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This paper is concerned with a striking visual experience: that of seeing geometric visual hallucinations.
Hallucinatory images were classi¢ed by Klu« ver into four groups called form constants comprising
(i) gratings, lattices, fretworks, ¢ligrees, honeycombs and chequer-boards, (ii) cobwebs, (iii) tunnels,
funnels, alleys, cones and vessels, and (iv) spirals. This paper describes a mathematical investigation of
their origin based on the assumption that the patterns of connection between retina and striate cortex
(henceforth referred to as V1)öthe retinocortical map öand of neuronal circuits in V1, both local and
lateral, determine their geometry.

In the ¢rst part of the paper we show that form constants, when viewed in V1 coordinates, essentially
correspond to combinations of plane waves, the wavelengths of which are integral multiples of the width
of a human Hubel^Wiesel hypercolumn, ca. 1.33^2 mm. We next introduce a mathematical description of
the large- scale dynamics of V1 in terms of the continuum limit of a lattice of interconnected hyper-
columns, each of which itself comprises a number of interconnected iso-orientation columns. We then
show that the patterns of interconnection in V1 exhibit a very interesting symmetry, i.e. they are invariant
under the action of the planar Euclidean group E(2)öthe group of rigid motions in the planeö
rotations, re£ections and translations. What is novel is that the lateral connectivity of V1 is such that a
new group action is needed to represent its properties: by virtue of its anisotropy it is invariant with
respect to certain shifts and twists of the plane. It is this shift^twist invariance that generates new
representations of E(2). Assuming that the strength of lateral connections is weak compared with that of
local connections, we next calculate the eigenvalues and eigenfunctions of the cortical dynamics, using
Rayleigh^Schro« dinger perturbation theory. The result is that in the absence of lateral connections, the
eigenfunctions are degenerate, comprising both even and odd combinations of sinusoids in ¿, the cortical
label for orientation preference, and plane waves in r, the cortical position coordinate. `Switching-on’ the
lateral interactions breaks the degeneracy and either even or else odd eigenfunctions are selected. These
results can be shown to follow directly from the Euclidean symmetry we have imposed.

In the second part of the paper we study the nature of various even and odd combinations of eigen-
functions or planforms, the symmetries of which are such that they remain invariant under the particular
action of E(2) we have imposed. These symmetries correspond to certain subgroups of E(2), the so-called
axial subgroups. Axial subgroups are important in that the equivariant branching lemma indicates that
when a symmetrical dynamical system becomes unstable, new solutions emerge which have symmetries
corresponding to the axial subgroups of the underlying symmetry group. This is precisely the case studied
in this paper. Thus we study the various planforms that emerge when our model V1 dynamics become
unstable under the presumed action of hallucinogens or £ickering lights. We show that the planforms
correspond to the axial subgroups of E(2), under the shift^twist action. We then compute what such
planforms would look like in the visual ¢eld, given an extension of the retinocortical map to include its
action on local edges and contours. What is most interesting is that, given our interpretation of the
correspondence between V1 planforms and perceived patterns, the set of planforms generates represent-
atives of all the form constants. It is also noteworthy that the planforms derived from our continuum
model naturally divide V1 into what are called linear regions, in which the pattern has a near constant
orientation, reminiscent of the iso-orientation patches constructed via optical imaging. The boundaries of
such regions form fractures whose points of intersection correspond to the well-known p̀inwheels’.
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To complete the study we then investigate the stability of the planforms, using methods of nonlinear
stability analysis, including Liapunov^Schmidt reduction and Poincarë^Lindstedt perturbation theory.
We ¢nd a close correspondence between stable planforms and form constants. The results are sensitive to
the detailed speci¢cation of the lateral connectivity and suggest an interesting possibility, that the cortical
mechanisms by which geometric visual hallucinations are generated, if sited mainly in V1, are closely
related to those involved in the processing of edges and contours.

Keywords: hallucinations; visual imagery; £icker phosphenes; neural modelling;
horizontal connections; contours

`. . . the hallucination is . . . not a static process but a
dynamic process, the instability of which re£ects an
instability in its conditions of origin’ (Klu« ver (1966),
p. 95, in a comment on Mourgue (1932)).

1. INTRODUCTION

(a) Form constants and visual imagery
Geometric visual hallucinations are seen in many situa-
tions, for example, after being exposed to £ickering
lights (Purkinje 1918; Helmholtz 1924; Smythies 1960)
after the administration of certain anaesthetics (Winters
1975), on waking up or falling asleep (Dybowski 1939),
following deep binocular pressure on one’s eyeballs
(Tyler 1978), and shortly after the ingesting of drugs such
as LSD and marijuana (Oster 1970; Siegel 1977). Patterns
that may be hallucinatory are found preserved in petro-
glyphs (Patterson 1992) and in cave paintings (Clottes &
Lewis-Williams 1998). There are many reports of such
experiences (Knauer & Maloney 1913, pp. 429^430):

`Immediately before my open eyes are a vast number of
rings, apparently made of extremely ¢ne steel wire, all
constantly rotating in the direction of the hands of a
clock; these circles are concentrically arranged, the inner-
most being in¢nitely small, almost pointlike, the
outermost being about a meter and a half in diameter.
The spaces between the wires seem brighter than the
wires themselves. Now the wires shine like dim silver in
parts. Now a beautiful light violet tint has developed in
them. As I watch, the center seems to recede into the
depth of the room, leaving the periphery stationary, till
the whole assumes the form of a deep tunnel of wire rings.
The light, which was irregularly distributed among the
circles, has receded with the center into the apex of the
funnel. The center is gradually returning, and passing the
position when all the rings are in the same vertical plane,
continues to advance, till a cone forms with its apex
toward me . . . . The wires are now £attening into bands
or ribbons, with a suggestion of transverse striation, and
colored a gorgeous ultramarine blue, which passes in
places into an intense sea green. These bands move rhyth-
mically, in a wavy upward direction, suggesting a slow
endless procession of small mosaics, ascending the wall in
single ¢les. The whole picture has suddenly receded, the
center much more than the sides, and now in a moment,
high above me, is a dome of the most beautiful mosiacs,
. . . . The dome has absolutely no discernible pattern. But
circles are now developing upon it; the circles are
becoming sharp and elongated . . . now they are rhombics
now oblongs; and now all sorts of curious angles are
forming; and mathematical ¢gures are chasing each other
wildly across the roof . . . .’

Klu« ver (1966) organized the many reported images into
four classes, which he called form constants : (I) gratings,
lattices, fretworks, ¢ligrees, honeycombs and chequer-

boards; (II) cobwebs; (III) tunnels and funnels, alleys,
cones, vessels; and (IV) spirals. Some examples of class I
form constants are shown in ¢gure 1, while examples of
the other classes are shown in ¢gures 2^4.

Such images are seen both by blind subjects and in
sealed dark rooms (Krill et al. 1963). Various reports
(Klu« ver 1966) indicate that although they are di¤cult to
localize in space, and actually move with the eyes, their
positions relative to each other remain stable with respect
to such movements. This suggests that they are generated
not in the eyes, but somewhere in the brain. One clue on
their location in the brain is provided by recent studies of
visual imagery (Miyashita 1995). Although controversial,
the evidence seems to suggest that areas V1 and V2, the
striate and extra- striate visual cortices, are involved in
visual imagery, particularly if the image requires detailed
inspection (Kosslyn 1994). More precisely, it has been
suggested that (Ishai & Sagi 1995, p. 1773)

`[the] topological representation [provided by V1] might
subserve visual imagery when the subject is scrutinizing
attentively local features of objects that are stored in
memory’.

Thus visual imagery is seen as the result of an interaction
between mechanisms subserving the retrieval of visual
memories and those involving focal attention. In this
respect it is interesting that there seems to be competition
between the seeing of visual imagery and hallucinations
(Knauer & Maloney 1913, p. 433):

`. . . after a picture had been placed on a background and
then removed `̀ I tried to see the picture with open eyes.
In no case was I successful; only [hallucinatory] visionary
phenomena covered the ground’’’.

Competition between hallucinatory images and after-
images was also reported Klu« ver 1966, p. 35):

`In some instances, the [hallucinatory] visions prevented
the appearance of after-images entirely; [however] in
most cases a sharply outlined normal after-image
appeared for a while . . . while the visionary phenomena
were stationary, the after-images moved with the eyes’.

As pointed out to us by one of the referees, the fused
image of a pair of random dot stereograms also seems to
be stationary with respect to eye movements. It has also
been argued that because hallucinatory images are seen
as continuous across the midline, they must be located at
higher levels in the visual pathway than V1 or V2
(R. Shapley, personal communication.) In this respect
there is evidence that callosal connections along the V1/
V2 border can act to maintain continuity of the images
across the vertical meridian (Hubel & Wiesel 1967).

All these observations suggest that both areas V1 and
V2 are involved in the generation of hallucinatory
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images. In our view such images are generated in V1 and
stabilized with respect to eye movements by mechanisms
present in V2 and elsewhere. It is likely that the action of
such mechanisms is rapidly fed back to V1 (Lee et al.
1998). It now follows, because all observers report seeing
Klu« ver’s form constants or variations, that those
properties common to all such hallucinations should yield
information about the architecture of V1. We therefore
investigate that architecture, i.e. the patterns of connec-
tion between neurons in the retina and those in V1,
together with intracortical V1 connections, on the
hypothesis that such patterns determine, in large part,
the geometry of hallucinatory form constants, and we
defer until a later study, the investigation of mechanisms
that contribute to their continuity across the midline and
to their stability in the visual ¢eld.

(b) The human retinocortical map
The ¢rst step is to calculate what visual hallucinations

look like, not in the standard polar coordinates of the
visual ¢eld, but in the coordinates of V1. It is well estab-
lished that there is a topographic map of the visual ¢eld
in V1, the retinotopic representation, and that the central
region of the visual ¢eld has a much bigger representation
in V1 than it does in the visual ¢eld (Sereno et al. 1995).
The reason for this is partly that there is a non-uniform
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(a)

(b)

Figure 1. (a) `Phosphene’ produced by deep binocular
pressure on the eyeballs. Redrawn from Tyler (1978).
(b) Honeycomb hallucination generated by marijuana.
Redrawn from Clottes & Lewis-Williams (1998).

(a)

(b)

Figure 2. (a) Funnel and (b) spiral hallucinations generated
by LSD. Redrawn from Oster (1970).

(a)

(b)

Figure 3. (a) Funnel and (b) spiral tunnel hallucinations
generated by LSD. Redrawn from Siegel (1977).



distribution of retinal ganglion cells, each of which
connects to V1 via the lateral geniculate nucleus (LGN).
This allows calculation of the details of the map (Cowan
1977). Let »R be the packing density of retinal ganglion
cells per unit area of the visual ¢eld, » the corresponding
density per unit surface area of cells in V1, and ‰rR; ³RŠ
retinal or equivalently, visual ¢eld coordinates. Then
»R rR drR d³R is the number of ganglion cell axons in a
retinal element of area rR drR d³R. By hypothesis these
axons connect topographically to cells in an element of
V1 surface area dx dy, i.e. to » dx dy cortical cells. (V1 is
assumed to be locally £at with Cartesian coordinates.)
Empirical evidence indicates that » is approximately
constant (Hubel & Wiesel 1974a,b), whereas »R declines
from the origin of the visual ¢eld, i.e. the fovea, with an
inverse square law (Drasdo 1977)

»R ˆ
1

(w0 ‡ erR)2 ,

where w0 and e are constants. Estimates of w0 ˆ 0:087
and e ˆ 0:051 in appropriate units can be obtained from
published data (Drasdo 1977). From the inverse square
law one can calculate the Jacobian of the map and hence
V1 coordinates fx, yg as functions of visual ¢eld or retinal
coordinates frR, ³Rg. The resulting coordinate transforma-
tion takes the form

x ˆ
¬

e
ln 1‡

e

w0

rR ,

y ˆ
­ rR³R

w0 ‡ erR
,

where ¬ and ­ are constants in appropriate units.
Figure 5 shows the map.

The transformation has two important limiting cases:
(i) near the fovea, erR5w0, it reduces to

x ˆ
¬rR

w0
,

y ˆ
­ rR³R

w0
,

and (ii), su¤ciently far away from the fovea, erR ¾ w0, it
becomes

x ˆ
¬

e
ln

erR

w0
,

y ˆ
­ ³R

e
.

Case (i) is just a scaled version of the identity map, and case
(ii) is a scaled version of the complex logarithm as was ¢rst
recognized by Schwartz (1977). To see this, let
zR ˆ xR ‡ iyR ˆ rR exp‰i³RŠ, be the complex representation

302 P. C. Bresslo¡ and others Geometric visual hallucinations

Phil.Trans. R. Soc. Lond. B (2001)

Figure 4. Cobweb petroglyph. Redrawn from Patterson
(1992).
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Figure 5. The retinocortical map: (a) visual ¢eld; (b) the actual cortical map, comprising right and left hemisphere transforms;
(c) a transformed version of the cortical map in which the two transforms are realigned so that both foveal regions correspond to
x ˆ 0.



of a retinal point (xR, yR) ˆ (rR, ³R), then z ˆ x ‡ iy
ˆ ln( rR exp‰i³RŠ) ˆ ln rR ‡ i³R. Thus x ˆ ln rR, y ˆ ³R.

(c) Form constants as spontaneous cortical patterns
Given that the retinocortical map is generated by the

complex logarithm (except near the fovea), it is easy to
calculate the action of the transformation on circles, rays,
and logarithmic spirals in the visual ¢eld. Circles of
constant rR in the visual ¢eld become vertical lines in V1,
whereas rays of constant ³R become horizontal lines.
Interestingly, logarithmic spirals become oblique lines in
V1: the equation of such a spiral is just ³R ˆ a ln rR

whence y ˆ ax under the action of zR ! z. Thus form
constants comprising circles, rays and logarithmic spirals
in the visual ¢eld correspond to stripes of neural activity
at various angles in V1. Figures 6 and 7 show the map
action on the funnel and spiral form constants shown in
¢gure 2.

A possible mechanism for the spontaneous formation of
stripes of neural activity under the action of hallucinogens
was originally proposed by Ermentrout & Cowan (1979).
They studied interacting populations of excitatory and
inhibitory neurons distributed within a two-dimensional
(2D) cortical sheet. Modelling the evolution of the system
in terms of a set of Wilson^Cowan equations (Wilson &
Cowan 1972, 1973) they showed how spatially periodic
activity patterns such as stripes can bifurcate from a
homogeneous low-activity state via a Turing-like
instability (Turing 1952). The model also supports the
formation of other periodic patterns such as hexagons
and squaresöunder the retinocortical map these

generate more complex hallucinations in the visual ¢eld
such as chequer-boards. Similar results are found in a
reduced single-population model provided that the inter-
actions are characterized by a mixture of short-range
excitation and long-range inhibition (the so-called
`Mexican hat distribution’).

(d) Orientation tuning in V1
The Ermentrout^Cowan theory of visual hallucinations

is over-simpli¢ed in the sense that V1 is represented as if it
were just a cortical retina. However, V1 cells do much
more than merely signalling position in the visual ¢eld:
most cortical cells signal the local orientation of a contrast
edge or baröthey are tuned to a particular local orienta-
tion (Hubel & Wiesel 1974a). The absence of orientation
representation in the Ermentrout^Cowan model means
that a number of the form constants cannot be generated
by the model, including lattice tunnels (¢gure 42), honey-
combs and certain chequer-boards (¢gure 1), and cobwebs
(¢gure 4). These hallucinations, except the chequer-
boards, are more accurately characterized as lattices of
locally orientated contours or edges rather than in terms of
contrasting regions of light and dark.

In recent years, much information has accumulated
about the distribution of orientation selective cells in V1,
and about their pattern of interconnection (Gilbert 1992).
Figure 8 shows a typical arrangement of such cells,
obtained via microelectrodes implanted in cat V1. The ¢rst
panel shows how orientation preferences rotate smoothly
over V1, so that approximately every 300 mm the same
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(a)

(b)

Figure 6. Action of the retinocortical map on the funnel form
constant. (a) Image in the visual ¢eld; (b) V1 map of the image.

(a)

(b)

Figure 7. Action of the retinocortical map on the spiral form
constant. (a) Image in the visual ¢eld; (b) V1 map of the image.



preference reappears, i.e. the distribution is º-periodic in
the orientation preference angle. The second panel shows
the receptive ¢elds of the cells, and how they change with
V1 location. The third panel shows more clearly the
rotation of such ¢elds with translation across V1.

How are orientation tuned cells distributed and inter-
connected? Recent work on optical imaging has made it
possible to see how the cells are actually distributed inV1
(Blasdel 1992), and a variety of stains and labels has
made it possible to see how they are interconnected
(G. G. Blasdel and L. Sincich, personal communication),
(Eysel 1999; Bosking et al. 1997). Figures 9 and 10 show
such data. Thus, ¢gure 9a shows that the distribution of
orientation preferences is indeed roughly º-periodic, in
that approximately every 0.5 mm (in the macaque) there
is an iso-orientation patch of a given preference, and
¢gure 10 shows that there seem to be at least two length-
scales :

(i) localöcells less than 0.5 mm apart tend to make
connections with most of their neighbours in a
roughly isotropic fashion, as seen in ¢gure 9b, and

(ii) lateralöcells make contacts only every 0.5 mm or
so along their axons with cells in similar iso-
orientation patches.

In addition, ¢gure 10 shows that the long axons which
support such connections, known as intrinsic lateral or
horizontal connections, and found mainly in layers II and

III of V1, and to some extent in layer V (Rockland &
Lund 1983), tend to be orientated along the direction of
their cell’s preference (Gilbert 1992; Bosking et al. 1997),
i.e. they run parallel to the visuotopic axis of their cell’s
orientation preference. These horizontal connections arise
almost exclusively from excitatory neurons (Levitt &
Lund 1997; Gilbert & Wiesel 1983), although 20%
terminate on inhibitory cells and can thus have signi¢cant
inhibitory e¡ects (McGuire et al. 1991).

There is some anatomical and psychophysical evidence
(Horton 1996; Tyler 1982) that human V1 has several
times the surface area of macaque V1 with a hypercolumn
spacing of ca. 1.33^2 mm. In the rest of this paper we
work with this length-scale to extend the Ermentrout^
Cowan theory of visual hallucinations to include orienta-
tion selective cells. A preliminary account of this was
described in Wiener (1994) and Cowan (1997).

2. A MODEL OF V1 WITH ANISOTROPIC LATERAL

CONNECTIONS

(a) The model
The state of a population of cells comprising an iso-

orientation patch at cortical position r 2 R2 at time t is
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Figure 8. (a) Orientation tuned cells in V1. Note the
constancy of orientation preference at each cortical location
(electrode tracks 1 and 3), and the rotation of orientation
preference as cortical location changes (electrode track 2).
(b) Receptive ¢elds for tracks 1 and 3. (c) Expansion of the
receptive ¢elds of track 2 to show the rotation of orientation
preference. Redrawn from Gilbert (1992).

(a)

(b)

Figure 9 (a) Distribution of orientation preferences in
macaque V1 obtained via optical imaging. Redrawn from
Blasdel (1992). (b) Connections made by an inhibitory
interneuron in cat V1. Redrawn from Eysel (1999).



characterized by the real-valued activity variable
a(r, ¿, t), where ¿ 2 ‰0, º) is the orientation preference of
the patch. V1 is treated as an (unbounded) continuous 2D
sheet of nervous tissue. For the sake of analytical tract-
ability, we make the additional simplifying assumption
that ¿ and r are independent variablesöall possible
orientations are represented at every position. A more
accurate model would need to incorporate details
concerning the distribution of orientation patches in the
cortical plane (as illustrated in ¢gure 9a). It is known, for
example, that a region of human V1 ca. 2:67 mm2 on its
surface and extending throughout its depth contains at
least two sets of all iso-orientation patches in the range
04¿5º, one for each eye. Such a slab was called a
hypercolumn by Hubel & Wiesel (1974b). If human V1 as
a whole (in one hemisphere) has a surface area of ca.
3500 mm2 (Horton 1996), this gives approximately 1300
such hypercolumns. So one interpretation of our model

would be that it is a continuum version of a lattice of
hypercolumns. However, a potential di¤culty with this
interpretation is that the e¡ective wavelength of many of
the patterns underlying visual hallucinations is of the
order of twice the hypercolumn spacing (see, for example,
¢gure 2), suggesting that lattice e¡ects might be impor-
tant. A counter-argument for the validity of the
continuum model (besides mathematical convenience) is
to note that the separation of two points in the visual
¢eldövisual acuityö(at a given retinal eccentricity of
r0

R), corresponds to hypercolumn spacing (Hubel &
Wiesel 1974b), and so to each location in the visual ¢eld
there corresponds to a representation in V1 of that loca-
tion with ¢nite resolution and all possible orientations.

The activity variable a(r, ¿, t) evolves according to a
generalization of the Wilson^Cowan equations (Wilson &
Cowan 1972, 1973) that takes into account the additional
internal degree of freedom arising from orientation
preference:

@a(r, ¿, t)
@t

ˆ ¡ ¬a(r, ¿, t) ‡ ·
º

0 R2
w(r, ¿jr0, ¿0)

£ ¼‰a(r0, ¿0, t)Š
dr0d¿0

º
‡ h(r, ¿, t), (1)

where ¬ and · are decay and coupling coe¤cients,
h(r, ¿, t) is an external input, w(r, ¿jr0, ¿0) is the weight
of connections between neurons at r tuned to ¿ and
neurons at r0 tuned to ¿0, and ¼‰zŠ is the smooth nonlinear
function

¼‰zŠ ˆ
1

1 ‡ e¡®(z¡±)
, (2)

for constants ® and ±. Without loss of generality we may
subtract from ¼‰zŠ a constant equal to ‰1 ‡ e®± Š¡1 to obtain
the (mathematically) important property that ¼‰0Š ˆ 0,
which implies that for zero external inputs the homoge-
neous state a(r, ¿, t) ˆ 0 for all r, ¿, t is a solution to
equation (1). From the discussion in ½ 1(d), we take the
pattern of connections w(r, ¿jr0, ¿0) to satisfy the
following properties (see ¢gure 1).

(i) There exists a mixture of local connections within a
hypercolumn and (anisotropic) lateral connections
between hypercolumns; the latter only connect
elements with the same orientation preference. Thus
in the continuum model, w is decomposed as

w(r, ¿jr0, ¿0) ˆ wloc(¿ ¡ ¿0)¯(r ¡ r0)

‡ wlat(r ¡ r0, ¿)¯(¿ ¡ ¿0), (3)

with wloc( ¡ ¿) ˆ wloc(¿).
(ii) Lateral connections between hypercolumns only

join neurons that lie along the direction of their
(common) orientation preference ¿. Thus in the
continuum model

wlat(r, ¿) ˆ ŵ(R¡¿r), (4)

with

ŵ(r) ˆ
1

0

g(s)‰¯(r ¡ sr0) ‡ ¯(r ‡ sr0)Šds, (5)

where r0 ˆ (1, 0) and R³ is the rotation matrix
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(a)

(b)

Figure 10. Lateral connections made by cells in (a) owl
monkey and (b) tree shrew V1. A radioactive tracer is used to
show the locations of all terminating axons from cells in a
central injection site, superimposed on an orientation map
obtained by optical imaging. Redrawn from G. G. Blasdel and
L. Sincich (personal communication) and Bosking et al. (1997).



R³

x
y

ˆ
cos ³ ¡ sin ³

sin ³ cos ³

x
y

.

The weighting function g(s) determines how the
strength of lateral connections varies with the distance
of separation. We take g(s) to be of theparticular form

g(s) ˆ ‰2º¹2
latŠ¡1=2exp ¡ s2/2¹2

lat ¡Alat‰2º¹̂2
latŠ¡1=2

£ exp ¡ s2/2¹̂2
lat , (6)

with ¹lat5¹̂lat and Alat4 1, which represent a combi-
nation of short-range excitation and long-range
inhibition. This is an example of the Mexican hat
distribution. (Note that one can view the short-
range excitatory connections as arising from patchy
local connections within a hypercolumn.)

It is possible to consider more general choices of weight
distribution w that (i) allow for some spread in the
distribution of lateral connections (see ¢gure 12), and
(ii) incorporate spatially extended isotropic local inter-
actions. An example of such a distribution is given by the
following generalization of equations (3) and (4):

w(r, ¿jr0, ¿0) ˆ wloc(¿ ¡ ¿0)¢loc(jr ¡ r0j)
‡ ŵ(R¡¿‰r0 ¡ rŠ)¢lat(¿ ¡ ¿0), (7)

with ¢lat(¡ ¿) ˆ ¢lat(¿), ¢lat(¿) ˆ 0 for j¿j4¿0, and
¢loc(jrj) ˆ 0 for r4¹0. Moreover, equation (5) is modi-
¢ed according to

ŵ(r) ˆ
³0

¡³0

p(³)
1

0

g(s)‰¯(r ¡ sr³) ‡ ¯(r ‡ sr³)Šdsd³,

(8)

with r³ ˆ (cos (³), sin (³)) and p(¡ ³) ˆ p(³). The para-
meters ¿0 and ³0 determine the angular spread of lateral
connections with respect to orientation preference and

space, respectively, whereas ¹0 determines the (spatial)
range of the isotropic local connections.

(b) Euclidean symmetry
Suppose that the weight distribution w satis¢es

equations (7) and (8). We show that w is invariant under
the action of the Euclidean group E(2) of rigid motions in
the plane, and discuss some of the important conse-
quences of such a symmetry.

(i) Euclidean group action
The Euclidean group is composed of the (semi-direct)

product of O(2), the group of planar rotations and re£ec-
tions, with R2, the group of planar translations. The
action of the Euclidean group on R2 £ S1 is generated by

s ¢ (r, ¿) ˆ (r ‡ s, ¿) s 2 R2

³ ¢ (r, ¿) ˆ (R³ r, ¿ ‡ ³) ³ 2 S1

µ ¢ (r, ¿) ˆ (µr, ¡ ¿),
(9)

where µ is the re£ection (x1, x2) 7 !(x1, ¡ x2) and R³ is a
rotation by ³.

The corresponding group action on a function
a:R2 £ S1 ! R where P ˆ (r, ¿) is given by

® ¢ a(P) ˆ a(®¡1 ¢ P), (10)

for all ® 2 O(2) _‡ R2 and the action on w(PjP 0) is

® ¢ w(P jP 0) ˆ w(®¡1 ¢ P j®¡1 ¢ P 0).

The particular form of the action of rotations in
equations (9) re£ects a crucial feature of the lateral
connections, namely that they tend to be orientated along
the direction of their cell’s preference (see ¢gure 11). Thus,
if we just rotate V1, then the cells that are now connected
at long range will not be connected in the direction of
their preference. This di¤culty can be overcome by
permuting the local cells in each hypercolumn so that
cells that are connected at long range are again
connected in the direction of their preference. Thus, in
the continuum model, the action of rotation of V1 by ³
corresponds to rotation of r by ³ while simultaneously
sending ¿ to ¿ ‡ ³. This is illustrated in ¢gure 13. The
action of re£ections is justi¢ed in a similar fashion.

(ii) Invariant weight distribution w
We now prove that w as given by equations (7) and (8) is

invariant under the action of the Euclidean group de¢ned
by equations (9). (It then follows that the distribution
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Figure 12. Example of an angular spread in the anisotropic
lateral connections between hypercolumns with respect to
both space (³0) and orientation preference (¿0).



satisfying equations (3)^(5) is also Euclidean invariant.)
Translation invariance of w is obvious, i.e.

w(r ¡ s, ¿jr0 ¡ s, ¿0) ˆ w(r, ¿jr0,¿0).

Invariance with respect to a rotation by ³ follows from

w(R¡³r, ¿ ¡ ³jR¡³r
0, ¿0 ¡ ³)

ˆ wloc(¿ ¡ ¿0)¢loc(jR¡³‰r ¡ r0Šj)
‡ ŵ(R¡¿‡³R¡³(r ¡ r0))¢lat(¿ ¡ ¿0)

ˆ wloc(¿ ¡ ¿0)¢loc(jr ¡ r0j) ‡ ŵ(R¡¿r)¢lat(¿ ¡ ¿0)

ˆ w(r, ¿jr0, ¿0).

Finally, invariance under a re£ection µ about the x-axis
holds because

w(µr, ¡ ¿jµr0, ¡ ¿0) ˆ wloc( ¡ ¿ ‡ ¿0)¢loc(jµ‰r ¡ r0Šj)
‡ ŵ(R¿µ(r ¡ r0))¢lat( ¡ ¿ ‡ ¿0)

ˆ wloc(¿ ¡ ¿0)¢loc(jr ¡ r0j)
‡ ŵ(µR¿(r ¡ r0))¢lat(¿ ¡ ¿0)

ˆ wloc(¿ ¡ ¿0)¢loc(jr ¡ r0j)
‡ ŵ(R¡¿(r ¡ r0))¢lat(¿ ¡ ¿0)

ˆ w(r, ¿jr0, ¿0).

We have used the identity µR¡¿ ˆ R¿µ and the conditions
wloc( ¡ ¿) ˆ wloc(¿), ¢lat( ¡ ¿) ˆ ¢lat(¿), ŵ(µr) ˆ ŵ(r).

(iii) Implications of Euclidean symmetry
Consider the action of ® on equation (1) for h(r, t) ˆ 0:

@a(®¡1P, t)
@t

ˆ ¡ ¬a(®¡1P, t)‡ ·
R2£S1

w(®¡1PjP0)¼‰a(P0, t)ŠdP0

ˆ ¡ ¬a(®¡1P, t) ‡ ·
R2£S1

w(Pj®P0)¼‰a(P 0, t)ŠdP 0

ˆ ¡ ¬a(®¡1P, t) ‡ ·
R2£S1

w(PjP00)¼‰a(®¡1P00, t)ŠdP00,

since d‰®¡1PŠ ˆ §dP and w is Euclidean invariant. If we
rewrite equation (1) as an operator equation, namely,

F‰aŠ ² da
dt

¡ G‰aŠ ˆ 0,

then it follows that ®F‰aŠ ˆ F‰®aŠ. Thus F commutes with
® 2 E(2) and F is said to be equivariant with respect to the

symmetry group E(2) (Golubitsky et al. 1988). The equiv-
ariance of the operator F with respect to the action of
E(2) has major implications for the nature of solutions
bifurcating from the homogeneous resting state. Let · be
a bifurcation parameter. We show in ½ 4 that near a point
for which the steady state a(r, ¿, ·) ˆ 0 becomes unstable,
there must exist smooth solutions to the equilibrium equa-
tion G‰a(r, ¿, ·)Š ˆ 0 that are identi¢ed by their
symmetry (Golubitsky et al. 1988). We ¢nd solutions that
are doubly periodic with respect to a rhombic, square or
hexagonal lattice by using the remnants of Euclidean
symmetry on these lattices. These remnants are the (semi-
direct) products ¡ of the torus T 2 of translations modulo
the lattice with the dihedral groups D2, D4 and D6, the
holohedries of the lattice. Thus, when a(r, ¿, ·) ˆ 0
becomes unstable, new solutions emerge from the
instability with symmetries that are broken compared
with ¡. Su¤ciently close to the bifurcation point these
patterns are characterized by (¢nite) linear combinations
of eigenfunctions of the linear operator L ˆ D0G
obtained by linearizing equation (1) about the homoge-
neous state a ˆ 0. These eigenfunctions are derived in ½ 3.

(c) Two limiting cases
For the sake of mathematical convenience, we restrict

our analysis in this paper to the simpler weight distribu-
tion given by equations (3) and (4) with ŵ satisfying
either equation (5) or (8). The most important property of
w is its invariance under the extended Euclidean group
action (9), which is itself a natural consequence of the
anisotropic pattern of lateral connections. Substitution of
equation (3) into equation (1) gives (for zero external
inputs)

@a(r, ¿, t)
@t

ˆ ¡ ¬a(r, ¿, t)‡ ·
º

0

wloc(¿ ¡¿0)¼‰a(r, ¿0, t)Š
d¿0

º

‡ ­
R2

wlat(r ¡ r0, ¿)¼‰a(r0, ¿, t)Šdr0 , (11)

where we have introduced an additional coupling para-
meter ­ that characterizes the relative strength of lateral
interactions. Equation (11) is of convolution type, in that
the weighting functions are homogeneous in their respec-
tive domains. However, the weighting function wlat(r, ¿)
is anisotropic, as it depends on ¿. Before proceeding to
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analyse the full model described by equation (11), it is
useful to consider two limiting cases, namely the ring
model of orientation tuning and the Ermentrout^Cowan
model (Ermentrout & Cowan 1979).

(i) The ring model of orientation tuning
The ¢rst limiting case is to neglect lateral connections

completely by setting ­ ˆ 0 in equation (11). Each point r
in the cortex is then independently described by the so-
called ring model of orientation tuning (Hansel &
Sompolinsky 1997; Mundel et al. 1997; Ermentrout 1998;
Bresslo¡ et al. 2000a):

@a(r, ¿, t)
@t

ˆ ¡ ¬a(r, ¿, t) ‡ ·
º

0
wloc(¿ ¡ ¿0)

£ ¼‰a(r, ¿0, t)Š d¿0

º
. (12)

Linearizing this equation about the homogeneous state
a(r, ¿, t) ² 0 and considering perturbations of the form
a(r, ¿, t) ˆ elta(r, ¿) yields the eigenvalue equation

la(r, ¿) ˆ ¡¬a(r, ¿) ‡ ·
º

0

wloc(¿ ¡ ¿0)a(r, ¿0)
d¿0

º
.

Introducing the Fourier series expansion a(r, ¿)
ˆ m zm(r) e2im¿ ‡ c:c: generates the following discrete
dispersion relation for the eigenvalue l :

l ˆ ¡¬ ‡ ¼1·Wm ² lm, (13)

where ¼1 ˆ d¼‰zŠ/dz evaluated at z ˆ 0 and

wloc(¿) ˆ
n2Z

Wne
2ni¿. (14)

Note that because wloc(¿) is a real and even function of ¿,
W¡m ˆ Wm ˆ Wm.

Let Wp ˆ maxfWn, n 2 Z‡ g and suppose that p is
unique with Wp40 and p51. It then follows from
equation (13) that the homogeneous state a(r, ¿) ˆ 0 is
stable for su¤ciently small ·, but becomes unstable when
· increases beyond the critical value ·c ˆ ¬/¼1Wp due to
excitation of linear eigenmodes of the form
a(r, ¿) ˆ z(r)e2ip¿ ‡ z(r)e¡2ip¿, where z(r) is an arbitrary
complex function of r. It can be shown that the saturating
nonlinearities of the system stabilize the growing pattern
of activity (Ermentrout 1998; Bresslo¡ et al. 2000a). In
terms of polar coordinates z(r) ˆ Z(r)e2i¿(r) we have
a(r, ¿) ˆ Z(r) cos (2p‰¿ ¡ ¿(r)Š). Thus at each point r in
the plane the maximum (linear) response occurs at the
orientations ¿(r) ‡ kº/p, k ˆ 0, 1, : : :, p ¡ 1 when p 6ˆ 0.

Of particular relevance from a biological perspective
are the cases p ˆ 0 and p ˆ 1. In the ¢rst case there is a
bulk instability in which the new steady state shows no
orientation preference. Any tuning is generated in the
genicocortical map. We call this the `Hubel^Wiesel’
mode (Hubel & Wiesel 1974a). In the second case the
response is unimodal with respect to ¿. The occurrence of
a sharply tuned response peaked at some angle ¿(r) in a
local region of V1 corresponds to the presence of a local
contour there, the orientation of which is determined by
the inverse of the double retinocortical map described in
½ 5(a). An example of typical tuning curves is shown in

¢gure 14, which is obtained by taking wloc(¿) to be a
di¡erence of Gaussians over the domain ‰¡º/2, º/2Š:

wloc(¿) ˆ ‰2º¹2
locŠ¡1=2exp(¡ ¿2/2¹2

loc) ¡ Aloc‰2º¹̂2
locŠ¡1=2

£ exp(¡ ¿2/2¹̂2
loc), (15)

with ¹loc5¹̂loc and Aloc4 1.
The location of the centre ¿(r) of each tuning curve is

arbitrary, which re£ects the rotational equivariance of
equation (12) under the modi¢ed group action
³ : (r, ¿) ! (r, ¿ ‡ ³). Moreover, in the absence of
lateral interactions the tuned response is uncorrelated
across di¡erent points in V1. In this paper we show how
the presence of anisotropic lateral connections leads to
periodic patterns of activity across V1 in which the peaks
of the tuning curve at di¡erent locations are correlated.

(ii) The Ermentrout^Cowan model
The other limiting case is to neglect the orientation

label completely. Equation (11) then reduces to a one-
population version of the model studied by Ermentrout &
Cowan (1979):

@

@t
a(r, t) ˆ ¡¬a(r, t) ‡ ¸

O

wlat(r¡r0)¼ a(r0, t) dr0. (16)

In this model there is no reason to distinguish any direc-
tion in V1, so we assume that wlat(r ¡ r0) ! wlat(jr ¡ r0j),
i.e. wlat depends only on the magnitude of r ¡ r0. It can
be shown that the resulting system is equivariant with
respect to the standard action of the Euclidean group in
the plane.

Linearizing equation (16) about the homogeneous state
and taking a(r, t) ˆ elta(r) gives rise to the eigenvalue
problem

la(r) ˆ ¡¬a(r) ‡ ¸¼1
O

wlat(jr ¡ r0j)a(r0)dr0,
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tuning curve is marginally stable so that the peak activity a at
each point in the cortical plane is arbitrary. The activity is
truncated at ¼ ˆ 0 in line with the choice of ¼‰0Š ˆ 0.



which upon Fourier transforming generates a dispersion
relation for the eigenvalue l as a function of q ˆ jkj, i.e.

l ˆ ¡¬ ‡ ¸¼1W(q) ² l(q),

where W(q) ˆ wlat(k) is the Fourier transform of
wlat(jrj). Note that l is real. If we choose wlat(jrj) to be in
the form of a Mexican hat function, then it is simple to
establish that l passes through zero at a critical para-
meter value ¸c signalling the growth of spatially periodic
patterns with wavenumber qc , where W(qc)
ˆ maxqfW(q)g. Close to the bifurcation point these
patterns can be represented as linear combinations of
plane waves

a(r) ˆ
i

ci exp(iki ¢ r),

with jki j ˆ qc. As shown by Ermentrout & Cowan (1979)
and Cowan (1982), the underlying Euclidean symmetry
of the weighting function, together with the restriction to
doubly periodic functions, then determines the allowable
combinations of plane waves comprising steady- state solu-
tions. In particular, stripe, chequer-board and hexagonal
patterns of activity can form in the V1 map of the visual
¢eld. In this paper we generalize the treatment by
Ermentrout & Cowan (1979) to incorporate the e¡ects of
orientation preferenceöand show how plane waves of
cortical activity modulate the distribution of tuning
curves across the network and lead to contoured patterns.

3. LINEAR STABILITY ANALYSIS

The ¢rst step in the analysis of pattern-forming
instabilities in the full cortical model is to linearize equa-
tion (11) about the homogeneous solution a(r, ¿) ˆ 0 and
to solve the resulting eigenvalue problem. In particular,
we wish to ¢nd conditions under which the homogeneous
solution becomes marginally stable due to the vanishing
of one of the (degenerate) eigenvalues, and to identify the
marginally stable modes. This will require performing a
perturbation expansion with respect to the small para-
meter ­ characterizing the relative strength of the aniso-
tropic lateral connections.

(a) Linearization
We linearize equation (11) about the homogeneous state

and introduce solutions of the form a(r, ¿, t) ˆ elta(r, ¿).
This generates the eigenvalue equation

la(r, ¿) ˆ ¡ ¬a(r, ¿) ‡ ¼1·
º

0

wloc(¿ ¡ ¿0)a(r, ¿0)
d¿0

º

‡ ­
R2

wlat(r ¡ r0, ¿)a(r0, ¿)dr0 . (17)

Because of translation symmetry, the eigenvalue equation
(17) can be written in the form

a(r, ¿) ˆ u(¿ ¡ ’)eik¢r ‡ c:c: (18)

with k ˆ q(cos ’, sin ’) and

lu(¿) ˆ ¡ ¬u(¿) ‡ ¼1·
º

0

wloc(¿ ¡ ¿0)u(¿0)
d¿0

º

‡ ­ wlat(k, ¿ ‡ ’†u(¿) . (19)

Here wlat(k, ¿) is the Fourier transform of wlat(r, ¿).
Assume that wlat satis¢es equations (4) and (5) so that

the total weight distribution w is Euclidean invariant. The
resulting symmetry of the system then restricts the struc-
ture of the solutions of the eigenvalue equation (19):

(i) l and u(¿) only depend on the magnitude q ˆ jkj of
the wave vector k. That is, there is an in¢nite degen-
eracy due to rotational invariance.

(ii) For each k the associated subspace of eigenfunctions

Vk ˆfu(¿ ¡ ’)eik¢r ‡ c:c: : u(¿ ‡ º)ˆ u(¿) and u 2 Cg
(20)

decomposes into two invariant subspaces

Vk ˆ V‡
k © V¡

k , (21)

corresponding to even and odd functions, respec-
tively

V‡
k ˆ fv 2 Vk : u(¡ ¿) ˆ u(¿)g

and

V¡
k ˆ fv 2 Vk : u( ¡ ¿) ˆ ¡u(¿)g: (22)

As noted in greater generality by Bosch Vivancos
et al. (1995), this is a consequence of re£ection invar-
iance, as we now indicate. That is, let µk denote
re£ections about the wavevector k so that µkk ˆ k.
Then µka(r, ¿)ˆ a(µkr, 2’¡ ¿) ˆ u(’ ¡ ¿)eik¢r‡ c:c.
Since µk is a re£ection, any space that it acts on
decomposes into two subspaces, one on which it acts
as the identity I and one on which it acts as ¡I.

Results (i) and (ii) can also be derived directly from
equation (19). For expanding the º-periodic function u(¿)
as a Fourier series with respect to ¿

u(¿) ˆ
n2Z

Ane
2ni¿ , (23)

and setting wlat(r, ¿) ˆ ŵ(R¡¿r) leads to the matrix
eigenvalue equation

lAm ˆ ¡¬Am ‡ ¼1· WmAm ‡ ­
n2Z

Ŵm¡n(q)An , (24)

with Wn given by equation (14) and

Ŵn(q) ˆ
º

0
e¡2in¿

R2
e¡iq‰x cos (¿)‡ y sin (¿)Šŵ(r)dr

d¿

º
.

(25)

It is clear from equation (24) that item (i) holds. The
decomposition of the eigenfunctions into odd and even
invariant subspaces (see equation (21) of item (ii)) is a
consequence of the fact that ŵ(r) is an even function of x
and y (see equation (5)), and hence Ŵn(q) ˆ Ŵ¡n(q).
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(b) Eigenfunctions and eigenvalues
The calculation of the eigenvalues and eigenfunctions

of the linearized equation (17), and hence the derivation
of conditions for the marginal stability of the homoge-
neous state, has been reduced to the problem of solving
the matrix equation (24), which we rewrite in the more
convenient form

l ‡ ¬

¼1·
¡ Wm Am ˆ ­

n2Z

Ŵm¡n(q)An. (26)

We exploit the experimental observation that the intrinsic
lateral connections appear to be weak relative to the local
connections, i.e. ­ Ŵ ½ W . Equation (26) can then be
solved by expanding as a power series in ­ and using
Rayleigh^Schro« dinger perturbation theory.

(i) Case ­ ˆ 0
In the limiting case of zero lateral interactions equation

(26) reduces to equation (13). Following the discussion of
the ring model in ½ 2(c), let Wp ˆ maxfWn, n 2 Z‡ g40
and suppose that p ˆ 1 (unimodal orientation tuning
curves). The homogeneous state a(r, ¿) ˆ 0 is then stable
for su¤ciently small ·, but becomes marginally stable at
the critical point ·c ˆ ¬/¼1W1 due to the vanishing of
the eigenvalue l1. In this case there are both even and
odd marginally stable modes cos(2¿) and sin(2¿).

(ii) Case ­ 40
If we now switch on the lateral connections, then there

is a q-dependent splitting of the degenerate eigenvalue l1

that also separates out odd and even solutions. Denoting
the characteristic size of such a splitting by ¯l ˆ OO(­ ),
we impose the condition that ¯l ½ ·¼1¢W, where

¢W ˆ minfW1 ¡ Wm, m 6ˆ 1g:

This ensures that the perturbation does not excite states
associated with other eigenvalues of the unperturbed
problem (see ¢gure 15). We can then restrict ourselves to
calculating perturbative corrections to the degenerate
eigenvalue l1 and its associated eigenfunctions. Therefore,
we introduce the power series expansions

l ‡ ¬

¼1·
ˆ W1 ‡ ­ l(1) ‡ ­ 2l(2) ‡ . . . , (27)

and

An ˆ z§ 1¯n, § 1 ‡ ­ A(1)
n ‡ ­ 2A(2)

n ‡ . . . , (28)

where ¯n, m is the Kronecker delta function. We substitute
these expansions into the matrix eigenvalue equation (26)
and systematically solve the resulting hierarchy of
equations to successive orders in ­ using (degenerate)
perturbation theory. This analysis, which is carried out in
Appendix A(a), leads to the following results: (i) l ˆ l§

for even (‡ ) and odd (¡) solutions where to OO(­ 2)

l § ‡ ¬

¼1·
ˆW1 ‡ ­ Ŵ0(q) § Ŵ2(q)

‡ ­ 2

m5 0, m 6ˆ1

‰Ŵm¡1(q) § Ŵm‡ 1(q)Š2

W1 ¡ Wm

² G§ (q), (29)

and (ii) u(¿) ˆ u§ (¿) where to OO(­ )

u‡ (¿) ˆ cos(2¿) ‡ ­
m5 0, m 6ˆ1

u‡
m (q) cos(2m¿), (30)

u¡(¿) ˆ sin(2¿) ‡ ­
m41

u¡
m (q) sin(2m¿), (31)

with

u‡
0 (q) ˆ

Ŵ1(q)
W1 ¡ W0

,

u§
m (q) ˆ

Ŵm¡1(q) § Ŵm‡ 1(q)
W1 ¡ Wm

, m41.

(32)

(c) Marginal stability
Suppose that G§ (q) has a unique maximum at

q ˆ q§ 6ˆ 0 and let qc ˆ q‡ if G‡ (q‡ )4G¡(q¡) and
qc ˆ q¡ if G¡(q¡)4G‡ (q‡ ). Under such circumstances,
the homogeneous state a(r, ¿) ˆ 0 will become margin-
ally stable at the critical point ·c ˆ ¬/¼1G§ (qc) and the
marginally stable modes will be of the form

a(r, ¿) ˆ
N

iˆ1

cie
iki ¢ru(¿ ¡ ’i) ‡ c:c:, (33)

where ki ˆ qc(cos ’i, sin ’i) and u(¿) ˆ u§ (¿) for qc ˆ q§ .
The in¢nite degeneracy arising from rotation invariance
means that all modes lying on the circle jkj ˆ qc become
marginally stable at the critical point. However, this can
be reduced to a ¢nite set of modes by restricting solutions
to be doubly periodic functions. The types of doubly peri-
odic solutions that can bifurcate from the homogeneous
state will be determined in ½ 4.

As a speci¢c example illustrating marginal stability let
ŵ(r) be given by equation (5). Substitution into equation
(25) gives

Ŵn(q) ˆ
º

0
e¡2in¿

1

0

g(s) cos(sq cos ¿)ds
d¿

º
.

Using the Jacobi^Anger expansion

cos(sq cos ¿) ˆ J0(sq) ‡ 2
1

mˆ1

( ¡ 1)mJ2m(sq) cos(2m¿),

310 P. C. Bresslo¡ and others Geometric visual hallucinations

Phil.Trans. R. Soc. Lond. B (2001)

D W

d l

 = 0  << 1b  b  

m

m s 1

0

1

m

l

l

l ’

Figure 15. Splitting of degenerate eigenvalues due to
anisotropic lateral connections between hypercolumns.



with Jn(x) the Bessel function of integer order n, we
derive the result

Ŵn(q) ˆ (¡ 1)n
1

0

g(s)J2n(sq)ds. (34)

Next we substitute equation (6) into (34) and use standard
properties of Bessel functions to obtain

Ŵn(q) ˆ
( ¡ 1)n

2
exp

¡¹ 2
latq

2

4
In

¹ 2
latq

2

4

¡ Alatexp
¡¹̂ 2

latq
2

4
In

¹̂ 2
latq

2

4
, (35)

where In is a modi¢ed Bessel function of integer order n.
The resulting marginal stability curves · ˆ ·§ (q)ˆ

¬/¼1G§ (q) are plotted to ¢rst order in ­ in ¢gure 16a. The
existence of a non-zero critical wavenumber qc ˆ q¡ at
·c ˆ ·¡(qc) is evident, indicating that the marginally
stable eigenmodes are odd functions of ¿. The inclusion of
higher-order terms in ­ does not alter this basic result, at
least for small ­ . If we take the fundamental unit of
length to be ca. 400 mm; then the wavelength of a pattern
is 2º(0:400)/qc mm, ca. 2:66 mm at the critical wave-
number qc ˆ 1 (see ¢gure 16b).

An interesting question concerns under what circum-
stances can even patterns be excited by a primary
instability rather than odd, in the regime of weak lateral
interactions. One example occurs when there is a su¤-
cient spread in the distribution of lateral connections
along the lines shown in ¢gure 12. In particular, suppose
that ŵ(r) is given by equation (8) with p(³) ˆ 1 for ³4 ³0

and zero otherwise. Equation (34) then becomes

Ŵn(q) ˆ (¡ 1)n sin(2n³0)
2n³0

1

0

g(s)J2n(sq)ds. (36)

To ¢rst order in ­ the size of the gap between the odd
and even eigenmodes at the critical point qc is deter-
mined by 2Ŵ2(qc) (see equation 29). It follows that if
³04º/4 then Ŵ2(q) reverses sign, suggesting that even
rather than odd eigenmodes become marginally stable
¢rst. This is con¢rmed by the marginal stability curves
shown in ¢gure 17.

(i) Choosing the bifurcation parameter
It is worth commenting at this stage on the choice of

bifurcation parameter ·. One way to induce a primary
instability of the homogeneous state is to increase the
global coupling parameter · in equation (29) until the
critical point ·c is reached. However, it is clear from
equation (29) that an equivalent way to induce such an
instability is to keep · ¢xed and increase the slope ¼1 of
the neural output function ¼. The latter could be achieved
by keeping a non-zero uniform input h(r, ¿, t) ˆ h0 in
equation (1) so that the homogeneous state is non-zero,
a(r, ¿, t) ˆ a0 6ˆ 0 with ¼1 ˆ ¼ 0(a0). Then variation of the
input h0 and consequently ¼1, corresponds to changing
the e¡ective neural threshold and hence the level of
network excitability. Indeed, this is thought to be one of
the possible e¡ects of hallucinogens. In summary, the
mathematically convenient choice of · as the bifurcation
parameter can be reinterpreted in terms of biologically
meaningful parameter variations. It is also possible that
hallucinogens act indirectly on the relative levels of inhi-
bition and this could also play a role in determining the
type of patterns that emergeöa particular example is
discussed below.
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Figure 16. (a) Plot of marginal stability curves ·§ (q) for g(s)
given by the di¡erence of Gaussians (equation (6)) with
¹ lat ˆ 1, ¹̂ lat ˆ 3, Alat ˆ 1 and ­ ˆ 0:4W1 . Also set
¬/¼1W1 ˆ 1. The critical wavenumber for spontaneous
pattern formation is qc. The marginally stable eigenmodes are
odd functions of ¿. (b) Plot of critical wavenumber q§ for
marginal stability of even ( + ) and odd (7) patterns as a
function of the strength of inhibitory coup ling Alat. If the
inhibition is too weak then there is a bulk instability with
respect to the spatial domain.
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Figure 17. Same as ¢gure 16 except that Ŵ(q) satis¢es
equation (36) with ³0 ˆ º/3 rather than equation (34). It can
be seen that the marginally stable eigenmodes are now even
functions of ¿.



(d) The Ermentrout^Cowan model revisited
The marginally stable eigenmodes (equation (33))

identi¢ed in the analysis consist of spatially periodic
patterns of activity that modulate the distribution of
orientation tuning curves across V1. Examples of these
contoured cortical planforms will be presented in ½ 4 and
the corresponding hallucination patterns in the visual
¢eld (obtained by applying an inverse retinocortical map)
will be constructed in ½ 5. It turns out that the resulting
patterns account for some of the more complicated form
constants where contours are prominent, including
cobwebs, honeycombs and lattices (¢gure 4). However,
other form constants such as chequer-boards, funnels and
spirals (¢gures 6 and 7) comprise contrasting regions of
light and dark. One possibility is that these hallucinations
are a result of higher-level processes ¢lling in the
contoured patterns generated in V1. An alternative expla-
nation is that such regions are actually formed in V1 itself
by a mechanism similar to that suggested in the original
Ermentrout^Cowan model. This raises the interesting
issue as to whether or not there is some parameter regime
in which the new model can behave in a similar fashion
to the c̀ortical retina’ of Ermentrout & Cowan (1979),
that is, can cortical orientation tuning somehow be
switched o¡ ? One possible mechanism is the following:
suppose that the relative level of local inhibition, which is
speci¢ed by the parameter Aloc in equation (15), is
reduced (e.g. by the possible (indirect) action of halluci-
nogens). Then W0 ˆ maxfWn, n 2 Z‡ g rather than W1,
and the marginally stable eigenmodes will consist of
spatially periodic patterns that modulate bulk instabiliti-
ties with respect to orientation.

To make these ideas more explicit, we introduce the
perturbation expansions

l ‡ ¬

¼1·
ˆ W0 ‡ ­ l(1) ‡ ­ 2l(2) ‡ . . . , (37)

and

An ˆ z¯n,0 ‡ ­ A(1)
n ‡ ­ 2A(2)

n ‡ . . . . (38)

Substituting these expansions into the matrix eigenvalue
equation (26) and solving the resulting equations to
successive orders in ­ leads to the following results:

l ‡ ¬

¼1·
ˆW0 ‡ ­ Ŵ0(q) ‡ ­ 2

m40

Ŵm(q)2

W0 ¡ Wm
‡ O(­ 3)

² G0(q)

(39)

and

u(¿) ˆ 1 ‡ ­
m40

u0
m(q) cos(2m¿† ‡ O(­ 2), (40)

with

u0
m(q) ˆ

Ŵm(q)
W0 ¡ Wm

. (41)

Substituting equation (40) into equation (33) shows that
the marginally stable states are now only weakly depen-
dent on the orientation ¿, and to lowest order in ­ simply
correspond to the spatially periodic patterns of the
Ermentrout^Cowan model. The length-scale of these
patterns is determined by the marginal stability curve
·0(q) ˆ ¬/¼1G0(q), an example of which is shown in
¢gure 18.

The occurrence of a bulk instability in orientation
means that for su¤ciently small ­ the resulting cortical
patterns will be more like contrasting regions of light and
dark rather than a lattice of oriented contours (see ½ 4).
However, if the strength of lateral connections ­ were
increased, then the eigenfunctions (40) would develop a
signi¢cant dependence on the orientation ¿. This could
then provide an alternative mechanism for the generation
of even contoured patternsörecall from ½ 3(c) that only
odd contoured patterns emerge in the case of a tuned
instability with respect to orientation, unless there is
signi¢cant angular spread in the lateral connections.

4. DOUBLY PERIODIC PLANFORMS

As we found in ½ 3 (c) and ½ 3 (d), rotation symmetry
implies that the space of marginally stable eigenfunctions
of the linearized Wilson^Cowan equation is in¢nite-
dimensional, that is, if u(¿)eik¢r is a solution then so is
u(¿ ¡ ’)eiR’k¢r. However, translation symmetry suggests
that we can restrict the space of solutions of the nonlinear
Wilson^Cowan equation (11) to that of doubly periodic
functions. This restriction is standard in many treatments
of spontaneous pattern formation, but as yet it has no
formal justi¢cation. There is, however, a wealth of
evidence from experiments on convecting £uids and
chemical reaction^di¡usion systems (Walgraef 1997), and
simulations of neural nets (Von der Malsburg & Cowan
1982), which indicates that such systems tend to generate
doubly periodic patterns in the plane when the homoge-
neous state is destabilized. Given such a restriction, the
associated space of marginally stable eigenfunctions is
then ¢nite-dimensional. A ¢nite set of speci¢c eigen-
functions can then be identi¢ed as candidate planforms,
in the sense that they approximate time-independent
solutions of equation (11) su¤ciently close to the critical
point where the homogeneous state loses stability. In this
section we construct such planforms.
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Figure 18. Plot of marginal stability curve ·0(q) for a bulk
instability with respect to orientation and g(s) given by the
di¡erence of Gaussians (equation (6)) with ¹lat ˆ 1, ¹̂lat ˆ 3,
Alat ˆ 1:0, ­ ˆ 0:4W0 and ¬/¼1W0 ˆ 1. The critical wave-
number for spontaneous pattern formation is qc.



(a) Restriction to doubly periodic solutions
Let be a planar lattice ; that is, choose two linearly

independent vectors 1 and 2 and let

ˆ f2ºm1 1 ‡ 2ºm2 2 : m1, m2 2 Zg:

Note that is a subgroup of the group of planar trans-
lations. A function f :R2 £ S1 ! R is doubly periodic
with respect to if

f (x ‡ , ¿) ˆ f (x, ¿),

for every 2 . Let ³ be the angle between the two basis
vectors 1 and 2. We can then distinguish three types of
lattice according to the value of ³: square lattice (³ ˆ º/2),
rhombic lattice (05³5º/2, ³ 6ˆ º/3) and hexagonal
(³ ˆ º=3). After rotation, the generators of the planar
lattices are given in table 1 (for unit lattice spacing).

Restriction to double periodicity means that the
original Euclidean symmetry group is now restricted to
the symmetry group of the lattice, ¡ ˆ H _‡ T 2, where
H is the holohedry of the lattice, the subgroup of O…2)
that preserves the lattice, and T 2 is the two torus of
planar translations modulo the lattice. Thus, the holo-
hedry of the rhombic lattice is D2, the holohedry of the
square lattice is D4 and the holohedry of the hexagonal
lattice is D6. Observe that the corresponding space of
marginally stable modes is now ¢nite-dimensionalöwe
can only rotate eigenfunctions through a ¢nite set of
angles (for example, multiples of º/2 for the square lattice
and multiples of º/3 for the hexagonal lattice).

It remains to determine the space K of marginally
stable eigenfunctions and the action of ¡ on this space.
In ½ 3 we showed that eigenfunctions either reside in V‡

k
(the even case) or V¡

k (the odd case) where the length of
k is equal to the critical wavenumber qc . In particular,
the eigenfunctions have the form u(¿ ¡ ’)eik¢r where u is
either an odd or even eigenfunction. We now choose the
size of the lattice so that eik¢r is doubly periodic with
respect to that lattice, i.e. k is a dual wave vector for the
lattice. In fact, there are in¢nitely many choices for the
lattice size that satisfy this constraintöwe select the one
for which qc is the shortest length of a dual wave vector.
The generators for the dual lattices are also given in
table 1 with qc ˆ 1. The eigenfunctions corresponding to
dual wave vectors of unit length are given in table 2. It
follows that KL can be identi¢ed with the m-dimensional
complex vector space spanned by the vectors
(c1, : : :, cm) 2 Cm with m ˆ 2 for square or rhombic
lattices and m ˆ 3 for hexagonal lattices. It can be shown
that these form ¡ -irreducible representations. The
actions of the group ¡ on K can then be explicitly
written down for both the square or rhombic and hexa-
gonal lattices in both the odd and even cases. These
actions are given in Appendix A(b).

(b) Planforms
We now use an important result from bifurcation

theory in the presence of symmetries, namely, the equi-
variant branching lemma (Golubitsky et al. 1988). For our
particular problem, the equivariant branching lemma
implies that generically there exists a (unique) doubly
periodic solution bifurcating from the homogeneous state
for each of the axial subgroups of ¡ under the action
(9)öa subgroup S » ¡ is axial if the dimension of the
space of vectors that are ¢xed by S is equal to unity. The
axial subgroups are calculated from the actions presented
in Appendix A(b) (see Bresslo¡ et al. (2000b) for details)
and lead to the even planforms listed in table 3 and the
odd planforms listed in table 4. The generic planforms
can then be generated by combining basic properties of
the Euclidean group action (equation (9)) on doubly peri-
odic functions with solutions of the underlying linear
eigenvalue problem. The latter determines both the
critical wavenumber qc and the º-periodic function u(¿).
In particular, the perturbation analysis of ½ 3(c) and
½ 3(d) shows that (in the case of weak lateral interactions)
u(¿) can take one of three possible forms:

(i) even contoured planforms (equation (30)) with
u(¿) º cos(2¿),

(ii) odd contoured planforms (equation (31)) with
u(¿) º sin(2¿),

(iii) even non-contoured planforms (equation (40)) with
u(¿) º 1.

Each planform is an approximate steady-state solution
a(r, ¿) of the continuum model (equation (11)) de¢ned on
the unbounded domain R2 £ S1. To determine how these
solutions generate hallucinations in the visual ¢eld, we
¢rst need to interpret the planforms in terms of activity
patterns in a bounded domain of V1, which we denote by
M » R. Once this has been achieved, the resulting
patterns in the visual ¢eld can be obtained by applying
the inverse retinocortical map as described in ½ 5(a).

The interpretation of non-contoured planforms is
relatively straightforward, since to lowest order in ­ the
solutions are ¿-independent and can thus be directly
treated as activity patterns a(r) in V1 with r 2 M. At the
simplest level, such patterns can be represented as
contrasting regions of light and dark depending on
whether a(r)40 or a(r)50. These regions form square,
triangular, or rhombic cells that tile M as illustrated in
¢gures 19 and 20.

The case of contoured planforms is more subtle. At a
given location r in V1 we have a sum of two or three
sinusoids with di¡erent phases and amplitudes (see tables 3
and 4), which can be written as a(r, ¿) ˆ A(r) cos‰2¿
¡ 2¿0(r)Š. The phase ¿0(r) determines the peak of the
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Table 1. Generators for the planar lattices and their dual
lattices

lattice 1 2 k1 k2

square (1, 0) (0, 1) (1, 0) (0, 1)
hexagonal (1, 1/ 3

p
) (0, 2/ 3

p
) (1, 0) 1

2 (¡1, 3
p

)
rhombic (1, ¡cot ²) (0, cosec ²) (1, 0) (cos ², sin ²)

Table 2. Eigenfunctions corresponding to shortest dual wave
vectors

lattice a(r, ¿)

square c1u(¿)eik1 ¢ r ‡ c2u(¿ ¡ º/2)eik2 ¢ r ‡ c:c:
hexagonal c1u(¿)eik1 ¢ r ‡ c2u(¿ ¡ 2º/3)eik3 ¢ r

‡ c3u(¿ ‡ 2º/3)eik3 ¢ r‡ c:c:
rhombic c1u(¿)eik1 ¢ r ‡ c2u(¿¡ ²)eik2 ¢ r ‡ c:c:



orientation tuning curve at r (see ¢gure 14). Hence the
contoured solutions generally consist of iso-orientation
regions or patches over which ¿0(r) is constant, but the
amplitude A(r) varies. As in the non-contoured case, these
patches are either square, triangular or rhombic in shape.
However, we now show each patch to be represented by a
locally orientated contour centred at the point of maximal
amplitude A(rmax) within the patch. The resulting odd and
even contoured patterns are shown in ¢gures 21 and 22 for
the square latttice, in ¢gures 23 and 24 for the rhombic
latttice and in ¢gures 25 and 26 for the hexagonal lattice.
Note that our particular interpretation of contoured plan-
forms breaks down in the case of an odd triangle on a
hexagonal lattice: the latter comprises hexagonal patches
in which all orientations are present with equal magni-
tudes. In this case we draw a s̀tar’ shape indicating the
presence of multiple orientations at a given point, see
¢gure 26b. Note that this planform contains the well-
known p̀inwheels’described by Blasdel (1992).

5. FROM CORTICAL PATTERNS TO VISUAL

HALLUCINATIONS

In ½ 4 we derived the generic planforms that bifurcate
from the homogeneous state and interpreted them in
terms of cortical activity patterns. In order to compute
what the various planforms look like in visual ¢eld
coordinates, we need to apply an inverse retinocortical
map. In the case of non-contoured patterns this can be
carried out directly using the (single) retinocortical map
introduced in ½ 1(b). However, for contoured planforms it
is necessary to specify how to map local contours in the
visual ¢eld as well as positionöthis is achieved by
considering a so-called double retinocortical map.
Another important feature of the mapping between V1

and the visual ¢eld is that the periodicity of the angular
retinal coordinate ³R implies that the y-coordinate in V1
satis¢es cylindrical periodic boundary conditions (see
¢gure 5). This boundary condition should be commensu-
rate with the square, rhombic or hexagonal lattice
associated with the doubly periodic planforms.

(a) The double retinocortical map
An important consequence of the introduction of orien-

tation as a cortical label is that the retinocortical map
described earlier needs to be extended to cover the
mapping of local contours in the visual ¢eldöin e¡ect to
treat them as a vector ¢eld. Let ¿R be the orientation of
such a local contour, and ¿ its image in V1. What is the
appropriate map from ¿R to ¿ that must be added to the
map zR ! z described earlier ? We note that a line in V1
of constant slope tan ¿ is a level curve of the equation

f (x, y) ˆ y cos ¿ ¡ x sin ¿,

where (x, y) are Cartesian coordinates in V1. Such a line
has a constant tangent vector

v ˆ cos ¿
@

@x
‡ sin ¿

@

@y
:

The pre-image of such a line in the visual ¢eld, assuming
the retinocortical map generated by the complex
logarithm is obtained by changing from cortical to retinal
coordinates via the complex exponential, is

f (x, y) ! ~f (rR, ³R) ˆ ³R cos ¿ ¡ log rR sin ¿,

the level curves of which are the logarithmic spirals

rR(³R) ˆ A exp(cot (¿)³R).
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Table 3. Even planforms with u(¡ ¿) ˆ u(¿)

(The hexagon solutions (0) and (º) have the same isotropy subgroup, but they are not conjugate solutions.)

lattice name planform eigenfunction

square even square u(¿) cos x ‡ u(¿ ¡ º/2) cos y
even roll u(¿) cos x

rhombic even rhombic u(¿) cos(k1 ¢ r) ‡ u(¿ ¡ ²) cos(k2 ¢ r)
even roll u(¿) cos(k1 ¢ r)

hexagonal even hexagon (0) u(¿) cos(k1 ¢ r) ‡ u(¿ ‡ º/3) cos(k2 ¢ r) ‡ u(¿ ¡ º/3) cos(k3 ¢ r)
even hexagon (º) u(¿) cos(k1 ¢ r) ‡ u(¿ ‡ º/3) cos(k2 ¢ r) ¡ u(¿ ¡ º/3) cos(k3 ¢ r)
even roll u(¿) cos(k1 ¢ r)

Table 4. Odd planforms with u(¡ ¿) ˆ ¡u(¿)

lattice name planform eigenfunction

square odd square u(¿) cos x ¡ u(¿ ¡ º/2) cos y
odd roll u(¿) cos x

rhombic odd rhombic u(¿) cos(k1 ¢ r) ‡ u(¿ ¡ ²) cos(k2 ¢ r)
odd roll u(¿) cos(k1 ¢ r)

hexagonal odd hexagon u(¿) cos(k1 ¢ r) ‡ u(¿ ‡ º/3) cos(k2 ¢ r) ‡ u(¿ ¡ º/3) cos(k3 ¢ r)
triangle u(¿) sin(k1 ¢ r) ‡ u(¿ ‡ º/3) sin(k2 ¢ r) ‡ u(¿ ¡ º/3) sin(k3 ¢ r)
patchwork quilt u(¿ ‡ º/3) cos(k2 ¢ r) ¡ u(¿ ¡ º/3) cos(k3 ¢ r)
odd roll u(¿) cos(k1 ¢ r)
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(b)

(a)

Figure 21. Contours of even axial eigenfunctions on the
square lattice: (a) square, (b) roll.

(b)

(a)

Figure 19. Non-contoured axial eigenfunctions on the square
lattice: (a) square, (b) roll.

(b)

(a)

Figure 20. Non-contoured axial eigenfunctions on rhombic
and hexagonal lattices: (a) rhombic, (b) hexagonal.

(b)

(a)

Figure 22. Contours of odd axial eigenfunctions on the square
lattice: (a) square, (b) roll.
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(a)

(b)

Figure 25. Contours of even axial eigenfunctions on the
hexagonal lattice: (a) º-hexagonal, (b) 0-hexagonal.

(a)

(b)

Figure 26. Contours of odd axial eigenfunctions on the
hexagonal lattice: (a) triangular, (b) 0-hexagonal.

(b)

(a)

Figure 23. Contours of even axial eigenfunctions on the
rhombic lattice: (a) rhombic, (b) roll.

(a)

(b)

Figure 24. Contours of odd axial eigenfunctions on the
rhombic lattice: (a) rhombic, (b) roll.



It is easy to show that the tangent vector corresponding
to such a curve takes the form

~v ˆ rR cos(¿ ‡ ³R)
@

@xR
‡ rR sin(¿ ‡ ³R)

@

@yR
:

Thus the retinal vector ¢eld induced by a constant vector
¢eld in V1 twists with the retinal angle ³R and stretches
with the retinal radius rR. It follows that if ¿R is the
orientation of a line in the visual ¢eld, then

¿ ˆ ¿R ¡ ³R, (42)

i.e. local orientation in V1 is relative to the angular coor-
dinate of visual ¢eld position. The geometry of the above
setup is shown in ¢gure 27.

The resulting double map fzR, ¿Rg ! fz, ¿g has very
interesting properties. As previously noted, the map
zR ! z takes circles, rays and logarithmic spirals into
vertical, horizontal and oblique lines, respectively. What
about the extended map ? Because the tangent to a circle at
a given point is perpendicular to the radius at that point,
for circles, ¿R ˆ ³R ‡ º/2, so that ¿ ˆ º/2. Similarly, for
rays, ¿R ˆ ³R, so ¿ ˆ 0. For logarithmic spirals we can
write either ³R ˆ a ln rR or rR ˆ exp‰b³RŠ. In retinal coor-
dinates we ¢nd the somewhat cumbersome formula

tan ¿R ˆ
brR sin ³R ‡ eb³R cos ³R

brR cos ³R ¡ eb³R sin ³R
:

However, this can be rewritten as tan (¿R ¡ ³R) ˆ a, so
that in V1 coordinates, tan ¿ ˆ a. Thus we see that the
local orientations of circles, rays and logarithmic spirals,
measured in relative terms, all lie along the cortical
images of such forms. Figure 28 shows the details.

(b) Planforms in the visual ¢eld
In order to generate a visual ¢eld pattern we split our

model V1 domain M into two pieces, each running
72 mm along the x direction and 48 mm along the y
direction, representing the right and left hemi¢elds in the
visual ¢eld (see ¢gure 5). Because the y coordinate corre-
sponds to a change from ¡º/2 to º/2 in 72 mm, which
meets up again smoothly with the representation in the
opposite hemi¢eld, we must only choose scalings and
rotations of our planforms that satisfy cylindrical periodic
boundary conditions in the y direction. In the x direction,
corresponding to the logarithm of radial eccentricity, we
neglect the region immediately around the fovea and also

the far edge of the periphery, so we have no constraint on
the patterns in this direction.

Recall that each V1 planform is doubly periodic with
respect to a spatial lattice generated by two lattice vectors
1, 2. The cylindrical periodicity is thus equivalent to

requiring that there be an integral combination of lattice
vectors that spans Y ˆ 96 mm in the y direction with no
change in the x direction:

0
96

ˆ 2ºm1 1 ‡ 2ºm2 2. (43)

If the acute angle of the lattice ²0 is speci¢ed, then the
wavevectors ki are determined by the requirement

ki ¢ j ˆ
1, i ˆ j
0, i 6ˆ j: (44)

The integral combination requirement limits which wave-
lengths are permitted for planforms in the cortex. The
length-scale for a planform is given by the length of the
lattice vectors j 1j ˆ j 2 j :ˆ j j:

j j ˆ
96

m2
1 ‡ 2m1m2 cos(²0) ‡ m2

2

. (45)

The commonly reported hallucination patterns usually
have 30^40 repetitions of the pattern around a circumfer-
ence of the visual ¢eld, corresponding to length-scales
ranging from 2.4^3.2 mm. Therefore, we would expect
the critical wavelength 2º/qc for bifurcations to be in this
range (see ½ 3(c)). Note that when we rotate the planform
to match the cylindrical boundary conditions we rotate
k1 and hence the maximal amplitude orientations ¿0(r)
by

cos¡1 m2j j
Y

sin(²0) ‡ ²0 ¡ º

2
:

The resulting non-contoured planforms in the visual ¢eld
obtained by applying the inverse single retinocortical
map to the corresponding V1 planforms are shown in
¢gures 29 and 30.

Similarly, the odd and even contoured planforms
obtained by applying the double retinocortical map are
shown in ¢gures 31 and 32 for the square lattice, in
¢gures 33 and 34 for the rhombic lattice, and in
¢gures 35 and 36 for the hexagonal lattice.

One of the striking features of the resulting (contoured)
visual planforms is that only the even planforms appear
to be contour completing and it is these that recover the
remaining form constants missing from the original
Ermentrout^Cowan model. The reader should compare,
for example, the pressure phosphenes shown in ¢gure 1
with the planform shown in ¢gure 35a, and the cobweb
of ¢gure 4 with that of ¢gure 31a.

6. THE SELECTION AND STABILITY OF PATTERNS

It remains to determine which of the various planforms
we have presented above in our model are actually stable
for biologically relevant parameter sets. So far we have
used a mixture of perturbation theory and symmetry to
construct the linear eigenmodes (equation (33)) that are
candidate planforms for pattern forming instabilities. To
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Figure 27. The geometry of orientation tuning.



determine which of these modes are stabilized by the
nonlinearities of the system we use techniques such as
Liapunov^Schmidt reduction and Poincarë^Lindstedt
perturbation theory to reduce the dynamics to a set of
nonlinear equations for the amplitudes ci appearing in
equation (33) (Walgraef 1997). These amplitude equa-
tions, which e¡ectively describe the dynamics on a ¢nite-
dimensional centre manifold, then determine the selec-
tion and stability of patterns (at least su¤ciently close to

the bifurcation point). The symmetries of the system
severely restrict the allowed forms (Golubitsky et al.
1988); however, the coe¤cients in this form are inher-
ently model dependent and have to be calculated expli-
citly.

In this section we determine the amplitude equation for
our cortical model up to cubic order and use this to
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(a)

(b)

Figure 29. Action of the single inverse retinocortical map on
non-contoured square planforms: (a) square, (b) roll.

(a)

(b)

Figure 30. Action of the single inverse retinocortical map
on non-contoured rhombic and hexagonal planforms:
(a) rhombic, (b) hexagonal.
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Figure 28. Action of the single
and double maps on logarithmic
spirals. Dashed lines show the
local tangents to a logarithmic
spiral contour in the visual ¢eld,
and the resulting image in V1.
Since circle and ray contours in
the visual ¢eld are just special
cases of logarithmic spirals, the
same result holds also for such
contours. (a) Visual ¢eld; (b)
striate cortex, (i) single map,
(ii) double map.



investigate the selection and stability of both odd patterns
satisfying u(¡ ¿) ˆ ¡u(¿) and even patterns satisfying
u(¡ ¿) ˆ u(¿). A more complete discussion of stability
and selection based on symmetrical bifurcation theory,
which takes into account the possible e¡ects of higher-
order contributions to the amplitude equation, will be
presented elsewhere (Bresslo¡ et al. 2000b).

(a) The cubic amplitude equation
Assume that su¤ciently close to the bifurcation point at

which the homogeneous state a(r, ¿) ˆ 0 becomes
marginally stable, the excited modes grow slowly at a rate
O(e2) where e2 ˆ · ¡ ·c. One can then use the method of
multiple-scales to perform a Poincarë^Lindstedt pertur-
bation expansion in e. First, we Taylor expand the
nonlinear function ¼‰aŠ appearing in equation (11),

¼‰aŠ ˆ ¼1a ‡ ¼2a
2 ‡ ¼3a

3 ‡ : : : ,

where ¼1 ˆ ¼0‰0Š, ¼2 ˆ ¼00‰0Š/2, ¼3 ˆ ¼000‰0Š/3!, etc. Then
we perform a perturbation expansion of equation (11)
with respect to e by writing

a ˆ ea1 ‡ e2a2 ‡ : : : ,

and introducing a slow time-scale t ˆ e2t. Collecting
terms with equal powers of e then generates a hierarchy
of equations as shown in Appendix A(c). The OO(e)

equation is equivalent to the eigenvalue equation (10)
with l ˆ 0, · ˆ ·c and jkj ˆ qc so that

a1(r, ¿, t) ˆ
N

jˆ1

cj(t)e
ikj ¢ru(¿ ¡ ’j) ‡ c:c:, (46)

with kj ˆ qc( cos ’j, sin ’j). Requiring that the OO(e2)
and OO(e3) equations in the hierarchy be self-consistent
then leads to a solvability condition, which in turn
generates evolution equations for the amplitudes cj(t)
(see Appendix A(c)).

(i) Square or rhombic lattice
First, consider planforms (equation (46)) corresponding

to a bimodal structure of the square or rhombic type
(N ˆ 2). That is, take k1 ˆ qc(1, 0) and k2 ˆ qc( cos(³),
sin(³)), with ³ ˆ º/2 for the square lattice and 05³5º/2,
³ 6ˆ º/3 for a rhombic lattice. The amplitudes evolve
according to apair of equations of the form

dc1

dt
ˆ c1‰L ¡ ®0 jc1j2 ¡ 2®³ jc2 j2Š,

dc2

dt
ˆ c2‰L ¡ ®0 jc2j2 ¡ 2®³ jc1 j2Š,

(47)

where L ˆ · ¡ ·c measures the deviation from the
critical point, and

®’ ˆ
3¬j¼3 j

¼1
¡(3)(’), (48)
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(a)

(b)

Figure 31. Action of the double inverse retinocortical map on
even square planforms: (a) square, (b) roll.

(a)

(b)

Figure 32. Action of the double inverse retinocortical map on
odd square planforms: (a) square, (b) roll.
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(a)

(b)

Figure 33. Action of the double inverse retinocortical map on
even rhombic planforms: (a) rhombic, (b) roll.

(a)

(b)

Figure 34. Action of the double inverse retinocortical map on
odd rhombic planforms: (a) rhombic, (b) roll.

(a)

(b)

Figure 35. Action of the double inverse retinocortical map on
even hexagonal planforms: (a) º-hexagonal, (b) 0-hexagonal.

(b)

(a)

Figure 36. Action of the double inverse retinocortical map on
odd hexagonal planforms: (a) triangular, (b) 0-hexagonal.



for all 04 ’5º with

¡(3)(’) ˆ
º

0

u(¿ ¡ ’)2u(¿)2 d¿

º
. (49)

(ii) Hexagonal lattice
Next consider planforms on a hexagonal lattice with

N ˆ 3, ’1 ˆ 0, ’2 ˆ 2º/3, ’3 ˆ ¡2º/3. The cubic ampli-
tude equations take the form

dcj

dt
ˆ cj‰L ¡ ®0 jcj j2 ¡ 2®2º=3(jcj‡ 1 j2 ‡ jcj¡1 j2)Š ‡ ²cj¡1cj‡ 1,

(50)

where j ˆ 1, 2, 3 mod 3, ®2º=3 is given by equation (49)
for ’ ˆ 2º/3, and

² ˆ
¬¼2

¼1 ¼1W1

p ¡(2), (51)

with

¡(2) ˆ
º

0

u(¿)u(¿ ¡ 2º/3)u(¿ ‡ 2º/3)
d¿

º
. (52)

In deriving equation (50) we have assumed that the
neurons are operating close to threshold such that
¼2 ˆ OO(e).

The basic structure of equations (47) and (50) is
universal in the sense that it only depends on the under-
lying symmetries of the system and on the type of bifurca-
tion that it is undergoing. In contrast, the actual values of
the coe¤cients ®’ and ² are model-dependent and have
to be calculated explicitly. Moreover, these coe¤cients are
di¡erent for odd and even patterns because they have
distinct eigenfunctions u(¿). Note also that because of
symmetry the quadratic term in equation (50) must
vanish identically in the case of odd patterns.

(iii) Even contoured planforms
Substituting the perturbation expansion of the eigen-

function (equation (30)) for even contoured planforms
into equations (52) and (49) gives

¡(2) ˆ 3
4 ­ ‰u‡

2 (qc) ¡ u‡
0 (qc)Š ‡ OO(­ 2) (53)

¡(3)(³) ˆ 1
8
‰2 ‡ cos(4³) ‡ 4­ u‡

3 (qc) cos(4³) ‡ OO(­ 2)Š
(54)

with the coe¤cients u‡
n de¢ned by equation (32).

(iv) Odd contoured planforms
Substituting the perturbation expansion of the eigen-

function (equation (31)) for odd contoured planforms into
equations (52) and (49) gives, respectively,

¡(2) ˆ 0, (55)

and

¡(3)(³) ˆ 1
8 ‰2 ‡ cos(4³) ¡ 4­ u¡

3 (qc) cos(4³) ‡ OO(­ 2)Š,
(56)

with the coe¤cients u¡
n de¢ned by equation (32). Note

that the quadratic term in equation (50) vanishes identi-
cally in the case of odd patterns.

(v) Even non-contoured planforms
Substituting the perturbation expansion of the eigen-

function (equation (40)) for even non-contoured plan-
forms into equations (52) and (49) gives, respectively,

¡(2) ˆ 1 ‡ 3
2 ­ 2

m40

‰u0
m(qc)Š2 cos(2mº/3) ‡ OO(­ 3), (57)

and

¡(3)(³) ˆ 1 ‡ ­ 2

m40

‰u0
m(qc)Š2‰1 ‡ 2 cos(2m³)Š ‡ OO(­ 3),

(58)

with the coe¤cients u0
n de¢ned by equation (41).

(b) Even and odd patterns on square or rhombic
lattices

We now use equation (47) to investigate the selection
and stability of odd or even patterns on square or
rhombic lattices. Assuming that ®³40 and L40, the
following three types of steady state are possible for arbi-
trary phases Á1, Á2.

(i) the homogeneous state: c1 ˆ c2 ˆ 0.
(ii) rolls: c1 ˆ L/®0

p
eiÁ1 , c2 ˆ 0 or c1 ˆ 0, c2 ˆ L=®0e

iÁ2.
(iii) squares or rhombics: c1 ˆ L/‰®0 ‡ 2®³ŠeiÁ1 ,

c2 ˆ L/‰®0 ‡ 2®³ŠeiÁ2 .

The non-trivial solutions correspond to the axial plan-
forms listed in tables 3 and 4. A standard linear stability
analysis shows that if 2®³4®0, then rolls are stable
whereas the square or rhombic patterns are unstable. The
opposite holds if 2®³5®0. These stability properties
persist when higher-order terms in the amplitude
equation are included (Bresslo¡ et al. 2000b).

Using equations (48), (54), (56) and (58) with 3¬j¼3j/¼1

ˆ 1, we deduce that for non-contoured patterns

2®³ ˆ ®0 ‡ 1 ‡ OO(­ ),

and for (odd or even) contoured patterns

2®³ ˆ ®0 ‡
1 ‡ 2 cos(4³)

8
‡ OO(­ ).

Hence, in the case of a square or rhombic lattice we have
the following results concerning patterns bifurcating from
the homogeneous state close to the point of marginal
stability (in the limit of weak lateral interactions):

(i) For non-contoured patterns on a square or rhombic
lattice there exist stable rolls and unstable squares.

(ii) For (even or odd) contoured patterns on a square
lattice there exist stable rolls and unstable squares. In
the case of a rhombic lattice of angle ³ 6ˆ º/2, rolls
are stable if cos(4³)4¡1/2 whereas ³-rhombics are
stable if cos(4³)5¡1/2, that is, if º/65³5º/3.

It should be noted that this result di¡ers from that obtained
by Ermentrout & Cowan (1979) in which stable squares
were shown to occur for certain parameter ranges (see also
Ermentrout (1991)). We attribute this di¡erence to the
anisotropy of the lateral connections incorporated into the
current model and the consequent shift^twist symmetry of
the Euclidean group action. The e¡ects of this anisotropy
persist even in the limit of weak lateral connections, and
preclude the existence of stable square patterns.
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(c) Even patterns on a hexagonal lattice
Next we use equations (50) and (51) to analyse the

stability of even planforms on a hexagonal lattice. On
decomposing ci ˆ CieiÁi, it is a simple matter to show that
two of the phases Ái are arbitrary while the sum
Á ˆ 3

iˆ1 Ái and the real amplitudes Ci evolve according
to the equations

dCi

dt
ˆ LCi ‡ ²Ci‡ 1Ci¡1 cos Á¡ ®0C

3
i ¡2®2º=3(C

2
i‡ 1 ‡ C2

i¡1)Ci

(59)
and

dÁ

dt
ˆ ¡²

3

iˆ1

Ci‡1Ci¡1

Ci
sin Á, (60)

with i, j ˆ 1, 2, 3 mod 3. It immediately follows from
equation (60) that the stable steady-state solution will
have a phase Á ˆ 0 if ²40 and a phase Á ˆ º if ²50.

From equations (48), (54) and (58) with 3¬j¼3 j/¼1 ˆ 1
we see that

2®2º=3 ˆ ®0 ‡ 1 ‡ OO(­ 2),

for even non-contoured patterns, and

2®2º=3 ˆ ®0 ‡ ­ u¡
3 (qc) ‡ OO(­ 2),

for even contoured patterns. In the parameter regime
where the marginally stable modes are even contoured
planforms (such as in ¢gure 17) we ¢nd that u‡

3 (qc)40.
This is illustrated in ¢gure 37.

Therefore, 2®2º=34®0 for both the contoured and non-
contoured cases. Standard analysis then shows that (to
cubic order) there exists a stable hexagonal pattern
Ci ˆ C for i ˆ 1, 2, 3 with amplitude (Busse 1962)

C ˆ
1

2‰®0 ‡ 4®2º=3Š
j²j ‡ ²2 ‡ 4‰®0 ‡ 4®2º=3ŠL , (61)

over the parameter range

¡²2

4‰®0 ‡ 4®2º=3Š
5L5

2²2‰®0 ‡ ®2º=3Š
‰®0 ¡ 2®2º=3Š2

.

The maxima of the resulting hexagonal pattern are
located on an equilateral triangular lattice for ²40

(0-hexagons) whereas the maxima are located on an
equilateral hexagonal lattice for ²50 (º-hexagons).
Both classes of hexagonal planform have the same D6

axial subgroup (up to conjugacy), see table A2 in
Appendix A(b). One can also establish that rolls are
unstable versus hexagonal structures in the range

05L5
²2

‰®0 ¡ 2®2º=3Š2 . (62)

Hence, in the case of a hexagonal lattice, we have the
following result concerning the even patterns bifurcating
from the homogeneous state close to the point of marginal
stability (in the limit of weak lateral interactions). For
even (contoured or non-contoured) patterns on a
hexagonal lattice, stable hexagonal patterns are the ¢rst
to appear (subcritically) beyond the bifurcation point.
Subsequently, the stable hexagonal branch exchanges
stability with an unstable branch of roll patterns, as
shown in ¢gure 38.

Techniques from symmetrical bifurcation theory can be
used to investigate the e¡ects of higher order terms in the
amplitude equation (Buzano & Golubitsky 1983): in the
case of even planforms the results are identical to those
obtained in the analysis of Bënard convection in the
absence of midplane symmetry. For example, one ¢nds
that the exchange of stability between the hexagons and
rolls is due to a secondary bifurcation that generates
rectangular patterns.

(d) Odd patterns on a hexagonal lattice
Recall that in the case of odd patterns, the quadratic

term in equation (50) vanishes identically. The homoge-
neous state now destabilizes via a (supercritical) pitchfork
bifurcation to the four axial planforms listed in tables 3
and 4. In this particular case it is necessary to include
higher-order (quartic and quintic terms) in the amplitude
equation to completely specify the stability of these
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Figure 37. Plot of the even eigenfunction coe¤cient u‡
3 (q) of

equation (32) as a function of wavenumber q. Also plotted is
the OO(­ ) contribution to the even eigenvalue expansion,
equation (29), w‡ (q) ˆ Ŵ0(q) ‡ Ŵ2(q). The peak of w‡ (q)
determines the critical wavenumber qc (to ¢rst order in ­ ).
Same parameter values as ¢gure 17.
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Figure 38. Bifurcation diagram showing the variation of the
amplitude C with the parameter · for even hexagonal and roll
patterns with ²40. Solid and dashed curves indicate stable
and unstable solutions, respectively. Also shown is a secondary
branch of rectangular patterns, RA. Higher-order terms in
the amplitude equation are needed to determine its stability.



various solutions, and to identify possible secondary
bifurcations. Unfortunately, one cannot carry over
previous results obtained from the study of the Bënard
convection problem with midplane symmetry, even
though the corresponding amplitude equation is identical
in structure at cubic order (Golubitsky et al. 1984): higher-
order contributions to the amplitude equation will di¡er
in the two problems due to the radically di¡erent actions
of the Euclidean group and the resulting di¡erences in
the associated axial subgroups.1 The e¡ects of such contri-
butions on the bifurcation structure of odd (and even)
cortical patterns will be studied in detail elsewhere
(Bresslo¡ et al. 2000b). Here, we simply describe the more
limited stability results that can be deduced at cubic
order. A basic question concerns which of the four odd
planforms on a hexagonal lattice (hexagons, triangles,
patchwork quilts and rolls) are stable. It turns out that if
2®2º=34®0, then rolls are stable, whereas if 2®2º=35®0

then either hexagons or triangles are stable (depending
upon higher-order terms). Equations (49) and (56) with
3¬j¼3 j/¼1 ˆ 1 imply that

2®2º=3 ˆ ®0 ‡ ­ u¡
3 (qc) ‡ OO(­ 2). (63)

In the parameter regime where the marginally stable
modes are odd contoured planforms (such as in ¢gure 16)
we ¢nd that u¡

3 (qc)50, and thus 2®2º=35®0. This is
illustrated in ¢gure 39. Hence, in the case of a hexagonal
lattice we have the following result concerning the odd
patterns bifurcating from the homogeneous state close to
the point of marginal stability (in the limit of weak
lateral interactions). For odd (contoured) patterns on a
hexagonal lattice there exist four primary bifurcation
branches corresponding to hexagons, triangles, patchwork
quilts and rolls. Either the hexagons or the triangles are
stable (depending on higher-order terms through a
secondary bifurcation) and all other branches are
unstable. This is illustrated in ¢gure 40.

7. DISCUSSION

This paper describes a new model of the spontaneous
generation of patterns in V1 (seen as geometric hallucina-
tions). Whereas the earlier work of Ermentrout and

Cowan started with a general neural network and sought
the minimal restrictions necessary to produce hallucina-
tion patterns, the current model incorporates data gath-
ered over the past two decades to show that common
hallucinatory images can be generated by a biologically
plausible architecture in which the connections between
iso-orientation patches in V1 are locally isotropic, but
non-locally anisotropic. As we, and Ermentrout and
Cowan before us show, the Euclidean symmetry of such
an architecture, i.e. the symmetry with respect to rigid
motions in the plane, plays a key role in determining
which patterns of activation of the iso-orientation patches
appear when the homogeneous state becomes unstable,
presumed to occur, for example, shortly after the action
of hallucinogens on those brain stem nuclei that control
cortical excitability.

There are, however, two important di¡erences between
the current work and that of Ermentrout and Cowan in
the way in which the Euclidean group is implemented:

(i) The group action is di¡erent and novel, and so the
way in which the various subgroups of the Euclidean
group are generated is signi¢cantly di¡erent. In
particular, the various planforms corresponding to
the subgroups are labelled by orientation preference,
as well as by their location in the cortical plane. It
follows that the eigenfunctions that generate such
planforms are also labelled in such a fashion. This
adds an additional complication to the problem of
calculating such eigenfunctions and the eigenvalues
to which they belong, from the linearized cortical
dynamics. Assuming that the non-local lateral or
horizontal connections are modulatory and weak
relative to the local connections, we show how the
methods of Rayleigh^Schro« dinger degenerate pertur-
bation theory can be used to compute, to some
appropriate level of approximation, the requisite
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Figure 39. Plot of the odd eigenfunction coe¤cient u¡
3 (q) of

equation (32) as a function of wavenumber q. Also plotted is
the OO(­ ) contribution to the odd eigenvalue expansion,
equation (29), w¡(q) ˆ Ŵ0(q) ¡ Ŵ2(q). The peak of w¡(q)
determines the critical wavenumber qc (to ¢rst order in ­ ).
Same parameter values as ¢gure 16.
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Figure 40. Bifurcation diagram showing the variation of the
amplitude C with the parameter · for odd patterns on a
hexagonal lattice. Solid and dashed curves indicate stable and
unstable solutions, respectively. Either hexagons (H) or
triangles (T) are stable (depending on higher-order terms in
the amplitude equation) whereas patchwork quilts (PQ ) and
rolls (R) are unstable. Secondary bifurcations (not shown)
may arise from higher-order terms (Bresslo¡ et al. 2000b).



eigenvalues and eigenfunctions, and therefore the
planforms. Given such eigenfunctions we then make
use of Poincarë^Lindstedt perturbation theory to
compute the stability of the various planforms that
appear when the homogeneous state becomes
unstable.

(ii) Because we include orientation preference in the
formulation, we have to consider the action of the
retinocortical map on orientated contours or edges.
In e¡ect we do this by treating the local tangents to
such contours as a vector ¢eld. As we discussed, this
is carried out by the tangent map associated with
the complex logarithm, one consequence of which is
that ¿, the V1 label for orientation preference, is not
exactly equal to orientation preference in the visual
¢eld, ¿R, but di¡ers from it by the angle ³R, the
polar angle of receptive ¢eld position. We called the
map from visual ¢eld coordinates frR, ³R, ¿Rg to V1
coordinates fx, y, ¿g a double map. Its possible
presence in V1 is subject to experimental veri¢cation.
If the double map is present, then elements tuned to
the same relative angle ¿ should be connected with
greater strength than others; if only the single map
frR, ³Rg! fx, yg obtains, then elements tuned to the
same absolute angle ¿R should be so connected. If,
in fact, the double map is present, then elements
tuned to the same angle ¿ should be connected
along lines at that angle in V1. This would support
Mitchison and Crick’s hypothesis on connectivity in
V1 (Mitchison & Crick 1982) and would be consis-
tent with the observations of G. G. Blasdel (personal
communication) and Bosking et al. (1997). In this
connection, it is of interest that from equation (42) it
follows that near the vertical meridian (where most
of the observations have been made), changes in ¿
closely approximate changes in ¿R. However, a
prediction of the double map is that such changes
should be relatively large and detectable with optical
imaging, near the horizontal meridian.

The main advance over the Ermentrout^Cowan work
is that all the Klu« ver form constants can now be obtained
as planforms associated with axial subgroups of the
Euclidean group in the plane, generated by the new
representations we have discovered. There are several
aspects of this work that require comment.

(i) The analysis indicates that under certain conditions
the planforms are either contoured or else non-
contoured, depending on the strength of inhibition
between neighbouring iso-orientation patches. If
such inhibition is weak, individual hypercolumns do
not exhibit any tendency to amplify any particular
orientation. In normal circumstances, such a prefer-
ence would have to be supplied by inputs from the
LGN. In this case, V1 can be said to operate in the
Hubel^Wiesel mode (see ½ 2(c)). If the horizontal
interactions are still e¡ective, then plane waves of
cortical activity can emerge, with no label for orien-
tation preference. The resulting planforms are called
non-contoured, and correspond to a subset of the
Klu« ver form constants: tunnels and funnels, and
spirals. Conversely, if there is strong inhibition
between neighbouring iso-orientation patches, even

weakly biased inputs to a hypercolumn can trigger a
sharply tuned response such that, under the
combined action of many interacting hypercolumns,
plane waves labelled for orientation preference can
emerge. The resulting planforms correspond to
contoured patterns and to the remaining form
constants described by Klu« veröhoneycombs and
chequer-boards, and cobwebs. Interestingly, all but
the square planforms are stable, but there do exist
hallucinatory images that correspond to square
planforms and it is possible that these are just transi-
tional forms.

(ii) Another conclusion to be drawn from this analysis is
that the circuits in V1, which are normally involved
in the detection of oriented edges and the formation
and processing of contours, are also responsible for
the generation of the hallucinatory form constants.
Thus, we introduced in ½ 2(a) a V1 model circuit in
which the lateral connectivity is anisotropic and
inhibitory. (We noted in ½ 1(d) that 20% of the
(excitatory) lateral connections in layers II and III
of V1 end on inhibitory inter-neurons, so the overall
action of the lateral connections could become
inhibitory, especially at high levels of activity.) As we
demonstrated in ½ 3(c) the mathematical conse-
quences of this is the selection of odd planforms, but
these do not form continuous contours (see ½ 5(b)).
This is consistent with the possibility that such
connections are involved in the segmentation of
visual images (Li 1999). In order to select even plan-
forms, which are contour forming and correspond to
seen form constants, it proved su¤cient to allow for
deviation away from the visuotopic axis by at least
458 in the pattern of lateral connections between
iso-orientation patches. These results are consistent
with observations that suggest that there are two
circuits in V1, one dealing with contrast edges, in
which the relevant lateral connections have the
anisotropy found by G. G. Blasdel and L. Sincich
(personal communication) and Bosking et al. (1997),
and another that might be involved with the proces-
sing of textures, surfaces and colour contrast, and
which has a much more isotropic lateral connec-
tivity Livingstone & Hubel 1984). One can interpret
the less anisotropic pattern needed to generate even
planforms as a composite of the two circuits.

There are also two other intriguing possible
scenarios that are consistent with our analysis. The
¢rst was referred to in ½ 3(d). In the case where V1 is
operating in the Hubel^Wiesel mode, with no
intrinsic tuning for orientation, and if the lateral
interactions are not as weak as we have assumed in
our analysis, then even contoured planforms can
form. The second possibility stems from the observa-
tion that at low levels of V1 activity, lateral
interactions are all excitatory (Hirsch & Gilbert
1991), so that a bulk instability occurs if the homo-
geneous state becomes unstable, followed by
secondary bifurcations to patterned planforms at the
critical wavelength of 2:4^3:2 mm, when the level of
activity rises and the inhibition is activated. In
many cases secondary bifurcations tend to be asso-
ciated with complex eigenvalues, and are therefore
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Hopf bifurcations (Ermentrout & Cowan 1980) that
give rise to oscillations or propagating waves. In
such cases it is possible for even planforms to be
selected by the anistropic connectivity and odd
planforms by the isotropic connectivity. In addition,
such a scenario is actually observed: many subjects
who have taken LSD and similar hallucinogens
report seeing bright white light at the centre of the
visual ¢eld, which then explodes into a hallucinatory
image (Siegel & Jarvik 1975) in ca. 3 s, corre-
sponding to a propagation velocity in V1 of ca.
2:4 cm s¡1, suggestive of slowly moving epileptiform
activity (Milton et al. 1995; Senseman 1999).

(iii) One of the major aspects described in this paper is
the presumed Euclidean symmetry of V1. Many
systems exhibit Euclidean symmetry, but what is
novel here is the way in which such a symmetry is
generated. Thus, equation (9) shows that the
symmetry group is generated, in large part, by a
translation or shift fr, ¿g ! fr ‡ s, ¿g followed by a
rotation or twist fr, ¿g ! fR³r, ¿ ‡ ³g. It is the ¢nal
twist ¿ ! ¿ ‡ ³ that is novel, and which is required
to match the observations of G. G. Blasdel and
L. Sincich (personal communication) and Bosking
et al. (1997). In this respect it is of considerable
interest that Zweck & Williams (2001) have
introduced a set of basis functions with the same
shift^twist symmetry as part of an algorithm to
implement contour completion. Their reason for
doing so is to bind sparsely distributed receptive
¢elds together functionally, to perform Euclidean
invariant computations. It remains to explicate the
precise relationship between the Euclidean invariant
circuits we have introduced here, and the Euclidean
invariant receptive ¢eld models introduced by
Zweck and Williams.

(iv) Finally, it should also be emphasized that many
variants of the Klu« ver form constants have been
described, some of which cannot be understood in
terms of the simple model we have introduced. For
example the tunnel image shown in ¢gure 41
exhibits a reversed retinocortical magni¢cation, and
corresponds to images described in Knauer &
Maloney (1913). It is possible that some of the
circuits beyond V1, for example, those in the dorsal

segment of medial superior temporal cortex (MSTd)
that process radial motion, are involved in the
generation of such images, via a feedback to V1
(Morrone et al. 1995).

Similarly, the lattice^tunnel shown in ¢gure 42a
is more complicated than any of the simple form
constants shown earlier. One intriguing possibility is
that such images are generated as a result of a
mismatch between the planform corresponding to
one of the Klu« ver form constants, and the underlying
structure of V1. We have (implicitly) assumed that V1
has patchy connections that endow it with lattice
properties. It should be clear from ¢gures 9 and 10
that such a cortical lattice is somewhat disordered.
Thus one might expect some distortions to occur

Geometric visual hallucinations P. C. Bresslo¡ and others 325

Phil. Trans. R. Soc. Lond. B (2001)

Figure 41. Tunnel hallucination generated by LSD. Redrawn
from Oster (1970).

(a)

(b)

Figure 42. (a) Lattice^tunnel hallucination generated by
marijuana. Reproduced from Siegel (1977), with permission
from Alan D. Eiselin. (b) A simulation of the latticê tunnel.

Figure 43. Complex hallucination generated by LSD.
Redrawn from Oster (1970).



when planforms are spontaneously generated in such
a lattice. Figure 42b shows a computation of the
appearance in the visual ¢eld of a hexagonal roll on a
square lattice, when there is a slight incommensur-
ability between the two.

As a last example we show in ¢gure 43 another
hallucinatory image triggered by LSD. Such an
image does not ¢t very well as a form constant.
However, there is some secondary structure along the
main (horizontal) axis of the its major components.
(This is also true of the funnel and spiral images
shown in ¢gure 2, also triggered by LSD.) This
suggests the possibility that at least two di¡ering
length-scales are involved in their generation, but
this is beyond the scope of the model described in the
current paper. It is of interest that similar images
have been reported following stimulation with £ick-
ering light (Smythies 1960).
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APPENDIX A

(a) Perturbation expansion of the eigenfunctions
We summarize here the derivation of equations (29)^

(31). This involves solving the matrix equation

l ‡ ¬

¼1·
¡ Wm Am ˆ ­

n2Z

Ŵm¡n(q)An, (A1)

using a standard application of degenerate perturbation
theory. That is, we introduce the perturbation expansions

l ‡ ¬

¼1·
ˆ W1 ‡ ­ l(1) ‡ ­ 2l(2) ‡ . . . , (A2)

An ˆ z§ 1¯n, § 1 ‡ ­ A(1)
n ‡ ­ 2A(2)

n ‡ . . . , (A3)

and substitute these into the eigenvalue equation (26). We
then systematically solve the resulting hierarchy of
equations to successive orders in ­ .

(i) (­ ) terms
Setting m ˆ 1 in equation (A1) yields the …­ ) equation

Ŵ0(q)z1 ‡ Ŵ2(q)z¡1 ˆ l(1)z1.

Combining this with the conjugate equation m ˆ ¡1 we
obtain the matrix equation

Ŵ0(q)

Ŵ¡2(q)

Ŵ2(q)

Ŵ0(q)

z1

z¡1

ˆ l(1) z1

z¡1
. (A4)

Equation (A4) has solutions of the form

l(1) ˆ Ŵ0(q) § Ŵ2(q), (A5)

z¡1 ˆ §z1, (A6)

where plus and minus denote the even and odd solutions.
We have used the result Ŵ¡2 ˆ Ŵ2. The (­ ) terms in
equation (A1) for which m 6ˆ §1 generate the corre-
sponding ¢rst-order amplitudes

A(1)
m ˆ

Ŵm¡1(q)z1 ‡ Ŵm‡ 1(q)z¡1

W1 ¡ Wm
. (A7)

(ii) (­ 2) terms
The (­ 2) contribution to equation (A1) for m ˆ 1 is

n 6ˆ § 1

Ŵ1¡n(q)A(1)
n ‡ ‰Ŵ0(q)¡ l(1)ŠA(1)

1 ‡ Ŵ2(q)A(1)
¡1 ˆ l(2)z1.

Combining with the analogous equation for m ˆ ¡1 yields
the matrix equation

Ŵ0(q) ¡ l(1)

Ŵ¡2(q)

Ŵ2(q)

Ŵ0(q) ¡ l(1)

A(1)
1

A(1)
¡1

ˆ
B1(q)
B¡1(q)

,

(A8)

where

B1(q) ˆ l(2)z1 ¡
n 6ˆ § 1

Ŵ1¡n(q)A(1)
n . (A9)

Multiplying both sides of equation (A8) on the left by
…z¡1, z1) and using equation (A4) implies that B1(q) ˆ 0.
This, together with equation (A7), determines the second-
order contribution to the eigenvalue:

l(2) ˆ
m6ˆ1;m5 0

‰Ŵ1¡m(q) § Ŵ1‡ m(q)Š2

W1 ¡ Wm
. (A10)

Having obtained l(2), we can then use equations (A8) and
(A5) to obtain the result

A(1)
¡1 ˆ §A(1)

1 . (A11)

The unknown amplitudes z1 and A(1)
1 are determined by

the overall normalization of the solution.
Finally, combining equations (A2), (A5), (A6), and

(A10) generates equation (29). Similarly, combining equa-
tions (A3), (A6), (A7), (A11) and (23) yields the pair of
equations (30) and (31).

(b) Construction of axial subgroups
We sketch how to construct the axial subgroups from

the irreducible representations of the holohedry H corre-
sponding to the shortest dual wave vectors as given in
table 2. By rescalings we can assume that the critical
wavenumber qc ˆ 1 and that the doubly periodic func-
tions are on a lattice whose dual lattice ¤ is generated
by wave vectors of length unity. There are two types of
irreducible representations for each lattice corresponding
to the cases u(¿) odd and u(¿) even. We derive the explicit
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action of ¡ on these subspaces and determine the axial
subgroups.

The action of the torus T 2 on the subspace KLL is
derived as follows: write ³ 2 T 2 as

³ ˆ 2º³1 1 ‡ 2º³2 2:

Using the fact that ki ¢ j ˆ ¯ij, the result of the translation
action is given in table A1.

The holohedries H are D4, D6 and D2 for the square,
hexagonal and rhombic lattices, respectively. In each
case, the generators for these groups are a re£ection and
a rotation. For the square and hexagonal lattices, the
re£ection is µ, the re£ection across the x-axis where
r ˆ …x, y). For the rhombic lattice, the re£ection is µ².
The counterclockwise rotation ¹, through angles º/2, º/3
and º, is the rotation generator for the three lattices. The
action of HLL for the various lattices is given in table A2.

Finally, for each of the six types of irreducible represen-
tations, we compute the axial subgroupsöthose isotropy
subgroups S that have one-dimensional ¢xed-point
subspaces ¢x(S), in each irreducible representation. The
computations for the square and rhombic lattices are
straightforward because we can use the T 2 action in
table A1 to assume, after conjugacy, that c1 and c2 are real
and non-negative. The computations on the hexagonal
lattice are more complicated (Bresslo¡ et al. 2000b). The
results, up to conjugacy, are listed in tables A3 and A4.

(c) Derivation of the amplitude equation
Assume that su¤ciently close to the bifurcation point at

which the homogeneous state a(r, ¿) ˆ 0 becomes margin-

ally stable, the excited modes grow slowly at a rate (e2)
where e2 ˆ · ¡ ·c. We use the method of multiple scales to
derive the cubic amplitude equations (47) and (50).

(i) Multiple-scale analysis
We begin by rewriting equation (11) in the more

compact form

da
dt

ˆ ¡¬a ‡ ·w ¤ ¼‰aŠ, (A12)

with

w ¤ ¼‰aŠ ˆ
º

0

wloc(¿ ¡ ¿0)¼‰a(r, ¿0; t)Šd¿0

‡ ­
R2

wlat(r ¡ r0, ¿)¼‰a(r0, ¿; t)Šdr0, (A13)

· ˆ ·c ‡ e2. Taylor expanding the nonlinear function ¼‰aŠ
appearing in equation (A12) gives

¼‰aŠ ˆ ¼1a ‡ ¼2a
2 ‡ ¼3a

3 ‡ : : : ,

where ¼1 ˆ ¼0‰0Š, ¼2 ˆ ¼00‰0Š/2, ¼3 ˆ ¼000‰0Š/3!, etc. Then
we perform a perturbation expansion of equation (A12)
with respect to e by writing

a ˆ ea1 ‡ e2a2 ‡ : : : ,

Geometric visual hallucinations P. C. Bresslo¡ and others 327

Phil. Trans. R. Soc. Lond. B (2001)

Table A1. Torus action on ¡LL-irreducible representation

lattice torus action

square (e2ºi³1 c1 , e2ºi³2 c2)
hexagonal (e2ºi³1 c1 , e2ºi³1 c2, e¡2ºi(³1‡ ³2)c3)
rhombic (e2ºi³1 c1 , e2ºi³2 c2)

Table A2. Left, D2 ‡ T2 action on rhombic lattice (centre,
D4 _‡ T2 action on square lattice; right, D6 ‡ T 2 action on
hexagonal lattice)

(For u(¿) even, e ˆ ‡ 1; for u(¿) odd, e ˆ ¡1.)

D2 action D4 action D6 action

1 (c1, c2) 1 (c1, c2) 1 (c1, c2, c3)
¹ (c1, c2) ¹ (c2, c1) ¹ (c2, c3, c1)
µ² e(c2, c1) ¹2 (c1, c2) ¹2 (c3, c1, c2)
µ²¹ e(c2, c1) ¹3 (c2, c1) ¹3 (c1, c2, c3)

µ e(c1, c2) ¹4 (c2, c3, c1)
µ¹ e(c2, c1) ¹5 (c3, c1, c2)
µ¹2 e(c1, c2) µ e(c1, c3, c2)
µ¹3 e(c2, c1) µ¹ e(c2, c1, c3)

µ¹2 e(c3, c2, c1)
µ¹3 e(c1, c3, c2)
µ¹4 e(c2, c1, c3)
µ¹5 e(c3, c2, c1)

[³1 , ³2] (e¡2ºi³i1 c1, e¡2ºi³2 c2) (e¡2ºi³1 c1, e¡2ºi³2 c2,
e¡2ºi(³1‡ ³2 )c3)

Table A3. Axial subgroups when u(¡ ¿) ˆ u(¿)

(O(2) is generated by [0, ³2]2 T2 and rotation by º (¹ on the
rhombic lattice, ¹2 on the square lattice, and ¹3 on the
hexagonal lattice). The points (1, 1, 1) and (¡1, ¡ 1, ¡ 1)
have the same isotropy subgroup (D6), but are not conjugated
by a group element; therefore, the associated eigenfunctions
generate di¡erent planforms.)

lattice subgroup S ¢x(S) name

square D4(µ, ¹) (1, 1) even square
O(2) © Z2(µ) (1, 0) even roll

rhombic D2(µ² , ¹) (1, 1) even roll
O(2) (1, 0) even rhombic

hexagonal D6(µ, ¹) (1, 1, 1) even hexagon (0)
D6(µ, ¹) (¡1, ¡ 1, ¡ 1) even hexagon (º)
O(2) © Z2(µ) (1, 0, 0) even roll

Table A4. Axial subgroups when u(¡ ¿) ˆ u(¿)

(O(2) is generated by [0, ³2]2 T2 and rotation by º (¹ on the
rhombic lattice, ¹2 on the square lattice, and ¹3 on the
hexagonal lattice).)

lattice subgroup S ¢x(S) name

square D4(µ‰1
2 , 1

2Š, ¹) (1, ¡1) odd square
O(2) © Z2(¹2µ‰1

2 , 0Š) (1, 0) odd roll
rhombic D2(µ² , ‰1

2 , 1
2Š, ¹) (1, 1) odd rhombic

O(2) © Z2(¹2µ‰1
2 , 0Š) (1, 0) odd roll

hexagonal Z6(¹) (1, 1, 1) odd hexagon
D3(µ¹, ¹2) (i, i, i) triangle
D2(µ, ¹3) (0, 1, ¡1) patchwork quilt
O(2) © Z4(¹3µ‰1

2 , 0Š) (1, 0, 0) odd roll



and introducing a slow time-scale t ˆ e2t. Collecting
terms with equal powers of e then generates a hierarchy
of equations of the form

La1 ˆ 0,

Lan ˆ bn, n41,
(A14)

where

La ˆ ¬a ¡ ·c¼1w ¤ a,

and

b2 ˆ ·c¼2w ¤ a2
1, (A15)

b3 ˆ ·c¼3w ¤ a3
1 ‡ 2·c¼2w ¤ a1a2 ¡ da1

dt
¡ ¼1w ¤ a1 .

(A16)

(ii) Solvability conditions
The ¢rst equation in the hierarchy is equivalent to the

eigenvalue equation (26) with l ˆ 0, · ˆ ·c and jkj ˆ qc.
Therefore, the relevant classes of solution are of the form
(equation (46)):

a1(r, ¿, t) ˆ
N

jˆ1

cj(t)e
ikj ¢ru(¿ ¡ ’j) ‡ c:c: (A17)

Following ½ 4 we restrict solutions to the space of doubly
periodic functions on a square or rhombic lattice (N ˆ 2)
or a hexagonal lattice (N ˆ 3). Next we de¢ne the inner
product of two arbitrary functions a(r, ¿), b(r, ¿)
according to

hajbi ˆ
O

º

0

a(r, ¿)b(r, ¿)
d¿

º
dr

where O is a fundamental domain of the periodically
tiled plane (whose area is normalized to unity). The
linear operator L is self-adjoint with respect to this inner
product, i.e. hajLbi ˆ hLajbi. Therefore, de¢ning

vl(r, ¿) ˆ eikl ¢ru(¿ ¡ ’l),

we have hvl jLani ˆ hLvljani ˆ 0 for n ˆ 2, 3, . . . . Since
Lan ˆ bn, we obtain a hierarchy of solvability conditions

hvljbni ˆ 0.

From equation (A15) the lowest order solvability condition
is ·c¼2hvl jw ¤ a2

1i ˆ 0. It turns out that in the presence of
lateral interactions the inner product hvl jw ¤ a2

1i can be
non-vanishing (in the case of even patterns), which leads
to a contradiction when ¼2 6ˆ 0. This can be remedied by
assuming that ¼2 ˆ e¼0

2 ‡ OO(e2) and considering the
modi¢ed solvability condition hvl je¡1b2 ‡ b3i ˆ 0. This
generates the equation

vl
da1

dt
¡ ¼1w ¤ a1 ˆ ·c¼3hvl jw ¤ a3

1i ‡ ·c¼
0
2hvl jw ¤ a2

1i.

(A18)

An alternative approach to handling the non-vanishing of
the inner product hvl jw ¤ a2

1i would be to expand the
bifurcation parameter as · ˆ ·c ‡ e·1 ‡ e2·2 ‡ . . . . This

would then give a quadratic (rather than a cubic)
amplitude equation describing the growth of unstable
hexagonal patterns. In the case of odd patterns
hvl jw ¤ a2

1i ² 0 and no restriction on ¼2 is required.
However, for ease of exposition we treat the odd and even
cases in the same way.

(iii) Amplitude equations
In order to explicitly derive the amplitude equations

(47) and (50) from the solvability condition (A18), we
need to evaluate inner products of the form hvl jw ¤ an

1i.
Since vl is a solution to the linear equations (A14), it
follows that

hvl jw ¤ an
1i ˆ hw ¤ vl jan

1i ˆ
¬

·c¼1

hvl jan
1i. (A19)

Thus, substituting equation (A17) into the left-hand side
of equation (A18) and using (A19) shows that

vl
da1

dt
¡ ¼1w ¤ a1 ˆ ‰1 ‡ ¡(1)Š dcl

dt
¡ ‰¼1W01 ‡ ¡̂(1)Šcl

(A20)

with ¡(1), ¡̂(1) ˆ OO(­ ).The ­ -dependent factors appearing
on the right-hand side of equation (A20) are eliminated
from the ¢nal amplitude equations by an appropriate
rescaling of the time t and a global rescaling of the ampli-
tudes cj. Similarly,

hvl ja2
1i ˆ ¡(2)

3

i, jˆ1

cicj¯(ki ‡ kj ‡ kl) (A21)

and

hvl ja3
1iˆ 3cl ¡(3)(0)jcl j2 ‡ 2

j 6ˆ l

¡(3)(’j ¡ ’l)jcj j2 , (A22)

with ¡(2) and ¡(3) given by equations (57) and (58). Note
from equation (A21) that the inner product hvl ja2

1i is only
non-vanishing when N ˆ 3 (corresponding to hexagonal
planforms) since we require N

jˆ1 kj ˆ 0. One possible set
of wave vectors is kj ˆ qc(cos(’j), sin(’j)) with
’1 ˆ 0, ’2 ˆ 2º/3, ’3 ˆ ¡2º/3. Also note that if u(¿) is
an odd eigenfunction then it immediately follows that
¡(2) ˆ 0.

Finally, we substitute equations (A19), (A20), (A21) and
(A22) into (A18) and perform the rescaling
ecl !

p
(¼1W1 ‡ ¡̂(1))cl. After an additional rescaling of

time we obtain the amplitude equations (47) for N ˆ 2
and (50) for N ˆ 3.

ENDNOTE

1Interestingly, there does exist an example from £uid
dynamics where the modi¢ed Euclidean group action
(equation (9)) arises (BoschVivancos et al. 1995).
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