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INTRODUCTION: A brainwide, synaptic-resolution
connectivity map—a connectome—is essential
for understanding how the brain generates be-
havior. However because of technological con-
straints imaging entire brains with electron
microscopy (EM) and reconstructing circuits
from such datasets has been challenging. To
date, complete connectomes have beenmapped
for only three organisms, each with several
hundredbrain neurons: the nematodeC. elegans,
the larva of the sea squirt Ciona intestinalis,
and of themarine annelidPlatynereis dumerilii.
Synapse-resolution circuit diagrams of larger
brains, such as insects, fish, and mammals,
have been approached by considering select
subregions in isolation. However, neural com-
putations span spatially dispersed but inter-
connected brain regions, and understanding any
one computation requires the complete brain
connectome with all its inputs and outputs.

RATIONALE: We therefore generated a connec-
tome of an entire brain of a small insect, the
larva of the fruit fly, Drosophila melanogaster.
This animal displays a rich behavioral reper-
toire, including learning, value computation,
and action selection, and shares homologous
brain structures with adult Drosophila and

larger insects. Powerful genetic tools are avail-
able for selective manipulation or recording
of individual neuron types. In this tractable
model system, hypotheses about the func-
tional roles of specific neurons and circuit
motifs revealed by the connectome can there-
fore be readily tested.

RESULTS: The complete synaptic-resolution
connectome of the Drosophila larval brain
comprises 3016 neurons and 548,000 synapses.
We performed a detailed analysis of the brain
circuit architecture, including connection and
neuron types, network hubs, and circuit motifs.
Most of the brain’s in-out hubs (73%) were
postsynaptic to the learning center or pre-
synaptic to the dopaminergic neurons that
drive learning.We used graph spectral embed-
ding to hierarchically cluster neurons based
on synaptic connectivity into 93 neuron types,
which were internally consistent based on
other features, such as morphology and func-
tion.We developed an algorithm to track brain-
wide signal propagation across polysynaptic
pathways and analyzed feedforward (from
sensory to output) and feedback pathways,
multisensory integration, and cross-hemisphere
interactions.We found extensivemultisensory

integration throughout the brain andmultiple
interconnected pathways of varying depths
from sensory neurons to output neurons form-
ing a distributed processing network. The
brain had a highly recurrent architecture, with
41% of neurons receiving long-range recurrent
input. However, recurrence was not evenly
distributed and was especially high in areas
implicated in learning and action selection.
Dopaminergic neurons that drive learning are
amongst the most recurrent neurons in the
brain. Many contralateral neurons, which
projected across brain hemispheres, were
in-out hubs and synapsed onto each other,
facilitating extensive interhemispheric com-
munication. We also analyzed interactions
between the brain and nerve cord. We found
that descending neurons targeted a small frac-
tion of premotor elements that could play
important roles in switching between locomo-
tor states. A subset of descending neurons tar-
geted low-order post-sensory interneurons likely
modulating sensory processing.

CONCLUSION: The complete brain connec-
tome of the Drosophila larva will be a lasting
reference study, providing a basis for a multi-
tude of theoretical and experimental studies
of brain function. The approach and compu-
tational tools generated in this study will fa-
cilitate the analysis of future connectomes.
Although the details of brain organization dif-
fer across the animal kingdom, many circuit
architectures are conserved. As more brain
connectomes of other organisms are mapped
in the future, comparisons between them will
reveal both common and therefore potentially
optimal circuit architectures, as well as the
idiosyncratic ones that underlie behavioral
differences between organisms. Some of the
architectural features observed in theDrosophila
larval brain, including multilayer shortcuts
and prominent nested recurrent loops, are
found in state-of-the-art artificial neural net-
works, where they can compensate for a lack
of network depth and support arbitrary, task-
dependent computations. Such features could
therefore increase the brain’s computational
capacity, overcoming physiological constraints
on the number of neurons. Future analysis of
similarities and differences between brains
and artificial neural networks may help in
understanding brain computational princi-
ples and perhaps inspire new machine learn-
ing architectures.▪
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The connectome of the Drosophila larval brain. The morphologies of all brain neurons, reconstructed
from a synapse-resolution EM volume, and the synaptic connectivity matrix of an entire brain. This
connectivity information was used to hierarchically cluster all brains into 93 cell types, which were internally
consistent based on morphology and known function.
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Brains contain networks of interconnected neurons and so knowing the network architecture is essential
for understanding brain function. We therefore mapped the synaptic-resolution connectome of an
entire insect brain (Drosophila larva) with rich behavior, including learning, value computation, and action
selection, comprising 3016 neurons and 548,000 synapses. We characterized neuron types, hubs,
feedforward and feedback pathways, as well as cross-hemisphere and brain-nerve cord interactions. We
found pervasive multisensory and interhemispheric integration, highly recurrent architecture, abundant
feedback from descending neurons, and multiple novel circuit motifs. The brain’s most recurrent
circuits comprised the input and output neurons of the learning center. Some structural features, including
multilayer shortcuts and nested recurrent loops, resembled state-of-the-art deep learning architectures.
The identified brain architecture provides a basis for future experimental and theoretical studies
of neural circuits.

Introduction
One of the brain’s defining characteristics is
its synaptic wiring diagram, or connectome.
A synapse-resolution connectome is therefore
an essential prerequisite for understanding
the mechanisms of brain function (1, 2). To
date, complete synaptic-resolution connec-
tomes have only been mapped for three or-
ganisms with up to several hundred brain
neurons (3–5). Reconstructing and proof-
reading circuits from larger brains has been
extremely challenging. Synapse-resolution
circuitry of larger brains has therefore been
approached only considering select subregions
(6–8). However, pervasive interconnectivity has
been observed between brain regions (9, 10).
Large-scale recording of functional activity in
invertebrates (11) and vertebrates (12) dem-
onstrates that neural computations occur across
spatially dispersed brain regions, highlighting
the need for brain-wide circuit studies.

We therefore sought to generate a compre-
hensive synapse-resolution connectivity map of
a relatively complex brain of a small insect that
has a rich behavioral repertoire and is experi-
mentally tractable. We settled on the 1st instar
larva of Drosophila melanogaster, which has a
compact brain with several thousand neurons
that can be imaged at the nanometer scale with
electron microscopy (EM) and its circuits recon-
structed within a reasonable time frame. Its
brain structures are homologous to those of
adult Drosophila and larger insects of other
species (13–15). The 1st instar larva already has
as rich a repertoire of adaptive behaviors as the
3rd instar (16–18), including short- and long-
term memory (13, 19, 20), value computation,
and action selection (19, 21–23). Furthermore,
the circuit architecture is stable throughout lar-
val stages (24). Thus, although neurons grow in
size to accompany the growth of the body, they
maintain the fraction of synapses they receive
from specific partners. Finally, an exceptional
genetic toolkit and transparent body make the
Drosophila larva an excellent model for manip-
ulating and recording activity in specific neurons
in freely behaving animals and relating struc-
tural motifs to their function (19, 21–23, 25–27).
We mapped all neurons of a Drosophila lar-
va brain and annotated their synapses using
computer-assisted reconstruction with CATMAID
(see Methods) in a nanometer-resolution EM vol-
ume of the central nervous system (CNS) (23).

Results
Reconstruction of the Drosophila larva brain
in a full-CNS electron microscopy volume

We previously generated a synaptic-resolution
EMvolume of the CNS of a 1st instarDrosophila

larva (23, 28). This volume contains all CNS
neurons, as well as sensory neuron axons
and motor neuron dendrites, enabling re-
construction of all neural pathways from sen-
sory input to motor output. Previous studies
have used this EM volume to reconstruct most
sensory inputs to the brain (455 neurons),
their downstream partners, and the higher-
order learning center (total 1054 brain neu-
rons). We reconstructed the remaining 1507
neurons in the brain. The resulting dataset
contains 480 input neurons and 2536 dif-
ferentiated brain neurons (3016 neurons
total), and ~548,000 synaptic sites (Fig. 1, A
and B, and fig. S1, A to D). Most neurons
(>99%) were reconstructed to completion,
and the majority of annotated synaptic sites
in the brain (75%) were linked with a neuron
(Fig. 1B). The remaining 25% were mostly
composed of small dendritic fragments, re-
construction of which is labor-intensive. More-
over, prior studies have shown that neurons
make multiple connections with the same part-
ner on different dendritic branches (24, 28),
so orphaned synapses may affect synaptic
weights of known connections but are un-
likely to add entirely new strong connections
or change conclusions about strongly con-
nected pathways.
Most neurons in Drosophila are mirrored

across hemispheres, such that each neuron has
a hemilateral homolog in the opposite hemi-
sphere (28). We identified all homologous
hemilateral partners using automated graph
matching (29–31) followed by manual review.
These pairings were robust across a variety of
independent morphological and connectivity
metrics (fig. S1, E and F). Our data suggest
that 93% of brain neurons have hemilateral
homologous partners in the opposite hemi-
sphere (Fig. 1C). Kenyon cells (KC) (176 neurons)
in the learning and memory center comprise
most unpaired neurons (13).
These homologous partners were used to

identify potential reconstruction errors and
to target proofreading to such neurons (fig.
S1D). To assess the effectiveness of this tar-
geted proofreading, we randomly selected ten
brain interneurons and fully proofread them
according to previously described methods
(23, 28). Most (74%) neuron→neuron connec-
tions, or edges, remained unchanged. Edges
that did change after proofreading mostly
displayed amodest increase in synaptic strength,
suggesting errors of omission, which were
previously described as the most common
type of error (28, 32) (fig. S1, G and H). In the
following sections, we investigate neuron
and connection types, the flow of information
from inputs to outputs, multisensory inte-
gration, cross-hemisphere interactions, feed-
back from outputs to inputs, and the level of
recurrence in the brain and brain-nerve cord
interactions.

RESEARCH

Winding et al., Science 379, eadd9330 (2023) 10 March 2023 1 of 18

1University of Cambridge, Department of Zoology,
Cambridge, UK. 2MRC Laboratory of Molecular Biology,
Neurobiology Division, Cambridge, UK. 3Janelia Research
Campus, Howard Hughes Medical Institute, Ashburn,
VA, USA. 4Johns Hopkins University, Department of Biomedical
Engineering, Baltimore, MD, USA. 5University of Cambridge,
Department of Physiology, Development, and Neuroscience,
Cambridge, UK. 6Johns Hopkins University, Department
of Applied Mathematics and Statistics, Baltimore, MD, USA.
7Accenture, Arlington, VA, USA. 8Johns Hopkins University,
Center for Imaging Science, Baltimore, MD, USA. 9kazmos
GmbH, Dresden, Germany. 10Zuckerman Mind Brain Behavior
Institute, Columbia University, New York, NY, USA.
11University of California Los Angeles, Department of
Molecular, Cell and Developmental Biology, Los Angeles, CA,
USA. 12Stanford University, Stanford, CA, USA.
*Corresponding author. Email: mjw226@cam.ac.uk (M.W.);
jovo@jhu.edu (J.T.V.); mzlatic@mrc-lmb.cam.ac.uk (M.Z.);
acardona@mrc-lmb.cam.ac.uk (A.C.)

mailto:mjw226@cam.ac.uk
mailto:jovo@jhu.edu
mailto:mzlatic@mrc-lmb.cam.ac.uk
mailto:acardona@mrc-lmb.cam.ac.uk


Identification of all brain input neurons,
interneurons, and output neurons
To facilitate the analysis of the connectome,
we identified a set of broad neuron classes
based on prior information. Brain neurons
were divided into three general categories:
input neurons, output neurons, and interneu-
rons (Fig. 1, D and E). Brain input neurons
(Fig. 1F) comprise two broad classes: (i) sensory
neurons (SNs) with axons in the brain (33–35),
and (ii) ascending neurons (ANs; fig. S2) that
transmit somatosensory signals from the ven-
tral nerve cord (VNC) (23, 36–38). Brain out-
put neurons comprise three broad classes: those
with axons terminating in the ring gland
(RGNs), descending to the SEZ (DNsSEZ), or
descending into the VNC (DNsVNC) (Fig. 1H).
The full set of RGNs have been previously
described (35, 36, 39), whereas DNsSEZ and
DNsVNC were reconstructed and identified
here based on axon projections (fig. S3).

Brain interneurons comprised all neurons
with cell bodies and axons and dendrites in
the brain. We subdivided interneurons into
classes based on previously known functional
role or direct connectivity with neurons of
known functional role (Fig. 1G and fig. S4).
We started with sensory input neurons and
identified their projection neurons (PNs) in
the primary sensory neuropils and the neu-
rons postsynaptic of these PNs in the brain
center for encoding innate valences (the lat-
eral horn, LH). We used the previously char-
acterized neurons of the learning center [the
mushroom body (MB)], including: the KCs
that sparsely represent stimulus identities; MB
output neurons (MBONs) that represent learned
valences of stimuli; MB modulatory input neu-
rons (MBINs, mostly dopaminergic, DANs) that
provide teaching signals for learning; and their
input neurons (MB feedforward neurons, MB-
FFN) (19); MB feedback neurons (MB-FBNs

that connect MBONs and MBINs) (19); and con-
vergence neurons (CN) that integrate learned
and innate valences from the MB and LH (21).
We also identified all presynaptic partners of
the three output neuron types.

Identification of all axons and dendrites
in the brain

To better understand neuron morphology, we
identified all axons and dendrites. In Drosoph-
ila, axons and dendrites contain most of a
neuron’s presynaptic and postsynaptic sites,
respectively, and are separated by a linker do-
main devoid of synapses. We used an estab-
lished strategy to identify the synapse-devoid
linker domains (see Methods) (28). Axonic and
dendritic compartments were defined as distal
or proximal to these linker domains, respec-
tively. These data were manually proofread,
and an axon-dendrite split point was placed
for each neuron. We determined that 95.5%
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Fig. 1. Comprehensive reconstruction of a Drosophila larva brain. (A) Mor-
phology of differentiated brain neurons in the CNS of a Drosophila larva. (B) Most
(>99%) of neurons were reconstructed to completion, defined by reconstruction
of all terminal branches (see Methods) and no data quality issues preventing
identification of axons and dendrites. Pre- and postsynaptic sites were considered
complete when connected to a brain neuron or ascending arbors from neurons
outside the brain. (C) Left and right homologous neuron pairs were identified
using an automated graph matching with manual proofreading. There was no clear
partner for 14 neurons based on this workflow (unpaired), along with 176 unpaired
KCs in the learning and memory center. (D and E) Schematic overview of brain

structure. Brain inputs include SNs, which directly synapse onto brain neurons, and
ANs from VNC segment A1, which receive direct or polysynaptic input from A1
sensories (see fig. S2). Brain interneurons transmit these input signals to output
neurons: DNs to the subesophageal zone (SEZ) (DNSEZ), DNs to the VNC
(DNVNC), and ring gland neurons (RGN). (F to H) Cell classes in the brain. Some
interneurons belong to multiple classes, but are displayed as mutually exclusive
for plotting expedience (see fig. S4). Note that some previously reconstructed
interneurons (40 total) and output neurons (6 total) are included in the barplots but
are not brain neurons per se and not included in counts. There were 20 brain
output neurons with known cell classes that were therefore also included in (G).
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of the brain (2421 neurons) are polarized
with an identifiable axon and dendrite, 0.5%
(13 neurons) are unpolarized with no defin-
able axon, and 4.0% (102 neurons) are im-
mature (Fig. 2A). These immature neurons
were not the developmentally arrested, small
undifferentiated (SU) neurons that later dif-
ferentiate into adult neurons (40) and their
nuclei were not heterochromatin-rich like those
of SU neurons, despite their general lack of
arborization or synaptic sites. It is likely that
these immature neurons started to differen-
tiate but were still in the process of neurite

outgrowth and polarization when the sam-
ple was collected. This population includes
78 immature KCs (13) but also 24 non-KC
immature neurons, revealing limited neuro-
genesis of larval neurons outside the memory
and learning center.
All polarizedneurons segregatedpre- andpost-

synaptic sites within axons and dendrites, re-
spectively (Fig. 2B). However, we also found that
axons often contained postsynaptic sites and den-
drites contained presynaptic sites. Thus, neurons
can synapse directly onto axons and dendrites
can directly synapse onto other neurons.

Four connection types: axo-dendritic, axo-axonic,
dendro-axonic and dendro-dendritic.
Whereas axo-dendritic connections are well
established in the literature, other nonca-
nonical interactions such as axo-axonic con-
nectivity (13, 41–44) and dendritic output
(13, 45–47) have been observed but are not
as well studied, and their prevalence was
unknown. We therefore identified all axo-
dendritic (a-d), axo-axonic (a-a), dendro-
dendritic (d-d), and dendro-axonic (d-a)
connections in the brain. Most synapses
were a-d (66.6%) or a-a (25.8%); however,
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Fig. 2. Identification of all brain axons and dendrites revealed four connec-
tion types. (A) Axons and dendrites were identified in all brain neurons, >95% of
which contained fully differentiated axons and dendrites. The remainder were
unpolarized neurons and immature neurons. (B) Axons contained mostly
presynaptic sites (orange), whereas dendrites contained mostly postsynaptic
sites (blue), but pre- and postsynaptic sites were observed in both compart-
ments. (C) Synaptic connections between brain neurons were categorized
as axo-dendritic (a-d), axo-axonic (a-a), dendro-dendritic (d-d), or dendro-axonic
(d-a). (D) Adjacency matrices displaying all connection types between brain
neurons (raw data in data S1 and S2). Each quadrant represents a different
connectivity type between each presynaptic neuron (row) and postsynaptic
neuron (column) in the brain. (E) Graph metrics for subgraphs comprising each

connection type: number of nodes participating in each connection type, graph
density (number of connections observed divided by all possible connections),
and max degree (maximum number of connections from a single neuron).
(F) Fraction of feedforward and feedback synapses per connection type, defined
based on the overall neuron sorting from sensory to output (fig. S6, F and G).
(G) Comparison of the direction of information flow for the indicated connection
types. Individual neurons in each graph type were sorted using the signal flow
algorithm (see Methods) and the correlation between these node sortings was
quantified. a-d sorting best matched the summed graph sorting (all edge types
together). The d-a sorting was negatively correlated with a-d (−0.59). (H) Edge
reciprocity between different edge types, i.e., fraction of forward edges that were
coincident with different backward edge types.
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there were still many d-d (5.8%) and d-a syn-
aptic sites (1.8%, Fig. 2C).
Most (71.8%) of brain neurons received

some level of reproducible axonic modula-
tion (fig. S5). Notably, 95 neurons (3.8%) re-
ceived especially large amounts of axonic
input relative to output (fig. S5, A and B), in-
cluding subsets of KCs, DANs, and prede-
scending neurons (pre-DNsVNC). Neurons that
make dendritic output onto other neurons
were much rarer (16.5%), but some made an
especially large amount of dendritic output
relative to input, including subsets of KCs and
predescending neurons (fig. S5, C and D).
The connectome can be thought of as four

graphs (Fig. 2D), where all four graphs share
the same set of nodes (i.e., neurons), and the
four edge types (a-d, a-a, d-d, and d-a) each
comprise a separate graph. We quantified the
number of neurons (nodes), the density, and
maximum node degree for each graph (Fig.
2E). The axo-dendritic graph had the highest
density (i.e., the most connections) and high-
est number of neurons participating in con-
nectivity, whereas the axo-axonic graph had
the highest maximum degree (i.e., the max-
imum number of synaptic partners observed
in an individual neuron).
We next wondered whether neurons were

connected by one ormultiple edge types. Most
neuron partners (95%) were connected in only
one way (a-d, a-a, d-d, or d-a). However, we
also observed many edges with multiple con-
nection types (fig. S6D), which occurred more
often than expected by a null model. The most
common examples were a-d combined with
a-a, however many combinations were ob-
served, including rare combinations of three-
or four-edge types between the same neurons.
Four-edge connections were mostly found in
local neurons (LNs, i.e., neurons involved in
local processing in a specific neuropil) and
predescending neurons, whereas three-edge
connections were more dispersed amongst
multiple cell types, but with a focus in LNs
and predescending neurons (fig. S6E).

Numerically strong connections are reproducible
across brain hemispheres

We investigated the distribution of edge strengths
for each connection type (fig. S6, A and B).
Most edges were weak (1 or 2 synapses) for
all connection types (a-d: 60%, a-a: 75%, d-d:
79%, d-a: 91%; 66% across all types). However,
strong edges (≥5 synapse) contained the ma-
jority (a-d: 61%; across all types: 55%; fig. S6B),
whereas weak edges (1 or 2 synapses) con-
tained the minority (a-d: 22%; across all types:
28%) of synaptic sites.
We next investigated edge symmetry across

the two brain hemispheres. Edge strength cor-
related with interhemispheric symmetry (fig.
S6C): weak edges were mostly asymmetrical
whereas strong edges were highly conserved

between hemispheres. With edge strengths
of at least 5 and 10 synapses, most edges (>80
and >95%, respectively) were symmetrical
across all edge types. Similarly, weak, varia-
ble connections were observed in C. elegans
(48). Given that many weak connections are
not reproducible between hemispheres, we
cannot discern whether the observed sto-
chasticity is due to reconstruction error or de-
velopmental noise (28). We therefore focus
much of our analysis on strong reproducible
connections (see Methods). However, weak
connections could have notable roles, such as
maintaining a certain membrane potential
(49), adding noise (50) or contributing to idio-
syncratic variability in behavior.

Distinct connection types differentially
contribute to feedforward and
feedback pathways

We studied the contribution of different edge
types to either feedforward or feedback signals
throughout the brain. We applied the signal
flow algorithm (see Methods) to the graph
with all edge types combined to sort neurons
according to the flow from sensory to descend-
ing neurons. We used this input-to-output sort-
ing to categorize connections in the brain:
we defined connections as feedforward if they
projected from neurons closer to sensory pe-
riphery to neurons closer to descending neu-
rons, and vice versa for feedback edges. The
a-d graph displayed the most feedforward
synapses; a-a and d-d graphs displayed a
mixture of feedforward and feedback, with a
bias toward feedforward synapses; whereas
the d-a graph displayed the most feedback
synapses (Fig. 2F and fig. S6, F and G).
We next compared neuron sortings when

performed on each of the four graphs inde-
pendently (Fig. 2G and fig. S7). The sorting
of the a-d graph best matched the summed
graph (graph with all edge types combined)
and sorted the network from sensory periph-
ery to brain output neurons. The a-a and a-d
graphs displayed a similar flow from sensory to
output, despite the details of the sorting being
different (Spearman’s correlation coefficient =
0.44 between the signal flow sorting of the a-a
and a-d graphs). Notably, the d-a graph sort-
ing tended to be the inverse of the a-d graph’s
(Spearman’s correlation coefficient = −0.61), i.e.,
starting at brain output neurons and ending at
the sensory periphery. Most d-a edges (63%)
were the inverse of a-d edges (i.e., there was a
high edge reciprocity; Fig. 2H), which explains
the inverse relationship between these graphs.
A-a and to a lesser extent d-d connections

displayed high edge reciprocity, meaningmany
neurons displayed reciprocal a-a connections
and d-d connections, respectively (Fig. 2H).
Note that because all connections are direc-
tional, such reciprocal loops were not guar-
anteed to occur.

Hierarchical clustering estimates 93
connectivity-based brain neuron types
Next, we subdivided brain neurons into types
based on their synaptic connectivity. We used
the graph structure of all four connection
types to spectrally embed all brain neurons
in a shared space and clustered them using
this representation (see Methods). This re-
sulted in nested sets of clusters that can be
examined at a desired granularity, from large
groups of neurons to 93 fine-grained cell types
(Fig. 3A and fig. S8, A to D). In contrast with
results from community detection algorithms,
our clusters are not necessarily composed of
groups of neurons which communicate more
densely within a cluster (see Methods). In-
stead, our clustering grouped neurons with
similar connectivity to other neurons even
if little direct intracluster connectivity was
present—for example, olfactory PNs from
the antennal lobe which function as parallel
input channels and whose activity is regu-
lated as a group (33). Thus, our approach is
better suited to finding neuron types, rather
than densely connected processing modules.
Our connectivity-based clusters were inter-
nally consistent for attributes besides con-
nectivity. The morphology of neurons within
clusters was similar, with the mean within-
cluster NBLAST score (0.80 ± 0.15 SD) much
higher than expected by chance (0.5), even
though clustering was based solely on con-
nectivity and no morphological data were used
(Fig. 3B and fig. S8, A and B). Furthermore,
neurons with similar known functions were
usually found in the same or in related clusters
(e.g., clusters of olfactory PNs, KCs, MBINs/
MBONs, MB-FBNs, and others; Fig. 3A and
fig. S8, D to G).
The connectivity within and between all

clusters is displayed in Fig. 3C. Many (but
not all) clusters displayed strong intracluster
connectivity and shared output to similar
postsynaptic clusters. A coarser granularity
can also be selected (Fig. 3D) and used to
explore connectivity between larger groups
of related neuron types.

Most brain hubs are pre- or postsynaptic
to the learning center

Hubs play key roles in brain computations and
behavior (51). We therefore identified brain
hubs for all connection types. To focus on the
strongest hubs, reproducible across hemi-
spheres, we filtered the connectome to include
only strong connections observed in both
hemispheres (using a≥1% input threshold; see
Methods). Brain hubs were defined as having
≥20 pre- or postsynaptic partners, respectively,
i.e., an in- or out-degree of ≥20 [this threshold
is based on the a-d network mean plus 1.5 stan-
dard deviations (SD)]. We distinguished be-
tween in-hubs (over the in-degree threshold),
out-hubs (over the out-degree threshold), and
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in-out hubs (over both thresholds). Using these
criteria, we identified 506 a-d, 100 a-a, 10 d-d,
and 8 d-a hubs (Fig. 3E and fig. S9). a-d out-hubs
were often observed in clusters closer to the
sensory periphery, notably PNs, whereas a-d

in-hubs were more often closer to output clus-
ters, including pre-output and output neurons.
Most (73%, 19 of 26 pairs) of a-d in-out hubs
were postsynaptic to the learning center out-
put neurons (MBONs) and/or presynaptic to

its modulatory neurons that drive learning
(MBONs, CNs, MB-FBNs, MB-FFNs, and one
pre-DNVNC pair postsynaptic to MBONs; Fig.
3F). Several in-out hubs (23%, 12 pairs) were
convergence neurons (CNs), receiving input
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Fig. 3. Hierarchical clustering and analysis of brain structure. (A) Hierarchical
clustering of neurons using a joint left-right hemisphere spectral embedding based
on connectivity. Clusters were colored based on cell classes (Fig. 1G and fig. S4),
but this information was not used for clustering. Clusters were sorted using
signal flow. (B) Example clusters with intracluster morphological similarity score
using NBLAST (see Methods). (C) Adjacency matrix of the brain sorted by
hierarchical cluster structure. (D) Network diagram of level 4 clusters displays
coarse brain structure. Colored pie charts display cell types within clusters.
(E) Fraction of a-d hub neurons in level 4 clusters. Cell types of each cluster are

depicted on the x-axis and annotated to match clusters in (D). Hubs were defined
as having ≥20 in- or out-degree (≥20 presynaptic or postsynaptic partners,
respectively; based on the mean degree plus 1.5 standard deviations). (F) Cell
classes of in-out hubs (a-d). Most neurons were downstream or upstream of the
memory and learning center (gray semicircle, MB-related). Note that CN + MB-FBN
indicates neurons that were both CNs and MB-FBNs. One pair of pre-DNVNC neurons
received direct MBON input. (G) Pathways from SNs to output neurons with 6
or fewer hops, using a pairwise ≥1% input threshold of the a-d graph. Plot displays a
random selection of 100,000 paths from a total set of 3.6 million paths.

RESEARCH | RESEARCH ARTICLE



fromboth theMBandLH,which encode learned
and innate values, respectively (19, 21). One
such in-out hub is the CN-MBON-m1, shown
to functionally integrate learned and innate
values and bidirectionally control approach
and avoidance (21).

Identification of all brain local neurons

Brain neurons are often divided into local neu-
rons (LNs), involved in local processing within
a specific brain neuropil or layer, and PNs,
which carry information to other brain re-
gions. To systematically identify all brain LNs,
we developed two connectivity-based defini-
tions (fig. S10, A and B). Type 1 LNs provide
most of their output to neurons in their sen-
sory layer (defined by the number of hops
from SNs of a particular modality), and/or to
the sensory layer directly upstream of them
(fig. S10A). Type 2 LNs received most of their
input and sent most of their output to any
sensory layer, to which it did not belong (fig.
S10B). In this way, we identified all previously
published LNs (13, 33, 34) and many new
putative LNs (fig. S10, C and D). We then de-
fined all 2nd order PNs by exclusion, i.e., all
neurons that were not local but were directly
downstream of SNs (fig. S10E). Non-LN neu-
rons that are higher order (i.e., not directly
downstream of SNs) are usually termed output
neurons from a specific neuropile (13, 52, 53)
rather than PNs, but we refrain from labeling
them in a specific way and leave them unde-
fined as non-LNs. Although our LN definitions
were connectivity-based, they provided re-
sults that matchedmorphological expectations.
Namely, the Euclidean distance between the
axon and dendrite of local neurons was small,
whereas for PNs the axon-dendrite distancewas
large (fig. S10F). Notably, LNs engaged in more
noncanonical connectivity than PNs, including
a-a, d-d, and d-a connections (fig. S10G), per-
haps allowing LNs to regulate multiple aspects
of activity in both the axon and dendrite.
Most of the LNs (98 neurons) that met the

above definition were either 2nd order neu-
rons directly downstream of SNs (i.e., one
hop from SNs) or 3rd order neurons (two hops
downstream of SNs; fig. S10C). A very small
number of 4th-order LNs were also identified
(6 neurons; fig. S10, C and D). Two of the three
pairs were pre-DNVNC neurons and one was
downstream of neurons that integrate learned
and innate valence, suggesting some level of
local processing in the pre-DNVNC and post-MB
flayers. Overall, progressively fewer LNs were
found further from the sensory periphery.

Identification of all brain sensory pathways

We systematically characterized brainwide
pathways from distinct types of SNs to all
other brain neurons. For the remainder of
the paper, we will focus our analysis on a-d
connections because they are the most abun-

dant and best understood in terms of func-
tional effects. We generated all possible a-d
pathways from brain input neurons to all
other brain neurons and ending at output
neurons in fewer than 6 hops (Fig. 3G). We
classified input neurons based on their known
sensory modalities. Olfactory (33), gustatory
(35), thermosensory (54), visual (34), gut (35),
and respiratory state SNs (55) project directly to
the brain. Somatosensory ANs from the nerve
cord received direct or indirect input from
mechanosensory (22, 23), nociceptive (23, 56),
and proprioceptive SNs (28) (fig. S2 and table
S1) and their axons projected to the brain.
We identified all 2nd-, 3rd-, 4th-, and 5th-

order brain neurons downstream of each in-
put modality (Fig. 4, A to C). For the purpose
of this analysis, we defined the order of a
neuron according to its lowest order input
from any input neuron type. However, neurons
can receive multipath input from the same
input neuron type, through distinct paths of
different lengths (e.g., they can be both 2nd-
and 3rd-order). Many brain neurons (545;
21%) were 2nd order, but most (1410; 56%)
were 3rd order (received input from a SN in
two hops). A considerable number were 4th
order (377; 15%), but only 16 neurons (<1%)
were 5th order (Fig. 4C). Note that 188 brain
neurons (7%) were either immature or re-
ceived only input from neurons in the SEZ of
unknown modality and were therefore not
categorized. Of the neurons analyzed, no brain
neuron was more than 4 hops removed from
at least one input neuron and most were only
2 or 3 hops removed.
Most 2nd-order neurons received direct in-

put from a single SN type (Fig. 4B), with some
exceptions, including olfactory local neurons
that also received input from gustatory and
thermowarm SNs (33, 54). 3rd-order neurons
were more often shared across modalities and
by the 4th order, most neurons were shared
across modalities (Fig. 4B). However, even
neurons that are exclusively 2nd or 3rd order
for one modality can receive input from other
modalities through longer paths.
Most sensory modalities exhibited a large

expansion of neuron numbers in the 3rd order,
compared with 2nd-order layers (Fig. 4A and
table S2), indicating prominent divergence, i.e.,
they broadcast their signals to many different
downstream partners. Generally, the number of
neurons downstream of 2nd-order PNs (diver-
gence) was higher than the number of PNs
upstream of the 3rd-order neurons (conver-
gence). Convergence was also prominent, with
most 3rd-order neurons receiving input from
multiple 2nd-order PNs.

Sensory information can reach output neurons
within one to three hops

We investigated the cell type identities of neu-
rons at different processing layers, i.e., at dif-

ferent hops from SNs or ANs (2nd-, 3rd-, 4th-
and 5th-order neurons) within each sensory
circuit (Fig. 4C). Sensory information reached
all cell classes within a couple hops. A notable
percentage of brain output neurons were 2nd
order, i.e., postsynaptic (one hop) of SNs or
ANs (DNsVNC: 13%, DNsSEZ: 53%, RGNs: 46%),
or 3rd order, i.e., two hops from SNs or ANs
(DNsVNC: 52%, DNsSEZ: 38%, RGNs: 29%). The
remaining 34% of DNsVNC, 5% of DNsSEZ, and
21% of RGNs were 4th order (three hops from
SNs/ANs, Fig. 4C). Thus, most output neurons
receive sensory information within a maxi-
mum of three hops. However, although these
direct (one-hop), two-hop, or three-hop connec-
tions represent the shortest paths to output neu-
rons, most output neurons also received longer
multihop input from SNs.
The highest order neurons in the brain (5th

order) were not output neurons, but contained
14 pre-output neurons, presynaptic to DNsVNC.
These neurons received input from and out-
put to other pre-DNsVNC (the most numer-
ous group of 4th-order neurons) and shared
some upstream and downstream partners,
suggesting complex, multilayered connectivity
between pre-DNsVNC (fig. S11). This suggests
that, even though DNVNC neurons can receive
sensory input in very few hops, they also re-
ceive the most processed information in the
brain through longer paths. We observed
multiple parallel pathways from each sensory
modality to DNs (fig. S12, A and B). However,
we also found extensive connectivity between
neurons within these parallel pathways, sug-
gesting they likely form a distributed process-
ing network (fig. S12C). Most pathways and
most individual neurons within paths were
not restricted to a particular sensory modality
and were instead shared by multiple modal-
ities (fig. S12, D and E).
Different sensory modalities targeted dif-

ferent types of output neurons (Fig. 4C). For
example, gustatory and gut sensory signals
targeted more DNsSEZ than DNsVNC, whereas
other modalities targeted more DNsVNC than
DNsSEZ. Generally, sensory pathways to DNsSEZ

were shorter compared with pathways to
DNsVNC. Most DNsSEZ were 2nd order (re-
ceiving direct inputs from SNs) whereas most
DNsVNC were 3rd order.

Output neurons receive input from
the same modality through multiple paths
of varying lengths

Sensory information is processed both seri-
ally and in parallel (57) but the architecture
of sensory circuits is not fully understood.
While characterizing the shortest paths from
SNs to output neurons, we observed that out-
put neurons also receive sensory information
through longer paths. The additional hops in
longer paths likely result in further process-
ing of the stimulus, which may be important

Winding et al., Science 379, eadd9330 (2023) 10 March 2023 6 of 18

RESEARCH | RESEARCH ARTICLE



to extract more abstract features (58, 59) or
to layer more complex computations on top
of existing ones (60). To provide a basis for
a comprehensive understanding of sensory
processing circuits, we therefore systemati-
cally analyzed all pathways and not just the
shortest ones.
We developed a computational tool, the sig-

nal cascade, that propagates polysynaptic signals
through the brain based on the assumption that
the likelihood of signal propagation between
two connected neurons depends on the num-
ber of synapses between them (Fig. 4D; see
Methods). Synapse counts can be used to ac-
curately predict synaptic surface area and are
therefore a good proxy for synaptic strength

(61). This tool therefore captures all polysynaptic
pathways with reasonably strong connections
along their length. The algorithm makes no
assumption about the sign of connections and
assumes that both excitatory and inhibitory
connections can influence the activity of down-
stream neurons relative to baseline activity.
In support of this assumption, patch-clamp
recordings show that larval neurons have
baseline activity that can be bidirectionally
modified (19, 22) and direct optogenetic in-
hibition; further, activation of neurons relative
to their own baseline can promote opposite
actions (21).
Signals can be started and terminated at

predefined neurons to explore all pathways

that link them. We use brain output neurons
as end points unless otherwise mentioned.
In cascades started at SNs, the signal gen-
erally reached DNsVNC in 3 to 6 hops and
rarely more than 8 hops (Fig. 4E), which we
therefore considered the maximum depth of
the brain. 5-hop pathways were shown to be
functional in the larva (specifically, MD class
IV neurons to MB DANs) (19), but no studies
have yet functionally tested 6-, 7-, or 8-hop
pathways. We therefore stop the cascades at
either 8 or 5 hops, using 8 hops to not miss
long paths and 5 hops to determine which
aspects of architecture are apparent with a
pathway length for which functional con-
nectivity has been confirmed.
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Fig. 4. Multimodal sensory integration across the brain. (A) Morphology of
neurons in sensory circuits, identified using multihop a-d connectivity from SNs
or ANs. (B) Neuron similarity across sensory circuits using the Dice Coefficient.
Most 2nd-order neurons were distinct, whereas 3rd- and 4th-order neurons were
progressively more similar between modalities. (C) Cell classes in each sensory
circuit. Note that neurons can be shared across sensory modalities within 2nd- or
3rd-order layers. (D) Schematic of a multihop signal cascade, which probabilistically
propagates signal polysynaptically from a user-defined source and endpoint based
on synaptic weights between neurons. (E) Signal cascades from sensory modalities to
brain output neurons, DNsVNC. The number of hops between these input and output
neurons was quantified. (F) The number of pathways with different lengths was

quantified from individual sensory modalities to individual DNsVNC. Most sensory
signals propagating to DNsVNC usedmultiple paths of differing lengths (short, medium,
long). (G) Individual neurons were classified as unimodal or multimodal, based on
signal cascades from individual sensory modalities. Most brain neurons integrated
from multiple sensory types (multimodal), whereas a few integrated from a single
modality (unimodal). (H) The distance from sensory input in unimodal or multimodal
cells from (G) was quantified. (I) Signal cascades (up to 5 hops) from SNs or ANs
of different modalities to the input neurons of the learning and memory center, including
dopaminergic neurons (DANs), octopaminergic neurons (OANs), and neurons
of unknown neurotransmitters (MBINs). All DANs, 33% of OANs, and 60% of other
MBINs received signals from all sensory modalities.
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Using 8-hop cascades, we identified all
pathways between SNs or ANs and output
neurons (Fig. 4E). Individual sensory modal-
ities had different median pathway depths
to output neurons (fig. S13A). Overall, olfac-
tion and gustation displayed the shortest
pathways to output neurons, whereas the as-
cending somatosensory modalities displayed
the longest.
Output neurons received sensory inputs from

the same modality through multiple paths of
different lengths. For example, some paths from
the same sensory modality reached DNsVNC

in 2 hops, whereas others displayed as many
as 6 hops (fig. S13A). DNsVNC, on average, re-
ceived input from pathways of three different
lengths from individual sensory modalities
(Fig. 4F and fig. S13B).

Most brain neurons are multimodal

We next investigated the multimodal charac-
ter of the brain as a whole, while taking into
account the longer pathways. We started 8-hop
signal cascades from each sensory modality
and reported the combinations of sensory
input each neuron received (fig. S13, C and D).
Very few neurons (12 or 14% with 8- or 5-hop
cascades, respectively) received signals from

only one modality, purported labeled line
neurons, whereas most neurons were multi-
modal (Fig. 4G), including brain output neu-
rons (fig. S13, E and F). Most labeled line
neurons were close to the sensory periphery
(Fig. 4H). Nevertheless, many modalities con-
verged already at the earliest stages of sensory
processing, with only 36 or 38% (with 8- and
5-hop cascades) of 2nd-order PNs/PNssomato

being unimodal (fig. S13C). Consistently, we
observed multimodal mixing between dif-
ferent sensory circuits at the 2nd, 3rd, 4th,
and 5th orders (fig. S13D).
We also analyzed sensory convergence on

MBDANs. DANs have been implicated in learn-
ing, motivation, and action-selection across
the animal kingdom (62) and understanding
the type of sensory information they receive is
essential for understanding their function.
DANs receive input from sensory systems that
sense rewards and punishments (19, 63), but
the extent to which they receive input from
other modalities was unclear. We found that
DANs received input from all sensory modal-
ities, including from those that normally sense
conditioned stimuli in learning tasks (e.g.,
olfactory) and from proprioceptive neurons
(with 5- or 8-hop cascades; Fig. 4I). By con-

trast, other MBmodulatory neurons (13) were
not as integrative: only 33% (with 5- or 8-hop
cascades) of octopaminergic neurons (OANs)
received input from all modalities.

Identification of all ipsilateral, bilateral,
and contralateral neurons

The presence of two hemispheres is a fun-
damental property of the brain, but the way
in which information from both hemispheres
is integrated and used in neural computa-
tion is not well understood. To investigate
the structural basis of interhemispheric in-
teractions, we identified all neurons that en-
gaged in interhemispheric communication
through contralateral projections (axonal or
dendritic, Fig. 5, A and B). Most (98%) of neu-
rons displayed ipsilateral dendrites (fig. S14).
A small population of neurons (1%) had bi-
lateral dendrites with either ipsilateral, bi-
lateral, or contralateral axons. These neurons
were only observed in the learning center
(MBONs) and brain output network (pre-
DNsVNC, DNsVNC, DNsSEZ) (fig. S15). Although
most neurons had ipsilateral (61%) a substan-
tial number had bilateral (24%) or contra-
lateral (15%) axons (Fig. 5C). Notably, 88% of
a-d in-out hubs had either contra- or bilateral
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Fig. 5. Characterization of interhemispheric communication by bilateral
and contralateral neurons. (A) Connectivity between left and right hemi-
spheres, sorted within each hemisphere by the cluster structure. (B) Fraction
of contralateral a-d presynaptic sites per neuron. (C) Morphology of ipsilateral,
bilateral, and contralateral axon neurons with a-d synaptic distribution
(right-side neurons depicted to make contralateral arbors visible). (D) Most
bilateral axon neurons synapsed onto homologous neurons in both hemispheres,
as indicated by the high cosine similarity of their a-d connectivity to ipsilateral
and contralateral downstream partners (left). Three bins of cosine similarity

values and the cell type memberships of the downstream partners are
displayed (right). (E) Connection probability between left and right cell types
using a-d edges. The highest connection probabilities were observed between
contralateral neurons in opposite brain hemispheres. (F) Reciprocal loops
were observed between homologous left- and right-hemisphere neurons.
(G) Sensory signal lateralization per cell class. Blue, neurons that received
signals from both hemispheres; orange, neurons that received signals from only
one hemisphere. Notably, 46% of DNsSEZ were lateralized (using either 8-hop
or 5-hop cascades).
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axons, even though these neurons account for
only 39% of brain neurons.

Some neurons with bilateral axons target
distinct partners in the two hemispheres

Neurons with bilateral axons project to both
hemispheres, but do they communicate with
homologous postsynaptic partners in both
hemispheres? We calculated the cosine sim-
ilarity between postsynaptic partners of indi-
vidual bilaterally projecting neurons in the
two hemispheres (Fig. 5D, left). Most bilateral
neurons generally connected to homologous
partners in both hemispheres, i.e., had high
partner similarity scores, but there were some
neurons that had low scores. We binned these
neurons into three categories based on their
partner similarity scores and analyzed their
partners further (Fig. 5D, right; fig. S16).
We found 7 pairs of bilateral neurons with

completely different postsynaptic partners on
the ipsi- and contralateral hemispheres and
13 pairs withmostly non-overlapping ipsi- and
contralateral partners (fig. S16). All of these
neurons had unilateral dendrites. Most asym-
metric bilateral neurons synapsed onto pre-
DNs or DNs in one hemisphere but not the
other, or onto different DNs or pre-DNs in the
two hemispheres. These neurons could be in-
volved in controlling asymmetric motor pat-
terns that require activation of different subsets
ofmuscles on the left and right sides of the body.
Indeed, some DNs that receive input from
asymmetric bilateral neurons (fig. S16, C and
D) have presynaptic sites in thoracic and early
abdominal segments, perhaps indicating a
role in turning (64).

Reciprocal contralateral loops

To better understand information flow be-
tween brain hemispheres, we asked how ipsi-
lateral, bilateral, and contralateral neurons
communicate with each other and calculated
their connection probability (Fig. 5E). Ipsi-
lateral neurons synapsed approximately equally
onto ipsilateral, bilateral, and contralateral neu-
rons in the ipsilateral hemisphere. Bilateral
neurons had a slight preference for bilateral
and contralateral neurons. Contralateral neu-
rons displayed a notable preference for other
contralateral neurons, both in terms of input
and output. Individual contralateral neurons
synapsed onto 3.4 other contralateral neurons
on average (34% of their downstream part-
ners), whereas ipsilateral neurons synapsed
onto 1.5 contralateral neurons on average (15%
of their downstream partners).
Because each contralateral neuron has a homo-

log in the opposite hemisphere, we wondered
whether homologous left-right contralateral
neuron pairs tended to directly synapse onto
each other. We found that the connection prob-
ability onto a homologous contralateral partner
was much higher than onto a nonhomologous

neuron (Fig. 5F). We identified 24 reciprocally
connected homologous pairs (10% of contra-
lateral neurons; fig. S17). Most were either pre-
DNsVNC, DNsVNC, postsynaptic of the learning
center outputs (MBONs), and/or provided feed-
back onto the MB DANs (figs. S17D and S18).
Many homologous pair loops interacted amongst
themselves, forming double or super loops (fig.
S18B). Double and super loops occurred be-
tween neuron pairs with similar morphology
and/or connectivity. One super loop involved
four neuron pairs downstream of the in-out
hub, MBON-m1, which integrates input from
other MBONs and from the LH (21) and com-
putes predicted values of stimuli. This super
loop projected onto pre-DNsVNC and indirectly
sent feedback onto MB DANs through MB-
FBNs (fig. S18C). The other super loop involved
five neurons that projected onto DNsVNC. Thus,
the reciprocal pair loops, double loops, and super
loops appear to be prevalent in brain areas that
potentially play a role in action-selection (down-
stream of MBONs and upstream of DNsVNC)
and learning (upstream of MB DANs).

Interhemispheric integration occurs across
most of the brain

Our finding that 39% of brain neurons have
contra- or bilateral axons suggests that the
two hemispheres are heavily interconnected
and that their information could be integrated
at many sites. To systematically investigate
where interhemispheric convergence occurs,
we generated signal cascades from either left-
or right-side SNs and observed the resulting
signal propagation through both hemispheres
(fig. S19, A to C). Signals crossed to the op-
posite hemisphere within 2 hops and were
robustly found in both hemispheres by 3 hops
(fig. S19A). We assessed simultaneous overlap
between left- and right-side sensory signals to
find interhemispheric integration sites. The
cell types of all integrative ipsilateral, bilateral,
and contralateral types were identified (fig.
S19B). We quantified the lateralization of each
neuron by the ratio of left and right signals
they received through signal cascades. Most
neurons (81 or 79%, using 8- or 5-hop cascades)
integrated signals from both left and right SNs
(fig. S19C). Most lateralized neurons were PNs,
KCs, and DNsSEZ (Fig. 5G). Thus, after integra-
tion of contralateral- and ipsilateral informa-
tion on one side of the brain, the integrated
information is often passed back to the other
hemisphere (fig. S19, D to I).

Analysis of brainwide pathways reveals a nested
recurrent architecture

The dominant synaptic network of the brain
comprised a-d connections (Fig. 2C), many of
which provide feedforward signal from sen-
sory to output systems (Fig. 2F). However,
recurrence is an important feature of brain
circuits (19, 65) and can improve computa-

tional power in artificial neural nets (66).
We therefore characterized the reverse signal
in the a-d network, from output neurons back
toward the sensory periphery. We generated
independent signal cascades starting at each
level-7 brain cluster (Figs. 6A and 3A). Because
these clusters were sorted from brain inputs to
outputs, we could track the extent to which
signals propagated up or down this brain struc-
ture to other clusters. We kept these cascades
short (ending after 2 hops) to initially limit our
analysis to the shorter paths of reverse signal
and identify its lower bound. A cascade sig-
nal that traveled up the brain cluster structure
toward the sensory periphery was considered
backward, whereas a signal that traveled down
the cluster structure toward the output neu-
rons was considered forward. Robust forward
and backward signal originated from nearly
all brain clusters (Fig. 6B). Deeper brain clus-
ters (closer to brain outputs) received mostly
forward signals, whereas shallower clusters
(closer to sensory periphery) received a mix-
ture of forward and backward signals. Most
brain clusters provided forward and backward
signals to multiple other clusters simultane-
ously; this was observed even for single neu-
rons within each cluster (Fig. 6C).
We wondered to what extent individual neu-

rons provide feedback to their own upstream
partners, thereby forming recurrent loops. We
therefore used multihop signal cascades from
individual neurons to identify their direct and
indirect downstream partners throughout
the brain (up to 5 hops). We then determined
which of these downstream partners sent
recurrent signals back to the source neuron.
We found that 41% of brain neurons were
recurrent, i.e., sent signals back to at least one
of their upstream partners (Fig. 6D). Further-
more, downstream neurons often sent recur-
rent signals to upstream neurons using paths
of multiple different lengths (Fig. 6E). On av-
erage, recurrent communication between a
single downstream neuron and its upstream
partner used polysynaptic paths of multiple
different lengths (on average 1.9 ± 0.9 SD).

Input and output neurons of the learning center
are among the most recurrent in the brain

We next analyzed which brain cell classes were
the most recurrent (Fig. 6F). We define recur-
rence for individual neurons as the fraction
of their polysynaptic downstream partners
(using cascades of up to 5 hops) that sent
signal back to that source neuron (also using
5-hop cascades) with a-d connections. There-
fore, neurons with high and low recurrence
scores are engaged inmany and few recurrent
loops, respectively.
The fraction of recurrent partners varied

widely between distinct neuron classes (Fig.
6F). PNs and the intrinsic neurons of the learn-
ing center (KCs) had virtually no recurrent
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partners (on average, 1.2% and 0.1%, respec-
tively). Other neurons associated with the
learning center were amongst the most recur-
rent in the brain: DANs (57%), the modulatory
neurons that drive learning; MB-FBNs (51%),
presynaptic to DANs and implicated in com-
puting predicted value and regulating learn-
ing (19); MBONs (45%), the outputs of the
learning center and presynaptic to MB-FBNs;
and CNs (42%), presynaptic to both MBONs
and LHNs, which integrate learned and innate
signals (21) (Fig. 6F). Together, these four
sets of neurons implicated in learning (13, 19)
and in memory-based action-selection (21)
form a set of interconnected recurrent loops
(Fig. 6, F and G).

Descending neurons provide efference copy
to learning center dopaminergic neurons

Many deep brain clusters far from the sensory
periphery (Fig. 6B), including many DNs, pro-
vided backward signals to many brain neu-
rons. The axons of some DNsVNC (37%) and
most DNsSEZ (66%) synapsed onto other brain
neurons before descending to the VNC and
SEZ, thus providing putative efference copy

signals (i.e., copies of motor commands). Single
DNs broadcasted signals to neurons that were
directly or indirectly upstream of themselves
(feedback signals) or onto parallel pathways,
namely neurons upstream of other output
neurons (parallel efference copy signals; Fig.
6H). DNs synapsed onto many different brain
neurons (Fig. 6H), including 130 postsynaptic
partners and 588 partners 2 hops downstream
of DNsVNC and 320 postsynaptic partners and
1284 partners 2 hops downstream of DNsSEZ.
Of those DNs that synapsed onto brain neu-
rons, we found that individual DNsVNC syn-
apsed on average onto 6 postsynaptic neurons
and indirectly (through 2 hops) onto 43 neu-
rons. Individual DNsSEZ synapsed on average
onto 8 neurons directly and onto 79 neurons
in 2 hops.
We investigated the cell type identities of

brain neurons receiving DNSEZ and DNVNC

input (Fig. 6H). The most prominent DNSEZ

targets were PNs [including direct connections
to an olfactory uniglomerular PN (uPN 67b),
5 pairs of multi-glomerular PNs, 24 pairs of
gustatory PNs] and pre-DNVNC neurons. The
most prominent DNsVNC targets were pre-

DNVNC neurons and MB-related neurons
thought to play a role in memory-based action
selection (CNs) (21) and in driving learning:
MBINs (mostly dopaminergic, DANs) and
FBNs that integrate MBON input and feed
it back onto the MBINs (19) (Fig. 6H). DNsVNC

also synapsed onto a few PNs (2 nociceptive
and 2 gut/mechanosensory PN pairs) and
4 pairs of MB-FFNs (which carry sensory sig-
nals to DANs and OANs) (Fig. 6H).
Signal cascades revealed that all DANs and

most of their upstream MB-FBNs (90%) re-
ceive feedback signals from DNsVNC (fig. S20,
A to D), forming larger recurrent loops. DANs
even received direct or 2-hop input fromDNsVNC.
DNsVNC also sent robust feedback to MB-FBNs,
that are presynaptic toMBINs/DANs (fig. S20C).

Brain-nerve cord projectome provides a basis
for studying how the brain controls actions

Our EM volume contains the complete CNS
(brain, SEZ, and nerve cord), allowing us to
assess communication between the brain and
the rest of the CNS. Because most motor neu-
rons (MNs) are located in the VNC, under-
standing brain-nerve cord communication is
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Fig. 6. Comprehensive recurrent pathways through the brain. (A) Schematic
of signal cascades starting from each cluster. (B) Signal cascades originating
at each level-7 cluster (along the diagonal) travel in both forward (above the
diagonal) and backward (below the diagonal). Signal cascades were based on a-d
connectivity and contained 2 hops maximum to restrict analysis to the lower
bound of backward signals. (C) Number of clusters or single cells that received
cascade forward or backward signals from clusters or single cells within
clusters, respectively. (D) Recurrence in brain neurons. Polysynaptic downstream
partners of each brain neuron were identified with a-d cascades (up to 5 hops).
Recurrent partners sent multihop signal back to the source neuron, forming a
recurrent loop (left), and 41% of brain neurons engaged in at least one such

recurrent loop (right). (E) Quantification of recurrent pathways of different length
between individual neurons. (F) Recurrence was quantified for each cell class. (Right)
a schematic of the most recurrent cell types in the brain and their relation to
conditioned stimulus (CS) and unconditioned stimulus (US) during associative
learning. The MBIN category was split into OANs and DAN/MBIN, as they displayed
different distributions of recurrence. Note that KC recurrence is so low that the violin
plot is not visible. (G) Recurrent partners of individual MBINs are reported (i.e.,
all downstream partners, using 5-hop cascades, that send recurrent signals back),
including those of dopaminergic neurons (DANs), octopaminergic neurons (OANs),
and MBINs expressing unknown neurotransmitters. (H) Recurrent or parallel
efference copy signals from DNsVNC or DNsSEZ using 1- or 2-hop a-d connectivity.
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Fig. 7. Investigation of brain-nerve cord interactions revealed direct
connectivity between ascending and descending neurons. (A) Schematic of
the Drosophila larva CNS (i) and how this topology corresponds to different
body segments (ii), involved in a diverse set of behaviors (iii). (B) Each
row represents an individual DNVNC pair with its associated upstream and
downstream a-d connectivity in the brain and its projections to the rest of the
CNS. Upstream and downstream partner plots (i, iii) depict the fraction of
cell types 1 and 2 hops from each DNVNC (color legend, bottom). **, indicates one
DNVNC pair had no strong 2nd-order partners in the brain. The projectome
plot (ii) reports the number of DNVNC presynaptic sites in each CNS region.
Candidate behaviors are suggested based on known behaviors described
in (A, iii). DNsVNC were grouped either by candidate behavior or level 7 clusters
(iv). These independent groupings were highly correlated (Cramer’s V Correlation
Coefficient = 0.58). (C) Schematic of common recurrent and efference copy
a-d pathways observed in the brain with a focus on DNVNC connectivity.
(D) Avenues of interaction between the brain and VNC, DNsVNC, and ANs,

focused on the A1 segment. (E) Premotor neuron layers in A1. Layers are
identified based on a pairwise 1% a-d input threshold (left). Number of interneurons
and ANs in each layer are reported (right). DNVNC targets refer to A1 neurons
postsynaptic to a DNVNC. (F) Sensory layers in A1. Number of interneurons
(green) and ANs (blue) are reported for each sensory layer and location of DNVNC

targets (red). (G) Connection probability (a-d) between DNsVNC and A1 cell types,
and between ANsA1 and brain output neurons. (H) A-d motifs involving DNsVNC

and ANs in A1. The simplest version of each motif is depicted above, but motifs
involving 3, 4, and 5 nodes were also assayed, which contained additional
A1 interneurons or preoutput neurons in the brain. (I) All zigzag motifs observed.
Each bar represents the number of neurons in each type and lines represent
paths originating and ending at individual cells in each category. (J) A zigzag
motif with previously characterized DNsVNC on either side. This motif starts
at PDM-DN, whose acute stimulation elicits a stopping behavior, and ends
at MDN, whose acute stimulation causes animals to back up. Stop-backup is a
common behavioral sequence observed in the Drosophila larva.
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essential to understanding how behavior is
generated. We reconstructed axons of brain
DNs that send feedforward signals outside
of the brain. We divided the CNS into 13 re-
gions based on stereotyped landmarks, in-
cluding all VNC segments, and determined
how many DN presynaptic sites were located
in each CNS region (Fig. 7A-i, fig. S21). This
resulted in a brain-VNC projectome directly
linked to the connectome. Each VNC segment
contains MNs, which innervate muscles in
stereotyped positions throughout the body
(Fig. 7A-ii). Previous studies have identified
body segments involved in specific behaviors
(Fig. 7A-iii), such as forward and backward
locomotion (11, 64), turning (64), hunching
(22, 67), speed modulation (68), and head
movement (69).
Using these linked projectome-connectome

data, we generated an overview plot that dis-
plays the following for each DNVNC: (i) its up-
stream partners; (ii) the location of its outputs
throughout the CNS, and (iii) all its down-
stream partners in the brain (Fig. 7B-i to iii).
We annotated the projectome plot with candi-
date behaviors that each DNVNC might pro-
duce (Fig. 7B-ii). We found a strong correlation
(Cramer’s V Correlation Coefficient = 0.58) be-
tween the cluster identity (based on brain
connectivity) and nerve cord projection re-
gion for the descending neurons (Fig. 7B-iv),
indicating that neurons that project to dis-
tinct nerve cord regions and likely mediate
distinct behaviors also receive distinct pat-
terns of brain input (fig. S22, B and C).
Multiple feedforward pathways of different

kinds and different lengths converged onto
DNsVNC (Fig. 7C). There were many short paths
through PNs directly onto DNsVNC, longer
paths through the LH, and even longer ones
through the MB. Specifically, 19 and 65% of
DNsVNC were directly or 2 hops downstream
of PNs, respectively. 11 and 66% were direct-
ly or 2 hops downstream of both PNs and
LHNs, respectively. A few DNsVNC were direct-
ly or 2 hops downstream of innate pathways
(14%) or downstream of only learning path-
ways (3%). However, most DNsVNC (80%) were
directly or 2 hops downstream of both neu-
rons that encode innate (PNs and LHNs) and
learned valences (MBONs, CNs, MB-FBNs).

Descending neurons target a small fraction
of premotor circuit interneurons in the nerve cord

The brain projectome reveals which segments
DNsVNC project to, but not the way in which
the brain communicates with the VNC cir-
cuitry. We analyzed how the brain communi-
cates with the most completely reconstructed
VNC segment (A1), in which all motor (70, 71)
and many sensory circuits (22, 23, 38, 56, 72, 73)
have been reconstructed. We identified A1
ascending neurons to the brain (fig. S2) and
therefore have all links from the brain to the

A1 (through DNsVNC) and from A1 to the brain
(through ANsA1; Fig. 7D).
First, we characterized the motor and sen-

sory layering in A1 to determine where DNsVNC

input went onto this structure (Fig. 7, D to F).
We quantified the number of hops upstream
of MNs (for motor layering, Fig. 7E) or down-
stream of SNs (for sensory layering) each A1
interneuron (Fig. 7F). Of the A1 interneurons,
232 of 342 (68%) had direct or indirect connec-
tions to MNs, whereas 110 (32%) did not. Of
those that did, most (198 neurons, 85%) were
either directly or 2 hops upstream of MNs, indi-
cating that A1 motor circuits are relatively shal-
low (Fig. 7E). Premotor and prepremotor neurons
were the most prominent DNVNC targets (Fig.
7E). Out of the 42 DNsVNC inputting to A1
(DNsVNC-A1), 28 (66.7%) synapsed onto premotor
or prepremotor neurons (fig. S23, A to C).
Whereas 2 DNsVNC-A1 (1 pair, 4.8%) synapsed
onto an MN, 12 DNsVNC-A1 (28.5%) synapsed
onto sensory circuit neurons (directly or indi-
rectly downstream of A1 SNs, fig. S23, A to C).
Individual DNsVNC synapsed onto relatively

few A1 interneurons, with 1.9 (± 1.4 SD) neu-
rons downstream of each DNVNC and only 48
of 342 A1 neurons (14%) downstream of all
DNsVNC. Similarly, only a small fraction of
premotor (12%) and their upstream prepre-
motor neurons (17%) were direct targets of
DNsVNC (Fig. 7E). Many (71%) of these pre- and
pre-premotorDNVNC targets also receiveddirect
or indirect A1 sensory input, sometimes from
multiple modalities. We also asked whether
DNVNC targeted A1 hub neurons (with ≥10 up-
or downstream partners based on A1 network
mean + 1.5 SD). Indeed, DNVNC targeted two
hubs, namely neurons A03o (in-hub) and A18b
(out-hub).

Some descending neurons modulate sensory
processing in the nerve cord

The depth of sensory circuits was varied from
3 hops (proprioceptive) to 7 or 8 hops (noci-
ceptive and chordotonals) from SNs within A1
(Fig. 7F). DNsVNC mostly targeted 3rd or 4th-
order SNs (2 or 3 hops downstream of SNs),
many of which were also pre- or prepremotor
neurons (31 and 39%, respectively). A notable
exception were the proprioceptive circuits.
DNsVNC synapsed onto several 2nd-order pro-
prioceptive neurons (Fig. 7F), half of which
were also pre- or prepremotor neurons.
We categorized DNsVNC into three types

based on their direct targets (fig. S23, A to C).
Group 1 (20 neurons, 47.6%) targeted both
premotor and 2nd-order SNs. Group 2 (10 DNs,
23.8%) targeted 8 A1 motor circuit neurons
(4 pairs) that were not part of sensory circuits
and had axonal outputs mostly restricted to
T3-A1 (fig. S23D). Group 3 (12 DNs, 28.6%)
targeted 12 2nd- or 3rd-order A1 SNs (6 pairs)
that were not part of A1 motor circuits, in-
cluding ANs (2 pairs) and long-range A1 neu-

rons that output collectively to all thoracic
segments and most abdominal segments (fig.
S23E). These results suggest that DNVNC mod-
ulation of post-sensory cells is propagated
across the CNS, including back to the brain
through ANs, within A1 itself, and across nearly
all VNC segments (T1 to T3, A2 to A7).

Direct descending-ascending connectivity
reveals novel brain-nerve cord zigzag motifs

To better understand reciprocal brain-nerve
cord communication, we analyzed neurons
upstream and downstream of A1 ANs. We
observed many instances of direct DNVNC→AN
and AN→DNVNC and AN→DNSEZ connectivity
(but no AN→RGN; Fig. 7G and fig. S24A).
Specifically, 12 DNsVNC-A1 (30%) synapsed onto
4 ANs in A1 (11%), whereas 24 ANs in A1 (57%)
synapsed onto 22 DNsVNC (12%) and 12 DNsSEZ

(7%) in the brain. To test whether AN-DN and
DN-AN connections were a general feature
present in other segments, we assayed con-
nectivity between DNsVNC and all currently
reconstructed ANs from all VNC segments.
Individual DNsVNC received 3.6% (± 5.2% SD)
of their input from ANs, with some receiving
>20% of their input from ANs (to a maximum
of 37%). It should be noted that this is an
underestimate because most ANs from seg-
ments other than A1 have not yet been recon-
structed. Conversely, individual ANs across
the VNC received 3.1% (± 6.1% SD) input
from DNsVNC, with some receiving >20% of
their input from descending neurons (to a
maximum of 32%).
Reciprocal loops between DNsVNC and ANs

were never observed. Instead, we found zig-
zag motifs, DNVNC→AN→DNVNC, with dif-
ferent DNsVNC on each side (Fig. 7, H and I).
Similar motifs were observed involving DNsSEZ

(fig. S24, B and C). To obtain further insight
into zigzag motifs, we analyzed the sensory
information carried by the A1 ANs and the be-
havioral roles of DNs that participate in these
motifs. One pair of ANs was postsynaptic to
proprioceptive SNs, whereas the other was
highly multimodal and 2 hops downstream
of most SNs (fig. S23, see asterisks). We know
the behavioral roles of a small fraction of
DNsVNC (because the driver lines for most have
not yet been generated) but we found one
motif with known roles for both DNs (Fig.
7J). This motif contained PDM-DN (DNVNC

1)
and the MDNs (DNVNC

2), which promote stop
(74) and backup (15), respectively. Stop-backup
is a common behavioral sequence (75), raising
the possibility that ANs in zigzag motifs could
facilitate transitions between actions in a se-
quence, based on both brain inputs and pro-
prioceptive feedback or somatosensory context.

Discussion

We present a synaptic-resolution connectiv-
ity map of an entire Drosophila larva brain
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and a detailed analysis of the associated brain
circuit architecture. Each neuron was split into
two compartments, axon and dendrite, re-
sulting in a rich multiplexed network with
four connection types, facilitating analysis.
To characterize long-range brainwide ana-
tomical pathways, we developed an algorithm
that utilizes synapse numbers between neu-
rons to track signal propagation across poly-
synaptic pathways.

Connectivity-based clustering reveals 93 distinct
types of brain neurons

Neuron types have been classified based on
their functional role (19, 21, 76), morphology
(32, 77), gene expression (78), or combinations
of features (79, 80). Although these features
are likely correlated, it is still unclear which is
ideal for defining neuron types and how neuron
types based on different features correspond
to each other. We performed an unbiased hi-
erarchical clustering of all neurons using
synaptic connectivity alone and identified
93 types. The morphology of neurons within
clusters was notably similar. Furthermore,
neurons that had similar known functions
were usually found in the same or related clus-
ters. Thus, clustering neurons based on synap-
tic connectivity resulted in clusters that were
internally consistent for other features, when
those features were known. However, many
clusters contained uncharacterized neurons
with unknown gene expression and function.

Noncanonical connection types are pronounced
in learning and action-selection circuits

Although most connections in the brain were
a-d (66.4%), we found a significant number of
a-a (26.4%), d-d (5.4%), and d-a (1.8%) con-
nections. Most neurons that received promi-
nent axonic input were in the learning center:
DANs that provide the teaching signals for
learning and KCs that encode stimuli. Modu-
latory a-a DAN-to-KC input drives heterosy-
naptic plasticity of the KC-to-MBON synapse
(81). DANs also receive excitatory a-a input
from KCs, which provides positive feedback
that facilitates memory formation (41). KCs
also receive a-a input from other KCs. In the
adult Drosophila, a-a connections between
otherwise excitatory (cholinergic) KCs were
found to be inhibitory due to expression of
inhibitory mAChR-B in axon terminals (82).
Lateral inhibition between KCs could improve
stimulus discrimination and reduce memory
generalization (13). A subset of pre-DNsVNC and
a few somatosensory PNs, LHNs, and MBONs,
and FBNs also had a high axonic input/output
ratio. If a-a connections in these neurons are
inhibitory they could enhance contrast be-
tween representations of distinct stimuli and
actions (57).
We also observed edges with multiple con-

nection types between neurons, including up

to all four types simultaneously. The most com-
mon combination, axo-dendritic with axo-
axonic, may grant the presynaptic neuron
post- and presynaptic control of the down-
stream neuron, as has been observed in triad
motifs in mammals (83).

Pathways from sensory to output neurons form
a multilayered distributed network

We observed multiple parallel pathways of
varying depths downstream of each modal-
ity, albeit with extensive interconnectivity be-
tween different pathways. This architecture
suggests that distinct features may not be
processed independently but rather that each
feature may potentially influence the compu-
tation of many other features in a distributed
network. Such architecture has the potential
to generate a diversity of neural responses
with mixed selectivity for specific combinations
of features thereby expanding the dimensional-
ity of neural representations and increasing
output flexibility (84).
We found that the shortest paths from sen-

sory neurons to output neurons are surpris-
ingly shallow. All output neurons receive input
from sensory neurons within a maximum of
3 hops. However, most output neurons also
received input from the same modality through
multiple longer pathways. Such an architec-
ture, with connections that skip layers, is
characteristic of prominent machine learn-
ing networks (85, 86), including deep residual
learning and U-Net architectures. Although
predictive accuracy improves with depth, fea-
tures can become too abstract at deep layers
leading to performance degradation (87). Short-
cuts between layers can solve this problem
by combining lower-level features as an addi-
tional teaching signal (85, 88). Shallower net-
works with shortcuts can therefore exceed
the performance of deeper networks lacking
shortcuts (85). The layer skipping we observed
may therefore increase the brain’s computa-
tional capacity, overcoming physiological con-
straints on the number of neurons that limit
network depth.

Recurrent architecture of the brain with
multiple nested loops

Recurrence has been observed in many brain
circuits and implicated in a range of compu-
tations (65, 89–92). However, the architecture
of long-range recurrent pathways and the
nature of the feedback that each neuron re-
ceives is still poorly understood. We used signal
cascades to systematically identify all con-
nected pairs of brain neurons (with up to
5 hops) that had a reciprocal connection (of
up to 5 hops). We found that 41% of brain
neurons received long-range recurrent input
(up to 5 hops) from at least one of their down-
stream partners with recurrent pathways of
varying lengths forming multiple nested loops.

Recurrent nested structure can compensate
for a lack of network depth in artificial neural
networks (66) and supports arbitrary, task-
dependent computation depth (93).

Learning center dopaminergic neurons
are amongst the most recurrent in the brain

DANs were amongst the most recurrent neu-
rons in the brain. Dopaminergic neurons, re-
ferred to as DANs in insects, are central for
learning, motivation, and action across the
animal kingdom (62) and are implicated in
a range of human mental disorders (94). The
highly recurrent connectivity of DANs might
deliver high-dimensional feedback (95), en-
abling them to encode a range of features and
flexibly engage in parallel computations. Recur-
rent excitatory loops could also play roles in
working memory (19, 96–98).
Previous studies have reported that DANs

receive extensive feedback from neurons that
integrate learned and innate values (19).We find
that DANs also receive long-range feedback (up
to 5 hops) from descending neurons, which
likely encode motor commands. Furthermore,
we found that DANs receive polysynaptic feed-
forward inputs from all sensory modalities.
DAN activity correlates withmovement in both
vertebrates and flies (99), which could be ex-
plained by the observed input from DNsVNC or
from proprioceptive neurons.

Most brain hubs are directly downstream
or upstream of the learning center

Hub neurons have been shown to play essen-
tial roles in behavior (51, 100). We found that
most (73%) of the larval brain’s in-out hubs
were postsynaptic to the learning center out-
put neurons (MBONs) and/or presynaptic to
the learning centermodulatory neurons (mostly
DANs).Manywere also postsynaptic to the LH
that mediates innate behaviors, thus integrat-
ing learned and innate values (21). One of these
hubs, MBON-m1, has been shown to compute
overall predicted value by comparing input
from neurons encoding positive and negative
values (21). MBON-m1 bidirectionally pro-
motes approach or avoidance when its activity
is increased or decreased, respectively. Several
additional hubs identified here have similar
patterns of input to MBON-m1, suggesting
that they may play similar roles in computing
predicted values. These hubs provide direct
feedback to the MB DANs and could therefore
play roles in regulating learning.

Cross-hemisphere interactions

We identified all contralaterally projecting
neurons and their connections, providing a
basis for understanding how information
from both hemispheres is used by the brain.
Notably, neurons with contralateral axons
were disproportionately represented amongst
in-outhubs, suggesting that theyhave important
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roles in behavior. Contralateral neurons tended
to synapse onto each other. Thus, after integra-
tion of contra- and ipsilateral information in
one hemisphere, the integrated information
is often passed back to the other hemisphere.
Multiple consecutive hemisphere crossings
could potentially enable better discrimination
between ipsilateral, contralateral, or bilateral
events and better coordination between the
two hemispheres. We also discoveredmultiple
reciprocal pair loops between contralateral
left-right homologs. If inhibitory, pair loops
could mediate interhemispheric comparisons,
and if excitatory, they could be involved in
signal perpetuation or short-term memory
(96, 97). Consistent with this idea, many pair
loops occurred between neurons presynaptic
to the MB DANs.

Brain and nerve cord interactions

Our study sheds light on brain-nerve cord in-
teractions. DNs targeted only a small fraction
of premotor elements that could play impor-
tant roles in switching between locomotor
states. A subset of DNs targeted low-order
post-sensory interneurons likely modulat-
ing sensory processing. DNs and ANs also
synapsed onto each other, often forming zig-
zag motifs (DN1→AN→DN2). A recent study
has demonstrated that an AN can activate the
downstream DN and drive the same action
as the DN (101). Thus, ANs may facilitate DN
activation and transitions between actions
based on proprioceptive feedback or somato-
sensory context. Somatosensory neurons have
been shown to activate descending neurons
in vertebrates (102, 103), raising the possi-
bility that ascending-descending connectivity
may be a general feature of brain-nerve cord
interactions.

Materials and Methods
Electron Microscopy Data and Reconstruction

The EM volume of the central nervous system
(CNS) of the 6-hour-old Drosophila melano-
gaster 1st instar larva used in this study has
been previously reported (23, 28). Briefly, the
genotype of this female larva was Canton S
G1 [iso] × w1118 [iso] 5905. The resulting EM
volume contains 4841 z-slices with an x,y,z
resolution of 3.8 × 3.8 × 50 nm. This dataset
includes the complete CNS, including all neu-
rons, synapses, and accessory structures. Note
that only the axons and dendrites of sensory
neurons and motor neurons, respectively, are
present in the volume. However, the morphol-
ogy and location of these neurons was suffi-
cient to match them to the respective neurons
in whole animal datasets and thereby identify
the identities and modalities of sensory axons
(33–35, 104) or the corresponding muscle tar-
gets of motor neurons (71).
We identified the boundaries of the brain

hemispheres and all brain neurons using stereo-

typed landmarks (105). Neurons and synapses
were manually reconstructed by multiple users
using the Collaborative Annotation Tool for
Massive Amounts of Imaging Data, CATMAID
(28). Many previous publications have con-
tributed to the reconstruction of neurons in
this CNS (13, 22, 23, 33–35, 71, 73, 104), so the
completeness of brain neurons was first as-
sessed using proofreading status and publi-
cation status. A complete census of the brain
was conducted by examining each lineage
entry point (105) to identify all brain cell
bodies. Each cell body was then used as a seed
point for iterative reconstruction by multiple
users until all arbor end-points were identi-
fied. The reconstruction process generally fol-
lowed previous descriptions (23, 28), however
a targeted proofreading process was used by
comparing left-right homologous neuron pairs.
Quantification of the results of this methodol-
ogy suggests it produced neuron reconstruc-
tions that are robust across multiple metrics
(fig. S1, E and F), although some errors of omis-
sion were observed.

Axon and Dendrite Identification

We identified all axons and dendrites using
a previously developed algorithm, synapse
flow centrality (SFC) (28). In Drosophila, axons
contain most presynaptic sites, whereas den-
drites contain most postsynaptic sites, except
for mushroom body Kenyon cells. SFC finds
the shortest physical paths along the neuro-
nal arbor between each pair of presynaptic
and postsynaptic sites in the neuron. The
section of arbor that contains the highest num-
ber of these presynaptic-to-postsynaptic paths
corresponds to a synapse-devoid region located
between the axon and dendrite that we name
the linker domain and which generally corre-
sponds to the axon initial segment. We used
SFC to identify these linker domains in all brain
neurons and assigned the axon-dendrite split
point to the most proximal part of the linker
domain. All split points were generated auto-
matically and then manually proofread. The
compartment with the highest postsynaptic
to presynaptic site ratio (the dendrite) was
always located closer to the soma.

Threshold to focus on strong, reproducible
(symmetrical) connections

Some of the weak (1- or 2-synapse) connec-
tions could be erroneous, transient, or not
functional. Given that many are not reprodu-
cible between the left and right hemispheres,
we cannot discern whether the observed sto-
chasticity is due to errors in reconstruction
or developmental noise in establishing new
synapses or retracting them (28). We there-
fore focus much of our analysis on the strong
reproducible (symmetrical) connections.
Strong reproducible (symmetrical) connec-

tions are defined as those that are observed

between homologous pre- and postsynaptic
partners in both brain hemispheres (e.g., if
a connection is observed between left-side
pre- and postsynaptic neurons, a connection
must also be observed between the matching
right-side pre- and postsynaptic neurons). Ad-
ditionally, these connections must account for
on average ≥1% input onto the dendrite in
axo-dendritic connections. Note that a con-
nection in one brain hemisphere can be <1%,
as long as the connection on the opposite side
is strong enough to compensate and both are
observed. For example, a 0.5% connection and
a 2% connection result in a mean connection
strength of 1.25%, which passes the 1% thresh-
old. Any analysis indicating use of a ≥1% input
threshold uses this left-right thresholding
approach.
However, it should be noted that weak con-

nections could have notable functional roles,
such as helping maintain a certain desirable
membrane potential (49) or adding noise for
computation (50). They could also contrib-
ute to idiosyncratic differences in behavior
between individuals.

Clustering

We developed a modified spectral clustering
procedure to cluster brain neurons based on
connectivity. To achieve clustering in which
homologous left and right neuron pairs are
likely to be in the same cluster (as opposed to
having clusters comprised of left-only or right-
only neurons), we developed a technique to
perform a spectral embedding which collapses
left and right symmetry into a single embed-
ding space. First, the network was split into
four subgraphs: connections from neurons on
the left side to neurons on the left side (LL),
from right to right (RR), from left to right (LR),
and from right to left (RL). Each subgraph
had its edge weights transformed using a pro-
cedure called pass-to-ranks, a regularization
scheme which replaces each edge weight with
its normalized rank among all edges and is
helpful for spectral embedding in the context
of outliers or skewed edge weight distribu-
tions (106–108). We then embed each sub-
graph into a d-dimensional Euclidean space
(d = 24) using the adjacency spectral embed-
ding (ASE) as implemented in Graspologic
(107, 108). Because of an orthogonal noniden-
tifiability associated with the latent position
estimates from ASE (107), we used a joint op-
timal transport/orthogonal Procrustes proce-
dure (109) to align the latent positions of the
LL and RR subgraphs, and separately the LR
and RL subgraphs. This procedure yields a
representation for each node in terms of its
ipsilateral (LL or RR) inputs and outputs, as
well as its contralateral (LR or RL) inputs and
outputs. To achieve a single representation for
each node which is amenable to clustering,
we concatenated each of these representations
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per node, and performed another singular
value decomposition to further project each
node into a lower-dimensional space (d = 10).
Finally, to ensure that homologous neuron
pairs are clustered the same way, we average
the embeddings for a left and right node (note
thatmost of these points were already close in
this embedded space due to the procedure
described above).
With this representation for each neuron,

we clustered using a hierarchical approach
to Gaussian mixture models (GMM) inspired
by past work on hierarchical stochastic block
models (110, 111). GMM on an ASE embedding
was recently shown to be a consistent way of
estimating the membership assignments for a
statistical network model called the stochastic
block model, motivating this approach (107, 112).
We use a Python implementation of GMMwith
model selection (113, 114). In the hierarchical
paradigm, all neurons currently under consid-
eration are clustered using a 1-component and
2-component GMM. The fit of both models
is evaluated using the Bayesian information
criterion (BIC) metric (115), which is com-
monly used to select the number of clusters
in a GMM (116). If the 2-component model is
preferred by the BIC score and the number of
neurons is not too small (32 neurons is chosen
as the cutoff), then the set of neurons under
consideration is split according to this cluster-
ing. This procedure recursed until the depth of
the “cluster tree” reached eight, yielding a multi-
resolution clustering of brain connectivity.

Finding homologous neuron pairs through
graph matching

We employed a family of techniques based on
the Fast Approximate Quadratic (FAQ) graph
matching algorithm (30, 31) to predict bilat-
eral neuron pairs on the basis of connectivity.
These algorithms seek to find a 1-to-1 align-
ment of one network’s adjacency matrix with
respect to another which minimizes the norm of
their difference. In this case, the two adjacency
matrices were the induced subgraphs (all con-
nections among a specified subset of nodes) of
the left and right hemispheres (i.e., the ipsilateral
connections) of the brain. We used 406 ground-
truth neuron pairs from previous publications
(13, 21, 33) as seeds, specifying a fixed, partial
alignment between the two networks. The
seeded graph matching algorithm was ran-
domly initialized 50 times (while preserving
the known matching from the ground truth
pairs). Predicted pairs from each initializa-
tion of the algorithm were recorded. We then
ranked potential pairs according to how often
they were matched to each other, manually re-
viewing each potential pair for correctness.
This process was iterated multiple times, with
newly identified pairs added to the population
of seed pairs, until all reasonable pairings
were exhausted.

Quantifying similarity of connectivity
for neuron pairs
To quantify the similarity in connectivity of
neuron pairs (fig. S1E), we evaluated how
likely our pairs were to be matched by an
automated, unsupervised algorithm which
aimed to find the best alignment of the nodes
of the left and right hemisphere networks.
We performed multiple graph matchings of
the paired left and right hemisphere net-
works, and measured how strongly each
neuron on the left hemisphere was matched
to each possible neuron on the right hemi-
sphere. To do so, we ran the previously de-
veloped FAQ graph-matching algorithm (31),
using K = 20 initializations and a maximum
of 30 iterations for each initialization (see
original publication for algorithm details).
Note that the annotated pairs were not used
as seeds for this analysis and the initializa-
tions were random; thus, these annotations
did not bias the graph matching toward our
pairs.
Each run k of the FAQ algorithm yielded

a doubly stochastic matrix, (all rows and
columns sum to one) Dk. The element Dk

ij can
be thought of as indicating the strength of
the match (for that run, k) from the left
hemisphere neuron i to the right hemisphere
neuron j. Letting sk be the FAQ objective
function value at the end of optimization for
run k, and

S ¼
XK

k¼1

sk

be the sum of these objective function values,
we took the weighted average of solutions:

D ¼ 1

S

X

k¼1

skD
k

to find a final doubly stochastic matrix for rank-
ing, D.
Then, we assessed how well bilateral pairs

were matched by this assignment matrix D. We
ranked the elements of each row i of D (set-
tling ties using the average) and then found
the rank of that neuron’s assigned pair. For in-
stance, if a left neuron’s true pair on the right
hemisphere was the neuron it was matched to
most strongly, then its neighbor rankwas 1; if it
was matched to its true pair less strongly than
only one other right hemisphere neuron, then
its neighbor rank was 2, and so on. This
provided a metric to evaluate our assigned
neuron pairs, where high ranks for a neuron’s
pair in the other hemisphere indicated that
the assignment agreed with an unsupervised
matching of the two networks.

Network ordering from inputs to outputs

To order the network from sensory neurons
to output neurons (fig. S6, F and G), we ap-
plied the “signal flow” algorithm (117, 118).
Intuitively, this algorithm seeks to find a

one-dimensional number (the “score”) asso-
ciated with each neuron, where high values
indicate a neuron is close to the “top” (in-
puts) of the network, and low values indicate
a neuron is close to the “bottom” (outputs) of
the network. To establish this ordering, this
algorithm finds the scores which minimize
the sum of edge weights which connect neu-
rons with very different scores or which con-
nect a low score neuron to a high score neuron
(feedback). Unless otherwise stated, we used
the network made up of all edge types when
computing the signal flow score for each neu-
ron. When sorting neuron groups, we sorted
based on the mean signal flow score within
each group. In some analyses (Fig. 2G and
fig. S7) we computed signal flow for each edge
type network independently. For pairwise
comparisons of these network orderings, we
computed the rank correlation (Spearman’s
ρ) between the signal flow rankings for each
network.

Analyzing edges with multiple connection types
Edge reciprocity

Reciprocity is a commonly used metric in net-
work science which quantifies the probability
that two nodes in a directed network are con-
nected throughmutual edges in each direction
(119). Specifically, it is defined as the number
of reciprocal edges divided by the total num-
ber of edges, where a reciprocal edgemeans that
both Aij and Aji are present in the adjacency
matrix A. Here, we generalize this notion to
multigraphs. With Asource representing the un-
weighted, loopless adjacency matrix for the
source network, and Atarget defined likewise
for the target network, we define the edge re-
ciprocityr Asource;Atargetð Þas r Asource;Atargetð Þ ¼

1Xn

i;j
Asource

Xn

i;j

Asource
ij Atarget

ji

In other words, averaged over the entire
network, this is the conditional probability of
observing a reciprocal edge

�
Atarget
ji

�
condi-

tioned on observing the forward edge
�
Asource
ij

�
,

P
�
Atarget
ji ¼ 1 Asource

ij ¼ 1
���� .

Probabilities of overlapping connection types

To examine the likelihood of edges with var-
ious multiple connection type combinations,
we counted the number of (i, j) pairs with each
possible combination of edge type occurrences
in themeasured networks (e.g., an axo-dendritic
edge with no other type present, axo-dendritic
and axo-axonic but no other edge types) (fig.
S6D). To calibrate expectations for these counts,
we used a simple null model of multiplex edge
overlaps. This model assumed that each of the
four edge type graphs was generated indepen-
dently, and modeled each network as a ran-
dom (Erdos-Renyi) network. To compute the
parameters of this model, we first simply cal-
culate the global connection probability pk for
each network A(k) as
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pk ¼ 1

n2

Xn

i;j

AðkÞ
ij

Where n is the number of nodes, and A(k) is the
unweighted, directed adjacency matrix for net-
work type k (k = 1,2,3,4 corresponding with
AD, AA, DA, DD, respectively). Under the as-
sumptions above, the expected number of (i, j)
pairs which have only axo-dendritic (AD) edges
(denote this m 1; 0; 0;0½ �ð Þ) is m 1; 0; 0;0½ �ð Þ ¼
n2p1 1� p2ð Þ 1� p3ð Þ 1� p4ð Þ
More generally, we denote x to be a 4-

dimensional binary vector, which indicates
the presence (1) or absence (0) of the AD, AA,
DA, DD edge types, respectively. Then, we can
write the expected number of edges under edge
type pattern x as:

m xð Þ ¼ n2
Y4

i¼1

pxi
i 1� pið Þ1�xi

Under this definition, we calculated the ex-
pected number of edges for each combination
of the four edge types and used this to com-
pare with the observed counts.

Studying potential information propagation
through signal cascades

We applied a technique for modeling informa-
tion propagation through a network based
on the independent cascade model, which
has been used to study epidemic and social
information transmission (120). Briefly, the
algorithm (which we call the signal cascade)
starts with a set of active neurons which prop-
agate their active state to other neurons based
on the number of synapses from active to in-
active neurons. Synapse counts can be used
to accurately predict synaptic surface area
and are therefore a good proxy for synaptic
strength (61). Note that when investigating
downstream partners of neuromodulatory
neurons, such as dopaminergic neurons, we
focus on their chemical synapses, whichmain-
tain a typical T-bar structure at the presynapse
(13). At each time step, a new set of neurons
becomes active, and previously active neurons
enter a deactivated state for the remainder of
the experiment. We modified the original in-
dependent cascade model to include a set of
“stop” neurons fromwhich the cascade does not
proceed further. This tool allows one to deter-
mine howmuch signal from a given set of start-
ing neurons could reach other sets of neurons
in the brain, and after how many timesteps
(hops). Our approach differs from some pre-
vious models of signal propagation across a
connectome in thatweonly allowactivation from
neurons which were active at the last timestep,
rather than from neurons which were activated
at any previous timestep (121, 122), allowing us
to assess the temporal ordering of the poten-
tial flow of information through the brain.
To elaborate on the details of the model,

the algorithm starts with a set of user-defined

nodes which are initially in an active state at
time t = 0, and all other nodes in an inactive
state, meaning they are susceptible to activa-
tion. We denote the set of active, inactive, and
deactivated nodes at timepoint t as SAt , S

I
t , and

SDt , respectively. Our modified cascades al-
gorithm also includes a set of nodes SE which
are “end” nodes from which the cascade no
longer continues—these nodes can become
active, but then do not propagate their signal at
the next timepoint. To determine which nodes
bcome active at the next timepoint t + 1, each
synapse is assigned an equal probability p of
transmission, with p = 0.05. For each out-
going synapse (i → j) from each active node
that is not a stop node i ∈ SAt � SE

� �� �
to each

previously unactivated node j ∈ SIt
� �

, we con-
duct an independent Bernoulli trial with prob-
ability p to determine whether that synapse
activates node j at the next timepoint. Nodes
that had at least one successful activation of
an upstream presynapse are included in the
set SAtþ1. Every node that was active at time t
is moved to the setSDtþ1, the deactivated nodes
which cannot be activated again during the
current cascade. This process was repeated
for T timesteps, where T could vary depending
on the particular question of interest. These
cascades were run 1000 times for the same set
of start and end nodes SAt¼0; S

E
� �

. To under-
stand how signals could propagate through
the brain based on this model, we tracked the
probability that a node was active at a given
time over these 1000 independently run cas-
cades. Neurons were considered to receive
cascade signals when visited in most cascade
iterations. In Fig. 4F, only pathways contrib-
uting substantial cascade signal per hop were
considered (>0.1 multihop signal). When an-
alyzing groups of neurons, signal cascade data
were aggregated by averaging these activation
probabilities across neurons in a group.

Statistical analysis

Mann Whitney U tests were used in fig. S19,
F to I, and fig. S10G. This nonparametric test
was used to avoid assumptions about sample
distributions, especially when non-normal dis-
tributions were observed, preventing use of a
student’s t test.

Morphological similarity calculation within
neuron groups

To quantify the similarity between neuronmor-
phologies within clusters (Fig. 3B and fig. S8,
A and B), we applied the NBLAST algorithm
(123) as implemented in navis (124), comput-
ing NBLAST scores between all pairs of neu-
rons in the same hemisphere. TomakeNBLAST
scores symmetric (same score between neurons
(i, j) as between (j, i) we set the NBLAST scores
for (i, j) and (j, i) to be the geometric mean of
their original scores. We then apply a normal-
ization scheme to each pairwise NBLAST sim-

ilarity matrix, in which scores are converted to
their pairwise ranks in the similarity matrix
(108). With these normalized NBLAST scores,
we defined a simple score of morphological
similarity within each cluster. First, we com-
puted themean of all pairwise similarity scores
between neurons in a hemisphere of a specific
cluster. Then, we took the mean of those aver-
age scores between left and right hemispheres
to compute the final score for a given cluster.

Code

Analyses relied onNumPy (125), SciPy (126), Pan-
das (127), NetworkX (128), navis (124), andpython-
catmaid (pypi.org/project/python-catmaid/).
Plottingwas performed usingmatplotlib (129),
Seaborn (130), and Blender (https://www.blender.
org/). UpSet plots were used to visualize com-
plex intersections (131).
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