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Adopting the viewpoint that the standard perturbative quantization of general relativity provides an

effective description of quantum gravity that is valid at ordinary energies, we show that gravity as an

environment induces the rapid decoherence of stationary matter superposition states when the energy

differences in the superposition exceed the Planck energy scale.
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Introduction.—The emergence of the macroscopic
classical world from the microscopic quantum world is
commonly understood to be a consequence of the fact
that any given quantum system is open, unavoidably inter-
acting with unobserved environmental degrees of freedom
that will cause initial quantum superposition states of the
system to decohere, resulting in classical mixtures of
either-or alternatives [1–3]. Consider, for example, a sys-
tem consisting of a vibrating micrometer scale silicon
wire in ultrahigh vacuum at dilution fridge temperatures
(�10 mK). Assuming a realizable quality factor
Q� 105 that is limited by clamping radiation loss [4]
and elastic strain-coupled two level system defects
within the wire [5], an initial center of mass coherent
state superposition with separation �x� 1 nm will deco-
here in about a picosecond, rapidly enforcing classicality
in the dynamics of the vibrating wire. Suppose, however,
that the common sources of decoherence are removed
through levitating the silicon mass by optical [6,7] or
other means [8,9]. Can the coherence times of center of
mass superposition states be increased without bound
by removing the effects of clamping and defect loss in
this way and minimizing the interaction with the elec-
tromagnetic environment? More generally, can systems
of arbitrarily increasing mass energy be placed in non-
classical states, such as center of mass quantum super-
position states?

Gravity has been invoked in various ways as playing
a possible fundamental role in enforcing classicality of
matter systems beyond a certain scale [10–34]. Certainly,
one environment that cannot be avoided is the stochastic
gravitational radiation background arising from the big
bang and other sources [27,35]. A clue as to the possible
effect this environment might have on a low energy quan-
tum matter system comes from the fact that the space-time
metric in Einstein’s equations couples to the system via
its energy-momentum tensor. For a stationary system,
only its rest energy should be relevant for the decoherence
dynamics of an initial quantum superposition state.
Consider for the moment a model oscillator system
coupled via its energy to an oscillator environment,
described by the Hamiltonian

H ¼ @!0a
ya

�
1þX

i

�i

qi
�i

�
þX

i

�
p2
i

2mi

þ 1

2
mi!

2
i q

2
i

�
;

(1)

where !0 is the system oscillator’s frequency and �i ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2mi!iÞ

p
is the ith bath oscillator’s zero-point uncer-

tainty. Assuming an Ohmic bath spectral density
Jð!Þ=ð@!0Þ2 ¼ �

P
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2
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0, for weak

system-bath dimensionless couplingC in the high tempera-
ture limit, we obtain the following time evolution of the
system density matrix in the Born-Markov approximation:

�n~nðtÞ ¼ e�i!0ðn�~nÞt�CðkBT=@Þðn�~nÞ2t�n~nð0Þ; (2)

where T is the oscillator bath temperature. Notice that
the thermal oscillator environment induces decoherence
of initial superpositions of different Fock states jni, j~ni
into mixtures of these states. By analogy, and with the aid
of dimensional analysis, we might therefore expect that a
stochastic gravitational environment will similarly deco-
here a matter system initially in a superposition of say
two different rest energy states E and ~Ewith a rate given by

�decohere � kBT

@
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E� ~E
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�
2
; (3)

where EP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c5=G

p
is the Planck energy and we

assume for simplicity a thermal graviton environment at
temperature T.
In the following, we shall derive Eq. (3)—including the

missing dimensionless numerical factor—by applying
standard perturbative quantum field theory techniques to
gravity [36–38]. The justification for such an approach
follows from the fact that we are considering laboratory
scale systems, where the matter is localized to regions of
small curvature. As with other low energy effects, such as
the quantum gravity correction to the Newtonian potential
between two ordinary masses [36], it should be possible to
quantitatively evaluate gravitationally induced decoher-
ence rates by employing standard perturbative quantum
gravity as an effective field theory [36,39]; whatever the
final form the eventual correct quantum theory of gravity
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takes, it must converge in its predictions with the effective
field theory description at low energies.

Effective field theory derivation.—In order to be able to
construct matter system states starting from a generally
covariant field theory, we will adopt as a simple model
system a massive scalar field �ðxÞ with mass parameter
m corresponding to that of a nucleon. Expanding the
Einstein-Hilbert action to second order in metric deviations
from Minkowski space-time, g�� ¼ ��� þ 	h��, we

have:

S½h��;�� � SS½�� þ SE½h��� þ SI½h��;��; (4)

where 	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
32�G

p
(from now on we for the most part use

natural units with @ ¼ c ¼ 1), and the system, environ-
ment, and interaction actions are respectively:

SS ¼ � 1

2

Z
d4xð���@��@��þm2�2Þ; (5)
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where T��ð�Þ ¼ @��@��� ð1=2Þ���@��@���
ð1=2Þ���m

2�2 is the scalar field energy-momentum tensor

and the explicit form of the quadratic in � tensor
U���
ð�Þ can be found in Ref. [38].

The closed time path integral approach [40] gives the
following formal expression for the scalar matter system
density matrix:

�S½�;�0;t�¼
Z
d�0d�

0
0

Z �

�0

½d�þ�
Z �0

�0
0

½d����S½�0;�
0
0;0�

�efiðSS½�þ��SS½���þSIF½�þ;���Þg; (8)

where SIF is the Feynman-Vernon influence action that
gives the effect of the thermal graviton environment on
the scalar matter system. Evaluating SIF to lowest, qua-
dratic order in 	 with harmonic gauge fixing term inserted
in SE, we obtain from Eq. (8) the following Born-
approximated master equation for the scalar system:

@t�SðtÞ ¼ �i½HS; �SðtÞ� �
Z t

0
d�
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where HS is the free scalar field Hamiltonian and the noise
and dissipation kernels are respectively:
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with nðkÞ the thermal Bose-Einstein occupation number at
temperature T.
While the master equation (9) can in principle be used

to investigate the decoherence dynamics of quite general,
relativistic scalar field matter states, we shall restrict
ourselves to scalar matter states that model ordinary,
nonrelativistic stationary macroscopic material objects.
The following class of coherent states provides the basis
for such a model:

j�i ¼ exp

�
� 1

2

Z
dkj�ðkÞj2 þ

Z
dk�ayðkÞ

�
j0i; (11)

where

�ðkÞ ¼ ’0R
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
!mðkÞ

2

s
e�ik�r0�ðkRÞ2=2; (12)

with !mðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. These states satisfy

h�j�ðrÞj�i¼’0e
�ðr�r0Þ2=ð2R2Þ; h�j _�ðrÞj�i¼ 0; (13)

and thus describe Gaussian matter ‘‘balls’’ of radius R with
the stationary center at r0, and total energy content depend-
ing on the amplitude parameter ’0. If we furthermore
consider ball radii R much larger than the nucleon’s
reduced Compton wavelength �C ¼ @=ðmcÞ � 10�16 m,
then their rest mass energy E ¼ ð�3m2’2

0R
3Þ=2 is the

dominant energy content and they approximately maintain
their Gaussian profile (13) with little spatial spreading
over the time scale of the initial transient (see below); for
simplicity we will neglect this spreading. The noise term
part of the master equation (9), which is responsible for
decoherence, then simplifies to

@t�S½�;�0; t� ¼ � � � �
Z t

0
d�
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�
�
1

2
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2
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�
� �S½�;�0; t�; (14)

where we have used the fact that the energy density
component T00ð�Þ�ð1=2Þm2�2 of the energy-momentum
tensor terms in Eq. (9) dominates in the nonrelativistic,
stationary limit, and we have also expressed the master
equation in the field coordinate basis.
Let us now assume that, by some means, a superposition

of two Gaussian ball states, each with distinct parameters
(’0, r0, R) and (~’0, ~r0, ~R), has been prepared at time t ¼ 0:
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�S½�;�0; 0� ¼ h�j�ih�j�0i; (15)

where

h�j�i ¼ 1ffiffiffi
2

p ðh�j�i þ h�j~�iÞ; (16)

with the ball states in the field coordinate basis taking the
form

h�j�i ¼ exp
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and a similar expression for h�j~�i with parameters
(~’0, ~r0, ~R). The simpler approximate form in Eq. (17)
follows from the condition R � �C. Evaluating the noise
term in (14) for the off-diagonal, interference part of the

density matrix with �ðrÞ ¼ ’0e
�ðr�r0Þ2=ð2R2Þ and �0ðrÞ ¼

~’0e
�ðr�~r0Þ2=ð2 ~R2Þ, we have

@t�S½�;�0; t� ¼ � � � � T

2�

�
	

4

�
2
�Z

dr

�
1

2
m2ð�ðrÞÞ2

� 1

2
m2ð�0ðrÞÞ2

��
2
�S½�;�0; t�; (18)

where we neglect initial transients, corresponding to
having t large compared to the time required for a graviton
to traverse the matter state spatial extent, i.e., ct �
maxðk r0 � ~r0 k; R; ~RÞ—the Markovian approximation—
and we also assume that kBT � @=t—the high temperature
limit. From Eq. (18), we immediately see that the off-
diagonal interference part of the density matrix decays
only provided the two ball states in the superposition have
distinct energies E � ~E; spatial superpositions with
r0 � r00 do not decohere if the respective energies are

identical. Equation (3) immediately follows from (18).
More precisely, we have for the decoherence rate in the
Born-Markov approximation:

�decohere ¼ kBT

@

�
E� ~E

EP

�
2
: (19)

Discussion.—The decoherence rate formula (19) is suf-
ficiently basic that one might expect it to be of more
general validity beyond the specific scalar field model
used above to derive it. Let us in particular assume that
(19) applies to ordinary, stationary matter systems, such as
a small chunk of crystalline solid or a trapped cold atom
cloud in the laboratory, and that for simplicity the matter
system comprises model two state (excited and ground)
atoms with energy level separation �1 eV. For a cosmic
gravitational wave background with temperature T � 1 K
[41], we have for the gravitationally induced decoherence
rate of an initial superposition of ground and excited states

of a single atom: �decohere � 10�45 secs�1. For a matter
system comprising an Avogadro’s number of atoms
�1 gram in a quantum superposition where all of the
atoms are either in their ground state or all in their excited
state, then we have �decohere � 102 sec�1. For a system
with mass�1 kg in such a superposition state, the gravita-
tionally induced decoherence rate is �decohere � 108 sec�1.
Thus, even leaving aside the technical challenges due to the
presence of everyday environments in preparing such mac-
roscopic matter superposition states, the cosmic gravita-
tional background itself will unavoidably induce their
rapid decoherence, leaving the matter system in a classical
mixture of either its ground or its excited state.
How does our effective field theory approach to gravita-

tionally induced decoherence and the resulting decoher-
ence rate prediction (19) relate to other work [10–34]
considering the role of gravity in the emergence of
classicality? Two approaches can be identified: (a) the
‘‘intrinsic’’ or ‘‘fundamental decoherence’’ approach
[31], where the standard Schrödinger evolution of a quan-
tum matter system is modified by a wave function collapse
process that is linked to an inherent ‘‘fuzziness’’ of space-
time structure [11–13,15,16,18,20,24,28,29,31,33,34];
(b) the ‘‘quantum decoherence’’ approach [31], where
standard quantum mechanics is applied to a model matter
system plus gravity environment [19,21–23,25,27,32].
References [21,27] are closest to our approach, quantizing
gravity in the weak, linearized metric perturbations about
Minkowski space-time approximation. However, in con-
trast to our approach, Refs. [21,27] model the matter sector
as comprising one or more point particles (as opposed to a
scalar field) in the nonrelativistic limit and the resulting
decoherence predictions depend on the free particle kinetic
energy and not on their relativistic rest mass energy.
A possible way to understand how gravity gives rise

to decoherence as predicted by (19), is to first consider
the simpler situation of the matter ball superposition
state in a static, weak gravitational potential VðrÞ: g00�
�ð1þ2V=c2Þ, gij¼�ij. Following the analysis in Ref. [42]

(Sec. IX) of the classic COW neutron interferometry
experiment [43], the interference term is approximately:

h~�ðtÞj�ðtÞi � exp½iðS� ~SÞ=@�; (20)

where S is the classical action of the ball, expressed in
terms of its rest energy E and proper time � along its
worldline:

S ¼ �
Z t

0
Ed� ¼ �

Z t

0
E

�
�g��

dx�

dt0
dx�

dt0

�
1=2

dt0: (21)

Supposing that the ball is stationary in the laboratory frame
gives S � �Et� EVðr0Þt=c2 and the interference term
(20) simplifies to

h~�ðtÞj�ðtÞi � exp½�iðE� ~EÞt=@þ i�; (22)
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where  ¼ �½EVðr0Þ � ~EVð~r0Þ�t=ðc2@Þ is the gravitation-
ally induced phase shift difference between the two ball
states in the superposition. From Eqs. (20)–(22), we can
interpret the phase shift  as due in part to the difference in
rest energies and in part to the difference in proper times
elapsed (gravitational redshift). Now, it should be possible
to analogously account for the thermal gravitational wave
environment by an appropriately chosen random phase
shift normal distribution [44], i.e., by making the replace-

ment ei ! heii ¼ eihi�ð1=2Þh�2i in (22). We therefore can
interpret the gravitationally induced decoherence process
as ‘‘dephasing,’’ i.e., a growing phase difference uncer-
tainty h�2i between the two ball states that suppresses the
interference term, due in part to fluctuations in the elapsed
proper time difference for the two ball states.

As effective field calculations go, the above Oð	2Þ,
Born-Markov derivation of the gravitationally induced
decoherence rate is pretty straightforward; the present
analysis should be viewed as a point of departure, showing
the promise of the effective field theory approach [36,39]
for analyzing gravitationally induced decoherence. The
calculations might be extended in several directions be-
yond the master equation (9), including (a) going toOð	4Þ,
so as to account for damping and decoherence due to
graviton emission or absorption by the matter system,
(b) investigating gravitationally induced decoherence for
relativistic matter systems in curved space-time back-
grounds, with application for example to the formation of
cosmic matter structure in the early Universe [45,46], and
(c) investigating the low temperature limit to determine
whether gravity vacuum fluctuations can induce decoher-
ence [21–23,25,32] and comparison with the predictions
from the various vacuum fluctuation induced spontaneous
collapse models [11,12,14–16,18,20,24,28]. It will also be
interesting to try to establish whether a resulting deco-
hered, mixed matter state can in principle be distinguished
from a collapse model yielding the same matter state out-
comes. Reference [33] postulates that such indistinguish-
ability or ‘‘undecidability’’ allows for the interpretation of
an actual matter state outcome or event, although now with
the advantage that the effective field theory method can
provide quantitative predictions for such outcomes.
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[12] L. Diósi, Phys. Lett. 120A, 377 (1987).
[13] J. Ellis, S. Mohanty, and D.V. Nanopoulos, Phys. Lett. B

221, 113 (1989).
[14] R. Penrose, The Emperor’s New Mind (Oxford University

Press, Oxford, 1989).
[15] G. C. Ghirardi, R. Grassi, and R. Rimini, Phys. Rev. A 42,

1057 (1990).
[16] G. J. Milburn, Phys. Rev. A 44, 5401 (1991).
[17] M. Blencowe, Ann. Phys. (N.Y.) 211, 87 (1991).
[18] R. Penrose, Gen. Relativ. Gravit. 28, 581 (1996).
[19] L. Stodolsky, Acta Phys. Pol. B 27, 1915 (1996).
[20] P. Pearle and E. Squires, Found. Phys. 26, 291 (1996).
[21] C. Anastopoulos, Phys. Rev. D 54, 1600 (1996).
[22] B. S. Kay, Classical Quantum Gravity 15, L89 (1998).
[23] L. J. Garay, Phys. Rev. D 58, 124015 (1998).
[24] J. Anandan, Found. Phys. 29, 333 (1999).
[25] W. L. Power and I. C. Percival, Proc. R. Soc. A 456, 955

(2000).
[26] G. Amelino-Camelia, Phys. Rev. D 62, 024015 (2000).
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