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The Connectome of a Decision-Making
Neural Network
Travis A. Jarrell,1* Yi Wang,1* Adam E. Bloniarz,1† Christopher A. Brittin,1 Meng Xu,1

J. Nichol Thomson,2 Donna G. Albertson,2‡ David H. Hall,3 Scott W. Emmons1,3§

In order to understand the nervous system, it is necessary to know the synaptic connections
between the neurons, yet to date, only the wiring diagram of the adult hermaphrodite of the
nematode Caenorhabditis elegans has been determined. Here, we present the wiring diagram of
the posterior nervous system of the C. elegans adult male, reconstructed from serial electron
micrograph sections. This region of the male nervous system contains the sexually dimorphic
circuits for mating. The synaptic connections, both chemical and gap junctional, form a neural
network with four striking features: multiple, parallel, short synaptic pathways directly connecting
sensory neurons to end organs; recurrent and reciprocal connectivity among sensory neurons;
modular substructure; and interneurons acting in feedforward loops. These features help to
explain how the network robustly and rapidly selects and executes the steps of a behavioral
program on the basis of the inputs from multiple sensory neurons.

Animal nervous systems are composed of
very large numbers of electrical cells in-
tricately coupled together in complex dy-

namic networks. Connectionist theories of the
nervous system propose that its function is an
emergent property of network connectivity. Al-
though the question has been extensively addressed
theoretically, the sets of physical connections be-
tween neurons within actual nervous systems re-
main to be described. This is due to the necessity
of using electron microscopy (EM) to visualize
the subcellular organelles that create the synapses,
a technique not amenable to analyzing large struc-
tures. To date, the anatomical wiring diagram of
only a single animal nervous system has been
obtained, that of the adult hermaphrodite of
Caenorhabditis elegans, published more than
25 years ago (1, 2).

We identified all the chemical and gap junc-
tion synapses, the connectome, in the posterior
nervous system of the C. elegans adult male. This
part of the male nervous system contains the cir-
cuits and end organs that govern mating behavior
(Fig. 1, A and B). In spite of having a relatively
simple nervous system, comprising just 302 neu-
rons in the adult hermaphrodite and 383 in the
adult male, C. elegans expresses a rich and com-

plex behavioral repertoire (3, 4). Many of these
behaviors, most notably the sexual behaviors of
the male, model the goal-oriented, purposeful
activities controlled by decision-making processes
characteristic of animal behavior (5). The well-
fed adult male actively seeks out the hermaph-
rodite mating partner (6–9). Physical contact with
the hermaphrodite triggers copulation. Copula-
tion consists of a series of stereotyped actions that
lead the male to locate the hermaphrodite’s vulva,
insert its spicules, and transfer sperm (10, 11)
(Fig. 1A and movie S1). This multistep behav-
ioral pathway is guided by the activities of 52
sensory neurons located in sexual structures in
the tail acting both directly and through inter-
neurons and motorneurons to control 64 muscles
and the gonad (Figs. 1B and 2). For success, the
male’s reactions must be quick (<1 s), because
self-fertile C. elegans hermaphrodites do not
cooperate and may even be resistant to mating
(12, 13). The C. elegans male posterior nervous
system shows how the nervous system evaluates
a multiplicity of environmental inputs, makes a
rapid behavioral choice, and generates coherent,
purposeful behavior.

EM reconstruction of the mating circuits. We
determined the male posterior connectome by
serial section EM (Fig. 1, C to H) (14). The fea-
sibility of comprehensive synapse-level nervous
system reconstruction by this method was a pri-
mary reason for the initial selection of C. elegans
as an experimental model (15). We developed a
PC-based software platform to facilitate assem-
bly of a connectome from electron micrographic
images. The connectome is of a single adult ani-
mal and was produced from a series of 5000
serial thin sections of 70 to 90 nm encompassing
the posterior one-half of the body (fig. S1 and
databases S1 to S4) (16). It comprises the processes
of 170 neurons (89 shared with the hermaphro-
dite and 81 male-specific) and 64 muscles (24

shared and 40 male-specific) (databases S5 and
S6). Among the 170 neurons, 144 lie on syn-
aptic pathways connecting sensory inputs to the
end organs involved in mating. These generate
the presumptive mating circuits. The remain-
ing 26 neurons, not considered further here, are
present in the hermaphrodite as well, with little
difference in connectivity and have little or no
interaction with male-specific neurons or circuits
(database S7).

Properties of the neural network. The 144
neurons, 64 muscles, and gonad that comprise
the mating circuits are joined together by both
chemical and gap junction synapses (Fig. 3).
To analyze this structural network, we took ad-
vantage of the mathematical methods of graph
theory. If the connectome is considered as a graph,
the neurons and muscles are the nodes or verti-
ces. The links or edges connecting vertices rep-
resent the total amount of pairwise connectivity
resulting from the often multiple (up to 61) sep-
arate synapses connecting pairs of cells (fig. S2).
Linked vertices are said to be adjacent or neigh-
bors in the graph. In the graph of the male mat-
ing circuits, each vertex has multiple neighbors
(Fig. 4A). Edges may be directed, if they rep-
resent chemical synapses or rectifying gap junc-
tions, or undirected, if they represent nonrectifying
gap junctions.

The graph of the connectome may be con-
sidered to contain three main subgraphs: (i) a
directed graph encompassing the neurons, mus-
cles, and gonad and the chemical connections
between them, (ii) a graph of the neurons and
their gap junction connections, and (iii) a graph
of the muscles and the gap junction connections
between them (28 gap junction edges connect
neurons to muscles) (Fig. 3). In addition, there
are synapses scattered on the hypodermis. Each
of the main subgraphs describes a small-world
network (17). Small-world networks are charac-
terized by having a high value of the clustering
coefficient, the probability that, if two vertices
are each connected to a common third vertex,
then they are connected to each other and, at the
same time, low values of the characteristic path
length, the average minimum number of edges
separating any two vertices. High clustering co-
efficient suggests local computation, and short path
length suggests rapid communication across the
network. For the male networks, clustering co-
efficients are greater than 0.3, and minimum path
lengths are <3 steps between pairs of neurons
and muscles (table S1). For the entire hermaph-
rodite chemical network, also a small-world net-
work, the clustering coefficient is 0.22, and the
mean path length is 3.48 steps (2).

The dynamic properties of a neural network
depend on the functional strengths of the synaptic
interactions between the cells―in the terms of
graph theory, the weights of the edges. To esti-
mate functional strengths from the structure, we
judged the physical size of each synapse from the
size of the presynaptic density or gap junction
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structure and summed over all the synapses be-
tween each pair of cells (16). (The resulting struc-
tural weight adjacency matrices for the chemical

and gap junction networks are given as databases
S8 and S9). Individual presynaptic densities
varied in size over a 40-fold range, whereas

individual gap junctions varied in size over a
30-fold range (fig. S2). As a result of the vari-
ation in both number of synapses between pairs

Fig. 1. Specializations of the C. elegans adult male tail for mating. (A) The
substeps of mating. (B) Ventral view of the adult male tail showing mating
structures with five types of sensilla. (C) Overall structure of the male ner-
vous system. (D) Ganglia in the tail containing the neuron cell bodies, con-
nected through commissures. Most synaptic connectivity occurs in the
preanal ganglion (PAG). DNC, dorsal nerve cord; VNC, ventral nerve cord;
DRG, dorsorectal ganglion; LG, lumbar ganglion (left and right); CG, cloacal
ganglion (left and right). (E) An example of a male-specific interneuron,
PVX, which has a cell body and extensive sensory input in the PAG, and a

process extending into the VNC, where there is output onto motorneurons
and muscles. (F) Overall structure of PVX showing distribution of synapses
(dorsal view). Red: chemical input; magenta: chemical output; green: gap
junction. (G) Detail of individual synapses showing synaptic partners. Many
chemical synapses are dyadic or polyadic. Width of lines indicates synapse
size. Intermingling of input and output is consistent with PVX being a graded
potential neuron (46). (H) Branching structure around the PVX cell body
(dorsal view). The cell body forms a crescent shape lying against the base-
ment membrane surrounding the PAG (transverse section in inset).
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Fig. 2. The neurons and muscles of the mating circuits. (A) and (B) show the
muscles. (C to F) The left column lists the neurons and muscles grouped into
mathematically defined “modules” on the basis of their connectivity that match
elements of mating behavior (Fig. 1A); the right column illustrates the locations of
the cell bodies and processes of the key neurons in eachmodule together with the
muscles that are targeted (sensory neurons: green; interneurons: blue; motor
neurons: red). (C) Response and Locomotionmodules. The key sensory input to the
Response module is from the B-type neurons of the subset of rays with openings
on the ventral side of the fan, rays 2, 4, and 8. The dendritic endings of these
neurons will be in contact with the hermaphrodite body when themale is correctly
oriented to mate. Experimental evidence indicates that the B-type ray neurons
promote the Response step (21, 26). The Response module drives the Locomotion
module, containing body-wall motor neurons, via the command interneurons. (D)
R(1-5)A module. Neuromuscular junctions of the A-type ray neurons onto the

diagonal and longitudinalmuscles are consistent with experimental evidence for a
role of these sensory neurons in promoting ventral curling of the tail during
mating (25). (E) PVV module. This module, so-named for the large, male-specific
PVV interneuron, has output onto the ventral body-wall motor system, via PVV,
and onto the dorsal body-wall muscles, via PDA, PDB, PDC, and AS11. The dual
innervation of both dorsal and ventral gender-shared body-wall muscles, mostly
bypassing the command interneurons, suggests that this module, like the R(1-5)A
module, is involved in aspects of male posture during mating (47). (F) Insem-
ination module. This module will take over the male’s behavior once the vulva
is sensed. All the neurons involved in insemination are shown here, although
PCA, owing to its strong connection to PVX; HOA, owing to its connection to
LUA; and PVZ, owing to its connection to HOA are all in the Response module,
whereas SPD, because of its muscle output, and SPV, because of its connection
to SPD, are in the Locomotion module (see Fig. 6).
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of cells and sizes of individual synapses, total
morphometric connectivity weights vary more
than 100-fold and cover a continuous range of
values (Fig. 4B). Each neuron has both strong
and weak synaptic partners (Fig. 4C). Structural
weights are likely to be related to the functional
strengths of the synaptic interactions (18), but
the signs of the chemical interactions, that is
whether a given synapse is excitatory or inhib-
itory, cannot be determined from the electron
micrographs.

We next asked whether all of the interac-
tions, including the large number of weak inter-
actions, are likely to be significant to network
function. Weak connections (chemical connec-
tions of less than 20 sections and gap junction
connections of less than 16 sections) carried half
the load through the respective graphs (Fig. 4D).
For both chemical and gap junction networks,
left-right homologs—presumptively equivalent
cells—had similar sets of synaptic partners, and
this was true even when only the connections in
their weaker set were compared (fig. S3) (16).
Therefore, at least some of the weaker connec-
tions are not random. For the purpose of ex-
ploring network structure, we have included all
synaptic interactions in our analysis.

Information flow through the network.With
the morphological sizes of the physical con-
nections serving as proxies for functional syn-
aptic strengths, the weight adjacency matrices
allow us to trace a hypothetical overall infor-
mation flow through the network from senso-
ry input to end-organ output (Fig. 5A). Much
of this information flow is through monosyn-
aptic pathways. Fifty-five percent of the input to
the motor system (muscles, body-wall motor
neurons, and command interneurons) comes di-
rectly from sensory neurons, including 45% of
the input to the muscles themselves. Similarly,
76% of the input to the gonad comes directly

from sensory neurons and is expected to control
outflow of sperm during mating. The remaining
input to the motor system and gonad comes
from a subset of 32 neurons that we classify as
interneurons because they have considerable
output onto other neurons, including motor neu-
rons, but some of them also form neuromuscular
junctions and, hence, have motor neuron char-
acter as well (databases S8 and S9). Because
these interneurons all receive sensory input,
much of the remaining information flow to the
end organs is through disynaptic pathways, and
the network has an overall feedforward-loop ar-
chitecture. The virtual absence of neural feedback
from the end organs means that it is the physical
output of the system—the male’s motion with re-
spect to the hermaphrodite and sperm transfer—
that feeds back to the sensory inputs to provide
control to the network.

In addition to the interneurons that partic-
ipate locally in the mating circuits, which we
term type I interneurons, a second class of 12
interneurons (type II interneurons) interacts with
neurons and end organs in the mating circuits
and, in addition, they have a process extending
through the ventral nerve cord and into the nerve
ring, where they presumably interact with the
anterior nervous system through connections
that are yet to be determined. Type II interneu-
rons are likely to play a role in coordinating
mating with other behavioral programs. In sup-
port of this conclusion, the mate-searching be-
havioral state, which is stimulated by the male
rays, requires communication to the anterior
through three male-specific type II interneurons—
EF1, EF2, and EF3—which receive extensive
input from sensory neurons, particularly B-type
ray sensory neurons (8). In the posterior circuits,
type II interneurons interact (both input and
output) primarily with sensory neurons and, to a
lesser extent, with the type I interneurons.

The locally acting type I interneurons can be
further subdivided into three subtypes based on
the nature of their primary postsynaptic targets
(Fig. 5, B and C). Type Ia, consisting of 14 neu-
rons in six classes, has output primarily onto
the end organs—elements of the motor system
or the gonad or both. Information flow through
the Ia interneurons is strongly feedforward. Type
Ib, consisting of 10 neurons in three classes, has
output primarily onto type Ia interneurons and
also has feedback onto sensory neurons. Type Ic,
consisting of seven neurons in two classes, is
connected to sensory neurons, type Ia interneu-
rons, and end organs (the spicule muscles) in
such a way as to suggest that this class of inter-
neurons mediates ending mating or moving the
program to an earlier step (supplementary text
and fig. S11).

Network community structure identifies sub-
circuits for separate functions in mating. To
map the behavioral program for mating onto the
connectome and to ask whether each substep
has a dedicated neural substrate, we examined
the network for modular architecture (19). Mod-
ules or communities in a graph are subsets of
vertices more strongly connected to each other
than to vertices in other communities. Using the
spectral method (20) for optimal network par-
titioning, we found that the network could be
partitioned with high statistical significance into
five meaningful communities (modularity coef-
ficient Q = 0.451; P < 10−7) (Fig. 2) (16). Other
methods for graph partitioning gave similar re-
sults (supplementary text). These communities
placed the sensory neurons into coherent re-
ceptive fields. The neurons and end organs
suggest that they contain subcircuits dedicated,
respectively, to the search for the vulva [Re-
sponse step (21)], locomotion, posture (two com-
munities), and insemination. These functional
assignments and the cellular composition of

Fig. 3. Total numbers of vertices
(numbers in parentheses), synapses,
and edges in the subgraphs of the
posterior connectome. For compar-
ison, the graph of neuron-to-neuron
connections for the entire hermaph-
rodite nervous system (excluding
the 20 neurons of the pharyngeal
nervous system) has 279 vertices
(neurons), 2194 directed chemical
edges, and 514 gap junction edges
(2). The numbers of chemical and
gap junction edges in the subgraph
of neuron-to-neuron connections are,
respectively, 11% and 10% of the
total number of possible edges among
the 144 neurons.
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each module correlate well with experimental
evidence (21–26).

Sensory neurons are recurrently connected.
Whereas much of the information flow through the
network from sensory neurons to end organs—
either in monosynaptic pathways or through
type Ia interneurons in disynaptic pathways—
is feedforward, the 52 sensory neurons are ex-
tensively reciprocally and recurrently connected
by both chemical and gap junction synapses.
Forty-nine percent of the chemical synaptic out-
put of sensory neurons is onto other sensory

neurons, and this constitutes input to the sensory
neurons that is seven times the feedback from
type Ib and type Ic interneurons. Nineteen out of
the 36 ray sensory neurons make autapses, con-
stituting 6.9% of their input from sensory neu-
rons. Fifty-eight percent of the gap junction
connectivity of the sensory neurons is with other
sensory neurons.

Only on the basis of the recurrent connec-
tivity of the sensory neurons and their connec-
tions to the type Ib interneurons, the network of
sensory neurons could be partitioned into a set

of modules similar to those of the entire network
(supplementary text) (fig. S6). Recurrent and re-
ciprocal connectivity of sensory neurons is ex-
pected to amplify input signals through loop
gain. Recurrent dynamic networks may exhibit
fixed point or attractor behavior characterized
by feedback-reinforced stable modes of network
activity (27, 28). Modularity at the level of the
sensory neurons suggests that sensory input may
drive the network into discrete modes of self-
reinforcing activity, each associated with one as-
pect or substep of the mating program (29, 30).

Fig. 4. Network properties of the connectome. (A) Degree (neighbor)
distributions (number of edges for each vertex) in the chemical and gap
junction networks (survival function). (B) Distributions of the edge weights
(survival function). Edge weights are determined by counting the number
of 70- to 90-nm serial sections crossed by individual synapses and sum-

ming over all the synapses between pairs of neurons and muscles. (C) Each
neuron has a range of stronger and weaker synaptic partners. Points on the
abscissa give the strengths of the individual edges of a given vertex. (D)
Distribution of cumulative load versus edge weight. Weak connections carry a
significant fraction of the load through the network.
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Information flow through interneurons cre-
ates feedforward loops. The male mating circuits
have a statistically high frequency of feedforward
loops (fig. S10). Examination of the feedforward
circuits through the Ia and Ib interneurons re-
veals that these circuits are loops in which, for
each interneuron class, input sources and output
targets are themselves connected (Fig. 6A). At
a finer level of detail, Fig. 6B illustrates this
role of the CP(01-06) class in the Insemination
module.

The function of a feedforward loop depends
on whether the net signs of the two branches are
the same (coherent feedforward loop) or opposite
(incoherent feedforward loop) (31, 32). Because
the targets receiving input from CP(01-06) would
all seem to function together during insemina-
tion behavior at the vulva, it appears most likely
that the feedforward loops created by the CP(01-
06) class are coherent feedforward loops. They
pool sensory inputs and may serve to coordi-
nate the actions of end organs that individually
receive much of their input from different sets
of sensory neurons. Their activity may, in ad-
dition, reinforce and sustain the activity within
the insemination module. As a similar logic can
be applied to the other feedforward loops in the
network, each may be a coherent feedforward
loop. Coordination and reinforcement of func-
tional pathways that receive multiple sensory
inputs and have multiple end-organ targets may
be the general function of interneurons and this
circuit motif here.

Conclusion. Mating is typically a complex
behavior essential for the survival of most spe-

cies. In the C. elegans male, enlargement of
the posterior nervous system in support of this
behavior adds some 30% more neurons and
complex connectivity equal to that of the entire
hermaphrodite nervous system. Connectomics
emphasizes the importance of a complete,
synapse-level structural description of the ner-
vous system for understanding nervous system
function (33–39). Our structural analysis al-
lowed us to define the neural substrate for mat-
ing behavior, to identify classes of neurons and
assign functions to them, and to suggest how
the topology of the network of connections
contributes to the control of behavioral output.

The brain performs certain types of compu-
tations far faster, more robustly, and with much
less power consumption than digital computers
based on semiconductors and Von Neumann ar-
chitecture (27, 40). Parallel distributed process-
ing and recurrent connectivity are thought to
provide part of the explanation for these proper-
ties. Both of these structural principles are present
in the C. elegans male mating neural network.
Sensory information is aggregated at three levels
through the network—at the level of recurrent
connectivity among the sensory neurons; at the
end organs, which receive direct sensory input
from multiple sensory neurons; and at the in-
terneurons. Information flow to each end organ
through many parallel pathways will ensure net-
work robustness. Recurrent connectivity among
the sensory neurons and between sensory neu-
rons and the type Ib interneurons suggests that,
at these levels, the network could have so-called
attractor dynamics. Attractor dynamics are char-

acterized by abrupt transitions between self-
reinforcing stable modes of network activity
(41–43). Such rapid shifts in behavior are ob-
served in C. elegans male mating. If the male
mating network exhibits attractor dynamics,
then, as a transition in network output occurs
as a direct result of a change in sensory input,
decision-making and behavioral switching are
one and the same event. In this way, the struc-
ture could provide economy and efficiency. In
contrast to the recurrent connectivity of the sen-
sory neurons, aggregation of sensory information
at the level of the type Ia and Ib interneurons
in feedforward pathways suggests the architec-
ture of a perceptron (44). Indeed, the system
may be considered to solve a pattern recognition
or classification problem, where the male attempts
to interpret correctly its position with respect
to the hermaphrodite.

The set of activity weights in an adjacency
matrix of a neural network, upon which the
network’s input-output function in part depends,
may be considered the network’s “knowledge”
about its environment (45). Because C. elegans
male mating is an innate behavior, the weights
in the mating neural network, both physical,
as measured here, and functional, are genetical-
ly specified. Genetic specification is evident in
the reproducibility of the connectivity of pre-
sumptively equivalent neurons, such as left-right
homologs, as well as in the sexual dimorphism
of certain shared neurons (sexual phenotype is
thought to be cell-autonomous in C. elegans).
Because the network’s structure is genetically
encoded, the learning algorithm by which this

Fig. 5. Hypothetical information flow through the network. Numbers in ovals
give the total number of serial sections of synaptic connectivity in various
pathways; each oval gives chemical connectivity, the second number in the feedforward branches gives gap
junction connectivity, if there is any (but this is not meant to imply directionality of gap junction communication).
Ovals placed inside a box in (B) and (C) represent synaptic interactions within a class. (A) Global information flow.
Information flow between sensory neurons and end organs is both direct in monosynaptic pathways and via interneurons. A second class of interneurons
communicates to the head. (B) Two layers of interneurons convey information to the end organs. Information flow through the type Ia layer is almost exclusively
feedforward. (C) A third class of interneurons has feedback onto sensory neurons and output onto elements of the ejaculatory circuits, including the spicule
muscles, which suggests that this class is involved in ending mating (see supplementary materials for greater detail of the type Ic circuits).
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knowledge has been acquired is natural selection.
The structural design must be fault-tolerant in
order to allow for developmental error. The con-
tinuous distribution of connection strengths in
the male posterior connectome suggests a prob-
abilistic mechanism of synapse formation in which
each cell pair has a genetically specified prob-
ability of forming a synapse. Small evolutionary
changes in these probabilities will allow gradual
evolution of structural connectivity and hence of
network function and behavior.

References and Notes
1. J. G. White, E. Southgate, J. N. Thomson, S. Brenner,

Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1 (1986).
2. L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall,

D. B. Chklovskii, PLOS Comput. Biol. 7, e1001066
(2011).

3. M. de Bono, A. V. Maricq, Annu. Rev. Neurosci. 28, 451
(2005).

4. M. de Bono, M. B. Sokolowski, in Invertebrate Neurobiology,
G. North, R. J. Greenspan, Eds. (Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, NY, 2007).

5. X.-J. Wang, Neuron 60, 215 (2008).

6. J. Lipton, G. Kleemann, R. Ghosh, R. Lints, S. W. Emmons,
J. Neurosci. 24, 7427 (2004).

7. J. M. Simon, P. W. Sternberg, Proc. Natl. Acad. Sci. U.S.A.
99, 1598 (2002).

8. A. Barrios, S. Nurrish, S. W. Emmons, Curr. Biol. 18,
1865 (2008).

9. J. Q. White et al., Curr. Biol. 17, 1847 (2007).
10. J. E. Sulston, D. G. Albertson, J. N. Thomson, Dev. Biol.

78, 542 (1980).
11. M. M. Barr, L. R. Garcia, in Neurobiology and behavior

section, E. M. Jorgensen, J. M. Kaplan, Eds., WormBook
(The C. elegans Research Community, WormBook, 2006);
www.wormbook.org/toc_complete.html

12. L. R. Garcia, B. LeBoeuf, P. Koo, Genetics 175, 1761
(2007).

13. G. A. Kleemann, A. L. Basolo, Anim. Behav. 74, 1339 (2007).
14. Neuron maps, synapse lists, and connectivity matrices are

available at http://wormwiring.org.
15. S. Brenner, Genetics 77, 71 (1974).
16. Materials and methods are available as supplementary

materials on Science Online.
17. D. J. Watts, S. H. Strogatz, Nature 393, 440 (1998).
18. T. Schikorski, C. F. Stevens, J. Neurosci. 17, 5858 (1997).
19. M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 103, 8577

(2006).
20. E. A. Leicht, M. E. J. Newman, Phys. Rev. Lett. 100,

118703 (2008).

21. K. S. Liu, P. W. Sternberg, Neuron 14, 79 (1995).
22. K. Liu, Ph.D. thesis, California Institute of Technology

(1995).
23. L. R. Garcia, P. Mehta, P. W. Sternberg, Cell 107, 777

(2001).
24. Y. Liu et al., PLoS Genet. 7, e1001326 (2011).
25. P. K. Koo, X. Bian, A. L. Sherlekar, M. R. Bunkers, R. Lints,

J. Neurosci. 31, 7497 (2011).
26. M. M. Barr, P. W. Sternberg, Nature 401, 386 (1999).
27. J. Hertz, A. Krogh, R. G. Palmer, Introduction to the

Theory of Neural Computation, Santa Fe Institute Studies
in the Sciences of Complexity (Westview Press, Boulder,
CO, 1991).

28. J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 79, 2554
(1982).

29. D. Kleinfeld, Proc. Natl. Acad. Sci. U.S.A. 83, 9469
(1986).

30. D. Kleinfeld, H. Sompolinsky, Biophys. J. 54, 1039 (1988).
31. S. Mangan, U. Alon, Proc. Natl. Acad. Sci. U.S.A. 100,

11980 (2003).
32. U. Alon, Nat. Rev. Genet. 8, 450 (2007).
33. H. S. Seung, Neuron 62, 17 (2009).
34. O. Sporns, G. Tononi, R. Kötter, PLOS Comput. Biol. 1,

e42 (2005).
35. J. W. Lichtman, J. R. Sanes, Curr. Opin. Neurobiol. 18,

346 (2008).
36. Y. Mishchenko et al., Neuron 67, 1009 (2010).

Fig. 6. The feedforward circuits through the modules. Numbers in ovals as for
Fig. 5. [The R(1-5)A module is omitted.] (A) The Response, PVV, and Insemination
modules each contain a subset of type Ia interneurons and one class of type Ib
interneuron. All interneuron classes participate in feedforward loops, type Ia
targeting end organs, type Ib targeting type Ia. Cross connections between the
modules are created at the level of the type Ib interneurons. Among sensory
neurons, the hook neurons are distinctive in not having any direct output onto

end organs and in having strong output onto other classes of sensory neurons,
namely, the neurons located in the postcloacal sensilla and the spicules. (The
many other cross-connections between sensory neurons are not shown.) PCA is
separated out from the other cloacal sensory neurons to show its feedforward
loop involving CP(07-09) and PVX. LUA(L/R), PDA, PDB, and AS11 are shared
neurons that are sexually dimorphic. (B) Greater detail of the feedforward loops
in the insemination circuits through the CP(01-06) interneuron class.

www.sciencemag.org SCIENCE VOL 337 27 JULY 2012 443

RESEARCH ARTICLE

 o
n 

Ju
ly

 2
6,

 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


37. D. D. Bock et al., Nature 471, 177 (2011).
38. K. L. Briggman, M. Helmstaedter, W. Denk, Nature 471,

183 (2011).
39. S. Seung, Connectome: How the Brain's Wiring Makes

Us Who We Are (Houghton Mifflin Harcourt, Boston,
2012).

40. N. Nagarajan, C. F. Stevens, Curr. Biol. 18, R756
(2008).

41. K. Jezek, E. J. Henriksen, A. Treves, E. I. Moser, M. B. Moser,
Nature 478, 246 (2011).

42. T. J. Wills, C. Lever, F. Cacucci, N. Burgess, J. O’Keefe,
Science 308, 873 (2005).

43. J. Niessing, R. W. Friedrich, Nature 465, 47 (2010).
44. F. Rosenblatt, Psychol. Rev. 65, 386 (1958).
45. S. Haykin, Neural Networks and Learning Machines

(Pearson Prentice-Hall, New York, 2009).

46. M. B. Goodman, D. H. Hall, L. Avery, S. R. Lockery,
Neuron 20, 763 (1998).

47. A. J. Whittaker, P. W. Sternberg, BMC Biol. 7, 33
(2009).

Acknowledgments: H. Eckholdt played a key role in the
early stages of this project. Contributions were also made by
Z. Martirosyan, A. Singh, T. Stephney, and M. Zhang. C. Crocker
made the figures. We thank J. White for encouragement and
interest; A. Bergman, M. Chklovskii, D. Faber, A. Massimi,
and S. Seung for helpful discussions; N. Baker, H. Buelow,
D. Faber, R. Garcia, Z. Kaprielian, R. Lints, D. Portman, J. Sze,
and J. Vijg for comments on the manuscript; and J. White and
J. Hodgkin for their help in transferring archival transmission
EM data from the U.K. Medical Research Council (MRC)–Laboratory
of Molecular Biology to the Hall lab at Einstein for long-term

curation and study. This work was supported by MRC, the
U.S. NIH (R21MH63223 to S.W.E. and OD 010943 to D.H.H.),
and by the G. Harold and Leila Y. Mathers Charitable
Foundation.

Supplementary Materials
www.sciencemag.org/cgi/content/full/337/6093/437/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S11
Table S1
References (48–60)
Movie S1
Databases S1 to S9

10.1126/science.1221762

REPORTS

Binary Interaction Dominates
the Evolution of Massive Stars
H. Sana,1* S. E. de Mink,2,3 A. de Koter,1,4 N. Langer,5 C. J. Evans,6 M. Gieles,7 E. Gosset,8

R. G. Izzard,5 J.-B. Le Bouquin,9 F. R. N. Schneider5

The presence of a nearby companion alters the evolution of massive stars in binary systems,
leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous
constraints on the fraction of massive stars affected by binary interaction were lacking. We
simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars
and quantified the frequency and nature of binary interactions. More than 70% of all massive stars
will exchange mass with a companion, leading to a binary merger in one-third of the cases. These
numbers greatly exceed previous estimates and imply that binary interaction dominates the
evolution of massive stars, with implications for populations of massive stars and their supernovae.

With masses larger than 15 times that of
our Sun (1), stars of spectral type O are
rare (2) and short-lived (3). Never-

theless, through their large luminosities, strong
stellar winds, and powerful explosions, massive
stars heat and enrich surrounding gas clouds in
which new generations of stars form (4) and drive
the chemical evolution of galaxies (5). Massive
stars end their lives in luminous explosions, as
core-collapse supernovae (CCSN) or gamma-ray
bursts (GRBs), that can be observed throughout
most of the universe.

In a binary system, the evolutionary path of
a massive star is drastically altered by the pres-
ence of a nearby companion (6–8). Because stars
expand as they evolve, those in pairs with or-
bital periods up to ~1500 days exchange mass
(6). The more massive star can be stripped of its
entire envelope and, thus, loses much of its orig-
inal mass. The companion star gains mass and
angular momentum, which trigger mixing pro-
cesses in the stellar interior and modify its evo-
lutionary path (3). In very close binaries, the two
stars may even merge. The nature of the binary
interaction is largely determined by the initial
orbital period and mass ratio. The relative roles
of interaction scenarios and the overall impor-
tance of binary- versus single-star evolution so
far remain uncertain because of the paucity of
direct measurements of the intrinsic distributions
of orbital parameters (9–14).

In this work, we homogeneously analyze the
O star population of six nearby Galactic open
stellar clusters and simultaneously measure all
the relevant intrinsic multiplicity properties (15).
Our observational method, spectroscopy, is sen-
sitive to orbital periods as long as 10 years (13),
corresponding to the relevant period range for
binary interaction (6). In a spectroscopic binary,
the periodic Doppler shift of spectral lines al-
lows the determination of the radial velocity and,

hence, of the orbital motion of one (“single-lined”
spectroscopic binary) or both (“double-lined” spec-
troscopic binary) stars. Given sufficient orbital-phase
coverage, the orbital period (P), the eccentricity
(e), and, for double-lined spectroscopic binaries,
the mass-ratio (q) follow from Kepler’s laws.

Our sample contains 71 single and multiple
O-type objects (see supplementary text A). With
40 identified spectroscopic binaries, the observed
binary fraction in our sample is fobs = 40/71 =
0.56. We combined observations obtained with
the Ultraviolet and Visible Echelle Spectrograph
at the Very Large Telescope for long-period sys-
tems with results from detailed studies of detected
systems in the individual clusters (16–21). In to-
tal, 85 and 78% of our binary systems have,
respectively, constrained orbital periods and mass
ratios. This allowed us to build statistically signif-
icant observed period and mass-ratio distributions
for massive stars (Fig. 1), which are representa-
tive of the parameter distributions of the Galac-
tic O star population (13).

The precise fraction of interacting O stars and
the relative importance of the different interac-
tion scenarios are determined by the distributions
of the orbital parameters. The observed distribu-
tions result from the intrinsic distributions and
the observational biases (see supplementary text
B). To uncover the intrinsic distributions, we sim-
ulate observational biases with the use of a Monte
Carlo approach that incorporates the observa-
tional time series of each object in our sample.
We adopt power laws for the probability densi-
ty functions of orbital periods (in log10 space),
mass ratios, and eccentricities with exponents p,
k, and h, respectively (fig. S3 and table S3). These
power-law exponents and the intrinsic binary frac-
tion fbin were simultaneously determined by a
comparison of simulated populations of stars
with our sample allowing for the observational
biases. We determined the accuracy of our meth-
od by applying it to synthetic data.

Compared with earlier attempts to measure
intrinsic orbital properties (9–14): (i) The aver-
age number of epochs per object in our sam-
ple is larger by up to a factor of 5, making
binary detection more complete. (ii) More than
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