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Preface

This is just...entropy,
he said, thinking that

this explained everything,
and he repeated the

strange word a few times.
Karel Čapek1, “Krakatit”

This “strange word” denotes one of the most basic quantities of the physics of
heat phenomena, that is, of thermodynamics. Although the concept of entropy
did indeed originate in thermodynamics, it later became clear that it was a more
universal concept, of fundamental significance for chemistry and biology, as well
as physics.

Although the concept of energy is usually considered more important and
easier to grasp, it turns out, as we shall see, that the idea of entropy is just as
substantial—and moreover not all that complicated. We can compute or measure
the quantity of energy contained in this sheet of paper, and the same is true
of its entropy. Furthermore, entropy has remarkable properties. Our galaxy, the
solar system, and the biosphere all take their being from entropy, as a result of its
transference to the surrounding medium. There is a surprising connection between
entropy and information, that is, the total intelligence communicated by a message.
All of this is expounded in the present book, thereby conveying information to the
reader and decreasing his entropy; but it is up to the reader to decide how valuable
this information might be.

The second half of the 20th century is notable for the creation and devel-
opment of complex areas of science of the greatest importance not only for the
natural sciences and technology, but also for the humanities. Such are cybernetics,
information theory, and synergetics. Although these terms did not exist fifty years
ago2, they now turn up constantly. In all three of these disciplines the concepts of
entropy and information are absolutely indispensable, so that without them it is
not possible to grasp the true essence of modern science. The final chapters of the

1Karel Čapek (1890–1938), Czech playwright and novelist. Inventor of the word “robot” in
its present sense, in his play RUR.

2Note that the original work appeared in 1986. Trans.



2 Preface

book contain brief, and of necessity incomplete, expositions of synergetics and in-
formation theory. The aim of the present account is to bring these new disciplines
to the reader’s attention, and introduce him or her to the circle of related ideas.

I wish to thank M.I. Kaganov, Yu.L. Klimontovich, Ya.A. Smorodinskĭı, and
W. Ebeling for their useful comments on the manuscript.

M.V. Volkenstein



Chapter 1

“Reflections on the motive
power of fire ...”

Black coal burns in the fire box,
Water turns into steam,

And the piston moves stubbornly
Back and forth, back and forth.

The hot steam condenses,
Turning the heavy wheels.

The engine-driving fire
Presents several riddles.

Sadi Carnot

A little book of only 45 pages, titled “Reflections on the motive power of fire,
and on machines capable of developing that power”1, appeared in Paris in 1824.
Its author was S. Carnot, according to the title page a former student at the
Polytechnic.

At that time Sadi Carnot was 28. He was the son of Lazare Carnot, who had
been given the honorific title of “organizer of victory” for his services in the wars
of revolutionary France. L. Carnot was a prominent military and political activist,
an engineer, and an excellent mathematician; however the son’s little memoir (as
scientific papers were then called) was to outweigh in significance the works of the
father.

This was S. Carnot’s only publication. He died eight years later, in 1832,
at the age of 36, a critical age for genius. Raphael, Mozart, and Pushkin died at
about the same age.

1Sadi Carnot. Réflexions sur la puissance motrice du feu. 1824.
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What was the state of physics at the time? Theoretical mechanics, whose
foundations were discovered by the great Newton, seemed—with good reason—to
have been perfected by Laplace, Lagrange, and other scientists. In optics there was
a continuing struggle between the corpuscular and wave theories of light, though
the final victory of the latter was well under way. In electricity and magnetism
important discoveries had been made (by Ampère, Oersted, and Ohm), and the
decisive discoveries of Faraday were imminent. Many properties of gases had been
investigated in detail, and, thanks to the work of Dalton, atomic theory held sway
in chemistry. In short, full-scale science—in particular physics—was advancing
rapidly.

However, there was one important area, the physics of heat phenomena,
that was still awaiting its Newton. There were two reasons for this delay. Firstly,
steam engines—heat machines—had already infiltrated technology, and secondly,
the essential features of heat phenomena turned out to be fundamentally different
from those of mechanics.

As is clear from its title, Carnot’s memoir relates directly to heat engines.
The action of these machines prompted Carnot to think about heat and its trans-
formation into work.

This is a relatively rare case in the history of science. Usually science develops
independently of technology, following its own internal logic. Faraday, and after
him Maxwell, were not thinking of the dynamo when they created the theory of
the electromagnetic field. Maxwell, and then Hertz, were not led to their discovery
of electromagnetic waves—first theoretically and then experimentally—by exam-
ining the functioning of radios. Sooner or later significant physics finds important
practical applications.

Caloric

It was a different story for heat. The steam engine was invented independently of
any theory. The story has it that James Watt’s noticing how the lid of a boiling
kettle bobbed up and down led him to the invention of the steam engine. Be that
as it may, prior to Carnot’s paper there existed no theory of heat whatsoever, and
the important question of the mechanical efficiency of steam engines remained
open. At that time it was difficult to construct a theory of heat; its nature was
largely mysterious. There were two hypotheses. The first of these was based on
the notion of the “caloric”, a weightless, invisible fluid that when added to a body
caused its temperature to rise and was capable of changing its state. Thus was the
English physicist Joseph Black led to write down the following equations:

ice + caloric = water,
water + caloric = steam.

It was thought that caloric was contained in a gas much like juice in an
orange. Squeeze an orange and you get orange juice. Compress a gas and caloric
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oozes out, that is, it heats up.
The caloric theory was studied—without much success—by the famous rev-

olutionary Jean-Paul Marat, who published an article on it in 1780.
The caloric hypothesis stood in opposition to the kinetic theory. In the mid-

18th century M.V. Lomonosov and D. Bernoulli, in the course of propounding
various arguments against the theory of the caloric, suggested a kinetic hypothesis.
Lomonosov conjectured that “the cause of heat consists in the internal rotational
motion” of the particles of the body, and that “the particles of hot bodies must
spin faster and those of cooler bodies slower”.

The observations of Benjamin Thompson (Count Rumford) decisively refuted
the caloric hypothesis. In 1798 Rumford measured the amount of heat produced
by drilling metal. Since the heat capacity of the shavings remained the same as
that of the original metal, whence came the additional caloric? Rumford concluded
that the source of heat must indeed be kinetic.2

We remind the reader that the heat capacity of a body is defined to be the
ratio of the amount of heat3 absorbed by the body to the resulting rise in its
temperature, or in other words the amount of heat energy needed to raise its
temperature by one degree.

Note that the heat capacity CV of a body, say a quantity of gas, held at
constant volume V , is less than its heat capacity Cp at constant pressure p. For, if
the pressure is held constant, only part of the heat ΔQ supplied to the gas is used
to increase its internal energy4 ΔE, as some is needed to do the work involved in
expanding the gas, that is, in increasing its volume by an amount ΔV . Thus we
have

ΔQ = CpΔT = ΔE + pΔV, (1.1)

where ΔT is the increase in temperature of the gas, and pΔV the work done in
expanding the gas against the fixed pressure p.5 Hence

Cp =
ΔE

ΔT
+ p

ΔV

ΔT
.

On the other hand, at constant volume ΔV = 0, we have by definition

CV =
ΔE

ΔT
.

2Benjamin Thompson (Count Rumford). “Heat is a form of motion. An experiment in boring
cannon.” Philosophical Transactions 88, 1798.

3Heat is defined as the energy transferred from one body or system to another due to a
temperature difference. The thermal energy of a body is the total kinetic energy of its atoms
and molecules. Trans.

4The internal energy of a body or thermodynamic system is the total of the kinetic energy
of its molecules (translational, rotational, and vibrational) and the potential energy associated
with the vibrational and electrical energy of the atoms of its molecules. Trans.

5Since pressure is force per unit surface area of the (expansible) chamber containing the gas,
this is indeed the work done in expanding by an amount ΔV . Trans.
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Hence
Cp = CV + p

ΔV

ΔT
.

For a mole of an ideal gas the Clapeyron-Mendeleev state equation6 holds:

pV = RT, (1.2)

where R ≈ 8.31 joules/mole per degree7 is the ideal-gas constant, and T the
absolute temperature (see below). It follows that at constant pressure

pΔV = RΔT,

whence the above equation becomes

Cp = CV + R. (1.3)

In spite of Rumford’s experiments, the caloric hypothesis continued to domi-
nate. There were attempts to combine both points of view; for instance, it was held
that the caloric provided the means for the propagation of molecular vibrations
and rotations in a body—an exceedingly artificial construction.

We are often baffled by what we learn of the science of the past. For instance,
it is difficult to comprehend why belief in the caloric persisted when phlogiston
had already been rejected. Chemists of the 18th century postulated phlogiston as
a substance constituting the essence of combustibility; that for instance a metal
is a compound of ashes (“slag” or “lime”) and phlogiston, and when it is burned,
the phlogiston escapes and only the ashes remain. The work of Lomonosov and
Lavoisier demonstrated that in fact phlogiston was a fiction; combustion of a metal
is the same as its oxidation, a synthesis of the metal and oxygen. Thus phlogiston
was a sort of anti-oxygen, so to speak.

There were two reasons for the persistence of the caloric hypothesis. Firstly,
there were at the time difficulties in explaining the heat of radiation. How might
this arise from molecular rotations or vibrations? Secondly, the kinetic theory as
it stood at that time offered only qualitative explanations, and was therefore in
this respect not at all superior to the caloric theory. The kinetic theory was to
triumph at a later stage.

The irreversibility of heat processes

We have already mentioned the dissimilarity of heat and mechanical phenomena.
This dissimilarity in fact comes down to the irreversibility of heat processes as

6In English texts usually given as deriving from a combination of Boyle’s law (1660) and
Charles’ law (1787). Trans.

7A joule is the work done by a force of one newton (the force needed to accelerate a mass of
one kilogram by one metre per second per second) in moving an object through one metre in the
direction of the force. A mole of a substance contains the same number of particles as 12 grams
of carbon-12 atoms, namely 6.022 × 1023, known as “Avogadro’s number”. Trans.
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opposed to those of ordinary mechanics. We shall now consider this theme briefly,
leaving the detailed treatment for later.

All phenomena describable in terms of Newtonian mechanics, that is, purely
mechanical ones, are reversible. What does this mean exactly? It means that the
laws of mechanics do not change if we change the sign of the time, that is, if we
replace t by −t everywhere in the formulae of mechanics. This can be seen as
follows: Newton’s second law states that the force on a body is equal to its mass
times the acceleration.

And what is acceleration? The average acceleration of a body over a given
time interval from a fixed time t to t+Δt is the change in velocity8 per unit time,
over that time interval:

Δv

Δt
. (1.4)

Since velocity is the change in displacement per unit time, the average velocity
over a time interval from t1 to t1 + Δt1 is

v =
Δs

Δt1
.

If we consider this average for smaller and smaller Δt1, then in the limit as Δt1
goes to zero, we obtain—according to the differential calculus—the velocity of the
body at the instant t1, denoted by

v =
ds

dt

∣∣∣∣
t1

(1.5)

to remind us of its origins as the limiting value of the ratio Δs
Δt1

. Hence the average
acceleration over the interval from t to t + Δt is

Δ(ds/dt)
Δt

,

where Δ(ds/dt) = Δv is the change in velocity between times t and t + Δt. In the
limit as Δt goes to zero, this yields the acceleration at the instant t:

a =
d(ds/dt)

dt
=

d2s

dt2
, (1.6)

in the notation of the differential calculus.
Observe that in the expression for the acceleration—and hence also the

force—the time change enters to the second power. This is clear also from the
dimensions of acceleration, namely length per unit time squared. Thus it is that
changing the sign of the time does not change the overall behavior of an ideal
mechanical system. Mechanical processes are time-reversible.

8Here and below displacement and hence velocity and acceleration are vector quantities. Or,
for simplicity, it may be assumed that the motion takes place along a straight line in the direction
of the force. Trans.
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But what do we mean by the “sign of the time”? Well, time flows from
the past, through the present, and into the future. There appears to be no going
backwards in time. A time machine that travels in the negative time direction is
impossible.9

We normally order events in time so that causes precede effects. This ordering
would seem to be secondary to the underlying directionality of time. But such
matters are puzzling. We shall not attempt to provide answers to such complex
questions, lying as they do on the boundary between physics and philosophy.

Here we desire only to stress the fundamental nature of the difference be-
tween the reversible phenomena of classical mechanics and irreversible thermal
phenomena. A good way of demonstrating this difference is to play a movie back-
wards. The processes then depicted in the film that seem compatible with the laws
of physics, that is, seem more or less possible, are just the reversible ones, while
those that contravene our sense of the possible are the irreversible ones. Scenes
of mechanical processes involving the mere displacement of an object retain their
naturality when the film is run backwards. Thus if a man is seen to jump off a
chair, then in the reverse direction he is seen to jump up onto the chair with his
back to it. Although the second action is actually more difficult, it is nonetheless
feasible, and does not, therefore, contravene our sense of what is possible. On the
other hand, processes such as the burning of a cigarette, the stirring of cream into
coffee, and the hatching of an egg, strike us as highly improbable when viewed in
reverse.

Reality is irreversible. Hence a mechanics that does not include the concept
of irreversibility cannot suffice for understanding the world. In the sequel we shall
link the fact that time has a specific direction to this observed irreversibility of
certain processes.

A person is born, grows, reaches maturity, grows old, and dies. Life is unde-
niably irreversible. You may object that these are biological phenomena unrelated
to physics. However the fact of the matter is that they are related to physics; we
will take up this issue below. For the moment let’s consider a swinging pendulum.
Sooner or later air resistance and friction at the point of suspension will bring it
to a halt, a process producing heat, and therefore irreversible since the heat en-
ergy produced is not reconverted into the oscillatory energy of the pendulum. To
express this mathematically, one must introduce the force due to friction into the
equation of motion of the pendulum. Experience shows that in general the force
of friction is proportional to a component of the velocity of the body on which it
acts, so that the velocity v = ds/dt enters into the equation of motion to the first
power, and the invariance under substitution of −t for t disappears.

If two bodies of different temperatures are in contact, then heat (caloric?)
flows from the warmer to the cooler body until their temperatures become equal.
Thus the past is represented by a temperature difference and the future by equality
of temperature. The process of heat flow from one body to another is irreversible.

9Or, at least seems to be so? (See Chapter 4.) Trans.
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In particular it is not possible for a body at uniform temperature to spontaneously
divide itself into a hot part and a cool part.10

Prior to the discovery of heat engines there were other machines in use, the
earliest being the lever and pulley. These machines transformed one form of motion
into another, by transferring energy from one source to another. It seemed that
nothing was lost in such processes11, while on the other hand coal or wood in the
fire box of a steam engine burn up irreversibly.

In fact a correction is called for here. In our talk of “mechanical phenom-
ena” and of “mechanical engines”, we neglected friction, air resistance, and so on.
However friction occurs in every mechanical device, causing heat to be produced,
and irreversibly transforming mechanical energy into heat.

The difference between ideally mechanical phenomena and heat phenomena
turned out to be related to the deepest questions of science. The elucidation of the
nature and meaning of irreversible processes became one of the central problems
of 19th-century physics—and not only physics.

Since for an ideal (frictionless) mechanical system the sign of the time is im-
material, such a system does not operate irreversibly. However a system involving
heat processes is capable of irreversible development, that is, of evolving. Although
a clear appreciation of this capacity emerged only 30 years after the appearance
of Carnot’s memoir, that work had prepared the ground.

It is noteworthy that these same decades witnessed the discovery of the theory
of evolution in biology, which found its fullest expression in Charles Darwin’s The
origin of species, published in 1859. Here the subject was evolution in nature, that
is, the irreversible development of living things. The connection between biology
and physics, which seemed initially of little consequence, subsequently played an
enormous part in the development of science, and, surprisingly, in this connection
biology had more to impart to physics than vice versa. We shall discuss this in the
sequel.

What did Carnot do?

Carnot laid the foundations of “thermodynamics”, now one of the main areas of
physics.

Thermodynamics is concerned with the general laws that determine the mu-
tual connections between the physical quantities characterizing all those processes
occurring in nature and technology, by means of which energy is transferred from
one body to another and transformed from one form to another. Thermal pro-
cesses are included among these. Thermodynamics is a “phenomenological” sci-
ence, meaning that its concerns are universal and not dependent on the specific

10Or just highly improbable? (See Chapter 4.) Trans.
11For example, that the energy used to move one end of a lever is fully available to move the

other. Trans.
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substances involved in the relevant processes of energy exchange. Thus in this re-
spect thermodynamics contrasts with molecular and atomic physics, whose task
is to investigate the concrete properties and structure of specific material bodies.

Carnot used the notion of the caloric. In accordance with the ideas of the
time, he regarded the caloric as weightless and indestructible. A very strange
substance indeed! He wrote: “The motive power in steam engines arises not from
an actual loss of caloric, but from its transference from a hot body to a cool one....
In order for motive power to emerge, it is not enough to generate heat: one must
also procure coldness; without it heat would be ineffectual...”.

Of course, Carnot’s idea of the indestructibility of heat—whatever its na-
ture might be—is wrong. However the rest of what we have quoted is correct:
for a motive force to emerge, capable of doing work, a temperature difference is
indispensable.

Carnot goes on to consider a reversible, cyclical, process: “If we wish to
produce motive power by means of the transference of a definite amount of heat
from a body A to a body B, we may proceed as follows:

1. Take caloric from body A to generate steam...we assume that steam is formed
at the temperature of body A.

2. Funnel the steam into an expansible vessel, for example a cylinder with a
piston; the volume of the vessel will then increase along with the volume
of steam. The temperature of the steam will decrease as it expands.... We
assume that this rarefaction continues until the temperature of the steam
reaches that of the body B.

3. Condense the steam by getting it into contact with body B and simulta-
neously applying constant pressure till such time as it reverts to the liquid
state....”

Thus the body A is the heater and body B the cooler. Carnot claims that
these three steps can also be carried out in the reverse order: “We can generate
steam using the caloric of body B at its temperature, by compressing that body
until it heats up to the original temperature of body A, and then condensing the
steam by contact with the latter body.”12

However here the cycle is reversible only in the sense that the system can be
returned to its original state in the same way. In fact the transfer of heat from the
heater A to the cooler B is really irreversible since external work has to be done
to return the system to its original state.

By appealing to the impossibility of a perpetual-motion machine (perpetuum
mobile), by then already established as a law of nature, Carnot proves that the
above-described process yields maximal motive power, that is, work per unit time.
His reasoning is remarkable:

“...If there were more efficient means for utilizing heat than the method we
have used, that is, if it were possible to obtain a larger amount of power ... then

12Presumably following the original process, after which body A has cooled. Trans.
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one could use a portion of this power to return the caloric by the indicated method
from the body B back to the body A, ... and the original state would be restored;
one could then repeat the operation and go on in like manner indefinitely: this
would not only constitute perpetual motion, but also the unlimited generation of
power without the consumption of caloric or any other agent.”

Finally, he states his most important conclusion: “The power obtained from
heat is independent of the agents used for generating it; ultimately, the amount
of power generated is determined exclusively by the temperatures of the bodies
participating in the transfer of the caloric.”

In other words, the “coefficient of effective action”, or “efficiency” of a heat
engine is determined by the temperatures of heater and cooler alone, regardless
of the particular gas expanding inside it. The greater the difference between these
temperatures, the greater the output of work, or “motive power”. However Carnot
was unable to obtain a quantitative expression for this coefficient, being prevented
from doing so by his assumption that caloric is conserved.

Carnot’s work is remarkable for the breadth and universality of the analysis,
the systematic working out of his thought experiment concerning the cyclicity of
the process, and his general conclusions, valid independently of the nature of the
particular materials involved.

Carnot’s paper went essentially unremarked for a number of years; his con-
temporaries failed to understand or appreciate it. This has occurred several times
in the history of science when ingenious works appeared ahead of their time. Such,
for instance, was the case with Gregor Mendel’s discovery of the laws of genetics;
his work remained unappreciated for 40 years. However today, as a result of the
ever increasing internationalization of science and the widespread propagation of
information about scientists’ work, such situations have become very rare.

The Carnot cycle

In 1834 the French physicist and engineer Benoit-Pierre Clapeyron became inter-
ested in Carnot’s paper and was able to give it mathematical form—the very form
in which the “Carnot cycle” is expounded in modern physics. Such a reformulation
was crucial, since no better way has been found of explaining the functioning of a
heat engine or introducing the physical concept of entropy into science.

Thus was the indestructible caloric eliminated from the Carnot cycle. But
what replaced caloric? The answer is: energy, which will be discussed in the next
chapter. Looking ahead a little, we shall see that every body, in particular a quan-
tity of steam or other gas, is characterized under given conditions as possessing
a definite amount of internal energy. And what might the phrase “under given
conditions” mean for a quantity of gas? Answer: at prescribed temperature and
volume.

Thus a body’s internal energy is a function of its state, which can change
as a result of its interaction with other bodies, more specifically, through being
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p b
M0

M1
a

V

Figure 1.1: States of a gas and transition paths between them.

heated or cooled, or work being done. Thus the change E1 − E0 in the internal
energy13 of a given quantity of gas is given by

ΔE = E1 − E0 = Q−W, (1.7)

where Q is the quantity of heat transferred to the gas from the heater, and W is
the work done by the gas in expanding.

In equation (1.7) (see also (1.1)) we see that the heat energy Q and work
W have equal status.14 Now heat energy is measured in calories or joules15, while
work is measured in kilogram-metres. Hence it is clear that equation (1.7), which
expresses the law of conservation of energy when transformed from one form to
another, makes sense only if there is a mechanical equivalent of heat energy, or,
conversely, a heat equivalent of work, that is, a conversion factor for converting
units of heat into units of mechanical energy, and conversely.

What was the flaw in the theory of the caloric? Answer: It was a mistake
to assume that it is possible to determine the amount of caloric, that is, “essence
of heat”, contained in a body. We shall now deduce from equation (1.7) that
the statement “the amount of heat contained in a given quantity of gas is Q” is
meaningless.

In Figure 1.1 the states of a fixed quantity of gas are represented by points
coordinatized by the pressure p and volume V . The internal energy of the gas in
the state M0 is greater than its internal energy in the state M1.16 Suppose that in
these two states the gas contains different amounts of heat. Let Q0 be the amount
of heat contained in the gas in state M0, and

Q1 = Q0 + Q01, (1.8)

the amount when the gas is in state M1; thus Q01 is the change in the amount of
heat involved in the transition from state M0 to M1, assumed independent of the

13See an earlier footnote for the definition.
14That is, measure the same sort of entity. Trans.
15A calorie is the amount of heat energy required to raise the temperature of one gram of

water at atmospheric pressure by one degree Celsius. One calorie ≈ 4.1868 joules. See an earlier
footnote for the definition of a joule. Trans.

16This can be seen, for example, from the description of the Carnot cycle below. Trans.
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manner in which the transition is effected. According to (1.7),

Q01 = E1 − E0 + W01,

where W01 is the work done by the gas in the course of the transition from state
M0 to M1.

For a prescribed difference E1 − E0 in internal energies, we can effect the
transition at relatively high pressures, along a path such as b, in order that W01 >
E0 − E1, whence Q01 > 0, which one might interpret as meaning that “the gas
contains more heat Q1 in state M1 than in state M0”.

However if we effect the transition in the opposite direction, via the path a
along which the pressure is low enough for the reverse inequality W01 < E0 − E1

to hold, then we shall have Q01 < 0, yielding the interpretation “the gas contains
less heat Q1 in state M1 than in state M0”.

Thus we have arrived at a contradiction. We conclude that “the amount Q
of heat in a quantity of gas” depends on the transition path from state to state.
Saying that a body contains so much heat is as meaningless as saying that it
contains so much work. Unlike the internal energy of a body, heat and work are
not functions of the state of the body, but characterize the manner in which energy
is transferred from one body to another.

Having liberated ourselves from the caloric (though without for the time
being considering the atomic-molecular essence of heat and temperature) we now
expound the Carnot cycle.

We have a heater and a cooler. Our working substance is a gas, or more specif-
ically, an ideal gas—a gas rare enough for the interactions between its molecules
to be neglected.

The Carnot cycle involves four steps:

a) The gas expands at constant temperature, that is, undergoes a so-called
isothermal expansion.17 Since the behavior of an ideal gas is described by the
Clapeyron-Mendeleev equation (1.2), namely

pV = RT,

this isothermal expansion is represented in terms of the coordinates p, V by the
hyperbola pV = RT1, where T1 denotes the temperature of the heater. (See Figure
1.2.)

17Achieved, for example, by having the gas expand slowly. Trans.
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Figure 1.2: Isothermal expansion of the gas.

In so expanding, the gas does an amount of work numerically equal to the
shaded area in the figure. This can be seen as follows. In the mechanics of rigid
bodies, work is defined as the product of force by distance. In the physics of fluids,
since pressure is force per unit area of the surface of the region containing the
gas, the force f exerted by the gas in expanding against the piston moving in the
gas-filled cylinder is given by f = ps, where s is the area of the piston. Hence the
differential of the work is

dW = f dl = ps dl = p dV,

where dl is the distance, that is, an infinitesimal displacement of the piston, and
dV = s dl an infinitesimal change in the volume of the gas. The work done is then
the integral of dW = p dV from the initial volume V1 to the final volume V2:

W =
∫ V2

V1

p dV,

which is indeed the shaded area in Figure 1.2.

b) We now insulate the gas from the heater, so that heat is neither supplied
to the gas nor withdrawn from it. The gas continues to expand; such expansion
without heat exchange is called adiabatic. An adiabatic curve is steeper than an
isothermal curve, since it is given by an equation of the form

pV γ = const. (1.9)

with γ > 1. (The significance of γ will be explained below.) Adiabatic expansion
is accompanied by a lowering of the temperature. We allow the gas to continue
expanding to the point 3 lying on the isothermal curve where the volume is V3

and the gas is at the cooler temperature T2 (Figure 1.3).
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Figure 1.3: Adiabatic expansion of the
gas.
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Figure 1.4: Isothermal compression of
the gas.

c) At the third stage we compress the gas isothermally at the temperature T2

by bringing it into contact with the cooler. This requires an amount of work equal
to the cross-hatched area in Figure 1.4. We continue compressing the gas till it
reaches a volume V4 such that the corresponding point 4 on the isothermal curve
in Figure 1.4 is also on the adiabatic curve through the initial point 1 (Figures
1.2, 1.5).

d) Finally, we again insulate the gas adiabatically and compress it further to
its original volume V1 along the adiabatic curve through the point 1. This requires
work to be done (see Figure 1.5).

The cycle is now complete. Positive work has been done in an amount equal
to the cross-hatched area enclosed by the cycle (Figure 1.6), that is, the difference
between the work done by the expanding gas in stages a) and b) and the work
required to compress it in stages c) and d).

p
T1

T2

1

4

V1 V4 V

Figure 1.5: Adiabatic compression of
the gas.

4

2

3

1p

V4V1

T1

T2

V3V2 V

Figure 1.6: The Carnot cycle.

In the course of this process, the gas absorbed from the heater an amount
Q1 of heat at the temperature T1, and gave out a smaller amount Q2 of heat at
the temperature T2. Hence the portion of the heat transformed into work is

W = Q1 −Q2, (1.10)
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whence
Q1 = W + Q2 > W. (1.10a)

The efficiency η of the cycle is then the ratio of the work made available to
the heat input:

η =
W

Q1
=

Q1 −Q2

Q1
. (1.11)

How does the efficiency depend on the temperatures T1 and T2 of the heater
and cooler? We know that Carnot considered this dependence decisive.

Thermodynamic temperature

But what sort of temperature are we talking about here? The temperature in
equation (1.2) is the temperature on the Kelvin scale, measured in degrees Kelvin
(◦K), which are equal to degrees Celsius, but start from −273.15◦C; that is
0◦K ≡ −273.15◦C, so-called “absolute zero”. How does this “thermodynamic”
temperature arise?

Every ideal gas satisfies the state equation

pV = Φ(θ), (1.12)

where Φ is a universal function of the temperature θ measured in degrees Cel-
sius. Experiment shows that this function increases linearly with the temperature,
whence it follows that there are constants α, β such that18

θ = αpV + β. (1.13)

The Celsius scale is defined by taking the temperature at which ice melts at atmo-
spheric pressure to be 0◦C and that at which water boils to be 100◦C. Substituting
these two temperatures in the equation (1.13) for an ideal gas, we obtain

0 = α(pV )0 + β, 100 = α(pV )100 + β. (1.14)

Solving for α and β from these two equations, we obtain

α =
100

(pV )100 − (pV )0
, β = − 100(pV )0

(pV )100 − (pV )0
. (1.15)

Substituting in equation (1.13) from (1.15), we obtain

θ =
pV − (pV )0

(pV )100 − (pV )0
100◦C. (1.16)

18Since pV is a linear (or affine) function of θ, θ must likewise be such a function of pV . Trans.
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Experiment shows that for a sufficiently rarefied—that is, ideal—gas

(pV )100
(pV )0

= 1.366. (1.17)

Equations (1.16) and (1.17) now give

pV = (pV )0(1 + 0.00366 θ). (1.18)

(pV)100

(pV)0

pV

–273

–100

–200

0

100

200

300

θ°C

Figure 1.7: Dependence of the “ideal gas temperature” θ on pV .

Figure 1.7 shows the graph of the ideal gas temperature θ(pV ) as the function
of pV given by (1.18); pV takes on the value zero at θ = θ0, given by

θ0 = −1/0.00366 = −273.15(◦C). (1.19)

Thus if we take −273.15◦C as the zero temperature of the Kelvin scale, then we
obtain

T ◦K = θ − θ0 = (θ + 273.15)◦K (1.20)

for the temperature measured in degrees Kelvin. At T = 0◦K, pV vanishes. Sub-
stitution from (1.20) in (1.18) yields

pV =
(pV )0◦C

273.15
T. (1.21)

At 0◦C and a pressure of 1 atm (atmosphere), the pressure multiplied by the
volume taken up by one mole of an ideal gas is known to be

(pV )0◦C = 22.414 � · atm/mole. (1.22)
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(This means that at 0◦C and 1 atm, a quantity of gas of mass x grams where the
molecular weight of the gas is x, occupies a volume of 22.414 liters.) Dividing this
by 273.15 yields

R =
(pV )0◦C

273.15
=

22.414 � · atm/mole
273.15◦K

= 8.314 · 107ergs/(mole · ◦K) = 8.314 joules/(mole · ◦K).

We now express the efficiency of the Carnot cycle in terms of T1 and T2, the
temperatures of heater and cooler.

The amount of heat supplied by a heater at temperature T to the working
substance of such a cycle is a function of that temperature:

Q = ϕ(T ). (1.23)

This is a positive function of T which in fact turns out to increase proportionally
to the temperature:

T = ξQ. (1.24)

It is immediate from this and the second expression for the efficiency in (1.11),
that the latter is given by

η =
T1 − T2

T1
. (1.25)

Thus, in accordance with Carnot’s deep ideas, a heat engine with an ideal gas
as working substance is characterized as having the maximal coefficient of useful
action (efficiency) given by the formula (1.25). Observe that the efficiency is 1 only
for T2 = 0◦K = −273.15◦C.

Finally, we derive a formula for the constant ξ in equation (1.24), using once
again the convention that the difference in temperature between melting ice and
boiling water be taken as 100 degrees. Thus

100 = ξ(Q100 −Q0), whence ξ =
100

Q100 −Q0
> 0. (1.26)

Hence equation (1.24) becomes

T =
100

Q100 −Q0
Q or Q =

Q100 −Q0

100
T. (1.27)



Chapter 2

The laws of thermodynamics

“Everything is possible in this world
Except for prohibitions.”

So sing dull poets,
Strumming their lyres.

But nature’s stern laws
Are more inspiring than such songs.

The world, truly wonderful,
Obeys those laws unswervingly.

Lomonosov and the conservation laws

The law of conservation (under transformation) of energy also goes under the
somewhat old-fashioned and pompous name “the first law of thermodynamics”.
The second and third laws will soon be revealed. For now we consider just the
first.

Who discovered the law? Does it really matter? Why is priority in discovery
of any importance?

We live in a real world, not a utopia. In the real world there exist such con-
cepts as national consciousness. It is natural and reasonable for a country, nation,
or people to take pride in the achievements of its creative members—its writers,
artists, and scholars.1 Hence a society’s interest in who did what first is normal
and appropriate—provided such priority is established with the strictest accuracy,
and without any hint of the chauvinism that seeks to belittle the achievements of
other nations and peoples.

In order to exalt Russian science it has sometimes been claimed that
M.V. Lomonosov2 was the discoverer of the law of conservation of energy. This is

1And to feel shame at the misdeeds of its villains? Trans.
2Mikhail Vasilyevich Lomonosov (1711–1765), Russian polymath, scientist, and writer.
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false. Lomonosov discovered the law of conservation of mass3, founded the kinetic
theory of heat, and made many other important contributions to science and the
humanities. Pushkin wrote that “He was himself our first university”. But the
fact remains that he did not discover the law of conservation of energy. The great
Russian scientist, poet, and artist does not need imaginary discoveries foisted on
him!

What is this rumour—which has appeared in print more than once—based
on? Answer: On a single sentence in a letter Lomonosov wrote to Leonhard Euler
on July 5, 1748. Having described his discovery of the law of conservation of mass
or matter, Lomonosov goes on as follows: “Thus the amount of matter gained by
a body is lost by another... Since this is a universal law of nature, it extends also
to the principles of motion: a body that impinges on another loses as much of its
own motion as it imparts to the one it sets in motion”.

So much for the conservation of motion. But what does he mean by motion
here? The kinetic energy (or vis viva as it was called) mv2/2 (m = mass, v =
velocity) or the momentum mv (also called “quantity of motion”)? A precise
notion of energy did not exist in the 18th century, and indeed could not have
been formulated until the 19th, the century of steam and electricity.

Lomonosov wrote about the conservation of motion as if it were self-evident,
or well known. This is not surprising, since a hundred years earlier, the French
philosopher, mathematician, and physicist René Descartes had written: “I claim
that there is a known amount of motion in all created matter which never increases
or decreases”. In his Principles of philosophy of 1644 he formulated the “laws of
nature”, the third of which asserts that “if a moving body encounters another
more powerful body, it loses none of its motion; if it encounters a weaker one that
it can cause to move, then it loses the amount it imparts to the latter”.

Lomonosov knew the works of Descartes intimately and they impressed him
more than the rigorous assertions and formulae of Newton’s Principia mathemat-
ica.

Be all this as it may, what is true is that Lomonosov discovered the important
law of conservation of mass. The idea of conservation laws—the impossibility of
getting something from nothing—came to the fore in the physics of the 18th
century. (Incidentally, the idea of the “indestructibility” of the fictitious substance
called the caloric is related to this development.) In 1775 the French Academy of
Sciences announced its refusal henceforth to consider any and all projects having
to do with perpetual motion machines.

Such laws represent extremely important general principles pertaining to
all of physics. They show that the universe is constructed in a definite way, that
nature is governed by certain objective laws. The task of science is to discover these
laws, and not at all to seek to refute them.4 Sometimes one sees laws of nature

3This discovery is often attributed to the French chemist Antoine Lavoisier (1743–1794).
However, it is clear that Lomonosov has priority. Trans.

4Some philosophers of science claim that the scientific process consists precisely in attempts
to refute such laws, so that our confidence in the correctness of the laws is continually sustained
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interpreted as interdictions from on high: Nature forbids perpetual motion, and
that’s that!

Others unfamiliar with science adopt a different stance. When told that their
assertions contradict established scientific laws, they say: “O yes, you say ‘such a
thing can never be!’ but then what seemed impossible yesterday is often realized
today!”. Further debate is futile.

From time to time, the Biophysics Institute of the Academy of Sciences of the
USSR used to produce splendid popular films on scientific subjects. One of the best
of these—if not the best—showed the first-rate achievements of members of that
institute. It bore the striking title “Never say ‘never’,” implying that everything
is possible, there are no impenetrable barriers, no fortresses that cannot be taken
by scientists, and so on. However, this is not so. The laws of thermodynamics are
forever, just as twice two will always be four.5

The law of conservation of energy

How was this law discovered?
We said earlier that 19th century biology did more for physics than physics

for biology. This has precisely to do with the first law of thermodynamics.
In 1840, a young German doctor by the name of Robert Mayer found himself

in the tropics, on the island of Java. He noticed that the venous blood of people
living there was close in color to that of arterial blood—red rather than brown.
Mayer knew that the difference in colour of venous and arterial blood is connected
with the absorption of oxygen—oxygenated arterial blood is normally a brighter
red than deoxygenated venous blood. Body heat results from oxidation, a process
akin to burning. Mayer wrote: “The maintenance of the human body at a steady
temperature requires that its production of heat be in some quantitative relation
to its heat loss, and hence also to the temperature of the surroundings; therefore
the production of heat and so the color difference in the two kinds of blood must,
on the whole, be less intense in tropical latitudes than in cooler countries”.

That is how it all began. Mayer arrived at the following general conclusion:
“In all physical and chemical processes the force present remains constant”. What
Mayer called force we now call energy. He wrote further: “The locomotive pulling
its train may be compared to a distilling apparatus: the heat furnished to the
boiler is transformed into motion, which in turn leaves a residue in the form of
heat in the wheel axles”. But Mayer went beyond generalities. Denoting the heat
capacity6 of a given specified quantity of air at constant pressure p by Cp and

by the fact that they survive such attempts! Trans.
5Since Einstein we know that energy is not conserved, but can be converted to mass and vice

versa. Moreover physicists have considered the possibility that the laws of nature might mutate
with time or be different in the farthest reaches of the universe. That 2 × 2 = 4 would seem to
be a truth of a different sort—unless everybody who has done this multiplication has in every
case erred, which event has a non-zero, though small, probability. Trans.

6Defined in Chapter 1.



22 Chapter 2. The laws of thermodynamics

its heat capacity at constant volume V by CV , Mayer formulated a quantitative
definition of the mechanical equivalent of heat—the conversion factor of heat to
work. To this end he set the difference of the heat capacities Cp−CV equal to the
work done by the air in expanding at pressure p (1841). His first measurements
(later improved) gave a kilocalorie as equivalent to 365 kilogram-meters.

Thus was the law of conservation of energy discovered.
In 1843, unaware of Mayer’s work, James Joule determined the mechanical

equivalent of heat by a direct experiment subsequently described in every textbook.
Joule heated water in a calorimeter7 by means of friction—using a little paddle-
wheel—and determined the ratio of the work done to the heat generated. He found
that a kilocalorie was equivalent to 460 kilogram-meters.

The exact modern value of the mechanical equivalent of heat is 427 kilogram-
meters, or 4.18605 · 1010 ergs = 4186 joules.

In 1847 the German scientist Hermann Helmholtz formulated the law of
conservation of energy (when transformed from one form to another) in general
and rigorous mathematical form. In particular, he proved that energy is given by an
integral of motion of the equations of mechanics. It is remarkable that Helmholtz,
like Mayer trained to be a doctor, arrived at the law via biological phenomena. He
wrote: “According to Stahl, the forces operating in a living organism are physical
and chemical forces arising in the organs and substances [of which they are made],
but some life force or soul inherent in the organism can arrest or release their
functioning... I concluded that Stahl’s theory attributes to every living creature
the properties of a so-called perpetuum mobile.... This suggested the following
question to me: What relations must exist between the different forces of nature
if one assumes that the perpetuum mobile is impossible...?”

Thus by abandoning vitalism in biology, Helmholtz was led to one of the
most profound discoveries in physics.

It would seem, therefore, that the first law of thermodynamics, or the law
of conservation of energy, was discovered by Mayer, Joule, and Helmholtz in the
period 1841–1847. Only much later did it become clear that priority in discovery
of the first law belongs to Carnot. It was only in 1878 in connection with a new
edition of his Réflections, that his notes, hitherto unpublished, appeared in print.
There he had written: “Heat is but motive force, or, more correctly, motion that
has changed its form; it is the motion of the particles of bodies; wherever motive
force is annihilated there comes into being simultaneously an amount of heat
exactly proportional to the amount of motive force missing. Conversely, whenever
heat disappears, motive force arises.

“We may therefore state the following general principle: The amount of mo-
tive force in nature is unchanging. Properly speaking, it is never created and never

7A calorimeter is a device used for measuring the heat capacity of a substance, as well as the
heat produced in chemical reactions and physical changes. A simple calorimeter consists of just
a thermometer attached to an insulated container. From the temperature change, the change in
heat is calculated as mass × specific heat × temperature change, where the specific heat of the
substance is its heat capacity per unit mass. Trans.
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destroyed; in reality it [merely] changes form, that is, assumes one or another form
of motion, but never vanishes.

“From certain of the ideas I have formed concerning the theory of heat, it
follows that the production of a unit of motive force requires the use of 2.70 units
of heat.”

The figure for the mechanical equivalent of heat found by Carnot (by means
unknown) is equivalent to 370 kilogram-meters, which is very close to Mayer’s
estimate.

Thus Carnot had much earlier abandoned the caloric and given a precise
account of the first law. Unfortunately this remarkable work long remained un-
published and unknown.

In our description of a cycle concluding Chapter 1, we tacitly assumed one
mathematical version of the first law in using the formula (1.7):

ΔE = Q−W.

There we described the Carnot cycle in the modern form due to Clausius,8 starting
with the formula (1.7) and ending with the expression (1.25) for the efficiency of
the cycle.

The second law

Carnot’s published article contained the second law of thermodynamics. What was
said on this theme in Chapter 1 may be compressed into the following assertion:

There is no reversible cyclical process involving the conversion of heat into
work that is not accompanied by the transfer of a certain amount of heat from a
hotter to a cooler body.

We stress once more that the word “reversible” is used here in a different
sense from the one used in mechanics. Earlier we spoke of the reversibility of ideal
mechanical processes in time, in the sense that the laws of mechanics continue
to hold if such a process is run backwards in the direction of the past instead of
the future. In ideal mechanics one can run the film backwards. Here, on the other
hand, we are talking only of returning a thermodynamical system to its initial
state by means similar to those used in the direct process.

We saw in Chapter 1 that the Carnot cycle is reversible in this sense, and
furthermore that it has maximal efficiency compared with any other cycle involving
a temperature drop of T1 − T2.

The reversibility—that is, the closedness of the cycle—comes down to the
condition that the isothermally expanding gas is for the whole of that stage of the
cycle in thermodynamic equilibrium with the heater, maintaining its temperature
at T1, while during the stage of isothermal compression it is in thermodynamic
equilibrium with the cooler, and has its temperature kept at the value T2. To

8Rudolf Julius Emmanuel Clausius (1822–1888), German physicist and mathematician. Trans.
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ensure this, it is assumed that this expansion and compression take place very
slowly—slowly enough for the equilibrium between gas and heat source to remain
undisturbed. Such processes are called “quasi-static” since time does not enter
into the relations characterizing them.

There is a puzzle here. Irreversibility with respect to time is built into the
physics of heat phenomena from the start—heat does not flow on its own accord
from a cooler to a hotter body—yet time does not enter into Carnot’s fundamental
laws of thermodynamics.

Moving on, we observe that the law formulated at the beginning of this
section implies the impossibility of a perpetual motion machine “of the second
kind”. What does this mean?

Clearly the law of conservation of energy would not be contradicted by the
transfer of heat from a cooler to a hotter body, or by a situation where work was
done as a result of cooling a single heat reservoir, that is, by utilizing heat from a
heat source in the absence of a cooler. It does not exclude the unlikely event that
a sealed container of water submerged in a bucket of water could come to a boil
and the water in the bucket freeze! In each case the amount of energy, whether
expressed in calories or joules, remains unaltered. Nor do considerations of energy
rule out the possibility of extracting virtually unlimited amounts of useful work
from the cooling of the world’s oceans. Since the oceans’ temperatures are higher
than 0◦C, or 273.15◦K, the amount of heat energy they contain is huge. It is
such hypothetical procedures for obtaining work that are called perpetual motion
machines of the second kind. The first law does not prohibit them, but nonetheless
we know that they also are impossible—this amounts to a restatement of the
second law of thermodynamics:

A process whose only outcome is the conversion into work of heat extracted
from some source is impossible.

This is equivalent to the law as Carnot formulated it; we repeat his version:
A heat engine that absorbs an amount of heat Q1 at temperature T1 and yields

an amount of heat Q2 at temperature T2, cannot do more work than a reversible
heat engine, whose work-yield is

W = Q1 −Q2 = Q1
T1 − T2

T1
. (2.1)

This, the second law, is a law of nature. Although as strict and universal as
the first, it is of a radically different character.

The pressure of light

The second law provides the key to the solution of a great many problems of
physics, chemistry, technology, and, as we shall see, of biology. By way of example
we consider a purely thermodynamical proof that light exerts pressure. This proof
is due to the Italian physicist Adolfo Bartoli, who proposed it in 1876.
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T1 T2

A B

Figure 2.1: Container in Bartoli’s proof of light pressure.

We have a container, two of whose opposite walls are at temperatures T1

and T2 with T1 < T2. Movable partitions A and B with openable doors, divide
the container into three sections (Figure 2.1). The light given off by each wall
fills the corresponding section of the container. The radiation emitted by a wall
is in equilibrium with the wall at its temperature. (Bartoli thought of radiation
as a sort of gas at some definite temperature, of density proportional to that
temperature.) Consider the radiation contained between the wall at temperature
T2 and the partition B. We open the door in this partition, and the radiation
fills the two sections bounded on the left by A. We now close the door of B and
compress the radiation between the partitions A and B by moving B to the left.
By so compressing the “light gas” we raise its temperature to a value exceeding T1.
Next we open the door of A and allow the radiation to reach equilibrium with the
left wall, whose temperature will then exceed T1. In this way we have transmitted
heat from the colder wall to the warmer. However, according to the second law
this cannot be achieved without some work being done. Work must therefore have
been done in compressing the “light gas”. This proves that the “light gas”, that
is, radiation, exerts pressure, which in this experiment resisted the displacement
of the partition B.

That light exerts pressure is implied by the electromagnetic theory of light.
In 1873 James Clerk Maxwell made this theoretical inference, and was even able to
calculate the magnitude of light pressure. In 1901, P.N. Lebedev carried out subtle
and precise experiments fully confirming the theory that had enabled Maxwell to
compute the pressure of light.

Entropy

We at last come to the concept to which this book is devoted. We rewrite the
second equation of (2.1) in the form

Q1/T1 = Q2/T2. (2.2)

The quantity Q/T is called entropy. It was first introduced by Rudolf Clausius in
1865. The ancient-Greek root of the word “entropy” is τρoπη, meaning conversion
or turning. The verb ὲντρὲπειν means to transform. Hence according to Clausius,
entropy is the characteristic feature of transformation, of mutability.

The discussion of Bartoli’s thought experiment distracted us from the cyclic-
ity, or reversibility, of thermodynamical processes. Equation (2.2) relates to just
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T 1

2 ΔS=S1–S2

ΔS=S2–S1

V

Figure 2.2: A reversible cycle.

such processes. It states that in cyclical, or reversible, processes the amount of
entropy absorbed equals the amount exuded, so that in a reversible process the
change in entropy is zero. We shall denote entropy by S. Since it is unchanged
in a reversible cycle, it is a function of the state of the substance in question: S1

and S2 have definite values independently of the way we reached the points 1 and
2 (Figure 2.2). In this entropy resembles internal energy E, but differs crucially
from heat Q.

We saw earlier that the heat given off or absorbed is not a function of the
state of a system, so that one cannot speak of the quantity of heat contained in
a body. Surprisingly, however, if one divides heat by temperature one obtains a
function of the state: entropy.

But these words convey only a vague picture of the concept. We need to look
at just how entropy is measured.

Clausius argued as follows: If a gas at temperature T absorbs an amount of
heat ΔQ, then its entropy is increased by the amount

ΔS =
ΔQ

T
, (2.3)

or, in terms of differentials,

dS =
dQ

T
. (2.4)

To calculate the total change in entropy of the gas in going from state 1 to state 2
(see Figure 2.2) we must integrate the expression (2.4) along each of the indicated
paths. However since entropy is a function of the state of the gas, the change in
entropy is independent of the path, that is, is determined solely by the initial and
final points, whence

ΔS =
∫ 2

1

dQ

T
= S(V2, T2)− S(V1, T1). (2.5)

We stress yet once more that this is not the case for the heat Q; the expression∫ 2

1

dQ
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is indeterminate—the value of the integral depends on the path of integration. In
this sense the differential dQ (and likewise the differential of work) is not a “total
differential”.9 However on dividing by T the non-total differential dQ turns into a
total differential dQ/T—the quantity 1/T plays the role of an “integrating factor”.

Let us now study the properties of entropy. First, its dimension: Obviously
it is measured in units of energy divided by temperature, that is, in ergs/◦K or
joules/◦K.

What is the entropy of an ideal gas? During the first stage of a Carnot cycle,
the gas does work since it expands isothermally at temperature T1. This work is
done at the expense of an amount of heat Q1 absorbed from the heater, given by
(see p. 14)

W1 =
∫ V2

V1

pdV = Q1. (2.6)

We shall assume we have one mole of the gas, so that equation 1.2 holds:

pV = RT.

Since T = T1 is constant during this isothermic stage of the cycle, on replacing p
in the integral by RT1/V , we obtain

W1 = Q1 = RT1

∫ V2

V1

dV

V
. (2.7)

Thus we need to consider the integral

∫ V2

V1

dV

V
.

We shall see in the next section how to evaluate it. Observe that we effectively
specified an isothermal as the path of integration in substituting RT1/V for p
above.

The logarithm and exponential functions

Thus the function to be considered is∫ V2

V1

dV

V
=

∫ V2

V0

dV

V
−

∫ V1

V0

dV

V
,

9The total differential of a smooth function f(x, y) of two variables is the expression df =
∂f
∂x

dx + ∂f
∂y

dy, indicating that at any point (x, y) any small changes Δx in x and Δy in y, cause

a change in f given to the first order by ∂f
∂x

Δx + ∂f
∂y

Δy. This does not apply to Q since it is not

a function of the state variables of the gas (V and T in Figure 2.2).Trans.
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where V0 is any value of the volume of the gas less than both V1 and V2. We use
V0 as a fixed lower reference point for volume, relative to which we can measure
volume in dimensionless units, that is, by replacing V1 and V2 by

V ′1 =
V1

V0
and V ′2 =

V2

V0
.

In terms of such a measure of volume the least lower limit of integration will be 1.
Set

f(x) =
∫ x

1

dz

z
. (2.8)

We shall show that f(x) has the properties of a logarithm.
Observe first that f(x) is defined only for x > 0 (since the integrand 1/z is

unbounded on intervals including 0) and f(x) < 0 for 0 < x < 1, f(1) = 0, and
f(x) > 0 for 1 < x <∞.

Next, consider the function f(w) = f(ax) where a is any positive real number.
We have

df(w)
dx

=
df(w)
dw

dw

dx
.

By the Fundamental Theorem of Calculus (asserting that integration can be done
by anti-differentiating the integrand) we have df(w)/dw = 1/w = 1/ax, whence

df(w)
dx

=
1
ax

a =
1
x

.

We see that the derivatives of f(x) and f(w) with respect to x are the same, both
equal to 1/x. This implies that the two functions must differ by a constant C:

f(ax) = f(x) + C.

In particular we have f(a · 1) = f(1) + C = C, whence

f(ax) = f(x) + f(a).

Thus
0 = f(1) = f(

1
x

x) = f(x) + f(
1
x

),

whence f(1/x) = −f(x).
We see that indeed the function f(x) defined by (2.8) has the properties of

a logarithm function. The shape of its graph is shown in Figure 2.3. We write

f(x) = lnx,

in standard notation for the so-called natural logarithm function.
We now calculate the base of this logarithm, that is, the number e such that

for all x, eln x = x. We saw above that the derivative of lnx is 1/x, that is,

u =
1
x

= lim
Δx→0

ln(x + Δx)− ln(x)
Δx

.
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y

y= lnx

1

0 1 e x

Figure 2.3: Graph of the natural logarithm function.

Setting Δx = i/n and letting n tend to infinity, we have

u = lim
n→∞

ln(x + 1/n)− ln x

1/n
= lim

n→∞n ln
(

x + 1/n

x

)

= lim
n→∞ ln

[
(1 +

1
nx

)n

]
= ln

[
lim

n→∞(1 + 1/nx)n
]
.

Denoting the base of the logarithm ln by e, we infer that

eu = lim
n→∞

(
1 +

u

n

)n

.

Putting u = 1 yields

e = lim
n→∞

(
1 +

1
n

)n

= 2.7182818 . . . . (2.9)

This is the famous number e, the base of the natural logarithm.
Changing from this logarithm to any other with base b say, is a simple matter.

The statement z = logb x means that x = bz. Taking the natural logarithm of the
latter equation yields lnx = ln bz = z ln b, whence

logb x = z =
ln x

ln b
,

or
ln x = ln b · logb x.

In particular, taking b = 10, we obtain

log10 x ≈ 0.434 lnx, or ln x ≈ 2.303 log10 x.

The exponential function y = ex has a remarkable property: its derivative is
the same as the function itself. To see this, note first that

dy

dx
=

1
dx/dy

.
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1

y

y=ex

0 x

Figure 2.4: Graph of the exponential function.

Now the inverse function is
x = ln y,

so that
dx

dy
=

1
y
.

Hence
dy

dx
=

1
1/y

= y = ex.

The graph of the exponential function is shown in Figure 2.4.

Calculation of entropy

Thus according to (2.7),

W1 = Q1 = RT1

∫ V2

V1

dV

V
= RT1 ln

V2

V1
. (2.11)

Hence the change in entropy due to the isothermal expansion of the gas at tem-
perature T1 from volume V1 to V2 resulting from the absorption of an amount of
heat Q1, is given by

ΔS =
Q1

T1
= R ln

V1

V2
. (2.12)

Since V2 is greater than V1, we see that the entropy increases during an isothermal
expansion of the gas.

What happens to the entropy as a result of the adiabatic expansion from
volume V2 to V3? On an adiabatic curve heat is neither supplied to the gas nor
taken from it. It follows that an adiabatic process is “isoentropic”, does not affect
the entropy.

We stated the equation for an adiabatic curve in 1.9:

pV γ = const, where γ > 1.

We digress to derive this equation.
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If no heat is supplied to a gas then, by the law of conservation of energy,

ΔQ = ΔE + W = 0. (2.13)

In other words, the work is done at the expense of some of the internal energy of
the gas:

W = pΔV = −ΔE.

However on p. 5 we saw that
ΔE = CV ΔT,

and deduced from the state equation of an ideal gas that

p =
RT

V
=

(Cp − CV )T
V

.

Substituting these expressions for ΔE and p in (2.13), we obtain the relation

ΔT

T
+

(Cp − CV )
CV

ΔV

V
= 0,

or, in differential form,
dT

T
+

(
Cp

CV
− 1

)
dV

V
. (2.14)

This equation is easy to integrate. In the preceding section we saw that the
anti-derivative ∫

dx/x = ln x + const.

Hence integration (that is, antidifferentiation) of both sides of the identity (2.14)
yields

ln T +
(

Cp

CV
− 1

)
ln V = const′,

or

ln
[
TV

(
Cp
CV
−1)

]
= const′,

whence
TV

Cp
CV
−1 = const′′. (2.16)

Substituting for T from T = pV/R, we obtain finally the desired equation (1.9):

pV γ = const, where γ =
Cp

CV
> 1. (2.17)

We now return to the Carnot cycle. For the end-points of the adiabatic
expansion from V2 to V3 we have from (2.16) that

T1V
γ−1
2 = T2V

γ−1
3 ,
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and for the adiabatic compression from V3 to V4,

T1V
γ−1
1 = T2V

γ−1
4 .

Dividing the former equation by the latter, we obtain

V2

V1
=

V3

V4
. (2.18)

Analogously to (2.12), one shows that for stage 3, the isothermal compression
of the gas from volume V3 to V4, there is a decrease in entropy by the amount

ΔS = R ln
V4

V3
. (2.19)

Hence in view of (2.18), the decrease in entropy over the path 3 → 4 is exactly
compensated by its increase over the path 1 → 2. The cycle closes and the state
function entropy remains unchanged.

There is one obvious but important property of entropy, namely that the
entropy of a homogeneous system in thermal equilibrium increases in proportion
to the mass of the system. This is so because during the transition from some initial
state to the state in question, the heat absorbed at each stage of the process is
proportional to the mass of the system. This means that the entropy of a system
is the sum of the entropies of its homogeneous subsystems. For example, if we
have an isolated system consisting of a vessel containing water and water vapor
in mutual equilibrium, then the entropy of the system is equal to the sum of the
entropy of the water and the entropy of the vapor (and also, of course, the entropy
of the material of the vessel). Thus entropy is additive.

In this argument we have not taken into consideration the entropy of the
interface between water and vapor, nor of that between the water and the walls of
the container. The proportion of molecules involved at these interfaces is relatively
small and may be neglected.

Above we calculated the change of entropy when the temperature is held
constant. What if the temperature varies? We have

dS =
dQ

T
=

dE

T
+

pdV

T
= CV

dT

T
+ R

dV

V
. (2.20)

Integrating once again, we obtain

S = R ln V + CV ln T + a, (2.21)

where a is the constant of integration; it is only up to an additive constant that
total entropy is determined, since we have only changes in entropy, not “absolute”
entropy. From (2.20) we infer that transition from a state V1, T1 to a state V2, T2

results in the change in entropy given by

ΔS = R ln
V2

V1
+ CV ln

T2

T1
. (2.22)
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Hence a rise in temperature is accompanied by a rise in entropy provided that
the change is not adiabatic. As we have already seen, along an adiabatic curve
entropy does not change—in the case of adiabatic expansion of a gas, the increase
in entropy due to the increase in volume is exactly compensated by its decrease
due to the resulting cooling of the gas.

The above calculations are subject to certain provisos. For instance we tacitly
assumed that Cp and CV do not vary with the temperature. This is in fact not
completely true; in fact the heat capacity of a body increases with decreasing
temperature, and this increase is especially marked at low temperatures. Thus the
rigorous theory is more complicated than the one just presented.

We next compute the change in entropy resulting from heat conduction equal-
izing the temperatures of gases, and from diffusion, that is, the mixing of gases.

Consider an adiabatically insulated system consisting of two identical vessels
each of volume V and each containing a mole of an ideal gas at temperatures T1

and T2. The vessels are brought into contact and as a result of heat-conduction
in their walls the gases reach a state of thermal equilibrium without change in
volume. According to (2.21) the total entropy prior to the time of contact is

S = 2R ln V + Cp ln T1 + Cp ln T2 + 2a.

After contact the equilibrium temperature of both gases is

T =
T1 + T2

2
,

and the entropy is

S′ = 2R ln V + 2Cp ln
(

T1 + T2

2

)
+ 2a.

The change in entropy is therefore

ΔS = S′ − S = Cp

{
ln

[
T1 + T2

2

]2

− ln(T1T2)

}
.

It is easy to see that the entropy has increased: This is immediate from the
fact that the arithmetic mean of two positive quantities is always greater than or
equal to their geometric mean:

T1 + T2

2
≥

√
T1T2.

Here is a proof. We need to show that (squaring both sides and multiplying by 4)

(T1 + T2)2 ≥ 4T1T2,

or, equivalently, that
T 2

1 + 2T1T2 + T 2
2 ≥ 4T1T2,
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that is,
T 2

1 − 2T1T2 + T 2
2 ≥ 0.

But this is true since the left-hand side is (T1−T2)2, a square and so never negative.
Thus the entropy has increased by the amount

ΔS = Cp ln
(T1 + T2)2

4T1T2
. (2.23)

We now turn to the mixing of two gases. Suppose the first gas occupies a
volume V1 and contains n1 moles, and the second contains n2 moles at volume
V2. We assume the two gases are at the same temperature T and pressure p, and
are separated by a partition. The partition is removed and the gases mingle. How
does the entropy change from the situation where the gases are separated to that
where they are mixed?

Since the volume of each gas in the mixture is V1 +V2, the individual changes
in entropy of the gases are

ΔS1 = n1R ln
V1 + V2

V1
and ΔS2 = n2R ln

V1 + V2

V2
.

The combined change in entropy due to the mixing of the gases, the so-called
“mixing entropy”, is then the sum:

ΔS = ΔS1 + ΔS2.

Since
V1 = n1

RT

p
and V2 = n2

RT

p
,

this becomes

ΔS = R

(
n1 ln

n1 + n2

n1
+ n2 ln

n1 + n2

n2

)
. (2.24)

Thus the mixing entropy ΔS is positive.
We see from this that entropy increases in processes occurring spontaneously,

such as those involving heat conduction and diffusion. If such processes could be
reversed then entropy would decrease, but such processes—producing a difference
in temperature or in concentrations of gases in a mixture—would require external
work to be done.

Measuring entropy experimentally

How can entropy be measured in practice? By definition, the entropy change in a
substance between 0◦K and temperature T1 is

ΔS =
∫ T1

0

dQ

T
= ST1 − S0.
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Now there is a third law of thermodynamics, Nernst’s10 “heat theorem”, postu-
lating that the entropy S0 vanishes at absolute zero.11 (We shall discuss Nernst’s
theorem further below.) Hence we may write

S =
∫ T1

0

dQ

T
. (2.25)

What is the increase dQ in heat? If heating takes place at constant pressure, then

dQ = CpdT, (2.26)

whence

S =
∫ T1

0

Cp
dT

T
. (2.27)

However, in having its temperature raised from absolute zero to T1, the substance
in question may be subject to various effects and its heat capacity may well change.

Consider, for instance, carbon tetrachloride CC�4. At room temperature,
298.1◦K, this compound is a partially vaporized liquid. Now at low temperatures
the heat capacity of pure crystalline substances is known to be proportional to the
cube of the temperature:

Cp = bT 3. (2.28)

In the case of CC�4 the constant b is approximately 0.75 · 10−3. At 225.4◦K a
change takes place in the crystal lattice of solid frozen CC�4 requiring 1080.8
calories per mole to effect. At the melting point 250.2◦K of CC�4, the latent heat
of melting, that is, the amount of heat needed to change the crystalline solid into
a liquid, is 577.2 calories/mole. At its boiling point of 298.1◦K, the latent heat of
vaporization is 7742.7 calories/mole. Hence in units of calories/(mole·◦K) we have

S298.1 =
∫ 10◦K

0

0.75 · 10−3T 2dT +
∫ 225.4◦K

10◦K

Cp
dT

T
+

1080.8
225.4

+
∫ 250.2◦K

225.4◦K

Cp
dT

T
+

577.2
250.2

+
∫ 298.1◦K

250.2◦K

Cp
dT

T
+

7742.7
298.1

.

At 298.1◦K the pressure of carbon tetrachloride vapor is 114.5 mm of the
mercury column, equivalent to 0.15 atm. To bring the vapor to atmospheric pres-
sure we must compress it, and this entails a decrease in entropy of

ΔS298.1 = R ln
(

V760

V114.5

)
.

Using values of Cp found by experiment, the integrals with integrand CpdT/T
can be expressed explicitly as functions of the temperature T , and then integrated

10Walther Hermann Nernst (1864-1941), Prussian physicist, Nobel laureate in chemistry 1920.
Trans.

11And thus giving meaning to “absolute” entropy S after all. Trans.
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Table 1: The entropy of carbon tetrachloride at 298◦K and 1 atmosphere.
Change in entropy in calories/(mole ·◦K) S cal./(mole·◦K)
S10 − S0 = 0.75 · 10−3

∫ 10

0 T 2dT 0.25
S225.4 − S10 (integrated graphically) 36.29
ΔS225.4 = 1080.8/225.4 (phase transition) 4.79
S250.2 − S225.4 (integrated graphically) 3.08
ΔS250.2 = 577.2/250.2 (melting) 2.31
S298.1 − S250.2 (integrated graphically) 5.45
ΔS298.1 = 7742.7/298.1 (vaporization) 25.94
R ln(114.5/760) (compression) -3.76

Total: S = 74.35 cal/(mole·◦K) = 311.22 joules/(mole·◦K)

Table 2: Values of Cp and Cp/T for silver and graphite at various temperatures.

Cp in cal/(mole·◦K) Cp/T in cal/(mole·◦K2)
T ◦K silver graphite silver graphite
50 2.69 0.13 0.0531 0.0026
100 4.82 0.41 0.0482 0.0041
150 5.54 0.79 0.0379 0.0053
200 5.84 1.22 0.0292 0.0060
250 5.97 1.65 0.0259 0.0066

273.1 6.02 1.86 0.0221 0.0068
298.1 6.04 2.08 0.0203 0.0069

graphically, that is, by drawing the graph of Cp/T as a function of T , and estimat-
ing the area under the graph between the respective limits of integration (compare
Figure 2.5 below).

The individual terms making up the entropy S298.1 of CC�4 at 298.1◦K and
atmospheric pressure, together with their sum (the value of S298.1) are given in
Table 1 above.

In this way the entropy of various substances may be estimated experimen-
tally. We shall see that often its value can be calculated theoretically. The air in
a room, a sheet of paper, any object whatsoever, contains a definite amount of
entropy—just as it contains a definite amount of internal energy.

We now give two further examples where the entropy is calculated by means
of graphical integration. Table 2 gives values of Cp and Cp/T for silver and graphite
at various temperatures and a certain fixed pressure p. The respective graphs of
Cp/T as a function of T are sketched in Figure 2.5.
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Figure 2.5: Graphical calculation of the entropy of silver and graphite.

One first calculates the approximate average values of Cp/T over various of
the indicated intervals. For example, over the interval from 50◦K to 100◦K the av-
erage value C̄p/T , in calories/(mole·◦K) for silver is (0.0531+0.0482)/2 = 0.0506.
One then multiplies each of these averages by the length of the corresponding
temperature interval, and sums these products to obtain an approximation of the
desired integral:

n∑
i=1

C̄p,i

Ti
ΔTi ≈

∫ Tn

T1

CpdT

T
.

For silver this sum is

50(0.0506 + 0.0425 + 0.0330 + 0.265) + 0.0230 · 23.1 + 0.0212 · 25
= 8.69 cal/(mole ·◦ K) or 36.38 joules/(mole ·◦ K).

For graphite the sum is

50(0.0034 + 0.0047 + 0.0056 + 0.0063) + 0.0061 · 23.1 + 0.0068 · 25
= 1.31 cal/(mole ·◦ K) or 5.48 joules/(mole ·◦ K).

These figures represent the changes in entropy of silver and graphite when heated
from 50 to 298.1◦K.

Irreversible processes

We state once more the laws of thermodynamics—of which there are now three,
rather than two.
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The first law (Mayer, Joule, Helmholtz, Carnot). An increase in internal
energy of a system is the sum of the heat absorbed by the system and the work
done on the system:

dE = dQ + dW.

The second law (Carnot, Clausius). A process whose exclusive outcome is the
extraction of heat from a heat source (and its conversion into work) is impossible.

In other words, it is impossible to construct an engine that works cyclically
and does work by drawing heat from a single heat reservoir, without causing any
other changes in the system (a perpetual motion machine of the second kind).

We saw in Chapter 1 that the maximum efficiency a reversible heat engine
can have is

η =
W

Q1
=

T1 − T2

T1
.

Alternative version of the second law (Clausius, Thomson12). If in a reversible
process a system absorbs an amount ΔQ of heat at temperature T , then the
entropy of the system increases by the amount

ΔS =
ΔQ

T
.

Entropy is a function of the state of the system.
The third law (Nernst, 1906). At T = 0◦K, the entropy S = 0. (Why this is

so will be explained below.)
So far in our study of entropy we have encountered nothing especially inter-

esting, let alone mysterious. However entropy does possess one surprising pecu-
liarity: While—like energy—it is preserved in reversible processes, unlike energy
it increases in irreversible ones.

Suppose that we bring two bodies into contact, having temperatures T1 and
T2 with T1 > T2—for instance, that we drop an ice cube at temperature T2 in a
glass of water at temperature T1. The water will then transmit an amount of heat
ΔQ to the ice, causing the water’s entropy to decrease by ΔQ/T1, while the heat
ΔQ absorbed by the ice cube will increase its entropy by ΔQ/T2.13 The overall
change in entropy is positive:

ΔS =
ΔQ

T2
− ΔQ

T1
> 0. (2.29)

We have already seen that entropy increases in spontaneous processes such as
diffusion and heat conduction. Such processes can be reversed only at the net
expense of work. And one might adduce a great many other examples attesting

12Joseph John Thomson (1856–1940), British physicist, discoverer of the electron. Trans.
13This assumes that the temperatures of ice cube and water are not substantially changed.

Trans.
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to the invariable increase of entropy in irreversible processes. Equalization of the
temperatures of two bodies can occur reversibly (as in the first two stages of a
Carnot cycle; see (2.12)), and irreversibly. In the latter case the increase in entropy
will be greater.

At what point does the increase in entropy of a system stop? Answer: It
increases until the system reaches a state of equilibrium. Here we come to questions
of a fundamentally new sort. In our discussions of reversible processes we avoided
considering the flow of such processes in time, assuming that they proceed infinitely
slowly and that there is equilibrium at each stage. Along the isothermals of a
Carnot cycle, it was assumed that the temperature of the gas was kept throughout
the same as that of the heater or cooler respectively. Strictly speaking, we have
been dealing with thermostatics rather than thermodynamics, since we ignored
time-related features such as the rate of progress of the processes.

By contrast, an irreversible process involves in an essential way a progression
in time towards equilibrium. It takes time for the temperatures of a hot and a cold
body brought into contact to become equal. Entropy does not attain its maximum
instantaneously.

So far (so far!) time has not appeared explicitly in our discussions. Yet we
were nonetheless concerned with the dynamics of heat processes. To remedy this
lack, we supplement our earlier formulation(s) of the second law with a proviso in
the case of irreversible processes:

Addendum to the second law (Clausius, 1865). In irreversible processes the
total entropy of the system always increases, that is, 14

dS >
dQ

T
, (2.30)

or

S >

∫ T1

0

dQ

T
. (2.31).

In arriving at this conclusion Clausius and Thomson brought to light a fun-
damental property of the universe as a whole.

In actuality there are no reversible processes. A tiny portion, at least, of
the mechanical energy of every motion is transformed into frictional heat. Sooner
or later all moving bodies come to a halt, and an equilibrium corresponding to
maximum entropy is reached. Thomson concluded that the world is ultimately
subject to “heat death”—while its energy remains unchanged.

There is a further very general conclusion to be drawn. We saw early on that
in pure mechanics there are in principle no irreversible processes, while in ther-
modynamics there are such processes. We have tacitly assumed that, for isolated
irreversible systems, time increases in the direction of increase of entropy. We shall

14The equations that follow are perhaps intended to indicate that if a system undergoes an
irreversible process, then entropy is generated internally, in addition to that resulting from heat
input. (See also equation (6.5) below.) Trans.
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see in the sequel how such matters stand for open systems interacting with the
surrounding world with its matter and energy.

Thus the concept of entropy has led us from mere technology (the steam
engine) to cosmological considerations (the direction of time and the fate of the
universe).

Thus entropy turns out to have remarkable properties. We shall in the se-
quel search for the reason behind this. However first we turn again to reversible
processes and thermostatics, in order to derive some interesting and important
consequences of the laws of thermodynamics.



Chapter 3

Entropy and free energy

Energy is the mistress of the world,
But a black shadow

Follows her inexorably,
Making night and day one,

Emptying everything of value,
Transforming all to smoke-filled gloom....

At least that’s how entropy
Has been invariably represented.

But now we know
That there is no such shadow

And never was nor will be,
That over the successive generations of stars

There is only entropy—life and light.

Obtaining useful work

As we have seen, the equation giving a system’s change in internal energy when
undergoing a reversible process is

dE = dQ− dW, (3.1)

where dQ is the heat absorbed by the system and dW the work done by the system.
We also have (see (2.4))

dQ = TdS. (3.2)

Hence
dE = TdS − dW, (3.3).

or
dW = −(dE − TdS) = −dF, (3.4)
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where
F = E − TS (3.5)

is called the Helmholtz free energy of the system. This form of the equation in effect
combines the first two laws of thermodynamics, asserting that the work done by
the system is not merely at the expense of some of its internal energy but at the
expense of the internal energy less the heat. Thus the greatest useful work that a
system can do is equal to (the loss of) its free energy.

We wish also to consider processes—reversible or not—proceeding at constant
pressure p.1 In such a process work is done against the constant pressure, regardless
of reversibility. As we have seen, this work is given by pdV . The energy remaining
for doing other useful work is then

dW = −dF − pdV. (3.6)

Thus at constant pressure, the amount of energy available for doing useful work2

is equal to the quantity

G = F + pV = E + pV − TS. (3.7)

The quantity G is called the Gibbs3 free energy, or thermodynamic potential,
of the system. Like internal energy and entropy, both kinds of free energies are
functions of the state of the system, that is, their values depend only on the state
of the system,4 and not on the transition path to that state from some other.

It follows from (3.6) and (3.7) that the maximal amount of useful, non-
expansive work obtainable from the system at constant pressure is equal to the
loss of thermodynamic potential:5

dW = −dG. (3.8)

If the volume is also constant, then equation (3.6) reduces to equation (3.4), per-
taining to the case of an arbitrary reversible process: the maximal amount of
energy available for useful work is equal to the decrease in Helmholtz free energy:

dW = −dF.

So far we have talked only of mechanical work, that is, the work pdV done by
an expanding gas. However equation (3.8) is valid for arbitrary kinds of work, such

1Of particular interest in connection with chemical reactions occurring at atmospheric pres-
sure. Trans.

2Of a non-mechanical sort. Trans.
3Josiah Willard Gibbs (1839–1903), American physicist, chemist, and mathematician, one of

the originators of vector analysis. Trans.
4Meaning that they are determined by any two of the “state variables” p, V, T . The fact that

they are state functions is thus immediate from their definitions. Trans.
5The work here is that not involved in expansion, that is, the maximal obtainable work less

the work done in expanding against the fixed pressure. Trans.
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as that done by an electrical current, or as the result of a chemical reaction, and
so on. The various kinds of work transform into one another.6 For instance, the
chemical reaction in a battery produces electric current, which in turn can be used
to do mechanical work—such as when the current from a car battery activates the
starter. The same result can be obtained by using a crank, in which case muscular
energy is brought to bear instead. But where does that energy come from?

A muscle is a mechano-chemical system in which free chemical energy is used
directly for doing mechanical work.

A heat engine uses heat obtained from the chemical reaction of burning
fuel. In accordance with Carnot’s law (2.1) some (but not all) of the heat is
changed into mechanical work. However a living organism exists at constant tem-
perature and pressure. This means that the muscular work performed by people
and other animals—such as that carried out in building the Egyptian and Mex-
ican pyramids—is not to be explained in terms of a transfer of heat from heater
to cooler. The work done by muscles transforms chemical free energy produced in
specific chemical reactions taking place in muscles at constant temperature.

In what direction do these chemical reactions proceed? We shall now answer
this question.

Equilibrium conditions

If a system is isolated (closed and insulated), that is, does not exchange matter
or energy with the surrounding world, then spontaneous processes taking place
within the system will tend towards equilibrium.7

A purely mechanical process evolves without giving off or absorbing heat; it is
an adiabatic process involving no change in entropy. Here the role of free energy is
played by the total mechanical energy. As is well known, mechanical equilibrium
is reached at a minimum of potential energy. A stone tossed upwards falls to
the ground. Thus the condition for mechanical equilibrium under the assumption
ΔS = 0, is that potential energy be at a minimum:

U = Umin, (3.9)

and the direction of such a spontaneous process is that of decreasing potential
energy:

ΔU < 0. (3.10)

Since the total mechanical energy of a system undergoing a frictionless pro-
cess is constant, any decrease in the potential energy is exactly made up by an
increase in the kinetic energy. This transformation can be exploited as a source of

6Or work transforms one kind of energy into another, which is then once more available for
doing work. Trans.

7Although there are systems—such as planetary ones—that do not seem ever to settle into
any steady state. Trans.
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useful work—as , for example, in hydroelectric power stations, where the potential
energy of the water is turned into kinetic energy as it falls, and then by means of
turbines into electric energy.

As noted earlier, in an isolated adiabatic system equilibrium is reached at
the greatest value of entropy:

S = Smax. (3.11)

A good example of an isolated system is a spaceship, since in constructing the
ship every effort is made to ensure that its interior is insulated as far as possible
from the surrounding cosmos. Of course, the spaceship, with its functioning crew
of astronauts, is far from being in a state of equilibrium. Later on we shall see how
the non-equilibrium state of a living organism is sustained. After all, for such a
system equilibrium means death.

Thus the direction of spontaneous irreversible change in an isolated system
is that of increasing entropy:

ΔS > 0. (3.12)

For the time being we leave aside the question of the rate of increase of entropy,
that is, the speed at which equilibrium is attained.

We turn now to a closed system at constant temperature and pressure. (A
system is said to be closed if it can exchange energy but not matter with the
surrounding medium.) An example would be a chemical reaction taking place in a
flask whose temperature is controlled by a thermostat. The equilibrium condition
for such a system is the minimality of the Gibbs free energy:

G = Gmin, (3.13)

and consequently the direction of change of state of such a system is that of
decreasing free energy:

ΔG < 0. (3.14)

We have seen above (see (3.7)) that the Gibbs free energy consists of two parts:

G = (E + pV )− TS = H − TS.

The internal energy plus pV is a state function called the enthalpy8 of the system:

H = E + pV. (3.15)

We mention in passing that the term “heat content” sometimes used for enthalpy
is unfortunate, since, as we have seen, it makes no sense to speak of the amount
of heat in a body.

Thus in a closed system at constant temperature and pressure, we must have

ΔG = ΔH − TΔS ≤ 0. (3.14a)
8Enthalpy is simply another convenient state function. For an isobaric (constant pressure)

process, we have ΔH = ΔE + pΔV , so from the energy equation ΔE = ΔQ − ΔW we obtain
ΔH = ΔQ, the heat absorbed at constant pressure. Trans.
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We see that such a decrease in Gibbs free energy can come about in two distinct
ways: through a decrease in enthalpy or an increase in entropy. Of course these
may occur together, or indeed the enthalpy may increase but have its growth more
than compensated by an increase in entropy:

ΔS >
ΔH

T
> 0.

And, finally, the reverse may occur: enthalpy and entropy might decrease together
with the loss of enthalpy exceeding that of entropy. Briefly, for a process of the
sort we are considering to be realizable, the Gibbs free energy must decrease; it is
not sufficient to consider the changes in enthalpy and entropy separately.

A chemical reaction

The burning of any kind of fuel—an oxidation process—is accompanied by a re-
duction in its free energy, which is given off in the form of heat and light. Thus the
burning of hydrogen—its combination with oxygen—resulting in the formation of
water, involves a large discharge of free energy. Specifically:

H2 (gas at 1 atm) +
1
2
O2 (gas at 1 atm) → H2O (liquid) + 236760 joules/mole.

On the right-hand side of this equation we see the amount of free energy liberated.
Since the reaction takes place at constant pressure, this must be the Gibbs free
energy, or thermodynamic potential.

Before it was understood that what counts is free energy rather than internal
energy or enthalpy, it was thought that a chemical reaction is possible only if it
is exothermic, that is, involves the production of heat. However, in time it was
realized that there are endothermal reactions, involving the absorption of heat.
The direction of change in enthalpy is not in itself the crucial factor.

Liberation of free energy is a necessary condition for a chemical reaction to
take place, but it is not sufficient. For example, a mixture of hydrogen and oxygen
can exist for an indefinitely long time without a reaction occurring. However if a
lighted match is brought up to the mixture an explosive reaction occurs.

What is going on here? It turns out that, although it furnishes us with the
condition (3.13), thermodynamics does not tell us whether or not a reaction will
proceed—only whether it can or cannot occur. For example, under ordinary con-
ditions oxygen and nitrogen will not react because

N2 + O2 → 2NO − 174556 joules/mole,

that is, the free energy increases rather than decreases in this reaction. At the
same time this indicates the thermodynamic instability of nitric oxide, since the
reverse reaction results in the liberation of free energy:

2NO → N2 + O2 + 174556 joules/mole.
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Figure 3.1: Model of a chemical reaction in an isolated system.

So why is it that thermodynamics tells only that a reaction can in principle
occur and not whether it will actually take place?

The fact of the matter is that a process may be thermodynamically possible,
yet actually impossible.9 It was noted above that, although it is thermodynami-
cally possible for hydrogen and oxygen to react when mixed—since the reaction
liberates free energy—, such a mixture may nonetheless remain inert for an ar-
bitrarily long time. Thermodynamics has nothing to say about us igniting the
mixture with a match—it merely finds how the balance of free energy lies.

Every process takes time. If the time required is infinite, it will not proceed.
However, time does not enter into thermodynamics; as mentioned earlier, strictly
speaking we should call it thermostatics rather than thermodynamics.

Imagine a system consisting of a vessel containing a liquid with a tap for
draining the liquid into a second vessel placed under the tap (Figure 3.1). Ther-
modynamics tells us that sooner or later the liquid from the upper vessel will all
flow into the lower, and of course we can calculate the final level of liquid in the
lower vessel. Thermodynamics tells us that the liquid must flow downwards, not
upwards. But will this occur sooner rather than later? Thermodynamics is silent
on this question. The rate of flow depends on the extent to which the tap is turned
on. If it is turned off, then the liquid in the upper vessel is in a state of thermo-
dynamical disequilibrium since its energy is above the equilibrium value for the
system. Nevertheless this disequilibriun can last indefinitely.

There is a clear similarity between igniting a mixture of hydrogen and oxygen
with a match and turning on the tap: opening the tap allows the process to proceed.

Figure 3.2 shows the graph of the free energy against time over the course
of a certain chemical reaction. The initial state 1 of the reagents has greater free
energy than the final state 2 of the products of the reaction:

G1 −G2 = ΔG > 0.

9In the sense that some external input is necessary to set it off? Trans.



47

G2

G1

G
a

ΔG

2

1

Figure 3.2: Variation in free energy during a chemical reaction.

Free energy has ultimately been liberated. Thus the reaction is possible. But
will it occur? This is a question of kinetics rather than thermodynamics. In the
reaction in question the initial state is separated from the final state by a so-called
“activational barrier”, a kind of ridge which must be surmounted by the reagents.
The free energy at the top of the ridge exceeds the initial free energy G1 by the
amount Ga. This means that for the reaction to proceed the reacting molecules
must possess a surplus of free energy. The higher the barrier, the slower the pace
of the reaction. If the temperature is raised, then the proportion of molecules with
surplus energy increases and the reaction speeds up. (We shall see later exactly
how the speed of a chemical reaction depends on the free activation energy and
the temperature T .)

The reader doubtless knows that many reactions are carried out with the aid
of catalysts, substances that stimulate the reactions while themselves remaining
unchanged. Under conditions of chemical equilibrium, the role of the catalyst re-
duces to the lowering of the activational barrier and consequent speeding up of
the reaction. Consider again the vessels and liquid of Figure 3.1. Here a catalyst
might be an agent who “opens the tap” more, thereby accelerating the flow of
liquid from the upper to the lower vessel. However the final result is independent
of this catalyzing agent: sooner or later the liquid will all flow into the lower vessel
and reach a predetermined level in it. (Of course the system depicted in Figure
3.1 is not analogous to a chemical reaction with an activational barrier—the flow
of liquid is hampered only by friction. However, it helps to clarify the distinction
between thermodynamics and kinetics.)

The activation free energy is equal to the difference between the activation
enthalpy and the activation entropy times the temperature (see the equation fol-
lowing (3.14)):

Ga = Ha − TSa. (3.16)

Thus a reduction in Ga can be brought about by a reduction in the activation en-
thalpy Ha, or an increase in the activation entropy Sa, or some other combination
of changes.

It is appropriate to mention here that, without exception, all the chemical
reactions taking place in living organisms—and which in fact constitute life—
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involve catalysts. These are the albumins10 and enzymes.

Melting of crystals and evaporation of liquids

In a closed system under equilibrium conditions, on being heated crystals melt
into a liquid, and on further heating the liquid turns into a vapor, that is, a gas.

The melting of a crystal and the evaporation of a liquid require the input of
heat, the latent heat of fusion and the latent heat of evaporation respectively. If one
places ice in a vessel and heats it, when the temperature reaches 0◦C (≡ 273.15◦K)
it stays steady until all of the ice has melted. One can then continue heating the
water to 100◦C (≡ 373.15◦K), whereupon the temperature again ceases increasing
until such time as all the water has turned into steam. The latent heat of melting
of ice is 5982 joules/mole, and the latent heat of evaporation of water at 100◦C
is 40613 joules/mole. The latent heat of evaporation of a substance is always
significantly greater than its latent heat of melting.

Crystal, liquid, and gas are different phases of a substance. They differ in
their state and existence conditions, and are separated by boundaries when they
coexist. A more technical name covering both melting and evaporation is phase
transition.

We shall now find thermodynamical conditions for phase transition. When a
crystal is heated, its internal energy increases, and hence also its enthalpy H . So
too does its entropy—it was shown in Chapter 2 (see equation 2.22) that entropy
increases with increasing temperature provided the change is not adiabatic. Nev-
ertheless, as a rule the (Gibbs) free energy G = H − TS also increases. As the
temperature continues to rise, the free energy finally becomes equal to the free
energy of the same quantity of liquid at the melting point:

Gcrystal = Gliquid, (3.17)

or
Hcrystal − TmeltingScrystal = Hliquid − TmeltingSliquid. (3.18)

When the free energies of the two phases coincide, a phase transition occurs—
melting, in the present case. We can solve for the melting point Tmelting from
(3.18):

Tmelting =
Hliquid −Hcrystal

Sliquid − Scrystal
=

ΔH

ΔS
. (3.19)

As noted above, both ΔH and ΔS are positive. The greater ΔH—which is in fact
the latent heat of fusion—and the smaller the change in entropy ΔS, the higher
the melting point Tmelting . If the entropies of crystal and liquid should coincide,
so that ΔS = 0, then melting could not occur: Tmelting → ∞. Thus an entropy
change at the melting point is crucial for melting to be possible.

10Certain water-soluble proteins responsible for the functioning of cells. Trans.
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Let’s calculate the fusion entropy ΔSmelting for water. The latent heat of
fusion for ice is known to be ΔH = 5982 joules/mole, and of course Tmelting =
273.15◦K. Hence

ΔSmelting =
5982 joules/mole

273.15◦K
= 21.89 joules/(mole ·◦ K).

(We did the analogous calculation for carbon tetrachloride in Chapter 2—see Table
1 there.)

Vaporization entropy is calculated similarly. For water it is

ΔSboiling =
40613 joules/mole

373.15◦K
= 108.84 (joules/mole ·◦ K).

We see, therefore, how important a role entropy plays. Without changes in
entropy there would be no phase transitions, and the world we inhabit could not
exist. In particular, if at least there were water, then it could exist only as ice—and
there would be no life.

Up till now we have been considering these physical processes merely phe-
nomenologically, or formally. We considered the changes of enthalpy and entropy
involved in melting and evaporation, but did not ask “Why?”, which for physics
is the fundamental question. Why do enthalpy and entropy decrease when a sub-
stance is cooled and increase when it is heated? Why are the latent heat and
entropy of evaporation so much greater than the latent heat and entropy of fu-
sion?

Once again, thermodynamics is silent on these questions; they go beyond the
bounds of its competence. The three laws by themselves can never lead to answers.

Of course physics can answer these questions, but by means of theories devel-
oped in other areas of physics, namely statistical mechanics and the kinetic theory
of matter. We shall look at these in the next chapter.

Why does alcohol dissolve in water yet gasoline not do
so?

Now that we know about chemical reactions and phase transitions, we may, after
reflecting a little, also master the thermodynamical theory underlying the dissolv-
ing of one substance in another.

The most important and universal solvent is of course water. Water solutions
are everywhere in our lives. Actually, tap water is a solution. It contains various
dissolved substances, mainly hardening salts—carbonates, silicates, phosphates,
predominantly of calcium. These salts are not very soluble, and they therefore
gradually settle out on the walls of vessels or water-pipes as a scale. This scale is
a nuisance. Though not much of a problem in a teapot, it can cause a great deal
of trouble in a steam boiler.
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So these salts have low solubility in water. For which substances is it high?
Alcoholic drinks come in many different strengths, which shows that ethyl

alcohol dissolves in water over a wide range of proportions of alcohol to water.
We often need to dissolve sugar and table salt in water, and everyone knows that
their solubility increases with the temperature. These are just the most familiar
examples of the great many water-soluble substances—salts, acids, bases—whose
solubility, as a rule, increases with the temperature.

However, there are many substances that do not dissolve in water. It hardly
needs mentioning that mercury is one such substance—the idea of a solution of
mercury in water strikes one as unnatural. (Yet silver does dissolve to a very
small extent in water, yielding a solution useful as a bactericide.) A great many
organic compounds, above all hydrocarbons, are practically insoluble in water.
Thus gasoline and paraffin, which are mixtures of hydrocarbons, form layers in
water, as is shown, for example, by the iridescent film formed by gasoline on the
surface of puddles. As a result of the high surface tension of water, the layer of
gasoline is stretched so as to form a thin film whose colors have the same origin
as those of soap bubbles. The colors visible in such thin films result from the
phenomenon of interference, and so provide a beautiful proof of the wave nature
of light.11

But what is the thermodynamical significance of greater or lesser solubility?
Clearly, a solution will form if its formation is accompanied by a reduction

in free energy, much as in a chemical reaction:

soluble substance + solvent→ solution.

So free energy must be released—and this can only come about through an in-
crease in entropy.12 It follows from equation (2.22) that at constant temperature
entropy increases with increasing volume, and also that mixing entropy is posi-
tive (equation (2.24)). When we mix a liter of alcohol and a liter of water we do
not restrict the mixture volume-wise, so the entropy increases. In addition, the
enthalpy decreases as a result of the interaction of the molecules of the solute and
the solvent. Hence the free energy must decrease:

ΔH < 0 and ΔS > 0, whence ΔG = ΔH − TΔS < 0.

That entropy increases when many substances are dissolved is proved by the in-
crease in their solubility with temperature (as in the case of sugar or salt dissolved
in water). Since the contribution ΔH of the change in enthalpy turns out to be
relatively small, the increase in solubility resulting from a temperature increase

11Actually the full explanation comes from quantum electrodynamics, which considers light
as made up of photons. See R.P. Feynman’s QED, Princeton University Press, Princeton, 1985.
Trans.

12Since the enthalpy H decreases (see below) and the temperature T is unchanged when a
solution forms. Trans.
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must be due to the term −TΔS having decreased (that is, become larger neg-
atively). Hence the higher the temperature the more free energy available to be
liberated—provided ΔS is positive.

Thus alcohol, sugar, and salt dissolve in water because their dissolution is
accompanied by a decrease in free energy. But why does gasoline not dissolve in
water? The obvious answer is that this would require an increase in free energy.

And why is that? Well, free energy can increase in two distinct ways—either
through an increase in enthalpy or a decrease in entropy. Which of these is more
pertinent to the case in question?

Hydrocarbons do dissolve in water, but only to a minimal extent. Careful
investigation has shown that this process is accompanied by a decrease in enthalpy:
ΔH < 0. But what is very unusual is that the solubility of hydrocarbons goes
down rather than up as a result of heating. It follows that the entropy must also
decrease during dissolution—moreover by an amount sufficient to compensate for
the reduction in enthalpy:

ΔH < 0 and ΔS < 0, but ΔG = ΔH − TΔS > 0,

that is, the positive quantity −TΔS exceeds the loss ΔH of enthalpy: −TΔS >
|ΔH |.

We conclude that the layering of gasoline and water is due to entropy! The
entropy change causes the hydrocarbon molecules to be expelled from the watery
environment. The entropy change plays the role of an acting force!

Hydrophobic forces and the albumin globule

This “entropic force” is usually called a hydrophobic force, and substances that
this force expels from water are also termed hydrophobic; they are “inimical” to
water, unlike hydrophilic substances which “like” water.

Many important phenomena can be explained by the hydrophobic force. For
example, how does soap clean?

Soaps are usually made from sodium and potassium salts of fatty acids, with
chemical formulae similar to the following one (for sodium palmitate, a sodium
salt of palmitic acid):

H3C—CH2—CH2—CH2—CH2—CH2—CH2—CH2—CH2—
—CH2—CH2—CH2—CH2—CH2—CH2—COONa.

The long hydrocarbon group H3C(CH2)14 is hydrophobic, while the radical
COONa is hydrophilic. In water, soaps form colloidal solutions,13 and the sus-
pended molecules form mycelia,14 that is, molecules like HC3(CH2)14COONa ar-
ranged in a specific manner, with the hydrophobic hydrocarbon groups oriented

13Very fine suspensions of particles in a liquid. Trans.
14A mycelium is something like a mass of fibers. Trans.
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Figure 3.3: Model of a soap mycelium, showing the hydrophilic “heads” and hy-
drophobic “tails” of molecules.

towards the interior of the mycelium—being repelled by the water—while the
hydrophilic groups remain on the surface of the mycelium. See Figure 3.3 for a
schematic picture of a soap mycelium.

The cleansing action of soap is due to the mycelial structure of its solution.
The surfaces of the mycelia are highly active, and readily adsorb15 many sub-
stances. The presence of the hydrophilic groups enables soap to wet hydrophobic
surfaces and to emulsify fats, oils, and so on. This is coupled with the alkaline
reaction of the COONa radical.

However the most important effects of hydrophobic entropic forces are not
rainbow films on water or the cleansing action of soap, but the synthesis of albu-
mins, substances determining the functioning of all life processes.

An albumin molecule is a chain of amino acid residua. They are all built out
of the 20 different aminoacids, according to the following general scheme:

H
|

H2N—C—COOH
|
R

where R stands for a functional group of atoms distinguishing one aminoacid from
another. When aminoacids combine to form an albumin chain, water molecules
separate off and peptide links —CO—NH— are formed. Here is a fragment of an
albumin chain (tripeptide):

H H H
| | |

—NH— C —CO—NH— C —CO—NH— C —CO—
| | |

R1 R2 R3

where R1, R2, and R3 stand for different or identical radicals. An entire chain,
which may be very long—containing a hundred or more aminoacid residua—is a

15That is, adhere to and surround in a thin layer of particles. Trans.
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1

2

Figure 3.4: Schematic sketch of an albumin globule. Region 1 consists of hydropho-
bic radicals, and region 2 of hydrophilic ones.

kind of text written using a 20-letter alphabet. We shall have more to say about
these texts at the end of the book.

Albumins function in water solutions as fermenting agents, catalysts of bio-
chemical reactions. They possess a certain definite flexibility since rotations are
possible about the unit links C—N and C—C. In its naturally-occurring biologi-
cally functional state, an albumin chain is rolled up into a dense globular structure,
characteristic of that particular albumin. What determines this structure? Among
the radicals, or functional groups R1,R2, . . . ,R20, there are hydrophobic ones, con-
taining hydrocarbon groups, and hydrophilic ones, containing in particular acidic
and basic groups. What happens to these different sorts of radicals when an albu-
min chain is immersed in water?

To some extent the structure of an albumin globule resembles that of a
mycelium, in the sense that the albumin chain is rolled up so that the hydrophobic
groups, which spontaneously withdraw themselves from the surrounding water, are
located in the interior of the globule, while the hydrophilic radicals are located on
its surface. Figure 3.4 gives a schematic picture of such a globule, and Figure 3.5
gives a more detailed representation of the structure of a globule of the albumin
myoglobin, established by means of X-ray analysis.

Many albumins function naturally in globular form. This naturally-occurring
state can be undone by means of acids, alkalis, or the application of heat. The
albumin then becomes denatured and ceases to function. You can’t get a chicken
out of a boiled egg.

We have arrived at a highly non-trivial conclusion: the functioning of several
of the albumins crucial to life depends on their globular structure, and this is de-
termined by hydrophobic, that is, entropic, forces acting in a watery environment.

What do rubber and an ideal gas have in common?

This would seem to be a silly question, or poorly framed at best. What could a
solid substance—which rubber certainly is—have in common with a gas, moreover
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CO2
–

NH3
+

Figure 3.5: Structure of a globule of myoglobin. The dots represent aminoacid
radicals. In myoglobin the albumin chain has a roughly spiral structure, as shown
here.

a perfect, that is, highly rarefied, gas? It must be, surely, that the poser of the
question had in mind some specific property of rubber in which it differs from
other solids but resembles an ideal gas.

However, it is precisely such seemingly paradoxical questions that often lend
impetus to scientific progress. L.D. Landau16 used to say that the task of theoret-
ical physics is to establish new connections between phenomena that at first sight
have nothing in common. The finding of such connections invariably proves to be
a potent source of new insights. (A striking example is Maxwell’s discovery of the
connection between the wave theory of light and theory of electromagnetism.)

In the present case, our interest lies with elasticity: elastic force and defor-
mation.

When a steel spring is stretched there arises an elastic force, which increases
with the amount of stretching. According to Hooke’s law, the tension developed
in a flexible solid is proportional to the deformation:

σ =
f

s
= ε

L− L0

L0
, (3.20)

where σ denotes the tension, that is, the force f per unit area of cross-section
of the deformed body,17 L is the length of the body in its stretched state, L0

16Lev Davidovich Landau (1908–1968), Soviet physicist, Nobel laureate 1962. Trans.
17That is, cross-section perpendicular to the line of stretching. Trans.
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its length unstretched, and ε is Young’s modulus of elasticity of the material of
the body.18 For steel the modulus is very large, around 200 gigapascals.19 Thus a
small deformation (or strain) results in a large elastic tensile force, or, conversely,
a large applied force (stress) is needed to produce an appreciable deformation of
the spring.

Whence comes the elastic force? When we deform a strip of metal elastically
we raise its internal energy, by increasing the potential energy of its atoms, held
together in the crystal lattice of the metal by chemical bonds. So what changes
is just the internal energy. Now we see from equation (3.4) that the work done in
deforming the metal is equal to the increase in its (Helmholtz) free energy:

ΔW = ΔF = ΔE − TΔS.

But work is force times distance, so we also have

ΔW = fΔL = f(L− L0). (3.21)

Hence the elastic force is given by

f = σs =
ΔF

ΔL
=

ΔE

ΔL
− T

ΔS

ΔL
. (3.22)

As already noted, when a steel spring is deformed, its internal energy changes but
not its entropy.20 Hence ΔS = 0, and the elastic force is given by f = ΔE/ΔL,
so that it is of a purely energetic character.

Most solids behave this way under elastic deformation—but not rubber. The
elastic modulus of rubber is many orders of magnitude less than that of steel;
depending on the degree of vulcanization, it ranges from 200 to 8000 kilopascals—
which means simply that a piece of rubber, a rubber band for instance, can easily
be stretched elastically to several times its length.

We next calculate Young’s modulus for an ideal gas. A gas may also be
considered an elastic body, but one that resists compression rather than stretching.
Suppose our ideal gas is contained in a cylinder with a piston, as in Figure 3.6.
When the gas is compressed isothermally there arises an elastic force

f = ps =
ΔF

ΔL
.

Since here L = V/s, where now s is the area of cross-section of the cylinder, it
follows that

f = ps = s
ΔF

ΔV
= s

(
ΔE

ΔV
− T

ΔS

ΔV

)
. (3.23)

18Determined by this equation. Trans.
19Since 1 pascal = 1 newton/meter2 , a gigapascal is 109 newtons/m2 (≈ 30 × 106

pounds/square inch). Trans.
20Since ΔQ = 0? Or is the author maintaining that ΔS = 0 follows from (3.22)? This is

unclear in the original. Trans.
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L
0

L

Figure 3.6: Compression of a gas in a cylinder with a piston.

Now the basic assumption concerning an ideal gas is that there be no interaction
between its molecules beyond elastic collisions. Hence the internal energy of a
quantity of ideal gas is independent of the average distance between the molecules,
and hence of the volume. Thus ΔE = 0, and (3.23) yields

p = −T
ΔS

ΔV
. (3.24)

For an ideal gas we have the equation of state

pV = RT.

Since the compression is isothermal, T is fixed. Hence

pV = const,

whence
d(pV ) = V dp + pdV = 0,

yielding

dp = −p
dV

V
. (3.25)

This equation is analogous to Hooke’s law, if we interpret dp as the “elastic tension”
of the gas and dV/V as its relative deformation; the negative of pressure, −p, is
then the analogue of the elastic modulus.21 Note that the “elastic modulus” −p
of the gas at a particular volume V is proportional to the temperature T , since by
the state equation,

p =
RT

V
.

21Except that the elastic modulus for metals, for example, is close to being constant, whereas
here −p is variable. Trans.
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This may also be seen from equation (3.24).22

Equation (3.25) shows that the elasticity of an ideal gas is not energy-based
like that of a steel spring, but entropic: a gas resists compression not because
compression increases its energy but because it decreases its entropy.

Atmospheric pressure, or the “elastic modulus” of an ideal gas, is around
100 kilopascals, which is of the same order of magnitude as the elastic modulus
of rubber. It turns out that the elasticity of rubber is also entropic. Experiment
shows that the elastic force f of rubber is proportional to the absolute temperature
T , and furthermore is close to zero at absolute zero. Hence in (3.22) only the term
−T (ΔS/ΔL) is significant, that is,

f ≈ −T
ΔS

ΔL
. (3.26)

Thus the high elasticity of rubber is explained by the fact that its entropy decreases
very markedly under stretching.

In view of the fact that the elasticity of an ideal gas and a rubber band
are both essentially entropic, one would expect similar heat phenomena to be
observable for these two substances. And indeed, anyone who has pumped up a
bicycle tire or stretched a rubber band held against his or her lips will attest to the
fact that in each case heat is given off. Quick compression of a gas is an adiabatic
process because there is no time for heat to be absorbed by the surrounding
medium, and the same is true with regard to the rapid stretching of a rubber
band.

That the elasticity of rubber is essentially entropic is very important: the
main use of rubber, namely in automobile and airplane tyres, depends on this
property. We conclude this section by juxtaposing in tabular form the elastic
properties of an ideal gas and of rubber (Table 3 below).

However we have still not penetrated to the underlying reason for this sim-
ilarity of such radically different material bodies. We shall consider this in the
sequel.

Why do we heat a room?

This apparently very simple question will allow us to better understand how energy
and entropy are interrelated.

The outstanding theoretical physicists Arnold Sommerfeld and Ryogo Kubo
both included in their monographs on thermodynamics a note written by the
Swiss geophysicist Robert Emden23 entitled “Why do we have winter heating?”,

22Young’s modulus also decreases with temperature for metals, though relatively slightly. For
example, for carbon steel it decreases by about 6% between 0◦C and 100◦C. Trans.

23Jacob Robert Emden (1862–1940), Swiss astrophysicist and meteorologist. Trans.
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Table 3: Properties of an ideal gas compared with those of rubber.
Ideal gas Rubber

Elastic modulus is proportional to ab-
solute temperature, and equals 100
kilopascals at one atmosphere.

Elastic modulus is proportional to ab-
solute temperature, and lies between
200 and 8000 kilopascals.

Volume can be changed by a large
factor.

Length can be changed by a large
factor.

Heats up under adiabatic compres-
sion.

Heats up under adiabatic stretching.

Internal energy independent of vol-
ume.

Internal energy practically indepen-
dent of length.

Under compression an entropic elastic
force arises.

Under stretching an entropic elastic
force arises.

published in the British journal Nature in 1938. We follow the example of these
scientists and quote Emden’s note in its entirety.24

“The layman will answer [to the question as to why we have winter heating]:
‘To make the room warmer.’ The student of thermodynamics will perhaps so
express it: ‘To import the lacking (inner, thermal) energy.’ If so, then the layman’s
answer is right, the scientist’s wrong.

“We suppose, to correspond to the actual state of affairs, that the pressure
of the air in a room always equals that of the external air. In the usual notation,
the (inner, thermal) energy is, per unit mass,

E = CV T.

(An additive constant may be neglected.) Then the energy content is, per unit of
volume,

E1 = CV ρT,

[ρ = density] or, taking into account the equation of state,

p

ρ
= RT,

we have
E1 =

CV p

R
.

“For air at atmospheric pressure,

E1 = 0.0604 cal· cm−3 = 60.4 cal· m−3

24What follows is reproduced verbatim from the original article (written in English) in Supple-
ment to NATURE, May 21, 1938, pp. 908–909, except that the symbolism is changed to conform
with that used in this book. Trans.
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[= 2.528 · 105 joules/m5]. The energy content of the room is thus independent of
the temperature, solely determined by the state of the barometer. The whole of
the energy imported by the heating escapes through the pores of the walls of the
room to the outside air.

“I fetch a bottle of claret from the cold cellar and put it to be tempered
in the warm room. It becomes warmer, but the increased energy content is not
borrowed from the air of the room but is brought in from outside.

“Then why do we have heating? For the same reason that life on earth needs
the radiation of the sun. But this does not exist on the incident energy, for the latter
apart from a negligible amount is re-radiated, just as a man, in spite of continual
absorption of nourishment, maintains a constant body-weight. Our conditions of
existence require a determinate degree of temperature, and for the maintenance
of this there is needed not addition of energy but addition of entropy.

“As a student I read with advantage a small book by F. Wald25 entitled ‘The
Mistress of the World and her Shadow’. These meant energy and entropy. In the
course of our advancing knowledge the two seem to me to have changed places. In
the huge manufactory of natural processes, the principle of entropy occupies the
position of manager, for it dictates the manner and method of the whole business,
whilst the principle of energy merely does the book-keeping, balancing credits and
debits.

R. Emden. Kempterstrasse 5, Zürich.”

Sommerfeld refined Emden’s argument, concluding that the energy density
of a room does not in fact remain constant, but actually decreases with heating—
which goes to show all the more the validity of the conclusion that entropy plays
the leading role over that of energy.

“The mistress of the world and her shadow”

The book by Wald that Emden refers to is not the only book with this title. As
a child I read a book with the same title by Berthold Auerbach.26 Thanks to
popularizers such metaphors have retained their currency. But Emden’s reversal
of the metaphor is correct.

Energy is called “mistress of the world” because everything that happens in
the world does so via changes of one form of energy into another. Einstein showed
that a quantity of matter of mass m is equivalent to an amount of energy given
by

E = mc2,

where c is the speed of light. Energy is in an essential way contained in the ma-
terial of the world—matter and fields. Most of this energy is liberated and used
only in certain of the transformation processes of atomic nuclei—whence atomic

25Frantǐsek Wald (1861–1930), Czech chemist. Trans.
26Berthold Auerbach (1812–1882), German-Jewish poet and author. Trans.
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energy. The other forms of energy—potential and kinetic, thermal and chemical,
electrical and magnetic—are the direct sources of the work carried out in nature
and technology. Work is done when one of these forms of energy is transformed
into another.

Entropy is called “the shadow” of the mistress of the world because it can
be used as a measure of the depreciation of energy, if we understand the value
of energy to lie in its availability for transformation into useful work. As we saw
earlier, the maximum amount of useful work is equal to the decrease in Helmholtz
free energy (see (3.4)). But the Helmholtz free energy is the change in internal
energy less the heat absorbed (see (3.5)):

F = E − TS.

Thus the greater the heat absorbed, or, equivalently, the greater the increase in
entropy, the less energy available for doing useful work, that is, the less valuable the
internal energy E. As mentioned earlier, in purely mechanical processes all of the
energy is available for doing work, but in processes involving heat exchange—such
as mechanical processes where friction occurs—some of the energy is transformed
into heat, that is, into entropy times the temperature.

Why was Emden right?

Answer: Because the direction of flow of all real processes is determined by the di-
rection of change in entropy. As we said earlier, all real processes are irreversible, so
that in an isolated system they will proceed in the direction of increasing entropy.
However, this does not mean that entropy cannot decrease. The law of increasing
entropy holds only for isolated systems. In open systems, that is, in systems in
which matter and energy are exchanged with the surrounding medium, the situa-
tion is very different. All phenomena of the biosphere, that is, occurring in living
nature, involve changes in entropy. Under normal conditions, the mass and supply
of energy of, for instance, a human organism remain constant; they are constantly
maintained through breathing and eating. However, this replenishment involves a
decrease in entropy rather than an increase in energy. An important consequence
of the second law is the position set out in Emden’s article, also formulated in Er-
win Schrödinger’s famous book27 What is life (from the point of view of physics)? :
A living organism feeds on negative entropy. In Chapter 6 we explain what this
means exactly.

Thus Emden thinks that we should interchange the places of entropy and
energy, shadow and mistress—just as in Hans Christian Andersen’s fairy tale “The
shadow”, turned into a marvelous play by Evgenĭı Schwartz.28

In fact the metaphor of mistress and shadow is of no great significance. It
would perhaps be better to abandon it and refer to energy and entropy neither as

27Published as What is life? in 1944. Trans.
28Evgenĭı Schwartz (1896–1958), Russian playwright. Trans.
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mistress nor shadow. What we do retain is the discovery that entropy is just as
important as energy, and especially so in cosmology and biology—which is why
time flows the way it does, from the past into the future.





Chapter 4

Entropy and probability

If you aspire to conceive a potent idea
In the name of the advancement of knowledge,

You must first carry out
A statistical summation.

This will help you in everything,
It will reveal a lighted path in the gloom.

But, try as you might, without it
The essence of phenomena will remain inaccessible.

Boltzmann’s formula

Thus far we have studied only phenomenological physics, that is, thermodynamics,
where our systems are described in terms of state functions such as energy, en-
thalpy, entropy, and free energy. In particular, we discovered that entropy increases
in spontaneously evolving processes. But why should this be so?

The answer to this question is contained in Boltzmann’s formula

S = k ln P, (4.1)

where P denotes the so-called “statistical weight”1 of the current state of the
system in question, and k is a constant called Boltzmann’s constant. It is the
ratio of the gas constant R = 8.31 joules/(mole·◦K) to the Avogadro number (the
number of molecules in a mole of gas) NA = 6.06 · 1023 per mole:

k =
R

NA
= 1.38 · 10−23 joules/◦K. (4.2)

Although it is not possible to give a fully rigorous derivation of this celebrated
formula in such a popular account as this, we shall nonetheless attempt to show

1Defined below. Trans.
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how the entropy of a gas in a given state and the probability of that state must
be related by such a formula.

First we must understand what is meant by P , the “statistical weight” of the
state of the system. Clearly, this cannot be the usual probability of one outcome
out of several possible outcomes, such as when a die is cast and the probability of
the outcome 3 is q = 1/6.2 Note that the probability is less than 1, as it must be
since the sum of the probabilities of each of the outcomes 1,2,3,4,5,6 must be 1.3

For similar reasons, probabilities are generally less than 1, and since the logarithm
of a (positive) number less than 1 is negative, the “statistical weight” P appearing
in formula (4.1) cannot be ordinary probability.

The statistical weight of a state of a system is defined to be the number of
ways that the state can be realized. Since the state of a thrown cubical die is the
same regardless of the numerals on its faces, the statistical weight of a cast die is
6, P = 6.

If we throw two dice, then the number of outcomes is 6 · 6 = 36. The proba-
bility of, for instance, obtaining a 3 on one die and a 4 on the other4 is equal to
the product of the two separate probabilities, since these two outcomes are inde-
pendent.5 It follows that here the number P , again in view of the independence
of the two events, is equal to the product of the numbers P1 and P2:

P = P1 · P2. (4.3)

Boltzmann’s formula is then made plausible by the fact that it yields the additivity
of entropies directly:

S = k ln P = k ln(P1P2) = k ln P1 + k ln P2 = S1 + S2. (4.4)

Suppose now that we have four molecules distributed among two boxes, as
in Figure 4.1. How many different states can there be? If we assume the molecules
identical, then clearly the number of states is five: 4|0, 3|1, 2|2, 1|3, 0|4. The number
of ways in which these states can be realized, that is, their statistical weights, are
different. If we assume the molecules distinguishable by being differently numbered
or colored, then it can be seen from Figure 4.1 that the statistical weights are
respectively 1, 4, 6, 4, 1. The most likely distribution is the uniform one 2|2, with
two molecules in each box.

2Given an experiment with a finite number N of mutually exclusive and equally likely out-
comes, the probability of an event A, that is, a subset consisting of n outcomes, is defined to be
n/N . If the probability space of all possible outcomes is infinite, then an appropriate “probabil-
ity measure” has to be defined on it so that the measure of the whole space is 1, and then the
probability of an event, that is, a measurable subset, is just its measure. Trans.

3That is, the probability that some outcome occurs must be 1. Trans.
4Here the dice are assumed distinguished from one another. Trans.
5Two events A and B are said to be independent if prob(A ∩ B) = probA · probB, that is, if

the probability of both events occurring is equal to the product of their separate probabilities.
This captures in precise form the idea that the occurrence of either event should not change the
probability of the other. Trans.
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Box 1 Box 2

Figure 4.1: The possible states of four particles distributed over two boxes.

Where do the numbers 1, 4, 6, 4, 1 come from? They are the binomial coeffi-
cients

4!
4!0!

= 1,
4!

3!1!
= 4,

4!
2!2!

= 6,
4!

1!3!
= 4,

4!
0!4!

= 1.

We remind the reader that for any positive integer N , the symbol N !, read “N -
factorial”, denotes the product of all numbers from 1 to N :

N ! = 1 · 2 · 3 · · ·N,

and
0! = 1.

Thus 1! = 1, 2! = 2, 3! = 6, 4! = 24, and so on.
In the general case of N molecules distributed over two boxes, the number

of different ways of obtaining the distribution N1|N2, where N1 + N2 = N , is

P =
N !

N1!N2!
=

N !
N1!(N −N1)!

. (4.5)

This is not difficult to see: the numerator N ! is the total number of permuta-
tions (ordered linear arrangements) of the N molecules. If we imagine the first
N1 molecules in each arrangement as being in the first box, and the rest in the
second, then since the order within each box is immaterial, and there are N1!N2!
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permutations fixing each partition of the N molecules into two subsets of sizes N1

and N2 respectively, we need to divide by N1!N2!.
We now use Boltzmann’s formula to compute the change in entropy due to

the mixing of two gases consisting of N1 and N2 molecules respectively.
Before being mixed, the gases are assumed to be separated by a partition.

We distinguish their states only by location: the N1 molecules of the first gas are
all in the left half of the container, and the N2 molecules of the second in the right
half. The respective statistical weights are then

P1 = N1!, P2 = N2!,

and, since entropies are additive for the unmixed system, its entropy is given by

S = S1 + S2 = k(lnN1! + lnN2!).

When the partition is removed, the gases mix. The entropy of the mixture is

S′ = k ln(N1 + N2)! = k ln N !.

The mixing entropy is therefore

ΔS = S′ − S = k ln
N !

N1!(N −N1)!
. (4.6)

Thus the mixing entropy is given by k times the logarithm of the expression
(4.5), so in order to estimate it we need a good approximation to the factorials of
large numbers, where by “large” we mean of an order much larger than 1.

Stirling’s formula

From N ! = 1 · 2 · 3 · · ·N, we infer that

ln N ! = ln 1 + ln 2 + ln 3 + · · ·+ ln N =
N∑

i=1

ln i. (4.7)

The function lnN increases more and more slowly with increasing N , since the
difference ln(N + 1)− ln N = ln(1 + 1/N) decreases with increasing N . Hence for
large N the area under the graph of y = lnx affords a good approximation of
ln N !:

ln N ! ≈
∫ N

1

ln xdx. (4.8)

This integral can be evaluated using “integration by parts”. We recall how this is
done. For functions u and v of x, we have

d(uv) = udv + vdu.
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Hence ∫ b

a

udv =
∫ b

a

d(uv)−
∫ b

a

vdu = uv |ba −
∫ b

a

vdu.

In our case, we take u = ln x and v = x, obtaining∫ N

1

ln xdx = x ln x |N1 −
∫ N

1

xd(ln x)

= N ln N −
∫ N

1

x
dx

x
= N ln N − (N − 1).

Since N and N ln N are large compared with 1, we can neglect the term −1. Thus
we end up with the approximation

ln N ! ≈ N ln N −N = N ln
N

e
, (4.9)

yielding in turn the rough approximation

N ! ≈
(

N

e

)N

. (4.10)

A more accurate approximation is given by Stirling’s formula

N ! ≈ (2πN)1/2

(
N

e

)N

. (4.11)

Taking logarithms, we obtain

ln N ! ≈ N ln N −N +
1
2

ln N +
1
2

ln 2π, (4.12)

which is not so much better than (4.9), since for large N in (4.12) we can neglect
the terms 1

2 ln N and 1
2 ln 2π in comparison with N ln N and N . Thus we may use

(4.9) as an approximation of lnN !.
Having settled on an approximation of the logarithm of factorials, we return

to the formula (4.6). That formula yields, via the approximation (4.9),

ΔS ≈ k(N ln N −N −N1 ln N1 −N2 ln N2 + N1 + N2)
= k[(N1 + N2) ln(N1 + N2)−N1 ln N1 −N2 ln N2],

or

ΔS ≈ k

(
N1 ln

N1 + N2

N1
+ N2 ln

N1 + N2

N2

)
. (4.13)

If we express the numbers of molecules in terms of the numbers n1, n2 of
moles:

N1 = NAn1, N2 = NAn2,
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where NA is Avogadro’s number, (4.13) becomes

ΔS = kNA

(
n1 ln

n1 + n2

n1
+ n2 ln

n1 + n2

n2

)
. (4.14)

Since kNA = R, we have arrived via Boltzmann’s formula at the former expression
(2.24) for the mixing entropy, derived by means of a completely different argument.

The meaning of Boltzmann’s formula

Thus we have provided considerable evidence for, though of course not proved,
Boltzmann’s formula, expressing entropy as a constant times the logarithm of the
statistical weight of the system. A great many things follow from this.

Under equilibrium conditions, entropy is not in any way remarkable. It is
a function of the state of the system which can be measured experimentally (as
well as computed theoretically using Boltzmann’s formula, as we shall see below).
However, as soon as an isolated system deviates from equilibrium, a remarkable
property of entropy emerges, namely, its propensity to always increase to a maxi-
mum.

This property can be demonstrated using the relation between S and the
statistical weight P . We may rewrite Boltzmann’s formula in the exponential form

P = eS/k, (4.15)

which shows that the probability of a particular state increases exponentially with
its entropy. (Note that the entropy S can be determined experimentally, while P
can be calculated from its definition.) Thus the increase in entropy in an irre-
versible process entails a change to a more probable state. This is confirmed by
the fact that a disordered state is more likely than an ordered one.

Suppose we have initially, as earlier, two bodies at different temperatures.
This implies a certain order. If the temperatures of the bodies are equalized by
means of heat conduction—the flow of heat from the hotter to the colder body—,
then this order is destroyed. The same sort of thing occurs when gases or liquids
are mixed. Again, the unrestricted expansion of a gas such as hydrogen or carbon
dioxide, when released from a balloon containing it, represents increasing disorder.
While the gas was trapped in the balloon, it occupied little space. On being released
it expands freely, for the simple reason that the probability is greater that it should
occupy a larger volume than a smaller, that is, that the statistical weight of the
state of the gas occupying a larger volume is greater than that of its state when
occupying a smaller volume. For a given system, a less ordered state has larger
statistical weight since it can be realized in more ways than a more ordered state.

If no conscious effort is made to arrange the books and papers on a desk
neatly, they will end up in a state of disorder, as a result their being randomly
moved about—randomly, since unsystematically.
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In these examples order is created artificially, while disorder arises sponta-
neously, being associated with greater probability, greater entropy. Thus one might
say that entropy is a measure of the amount of disorder of a state of a system.

The aim of people’s and animal’s rational activity is the overcoming of dis-
order. For example, members of a productive farm have to struggle to thwart
spontaneous processes such as soil erosion, deterioration of crops, and so on. Here
too is entropy more significant than energy.

From all this we see that the second law of thermodynamics is of a quite
different sort from the first. The first law holds in all cases: energy is conserved in
interactions of elementary particles just as it is in macroscopic systems.

It is worth mentioning that in the 1930s the idea arose that energy might
be conserved only on average, and not necessarily in certain individual processes
involving elementary particles. As might be expected, this idea owed much to the
nature of the second law. The American physicist Shankland6, in his investigations
of the interactions of photons and electrons, thought that he had found evidence
for the non-conservation of energy in such basic processes. Even the great Niels
Bohr then allowed the possibility that the law of conservation of energy might
not apply to individual events in the microcosm, but hold only on average. How-
ever Shankland’s experiments were soon shown to be flawed, and since then the
rigorously deterministic nature of the first law has remained unquestioned.

Incidentally, this law, together with the law of conservation of momentum,
served as the basis of a great discovery, that of the neutrino. The theory of the α-
decay7 of radium was created by G. A. Gamow8 in 1928. Here no contravention of
the law of conservation of energy arose. However, β-decay, involving the radioactive
emission of an electron or positron from an atomic nucleus, represented at that
time a seemingly insoluble puzzle: the conservation laws appeared not to hold!
Gamow, who was somewhat of a jokester, made a rubber stamp of a skull over two
crossed βs (Figure 4.2), which he used to stamp on his offprints. This symbolized
the difficulties with the theory of β-decay.

This Gordian knot was cut in 1933 by Wolfgang Pauli, who introduced a new
particle, the neutrino, in order to save the conservation laws. The neutrino was
later detected experimentally.

Unlike the first law, the law asserting the impossibility of a perpetual motion
machine of the second kind—the law of increase of entropy—is not deterministic,
but statistical, probabilistic, since the impossibility of a perpetual motion ma-
chine of the second kind is a consequence of its improbability. Let us estimate,
for instance, the probability that all molecules in a container of volume V spon-
taneously gather together in one half of the container. The probability of a single
molecule’s being found in, say, the right half of the container is 1/2. If there are N

6Robert Sherwood Shankland (1908–1982), American physicist and historian of science.
Trans.

7An α-particle is identical to a helium nucleus, consisting of two protons and two neutrons
bound together. Trans.

8George Gamow (1904–1968), Russian physicist, in the U.S. from 1934. Trans.
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Figure 4.2: Symbol of the theoretical difficulties associated with β-decay.

molecules in all, then the probability that all N will gather together in that half of
the container is the product of the probabilities for the individual molecules, since
these are independent events. Suppose the volume V is a cubic centimeter. At
ordinary temperature and pressure, a cubic centimeter of a gas contains approxi-
mately 2.7 · 1019 molecules (Loschmidt’s number). Hence the desired probability
is about (

1
2

)2.7·1019

,

which is vanishingly small. Violation of the second law would require a highly
improbable event such as this to take place—compression of a gas without doing
any work on it.

The discoveries of Boltzmann and Gibbs, the creators of statistical physics,
heralded a scientific revolution, a breakthrough into an entirely new field. Of
course, as is always the case in science, this revolution did not arise out of nowhere.
The ground was prepared by Gibbs’ and Boltzmann’s predecessors: Carnot, Clau-
sius, Thomson, and Maxwell.

The main innovation consisted in the probabilistic, rather than deterministic,
nature of the new statistical laws. We said earlier that it is impossible for the water
in a kettle submerged in a bucket of water to come to a boil at the same time as
the water in the bucket freeze. The sense of the word “impossible” here, is that of
vanishingly small probability, not that the event in question is categorically ruled
out—passing strange though it would be if it occurred. After an extremely large
number of trials, it may come to pass.9 It is just that a spontaneous drop, rather
than rise, in entropy is a rare—extremely rare!—occurrence. We shall look further
into this issue in the sequel. For now, suffice it to say that, as the above calculation
shows, in a macroscopic system exceptions to the probabilistic second law are very
few and far between. Nevertheless, such exceptions occur, and we witness them
every day—for example, in the statistics behind the blueness of the sky. We shall
explain this in the next chapter.

9In fact, it follows from Poincaré’s recurrence theorem and a theorem of Liouville, that it is
almost certain that the unlikely event in question will eventually occur. See, for example, the
popular book Easy as π? by O.A. Ivanov, Springer, New York, etc., 1998, pp. 105–110. Trans.
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In the classical account of statistical mechanics written by Joseph Mayer and
his wife Maria Goeppert-Mayer10 a discussion of these issues is preceded by the
following epigraph:

“Never?” “No, never.”
“Absolutely never?” “Well, hardly ever.”

The fusion of a crystal and the evaporation of a liquid

We discussed the fusion of crystals and evaporation of liquids in the preceding
chapter. We are now in a position to understand the physical meaning of such
phase transitions.

We saw in Chapter 3 that phase transitions involve changes ΔH in enthalpy
and ΔS in entropy. Such transitions are said to be “of the first kind.” When a
crystal melts, its disordering as it assumes liquid form might be called “entropi-
cally advantageous.” The disordered state of the constituent atoms or molecules is
more probable than their ordered state, since it can be realized by a greater num-
ber of arrangements of these particles than the ordered crystalline state. Hence
the entropy of the liquid state of the substance is greater than its entropy in the
crystalline state. On the other hand, the enthalpy of the liquid is less than the
enthalpy of the crystal: in order to fuse the crystal one must break some of the
interatomic or intermolecular bonds. Thus the crystalline state is advantageous
energy- and enthalpy-wise, but disadvantageous entropy-wise. Fusion begins pre-
cisely when the entropic contribution to the difference in free energies of crystal
and liquid exactly compensates the enthalpic contribution:

TmeltingΔS = ΔH.

At higher temperatures T > Tmelting , we have

TΔS > ΔH,

so that the entropic contribution exceeds ΔH , and the more probable liquid state
is the more stable. At lower temperatures T < Tmelting,

TΔS < ΔH,

and the enthalpic contribution dominates—the crystal state is the more stable.
Similar considerations hold for evaporation. The gaseous state is more likely

than the liquid state, but the enthalpy of the liquid is less because of the interac-
tions between its particles.

10Maria Goeppert-Mayer (1906–1972), German-born, American theoretical physicist, Nobel
laureate in 1963. Trans.
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But why is ΔH much larger at evaporation than at fusion? In Chapter 3 we
quoted the values for water:

ΔHmelting = 5982 joules/mole, ΔHevaporation = 40613 joules/mole.

For carbon tetrachloride they are

ΔHmelting = 2416.2 joules/mole, and ΔHevaporation = 32410.9 joules/mole.

The explanation lies in the fact that in a liquid not all of the bonds between
the particles in the crystalline state have been broken. Like a crystal, a liquid is
a condensed body; the densities of liquid and solid are not markedly different.
However on evaporation, all bonds between the particles are broken, and this
naturally requires a considerable input of energy. And the change in entropy is
also greater.

Entropic forces

In Chapter 3, we saw that the reason for gasoline’s not dissolving in water is that
the hydrocarbon molecules are repelled from the water by entropic forces, and that
an albumin chain bundles itself into a globule for similar reasons. We also saw that
the elasticities of an ideal gas and a rubber band are determined by changes in
entropy rather than internal energy. Now that we know the statistical nature of
entropy, we are in a position to understand just why these entropic forces arise.

On mixing a hydrocarbon with water, the entropy goes down. This must
mean that the state of the mixture, which we indicate schematically by (using the
hydrocarbon benzol, C6H6)

H2O · · · C6H6

C6H6 · · · H2O,

has lower probability than the state of unmixed water and hydrocarbon:

C6H6 · · · C6H6

H2O · · · H2O.

Yet it might seem that the probability of the first of these two states should be
more probable than the second, since it is a mixture, and we have seen that mixing
entropy is positive. What’s going on here?

The point is that we cannot consider the dissolving of a hydrocarbon in water
as a simple mixing like, say, the mixing of red and blue glass beads. Water is a
complex liquid, as is shown by its well-known properties, one of which is that in
its solid form, as ice, it is lighter than in its liquid form; the maximum density
of water occurs not at 0◦C, the melting point of ice, but at 4◦C (at atmospheric
pressure). The reason for this is that water is an “associative” liquid, meaning
that between its molecules there are so-called “hydrogen bonds”, as shown by the
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Figure 4.3: The structure of ice (a) and of liquid water (b). In (a) the small circles
denote the molecules of H2O, and the straight line segments the hydrogen bonds
between them. In (b) the solid lines denote chemical bonds O—H and the dashed
lines hydrogen bonds.

dashed lines in Figure 4.3 (b). These bonds are much weaker than chemical bonds.
The energy of the chemical bond O—H, that is, the amount of work needed to
break it, is about 463 kilojoules/mole, whereas the energy of the hydrogen bond
OH· · ·O in water is of the order of 12 kilojoules/mole.

An ice crystal is light because of its spacious structure; each of its molecules
neighbours on just four other molecules, arranged in the form of a tetrahedron
(Figure 4.3(a)). Thus a large proportion of the space occupied by the crystalline
lattice is empty. In liquid water the icelike lattice has been slackened; some of
the hydrogen bonds connecting each molecule of the ice to its four neighbours are
broken, so that in liquid water there are molecules with four, three, two, one, or
even no bonds with adjacent molecules (Figure 4.3(b)). This is why water is less
ordered yet denser than ice—the loosening of the rigid crystalline lattice allows
water molecules into its empty spaces.

The decrease in entropy that occurs if a hydrocarbon is dissolved in water
indicates that greater order must have come about. What happens is that water
molecules surrounding a molecule of the hydrocarbon tend to behave as they
do in crystalline ice, forming, so to speak, a microscopic iceberg around each
hydrocarbon molecule. However, such an increase in order is an improbable event,
while its destruction is probable. Thus the separation of the mixture into two
layers is more likely than the hydrocarbon’s dissolving in the water. As we saw
earlier, this “force” of separation explains the properties of soap and the globular
structure of naturally occurring albumin.
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Figure 4.4: Molecular structures of polethylene and rubber.

Whence comes the elastic force of an ideal gas resisting compression? It is
clear that a compressed state of a gas is less likely than a more expanded one, so
the smaller the volume occupied by the gas the greater the orderliness, whence the
tendency to expand to a state of greater entropy. And in terms purely of molecular
physics, the entropic elastic force of the gas is intuitively comprehensible: when
a gas is compressed, the number of impacts of its molecules against the piston
increases, so that the piston encounters ever increasing resistance.

All this is clear, but what happens in the case of rubber? Precisely why is it
that when we stretch a rubber band or tube there comes into being an entropic
elastic force tending to restore the original state? What does a rubber band have
in common with an ideal gas from the point of view of molecular physics?

The entropic force of an ideal gas is determined by statistical, probabilis-
tic properties. The gas consists of a swarm of independently moving, mutually
non-interacting molecules. So obviously rubber must also contain kinetically inde-
pendent parts subject only to the laws of probability and statistics. In order to
locate these parts we need to examine the molecular structure of rubber; this is
shown in Figure 4.4. Both natural and synthetic rubber are made of long polymer
chains. Since the properties of rubber—above all its great elasticity—are, in prin-
ciple, shared by a great many polymers, we shall simplify our task by considering
instead one of the simplest—if not the simplest—of all polymers, namely polyethy-
lene, whose molecular structure is also shown in Figure 4.4. Ordinary polyethylene,
familiar to everybody since it is used for making plastic bags and film, does not
in fact have the same physical properties as rubber. This is so because it is partly
crystallized. However if conditions are right, polyethylene and rubber do behave
similarly.

Now a polymer chain is formed by means of single chemical bonds of the form
—CH2—CH2—. Such bonds admit rotations that do not require especially large
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Figure 4.5: Model of a polymer ball.

amounts of energy. Rotation about the C—C bond in a molecule of ethane H3C—
CH3 requires about 12 kilojoules/mole. The thermal energy per degree of freedom
in a molecule at room temperature that goes into a rotation—in particular one
about a C—C bond—is about NAkT = RT = 2.5 kilojoules/mole, while the total
amount of energy needed to achieve such a rotation is about five times greater.
Nevertheless, at room temperature rotations do occur all the time—after all kT
represents the average energy, and there will be many molecules with much higher
energy. Therefore, at room temperature, macromolecules, that is, polymer chains
in solution, undergo all possible internal rotations about their single bonds—in
fact this motion is what constitutes thermal energy. As a result, a macromolecule
in solution rolls up into a ball. One must not confuse such a polymer ball with an
albumin globule. A polymer ball is a loose formation permeable by the solvent,
whereas an albumin globule is a closely packed, dense body. Figure 4.5 depicts
schematically the structure of a polymer ball as obtained from a loosely coupled
hinged chain. Such a depiction is appropriate since if rotations can occur about
certain single bonds, then the chain may be represented by a sequence of loosely
coupled segments. The state of being rolled up in a ball is more likely since it can
be realized in many more ways than the state of a chain that is stretched out. The
loosely coupled segments may be considered as the independent kinetic elements
of the rubber. When a rubber band is stretched, its state changes from a more
likely one, where its chains are rolled up into balls, to a less likely one where they
are stretched out. Entropy is thereby decreased and an elastic force proportional
to the temperature arises.

Thus the similarity in elastic behaviour between an ideal gas and a rubber
band comes down to the fact that in both cases the system consists of a large
number of independent kinetic elements, namely, molecules and chain segments
respectively. Such a system is subject to statistics, its behaviour is of a probabilistic
character.
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Entropy of equilibrium states

An isolated system in a state of equilibrium has maximum entropy. How can this
entropy be expressed statistically?

From Boltzmann’s formula we see that we should look for the maximum value
of the statistical weight P . But in the general case how does one go about finding
P? Suppose we have a physical system consisting of atoms or molecules, each of
which can exist in any state of a certain possible set. The general formula for the
statistical weight is

P =
N !

N1!N2! · · ·NM !
, (4.16)

where N1, N2, . . . , NM denote the numbers of particles—atoms or molecules—
in states 1, 2, . . . , M respectively, and N is the total number of particles. (This
represents a generalization of the formula (4.5).) Thus

N =
M∑
i=1

Ni = N1 + N2 + · · ·+ NM , (4.17)

and the total energy of the system in this state is

E =
M∑
i=1

NiEi, (4.18)

where Ei is the energy of a particle in the Mth state. Thus our problem here is to
find the maximum value of the expression

S = k ln P = k

(
ln(N !)−

M∑
i=1

ln(Ni!)

)
.

From the approximations ln(N !) ≈ N ln N−N, ln(Ni!) ≈ Ni ln Ni−Ni (see (4.9)),
it follows that

S = k ln P ≈ k

(
N ln N −

M∑
i=1

Ni ln Ni

)
. (4.19)

Thus we wish to maximize the right-hand expression in (4.19) subject to the
conditions (4.17) and (4.18). Higher mathematics enables one to solve this problem
easily; however we shall skip the mathematics and go right to the answer. It
turns out that the most likely energy distribution among the particles, that is, the
distribution corresponding to an equilibrium state, or, equivalently, to maximal
entropy, is given by the formula

pi =
Ni

N
=

e−Ei/kT∑M
i=1 e−Ei/kT

, (4.20)
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where pi is the probability that a randomly chosen molecule is in the state with
energy Ei. It is immediate that

M∑
i=1

pi = 1, (4.21)

since the probability that a molecule is in one of the possible M states must be
unity. The probability distribution (4.20) is called Boltzmann’s distribution. It is
valid for systems consisting of atoms, molecules, or other particles that can be
mentally enumerated, or distinguished from one another in some other way; this
is the basic assumption underlying the formula (4.21).11 The formula (4.16) for P
(see also (4.5)) is valid only under this assumption.

In the Boltzmann distribution there appears the important physical quantity

Z =
M∑
i=1

e−Ei/kT , (4.22)

called the canonical partition function or statistical sum of the system. Thus we
may rewrite (4.20) as

pi =
e−Ei/kT

Z
. (4.23)

All of the chief thermodynamical characteristics of a body—its energy, entropy,
and free energy—can be expressed in terms of the quantity Z. Thus it is not
difficult to show that for one mole of a gas we have

E = RT 2 d ln Z

dT
, (4.24)

and
S =

E

T
+ R ln Z. (4.25)

From (4.24) and (4.25) the expression for the Gibbs free energy in terms of Z
follows:

F = E − TS = −RT ln Z. (4.26)

Thus of the three quantities, the free energy has the simplest expression in terms
of the partition function. Exponentiation of both sides of (4.26) yields

Z = e−F/RT , (4.27)
11For a general closed system consisting of N particles the statistical weight of a state can-

not be defined by simple counting, since there are infinitely many positions that the particles
may take up, and infinitely many velocities. Instead one works in 6N-dimensional phase space,
each of whose points is a 6N -tuple made up of 3N position coordinates and 3N velocity coordi-
nates. The phase space is divided up into regions such that distinctions within each region are
“macroscopically indistinguishable”. The statistical weight of a state is then defined by a suit-
able volume-like “measure” that assigns the same weight to each of the “microscopic” regions
configured in agreement with the values of the parameters determining the given macroscopic
state. Trans.
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y z

Figure 4.6: Rotations and oscillation of a two-atom molecule.

an exponential expression for the partition function in terms of the free energy.
These formulae apply to a gas; however it is possible to find partition func-

tions also for solids and liquids. While this is not always so easy, the effort is
worthwhile, since knowledge of the partition function allows one to easily infer
the basic thermodynamical quantities. However, to obtain the partition function
one must know all possible values Ei of the energy of all conceivable states of the
components of the system.

A little quantum mechanics

Let us suppose we are carrying out calculations pertaining to a gas consisting of
two-atom molecules, such as nitrogen, N2. What are the energy levels characteristic
of these molecules?

Nitrogen molecules can move rectilinearly in any direction, so that they pos-
sess three degrees of freedom as far as their rectilinear motion is concerned. A
nitrogen molecule can also rotate about any axis perpendicular to the bond line
of the two atoms comprising it. (Rotation about the axis coincident with this
line changes nothing and does not involve outlays of energy.) Hence each nitrogen
molecule possesses two rotational degrees of freedom. Finally, the two atoms of a
molecule can oscillate back and forth in the direction of the bond line—as if the
chemical bond were a spring. Hence there is also one vibrational degree of freedom.
These rotational and oscillatory motions are represented schematically in Figure
4.6.
In addition to all that, the electrons of a molecule have a characteristic set of
energy levels, just as they do in an atom.

Thus there are in all four distinct contributions to the total energy of a
nitrogen molecule—from its rectilinear motion, rotation, oscillation, and electrons,
respectively:

E = Erect + Erot + Evib + Eel. (4.28)

Using quantum mechanics, the physics of the microcosm, one can calculate these
contributions with great precision.
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Observe first, however, that since the energy levels appear in the partition
function as exponents, we have

Z =
∑

i

e−Ei/kT

=
∑

a

e−Erecta/kT
∑

b

e−Erotb
/kT

∑
c

e−Evibc /kT
∑

d

e−Eeld
/kT ,

or
Z = ZrectZrotZvibZel. (4.29)

Now under normal conditions, Zel is practically equal to unity. The reason behind
this is quantum mechanical: the energy levels of electrons in atoms and molecules
are discrete, in the sense that Eeld can take on only certain definite values

Eel1 , Eel2 , . . . .

These energies can be computed starting from the fundamental state of the mole-
cule, in which the electron is not excited, that is, we may put Eel1 = 0. On the
other hand, the energies of the excited states of electrons are much greater than
kT , so that the corresponding terms in the sum Zel are close to zero. We conclude
that Zel ≈ 1.

The energy levels of the rotational and oscillatory motions of the molecule
are also discrete, but are of the same order of magnitude as kT . The energy of the
rectilinear motion of the molecule is not discrete and depends on the temperature.

Taking logarithms, we obtain

ln Z = lnZrect + ln Zrot + ln Zvib. (4.30)

Since the energies associated with the various kinds of motion add (see (4.28)), we
obtain from (4.25) and (4.30) that the entropies also add:

S = Srect + Srot + Svib. (4.31)

From the values of the relevant energies obtained using quantum mechanics, one
can compute the entropy theoretically. Such calculations have been carried out
for a great many substances—in particular for carbon tetrachloride (see Table 1
in Chapter 2). These calculations yield results in excellent agreement with those
obtained by experiment.

This affords another confirmation of Boltzmann’s formula, since the above
theoretical calculations are based on it. From the formula (4.16) for the statistical
weight of a state of a system made up of atoms and molecules, we derived Boltz-
mann’s distribution (4.20) corresponding to equilibrium. This led in turn to the
canonical partition function Z, in terms of which one can compute theoretically
the chief thermodynamic quantities of such a system at equilibrium, obtaining
theoretical results in agreement with experiment.
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However, Boltzmann’s distribution is not of universal applicability; it applies
to systems consisting of atoms and molecules, but not to those made up of electrons
and photons.

The formula (4.16) depends on the assumption that the particles of the sys-
tem are distinguishable, that they can be numbered, or imagined to be painted
different colors. This assumption fails for the microparticles studied in quantum
mechanics, since these are indistinguishable in principle. Hence there arises the
need to consider different distributions. There are two types of quantum statistics:
the Bose-Einstein distribution, used, in particular, in investigations of the so-called
photon gas, and the Dirac-Fermi distribution, used, in particular, in investigating
electrons—the electron gas in metals, for example. Whereas any number of pho-
tons may be at the same energy level, only two electrons may be at the same energy
level, and then with opposite spins, that is, characteristic angular momenta.12 That
is why two further statistics were needed in addition to Boltzmann’s distribution.
However, we shall penetrate no further into the realm of quantum mechanics.

Gibbs’ paradox

The formula for the entropy of a mixture derived earlier leads to a remarkable
paradox, to which Josiah Willard Gibbs, one of the founding fathers of statistical
physics, devoted a series of articles written between 1875 and 1878.

As we showed above (see (4.13)), when N1 molecules of one gas are mixed
with N2 molecules of another gas, the entropy increases by the amount

ΔS = k

(
N1 ln

N1 + N2

N1
+ N2 ln

N1 + N2

N2

)
.

The procedure on which this formula was based was as follows: The two gases
were considered to be in a container in unmixed form, separated by a partition.
The partition was then removed so that the gases could mix freely.

Suppose now that the numbers of molecules N1 and N2 are equal: N1 = N2 =
N/2. In this case the above formula becomes13

ΔS =
kN

2
· 2 ln 2 = kN ln 2. (4.32)

Such is the situation if the gases are different. However formula (4.32) presumably
holds even if the gases differ by arbitrarily little: upon being mixed the entropy
increases by the amount kN ln 2 regardless. On the other hand, if the gases are
identical, that is, if the two halves of the vessel contain one and the same gas, then
surely removing the partition cannot cause a change in entropy. We are faced with

12According to “Pauli’s exclusion principle”, in an atom or other system of electrons, there
can exist at most one electron with a given set of four quantum numbers giving the energy, and
the orbital, spin, and total momenta. Trans.

13Since ln 2 < 0, this actually represents a decrease in entropy. Trans.
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a paradox: in a continuous transition from gases differing from one another less
and less to gases that are absolutely identical, there is a jump in the behavior of
the change in entropy. When the gases differ by ever so little, their mixing entropy
remains fixed at kN ln 2. If we imagine this difference to gradually disappear, then
in the limit as they become identical, the mixing entropy goes discontinuously
from kN ln 2 to zero. What is going on here?

The resolution of this paradox came from quantum mechanics. We imagined
a continuous convergence of all the properties of the two gases. (It was also tacitly
assumed that if the two gases can be mixed, then their separation can also be
effected—of course, at the expense of a certain amount of work.) However, in
fact the properties of atoms and molecules are ultimately of a quantum nature,
and cannot, therefore, change continuously. For example, there is no continuity of
change in the properties of isotopes of an element, since their atomic nuclei differ
in the number of neutrons, which of course cannot be other than a whole number.
In the same way, there is no continuous gradation between properties of similar
chemical compounds, for example, hydrocarbons of the form CnH2n+2. For large
n this compound will differ structurally very little from Cn+1H2n+4 (where n has
been replaced by n+1), but n can take only positive integer values, so there is no
continuous merging of two substances possible

On the other hand, the Soviet physicists V.L. Lyuboshits and M.I. Podgoret-
skĭı have shown that there are situations where properties of gases do change
continuously from one gas to another. However in such cases the mixing entropy
also changes continuously, subject to

0 ≤ ΔS ≤ kN ln 2.

Unfortunately we cannot go further into these interesting situations in this book,
beyond saying that they are of very great interest for theoretical physics.

Nernst’s theorem

In Chapter 2 we mentioned in passing the third law of thermodynamics, also
known as Nernst’s theorem, asserting that at absolute zero entropy is zero. This
law is of great importance since it allows us to find not only differences in entropy,
but also to assign a meaning to absolute entropy.

From Boltzmann’s formula

S = k ln P

it follows that S vanishes if the statistical weight P = 1. A rigorous proof of
Nernst’s theorem, which is based on quantum mechanics, uses this observation. A
body at absolute zero is in a fundamental state of least energy E0 of statistical
weight 1, an authentic state.
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Formula (2.21), giving the dependence of entropy on temperature, namely,

S = R ln V + CV ln T + a,

is in disagreement with Nernst’s theorem: if we let T tend to zero here, then
S → −∞. The fact of the matter is that formula (2.21), which we derived for a
classical ideal gas, does not hold at low temperatures—at which, in any case, an
ideal gas cannot even exist.

The third law of thermodynamics—Nernst’s theorem—has important conse-
quences. In particular, it follows that if the entropy falls to zero, then the heat
capacities Cp and CV must also become zero, as well as the coefficient of thermal
expansion.14

The third law has been verified by means of direct experiments measuring
entropy. All the same, one should be aware of the fact that there are situations
where the third law cannot in its strictest sense be valid. Consider, for example,
chlorine. In its gaseous state chlorine is a mixture of isotopic molecules, mainly
35Cl—35Cl, 37Cl—35Cl, 37CL—37Cl. Thus the entropy of chlorine gas inevitably
includes a mixing component, which remains unchanged no matter what the tem-
perature; in particular, it stays the same at absolute zero. Hence as T → 0 the
entropy of chlorine tends to the value of the mixing entropy. In order to change
this contribution to the entropy, one would need to alter the isotopic composition
of the mixture. A more rigorous investigation would require that one take into
account the fact that the energies of the fundamental states of the various isotopic
molecules differ slightly from one another, which explains why actual chlorine is
not in an equilibrium state at 0◦K. In practice, since in ordinary chemical and
physical processes the isotopic composition of chlorine does not change, one may
assume its entropy to be zero at absolute zero; in calculating only changes in
entropy, no errors can arise from this assumption.

Another example is furnished by glass. L. D. Landau once said to me: “What
can one say about glass other than that its entropy at absolute zero is non-zero.”
Actually, a lot can be said about glass, but as far as thermodynamics is concerned,
Landau was right.

Glass is a solid substance which is not in equilibrium. When one cools a
liquid, then at a certain temperature, when the condition of equality of the free
energies of liquid and solid is satisfied, the liquid crystallizes. However, this takes
time; the molecules of the liquid must turn and group themselves so as to fit
accurately into a crystalline lattice. If the liquid is viscous, this process may take
a considerable length of time. When the temperature is lowered, the mobility of
the molecules of the liquid decreases, and its viscosity increases. Thus before the
crystal manages to form, the molecules in a viscous liquid may have lost nearly
all their mobility. This is what happens in the case of glass. For glass to turn into
a crystalline solid takes a great deal of time—of the order of a thousand years.
One sometimes notices opaque spots on antique glass vessels in museums; these

14Measuring the expansion of a body in response to heating. Trans.
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are where the glass has managed to crystallize. There are several substances that
are very difficult to obtain in crystalline form; they prefer, as it were, to “vitrify”.
Such are polymers, glycerin, and certain mixtures of metallic and flint oxides out
of which ordinary glass is made. Thus glass is a hard substance preserving the
disordered structure of the original liquid at the temperature at which it vitrified.
Here the word “disorder” means that the molecules are mixed up haphazardly in
various positions and orientations. Hence it is clear that the entropy of glass at
absolute zero cannot be zero; it becomes zero only when the glass crystallizes—and
for that to happen we must wait a very long time.





Chapter 5

Statistics and mechanics

Simon Laplace tries yet once more
To calculate everything fate has in store:

When a comet will stream through the heavens,
When the roulette wheel will come up evens,

What new law the king will pass,
Napoleon’s return, at last.

But to one thing he didn’t tumble:
The opposing player likes to gamble.
So Simon’s demon’s quit the field—
To sheer chance he’s forced to yield.

The distribution of velocities, and temperature

We consider some further consequences of Boltzmann’s law.
If an ideal gas is not acted upon by any forces (we neglect gravitational

forces, among others), then its molecules possess only kinetic energy, given for
each molecule by mv2/2, where m is the molecule’s mass and v its speed. The
values of v can range from zero to the speed of light. The molecules move in all
directions, collide elastically with the walls of the vessel containing them, and with
one another, interchanging their speeds.

In 1860, prior to Boltzmann’s discovery of his law of the distribution of
energies, Maxwell solved the problem of the distribution of speeds of the molecules
of an ideal gas, deducing a formula for the proportion of molecules with speeds in
the interval from v to v +Δv. We can now understand Maxwell’s distribution as a
special case of Boltzmann’s distribution where the molecules possess only kinetic
energy.

Velocity v is a vector quantity; it has a direction as well as magnitude,
which is the speed v = |v|. Figure 5.1 depicts a rectangular spatial coordinate
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Figure 5.1: A velocity vector and its components.

system, with the axial components vx, vy, vz of a vector v indicated. It follows
from Pythagoras’ theorem that

v2 = v2
x + v2

y + v2
z . (5.1)

We wish to estimate the number of particles with velocities between v and
v + Δv. This is given by the formula

dN(v) = Nf(v)dv, (5.2)

where N is the total number of particles, N(v) is the number having velocity
parallel to v with speed less than or equal to v, and f(v) is the function of the speed
we are seeking.1 According to Boltzmann’s distribution (4.20) (or (4.23)), since
the energies involved are just the kinetic energies of the molecules, the function
f(v) should be given by

f(v) =
exp(−mv2/2kT )

Z
=

exp[(−m/2kT )(v2
x + v2

y + v2
z)]

Z
. (5.3)

Since the speeds can take on any values, the value of the kinetic energy varies con-
tinuously; in other words, the energy of translational motion—kinetic energy—is
not quantized. For this reason the statistical sum Z (see (4.22)) here becomes a
statistical integral. And then since the component velocities vx, vy, vz vary inde-
pendently of one another, we can integrate with respect to each of them separately:

Z =
∫ +∞
−∞ exp

(
−mv2

x

2kT

)
dvx ×

∫ +∞
−∞ exp

(
−mv2

y

2kT

)
dvy ×

∫ +∞
−∞ exp

(
−mv2

z

2kT

)
dvz .

(5.4)

1Since ΔN(v) = N(v + Δv) − N(v) is the number of particles with velocities between v

and v + Δv, it follows that ΔN(v)/Δv is the number per unit of speed, and
ΔN(v)
NΔv

= f(v) is
therefore the proportion per unit speed of particles with velocities between v and v+Δv. Trans.
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Where do the limits of integration −∞ and +∞ come from? Of course, the speed
of a material particle cannot exceed the speed of light; however, for values of the
speed v such that, for instance, mv2

x � 2kT , the quantity exp(−mv2
x/2kT ) is

vanishingly small since e−x → 0 rapidly as x → ∞. This being so, we can safely
extend the limits of integration to infinity in both directions.

It turns out that these integrals can be evaluated precisely; thus

Zx =
∫ +∞

−∞
e−

mv2
x

2kT dvx =
(

2πkT

m

)1/2

, (5.5)

and similarly for the other two integrals Zy and Zz. Hence

Z = ZxZyZz =
(

2πkT

m

)3/2

. (5.6)

Substituting for Z in (5.3) and then for f(v) in (5.2), we obtain

dN(v) = N

(
2πkT

m

)− 3
2

exp
(
−mv2

2kT

)
dv. (5.7)

For the components of the velocity we have similarly

dN(vx) = N
exp(−mv2

x/2kT )
Zx

dvx = N exp
(
−mv2

x

2kT

)
· ( 2πkT

m

)1/2
dvx, (5.8)

with similar expressions for dN(vy) and dN(vz). We have thus arrived at the
Maxwell-Boltzmann velocity distribution. Figure 5.2 shows the graphs of the func-
tion N(vx) for two values of the temperature T . At higher temperatures the graph
is wider and flatter. Hence the probability of there being more molecules with
high speeds increases with the temperature. Since N(vx) is an even function the
graph is symmetric about the axis vx = 0, at which value of vx the distribution
has its maximum. Hence the average speed is zero. This is to be expected, since
the motions of the molecules in the same direction as v or its opposite are equally
likely, so that, on average, at any time the number with velocity component vx

will be approximately the same as the number with component −vx.
Although the average speed is zero, the average of the square of the speed is,

of course, different from zero. We shall now compute the average kinetic energy of
molecules, and thereby the average square of the speed.

We first find the distribution of the speeds v = |v|. These are non-negative,
and may be taken as varying from 0 to ∞. The velocity vector can have any
direction, determined by the point coinciding with the tip of v on the sphere of
radius v, centered at the origin (see Figure 5.3). The surface area of this sphere is
4πv2. Hence, in view of (5.7), the average, or expected, number N(v) of molecules
with speed v is

N(v) = N(v) · 4πv2 = N

(
2πkT

m

)−3/2

exp
(
−mv2

2kT

)
· 4πv2. (5.9).
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Figure 5.2: Graph of the Maxwell-Boltzmann distribution at temperatures T and
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Figure 5.3: This figure relates to the calculation of the mean square speed.

The average kinetic energy of the molecules of the gas can now be computed from
this function:

1
2
mv̄2 =

1
N

∫ ∞

0

1
2
mv2N(v) · 4πv2dv, (5.10)

which, without too much difficulty, yields

1
2
mv̄2 =

3
2
kT. (5.11)

Hence

v̄2 =
3kT

m
, and

√
v̄2 =

√
3kT

m
,

and we have found the mean kinetic energy of the molecules, and their mean
quadratic speed.

The formula (5.11) relates the temperature of a monatomic ideal gas directly
with the mean kinetic energy of its molecules. Raising the temperature increases
the mean kinetic energy proportionately. Thus equation (5.11) affords a kinetic
definition of thermodynamic temperature.

We see, therefore, that the crux of the matter is average energy: temperature
is directly proportional to average energy. It makes no sense to speak of the tem-
perature of a single molecule, nor of its entropy. On the other hand, the energy of
a single molecule does have a real meaning.



89

Temperature and entropy measure the average behavior of large collections of
particles—they are statistical terms. Pure mechanics is not concerned with temper-
ature or entropy; these are quantities reserved to thermodynamics and statistical
physics.

We shall write the Boltzmann distribution (4.20) in the following simplified
form:

N(E) = NBe−E/kT dE. (5.12)

Here N(E) denotes the proportion of molecules with energies between E and
E + dE, and B is the appropriate pre-exponential factor needed to make this
equation identical with (4.20).

Boltzmann’s distribution enables us to understand how the speed of a chemi-
cal reaction depends on the temperature. As we saw in Chapter 3 (see in particular
Figure 3.2), only those molecules react whose energy is sufficient to surmount the
“activational barrier”, that is, with energy at least equal to the activation energy
Ea. By (5.12) the proportion of such molecules is proportional to the quantity

e−Ea/kT .

An example of such a reaction is the gaseous reaction

HCL + NH3 → NH4Cl,

in which hydrochloric acid and ammonia yield ammonium chloride. The speed of
the reaction is proportional to the number of collisions of interacting molecules
per unit time, that is, to the product of their concentrations, which we denote by
means of square brackets:

v = κ[HCl][NH3], (5.13)

where κ is the proportionality factor between the speed and the concentrations,
the so-called rate constant. It is this constant that depends on the temperature. On
the basis of Boltzmann’s distribution, the Swedish physical chemist S. Arrhenius2

conjectured that
κ = Ae−Ea/kT , (5.14)

where A is a constant.
However, it follows from the discussion in Chapter 3 (see (3.16)) that a more

rigorous formula should involve not the energy, but the free energy:

κ = A′e−Ga/kT = A′eSa/ke−Ha/kT , (5.15)

where A′ is a constant. In any case, both formulae (5.14) and (5.15) predict that
the rate constant κ should depend on the temperature in the same way. By taking
logarithms of both sides of (5.14), we obtain

ln κ = lnA− Ea

kT
, (5.16)

2Svante Arrhenius (1859–1927), Swedish physicist and chemist, Nobel laureate in chemistry
in 1903. Trans.
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Figure 5.4: Graph of the logarithm of the rate constant against the reciprocal of
the temperature, according to Arrhenius’ law.

so that lnκ depends linearly on T−1 (see Figure 5.4). ((Formula (5.15) implies
the same sort of dependence.) By measuring the reaction rates of a reaction at
various temperatures, and drawing the graph based on the results, one can infer
the activation energy of the reaction from the slope of the (straight-line) graph.
All this is well supported by experiment.

The barometric formula and
the “gravitational perpetuum mobile”

A special case of the distribution of the molecules of a gas by energy is their
distribution in a gravitational field. Consider a thin horizontal layer of gas of
thickness dx whose cross-sectional area is s = 1 cm2. The weight of this layer is
then

nMgsdx,

where n is the density, that is, the number of molecules of the gas occupying a
volume of 1 cm3, M is the total mass of the molecules, and g is the acceleration
due to gravity near the earth’s surface. At equilibrium, this weight must be equal
to the force of pressure from below less that from above, that is,

−dp = nMgdx. (5.17)

(The pressure is the force per unit of cross-sectional area, which is s = 1 cm2.)
We shall assume the gas ideal, so that

p = nRT,

whence
dp = RTdn. (5.18)

Substituting for dp in (5.17), we obtain

dn

n
= −Mg

RT
dx. (5.19)
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Integrating this equation from x = 0 (the earth’s surface) to x, we obtain

n = n0 exp(−Mgx/RT ), (5.20)

whence
p = p0 exp(−Mgx/RT ). (5.21)

Here n0 and p0 are respectively the density and pressure of the gas at sea level.
Dividing M and R by Avogadro’s constant NA = 6.06 · 1023 per mole, we obtain

n = n0 exp(−mgx/kT ), (5.22)

where m is the mass of a single molecule. Formula (5.21) (or (5.22)) is called
the barometric formula, since it shows how the pressure (or density) of a gas
decreases with increasing altitude in the earth’s gravitational field. The form of
the right-hand side of the formula indicates clearly that this is a special case of
Boltzmann’s distribution (5.12) when the energy E of a molecule of gas is taken
to be its potential energy at altitude x:

E = mgx.

The barometric formula has rendered important service to physics. It has
helped in the determination of Avogadro’s number NA. In 1908, the French physi-
cist Jean Perrin3 determined experimentally the function

f(x) = e−mgx/kT

for a colloidal suspension of particles of gamboge4 in water. For particles of suffi-
ciently large mass m, this function decreases rapidly with increasing height x—by
fractions of a millimeter—and one can directly observe the changing values of
f(x). Taking logarithms, we have

ln(f(x)) = −mgx

kT
= −NAmgx

RT
.

Now the mass m of the colloidal particle, the gas constant R, the temperature T ,
and the acceleration due to gravity g are all known—as is the appropriate correc-
tion according to Archimedes’ law, needed in view of the fact that the particles
are suspended in water. Hence accurate experimental measurements of f(x) could
be used to obtain a good estimate of NA, as was done by Perrin.

In certain publications on popular science, and even in some textbooks, there
appeared at one time putative refutations of the barometric formula and the second
law of thermodynamics, proposing a “gravitational” perpetual-motion machine of
the second kind. It was claimed that, owing to the presence of the gravitational

3Jean Baptiste Perrin (1870-1942), French physicist, Nobel laureate in physics for 1926. Trans.
4A fairly transparent, dark mustard-yellow pigment. Trans.
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field, in a column of gas at equilibrium there will be a decreasing temperature gra-
dient with increasing altitude x, and that this is achieved without any work needing
to be done. This spontaneously arising difference in temperatures could then be
used to obtain a practically inexhaustible amount of energy “free of charge”.5

Here are the details of the argument for a temperature gradient in a vertical
column of gas under gravity. Suppose that a certain quantity of gas rises adiabat-
ically, that is, without any exchange of heat, through a vertical distance dx. By
(5.17), the pressure will then drop by the amount dp. Now we know that when a
gas expands adiabatically its temperature decreases. A simple calculation shows
that dT/dx, the temperature gradient (a negative quantity), would then be pro-
portional to the ratio g/Cp, where Cp is the heat capacity of the gas at constant
pressure. From the viewpoint of the kinetic theory of gases, this means that the
mean kinetic energy of the molecules of the gas decreases with increasing height,
part of it having been converted into potential energy (mgdx for each molecule).

This all looks like a very reasonable claim. However it contradicts the baro-
metric formula (5.21) (or (5.22)) just derived. In establishing that formula, we
assumed the temperature constant, not varying with the altitude x. Our initial
assumption was that the column of gas or colloidal suspension was in a state of
thermodynamic equilibrium, so that the temperature would have to be uniform
throughout. We also had the barometric law confirmed splendidly by the fact that
it has the form of an appropriate special case of Boltzmann’s distribution, and by
its use in determining Avogadro’s number.

What then are the mistakes in the argument for a “gravitational” perpetual-
motion machine?

The adiabatic rising of a layer of gas is simply not possible. Gas in a column
has no adiabatic chambers, and when a layer rises through a height dx it imme-
diately exchanges heat with the neighboring layers, and the temperature evens
out.

The argument concerning the kinetic energy of the gas molecules is also based
on an elementary mistake. It is claimed that the kinetic energy of a molecule at
height x satisfies

mv2

2
=

mv2
0

2
−mgx,

where v0 is the speed of the molecule when it was at sea level, and v its speed at
height x. However, in reality the slow molecules near the bottom of the column
will not have enough kinetic energy to be able to rise to height x.6 Overall, the

5In 1868 Maxwell showed that if there were such a temperature gradient, then a perpetual-
motion machine of the second kind would be possible. However both he and Boltzmann argued
that at equilibrium the temperature in the column of gas would have to be uniform. The oppos-
ing view was held by Loschmidt. In any case, as soon as a temperature gradient is established,
would convection begin to occur, disturbing the equilibrium? The inference of irreversible pro-
cesses (such as stipulated by the second law) from time-symmetric mechanics is sometimes called
“Loschmidt’s paradox”. Trans.

6Unless knocked upwards by speedier molecules? Trans.
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only molecules rising to this height are those for which

mv2
0

2
≥ mgx.

When we compute the mean kinetic energy, the slower molecules make negligible
contributions to the result, so that the answer we obtain is the same everywhere
in the column. What does decrease with height is the number of particles, that
is, the density, and not the mean kinetic energy, that is, the temperature. Precise
calculations show this to be indubitably the case.

The reader may object by pointing out that in nature we always observe
differing air temperatures at different altitudes. Mount Kilimanjaro is permanently
snow-capped, while the climate at its base is tropical. However here there is no
thermodynamic equilibrium. The earth is warm and outer space cold. The earth
represents an open system heated by the sun (see the next chapter). This could
indeed be the basis of an engine, but one completely unrelated to the one we are
discussing.

Thus there is no “gravitational” perpetual-motion machine. The appearance
of such primitive attempts to disprove the second law is surprising, and their
penetration into the literature even more so.7 On the other hand critique of such
attempts has its value.

Physical theory is an integrated, coherent system. If a gravitational perpetual
motion machine were shown to be possible, then the barometric formula would
have to be pronounced false, along with Boltzmann’s distribution, that is, in effect
all of thermodynamics and statistical mechanics. Nearly everything written in this
book would then turn out to be false. However, as expected, what was in fact easily
exposed as false is the possibility of a gravitational perpetuum mobile.

Fluctuations

The physical magnitudes used to characterize the states of individual electrons,
atoms, and molecules do not in general, of course, coincide with their average
values. The behavior of elementary particles is random and subject only to the
laws of probability.

At equilibrium the entropy of a system attains its maximum value; the system
is in a state of greatest possible disorder. In a given quantity of gas the temperature
and density are uniform at equilibrium. The temperature measures the average
value of the kinetic energy of the molecules of the gas, and the density gives the
average number of molecules per unit volume. However, deviations from the most
likely values, from the average behavior, do occur—since, after all, the molecules
are in motion, and that motion is random. This is why the entropy can drop

7Although one might object that such controversy is good for science. And Loschmidt was no
mean scientist. Trans.
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below the maximum, and temperature gradients and variations in density can
spontaneously arise.

These deviations are called fluctuations. The greater the number of molecules
in the gas the less likely the fluctuations. In Table 4 the statistical weights P of
the distributions of N particles in two boxes are tabulated for different values of
N using the formula (4.5):

P =
N !

N1!(N −N1)!
.

Observe how the form of the distribution changes as the number N of molecules
increases: the larger N , the more pointed the distribution, that is, the smaller the
probability of extreme arrangements of molecules relative to the most probable
one, realizable in the greatest number of ways. For N = 2 the statistical weight of
the state (that is, the number of ways it can be realized) where both molecules are
gathered in, say the left box, is half the statistical weight of the state corresponding
to uniform distribution of the molecules, that is, one in each box. However for
N = 12, the ratio of the statistical weights of the corresponding states has gone
from 1 : 2 to 1 : 924. Thus the probability of a significant deviation from the most
likely state decreases with increasing N . By the above formula, the statistical
weight of the uniform arrangement of N molecules in two boxes is (assuming for
simplicity that N is even)

P =
N !

(N/2)!(N/2)!
.

From the rough approximation of N ! given by (4.10), it follows that

P ≈ (N/e)N[
(N/2e)N/2

]2 = 2N ,

which is many times larger than the number of ways of realizing any significantly
non-uniform, or “ordered” state.

Similar considerations hold for the distribution of other statistical quantities,
such as mean kinetic energy of molecules in a gas, or, equivalently, their mean
square speed. It follows from equation (5.11) together with the ideal gas equation
pV = RT , that the mean square speed of molecules of an ideal gas at pressure p
is given by

pV =
2
3
N

mv2

2
, or v2 =

3pV

Nm
.

For gaseous oxygen one calculates from this that for its molecules O2,
√(

v2
)

=
455 metres/second. One can calculate from Maxwell’s distribution that the prob-
ability of finding molecules with speed ten times greater, that is, v = 4.5 kilome-
ters/second, is approximately a constant times e−102

= e−100 ≈ 10−43, a vanish-
ingly small quantity.
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Table 4: Distributions of N molecules in two containers and their statistical
weights.

Number N of molecules
2 4 6 8 10 12

2|0 1 4|0 1 6|0 1 8|0 1 10|0 1 12|0 1
1|1 2 3|1 4 5|1 6 7|1 8 9|1 10 11|1 12
—— 2|2 6 4|2 15 6|2 28 8|2 45 10|2 66
0|2 1 —— 3|3 20 5|3 56 7|3 120 9|5 220

1|3 4 —— 4|4 70 6|4 210 8|4 495
0|4 1 2|4 15 —— 5|5 252 7|5 792

1|5 6 3|5 56 —— 6|6 924
0|6 1 2|6 28 4|6 210 ——

1|7 8 3|7 120 5|7 792
0|8 1 2|8 45 4|8 495

1|9 10 3|9 220
0|10 1 2|10 66

1|11 12
0|12 1

Fluctuational deviations from the mean statistical state of a system are the
less likely the larger the deviations and the larger the number of particles in the
system. For example, from Table 4 we see that the probability of all molecules being
in one of the two containers is very small compared with that of the distribution
6|6, while the less extreme distributions 7|5 and 5|7, or even 8|4 and 4|8, are much
less improbable.

We shall now calculate the fluctuations in the densities of particles of a
system, that is, in the number of particles per unit volume. Suppose we have a
quantity of an ideal gas of volume V containing N molecules. Consider a small
region of the gas of volume ν 
 V (Figure 5.5). What is the mean deviation of
the number n of molecules in this small region from the mean number n̄, that is,
the average of the number of molecules over all regions of volume ν? Clearly,

n− n̄ = n̄− n̄ = 0,

since overall the regions with fewer than n̄ molecules will compensate for those
with more than n̄ molecules. For this reason it is appropriate to consider instead
the mean of the squares of the quantities n− n̄, that is

var(n) = (n− n̄)2,

called the variance of the distribution of values n.8

8In probability and statistics, the variance is one measure of the dispersion of a distribution
of values assigned to events in a sample space of a random process. Another is the standard
deviation σ, the square root of the variance. Trans.
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V

ν

Figure 5.5: This figure relates to the calculation of fluctuations in density.

The probability of finding a particular molecule in a particular region of
volume ν is

q =
ν

V
,

since it is assumed that the molecules move about in the gas independently of one
another. What is the average number of molecules in a region of volume ν? From
the simple proportion between

(N molecules occupying V ) and (n̄ molecules occupying ν),

we obtain
n̄ = N

ν

V
= Nq.

Here is a more rigorous proof of this result. Assume the molecules numbered
from 1 to N . We define a quantity Δi, where i ranges from 1 to N , as follows:
Δi = 1 if the ith molecule is in the particular region of volume ν we are considering,
otherwise set Δi = 0. Then

n = Δ1 + Δ2 + · · ·+ ΔN =
N∑

i=1

Δi,

and

n̄ = Δ̄1 + Δ̄2 + · · ·+ Δ̄N =
N∑

i=1

Δ̄i.

Now what is the value of Δ̄i? Well, Δi = 1 with probability q and Δi = 0 with
probability 1− q, whence

Δ̄i = 1 · q + 0 · (1 − q) = q.

Hence

n̄ =
N∑

i=1

q = Nq,

and we have arrived at the desired—and in any case obvious—conclusion.
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We shall use a similar argument to calculate the mean square deviation from
the mean.9 Observe first that since means are additive,

(n− n̄)2 = n2 − 2n̄n̄ + n̄2.

Note that, in general, the average of the square of a random variable is different
from the square of the average. Here we have

n2 =

(
N∑

i=1

Δi

)2

=
N∑

i=1

Δ2
i + 2

N∑
i=1

∑
j>i

ΔiΔj .

We shall now simplify the right-hand side using elementary methods. Observe that

Δ2
i = Δi

since Δi is either 0 or 1. Hence

Δ2
i = Δ̄i = q,

whence for the first sum on the right-hand side above, we have

N∑
i=1

Δ2
i =

N∑
i=1

Δ̄i =
N∑

i=1

q = Nq.

Now we turn to the double sum. What is ΔiΔj? We have

ΔiΔj = 1 · 1 · q2 + 2 · 1 · 0 · q(1− q) + 0 · 0 · (1− q)2 = q2.

Hence

n2 = Nq + 2
N(N − 1)

2
q2,

since there are N(N − 1)/2 pairs (i, j) with i < j. Hence, finally,

(n− n̄)2 = n2 − n̄2 = Nq + N(N − 1)q2 −N2q2

= Nq(1− q) = n̄(1− q).

Since q 
 1, we can neglect q compared with 1, whence

(n− n̄)2 ≈ n̄. (5.23)

Our final result looks very surprising. It is of great significance.
A fluctuation represents a change in the quantity P , the statistical weight of

the state. The equilibrium state corresponds to the maximal statistical weight Pm,
while a fluctuation from this state will correspond to a smaller statistical weight

9That is, the variance. Trans.
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P ′. The greater the fluctuational deviation is from equilibrium, the less the value
of P ′. We may interpret the ratio P ′/Pm as the probability of a fluctuation to a
state with statistical weight P ′. From Boltzmann’s formula in exponential form
(see (4.15))

P = eS/k,

it follows that

w =
P ′

Pm
= exp

S′ − Smax

k
. (5.24)

Since for any appreciable fluctuation we must have P ′ 
 Pm and Smax � S′, the
probability w of such fluctuations is very small.

The formula (5.24) was deduced by Einstein in 1906.

Why is the sky blue?

Although the probability of fluctuations is small, we encounter them every day. If
there were no fluctuations in the density of the air, that is, no fluctuations in the
number of particles in small regions, we would see stars in the daytime and the sun
would shine in a black sky. In other words, our daytime view of the heavens would
be just like that of astronauts. As a rule, we give little thought to the blueness
radiating from the firmament. But there is something needing explanation here.
Why is it that when we stand with our backs to the sun we see a blue sky? After
all, sunlight propagates in a straight line from the sun. It follows that something
is being illuminated by the sun. It can only be the air.

S.I. Vavilov10 regarded Leonhard Euler’s Letters to a German princess on
various topics of physics and philosophy11 as the best popular book about physics.
Letter XXXII of the first volume of this work, dated July 23, 1760, is entitled
“On the blueness of the sky”. Euler wrote: “I shall demonstrate to your highness
that the cause of the blueness of the sky must be sought in our atmosphere,
which is not perfectly transparent.... The air is made up of a multitude of small
particles, which are not entirely transparent, and, when illuminated by light rays,
acquire an oscillatory motion giving rise in turn to new rays characteristic of these
particles...these particles are of a bluish color.”

These are weighty words. Modern physicists are also of the opinion that
illumination excites changes in the state of electrons and molecules, and such
changes might be interpreted as these particles’ own oscillations. However, Euler
was wrong. The molecules of nitrogen, oxygen, argon, and carbon dioxide that
form the atmosphere are colorless; they do not absorb light in the visible part of
the spectrum.

10Sergĕı Ivanovich Vavilov (1891–1951), Soviet physicist. Trans.
11Lettres à une princesse d’Allemagne sur divers sujets de physique et de philosophie. St. Pe-

tersburg, 1768–1772, Vols. 1–3; Opera III-11, 12.
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More than 100 years later, a new explanation was proposed by
John Rayleigh,12 the English physicist who achieved a great deal in optics and
acoustics.

The sky is blue because the air disperses the sunlight in much the same
way as light is scattered in various directions different from that of the incoming
beam by any semi-opaque or misty medium. Rayleigh’s view was that sunlight
is dispersed not by relatively large atmospheric inhomogeneities (such as water
droplets in mist) but by the air’s molecules themselves through their random
movement.13 He produced a formula, now famous, for the intensity of the dispersed
light, according to which that intensity is inversely proportional to λ4, where λ is
the wavelength of the incident light. It follows that light rays in the violet region
of the spectrum, with wavelengths around 400 nanometers, are dispersed about 13
times more intensely than red light rays, with wavelengths around 760 nanometers.
And that is why the sky is blue. That’s also why distant forests and mountains
appear bluish: we see them through a thick layer of air lit mainly from above and
scattering preponderantly the blue light falling on it. This also explains why the
sun looks red at sunrise and sunset: at those times there is a thicker region of the
atmosphere between us and the sun than when the sun is at its zenith, and what
reaches our eyes directly are the rays least dispersed.

Later it was shown that the mechanism of the dispersion of light by air
(and other gases) consists in deviations from the homogeneous distribution of the
molecules by volume as a result of their continual random motion. Fluctuations
in the density of the gas occur, and one can say that the light is dispersed by
these fluctuations. The intensity of the dispersed light, which by Rayleigh’s law
is proportional to λ−4, turns out to also be proportional to the mean square
fluctuation (n− n̄)2 of the number of molecules per unit volume. By (5.23) this is
very close to n̄, so by measuring the intensity of the dispersion one can estimate
the number of molecules per unit volume of the gas, and thence the number in a
mole, Avogadro’s constant. This has been done to high accuracy.

Following the work of Rayleigh and Einstein, the theory of the dispersion of
light in gases, liquids, and crystals was further developed by the Polish physicist
M. Smoluchowski and the Soviet physicist L.I. Mandel′shtam.

Thus when we look at the sky, we are in essence seeing fluctuations of the den-
sity of the air. Fluctuations in physical quantities limit the sensitivity of physical
instruments, so that, for example, measurements of current or voltage fluctuate
about some mean value. Fluctuations are responsible for the “noise” in radio-
technology and elsewhere.

In Chapter 4, we considered the rolling up of a polymer chain in a statistical
ball. A polymer chain is a macromolecule that continually fluctuates in solution,

12John William Strutt, 3rd Baron Rayleigh (1842–1919), Nobel laureate in physics, 1904.
Trans.

13Or is it that although sunlight is dispersed by large-scale inhomogeneities such as water
droplets in mist, this dispersion is not wave-length dependent, whereas the dispersion due to the
molecules’ movement is smaller in scale and wavelength-dependent. Trans.
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with the balls lengthening and shortening as a result of heat-induced motion in
the form of rotations about single bonds. Statistical theory has been applied to
estimate the distribution of the sizes of polymer balls and the average size of a
polymer ball.

It is clear that in a system in equilibrium, any fluctuation that appears will
after some time disappear—be smoothed out—since the system tends to its most
likely state. But then new fluctuations arise. The motions of atoms and molecules,
and electrons in metals, for instance, are subject to the laws of chance.

The age of Darwin

Boltzmann was once asked how he would characterize the century he lived in, the
19th. His answer was “The age of Darwin”.

This is a profound reply. The laws of chance triumphed earlier in biology than
in physics. It was the biologist Darwin who discovered the fundamental mechanism
of evolution: variation plus natural selection. Every population of animals or plants
undergoes changes—spontaneous, hereditary, or otherwise—, random deviations
from the most likely values of the various characteristics of the organism. Consider,
for example, a sufficiently large, randomly chosen group of people. In this group
height will obey the same law as the distribution of speeds of molecules in a gas.
As height h moves away from the average, the number with that height decreases
from the average height symmetrically, that is, independently of whether h is less
than or greater than the average height (Figure 5.6).

Unlike fluctuational deviations from the mean in the behavior of molecules
in a gas, evolutionary variations (whatever the causes) do not die out if the new
characteristics are adaptive, that is, ensure better conditions of existence and
procreation for the organism. Variability itself changes, evolves. Living organisms
develop and retain the imprint of their evolutionary development. We now know
that evolution has been going on for about 3.9 ·109 years. Thus evolution is a very
different process from that in isolated physical systems of the sort we have been
considering thus far, which reach a state of equilibrium relatively quickly.

Nevertheless, the study of heat phenomena and the concomitant discovery
of the irreversibility of physical processes allow us to understand the nature of
physical evolution. A physical system also evolves—in the direction of maximum
entropy, if it is isolated. How open systems behave, that is, systems exchanging
matter and energy with the surrounding world, will be the theme of the next
chapter.

An isolated system is a relatively unexciting affair. Sooner or later it achieves
a state of equilibrium at which its entropy is greatest, and thereafter there occur
only small fluctuations in the direction of decreasing entropy. One might say that in
an isolated system the “arrow of time” is oriented towards maximum entropy. Once
equilibrium has been attained, time ceases, as it were—no further events occur,
and if we neglect the small fluctuations, there is no further change. However, as
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Figure 5.6: Distribution of heights in a large, arbitrarily chosen group of people.

long as equilibrium has not been reached, an isolated system will evolve, “aspiring”
to maximize entropy.

Boltzmann set himself the task of creating an evolutionary physics, following
on Darwin’s creation of evolutionary biology.

What preceded this development? If the 19th century was the age of Dar-
win, then the 18th was the age of Newton—of the triumph of classical mechanics,
the pure mechanics of reversible non-dissipative processes, that is, processes not
dissipating energy. In that ideal mechanics there was no place for randomness, no
place for entropy. Given the laws of motion, and the initial positions and veloci-
ties of the bodies comprising the system, the subsequent behavior of the system
was completely determined, and could in principle be calculated in advance. The
system “remembered” its initial conditions.

It seemed that everything was solved. In Newton’s lifetime, the English poet
Alexander Pope could write:

Nature and nature’s laws lay hid in night;

God said, let Newton be! And all was light.

The world seemed to be a grandiose mechanism functioning like clockwork,
so that once set going it unfolded automatically according to simple rules. In this
sense, classical mechanics, in which irreversibility and randomness had no place,
was a science of a simple, passive world. But already in 1802, the English poet
and artist William Blake wrote:

... May God us keep

From single vision and Newton’s sleep!

Although the age of Darwin had not really begun, to this great poet and subtle
thinker it had already become clear that classical mechanics was narrow and one-
sided.
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And indeed now we understand that classical mechanics has definite limits to
its applicability. Within these limits it works splendidly: it allows us to compute
with great precision the trajectories of the planets and satellites, and to solve a
wide range of technological problems. However, the universe as a whole, as an
evolving totality of mutually interacting bodies, resisted being encapsulated in a
general theory characterized by time-reversibility.

In 1811 the French mathematician and physicist Jean Baptiste Fourier estab-
lished the law of heat conduction, relating to the unidirectional transfer of heat
from a hotter to a colder one. This marked the beginning of the expansion of
physics beyond the limits of Newton’s scheme. There soon followed Carnot’s “Re-
flections”, the discovery of the second law of thermodynamics, and its probabilistic
treatment by Boltzmann and Gibbs.

A purely mechanical system “remembers” its initial conditions. In contrast,
an increase in entropy of a system signifies a gradual “forgetting” of its earlier
more ordered states. Who knows how the liquid in a vessel reached its present
temperature? Was it through cooling or being heated? What is important is only
the fact of the liquid’s being in a state of equilibrium.

Thus in the age of Darwin, the basic problem before Boltzmann was that
of deriving the law of increasing entropy from the laws of mechanics. After all,
if the thermal properties of bodies are determined ultimately by the motions of
their molecules, then there must be a path from mechanics to a theory of heat.
The molecules of a gas are in motion just like ordinary macroscopic bodies,14 with
their individual trajectories, that is, with determinate positions and velocities at
each instant of time. What does it matter that there are huge numbers of them?
Mechanics must apply regardless.

By considering the interactions of molecules in a gas, Boltzmann was able
to construct a function H of the coordinates and velocities of the molecules, and
to show that it has a bias in its variation with time: dH/dt ≤ 0. Entropy is
proportional to this function.15 This is the celebrated H-theorem of Boltzmann,
of great importance for physical kinetics.

However, Boltzmann failed to solve the problem as he had proposed it. In
the derivation of his result he made certain tacit assumptions of a non-mechanical,
probabilistic character, namely assumptions about the chaotic behavior of mole-
cules.

The strenuous task of bridging the abyss between mechanics and statistics,
and the failure of his contempories to appreciate his work led to Boltzmann’s
suicide in 1906.

14Leaving aside considerations of quantum mechanics for the moment. Trans.
15It turns out that S = −kH + S0, where S0 is constant, whence it follows that dS/dT ≥ 0,

Boltzmann’s “generalized second law of thermodynamics”: entropy increases unless the system
is in equilibrium. Trans.
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Laplace’s demon and Sinăı’s billiard16

The French astronomer, physicist, and mathematician Pierre Simon Laplace was
one of a pleiad of brilliant scientists who continued the work of Newton. Thus
he is considered one of the creators of theoretical mechanics. In the course of his
work he invented a “demon”. A demon also crossed Maxwell’s path, but that was
a different one, and we shall discuss him in Chapter 7.

By Laplace’s demon we mean an imaginary creature of his invention. Laplace
was a devoted believer in mechanics. Of course, he knew that an unexceptional
quantity of gas contains an exceptionally large number of molecules, which are
moving in all directions and colliding with one another and with the walls of the
vessel containing them. As we have seen, one can describe the properties of a gas
by resorting to average characteristics of its molecules; for instance temperature
arises in this way via equation (5.11):

1
2
mv2 =

3
2
kT.

It is impossible to keep track of the motions of each and every molecule of the
2.7·1019 molecules in a cubic centimeter of a gas at atmospheric pressure. However,
Laplace was convinced that in fact the motion of each molecule is fully predeter-
mined, and that there is no element of chance involved. If we need to resort to the
statistics pertaining to random quantities, that can only be due to our ignorance
of the precise facts.

If there existed a demon capable of ascertaining at some initial time t0 the
initial positions and velocities of every molecule of a gas, then he could predict the
state of every molecule of that gas at every later time, and therefore what would
happen to the gas. Furthermore, if this is so for a cubic centimeter of gas, then
it should be true for anything whatsoever. Hence, chance has no objective reality;
events in a system that appear to be random, actually hide fully determinable
parameters of the system. Although we don’t know them, Laplace’s demon does.

Laplace wrote: “...we must view the present state of the universe as the effect
of its previous state and the cause of the next. A mind that knew at any particular
given moment all forces arising in nature, and the relative positions of all of its
component parts, and if in addition it were comprehensive enough to subject these
data to analysis, would be able to embrace in a single formula the motions of the
largest bodies in the universe as well as those of the lightest atoms, and there
would be nothing left to conjecture, the future no less than the past would be
accessible to its gaze.”17

How will a tossed coin fall? Heads or tails? This will depend on how it was
tossed and on air resistance, that is, on collisions with air molecules. Laplace’s

16A billiard is a dynamical system abstracted from the game of billiards, that is, where a
particle alternates between frictionless motion in a straight line and elastic mirror reflection off
the boundary. Trans.

17Essai philosophique sur les probabilités, Paris, 1814.
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demon can calculate in advance and know for sure; he knows everything, includ-
ing the future and the past of the world, for the universe evolves according to
completely fatalistic laws.

Of course, Laplace knew perfectly well that his demon was an impossibil-
ity. The point of the above excerpt from his Essai was merely to emphasize that
everything in the universe is predetermined, predestined, even though this deter-
minateness is inaccessible to us. In practice, we do not know what lies in store,
and cannot discover it.

From this point of view entropy can be taken to be a measure of our ig-
norance, of the inadequacy of the information at our disposal about the system
under investigation. If Laplace is right, then this ignorance is merely subjective,
not objective; it does not arise from actual laws of nature independent of our
consciousness.

Thus do we see that the problem of the relation between mechanics and
statistics leads us to deep philosophical questions, to questions of existence and
consciousness.

The question of the relation between mechanics and statistics has been in-
vestigated by several Soviet scientists: N.S. Krylov (1948), who died young, the
physicist and mathematician N.N. Bogolyubov (1946), and the mathematicians
A.N. Kolmogorov (1958) and Ya.G. Sinăı (1963, 1967).

Krylov’s18 basic idea was that not every solution of a mechanical problem
corresponds to actual experience. Solutions of such problems can be stable or
unstable. Consider, for example, a physical pendulum, that is, a rigid body that
can oscillate about an axis to which its end is fixed (Figure 5.7). The pendulum has
two stationary equilibrium positions, hanging vertically downwards and standing
vertically upright. The lower position is stable: a small perturbation from that
position will cause the pendulum to swing a few times, gradually returning to the
initial position. The upper position is unstable: the slightest touch will be enough

18Nikolăı Sergeevich Krylov (1917–1947), Soviet theoretical physicist. He arrived at the con-
clusion that statistical physics cannot be constructed on the basis of classical mechanics—nor
on that of quantum mechanics. The following excerpt from the review by E.T. Jaynes (J. Amer.
Statistical Assoc. 76 (1981)) of the English edition of Krylov’s incomplete and posthumously
published book Works on the foundations of statistical physics may help with the passage that
follows. “Since the beginnings of statistical mechanics, two different streams of thought have been
competing for...foundation status. The ‘ergodic’ view associated with James Clerk Maxwell, sees
it as a part of mechanics, the goal being to deduce the probability distributions for systems of
many molecules by application...of Newton’s laws of motion. A very different view, associated
with J. Willard Gibbs, sees the goal merely as making the best predictions possible of observed
facts, from incomplete information; that is, it is just a branch of statistical inference.... With this
background, we can explain that Krylov’s work is a deeply thoughtful...statement of the ergodic
approach.... Krylov and his followers regard probabilities as in principle determined, as are ve-
locities and accelerations, by the laws of mechanics (but in a more complicated way, not yet fully
carried out). They view...[Gibbs’] method as nonrigorous and provisional, since its distributions
are not derived from the laws of mechanics. Advocates of the [Gibbsian] view see the ergodic
program as not only unnecessary but in principle impossible, because the necessary information
is lacking. That is, Newton’s laws of motion can tell us only how probabilities change with time,
and not what probabilities should be assigned at the start.” Trans.
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Figure 5.7: Stationary equilibrium positions of a physical pendulum.

to topple the pendulum.
Clearly, in situations of radical instability such as this, the trajectory of

each component of the system has no precise meaning. One can observe such
trajectories (for example, the Brownian paths of colloidal particles in suspension
can be observed under the microscope), but computation of these trajectories from
the initial conditions and the laws of motion will never yield a result consonant
with actual experience. An unstable trajectory “forgets” its initial conditions.

If a solution of some problem of mechanics represents an unstable equilib-
rium, then it can never actually be observed in reality. The only solutions that
do correspond to real situations are those representing stable equilibria. It follows
that if a mechanical process is in a state of unstable equilibrium, then it can be-
come irreversible in time.19 This is related to the limitations of the notion of an
isolated system. Clearly, this notion is an idealized one: in reality there are no
absolutely isolated systems. However, if the external influences are small and the
system’s reactions to them are also small, then we may consider the system as
approaching an ideally isolated one. On the other hand, if the system is in a state
of unstable equilibrium, then a small external action on it will radically alter its
state. Obviously such a system cannot be considered even approximately isolated,
since minute causes can have large effects. Furthermore, the only method available
for investigating such small perturbations is via statistics based on the assumption
of their randomness.

An unstable mechanical system—understood as consisting of a vast number
of molecules moving in disordered fashion in the sense that their trajectories are
unstable—represents the source of the essential statistical nature of such a system.
It is not possible to reduce the behavior of a system in unstable equilibrium to
the behaviors of its constituent particles by means of mechanics alone. We are
compelled to introduce probabilistic considerations, involving the probability of
one or another kind of deviation in the motions of the particles.

19In the sense that it could never be observed to have returned to the state of unstable
equilibrium? Trans.
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Figure 5.8: Reflection of an elastic particle from a convex wall of the containing
vessel.

A probabilistic description of the behavior of a system is entirely objective.
It expresses not our ignorance but objectively existing instabilities, that is, ran-
domness of behavior that really does correspond to reality.

And irreversibility arises precisely as a consequence of the impossibility of
obtaining a complete description of such behavior in a mechanical system. In
general, of course, the incompleteness of the description may arise for various
reasons, such as inaccuracy of the initial or boundary conditions, or changes in
the motions of the particles caused by the appearance of random forces.

One can show how instability arises and develops using the rigorous lan-
guage of mathematics. Consider elastically colliding balls in a container. As a
2-dimensional model, we can take a billiard table without pockets on which the
billiard balls roll without friction. We assume to begin with that we have calculated
the trajectory of a particular ball exactly. With each collision the actual trajec-
tory will deviate by ever so small an angle from the calculated one. However, this
deviation grows as more and more collisions occur, and computation shows that it
actually increases exponentially with the number of collisions, and therefore with
time. In this way there occurs a “forgetting” of the initial conditions, and of the
initial trajectory.

It is important to note that this thought experiment does not require many
balls. In a version due to Sinăı, 20with just one of its edges convex (Figure 5.8), a
single ball suffices. Every trajectory of the ball involving reflection off the convex
edge is unstable. Two initially arbitrarily close trajectories may diverge unbound-
edly.21

Thus Laplace’s determinacy is impossible. Any attempt to foretell the future
starting from initial conditions and the laws of motion—even for such a simple
system as that of a single ball in a container with a convex portion of wall—would
very soon encounter instabilities and in the end collapse completely.22

20Yakov Grigor′evich Sinăı (1935- ), Soviet/American mathematician. Trans.
21Shades of chaos theory. Trans.
22But couldn’t Laplace retort that the instability here results from inadequate knowledge of the
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We find ourselves in a peculiar situation. In mechanics, the idea of the tra-
jectory of a body has real meaning. It is a well-defined concept. On the other
hand, quantities defined in terms of statistics and probabilistic averages have no
constructive content in mechanics—it is meaningless to talk of the temperature or
entropy of a mechanical system. Purely mechanical systems are adiabatic; their
entropy does not change: ΔS = 0. Mutatis mutandis, in statistical mechanics
the concept of the trajectory of a body loses its sense, but perfectly well-defined
statistical properties of a system arise—its temperature and entropy.

Energy, however, retains its meaning in both classical and statistical mechan-
ics.

Thus the entropy of a system is indeed an objective measure of our ignorance,
of our lack of complete information23 concerning the system—but this is ignorance
in principle. Entropy is a measure of the degree of impossibility of knowledge—in
principle—where instabilities of trajectories and other mechanical features of the
system arise. The absence of information is a property of the system and not of
the observer. After all, as we saw at the very beginning, the entropy of a system
is a function of its state.

The fate of the universe24

Is the world bound to end in heat death? This was Thomson and Clausius’s gloomy
prognostication when they discovered the law of increasing entropy in irreversible
processes. What is most astonishing is that the investigation of a technological
process—the working of a steam engine—should lead to such a general cosmolog-
ical conclusion.

But what is meant by “heat death”?
This is generally held to mean a state of everything, of the whole universe, of

maximum entropy, a state characterized by a homogeneous distribution of matter
at uniform temperature. Thinking of the universe as an isolated system, we must
conclude that this temperature must be absolute zero. Everything grows cold,
freezes, and evolves into a dead chaos. According to the second law, in an isolated
system in such a state—the most likely one—there can arise no inhomogeneities,

exact initial and boundary conditions? Wasn’t his argument about what is possible in principle,
rather than in practice? Trans.

23The technical definition of “information” will be given in Chapter 7.
24Since the original of this book was published in 1986, there have been a great many new

developments in physical cosmology. For example, the age of the universe is now thought to be
around 14 billion years, rather than the 20 billion mentioned by the author. However, although
there are several theories as to the evolution of the universe since the big bang, including cyclic
ones, the idea that soon after that event the expanding universe was in a state of very, even
somewhat miraculously, low entropy, and that entropy has been increasing ever since continues
to hold sway. Brian Greene’s book The fabric of the cosmos (Penguin Books, 2005) is an excellent,
relatively recent, popular account by an expert. Trans.
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no order, no information.25

Thomson, who was apparently unaware of statistical mechanics and the prob-
abilistic interpretation of entropy, viewed the heat death of the universe as in-
evitable.

But Boltzmann, the discoverer of the connection between entropy and sta-
tistical weight, believed that the present, obviously highly inhomogeneous state
of the universe with its stars and galaxies, came about as the result of a large-
scale fluctuation.26 If the universe had ever in the past been homogeneous and
isothermal, then only a fluctuation could account for its present inhomogeneity—
an immense fluctuation and therefore of infinitesimally small probability. But over
the span of cosmic time, measured in billions of years, anything might happen....

However, while these arguments were very convincing at the time of their
formulation, subsequent discoveries concerning the structure and history of the
universe have called them into question.

The universe is definitely not at present in a state of statistical equilibrium.
This is also the case for any arbitrarily large finite region of the universe. Boltz-
mann looked to fluctuations for an explanation of this remove from equilibrium.
However, it is on the basis of the general theory of relativity that the true ex-
planation can be arrived at. A gravitational field, responsible for the creation of
the stars and galaxies, permeates the universe. According to the general theory of
relativity, this field causes changes in space and time. In ordinary, non-relativistic,
statistical physics, in terms of which the heat death hypothesis was formulated,
space and time were regarded as external factors, a fixed backdrop. The second
law of thermodynamics is valid only under stationary external conditions. How-
ever the universe turned out not to be stationary, but expanding. It is a system
immersed in a changing gravitational field.

That gravitational forces are capable of producing structure from chaos, that
they can cause stars to form from cosmic dust, was known long before the general
theory of relativity came into being—Newton had already discussed this. In 1886,
the great Norwegian dramatist Henrik Ibsen wrote in his poem “Stars in nebula”:

A message to our ancient earth it27 bore,
That in the solemn stillness of the distance
There chaos had evolved a star-existence

25See Chapter 7 for the precise definition of “information”.
26Boltzmann realized that, since the laws of classical physics (and now also the standard version

of quantum theory) are time-reversible, and, presumably, the behavior of systems consisting of
many particles is ultimately subject to those laws, one might equally logically conclude that
entropy was higher in the past, that is, that entropy increases as t decreases. Since everyday
experience seems to contradict this, he took refuge in the hypothesis that the present state of the
universe resulted from a huge, and extremely improbable, fluctuation. However, this hypothesis
leads to logical impasses—for instance, we cannot then trust our memories or other evidence of
a past. The presently favored way out of this difficulty is to hypothesize that very soon after the
big bang the universe was in a state of very low entropy, which has been increasing ever since.
For further details see Brian Greene’s The fabric of the cosmos (Penguin Books, 2005). Trans.

27A comet.
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Once it discovered gravitation’s law.

Here is the last stanza of the poem:

The nebula, though formless, I believe in,
Chaotic though the weltering North may be;

Believe it is on course for unity,—
A brilliant star in process of conceiving.

(Translated by John Northam.)

The entropy of the universe would seem to be increasing. According to
present-day notions, the universe we know came into being some 20 billion years
ago as a clot of hot, structureless plasma. Structure began to emerge immedi-
ately after the “big bang”. First there came into being elementary particles with
nonzero rest-mass, later atoms were formed. Eventually gravitational forces caused
the stars and galaxies to form. This clumping of atoms and molecules was accom-
panied by a rise in temperature in the clumps through increasing pressure, and
dispersion of heat via radiation, causing the entropy of the surrounding medium28

to increase. The universe’s entropy consists largely of radiation entropy. The spe-
cific entropy of the universe is expressed by the ratio of the number of photons to
the number of heavy elementary particles—primarily protons—per unit volume.
This ratio characterizes the degree to which the universe is heated. The photons
present in the universe are predominantly surviving relics of the radiation emit-
ted at the moment of the big bang. This radiation has since then cooled to the
very low temperature of 3◦K,29 and the number of photons per cubic centimeter
is about 500. The average density of matter in the universe is about 10−30 grams
per cubic centimeter,30 or about one proton per cubic meter. Hence the ratio of
the number of photons to the number of protons is of the order of 109. Thus the
specific entropy of the universe is very large.

The ultimate fate of the universe depends on a number of phenomena that
have not yet been adequately investigated. We mentioned earlier (in Chapter 4) the
neutrino, an elusive elementary particle discovered by Pauli theoretically, and only
much later actually observed. Until recently it was thought that, like photons, the
neutrino has zero rest-mass, but now strong experimental evidence has emerged
showing that it may after all have a tiny rest-mass. If this is confirmed, then our
ideas of the cosmos will have to be changed, since it is estimated that neutrinos are
approximately as abundant as photons. If they do indeed possess rest-mass, then
the average density of matter in the universe will have to be drastically revised
upwards.31 The universe can expand forever—be “open”—only if the density of

28The atmospheres of the stars? Trans.
29This is the “cosmic microwave background radiation”, discovered by Arno Penzias and

Robert Wilson in 1964. Trans.
30Does this include the mysterious “dark matter” hypothesized to explain why the galaxies

cohere? Trans.
31However, according to The fabric of the cosmos (see footnote 26) p.433, neutrinos “are too

light to supply the dark matter; they fall short of the mark by a factor of more than a hundred.”
Trans.
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matter is less than a certain critical value. If this is exceeded then the “closed”
model of the universe applies: after space expands to a certain finite size, it will
begin to contract in upon itself.32

Another phenomenon connected with the fate of the universe is that of the
instability of protons. Certain theoretical considerations related to “grand uni-
fication” led to the hypothesis of proton decay, with a half-life of at least 1032

years.33

In the universe there are continuing processes of restructuring, accompanied
by the export of entropy from collapsing regions and an overall increase in entropy.
However, increase of entropy in a non-stationary system located in a changing
gravitational field, does not at all imply that the system will tend to a homogeneous
state and statistical equilibrium.34

The point here is that when solving problems concerning entropy, we usually
work with the model of an ideal gas, where it is assumed there is no interaction be-
tween the molecules beyond elastic collisions. However in the universe gravitation
acts, and so has to be incorporated into the picture.

The claim of thermodynamics that a closed system will sooner or later reach
a state of maximum entropy is valid only if the conditions external to the system
are stationary, or can be ignored. However this is not the case for the universe since
the metrical, spatial properties35 of the expanding universe are time-dependent.
Thus statistical equilibrium need not occur, that is, the general theory of relativity
may save us from the conclusion that the universe will end in “heat death”.

Not every one agrees with this argument. In his book The big bang,36 J. Silk
argues that heat death is inevitable for an open universe. He writes: “Although
an open universe seems the favored alternative at present, an open universe has
a distinctly unappealing future. In an open universe, galaxies are destined to run
down, and stars are destined to burn out, never to be reborn. Gravity can no longer
counteract the expansion, and gravitational forces become insignificant on the very
largest scales. Space will become blacker and blacker. The void between the galaxy
clusters will deepen immeasurably. As nuclear energy supplies dwindle, matter can
no longer support itself against gravity in gravitationally bound systems. Galaxies,
and ultimately even the great clusters, will collapse to form gigantic black holes.
Eventually, all matter will become utterly cold, attaining a temperature of absolute

32It was discovered in 1998 that the universe, or rather the space containing it, is at present
undergoing accelerated expansion. (See The fabric of the cosmos, p. 411.) Trans.

33“After years of painstaking search for such proton decay in elaborate underground experi-
ments, none was found.” (The fabric of the cosmos, pp. 267-268.) Trans.

34“...by the time the universe was a couple of minutes old, it was filled with a nearly uniform
hot gas composed of roughly 75 percent hydrogen, 23 percent helium, and small amounts of
deuterium and lithium. The essential point is that this gas filling the universe had extraordinarily
low entropy. ... For huge volumes of gas, when gravity matters, atoms and molecules evolve from
a smooth, evenly spread configuration, into one involving larger and denser clumps. (The fabric
of the cosmos, pp. 171-172.) Trans.

35Its geometry? Trans.
36Joseph Silk, The big bang; the creation and evolution of the universe, W. H. Freeman, San

Francisco, 1980.
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zero. All forces will fade and disappear, until a state is reached where nothing
will ever change again. Space is infinite, and a cold, black, immutable future is
inevitably destined to be attained throughout space. This fate will not occur for
billions and billions of years, but it is nevertheless inevitable in an ever-expanding
universe.”

We have included this lengthy quote to show that there are modern cosmolo-
gists who agree with Thomson. Nonetheless, as we have argued above, this gloomy
prognostication does not in fact follow from the general theory of relativity.

Incidentally, the thermodynamic properties of black holes are of great inter-
est, and are in fact very different from those proposed in Silk’s book. However, we
shall not go into this matter here.

Thus an open universe does not at all tend towards heat death. And this is
even more the case for a closed universe that periodically expands and contracts.
The likelihood that neutrinos possess rest-mass, together with a number of other
special features of the history of the universe, would tend to favor its being closed.

The structures of the universe—its galaxies, stars, planets, and, on earth,
life—ultimately result from the export of entropy into the cosmic microwave back-
ground radiation, at the low temperature of 3◦K.





Chapter 6

Open systems

Only in an open system
Can events occur,

Can time be without end,
Can discoveries be made.

The production and flow of entropy

So far we have considered, almost exclusively, isolated systems, that is, systems
insulated from the external world by an impenetrable cocoon. All of our laws—
including the first and second laws of thermodynamics—relate to isolated systems.
If a deviation from the state of equilibrium should take place for some reason, that
is, if the system should fluctuate to a state of non-maximal entropy, then, after
a certain time, the system will revert to a state of equilibrium with entropy at a
maximum.

But what if the system is open, that is, if it interchanges matter and/or
energy with the surrounding world? Examples are not hard to find: each of us—
every living organism, in fact—is such a system.

Clearly, in an open system not only does the second law fail, but also the
first (the law of conservation of energy) and even the law of conservation of mass
(Lomonosov’s law) breaks down. A person eats, and thereby gains weight. One
can gain or lose weight, and it behooves one (this is of great importance) to make
an effort to maintain one’s weight at an appropriate (not very high) level.

What does a change in the entropy of an open system involve?
First, the system’s entropy can change—by an amount diS, say—as a result

of various processes taking place internally. Second, entropy can flow into or out
of the system. This might occur through heat exchange with the environment,
or through interchange of matter. After all, entropy is a function of the state of
matter, so that it will enter or leave the system together with the matter entering
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or leaving. Let deS denote the change in entropy resulting from the influx or efflux
of matter. Thus the total change in entropy of an open system is given by

dS = diS + deS. (6.1)

The sign of diS, the entropy change produced from within the system, is always
positive, since if one imagines the system insulated by means of an adiabatic
membrane, then deS will be zero, but the change diS will remain, and by the
second law we must then have

dS = diS ≥ 0. (6.2)

Of course, we shall have equality here precisely if the (insulated) system has
achieved equilibrium.

On the other hand, the sign of the change deS may be positive or negative,
depending on circumstances, that is, on whether the influx of entropy is greater
or less than the efflux. The net change dS in entropy of an open system may be
positive, negative, or zero, depending on the contributions diS and deS to dS in
(6.1):

deS > 0, dS > 0;
deS < 0, but |deS| < diS, dS > 0;
deS < 0, and |deS| > diS, dS < 0;
deS < 0, and |deS| = diS, dS = 0.

The last two of these four cases are the most interesting. They represent respec-
tively the situations where an open system’s entropy decreases because the efflux
of entropy exceeds its creation internally, and where the efflux of entropy and
internally created entropy exactly balance out.

In the situation where there is no change in the internal entropy, and only
heat exchange with the environment occurs, then

dS = deS =
dQ

T
. (6.3)

This is just the formula (2.4). Here the meaning of the expression “flow of entropy”
is especially simple: it is essentially just the flow of heat. On the other hand, if
entropy is produced internally, then the formula becomes

dS = diS + deS = diS +
dQ

T
, (6.4)

which we also encountered earlier (see (2.30)) as an inequality holding for irre-
versible processes:

dS ≥ dQ

T
, (6.5)
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Figure 6.1: Model of quasi-equilibrial expansion of a gas.

with equality precisely if diS = 0.
As we saw in earlier chapters, entropy is always generated in systems within

which physical, chemical, or biological processes take place. This production of
entropy proceeds at a definite rate, a rate that is never negative, and becomes
zero, that is, satisfies

diS

dt
= 0, (6.6)

only under conditions of internal equilibrium. Denoting by σ the amount of entropy
produced internally per unit time per unit volume of an open system, we have

diS

dt
=

∫
σdV ≥ 0. (6.7)

The quantity σ is called the (specific) dissipation function of the system.
The formulae (6.6) and (6.7) differ fundamentally from those of thermo-

dynamics and statistical mechanics which we derived and worked with earlier:
formulae (6.6) and (6.7) involve the time! We are now concerned with the rate of
generation of entropy with respect to time.

This signifies a transition from thermostatics, that is, classical thermodynam-
ics, to dynamics and kinetics. Thermostatics concerns processes in equilibrium, or
rather processes that take place sufficiently slowly for equilibrium to be attained
at each stage. For example, we may model the equilibrial expansion of a gas in the
following way: a piston moving in a cylinder supports a load consisting of a pile
of sand (Figure 6.1), from which we remove one grain at a time.

Formulae (6.6) and (6.7) relate to non-equilibrial processes, and in this they
represent a better approximation of reality. After all, in nature there are no equi-
librial processes; such processes are mere idealizations.

The task of physics is to determine the factors on which the rate of generation
of entropy and the associated specific dissipation function depend, and the nature
of this dependence.
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The dissipation function

As already noted, entropy is generated in all physical, chemical, and biological
processes. Suppose a system—for the moment it is immaterial whether open or
closed—contains two bodies at different temperatures in contact with one another.
It is clear that in this system heat will flow from the hotter to the cooler body
immediately upon contact, and that the flow will continue until the temperatures
are equalized. In this situation entropy is generated as a result of heat conduction.
Thus, to repeat, the driving force in the production of entropy is temperature
difference. In this connection it is appropriate to mention the following very general
physical principle:

Only differences give rise to effects, and these in turn yield new differences.
Returning to our theme, we observe that temperature differences give rise to

a nonzero flow of thermal energy. In processes involving the generation of entropy,
some sort of “flow” is always present—in the sense of a change in some physical
quantity—together with a “force” causing the flow. In the present case, the flow
is that of energy, namely dE/dt (where E is the thermal energy per unit volume),
and the “force” is the temperature difference. However since the dependence of
entropy on temperature is one of inverse proportionality, it is rather the difference
of the reciprocals of the temperatures that is of significance for entropy:

1
T2
− 1

T1
=

T1 − T2

T1T2
, T1 > T2.

Thus in the case of heat conduction, it is not difficult to see that the dissipation
function has the form

σ =
dE

dt

(
1
T2
− 1

T1

)
. (6.8)

Note that since σ is the quantity of entropy produced per unit volume per unit
time and E is the energy per unit volume, the dimensions of the two sides of
equation (6.8) coincide.

Observe also that one always has σ > 0. For, the flow of thermal energy
dE/dt between the bodies at temperatures T1 and T2 is positive if T2 < T1,
and then 1/T2 − 1/T1 is also positive, while if T1 < T2, then both dE/dt and
1/T2 − 1/T1 are negative. It turns out that the expression given by (6.8) for the
dissipation function in this particular case as the product of the “flow” by the
“force”, reflects the general case.

Suppose, for instance, we are considering not heat conduction but electrical
conduction. The “flow” would then be a flow of charge, that is, of electrons, and the
“driving force” would be the electrical driving force, that is, a potential difference.
Once again the effect—the electric current—has a difference as its cause. In this
situation, the dissipation function turns out to be given by

σ = I
ϕ1 − ϕ2

T
, (6.9)
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where I = de/dt is the current, which is just the rate of flow of charge per unit
time, and ϕ1 − ϕ2 is the difference in potentials. The reader may recall that the
quantity I(ϕ1 − ϕ2) is electric power, representing the rate of transformation of
energy, and usually measured in watts.1 Hence for the dimensions to be those of
the dissipation function (or specific internal entropy) σ, we need to divide the
electric power by the temperature T , as in (6.9). Thus entropy is generated in
electrical processes according to the formula (6.9).

Entropy is also generated by any chemical reactions taking place in a system.
As discussed earlier (see the third section of Chapter 3), a chemical reaction pro-
ceeds from a state of higher (Gibbs) free energy to one of lower free energy. Gibbs
defined the chemical potential of a combination of reagents as the rate of change of
free energy per unit volume per unit time. Differences in chemical potential mea-
sure the propensity of a reaction to occur. Such a difference is called the affinity
of the reaction, denoted by A. In this, chemical, context, affinity plays the role
of the driving “force”, while the “flow” is represented by the rate of the reaction,
that is, the number of moles of the reagents undergoing chemical transformation
per unit time. The dissipation function then has the usual form:

σ =
vA
T

. (6.10)

Does the right-hand side here have the correct dimensions? Well, the rate of a
reaction is measured in moles per unit time, while its affinity—the difference in
chemical potentials—is measured in units of energy per mole per unit volume.
Hence the dimensions of the right-hand side of (6.10) are those of

moles
time

· energy
mole·volume·temperature

≡ energy
time·volume·temperature

,

which are indeed those of the dissipation function.
The above-described processes are all irreversible. In general, in a non-equi-

librial system several processes of various kinds may be going on at once.
In all cases, the “forces” and “flows” become zero at equilibrium; the entropy,

having reached a maximum, stops increasing. In the first process above, we have
T1 = T2, and the flow of thermal energy ceases, dE/dt = 0; in the second, ϕ1 =
ϕ2, and the electric current ceases flowing, I = 0; and in the third, the affinity
becomes zero, A = 0, and the reaction stops, v = 0. For small perturbations from
equilibrium, one may assume in each case that the “flow” is directly proportional
to the “force”. Thus in the case of heat conduction, the flow of thermal energy,
dE/dt, is proportional to the temperature difference T1−T2. In the case of electrical
conduction, the electrical current is proportional to the potential difference; this
is just Ohm’s law:

I = g(ϕ1 − ϕ2), (6.11)

1If potential difference is measured in volts and current in amps. Trans.
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where g is the electrical conductivity, the reciprocal of the resistance. In a chemical
reaction, the rate of the reaction is proportional to the affinity.

If a number of irreversible processes are taking place at the same time in an
open, nonequilibrial system, then these processes turn out to be connected to one
another, in the sense that the “flow” peculiar to any one of them may depend on
the “forces” associated with the other processes.

Suppose for simplicity that we have such a system where just two irreversible
processes are proceeding (for example, heat conduction and diffusion). Let J1 and
J2 denote the respective “flows” and X1 and X2 the “forces”. The dissipation
function of the system is then given by

σ = J1X1 + J2X2 ≥ 0. (6.12)

It can be shown that, provided the system is close to equilibrium, the “flows”
depend on the “forces” linearly:

J1 = L11X1 + L12X2,
J2 = L21X1 + L22X2,

(6.13)

where the coefficients L11, L12, L21, and L22 are constants of this particular system.
It turns out that the coefficients of proportionality—“phenomenological coeffi-
cients”—are symmetric with respect to the indices 1 and 2:

L12 = L21, (6.14)

that is, that part of the flow J1 attributable to the force X2 is equal to the part of
the flow J2 attributable to X1. The statement that this is so is called “Onsager’s
theorem”.2

Substituting from (6.13) in (6.12), we obtain

σ = L11X
2
1 + 2L12X1X2 + L22X

2
2 ≥ 0. (6.15)

Thus we have a positive definite quadratic form in X1 and X2. It follows that
the coefficients L11 and L22 must be positive, since setting X2 = 0 yields σ =
L11X

2
1 > 0 if X1 > 0, whence L11 > 0, and similarly for L22. It is easy to show

(and well known) that the quadratic form in (6.15) is positive definite if and only
if

L2
12 < L11L22, (6.16)

so this is the only limitation on the value of L12.
(Note that, although of course the number n of processes taking place in a

system may be arbitrarily large, the case n = 2 that we are presently considering
involves no real loss of generality; the general case is analogous.)

2Lars Onsager (1903-1976), Norwegian/American physicist and chemist, 1968 Nobel laureate
in chemistry.
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The form of the expression for σ in (6.12) is highly significant, in that, al-
though the sum σ of the terms J1X1 and J2X2 cannot be negative, one or other
of the terms may be. For instance, if J1X1 > 0 but J2X2 < 0, then the condition
σ > 0 is satisfied only if J1X1 > |J2X2|. This has the following important conse-
quence. The negativity of J2X2 means that, taken in isolation, the corresponding
process (No. 2) is impossible, since it would involve a decrease in entropy. Yet the
fact that the other process (No. 1), for which J1X1 > 0, is taking place at the
same time and producing surplus entropy sufficient to more than make up for that
decrease, allows process No. 2 to proceed after all in the open system.

By way of example, we consider the surprising phenomenon of thermodiffu-
sion. Suppose we have a vessel filled with a homogeneous mixture of two gases.
If the temperature of the vessel is uniform, then the mixture will be in equilib-
rium, with its entropy at a maximum. However, if opposite walls of the vessel are
at different temperatures, then there will occur a partial separation of the gases:
one will tend to accumulate near the warmer wall and the other near the cooler.
The loss of entropy occasioned by this separation is more than compensated by
the gain in entropy due to the heat flow. The flow (in opposite directions) of the
gaseous matter and the flow of the thermal energy are interconnected.

In this section we have discussed certain aspects of the so-called “linear ther-
modynamics of open systems”, valid close to equilibrium. We have become ac-
quainted with special features of such systems, in particular, with the possibility
of processes involving a loss in entropy actually occurring as a consequence of their
being interconnected with other “entropically advantageous” processes.

In the next section, we shall discuss other, equally important and interesting,
peculiarities of open systems.

The area of non-equilibrial thermodynamics was developed in the work of
L. Osager, T. de Donder,3 and I. Prigogine.4 However, the basic ideas of non-
equilibrial linear thermodynamics had been described earlier in the work of
L. I. Mandel′shtam and M.A. Leontovich entitled “Towards a theory of the ab-
sorption of sound in liquids”, published in 1937.

An astronaut lives on negative entropy

This is all very interesting, important, and useful, but how can one apply the
basic laws of thermodynamics to open systems? After all, those laws hold only for
isolated systems.

The answer is rather simple: Along with the open system one is studying,
one must consider its immediate environment—including all sources of matter and
energy impinging on the system—, and imagine the resulting enlarged system to
be separated from the surrounding world by means of an adiabatic, impermeable

3Théophile de Donder (1872–1957), Belgian mathematician and physicist.
4Ilya Prigogine (1917–2003), Russian-born, Belgian chemist. 1977 Nobel laureate in chemistry

for his work in non-equilibrial thermodynamics.
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shell. Then we can apply the laws of thermodynamics to this enlarged system in
order to derive important results.

A good model of this is afforded by an astronaut in the cabin of a spaceship.
Here, indeed, no effort has been spared to isolate the interior of the space ship
from the surrounding space. The astronaut is secure in the cabin, with a supply
of food, water, and air. Let’s calculate the balance of entropy.

Taken alone, the astronaut represents an open system. Any infinitesimal
change dS(a) in his or her entropy satisfies

dS(a) = diS
(a) + deS,

where deS is the entropic contribution from the surrounding medium (the interior
of the space ship) via any interchange of thermal energy or matter. Hence the
change in the entropy of the medium surrounding the astronaut is

dS(m) = −deS.

The total change in entropy of the astronaut together with the interior of the space
ship is

dS = dS(a) + dS(m) = diS
(a) > 0, (6.17)

where, once again, the inequality obtains by virtue of the second law. Thus the
entropy of the combined system of astronaut and space ship increases by an amount
equal to the entropy generated by the astronaut’s organism.

Now an astronaut must be a healthy young person, so that his or her state
will remain the same for the whole of the flight. However though stationary, this
state is not one of equilibrium. This means that the entropy (as well as the mass
and energy) of the astronaut remains unchanged, whence

dS(a) = diS
(a) + deS = 0. (6.18)

Since by (6.17), diS
(a) > 0, it follows that deS must be negative. We conclude

that in a stationary open system the entropy generated within the system must
be exactly balanced by the amount that flows out of the system. In fact, it can be
shown that the entropy of the substances excreted from a living organism actually
exceeds the entropy of the substances it consumes. In 1944, E. Schrödinger, one of
the founding fathers of quantum mechanics, wrote a small book entitled What is
life? (We mentioned this book earlier, at the end of Chapter 3). The appearance
of this book was an event of considerable importance, since the ideas Schrödinger
expressed in it played a significant role in the development of modern biology. In
particular, the basic aspects of the thermodynamics of living (and therefore open)
systems are discussed in the book.

What does an organism live on? We are used to talking of the number of
calories we consume with food. Does this mean that we feed on calories, con-
stantly adding energy to that already present in the organism? Of course not! If
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an organism is in a stationary state, then the amount of energy present in it is
constant. To quote Schrödinger:

“What then is that precious something contained in our food that keeps
us from death? That is easily answered. Every process, event, happening—call it
what you will; in a word, everything that is going on in Nature means an increase
of the entropy of the part of the world where it is going on. Thus a living organism
continually increases its entropy—or, as you may say, produces positive entropy—
and thus tends to approach the dangerous state of maximum entropy, which is
death. It can only keep aloof from it, that is, alive, by continually drawing from
its environment negative entropy—which is something very positive as we shall
immediately see. What an organism feeds upon is negative entropy. Or, to put it
less paradoxically, the essential thing in metabolism is that the organism succeeds
in freeing itself from all the entropy it cannot help producing while alive.”

Consumption of negative entropy means excretion of more entropy than en-
ters the organism, signifying in turn the maintenance of a stationary state through
an efflux of entropy.

Note that the views of Emden concerning heating a room (see the final two
sections of Chapter 3) are fully analogous to those of Schrödinger quoted above.

A stationary state is possible only in an open system; such a state might
be termed a “flowing equilibrium”. An open system in a stationary state has a
number of special features.

Earlier (in the third section of Chapter 2) we modeled a chemical reaction
by the flow of a liquid from one container to another. We shall now represent an
open chemical system by a model of a similar kind (Figure 6.2). This model is
flowing (or “steady state”) since the liquid is continuously replenished from below
in the upper vessel and flows continuously downwards and out of the lower vessel.5

As before, the role of the catalyst is played by the pipe connecting the vessels,
regulated by means of a tap. If the system were, as earlier, isolated,6 then the final
state of the system, represented by the level of liquid in the lower vessel, would
be independent of the extent to which the tap is open—the catalyst affects only
the rate of the reaction, not the final outcome. By contrast, in the present open
system the extent to which the taps are open determines not only the rate but also
the level of liquid in the two containers, that is, the steady state of the process.

It was shown by Prigogine that if an open system is in a stationary state close
to an equilibrium state, then the dissipation function is at its minimum value. In
other words, the amount of entropy produced in a near-equilibrial stationary state
is less than that produced in other states of the system. Therefore, as the system
approaches a stationary state, its dissipation function decreases:

dσ

dt
< 0,

5And is then pumped up to the higher vessel. Trans.
6With the liquid in the upper vessel not being replenished, and liquid not flowing out of the

lower vessel. Trans.
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Figure 6.2: Model of a chemical reaction in an open system.

σ

t

Figure 6.3: Dependence of the dissipation function on time: approach to a station-
ary state.
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and, finally, takes on a minimum value, where

dσ

dt
= 0,

as shown in Figure 6.3. Once reached, the stationary state is stable; a linear system
will not leave such a state spontaneously. The steady-state system shown in Figure
6.2 behaves in this way: For given degrees of openness of the taps, the levels of
liquid in the two vessels will achieve stability, provided the liquid continues to flow
for long enough, and then for as long as it continues to flow.

The state of the biosphere as a whole can be regarded as stationary. The
destabilizing effect of human activity has not yet significantly caused any change
in the temperature or composition of the atmosphere.7

The realization of a stationary state in an open system requires two time
scales, that is, the presence of a fast process and a slow one. We explain what we
mean with the following simple example: Suppose we have two bodies at temper-
atures T1 and T2, that are connected by a fine copper wire, a good conductor of
heat. Heat will flow along the wire until the temperatures of the bodies become
equalized. The fast time scale is represented by the copper wire, which quickly
enters a stationary state during which the rate of flow of heat through a cross-
section of the wire is constant. The second, slow, time scale is represented by the
process of equalization of the temperatures.

Of course, if we maintain the temperatures of the two bodies at T1 and T2

(by means of a heater and cooler, say), then equalization of the temperatures will
not occur.

The stationary state of the biosphere provides another such example. This
state arose and persists as a result, ultimately, of the stream of radiation from the
sun. This state was established relatively rapidly8 as a consequence of the appear-
ance of green plant growth; photosynthesis in these organisms brought about the
oxygenation of the atmosphere.9 On the other hand, the “slow” time scale is here
represented by the much slower cosmic process of the burning out of the sun.

We shall now imagine the crew of our space ship to consist of a baby and
an old man. Neither of these two organisms is in a stationary state. As the baby
grows, so do its mass and energy, and even the degree of its organic order. Thus

7If this could be said in 1986 (the date of publication of the original of this book)—which is
doubtful—, it certainly cannot be seriously maintained now. Global warming due to the “green-
house effect” of vast accumulations of carbon dioxide in the atmosphere, and the countervailing
dimming of the sunlight falling on most places on earth due to atmospheric pollution, are con-
cerns on everybody’s mind in 2008. Trans.

8That is, over a period of more than a billion years. Trans.
9The process of oxygenation of the atmosphere is now thought to be much more complicated,

involving so-called monocellular “blue-green algae” dating from about 2.5 billion years ago—
when the atmospheric oxygen had reached 10% of its present level—and other even older single-
celled organisms, to about 600 million years ago when the first multicellular organisms appeared,
and when the atmospheric oxygen had reached about 90% of its present level. See Encyclopedia
Britannica. Trans.
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the baby’s entropy is decreasing:

dS(baby) = diS
(baby) + deS < 0, (6.19)

that is, owing to a more powerful metabolism, the efflux of entropy exceeds the
amount produced, and the baby absorbs more “negative entropy”.

On the other hand, aging is accompanied by an increase in entropy that is
not balanced by its efflux into the surroundings:

dS(old man) = diS
(old man) + deS > 0. (6.20)

As an elderly physicist once wrote:

Entropy’s consuming me
Bit by bit and altogether.

My last dull years are measured off

Gram by gram and meter by meter.

In the case of a living organism, entropy attains its maximum in the equilib-
rium state—otherwise known as death.

Why do cells divide?

Elementary considerations of the thermodynamics of open systems allow us to
understand why a living cell divides.

A cell is an open system, so the balance of any change in entropy is given by
(6.1), that is:

ΔS = ΔiS + ΔeS.

For the sake of simplicity, we shall assume that a cell is a sphere of radius
r. The amount of entropy ΔiS produced per unit time inside such a sphere is
proportional to its volume 4

3πr3, and the efflux ΔeS of entropy is proportional to
its surface area 4πr2. Hence

ΔS = A · 4
3
πr3 −B · 4πr2,

where A and B are constants of appropriate dimensions. As the cell grows, r in-
creases, and when r = 3B/A, the cell enters a stationary state: ΔS = 0. For
smaller values of r we have ΔS < 0, that is, the efflux of entropy exceeds the
amount generated within the cell, and the cell can grow. However, for r > 3B/A,
we have ΔS > 0, which means that substances with redundant entropy are accu-
mulating in the cell and causing it to overheat. Hence when r reaches the value
3B/A, the cell must either divide or perish. On division, while the total volume
remains unchanged, the combined surface area of the two daughter cells is greater
than that of the mother cell. This can be seen as follows. Denoting by r′ the radius
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of each daughter cell, the equality of volumes before and after the division yields
r3 = 2r′3, whence

r′ =
r
3
√

2
.

The new entropy change per unit time is

ΔS = A · 8
3
πr′3 − 2B · 4πr′2,

and when r = 3B/A, we have r′ = 3B/(A 3
√

2), whence

ΔS = 36π
B3

A2
(1 − 3

√
2) < 0.

As a result of division, the efflux of entropy exceeds the amount generated within
the cell, by the factor

|ΔeS|
ΔiS

= 3
√

2 ≈ 1.26.

Although thermodynamics explains why a cell must divide, it tells us nothing
about the actual mechanism of this extremely complicated process. Thermody-
namics is a phenomenological science.

The growth of a living organism, which always consists of cells, is fundamen-
tally different from the formation of a crystal from the liquid state or a solution.
The cell-division and resulting growth of an organism are directly related to the
efflux of entropy into the surrounding medium. Such processes are non-equilibrial.
On the other hand, the growth of a crystal is an equilibrial process that takes place
when the free energies of crystal and liquid have become equal, and thus amounts
to an equilibrial phase transition. Biological development, while it resembles phase
transition, is fundamentally non-equilibrial.

Far from equilibrium

The development of an embryo and, as noted above, the subsequent post-partum
growth of the baby, involve an increase in order. The embryo starts as a single fer-
tilized cell—an ovum—and its further development—ontogenesis—is accompanied
by morphogenesis, that is, the formation of various specific structures—tissues and
organs. Another example of structure-formation is afforded by the rise of galaxies
and stars in the cosmos.

Such processes necessarily involve decreases in the entropy of the relevant
open systems, that is, the export of entropy into the surrounding medium in
accordance with the inequality (6.19):

deS < 0, |deS| > diS > 0. (6.21)

These conditions can hold only in states far from equilibrium—since the term
diS dominates near equilibrium; the extreme case here would be represented by a
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stationary state. For example, our astronaut (see above) was young and healthy,
and very far from equilibrium.

In order for structure-formation to take place in an open system, that is, for
a radical increase in order to occur, the export of entropy must exceed a certain
critical value.

For the export of entropy to exceed its internal production, a sort of “en-
tropy pump” is needed, to pump entropy out of the open system. Such a “pump”
can work either externally or internally. We shall now find the thermodynamic
conditions for the effective working of such a pump.

An infinitesimal change in the (Helmholtz) free energy of an open system at
fixed temperature and volume is given by (see equation (6.1) and the discussion
preceding and following it)

dF = diF + deF = dE − TdS = diE + deE − TdiS − TdeS.

Now diE = 0 since the energy of the system can change only via an interchange
of energy with the surrounding medium and not internally. Hence

deF = deE − TdeS = dE − TdeS,

and then conditions (6.21) imply that

deF > dE + TdiS. (6.22)

Thus in order for an export of entropy to occur, that is, an efflux from the system,
an amount of free energy is needed greater than the change in internal energy10

plus the contribution resulting from the production of entropy within the system.
If we are considering instead a process taking place at constant pressure

rather than constant volume, then it is appropriate to use the Gibbs free energy
in place of the Helmholtz free energy. The relevant inequality is then

deG > dH + TdiS. (6.23)

If the system is in a stationary state, then its internal energy does not change
(and therefore neither does its enthalpy) :

dE = dH = 0,

and the above inequalities become

deF = deG > TdiS > 0, (6.24)

showing that one needs to supply free energy to the system in order to maintain
the stationary state.

10That is, the internal energy of the system together with its active environment. Trans.
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T2

T1

Figure 6.4: How Bénard convection arises.

“Bénard convection” 11 affords a beautiful example of structure-formation
under relatively simple conditions.

We have a shallow vessel containing a viscous fluid such as silicone oil. We
heat the vessel strongly from below, thereby causing a temperature difference
ΔT = T1 − T2 > 0, between the lower and upper surfaces of the liquid. As long
as ΔT is small, the liquid remains untroubled, and heat is transferred from the
bottom to the top by heat conduction. Then, at a certain critical temperature
difference ΔTcr, there is a sudden change in the behavior of the liquid: convection
sets in (Figure 6.4) and the liquid separates itself into hexagonal cells (Figure
6.5). The result is very attractive and truly remarkable: as a result of heating the
liquid there arises a dynamic, organized structure, resembling a crystalline one. It
is created by the simultaneous cooperative motions of the molecules of the liquid.

Figure 6.6 shows the dependence of the rate of heat transfer dQ/dt on the
temperature difference ΔT . At the critical temperature difference ΔTcr there oc-
curs a sudden change in the dependence, signalling the formation of a cellular
structure.

Since this system absorbs heat from its surroundings, the rate of flow of
entropy through the exposed surface of the liquid is given by the formula (see
(6.3))

deS

dt
=

dQ

dt

(
1
T1
− 1

T2

)
=

dQ

dt

T2 − T1

T1T2
< 0. (6.25)

Hence under these conditions the system exports entropy. Under stationary con-
ditions this export or efflux of entropy exactly balances the amount of entropy
generated within the liquid through internal friction and heat conduction.

A more detailed analysis shows that the surface tension of the liquid plays
an essential role in Bénard’s effect.

Prigogine called open systems that are structure-forming, self-organizing, and
far from equilibrium dissipative. Such systems form spatially (see below), as well
as temporally, stable structures as a certain parameter passes through a critical
value. In the case of Bénard’s effect, the parameter is the temperature difference.

An example of a completely different sort is afforded by lasers. For the sake
of concreteness, we shall consider only solid state lasers, for example ruby lasers.
A ruby laser consists of a cylindrical ruby rod whose ends are silvered. A pulsating
xenon lamp is used for “optical pumping” of the laser: light from the xenon lamp

11Henri Bénard (1874–1939), French physicist.
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Figure 6.5: Bénard convection.
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Figure 6.6: The dependence of the rate of heat transfer on the temperature differ-
ence.
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Figure 6.7: Diagram of a ruby laser: R is a synthetic ruby rod, K the cover, KL a
xenon flash lamp for optical pumping, S a capacitor, and IP a source of constant
voltage.
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Figure 6.8: The dependence of the emitted radiant energy on the excitation energy
of the laser.

is absorbed by the ruby rod mainly at wavelengths around 410 and 560 nanome-
ters in two absorption bands. The optical pumping causes pulsating radiation of
wavelength 694.3 nm to be emitted through the ends of the rod (Figure 6.7).

The xenon lamp optically excites the ions Cr3+ of trivalent chromium respon-
sible for the absorption spectrum of rubies, that is, for their color, and these then
emit pulses of light a few meters in length. Each pulse lasts about 10−8 seconds.
The mirrors, that is, the silvered ends of the ruby rod, emit the radiation parallel
to the rod’s axis. At small amounts of optical pumping, the laser acts like a lamp,
since the emissions from the individual excited ions do not cohere. However, at a
certain critical value of the energy of discharge of the xenon lamp and a critical
(threshold) value of the frequency of pulsation, the power of the laser emission in-
creases abruptly. The irradiated ions now give off light coherently—in cooperation,
as it were—, emitting waves in phase with one another. The lengths of the pulses
grows to 108 or 109 meters, and the ruby laser goes over from a regime of ordinary
radiation, as from a lamp, to one of laser radiation. Of course, this process is very
far from equilibrium. The schematic graph of Figure 6.8 shows the transition from
ordinary lamplike emission to laser emission. Observe the similarity to the graph
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in Figure 6.6 relating to Bénard’s effect.
One could say that the most important things in the universe arose in the

form of dissipative ordered structures far from equilibrium as a result of the export
of entropy. In particular, the galaxies and stars originated in this way: gravitational
energy was transformed into thermal energy, leading to a local efflux of entropy.
The biosphere as a whole, and each living organism in particular, are highly or-
dered and far from equilibrium; thus life exists on earth as a consequence of the
export of entropy.

In the most highly self-organizing systems, in the course of their evolution
over time (relative to the same value of the mean energy) their entropy decreases—
the amount of entropy exported comes to exceed the amount produced. The Soviet
physicist Yu.L. Klimontovich12 called this assertion the “S-theorem”; thus while
Boltzmann’s “H-theorem” (see the section entitled “The age of Darwin” in Chapter
5) relates to equilibrium systems, the S-theorem has to do with dissipative ones.

The basic features peculiar to dissipative structures are as follows. First,
they occur in open systems far from equilibrium and arise as a result of an in-
crease in fluctuations—that is, small deviations from the most likely state—rising
to a macroscopic level. In this way order is created out of disorder, out of chaos.
This kind of order is fundamentally different from the ordinary crystalline order
that arises under equilibrium conditions. The difference consists precisely in the
disequilibrium of a dissipative system, maintained by a forced export of entropy.
All the same, the appearance of spatial or temporal order in a dissipative system
is analogous to a phase transition. Phase transitions under conditions of equilib-
rium, such as, for instance, crystallization, are due solely to the interactions of a
multitude of particles, whereby the particles effect the change of state coherently,
as it were cooperatively. On the other hand, the transition of a dissipative system
to an ordered state from a prior unstable disordered state takes place when some
parameter reaches a critical value. It is precisely in such situations that small
fluctuations grow to a macroscopic level.

Phase transitions constitute an important and far from simple area of physics.
They are “cooperative” phenomena. The failure to realize this has led in the past
to very serious errors. For example, it was once claimed that the dependence
on temperature of the ratio of the number of molecules in the solid (crystalline)
state to the number still in the liquid state can be derived from the Boltzmann
distribution (4.20). Let Ncrys denote the number of crystallized molecules in a
given quantity of the substance in question at temperature T , and Nliq the number
in the liquid state. If we blindly apply the Boltzmann distribution (4.20), then we
obtain

Ncrys

N
=

exp(−Ecrys/kT )
exp(−Ecrys/kT ) + exp(−Eliq/kT )

,

12Yuri L′vovich Klimontovich (1924(?)–2004(?)), Soviet/Russian physicist.
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where N is the total number of molecules. Hence

Nliq

Ncrys
=

N −Ncrys

Ncrys
= exp

(
−Eliq − Ecrys

kT

)
.

However, this makes no sense, since according to this formula the substance will
freeze completely only in the limit as T → 0◦K, while as the temperature ap-
proaches ∞ the two sorts of molecules become equal in number:

Nliq = Ncrys.

The mistake here arises from failing to take into account the interaction of the
molecules and their coordinated behavior. The statistical sum has to be modified
to accomodate this feature.

The transition to a dissipative structure in an open system is a non-equilibrial
phase transition. Haken13 called the area of physics concerned with coordinated
phase transitions—both equilibrial and non-equilibrial, but principally the latter—
“synergetics”.

The Belousov–Zhabotinskĭı reaction

It can be shown that if a system deviates just a little from equilibrium, then its re-
turn to the equilibrium state will proceed smoothly without oscillations according
to the following exponential law: If Δa measures the deviation of some physical
parameter from its equilibrium value ae, then

Δa = a(t)− ae = (a(0)− ae)e−t/τ ,

where τ is a constant called the relaxation time of the system. Thus as t → ∞,
Δa → 0, that is, the perturbed value a(t) of the parameter tends to the equilibrium
value.

If the system is in a stationary state close to equilibrium, and the system de-
viates slightly from that stationary state, it will return to that state in accordance
with the same law.

The relaxation time τ determines the rate at which the system returns to
equilibrium or to the stationary state. At t = τ we have

a(τ) − ae =
a(0)− ae

e
,

that is, the initial deviation has by time τ decreased e (≈ 2.78) times.
On the other hand, in certain systems far from equilibrium, where, as we

have seen, dissipative spatial and temporal structures—inequilibrial order—can
arise, this order may consist of oscillations or waves. This is especially striking in
certain dissipative chemical systems.

13Hermann Haken (born 1927), German theoretical physicist.
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Imagine a lecturer demonstrating a chemical experiment. He fills a beaker
with a blue liquid, and using a pipette adds a few drops of a colorless liquid. The
solution in the beaker turns pink.

Well, there’s nothing so remarkable about that. In chemistry there are many
much more surprising transformations!

But wait! What’s happening? After about a minute the liquid in the beaker
turns blue again, then pink again, then blue again, and so on. The liquid’s color
changes periodically, like a sort of chemical clock.

This remarkable phenomenon—a periodic chemical reaction in a homoge-
neous solution—was discovered by B.P. Belousov14 in 1951. In 1910 Lotka15 showed
in important theoretical work that in a chemical system far from equilibrium, os-
cillations in the degrees of concentration of the reagents are possible. Then in 1921
Bray16 observed for the first time a periodic chemical reaction in a solution of hy-
drogen peroxide H2O2, iodic acid HIO3, and sulphuric acid H2SO4. He observed
a periodic oscillation in the concentration of iodine in the solution as successive
oxidations of iodine to iodate and then reductions back to iodine took place:

5H2O2 + 2HIO3 → 5O2 + I2 + 6H2O,

5H2O2 + I2 → 2HIO3 + 4H2O.

This reaction was rather complex, and for some time it could not be ruled out
that it might be heterogenous,17 taking place on bubbles of the iodate catalyst.
Belousov discovered his reaction, subsequently to make him famous, sometime in
the 1950s, and independently of the work of these scientists, but at the time was
unable to publish it except in an obscure journal. It was intensively investigated
further, starting in 1961, by A.M. Zhabotinskĭı,18 who was able to simplify the
reaction, whence it became known as the “Belousov-Zhabotinskĭı reaction”. In this
reaction the color change (between yellow and clear) is caused by a change in the
charge on a metallic ion. We give a simplified description of Belousov’s reaction,
reducing it to just two stages. At the first stage, trivalent cerium is oxidized by
bromic acid:

Ce3+
HBrO3

−→ Ce4+,

and the second consists in the reduction of the four-valent cerium by the organic
compound malonic acid:

Ce4+
malonic acid

−→ Ce3+.

14Boris Pavlovich Belousov (1893–1970), Soviet chemist and biophysicist.
15Alfred James Lotka (L′viv 1880–1949), American mathematician, statistician, and physical

chemist.
16William Crowell Bray (1979–1946), Canadian physical chemist.
17That is, caused by reagents’ being in two or more different phases. Trans.
18Anatol M. Zhabotinsky currently holds a position at a university in the U. S.
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t

[Ce4+]

Figure 6.9: Variation of the concentration of Ce4+ in the Belousov-Zhabotinskĭı
reaction.

This periodic process comes to an end after a large number of oscillations as a
result of irreversible exhaustion of the supply of the bromate anion BrO−3 . The
final products of the reaction are CO2, H2O, and bromium derivatives of malonic
acid. No perpetuum mobile is achieved! Figure 6.9 shows the oscillations in the
concentration of the four-valent cerium ion.

Zhabotinskĭı and A.N. Zaikin later discovered and investigated other reac-
tions of this type. But that is not all: By having periodic reactions take place
in narrow tubes (one-dimensional systems) and in thin layers of solution (two-
dimensional systems) in the absence of convection, Zhabotinskĭı and Zaikin were
also able to produce wavelike chemical processes. Figure 6.10 shows the evolution
of such a wave in two dimensions. First, a germinating or initiating center—a germ
or eye—appears as the result of a local fluctuation in the concentration, and from
this center waves of color emanate according to variations in concentration.

Such phenomena of spatio-temporal ordering represent auto-oscillatory and
auto-wave producing processes. Such processes occur in open nonlinear systems
that are far from equilibrium, as a result of forces depending on the state of
motion of the system itself, and furthermore the amplitude of the oscillations is
determined by properties of the system, and not by any initial conditions. Auto-
oscillatory and auto-wave processes in chemistry (and also in biology—see Chapter
8) are sustained by an efflux of entropy from the relevant system.

If a break occurs in the wave front of a chemical wave, then a spiral wave
called a “reverberator” may result. Reverberators form, in particular, when two-
dimensional waves propagate near an opening. Figure 6.11 is a photograph of
chemical reverberators. Figure 6.12 is a photograph of a certain species of lichen—
by way of comparison.

Organisms as dissipative systems

Of course, the surprising similarity of the above photographs does not mean that
the growth of a lichen is in all respects like the propagation of a spiral chemical
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Figure 6.10: Initiating centers, and subsequent stages.

Figure 6.11: Chemical reverberators.
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Figure 6.12: The lichen parmelia centrifuga.
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wave. Nevertheless, at the heart of all biological phenomena we find the physics
of open systems far from equilibrium. Although we shall be discussing this topic
in detail in the final chapter of the book, it is appropriate at our present juncture
to consider certain special structural and dynamical features of living organisms.

We have seen that in open systems far from equilibrium there can arise a
specific structuring of the system as a result of intensification of fluctuations up
to the macroscopic level, resulting from the efflux of entropy from the system.

In 1952, Turing19 showed that the conjunction of an autocatalytic reaction
with diffusion can cause spatial and temporal order to arise. A reaction is called
autocatalytic if at least one of the products of the reaction is also a reagent, so
that the quantity of that reagent increases with time. Probably the best known
example is the replication of DNA (deoxyribonucleic acid) macromolecules that
takes place in cell-division. The initial double helix of DNA catalyzes, via a process
called “matrix synthesis”, the formation of a copy of itself.

Turing’s reaction-diffusion model is based on a reaction of the following type:

A → X, 2X + Y→ 3X, B + X→ D + Y, X→ E.

Here A and B are the initial reagents, X and Y the intermediate ones, and D and
E the final products. The second stage of the reaction is the autocatalytic one: As
a result of the action of the substance X, the substance Y is transformed into X,
which thus catalyzes its own production. It follows easily that the overall reaction
is, in sum,

A + B → D + E.

Prigogine and his collaborators called such chemical systems “brusselators” for the
simple reason that their early theoretical investigation was undertaken in Brussels.

The equations describing the kinetic behavior of brusselators and the diffu-
sion of the reagents X and Y (brusselators in a distributed system) are nonlinear,
and such a system is far from equilibrium. The concentrations of the substances X
and Y undergo periodic oscillations, thus forming waves of varying concentration.
At a certain threshold value of the concentration20 an initial fluctuation from the
stationary state is reinforced, ultimately bringing the system into a new station-
ary state corresponding to the new inhomogeneous distribution of the substances
X and Y. Figure 6.13 shows one of the solutions of the kinetic equations of a
brusselator: the distribution of the concentration [X] with respect to a spatial
coordinate.

Turing’s original article had the arresting title “The chemical basis of mor-
phogenesis”.21 The term “morphogenesis” refers to the initiation and development
of an organism’s complex structure in the course of its embryonic growth, that is,

19Alan Mathison Turing (1912–1954), English mathematician, logician, cryptographer, and
“the father of modern computer science”.

20Of substance X? Trans.
21Phil. Transactions of the Royal Soc. London. Series B, Biological sciences, Vol. 237 (1952),

pp. 37–72.
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Figure 6.13: A localized stationary dissipative structure.

the differentiation of cells into tissues and organs. Turing was the first to establish
the possibility that morphogenesis has a chemical basis. Of course, both Tur-
ing’s theory and that of brusselators were based on chemical models, for all that
very convincing. Now we know for a fact that morphogenesis in nature really is
determined by molecular interactions, and that certain substances, namely “mor-
phogenes”, functioning at specific times and at specific places within the organism,
are responsible for the formation of the various organic structures.

These interesting natural phenomena have much in common with auto-oscil-
latory and auto-wave processes, studied in especially great detail in the case of
the Belousov-Zhabotinskĭı reaction.

Occasionally one hears of claims to the effect that chemical auto-oscillatory
processes and standing waves (such as the so-called “Liesegang rings” 22 observed
in colloidal suspensions) can be explained only on the basis of quantum mechanics,
and even that the Planck constant h can be determined from the periods of such
oscillations. However this is a crude misapprehension: one might attempt with
equal success to estimate Planck’s constant from the zebra’s or tiger’s stripes. As
we have seen, there is no trace of quantum mechanics in the theory underlying
these periodic phenomena; they are macroscopic physical phenomena, not atomic
or subatomic.

Many of the tissues of living organisms are excitable, meaning that excitation

22Any of a series of usually concentric bands of a precipitate (an insoluble substance formed
from a solution) appearing in gels (coagulated colloid solutions). The bands strikingly resemble
those occurring in many minerals, such as agate, and are believed to explain such mineral forma-
tions. The rings are named for their discoverer, the German chemist Raphael Eduard Liesegang
(1869–1947). Encyclopedia Britannica.
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—chemical or electrochemical—is transmitted across them from point to point,
propagating like a wave. Muscular and nervous tissues have this property: the
propagation of a stimulus along a nerve fiber and the synchronous oscillations of
the whole heart muscle are phenomena with a chemical basis.

The Soviet physicist V.I. Krinskĭı23 has investigated one of the most dan-
gerous of human pathologies, heart fibrillation.24 In such fibrillation the heart has
departed from its normal regime of regular contractions and entered one of chaotic
oscillations, and without emergency medical aid the condition results in death. It
turns out that this type of “cardiac arrhythmia” results from the multiplication
of spiral waves of excitation, that is, of reverberators. In his works, not only does
Krinskĭı construct a theoretical model of the mechanism of fibrillations and report
on his investigations of the phenomenon by means of delicate experiments on the
hearts of suitable animals, but also gives practical advice as to what one should
do to bring the fibrillations to an end in the event of an attack.

The three stages of thermodynamics

We have by now become thoroughly acquainted with the development of thermo-
dynamics from its origins almost two hundred years ago. We end this chapter with
an overview of the conceptual content of this development.

Prior to the birth of thermodynamics, science was dominated by Newtonian
mechanics—a mechanics where time was reversible and the world did not evolve.
At some point the Almighty set the universe’s mechanism going, and thenceforth
it has worked unchangingly like a wound-up clock. Living nature also appeared to
be unchanging and unchangeable, remaining as it was at its initial creation. The
founder of scientific biology, and the author of the classification of life forms, Carl
Linnaeus,25 considered that the biological life forms all about him were immutable,
and created simultaneously at some time in the past.

The natural sciences as they were then did not involve time. Time was the
prerogative of the humanities, above all history. There it was clear that time
changes everything.

M.V. Lomonosov was an opponent of Newtonian physics, espousing Descartes’
theory instead. Perhaps his rejection of Newtonian physics had something to do
with the breadth of his interests, that is, with the fact that he was not only a physi-
cist and chemist, but also a poet and historian; in poetry and history time flowed
irreversibly. At the turn of the 18th century the first scientific-technological revolu-
tion occurred—or rather technological-scientific revolution, since the steam engine
was invented independently of physics, and it all started from that. Sadi Carnot’s
thoughts on the steam engine represented the founding of thermodynamics. The

23Valentin I. Krinsky is now working at an institute in Nice, France.
24The lay term is “heart palpitations”. Trans.
25Or Carl von Linné (1707–1778), Swedish botanist, physician, and zoologist. The father of

modern taxonomy.
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first and second laws of thermodynamics were discovered, and then somewhat later
a third—Nernst’s theorem. And entropy appeared on the scene—initially as the
gray shadow of energy, the ruler of the universe.

Time first put in appearance in the second law of thermodynamics, formu-
lated as the irreversible growth of entropy in spontaneous processes. Apart from
this, however, thermodynamics remained thermostatics, the science of equilibrium
and equilibrial processes.

Then Thomson predicted the heat death of the universe. It followed that the
world cannot be standing still, it must be evolving; it moves inexorably towards
its demise just like every living organism.

In this way the emphasis moved from technology to cosmology, representing
a shift in focus from what exists to what develops—“from being to becoming”,
in the words of Prigogine. It was the dawn of the age of Darwin: ideas from
biology (and the humanities) of the development and growth towards the most
probable state of a physical system were incorporated into physics. The first stage
of thermodynamics culminated in the creation of statistical physics in the works
of Boltzmann and Gibbs. At this stage, entropy ceased to represent merely a
measure of the depreciation of energy, and assumed its true role as a measure of the
degree of disorder of a system, an objective characterization of the unavailability
in principle of information about a system. The importance of entropy as one of
the chief characteristics of arbitrary systems began to grow rapidly.

During the second stage in the development of thermodynamics, scientists
turned to the study of open non-equilibrial systems close to equilibrium. This
linear thermodynamics of open systems was created by Onsager, Prigogine, and
others of their contemporaries. In this science, the dependence on time had become
quantitative: as we saw, this non-equilibrial thermodynamics does not limit itself
to the mere assertion that entropy increases in irreversible processes, but actually
involves explicit computation of the rate of this increase, that is, of the derivative
of the entropy content with respect to time—the dissipation function.

There are two fundamental features of linear thermodynamics (now definitely
thermodynamics and not thermostatics) that are nontrivial and essential. First,
there now arises the possibility of an open system’s existing in a stationary, but
non-equilibrium, state, in which the production of entropy is balanced by its efflux
from the system. Second, this thermodynamics allows for the conjunction of dy-
namical processes in a single open system, whereby a process that could not take
place by itself (inasmuch as it involves a decrease in entropy), is realized through
the free energy made available by other, entropically advantageous, processes.

Finally, the last 20 or 30 years26 have witnessed a third stage in the evolution
of thermodynamics, represented by the physics of non-equilibrial dissipative pro-
cesses. We have seen in the present chapter that open systems far from equilibrium
possess remarkable properties: they are capable of creating order from chaos by
exporting entropy, that is, through its efflux out of the system. A living organism

26That is, starting in the 1960s.
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feeds on negative entropy and not on positive energy. Thus at this stage, entropy
has been promoted from the mere shadow of an omnipotent sovereign to a power-
ful entity determining the very existence of life on earth, and the evolution of the
universe.

For the first time we are in a position to understand how it is that order, anal-
ogous to the crystalline variety, is possible in open systems far from equilibrium—
that order can emerge out of chaos much like a phase change. A new branch of
science has been born, the physics of dissipative systems (as Prigogine calls it) or
synergetics (as Haken calls it). This relatively new area of physics holds out great
promise.

The creation of this branch of science began the process of integration of
the sciences characteristic of our time, superseding the former rigid specialization.
Investigations of the Bénard effect, the laser, of periodic chemical processes, and
heart fibrillation, are all pursued today from a unified scientific point of view. From
the same unified stance, experts in synergetics investigate structure-formation in
plasma27 “on the earth, in the heavens, and on the sea”. Yes, yes, from the pe-
riodicity sometimes evident in cloud formations to the northern lights (aurora
borealis)—all such phenomena result from a single law of nature, namely the emer-
gence of order from chaos on the analogy of a phase change. In the last analysis,
cosmology itself is merely a part of the physics of dissipative systems.

At last, a century after the appearance of Darwin’s The origin of species,
physics has become united with biology in the task of comprehending the essence
of irreversible processes. This will be discussed further in Chapter 8.

It might justifiably be claimed that the publication of The origin of species
heralded the appearance of synergetics in science. Darwin showed how the orderly
process of evolution—culminating, for us, in the present biosphere—arises out of
the chaotic, disorderly mutability of natural living organisms. It is in this sense
that one might call Darwin the founding father of synergetics.

Simultaneously with the rise of this nonlinear thermodynamics, a theory of
information was being formulated, closely allied to thermodynamics. We have more
than once spoken of entropy as a measure of the unavailability of information. But
what exactly is “information”?

27In the general sense of a gas or suspension. Trans.
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Information

We understand, even though half-heard,
Of questions, answers every word.

But if those half-heard words are new,
They’re irredundant through and through.

Information and probability

What is information?
The everyday meaning of the word is clear: It is what is communicated. We

obtain it using every sense organ. We transmit it to others. Our personal life
and the functioning of society are based on communication, on the receipt and
transmission of information—and this applies not only to human beings, but to
all denizens of the biosphere.

In the 1940s a new science appeared: “cybernetics”.1 One of its inventors,
Norbert Wiener,2 entitled his classical book on the subject Cybernetics or con-
trol and communication in the animal and the machine. There he wrote: “If the
17th and early 18th centuries are the age of clocks, and the later 18th and 19th
centuries constitute the age of steam engines, the present time is the age of com-
munication and control.” Here communication—without which there can be no
control—means transmission of information.

One of the essential tasks of 19th century science was the formulation of
a theory of heat engines, a theory of heat. In the 20th century, it was a theory
of communication—or information—that begged to be created (among others).
And, surprisingly, it turned out that thermodynamics and information theory
were connected.

1“Cybernetics is the interdisciplinary study of complex systems, especially communication
processes, control mechanisms, and feedback principles.” Trans.

2Norbert Wiener (1894–1964), American theoretical and applied mathematician.
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The chief aim of information theory3 consists first in clarifying the concept
of information and its means of communication, and then discovering conditions
for optimal communication, that is, optimal transmission of information. Thus we
must first formulate a precise definition of “information” that reflects its everyday
sense, while having a precise quantitative character.

We begin with some elementary examples. If we toss a coin, then the result—
heads or tails—represents the communication of a definite amount of information
about the toss. If the roll of a die results in a three, then this also constitutes
information. The crucial question to ask here is: In which of these two situations
do we obtain more information—in tossing a coin or rolling a die?

The obvious answer is: in rolling a die. For, in a coin-toss we have an ex-
periment with just two equally likely possibilities, while in rolling a die there are
six equiprobable possible outcomes. The probability of obtaining heads is 1/2,
while that of a die coming up three is 1/6.4 The realization of a less likely event
represents greater information. Or, equivalently, the more uncertain an event is
prior to receiving information about it, the greater the weight or “quantity” of
that information when received. We have thus arrived at the conclusion that a
quantitative measure of information should somehow depend on the number P0 of
(equally likely) possibilities. In the case of a coin-toss P0 = 2, and in that of the
roll of a die P0 = 6.

It is also intuitively clear that if we roll a die twice (or roll a pair of dice), the
result represents twice as much information as the result of rolling it only once.
We conclude that information obtained from a sequence of independent trials is
additive. If on the first roll the three-spot came up, and on the second the five-
spot, then in total this represents twice as much information as the result of the
first roll by itself.5 Similar conclusions apply if we roll two dice.

Thus a measure of information should be additive over a set of independent
events. On the other hand the number of ways a set of independent events can
occur is multiplicative: If we roll a die twice (or roll a pair of dice), then P0 =
6 · 6 = 36. In general, if we have two independent events which can occur in P01

and P02 ways respectively, then the number of ways both events can occur is

P0 = P01P02, (7.1)

while an—as yet hypothetical—quantitative measure I(P0) of information should
satisfy

I(P0) = I(P01P02) = I(P01) + I(P02). (7.2)

It follows that the dependence of the quantity of information yielded by an event
on the number of ways the event can occur—the dependence of I on P0—must be

3Information theory was created by the American mathematicians Claude Elwood Shannon
(1916–2001) and Warren Weaver (1894–1978). Trans.

4See the first section of Chapter 4, including the footnotes, for the definitions of the proba-
bilistic terms that follow. Trans.

5That is, as the first roll by itself yields about the two rolls. Trans.
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Table 5: The binary forms of the numbers from 0 to 32.
0 = 0

1 = 1 9 = 1001 17 = 10001 25 = 11001
2 = 10 10 = 1010 18 = 10010 26 = 11010
3 = 11 11 = 1011 19 = 10011 27 = 11011
4 = 100 12 = 1100 20 = 10100 28 = 11100
5 = 101 13 = 1101 21 = 10101 29 = 11101
6 = 110 14 = 1110 22 = 10110 30 = 11110
7 = 111 15 = 1111 23 = 10111 31 = 11111
8 = 1000 16 = 10000 24 = 11000 32 = 100000

logarithmic:
I = K log P0. (7.3)

The base of the logarithm and the constant K are not determined by (7.1) and
(7.2), so they may be chosen arbitrarily. The established convention in information
theory has K = 1 and the logarithmic base equal to 2. Hence

I = log2 P0. (7.4)

Then the basic unit of information, called a bit, is that obtained from a coin-toss,
where P0 = 2:

log2 2 = 1 bit.

Thus information is calculated in bits, that is, in binary digits. The binary system
is widely used in the technology of cybernetics, in particular in digital computers,
since breaking a computation down into a sequence of operations each involving
just two possibilities—inclusion or exclusion, say—greatly simplifies the computa-
tion.

Every number can be represented in the binary system by a sequence of 0s
and 1s. A table of the whole numbers from 0 to 32 in both decimal and binary
notations is given above.

In binary notation the multiplication table is especially simple:

0 · 0 = 0, 1 · 0 = 0 · 1 = 0, 1 · 1 = 1.

The addition table is:

0 + 0 = 0, 1 + 0 = 0 + 1 = 1, 1 + 1 = 10.

How many bits does an arbitrary three-digit number have? Since there are
900 such numbers—from 100 to 999—we have

I = log2 900 ≈ 9.82 bits.
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Another way of looking at this calculation is to observe that the first digit in such
a number (in decimal notation) can be any of the nine digits 1, . . . , 9, while the
second and third each take any of the ten values from 0 to 9, so that

I = log2 900 = log2 9 + 2 log2 10 ≈ 9.82 bits.

Note that since
log2 10 ≈ 3.32,

the decimal base is equivalent to 3.32 bits, so that binary notation uses on average
3.32 times as many digits as decimal notation.

Computing information in terms of bits amounts to encoding an answer to
a question as a sequence of “yes”s or “no”s. In his book A mathematical trilogy,
A. Rényi6 describes the “Bar-Kokhba” game,7 popular in Hungary, which pur-
portedly originated as follows. In 132 A.D. the Jewish leader Simon bar Kokhba
led a revolt of the Jews against their Roman overlords.8 A scout sent to spy on
the Roman camp was captured, and had his tongue torn out and hands cut off.
Returned to his own camp, he was thus unable to communicate either orally or in
writing. However, Simon bar Kokhba was able to extract important information
from him by asking a series of yes-no questions, which the poor scout could answer
by nodding his head appropriately.

Using this approach, we shall verify the following assertion of Hartley:9

If in a given set containing N elements, a particular element x is singled
out, about which it is known in advance only that it belongs to the set, then the
quantity of information required to find x is log2 N bits.

Thus according to Hartley, in order to determine which number between 1
and 32 your partner in the game is thinking of, you need to ask only five questions,
since log2 32 = 5. And indeed, proceeding as in the Bar-Kokhba game, the first
question should be: “Is the number greater than 16, yes or no?” This reduces the
set of possibilities by a half, to 16. You continue reducing by half in this way,
reducing the number of possibilities to 8, then 4, then 2, and finally 1.

It is important to observe that by proceeding somewhat differently we can
ask five questions all at once, that is, without needing to know the answer to any
question in advance. First write the numbers from 1 to 32 in binary notation, using
five digits for all of them; thus the list will start with 00001 and end with 11111
(see Table 5). Suppose your partner is thinking of 14, that is, 01110 in binary
notation. You can then ask the five questions all together in the form: “Is it true
that in binary notation the first digit of the number you have in mind is 1, and
the second digit, . . . , and the fifth digit?” The answer will be: “no, yes, yes, yes,
no”.

6Alfréd Rényi (1921–1970), Hungarian mathematician. Worked mainly in probability.
7Similar to “Twenty questions”. Trans.
8As a result of which an independent Jewish state was established in Israel, reconquered by

the Romans in 135 A.D. Bar Kokhba was thus the last king of Israel. Trans.
9Ralph Vinton Lyon Hartley (1888–1970), American researcher in electronics, and contributor

to the foundations of information theory.
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The formula (7.4) provides the basis for solving such “search problems”. Here
is another one. Again the approach is essentially that of Simon bar Kokhba.

Suppose that we have 27 coins of which just one is false, weighing less than the
others. What is the least number of weighings on a balance needed to find the false
one? Each weighing with an equal number of coins in the pans of the balance, yields
the quantity of information I = log2 3, since there are exactly three possibilities:
the pans balance, the left pan is lighter, or the right is lighter. On the other hand,
we know from Hartley’s statement that finding the false coin requires log2 27 bits
of information. Hence the false coin can be found in z weighings provided only
that

z log2 3 ≥ log2 27 = 3 log2 3,

that is, provided z ≥ 3. Therefore three weighings suffice. In the first weighing,
one places nine coins in each pan, in the second three, and in the third one.

Of course, in playing the Bar-Kokhba game efficiently, one needs to know
which questions to ask!

Instead of numbers, let’s consider letters. In the Roman alphabet there are
26 letters, and in the Russian 33. How much information does a single letter of
some text yield in these two cases? The natural answer is: A letter of a passage
in English yields log2 26 ≈ 4.70 bits of information, while a letter from a Russian
text yields log2 33 ≈ 5.05 bits. However, these answers make sense only under the
rather crude assumption that every letter appears with the same probability.

Informational entropy

Letters do not occur with overall equal probability; in any language written using
an alphabet, some letters will occur on average more frequently than others. This
average frequency—which is the same as the probability of occurrence of a letter—
reflects the structure of the language in question. The reader may know Conan
Doyle’s story The adventure of the dancing men, in which Sherlock Holmes uses
the known average frequency of occurrence of letters in English texts to decipher
a coded message. (Actually, this idea appeared in literature considerably earlier,
in Edgar Allan Poe’s The gold bug, written before Conan Doyle was born.)

In deriving formula (7.4) it was assumed that the individual outcomes of the
experiment or situation under consideration were equiprobable. What if they have
various probabilities?

Suppose we have a message consisting of N successive cells—a text made up
of N letters. Suppose further that each cell can contain any of M different letters.
(If the text is in English, then M = 26.) Suppose also that the message contains
N1 occurrences of the letter a, N2 of the letter b, and so on, up to N26 occurrences
of z. Clearly

N =
M∑
i=1

Ni. (7.5)
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If the text we are presented with is sufficiently long, we may assume that the
probability pi of the ith letter occurring in any cell of any text is approximately
given by

pi =
Ni

N
, i = 1, 2, . . . , M. (7.6)

Then
M∑
i=1

pi = 1, (7.7)

as should be the case. The number of N -letter sequences altogether is

P =
N !

N1!N2! · · ·NM !
. (7.8)

(We encountered this formula earlier; see (4.5) and (4.16).) By (7.4) the quantity
of information in a single such message is10

I = log2 P =
ln P

ln 2
=

1
ln 2

ln
N!

N1!N2! · · ·NM !
. (7.9)

Using the approximation of N ! and the Ni! given by (4.10) (and assuming N and
the Ni all large), we infer that

I ≈ 1
ln 2

(
N ln N −

M∑
i=1

Ni ln Ni

)

= − 1
ln 2

N
M∑
i=1

pi ln pi = −N
M∑
i=1

pi log2 pi bits. (7.10)

Hence if N = 1, that is, in the case of a single letter, we have

I1 = − 1
ln 2

M∑
i=1

pi ln pi = −
M∑
i=1

pi log2 pi. (7.11)

The quantity −∑
i pi log2 pi was called by Shannon, one of the founders of infor-

mation theory and communication theory, the entropy of any message involving
M symbols occurring with probabilities pi. We shall see below that the formula
(7.11) does indeed afford a measure of the degree of uncertainty associated with
a random such text, thus justifying the name “entropy”.

What value does the entropy take in the case of English? The frequencies,
that is, the probabilities, of occurrence of the letters (and also a space) in English
texts are given in Table 6 below.
Substitution of these values in Shannon’s formula (7.11) yields

I1 = −0.164 log2 0.164− 0.106 log2 0.106− · · · − 0.001 log2 0.001 ≈ 4.0 bits.
10Assuming all such N-letter strings equally probable. Trans.
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Table 6: Probabilities pi of occurrence of letters (and space) in English texts.

space .164 s .055 m .021 v .008
e .106 h .053 w .020 k .007
t .078 r .052 f .019 j .001
a .068 d .036 g .017 x .001
o .065 l .035 y .017 q .001
i .058 c .024 p .017 z .001
n .058 u .024 b .012

This number is appreciably smaller than I0 = log2 26 ≈ 4.7. The amount of infor-
mation communicated by the letters has decreased since we have incorporated in
the calculation previously ascertained information about the frequency of occur-
rence of the letters.

However, in a language there are always correlations between letters—definite
frequencies of occurrence not just of individual letters but also of strings of two
letters (bigrams), three letters (trigrams), four letters (quadrigrams), and so on.
A linguistic text represents a complicated “Markov chain”, since the probability
of a given letter occurring at a given place in the text depends on the preceding
letter.

It is appropriate to say something here about the theory of Markov chains,
one of the greatest achievements of Russian science. This theory, in which con-
nected, probabilistically dependent chains of events are studied, was founded by
A.A. Markov.11 The calculation of the probability that several events will all occur
is often made easy by the fact of the events in question being independent.12 For
example, if we toss a fair coin, the probability of getting heads is 1/2 regardless of
the outcome of the previous toss. However such independence is far from always
being the case.

We choose a card at random from a deck of cards. The probability of the
card being of a specified suit is 1/4. If we then return the card to the deck, the
probability that the next card chosen will be of that suit remains 1/4. However,
if we do not return our chosen card to the deck, the probability that the next
card chosen will be of the given suit will depend on the suit of the first card. For
instance if that suit was clubs, then there remain in the deck 13 cards of each of
the suits hearts, diamonds, and spades, but only 12 clubs. Hence the probability
that the second card is also clubs is now 12/51, which is less than 1/4, while for
each of the other suits the probability that the second card is of that suit is now
13/51, which is greater than 1/4.

A Markov chain consists of a sequence of events, each of whose probabilities
depends on the outcome of the preceding event, or, in the more complex case, on

11Andrĕı Andreevich Markov (1856–1922), Russian mathematician.
12So that the probability of the combined events is the product of their individual probabilities.

Trans.
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the outcomes of several of its predecessors.
Clearly, any linguistic text constitutes a complex Markov chain. A.A. Markov

himself applied his theory to a probabilistic analysis of Pushkin’s Eugene Onegin
and Aksakov’s The childhood of Bagrov’s grandson.

Today the theory of Markov chains and Markov processes is applied very
widely in theoretical physics, meteorology, statistical economics, and so on.

Plans for a typewriter of maximal efficiency would have to take into account
the frequency of occurrence of the individual letters, bigrams, and even trigrams of
the language. The keys of rarely used letters should be relegated to one or another
side of the keyboard, and the keys of letters that often occur together should be
adjacent. The implementation of these two obvious principles is enough to greatly
speed up the typing process.

Here is an experiment.13 Write the 26 letters of the English alphabet on 26
slips of paper, and place these, together with a blank slip, in a bag. Then take
out a slip, write down the letter on the slip (or leave a space if the slip is the
blank one), return the slip to the bag, give the bag a good shake, and iterate this
procedure a largish number of times. You will in all probability obtain a random
text exhibiting no correlations, such as:

QFEZRTGPI BWZSUYKVLCPFMTQA UHXPBDKRQOJWN

If you now take account of the frequency of occurrence of the letters (and space)
by placing 1000 slips of paper in the bag, with 164 blank, 106 with the letter E,
78 with the letter T, and so on, till, finally, just one slip for each of the letters J,
X, Q, and Z (see Table 6), then the result of drawing out slips, with replacement,
and recording the results, is more likely to resemble a text formally:

ENHRI VTUXSMO EHDAKC OTESL TNE

If you next in some similar fashion also include information about the frequencies
of bigrams, then your result might be something like:

NTRETI ERANAL ITRONDTIOR QUCOSAAL INESTH

Taking account also of the frequencies of occurrence of trigrams, might yield:

NDETHER MENSTHEL HASITS THER OFTNCE QUIEXT

And, finally, including in addition information about the frequencies of quadri-
grams, we might obtain:

THENSION ISTERNALLY ATORENCE OPERT IFUL

13In the original, there follows a description of an actual experiment using Russian carried out
by the mathematician P.L. Dobrushin, reproduced from the book Probability and Information by
A.M. Yaglom and I.M. Yaglom (Moscow: Nauka, 1973). The made-up English version presented
here represents an attempt to convey the sense of the original. Trans.
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The more extensive the correlations taken into account, the more the “texts”
resemble English formally—without, of course, acquiring sense. The Laputan aca-
demics in Jonathan Swift’s Gulliver’s travels confined themselves to generating
texts like the first one above, where no correlations whatever have been taken into
account, by turning a letter-wheel and copying the letters in the hope of obtaining
a text of substance.

In the case of Russian, the values of informational entropy as the more ex-
tensive correlations are successively taken into account, are as follows:

I0 I1 I2 I3

5.00 4.35 3.52 3.01 bits

For English, Shannon carried the estimates much further:

I0 I1 I2 I3 . . . I5 . . . I8

4.76 4.03 3.32 3.10 . . . 2.1 . . . 1.9 bits

Human languages characteristically have a considerable amount of built-in redun-
dancy of information, for instance in the sense that it is possible to read a sensible
text even if several letters are lacking. This redundancy can be quantified as fol-
lows: It would appear that In tends to a limit I∞ as n →∞, that is, as the scope
of the correlations grows without bound. The redundancy R of the language in
question is defined by

R = 1− I∞
I0

. (7.12)

Rather than going all the way to the limit, we can consider the redundancy relative
to correlations up to length n of the language, that is,

Rn = 1− In

I0
. (7.13)

For Russian the first few values of Rn are as follows:

R0 R1 R2 R3

0 0.13 0.30 0.40

and for English:

R0 R1 R2 R3 . . . R5 . . . R8

0 0.15 0.30 0.35 . . . 0.56 . . . 0.60

Thus in English the redundancy is certainly greater than 60%. This means that
one can understand an English text even if only 40% of the letters are legible—
provided, of course, that these are not clustered together.

To illustrate this, we describe an episode from Chapter 2 of Jules Verne’s
novel Captain Grant’s children.14 The protagonists find a bottle floating on the
sea containing texts in English, German, and French. These are somewhat smudged
by sea-water, so that only the following fragments of words are legible:

14Les enfants du Capitaine Grant, Paris, 1868.
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62 Bri gow sink stra skipp
Gr that monit of long

and ssistance lost

7 Juni Glas zwei atrosen
greus bringt ihnen

trois ats tannia gonie austral
abor contin pr cruel indi

jeté ongit 37.11◦ lat

Thanks to the redundancy in the three languages, the protagonists are able
to reconstitute all of the message except for the longitude:

“On June 7, 1862 the three-masted vessel ‘Britannia’, out of Glasgow, is sinking off

the coast of Patagonia in the southern hemisphere. Making for the shore, two sailors and

Captain Grant are about to land on the continent, where they will be taken prisoner by

cruel indians. They have thrown this document into the sea at longitude ... and latitude

37.11◦. Bring assistance, or they are lost.”

And with this their adventures begin.

A more extreme example of the redundancy of language is afforded by the
scene from L.N. Tolstŏı’s Anna Karenina of a conversation between Levin and
Kitty:15

“Wait a moment”, he said, seating himself at the table, “There is something I have

been wanting to ask you about for a long time”.

He looked straight into her eyes, which showed affection but also alarm.

“Ask away, by all means”.

“Look here”, he said, and wrote down the following initial letters:

w, y, r: t, c, b, d, t, m, j, t, o, n?

These letters stood for: “When you replied: ‘That cannot be’, did that mean just then,

or never?”

Kitty understands what Levin wanted to ask her, and their coded conver-
sation then continues. Here practically everything is redundant since Levin and
Kitty are full to overflowing with the necessary information on the subject obsess-
ing them both.

It is claimed that Tolstŏı took this episode in the novel from his own life,
that is, from his courtship of Sofia Andreevna Bers.

On the other hand, redundancy is indispensable in information, since in
transmitting a message by any means of communication, there will inevitably be

15At this juncture in Anna Karenina, Levin, a good man and efficient husbandman, has been
encouraged to approach Kitty once again, after an earlier rebuff. This pair, Kitty and Levin,
are contrasted in the novel with the central pair, the beautiful Anna and the dashing Vronskĭı,
whose extramarital affair leads to Anna’s ostracism by polite society, and her ultimate demise.
Trans.
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“noise”, that is, random disturbances of one kind or another interfering with the
transmission. (This is the basis of the children’s game involving a defective tele-
phone.) A ship in difficulty transmits the message SOS over and over to increase
the probability of its reception.

Information and entropy

It is not difficult to see that Shannon’s formula (7.11),

I1 = −
M∑
i=1

pi log2 pi,

at least has the right form as an expression of entropy. Recall from Chapter 4
that for an isolated system consisting of N molecules with Ni molecules in state
i, i = 1, 2, . . . , M , the entropy is given by the formula (4.19):

S = k ln P = k

(
N ln N −

M∑
i=1

Ni ln Ni

)
.

Writing pi = Ni/N , the probability that an arbitrary molecule is in the ith state,
we then have

S = −kN

(
ln N −

M∑
i=1

Ni

N
ln Ni

)
= −kN

M∑
i=1

pi ln pi,

whence the entropy per molecule is

S1 = −k
M∑
i=1

pi ln pi. (7.14)

This formal resemblance between the formulae for I1 and S1 is not accidental.
We have often spoken of entropy as being a measure of the degree of disorder

of a system, or as a measure of the extent to which information about the system
is unavailable.

It is impossible to obtain information about an isolated adiabatic system,
since any instrument—a thermometer, for instance—brought into contact with
the system violates its isolation. Similarly, in obtaining information about one
part of an open system one inevitably increases the entropy of some other part of
the system.

Consider the freezing of water in a vessel. Here the entropy of the water
decreases and information increases: the molecules were randomly distributed in
the liquid, but are now, in the ice, fixed at the vertices of the ice’s crystalline
lattice, so we have a much better idea as to where they are. However, in order to
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freeze the water, we needed a refrigerator, and the freezing process will cause its
temperature and entropy to rise.16 And, of course, the rise in the refrigerator’s
entropy17 must—the second law cannot be violated!—more than balance the drop
in the entropy of the water due to freezing.

Thus for every bit of information obtained there is a cost in entropy. Now
the units of information—bits—are dimensionless, whereas entropy is measured
in calories/degree K, or joules /degree K, or ergs/degree K. To adjust the units
so that formulae (7.11) and (7.14) coincide, we need to multiply the quantity
of information I1 in (7.11) by k ln 2 ≈ 10−23 joules/◦K. This gives the entropic
equivalent of a bit. We see that in thermodynamic units a bit is very cheap.

Let’s now attempt to estimate the number of bits contained in the whole
of human culture. We shall assume that during the whole of its existence, the
human race has produced 108 books (a greatly exaggerated figure), and that each
book consists of 25 pages of authorial output. A standard such page would contain
about 40,000 symbols. We shall ignore redundancy and attribute to each symbol
5 bits. Hence, altogether we obtain

108 · 25 · 4 · 104 · 5 bits = 5 · 1014 bits,

which is equivalent to a reduction in entropy of 5 · 10−9 joules/◦K! No, human
culture should not be measured in thermodynamic units. But does this mean that
the equivalence of entropy and information makes no sense?

To be perturbed about the relative difference in magnitudes of two equivalent
physical quantities is inappropriate. For example, Einstein’s equation giving the
energy equivalent of mass,

m =
E

c2
,

where c is the speed of light, is fundamental in explaining the production of atomic
energy. However, the equivalence factor here, namely c−2 ≈ 10−17 sec2/m2 is also
extremely small: a little mass is equivalent to a lot of energy.

The small value of a bit in thermodynamic units may be interpreted as sig-
nifying that a quantity of information is a small difference between two large
quantities, namely the amount of entropy before and the amount after the infor-
mation has been obtained. From our discussion of information so far, it is clear
that this difference must be non-negative.

An increase in information about a system is equivalent to a decrease in its
entropy (once the units of measurement have been adjusted to coincide). Further-
more, information always refers to the microstates of a statistical system; entropy
measures the unavailability of such information. Any change in the indeterminacy
of the microstates of a physical system in a given macrostate, characterized, say,
by the volume V and the temperature T , results in a decrease of entropy, or,
equivalently, to an increase of micro-information.

16The compressor at the back of the refrigerator will heat up. Trans.
17Including that of the air immediately surrounding the refrigerator. Trans.
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We shall now prove this assertion. If the system goes over from a distribution
of probabilities p1, p2, . . . , pM for its microstates, to a distribution q1, q2, . . . , qM ,
how does the amount of information change?

From formula (7.4) it follows that the change in information about an event
(made up of equiprobable outcomes) resulting from a change in the probability of
the event from p to q is

ΔI = log2 q − log2 p =
ln(q/p)

ln 2
.

The expected value of the overall change in information due to the change pi →
qi, i = 1, 2, . . . , M , is the sum of the partial changes, each multiplied by the
corresponding probability qi. Hence

ΔI =
∑

i

qiΔIi =
1

ln 2

∑
i

qi ln
qi

pi
.

This quantity is positive unless qi = pi for all i. This follows from the fact that
for all x > 0 except x = 1,

ln x > 1− 1
x

.

For, provided qi �= pi for at least one i, this implies that

∑
i

qi ln
qi

pi
>

∑
i

qi

(
1− qi

pi

)
=

∑
i

qi −
∑

i

pi = 0.

Thus a nontrivial change in the probabilities pi always results in an increase in
information.

The complementarity of information and entropy is illustrated by the evapo-
ration of a liquid: information about the positions of the molecules is lost, namely
their location in a circumscribed portion of space—the containing vessel—,while
entropy increases by an equivalent amount. The information that the molecules of
liquid were located in the vessel is transformed into “negative” information about
the correlations between their positions and velocities in the vapor, affected by
their collisions with each other. But this lack of information is just entropy.

Shannon’s formula (7.11) for informational entropy, and the equivalent for-
mula for thermodynamic entropy (7.14), share certain peculiar features. Entropy
is defined in terms of a collection of random quantities, namely the values E(i)

of the energy of the microsystems comprising the system in question. We wish to
consider the extreme cases of such a system.

A state of the system will be one of zero indeterminacy, that is, will be fully
determined, if pj = 1 for some j, and pi = 0 for all i �= j. According to Nernst’s
theorem, this is the situation at absolute zero: S(0◦K)=0 (see the final section of
Chapter 4).

The state of the system will have maximal indeterminacy, that is will satisfy
S = Smax, I = 0, if all pi are equal, that is, if the states are equally likely. This can
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be shown as follows. Since the probabilities pi sum to 1, it follows that pi = 1/M
for all i. We showed above that ΔI > 0 for any change in the probabilities pi to
new probabilities qi. In the case where pi = 1/M for i = 1, 2, . . . , M , we have (see
above)

ΔI =
∑

i

qiΔIi =
1

ln 2

∑
i

qi ln
qi

M−1
=

1
ln 2

(
ln M +

∑
i

qi ln qi

)
.

Since ΔI > 0 and the qi are arbitrary, it follows that

−
M∑
i=1

1
M

ln
1
M

= ln M > −
∑

i

pi ln pi,

for any probability distribution pi other than the extreme one with all pi equal,
that is, entropy is largest in this case.

In contrast to microscopic information, the “price paid” in entropy for infor-
mation about macrostates is high, that is, in an amount far from equivalent to the
gain in information: the growth in entropy is many times greater than the quantity
of information obtained. For example, when we toss a coin, we obtain one bit of
macroscopic information, but the production of entropy resulting from the work
of the muscles used in tossing the coin and from its impact with the floor, is many
times larger than 10−16 ergs/◦K (the thermodynamic equivalent of a bit), even
if the coin is a small one. The larger the coin, the greater the discrepancy. This
indicates why it makes no sense to estimate the information contained in books
in calories per degree.

Maxwell’s demon

The struggle to subvert the second law of thermodynamics, to prevent the growth
in entropy, began a long time ago. To this end physicists recruited demons. We
met with Laplace’s demon in Chapter 5. In 1871, Maxwell introduced his demon
to physics, in the form of “a being whose faculties are so sharpened that he can
follow every molecule in its course, such a being, whose attributes are as essentially
finite as our own, would be able to do what is impossible to us. For we have seen
that molecules in a vessel full of air at uniform temperature are moving with
velocities by no means uniform, though the mean velocity of any number of them,
arbitrarily selected, is almost uniform. Now let us suppose that such a vessel is
divided into two portions, A and B, by a division in which there is a small hole,
and that a being who can see the individual molecules, opens and closes this hole,
so as to allow only the swifter molecules to pass from A to B, and only the slower
molecules to pass from B to A. He will thus, without expenditure of work, raise
the temperature of B and lower that of A, in contradiction to the second law of
thermodynamics”.18

18James Clerk Maxwell, Theory of heat, London, 1872.
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An analysis of this activity of Maxwell’s demon was published by L. Bril-
louin19 in 1951, expanding on work of Leó Szilárd20 done in 1929, showing that
the resolution to the paradox lies in information theory.

Brillouin’s analysis21 brings out the close connection between entropy and
information especially clearly. The first question to ask is: What is required for
the demon to be able to see the individual molecules?

If the system is isolated and in equilibrium at the constant temperature T0,
then the demon will have to be at that temperature also. Under these conditions
any radiation will be black-body radiation, which, although he can observe it, will
not enable him to see an individual molecule or determine its velocity. For that, the
molecule would first have to be illuminated, so we would need to supply the demon
with a battery-powered flashlight, whose filament would then need to be heated
to a temperature T1 exceeding T0; we may assume, in fact, that T1 � T0. This
condition is necessary to obtain visible light that can be distinguished from the
background of black-body radiation in the vessel at temperature T0, and ensure
the condition that one quantum hν of it22 is much greater than kT0, which is of
the order of the thermal energy of a molecule. Neglecting the battery, we have
that if E is the energy radiated per unit time by the filament of the bulb, then it
loses entropy at the rate

Sfil = − E

T1
. (7.15)

Before the demon intervenes, the energy E is absorbed by the gas at temperature
T0, as a result of which the entropy of the gas increases by the amount

S =
E

T0
+ Sfil =

E

T0
− E

T1
> 0. (7.16)

The demon will be able to see the molecule provided that at least one quantum
hν of light is scattered by the molecule to the demon’s eye. The absorption of this
quantum of energy raises the demon’s entropy by the amount

ΔSdemon =
hν

T0
. (7.17)

The demon’s purpose is to use the information he obtains to decrease the entropy
of the system. Now the initial entropy of the system was

S0 = k ln P0. (7.18)
19Léon Brillouin (1889–1969), French/American physicist.
20Leó Szilárd (1898–1964), Hungarian/American physicist. It was Szilárd who, in 1939, pre-

vailed on Einstein to cosign the famous letter to President Franklin D. Roosevelt pointing out
the feasibility of nuclear weapons and encouraging the initiation of a program to develop them
ahead of Hitler’s Germany—an initiative leading eventually to the Manhattan project.

21L. Brillouin, “Maxwell’s demon cannot operate: information and entropy.” J. Appl. Phys. 22
(1951), pp. 334–337. Later work on this theme, for example by Charles Bennett, may be found
in the collection Maxwell’s demon 2: Classical and quantum information, computing, H.S. Leff
and A.F. Rex (Eds.), 2002. Trans.

22According to quantum mechanics, light of frequency ν comes in packets of energy of minimum
size hν, where h is Planck’s constant. Trans.
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After receipt of the information, the indeterminacy of the system decreases, so
that the statistical weight of the system is reduced from P0 to P1 = P0 − p, say.
This entails a change in the system’s entropy by the amount

ΔSinfo = S − S0 = −k(ln(P0 − p)− ln P0).

Since for p 
 P0 (which holds in all practical cases),

ln(P0 − p) = lnP0 + ln
(

1− p

P0

)
≈ ln P0 − p

P0
,

we have, approximately,

ΔSinfo = −kp

P0
. (7.19)

Hence the total change in entropy is

ΔS = ΔSdemon + ΔSinfo ≈ k

(
hν

kT0
− p

P0

)
> 0, (7.20)

since hν > kT0 and p 
 P0. We conclude that, after all, the entropy of the system
increases just as the second law says it should. The demon was not able to violate
that law. Brillouin says: “All the demon can do is recuperate a small part of the
entropy and use the information to decrease the degradation of energy”.

To summarize: At the first stage of the demonic process, entropy increased
by the amount ΔSdemon, at the second some of this entropy was transformed into
information, and, finally, this was then used to partially decrease the entropy.

The efficiency of the work of the demon is given by the ratio of the decrease
in entropy resulting from the information he received, to the total increase in
entropy:

η =
|ΔSinfo|

ΔS
=

p/P0

hν/kT0 − p/P0

 1. (7.21)

Brillouin, and also the Soviet physicist R. P. Poplavskĭı, were able to show
that η depends on the relative decrease in temperature achieved by the demon,
that is, on

ΔT

T0
=

TB − TA

T0
= θ,

where TB−TA = ΔT is the temperature difference achieved by the demon between
the two halves of the vessel. Thus for instance if θ 
 1, then the coefficient of
useful action in the corresponding Carnot cycle (see (1.25)) would be

ηC =
TB − TA

TB
=

(T0 + ΔT/2)− (T0 −ΔT/2)
T0 + ΔT/2

=
ΔT

T0 + ΔT/2
=

θ

1 + θ/2
≈ θ. (7.22)
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Hence for θ 
 1 both coefficients of useful action η and ηK are essentially equal.
The coefficient η measures the degree of irreversibility of a process in which order
is created, while the Carnot coefficient ηC measures the degree to which heat can
be reversibly transformed into work. However, as Poplavskĭı stresses, to obtain
work two stages are necessary: an informational one, that is, a control stage, and
a thermodynamic one.

Maxwell’s demon, like Laplace’s, has been the subject of poetry. In Andrĕı
Bely̆ı’s greatest poetical work “First encounter”, one finds the following verses:

With austere physics my mind
Was overfilled by: Professor Braine.

With neck bent back, and ruffled mane,
He sang of cosmic gloom,

And of how Maxwell annihilated entropy

With his paradoxes.

Poetry is not so far from science as those people who so rigorously separate
physicists from lyrical poets like to think (see the last section of Chapter 8). Some
lines later in the poem, Andrĕı Bely̆ı utters a remarkable poetic surmise:

In the Curies’ experiments the world burst forth
With the exploding atom bomb

Into electronic streamings

Like a disembodied hecatomb.

This poem was published in 1921.

Obtaining and creating information

We have thus convinced ourselves that one must pay for information with an in-
crease in entropy. In macroscopic processes this cost can be considerable. The
entropic equivalent k ln 2 that we obtained (see above) for a single bit of informa-
tion is just the lower limit of this cost.

We shall now calculate the cost of information in units of energy.
Suppose we have a quantity of an ideal gas at pressure p and temperature

T , consisting of N molecules, and that as the result of fluctuations the volume
has decreased from V to V −ΔV . The work done in achieving this is W = pΔV
(see Chapter 1). The information obtained thereby is calculated as follows: Each
molecule was formerly contained in the region of volume V with probability 1,
that is, with certainty. The probability that it was formerly in the now contracted
region of volume V −ΔV is clearly 1−ΔV/V . The probability that all N molecules
were in that subregion of the original region is therefore (1−ΔV/V )N . As a result
of the compression of the gas, the N molecules occupy the smaller region, so that
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we now have greater information about them, namely in the amount

ΔI =
1

ln 2
ln

1
(1−ΔV/V )N

= − 1
ln 2

ln
(

1− ΔV

V

)N

≈ 1
ln 2

N
ΔV

V
. (7.23)

Hence
W

ΔI
≈ pΔV

1
ln 2N ΔV

V

=
pV

N
ln 2 = kT ln 2. (7.24)

This represents the work done per bit of information obtained, that is, the quantity
kT ln 2 is the minimal cost in energy of one bit of information. At T = 300◦K (room
temperature), we have kT ln 2 = 2 · 10−21 joules.

Every physical measurement yields information, and therefore entails a loss
in energy as well as a gain in entropy. Measuring procedures—that is, processes
for gathering information about the macrostate of a system and creating order
in the system—are irreversible in principle. The study of the thermodynamics of
such informational processes has become of crucial importance in physics in view
of the fact that the costs in energy and entropy rise with the precision of physical
measurements.

However, physics is not limited to the taking of measurements. The results of
measurement are transmitted and used, that is, the information obtained through
measurement is processed (in part on computers). And this too must be paid for.

Thus we see that the concept “information” has a well-defined thermody-
namic sense. This being so, one can safely ignore the claim sometimes found in
print to the effect that the concept of information is vague and non-physical.

In previous sections we spoke in passing of obtaining or receiving information,
without mentioning the significance of such processes. We now fill the breach.
Note first that the concept of information is characterized by the following two
postulates:

1. Information signifies a choice of certain events from a large collection of events
(equiprobable or otherwise).

2. Such choices as in 1 are considered information only if they can be received
and remembered.

In the development of information theory in the works of Wiener, Shannon,
and others, where the aim was that of solving problems in communications, more
attention was paid to processes of transmission of information than to those of
reception. In the standard theory the receptor has very limited capabilities: all it
can do is distinguish one letter from another, one coded symbol from another.

The situation is quite different in informational physics and informational bi-
ology (to be discussed in the next chapter). There it becomes especially important
to investigate how information is received.

We can begin our discussion of the reception of information by considering
our everyday experience of it. What sort of process is it?
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First, it is clear that reception of information is an irreversible process (paid
for by an increase in entropy!). Information may be forgotten or wasted by the
receptor in some other way, but cannot be recouped.

Second, reception is a non-equilibrial process. If a source of information and
its receptor are in equilibrium, an exchange of information is taking place between
them—both direct and in reverse—, and these flows must balance one another.

Third, since reception of information indicates the creation of order in the
receptor system (I read a poem and remember it!), this is not just a non-equilibrial
process, but one far from equilibrium. A receptor system is a dissipative system.

Fourth, for the reception of information it is necessary that the receptor pos-
sess a certain level of capability, of capacity to take in the information. However,
although necessary, the presence of the requisite capacity is not sufficient for re-
ception to occur. Before me there is an anthology of poetry in a language I am not
familiar with. In this case, I do not have the necessary level of receptor capacity
(that is, the preliminary store of information that might, for instance, result from
the study of the language in question) and so am not in a state to receive the
information contained in the anthology. On the other hand, if it is an anthology
of Russian poems, then, since Russian is my native tongue, I do possess the requi-
site level of receptor capacity (including the linguistic preparation required for an
aesthetic appreciation). However, I do not wish to read poetry just now, having
other things in mind.

Hence the fifth requirement for the reception of information, namely that
there be an element of purpose, an aim. The presence of purpose indicates insta-
bility, since the realization of an aim represents a transition from a less stable state
to a more stable one.

Thus reception of information is an irreversible process of transition of a
dissipative system from a less stable state to a more stable one. As always in such
situations (see Chapter 6) such a process must involve the export of entropy from
the receptor system.

Of course, information is considered as having been received only if it is
remembered for a longer or shorter period. Reception and remembering of infor-
mation go together indissolubly.

Information can be accumulated and stored. Books, or, to take a very different
example, the genomes of all species on earth, represent stores of information.

We receive and remember only macroscopic information. This kind of infor-
mation demands payment not in equivalent amounts of entropy, but in significantly
larger amounts. That is why the estimate we made earlier of the equivalent in en-
tropic units of the information contained in all the books ever written is really
meaningless.

How is information generated? An answer to this question has been given by
the theoretician A. Koestler,23 namely, that information is created through the

23This may be Author Koestler (1905–1983), Jewish-Hungarian/British polymath writer. An-
other possibility is: G. Kastler, author of The origin of biological organization, 1967. Trans.
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committing to memory of a random choice. He gives the following illustration:
Suppose I place my suitcase in a cloakroom locker at the railway station, and
encode the combination lock with a four-digit combination, knowledge of which
will enable me to open the locker. By committing to memory (or writing down)
that randomly chosen sequence of four digits I have created information, namely
in the amount log2 9000 = 13.13 bits.

The creation of new information always proceeds in jumps rather than gradu-
ally. Although essentially non-equilibrial, it bears similarities to phase transition.
However, ordinary equilibrial phase transitions such as the crystallization of a
liquid, do not involve the generation of any new information; there is no choice
involved, everything proceeds in prescribed fashion according to the appropriate
laws of physics. On the other hand, the creation of an actual crystal with pecu-
liar flaws in its lattice—fissures and impurities, for instance—may be viewed as
representing a random choice, and thus as giving rise to new information.

We have introduced the reader to two demons—Laplace’s and Maxwell’s—
but to only one “billiard” (see the second-last section of Chapter 5). Here is an-
other, the so-called “Chinese billiard”.24 There is a board, or field of play, on which
there are distributed fixed studs or pins and shallow pits or wells. Next to each
well there is a number indicating the score for that well. Metal balls are fired along
the board, one at a time. After a succession of collisions with the pins—so that
its trajectory is usually quite chaotic—a ball ultimately comes to rest in one of
the wells. The motion of a ball till it comes to a halt in a well provides a model of
entropy. The coming to rest in a well represents the achieving of a relatively stable
state as the result of a random choice from among a multitude of possibilities,
and therefore models the generation of information. The cost in entropy for this
information is huge. For, if there are 32, say, wells on the board, then the amount
of information generated (and received) is 5 bits, while the amount of heat per
unit temperature generated by the initial propulsion and subsequent collisions of
the ball up to the time it comes to rest exceeds 5k ln 2 = 5 · 10−23 joules/◦K many
times over.

It should be emphasized that at the present time the creation of a genuine
physical theory of reception, remembering (or recording), and generation of infor-
mation, that is, of these specific irreversible processes in appropriate dissipative
systems, is encountering significant difficulties.

The value of information

Every communication of information has a definite content and meaning, and is
of some value or other to the recipient. Standard information theory—which is
what we have been concerned with up till now—completely neglects the question
of the content of information. However, this is actually a virtue rather than a
defect of that theory; clearly, if the main concern is the transmissive capability of

24The basic form of “pinball”. Trans.
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a communications channel—for example, an electric telegraph system—then it is
not at all appropriate to take into consideration the content of the transmitted
telegrams.

On the other hand, there are many scientific problems having to do directly
with the value of certain information. These are mostly problems arising in biology
and various aspects of the humanities, and we will be discussing them to some
extent in the next chapter.

The question of the value of information has been investigated by a number of
Soviet scholars, including M.M. Bongard, R.L. Stratonovich, and A.A. Kharkevich.
Chapter VII of Mikhail Mŏıseevich Bongard’s very interesting book The recogni-
tion problem25 (Moscow: Nauka, 1967) is entitled “Useful information”. Bongard
links the degree of usefulness of a message, that is, the value of the information
it contains, with the increase in the probability of achieving some objective as a
result of receiving the message. Thus the value of the information contained in the
message is given by the formula

V = log2

(
p′

p

)
, (7.25)

where p and p′ are respectively the probabilities of achieving the relevant aim
before and after receipt of the information. The notions of value introduced by
Stratonovich and Kharkevich in their works are similar.

It is clear that the value of information cannot be defined independently of
its reception, since we can judge the value of a message only from the consequences
of its apprehension by the receptor. Thus, in contrast with the definitions of quan-
tity of information expressed by Hartley’s formula (7.4) or Shannon’s (7.11), it is
impossible to give a universal definition of the value of information. The value is
only revealed upon reception, and is intimately connected with the level of that
reception. Here is a simple example: Consider Volume 2 of V.I. Smirnov’s A course
in higher mathematics. This book contains a wealth of information. But what is
its value?

The natural response is: For whom? For a preschooler the answer is zero,
since he or she lacks the necessary preparation, hence does not possess an ade-
quate level of reception, and is therefore not in a position or state to apprehend
the information contained in the book. For a competent mathematics professor the
value is again zero since he knows the contents of the book very well. The informa-
tion in question is of greatest value for students taking the course for which this
textbook was written—since this textbook is indeed an excellent one. The graph
of the value of the information against the level of preparation—which might be
called the “thesaurus” from the Latin for treasure or store—here passes through
its maximum (Figure 7.1).

Clearly, the specific value given by formula (7.25) represents a characteris-
tic chiefly of the reception of the information. The increase in the probability of

25An English version was published in 1968. Trans.
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Figure 7.1: Graph showing the dependence of the value of the information on the
“thesaurus”: Pr is for preschooler, S for student, and P for professor.

achievement of the relevant aim is determined by the receptor whose aim it is.
Of course, the concept of aim or purpose, though highly subjective when applied
to a human receptor, is entirely objective when applied to phenomena of physics,
chemistry, and biology. As mentioned earlier, the presence of an “aim” in con-
nection with such phenomena signifies merely a definite instability. The “aim” of
genes for structure is the synthesis of albumins (see the third section of Chapter
8). In this sense of the word, the concept of aim or purpose does not go beyond
the bounds of physics or chemistry.

According to formula (7.25), redundant or repeated information has zero
value since it does not result in any change in the probability of achieving the
aim. Note also that the value of the information received can be negative if it is
actually disinformation, that is, false information making it harder to realize the
aim.

Practical application of formula (7.25) presents difficulties. Let us try to
simplify the problem a little. Starting from the fact that redundant information has
zero value (for example, repetition of the same facts conveys no new information),
we shall redefine the value of information as the degree of irredundancy, that is,
the degree of irreplaceability of the communication as a whole or else of a single
element of it, for example, a symbol of code.

Suppose the message contains N0 such symbols or letters, and the total
amount of information is N0I0. At the next level of reception, where the frequen-
cies of occurrence of letters is taken into consideration (see the second section of
this chapter), the amount of information conveyed reduces to N0I1 where I1 < I0.
(As we saw earlier, for Russian, I0 = 5.05, I1 = 4.35 bits.) We now reduce the
number of letters to N1 in proportion to the reduction in information; that is, we
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define N1 by (see the second section above)

N1

N0
=

I1

I0
= 1−R1.

Thus, we have, in effect, discarded the redundant letters. As a result, the remaining
letters have acquired greater value, namely I0/I1, by virtue of being less redundant.
Successively taking into account frequencies of occurrence of digrams, trigrams,
and so on, we obtain the increasing sequence of values

1,
I0

I1
,

I0

I2
,

I0

I3
, . . . ,

I0

In
,

which for Russian are 1, 1.15, 1.42, 1.66, . . . . And what is the goal here? It is
that of obtaining precise, unambiguous information freed of all redundancy.26

This approach to defining the value of information turns out to be useful in
connection with various informational processes—primarily biological—to be dis-
cussed in the next chapter. There we shall also consider informational aspects of
artistic creation and its reception. These extended notions of information theory,
which formerly allowed of rigorous development only as a theory of communi-
cations, in which reception was ignored, turn out to be of universal application.
Merely applying the terminology reveals a great deal.

There are situations where the value of a piece of information, that is, the
weight of the consequences of obtaining the information, is incomparably greater
than the actual quantity of the information. For example, a win at the roulette
wheel, or the result of rolling a die, may be of tremendous significance for the gam-
bler. And the receipt of a single bit of information by drivers suffices to change the
flow of a stream of traffic—a traffic light’s changing from green to red. Situations
such as these are “trigger” situations, depending on the processing of a large store
of preliminary information. The conversation between Kitty and Levin quoted
above (see the second section), mysterious to outside observers, is of a similar
character. Trigger situations are constantly being realized in biological systems.

26And so of maximal value. Trans.





Chapter 8

Entropy, information, life

To bring joy to the gods and to men,
Apollo, guide to the muses,

Led nine radiant maids from crest to crest.
Euterpe sang a sweet song to the enamoured,

And for these also Erato composed verses, plucking a zither.
Calliope, Urania, and Clio brought men knowledge.

With learning came wise Polyhymnia’s poems,
And Terpsichore revealed the deep essence of dance.

Euripides was betrothed to stern Melpomene,
While Aristophanes studied at Thalia’s feet alone.

But the muses’ guide did not know that all nine
Were mere incarnations of the main muse:

The tenth, named Entropia.

The thermodynamics of living organisms

It has become a commonplace to hear organic life spoken of as being “anti-
entropic”. What those who use this expression have in mind is the observed growth
of order in the course of both individual and overall evolutionary development. In
this respect a living organism is entirely unlike a system that, in accordance with
the second law of thermodynamics, tends to a state of maximal entropy, of maxi-
mal disorder. This striking disparity has served as the inspiration for a number of
publications rejecting the applicability of the second law to living systems. How-
ever, such publications are unscientific.

We have already seen what is at issue here. A living organism is an open
system far from equilibrium. In analysing the balance of entropy of an astronaut
in a space ship (see Chapter 6), we convinced ourselves that all is as it should be
with regard to thermodynamics. Both the development and the stationary state



166 Chapter 8. Entropy, information, life

of an organism maintain themselves by the export of entropy into the surrounding
medium. When a system is far from equilibrium, there may arise a kind of order
peculiar to dissipative systems, as the result of an increase in fluctuations up to
the macroscopic level (see the fourth section of Chapter 6).

The French scientist J. Monod,1 one of the founders of molecular biology,
wrote that a living organism differs from a dead one of the same mass by possess-
ing greater order. He was mistaken. The order of an organism in the sense of a
regular arrangement of atoms and molecules, is significantly less than such order
in a crystal—if only because an organism contains a large proportion of liquid.
The types of order manifested in an organism and a crystal are fundamentally
dissimilar: A crystal is ordered equilibrially, while an organism is ordered as a
dissipative system far from equilibrium. In the book by Schrödinger cited in the
third section of Chapter 6, a living organism is called an “aperiodic crystal”. Al-
though this phrase is pregnant with meaning, we shall postpone elaborating on it
till later. Instead, we turn to something else of significance from that book.

Schrödinger asks the reader: “Why are atoms small?”—and immediately
points out that the question is incorrectly posed. In physics, talk of the large
and the small is out of place, since there only relative size is important: in physics
one compares. Atoms are small—compared with what? Compared with our usual
measures of length, a foot or a meter. And these measures were determined orig-
inally by the dimensions of the human body. Thus atoms are much smaller than
living organisms. Hence the question should be reformulated as follows: “Why is
an organism made up of a large number of atoms?” And this question is legiti-
mate. For example, the tiny bacterium Mycoplasma laidlawii consists of about 109

atoms.
The crucial point here is that exact physical laws are required for the func-

tioning of an organism, while, on the other hand, all the physical and chemical
laws actually used to explain the existence and functioning of organisms are based
on statistics and therefore only approximate. (We are not referring here to the
quantum laws, which determine the structure of the molecules of which organ-
isms are composed.) The precision of statistical laws depends on the involvement
of a large number of atoms. Thermodynamics, in particular the second law, do
not apply to small collections of particles; any relative fluctuations would then be
too large. In a statistical system with only a few basic elements, neither a sta-
ble equilibrial order nor a stable dissipative order could arise.2 An organism is a
dissipative system capable of macroscopic amplification of fluctuations; here the
adjective “macroscopic” is crucial.

The first scientist to argue that the state of a living organism is fundamentally
one of non-equilibrium, was the Soviet biologist E.S. Bauer. In 1935 he wrote:
“...living systems are never in equilibrium and at the expense of their free energy

1Jacques Monod (1910–1976), French biologist. Nobel laureate in physiology or medicine in
1965.

2The emphasis here is on the word “statistical”. A purely mechanical system with only a few
basic elements can certainly attain equilibrium. Trans.
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they work incessantly to thwart the equilibrium demanded by the laws of physics
and chemistry under the prevailing external conditions.”

To repeat: a living organism represents an open macroscopic system far from
equilibrium, that is, a dissipative system. Although it is essential to be aware of
this fact, it does not suffice by itself to explain the chief peculiarities of life in
terms of thermodynamics and statistical physics.

A living organism is an extremely complicated chemical machine—chemical,
since it functions under conditions of constant temperature and pressure. Hence
the sources of the energy indispensable for carrying out the various kinds of work
required by the organism for its functioning, are not thermal but chemical. This
energy is stored primarily in the compound adenozin triphosphoric acid (ATP).
When one of the three phosphate bonds present in this compound is broken, a
quantity of free energy of the order of 40 kilojoules/mole is liberated. This energy
is used to activate chemical processes—in particular those involved in the synthesis
of albumins3—, for the transportation of various substances into cells and out of
them, and for the harnessing of nerve impulses, which are electrical in nature, to
do mechanical work. Life could not exist without motion. Motion inside cells, such
as the movement of chromosomes when cells divide, movement of organs and the
organism as a whole, muscular contraction: these all require the expenditure of
the chemical energy stored in ATP. The storing itself is achieved via the breathing
processes in animals and plants and photosynthesis in plants.

Living organisms differ from the machines—in particular, robots—that men
have so far managed to build, not only in the nature of their energizing processes,
but also in the nature of their communication processes. Direct communication
and feedback loops used in the control of artificial machines employ electrical, mag-
netic, and mechanical means of transmission of signals. In a living organism, on
the other hand, the transmission, coding, and reception of informational signals is
in the last analysis always chemical: molecules and ions serve as the signals them-
selves, and molecular systems as sources, transformational devices, and receptors
of the signals. For example, an albumin ferment catalyzing a certain biochemical
reaction acts as a transformer of a signal in that it catalyzes the conversion of
certain signal molecules into others.

As mentioned earlier, any kind of work can be carried out by a thermo-
dynamic system provided it incorporates differences sufficing to determine the
desired acting force. Thus in Carnot’s cycle, as embodied by a heat engine, the
determining factor is the temperature difference between heater and cooler. In a
living organism, everything is determined by differences in concentration of chem-
ical substances, by differences in chemical potentials. An organism is alive thanks
to delicate and precise chemical balances.

Since an organism is an open system, there are many interdependent pro-
cesses going on within it. The dissipation function (see the second section of Chap-
ter 6) is the sum of the products of the “generalized forces” by the “generalized

3Certain water-soluble proteins responsible for the functioning of cells. Trans.
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flows”:
σ =

∑
i

XiJi.

This explains why reactions occur in organisms that are not possible in vitro, that
is, in a flask. Here is an example. An albumin is synthesized from amino acids,
molecules of which have the structure

H2N C

H

R

COOH,

where R is any of several possible radicals. All naturally occurring albumins are
constructed from the twenty amino acids differing in the radical R. An albumin
chain is a kind of text written using an alphabet of twenty letters. The amino acids
are combined into a chain by means of peptide bonds —CO—NH—. The bonding
of each pair of amino acids:

H2N C

H

R1

COOH H2N C

H

R2

COOH

H2N H2OC

H

R1

CO HN C

H

R2

COOH

is accompanied by the secretion of a single molecule of water. The whole process
takes place in a watery medium, namely in the cell’s cytoplasm, where water
is abundant. In such a medium the reaction could not proceed of its own accord
since the peptide bonds would disengage sooner than connect pairs of amino acids.
However, the process is accompanied by the dissociation of ATP, which furnishes
the free energy essential to the synthesis of the albumin.

Albumins can, in fact, be synthesized in vitro, but by completely different
means.

Combinations of chemical reactions with processes involving transportation
of substances—with diffusion processes—play an especially important role in life
processes. The energy liberated from ATP is used to produce differences in con-
centrations of ions between the interior and exterior of the cell. In a red blood
cell,4 for example, the concentration of potassium ions is much greater than in the
surrounding plasma, while for sodium ions it is the other way around. This active
transportation of substances through the cell membrane—the export of sodium
and the import of potassium—takes place as a result of hydrolytic splitting of
ATP.

In a heat engine there is a clear separation between the mechanical and
statistical parts, between the mechanical and statistical degrees of freedom.5 The

4Or erythrocyte, meaning red sphere.
5Roughly speaking, the “degrees of freedom” of a system refer to the (number of) parameters

needed to determine it. Trans.
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mechanical part consists of a metallic cylinder and piston, and the statistical part
consists of the gas expanding and contracting, and doing the work. The entropy of
the mechanical part of the engine is essentially unchanging, but that of the working
material—steam, say—does change, since that part constitutes a statistical system
subject to the laws of probability.

In a living organism the situation is far more complicated. Here the “mechan-
ical” and “statistical” degrees of freedom (the quotation marks are used with good
reason) are intimately combined; they cannot be separated from one another even
by close scientific scrutiny. Take, for example, a muscle. Here the active substances
(or working materials), namely the contracting albumins actin and myosin, also
comprise the whole structure of the system. Thus the situation is very different
from that of a heat engine, where the working material—steam or some other
gas—is located within a mechanical structure.

Today we largely understand the physical basis of life, the physical funda-
mentals of the functioning of cells and organisms, although research on several of
the main questions of theoretical biology and biophysics is still at the initial stage.
At least we understand that life is not “anti-entropic”, a word that is bereft of
meaning. On the contrary, life exists because there is entropy, the export of which
supports biological processes at all levels—from cells to the biosphere as a whole.

Thermodynamics has always been associated with the life sciences. We have
seen (in Chapter 2) how Mayer and Helmholtz arrived at the first law from
observations of biological phenomena. The second stage in the development of
thermodynamics—the construction of a linear thermodynamics of open systems—
saw associated processes in a system explained, and the achievement of an under-
standing of stationary, though nonequilibrial, states of an open system. Finally, at
the third stage—that of synergetics, the physics of dissipative systems—physics
united with biology to reveal the meaning of biological order and biological devel-
opment.

Today we can say with certainty that none of the biological phenomena that
have been investigated so far contradicts the established laws of physics. Of course,
it is sometimes necessary to introduce new concepts, but these do not affect the un-
derlying physical theory. This situation differs from that of physics itself: quantum
theory and the theory of relativity arose because the earlier physics encountered
limits to its applicability. No such limits to the applicability of the fundamental
laws of physics have turned up in biology.

Modern physics—in particular, all those parts of physics relating to entropy—
work splendidly in biology, and there is no need to introduce such concepts as
“biofields” or “bioplasmas”. There are no such things in nature.

Biological evolution, entropy, and information

The Earth’s biosphere is a system with a long past, first having undergone change
during a long prebiological phase culminating in the appearance of life, and then
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during a long phase of biological evolution. This evolution has so far reached the
point we find ourselves at, surrounded by a great variety of life forms. Life appears
to be localized on Earth, an exceedingly minute portion of the universe. So far
no evidence has been found of life anywhere else. Stories of creatures from other
planets are unrelated to science. I. S. Shklovskĭı advanced various arguments for
the impossibility of our meeting with extraterrestrial life; however, none of them
is rigorous or can even be made so.6

The period of time during which biological evolution has been going on is of
the same general order as that for which the universe has existed, which is about
1.4 · 1010 years. The Earth itself is estimated to be around 4.5 · 109 years old.
Life is reckoned to have first appeared about 3.9 · 109 years ago; this estimate is
based on the oldest fossilized imprints of primitive bacteria and algae—so-called
“microbions”—so far discovered.

What does the evolution of the universe, solar system, and Earth, have in
common with biological evolution? In all cases the relevant evolution involves the
generation of new information, be it in the form of galaxies and stars, planets,
the formation of mountains through foldings of the Earth’s crust, or of biological
species. As we have seen, new information is created as the result of an arbitrary
choice, arising in turn from the instability of the original state of the system in
question together with the availability of various more stable states, from amongst
which the choice is made. The generation of new information—be it cosmological,
geological, or biological—has the character of a phase transition: it is new order
that arises not gradually but all at once—at a jump.

It has in fact been shown that the equations governing population genetics,
which describe how new biological species arise, have the same form as those
governing phase transitions.

There are striking similarities between cosmic development and biological
evolution. The appearance of cosmic inhomogeneities—stars and galaxies—as a
result of gravitational instability, proceeds by competition and natural selection:
gravitational inhomogeneities compete with one another for the condensing mat-
ter.

The cosmic, geological, and biological evolutionary processes—processes of
structure-formation, of the appearance of order out of initial chaos—all take place
as a result of the export of entropy, its efflux into the surrounding medium.

What we have said here of the biosphere holds true also of an individual
organism, in the sense that in developing from an initial fertilized ovum, say, it
retains in its structure and the way it functions, a memory of the prior biological
evolution that has led to that organism.7

6Iosif Samŭılovich Shklovskĭı (1916–1985), Soviet astronomer and astrophysicist. Since the
present book first appeared, the search for extraterrestrial life has developed very considerably.
See, for example, The search for life in the universe, by D. Goldsmith and T. Owen, University
Science Books, 2002, or An introduction to astrobiology, edited by I. Gilmour and M. Stephton,
Cambridge University Press, 2004. Trans.

7“Ontogeny recapitulates phylogeny.” Trans.
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One might include also the 20th century in the “age of Darwin”, since it was
an era dominated by the study of temporal processes, processes of development,
of evolution, when problems related to stability were the chief concern of science.

Information is created each time a new organism comes into the world. In
fact, sexual reproduction signifies the remembering of a random selection. There
is, after all, no law prescribing which descendants of two particular people will
emerge into being.

How much information is contained in an organism? L.A. Blumenfeld8 made
the following estimate for the human organism: The basic amount of information
in a human organism is determined by the ordered arrangement of amino acids
(or amino acid residues9) in 7 kilograms of albumins, which contains about 3 ·
1025 such residues. Since there are twenty sorts of amino-acid residues, each of
them represents log2 20 = 4.32 bits of information. Multiplying by 3 · 1025, we
obtain altogether 13 · 1026 bits. Contributions from other sources turn out to be
significantly smaller. For example, deoxyribonucleic acid, DNA, represents a text
written in a four-letter alphabet, since there are just four different kinds of links—
called nucleotides—in the DNA chain. Hence each nucleotide represents log2 4 = 2
bits of information. Since a human organism contains about 150 grams of DNA,
made up of around 1.5 · 1023 nucleotides, we obtain, as the contribution from the
organism’s DNA, about 3 ·1023 bits. The ordered arrangement of the roughly 1013

cells of the organism contributes a further 4·1014 bits, and the ordered arrangement
of the 108 macromolecules of biopolymers in each cell another 1.6 · 109 bits.

However, this calculation is of little value to biology. In the first place, it does
not distinguish redundant from irredundant information. Incidentally, as already
mentioned, an organism is an “aperiodic crystal”, and as such must contain a great
deal of irredundant, and hence valuable, information. This represents an important
difference between an organism—an aperiodic crystal not in equilibrium—and an
ordinary periodic crystal in equilibrium.

Furthermore, such calculations make various tacit assumptions. The infor-
mation contained in an albumin molecule is not limited to its bare molecular
structure, that is, to the sequence of amino-acid residues comprising it. As already
mentioned (see the sixth section of Chapter 3), an albumin molecule has a globular
spatial structure determined ultimately by the entropic properties of water, that
is, by hydrophobic forces. The disposition of its links in this spatial structure also
counts as information.

Biological evolution is irreversible and directed. It is difficult to calculate
its entropic balance, but it is at least clear that its irreversibility and directed-
ness are the result of export of entropy into the biosphere. We learned the basics
of Darwin’s theory from our school textbooks. That theory subsequently gained
much new content from the successes of genetics and molecular biology. Of course,
the raw material of the theory of evolution—the random mutations of genes and

8Author of Problems of biological physics, Moscow. Nauka, 1974.
9“When two or more amino acids combine to form a peptide, water is removed, and what

remains of each amino acid is called an ‘amino-acid residue’.” Trans.
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chromosomes—has no directedness to it. However, Darwin discovered the power-
ful agency directing the process of evolution, namely natural selection, whereby
those mutants that are better adapted to their environment survive to produce
more offspring. Natural selection forces an evaluation on organisms of wide genetic
variability. This evaluation consists in the extraction of valuable information. We
shall discuss this further in the next section.

Apart from the selection for adaptive change, there is a stabilizing selec-
tion process leading to the discarding and extinction of mutant strains differing
markedly from the norm on either side in some significant way. This stabilizing
selection also has a cost in energy and entropy. This might be called the “Red
Queen’s effect” from Lewis Carroll’s Through the looking glass:

“Well, in our country,” said Alice, still panting a little, “you’d generally get to

somewhere else—if you ran very fast for a long time, as we’ve been doing.”

“A slow sort of country!” said the Queen. “Now, here, you see, it takes all the

running you can do, to keep in the same place. If you want to get somewhere else, you

must run at least twice as fast as that!”

Thus natural selection gives direction to biological evolution. However, natu-
ral selection is neither the only nor the most important directing agency, although
even some of the best textbooks speak of it alone in this respect. The words of
Darwin himself are all too often forgotten:

We clearly see that the nature of the conditions is of subordinate importance in

comparison with the nature of the organism in determining each particular form of

variation;—perhaps of not more importance than the nature of the spark, by which

a mass of combustible matter is ignited, has in determining the nature of the flames.”

Thus the structure and properties of populations of living beings—considered
as dissipative systems—participating in the evolutionary process, are what mainly
give direction to that process. The structure of an organism and the possible ways
in which it can change, are determined by how it has evolved up to the present,
and this is closely related to its ontogenesis, that is, to its individual development.
For example, all land mammals have four limbs because they are descended from
fish of the subclass crossopterygii10 , which had just four fins.

In this sense evolution is like a game of chess. If a game of chess has proceeded
for a sufficient number of moves, it cannot then develop further as if those moves
had been quite different. Like the evolutionary process, a chess game is irreversible,
channelled, and directed. There’s no going back.

In evolution, as in chess, there is a double limitation. Evolution makes un-
changing use of nucleic acids and albumins, and the genetic code. In chess this
corresponds to the fixed rules of play. The evolutionary process is restricted to one
direction, and by what has gone before. A chess game is restricted according to
the choice of opening gambit and the initial development of the pieces.

10“A subclass of bony fish including both fossil and living lobe-finned or tassel-finned fish”.
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Figure 8.1: Scheme of direct and inverse communications in a biogeocenosis (nat-
ural selection and reproduction) according to Schmalhausen.

Chess is based ultimately on the creation, reception, and evaluation of in-
formation. In similar fashion, the biological information contained in individuals
and populations is generated and “evaluated” via natural selection acting within
imposed limits.

Of course, this is but a broad analogy. For one thing, in evolution there are
not simply two opposing players in the game.11 However, analogies are useful: they
help to clarify concepts and in this way represent sources of new information.

One of our greatest biologists, I.I. Schmalhausen,12 proposed a cybernetic,
informational, formulation of the mutual relations between organisms and their
environment in the course of the evolutionary process. This translation of evolu-
tionary theory into the language of information theory turned out to be highly
instructive.

The functioning of organisms takes place in “biogeocenoses”, that is, in eco-
logical systems formed by all the coexisting and interacting flora and fauna, to-
gether with the geological and climatic elements of the environment. The biogeo-

11Perhaps “a war of all against all”? Trans.
12Ivan Ivanovich Schmalhausen (1884–1963), Russian and Soviet zoologist and evolutionist.



174 Chapter 8. Entropy, information, life

cenosis receives information about the state of a given population—the totality
of individuals of a single species in a particular location—by means of certain
feedback connections, activating a specific mechanism for transforming the infor-
mation into control signals and means for communicating these to the population.
The full informational scheme is shown in Figure 8.1.

The hereditary information stored in the genes—in the molecules of DNA—is
transmitted from a population to the succeeding one only after it has been trans-
formed in the biogeocenosis. It is not the genes that multiply, but individuals,
representing component parts of the biogeocenosis.13 The mechanism of heredi-
tary transmission of information is contained within the separate individuals, but
the changes in the biogeocenosis affect the population as a whole. Information
about these changes is transmitted to the population via the breeding of selected
individuals, whose offspring is incorporated into the population. The population
changes—evolves—but the information about this change is communicated via
individual breeding.

We are using the term “information” here only in a qualitative sense, that
is, not quantitatively. Nonetheless, its use is instructive. Here is a clear example.

Lamarck claimed that there are acquired characteristics that are inherited.
We know that the distant ancestors of the giraffe had short necks. Lamarck thought
that the evolution of the modern giraffe proceeded by a gradual lengthening of the
neck. Mum and Dad stretch their necks to reach the leaves on tall trees, and this
lengthening is passed on to their children.

However, this would mean that information about the elongation of the par-
ents’ necks had to be communicated from their neck cells to their reproductive
cells—and, moreover, communicated in an effective manner: the reproductive cells
would have to change precisely in such a way as to cause longer-necked offspring to
be produced. None of Lamarck’s followers even looked for a mechanism that might
transmit the requisite information—and quite justifiably, since no such mechanism
exists. An individual’s acquired characteristics are never inherited. That this is so
is made especially clear by the above informational analysis.

Schmalhausen’s work Questions in the cybernetics of biology ends with some
conclusions of great importance. He stresses that what is crucial in evolution is
not the amount of information contained in a chromosome, cell, or individual, but
the quality or value of that information: “In every case where a comparison and
selection of information takes place, this proceeds on the basis of an evaluation
in terms of quality... In biology, evaluation of the quality of information is of
fundamental importance”.

The value of biological information

It follows that we should look into the problem of the value of information as it
applies to biology.

13Although it is widely accepted that biological evolution takes place at the level of the basic
replicator—the gene. (See Richard Dawkins The selfish gene.) Trans.
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Earlier we gave a definition of the value of information in terms of its ir-
redundancy and indispensability. We shall now consider the reception of the ge-
netic information encoded as a sequence of nucleotides in a DNA chain. This is a
“four-letter text” representing a program for synthesizing albumins. The essence
of molecular biology is expressed in the dictum “one gene—one albumin chain”.
The program is composed in the genetic code, according to which each codon,
that is, subsequence of three nucleotides, corresponds to a particular amino acid
residue. The number of possible such triples is equal to the number of arrange-
ments of three letters from a four-letter alphabet, that is, 43 = 64, while there are
just 20 amino acid residues. Hence the genetic code is highly redundant; there are
amino acid residues coded for by one, two, three, four, and even six codons. The
reception of such genetic information takes place in the cell’s system for synthe-
sizing albumins. The initial quantity of information in a DNA chain consisting of
n nucleotides is

I0 = log2 4n = 2n bits.

The value of this information lies in its use in synthesizing albumins. Each codon,
that is, triple of nucleotides, corresponds to just one amino acid, so that the 20-
letter albumin text is written with n/3 amino-acid “letters”. Hence the amount of
information in a corresponding synthesized albumin chain is

I1 = log2 20n/3 = 1.44n bits.

In view of the redundancy of the genetic code, the quantity of information con-
tained in the albumin chain is less than in the DNA chain. The redundancy at
this level is given by

R1 = 1− I1

I0
= 0.28.

At the next level, we take into consideration the fact that certain amino acids
composing an albumin can be replaced by related ones without altering the prop-
erties of the albumin. In other words, many point mutations,14 expressed by the
substitution of a different amino acid for the correct one, turn out to be neutral
from an evolutionary point of view. If among the 20 aminoacids there are, say,
four interchangeable ones on average, then

I2 = log2 16n/3 = 1.33n bits,

and the redundancy at this level is

R2 = 1− I2

I0
= 0.33.

At the fourth level, we take into consideration the possibility of substituting one
albumin for another. For instance, in a number of cases, various proteolytic fer-
ments or enzymes necessary to the functioning of digestive systems are mutually

14That is, mutations in just a single nucleotide “letter”. Trans.
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interchangeable. If the cell’s synthesizing system encounters two different DNA
sequences, consisting of n1 and n2 nucleotides respectively, then it may synthesize
distinct albumins, one with n1/3 amino-acid links, and the other with n2/3. By
way of example, let’s suppose that n1 = 0.75n2. Then

I0 = 2n1 + 2n2 = 4.67n1 bits,
I1 = 1.44n1 + 1.44n2 = 3.36n1 bits,
I2 = 1.33n1 + 1.33n2 = 3.10n1 bits,

and, if the albumins are interchangeable,

I3 = 1.33n1 bits.

The values of the corresponding redundancies R0, R1, R2, R3 are then respectively
0, 0.28, 0.33, 0.72, and the increasing sequence

I0

I0
,
I0

I1
,
I0

I2
,
I0

I3

of relative values works out to be

1, 1.40, 1.50, 3.51.

Alternatively, one can define the value of a codon as the degree to which the
amino acid residue it codes for is irreplaceable. We now know the DNA “texts” of
a great many albumins, including DNA texts of a variety of species that code for
the albumin with the same function. For example, we know the structure of the
hemoglobins15 of many vertebrates. This makes it possible to trace the evolution of
albumins. The more distant two biological species are from one another, the greater
the difference in the number of “letters”, and therefore amino-acid residues making
up the respective albumins with the same function. Comparison of mutational
substitutions of amino acids in such albumins allows one to determine which amino
acids are more and which less irreplaceable. The more irreplaceable an amino acid
is in an albumin, the greater its informational value.

How does the value of information—its degree of irredundancy or irreplace-
ability—change over the course of biological development, both evolutionary and
individual?

Fundamental to the theory of evolution is the notion that all forms of life
have evolved from a single common progenitor. All multicellular organisms ulti-
mately stem from unicellular ones. The one and only illustration in Darwin’s The
origin of species depicts the scheme of divergence of species occupying different
ecological niches (Figure 8.2). For example, as was shown by the Soviet biolo-
gist N.N. Vorontsov,16 the ecological niches occupied in the Old World by various

15“The iron-containing oxygen-transport metalloprotein in the red blood cells of vertebrates.”
Trans.

16Nikolăı Vorontsov (1934–2000), Soviet zoologist, ecologist, and evolutionist. Former Soviet
minister of the environment.
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Figure 8.2: The scheme of divergence of species according to Darwin—the only
diagram in The origin of species. The letters A, B, . . . , L each represent common
species of large genus. The fan of dotted lines of unequal lengths proceeding from
A represents its varying offspring. The intervals between the horizontal lines each
represent a thousand or more generations. The symbols a1, m1, etc. denote well
marked varieties, and a10, f10, m10 new species. The symbol F 14 denotes a species
preserved without change.
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species of rodents, were in the New World occupied by descendants of marsupials.
Of these, some became tree-dwellers, others burrowed underground, and yet others
made their habitats in rivers and lakes.

Clearly, such divergence represents a growth in irreplaceability, and so in in-
formational value. Although members of different species do sometimes crossbreed,
their offspring is invariably infertile. In this sense, therefore, biological species are
irreplaceable.

An increase in irreplaceablity occurs also in individual development. At the
beginning of the 20th century the German biologist Spemann17 carried out his
famous experiments in ontogeny. His subjects—or victims—were, as was usual,
amphibians, chiefly newts. He showed that already at a very early stage of embry-
onic development, one can indicate the part of the embryo from which a particular
organ will later develop. For example, it was shown that a certain part of an em-
bryo during late blastulation or early gastrulation18 would subsequently develop
into an eye; this portion of the embryo, the rudiments of the eye, is termed a “pre-
sumptive” eye. Spemann grafted an early presumptive eye onto different places of
a relatively mature embryo. The results were not especially interesting: grafted to
an eye region, the presumptive eye grew into an eye, grafted to the ear region,
it produced part of an ear, and in the kidney region, part of a kidney, and so
on. However, when Spemann took the presumptive eye from a more developed
embryo, at the stage of a neurula, then the presumptive eye turned out to be a
“definitive” eye: it grew into an eye no matter which region of the embryo it was
grafted onto. A diagram of these beautiful experiments is shown in Figure 8.3. As
the biologists say—and biologists like specialized terminology—the “totipotency”
of the region (initially constituting a presumptive eye) changed to “unipotency”,
that is, its ability to develop into any kind of tissue was at some stage lost, and
subsequently it could only develop into one particular kind of tissue. Observe that
this change marks an increase in the degree of irreplaceability, and so an increase
in the value of the information contained in the molecules of the embryo, wherever
and whenever they function so as to effect this chemical transformation.

In all organisms, from bacteria to human beings, we find the very important
albumin cytochrome c, an indispensable participant in the so-called respiratory
chain. The functioning of this chain of chemical transformations is accompanied
by a process that might be called “charging up the battery”, that is, synthesis of
the substance ATP (see the first section above), which stores chemical energy, and
ends with the oxidation of organic compounds by means of atmospheric oxygen,
yielding the end products carbon dioxide CO2 and water H2O. Of course, like all
biological systems, the functioning of the respiratory chain depends on the export
of entropy.

We know the genetic “texts” of the cytochrome c of many species. Com-

17Hans Spemann (1869–1941), German embryologist. Nobel laureate in physiology or medicine
for 1935.

18Blastula, gastrula, and neurula are terms used for the embryo at certain definite stages in
its development.
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Figure 8.3: Grafting a presumptive and a definitive eye.
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Table 7: Relative values of cytochrome c in conventional units.
Mammals Birds

Man 0.00 Penguin 0.00
Resus-macaque -0.10 Chicken -0.05

Donkey -0.34 Duck -0.30
Horse -0.43 Emu -0.30
Pig -0.58 Pigeon -0.58

Rabbit -0.66
Whale -0.88

Kangaroo -0.88 Reptiles
Dog -1.06 Tortoise -0.80

Elephant -1.22
Bat -1.25

parison of the values—that is, degrees of irreplaceability—of the corresponding
amino-acid residues shows that among mammals, human cytochrome c has the
greatest value. Among birds, the cytochrome c of penguins is of greatest value
(just as Anatole France’s Penguin island19 would lead us to believe). The values
of cytochrome c for some species, relative to that for human beings or penguins,
are given in Table 7.

This table gives just differences in values, with the value of cytochrome c in
human beings set at zero in the left-hand column, and that of penguins set at zero
in the right-hand column.

What significance does this have? Of course, the value of cytochrome c has
nothing whatever to do with human beings having—or not having—greater intelli-
gence than other living creatures. What is behind this is that mankind has travelled
a longer evolutionary path, as a result of which less valuable, that is, more readily
replaceable, amino acids have been replaced by more valuable ones.20 Incidentally,
the more valuable amino acids are, generally speaking, also more rare.

Imagine a stamp-collector whose aim is not to increase the number of stamps
in his collection, but to exchange less valuable stamps for more valuable ones. This
is analogous to what happens with cytochrome c.

Thus it would seem that the value of the information contained in living or-
ganisms increases over the course of evolution.21 Obviously, for this to be possible,
the information existing originally22 must have been of low value, that is, of high
redundancy, so that replacements could occur tending to increase informational

19L’Île des pingouins, 1908.
20It is not clear here in what sense the author understands mankind as having undergone a

longer evolutionary development than other creatures. Trans.
21This statement would seem to require some elaboration, for instance to account for the above

differences in values of cytochrome c across species. Trans.
22At the dawn of life? Trans.
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value.
In biological systems “trigger situations” are constantly being realized. These

are situations where single signals carrying very small amounts of information have
disproportionately large consequences. For example, a single molecule of colicin in-
troduced into the cell of a bacterium is sufficient to kill it, and one prick with a
needle is enough to induce an unfertilized frog ovum to divide, initiating ontoge-
netic development (Loeb’s23 experiments).

Trigger situations of this sort occur in ontogenesis, where they are necessary
in connection with differentiation of cells and morphogenesis, that is, structure-
formation. As noted earlier, triggering actions, which communicate information of
especially high value, tend to occur in situations of great instability involving a
large store of preparatory information.

In the course of individual or evolutionary development of an organism, se-
lectivity of reception increases along with the increase in informational value. A
biological system continues perfecting its ability to select or discriminate among
the various kinds of information impinging on it. A frog reacts only to moving
insects, and a bat, using ultrasound echo location, apprehends only reflected sig-
nals, and not direct ones. The choosing of what is of value in the information
bombarding us from all sides is basic to the creative activity of human beings.

As we saw earlier (in equation (7.24)) the cost in energy of receiving one bit
of information is at least kT ln 2 joules. This is the minimal cost of one bit of any
information, valuable or otherwise, irreplaceable or not. The selection of precisely
the valuable information does not require any additional expenditure of energy. For
this purpose, it suffices, for example, that the membrane of receptor cells have an
appropriate structure. The cost in energy involved in the creation of this structure
was met earlier on, during the preceding stages of biological evolution.

Thus a living system is capable of discriminating valuable from less valuable
information, without incurring any special cost. Or, to put it differently, over the
course of its development a living system approaches ever more closely to a state
where it pays at least kT ln 2 joules in energy for each bit of information of value
to it, but wastes no energy apprehending information of no value to it.

Complexity and irreplaceability

In his last paper, published in the journal Knowledge is power, the pre-eminent
Soviet biologist N.V. Timofeev-Resovskĭı24 wrote that, in order to construct a
“theoretical biology”, one will need a third law of evolution in addition to the two
already established, namely the principles of natural selection and of covariant
replication, the latter relating to DNA. The gene-stuff—the DNA—is duplicated,
that is, copied, with each cell division. Here “covariance” means simply that any

23Jacques Loeb (1859–1924), German-born American physiologist and biologist.
24Nikolăı Vladimirovich Timofeev-Resovskĭı (1900–1981), Soviet geneticist and evolutionary

biologist.
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mutations—that is, changes in the sequence of nucleotides of the DNA chain—are
also duplicated.

As the third law of evolution one may take the principle of growth of com-
plexity. Now clearly mammals are more complex than blue-green algae. It may
seem rather obvious that complexity has risen over the course of evolution,25 but
what exactly do we mean by “complexity”.

A rigorous definition of complexity enabling the concept to be quantified,
is given in works of Kolmogorov, Chaitin, and Martin-Löf.26 Any object may be
encoded, using any agreed-upon system, as a sequence of zeros and ones. The
complexity of the object is then the least length of such a binary sequence that
will capture enough information about the object for it to be reconstructed, that
is, decoded. In other words, the complexity of an object is the length expressed in
bits, of the most economical program for generating a binary sequence describing
the object.

Suppose we receive the two messages: 0101010101010101 and 011000101110
0101. Which is the more complex? The second, of course, since it is less ordered.
The program that produced the first message, is telling us: (01)8, or “write 01
eight times”. The second message cannot be abbreviated in this way; any program
specifying it would probably have to be as long as the message itself.

Here is another example. The number 3.14159... is communicated. An eco-
nomical program would simply produce the symbol π, defined as the ratio of the
circumference of a circle to its diameter.

It is noteworthy that in this definition complexity is equated with random-
ness: a random sequence of symbols, say binary digits, is assigned a degree of
complexity coinciding approximately with the length of the sequence expressed in
bits. Any minimal program is bound to be random rather than ordered in some
way. For, consider a program P, minimal with respect to generating a sequence of
binary digits comprising a message M . If P is not random, then by definition there
must be a shorter program P′ that will generate P. However, then the message M
can be generated by means of the algorithm:“Compute P from P′, and then M
from P.” Hence P could not have been minimal.

Consider the complexity of a biological system. In this context, of course,
the concept is relative. For the biologist, the brain of a bull is a highly complex
system, requiring perhaps millions of bits for a detailed specification, while for the
butcher the description of the brain involves at most five bits, since it represents
merely one of the roughly 30 parts of a bull’s carcass destined for consumption,
and log2 32 = 5.

The most complex objects in nature are living organisms, and among the
most complex of these is man. We consider each person to be uniquely valuable,
and therefore that human beings are not to be encoded by a program shorter

25At least for some organisms. Trans.
26Andrĕı Nikolaevich Kolmogorov (1903–1987), pre-eminent Soviet mathematician. Gregory

John Chaitin (born 1947), Argentine-American mathematician and computer scientist. Per Erik
Rutger Martin-Löf (born 1942), Swedish logician, philosopher, and mathematician.
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than the actuality. In this sense, no “substitutes” are possible, we are each irre-
placeable. This also applies to the creative output of individuals, for instance the
artifacts of literature and art. It is impossible to devise a minimal program for
Anna Karenina—there is no algorithm that simplifies a genuinely artistic work
without sacrifice of its integrity.

In America and England one can find abridgments or synopses of Shake-
speare’s plays and Dickens’ novels. After reading such summaries, a person can
flaunt his “education”, in spite of having acquired only a negligible fraction of the
information contained in the full literary work. (We shall have more to say on this
in the final section below.)

The objective taxonomy first drawn up by Carl Linnaeus27 is fundamental to
scientific biology. From the viewpoint of this hierarchical classification, each organ-
ism is not just an individual. For example, L.N. Tolstŏı (Leo Tolstoy) is not only a
great writer, he is also a representative of the kingdom of animals, of the phylum
of chordates, of the order of vertebrates, of the class of mammals, of the genus
of primates, of the species Homo sapiens, and, finally, of the variety Homo sapi-
ens sapiens (presumed distinct from the variety Homo sapiens neanderthalensis
of neanderthalers). Within each subdivision in the hierarchy, all representatives
of that subdivision are considered equivalent, in the sense of having the same
minimal set of characteristics defining the subdivision. In terms of such a clas-
sification, there are no “irreplaceables”. As a representative of the species Homo
sapiens, every person—regardless of differences of skin-color or other nonessential
characteristics—is as good as any other.

Such a biological classification requires a minimal “program” or set of charac-
teristics defining each subdivision or taxon. As one ascends the hierarchy through
ever narrowing taxa, from kingdoms up to species, and, further, to an individual
organism, these programs of specifications increase in length and complexity.

The scientific study of human beings starts, of course, from the level of the
species, and introduces further subdivisions, always striving to minimize the re-
spective programs. Thus the anthropologist and ethnographer classify the races
and nationalities of human beings, the anatomists, physiologists and psychologists
the actual manifestations of the phenotype—that is, the structure and functioning
of the body, and personality types, such as the choleric, sanguine, depressive, and
phlegmatic types.28

As we have seen, the concept of complexity is relative—it depends on the
level of scrutiny, that is, of perception. At the level of the animal kingdom, a
human being is equivalent to a fruit fly, at the phylum level to a lancelet,29 at
the order level to a porcupine, at the class level to a lemur, at the genus level

27Since Linnaeus drew up his taxonomy in the 18th century, it has been very substantially
revised using better criteria—in particular, genetic— for the various groupings. Trans.

28This is the ancient-Greek typology of personalities based on the so-called four “humours”:
yellow bile, blood, black bile, and phlegm. Needless to say, in the world of modern science it has
lost all credence. Trans.

29Any of several marine animals of the genus Branchiostoma. Trans.
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to a chimpanzee, at the family level to australopithecus, and at the species level
to Homo erectus.30 In this sequence, complexity—the length of the program of
specifications—increases

It might seem obvious that in the course of evolution complexity should
increase. However, there are counterexamples to this suggestion. For example,
when a life form adapts to a parasitic lifestyle, it usually undergoes simplification
rather than increasing complexity, and certain animals (such as the amphibian
Proteus anguinus, or white salamander) that took to living in caves eventually
lost their eyes.

Here is an example where the male of a species has undergone extreme sim-
plification in the course of evolution. The female of the marine worm Bonellia
viridis, or green spoonworm, has a large (≈ 15 cm) sausage-shaped body, and is a
complex organism capable of a variety of functions. The male, on the other hand,
has a flat unpigmented body which grows to one or at most three millimeters
in length, lives on or in the sexual ducts of the female, and is capable only of
fertilization.

Such simplification is also encountered among vertebrates. In four families of
deep-water anglerfish, special relations have evolved between the sexes. The male,
much smaller than the female (in the case of Ceratis hollbölli the female is over
a meter in length while the male is about 15 millimeters long!), penetrates the
epidermis of the female. Once so ensconced, his jaws, eyes, and digestive system
atrophy, so that he ultimately becomes merely an appendage for the production
of sperm.

Thus as far as the idea that complexity increases with evolution is concerned,
the situation is far from simple.

It is, however, obvious that the definition of complexity given above has
much in common with the definition of value of a communication in terms of its
irreplaceability. At the same time, the concept of value is the richer of the two,
since complexity relates only to the communication as a whole, while separate
components of it may be independently irreplaceable. Complexity characterizes
the whole structure, while irreplaceability concerns functionality. It follows that
over the course of evolution, although complexity may decrease in some situations,
irreplaceability , that is, the value of information, always increases.

The growth of the value of information in the course of both individual and
evolutionary development may be considered as one of the most important of
the laws of theoretical biology. Of course, this law is not independent of natural
selection, that is, it is derivative rather than standing alone.

30The genus Australopithecus was a kind of hominid widespread throughout Eastern and
Northern Africa somewhere between three and four million years ago. Homo erectus lived in
Africa about two million years ago, dispersing out of Africa into much of the Old World. Trans.
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Complexity and Gödel’s theorem

The problem of complexity also arises in connection with highly interesting and
subtle mathematical questions, the investigation of which has led to important
consequences of significance for science generally.

In 1931 the Austrian mathematician Kurt Gödel (1906–1978) proved his
famous result on the incompleteness of arithmetic: he showed that no matter how
one axiomatizes arithmetic (by means of a self-consistent, “recursive” system of
axioms), there will always be statements in the language of formal arithmetic that
are true but not provable from those axioms, that is, arithmetic is “incomplete”.

The proof of Gödel’s incompleteness theorem is related in spirit to the ancient
paradox of Epimenides of Crete, who is said to have asserted that: “All Cretans
are liars.” One wonders if what he claims is true or false. If true, then what he
says must be false since he is a Cretan; thus if true, then false, hence false. In
fact the paradox may be reformulated in a stronger and simpler form, as follows:
Consider the sentence “This sentence is false.” Here we have a sentence that is
neither true nor false. In effect, Gödel performed a similar trick, but with the
criterion “true” replaced by “provable”, and constructed from the sentence “this
statement is not provable” an encoding into a statement in the formal language of
arithmetic, which, consequently, was not provable, and therefore in fact true. The
given axiom system might then be consistently supplemented with this statement,
but then in this extended system, the same argument would yield true statements
not provable within it.

Gödel’s theorem has important consequences for science generally. The math-
ematician Yu.I. Manin31 writes: “The successes of mathematics and areas of sci-
ence that have been mathematized, led many deep thinkers to hope that there
might be a few universal laws from which all other truths could be derived purely
theoretically... Following on the work of Gödel, however, we can be sure that such
hopes are groundless. Even apart from the question as to how complex the world
might be, we now know that the deductive method is not sufficiently powerful.
That method does not even suffice for deducing from a finite set of axioms all the
true statements of arithmetic, formulated in the language of school algebra—such
is the meaning of Gödel’s theorem.”

That is all very interesting, the reader protests, but what does it have to do
with our discussion of the problem of complexity and irreplaceability?

The point for us is that, as a consequence of Gödel’s theorem, it is in general
impossible to prove the minimality of a given program that generates or encodes
a sufficiently complex message. Take, for example, a statement like the following
one: “The complexity of the sequence

01101100110111100010
31Yurĭı Ivanovich Manin (born 1937), formerly a Soviet mathematician, now working in Ger-

many and America. This quotation is from a paper of his in Nature, 12 (1975), a Soviet popular
science magazine.
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exceeds 15 bits.” This calls for a proof that there is no shorter algorithm for this
sequence than one requiring 15 bits to describe it. Such a proof would have to be
formulated in the language of a formal system more complex than the sequence
itself. The claim that the above sequence is random, for example, that is, cannot
be encoded by fewer than the number of bits (20) comprising it, would settle the
matter, but then this likewise would require a proof that might not in fact exist
in the chosen formal system.

This does not mean that it is impossible to find a minimal program, but only
that we may not be able to prove that it is minimal, and therefore also not be
able to establish by means of logical argument its degree of irreplaceability, that
is, the value of the information the message contains.

This conclusion is of general significance for science. The goal of science has
always been that of finding a minimal program encoding and explaining the com-
plex totality of facts being investigated. Already the mediaeval thinker Occam32

asserted that in seeking the answer to a problem one should never multiply the
number of basic concepts beyond the minimum necessary. For example, Newton’s
theory of gravitation explains at once the falling of an apple and the motion of
the planets. However, Gödel’s theorem shows that logic may be inadequate for es-
tablishing the minimality of a program for solving a problem. Intuition has always
necessarily accompanied logical argument in scientific discoveries, and perhaps
what we have just said can be viewed as a proof of the indispensability of intu-
ition. L. I. Mandel′shtam33 used to say that the fundamental equation of quantum
mechanics—Schrödinger’s equation—was guessed rather than deduced.

Intuition is the direct judgment of truth in the absence of logical argument.34

Scientific creativity (and all the more so artistic creativity—see the next section)
signifies the creation of new information, that is, the remembering of random
choices—random, that is, intuitive, not provable by logical argument.

Information and artistic creation

We have mentioned before the universality and wide applicability of the concepts
of information theory. We conclude this book by describing some informational
approaches to the problems of artistic creation. The controversy reigning between,
for instance, physicists and poets, makes no sense whatever. Science and art have
far more in common than might appear, and in any case their resemblances are
much more interesting than their differences.

The creation of a genuinely artistic work involves the creation of new infor-
mation, since it involves the fixing, the committing to memory, of random choices.

32William of Occam, 14th century English logician and Franciscan friar. His principle is usually
called “Occam’s razor”.

33Leonid Isaakovich Mandel′shtam (1879–1944), Soviet physicist.
34And unrestrained can lead, and has led, to wildly incorrect and potentially disastrous con-

clusions. Trans.
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As in scientific work, the creative activity of an artist is determined by his own
peculiarities and those of the society he lives in, but both he and the art experts
who evaluate his work are largely unaware of these determining factors. And the
greater the inspiration operating in the production of a work of art, the more
they are hidden from consciousness. The logic of creative work often comes as a
surprise to the artist himself. For example, A.S. Pushkin was amazed when his
heroine Tatyana got married.35

A work of art represents an integral informational system. Thus the infor-
mation conveyed by a poem is contained in all of its features: in the content, the
vocabulary, the images, the meter, the euphony, the length, and the rhymes. It is
impossible to separate these informational aspects of the poem, and in this sense
a work of art resembles a living organism. It is created by a person in commu-
nication with the world about him, and so is itself a manifestation of life, the
product of a creative mind. Once published, a poem acquires a life of its own as a
non-isolated system retaining contact with its creator and entering into interactive
relations with its readers and hearers. A poem allows of a real connection with the
poet, alive in the verses—a connection of arbitrarily long duration. The wealth
of emotions and ideas of Catullus,36 or of the anonymous author of The lay of
Igor’s campaign37 have remained for many centuries the property of their readers.
The value of artistic information is of an aesthetic kind, being determined by the
amount of influence it exerts on a receptor with the necessary preparation, that
is, capable of apprehending the information, of feeling it deeply and imaginatively,
and of evaluating it.

Artistic information—be it in the form of a poem, a picture, a sonata, or some
other genre—is given directly to everyone, and everyone has the right to decide
whether or not he likes it. While there’s no arguing about taste, evaluations are
another matter. One must certainly not use the false syllogism: “If I don’t like
it, it must be bad.” It is very likely true that for a competent, serious evaluation
of a work of art, one requires no less training than for competence in evaluating
scientific work. What is needed is a “thesaurus”.38

Reception of artistic information does not reduce to merely registering and
storing it. Such reception involves a loss of part of the information in question,
together with its enhancement. The first assertion is trivial and obvious: com-
munication of information by any means is invariably accompanied by a loss of
information through “noise”. In the case of a work of art, the loss of information
at reception is due to inevitable inadequacies of the consciousnesses of both author

35Aleksandr Sergeevich Pushkin (1799–1837), Russia’s greatest classical poet. In his long poem
Eugene Onegin the jaded hero Onegin first cooly rejects the shy confession of love of the youthful,
intelligent, and beautiful Tatyana, daughter of a neighboring property-owner. When he encoun-
ters her many years later, respectably married, he realizes his mistake. Trans.

36Gaius Valerius Catullus (ca. 84 BC–ca. 54 BC), Roman poet.
37An anonymous epic poem written in Old East Slavic probably in the late 12th century. The

poem recounts a raid in 1185, led by Igor Svyatoslavich, a prince of the Kievan Rus Empire, on
the invading Mongolian Polovtsians in the region of the lower Don in 1185. Trans.

38See Figure 7.1, and the text immediately preceding it.
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and receptor, that is, to unavoidable differences in their individualities. The artist
has always felt keenly the impossibility of fully communicating his or her thoughts
and feelings to the world. The very expression of those thoughts and feelings in
verse form distorts them; as Tyutchev39 put it:

... A thought uttered is a lie.

The increase in information on reception of a work of art is, on the other
hand, far from being a trivial matter. The work of art activates, or programs, a
stream of associations, thoughts, and feelings in the consciousness of the receptor,
and stimulates the creation of new information by him. This information may
simply remain in his mind uncommunicated, or be transmitted to those around
him should he wish to, and be able to, share his experience of the work of art with
them. This is the essence of the collaborative creative work of artist and receptor.
Here the word “thesaurus”, meaning store of necessary preparatory information,
is not to be considered as meaning merely a sum total of bare facts recorded from
what has been read, seen, or heard, like a card index, but is intended to embrace all
of the intellectual and emotional richness of the receptor, including his ability to
co-create. For this reason, an erudite person devoid of imagination and feeling may
turn out to be a worse receptor than a less learned person capable of experiencing
life vividly.

A necessary, but not sufficient, condition for artistic information to be valu-
able is that it be irreplaceable. Where is the value of an individual word higher—in
an artistic or a scientific text? In an artistic text, of course—provided it is from
a poetical or prose work of good quality, in which case not a single word can
be changed without damaging the integrity of that informational system. Einstein
wrote: “... There is not a single unnecessary note in Mozart’s music.” On the other
hand, one and the same train of scientific ideas can be expressed in words equally
well in a variety of ways.

It must, however, be emphasized that the notion of redundancy of infor-
mation takes on a different meaning in the context of works of art. Unlike non-
artistic texts—in newspapers, for example—, in artistic ones repetitions are far
from being always redundant, that is, far from being devoid of fresh information.
In ornamentation—of tiles or wallpaper, for example—a repeating pattern may
have an emotional impact precisely because of the repetition. And this holds not
only for applied art. A repeated refrain in a poem or in a passage of music has
artistic significance. This shows again the importance of the integrity of an artistic
work—the impossibility of delineating from it a rational content where repetition
would indeed be redundant.

So what sort of information might be considered redundant, that is, valueless,
in a work of art? Above all, cliché, banalities, and pointless repetition of what has
already been fully gone over. Unlike an ordinary text, which is largly unaffected

39Fyodor Ivanovich Tyutchev (1803–1873), considered the last of the three great Russian
Romantic poets, after A.S. Pushkin and M.Yu. Lermontov.
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by redundancy, these types of redundancy mar a work with artistic pretensions,
they destroy its integrity. A single stereotypical phrase is enough to render a whole
poem worthless.

Of course, informational approaches will never be adequate for solving the
fundamental problems of aesthetics. However, they allow a clearer understanding
of those problems. To repeat: the value of a work of art is determined by the
newly created information it contains. Generally speaking, the newer, the more
unexpected that information is, the more valuable the work. Novelty is a necessary,
though, of course, not a sufficient, condition of artistic value. Novelty, unexpect-
edness, can be expressed in different ways. I. A. Krylov’s40 fable The comb relates
in simple folk language how a boy threw a comb into a river. But then:

Now naiads comb their hair with it.

Not mermaids, but naiads.41 This prompts a complex of contrasting asso-
ciations linking the Russian village with classical antiquity. This fairy tale was
written during a period of fascination with classicism.

Spring, I come in from the street, where the poplar is amazed,
Where the distant landscape takes fright, where the house fears falling,
Where the air is blue like the bundle of linen
Of someone discharged from hospital.

Boris Pasternak42

Here, the contrasting comparisons and images make the description of spring
especially informative. The reader feels spring, the sharp chill in the air, feels the
poplar’s “amazement” and the house’s intoxication.

The new, irreplaceable information created by the artist has aesthetic value.
In this regard, naturalistic painting is instructive. We quote S.V. Obraztsov:43

“The absolute documentary resemblance between a person and his portrait, or a
real pumpkin and a still life, may surprise, but this is not art, and indicates not
talent, but merely long application and patience. When all is said and done, this
is not so very difficult, and anyone capable of earning a grade of “excellent” for
diligence can learn to do it.”

This is absolutely correct for the simple reason that in painting a naturalistic
picture the artist has set himself the task of producing an illusory encoding of
reality, and the resulting work therefore contains only a minimal amount of new
information. The only information created stems from the choice of a physical
point of view of nature, the placement of a “frame” delineating the portion of
the landscape, say, to be copied. The wax figures in Madame Tussaud’s Wax

40Ivan Andreevich Krylov (1769–1844), Russia’s best known fabulist. His early works were
based on fables of Aesop and Jean de la Fontaine, but later ones were original with him. Trans.

41In ancient Greek mythology, a variety of water nymph.
42Boris Leonidovich Pasternak (1890–1960), Russian poet and novelist. Nobel laureate for

literature in 1958.
43From The relay race of the arts, Moscow: Isskustvo (Art), 1978. This would appear to be

Sergĕı Vladimirovich Obraztsov (1901–ca. 1992), Russian artist and puppeteer, and founder of
the Moscow Puppet Theater in 1931. Trans.
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Museum are similar in this respect, that is, have roughly the same artistic content
as a naturalistic painting. However, Madame Tussaud had no artistic pretensions
in creating her wax figures. An aesthetic evaluation of a naturalistic painting is
determined only by the object portrayed—the actual landscape, say—and not by
any creative input by the artist.

“Informational aesthetics” is made especially striking by comparing an origi-
nal artistic text with a translation of it into another language. An adequate trans-
lation of a single line of a poem is in general impossible since languages differ
radically, and poetic information is contained in each and every word of the poem.
Furthermore, the informational programs of the original text and of its translation
are very likely to be different: they are intended for readers with different levels
of reception perhaps, or different “thesauruses”. A translated poem must stand as
a poetic achievement in the language of the translation. The poet-translator has
to solve the problem of optimally re-encoding the information contained in the
original poem using words of another language. Different informational schemata
may have differing values in poetry depending on the genre, style, or content. The
translator has to determine the relative value of the various parts of the poem
defining its essence, and preserve those of greater value while foregoing, if need be
those of lesser import. The task is no less difficult than that of creating the original
poem, and only a genuine artist is capable of performing it. It is not surprising that
the greatest Russian poets—Pushkin, Lermontov, Tyutchev, and Blok44—made
artistic translations.

Artistic information is created in the expectation that it will receive a full-
valued appreciation by its receptors, and would not exist without this anticipation
of its reception. The reception will vary over time and space. There was a time
when the poems of Nekrasov45 seemed to a wide circle of cultivated Russians
(Pisarev and Plekhanov,46 for instance) to be of greater artistic merit than those
of Pushkin. Subsequently Nekrasov’s work fell out of favor, and later came back
into favor again, thanks in part to the influential poetical insights of Blok, which
showed how much Russian poetry was indebted to Nekrasov. Such rises and falls
in estimation represent sensitive registers of changing individual and social con-
sciousness.

Throughout a person’s life, he has new experiences, acquires new knowledge.
His thesaurus changes continually, and with it his level of receptivity. That is why
over the course of one’s life one returns over and over to the great works of art:
each time they seem different. Genius is unlimited informativity.

Granted that the creation of a work of art comes down to the creation of new

44Aleksandr Aleksandrovich Blok (1880–1821), considered to be one of the most gifted Russian
poets since Pushkin. Leader of the Russian “symbolist” movement.

45Nikolăı Alekseevich Nekrasov (1821–1878), Russian poet, publisher, and critic.
46Dmitrĭı Ivanovich Pisarev (1840–1868), radical writer and social critic, one of those in the

forefront of the democratic-revolutionary trend in Russia in the 1860s. Georgĭı Valentinovich
Plekhanov (1856–1918), Russian revolutionary and Marxist theoretician, a founder of the social-
democratic movement in Russia.
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information, that is, the remembering of random choices, to what extent do the
artists themselves recognize this? We must give them the decisive word on this
score.

In Karel Čapek’s humorous story The poet he describes a sad scene: an
automobile knocks down a drunken beggar, a woman, and races away from the
scene of the accident without stopping. The few witnesses of the accident can
recall neither the registration number of the vehicle nor even its color. One of
these happens to be a poet by the name of Yaroslav Nerad. “When the accident
occurred, he cried like a baby and ran home...” He also appears to remember
nothing, but writes a strange poem, ending with the following lines:

Passion was stilled. Lack of will... Oblivion.

O swan’s neck!

O breast!

O drum and those drumsticks—portent of tragedy!

The poet explains to the investigator that “Poetry is an internal reality.
Poetry consists of free surrealistic images, born in the poet’s subconscious... They
are the visual and auditory associations that the reader must be interpenetrated
with. Then he will understand.”

And it becomes clear that “swan’s neck” symbolizes the number 2, “breast”
the number 3, and “drum and drumsticks” the number 5. The car with regis-
tration number 235 is found, and it turns out that indeed it was this car that
killed the woman. Thus the poet had unconsciously and intuitively re-encoded
the information “235” in the form of surrealistic verses. However, this represented
not just a re-encoding, but the creation of new information concerning the poet’s
impressions. Here Čapek has in essence constructed a model—partly in jest, of
course—of the creative process.

Intuition is needed in everything we do—in shipbuilding, in science, in every-
day life—, but it is in art that it plays the leading role. In organizing collaborative
creation with readers, viewers, or hearers, art “teaches inspiration”, teaches intu-
ition. This does not at all mean that there is no logic in art, that it does not “use
algebra to verify harmony”. In every work of art, logical, intuitive, and emotional
elements co-exist. The parts these play may be variously unequal, as with the
quantity and quality of the information created and communicated.

The relation between logic and intuition in art is the subject of Evgenĭı L.
Feinberg’s substantive book Cybernetics, logic, art.47

The works of Leo Tolstoy provide many examples of interactions between
the logical and the intuitive. He presents two faces to the reader: the artist-genius,
intuitive, emotional, and direct, and, contrasting with this, the insistent preacher
or teacher, using logical argument to advance his views of history, religion, science,
and art.

47Published by Radio i svyaz′ (Radio and communications), Moscow, 1981, and in English
under the title Art in a science-dominated world, Gordon and Breach, 1987.
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In the many-layered structure of the novel Anna Karenina one finds every-
thing. There is the artistic development of the idea expressed by the epigraph at
the beginning of the novel: “Vengeance is mine, and I will repay”. There is another
idea, of great importance to Tolstoy the preacher. The character of Levin expresses
the author’s ideology via the juxtaposition of his (Levin’s) approach to life with
that of Anna and her lover Vronskĭı, and also her husband Karenin and brother
Oblonskĭı, all of whom exhibit selfish or ill-advised behavior.

However, the novel contains an antithesis to the approaches to life of all the
leading figures, even Levin. This appears in the fifteen pages devoted to the artist
Mikhăılov, which are among the best in the novel, although most readers pay them
little attention. Here Tolstoy describes the artist, adverting on his psychology and
the essence of his creative work. In doing this, he avoids all sermonizing and
didacticism. Mikhăılov emerges as a genuine artist, a person of extreme emotions,
resonating with every word, and understanding intuitively the essence of art. We
are shown the recollection of a random choice in the following passage:

The sheet of paper with the abandoned drawing was found, but it was smeared,

and blotted with stearin. He nevertheless took the drawing, placed it in front of him on

the table and, stepping back and screwing up his eyes, began to look at it.

Suddenly he smiled and waved his hands in pleasure.

“Yes, yes!” he said, and, taking a crayon, set to sketching rapidly. The spot of

stearin had given the subject a new pose.

And further on:
But in having made this adjustment, he had not changed the figure, but merely

cleared away what had obscured it. It was as if he had removed covers preventing it from

being fully visible...

And three pages later:
He knew that it needed much care and attention to avoid spoiling the work by

removing the cover, and in order to remove the cover completely...

Incidentally, the same idea had been expressed earlier in Baratynskĭı’s48 poem
“The sculptor”, devoted to the myth of Galatea:49

...The unhurried, measured
Chisel strips from the cherished goddess

Layer after layer.

Baratynskĭı and Tolstoy depict the creation of new artistic information as a
coming to light of information that had been prefigured but hidden. It nonetheless
still involves a free choice.

Tolstoy demonstrated the greatness of art and of the artist, who stands far
above the main heros of the novel. In the brief Mikhăılov episode, Tolstoy the
artist took full precedence over Tolstoy the preacher.

48Evgenĭı Abramovich Baratynskĭı(1800–1844), Russian poet, contemporary of Pushkin.
49One version of the ancient Greek myth has Pygmalion, king of Cyprus, sculpting a beautiful

statue of a woman, falling in love with it, and praying to Aphrodite to bring the statue to life.
Aphrodite obliged, thus creating Galatea. Trans.
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In Mayakovskĭı’s50 well known essay “How to make verses”, he asserts that
the writing of poetry is a difficult kind of consciously directed, productive la-
bor: “Poetry begins at the point where a tendency arises.” He is opposed to the
Romantic tradition, and rejects inspiration and intuition. Poetry is “made” log-
ically. He supports these claims by illustrating them with his poem “To Sergĕı
Esenin”,51 in which tragic, mordant humor, gloomy lyricism, the grotesque, and
political declamation are all closely interwoven:

In this life

dying is easy.

To make a life

is significantly more difficult.

Mayakovskĭı describes his conscious (not chance!) motivation for choosing
almost every word of the poem. However, he also says “Novelty, novelty of subject
matter and approach are essential to very poetical work.”

In other words, the poet must “make” new information.
Mayakovskĭı’s essay also deals with “resonance and rhythm”, which appar-

ently come from nowhere. “Rhythm is the fundamental force, the fundamental
energy of verse. It is impossible to explain it...”.

In other words, writing poetry involves a random choice of rhythm, as well
as words and images. The title of Mayakovskĭı’s poem “A cloud in trousers” was
suggested to him by a chance conversation. He also talks of an image that occurred
to him in a dream.

Of course, the thesis that writing poetry is the most difficult kind of produc-
tive labor, does not at all contradict its intuitive nature. Meyerhold52 maintained
that the suicides of Esenin and Mayakovskĭı were the result of poor measures of
worker-protection in the most dangerous area of production.

Long before Mayakovskĭı, Edgar Allan Poe went much further in rejecting
intuition and randomness in artistic creation. In his essay “Philosophy of compo-
sition”, Poe tells of how he wrote his famous poem “The raven”. He writes: “It
is my design to render it manifest that no one particular point in its composi-
tion is referable either to accident or intuition—that the work proceeded step by

50Vladimir Vladimirovich Mayakovskĭı (1893–1930), Russian poet of the revolution, and rep-
resentative of early 20th century Russian futurism.

51Sergĕı Aleksandrovich Esenin (1895–1925), Russian lyrical poet, mostly self-taught, and
much-loved. The quoted excerpt from Mayakovskĭı’s poem would seem to be prompted by the
last two lines of Esenin’s brief poem of farewell, said to have been written in his own blood on
the day of, or before, his suicide by hanging:

In this life there’s nothing new in dying,
But on the other hand living’s no newer.

Notwithstanding his veiled rebuke, Mayakovskĭı also committed suicide, by shooting himself,
whether out of unrequited love or disillusionment with the course the Soviet Union was taking
under Stalin is not clear. Some conjecture that he was purged. Trans.

52Vsevolod Emil′evich Mĕıerhol′d (1874–ca. 1940), Russian director, actor, and producer. In-
fluential in modern theater through his experiments with physical being and symbolism.
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step to its completion with the precision and rigid consequence of a mathematical
problem.”

Poe first considers the length of the poem. He reckons 100 lines as optimal.
Yet the poem ended up having 108 lines.

The strongest impression is made by the poem’s melancholy tonality, which
is reinforced by the repetition of the “r” sound in the refrain. Poe chose the word
“nevermore” to effect this. This word has necessarily to be repeated, but it is
too monotone for a person to do so. Hence a bird rather than a person. But a
parrot would certainly not work! Hence the raven, that croaks and symbolizes
unhappiness.

Poe asks himself what the greatest melancholy is associated with. “Death
was the obvious reply.” Whose death? The death of a beautiful lady.

Then the problem arises of combining the lyrical hero mourning the death of
his beloved and the raven repeating the word “nevermore”. Hence the raven must
answer the hero’s questions.

Poe continues in this way with the aim of justifying his choice of the general
structure of the poem—its length, division into stanzas, meter, and so on. Thus it
would appear that all was calculated, planned in advance, developed logically, and
that intuition, chance, and inspiration played no role in the poem’s composition,
so that no new information was created. The situation is paradoxical—after all,
“The raven” is one of the finest works of the world’s lyric poetry.

Poe is mistaken. He wrote his essay after “The raven” was published, as a
polemic aimed at the maudlin romanticism of Longfellow and others. It suffices
to read the poem again to be convinced that Poe’s logic is born out of his poetic
intuition, beginning with his choice of theme and ending with the poem’s system
of images, meter, and so on.

In Aleksandr Blok’s lecture “On the poet’s calling”, dedicated to Pushkin and
delivered just before his death, he says: “The poet is the child of harmony; and to
him is vouchsafed a certain role in the world’s culture. Three tasks are demanded
of him: first, that of freeing sounds from the native elemental and unfathomable
past where they abide; second, to impose harmony on these sounds, to give them
form; and third, to convey this harmony to the outside world.”

In other words, the poet must create poetical order out of primeval chaos,
create artistic information. Science reveals the order actually existing in nature, by
seeing through the external chaotic form of phenomena. In scientific work intuition
is also indispensable—as evidence of which Gödel’s theorem serves. Art is its own
peculiar form of new order, “proving the unprovable”, demonstrating the cogency
of intuitive inference. Mozart and Salieri both created knowledge, but of the two,
only Mozart created art.

* * *

We began this book with heat engines and ended it with a discussion of art.
Although at first sight this association seems unnatural, in fact there is a direct
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path leading from Sadi Carnot to poetry, painting, and music. The main muse—not
invented by man, but actually existing—is Entropy. Everything in which this world
of ours differs from a grey, homogeneous chaos, arose and continues to exist as a
result of the outflow of entropy into the surrounding medium. “Negative” entropy
nourishes all of life and all that life has created, science and art in particular. Man
produces negative entropy by creating new, irreplaceable information.
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