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Creation and dynamics of knotted vortices
Dustin Kleckner* and William T. M. Irvine*

Knots and links have been conjectured to play a fundamental role in a wide range of physical fields, including plasmas and
fluids, both quantum and classical. In fluids, the fundamental knottedness-carrying excitations occur in the form of linked
and knotted vortex loops, which have been conjectured to exist for over a century. Although they have been the subject of
considerable theoretical study, their creation in the laboratory has remained an outstanding experimental goal. Here we report
the creation of isolated trefoil vortex knots and pairs of linked vortex rings in water using a new method of accelerating specially
shaped hydrofoils. Using a high-speed scanning tomography apparatus, we measure their three-dimensional topological and
geometrical evolution in detail. In both cases we observe that the linked vortices stretch themselves and then deform—as
dictated by their geometrically determined energy—towards a series of local vortex reconnections. This work establishes the
existence and dynamics of knotted vortices in real fluids.

Whereas tying a shoelace into a knot is a relatively simple
affair, tying a field, for example a magnetic field, into
a knot is a different story: the entire space-filling field

must be twisted everywhere to match the knot being tied at the
core. This interplay between knots and the space they live in lies
at the heart of modern topology; beyond the world of mathematics,
there is a growing realization that knots in space-filling fields are an
essential part of physical processes spanning classical and quantum
field theories1–3, liquid crystals4,5, electromagnetism6–8, plasmas9–12,
and quantum and classical fluids13–17, with static knotted structures
having been demonstrated in the nodal lines of weakly focused laser
beams8 and liquid crystals4,5,18.

In fluid and fluid-like systems, there is a long-standing basis
for suggesting that knottedness is a conserved physical quantity,
and that corresponding knotted excitations should exist9–16,19–23.
The relevant knottedness comes in different forms: for example, in
plasmas, the magnetic field lines, which guide the flow of current,
may form stable knots and links. In a classical or quantum fluid—
where the emphasis is on the vorticity field—the prototypical
knottedness-carrying excitations are knotted vortex loops, akin to
smoke rings, but tied into knots. These vortex loops, in which all
vorticity lines are concentrated, act as an organizing centre for the
surrounding flow that in turn determines its evolution.

In an ideal (inviscid) fluid, lines of vorticity can never cross, and
so the topology of vortex loops is preserved: knots stay knotted,
and linked rings stay linked. In real fluids—even superfluids—the
situation is more complicated, and linking can change through
reconnection events, whose detailed dynamics are challenging to
resolve in both theory and experiment. Although interest in knotted
vortices in ideal fluids dates back to Lord Kelvin, who first realized
their topological robustness24, their conjectured role in dissipative
flows has generatedmuch further interest. Tangles of vortex lines—
the sinews of turbulence25—offer insights into understanding flow
and dissipation in hydrodynamics, and much interest lies in
determining their temporal stability and the mechanism through
which knots dissolve. One key issue is the extent and mechanism
for the dissipation of helicity, which is a bulk measure of the
knottedness and linkedness of the flow that has direct counterparts
in many other physical systems, such as magnetic helicity in
plasmas11 or optical fields6,7. So far, experimental tests of these
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ideas have been hampered by the lack of methods for creating
topologically non-trivial vorticity fields on demand.

Here, we report an experimental observation of topological
vortices in the form of trefoil knots and linked pairs of rings,
generated by the acceleration of specially shaped hydrofoils. We
observe rapid vortex stretching for both linked and knotted vortices,
which is not present in isolated vortex rings (unknots), even if they
are strongly distorted. This stretching is accompanied by a change
of vortex geometry to conserve energy, and this process drives the
vortices towards a series of local reconnections. Ultimately, this
results in a change of the vortex topology to a set of unlinked
rings. The present work establishes the existence and dynamics of
long-sought-after knotted vortex loops in experiment and offers
a glimpse into their topological evolution, paving the way for
the experimental study of knotted excitations in hydrodynamic
systems, including turbulent flows and quantum fluids.

The evolution of a collection of vortex loops is far more subtle
than ribbons tied into knots: vortex loops are inherently dynamical
objects transported by a self-generated, space-filling, flow field.
This flow field, u(x), has the same form as the magnetic field
generated by a current flowing around a wire with the same shape
as the vortex core, where the equivalent of current is the circulation
around a path enclosing the core: Γ =

∮
u ·dl . As long as no other

vortices intersect the core, this circulation must be constant around
the vortex loop and is generally conserved in time, owing to the
Kelvin circulation theorem. (Strictly speaking, circulation is exactly
conserved only for an inviscid fluid. However, it will generally be
conserved in the presence of viscosity as long as the vortex cores do
not touch26; this is true even when there is vortex stretching, which
will alter the local energy and vorticity density.) In the limiting
case of the vortex core being infinitely thin, each segment of the
vortex line evolves primarily under the influence of neighbouring
segments. In this local induction approximation (LIA), the velocity
of a point on the filament depends only on the local radius of
curvature of the filament, withmore (less) curved segments moving
faster (slower); generally this implies that non-circular vortices will
continuously deform as they evolve. This approximation captures
the qualitative evolution of shaped filaments19,27 and in 1981, the
existence, under the LIA, of a family of knotted vortex shapes
that evolve without change of form, by propagating and rotating,
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Figure 1 | The creation of vortices with designed shape and topology.
a, The conventional method for generating a vortex ring, in which a burst of
fluid is forced through an orifice. b, A vortex ring in air visualized with
smoke. c, A vortex ring in water traced by a line of ultrafine gas bubbles,
which show finer core details than smoke or dye. d,e, A vortex ring can
alternatively be generated as the starting vortex of a suddenly accelerated,
specially designed wing. For a wing with the trailing edge angled inward,
the starting vortex moves in the opposite of the direction of wing motion
f, The starting vortex is a result of conservation of circulation—the bound
circulation around a wing is balanced by the counter-rotating starting
vortex. g,h, A rendering of a wing tied into a knot (g), used to generate a
knotted vortex (h).

was proved20. More recently, these solutions were shown to be
unstable to linear perturbations28; however, when the LIA is no
longer valid, the interplay of global and local induction complicates
the situation considerably and the evolution of vortex knots remains
a matter of theoretical debate both in the inviscid and viscid
cases21,22. Simulations of knotted vortices with large cores, based
on Navier–Stokes dynamics, suggest that they are short lived29;
however, numerical integration of Biot–Savart vortex evolution
suggests that finite core size may enhance stability21. Quantitatively,
capturing the details of even the evolution of a simple ring remains
a surprisingly resilient problem30. Resolving such subtle questions
therefore requires both the generation of knotted flows in the
laboratory, and an effective means of three-dimensional (3D)
imaging of the evolution of the resulting flow with a high degree
of spatial and temporal resolution.

The conventional method for making a vortex loop is to force a
burst of fluid out of an orifice (Fig. 1a–c and Supplementary Movie
S1). It has been suggested that two perturbed rings could be collided
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Figure 2 | Scaling of trefoil knot vortex loops. a, An overlay of vortex knots
taken at the same rescaled time. The vortex r.m.s. radii are r̄=60, 45, 30
and 22.5 mm for red, yellow, green and blue colouring, respectively. The
generating wing speed is 3.10 m s−1 for all except the largest vortex knot,
for which it is 2.15 m s−1. The biggest vortex (red) is slightly larger than the
imaging field of view, resulting in some clipping on the left edge. b, The
same knots as shown in a, scaled inversely proportional to the original
hydrofoil dimensions. c, A photograph of the four knot-generating wings.
d, The rescaled time, t∗, of the first reconnection event. With the exception
of the smallest linked rings (which are affected by background flow from
the apparatus), we observe that the rescaled reconnection time is
independent of the Reynolds number.

to create a knotted vortex23, but to our knowledge this has never
been demonstrated experimentally (our own attempts indicate that
the strong perturbations to the shape of a vortex resulting from
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the reconnection events make this difficult). As an alternative,
we generate vortex loops based on the starting vortex shed by a
suddenly accelerated wing (Fig. 1d,e and SupplementaryMovie S2).
A wing that is producing lift generates a flow that is faster on the
top than the bottom. This can be represented as a superposition of
a uniform background flow and a flow circulating around the wing.
When this wing is suddenly accelerated from rest, the circulation
created and carried by the wing is balanced by a second counter-
rotating vortex line (Fig. 1f), close to the trailing edge of thewing26.

We design hydrofoils (a wing designed for use in water) whose
trailing edges trace the desired vortex shape. The tilt of the hydrofoil
is kept constant everywhere except near the vicinity of crossing
points (where the vortex lines overlap, as viewed from the front),
where it is slightly reduced. The hydrofoils (Fig. 2c) are then
fabricated using a 3D printer, and attached to a frame that is
accelerated in a tank of water. The Reynolds number of our system
is in the range 104–105, determined by the characteristic size of
the hydrofoils, and the speed to which they can be smoothly
accelerated (see Supplementary Methods for experimental details).
A vortex knot produced by this method is shown in Fig. 1h and
Supplementary Movie S3.

An experimental challenge in determining the topology of vortex
lines is that it can be done only with 3D data. To image the core
geometry, we use tiny (∼100 µm) buoyant gas bubbles, which act as
fine indicators for regions of high vorticity31, without affecting the
nature of the flow in our experiments. To reconstruct the bubbles
trapped in the core in three dimensions, we scan a 1.5W laser
sheet over the experimental volume and record illuminated slices of
the volume at 76,000 frames per second with a high-speed camera
synchronized to the scanning motion. The 2D stream is converted
to a volumetric data set of resolution 384 × 384 × 384 voxels
(each approximately 400 µm cubed), spaced by 5.5ms, sufficient
to resolve the core evolution with considerable structural and
temporal detail (see Methods for details).

Using the hydrofoil starting vortex method, we have successfully
created two elemental topological vortices: trefoil knots and pairs
of linked rings (Hopf links). As little is known analytically about
the shape of stable vortex knots in fluids with non-zero viscosity,
we chose the shape of our hydrofoils to match that of the invariant
LIA solution for a trefoil knot, although departures from this shape
did not qualitatively change the dynamics. The linked rings were
shed from linked circular hydrofoils (see Methods for details). To
test the generality of our approach, we compared the results of
experimental runs with hydrofoils of different mean radii, r̄ , and
accelerated to different speeds, U0. Figure 2 shows the overlay of
a range of trefoil vortex knots taken at the same rescaled time
t ′= t × (U0Ch/r̄2), and rescaled position x ′= x× (1/r̄), where Ch
is the chord of the hydrofoil (front to back length). After rescaling,
the shape of our vortex loops, with a Reynolds number in the range
∼2× 104–6× 104, shows considerable overlap, demonstrating the
robustness and repeatability of the approach.

Unlinked rings created using our starting vortex method behave
as expected: circular rings simply move forward without changing
shape (Supplementary Movie S2), and symmetrically distorted
loops undergo regular oscillations (Supplementary Movies S4 and
S5). The time evolution of trefoil knots and linked rings shows
unexpected features (Fig. 3 and Supplementary Movies S6–S9). For
both trefoil knots and linked rings, we observe that after an initial
formation stage, the vortex loops propagate and rotate (for the
trefoil knot, rotation is slower than LIA predictions: Ω ∼ 0.5ΩLIA).
However—crucially—the motion is not rigid: the vortices are
observed to lengthen and deform towards a series of localized
reconnections. Nearby regions of the vortex loop can be seen to
approach one another, becomenearly parallel, and twist around one
another until they eventually collide (Fig. 3c and Supplementary
Movies S10 and S11). After the resulting reconnection event,

the vortex lines rapidly retreat, exciting prominent Kelvin waves
(helical excitations of the vortex filament32) on the remaining
vortex loops. This excitation modulates the core, propagating
along it with a twisting motion. The deformation before the
reconnection is reminiscent of the vortex bridging previously seen
in simulations of vortex knots with large cores, where extended
pairs of closely spaced counter-circulating vortex lines are observed
before reconnections29. Ultimately, the result of the reconnections
is that the topology of the vortices changes to a pair of unlinked
rings. The separation between the resulting rings then increases as
a function of time, with the front vortex having a smaller size and
hence higher forward velocity (Fig. 4c,e).

Quantitatively, we use the rescaled time of the vortex recon-
nections as a measure of the lifetime of our linked vortices:
t ∗ = (U0Ch/r̄2)t1, where t1 is the time of the first reconnection
measured relative to the beginning of the hydrofoil acceleration
(Fig. 2d). For a given geometry, we find that t ∗ varies minimally
over the range of tested speeds and scalings, except for the smallest
linked rings, r̄ = 20mm; we attribute this to a disturbance created
by the background flow from the acceleration frame.

Under the assumption that the vorticity is concentrated in thin
cores that preserve circulation, the flow field and energetics can be
reconstructed by tracing the core centreline.We use a fast-marching
algorithm33 to connect visually identified points along the core(s)34,
yielding their 3D coordinates. From the vortex geometry, the flow
field outside the core can be calculated by the Biot–Savart law:

u(x)=
∑
i

Γi

4π

∮
Ci

dr i×(r i−x)
|r i−x|3

(1)

where Γi is the circulation of the vortex loop with closed core path
Ci. Stream lines (integral lines of the flow field) are shown for several
different vortex structures in Fig. 5. Similarly, the total energy of
the vortex is given by:

E =
ρ

2

∑
i,j

ΓiΓj Eij (2)

Eij '
1
4π

∮
Ci

∮
Cj

|ri−rj |>a/2

dr i ·dr j
|r i−r j |

+δij
Y
2π
`i (3)

where for each pair of vortex loops Ci and Cj , Eij is the ‘path induc-
tance’, which has units of length and is identical to the expression for
the magnetic inductance of conducting wires with the same geom-
etry, up to electromagnetic unit factors. The divergence in the self-
inductance, Eii, is regularized by a short-range cutoff, |ri− rj |> a/2,
identified with the vortex core radius, a, that leads to the second
term, (Y /2π)`i, where `i is the length of loop i andY ∼1/4 is a small
dimensionless correction factor that depends on the core model35
(see SupplementaryMethods for calculation details). By providing a
purely geometric measure of the vortex energy, the path inductance
yields insights into the evolution of the shape of the vortex.

Figure 4f–h shows the total vortex loop lengths, `, and total path
inductance, E , for a three-fold distorted ring, a trefoil knot and
a pair of linked rings (for multiple vortices, we assume they have
equal circulation Γi, and define E≡

∑
i,j Eij so that E= (1/2)ρΓ 2E).

Significant differences are observed between the behaviour of
linked and unlinked vortex structures. Perfectly circular vortex
loops are essentially invariant in shape, and the length of the
three-fold distorted ring oscillates by ∼5%. In contrast, the length
of both the trefoil and linked rings increases markedly (∼40%) as
they approach reconnection events. Their corresponding energies
depend on the core size, a, which we do not directly resolve.
Accordingly, we calculate the self-energy (inductance) for both a
range of constant core sizes (teal, Fig. 4f–h) and for a viscously
diffusing core (a =

√
4νt , where ν = 1mm2 s−1 is the kinematic

NATURE PHYSICS | VOL 9 | APRIL 2013 | www.nature.com/naturephysics 255

© 2013 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys2560
http://www.nature.com/naturephysics


ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS2560

0 2 4 6 8 10 12 14

t 100 

t∗

t∗

0 ms 200 300 400 500 600

450 ms350 ms 250 ms

225 ms

300 ms 350 ms 400 ms

475 ms

z

(Side view)

z

Distance/ 
depth (mm)

z x/y

b

fed

+20

0

181614121086420

a c

¬20

Figure 3 | Topological evolution of linked and knotted vortex loops in three dimensions. a–f, Reconstructed images of a trefoil vortex knot (̄r=45 mm;
a–c) and a pair of linked rings (each with r=40 mm; d–f), The large images (a,c,d–f) show the entire vortex structure as viewed from the front, and b shows
three sub-images of a reconnection event for the trefoil knot, shown from the side (the shown sub-region is indicated with dashed lines in a,c). These
images are designed to be viewed with red–cyan 3D glasses, but the depth of the vortex lines can also be determined from the provided scale bar (depth
indicated with the circles at left). A timeline in the centre indicates the real and rescaled time, as well as indicating the topological evolution of the vortices.

viscosity of the fluid), shown in orange. The calculated energy for
a circular or the three-fold distorted ring either varies minimally
(for fixed core size) or decreases logarithmically (viscously diffusing
core). Although the core size should increase owing to viscous
diffusion, thereby reducing the total energy of the vortex loop, it
does not change the core centreline dynamics apart from a slow
(logarithmic) decrease in overall velocity.

For both knots and links, the path inductance, and hence energy,
stays approximately constant despite the marked increase in length.
To conserve energy, the lengthening process is associated with
vortex bridging, where pairs of vortex lines in opposing directions
approach one another; bridge regions decrease the total energy
because the circulation is in opposite directions in the regions
of close approach (in equation (3), dr i ·dr j < 0 for the bridges,
reducing energy). For the linked rings, the quantitative effects of
this shape change are captured by the mutual inductance of the
two loops, E12, which is originally positive, but becomes negative
as the bridges grow (Fig. 4h). Ultimately, as this overall vortex line
stretching progresses, parts of the vortex loop will necessarily be
driven more closely together, culminating in a reconnection event
in the case of both linked rings and trefoil knots.

Following a reconnection, the tracer bubbles are considerably
displaced, making it challenging for line-tracking algorithms to
automatically track the vortex loop after they occur. However, for
the case of the linked rings, we were able to track the core shape

immediately following the first reconnection event (Fig. 4h), and
observe almost no change in the path inductance. This apparent
lack of dissipation in the reconnection event may be explained by
the fact that the bridges have a much lower energy density than
other regions of the vortex loop.On longer timescales, the excitation
of Kelvin waves along the vortex filament, as seen in the raw data,
leads to significant core disruption and may dissipate energy; the
mechanics of these excitationswill be the subject of future study.

The topological evolution of vortex knots observed in our system
offers an experimental window into knotted excitations that are
thought to occur in a wide range of continuous phases, such
as plasmas11, Bose–Einstein condensates22, superfluids and other
nonlinear fields2,3. As the topological dynamics are intrinsically
geometric, our system provides a unique opportunity for exper-
imentally probing many aspects of inherently dynamical knotted
excitations that are difficult or impossible to observe directly in
other physical systems. We note, for example, that the general
reconnection sequence is similar to that seen in recent simulations
of knotted vortices in Bose–Einstein condensates based on the non-
linear Schrödinger equation22. Furthermore, knots and links have
been conjectured to appear in classical and superfluid turbulence,
where their ephemeral structuremakes themchallenging to resolve.

A key question in all of these systems is the existence of an
arrow of knottedness: the extent to which helicity, and hence the
knottedness and linkedness of the field lines, is conserved. Do stable
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Figure 4 | Topological and energetic evolution of several types of vortex loop. a, Snapshots of a pair of linked vortex loops evolving at t= 150, 300,
450 ms, as viewed from the side. b–e, The integrated intensity as a function of z and t, for an unlinked ring (b), a pair of linked rings (c), a three-fold
distorted ring (d) and a trefoil knot (e). In each case, the reconstructed 3D volume is integrated over x and y to show the evolution of the vortex in the
primary direction of motion. For the c,e, the original linked structure is seen to evolve into two unlinked, distorted, rings of different size, which separate as
a function of time. In d, the three-fold ring, distorts out of plane as it evolves, and shows shape oscillations with a half-period of∼400 ms. f–h, The length,
`, and total path inductance, E , of a three-fold distorted ring (f), a trefoil knot (g) and a pair of linked rings (h), obtained from a core-tracing algorithm. A
shorter time span is plotted for the linked structures (g,h); this corresponds to the unshaded region in f. The time of the first reconnection event
(∼300 ms) is shown as a red vertical line in g,h. The length (black) is seen to increase markedly for the linked and knotted vortices, but not for a three-fold
distorted loop. The path inductance is shown both for a range of constant core sizes (teal: the centre dots are for 1 mm, and the filled region is 0.7–1.5 mm),
and for a viscously determined core (orange, where a=

√
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Figure 5 | Reconstruction of the vortex core and flow field from raw 3D data. a–c, The rendered data correspond to a three-fold distorted loop (a), a trefoil
knot (b) and a pair of linked rings (slightly after the first reconnection event; c). For each, the raw tomography data (white) are shown superimposed with
the traced core (red) and several instantaneous streamlines (blue to yellow, calculated from the traced core and equation (1)). All are shown on the same
scale (̄r=40 mm for the three-fold distorted loop). Individual streamlines for the three-fold distorted loop (a) are nearly planar in the region around core.
This is qualitatively different from the case for the linked and knotted structures (b,c) where the streamlines are observed to travel along the core as they
circle it; this is attributable to the presence of helicity in the flow.

knot types or shapes exist? If helicity is wholly or partially conserved,
what consequences does this conservation have on fluid kinetics?
If not, what mechanisms lead to its irreversible dissipation? In the
case of our linked and knotted vortices, the flow of helicity may be
tracked by imaging twistedness of the core after a reconnection—
a significant challenge for future experiments. The techniques
introduced here make it possible to create and study the evolution
of vortices with different topologies, for example, Borromean-like
links or non-fibred knots. The observations of trefoil vortex knots

and linked rings reported here offer a glimpse into the dynamics of
isolated vortex knots, including topology-changing reconnections
and their energetics, paving the way for the generation and
exploration of these fascinating excitations of nature.

Methods
Hydrofoil fabrication. The hydrofoil models are generated using a Python
script that creates a simple wing profile that has a trailing edge that traces the
desired vortex geometry. Our reference wing profile (used for trefoil knots with
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r̄ = 45mm and linked rings with r̄ = 40mm) has a chord of 15mm with a
maximum cross-section thickness of 2.5mm tapering to 0.15mm at the trailing
edge (see Supplementary Methods for more information). The leading edge is
always parallel to the direction of motion, and the trailing edge is bent to an
angle of 15◦ with respect to the leading edge and acceleration direction. Near the
vortex crossing points, the bend of the wing is reduced to 4◦ in a narrow region
to minimize the disturbance from a hydrofoil passing through an existing vortex
(see Supplementary Fig. S1b,c). To keep vortex forward velocity approximately
constant, we scale the wing dimensions with the vortex size, with the exception
of the smallest vortices, where it would be too fragile. The hydrofoil designs
are fabricated with a commercial 3D printer (Objet Connex 350) using an
ultraviolet-cured polymer (Objet VeroWhite).

As little is known analytically about the shape of stable vortex knots in fluids
with non-zero viscosity, we chose the shape of our hydrofoils to match that of the
invariant LIA solution for a trefoil knot20, characterized by a dimensionless rotation
rate: ΩLIA =ωr̄/v = 0.21 (Supplementary Fig. S1b,d). We also tested departures
from this shape in the form of torus knots with a similar aspect ratio; this did not
qualitatively change the dynamics discussed below.

In the case of linked rings, the LIA provides no guidance because it neglects
interactions between different vortices. Experimentally, however, vortex rings
are known to interact strongly, for example, scattering off or repeatedly passing
through one another36. The linked rings shown in Fig. 3b and Supplementary
Movies S8 and S9 were shed from hydrofoils shaped into two circles, offset by their
radius and rotated along the axis joining their centres by±20◦ (Supplementary Fig.
S1c,e). As with the knot, we found that slight modification of the ring arrangement
did not qualitatively affect dynamics.

Imaging and 3D reconstruction. The bubbles used to image the vortex loops
are created by electrolysis. To generate slices of the sample volume for 3D recon-
struction, a 1.5W, 532 nm ND:YAG laser is spread into fan with a cylindrical lens
approximately 1m away from the sample volume. This laser fan has a vertical spread
of 8◦ full-width at half-maximum and is focused to ∼0.2mm horizontal width in
the experimental volume. Horizontal scanning is provided by a galvanometer near
the cylindrical lens, which is driven by a sawtooth wave. This scanning is synced to
a high-speed camera (Vision Research Phantom V1610) recording at 76,000 frames
per second, resulting in a captured volume of 384×384×384 with a resolution of
∼(400 µm)3 per voxel (some frames are discarded in the scan turn-around time).
The laser sheet scan amplitude is adjusted so that the voxels have an aspect ratio of
1 at the centre of the image. To enhance the scattering amplitude, the camera axis
is angled approximately 10◦ to the laser sheet normal. The data are corrected for
perspective effects and reconstructed using 4Dviewing softwarewritten in Python.

Line tracing. To trace the geometry of our vortex loops, we use the fast-marching
algorithm33 to connect 5–20 visually identified points along the vortex loops. To
precisely follow the vortex loops, we compute the shortest path between pairs of
points with the constraint that the speed is proportional to the intensity of the orig-
inal recorded data, which are slightly blurred to reduce noise. In the rare case that
a section of the vortex loop becomes exactly aligned with the laser sheet or camera,
rendering it dark and untraceable, the ends of the darkened region are marked by
hand, and a straight line is used to connect these points. (The darkened regionsmust
be nearly straight, or they would not remain dark, and so this does not seem to intro-
duce any resolvable error in the length or path inductance calculation.) The resulting
paths are perspective corrected after the line tracking is complete. This method is
an adaptation of techniques used to map blood vessels in medical images34. For our
data, the obtained paths are extremely reproducible as long as the vortex loop is
reasonably well coveredwith bubbles; this primarily limits us to tracking the vortices
only up to the reconnection events, which can significantly disrupt the core imaging.
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