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ABSTRACT  

Deficits in cognition are a core feature of many psychiatric conditions, including 

schizophrenia, where the severity of such deficits is a strong predictor of long-

term outcome. Impairment in cognitive domains, such as working memory and 

behavioral flexibility, have classically been associated with prefrontal cortex 

(PFC) dysfunction. However, there is increasing evidence that the PFC cannot be 

dissociated from its main thalamic counterpart, the mediodorsal thalamus (MD). 

Since the causal relationships between MD-PFC abnormalities and cognitive 

impairment, as well as the neuronal mechanisms underlying them, are difficult to 

address in humans, animal models have been employed for mechanistic insight. 

In this review, we discuss anatomical, behavioral, and electrophysiological 

findings from animal studies that provide a new understanding on how MD-PFC 

circuits support higher-order cognitive function. We argue that the MD may be 

required for amplifying and sustaining cortical representations under different 

behavioral conditions. These findings advance a new framework for the broader 

involvement of distributed thalamo-frontal circuits in cognition and point to the 

MD as a potential therapeutic target for improving cognitive deficits in 

schizophrenia and other disorders.  

 

INTRODUCTION 

The thalamus is a heterogeneous structure located deep in the brain, which has 

been traditionally viewed as a simple gateway for relaying information from the 

sensory periphery to the cortical end-station(1,2). This concept has roots in the 

19th century when neurologists used clinical or experimental brain lesions to 

map cortical areas onto sensory and motor abilities. Subsequently, histology and 

lesion-induced retrograde degeneration of cortical targets were employed to 

parcel the thalamus into subnuclei with distinct projection patterns to 

circumscribed cortical areas. Placed just several synapses from the sensory and 

motor periphery, and exhibiting a relatively homogenous cellular structure in 

comparison to cortex, the computational power of the thalamus was considered 

limited(1,2). 
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While the effects of sensory and motor cortex lesions or stimulations were 

relatively easy to interpret, the consequences of frontal lobe ablations were more 

complicated to describe. Decades of work were needed to establish what would 

eventually be termed the prefrontal cortex (PFC) as an important center for 

personality, emotion and cognitive function(1). This classical work paved the 

way for the first reports showing striking resemblance between the cognitive 

deficits observed in patients with frontal lesions and schizophrenia(3,4). In the 

last 30 years, modern brain imaging techniques confirmed the association 

between altered prefrontal function and cognitive deficits leading to the 

influential hypothesis that cognitive symptoms, especially in the executive 

function domain, arise from a dysregulation of PFC activity(5-7). 

Yet, just as with sensory and motor cortical areas, the PFC receives dense 

innervation from anatomically prescribed thalamic counterparts, most 

prominently from the mediodorsal thalamus (MD)(8). However, unlike sensory 

and motor thalamic nuclei, the MD exhibits minimal connectivity with either 

sensory or motor pathways and instead receives its driving input directly from 

various PFC areas. Moreover, lesions of the MD typically induce cognitive 

dysfunctions that are reminiscent of those observed following prefrontal 

lesions(9,10). These observations indicate that PFC function cannot be divorced 

from that of its interconnected thalamo-frontal circuitry. While it has been 

proposed on anatomical grounds that the MD serves as a relay station between 

distinct prefrontal areas(2,11), the unique contributions of the MD towards PFC-

dependent cognition remains largely enigmatic. 

An understanding of how MD-PFC circuitry contributes to cognition is of growing 

clinical interest. Recently, studies have reported MD dysfunction along with 

abnormal thalamo-frontal connectivity in several mental disorders including 

schizophrenia (12,13). Thus, a clearer anatomical and functional understanding 

of thalamo-frontal circuitry appears essential in order to elucidate how their 

alteration may contribute to cognitive dysfunction in psychiatric conditions. 

Here, we provide an overview of recent behavioral and electrophysiological 

findings in primates and rodents, giving new insights on how MD-PFC circuits 

interact in order to support higher-order cognitive function. We then review the 
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evidence for altered thalamo-frontal circuitry in mental disorders and discuss 

how this may contribute to cognitive deficits.  

 

ANATOMY OF MD-PFC CIRCUITS 

Based on anatomical and functional data, dorsal thalamic nuclei have been 

categorized into two types(14). First order thalamic nuclei are characterized by 

their functional response patterns to sensory stimuli or motor activity, 

consistent with their close connectivity with the sensory periphery and primary 

motor pathways. In contrast, higher-order thalamic nuclei receive few or no 

sensory inputs from the periphery but can be anatomically defined by its driving 

afferents from the cortex(14). These thalamic structures are thereby linked to 

the higher-order processing that has classically been attributed to cortex alone. 

Higher-order thalamic nuclei include the MD, the pulvinar, and the posterior, the 

intralaminar and the midline nuclei (but see Rovo et al.(15)). In this review, we 

will focus on the MD that displays a unique set of topographically organized 

interconnections with the PFC. Since excellent and detailed reviews of MD-PFC 

anatomy exist(2,16,17), we just depict here the main components of these 

circuits in Figure 1.  

 

THALAMO-FRONTAL CIRCUITS AND WORKING MEMORY: 

BEHAVIORAL AND ELECTROPHYSIOLOGICAL STUDIES 

Patients with thalamic lesions often exhibit amnesic syndromes similar to those 

observed in patients with hippocampal lesions, likely due to damage to the 

mammillothalamic tract or anterior thalamic nucleus(18,19). However, more 

circumscribed lesions to the MD have been associated with deficits in executive 

functions similar to those observed in patients with frontal lobe dysfunction(19-

21). Unfortunately, patients often exhibit damage to several thalamic areas, thus 

limiting inferences about the precise role of the MD. Therefore, research has 

turned to animal models in which MD function can be directly manipulated. 

Those studies implicate a role for the MD in working memory, behavioral 

flexibility, and goal-directed behavior(10).  

Behavioral evidence for a role of MD-PFC circuits in working memory 
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Working memory is defined as a transient holding, processing, and use of 

information on the scale of seconds. Based primarily on work in humans, 

Baddeley and Hitch proposed an influential model of working memory defined 

by two independent subsystems – a visual-spatial sketch pad and a phonological 

loop – that are coordinated by a central executive controlling the flow of 

information between them(22). For obvious reasons, it is challenging to apply 

this model across species. In animal research, working memory can be defined as 

a delay-dependent short-term memory of an object, a stimulus or a location that 

is used within a testing trial, but not between trials, as opposed to reference 

memory that is typically acquired with repeated training and persists for 

days(23).  

Classical studies in primates have shown that MD lesions diminish performance 

in delayed response tasks, a standard assay for working memory(24,25). 

Although not always consistent(26-32), rodent literature also supports a role for 

the MD in working memory. Rodent studies have typically employed spatially 

guided delayed response tasks, in which the animal is required to retain a 

memory trace of a recently sampled maze location during a delay period and 

then prompted to select the opposite location in order to receive a reward 

(delayed non-matching-to-sample (DNMS)). Many studies have reported deficits 

after lesions or inhibition of the MD using variants of the DNMS task(33-41). 

Although in some of these studies lesions may have extended to adjacent regions, 

including the anterior thalamus(33-35), the MD, unlike the anterior thalamus, 

does not seem to play a role in spatial reference memory(42). Moreover, deficits 

in DNMS working memory tasks following MD lesions have also been observed 

in operant settings, where spatial requirements are more limited(37,40,43-45). 

Several studies have also found that DNMS deficits were dependent on the length 

of the delay(37,41,44,45), suggesting the MD may be particularly involved in the 

maintenance of representations critical for task performance as opposed to 

general task learning.  

Spatial working memory in rodents is known to depend on medial PFC (mPFC) 

function(46-48). Analogous deficits observed following MD lesions could 

therefore be due to a disconnection of MD-mPFC circuitry(39), thus raising 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

questions regarding the unique contributions of each structure to working 

memory processes. Using optogenetic tools, a recent study examined the 

involvement of MD-to-mPFC and reciprocal mPFC-to-MD pathways in a DNMS T-

maze task(49). Inhibition of either pathway led to a decrease in performance in a 

delay-dependent manner, while inhibition of MD-to-lateral orbitofrontal cortex 

(OFC) projections had no impact on behavior. The temporal resolution of 

optogenetic inhibition further allowed assessing the significance of reciprocal 

MD-mPFC circuits during discrete phases of the DNMS spatial working memory 

task. While initial spatial sampling did not require MD-mPFC activity in either 

direction, spatial choice specifically required the mPFC-to-MD pathway but not 

the MD-to-mPFC pathway. In contrast, the delay period relied on reciprocal 

interactions across both structures(49). This observation is strikingly circuit-

specific as inhibition of ventral hippocampal (vHip) inputs to the mPFC during 

the sample phase, but not the delay phase, robustly impaired 

performance(49,50). Together, these data suggest that while the direct vHip-to-

mPFC pathway is involved in the encoding of the spatial location during the 

initial sample phase, reciprocal activity between MD and mPFC supports short-

term maintenance of working memory during the delay. Moreover, top-down 

inputs from the mPFC-to-MD guide successful memory retrieval and/or choice 

selection (Figure 2A).  

Thalamo-frontal synchrony during working memory  

The above data point to functional interactions between the MD and the PFC in 

working memory. But how do both structures interact at the physiological level? 

In the DNMS T-maze working memory task, MD-mPFC synchronous local field 

potential activity in the theta (4-12Hz) and beta (13-20Hz) frequency ranges 

increases hand in hand with task learning(41). Moreover, in trained mice, the 

spiking of individual MD neurons have been shown to synchronize with mPFC 

local field potentials in the beta range during the choice phase of the task when 

working memory demand is highest(41).  

Two findings support the functional relevance of MD-mPFC beta-synchrony in 

working memory processes. First, decreasing MD activity delays both task 

acquisition as well as the increase of MD-mPFC synchrony. Second, decreasing 
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MD activity disrupts the choice phase-specific enhancement of MD phase-locking 

to mPFC beta oscillations(41). Interestingly, a more refined task phase-specific 

analysis of MD-PFC beta synchrony suggests bi-directional information flow 

going from MD to mPFC during the delay and from mPFC to the MD during the 

choice phase(49). This dynamic shift in directionality of MD-PFC synchrony 

suggests that choice phase beta synchrony may serve the retrieval or selection of 

motor-related working memory information via mPFC to MD connections, 

consistent with the behavioral impact of inhibiting this projection. 

Modulation of thalamo-frontal synchrony has also been observed in other 

cognitive tasks(51,52). In a two-alternative discrimination task in which rats 

must discriminate between two odors and use this information to guide 

subsequent decision-making, synchronous activity between the MD and piriform 

cortex (PCX) and MD-OFC circuits dynamically shifts according to task demands. 

During initial odor sampling, MD neurons exhibited enhanced phase-locking to 

both PCX and OFC theta oscillations, followed by a strikingly specific increase in 

phase-locking to OFC beta oscillations immediately preceding the subsequent 

choice(53). These findings suggest that the MD, as has been proposed before, 

may be a critical subcortical node for linking cortical areas involved in 

processing cognitive information(11). The choice-specific modulation of MD-OFC 

beta synchrony is also reminiscent of the above described MD-mPFC beta 

synchrony during working memory guided spatial selection, potentially 

indicating that thalamo-frontal beta synchrony is a general circuit mechanism 

supporting working memory guided action selection.  

The MD sustains delay-elevated activity in the mPFC 

The fact that inhibiting MD inputs to the mPFC during the delay phase impairs 

later choice performance in the DNMS task, suggests that mPFC activity during 

the delay carries information critical for short-term memory maintenance in an 

MD-dependant manner. Almost 50 years ago Joaquin Fuster proposed a potential 

neural correlate for short-term memory maintenance when he recorded neurons 

in the dorsolateral PFC (dlPFC) of monkeys whose activity remained elevated 

across the entire delay period of a delayed response task(54). In a subsequent 

study, Alexander and Fuster revealed the same neural signature in MD neurons. 
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Employing PFC cooling, they further showed that delay activity in MD neurons, 

along with behavioral performance, depended on PFC activity. This pioneering 

paper provided the first evidence of functional interactions between both 

structures and led to the hypothesis that the maintenance of PFC activity during 

working memory requires reverberatory activity within the MD-PFC circuit(55).  

Two recent rodent studies examined the impact of MD inhibition on PFC delay 

period activity in a two-alternative forced choice (2AFC) task and the above-

described DNMS T-maze task. Both studies uncovered populations of mPFC 

neurons with elevated spiking during the delay. Rather than being active during 

the entire delay, individual neurons exhibited brief bouts of elevated activity 

much shorter than the total delay length. As each neuron displayed elevated 

activity at distinct temporal offsets from the delay onset, ordering of neurons 

according to peak time of firing within the delay revealed a sequential activation 

across the population that spanned the entire delay duration(49,56). This 

population-distributed delay activity has been observed in several previous 

studies using both monkey and rodent models(49,56-61) and is interpreted to 

reflect the encoding of memory in synaptically connected populations of 

neurons(59).  

In both studies, elevated mPFC activity indicated correct performance during the 

subsequent choice phase, and was critically dependent on MD inputs for its 

sustained maintenance across the delay(49,56). Strikingly, the impact of MD 

inhibition on elevated mPFC delay activity was temporally specific in both 

studies. While mPFC neurons with elevated spiking during the early delay period 

were not impacted by manipulations of MD activity, mPFC neurons with peaks 

later in the delay were highly dependent on MD inputs(49,56). This suggests that 

delay period activity is unlikely to derive from the MD. Instead, the MD may 

serve as a substrate for the amplification and maintenance of delay 

representations first generated in PFC.  

Findings from Schmitt et al. further support this model. First, temporally 

restricted inhibition of PFC activity at distinct delay time points equivalently 

disrupted behavioral performance, while inhibition of MD activity had 

diminished impact on behavior at early time points. In addition, similar to the 
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PFC, MD neurons also displayed elevated delay activity. However, unlike the PFC, 

MD delay activity was critically dependent on PFC activity even at early delay 

time points(56). Altogether, these findings suggest that the MD, and perhaps 

other higher-order thalamic nuclei(62), may be recruited by the PFC in order to 

amplify or sustain cortical representations as memory decays across time, or in 

particularly demanding cognitive tasks (Figure 2B). Indeed, both global MD 

inhibition and pathway-specific MD-to-mPFC inhibition only impaired 

performance in the DNMS T-maze at longer delays, while leaving behavior intact 

at shorter delays(41,49). Further supporting this hypothesis, broadly enhancing 

MD excitability not only improved performance in both the DNMS T-maze and 

the 2AFC tasks(49,56), it also enhanced the connectivity within local PFC circuits, 

and increased PFC delay period information in the 2AFC task(56).  

Although the above-discussed studies are broadly in agreement regarding this 

proposed model of thalamo-frontal interactions during working memory, there 

are still inconsistencies. For example, previous primate studies(63-66) observed 

explicit stimulus or spatial representations in thalamus delay period activity, 

while Schmitt et al. provide compelling evidence for MD representations that 

lack information content(56). The reasons for these differences are sure to be 

manifold, ranging from species, sub-circuit and task design differences. More 

studies including MD single-unit along with cortical electrophysiological 

recordings during working memory tasks, will be required to clarify the role of 

thalamo-prefrontal interactions in working memory. 

 

THE ROLE OF MD IN GOAL-DIRECTED AND FLEXIBLE 

BAHAVIORS 

The role of MD in behavioral flexibility 

Behavioral flexibility reflects the ability of an individual to respond and adjust to 

changes in the environment. It can be tested using reversal learning or set 

shifting tasks. Both behaviors require adaptation by switching stimulus-outcome 

and/or response-outcome associations, yet have been shown to depend on 

distinct prefrontal areas. Reversal learning has been linked to lateral OFC 

function. OFC lesions in primates and rodents(67-71) generally induce 
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perseveration in reversal learning tasks (though see(72)), meaning that lesioned 

animals tend to stick to a previously learned rule or strategy that is no longer 

relevant. In contrast, set-shifting tasks requiring multiple associations within 

different sensory sets, instead rely on mPFC in rodents and on dlPFC in 

primates(73).   

Although the literature concerning the role of MD in behavioral flexibility is 

conflicting(24,26,74,75), one repeatedly reported finding is an increase in 

perseverative behavior following lesions or manipulations of MD activity similar 

to that observed following OFC lesion. Perseveration has been observed in many 

task contexts, including water maze learning(76), strategy reversal(28,77), and 

operant reversal learning tasks(41). MD and OFC may therefore work in concert 

to act on or update old strategies during reversal learning.  

Of note, some studies reporting impairments in reversal learning did not 

attribute the deficit to perseverative behavior(78,79). In a probabilistic reward-

guided task involving three different stimuli, monkeys with lesions of the 

magnocellular portion of MD exhibited a maladaptive switching strategy upon 

reversal in reward contingency. That is, monkeys did not perseverate in 

responding to the previously rewarded stimulus, but instead shifted their 

selections across all stimuli and were unable to persist in selecting the best-

rewarding option, unless having an extended choice history on that option(79). 

These findings suggest that the magnocellular potion of MD may support the 

representation of recent stimulus choices and thus facilitate rapid stimulus-

outcome contingent learning.  

In tasks involving multiple stimuli and outcomes, the ability to keep track of 

recent choices and their associated outcomes is crucial, especially during 

reversal when a rapid update of stimulus-outcome is needed. In monkeys, some 

neurons in the magnocellular and parvocellular MD have been shown to increase 

firing when the animal was making cue-guided actions and when receiving 

feedback post-response(65). Thus, in behavioral flexibility tasks, the MD may 

stabilize an online representation of stimuli-outcome associations within the 

cortex, possibly OFC, similar to the findings described above involving MD-mPFC 

circuits in working memory. Future neurophysiological studies monitoring both 
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MD and OFC activity during reversal learning tasks combined with temporally-

precise optogenetic manipulations could directly test whether amplifying and 

sustaining cortical representations is a general principle by which the MD 

supports cognition.  

The role of MD in goal-directed behavior  

Behavioral flexibility is not a unitary process and involves several potentially 

dissociable cognitive components. For example, flexible behavior often requires 

an animal to integrate the relationship or contingency between actions and their 

outcomes, which additionally entails an accurate representation of the outcome 

value. The sensitivity to changes in action-outcome contingencies can be tested 

in contingency degradation tasks during which the outcome is presented 

independent of the action. The representation of the outcome value on the other 

hand can be tested in outcome devaluation tasks, in which action-outcome 

associations remain intact while only the value of the outcome is diminished(80-

83). In rodents there is strong evidence for deficits in contingency degradation 

tasks following MD manipulations, suggesting that the MD is important for the 

representation of action-outcome associations and/or the updating of such 

representations following changes in the environment(84-86).  

Whether the MD also supports an accurate representation of the outcome value 

is still unsettled. Some studies in rat and in monkey reported deficits in outcome 

devaluation tasks when the MD was lesioned before learning the action-outcome 

contingency but not when it was ablated just before devaluation of the 

outcome(84,87,88). However, several studies failed to find any deficit following 

MD lesion or inhibition(86,89). These discrepancies are likely due to the 

different task designs and MD manipulations methods. Further work will 

therefore be needed to determine whether the MD and its related networks 

support outcome value representation.  

Associative learning and flexible adaptation frequently also involves 

environmental stimuli that need to be associated with the outcome. The ability of 

environmental stimuli to influence action can be tested in a Pavlovian-to-

instrumental transfer (PIT) paradigm. PIT includes three phases: 1) Pavlovian 

training where stimuli are associated with specific outcomes, 2) Instrumental 
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training where the same outcomes are associated with specific responses, and 3) 

a Pavlovian-to-instrumental transfer (PIT) in which the conditioned stimulus is 

tested for its ability to trigger the action that shares the same outcome. 

Pharmacogenetic inhibition of the MD in mice restricted to the PIT testing phase 

did not impair instrumental transfer(86), suggesting that the MD is not involved 

in retrieval of stimulus-outcome or action-outcome associations (but see:(87)). 

Strikingly, inhibition of MD restricted to the Pavlovian training phase did not 

affect learning of the association between the stimuli and the outcomes, yet it 

later impaired instrumental transfer(86). MD activity during Pavlovian training 

may therefore be important for assigning incentive properties to the conditioned 

stimulus, which is later required to bridge the learned stimulus-outcome 

association across contexts. Such a role has been hypothesized for the 

basolateral amygdala (BLA) which shares, as the MD, reciprocal projections with 

the PFC(90-92).  

DISTINCT MD-PFC CIRCUITS FOR DISTINCT COGNITIVE 

FUNCTIONS 

Overall, work over the past 15 years demonstrates a role for the MD in distinct 

cognitive behaviors that rely on different prefrontal regions. As such, we 

described above that in rodents, MD inhibition alter both working memory and 

reversal learning two functions that are supported by the mPFC and the OFC 

respectively. Based on the predominately parallel nature of thalamo-frontal 

circuits, it may be inferred that OFC function is tightly linked to central MD 

(magnocellular MD in monkey), dorsal mPFC function is tightly linked to lateral 

MD, and ventral mPFC tightly linked to medial MD (parvocellular MD in monkey) 

(Figure 1A). Different thalamo-cortical circuits may therefore regulate different 

behaviors. 

Nevertheless, a key question to resolve is the extent to which these parallel 

thalamic circuits support an overarching, common function, such as sustaining 

cortical representations for instance, or whether their processing is more 

singular to the cognitive processing carried out by their cortical partners. Future 

studies with refined targeting of individual MD subregions will be needed to 

address this question. Moreover, it is still unclear which cortical layers and 
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cortico-thalamic projections are critical for these different behaviors. Is a close-

loop deep layer-MD circuitry sufficient for amplifying and sustaining cortical 

representations or is there a requirement of additional processing through 

superficial layers? Layer specific targeting of inhibitory opsins using transgenic 

Cre mouse lines in combination with layer specific imaging or in vivo physiology 

will be able to address such questions.  

 

RELEVENCE FOR CLINICAL RESEARCH  

Numerous studies have found anatomical and/or functional abnormalities in 

either the thalamus or thalamocortical circuits of patients with psychiatric 

disorders including major depression(93,94), obsessive-compulsive 

disorder(95), eating disorders(96), post-traumatic stress disorder(97), bipolar 

disorders and schizophrenia(13,98). Cognitive dysfunction is a common feature 

of most if not all psychiatric diseases(99).  

In schizophrenia, cognitive symptoms are considered core to the disease and 

have been linked to the functional outcome of patients(100). While in healthy 

subjects, the MD is activated during cognitive testing in tasks that involve 

working memory and attention(101,102) this activation has been shown to be 

decreased in patients with schizophrenia(103-106). However, localizing 

thalamic dysfunction to thalamic nuclei such as the MD using imaging 

methodologies is challenging due to lack of contrast and resolution.  

More recent evidence also suggests abnormal functional connectivity between 

the MD and its prefrontal counterparts in patients with schizophrenia. Decreased 

correlation in MD and dlPFC activity has been measured under resting 

conditions, an observation also made in individuals at risk for psychosis(98,107-

109). Strikingly, the decrease in functional connectivity was most prominent in 

those subjects that later converted to full-blown illness, suggesting a role in the 

pathogenesis of the disease(108,110). Of note, decreased functional connectivity 

may have a structural basis (110-112) however, the exact relationship between 

the alterations in functional and anatomical connectivity still needs to be 

clarified.  

Decreased functional MD-PFC connectivity has also been measured in patients 

during cognitive testing(106,113,114).  In this context Marenco et al. recently 
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described that thalamo-frontal white-matter connectivity was reduced in 

patients and this reduction correlated with the level of dlPFC functional 

activation and performance in a working memory task(111) (see also Giraldo-

Chica et al.(115)). This finding may so far be the strongest evidence for an 

involvement of decreased anatomical connectivity in cognitive deficits.  

It is important to note that thalamo-cortical disturbances in schizophrenia likely 

extend beyond a simple MD-PFC dysconnectivity. Indeed, reduced thalamo-

prefrontal connectivity has been associated with thalamic hyperconnectivity to 

sensory and motor cortices, raising the possibility of a general dysfunction of 

thalamo-cortical circuits(98,108). In addition, the thalamic reticular nucleus, 

which is a key inhibitory node for the entire thalamo-cortical system has also 

been implicated in schizophrenia(116-118). Since imaging studies are largely 

correlative, it is difficult to determine the origin of these circuit abnormalities. 

Future longitudinal clinical studies tracking functional and structural 

connectivity in high-risk subjects will provide insight into the primary 

structure(s) involved in the pathogenesis of thalamo-cortical abnormalities. 

Furthermore, animal studies will be critical for establishing causality and could 

address questions such as whether decreased MD-mPFC connectivity induced 

during development triggers hyperconnectivity to sensory cortices.  

Regardless of the proximal causes of thalamo-frontal dysconnectivity, the animal 

studies described here suggest its possible involvement in cognitive deficits. 

Enhancing MD function may stabilize cortical representations critical for 

working memory and other cognitive functions and thus be a promising 

therapeutic approach for improving cognition in mental disorders. New 

technologies aimed at localized or circuit specific interventions such as focused 

ultrasound induced blood-brain barrier opening(119) and non-invasive deep 

brain stimulation(120) could offer an opportunity to achieve this goal in humans.  
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Figure legends 

Figure1: Thalamo-prefrontal circuitry non-human primates and mice 

A) Schema of MD-PFC circuits topographic organization in the monkey (left 

panel) and in the mouse (right panel) (based on Jones EG, the thalamus(2). In 

non-human primates, the medial magnocellular region is interconnected to the 

orbital cortex (OFC), the central parvocellular region with the dorsolateral PFC, 

and the lateral multiform part with the premotor cortical area. In rodents, the 

medial segment of MD shares connections with the ventral-medial PFC 

(prelimbic and infralimbic cortices, medial OFC). The central part of the MD is 

interconnected with the lateral OFC, and the lateral MD with the dorsal-medial 

PFC (anterior cingulate and accessory motor cortices).  

AI: agranular insular; cen: central MD; Cg1: cingulate cortex 1; CL: centrolateral 

thalamic nucleus; CM: Centromedian thalamic nucleus; DL: dorsolateral PFC; 

DM/Cg: dorsomedial/cingulate cortex; lat: lateral MD; LO: lateral orbitofrontal 

cortex; M1 and M2: primary and secondary motor cortex; mc: magnocellular MD; 

med: medial MD; mf: multiform MD; MO: medial orbitofrontal cortex; pc: 

parvocellular MD; OFC: orbitofrontal cortex; PC: paracentral thalamic nucleus 

PF: parfascicular nucleus; PrL: prelimbic cortex; PV: paraventricular thalamic 

nucleus; TRN: talamic reticular nucleus; VO: ventral orbitofrontal cortex. 

B) Schema of the ultrastructural organization if MD-PFC circuits. MD relay cells 

send widespread projection to cortical layer I and topographic projections to 

layers II/III/V and possibly VI (although see Kuramoto et al.(121)). MD terminals 

make contacts with pyramidal projection neurons (Pyr) as well as inhibitory 

interneurons including parvalbumin-expressing basket cells (Bas)(122-125). In 

primates, most cortical input to the MD stems from layer VI pyramidal cells that 

send projections to topographically interconnected MD regions(126,127). In 

contrast, layer V pyramidal neurons, so-termed driving inputs, appear to 

innervate the MD in a non-reciprocal manner, with one prefrontal area 

innervating several MD subregions(128). Overall, this organization suggests that 

MD-PFC circuitry functions in intimately interconnected open loops rather than 

strictly parallel and independent units.  

Figure 2: Thalamo-Prefrontal interactions during working memory  
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A) Schematic depictions of thalamo-prefrontal interactions during a T-maze 

DNMS working memory task in the mouse. (Left) During the sample phase, 

spatial encoding is supported by inputs from ventral hippocampus (vHip) to 

mPFC (based on Spellman et al.50). (Middle) Upon its recruitment by the mPFC, 

the MD is critical for amplifying and sustaining cortical activity during the delay, 

which is critical for task performance (based on Bolkan et al.49). (Right) mPFC to 

MD projections participate in memory retrieval or choice selection (based on 

Bolkan et al.49 and Schmitt et al.56) and may serve as a relay station to areas 

involved in motor function such as the primary motor cortex (M1).  

B) Sustained cortical activity during the working memory delay relies on a cross-

talk between the MD and mPFC. (Left) Schematic depiction of six mPFC neurons 

exhibiting sequential increased activity across the delay phase (0-60 sec). 

Elevated activity is dependent on local cortical connectivity as well as on 

thalamo-cortical input (Right). Inhibiting MD to mPFC projections reveals that 

local cortical circuits may not be sufficient to maintain mPFC neuronal activity 

across the entire delay period. This sustained activity of mPFC neuron across 

delay requires MD inputs (right panel).  

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPTI
II

III

IV

V

VI

Cg1
PrL
MO

LO/VOAI

M1

M2

lat med
cen PV

CMPC

CLmcpc
mfCL

PF

DM/Cg

DL

OFC

Figure 1

Macaque MouseA B

Pyr

Pyr

Pyr

Bas

MD subcortical 
and motor outputs relay cell



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

mPFC mPFC mPFC

MD MD MD

M1 M1 M1

vHip vHip vHip

Sample
(spatial encoding)

Delay
(sustained maintenance)

Choice
(choice selection)

Figure 2

A

Delay
(Sec)

mPFC

MD

0 30 60 0 30 60

Normal MD function MD hypofunction
B


