Joint ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics

15 - 26 November 2010

Similarities and differences in plasma focus devices from 1MJ to less than 1J

L. Soto
Comision Chilena de Energia Nuclear
Santiago
Chile
Similarities and differences in plasma focus devices from 1MJ to less than 1J

Leopoldo Soto
C. Pavez, J. Moreno, A. Tarifeño, F. Veloso and M. Zambra

Comisión Chilena de Energía Nuclear
Casilla 188-D, Santiago, Chile
and
Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Chile
lsoto@cchen.cl
Population: 17,000,000

Physicists: ~250

Researchers in physics: ~170

Plasma Physicists: ~25
August 2010
1st – 7th Plasma Physics School
8th – 13th ICPP-LAWPP conference

ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics Trieste, Italy, 15-26 November, 2010

L. Soto
Research at CCHEN

Our research program includes:

- **Plasma physics related with thermonuclear fusion in Z-pinches:**
 - Stability in gas embedded Z-pinch at MA currents
 - Plasma foci: increasing the plasma energy density in order to increase the thermonuclear neutron yield.

- **Miniaturization of PF devices:**
 - Nanoflashes of radiation from miniaturized devices.
 - Scaling studies

- **Main diagnostics:**
 - Nd-YAG laser, 8ns, 1J
 - Neutrons and X-rays detection
 - ICCD, 4ns to 100ns gated frame
 - Electrical signals
Z-pinches driven by SPEED2 at CCHEN-Chile

Overview talk

- Brief introduction and motivation
- Experiments at CCHEN – Chile: Scaling begins
- Remarks on scaling laws in PF devices
- A portable PF for field applications.
Plasma Focus Devices

A hot-dense plasma column is formed in the top of the anode

Plasma focus is an old member of the z-pinch family

Non-radiative source of radiation (on-off emission of x-rays and neutrons)
Electrical signals

![Graph showing electrical signals with axes labeled as Voltage (V(kV)), Differential Current (dI/dt), and Current (I(kA)). The graph is labeled SHOT 13 J290802 and has a scale of 200ns/div.](image)
• Neutrons are produced from fusion D-D reactions.

• 2 main mechanism are involved:
 - thermonuclear
 - beam target (deuterons on the background plasma and on the background gas)
From the point of view of applications PF´s are interesting because produce nanosecond pulses of X-rays ($\lambda \sim \text{nm}$) and neutrons.

- Non radioactive sources of X-rays and Neutrons
- Nanoflashes of X-rays and neutrons

Fields applications require portable devices.
• Portable non-radioactive sources based on accelerators need power supply of ~100kV.

• Plasma Foci can work with power supply of 10kV or less.
Specific objective:

To develop a portable plasma focus for field applications

P⁴ project
CRP-IAEA Neutron techniques for detection of illicit substances and materials
OUR APPROACH

PLASMA ENERGY DENSITY

$\sim 10^{12}$ J/m3

1J in a sub millimeter volume

0.1J in a sphere of 60μm of diameter

PLASMA PHYSICS IN SMALL DEVICES
<table>
<thead>
<tr>
<th>Device [reference]</th>
<th>Energy (kJ)</th>
<th>Anode diameter (cm)</th>
<th>Operation mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEED 2 [3]</td>
<td>100</td>
<td>11.7</td>
<td>Single shot</td>
</tr>
<tr>
<td>GN1 [17]</td>
<td>4.7</td>
<td>3.8</td>
<td>Single shot</td>
</tr>
<tr>
<td>AAAPT [7]</td>
<td>3</td>
<td>1.9</td>
<td>Single shot</td>
</tr>
<tr>
<td>Fraunhofer Insitute ILT-Aachen</td>
<td>2-5</td>
<td>______</td>
<td>Repetitive, 2Hz</td>
</tr>
<tr>
<td>NX1 [13]</td>
<td>3</td>
<td>3</td>
<td>Repetitive, 3Hz</td>
</tr>
<tr>
<td>NX2 [13]</td>
<td>1.9</td>
<td>4</td>
<td>Repetitive, 16Hz</td>
</tr>
<tr>
<td>PF-400J (CCHEN)</td>
<td>0.4</td>
<td>1.2</td>
<td>Single shot</td>
</tr>
<tr>
<td>PF-50J (CCHEN)</td>
<td>0.05</td>
<td>0.6</td>
<td>Single shot</td>
</tr>
</tbody>
</table>

Some plasma focus devices with their characteristic energy, size anode electrode and operation mode. PF-1000: at the Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland; SPEED 2: at Heinrich-Heine-Universität, Düsseldorf, Germany (1986-2000), at present in operation at the Comisión Chilena de Energía Nuclear, Chile; GN1: at the Universidad de Buenos Aires, Argentina; AAAPT: Asian-African Association for Plasma Training Network, ILT-LLT: Fraunhofer Institut für Lasertechnik und Lehrstuhl für Lasertechnik, Aachen, Germany; SRL: Science Research Laboratory, Alameda, USA; NX1 and NX2: at Nanyang Technological University, Singapore. It can be seen that the energy of the device described in the present article is relatively very low.
$<1\text{kJ}$

PF’s operating at hundred joules

- Russian Federation: ViNIIA, 200J
PF’s operating at tens of joules

$< 1 \text{ J}$

PF's operating at less than 1 joule

Our devices

- **SPEED2**: 70kJ, 2.4MA, 400ns
- **PF-400J**: 400J, 130kA, 300ns
- **PF-50J**: 50J, 50kA, 150ns
- **Multipurpose generator**: 520J, 170kA, 350ns
- **PF-2J**: 2J, 15kA, 80ns
- **Nanofocus, NF**: 0.1J, 5kA, 10ns
PF-50J

Visible plasma images obtained with a ICCD, 5ns exposure time

PF-50J

Visible plasma images obtained with a ICCD, 5ns exposure time

Fig. 5. Radial plasma motion $a(t)$ and motion of the frontal and rear axial plasma edge, $z_1(t)$ and $z_2(t)$

Average over 20 shots

Neutrons maximum mean energy of 2.7 MeV, dispersion of 1.8 MeV

Scaling law for Y
$E < 1kJ$

$L. Soto (2010)$

Hard X-ray nanoflash

X-ray from PF-400J

\[\sim 90 \pm 5 \text{ keV} \text{ energy} \]
Optical setup:
Mach-Zender Interferometer
A. Tarifeño, C. Pavez, J. Moreno and L. Soto “Dynamics and Density Measurements in a Small Plasma Focus of Tens of Joules Emitting Neutrons”, to be published by IEEE TPS
For Deuterium, it has been found that densities as high as 10^{25} m$^{-3}$ are reached in the axis, while the line density is of the order of 10^{18} m$^{-1}$.

A. Tarifeño, C. Pavez, J. Moreno and L. Soto “Dynamics and Density Measurements in a Small Plasma Focus of Tens of Joules Emitting Neutrons”, to be published by IEEE TPS
Plasma jets observations in a table
top plasma focus, PF-50J

A. Tarifeño-Saldivia, C. Pavez and L. Soto, ICPP-LAWPP 2010
MINIATURIZATION: NANOFOCUS, \(E < 1J \)

Conceptual design and electrical parameters expected:
\(C=5-10nF, L=5-10nH, V_0=5-15kV \) (\(E \sim 0.06 - 1 \) J)
\(I_{peak}=3kA-15kA, T/4=8ns-16ns \)

Expected neutron yield at 10kA \(Y \sim 10^2 \) neutron/shot

L. Soto, C. Pavez, J. Moreno, A. Clausse and M. Barbaglia PSST 18, 015007 (2009)
H_2 3 mbar

\[E = \frac{1}{2} CV^2 \]
\[C \approx 5 \pm 1 \text{nF} \]
\[V = 6.5 \pm 0.3 \text{kV} \]
\[E \approx 100 \text{mJ!} \]
Repetition rate

\(a = 210 \mu m \quad V = 6.5\text{kV} \quad p = 16\text{mbar} \quad E = 0.1\text{J} \quad P_{\text{peak}} \sim 10\text{MW} \)

9 Hz

\(\langle P \rangle \sim 1\text{W} \)

18 Hz

\(\langle P \rangle \sim 2\text{W} \)
Estimation of X-ray energy

- Assuming a monoenergetic emission, $I = I_0 e^{-\mu \Delta x}$

\[\ln \left(\frac{I}{I_0} \right) = -\mu x \]

\[\mu = (-786.7 \pm 50) \text{ cm}^{-1} \]

$E \sim 4 - 4.3 \text{ keV}$

Neutrons have been detected from Nanofocus

\[\sim 100 \pm 40 \text{ n / shot} \]
The neutrons detection was confirmed by an independent laboratory outside of Chile.
Centro Atómico Bariloche
Argentina
The neutron events observed are 20 standard deviations greater than the background.
Energy density parameter
\[28E/a^3 \sim 5 \times 10^{10} \text{J/m}^3 \]

Drive parameter
\[I/\alpha p^{1/2} \sim 77 \text{kA/cm mbar}^{1/2} \]

\[v_a \propto I/\alpha p^{1/2} \quad v_r \propto I/\alpha p^{1/2} \]

\[r_p \sim (0.1-0.2) a, \ z_p \sim (0.8-1) a \]

<table>
<thead>
<tr>
<th>Device</th>
<th>Energy E (kJ)</th>
<th>Anode radius a (cm)</th>
<th>Peak current I₀ (kA)</th>
<th>Pressure (mbar)</th>
<th>Energy density parameter 28 E/a³ (J/m³)</th>
<th>Driven factor I₀ /p₁/₂a (kA/mbar¹/₂cm)</th>
<th>Ratio Surface to Volume S/V (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-1000</td>
<td>1000</td>
<td>11.5</td>
<td>2000</td>
<td>6</td>
<td>1.8x10¹⁰</td>
<td>72</td>
<td>0.08</td>
</tr>
<tr>
<td>PF-360</td>
<td>60</td>
<td>5</td>
<td>750</td>
<td>4</td>
<td>1.3x10¹⁰</td>
<td>75</td>
<td>0.17</td>
</tr>
<tr>
<td>7kJ PF-Japan</td>
<td>7</td>
<td>1.75</td>
<td>390</td>
<td>6</td>
<td>3.7x10¹⁰</td>
<td>91</td>
<td>0.57</td>
</tr>
<tr>
<td>GN1</td>
<td>4.7</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
<td>1.9x10¹⁰</td>
<td>-</td>
<td>0.53</td>
</tr>
<tr>
<td>Fuego Nuevo II</td>
<td>4.6</td>
<td>2.5</td>
<td>350</td>
<td>3.7</td>
<td>0.8x10¹⁰</td>
<td>73</td>
<td>0.4</td>
</tr>
<tr>
<td>UNU/ICTP-PFF]</td>
<td>2.9</td>
<td>0.95</td>
<td>172</td>
<td>8.5</td>
<td>9.5x10¹⁰</td>
<td>81</td>
<td>1.05</td>
</tr>
<tr>
<td>PACO</td>
<td>2</td>
<td>2.5</td>
<td>250</td>
<td>1.5</td>
<td>3.6x10⁹</td>
<td>95</td>
<td>0.4</td>
</tr>
<tr>
<td>PF-400J</td>
<td>0.4</td>
<td>0.6</td>
<td>127</td>
<td>9</td>
<td>5.2x10¹⁰</td>
<td>70</td>
<td>1.67</td>
</tr>
<tr>
<td>PF-50J</td>
<td>0.07</td>
<td>0.3</td>
<td>60</td>
<td>9</td>
<td>7.3x10¹⁰</td>
<td>66.7</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Energy Density Parameter: 5×10^{10} J/m³

Drive Parameter: 77 kA/cm mbar$^{1/2}$
<table>
<thead>
<tr>
<th>Device</th>
<th>Energy E (kJ)</th>
<th>Anode radius a (cm)</th>
<th>Peak current I (kA)</th>
<th>Pressure P (mbar)</th>
<th>Energy density parameter $28 E/a^2$ (J/m^3)</th>
<th>Drive parameter parameter $I/p^{1/2}$a (kA/mbar^{1/2}cm)</th>
<th>Energy per mass parameter E/a^2p $(\times 10^7$ J/m^3mbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-1000</td>
<td>1064</td>
<td>12.2</td>
<td>2300</td>
<td>6.6</td>
<td>1.6x10^{10}</td>
<td>73.4</td>
<td>8.5</td>
</tr>
<tr>
<td>PF-360</td>
<td>130</td>
<td>6</td>
<td>1200</td>
<td>1.6</td>
<td>1.7x10^{10}</td>
<td>61.4</td>
<td>38</td>
</tr>
<tr>
<td>SPEED2</td>
<td>70</td>
<td>5.4</td>
<td>2400</td>
<td>2.7</td>
<td>1.2x10^{10}</td>
<td>-</td>
<td>15.9</td>
</tr>
<tr>
<td>7kJ PF [27]-</td>
<td>7</td>
<td>1.75</td>
<td>390</td>
<td>6</td>
<td>3.7x10^{10}</td>
<td>91</td>
<td>22</td>
</tr>
<tr>
<td>GN1</td>
<td>4.7</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fuego Nuevo II</td>
<td>4.6</td>
<td>2.5</td>
<td>350</td>
<td>3.7</td>
<td>0.8x10^{10}</td>
<td>73</td>
<td>7.7</td>
</tr>
<tr>
<td>UNU/ICTP- AAAPT</td>
<td>2.9</td>
<td>0.95</td>
<td>172</td>
<td>8.5</td>
<td>9.5x10^{10}</td>
<td>81</td>
<td>4.1</td>
</tr>
<tr>
<td>PACO*</td>
<td>2</td>
<td>2.5</td>
<td>250</td>
<td>1.5</td>
<td>3.6x10^{10}</td>
<td>95</td>
<td>8.5</td>
</tr>
<tr>
<td>PF-400J</td>
<td>0.4</td>
<td>0.6</td>
<td>127</td>
<td>9</td>
<td>5.2x10^{10}</td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>FMPF-1</td>
<td>0.23</td>
<td>0.35</td>
<td>80</td>
<td>5.5</td>
<td>1.5x10^{11}</td>
<td>97</td>
<td>5.35</td>
</tr>
<tr>
<td>200J* Batt-PF</td>
<td>0.2</td>
<td>0.5</td>
<td>83</td>
<td>10</td>
<td>4.5x10^{10}</td>
<td>52*</td>
<td>1.6*</td>
</tr>
<tr>
<td>125J PF</td>
<td>0.125</td>
<td>0.75</td>
<td>62</td>
<td>2</td>
<td>0.83x10^{10}</td>
<td>58*</td>
<td>1.5*</td>
</tr>
<tr>
<td>PF-50J</td>
<td>0.07</td>
<td>0.3</td>
<td>60</td>
<td>9</td>
<td>7.3x10^{10}</td>
<td>66.7</td>
<td>2.9</td>
</tr>
<tr>
<td>0.05</td>
<td>0.3</td>
<td>50</td>
<td>6</td>
<td>6</td>
<td>5.2x10^{10}</td>
<td>68</td>
<td>2.9</td>
</tr>
<tr>
<td>NF* [9]-Chile</td>
<td>0.00025</td>
<td>0.021</td>
<td>6</td>
<td>3</td>
<td>7.6x10^{11}</td>
<td>70</td>
<td>16.9</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.08</td>
<td>4.5</td>
<td>16</td>
<td>3</td>
<td>5.5x10^{9}</td>
<td>52*</td>
<td>0.65*</td>
</tr>
</tbody>
</table>
What have we learned?

Studies on scaling laws for plasma focus
Similarities and differences in devices from 1MJ to 0.1J

It is possible to summarize the following conclusions for any plasma focus experimentally optimized for neutron emission, independent of the initial stored energy:

Similarities

- The *pinch radius and pinch length scale with the anode radius*, and \(r_p \sim (0.1-0.2) \alpha \), \(z_p \sim (0.8-1) \alpha \)

- The mean value of the *pinch ion density scale with the filling gas density*, and \(<n> \sim 18n_0 \sim 5 \times 10^{24} \text{ m}^{-3} \).

- The *drive parameter*, the *energy density parameter* and the *energy per mass parameter* have practically the same value for any plasma focus experimentally optimized for neutron emission. This implies that:

 - The *magnetic field* at the pinch radius has a value of the order of **30 to 40 T** for any PF experimentally optimized for neutron emission.

 - The *Alfvén speed* in the pinch has practically the same value in any PF experimentally optimized for neutron emission.

 - Any PF device with a similar drive parameter, energy density parameter and ion density, has a **temperature** of the same order. Thus, an experimental measure of temperature in a particular PF could be used to estimate the temperature of any PF experimentally optimized for neutron emission. The temperature was measured by other authors in a plasma focus of some kJ by means of spectroscopy techniques in \(\sim 0.6 - 1 \text{ keV} \). Then, it is possible to assume that the temperature in any plasma focus operating properly, included the smallest ones like the PF-50J and the Nanofocus, has a temperature of that order.

Stability parameters

It is depends on I, a, N

Larmor radius over pinch radius, \(\frac{a_i}{a} \propto N^{-1/2} \)

Transient Alfvén time, \(\tau_A = \frac{a}{\nu_A} \propto aN^{1/2}I^{-1} \)

Lundsquisdt number, S \(\propto I^4aN^{-2} \)

Ion cyclotron frequency \(\Omega_i \) by collision time for the ions \(\tau_i \cdot \Omega_i \tau_i \propto I^4 a N^{-5/2} \)
What have we learned?

Studies on scaling laws for plasma focus
Similarities and differences in devices from 1MJ to 0.1J

Differences

• The plasma focus is a self scale device. However, the stability regime, in which a particular PF device lives, depends on the energy of the device and of the size of the anode radius. Large PF devices (hundred of kJ and MJ) are in the ideal MHD region, and are unstable. On the contrary, the smallest device with stored energy less than 1J, Nanofocus, could be presents enhanced stability by means of resistive effects. PF devices in the range of hundred and tens of joules could be present enhanced stability by means of LLR effects.

Different plasma foci that work with stored energy ranging from 0.1 J to 1MJ are plotted in the diagram for Z-pinch stability given by Haines and Coppins

A PF for field applications

Motivation

Development of a confirmation method using the neutron backscattering technique for detection of landmines in arid soils

TC IAEA Project
Motivation

Development of a confirmation method using the neutron backscattering technique for detection of landmines in arid soils

TC IAEA Project

HYDAD-D
HYdrogen Densisty Anomaly Detection

HYDAD-D
HYdrogen Density Anomaly Detection

Sources of Am-Be, 252Cf: 5×10^4 neutrons/s scan 0.5m in 5 min
HYDAD-D at a simulated field with hydrogenated objects under controlled conditions [6]

Arica, Atacama desert, North of Chile, September 11, 2009

ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics Trieste, Italy, 15-26 November, 2010
HYDAD-D at a simulated field with hydrogenated objects under controlled conditions [6]
HYDAD-D in Chile

Challenge: To change the radioactive source by a portable PF
A PF for field applications
PF-2J

PF-50J Nanofocus, 0.1J
A PF for field applications
PF-2J

C = 180 nF, L = 40 nH, V₀ = 5-8 kV, E = 2 - 5 J, I₀ = 10 – 17 kA

Expected neutron emission 10^3-10^4 n/shot
10^4-10^5 n/s at 10 Hz 10^5-10^6 n/s at 100 Hz
Non-radiactive source

PF-2J

Radiactive source
A PF for field applications

PF-2J

C = 180 nF, L = 40 nH, V₀ = 5-8 kV, E = 2 - 5 J, I₀ = 10 – 17 kA
Electrical signals of the current derivative dI/dt and current I. The typical dip in the dI/dt and the drop in I, that correspond to the pinch effect is observed.

Time to dip vs filling pressure for discharges in hydrogen. The time to dip dependence on pressure, $\alpha \sqrt{p_0}$, shows that the device is working as plasma focus.
• A PF device for field applications was designed and constructed, PF-2J

\[C = 180 \text{ nF}, \quad L = 40 \text{ nH}, \quad V_0 = 5-8 \text{ kV}, \quad E = 2-5 \text{J}, \quad I_0 = 10 - 17 \text{ kA} \]

Capacitor bank and discharge chamber:

\[<2000\text{cm}^2 \text{ volume, 5 Kg weight} \]

• Evidence of pinch was obtained

• Next step: Discharges in D\textsubscript{2}
Thank you
References

APPENDIXES
Neutrons detection in Chile involved a detection technique to measure low neutron yields from D-D fusion pulses \([2, 6]\) based on well-known \(^3\)He proportional neutron detectors. The detection principle is based on the \(^3\)He(n,p)\(^3\)H nuclear reaction \([3]\). The \(^3\)He proportional tube is embedded in a hydrogenated material to moderate (or slow down) the neutrons and exploit the increased \(^3\)He reaction cross-section at lower neutron energies. Meanwhile, a cadmium wrapping effectively provides shielding from environmental thermal neutrons. The analogue signal corresponding to the current generated in the \(^3\)He tube is pre-amplified and received by a digital oscilloscope triggered by the plasma discharge electromagnetic pulse. This registers the integrated charge based on a burst of almost simultaneous neutrons interacting with the detectors, which is proportional to the neutron yield. This is called the charge-integration mode, as opposed to the usual “counter” or the “DC” modes of operation. As the electromagnetic pulse from the plasma discharge triggers the oscilloscope, the neutron detection is coincident with the discharge shot. The moderator provides an additional and useful characteristic insofar as neutrons that are generated in the PF pulse (\(~10-100\) ns) are dispersed in a time window of some hundreds of \(\mu\)s, depending on moderator volume and geometry. Thus, neutron signals become separated from initial electromagnetic perturbations (\(~1\) \(\mu\)s) and are also leaked into the \(^3\)He tubes at a reduced rate. Essentially, no neutron background is detected during this observation time window.

A reference silver activation counter was used to calibrate this neutron detection system (including the moderator). In this process, the adapted \(^3\)He and silver activation counter were simultaneously placed in front of a higher-energy plasma focus device (PF-400J \([6]\)) operating at hundreds of joules and producing \(5\times10^5\) to \(2\times10^6\) neutrons per shot, which resulted in a linearly proportional relationship. Note that this technique can detect neutron yields lower than \(10^3\) neutrons per shot \([2]\).

Discharges in deuterium at pressures of less than 1 to 20 mbar were performed. Two identical neutron detectors with a 45 cm \(\times\) 15 cm sensitive area were located 23.5 and 14.5 cm from the plasma pinch for detectors I and II, respectively. Neutron signals were observed between 15 to 16 mbar. Figure 3a shows the electrical discharge signals for a shot at 16 mbar in Deuterium operating at 0.1 J (6.5 kV charging voltage). Evidence for a pinch is observed, as indicated by the dip in the derivative of the current. Figure 3b shows the signals simultaneously obtained in both detectors. The calibration scales were \(780\pm270\) neutrons/V \(\mu\)s and \(300\pm120\) neutrons/V \(\mu\)s for detectors I and II, respectively. This gives an estimated total neutron yield for the shot of \(100\pm40\) neutrons. No signals in the neutron detectors were observed for discharges in hydrogen.
In addition to the neutron signal is preceded by the electromagnetic pulse of the plasma focus discharge, the neutron signal is coincident with the discharge and it is possible to secure that the signal is from the plasma focus event. In discharges in hydrogen in which neutrons are not emitted only the electrical noise is registered in the signal, background radiation is not detected in that small temporal windows of hundreds of microseconds.

The moderator (paraffin) offers three functions to the system detector: a) thermalize the fast neutrons of ~ 2.45 MeV, b) the neutrons generated in the plasma focus pulse (~ 10-100 ns) are dispersed in time (~ 300 μs), reducing saturation effects in the detector, and c) as PF devices generate intense electromagnetic pulses associated with the main discharge (~1 μs) that could contribute to a very significant distortion to the measurement signal, the moderator assures the separation (~30 μs between the electromagnetic noise and the maximum of the neutron signal) of these two signals namely, the true neutron signal from the electromagnetic pulse.
Count rate vs. area under the curve of the signal and the count rate vs. the maximum intensity of the signal, show that a linear relation exists in both cases.
• We will use the linearity with the area under the curve because the objective is use the detector in the region of very low neutron emission, it becomes evident in that independent pulses may not contribute to the ‘height’ of the recorded signal, but contribute to the total area under the signal.

• In fact individual neutrons produce a voltage signal like

\[V_i \exp(-t/RC) \]

with RC the decay time of the preamplifier (50μs in this case)

• and its integrated area is \(A_i = RC V_i \).

• From the nominal gain, \(\alpha \), of the preamplifier (Canberra model 2006),

\[\alpha = 47 \text{mV/Mpi} \]

it is obtained that the charge per volt is \(1/\alpha = 3.4 \times 10^{-12} \text{C/V} \).

• Thus the charge produce for one neutron is \(Q_i = V_i/\alpha = A_i /RC\alpha \).

• The total charge produced, \(Q_T \), is obtained summatting all the individual events, and

\[Q_T = A_T /RC\alpha \]

where \(A_T \) is the total area under the curve of the signal.

• Therefore the total number of neutrons is proportional to the total charge (or to the total area under the curve of the signal).
Calibration of the system

ACTIVATION COUNTER

\[Y = (0.719 \pm 0.008) \times 10^6 \, Q \, [pC] \]
\[Y = (489 \pm 6) \, A \, [V/\mu s] \]

\[\text{Neutron Yield (x10^1)} \]
\[\text{Charge (pC)} \]
Neutrons detection was confirmed in the experiment at Argentina. A neutron detector (A) composed of ten 3He tubes connected in parallel with 4 atm filling gas pressure was embedded in a polythene moderator and wrapped in cadmium. This provided a $110 \text{ cm} \times 130 \text{ cm}$ area sensitive to neutrons. In addition, another moderated detector (B) composed of six 3He tubes with 10 atm filling gas pressure was also used. This detector had a $25 \text{ cm} \times 40 \text{ cm}$ sensitive area. Wrapping both systems in cadmium provided background reduction due to slow ambient neutrons. Digitising oscilloscopes registered the detector signals corresponding to events with the correct pulse shape. In this case, the 3He tubes are polarized in the proportional regime and employed in the “counter” mode of operation. The A and B detectors were located 22 cm and 16 cm from the plasma pinch, respectively. The oscilloscope triggered by the electromagnetic pulse discharged by the plasma registered data 360 μs after the trigger, which was considered an appropriate time window for the moderator with the largest dimensions due to its exponential decay time of 180 μs. An exponential moderator decay time refers to the time distribution according to which moderated neutrons leak out of a given system. In our case, the neutrons may reach the 3He detectors and cause the $^3\text{He}(n,p)^3\text{H}$ reaction.

In order to determine the influence of the discharge on the detectors, 3000 discharges were performed using an electrode configuration in a gas atmosphere that cannot produce fusion reactions. The oscilloscope was triggered by the electromagnetic pulse of the discharges; it detected no signals related to neutron counts. Therefore, we conclude that both A and B 3He detector arrays are adequately shielded and insensitive to induction of spurious counts due to the influence of NF operations. Thus, it was possible to measure the background using different methods over more extended periods in order to gather a useful amount of counts that lend themselves to numerical evaluation. In all cases, the corresponding Poisson uncertainty is the square root of those counts.
1.- L. Soto, C. Pavez, J. Moreno, M. Barbaglia, and A. Clausse, “Nanofocus: ultra-miniature dense pinch plasma focus device with submillimetric anode operating at 0.1J”, Plasma Sources Sci. and Technol. 18, 015007 (2009)

