 431

lagrangian formalism 391–402
gives rise to curved spacetime

478–483
justification for 397
lagrangian of a scenario 395
prime importance of 398

lagrangian related to proper time 404
least action principle 391
least squares analysis 93–103
Levi-Civita symbol 18, 343

in general coordinates 322
likelihood 95, 104

regularity condition 104



536 Index

line element 201
line integral 340
linear algebra overview 8–12
linear differential equations 35

solving 445
link power budget in communication

121
local flatness misnomer 485
locally inertial observers and frames

484–485
logarithms 119–122

and prime numbers 121
bar notation 120
for classical entropy 116
for quantum entropy 443

Lorentz force 7, 410
Lorentz transform 187–196

in arbitrary direction 204
lack of synchronicity 190, 233
length contraction 190
space and time symmetry 195
spinor approach 196
time dilation 189

derived via radar 197
lorentzian geometry 204

Mach’s Principle 473
macrostate 114
magnitude

acoustic 119
apparent stellar 119

Many Histories interpretation of
quantum mechanics 523

mass
gravitational 389
inertial 389
longitudinal 209, 210
relativistic 208
rest 208
transverse 209

massive photon 519
matrix

adjugate of 330
and operator properties 45
block multiplication of 31
covariance 102, 100–105
for arbitrary rotation 151–154
hermitian 45
hermitian conjugate of 44

orthogonal 39, 45

pseudo inverse of 99

row operations 10

symmetric 45

unitary 45

Maxwell distribution 90

Maxwell’s equations

adding dissipative term 463

equivalent to shifting contour 469

from lagrangian 407–415

relation to Arrow of Time 470

retarded and advanced solutions
466–469

written covariantly in Lorenz gauge
461

written with geometric product 168

Maxwell’s gears IX

Maxwell–Boltzmann statistics 418

MCIF see frame, momentarily
comoving inertial

mean lifetime of decay 110–114

mean of data 82–89

arithmetic and geometric 85

moving, related to convolution 124

Measurement Problem 440

and Copenhagen Interpretation 441

median of data 84

Mertz, Barbara VIII

metric 39, 201

Friedmann–Robertson–Walker
(FRW) 524

FRW scale factor 525

Minkowski 202

physical meaning of spatial part
496

quadratic form for spacetime 481

Reissner–Nordstrøm 520, 522

riemannian, pseudo-riemannian
481

Rindler (uniformly accelerated
observer) 250–251

Schwarzschild 496

signature 202, 423, 507

metric tensor 282, 281–294

versus metric matrix 25, 296

microstate 114

Miller indices 14

Minkowski dot product 304
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minor 19
modes of guitar string 70
moment of inertia 36
momentarily comoving inertial frame

and observer 235
momentum

canonical or generalised 76, 398
canonical versus elementary in

quantum mechanics 416
elementary 398

momentum kets and plane waves 73
Mössbauer Effect 474
multiplicity of microstates 115
multivector 27

Nasr Eddin VII
noise in data 96
noncoordinate basis 309
nonlinear simultaneous equations,

solving 367
norm of vector 282
normal distribution 85–89
Nöther’s theorem 398, 398–403

charge and current 403
nuclear scattering 142–146
null curves 262
number density 213
number–flux density 221

in Einstein’s equation 491
Nyquist’s theorem 129–131

octonion 167
off shell 225
Ohm’s rule 48
one-form 16, 306

not a covector 232, 308
replaced by vector 307

operators in quantum mechanics
71–76

two sorts of 72
orbital stability 498
orientation 148–151

angle–axis representation 182
confusing with rotation 176–182

Ørsted’s experiments in electromag-
netism 1

orthonormality
of vectors 11

osculating circle and plane 350, 351

outer product 42

paradoxes versus conundrums in special
relativity 189

parallel transport 176, 373–381
partial differentiation and interdepen-

dence of variables 394
particular integral 445
path integrals

in general relativity 523
in quantum mechanics 432–438

Pauli matrices
and quaternions 162
insufficient for Dirac equation 423

perfect fluid 491
phase of a wave 48
phonon of guitar string 420
physical measurements 506–508

and orthonormal frames 309, 486
plane waves 49
Poisson statistics 108
Poisson’s equation 406, 445, 490
position vector 272
potential energy 390
Pound–Rebka–Snider experiments

474–476, 498–499
Poynting vector 169
prime numbers 121
principal axes of inertia 37
principal normal vector 353
principal-part functional 58, 458
principal value of integral 453
prior probability 97
probability density 80
probability per second of decay 112
Proca equations 520, 521
proper quantities in relativity 189,

201, 524
proper vector 219, 232, 272
proper velocity 220
pulse repetition frequency 198

quadratic form 38, 283, 305, 481
quantisations, first and second 421,

424
quantum cosmology 443
quantum electrodynamics (QED) 421
quantum-to-classical transition

434–438
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quaternion
conjugate 165
derived from rotation 158–165
length 165
matrix representatives 165
multiplication 164–165
relation to Pauli matrices 162
used in computer graphics 182–184

quotient theorem of tensors 282

radioactive decay 106–114
random walk 89–92
reciprocal basis and space 15, 16
regression analysis 102–103
relative vector 272
removable discontinuity 450
repetition rate 129
Ricci tensor and scalar 381–382

scalar used in Hilbert’s approach
512

Riemann tensor 371
indicator of flatness 381
symmetries of 371
unlike Stokes’ theorem 380

Rindler wedge 252
rms deviation 82
rotating frames 155
rotation

active and passive 172
algebra for 159
as a vector 155–157
Euler angles 171–182
implementing several 157–158,

173–176
in computer programming 176–184
matrix for 151–154
motivating complex numbers 158
motivating quaternions 158–163

scalar 185
use in deriving Doppler shift 185

Schild’s ladder 376
Schrödinger equation

from path integral 435–437
motivation from lagrangian mechan-

ics 415–417
Schrödinger picture of wave function

evolution 66
Schrödinger’s cat 437

Schwarzschild

radius 501

space as curved surface 504

signal processing 97, 100, 102, 103,
122–140

signed volume 15, 21

similar matrices 29

simultaneity

in accelerated frames 243–247,
474–476

in Schwarzschild spacetime 503

in special relativity 243–247

singularity theorems of general
relativity 503

slerp (spherical linear interpolation)
184

small circle on a sphere 357

smoothening and convolution 124–128

solid angle 145

spacetime 202

hyperbolic geometry of 202–204

Minkowski 252

more than space–time 200

orthogonal axes 203

Rindler 252, 481

Schwarzschild

horizon has no curvature divergence
508

metric of 496

singularity in 508

special orthogonal group 151

special relativity

built from light versus sound 186

energy and momentum in 206–211

force in 208

postulates of 186–187, 235

seeing versus observing 194, 199,
260

sufficient for accelerated frames 234

sphere map 363

spherical harmonics 53, 54

spherical linear interpolation (slerp)
184

spherical polar coordinates 274

laplacian in 332

spinors and rotation 163

square-integrable function 54

standard deviation 82–89



Index 539

n or n−1 in denominator 86
used in wave theory 60

state ket 46
stationary phase, method of 436
statistic 86
step function 465
stochastic model 92
Stokes’ theorem 336, 341
stress–energy tensor 491–494
synchrotron radiation 246

tangent vector 274
Taylor’s theorem 304
temperature 114–117

relation to entropy 116
tensor

components and physical measure-
ments 506–508

generalisation of vectors 282
with arbitrary indices 292

test function 58
tetrad 506
Theorema Egregium 369–372, 481
Thomson model of atom 142
tidal force 487
time constant 110
torque 37
triangle inequality 451
triangulation of a surface 384
Twin Conundrum 252–263, 266–269

and Hafele–Keating experiment 500
general relativity not needed 481
seen from inertial frame 258
seen from noninertial frame 260
ubiquity of, in everyday world 483

Type 1 and 2 errors in statistics 95

uncorrelated variables 101

vacuum spacetime 495
variance of data 83
variational calculus 392

using delta function 396
variational principle 391

for a field 401
used to derive Einstein’s equation

511
vector operators in tensor notation

322–335
cross product 320
curl 333
divergence 323–332
gradient 301–303
laplacian 332

vector potential, electromagnetic 390
vector terminology 291, 293

arrows versus operators 277
notation for position versus proper

355
orthogonality and orthonormality

11
polar and axial 410
units and depiction 50

velocity space 90
vierbein 506

wave function evolution 65–71
wavelength 49–51
wavelets 140
wavenumber 48

positive and negative 67
wedge product 26

and determinants 25–28
relation to tensor product 296
use in geometric algebra 169

Weingarten, equations of 364
Wiener process 92
work done on a charge 411
worldline 198

timelike and spacelike 502
wormhole 504

Yukawa potential 522

z-transform 122–127
zero-point energy of guitar string

420–421
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