
Classical Mechanics of Nonconservative Systems

Chad R. Galley*

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 and Theoretical Astrophysics,
California Institute of Technology, Pasadena, California 91125, USA

(Received 1 September 2012; published 22 April 2013)

Hamilton’s principle of stationary action lies at the foundation of theoretical physics and is applied in

many other disciplines from pure mathematics to economics. Despite its utility, Hamilton’s principle has a

subtle pitfall that often goes unnoticed in physics: it is formulated as a boundary value problem in time but

is used to derive equations of motion that are solved with initial data. This subtlety can have undesirable

effects. I present a formulation of Hamilton’s principle that is compatible with initial value problems.

Remarkably, this leads to a natural formulation for the Lagrangian and Hamiltonian dynamics of generic

nonconservative systems, thereby filling a long-standing gap in classical mechanics. Thus, dissipative

effects, for example, can be studied with new tools that may have applications in a variety of disciplines.

The new formalism is demonstrated by two examples of nonconservative systems: an object moving in a

fluid with viscous drag forces and a harmonic oscillator coupled to a dissipative environment.
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Hamilton’s principle of stationary action [1] is a corner-
stone of physics and is the primary, formulaic way to derive
equations of motion for many systems of varying degrees
of complexity—from the simple harmonic oscillator to
supersymmetric gauge quantum field theories. Hamilton’s
principle relies on a Lagrangian or Hamiltonian formula-
tion of a system, which account for conservative dynamics
but cannot describe generic nonconservative interactions.
For simple dissipation forces local in time and linear in the
velocities, one may use Rayleigh’s dissipation function [1].
However, this function is not sufficiently comprehensive
to describe systems with more general dissipative features
like history dependence, nonlocality, and nonlinearity that
can arise in open systems.

The dynamical evolution and final configuration of
nonconservative systems must be determined from initial
conditions. However, it seems under appreciated that while
initial data may be used to solve equations of motion
derived from Hamilton’s principle, the latter is formulated
with boundary conditions in time, not initial conditions.
This observation may seem innocuous, and it usually is,
except that this subtlety may manifest undesirable features.
Remarkably, resolving this subtlety opens the door to
proper Lagrangian and Hamiltonian formulations of
generic nonconservative systems.

An illustrative example.—To demonstrate the shortcom-
ing of Hamilton’s principle, consider a harmonic oscillator
with amplitude qðtÞ, massm, and frequency! coupled with
strength � to another harmonic oscillator with amplitude
QðtÞ, massM, and frequency�. The action for this system is

S½q;Q� ¼
Z tf

ti

dt

�
m

2
ð _q2 �!2q2Þ þ �qQ

þM

2
ð _Q2 ��2Q2Þ

�
: (1)

The total system conserves energy and is Hamiltonian but
qðtÞ itself is open to exchange energy with Q and should
thus be nonconservative. For a large number ofQ oscillators
the open (sub)system dynamics for q ought to be dissipative.
Let us account for the effect of the Q oscillator on qðtÞ

by finding solutions only to the equations of motion for Q
and inserting them back into (1), which is called integrat-
ing out. The resulting action,

Seff½q� ¼
Z tf

ti

dt

�
m

2
ð _q2 �!2q2Þ þ �qQðhÞðtÞ

þ �2

2M

Z tf

ti

dt0qðtÞGretðt� t0Þqðt0Þ
�
; (2)

is the effective action for qðtÞ, though it is sometimes called

a Fokker action [2]. QðhÞðtÞ is a homogeneous solution
(from initial data) and Gretðt� t0Þ is the retarded Green
function for the Q oscillator.
The last term in (2) involves two time integrals and the

product qðtÞqðt0Þ. The latter is symmetric in t $ t0 and
couples only to the time-symmetric part of the retarded
Green function. Hence, the last term in (2) equals

�2

2M

Z tf

ti

dtdt0qðtÞ
�
Gretðt� t0Þ þGadvðt� t0Þ

2

�
qðt0Þ (3)

when using the identity Gretðt0 � tÞ ¼ Gadvðt� t0Þ.
Applying Hamilton’s principle to the effective action (2)
yields the equation of motion for qðtÞ,

m €qþm!2q ¼ �QðhÞðtÞ þ �2

2M

Z tf

ti

dt0½Gretðt� t0Þ

þGadvðt� t0Þ�qðt0Þ: (4)

There are a couple of key points regarding (4). First, the
second term on the right side depends on the advanced
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Green function implying that solutions to (4) do not evolve
causally nor are specified by initial data alone. Second, the
kernel of the integral in (4) is symmetric in time, which
means that the integral describes conservative interactions
between q and Q. Consequently, (4) does not account
for dissipation, a time-asymmetric process, that should be
present when there are N � 1 of the Q oscillators.

These undesirable features can be traced back to the very
formulation of Hamilton’s principle, which solves the
problem: ‘‘Find the path ~qðtÞ passing through the given
values ~qi at t ¼ ti and ~qf at t ¼ tf that makes the action

stationary’’ (see the left cartoon in Fig. 1). Stated in this
way, it is clear that Hamilton’s principle is appropriate for
systems satisfying boundary conditions in time, not initial
conditions. According to Sturm-Liouville theory [3], the
time-symmetric integration kernel in (4), which is a Green
function itself, satisfies boundary conditions in time.
Likewise, boundary conditions in time imply that the
corresponding Green function is time symmetric. This
example indicates an intimate connection in the variational
calculus between boundary (initial) conditions and conser-
vative (nonconservative) dynamics.

In the remainder, I formulate Hamilton’s principle
with initial conditions for general systems, report some
consequences, and present some examples.

Hamilton’s principle with initial data.—A hint for
how to proceed comes from the previous example. The
advanced Green function in (3) and (4) appears because the
factor qðtÞqðt0Þ couples only to the time-symmetric part
of the retarded Green function. ‘‘Breaking’’ the symmetry
by introducing two sets of variables, say q1 and q2, implies
that q1ðtÞq2ðt0Þ will couple to the full retarded Green
function, not just its time-symmetric part. Varying with
respect to only q1 gives the correct force, provided one
sets q2 ¼ q1 after the variation [4]. This procedure is
formalized and developed for general systems below.

Let ~q � fqigNi¼1 and _~q � f _qigNi¼1 be a set of N general-

ized coordinates and velocities of a general dynamical
system. Formally, double both sets of quantities, ~q !
ð ~q1; ~q2Þ and _~q ! ð _~q1; _~q2Þ. Parametrize both coordinate
paths as ~q1;2ðt; �Þ ¼ ~q1;2ðt; 0Þ þ � ~�1;2ðtÞ, where ~q1;2ðt; 0Þ

are the coordinates of the two stationary paths, � � 1,
and ~�1;2ðtÞ are arbitrary virtual displacements. To ensure

that enough conditions are given for varying the action, we
require that (1) ~�1;2ðtiÞ ¼ 0 and (2) ~q1ðtf; �Þ ¼ ~q2ðtf; �Þ
and _~q1ðtf; �Þ ¼ _~q2ðtf; �Þ for all � (the equality condition).

The equality condition does not fix either value at the final
time since the values they equal are not specified. After all
variations are performed, both paths are set equal to each
other and identified with the physical one, ~qðtÞ (the physi-
cal limit). See the right cartoon in Fig. 1.
The action functional of ~q1 and ~q2 is defined here as the

total line integral of the Lagrangian along both paths plus
the line integral of a function K (discussed below) that
depends on both paths f ~qag2a¼1 and cannot generally be
written as the difference of two potentials,

S½ ~qa� �
Z tf

ti

dtLð ~q1; _~q1Þ þ
Z ti

tf

dtLð ~q2; _~q2Þ

þ
Z tf

ti

dtKð ~qa; _~qa; tÞ;

¼
Z tf

ti

dt½Lð ~q1; _~q1Þ � Lð ~q2; _~q2Þ þ Kð ~qa; _~qa; tÞ�: (5)

This action defines a new Lagrangian

�ð ~qa; _~qaÞ � Lð ~q1; _~q1Þ � Lð ~q2; _~q2Þ þ Kð ~qa; _~qa; tÞ: (6)

If K could be written as the difference of two potentials,
Vð ~q1Þ � Vð ~q2Þ, then it could be absorbed into the differ-
ence of the Lagrangians in (5), leaving K zero [8]. Thus, a
nonzero K describes generalized forces that are not deriv-
able from a potential (i.e., nonconservative forces) and
couples the two paths with each other.
It is convenient, but not necessary, to make a change of

variables to ~qþ ¼ ð ~q1 þ ~q2Þ=2 and ~q� ¼ ~q1 � ~q2 because
~q� ! 0 and ~qþ ! ~q in the physical limit. The conjugate
momenta in the� variables, regarded as functions of the�
coordinates and velocities, are found to be ~�� ¼ @�=@ _~q�,
and the paths are parametrized as ~q�ðt; �Þ ¼ ~q�ðt; 0Þ þ
� ~��ðtÞ. The new action (5) is stationary under these var-
iations if 0 ¼ ðdS½ ~q��=d�Þ�¼0 for all ~��, or

0 ¼
Z tf

ti

dt

�
~�þ �

�
@�

@ ~qþ
� d ~��

dt

�
0
þ ~�� �

�
@�

@ ~q�
� d ~�þ

dt

�
0

�

þ ½ ~�þðtÞ � ~��ðtÞ þ ~��ðtÞ � ~�þðtÞ�tft¼ti ; (7)

where the subscript 0 denotes evaluation at � ¼ 0 and
~�þ � ~�� ¼ P

N
i¼1 �þi��i, etc.

The equality condition requires ~q1ðtf; �Þ ¼ ~q2ðtf; �Þ and
_~q1ðtf; �Þ ¼ _~q2ðtf; �Þ so that ~��ðtfÞ ¼ 0 and ~��ðtfÞ ¼ 0.

With ~��ðtiÞ ¼ 0 it follows that the boundary terms in (7)
all vanish. Thus, (7) is satisfied for any ~��ðtÞ provided that
the two variables ~q�ðtÞ solve

d ~��
dt

¼ @�

@ ~q�
: (8)

FIG. 1 (color online). Left: A cartoon of Hamilton’s principle.
Dashed lines denote the virtual displacements and the solid line
denotes the stationary path. Right: A cartoon of Hamilton’s
principle compatible with initial data (i.e., the final state is not
fixed). In both cartoons, the arrows on the paths indicate the
integration direction for the line integral of the Lagrangian.
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Of course, one could have used the ~q1;2 coordinates instead

to find d ~�1;2=dt¼@�=@ ~q1;2 with ~�1;2 ¼ ð�1Þ1;2@�=@ _~q1;2
regarded as functions of ~q1;2 and

_~q1;2.
In the physical limit (PL), only the d ~�þ=dt ¼ @�=@ ~q�

equation in (8) survives, yielding

d ~�ð ~q; _~qÞ
dt

¼
�
@�

@ ~q�

�
PL

¼ @L

@ ~q
þ

�
@K

@ ~q�

�
PL
; (9)

where the conjugate momenta are

~�ð ~q; _~qÞ ¼
�
@�

@ _~q�

�
PL

¼ @L

@ _~q
þ

�
@K

@ _~q�

�
PL
: (10)

When K ¼ 0 the generalized forces are derived from
potentials and one recovers the usual Euler-Lagrange
equations. A nonzero K can be regarded as a ‘‘nonconser-
vative potential.’’

In the physical limit, only the Euler-Lagrange equation
for theþ variable survives. Hence, expanding the action in
powers of ~q�, the equations of motion in (9) and (10) also
follow from the variational principle:

0 ¼
�
�S½ ~q��
� ~q�ðtÞ

�
PL
: (11)

Only terms in the new action (5) that are perturbatively
linear in ~q� contribute to physical forces.

A new Hamiltonian A is defined by Legendre transform-
ing the new Lagrangian with respect to the usual conjugate
momenta for each path, ~p1 and ~p2 [9],

Að ~q1;2; ~p1;2Þ� ~p1 � _~q1� ~p2 � _~q2��ð ~q1;2; _~q1;2Þ
¼Hð ~q1; ~p1Þ�Hð ~q2; ~p2Þ�Kð ~q1;2; _~q1;2;tÞ;

(12)

where _~q1 and _~q2 are now functions of their respective
coordinates and momenta. Writing (12) in the � variables
gives

Að ~q�; ~p�Þ ¼ ~pþ � _~q� þ ~p� � _~qþ ��ð ~q�; _~q�Þ: (13)

Both (12) and (13) can be written as

Að ~qa; ~paÞ ¼ ~pa
_~qa ��ð ~qa; _~qaÞ; (14)

where a ‘‘metric’’ cab is introduced to raise and lower the
indices labeling the doubled variables: (1, 2) in (12) and
(þ , �) in (13). For the former cab ¼ diagð1;�1Þ and for

the latter cab ¼ offdiagð1; 1Þ so that ~pa
_~qa ¼ cab ~pa

_~qb
(repeated indices are summed), where cab is the inverse
of cab. Define new Poisson brackets by

fff; ggg � @f

@ ~qa
� @g

@ ~pa

� @f

@ ~pa

� @g

@ ~qa
; (15)

which can be shown to satisfy Jacobi’s identity.
Then, Hamilton’s equations follow by extremizing the
action (5), giving

_~qa¼ @A

@ ~pa¼ ff ~qa;Agg; _~pa¼� @A

@ ~qa
¼ ff ~pa;Agg: (16)

Note the index positions since they are raised and lowered
by the metric cab. In the physical limit, (16) becomes
Hamilton’s equations for a nonconservative system,

_~q ¼ @H

@ ~p
�

�
@K

@ ~p�

�
PL

¼ f ~q; Hg � ½ff ~q�; Kgg�PL;

_~p ¼ �@H

@ ~q
þ

�
@K

@ ~q�

�
PL

¼ f ~p;Hg � ½ff ~p�; Kgg�PL:
(17)

The total time derivative of the energy function [1],

hð ~q; _~qÞ ¼ _~q � @L
@ _~q

� L; (18)

follows from the usual manipulations [1], which here give

dh

dt
¼ �@L

@t
� _~q �

�
d

dt

@K

@ _~q�
� @K

@ ~q�

�
PL
: (19)

The amount of energy entering or leaving the system is
determined by K when @L=@t ¼ 0 and can be found
directly from the new Lagrangian.
Example: viscous drag forces.—This new formalism can

be used like the standard theory. Consider the following
new Lagrangian, given in the � variables:

�ð ~x�; _~x�Þ ¼ m _~x� � _~xþ � �~x� � _~xþj _~xþjn�1; (20)

where n ¼ 1 (linear) or 2 (nonlinear). The first term is the

difference of the two kinetic energies (¼ m _~x21=2�m _~x22=2),
and the second term is K. The new Lagrangian (20) is
unique up to terms nonlinear in ~x� and its time derivatives,
which don’t contribute to physical forces [see (11)]. Using
(11), or (9) and (10), gives the equations of motion in the

physical limit, m €xi ¼ �� _xij _~xjn�1. For n ¼ 1 the force is
proportional to � _xi and for n ¼ 2 it is proportional to

� _xij _~xj. The former is Stokes’ law for the drag force on a
spherical object moving slowly through a viscous fluid and
the latter is a nonlinear drag force for motions with a large
Reynolds number [10]. The key point is that these (non-
linear) equations for dissipative motion are derived from a
(new) Lagrangian.
To show that the resulting solutions from initial data

are consistent with the new Hamilton’s principle, it is
sufficient to consider slow motions (n ¼ 1) for which the
equations of motion are linear. In the � variables, the new
Euler-Lagrange equations arem €xi� ¼ �� _xi�. The physical
limit implies that ~xþ is determined by the physical initial

data, ~xþðtiÞ ¼ ~xi and
_~xþðtiÞ ¼ ~vi, while ~x� is specified by

final data, ~x�ðtfÞ ¼ 0 ¼ _~x�ðtfÞ, according to the equality

condition. Because ~x� does not survive the physical
limit, prescribing (trivial) data for ~x� at the final time
is of no physical consequence. The resulting solutions

are ~x�ðtÞ ¼ 0 and ~xþðtÞ ¼ ~xi þm ~vi=�½1� e��ðt�tiÞ=m�.
The former automatically imposes the physical limit so
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that ~xþðtÞ is the physically correct solution. The new action
is stationary for these solutions, as can be shown by direct
substitution into (7).

With K given by the second term of (20) it follows from

(18) and (19) that h ¼ m _~x2=2 and dh=dt ¼ ��j _~xjnþ1,
which is precisely the energy lost per unit time by the
object through frictional forces from viscous drag.

Example: coupled harmonic oscillators.—Return to the
first example of a harmonic oscillator q coupled to another
oscillator Q to show that the new framework gives the
correct physical description for the open dynamics of q
itself. Assume initial conditions qðtiÞ ¼ qi, _qðtiÞ ¼ vi,
QðtiÞ ¼ Qi, and _QðtiÞ ¼ Vi. The total system is closed
implying that K ¼ 0 and the usual action is given by (1).
Doubling the degrees of freedom, the new action is con-
structed as in (5) but with K ¼ 0. The effective action for
the open dynamics of the q oscillator subsystem itself
is obtained by integrating out the Q� variables, which
satisfy (8),M €Q� þM�2Q� ¼ �q�. Subject to the initial
conditions and the equality condition at the final time, the
solutions are

QþðtÞ ¼ QðhÞðtÞ þ �

M

Z tf

ti

dt0Gretðt� t0Þqþðt0Þ; (21)

Q�ðtÞ ¼ �

M

Z tf

ti

dt0Gadvðt� t0Þq�ðt0Þ; (22)

where QðhÞðtÞ ¼ Qi cos�ðt� tiÞ þ Vi=�sin�ðt� tiÞ is
the homogeneous solution. Theþ variable evolves forward
in time and satisfies the initial conditions while the
� variable evolves backward in time because of the equal-
ity condition at the final time. This is a general feature of
the � variables.

Substituting these solutions into the action yields the
effective action

Seff½q�� ¼
Z tf

ti

dt

�
mð _qþ _q� �!2qþq�Þ þ �q�QðhÞ

þ �2

M

Z tf

ti

dt0q�ðtÞGretðt� t0Þqþðt0Þ
�
: (23)

The factor q�ðtÞqþðt0Þ in the last term is not symmetric in
t $ t0 and couples to the full retarded Green function as
opposed to just its time-symmetric piece as in (4).
Applying (11) to (23) gives the equation of motion

m €qþm!2q¼�2

M

Z tf

ti

dt0Gretðt� t0Þqðt0Þþ�QðhÞðtÞ (24)

in the physical limit. Now, the Green function in (24) is the
retarded one, Gretðt� t0Þ ¼ �ðt� t0Þ=�sin�ðt� t0Þ, and
solutions to (24) evolve causally from initial data.

Generalizing to N oscillators, Q ! fQngNn¼1, it is
straightforward to show that the effective Lagrangian,
from Seff ¼

R
dt�eff , is

�effðq�; _q�Þ ¼ mð _q� _qþ �!2q�qþÞ þ q�FðtÞ
þ

Z t

ti

dt0q�ðtÞ�ðt� t0Þqþðt0Þ: (25)

Here, FðtÞ � P
N
n¼1 �nQ

ðhÞ
n ðtÞ acts like an external force

and �ðt� t0Þ � P
N
n¼1 �

2
n=ðMn�nÞ sin�nðt� t0Þ, where a

quantity with a subscript n is associated with Qn. The
last two terms in (25) constitute an effective nonconserva-
tive potential Keff for the open subsystem that is nonlocal
in time and history dependent.
From (19), the energy function evolves as

dh

dt
¼ _qFðtÞ þ _q

Z t

ti

dt0�ðt� t0Þqðt0Þ; (26)

where h ¼ mð _q2 þ!2q2Þ=2 is the energy of the oscillator
from (18). To see a familiar dissipation, choose trivial
initial data for the fQng so that FðtÞ ¼ 0 and take each
Mn to be a constant, M. The coupling strengths f�ng
are arbitrary so let �n ¼ ��n for � constant. Then,
�ðt� t0Þ ¼ ð�2=MÞd=dt0 PN

n¼1 cos�nðt� t0Þ. If N is so

large that q essentially couples to a continuum of
oscillators then the summation becomes integration over
cos�ðt� t0Þ, which is a Dirac delta distribution (local in
time). With these considerations, the frequency !2 is
renormalized to !2

ren ¼ !2 � �ð0Þ�2=ðmMÞ and (26)
becomes dh=dt ¼ ��0 _q

2ðtÞ for �0 ¼ �2=ð2MÞ, which is
the power lost by a damped, simple harmonic oscillator.
Concluding remarks.—The main results of this paper

include the construction of a variational principle for initial
value problems and the formulation of Lagrangians and
Hamiltonians for general nonconservative systems. The
key aspects of this classical mechanics are the formal
doubling of variables and the K function describing non-
conservative forces and interactions. For demonstrative
purposes I have focused on discrete mechanical systems
but the formalism is equally applicable to continuum sys-
tems like field theories (see Ref. [11] for a nontrivial
application) and elastic media.
An open system, which can exchange energy by inter-

action with some other set of variables, will have a non-
vanishing K. Generally, there are two scenarios when this
happens: (1) when the underlying variables that cause the
nonconservative (e.g., dissipative) forces are neither given
nor modeled so thatK must be prescribed, and (2) when all
the degrees of freedom of a total (i.e., closed) system are
given or modeled, and a suitable subset of those variables
are integrated out leaving the remaining open subsystem
described by a derived K. The first scenario encompasses
the viscous drag example where K is prescribed so that the
resulting drag force is the desired one. The second scenario
includes the coupled oscillators example where K is de-
rived for the open subsystem qðtÞ by integrating out the
fQng [see discussion after (25)].
The formalism developed here can be canonically quan-

tized by replacing the new Poisson brackets in (15) by
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commutators. Similarly, one can implement a path integral
quantization using the new action (5). The results of
this paper thus provide a foundation for quantizing non-
conservative systems where K is prescribed. For open
quantum systems where K is derived one often uses the
so-called ‘‘in-in’’ quantum theory [12] or the closely re-
lated Feynman-Vernon formalism [13]. Such studies apply
to cases where the environment is given or modeled.
Quantization where K is prescribed thus generalizes the
usual in-in formalism to systems like the viscous drag
example.

The new formulation of nonconservative systems
constructed here may be useful for any method or tech-
nique that normally uses, or could benefit from using,
Lagrangians and Hamiltonians. These might include devel-
oping partition functions for nonconservative statistical
systems (see also Ref. [14]), studying the phase space
structure of nonlinear dissipative dynamical systems, and
developing variational numerical integrators for systems
with physical dissipation, among others. Also, the appear-
ance of a metric in (14), the hint of ‘‘covariance’’ in (12)
and (13), and the use of doubled variables suggest addi-
tional structures for the symplectic manifold [15]. In
Ref. [16], extra physical degrees of freedom are introduced
in a Lagrangian to parametrize absorptive processes within
the paradigm of effective field theory (see also Refs. [17,18]
for recent applications). That work, in combination with
results presented here, may provide a powerful tool for
studying dissipative systems that also satisfy the underlying
assumptions of effective field theory.
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