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Abstract: Recent works on focused ultrasound (FUS) have shown great promise for cancer 

therapy. Researchers are continuously trying to improve system performance, which is 

resulting in an increased complexity that is more apparent when using multi-element 

phased array systems. This has led to significant efforts to reduce system size and cost by 

relying on system integration. Although ideas from other fields such as microwave antenna 

phased arrays can be adopted in FUS, the application requirements differ significantly 

since the frequency range used in FUS is much lower. In this paper, we review recent 

efforts to design efficient power monitoring, phase shifting and output driving techniques 

used specifically for high intensity focused ultrasound (HIFU). 

Keywords: beam-steering; focused ultrasound; high-intensity focused ultrasound; 

hyperthermia; integrated circuits; noninvasive surgery; phase shifter; phased arrays; 

phased-locked loop; power amplifier; pulser; tissue ablation 

 

1. Introduction 

High-intensity focused ultrasound (HIFU) surgery allows energy to be focused deep in the body 

inducing noninvasive local temperature elevation that destroys the targeted tissue, while sparing the 

surrounding tissue. The temperature elevation can be further enhanced using cavitation bubbles [1]. 

Cavitation can also be used to mechanically disintegrate the tumor tissue without macroscopic 
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temperature elevation [2]. This noninvasive method can ablate tumors without the side-effects and 

complications associated with invasive surgery [3]. Since magnetic resonance imaging (MRI) can 

provide noninvasive temperature maps in real-time, the combination of MRI and HIFU has proven to 

be very effective in the treatment of tumors [3]. MRI-guided HIFU has been studied for thermal 

ablation of pathological tissue, local drug delivery using thermosensitive micro-carriers and controlled 

transgene expression using thermosensitive promoters [4]. Based on these experiments, MRI-guided 

HIFU has shown promise in allowing complete noninvasive tumor destruction and several thousand 

patients have been treated worldwide for uterine fibroids and bone tumors, with ongoing development 

in prostate, breast and other tumor treatments [5]. MRI-guided HIFU could also be particularly 

beneficial for treating brain disorders and transcranial applications, as it is noninvasive, does not cause 

bleeding, and does not damage surrounding tissue [6]. Transcranial therapy may be used for the 

temporary disruption of the blood-brain barrier (BBB), which will allow for delivering therapeutic 

agents and drugs to the brain [7]. 

Over the past few decades, researchers have come up with various ways to achieve automated 

power control and monitoring, electronic beam-steering and focusing, automated phase control, and 

efficient multi-element control and driving. However, as systems continue to grow in complexity and 

the demands to reduce system cost, weight, and size increase to allow for wider spread and portability, 

researchers are continuously trying to improve the existing power and control techniques. In this paper, 

a review of the existing driving and control circuitry used for HIFU and phased array systems is 

presented. The various techniques used for phase shifting and output driving are discussed, in addition 

to some suggested areas of improvement.  

Figure 1(a) shows a typical block diagram of a HIFU system (not showing the MRI control). Once 

the desired signal is selected using the signal generator, which is usually set in the range of 0.5  

to 20 MHz, with an amplitude below 1 V, the power amplifier boosts the signal to the desired output 

power level, which is usually in the range of 50 to 100 W. Ensuring that the power amplifier has a high 

efficiency is very important since it is the most power consuming block of the system and any wasted 

energy will result in heat generation [8,9]. When dealing with high output power levels, it is also 

important that the output power be monitored and controlled. This can allow the system to 

immediately shut down if the output power exceeds patient safety levels. The backward power levels 

can also be monitored if the load is not perfectly matched. Once this system is used for more than one 

element, in the case of electronically focused phased-arrays for example, each transducer will require 

its own set of equipment, resulting in a very complicated and inefficient implementation. Figure 1(b) 

shows how phase shifters can be used to reduce the system complexity allowing the use of only one 

signal generator. This is a simplified diagram that does not show additional components such as phase 

monitoring and control for example. In this paper, the various blocks shown in Figure 1 will be 

discussed and research efforts to implement efficient HIFU systems will be reviewed. The paper is 

organized as follows. In Section 2, the output power monitoring and electrical to acoustic conversion 

efficiency are discussed, followed by the different phase shifting techniques in Section 3. The output 

and driver stages are discussed in Section 4, which are followed by the conclusions in Section 5. 
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Figure 1. (a) A block-diagram of a typical single-element HIFU system. If used in an  

n-element system, the area enclosed in the dashed line should be repeated n times. (b) A 

more practical multi-element implementation that employs phase shifters. 

 

2. Output Power Monitoring 

Unlike ultrasound imaging, HIFU may present risks to the patient if improperly used due to the high 

power levels required for tissue ablation [10]. Fleury et al. [10] recommended using a failure mode and 

effect analysis (FMEA), when designing HIFU systems. FMEA requires the identification and 

description of failure, analyzing the risks, and defining prevention plans. Improper monitoring of the 

output power can result in over- or underexposure of the patient to HIFU. Underexposure, although not 

harmful to the patient, may result in treatment failure. It is mainly caused by inaccurate estimation of 

the electrical to acoustic conversion efficiency, which can be a result of poor coupling at the skin 

interface, or even due to transducer aging. The transducer’s efficiency should be carefully 

characterized by measuring the acoustic output power in reference to the input electrical power 

(readers should refer to [11,12] for more information on measuring the acoustic power). The efficiency 

should also take into account electrical losses in array cables, which could be as high as 50% [13]. 
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Overexposure is usually a result of increased, uncontrolled electrical power being applied to the 

transducer. This can result in lesions larger than expected as well as an increased likelihood of 

cavitation. Over exposure can also result in overheating the transducers, which may lead to destruction 

of the transducer or a drop in its impedance [10]. A drop in impedance will result in an increase in 

output power. If more than one element is driven from a single amplifier a change in impedance or a 

failure occurring in one of the elements can result in a significant change in the output power 

transmitted per element. Using simple calculations for parallel impedances, the following equation can 

be used to calculate the increase in output power (P): 

 1

d
P

n d
 


 (1) 

where d is the drop in the impedance of the failed element, and n is the number of elements in the 

array. For example, a 50% drop in the impedance of an element in a group of 8-elements will result in 

an increase of 12.5% in output power. This is especially important since tissue necrosis has a 

logarithmic temperature dependency [14,15]. 

In some phased array designs, elements of different sizes maybe used [15]. This is another reason 

for monitoring the output power since it is load dependant. Power monitoring and feedback is also 

important to compensate for amplifier nonlinearities, which are common in the power amplifier 

topologies that are used for HIFU, as will be discussed further in Section 4. As shown in Figure 1(a), 

both the forward and reflected powers are monitored. Monitoring the reflected power can give an 

immediate indication of whether or not a single transducer has failed, since there will be a sudden 

mismatch and increase in reflections for the failed transducer [15,16]. Monitoring the reflected power 

also indicates how accurately the delivered output power can be measured using the forward power. 

Figure 2 shows an example of how regulation of the output power applied to a 50 Ω load has lowered 

the maximum error from 20% down to 1% [15]. 

Figure 2. The output power applied to a 50 Ω load with and without feedback, reproduced from [15]. 

 
 

Although the frequencies used for HIFU are not very high (<20 MHz), the design of the power 

meter may suffer from bandwidth limitations that can result in inaccuracies in the power level 

measurements. This is mainly due to the signals being applied in short bursts. In order to accurately 
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measure the power of a non-continuous waveform, especially when using burst periods below 10 s, 

high sampling rate analog-to-digital converters (ADC) controlled by a high frequency microcontroller 

or field programmable gate array (FPGA) maybe required. Figure 3(a) shows a block diagram of an 

example of an FPGA based power meter. The system uses two 14-bit ADCs (AD9248) from Analog 

Devices (Wilmington, MA, USA) that are controlled with a sampling rate of 65 MHz using the FPGA 

(Altera Cyclone II 2C70) that is mounted on a DE2-70 evaluation board. The FPGA is also in charge 

of optionally displaying the waveform on an LCD monitor as well as uploading a sampled waveform 

to the PC through the serial RS-232 port. The system was tested by applying a 300 mV  

peak-to-peak, 2 MHz, sinusoidal waveform in burst mode. The output forward voltage waveform that 

was uploaded to the PC is shown in Figure 3(b), for an input with a short burst period of 3 s. After the 

amplitude of the signal is obtained by the FPGA, it is easy to then calculate the power level in the 

FPGA based on the known load value. 

Figure 3. (a) FPGA based power meter block diagram. (b) An example of the sampled 

forward voltage waveform of a 2 MHz signal applied in a burst of 3 pulses with a burst 

period of 3 s. 

 

3. Phase Shifting for HIFU Phased-Arrays 

Phased arrays are mainly used in HIFU to allow for electrical steering of the focal point or create 

multiple focal points. They can also be used to enlarge the focal point [17]. The simplest way to drive a 
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multi-element phased array will be use one of each block shown in Figure 1(a) per transducer. 

However, this will be very costly and inefficient especially for large arrays. Having a controllable 

phase shifting technique will allow for a great reduction in the number of amplifiers used. 

Unfortunately, the simple phase shifting techniques, such as the one shown in Figure 4, that are 

suitable for microwave phased arrays cannot be used for HIFU systems. In this case, the difference in 

delay lines is inversely proportional to the frequency of the signals and at the operating frequencies of 

HIFU, practical phase differences will be below 2°. 

Figure 4. A simple phase shifter using switchable delay lines. 

 
 

A two phase switchable system was proposed by Fjield et al. [17] that allows for reducing the 

number of amplifiers needed. The system uses isolation transformers, as shown in Figure 5, to  

produce 180° phase shifts. This can only be used for certain array geometries such as an eight-element 

sector-vortex array that can be driven to give a total of eight peaks or one peak and eight different field 

patterns using only 180° phase shifts [17]. 

Figure 5. Isolation transformer used to create 180° phase shifts [17]. 

 
 

A controllable phase shift can also be obtaining using purely digital techniques. Figure 6 shows the 

concept of a digital phase shifter that uses programmable counters, similar designs have been used  

in [15,18,19]. An example of a 3-bit digital phase shifter is shown in Figure 6(a). By using a reference 

clock that has a frequency that is 16 times the desired output frequency, a programmable count up 

counter can be used to achieve a variable phase shifter with steps of 45°. When the count up counter 

reaches the preloaded phase control value, the “Done” signal goes high for one clock cycle, which can 

be seen from Figure 6(b). The “Done” signal is then connected to a 1-bit counter (divide by 2), with an 

active low clock input. The 1-bit counter is used to convert the duty cycle back to 50%. Figures 6(b) 

and (c) show examples of 45° and 360° phase shifts that can be obtained by inputting phase control 

values of 001 and 111, respectively. 
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Figure 6. Digital phase shifter using programmable counters. (a) Schematic diagram, and 

functional operation examples of (b) a 45° phase shift and (c) and 360° phase shift. 

 

Figure 7. Inverter based digital delay lines. (a) Rise time control, reproduced from [18], 

and both rise and fall time control, reproduced from [22]. 

 
 

The main drawback of the digital phase shifter, shown previously in Figure 6, is that a multiplied 

reference clock is required [15,18,19]. For a phase control with a 10-bit resolution and an output 

frequency of 2 MHz, a 2 GHz reference clock is required. This makes achieving digital high resolution 

phase control too expensive and unpractical if high phase resolution is needed. In any focused 

ultrasound application a lower phase resolution is adequate [20] reducing the reference signal 

frequency to a more practical range, as will be explained later. Another technique to achieve digital 

phase control is to use controllable digital delay lines [15,18-21]. The simplest digital delay line uses a 

number of sequential delay elements. The most basic delay element uses a current starved inverter 

followed by a regular inverter. Figure 7(a) shows the delay element used in [18], while Figure 7(b) 

shows the delay element used in [22]. The advantage of the implementation shown in Figure 7(b) over 

the one shown in Figure 7(a) is that it offers more control since both the rise time and fall time can be 

changed. Also, a weak pull up resistor (Rp) and a weak pull down resistor (Rn) were used to ensure that 

the inverter is still on, even if no control voltage is applied. The resistors, as well as the current 

sources, were implemented using active devices with constant gate potentials. Both of these designs 

are suitable for CMOS integration and are compact, however, they require an analog voltage for phase 

control, which might give rise to error. A delay locked loop was used in [18] to stabilize the control 

voltage (Vc). 
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In [19], an AND gate was used with an RC delay line (Figure 8) in order to chose between two 

delay values per delay element as a signal propagates through a delay chain. When the control is low, 

the output rises after an RC time constant, when both A and B are high. However, the output drops 

immediately following the input. When the control is high, the output still rises after an RC delay, 

however, it remains high for a period of an RC time constant after the input goes to zero, which gives 

the delay. The advantage of this circuit is that it uses a digital pulse, however, the circuit is larger and 

requires more components. Also, it is most likely that the capacitor used will be large and inefficient 

for full integration. The implementation in [19] used discrete components, with capacitor values of  

up to 51 pF. 

Figure 8. AND gate delay element, reproduced from [19]. 

 
 

Most of the digital phase shifting techniques that are available in the literature have used both 

counters and delay lines together in order to achieve a high delay resolution with a simple and efficient 

design [15,18-22]. For example, using this approach, the authors in [18] have managed to implement a 

phase shifter with a 19-bit dynamic range using a 62.5 MHz reference clock. Even though their target 

frequency was 1.91 kHz (used for ultrasonic imaging), a 1 GHz reference clock would have been 

needed for a purely counter based implementation.  

A more sophisticated, although slightly more complex, method to achieve phase shifting is using a 

phase-locked loop (PLL) [23-26]. The theoretical operation of a PLL can be explained using the block 

diagram in Figure 9 where the phase error (ERR) can be obtained as: 

0V CO
ER R

PD V COA K K

  


 
(2)

0 is the free running (initial) frequency of the voltage-controlled oscillator (VCO), and KVCO, KPD, 

and A, are the gains of the VCO, the phase detector (PD) and the loop filter, respectively. When the 

PLL is locked at steady state, VCO becomes equal to 0 and the phase error is equal to zero. If a DC 

control voltage (VC) was subtracted from VERR, Equation (2) will change to: 

 0V CO V CO C
ER R

V CO PD

A K V

A K K

 


 


 
(3)

and in this case, when the PLL is locked, the phase error is equal to: 
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C
ER R

PD

V

K
 

 
(4)

which introduces a non-zero phase shift that depends on the control voltage VC [23]. However, since 

the phase error also depends on the gain of the phase detector, the type of phase detector used will 

affect the range and linearity of the phase control.  

Figure 9. Block diagram of a linearized PLL. 

 
 

Due to component tolerances, non-zero phase error can exist even without applying a control 

voltage, as well as variations across the different phase shifters in the array. This requires sensitivity 

and offset adjustment across all the phase shifters in the array [23]. More accurate phase shifting can 

be achieved using injection-locked (or coupled) PLLs [26] or VCOs [24]. 

Finally, it is also worth mentioning that in order to reduce the number of amplifiers used in the 

system, a discrete number of phases can be generated and multiplexed to the array elements rather than 

having full phase control for each element [20]. The simulated impact of reducing the phase resolution 

can be seen from Figure 10 [20]. This shows that using only four phases will be sufficient to  

achieve 80% of the power.  

Figure 10. The impact that the number of phases used in a HIFU phase array has on the 

peak pressure amplitude square (P2), simulation reproduced from [20]. 

 

4. Output Stage and Power Amplifiers 

The output stage is the last block before the transducer and is one of the most important blocks in 

the HIFU system. This is mainly due to the large power and high efficiency requirements. The main 
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function of the output stage is to boost the power of the radio frequency (RF) signal to the required 

level in an efficient manner prior to transmission through the transducer. In addition to heat generation, 

a large increase in temperature due to low efficiency can result in a significant variation in output 

power due to increasing the junction temperature of the active devices. The increase in the junction 

temperature can be obtained by multiplying the dissipated power by the thermal resistance (°C/W). 

Thus, the maximum junction temperature sets a limit on the maximum dissipated power in the device 

to ensure safe operation. The most temperature dependent parameters of a MOSFET device are the 

effective mobility and the threshold voltage, both of which result in variations in the drain-source 

current. The temperature dependence of these parameters is given by [27]: 

(5)

 (6)

where μ is the mobility, VT is the threshold voltage, T is the absolute temperature, Tr is the room 

temperature, k3 is a constant with values ranging from 1.2 to 2.0 and k4 is in the range of 0.5 mV/K  

to 3 mV/K. By substituting Equations (5) and (6) in the I-V equation of a MOSFET device, the 

current-temperature dependence could be obtained. 

Although the output stage can be a typical amplifier such as an operational amplifier, it is apparent 

from the above mentioned reasons that it is desired to have only high efficiency power amplifier (PA) 

circuits at the output stage. An operational amplifier, for example, will have an efficiency that is  

below 5% and will continuously consume power, even when no signal is being transmitted. What 

makes a PA different from any other amplifier, such as a voltage amplifier (operational amplifier) or 

current amplifier (operational trans-conductance amplifier), is the way the input and output 

impedances are matched. A typical voltage amplifier provides a very high input impedance (~mega to 

tera ohms) and a very low output impedance (~few tens of ohms) to allow for maximum voltage 

transfer. On the other hand, a typical current amplifier provides a very low input impedance and very 

high output impedance. The input of a power amplifier is matched to satisfy the maximum power 

transfer theorem, having at the best case a 50% power transfer from the source to the amplifier’s input. 

This loss is acceptable at the input stage since the power level is low. At the output stage however, the 

maximum power transfer theorem cannot be used and more efficient techniques, used commonly in 

PAs, are needed. In HIFU, pulsers [22,28,29] or PAs [16,19,21,30-33] can be used for the output stage. 

Here, we will focus mainly on PAs since they can operate from lower supply voltage levels that are 

more suitable for portable systems. 

PAs are categorized based on their historical appearance, hence the alphabetical classification. The 

main classes of operation can be divided into two parts, which are the current-mode and the  

switch-mode, also known as linear-mode and non-linear-mode, respectively. Here, we also add a third 

category of power amplifiers, which is referred to as lock-mode, and may be more suitable for  

HIFU applications.  

Current-mode PAs are usually less efficient than switch- and lock-mode PAs, however they offer 

higher linearity. They can provide a theoretical minimum efficiency of 50% that trades off with 

linearity and output power as increased. Since achieving high efficiency is the most concern in HIFU, 

3
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linearity can be sacrificed, which is common in biomedical applications [27]. For this reason, most 

PAs implemented for HIFU do not use linear current-mode topologies. Some designs [19,33] however, 

have used current-mode PAs, although less efficient, and achieved output power control by controlling 

the bias of the preamplifier stage with the output of a digital-to-analog converter (DAC) that was 

controlled by a microcontroller [33]. Having a gated power supply that switches off the output stage 

when no signal is being applied, can help increase the efficiency. 

In switch-mode PAs, the active device operates as a low-resistance (ideally zero) active switch. 

These classes usually provide higher efficiency than current-mode PAs; however the linearity is 

usually sacrificed since there is no direct amplitude relationship between the input and output signals, 

hence they are also referred to as non-linear power amplifiers. The concept of not having an amplitude 

relationship between the input and output signals may be confusing to designers who are not familiar 

with non-linear power amplifiers, since this defies the idea of “amplification”. The concept is to 

generate an output signal that can follow the input signal in phase and frequency, while having a 

higher power level. Non-linear PAs were found attractive for HIFU systems due to their high 

efficiencies [16,22,21,30,31]. Mainly, PA classes D and E can be used for HIFU. 

Figure 11. Basic schematic of a class-D power amplifier. 

 
 

Class-D PAs use two transistors operating as switches, as shown in Figure 11. It is basically a 

CMOS inverter that generates an output square waveform, which follows the input signal’s phase and 

frequency. Since the output waveform is square shaped, the output is associated with a filter that 

passes only the fundamental sinusoidal waveform. The efficiency is affected by the switching time and 

the on-resistance of the transistors. This class has an advantage of very low, ideally zero, power 

dissipation and high power capabilities. In HIFU, the transducer itself acts as a very narrowband filter, 

which can replace the output filter shown in Figure 10. Also, if more than 1 watt of output power is 

required, an output impedance transformation network is necessary. In the case of multi-element 

phased arrays, where low output power levels per transducer are required, the output impedance of the 

PA can be designed to directly match the impedance of the transducer. Avoiding the output matching 

circuit will be very beneficial in terms of increasing efficiency, avoiding heating in matching elements 

and reducing the size of the circuit especially since the elements can be large at these frequencies. 

Matching however, plays an important role since all elements in the array will not have an exactly 

equal impedance. Also, it is easier to measure the power delivered to a perfectly matched load since 
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there will be no power reflections and only the forward power needs to be monitored [16]. Finally, 

when digital systems are used to generate the output signal, a square wave will be used to drive the PA, 

which eliminates the need to bias the input of the transistors M1 and M2. At the frequencies used for 

HIFU, it is possible to achieve efficiencies close to 99% with active devices that have an ultralow on 

resistance [30].  

Class-E power amplifiers were first presented by Sokal and Sokal in 1975 [34] and have recently 

gained more attraction with the expiry of their patent [35]. This class has an ideal efficiency of 100%. 

It has a similar configuration as class-D but uses only one transistor that is also operating as a switch, 

as shown in Figure 12(a). 

Figure 12. (a) Basic schematic of a class-E power amplifier. (b) The drain voltage 

waveform of an ideal class-E amplifier. (c) The effects of adjusting the output network 

components of a class-E amplifier [27]. 

 
 

The pull-up network, which is a PMOS device in class-D power amplifiers, is removed in class-E 

power amplifiers to improve the efficiency by avoiding the power loss in the PMOS device. To 

provide the high signal, in place of the PMOS device, an RFC inductor (L1) is used together with a 

parallel capacitor, C1. The output waveform of a class-E power amplifier is shown in Figure 12(b), 

before filtering. The basic criteria to operate a class-E power amplifier are as follows [36]:  

1. The voltage across the switch (active device, M1) at off-mode should not rise until after the 

transistor turns off. 

2. The voltage across the switch should go back to zero immediately before turn-on. 

3. The slope of the switch voltage should be zero at turn on (soft-switching).  

4. An amplifier with these three criteria is called an “optimum class-E” amplifier, whereas if one 

of them is missing, it is called a “suboptimum class-E” amplifier [27]. 

The design equations needed to calculate the output power (Pout) and the value of capacitor C1 can 

be derived, assuming an ideal RFC inductor (L1), as [27]: 

2

2

8

( 4)
DC

out
L

V
P

R 



 (7)
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( 4)
DC

L

V
C

R  



 (8)

The output filter (C2, L2) passes only the fundamental component resulting in a sinusoidal output 

waveform that is synchronized in phase and frequency with the input. The same points made 

previously regarding the output filter for the class-D PA are valid here. Also, similarly to class-D PAs, 

class-E PAs are more efficient when driven by a square wave.  

When considering all the non-idealities that exist in the circuit, such as the non-linear output 

capacitance of the active device, the finite RFC, the non-zero on-resistance of the active device and the 

finite Q of the output filter, the output waveform of the circuit can be fine tuned through simulations to 

ensure optimum class-E operation, shown in Figure 12(b). Figure 12(c) shows how the component 

values affect the shape of the output waveform. When considering the on-resistance (Ron) of the active 

device, the drain efficiency can be obtained as [27]: 

1

1 1.4
drain

on

L

R

R

 


 
(9)

Equation (9) indicates that it is easier to achieve a high efficiency when RL is much larger than Ron. 

This makes using a class-E PA difficult for higher power implementations, since a very low on 

resistance switch is needed. For moderate output power per element phased arrays for example, an 

efficiency of above 93% can be achieved with an active device that has a 10 Ω on-resistance that is 

matched to a 200 Ω transducer.  

Since most phased array systems involve some form of frequency synthesis, either using a PLL or a 

function generator and digital dividers, another approach can be taken to generate the HIFU output that 

does not rely on the use of power amplifiers. High power, high efficiency, VCO and PLL direct 

modulation transmitters can be used as the output stage [27]. Figure 13 shows an example of a power 

voltage controlled oscillator (PVCO) used for the output stage.  

Figure 13. Schematic of a direct-modulation transmitter. 

 
 

The circuit consists of a simple negative-gm cross-coupled pair oscillator with voltage controlled 

varactors. This circuit can be designed to deliver output levels as high as 50 mWs with close to 50% 
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efficiencies [27]. In order to track the free running output frequency and have better control of the 

circuit, the PVCO can be used as part of a PLL. The efficiency can be increased even further using a 

class-E PVCO [27]. 

Finally, it is worth mentioning that most switch-mode PAs require a large input drive.  

Current-mode PAs also only achieve their maximum efficiency at the compression point, where the 

gain is minimum and the input drive is highest. In order to reduce the input drive requirement of the 

output stage in an HIFU system, lock-Mode PAs can be used. Since the output signal of a non-linear 

PA has a fixed power that is in theory not a function of the input signal, a non-linear PA can be 

considered an oscillator whose phase and frequency follow a reference signal (the input). 

The input power required to drive a non-linear amplifier to “create” an output signal is much larger 

than the input power required to “influence” an existing signal. If the PA was biased on the verge of 

oscillation, or somehow an oscillator was used at the output, the required input drive will actually be 

lowered, since the output signal will in a sense already exist and it will take less effort to lock it than to 

create it. This concept is known as mode-locking and has recently gained importance in switch-mode 

power amplifiers [27]. Lock-mode power amplifiers usually have a very high power gain when 

compared to both current-mode and switch-mode power amplifiers. Their achievable efficiency 

however, will depend on the type of PA used within the lock-mode circuit. 

Most mode-locking works [37-40] use harmonic injection-locking, where the input and output 

frequencies are equal. Mode-locking can also be subharmonic, when the output frequency is higher 

than the input frequency or superharmonic, when the output frequency is lower than the input 

frequency. In [40], a cross-coupled differential negative-gm VCO was used as an oscillator to provide 

the output signal to a differential class-E power amplifier. Figure 14 shows the basic idea proposed  

in [40]. 

Figure 14. Differential class-E power amplifier with mode-locking, reproduced from [40]. 

 
 

Here we propose a differential superharmonic injection-locked frequency divider (ILFD) to operate 

as a lock-mode power amplifier for moderate power, HIFU applications. ILFDs are based on injection-

locked oscillators (ILOs), which are free running oscillators that can lock to the phase and frequency of 

an injected signal. The main advantage of the proposed approach is that it can achieve a very high 

power gain from a single stage that is very efficient in terms of silicon die area as well as power. 
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Figure 15 shows the basic schematic of the proposed lock-mode power amplifier [27]. The 

difference between this design and the one shown previously in Figure 13 is in the sizing of transistor 

M5. In the direct modulation transmitter case, which has no RF input, transistor M5 should be designed 

to have a long channel to be used as a current source. In the case of ILPA, transistor M5 is the input 

stage of the PA and should be designed for high speed, high gain operation. This makes the circuit 

operate in a voltage limited regime, which is supply dependant, with no constant current source 

biasing. A cascoded tail current source transistor can be added, however, it will cause a slight 

reduction in the gain provided by transistor M5. 

In this design the incident frequency is divided by two. It could be argued that this presents an 

obstacle to practical application since it requires doubling the operating frequency of the previous RF 

stages. However, this is not an issue in HIFU since the previous phase comes from an already higher 

frequency that is used for frequency synthesis and phase control. Also, the input power required to 

achieve mode-locking is very small, the input drive is greatly reduced compared to a traditional power 

amplifier. This allows a doubling of the operating frequency of the previous stage without significantly 

increasing the power consumption in that stage. A small signal gain of over 30 dB can be achieved by 

a single stage of this design, with a 50% efficiency in a small circuit area. Also, similarly to the  

direct-modulation transmitter, the efficiency can be increased by using a more efficient class-E  

PVCO [27]. 

Figure 15. Basic schematic of the lock-mode power amplifier [27]. 

 

5. Conclusions 

This paper has reviewed several techniques used for driving phase array high intensity focused 

ultrasound (HIFU) systems. The ultimate goal when designing a large array size HIFU system would 

be to have a compact solution that can fit on the back of the ultrasound probe. Although, a few 

attempts to miniaturize the driving system exist [21,31,32], they are either designed to drive a single 

element or are still quite large. Therefore, it is desirable to design a compact, small size driving system 
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using integrated solutions. Switch-mode, injection-locked, or direct-modulation high efficiency output 

stages should be used. Switching between 4–8 phases rather than generating and controlling each 

element’s phase individually, should also be considered for very large arrays [20].  
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