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1. Abstract

Subplate neurons are essential for the development of cortical axon path-
ways, including thalamocortical innervation as well as the formation
of some cortico-cortical and descending cortical efferent connections.
Previous evidence suggests that the critical subplate neurons are early-
born “pioneer’’ neurons, which extend the first axons out of the cor-
tex to subcortical forebrain regions. However, pioneer neurons are not
the only type of neuron in the subplate layer. The subplate contains
both glutamatergic and GABAergic neurons, some of which are tran-
sitory due to either ongoing cell migration or subsequent cell death.
We have studied the cellular composition of the subplate in develop-
ing mouse and human cortex by retrograde axon tracing, cell birth-
dating, and immunohistochemical analysis of specific markers. Our re-
sults indicate that pioneer neurons are early-born glutamatergic neurons
that express transcription factor Tbr1, transgene golli-lacZ, and other
markers. In contrast, GABAergic interneurons in the subplate do not
make subcortical (pioneer) axon projections, but instead migrate tan-
gentially and radially through the subplate layer, express transcription
factor Dlx, and are born both early and late in corticogenesis. Subplate
neurons are essential in development of the initial cortical connectiv-
ity, and it is thus important to distinguish between the different cell
types present in this compartment, using molecular markers. The sub-
plate in humans appears to contain a similar diversity of neuron types
as in mice, but is markedly thicker than in mice, as confirmed by the
broad band of Tbr1 expression extending below the cortical plate in
humans.
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2. Introduction

The subplate is a neuronal layer in the developing cerebral cortex, lo-
cated deep to the cortical plate and superficial to the intermediate zone
(reviewed by Allendoerfer and Shatz, 1994). The subplate is present
in all mammals, though its thickness, distinctness as a morphological
layer, and persistence in adulthood vary among species. In rodents, the
subplate is relatively thin and morphologically distinct, and many sub-
plate neurons persist into adulthood as layer VIb of the mature cortex.
At the opposite end of the spectrum, in primates, the subplate is rela-
tively thick (up to four times thicker than the cortical plate in human
somatosensory cortex at 22 gestational weeks) and indistinct, blurring
with the cortical plate above and the intermediate zone below (Kostovic
and Rakic, 1990). Also, relatively few subplate neurons persist to adult-
hood in primates, mainly as “interstitial neurons’’ in the white matter
(Kostovic and Rakic, 1980). Even in simpler mammalian species where
the subplate forms a distinct layer, “subplate neurons’’ are also recog-
nized in the embryonic intermediate zone, and are thought to persist in
small numbers into adulthood as interstitial neurons.

Subplate neurons are important because they play an essential role in
the development of cortical axon connections. They give rise to the first
(“pioneer’’) efferent axons out of the cortex, and provide the first postsy-
naptic targets for afferent thalamocortical axons (McConnell et al., 1989;
Molnár et al., 1998a). Ablation of subplate neurons causes localized ab-
sence of thalamocortical innervation, as well as defects of some cortical
efferent pathways (Ghosh et al., 1990; Ghosh et al., 1993; McConnell
et al., 1994). The mechanisms by which subplate neurons mediate de-
velopment of these several axon pathways are not all clear. In the case of
reciprocal thalamocortical and corticothalamic connections, early inter-
actions between cortical pioneer axons and thalamic axons in the internal
capsule may be critical for guiding both sets of axons. This mechanism
is known as the “handshake hypothesis’’ (Molnár and Blakemore, 1995).

Efforts to characterize subplate neurons have been difficult because
the subplate and intermediate zone contain heterogeneous types of neu-
rons. In addition to pioneer neurons, which are glutamatergic and are
produced from progenitors in the cortical neuroepithelium, the sub-
plate also contains numerous interneurons, which are produced mainly
from progenitors in the regions of the basal forebrain known as the me-
dial ganglionic eminence (MGE), caudal ganglionic eminence (CGE),
and lateral ganglionic eminence (LGE) (Anderson et al., 1997; Wichterle
et al., 2001; Marı́n and Rubenstein, 2001; Nery et al., 2002; Xu et al., 2004).
Many immature interneurons migrate tangentially and radially through
the developing subplate at the same time as pioneer axons project to the
internal capsule. Also, some interneurons cease migration in the sub-
plate, and account for a proportion of neurons in adult layer 6b and
white matter (Fairén et al., 1986).

Proposed markers of subplate pioneer neurons include p75 neu-
rotrophin receptor (p75NTR), kynurenine aminotransferase (KAT),
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golli-lacZ transgene, transcription factor Tbr1, SP-1 antibody to cytosolic
peptide, and others (Antonini and Shatz, 1990; Allendoerfer et al., 1990;
Allendoerfer and Shatz, 1994; Bicknese et al., 1994; Dunn et al., 1995;
Landry et al., 1998; Hevner et al., 2001; Csillik et al., 2002; Heuer et al.,
2003). With regard to cell birthdays, many subplate neurons, especially
the pioneer neurons, are produced at the earliest stages of neurogenesis
(Allendoerfer and Shatz, 1994). However, our own studies in mice sug-
gest that a significant minority of subplate interneurons are produced
later in neurogenesis (Hevner et al., 2004). In primates, early neurons
in the preplate contain both GABAergic and non-GABAergic (presum-
ably glutamatergic) neurons (Zecevic and Milosevic, 1997; Zecevic et al.,
1999). After the primate cortical plate is formed, the subplate grows
in size by late generated subplate neurons that probably originate in
the cortical subventricular zone (Smart et al., 2002; Zecevic et al., 1999,
2005). Previous work by Antonini and Shatz (1990) showed that in-
terneurons and pioneer projection neurons are distinct sets of neurons.
In this chapter, we report further studies of the developing mouse and
human cortex, in which we show that subplate pioneer neurons and
interneurons can be distinguished on the basis of axonal projections,
cell birthdays, and—most conveniently—molecular markers. In addi-
tion, we show that the same neuron populations can be distinguished
in the malformed (overall inverted) cortex of reeler mice, in which sub-
plate pioneer neurons and interneurons occupy abnormal positions in
superficial cortex (“superplate’’).

3. Identifying Subplate Neurons Using Markers
and Cell Birthdays

3.1. Transcription Factors Tbr1 and Dlx in the Subplate

The subplate is the main location of cortical “pioneer’’ neurons, de-
fined as neurons that send the earliest axon projections out of the cor-
tex to the internal capsule (McConnell et al., 1989). Our goal was to
determine molecular characteristics that distinguish subplate pioneer
neurons from cortical interneurons. We hypothesized that the pioneer
neurons are glutamatergic projection neurons, which form distinct sub-
sets from GABAergic interneurons and their precursors. To identify
pioneer neurons in preparation for immunohistochemistry with glu-
tamatergic and GABAergic markers, we placed crystals of DiI (a fluo-
rescent retrograde and anterograde axon tracer) in the internal capsule
of fixed E16.5 mouse forebrains (Fig. 1A and B). As predicted from pre-
vious studies, many subplate neurons were labeled retrogradely, as well
as scattered neurons in the intermediate zone and cortical plate (Fig. 1B).
The DiI also labeled axon bundles in the subplate and intermediate zone
of the cortex, and several neurons in the dorsal thalamus (Fig. 1A). Sec-
tions from the DiI-labeled tissues were used for immunohistochemistry
to detect Tbr1, a marker of the glutamatergic lineage, and Dlx, a marker
of the GABAergic lineage (Hevner et al., 2001; Anderson et al, 1997;



4 Robert F. Hevner and Nada Zecevic

Figure 1 Pioneer neurons, labeled retrogradely with DiI, express Tbr1 but not
Dlx in E16.5 mouse cortex. A, Pioneer neurons in the subplate of the cortex
(ctx) were labeled retrogradely with DiI placed in the internal capsule (asterisk)
of fixed E16.5 mouse forebrain. Cells in the dorsal thalamus (dt) were also la-
beled retrogradely. B, Within the cortex, retrogradely labeled cells were located
mainly in the subplate (sp), as well as the deep cortical plate (cp) and intermedi-
ate zone (iz). Rarely, the marginal zone (mz) contained retrogradely labeled cells
(not shown). C–D, DiI-labeled cells (red) expressed Tbr1 (green). Arrows indi-
cate double labeled cells. (C) shows standard epifluorescence microscopy and
(D) shows a confocal image. E–F , DiI-labeled cells (red) did not express Dlx
(green). Both (E) and (F ) are confocal images. Scale bar: 1 mm in A; 40 µm in
B–D; 80 µm in E ; 20 µm in F .

Stühmer et al., 2002). We found that the DiI-labeled subplate pioneer
neurons expressed Tbr1 (Fig. 1C and D) but not Dlx (Fig. 1E and F).
These results supported our hypothesis and revealed that within the
subplate, Tbr1+ pioneer neurons and Dlx+ interneurons are different
neuron types, mixed together in close apposition.
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3.2. Transgene golli-lacZ in Mouse Subplate Neurons

The golli-lacZ transgene was previously identified as a specific marker
for early-born pioneer neurons in the subplate (Landry et al., 1998).
Expression of the transgene was markedly reduced in the malformed
cortex of Tbr1 knockout mice, suggesting that the pioneer neurons re-
quired Tbr1 for differentiation (Hevner et al., 2001). We hypothesized
that all golli-lacZ+ pioneer neurons express Tbr1, but not Dlx. We studied
the parietal cortex of E16.5 golli-lacZ transgenic mouse embryos, using
immunohistochemistry to detect β-galactosidase, the lacZ gene prod-
uct. The β-galactosidase+ neurons were located mainly in the subplate,
though some were also located in the cortical plate (Fig. 2A). Two-color
immunofluorescence and confocal microscopy confirmed that 100% of
the golli-lacZ+ cells expressed Tbr1 (Fig. 2A–E). Conversely, most, but not

Figure 2 Pioneer neurons, labeled by golli-lacZ expression, express Tbr1 but not Dlx or GABA in E16.5
mouse cortex. A, Immunofluorescence to detect β-galactosidase (green), expressed from the golli-lacZ
transgene, labeled neurons in the subplate (sp), deep cortical plate (cp), and (rarely) marginal zone
(mz). B–C , Tbr1 immunofluorescence in the same section as (A) showed that 100% of β-galactosidase+

cells (green) expressed Tbr1 (red). In the merged image (C), double-labeled cells appeared yellow. D–
E , Confocal imaging confirmed Tbr1 expression in β-galactosidase+ cells. F –G, β-galactosidase+ cells
(green) did not express Dlx (red). (F ) shows epifluorescence microscopy, and (G) shows a confocal image.
H–I , β-galactosidase+ cells (green) did not express GABA (red). (H) shows epifluorescence microscopy,
and (I ) shows a confocal image. Note the close approximation of β-galactosidase+/Tbr1+ projection
neurons and Dlx+/GABA+ interneurons in the subplate. Scale bar: 100 µm in A–C , F , and H; 80 µm in
D; 30 µm in G; 20 µm in E and I .
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all Tbr1+ cells expressed β-galactosidase, suggesting that glutamatergic
neurons in the subplate are heterogeneous.

Double labeling immunofluorescence for β-galactosidase and in-
terneuron markers demonstrated that β-galactosidase+ pioneer neu-
rons did not express Dlx (Fig. 2F and G) or GABA (Fig. 2H and I ).
Overall, β-galactosidase+ pioneer neurons appeared to be the predom-
inant population in E16.5 cortex, outnumbering Dlx+ or GABA+ in-
terneurons by approximately 3 or 4 to 1. Similar to the results from
DiI labeling (above), the β-galactosidase labeling indicated that in-
terneurons and pioneer neurons were mixed together in the subplate.
In some examples, the GABAergic interneurons were completely sur-
rounded by β-galactosidase+ pioneer neurons, and by other, unidenti-
fied cells that expressed neither GABA nor β-galactosidase (Fig. 2I ).
The apposition of these different cell types illustrates the diversity
of cells in the subplate, and highlights the importance of distin-
guishing among them with criteria other than just location in the
subplate.

3.3. Cell Birthdays of Different Neuron Types in the Subplate

Subplate neurons include some of the earliest-born cells in the cerebral
cortex, as shown in many birthdating studies (reviewed by Allendoerfer
and Shatz, 1994). However, the subplate also contains significant num-
bers of late-born neurons (Hevner et al., 2004). We hypothesized that
interneurons accounted for most of the late-born neurons in the sub-
plate, and that pioneer neurons were born mainly or exclusively during
early neurogenesis. To test this hypothesis, we studied the birthdays
of molecularly defined cell types (Tbr1+ and GABA+) by double la-
beling for BrdU and Tbr1 or Dlx (Hevner et al., 2003a; Hevner et al.,
2004). We restricted our analysis to the subplate, defined for purposes
of this study (in perinatal mice) as the deepest 10% of the cortical thick-
ness. We used a “binning’’ method to outline the subplate layer for
cell counting in digital images of immunofluorescence (Hevner et al.,
2004).

Analysis of cell birthdays in the neonatal (P0.5) cortex indicated that
Tbr1+ glutamatergic neurons in the subplate were born early in cor-
ticogenesis, from E10.5 to E13.5 (Fig. 3A), but GABA+ neurons in the
subplate were produced early and late in corticogenesis, from E10.5 to
E16.5 (Fig. 3B). The Tbr1+ cells correspond to pioneer neurons and some
other projection neuron types (see above), while the GABA+ cells rep-
resent interneurons. These results support the hypothesis that pioneer
neurons are early-born cells, while subplate interneurons have a broad
range of cell birthdays. Since interneurons continue to migrate radially
after P0.5 (Hevner et al., 2004), some of the late-born GABA+ cells may
move to different positions in the mature cortex. These results illustrate
that late-born cells in the subplate are generally interneurons, but early-
born cells in the subplate may be pioneer neurons, other glutamatergic
neurons, or interneurons.
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Figure 3 Subplate pioneer neurons are born early in neurogenesis, but subplate
interneurons are born both early and late. A, Tbr1+ cells in the deepest 10% of
the cortical thickness (roughly approximating the subplate, but also including
part of layer 6) were born from E10.5 to E13.5. B, GABA+ cells in the same
zone were born from E10.5 to E16.5. Cell birthdays were determined by double
labeling for BrdU and Tbr1 or Dlx in P0.5 parietal cortex as described previously
(Hevner et al., 2003b; Hevner et al., 2004).

3.4. Markers and Cell Birthdays in Developing reeler Cortex

To determine if markers of subplate pioneer neurons and interneurons
can be used to characterize abnormal cortical development, we stud-
ied the expression of markers in reeler embryonic cortex. The cortex of
reeler mice is malformed due to mutation of the reelin gene, which en-
codes a large secreted protein that regulates the migration of cortical
neurons (reviewed by Rice and Curran, 2001). The reeler cortex has been
described as roughly “inverted’’ since early-born neurons migrate to
superficial positions within the cortical plate instead of their normal
deep positions, and late-born neurons migrate to deep rather than su-
perficial positions (Caviness, 1982). Despite overall inversion, the layer-
specific phenotypes of neurons born at each embryonic age appear to
be unchanged, as indicated by expression of several molecular markers
(Ferland et al., 2003; Hevner et al., 2003b; Inoue et al., 2004). Subplate
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pioneer neurons, which are early-born cells, settle in superficial rather
than deep positions in the reeler cortex, thus forming a “superplate’’ (re-
viewed by Rice and Curran, 2001). Nevertheless, the early-born neurons
still send pioneer axon projections to the internal capsule and retain the
ability to guide afferent thalamocortical axons, as shown by studies us-
ing DiI and other fluorescent tracers (Yuasa et al., 1994; Molnar et al.,
1998b).

To determine if subplate pioneer neurons retain specific molecular
properties and can be distinguished from interneurons in reeler cortex,
we bred the golli-lacZ transgene into reeler mice and studied the expres-
sion of β-galactosidase, Tbr1, Dlx, and GABA by double labeling im-
munofluorescence. Immunoreactivity for β-galactosidase was located
mainly in superficial, subpial positions, consistent with the formation
of a “superplate’’ (Fig. 4A). In addition, some β-galactosidase+ neu-
rons were scattered, or formed isolated groups in the upper (superficial)
half of the cortical plate (Fig. 4A). The distribution of β-galactosidase+

cells was similar to that of chondroitin sulfate proteoglycan, another
proposed subplate marker (Bicknese et al., 1994; Sheppard and Pearl-
man, 1997). Double immunofluorescence for β-galactosidase and Tbr1
showed that all of the β-galactosidase+ pioneer neurons expressed Tbr1
in reeler (Fig. 4B and C), as in normal cortex (Fig. 2A–E). Also, the reeler
superplate contained some Tbr1+/β-galactosidase– cells, showing the
same diversity of molecular phenotypes as in normal cortex. Double
labeling for β-galactosidase and Dlx showed that many Dlx+ interneu-
rons mingled near the β-galactosidase+ cells in reeler, although the
β-galactosidase+ cells themselves did not express Dlx (Fig. 4D and E).
Double immunofluorescence for β-galactosidase and GABA confirmed
that β-galactosidase+ pioneer neurons and GABA+ interneurons were
also distinct, but mingled with each other in the reeler cortex (data not
shown). These results suggest that the superplate in reeler, like the sub-
plate in normal cortex, contains a mixture of interneurons and pioneer
neurons, which can be distinguished by molecular expression. More-
over, these results also show the value of molecular markers for assess-
ing cortical malformations.

3.5. Markers in Human Fetal Subplate

The subplate has undergone massive expansion in mammalian evolu-
tion, and attains a much greater thickness in primates than in other
species (Kostovic and Rakic, 1990; Hevner, 2000; Smart et al., 2002). We
demonstrated the thick subplate in the human occipital (striate) cortex
by DiI labeling from the optic radiations in mid-gestational fixed fe-
tal tissue (Fig. 5A–C). Analysis of Tbr1 expression in frozen sections
of the human fetal cortex showed that Tbr1 was strongly expressed in
deep layers of the cortical plate, and in neurons in a broad zone cor-
responding to subplate (Fig. 5D). Similarly, immunohistochemistry for
Dlx showed many Dlx+ cells in the cortical plate as well as the sub-
plate (Fig. 5E–G). Interestingly, many of the Dlx+ cells in the subplate
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Figure 4 In E16.5 reeler mouse cortex, pioneer neurons are ectopic in the
“superplate,’’ but the distinctions between pioneer neurons and interneurons
are maintained. A, Immunofluorescence to detect β-galactosidase (green) la-
beled neurons in the superplate (spp) and superficial portions of the disorga-
nized cortical plate (cp). B–C , Double labeling for β-galactosidase (green) and
Tbr1 (red) showed that Tbr1 was expressed in 100% of β-galactosidase+ cells.
D–E , β-galactosidase+ cells (green) did not express Dlx (red). (D) shows epiflu-
orescence microscopy, and (E) shows a confocal image. Scale bar: 100 µm in A,
B, and D; 50 µm in C and E .

had an elongated nuclear morphology, suggestive of active migration
(Fig. 5F and G). In addition, both GABAergic and calretinin+ cells were
crossing tangentially and radially through the subplate (Fig. 5H–J ).
These results suggest that the subplate in humans, though expanded
relative to mice, probably contains a similar heterogeneity of neuron
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Figure 5 The subplate zone in humans. A–C , The subplate in primary visual cortex was labeled by DiI
transport from the optic radiations in a fetal brain (22 gestational weeks). DiI labeling (red) is shown in
(A), DAPI labeling of cells in the same section is shown in (B), and the merged image is shown in (C).
The subplate (sp) contained dense fiber labeling and numerous retrogradely labeled cells. Scattered ret-
rogradely labeled cells were also present in the cortical plate (cp). The marginal zone (mz), intermediate
zone (iz), subventricular zone (svz), and ventricular zone (vz) are also indicated. D, Tbr1 immunoflu-
orescence of a cortex from another 22 gestational week fetus shows abundant Tbr1+ cells (red) in the
deep (lower) cortical plate and subplate (blue is DAPI counterstain). E–G, Immunofluorescence for Dlx
(green) in mid-gestation cortex (blue is DAPI counterstain). Dlx+ cells (arrows) were scattered throughout
the cortical plate (CP) and subplate (SP). Some of the Dlx+ cells had elongated nuclei, consistent with
migration (arrows). H–J , Interneurons in the subplate layer of the 17 gestational weeks human fetus: H,
tangentially oriented GABAergic (green) neurons (arrows); I , calretinin (CalR) immunoreactivity (red)
in the same section; J , merged image shows the colocalization (yellow) of these two markers in the same
cells. A–C adapted from Hevner (2000). Scale bar: 1 mm in A–C ; 400 µm in D–E ; 100 µm in F –G; 120 µm
in H–J .
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types including pioneer neurons, other glutamatergic (Tbr1+) neurons,
mature interneurons, and migrating (immature) interneurons.

4. Mouse Subplate Neuron Types Defined by Markers
and Cell Birthdays

Previous work by Antonini and Shatz (1990) suggested that the subplate
contains at least two distinct types of cells: peptidergic or GABAergic
interneurons, and glutamatergic pioneer neurons. Our results expand
on that idea, to suggest that the subplate contains a heterogeneous pop-
ulation of multiple neuron types, including pioneer neurons, other glu-
tamatergic projection neurons, mature interneurons, and migrating in-
terneurons. The overall conclusion is that individual subplate neurons
cannot be identified precisely on the basis of location alone, but should
also be characterized by other means, especially molecular markers.
This conclusion also applies to layers of the mature cortical plate, each
of which contains multiple types of projection neurons and interneurons
(Hevner et al., 2003b; Xu et al., 2004).

4.1. Pioneer Neurons

Pioneer neurons are often referred to simply as “subplate neurons’’
(Allendoerfer and Shatz, 1994), since they probably account for the
largest proportion of neurons in the subplate. Functionally, pioneer neu-
rons are critically important for thalamocortical innervation, organiza-
tion of cortical columns, and formation of descending projections to
the thalamus and other targets (Ghosh et al., 1990; Ghosh et al., 1993;
McConnell et al., 1994; Kanold et al., 2003). Some of these functions
may be accomplished by direct interactions between pioneer axons and
thalamic axons in the internal capsule, as proposed by the “handshake
hypothesis’’ (Molnár and Blakemore, 1995) and supported by studies
of many mutant mouse strains (Hevner et al., 2002; López-Bendito and
Molnár, 2003).

Strictly speaking, pioneer neurons are defined on the basis of very
early projections into the internal capsule. As shown in the present
study and other studies, pioneer neurons are located mainly but not
exclusively in the subplate. Pioneer neurons also occur, in fewer num-
bers, in the cortical plate and the marginal zone (Molnár et al., 1998a;
Landry et al., 1998). Expression of the golli-lacZ transgene appears to
identify all of the pioneer neurons, in the cortical plate and marginal
zone as well as the subplate (Landry et al., 1998), although technical
limitations have precluded a direct demonstration of this. Our results
in the present study were consistent with this idea, since all pioneer
neurons (traced retrogradely with DiI) expressed Tbr1 and all golli-lacZ-
expressing neurons expressed Tbr1, but it remains possible that some
golli-lacZ-expressing neurons are not pioneer neurons. Likewise, it is
possible that some pioneer neurons do not express golli-lacZ, since we
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Table 1 Comparisons of subplate pioneer neurons and
interneurons.

Projection pioneer neurons Interneurons

Neurotransmitter: Glutamate GABA

Origins: Cortex MGE, LGE, CGE

Cell birthdays: E10.5–13.5 E10.5–16.5

Axon projections: Internal capsule Local or migrating

Molecular markers: Tbr1, Emx1, p75NTR, Dlx, Lhx6
golli-lacZ, KAT, CTGF

Abbreviations: CGE, caudal ganglionic eminence; CTGF, connective tissue growth fac-
tor; KAT, kynurenine aminotransferase; LGE, lateral ganglionic eminence; MGE, medial
ganglionic eminence; p75NTR, p75 neurotrophin receptor.

observed some Tbr1+/β-galactosidase– cells in the subplate (Fig. 2E).
Pioneer neurons are thought to express several other molecular mark-
ers in addition to Tbr1 and golli-lacZ transgene, which allow them to be
distinguished from interneurons (Table 1). These include kynurenine
aminotransferase, p75 neurotrophin receptor, connective tissue growth
factor, and Emx1, among others (Allendoerfer et al., 1990; Allendoerfer
and Shatz, 1994; Chan et al., 2001; Csillik et al., 2002; McQuillen et al.,
2002; Heuer et al., 2003).

Early neurogenesis is thought to be a characteristic property of pi-
oneer neurons in the subplate (reviewed by Allendoerfer and Shatz,
1994), and our current results from BrdU birthdating of Tbr1+ cells in
the subplate supported this conclusion (Fig. 3A). Many pioneer neurons
are thought to undergo apoptosis during postnatal life, while others are
thought to persist as layer VIb or VII of the cortex, or as “interstitial cells’’
in the subcortical white matter (reviewed by Allendoerfer and Shatz,
1994). In short, pioneer neurons are a dynamic set of cells throughout
development, and studies of their properties at different ages may pro-
duce different results.

4.2. Non-Pioneer Glutamatergic Neurons

Our results from double labeling with β-galactosidase and Tbr1 sug-
gested that the glutamatergic cell population in the subplate is hetero-
geneous, since we found both Tbr1+/β-galactosidase+ and Tbr1+/β-
galactosidase– cells within the subplate (Fig. 2A–E). We interpret the
Tbr1+/β-galactosidase– cells as non-pioneer glutamatergic neurons,
possibly corticothalamic or cortico-cortical projection neurons. Previ-
ous studies by Antonini and Shatz (1990) indicated that the subplate
sent glutamatergic projections to the thalamus and to the contralateral
cerebral cortex. Since pioneer neurons are defined by their early axon
projections to the internal capsule, we suspect that they are a different
population from the contralateral projection neurons. Also, as noted
above, it is possible that some pioneer neurons are β-galactosidase–.
Clearly, further studies will be necessary to better characterize the glu-
tamatergic neuronal components in the subplate.
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4.3. Mature Interneurons

The subplate expresses several markers associated with GABAergic
interneurons (e.g., neuropeptides, calbindin, and glutamic acid decar-
boxylase) during development, and in subplate remnants during adult
life (Antonini and Shatz, 1990; Allendoerfer and Shatz, 1994; Arias et al.,
2002). GABAergic interneurons are present in all layers of the cerebral
cortex, including the subplate (or layer VIb/VII in mature animals), and
display a wider range of cell birthdays than glutamatergic neurons in
the same layers (Fairén et al., 1986, Peduzzi, 1988; Hevner et al., 2004).
The GABAergic interneurons in the subplate do not send pioneer ax-
ons outside of the cortex (Antonini and Shatz, 1990). The function of
GABAergic interneurons in the subplate is likely to be similar as in
other layers of the cortex, i.e., modulation of local functional activity.

4.4. Migrating Interneurons

Studies in the past 10 years have shown that the majority of interneurons
in rodents are produced outside the cerebral cortex, in the MGE, LGE,
and CGE, and must migrate tangentially as well as radially to reach their
final positions in the cortex (Anderson et al., 1997; Wichterle et al., 2001;
Marı́n and Rubenstein, 2001; Nery et al., 2002; Hevner et al., 2004; Xu
et al., 2004). Interestingly, in humans, a larger proportion of interneurons
are produced in the cortex (Letinic et al., 2002; Rakic and Zecevic, 2003).
The migrating interneurons express specific transcription factors such as
Dlx and Lhx6 (Anderson et al., 1997; Flames et al., 2004), as well as GABA
and other markers that allow them to be distinguished from pioneer
neurons and other types of projection neurons (Table 1). The radial phase
of interneuron migration occurs over a more prolonged period than
radial migration of glutamatergic projection neurons, and interneuron
radial migration through the subplate is still highly dynamic during the
first postnatal week in mice (Hevner et al., 2004). In the present study,
we observed many interneurons in the E16.5 mouse subplate with an
elongated morphology, consistent with active migration (Fig. 2F –I ). In
sum, interneurons in the embryonic subplate are a potentially migratory
and transient subset of subplate neurons.

5. Subplate/“Superplate’’ Neuron Types in
reeler Mouse Cortex

The malformed cortex in reeler mice shows a surprising preservation of
molecular and connectional properties. The abnormal relation between
cell birthday and laminar position does not appear to alter layer-related
molecular expression (Hevner et al., 2003b). Connections between the
cortex and subcortical structures are overall intact (reviewed by Rice
et al., 2001), and even somatosensory “barrels’’ form in the reeler cortex
(Polleux et al., 1998). Moreover, early interactions between pioneer neu-
rons and afferent thalamocortical axons are maintained (Molnár et al.,
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1998b). Previous birthdating studies suggest that the neonatal reeler
superplate contains projection neurons and interneurons with typical
cell birthdays of subplate neurons (Hevner et al., 2004). In this con-
text, it is not surprising that the molecular properties of subplate neu-
rons appeared to be normal. Even though the pioneer neurons were
located in the superplate rather than the subplate, they nevertheless
expressed golli-lacZ transgene and Tbr1, and were mixed with other
neuron types, including Tbr1+/β-galactosidase– cells, and Dlx+ and
GABA+ interneurons (Fig. 4). Thus, the normal components of the sub-
plate were present and expressed typical molecular properties in the
reeler cortex, despite ectopic positions. The present studies add subplate
neurons to the list of cortical neuron types with preserved molecular ex-
pression in the reeler cortex, and further demonstrate the potential value
of molecular markers for characterization of cortical malformations. In
future studies, it is hoped that panels of markers will be developed to
analyze malformations of the human cortex, such as polymicrogyria,
lissencephaly, and focal cortical dysplasia.

6. Subplate Neuron Types in Human Cortex
Compared to Mouse

To understand abnormalities of human cortical development, it will
be important to investigate normal development of the human cor-
tex. The subplate is relatively expanded in humans, and is thought to
play an even bigger developmental role in humans than in rodents and
other species, reflecting the complexity of human cortical connections
(Kostovic and Rakic, 1990; Kostovic and Judas, 2002). From the early em-
bryonic stages, GABAergic, calretinin+ and Dlx+ neurons were present
in the human preplate (Zecevic and Milosevic, 1997; Zecevic et al., 1999;
Rakic and Zecevic, 2003). Later expansion of the subplate layer in pri-
mates is probably due to late generated neurons in the cortical subven-
tricular zone (Smart et al., 2002; Zecevic et al., 2005). In the present study,
we found that the human cortex contained a similar mixture of Tbr1+

glutamatergic neurons and Dlx+ GABAergic interneurons as in mice.
The retrograde labeling of many neurons in the subplate and cortical
plate from DiI injection of the optic radiations was consistent with the
presence of pioneer neurons in the subplate, with fewer scattered in the
cortical plate (Fig. 5A–C). The broad band of Tbr1 expression extend-
ing far below the cortical plate reinforced this interpretation (Fig. 5D).
The abundance of Dlx+ and calretinin+ GABAergic interneurons in the
cortical plate and subplate, many of which had an elongated morphol-
ogy consistent with ongoing migration, suggested that the subplate of
humans, like that of rodents, contains migrating as well as stationary
interneurons. Our results suggest that the subplate in humans, though
relatively thick, contains the same heterogeneity of neuron types as in
other species.
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7. Conclusions

The present study has documented the existence of multiple neuron
types (glutamatergic and GABAergic) in the subplate of normal and
reeler mice, as well as humans. However, the present study has also high-
lighted the inadequacy of current molecular markers for distinguishing
precisely among all the neuron types in the subplate. Such markers
would be valuable for studying normal development, as well as cortical
malformations in animals and humans. Additional markers could help
resolve issues about the transience of specific subplate neuron types
due to cell death or migration (Woods et al., 1992; Robertson et al., 2000;
Arias et al., 2002), and could answer questions about the evolution of
the subplate in humans. What is the significance of the thick subplate
in humans? Have specific types of subplate neurons been selectively
amplified in the human brain? Are species differences in cortical con-
nections and organization related to particular neuron types? When do
different subplate neuron types complete phases of migration or apop-
tosis? The answers to these questions will have important implications
for understanding cortical development and plasticity.
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2
Dual Roles of Transcription Factors

in Forebrain Morphogenesis and
Development of Axonal Pathways

Thomas Pratt and David J. Price

Introduction

During its development the brain must generate a variety of neural
structures and organise the correct axonal connections between and
within them. In this Chapter we concentrate on how transcription fac-
tors specify both these processes in the developing eye and forebrain. It
is now well-established that regionally expressed transcription factors
regulate the morphogenesis of each region of the brain. More recently,
many of these same transcription factors have been implicated in regu-
lating the development of axonal pathways including those providing
sensory inputs to the cerebral cortex. In some cases there is evidence
that the effects of transcription factors on axonal development involve
direct, cell autonomous actions.

The recent sequencing of the mouse and human genomes has allowed
estimates of the number of protein coding genes required to generate
a mouse and a human. It appears that about 30,000 proteins are suf-
ficient to generate a mammal. Given the enormous complexity of the
finished product, the construction of the animal during development
would seem to demand that the available genes are used efficiently.
One way of doing this would be to allow a particular gene to participate
in several developmental processes. The use of the same transcription
factors for both tissue morphogenesis and axonal growth and guidance
may be an example of the efficient use of available genetic resources.

In this Chapter we consider three possible mechanisms of gene action.
The first regulates morphogenesis, the second and third regulate axon
guidance. (1) A gene may coordinate the proliferation, differentiation,
migration and death of cells required to generate tissue shape or cell
type composition, for example the cup-shaped retina with its six cell
types organised in their characteristic laminated pattern. (2) A gene
may control the properties of a cell projecting an axon, for example by
regulating the expression of proteins on the navigating growth cone of
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a thalamocortical axon. (3) A gene may influence axon navigation by
regulating the properties of the environment through which the growth
cone must navigate, for example by regulating the proteins expressed
at the optic chiasm where retinal axons are sorted into the optic tract.

Transcription factors are proteins that bind to DNA and regulate the
transcription of genes into messenger RNA (mRNA) and control the
amount available to translate into protein. A given transcription factor
may regulate the expression of many target genes. Mouse genetics have
allowed the importance of transcription factors in eye and forebrain
development to be tested by examining the consequences of perturbing
their expression. An emerging theme is that many transcription factors
have dual roles in forebrain morphogenesis and development of axonal
pathways and the next section examines the roles of the transcription
factors Foxd1, Foxg1, Islet2, Pax2, Pax6, Vax1, Vax2 and Zic2 in these
processes. We examine the behaviour of RGC axons at the optic chiasm
in particular detail. The final section examines the several roles of Pax6
in specifying the morphology and connectivity of the forebrain.

Untangling the Roles of Transcription Factors
in Regulating Both Tissue Morphogenesis
and Axonal Development

In some ways, examining a mutant phenotype can be likened to a crash
investigation where the aim is to identify the cause of the crash from
a mangled pile of wreckage. Tissue morphogenesis generally precedes
axon navigation and so disrupting a gene with a role in both morpho-
genesis and axon navigation may produce a mutant animal with an
abnormally shaped brain and with axon pathfinding errors. It is not
always obvious whether the axon pathfinding errors are a mechanical
consequence of a change in brain shape, or whether they reflect a sub-
sequent direct [and in this context more interesting] alteration in the
adhesive or other properties of the navigating growth cone and the cells
through which it navigates. As in the case of the crash investigation,
identifying the primary cause of observed defects is a vital concern.

There are several experimental approaches available to dissect the
causality of axon guidance mistakes in mutant mice where the (1) the
gene is expressed in both the cells projecting axons and in the tissues
through which they navigate or (2) in which disrupted brain shape pre-
cedes axon navigation and can complicate the analysis of axon guidance
phenotypes. Mouse mosaics comprising mixtures of wild-type and mu-
tant cells are powerful tools for determining the site of action of a partic-
ular gene. These can be in the form of chimeras produced by the fusion
of a wild-type and a mutant embryo or conditional gene knockouts in
which the gene of interest is mutated in a genetically defined subset of
cells at a specific time point in their differentiation. Because they contain
wild-type cells, mosaics also have the potential to minimise any alter-
ations in brain shape that might complicate the analysis of unconditional
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mutants. Another approach is to combine wild-type and mutant tissues
in culture. Both in vivo and in vitro approaches provide the opportunity
to observe the behaviour of axons projected by mutant cells into a wild-
type environment and vice versa. If axons projected by mutant cells make
navigation errors when navigating a wild-type environment, or wild-
type axons are able to navigate correctly through a mutant environment,
this shows that the gene is required to program the responsiveness of the
growth cone to its environment. Finding mutant axons navigate a wild-
type environment correctly shows that the gene is required outwith the
growth cone to supply it with guidance cues. Another possibility is that
both wild-type and mutant axons navigate correctly through both wild-
type and mutant environments, in which case the navigation errors seen
in the unconditional mutant are in fact secondary to other factors such
as aberrant morphogenesis.

Transcription Factors and the Development
of the Visual Pathway

Normal Development of the Eye and Visual Pathway

During normal development, at around embryonic day 9 (E9) in the
mouse, the retina, retinal pigment epithelium, and optic stalk are formed
from an out-bulging of the ventral diencephalic neuroepithelium that
undergoes a series of folding manoeuvres in concert with ectodermal
tissue that will form the cornea and lens (reviewed by Smith et al., 2002).
The retina and retinal pigment epithelium form distally. The retina is
initially open at its ventral surface (the choroid fissure) but this soon
closes to complete the familiar eye ball shape. The optic stalk is formed
from more proximal diencephalic tissue. The retina then differentiates
to generate several cell types including retinal ganglion cells (RGCs)
that project axons to the brain (Cepko et al., 1996). The first RGC axons
exit the retina at the optic nerve head at E12 and navigate along the optic
stalk to form the optic nerve, which connects to the ventral surface of
the brain at the optic chiasm. In mice the vast majority of retinal axons
cross the ventral midline at the optic chiasm and join the contralateral
optic tract whereas a minority do not cross and join the ipsilateral tract
(Fig. 1A). The optic tract then grows over the surface of the thalamus
and onto the superior colliculus.

The following sections examine the consequences of mutating tran-
scription factors in transgenic mice for the formation of the structures
of the eye and chiasm and the navigation of RGC axons along the optic
nerves, through the chiasm, and into the optic tract. The transcription
factors are dealt with in pairs reflecting functional relationships revealed
by complementary expression domains (Fig. 1) and defective axon nav-
igation phenotypes in mutants. These examples serve to illustrate the
dual roles of transcription factors in tissue morphogenesis and axon
guidance, the experimental approaches used to dissect these processes,
and the challenges posed by these types of experiment.
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Figure 1 Diagram showing the relationship between the structures of the de-
veloping visual system in the eye and ventral forebrain, the trajectory of its
axons, and the expression of transcription factors regulating its formation. (A)
Retinal ganglion cells (RGCs) project axons along the inner surface of the retina
to the optic nerve head where they exit the eye to form the optic nerve. The
optic nerve contacts the ventral surface of the hypothalamus at the optic chiasm
where axons are sorted into the optic tracts. The retina on the left is viewed in
horizontal section, the retina on the right is viewed head on, parallel to the optic
nerve. Ipsilaterally and contalaterally projecting RGC bodies are represented by
filled and open ovals respectively. (B–E) The expression of transcription factors
is mapped onto the RGCs and the structures of the developing visual system
through which their axons navigate: (B) Foxg1 and Foxd1; (C) Pax2 and Pax6;
(D) Vax1 and Vax2; (E) Zic2 and Islet2. Abbreviations: D, dorsal; Di, distal; N,
nasal; l, lens; Pr, proximal. Literature on which this diagram is based is cited in
the text.

Foxg1 and Foxd1
Foxg1 (formerly called BF1) and Foxd1 (formerly called BF2) are fork-
head box winged helix transcription factors expressed throughout the
development of the eye and optic chiasm. The expression of these genes
is strikingly complementary with Foxg1 expressed in the nasal retina
and anterior optic chiasm and Foxd1 being restricted to the temporal
retina and posterior chiasm (Fig. 1B; Hatini et al., 1994; Xuan et al.,
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1995; Huh et al., 1999; Marcus et al., 1999). Experiments in the chick
have shown that forced expression of Foxd1 and Foxg1 in the retina
directly controls the retinotectal mapping of RGC axons (Yuasa et al.,
1996; Takahashi et al., 2003), indicating that these genes are capable of
directly influencing the properties of the navigating RGC growth cone.
Mice lacking these genes exhibit defects in several aspects of eye and
forebrain morphogenesis and retinal axon guidance. Careful examina-
tion of their mutant phenotypes reveals that these genes may well be
involved in simultaneously regulating the properties of the navigating
retinal growth cone and in defining the properties of the environment
through which it navigates.

The most obvious consequences of depriving the embryo of Foxg1
are the abnormal shape of the eyes and forebrain (Xuan et al., 1996).
The abnormal shape of the forebrain is due mainly to an extremely hy-
poplastic telencephalon. The eye develops an elongated retina which
fails to close properly, resulting in coloboma, and the lens is small (Huh
et al., 1999). These morphological defects are not restricted to nasal ter-
ritory which normally expresses Foxg1, suggesting a non-autonomous
role for Foxg1 in morphogenesis of temporal eye structures. The eye
lacks an optic stalk and the retina connects directly to the base of the
brain at the optic chiasm. Loss of Foxg1 does not dramatically affect
the dorso-ventral patterning of the eye, as evidenced by the fact that
the reciprocal gradients of the receptor tyrosine kinase EphB2 and its
ligand ephrinB2 are maintained in the mutant. Naso-temporal polarity
is not abolished in the mutant: Foxg1 gene activation remains predom-
inantly nasal and ipsilaterally projecting RGCs are located predomi-
nantly in temporal retina, as in wild-types (Pratt et al., 2004). The ex-
pression domain of Foxd1 does, however, encroach upon nasal territory,
which normally expresses Foxg1 but not Foxd1 (Huh et al., 1999). In
spite of this the mutant generates retinal ganglion cells (RGCs) which
project axons along the inner surface of the retina, where they fasicu-
late and enter the optic tract via the optic chiasm. Although the overall
trajectory of retinal axons in the mutant strongly resembles that seen
during normal development (Pratt et al., 2002), Foxg1 is required for
at least one important aspect of axon pathfinding. In the Foxg1−/− mu-
tant the ipsilateral projection is massively increased and matches the
size of the contralateral projection. Foxg1 therefore normally suppresses
the ipsilateral projection of RGC axons. In the nasal retina RGCs nor-
mally express Foxg1 and so might repress the expression of proteins
required for ipsilateral projection or might activate the expression of
proteins required for contralateral projection. In the temporal retina it
is more likely that Foxg1 assists the contralateral projection of RGCs,
which never express Foxg1, by regulating the expression of naviga-
tional instructions supplied to RGC growth cones by cells at the optic
chiasm and other points along their journey (Pratt et al., 2004). It re-
mains an open question as to whether the expression of Foxg1 by nasal
RGCs is directly involved in the midline crossing behaviour of these
axons.
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Foxd1 is normally expressed in temporal retina and optic stalk and
in the posterior chiasm. Its complementary expression to Foxg1 might
suggest that these related genes perform similar functions in their re-
spective domains of the developing visual pathway, but comparison of
the Foxg1 and Foxd1 mutant phenotypes shows it is not that simple. The
morphology of the Foxd1 mutant eye is not greatly disturbed, but there
are alterations to the expression of genes whose expression normally
coincides with Foxd1. These include a loss of the ipsilateral determi-
nants Zic2 (a transcription factor, see below) and EphB1 (Williams et
al., 2003) from the ventral-temporal retina and an invasion of Foxg1 ex-
pression into temporal territory normally occupied by Foxd1. Perhaps
surprisingly, in light of the loss of ipsilateral determinants from the
ventro-temporal retina, the Foxd1 mutant exhibits an increased ipsilat-
eral projection. Closer examination shows that the ipsilateral projection
from the ventro-temporal retina is indeed reduced consistent with a
cell autonomous role for Foxd1 in these RGCs. The increased ipsilateral
projection arises mostly from RGCs located outside the normal domain
of Foxd1 expression in the ventro-temporal retina. RGCs located out-
side the ventro-temporal retina would not normally express Foxd1 and
would normally cross the midline at the optic chiasm to join the con-
tralateral optic tract. This increased ipsilateral projection is attributed to
alterations of the molecular properties of the Foxd1−/− chiasm including
a reduction in expression of Zic2 and Islet1 (both transcription factors)
and an expansion of the expression domain of Slit2 (Herrera et al., 2004).
Slit family members Slit1 and Slit2 are expressed around the optic chi-
asm as it develops (Erskine et al., 2000) and their mutant phenotypes
indicate a repulsive role for these proteins in preventing RGC axons
from wandering from their normal path (Plump et al., 2002).

Foxg1 and Foxd1 mutually repress each other’s expression, either di-
rectly or indirectly, but it is at present unknown whether Foxd1 and
Foxg1 each regulate the expression of the same target genes in the retina
and optic chiasm or whether the presence of different cofactors in these
two structures allows participation in distinct molecular programs. It is
also unknown whether their target genes involved in regulating mor-
phogenesis are the same as those engaged in axon navigation.

Pax6 and Pax2
Pax2 and Pax6 are dynamically expressed during the early develop-
ment of the eye. As morphogenesis proceeds Pax6 becomes restricted
to more distal structures including the lens, retinal pigment epithelium,
and retina. Pax2 is expressed in the optic fissure as it closes, in the op-
tic stalk, and in the preoptic area of the ventral diencephalon, where
contralaterally projecting RGC axons will cross the midline at the optic
chiasm (Fig. 1C). A combination of elegant transgenic and in vitro exper-
iments demonstrated that Pax2 and Pax6 bind to regulatory elements
in each other’s promoters to mutually repress transcription (Schwarz et
al., 2000). Pax2 and Pax6 are required for the formation of optic stalk
and optic cup respectively, as shown by the lack of optic cup in Pax6
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mutant embryos (Hill et al., 1991) and optic stalk in Pax2 mutant em-
bryos (Torres et al., 1996).

The Pax6 gene has retained its ability to specify the formation of an
eye in species as diverse as Drosophila, Xenopus, mouse and humans.
Loss of Pax6 results in a failure of the eye to form. Although Pax6 has
not yet been shown to have a role in the navigation of retinal axons, Pax6
is expressed by projecting RGCs (Baumer et al., 2002) and so is poised
to fulfil this function. Certainly, in other parts of the developing brain
Pax6 has functions in axon guidance as well as in tissue morphogenesis
and regulates genes implicated in axon guidance (see below).

Pax6 is expressed in both surface ectoderm and optic vesicle tis-
sues, which integrate to generate the structures of the eye. These fail
to progress past their very early development in embryos completely
lacking Pax6. This complicates the examination of the functions of Pax6
in subsequent events in eye formation, including its roles in morpho-
genesis and axon guidance. This problem has recently been addressed
by the use of Cre-lox technology to selectively disrupt Pax6 in discrete
parts of the developing eye. The studies have shown that removing Pax6
from the developing surface ectoderm produces an eye lacking a lens
but possessing a retina with RGCs able to project axons (Ashery-Padan
et al., 2000). Removing Pax6 function after the retina forms results in
a retina comprising mainly amacrine cells at the expense of other reti-
nal cell types including RGCs (Marquardt et al., 2001). Examination of
Pax6+/+ ↔ Pax6−/− mouse chimeras has shown that Pax6 is required
in the optic vesicle for maintenance of contact with the overlying lens
epithelium, a necessary event in eye formation, providing a clue that
Pax6 may be involved in defining the adhesive properties of these cells.
Pax6 appears to act in a cell autonomous manner in these aspects of
eye development (Collinson et al., 2000; Quinn et al., 1996). The dosage
of Pax6 is important as increasing (Schedl et al., 1996) or decreasing
(Hill et al., 1991) Pax6 gene dosage in the eye both result in aberrant eye
development.

As discussed above, an important aspect of the developing retina
with consequences for the trajectory of its axons is the establishment
of naso-temporal and dorso-ventral polarity defined by the expression
of proteins including the transcription factors Foxg1 and Foxd1 and
the EphB2 receptor tyrosine kinase. In embryos where Pax6 has been
conditionally ablated from the retina, expression of both Foxg1 and
Foxd1 is lost indicating that Pax6 may be required in the generation of
nasal-temporal polarity (Baumer et al., 2002). In the chick retina Pax6
is expressed in a ventralHigh to dorsalLow gradient coincident with the
gradient of EphB2 expression (Ziman et al., 2003). Although no such
retinal Pax6 gradient has been reported in the mouse, Pax6 may be
involved in specifying the dorso-ventral polarity as in the absence of
Pax6 the optic vesicle loses its dorsal expression of the transcription
factor Tbx5 while the ventral expression domain of Vax1 is expanded
(Baumer et al., 2002). Genetic dissection of the Pax6 locus has revealed
that Pax6 expression is controlled independently in different parts of the



26 Thomas Pratt and David J. Price

developing eye. For example, although Pax6 is expressed throughout the
developing retina, expression in its distal regions is specifically driven
by an ‘α element’. Furthermore this element continues to direct Pax6
expression in a subset of RGCs as they project axons into the brain
(Baumer et al., 2002).

The expression of Pax2 is complementary to that of Pax6. Whereas
Pax6 expression is restricted to the structures of the developing eye-
ball (lens, retina, retinal pigmented epithelium), Pax2 is expressed in
the developing optic stalk and optic chiasm. Mice lacking Pax2 produce
elongated retinas, probably at the expense of optic stalk tissue, remi-
niscent of those seen in Foxg1 mutant embryos described above. The
Pax2 mutant retinas are able to project RGC axons which form an optic
nerve. The optic nerves from the two eyes do not converge to form the
optic chiasm as in wild-types but instead project ipsilaterally to their
targets in the brain. Pax2 mutants are therefore classed as achiasmatic
(Torres et al., 1996). As Pax2 is not expressed by RGCs but is expressed
at the location where the chiasm normally forms it is likely that Pax2 is
needed to specify the formation of the preoptic area, whose cells nor-
mally support the contralateral projection of RGC axons (Torres et al.,
1996).

Vax1 and Vax2
Vax1 and Vax2 are homeodomain containing transcription factors that
exhibit complementary expression patterns in the developing visual sys-
tem. Vax2 is restricted to the developing retina and Vax1 is expressed
by cells at the midline where RGC axons form the optic chiasm (Fig. 1D;
Hallonet et al., 1998; Bertuzzi et al., 1999; Hallonet et al., 1999). Vax1
is required for morphogenesis of the eye as the optic cup fails to close
properly resulting in coloboma in embryos lacking Vax1. The bound-
ary between mutant optic cup and optic stalk is poorly defined with
regions normally occupied by optic stalk exhibiting retinal features in-
cluding retinal pigment epithelium. Although RGCs form in these mu-
tants, their axons navigate abnormally and, instead of approaching the
midline to form the optic chiasm, become stalled shortly after leaving
the eye (Bertuzzi et al., 1999; Hallonet et al., 1999). As Vax1 is not ex-
pressed by RGCs this defect is most likely to reflect a requirement for
Vax1 in producing the correct environment for navigating axons. In-
deed, Netrin-1, that is normally expressed at the optic nerve head and
at the point where the optic nerve connects to the brain and is believed
to guide axons along their path (Deiner et al., 1997; Deiner et al., 1999),
is missing in Vax1 null-mutants. This provides a plausible molecular
mechanism for the inability of RGC axons to reach the chiasm (Bertuzzi
et al., 1999).

Vax2 expression is restricted to the ventral region of the prospective
neural retina. In embryos lacking Vax2 the optic cup fails to close result-
ing in coloboma. Vax2 appears to specify ventral character. Its absence
causes loss of the expression of EphB2, which is normally present in
ventral retina, and expansion of ephrinB2 expression, which is normally
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restricted to dorsal retina, throughout the mutant retina. Vax2 mutant
mice generate RGCs which, unlike those in Vax1 mutants, are able to
navigate to the optic chiasm and into the brain. As ipsilaterally project-
ing RGCs are present in ventral retina and in Vax2 mutants the ventral
retina acquires a dorsal character, it might be predicted that the ipsilat-
eral projection would be lost in these mutants. This was reported to be
the case in one line of Vax2 null-mutant mice (Barbieri et al, 2002) but in a
different line of Vax2 null-mutant mice produced by another group (Mui
et al., 2002) the dorsalisation of retina produced an increased ipsailateral
projection. This discrepancy may reflect differences in the mutant Vax2
alleles or in their genetic backgrounds.

Zic2 and Islet2
Zic2 is a zinc finger protein homologous to the Drosophila gene odd-
paired that is widely expressed in neural and non-neural tissues in the
mouse. In the developing visual system Zic2 is restricted to ventrotem-
poral retina and cells around the chiasm (Fig. 1E). In the E15 retina
at the time RGC axons are sorted into ipsilateral and contralateral op-
tic tracts, Zic2 expression is restricted to the ventro-temporal quadrant
of the retina from which the ipsilateral projection arises. Zic2 is also
expressed at the optic chiasm. Targeted disruption of the Zic2 gene pro-
duced a Zic2kd allele (kd indicates a ‘knockdown’ allele in which Zic2
function is reduced rather than completely abolished as in a ‘knockout’
allele). Zic2kd/kd embryos have profound morphological brain defects
including hypoplasia of the dorsal telencephalon, disruption to midline
structures, and eye defects. In contrast Zic2kd/+embryos have morpho-
logically normal eyes and brains (Nagai et al., 2000). In addition to this
early role in specifying the morphology of brain structures associated
with the optic tract, Zic2 also appears to directly control the trajectory of
retinal axons. The size of the ipsilateral projection is reduced in Zic2kd/+

embryos and in vitro experiments showed that RGCs forced to express
Zic2 produce axons that are repelled by the optic chiasm. A compari-
son of Zic2 expression across species with different degrees of binocular
vision shows a positive correlation between the number of RGCs ex-
pressing Zic2 and the size of the ipsilateral projection (Herrera et al.,
2003). Although these experiments are consistent with Zic2 regulating
the navigation properties of RGC growth cones, Zic2 is also expressed at
the optic chiasm so it is conceivable that Zic2 also influences the naviga-
tion of RGC axons by regulating the expression of guidance cues at the
optic chiasm. In fact, in the Foxd1−/− mutant described above (Herrera
et al., 2004) reduced expression of Zic2 at the chiasm is associated with
an increased ipsialteral projection.

Islet2 is a LIM homeodomain containing transcription factor. Islet2 ex-
pressing RGCs are located throughout the retina and project contralat-
erally (Fig. 1E). In embryos lacking Islet2 the ipsilateral projection is
increased with the increased projection mapping exclusively to the ven-
trotemporal retina, coincident with an increase in the number of Zic2
expressing RGCs. This suggests that in the ventrotemporal quadrant,
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Islet2 represses Zic2 expression by RGCs and therefore prevents them
from projecting ipsilaterally (Pak et al., 2004). Ipsilaterally projecting
RGCs express the receptor tyrosine kinase EphB1 which causes their
axons to be repelled by its ligand ephrinB2 expressed on cells at the
optic chaism (Nakagawa et al., 2000, Williams et al. 2003). It remains to
be determined whether Zic2 specifies ipsilateral projections by directly
positively regulating the transcription of EphB1 and whether Zic2 tran-
scription is in turn negatively regulated by Islet2.

One feature of the above genes is that they are needed to regulate
the structures of the eye and forebrain and the degree of ipsilateral
and contralateral projection by RGCs. This is intriguing since, whereas
the physical structure of the eye and the developing visual pathway
is highly conserved between vertebrates, the fine details of axon or-
ganisation within the ubiquitous X-shape formed by the optic nerves,
chiasm, and tract varies considerably. For example, there is considerable
variation between species in the proportion of axons sorted into the ip-
silateral and contralateral optic tracts. It might seem a risky strategy to
employ the same gene to regulate the shape of the eye, that is relatively
fixed in evolution, and the fine tuning of its RGC projections, that is far
more plastic. Perhaps these different aspects come under the control of
distinct regulatory genetic elements that can evolve independently. Fur-
ther diversity can be achieved by the production of several functionally
distinct isoforms with distinct transcriptional properties from a single
gene, for example by differential splicing.

Transcription Factors that Regulate the Development
of the Thalamocortical Tract

The thalamus can be thought of as a ‘relay station’ for sensory infor-
mation from the periphery (sight, touch, taste, and hearing) passing
through the thalamus en route to the cerebral cortex for processing and
interpretation. In the mouse, axons exit the dorsal thalamus at E12.5
and grow through the ventral thalamus. They make a sharp lateral turn
at the hypothalamus and enter the ventral telencephalon through the
internal capsule (Braisted et al., 1999, Tuttle et al., 1999, Auladell et al.,
2000). The thalamic axons then grow into the cerebral cortex where they
form synapses with layer 4 neurons. The basic thalamocortical circuitry
is complete at this point. The navigation of the thalamocortical actions
has complex spatial (as the tract describes a three dimensional geome-
try) and temporal (as all thalamic axons do not navigate synchronously)
dimensions. The section below concentrates on how the complex spatial
and temporal expression of the transcription factor Pax6 contribute to
several aspects of the formation of the structures of the thalamocortical
tract and the navigation of its axons.

Several transcription factors have been implicated in the control of
thalamocortical development on the basis of defects in this pathway in
mice with null mutations in the corresponding genes (reviewed recently
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in Lopez-Bendito and Molnar, 2003). These factors include Emx2, Tbr1,
Gbx2, Mash1, Ebf1, Foxg1 and Pax6. Loss of Gbx2, Mash1, Foxg1 or Pax6
results in failure of thalamic axons to innervate the cortex (Miyashita-
Lin et al., 1999; Tuttle et al., 1999; Pratt et al., 2000 & 2002); loss of other
transcription factors cause more subtle targeting defects. Loss of these
factors also cause morphological defects of the thalamus and/or the
tissues through which thalamocortical axons normally grow. Expression
of Gbx2 is normally restricted to the thalamus and loss of this factor
causes defects of thalamic differentiation (Miyashita-Lin et al., 1999);
it is likely, therefore, that thalamic cells have an intrinsic requirement
for Gbx2 to allow their innervation of the cortex. Foxg1, on the other
hand, is not expressed by thalamic cells but is expressed by ventral
telencephalic territory through which thalamic axons normally grow.
Failure of thalamic axons to enter the telencephalon in Foxg1−/− mouse
embryos is, therefore, most likely secondary to defects in the ventral
telencephalon (Pratt et al., 2002). For other factors, the likely mechanisms
are less clear since, in many cases, they are expressed in the thalamus
and at other sites along the route taken by thalamocortical axons. In the
case of Pax6, experiments outlined in the next sections have been carried
out to test whether there might be a thalamic requirement for it to allow
axons to navigate correctly.

How Pax6 Regulates the Morphogenesis
of Thalamus and Cortex

Pax6 is expressed in the developing diencephalon. Up until about E12 in
the mouse, Pax6 is expressed in diencephalic regions that will become
both the major elements of the thalamus. These elements are known tra-
ditionally as the dorsal and ventral thalamus, although they are prob-
ably better renamed as thalamus and prethalamus respectively. The
thalamus is the major recipient of afferents from the sensory periphery
and sends its thalamocortical efferents to the cerebral cortex. After E12,
Pax6 expression in the diencephalon becomes more restricted, mainly
to the prethalamus , that lies rostral to the zona limitans intrathalamica
(zli), although expression persists in the proliferating ventricular zone
of the thalamus. In mice lacking Pax6, there are major defects in the
development of these regions of the diencephalon. Their structure ap-
pears abnormal, with a reduction in the size and distortion in the shape
of particularly the prethalamus. This is most likely due to a reduction
of cell proliferation throughout the diencephalon in the absence of Pax6
(Warren and Price, 1997). The major components of the diencephalon
are present in mutants, but there are changes in the patterns of gene ex-
pression. These include changes in the expression of other regionally-
expressed transcription factors (Grindley et al., 1997; Stoykova et al.,
1996; Warren and Price, 1997; Pratt et al., 2000). For example, the expres-
sion domains of Nkx2.2 and Lim1 (also known as Lhx1) are expanded
throughout the diencephalon, suggesting that a primary action of Pax6
is to generate correct patterning in this region of the brain (Pratt et al.,
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2000). Pax6−/− cells do not intermingle freely with their wild-type coun-
terparts in the thalamus of Pax6+/+ ↔ Pax6−/− mouse chimeras indicat-
ing that Pax6 defines the adhesive properties of thalamic cells (Pratt
et al., 2002). Thalamocortical axons start to grow at about E13-4 in both
wild-type mice and in mice lacking Pax6 but, in mutants, they fail to
navigate correctly through the ventral telencephalon and, even by the
time of birth, when these mutants die, there is no cortical innervation
from the thalamus (Auladell et al., 2000; Kawano et al., 1999; Pratt et al.,
2000).

Pax6 is also expressed in the developing telencephalon. It is expressed
dorsally in the developing cortex and hippocampus and also in some
ventral regions, mainly in the region of the amygdala, through which
thalamocortical axons normally grow. In the developing cortex and
hippocampus Pax6 is expressed in proliferating progenitor cells but
is downregulated in differentiating neurons. It is expressed from before
the folding of the neural plate throughout neurogenesis. Recent work
has shown that radial glial cells, which have been known for decades
to guide the migration of neuronal precursor cells, are in fact neuronal
progenitor cells and that they express Pax6 (Heins et al., 2002). Loss
of Pax6 causes numerous defects in the morphology of the developing
cerebral cortex. The cortex is smaller than normal, and cells become
densely packed into numerous dense clusters in the intermediate zone
(Schmahl et al., 1993; Caric et al., 1997). This has been ascribed to changes
in the cell-surface properties of the mutant cells (Warren et al., 1999;
Talamillo et al., 2003; Tyas et al., 2003). There is a failure of late-born
cells to migrate into the cortical plate. This defect can be corrected by
transplanting late-born cells into wild-type cortex, indicating that it is
not a cell-autonomous defect but more likely secondary to defects of
other cells (Caric et al., 1997). There are two main contenders for the pri-
mary source of this migration defect. First, the radial glial cells, which
produce and provide guidance for migrating neuronal precursors, show
defective morphology in the absence of Pax6 (Gotz et al., 1998). Second,
thalamocortical axons can stimulate migration of cortical precursors and
so loss of these inputs might impair migration in mutants (Edgar and
Price, 2001).

How Forebrain Axon Pathways are Altered
in Mutants Lacking Pax6

The early brain contains a primitive network of axonal tracts and there
have been many studies of the development of these pathways in a vari-
ety of species. The first major longitudinal (i.e. coursing rostrocaudally)
tract to form is the tract of the postoptic commissure (TPOC) which
runs along the ventrolateral diencephalic surface and continues into
the midbrain as the ventral longitudinal tract. Mouse embryos lack-
ing Pax6 show pathfinding defects in the developing TPOC (Mastick
et al., 1997; Andrews and Mastick, 2003; Nural and Mastick, 2004).
Whereas in wild-type embryos TPOC axons spread out when they con-
tact Pax6-expressing diencephalic neurons, in mutants they make errors
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indicating that Pax6 is required for local cues guiding the navigational
behaviour of TPOC axons as they enter its expression domain.

It has been shown that the cell adhesion molecule R-cadherin (Cdh4)
is lost from the region in which TPOC navigational errors occur in mice
lacking Pax6 and that axonal growth through this region can be restored
by replacing R-cadherin. This indicates that the action of Pax6 in reg-
ulating early TPOC tract formation is mediated by the regulation of a
cell adhesion molecule in the region through which the axons would
grow. Expression of R-cadherin is also lost in the embryonic cerebral
cortex of mice lacking Pax6 (Stoykova et al, 1997). In the cortex, this
loss is thought to explain changes in the tangential and possibly ra-
dial migratory properties of neuronal precursors and hence the cellular
constitution and morphology of this tissue. It seems, therefore, that the
regulation of cell adhesion molecules by Pax6 is not only necessary for
the correct development of tissues but also the subsequent navigation of
axons through those structures. In the case of the TPOC, the transcrip-
tion factor Pax6 is not expressed by the projecting neurons (Mastick
et al., 1997; Andrews and Mastick, 2003) so its regulation of axonal nav-
igation appears to be secondary to actions on regional expression of cell
adhesion molecules by cells encountered by navigating axons.

Similarly, there is a cell non-autonomous role for Pax6 in regulating
the guidance of the catecholaminergic neurons of the substantia nigra
(SN) and the ventral tegmental area (VTA) (Vitalis et al., 2000). This is
known to be cell non-autonomous since SN-VTA neurons do not express
Pax6. Mice lacking Pax6 show defective pathfinding by SN-VTA projec-
tions as they cross regions that do express Pax6. It has been suggested
that this can be attributed to an expansion of the expression domain of
the axon guidance molecule Netrin-1. Jones et al. (2002) suggested that
Pax6 is required for the normal development of thalamocortical axonal
connections by regulating expression of surface molecules including
Sema5A and Sema3C in the regions through which the axons grow.

There is also evidence that PAX6 is essential for the development of
axon tracts in the human brain. It is well-known that humans heterozy-
gous for mutations in PAX6 suffer from congenital aniridia but more
recent work using magnetic resonance imaging (MRI) has revealed ei-
ther the absence or hypoplasia of the anterior commissure of the brain
in a large proportion of aniridia cases (Sisodiya et al., 2001).

The thalamus and cortex form at similar stages of gestation. Thalamic
axons grow through the diencephalon, turn sharply laterally to enter
the ventral telencephalon, cross the medial and lateral ganglionic emi-
nences and then turn dorsally to penetrate the cortex. The mechanisms
thought to direct thalamocortical axons to the cortex include guidance
from (i) pioneering axons growing from cortex towards thalamus and
(ii) a transient set of axons growing from the ventral telencephalon to
the thalamus (Metin and Godement 1996; Molnar et al., 1998; Molnar
1998; Braisted et al 1999). In Pax6−/− mutants, neither of these form cor-
rectly (Kawano et al., 1999; Hevner et al., 2002; Jones et al., 2002; Pratt
et al., 2002) and so it is possible that defects of thalamocortical axons
are secondary to the absence of normal descending projections. Jones
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et al. (2002) examined the corticofugal projections in mice lacking Pax6
and described abnormalities of these axons at the corticostriatal junc-
tion. Jones et al. (2002) and Pratt et al. (2002) showed defects of ventral
telencephalic cells within the internal capsule associated with altered
early thalamic growth.

Is there any evidence that Pax6 plays a primary role in the projecting
thalamic cells themselves, allowing them to navigate to their cortical
targets? Evidence that this is the case has come from co-culture studies
(Pratt et al., 2000). Explants from either wild-type or Pax6−/−mutant
embryonic thalamus were co-cultured with wild-type ventral telen-
cephalon and it was found that while axons from wild-type thala-
mus navigated correctly through wild-type ventral telencephalon, ax-
ons from mutant thalamus did not (Fig. 2). This indicates that the

Figure 2 Experiments showing an intrinsic requirement for Pax6 in the thala-
mus for thalamocortical development (Pratt et al., 2000). Explants of ventral
telencephalon (VT) were taken from wild-type mice. Thalamic explants were
taken from mice in which all cells express green fluorescent protein linked to
tau (tauGFP); these mice were either wild-type or Pax6−/−. Explants of wild-
type ventral telencephalon were placed with explants of tauGFP-expressing
wild-type or mutant thalamus and axons labelled with tauGFP could be seen
growing into the ventral telencephalon. If the thalamus was wild-type, then
these axons navigated through the ventral telencephalon in the direction of the
cortex. If the thalamus was Pax6−/−, then these axons failed to navigate correctly.
Since the ventral telencephalon is wild-type in both cases, there must be a defect
in the Pax6−/−dorsal thalamus.
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navigational defects of Pax6−/− thalamic cells are not corrected if they
are confronted with a normal environment through which to grow—the
gene must be needed by the thalamus itself for normal development of
its cortical projections.

Does Pax6 Regulate Separate Sets of Genes in Morphogenesis and
Guidance?

To regulate morphogenetic processes of cell proliferation, migration
and fate determination, Pax6 controls the expression of a wide range
of molecules, including transcription factors, cell adhesion and cell-cell
signalling molecules, hormones and structural proteins (Simpson and
Price, 2002). At present, too little is known about the targets of Pax6
to know whether or not Pax6 might regulate the same, overlapping or
distinct sets of target genes during early morphogenesis and later axon
guidance. As discussed above, there is strong evidence that Pax6 regu-
lates cell-cell adhesion during brain morphogenesis and this control is
likely to be equally important during axon pathfinding. Further work
is needed to discover what the targets of Pax6 are and whether they
change during development.

Regulation of Genes that Might be Involved in Guidance
It is most likely that this involves regulating the transcription of mem-
bers of the molecular network that connects guidance cues with the
cytoskeleton to control growth cone behaviour. It is possible that a lack
of Pax6 alters the expression of a number of members of the network
and that the combined effect causes a failure of thalamic responsiveness.
A simplified list of many known members of the network is given in
Fig. 3; the top rows include guidance cues shown to play or likely to
play important roles in thalamocortical development. There is evidence
from other systems that the expression of some of these molecules is
affected by Pax6.

(i) Semaphorins are a large family of secreted and membrane-
associated proteins that are chemorepellant or chemoattractant.
They are grouped into 8 classes; vertebrate semaphorins are
in classes 3–7 (Semaphorin Nomenclature Committee, 1999).
Semaphorins are expressed in and around the developing thala-
mocortical pathway (Skaliora et al., 1998). In vitro, thalamocorti-
cal axons are responsive to at least one of these, secreted Sema3A
(Bagnard et al., 2001). Mice lacking the transmembrane Sema6A,
which is proposed to act in thalamocortical axons as a guidance
receptor, have thalamocortical defects similar to (although less se-
vere than) those in Pax6−/−embryos (Leighton et al., 2001). Thus,
Sema6A is a good candidate as one potential direct or indirect tar-
get of Pax6 in dorsal thalamus. In addition, expression of Sema5A
and Sema3C are altered in the telencephalon of mice lacking Pax6
and this has been suggested to contribute to thalamocortical de-
fects in these mutants (Jones et al., 2002). Neuropilins are receptors
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Figure 3 This diagram shows many of the molecules or classes of molecule that are likely to be involved
in directing axonal growth, from extracellular cues to cytoskeletal rearrangement. Types of molecule
are listed to the left of the broken vertical line; individual molecules or families of molecule are listed
to the right. Molecules that are outside the cell or are components of the cell membrane are in bold
at the top of the diagram. In many cases the cues interact with receptors, which are lined up below
the corresponding ligands. Highlighting is used to identify molecules whose expression is regulated by
Pax6. Families of molecule enclosed by boxes are those which include members that are prime candidates
for being regulated in the thalamus, directly or indirectly, by Pax6. Many molecules inside the cell might
have their expression affected by Pax6, but evidence is lacking at present: for simplicity, the pathways
that may link these molecules are not drawn. Many of the families of molecule indicated are very large.
Literature on which this diagram is based is cited in Song and Poo (2001) and in the text.

for class 3 secreted semaphorins; they complex with plexin and
neural cell adhesion molecule L1 to form Sema3A receptors (Rohm
et al., 2000; Castellani et al., 2000). In vitro experiments have indi-
cated that Pax6 can bind to specific sequences in the L1 promoter
(Chalepakis et al., 1994), although L1 is still expressed at high level
in Pax6−/−embryos (Vitalis et al., 2000). Nevertheless, defects of
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L1-neuropilin-plexin receptors may also contribute to thalamocor-
tical defects in Pax6−/−embryos.

(ii) Netrins include (a) diffusible proteins, whose attractive effects are
mediated via receptors of the DCC (Deleted in colorectal cancer)
family (DCC and neogenin) and whose repulsive effects require
members of the UNC5 family, and (b) a membrane-linked mem-
ber expressed at sites that include embryonic thalamus (Nakashiba
et al., 2000). Diffusible Netrin1 is present in ventral telencephalon
and, acting via DCC and neogenin receptors on dorsal thalamic ax-
ons, it may play a role in guiding thalamocortical axons through
the ventral telencephalon (Braisted et al., 2000). Defects of thalam-
ocortical axons are much less severe in loss-of-function mutation
of Netrin1 than in Pax6−/−embryos. One intriguing possibility is
that Pax6−/−dorsal thalamic neurons upregulate UNC5 receptors
thereby converting a normally chemoattractive effect of Netrin1
into a chemorepulsive effect and so preventing thalamocortical
development.

(iii) Ephrins and Eph receptor tyrosine kinases are involved in processes
including growth cone guidance (Wilkinson, 2001) and Eph recep-
tors and ephrins are expressed in the developing thalamocortical
system. In particular, a role for ephrin-A5 in thalamocortical devel-
opment has been suggested on the basis of expression and in vitro
data (Gao et al., 1998; Mackarehtschian et al., 1999), although thala-
mocortical axons do form in mice lacking ephrin-A5 these do exhibit
subtle mapping errors in their synaptic connections with the cere-
bral cortex (Vanderhaeghen et al., 2000). Interestingly, work in other
systems has shown that the actions of Eph receptors and ephrin-A5
involve activation of integrins including β1-integrin, which may be
directly regulated by Pax6 at least in the lens (Duncan et al., 2000;
Davy and Robbins, 2000). Integrins have been shown to play an
important role in growth cone motility (Condic and Letourneau,
1997).

(iv) Neurotrophins, which act via Trk receptors, have been implicated
as chemoattractants in the developing nervous system (Gallo and
Letourneau, 2000) and thalamic axons do respond to members of
this family (Lotto and Price, 1995). Furthermore, there is evidence
that Pax6 directly or indirectly regulates the expression of Trk re-
ceptors in the developing cortex, although the thalamus was not
investigated (Warren et al., 1999).

(v) Other diffusible molecules that need to be considered include mem-
bers of the Wnt family, which signal through Frizzled receptors and
whose actions are modulated by secreted frizzled related proteins
(SFRPs). Their possible involvement is suggested by findings that
Wnt7a regulates axonal development in cerebellum (Lucas and Sali-
nas, 1997) and that Pax6 regulates forebrain expression of Wnt7b
and SFRP-2 (Kim et al., 2001). It is possible that expression of Friz-
zled receptors or SFRPs in thalamus may be disrupted in Pax6−/−

embryos. Robo receptors, highly conserved molecules that mediate
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the chemorepulsive activity of secreted Slits (Erskine et al., 2000),
are expressed in dorsal thalamus and so may be involved in thala-
mocortical axon guidance (Nakagawa and O’Leary, 2001).

(vi) Cell adhesion and extracellular matrix molecules (ECMs) are es-
sential in axon guidance. Pax6 is required for normal cortical ex-
pression of members of the cadherin family of calcium-dependent
cell adhesion glycoproteins (Stoykova et al., 1997; Bishop et al.,
2000). Cadherins present in the developing thalamocortical sys-
tem include cadherin-6 and cadherin-8 (Rubenstein et al., 1999);
their expression in the thalamus of Pax6−/−embryos remains
to be investigated. Chondroitin sulphate proteoglycans (CSPGs),
heparin-binding growth-associated molecule (HB-GAM) and lim-
bic system-associated membrane protein (LAMP) are suggested
to play roles in thalamocortical development (Mann et al., 1998;
Kinnunen et al., 1999); the possibility that their expression is regu-
lated by Pax6 has yet to be tested.

Conclusion

Mutant mice show that the transcription factors discussed here are re-
quired for the morphogenesis of forebrain structures projecting and
receiving axons and for axon navigation in the forebrain. This efficient
use of genes may explain the massive biological diversity delivered by
a relatively small number of genes. We predict that the list of transcrip-
tion factors playing multiple roles in tissue morphogenesis and axon
guidance will increase. The next challenge will be the comprehensive
identification of their transcriptional targets and a molecular biological
dissection of their various functions.
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3
Subcortical and Neocortical
Guidance of Area-specific
Thalamic Innervation

Tomomi Shimogori and Elizabeth A. Grove

Abstract

The specialized functions of neocortical areas depend on patterned
innervation from the thalamus. Recent evidence suggests several key
molecules for correct connections of thalamocortical axons (TCAs) be-
tween specific thalamic nuclei and cortical areas. First, the correct area
map has to be generated in cortex, and thalamic nuclei need to be spec-
ified in correct patterns. Second, axon guidance molecules that are ex-
pressed in the TCA subcortical pathway need to be established. Finally,
guidance within the cortex is needed for TCAs to navigate to their target
area and prevent them from being misrouted. Here, we discuss thala-
mocortical axon guidance mechanisms, especially somatosensory axon
guidance, during the development of the rodent brain.

Introduction

Virtually all the information we receive from the outside world, such as
visual, auditory and somatosensory sensation, passes through the tha-
lamus to the cerebral cortex. Functioning of the nervous system relies
on the precision of its wiring pattern. To set up the correct functional
pattern of projections in the nervous system, as a one of a model, first,
peripheral neurons need to be born with correct positional information.
Next, axonal growth cones must find their targets and migrating along
pathways that may be long and complex. Finally they reach the correct
region and pass the information to next neuron for further processing.
One of the most studied axon path finding procedure is the projection
from the retina to the optic tectum (superior colliculus), which is a com-
plexed pathay (Dingwell et al., 2000). To help this complicated journey,
intermediate targets divide the long pathway into several steps. Retinal
axons grow into the optic nerve, separate ipsi- and contralateral axonal
projection at the optic chiasm, grow caudally along the diencephalon
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Figure 1 Scheme of cortical area map, TCAs projection pathway in postnatal
brain and expression pattern of signaling molecules in embryonic brain. A, Ma-
jor sensory cortical areas are shown in gray. Anterior is to the top. Partial bar-
relfield (whisker pad region) is shown in gray somatosensory region. B, Plane
of thalamocortical slice, angle and approximate position of slice is shown in
A; line on the left hemisphere. Thalamic nuclei, such as dLGN and VB send
axons to RTN and IC. After they reach cortex, they project to visual cortex and
somatosensory cortex individually. VB axons arborize in layer 6 and layer 4 in
which barrel field clusters form. C, In situ hybridization expression pattern of
Fgf8 in embryonic day (E) 10.5 mouse brain. Anterior is to the top. Black arrow
shows the expression in telencephalon and white arrow shows the expression
in telencephalon-diencephalon boundary. D, Illustration of expression of other
signaling molecules at E10.5 mouse brain. dLGN: dorsal lateral geniculate nu-
cleus, VB: ventro basal nucleus, fp: face primordium.

and finally enter the tectum. At each step, attractive cues orient and
guide the growth cone towards its next target, or expression of repulsive
cues prevent misrouting of the axons (O’Leary and Wilkinson, 1999;
Williams et al., 2004).

Within the mammalian forebrain, a major ascending pathway to cor-
tex is made up of thalamocortical axons (TCAs), which, in part, relay
sensory information into organized cortical areas (Fig. 1A) to process
the information further. During development, TCAs follow a complex
path (simplified in Fig. 1B): neurons born in sensory nuclei such as so-
matosensory (VB: ventrobasal nuclei) and visual nuclei (dLGN: dorsal
lateral geniculate nuclei), project axons towards the reticular thalamic
nuclei (RTN), making sharp turn to enter the striatum, and another turn
at the cortical–subcortical telencephalic boundary to enter the internal
capsule (IC) and finally the cerebral cortex (Miller et al., 1993; Auladell
et al, 2000; López-Bendito and Molnár, 2003; Molnár et al., 2003).

Somatosensory thalamus and cortex in rodents contain topological
representations of the facial whisker pad (Woolsey and Van der Loos,
1970). The thalamic representation of a single whisker (“barreloid”) is
presumed to project exclusively to the cortical representation (“barrel”).
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During a brief period of postnatal development, thalamocortical axons
establish two tiers of terminations in layer 6a and in layer 4, and form
whisker-specific clusters within layer 4 (Senift and Woolsey 1991., Erzu-
rumlu and Jhaveri 1990., Rebsam et al, 2002., Lee et al., 2005). For the
correct projection of single barreloid in VB to S1 in cortex, which is again
long and complex, there is a need to have very well organized mech-
anism. This includes the initial patterning of the cortical area map, ex-
pression of guidance molecules in each part of the subcortical path, and,
finally, functional activity for at least some aspects of the innervation and
for its maintenance (Garel and Rubenstein 2004, Erzurumlu and Kind
2001). The aim of this review will be to place these insights about the
somatosensory fields in context with the literature that already exists.

The Cortical Area Map is Set up Prior to the Arrival
of TCAs

Gene targeted knock out studies in mice indicate that area-specific
molecular features are specified independent of thalamic input. Gene
expression patterns in the embryonic brain that prefigure area bound-
aries still develop in mice, lacking the transcription factor Gbx2, in which
thalamocortical innervation is severely disrupted (Fig. 2B) (Miyashita-
Lin et al. 1999). Similar observations are reported in mice deficient in
the transcription factor Mash-1 (Tuttle et al. 1999). This correlation of
thalamic innervation and the cortical map seems to fail in the opposite
direction too. The topography of TCA projections is shifted in mice de-
ficient in the transcription factors Ebf1 and Dlx1/2, yet, in this case, cor-
tical regional gene expression is unaltered (Garel et al. 2003) (Fig. 2C).
Thus, molecular regionalization that anticipates the cytoarchitectonic
area map arises in spite of disturbed or even absent thalamic input.

Patterning of the head and forebrain, which incorporate cerebral cor-
tex, depends on sources of signaling molecules including Bone Morpho-
genetic Proteins (BMPs), WNTs, and their antagonist proteins (Bachiller
et al. 2000, Kiecker and Niehrs 2001, Nordstrom et al. 2002). Signal-
ing centers determine dorsal/ventral or anterior/posterior (A/P) axes
in the spinal cord and at the midbrain-hindbrain boundary (Fig. 1C
and D) (Briscoe and Ericson, 2001, Crossley et al. 1996, Lee et al. 2000,
Shamim et al. 1999, Wurst and Bally-Cuif, 2001). We previously found
that the neocortical area map can be rearranged by manipulating FGF8
levels in the cortical primordium (Fukuchi-Shimogori and Grove, 2001)
(Fig. 3). Using in utero microelectroporation to augment or diminish
an anterior telencephalic FGF8 source, or to create a new source, areas
can be shifted posteriorly or anteriorly in the map, or even partially
duplicated (Fukuchi-Shimogori and Grove, 2001). Duplication of the
somatosensory barrel fields, whose formation and maintenance reflects
innervation from the VB in thalamus (Jeanmonod et al, 1981; Van der
Loos and Woolsey, 1973.), suggested, first, that the new, induced bar-
rels were innervated, and, second, that our molecular manipulations of
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Figure 2 Expression of guidance molecules and axon trajectory and projection
defects in knock out mice. A, Thalamocortical slice shows the expression of
guidance molecules along the thalamocortical trajectory. Expression of Slits in
hypothalamus and Sema6a in basal ganglia prevents thalamic axon projection
into those areas and netrin expression in IC attracts axons. In cortex, p75NTR
shows area identity and is suggested to work as an attractant. B, Gbx2 deficient
mouse show no TCA arrival in cortex without any patterning defect in thalamus
and cortex. C, TCAs in Ebf1 and Dlx1/2 knock out mouse are misrouted and
send axons to the wrong area in cortex.

Figure 3 Scheme of cortical area pattern shifts in brains in which FGF8 is aug-
mented, inhibited or misexpressed posteriorly. A, Position of somatosensory
area, and whisker pad (Wp) barrel subfield in control brain. The rough size of
endogenous FGF8 source at the time when FGF8 is modified by in utero electro-
poration is shown on left. B, In the FGF8 augmented brain, primary somatosen-
sory cortex is shifted posteriorly and the shape and size of Wp is shrunken. C,
An FGF8 depleted brain shows anterior shifted somatosensory cortex. The Wp
is elongated toward anterior pole of cortex. D, When FGF8 is ectopically mis-
expressed at posterior pole, second somatosensory area is formed just posterior
to the native field and its Wp pattern is a mirror image of native Wp.
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Figure 4 VB axon trajectory is shown in FGF8 early and late augmented thala-
mocortical section. A, VB axons follow the area identity in subplate to penetrate
into cortex (arrow) and arborize in layer 6a and layer 4 in register. B, In the
early FGF8 overexpressed brain, area identity in subplate and cortex are both
shifted. Hence, VB axon entry into cortex and arbors in layer 6a and layer 4 are
all in line. C, In the late FGF8 overexpressed brain, area identity of subplate is
remain as same as control brain. In spite of non-shift of subplate area identity,
neocortical layer area identity is shifted, which causes a “mis-match’’ between
the VB axon entry point and arbor point in cortex. D, Approximate position of
thalamocortical section in FGF8 augmented brain. Both in early and late FGF8
overexpressed brain show similar area shift.

the cortical area map could be used to investigate the cellular cues that
direct thalamic input to specific areas of neocortex (Rakic, 2001).

TCAs CAN Find Final Targets Even They are
Misguided on the Way

We followed the development of VB axons at P5, when functional areas
are detectable, by placing a deposit of the fluorescent carbocyanide dye
DiI into the VB (Shimogori and Grove, 2005). In control brains, in pri-
mary somatosensory cortex (S1), VB axons formed two sets of arbors in
different layers, layers 6a and 4 (Fig. 4A). The cortical layers are known
to form an in inside-out manner: early borne neurons migrate and form
deeper layers and late born neurons migrate further to make upper lay-
ers (Bayer and Altman, 1990). From previous findings it is suggested
that cells in cortex receive the information for their area identity when
they are born in ventricular zone (VZ) (Bishop et al, 2000; Muzio et al,
2000; Zhou et al, 2001). Thus, maybe it is possible to change the area
identity in layer specific manner by changing the timing of expression
of a signaling molecule. Because electroporation-mediated gene transfer
can be performed at several embryonic ages, FGF8 was overexpressed in
the anterior telencephalon at two different embryonic stages; embryonic
day (E) 10.5 and E11.5 (Shimogori and Grove, 2005). Despite the differ-
ent timing of FGF8 misexpression, brains showed the same patterns
of clusters of barrel field in shifted position. However, in the different
conditions, TCAs entered into cortex from different positions along the
anterior-posterior axis and arborized in layer 6a in different positions
(Fig 4B and C, arrow). In spite of this different arbor position in layer 6a,
genes that show area and layer-specific gene expression patterns, such as
Tbr1 and CoupTFI (Hevner et al, 2001, Zhou et al., 2001) are shifted iden-
tically in both electroporation conditions (Shimogori and Grove, 2005).
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Axon Guidance Cues in the Subplate

These findings provide new support for the subplate guidance role, pre-
viously reported (Ghosh et al., 1990; Ghosh and Shatz, 1992; Ghosh and
Shatz 1993). In previous experiments, the subplate was locally ablated
beneath visual cortex, with the result that axons from the lateral genic-
ulate nucleus did not grow into the cortical plate (Ghosh and Shatz
1993). These observations suggest that the subplate is important for
penetration of TCAs into cortex. Different groups have reported can-
didate genes for axon guidance molecules in the subplate (Yun et al.,
2003; Mackarehtschian et al., 1999; McQuillen et al., 2002). One of the
candidate genes, the Eph receptor tyrosine kinases: the Eph ligand eph-
rinA5 is expressed in the ventricular zone (VZ) in an anterior strong
to posterior weak gradient in the rat telencephalon (Mackarehtschian
et al., 1999). Closer to birth, ephrinA5 is expressed in the cortical plate
and subplate. We therefore explored positional information represented
by ephrinA5 in the subplate and cortical plate in FGF8 electroporated
brains. In the early FGF8 augmented brain, close to the initiation of sub-
plate formation, electroporation successfully generated a posterior shift
in regional identity in the subplate, as well as in layer 4 of presumptive
S1 (Shimogori and Grove, 2005). In contrast, after FGF8 electroporation
at E11.5 or E12.5, regional markers of neocortical layers were shifted pos-
teriorly, as previously reported (Fukuchi-Shimogori and Grove, 2001),
but, dramatically, the subplate was not shifted (Shimogori and Grove,
2005). Analysis of ephrinA5 mutants has revealed a distortion of the
shape and size of the S1 map but did not show any disruption of the
topographic precision of the projection, suggesting that genetic redun-
dancy may be obscuring the full extent of the role of ephrin/Eph genes
in this system (Vanderhaeghen et al., 2000).

The second possible candidate molecule expressed in subplate is the
low-affinity NGF receptor p75, which has a gradient expression pattern
that is stronger caudally, in the presumptive visual area (McQuillen
et al., 2002). Mice lacking p75NTR have diminished innervation of visual
cortex from dLGN, but projections from the thalamus to somatosensory
and auditory cortex are normal. These observations strongly support
an important role for the subplate as TCAs invade their target region of
cortex.

Existence of Axon Guidance Cues IN Cortex

In the later FGF8 augmented brain, VB axons exit from the internal cap-
sule (IC) in a normal position, but after they pass the subplate, they
project within the cortex to the shifted S1 (Fig. 4C). This suggests the
existence of guidance cues in cortex independent from subplate cues. To
test the hypothesis, VB axons were traced in brains, which have dupli-
cate barrel fields (Shimogori and Grove, 2005). A second, ectopic, barrel
field was induced by a new source of FGF8 in the posterior cortical pri-
mordium (Fig. 3D). Both the native and ectopic fields were innervated
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Figure 5 VB axon trajectories in brains with two barrel fields. A, A brain with
separated barrel fields and matched area identities in subplate and in cortex. Two
branches from single VB axons in subplate are heading toward their two target
areas, which are in opposite directions. B, In a brain which two barrel fields
are merged because of their close duplication, the subplate does not appear to
be separated in two distinct areas. Hence, VB axons enter from one point and
after they cross the subplate, they split in two in the cortex. C, Reeler mutant
mice show inverted layers, including an inverted superplate, which becomes
a superplate (Caviness, 1982). VB axons track to the superplate and only then
return to the cortical plate.

by the VB (Fig. 5). In brains, with two barrel fields, VB axons could be fol-
lowed and seen to bifurcate in the subplate (Fig. 5A), sending branches
towards the two separate fields. In brains with merged barrel fields, VB
axons also crossed between the two fields but in the cell layers of neo-
cortex instead of in subplate (Fig. 5B). We presume that the induction of
double barrel fields by two sources of FGF8 reflects the duplication of
positional information within the neocortical primordium (Grove and
Fukuchi-Shimogori, 2003). The present findings indicate that this dou-
bling of positional value translates into a duplication of robust, regional
axon guidance cues in both the subplate and the cortical plate.

The expression of candidate guidance genes in the cortex has been
reported previously. EphA family members show area-related pattern
in cortical layers in the mouse and monkey (Yun et al., 2003). Especially
at birth in mouse brain, EphA gene expression patterns appear in dis-
tinctive neocortical compartments. In the study of ephrin/Eph coupled
mutant mice, it has been shown that ephrinA5/EphA4 interaction is
required for the topographic mapping of TCAs within the somatosen-
sory area (Dufour et al., 2003). Furthermore, from the analysis of mice
deficient in Slit1/2, which is expressed in developing telencephalon,
suggest a role in axon guidance in cortex (Fig. 2A) (Bagri et al., 2002;
Whitford et al., 2002).

Different Response of Pre- AND Post-Subplate Crossing
Axons TO Cortical Cues

A comparison of axon trajectories in the two conditions – coordinated
shifts in the cortical plate and subplate, versus a mismatch – suggests
a required temporal sequence of cues. In the first condition, VB axons
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shifted their trajectory almost entirely in the subplate, initially ignoring
intracortical guidance cues. Thalamocortical axons also ignore intracor-
tical cues after the subplate ablation (Ghosh et al., 1990), and in the
reeler mouse, where axons cross the inverted cortical plate to an ectopic
‘superplate’ (Fig. 5C). Only then do axons turn back to innervate their
target area (Molnár et al., 1998). Together these observations indicate
that thalamic axons encounter the subplate, and then acquire the abil-
ity to respond to cortical plate cues. For this scheme to work, growth
cones need to change their responsiveness to guidance cues as they
pass subplate and enter into cortex. This is reminiscent of findings from
Flanagan’s lab (Brittis et al., 2002), showing that when spinal axons cross
the midline, growth cones synthesize new proteins that allow them to
respond to available cues differently.

Other Determinants that Control Projection

When TCAs come close to cortex, they are guided by the cues in sub-
plate and cortex. What are the factors mediating positional information
and controlling TCAs till they get to the cortex? First, possible several
guidance molecules have been suggested (Braisted et al., 1999; Braisted
et al., 2000; Garel et al., 2002). Both in vitro and in vivo analysis showed
that expression of Slits in hypothalamus force TCAs to make a sharp
turn toward telencephalon (Bagri et al., 2002). Recent experiments have
also revealed a role of neurogenin2 (ngn2): a basic HLH transcription
factor, involved in neuronal determination and differentiation (Seibt
et al., 2003). Inactivation of ngn2, which is expressed in developing di-
encephalon, did not appear to have a major effect on thalamic regional
specification but did modify the pathfinding of TCAs projection. This
suggest determinants in thalamus is also required for the specific re-
sponsiveness of their axon guidance cues encountered in intermediate
targets.

Conclusions

Considerable progress has been made in understanding the mechanisms
of thalamocortical innervation in the developing brain. TCAs originat-
ing from specific thalamic nuclei follow distinct pathways through the
subcortex, and are segregated within the major fiber tract, the IC, target
a specific cortical area (inter-areal targeting) and form a representation
of a sensory or motor field (intra-area targeting). As reviewed here, there
is new evidence that there are several check points for TCAs to pass for
correct projection. These are 1) Correct cell identity for neurons born in
thalamus, 2) Expression of repulsive cues in hypothalamus, and other
subcortical cues, 3) Topography of guidance cues in the IC, 4) Area iden-
tity in the subplate to navigate TCAs towards the correct cortical entry
position, 5) Regional cues in the cortex to navigate TCAs to the final
target area. Furthermore, several lines of evidence indicate that neural



50 Tomomi Shimogori and Elizabeth A. Grove

activity plays a crucial role in conferring presynaptic patterns to postsy-
naptic cells via neurotransmitter receptor-mediated intracellular signals
to form mature barrel fields (Iwasato et al., 2000; Rebsam et al., 2002;
Erzurumlu and Kind, 2001, Erzurumlu and Iwasato, 2005, this volume).
But the molecular mechanisms for activity dependent refinement are
largely unknown in the somatosensory system. Further understanding
of how VB axons project to somatosensory area in development will
also help to understand neuronal activity-dependent cytoarchitectonic
formation of mammalian brain.

Acknowledgement

All figures are taken from the article of Advances in Neurological Science
with permission. This work was supported by the RIKEN Brain Science
Institute(TS), the National Institutes of Health and The March of Dimes
Birth Defects Foundation (to Elizabeth Grove, University of Chicago).

Literature Cited
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Abstract

Developing thalamic projections cross the various segments of the dien-
cephalon and telencephalon to reach appropriate cortical areas without
the influence of external sensory input in an autonomous fashion. This
initial map requires no major fiber reorganization between the thala-
mus and cortex: a simple 90 degree rotation can explain the early to-
pographic relations between thalamic volume and the cortical sheet.
However, this initially simple layout may be modified close to the cor-
tical target. It has been proposed that the early interactions between
thalamic projections and subplate neurons could play a major role in
establishing the ultimate innervation pattern. We review evidence for
early functional interactions between thalamic projections and cortex in
wild-type rat and in the reeler-like mutant Shaking Rat Kawasaki (SRK).
In the reeler mouse or SRK the thalamocortical projections ascend to the
cortical surface comprising early born cells before descending to their
ultimate target cells equivalent to layer 4. This suggests that the initial
thalamocortical trajectory has a limited role in final cortical map forma-
tion. The normal periphery related pattern is assumed by the thalamic
fibers since they are capable of correcting defects in trajectory closer to
their targets. A candidate for effecting the realignment of these projec-
tions is the neural activity pattern transmitted to the immature cortex
via thalamic projections. There is current in vivo and in vitro evidence
for the role of neural activity in area and lamina-specific thalamic tar-
geting. In the Snap25 mouse all neurons lack action potential-mediated
neurotransmitter release. In spite of this, the embryonic development of
thalamic projections follows a normal pattern until birth. There is rich
evidence for changes in cortical map formation if the sensory input is
changed or the size of the cortical sheet is altered and followed beyond
postnatal life. The challenge is to relate the complex events of cortical re-
modeling to area specific thalamic fiber invasion and modality-specific
sensory activation patterns.
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The thalamus is a major relay structure in the diencephalon, and as
such transmits nearly all sensory input destined for the cortex. Each
sensory organ (except olfactory) and major subcortical motor center
provides input to one or more specific nuclei of the thalamus, and these
nuclei have well defined reciprocal interconnections with particular cor-
tical areas (Jones, 1985). Layer specificity is remarkably similar for all
cortical territories and is conserved between species. All areas in which
the early stages of thalamic innervation have been studied, the major-
ity of thalamocortical axons terminate in layer 4 and to a lesser extent
in layers 6, 3 and 1 (Jones, 1985). A high proportion of layer 6 neu-
rons send corticofugal projections back to their appropriate thalamic
nucleus. Most input comes from the cortex (Mitrofanis and Guillery,
1993), the pattern of which enables the two types of thalamic nuclei
to be distinguished (Guillery and Sherman, 2002). “First order nuclei’’
receive primary afferent fibers from the periphery and corticothalamic
afferents from layer 6 pyramidal cells. “Higher order nuclei’’ receive
input from pyramidal cells in cortical layer 5. Only layer 6 projections
send branches to the thalamic reticular nucleus and are believed to have
modulatory function (Jones, 2002). Layer 5 projections are proposed to
transmit information about the output of one cortical area to another,
and thus are thought to be involved in corticocortical communication
(Guillery and Sherman, 2002).

Complexities of the Adult Thalamocortical Innervation;
Polarity of Maps and Reversals

The representation of the three-dimensional thalamic volume on the
continuous planar sheet of cortex has been studied extensively in sev-
eral species, including human (Caviness and Frost, 1980; Crandall and
Caviness, 1984; Jones, 1985; Johansen-Berg, 2005). These studies demon-
strated that all areas of neocortex receive a thalamic projection (Caviness
and Frost, 1980). In most cases, neighboring neocortical fields receive
their projections from adjacent thalamic nuclei, and proximity relation-
ships correspond in the cortex and the thalamus; but occasionally, non-
adjacent thalamic nuclei project to adjoining but distinct cortical regions,
with no overlap, separated sharply at the borders of their cortical regions
(Caviness, 1988). The relative position and neighborhood relationships
of the fibers originating from different thalamic regions are, to a consid-
erable extent, preserved in their course to the cortex within the charac-
teristic fan shaped radiation of thalamic fibers (Caviness and Frost, 1980;
Caviness, 1988; Agmon and Connors, 1991; Molnár et al., 1998a). This
does not appear to be the case at the level of individual fibers, which
exhibit mixing and twisting along their path, especially in the thala-
mic reticular nucleus and in white matter close to the cortex (Bernardo
and Woolsey, 1987). Intriguingly, during development these compart-
ments contain largely transient premature neuronal populations, the
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subplate and the thalamic reticular neurons (Allendoerfer and Shatz,
1994; Mitrofanis and Guillery, 1994), which can host the accumulat-
ing thalamocortical or corticofugal projections before they enter cor-
tex or thalamus and establish their connections (Rakic, 1977; Lund and
Mustari, 1977; Shatz and Rakic, 1981).

Sites of Fiber Rearrangements, Modifications of Early
Connections Coincide with Transient Cell Populations
and Waiting Compartments

It has been proposed that the early topographic ordering in the de-
veloping thalamocortical projection, when the fibers accumulate in the
intermediate zone and subplate, establishes the gross distribution of in-
put to cortical areas (Blakemore and Molnár, 1990; Catalano et al., 1996).
This layout might even determine most of the general areal mapping of
thalamocortical interconnections. The initial map requires no fiber re-
organization between the thalamus and cortex; a simple twist (approx-
imately 90 degrees) of the fiber bundles can explain the relationships
between the two representations (Molnár and Blakemore, 1995; Price
et al., 2006). Initial simple fiber ordering accomplished during the ear-
liest phases of thalamocortical development might be preserved along
the pathway. This attractive notion, that cortical mapping is first deter-
mined by a simple ordered projection from thalamus to cortex, has been
challenged on the basis of the topography of the visual field representa-
tion in the dorsal lateral geniculate nucleus (dLGN) and striate cortex.
Conolly and Van Essen (1984), examining the visual field representation
in the dLGN and the visual cortex of the macaque monkey, found that
the map is mediolaterally but not anteroposteriorly reversed between
LGN and cortex. Since this map transformation cannot be explained
with a single twist, they concluded that the geniculocortical fibers in the
white matter must reverse positions along one major axis but not the
orthogonal one.

Nelson and Le Vay (1985), using pairs of tracer injections to reveal fiber
order in the adult cat, did indeed report crossing of thalamic axons in the
mediolateral but not in the rostrocaudal axis of the optic radiation. This
anisotropic decussation occurred only a short distance (2-500 µm) below
the visual cortex, at a depth that might well have been in the transient
subplate during development. The thalamic fiber side branches in the
intermediate zone and subplate described by Naegele et al., (1988) and
Ghosh and Shatz (1992) could form the anatomical substrate for this
reversal (Krug et al., 1998; Molnár and Hannan, 2000). It was proposed
that the decussation pattern seen in the adult represents a modification
of the array of thalamocortical fibers that occurs during or at the end of
the waiting period (Molnár, 1998).

Adams et al (1997) proposed that the thalamocortical fiber rearrange-
ments which require fiber crossing are very common in the cortex. Sen-
sory maps of the primary and secondary visual (Allman and Kaas, 1971)
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and somatosensory areas (McCasland and Woolsey, 1988; Catania and
Kaas, 1995) are reversed with respect to each other. This implies that
only one of these maps can be established with a simple transformation,
while the other requires the rearrangement and crossing of the thala-
mocortical connectivity at some point along the pathway. Interestingly
the secondary areas seem to correspond to the initial overall layout of
thalamocortical connectivity. At present we do not know the develop-
ment of these mirror reversals. We suspect that these transformations
and map reversals might even operate within the same cortical field
based on mechanisms separate from the initial deployment.

Early Fiber Deployment is Autonomous, But Fiber Entry
and Branching is Modified by Early Activity

The initial layout of thalamic axons might be very clear and regular in
embryonic life, but becomes substantially altered with further devel-
opment near the termination site. It has been proposed that thalamo-
cortical development has two major phases. The early deployment of
thalamocortical connectivity is established in an autonomous fashion
before the afferents from the sensory periphery reach the dorsal thala-
mus. Early outgrowth from the thalamus might be directed by gradients
within the dorsal thalamus and ventral pallidum (Molnár and Blake-
more, 1995; Seibt et al, 2003; Marı́n, 2003; Garel and Rubenstein, 2004)
or the cortex (Vanderhaegen et al., 2000; Fukuchi-Shimogori and Grove,
2001). Thalamic fibers change fasciculation pattern and growth kinetics
as they cross gene expression boundaries along their trajectory towards
the cortex. There seem to be at least two especially critical zones for
axon outgrowth in the embryonic forebrain. One critical zone is at the
diencephalic-telencephalic border, and the other one at the striatocor-
tical junction, the pallial subpallial boundary (PSPB). Thalamic axons
prove to be very sensitive indicators of regionalization defects in the
developing forebrain. Altered gene expression patterns along the thala-
mocortical path can arrest or modify their development at specific sites.
Having examined the aberrant development of thalamocortical projec-
tions in various mutants some basic principles are beginning to emerge
(Hevner et al., 2002; Jones et al., 2002; López-Bendito et al., 2003; Garel
and Rubenstein, 2004). There seem to be characteristic default pathways
where thalamic projections are derailed if the early developmental steps
are perturbed (see López-Bendito and Molnár, 2003).

As the thalamic projections arrive at the cortex the early topography is
simple. AP-movement on the cortical convexity corresponds to a medio-
lateral movement in the thalamus, whilst the cortical ventro-dorsal axis
corresponds to an antero-posterior axis along a slab of thalamic cells
(Molnár and Blakemore, 1995). The thalamic nuclei are still not fully
formed at these early stages, yet even in adult the basic pattern can
be recognized. However, the initial layout is not the final topography
and the maps formed can be altered substantially. Evidence suggests
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that this rearrangement can occur in subplate and within the cortex
closer to the ultimate target cells. However, this rearrangement does
not modify the rest of the fibre trajectory, which preserve the initial
juvenile arrangement.

In mammals, thalamic fibers arrive at the appropriate cortical regions
before their ultimate target neurons are born, and pause before contin-
uing to establish their final innervation pattern within the cortical plate
(Rakic, 1977; Shatz and Luskin, 1986). This period has been called the
waiting period and is the stage from which the sensory periphery could
start to modify its own juvenile cortical representation after initial tha-
lamocortical targeting. In this second phase, during the process of tha-
lamic fiber ingrowth and arborization, activity dependent mechanisms
have been implicated. The role of neural activity in the initial arboriza-
tion of thalamic axons within cortical layer 4 has been demonstrated by
Herrmann and Shatz (1995). This has been further examined under in
vitro conditions by Wilkemeyer and Angelides (1995) and Anderson and
Price (2002). Moreover, experiments where activity has been abolished
earlier, suggested that it plays a role in the area-specific delivery and
refinement of thalamic projections (Catalano and Shatz, 1998). The side
branch formation might be regulated by electric fields that are generated
by activity along the axons. Interestingly, when TTX (a sodium channel
antagonist that blocks action potentials) was delivered into the brain of
cat fetuses at the time of arrival of thalamic projections at the subplate,
abnormal connections were established by the LGN axons (Catalano
and Shatz, 1998). Only a few thalamic fibers entered the visual cortex,
and an aberrant topography was formed within the cortical plate. Al-
though this data indicates that even the initial phases of thalamocortical
targeting might depend on early activation patterns, the exact nature of
the required neural activity is not known. The cornerstone of this hy-
pothesis is that functional interaction is demonstrated by the thalamic
projections and the developing cortex at an early stage. We shall review
evidence for early thalamocortical interactions, which may elicit neu-
ral activity patterns, which in turn refine the area- and lamina-specific
thalamic innervations.

Evidence for Functional Transient Thalamocortical
Circuitry Prior the Final Layout of the Thalamic
Projections

The role of thalamic projections in determining cortical areas and archi-
tecture might start at these early stages, therefore, understanding the
earliest interactions between thalamic projections and developing cere-
bral cortex can be important in many respects. Recent in vitro studies
indicate that thalamic afferents release a diffusible factor that promotes
proliferation of neurons and glia in the proliferative zones of the cortex
(Dehay et al., 2001). Moreover, neuronal migration in the cortex is fa-
cilitated by thalamic fibers in organotypic thalamus-cortex co-cultures



4 The Earliest Thalamocortical Interactions 59

(Edgar and Price, 2001). If a similar mechanism operates in vivo, this early
influence of thalamocortical axons on corticogenesis might contribute
to the cortical cytoarchitectonic differences. Nevertheless, early gene ex-
pression patterns are normal until birth if no thalamic projections enter
the cortex (Miyashita et al., 1999; Nahagawa et al., 1999; Tuttle et al.,
1999) or there is a shifted delivery of thalamic connectivity during em-
bryonic life (Garel et al., 2002).

Evidence for Early Thalamocortical Transmission
in the Cerebral Cortex

It was demonstrated that the peripheral sensory organs can generate
spontaneous activity patterns at ages when the sensory afferents be-
gin to reach the thalamus (Galli and Maffei, 1988; Meister et al., 1991).
These activity patterns could elicit EPSPs on thalamic projection neu-
rons (Mooney et al., 1996) capable of relaying them to cortex (Friauf and
Shatz, 1991), and thus these activity patterns may alter the forming ter-
minals within the subplate and cortical plate by controlling side branch
formation. The existence of some synapses in the SP at early stages has
been demonstrated with electron microscopy (Herrmann et al., 1994).
These ideas have triggered further electrophysiological studies on the
interactions between thalamic axons and cortex. Single cell recording
and current source density (CSD) analysis demonstrated that thalamic
axons establish functional synaptic contacts with subplate cells (Friauf
and Shatz, 1991; Friauf et al., 1990; Hanganu et al., 2002; Molnár et al.,
2003; Higashi et al., 2005).

To gain further insight into the formation of early thalamocortical
synapses, we recorded optical images, using voltage sensitive dyes, in
the cerebral cortex of prenatal rats by selective thalamic stimulation
(Higashi et al., 2002) of thalamocortical slice preparations (Agmon et al.,
1993). At E17, thalamic stimulation elicits excitation that rapidly prop-
agates through the internal capsule to the cortex. These responses last
less than 10–15ms, and are not affected by the application of glutamate
receptor antagonists, suggesting they might reflect presynaptic fiber re-
sponses. At E18, long-lasting (more than 300 ms) responses appear in the
internal capsule (Higashi et al., 2002) at the site of the cells which possess
early thalamic projections (Métin and Godement, 1996; Molnár et al.,
1998). These responses in the cortex and internal capsule are both abol-
ished by perfusion of glutamate receptor antagonists, which indicates
synapse-mediated activation. At E19, distinct long-lasting responses ap-
peared mainly in the cortical subplate. By E21, shortly before birth, the
deep cortical layers are also activated in addition to the subplate. The
laminar location of the responses was determined in the same slices by
Nissl-staining or birthdating with bromodeoxy-uridine (BrdU) at E13
(Higashi et al., 2002). These results demonstrated that there is a delay
of several days between the arrival of thalamocortical axons at the sub-
plate at E16 and the appearance of functional thalamocortical synaptic
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transmission at E19. Since thalamocortical connections are already func-
tional within subplate and deep cortical plate at embryonic ages, prena-
tal thalamocortical synaptic connections could influence cortical circuit
formation even before birth (Allendoerfer and Shatz, 1994).

The activation patterns revealed with optical responses later extend
into and then become confined to layer IV during early postnatal pe-
riods (Higashi et al., 2002; 2005; see left panels of Figure 1). These
early functional interactions are different from mature postnatal acti-
vation, being relatively small, but much longer lasting. There are par-
allel changes in the receptor compositions and even the intracortical
connectivity (Arber, 2004; Higashi et al., 2002; Hoerder et al., 2006). It
has been suggested that subplate neurons integrate into the cortical cir-
cuitry in various ways (Allendoerfer and Shatz, 2004). The above men-
tioned anatomical and physiological observations lead to the suggestion
that subplate neurons orchestrate the ultimate thalamocortical synapse

Figure 1 The spatial pattern of optical recording images taken during the be-
ginning of the sustained cortical depolarization in WT (A, C and E) and SRK (B,
D and F) at P0, P3 and P10. Each image is an averaged of 5 serial frames taken
from the cortex of thalamocortical slices after the offset of initial thalamic fiber
volley following direct thalamic stimulation. At P0 the deep cortical layers are
activated in WT, in contrast to SRK, where the peak is close to the pial surface.
At P3, the peak of the responses ascended in WT and descended in SRK, and
then it was refined at P10 to the position corresponding to the position of layer
4 cells. (Modified from Higashi et al., 2005).
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formation during development (Kanold et al., 2004). However, it is still
not known whether the synaptic responses observed in subplate dur-
ing late embryonic and early postnatal days are specific to the early-
generated neurons or whether the migration of the functional response
from the early-generated neurons of subplate to layer IV cells of the
cortex is a general process. Would the same developmental steps occur
if they were displaced relative to each other?

Reeler Mutant Mouse and Shaking Rat Kawasaki (SRK)
as Models to Study Thalamocortical Development

The mutant rat, Shaking Rat Kawasaki (SRK), which has reverse cor-
tical layering similar to the phenotype observed in the reeler mouse,
provides an interesting model system to test whether the functional
reorganization is dependent on cell location or on cell type. The phe-
notype of SRK resembles that of the reeler mouse (Aikawa et al, 1988;
Ikeda and Terashima; 1997). The role of Reelin in choreographing tha-
lamocortical ingrowth may be complex and is most probably indirect
(no direct effect of Reelin on the growth of thalamocortical axons has
not been demonstrated). In SRK and reeler, this population of cells is
abnormally located in the superplate (S’P) due to failure of the cortical
plate (CP) to split it into marginal zone (MZ) and subplate (SP). Thus,
thalamocortical fibers penetrate the CP of SRK and reeler prematurely en
route to the S’P (Molnár and Blakemore, 1995). Although morphological
studies showed that in reeler mutant mice the thalamocortical axons ex-
tend toward the S’P before the projections descend to the cortical plate
(Caviness, 1976; Yuasa et al., 1994; Molnár et al., 1998b), the functional
responses elicited through these immature synapses between thalamic
projections and these early-generated neurons have only recently been
documented in these mutants (Higashi et al., 2002; 2005; Figure 1 right
panels).

We have performed birthdating experiments to confirm that the aber-
rant cortical lamination seen in SRK is similar to that in the reeler mutant
mouse. We also performed fiber tracing studies using biotinylated dex-
tran amine (BDA) in living slices and carbocyanine dye tracing in fixed
brains (Higashi et al., 2005). In thalamocortical slice preparations from
SRK the spatial and temporal pattern of excitation was investigated us-
ing optical recording with voltage sensitive dyes during the first 10 post-
natal days (P0-10). At birth, a strong optical response was elicited within
the superplate of the SRK, in the cell layer corresponding to subplate
in wild type (WT) rats (Fig. 1B). This response rapidly decreased dur-
ing postnatal days, as the activation descended into deep cortical layers
comprising layer IV cells, (as identified by birthdating with 5-bromo-
2’-deoxyuridine at E17). The migration of the optical response occurred
during the same postnatal periods in wild type as in SRK, but in different
directions (Fig. 1D, F).
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Figure 2 Composite figure of primary somatosensory cerebral cortex of WT (A,
C, E) and SRK (B, D, F) at P0, P3 and P8. DiI injection to ventrobasal complex
of the thalamus reveals individual axons as they enter the cortical plate. In WT,
fibers enter the cortical plate in an ordered fashion, after pausing and aligning
in the subplate (A). Fibers penetrate the cortical plate orthogonal to the pial
surface. In SRK, axons traverse the cortical plate in oblique fascicles and enter
the superplate before turning (B,D). At the p8 panels (E, F) the thalamocortical
arbors form at the depth where the peak of the optic responses were observed
(see E and F in Fig. 1). To show lamination pattern, sections were counterstained
with bisbenzimide. MZ: marginal zone; DCP: dense cortical plate; SP: subplate;
WM: white matter; S’P: superplate. Scale bar 100 µm. (right panels) Confocal
microscopic images of single axons in primary sensory cortex labelled with DiI
at P3. In WT (A) fibers typically show branching morphology around layer IV
of the cortical plate. This is not observed in SRK (B) where fibers cross the entire
breadth of the cortical plate as oblique fascicles and enter the superplate. Here
fibers turn and continue parallel to the pial surface before they descend into the
cortical plate. Scale bar 50 µm.

Tracing individual axons in SRK revealed that at P0 a large number
of thalamocortical axons reach the superplate (Fig. 2), but by P10 only a
fraction of them preserve the loop up to the pial surface. The majority of
arbors appeared to be pruned back and very often only the arbors to the
middle cortical layers were present. It is not clear whether all thalamic
axons must extend via this ‘loop’, or some can establish direct contact
with layer IV cells.
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Normal Thalamocortical Terminal Clustering in Reeler
and Shaking Rat Kawasaki Somatosensory Cortex

The periphery related thalamocortical axon patterning was normal
in SRK, but the cytoarchitectonic barrels in the SI cortex were not
apparent (Higashi et al., 2005). This is very similar to our previous
findings in the reeler mutant (Bronchti et al., 1999a,b). Nissl sections
of the mutant mice did not show clearly defined barrel boundaries,
but cytochrome oxidase staining revealed normal periphery related
pattern in a region corresponding to S1 (Bronchti et al., 1999b). This
suggests that in reeler the majority of thalamic fibers assume normal
periphery related pattern in the barrel cortex, but that cell patterning
in the barrel field might be impaired. We examined the radioactively
labeled 2-deoxy-glucose (DG) uptake after clipping all the mystacial
whiskers with the exception of the 3 caudalmost of rows B and D.
DG-uptake examined on the coronal plane, revealed a columnar ac-
tivation pattern with a highest DG-uptake in the intermediate layers.
In the tangential plane, DG-uptake showed that the cortical activa-
tion pattern, and thus the areal distribution of whisker representation
in reeler, is organized in an identical manner to that in normal mice
(Bronchti et al., 1999a,b). Therefore, the abnormal trajectory to the cor-
tex in the reeler does not seem to alter the ordered functional whisker
representation.

These results suggest that the general developmental pattern of
synapse formation between thalamic axons and subplate (superplate)
neurons in WT and SRK is very similar, but it follows the altered position
of the displaced subplate cells and the individual arbors are considerably
re-modeled. In later postnatal ages the latency of layer 4 activation ap-
pears identical in normal and SRK (Higashi et al., 2005). The appearance
of fibers in P8 specimens that do not loop through the S’P but appear to
enter the deep CP and arborise, as seen in normal animals, is an interest-
ing finding and may have important implication on the current models
for the mechanisms of stopping and branching of thalamocortical axons
in the cortical plate. This warrants further investigation to determine
how these connections and terminal arbors develop. The extent and
rapidity of the thalamocortical arbor remodeling in the reeler mutant
mouse and in SRK is spectacular. The detailed analysis of individual
arbors during late embryonic stages and during the first postnatal week
could reveal the sequence or coexistence of synaptic contacts in subplate
and cortical plate.

It has been suggested that the CP is not permissive for thalamocorti-
cal ingrowth as projections reach its borders (Hubener et al., 1995). This
appears to be the case in the dense cortical plate (DCP) of wild-type
animals, though the CP appears to become growth-permissive at a later
point (Molnár and Blakemore, 1999). Indeed, it has been suggested that
growth-promoting factors are upregulated in the cerebral cortex postna-
tally (Hubener et al., 1995); however, this does not necessarily mean that
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Figure 3 Possible origins of non-looping thalamocortical projections to pre-
sumptive cerebral cortical layer IV neurons in SRK. A: In WT rat, axon enters
the cortex and arborises around layer IV. B: Non-looping axon in SRK may re-
sult from ‘pruning’ of originally looped axon after side branch growth. In SRK
ingrowth without loop may alternatively occur in some axons (C) or as white
matter side branches of other pre-existing axons (D). MZ: marginal zone; WM:
white matter; S’P: superplate; CP: cortical plate.

it is growth permissive. In agreement with the handshake hypothesis
(Molnár and Blakemore, 1995), thalamocortical axons follow a scaffold
laid down by their pioneer axons from the subplate. In the case of reeler
mutants, this projection arises in the S’P and traverses the CP in the
form of oblique axonal fascicles. If this is also the case for SRK, it could
account for the fiber trajectory through the CP whilst maintaining its
non-permissive nature until after the majority of fibers enter the S’P.
The scaffold originating from the S’P and in close association with thala-
mocortical axons has been demonstrated in reeler (Molnár et al. 1998b).

The finding that older mutant animals possess some thalamocorti-
cal axons that ascend directly to target cells corresponding to those of
layer IV may provide some clue as to the mechanism of fiber ingrowth.
There are two possibilities for the appearance of non-looping axons in
SRK. Fibers may follow the route observed in most SRK thalamocortical
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fibers: looping up to the S’P and descending to the CP. This loop must
then be lost after formation of a side-branch arborising within the CP,
followed by ‘pruning’ of the distal section of the axon (Fig. 3B). Alter-
natively, the axon could enter the CP once it has become permissive for
thalamocortical ingrowth, growing directly to cortical targets. This in
turn could arise either as an axonal branch occurring directly from the
white matter tract (Fig. 3D), or as an axon terminal (Figure 3C). The pro-
portions of the two forms of arborisations might be related to the fraction
of the cells showing normal and inverted positions. Not all cells are in-
verted in SRK, similarly to reeler mouse there is a significant number
assuming inside out polarity (Higashi et al., 2005). With the techniques
used, these possibilities are not resolvable. Further studies must be car-
ried out to determine this mechanism. More quantitative single-axon
reconstructions at different ages might suggest the mechanism by which
correct laminar axonal targeting occurs, but the examination of thala-
mocortical axon growth using time-lapse imaging for 2–3 days would
be ideal (Portera-Cailliau et al., 2005). The mechanism of development
of the non-looping projections might represent an important postnatal
remodeling in SRK. If the ‘pruning’ suggested above were to occur, it
may have implications in developmental plasticity. Our understanding
of this process suggests that perhaps a combination of figure 3 B and D
might result in the observed phenotype. A potential mechanism for this
would be an activity-dependent pruning whereby the early loop is lost.
This could represent a means by which relatively normal topography
is maintained in the SRK mutant. This could be tested by blocking neu-
ronal activity in the reeler or SRK mutants. Or more directly, the arrival
of thalamocortical axons could perhaps be studied by observing cortical
slice preparations over time; alternatively the lengths of thalamocortical
axons in the cortical plate could be examined at stages in development.
Results from such an experiment would require cautious interpreta-
tion: more rigorous studies would follow the fate of an identified axon
at different developmental stages.

There are numerous mouse models where the thalamocotical axon
delivery is altered during the autonomous phase of delivery (L1 KO,
Sema6A KO), but then the final cortical topography seems to compen-
sate (see Leighton et al., 2001; Molnár et al., 2003). The layer specific
stop and branch signals seem to be distinct from the ones governing
the early deployment and entry of the thalamic projections (Yamamoto
et al., 2000).

Layer Specific Stop and Branch Characteristics of
Thalamocortical Axons

In the mouse somatosensory system thalamocortical axons reach their
major target of layer 4 between postnatal days 2 and 4 (Agmon et al, 1993;
Rebsam et al, 2002). Once the lamina has been reached the axons cease
radial growth, and elaborate their complex arbors. Both molecular and
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neural activity dependent mechanisms have been shown to direct this
behavior, however the degree of redundancy between the regulatory
mechanisms is not yet known.

The in vitro technique of thalamus-cortex co-culture has been used to
unravel some of these mechanisms. By growing late embryonic thala-
mus explants adjacent to early postnatal cortex explants thalamocortical
axon development can be observed with the same lamina specific ter-
mination pattern as in vivo (Yamamoto et al., 1989, 1992; Molnár and
Blakemore, 1991; Bolz et al., 1992; 1993). Yamamoto et al (1997) were
able to observe the growth of thalamic axons in vitro using confocal
video microscopy. Analysis of cultures in which thalamic axons entered
the cortex from the ventricular, pial, or lateral side indicated that the
“stop’’ and “branch’’ signals are essentially independent. Axons grow-
ing radially stop, their growth cones collapsing, and branches emerge
behind their distal tip, whereas axons entering the cortex laterally in
layer 4 continue to grow whilst branches emanate from their length.

Several molecular cues, which may represent the stop/branch signals,
have subsequently been identified using this and other tissue culture
techniques. The transmembrane glycoprotein N-cadherin is expressed
in both layer 4 neurons and the sensory thalamus (Gil et al, 2002), and
may mediate axon-cell contacts through homophilic, calcium depen-
dent association (Geiger and Ayalon, 1992). Perturbation of this asso-
ciation by antibody and peptide blockade in co-cultures prevents both
the proper growth of axons through the deep cortical layers, and ter-
mination in layer 4: axons grow through their target towards the pial
margin of the culture (Poskanzer et al, 2003). Ephrin-Eph tyrosine kinase
interactions have also been shown to regulate thalamocortical lamina-
tion patterns. Mann et al (2002) grew thalamic explants on membranes
isolated from either layer 5 or layer 4, they observed great branching
and reduced growth on layer 4 derived preparations indicating that
membrane bound molecules regulate thalamocortical axon morphol-
ogy. Furthermore, ephrin A5 expression was shown to be layer specific
in the cortex, and cognate EphA receptors expressed in the thalamus,
while blockade of the Eph-ephrin signaling prevented the preferential
branching phenotype of thalamic axons. Enzymatic disruption of co-
cultures has also narrowed down the list of potential candidates for
stop and branch signals. Disruption of the neural cell adhesion molecule
(NCAM) with endoneuraminidase-N promoted thalamocortical axon
branching across all layers of the cortex, implying that this molecule
may be a branch inhibitor in non-target layers of the cortex (Yamamoto
et al, 2000; and 2006 see in this volume).

Are cell adhesion and signaling mechanisms sufficient for the correct
laminar deployment and arborization of thalamocortical axons? Cer-
tainly results published by Yamamoto et al (2000) in which thalamic
axons grew correctly though co-cultures were grown using chemically
fixed cortical explants, imply this is the case; however several stud-
ies have indicated that neural activity is also required. Tetrodotoxin
(TTX) infusion into embryonic cat brains during the radial growth of
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thalamocortical axons through the cortex prevented their termination
in layer 4, fibers instead projecting to the more superficial cortical lay-
ers (Catalano and Shatz, 1998). Repetition of these experiments using
the co-culture system allowed a more careful analysis of the axon mor-
phology and investigation of neurotransmitter receptor specific agonist
and antagonists (Wilkemeyer and Angelides, 1996; Anderson and Price,
2002) (Figure 4). Addition of TTX prevented layer specific termination
(Anderson and Price, 2002 Fig. 4B), but also induced a greater degree
of axon branching and presumptive presynaptic bouton development
(Wilkemeyer and Angelides, 1996 Fig. 4D). The NMDA specific agonist
aminophosphovalerate also induced the grow-through effect (Ander-
son and Price, 2002). These techniques can be thought of as depressing

Figure 4 Cartoon illustrates the results of the addition of neural activity mod-
ifiers to co-cultures. A and B: co-cultures analysed by single axon tracing and
morphometric quantification (Wilkemeyer and Angelides, 1996). A: Controls:
axons emanating from the thalamic explant grow into the cortical regions and
form characteristic arbours in the central regions of the cortex, shown by vital
staining to be layer 4. B: the addition of TTX has no effect on the length of the axon
collaterals, or the layer of termination; however fibers have more branch points.
C and D: co-cultures analysed by bulk-labelling of fibers and fluorescence in-
tensity differences (Anderson and Price, 2000). C: Controls, fibers labelled with
DiI enter the cortical explant, and there is a sharp drop in labelling intensity in
the central regions corresponding to layer 4, indicating that many fibers termi-
nate here, NB the cultures were not long enough for extensive arborisation to
occur. D: application of TTX, APV or an increase in the concentration of potas-
sium ions results in the abolition of a sharp drop in label intensity in layer 4.
Instead the drop is gradual over the width of the cortex. These results were
interpreted as axons growing through the slice to reach the pia, E. Abreviations:
TTX—tetrodotoxin, APV—aminophosphovalerate, K+—potassium ions
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neural activity, however the elevation of potassium ions in the culture
medium, increasing the probability of action potentials, also caused the
axons to grow through layer 4 (Anderson and Price, 2002). The genetic
disruption of NMDA mediated glutamate transmission in the NR1−/−

and the cortex specific NR1 knock-out, does not entirely support the in
vitro data (Iwasato et al, 2000; Datwani et al, 2002; see Erzurumlu and
Iwasato, 2005 in this volume). There was no reported alteration in the
thalamocortical axon lamination pattern; however exuberant branching
of individual axons has subsequently been reported (Lee et al, 2005).

At present the relative contribution of the periphery driven, activity
dependent patterning and the genetically controlled axon-target molec-
ular signaling mechanisms is not clear. Both systems can be shown to
affect the lamination and arborisation of thalamocortical axons. Neural
activity may alter the expression of molecular factors, which subse-
quently mediate growth cone collapse causing axon growth termination.
Furthermore the correct pattern of regulated neurotransmitter signaling
is likely to be required to allow post-synaptic cells to direct the elabora-
tion of axonal arbors.

Debate rages over the plasticity of thalamocortical projections in the
arrangement of fiber topography. Experiments of the early 1990s by
Agmon and colleagues (Agmon et al., 1993, 1995) suggested that topo-
graphically organized projections were apparent from birth, while other
experiments provided convincing evidence that there is some form of
postnatal remodeling resulting in accurate topographical mapping from
thalamus to cortex (Krug et al., 1998; Rebsam et al., 2002; see Shimogori
and Grove, 2006 in this volume). Although putative somatosensory and
visual cortices show overall general patterns of thalamic innervation
they seem to have considerable differences in the innervation density of
the projection and their topographic precision. We have compared the
number of single and double labeled cells from pairs of single crystals
of carbocyanine dyes (DiI and DiAsp) placed at 250 or 500 µm distances
from each other into the putative visual and somatosensory cortex on
whole brains rather than slices (Molnár et al., 1998). These experiments
revealed that at early postnatal ages, a similar low percentage of double-
labelled cells were observed in VB and LGN (VB = 0.6%; LGN 0.5%).
However, in LGN, the number of labelled cells was 3–5 times smaller
than in VB. Moreover the backlabelled cell bodies of thalamic projection
neurons in LGN showed more scatter than in VB (Molnár et al., 1996;
Molnár 1998). These areal differences in density and topography might
be significant in the differences in the extent of possible plastic changes.

The SNAP-25 KO Mouse as Model Systems to Test the
Role of Early Neural Activity in Brain Development

Understanding of the contribution of a: action potential mediated, b:
spontaneous and c: paracrine neurotransmitter release during axonal
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pathway formation and neural migration has very general basic biolog-
ical importance (Rizo and Südhof, 2002). Our data (Washbourne et al.,
2002; Molnár et al., 2002) suggest that Snap25−/− mice are a unique
resource to study the role of spontaneous synaptic activity in target
recognition, synapse maturation and plasticity that are required to de-
velop the effective neural circuitry of the mammalian brain. SNAP-25,
together with syntaxin-1 and VAMP-2, form the core SNARE complex,
which plays an essential role in exocytotic release of neurotransmitter
(Südhof, 1995). Snap25−/− mice develop to term, and fetal brain de-
velopment appears superficially normal, even though action potential-
evoked neurotransmitter release is entirely eliminated (Washbourne
et al., 2002). SNAP-25 deficient neurons extend axons that terminate
in synapses where spontaneous, action potential-independent release
still occurs but action potentials do not trigger neurotransmission. Thus,
genetic ablation of SNAP-25 expression appears to selectively disable
the vesicular processes responsible for evoked synaptic transmission,
leaving intact membrane trafficking for axon outgrowth and exocytosis
for spontaneous neurotransmitter secretion. Munc18 1−/− or Munc 13-1,
2, and 3−/− mice cannot release transmitter from synaptic vesicles at all.
The paracrine mechanism whereby transmitter is released out of the cell
in a vesicle independent manner is however still present in these ani-
mals and it is surprising that they also develop to term with relatively
normal brains (Verhage et al., 2000; Varoqueaux et al., 2002).

We have studied both the general developmental pattern of the
forebrain and the development of cortical lamination in Snap25−/−

(Washbourne et al., 2002; Molnár et al., 2002). These experiments
showed that, within the resolution of our techniques (Nissl stain,
immunohistochemistry for calcium binding proteins etc.) the cerebral
cortex develops normally in these knockouts. We also examined the
synapses qualitatively in the cerebral cortex at the EM level (Wash-
bourne et al., 2002), but we did not observe any major gross abnor-
malities within the forebrain of these mutants. Using carbocyanine dye
tracing we have examined the development of thalamocortical projec-
tions in Snap25−/−. We were particularly concerned with axon elonga-
tion, growth-cone morphology and the kinetics of cortical innervation
(Molnár et al., 2002). We paid special attention to the side branch for-
mation during the waiting period and cortical plate innervation and
branching. The results showed no significant differences between the
SNAP25 deficient animals and their heterozygote and wild-type litter-
mates (Fig. 5).

What Form of Intercellular Communication is Needed
for the Remodeling of the Initial Thalamocortical Map?

In contrast with the initial gross deployment of thalamocortical and
corticothalamic connections, the remodeling of cortical circuitry during
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Figure 5 Normal cortical invasion and early topography of thalamic connectivity in the Snap25 knock-
out mouse. (A-B) Thalamocortical projections, traced with DiI placed in the dorsal thalamus (DTh),
show similar ingrowth patterns in heterozygous (A) and Snap25 deficient mouse (B) at e18.5. Double-
exposure photomicrographs of coronal sections showing the DiI-labeled axons (red) and bis-benzimide
counterstaining (blue). Note that in both genotypes, axons had started to invade the cortical plate (arrows;
see schemas A’ and B’). (C-D2) Crystals (DiI, DiA, DiI) were implanted along a parasagittal row in
putative motor (M1), somatosensory (S1) and visual (V1) areas respectively, in the right hemisphere
of heterozygous (C) and Snap25 deficient mouse (D). Confocal micrographs at the level of the internal
capsule (ic; C and D) and dorsal thalamus (C1 and D1) showing that in both brains the topographical
arrangement of the fibers is maintain not only in the dorsal thalamus but throughout the entire axonal
pathway (see schemes C2 and D2). mz, marginal zone; sp, subplate; iz, intermediate zone. Scale bar:
100 µm (A-D); 100 µm (C1-D1). Data modified from Molnár et al., (2002b).

thalamic fiber invasion is probably a more complex process in which
patterns of afferent and local activity, expression of surface molecules
and growth factors, and cell death all play crucial roles (Katz and Shatz,
1996). In turn the remodeling may lead to the formation of new synapses
and therefore to new distributions of activity. Early thalamic projections
are capable of eliciting sustained depolarization patterns in the sub-
plate at the time of their own side-branch formation (Friauf and Shatz,
1991; Higashi et al., 2002; Molnár et al., 2002a). This early interaction is
different from the mature postnatal form, being relatively smaller, but
much longer. Our data in embryonic Snap25−/− mice suggest that ax-
onal growth and early topographic arrangement of these fiber pathways
do not rely on activity-dependent mechanisms requiring evoked neuro-
transmitter release at embryonic stages. We propose that other forms of
intercellular communication might still play a part, such as the sponta-
neous release of neurotransmitter vesicles, and non-vesicular paracrine
release of neurotransmitter.
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Figure 6 Schematic representation of the sensory pathways from the different
sensory modalities (upper row: somatosensory—red, visual—blue, auditory—
purple) and the distribution of cortical areas (lower row, S1—primary so-
matosensory cortex red, V1—primary visual cortex blue, and A1—primary au-
ditory cortex, purpule) in normal, anophthalmic and early cortical lesioned an-
imals. The normal thalamocorical relationship is maintained in anophthalmic
mice, but the auditory and somatosensory modalities invade the visual tha-
lamic nuclei (dLGN) and thus the cortex will be responsive to these modal-
ities (Bronchti et al., 2000). The thalamocortical relations do not show major
rearrangements. In contrast to this after extremely early cortical lesions in the
marsupial, cortical areas showed substantial rearrangements on the remaining
cortical sheets, together with considerable rearrangements of the thalamic affer-
ents (Huffmann et al., 1999).

Can Thalamic Connectivity Rearrange Considerably
in Experimental Paradigms?

To understand cortical arealization, it is essential to comprehend
whether the initial allocation of thalamic projections with different sen-
sory modalities can be shifted during development. There are numerous
examples demonstrating that depriving just one sensory modality is not
sufficient to change the early thalamocortical allocation although modal-
ity specific cortical responses substantially rearrange (Bronchti et al.,
2000; Kahn and Krubitzer, 2002; Fig. 6 middle column). Even consider-
able re-routing surgery had no effect on the early thalamic matching (Sur
and Leamy, 2001). In both paradigms the thalamic projections remained
in their original place: the cross modal rearrangements were mostly due
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to changes on a subcortical level (Figure 6). There is however evidence
for early alterations of these thalamic projections under extreme condi-
tions. We used a marsupial model to study whether thalamic projections
and early thalamocortical matching can realign themselves onto a dras-
tically reduced cortical sheet at a very early stage (Molnár et al., 1998c;
Huffmann et al., 1999). This work showed that following an early oc-
cipital cortical lesion all cortical areas with their thalamic connections
were compressed and a visually responsive area formed on a more ros-
tral region of the neuroepithelium, not originally destined for vision
(Huffman et al., 1999; Fig. 6 right column).

Conclusion

Although the adult organization of thalamocortical projections is in-
triguingly complex, we are beginning to understand how the initial
layout of this complicated pathway is constructed with a cascade of
simple rules. There are multiple mechanisms involved in establishing
thalamocortical connectivity. The early deployment of thalamocortical
connectivity is established in an autonomous fashion before the affer-
ents from the sensory periphery reach the dorsal thalamus. However,
peripheral signals could begin to modify this juvenile topography after
initial cortical targeting, during thalamic fiber ingrowth and arboriza-
tion. In some cortical areas this rearrangement may be more prominent
than in others. With the help of mouse transgenic models we are now
able to dissect the mechanisms which are dependent on early neural ac-
tivity and it will be a major challenge to understand how the pattern of
external influence is translated to cellular and molecular signals which
organize connectivity within the cortex.
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5
Molecular Basis for the Formation

of Lamina-Specific Thalamocortical
Projection

Nobuhiko Yamamoto, Makoto Takemoto, Yuki Hattori, and
Kenji Hanamura

The thalamocortical (TC) projection is one of fundamental neural cir-
cuits in the neocortex. The most characteristic feature of TC projection
is layer specificity: Sensory thalamic neurons primarily project to layer
4 of corresponding neocortical areas (Jones, 1981; Gilbert, 1983). An
intriguing problem is how lamina-specific TC projections are formed
during development, since laminar specificity contains not only a prin-
ciple of cortical circuit formation but also a common feature in axonal
targeting mechanisms in the CNS.

Neurobiologists have revealed that growing axons are guided by local
and long-range molecular cues (Tessier-Lavigne and Goodman, 1996):
Chemoattractive and chemorepulsive molecules released from target
cells are able to act as long-range cues, whereas membrane-associated
molecules such as cell surface or extracellular matrix (ECM) molecules
act as contact-mediated cues. In fact, a number of molecules with these
properties have been identified during the past decade. However, what
molecular mechanisms govern pathway guidance and target recogni-
tion processes in a given neural system remained unknown. Moreover,
regulation by multiple molecules, which must work in vivo, is vague.

We have explored how TC axons recognize their target layer, focusing
on axonal termination and branching. In this chapter, we describe cellu-
lar and molecular mechanisms underlying TC axonal targeting mecha-
nisms by demonstrating TC axon behavior in vitro and gene expression
pattern in the developing cortex.

1. TC Axon Termination and Branching in the
Target Layer

During development TC axons originating from sensory thalamic nuclei
travel in the intermediate zone and reach appropriate cortical areas. TC
axons then grow into the cortical plate (CP) and form branches primarily
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Figure 1 Coculture preparations of the thalamus and cortex. A, organotypic
coculture of thalamic explant (lateral geniculate nucleus, LGN) with cortical
explant (visual cortex, VC) after one week in vitro (From Yamamoto et al., 1989).
Bar represents 0.5 mm. B, fluorescent dye-labeled TC axon arbor in cortical
explant after two weeks in vitro (From Yamamoto et al., 1997). Bar represents
0.25 mm.

in layer 4 without extending to the more superficial layers (Lund and
Mustari, 1977; Ghosh and Shatz, 1992; Agmon et al., 1993; Kageyama
and Robertson, 1993; Catalano et al., 1996; Molnár et al., 1998).

The question is how TC axons can recognize their target layer. To
gain some insights into this issue, we developed organotypic coculture
preparations in which specific neuronal connections were reconstructed
with the cytoarchitecture preserved (Yamamoto et al., 1989, 1992). In
fact, in an organotypic coculture of the rat cortex with the thalamus, the
TC projection was formed with essentially the same laminar specificity
as that found in vivo (Fig. 1) (Yamamoto et al., 1989, 1992; Molnár and
Blakemore, 1991; Bolz et al., 1992). This accessible preparation has been
useful to study the characteristic axon behaviors that reflect the cellular
mechanisms responsible for laminar specificity of the TC projection.

Based on observations of the projection pattern in the culture system,
Molnár and Blakemore (1991) proposed that a stop signal for TC axons
is present in the cortex. This idea is supported by the fact that thalamic
axons entering from the pial surface of cortical slices terminate in the
same target layer as do axons entering in the normal direction from the
ventricular surface, in spite of the different distances and orientations
(Bolz et al., 1992; Yamamoto et al., 1997). We examined TC axon behavior
more directly in a time-lapse study (Yamamoto et al., 1997). The major-
ity of the axons traveled at a constant growth rate in layers 6 and 5, but
suddenly stopped in and around layer 4. An interesting feature is that
the stop behavior was observed in only the axons that traveled perpen-
dicularly to cortical layers but not in those running along layer 4 (Fig. 2).
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Figure 2 Stop and branch behaviors observed in cocultures of the thalamus
and cortex. Thalamic explant is juxtaposed to the ventricular surface (normal
ingrowth), pial surface or the lateral edge of the cortical explant. The stop be-
havior in layer 4 is observed in TC axons which enter the ventricular and pial
surface, but not in those entering from the lateral edge. On the other hand,
TC axons exhibit the branch behavior regardless of the orientation of ingrowth
(From Yamamoto, 2002).

This implies that the stop signal is detected by TC axons as a relative
difference in the environmental cues rather than an absolute cue (see
below). Noctor et al. (2001) have demonstrated that TC axons extend to
the superficial layers after disruption of layer 4 cells in developing fer-
ret cortex, indicating that the stop signal is not simply due to an artifact
in vitro. The existence of the stop signal has also been demonstrated in
neuronal circuits in the cerebellum and the spinal cord, by using in vitro
preparations (Baird et al., 1992; Sharma et al., 1994). Thus, axonal stop
behavior may reflect a general aspect of axonal targeting processes.

Branch formation is another key behavior for axonal targeting. In the
coculture of the thalamus with cortex, TC axonal branching was con-
fined to layer 4, indicating the existence of the cellular interactions that
induce branch formation (Yamamoto et al., 1989, 1992; Bolz et al., 1992).
The time-lapse study further demonstrated that TC axonal branching
mostly took place in layer 4 without any transient branch appearance
in other layers (Yamamoto et al., 1997). One may suppose that axonal
branching simply follows the stop behavior. Indeed, branching was of-
ten observed just after TC axons stopped growing. In accordance with
this result, in cortical neurons in vitro and frog retinal ganglion cells
in vivo, there is an obvious association between axonal stopping and
branching (Szebenyi et al., 1998; Campbell et al., 2001). However, stop-
ping and branching of TC axons did not always occur in the time-lapse
study. Moreover, the branching behavior was found regardless of the
orientation of ingrowth, which is contrast to stopping behavior (Fig. 2).
These findings imply that branching is regulated by the mechanisms
that are distinct from those of axonal termination.
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Thus, the two independent mechanisms of axonal termination and
branching appear to be involved in the formation of lamina-specific TC
connections.

2. Mechanisms for TC Axon Termination

In general, axonal termination can be regulated by some molecular
mechanisms. One possible mechanism is that axons may stop grow-
ing by detecting a molecule of the ’’stop signal’’. At the neuromuscular
junction, s-laminin, which is concentrated in the endplate is involved
in termination of axonal growth (Porter et al., 1995). In culture, growth
cones of motor axons stop for up to several hours when they contact
s-laminin, without retracting or turning, indicating that s-laminin acts
as a stop signal.

A spatial difference of growth-regulating molecules can also produce
axonal stop behavior. It is likely that this mechanism acts in TC ax-
onal targeting in the cortex, that is, the laminar difference in growth-
promoting or growth-inhibitory molecules could produce termination
of TC axon growth. This regulatory mechanism was studied by grow-
ing thalamic axons on chemically fixed cortical slices. Why fixed cortical
slices were used is because membrane-associated molecules rather than
diffusible molecules were thought to underlie TC axon growth. Indeed,
TC axons were found to stop growing suddenly in a restricted region
in the time-lapse study, indicating that local molecular cues regulate
axonal termination. Moreover, this in vitro system in combination with
enzymatic perturbation permits a direct assessment of activity and bio-
chemical properties of membrane-associated molecules which may af-
fect TC axon behaviors without the confounding influence of diffusible
factors that would be released from living cortical cells (Yamamoto et al.,
2000b).

TC axons entering the lateral edge of the fixed cortical slice exhibited
an obvious difference in axonal extension between cortical layers: TC
axons grow more extensively in layers 5 and 6 than layers 2/3 and 4
(Fig. 3). One possible explanation for this phenomenon is that growth-
permissive or promoting activity is weaker in the upper layers than in
the deep layers. Alternatively, growth-inhibitory components may be
expressed in the upper layers. To test these possibilities, fixed cortical
slices were subjected to several enzymatic treatments prior to culturing
with thalamic explants (Yamamoto et al., 2000b). The result showed that
the suppression of axonal growth in the upper layers is reduced consid-
erably by phosphatidylinositol-specific phospholipase C pretreatment
of cortical slices (Fig. 3). Therefore, the laminar difference in axonal
growth can be attributed to growth-inhibitory activity, in large part due
to glycosylphosphatidylinositol-linked molecules in the upper layers,
which supersedes some growth-promoting activity (Götz et al., 1992)
in all cortical layers. The existence of growth-inhibitory components in
the upper layers has also been suggested from the point of view of cell
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Figure 3 Lamina-specific growth of TC axons on fixed cortical slices (From
Yamamoto et al., 2000b). Axonal growth was analyzed in untreated slices (A)
or slices treated with phosphatidylinositol-specific phospholipase C (B), chon-
droitinase (C), heparitinase (D) or neuraminidase (E). Note that the suppres-
sion of axonal growth in the upper layers is reduced significantly (asterisks) by
phosphatidylinositol-specific phospholipase C treatment.

adhesion. Emerling and Lander (1994) have shown that dissociated tha-
lamic cells adhere better to the deep cortical layers of brain slices than
to the upper layers. If cell attachment is mechanistically related to ax-
onal elongation (Forster et al., 1998), this finding further supports the
notion that inhibitory activity in the upper layers is involved in axonal
targeting.

It should be noted that the growth-inhibitory activity in the upper
layers is not strong enough to suppress TC axon invasion into the CP,
as TC axons are able to enter the CP from the pial surface (Yamamoto
et al., 2000b). Therefore, the relative difference between the upper and
deep layers rather than absolute concentration of growth-regulating
molecules could contribute to axonal stop behavior.

3. Mechanisms of TC Axonal Branching in the
Target Layer

Molecular mechanisms for axonal branching are poorly understood, but
several ECM or cell surface molecules have been reported to be able to
affect axonal branching. N-cadherin (Inoue and Sanes, 1997), ephrin-
A5, one of the EphA ligands (Castellani et al., 1998), reelin, which is
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Figure 4 Lamina-specific TC axon branching. A, DiI-labeled TC axon forms
specifically in layer 4 of fixed cortex (From Yamamoto et al., 2000a). Bar rep-
resents 0.2 mm. B, Cortical lamination is shown by bisbenzamide staining. C,
Distribution of branch-regulating molecules in the developing cortex. There
are a branch-inducing factor (+) and a branch-inhibitory factor (−), PSA in the
developing cortex.

responsible for the reeler phenotype (Del Rio et al., 1997), and Slit-2,
which was originally identified as a repellent molecule for a subset of
neurons (Wang et al., 1999; Ozdinler and Erzurumlu, 2002) promote
axonal branching in CNS and PNS neurons. Although one difficulty is
isolation of branch-inducing factors from growth-promoting activity, all
of the factors listed act as positive regulators.

We have demonstrated that an inhibitory mechanism also plays an
important role in TC axonal branching in the target layer. This was
revealed by examining axonal branching on fixed cortical slices as de-
scribed above (Yamamoto et al., 2000a): Living thalamic explants were
juxtaposed to fixed cortical slices, and the laminar location of axonal
branching was analyzed. Interestingly, most axonal branches formed
in layer 4 of even fixed cortical slices, indicating that lamina-specific
branching is regulated by membrane-associated molecules (Figs. 4A
and B). Moreover, pretreatment of fixed cortical slices with endoneu-
raminidase N, the enzyme that specifically digests polysialic acid (PSA)
on neural cell adhesion molecule, resulted in axonal branches emerging
across broader laminar locations. This role for PSA would be easiest
to explain if PSA expression was lowest in layer 4. However, PSA ex-
pression was nearly uniform across cortical layers (Seki and Arai, 1991;
Yamamoto et al., 2000a). A plausible explanation is that a positive cue
whose activity is suppressed by PSA is distributed in all layers but with
a peak in layer 4. If the threshold of activity required for branching
is only attained in layer 4, then in effect PSA serves as a filter that in-
creases the signal-to-noise ratio during innervation (Fig. 4C). Thus, PSA
in the cortex is considered to prevent TC axons from forming branches
in inappropriate layers rather than eliminate aberrant branches that ap-
pear in layers other than the target layer (Seki and Rutishauser, 1998).
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However, the fact that laminar specificity is reduced but still retained
after the enzymatic treatment implies the presence of a branch-inducing
factor, which is localized in layer 4.

4. Identification of Lamina-Specific Growth- and
Branch-Regulating Molecules

Axonal stopping and branching are crucial for TC axonal targeting.
Furthermore, it is likely that both positive and negative molecules reg-
ulate these axon behaviors. Thus, multiple molecules could be involved
in this process. There is now strong evidence for growth-inhibitory fac-
tor(s) in layers 2/3–4, branch-inducing factor(s) in layer 4, and growth-
promoting and branch-inhibitory factors in all cortical layers.

The great challenge that now stands before us is to identify these
molecules. It has been reported that several cell surface and ECM
molecules, such as Eph receptors and ligands (Donoghue and Rakic,
1999; Mackarehtschian et al., 1999; Vanderhaeghen et al., 2000; Yabuta
et al., 2000), and chondroitin and heparan sulfate proteoglycans
(Litwack et al., 1994; Oohira et al., 1994; Maeda and Noda, 1996;
Watanabe et al., 1996), are expressed with varying degrees of laminar
specificity. As for the upper layers, Sema-7A, a semaphorin family mem-
ber, is expressed in layers 2/3–4 of the neonatal rodent cortex (Xu et al.,
1998). Cadherin-6 and rCNL3, a G-protein-coupled receptor are also ex-
pressed in the upper layers of the developing cortex (Suzuki et al., 1997;
Chenn et al., 2001). These distributions match the laminar expression of
the growth-inhibitory activity for thalamic axons. It would be worth-
while to examine whether these molecules affect TC axonal behaviors.

However, it is not certain whether TC axon termination and branching
can be explained by only the known molecules. We attempted to search
for the molecules expressed specifically in the upper layers, in particular,
in layer 4, by constructing a subtraction cDNA library in which cDNAs
derived from layer 4 strips of P7 rat somatosensory cortex were enriched
by subtracting cDNAs from layer 5 strips (Zhong et al., 2004). Differen-
tial screening and in situ hybridization demonstrated that several clones
were expressed strongly in layer 4 or layer 2/3–4 of P7 rat cortex. One of
the obtained clones was expressed rather specifically in layer 4 (Zhong
et al., 2004) (Fig. 5). Sequence analysis demonstrated its features of a
transmembrane protein, including a signal peptide sequence, two im-
munoglobulin and thrombospondin domains. Its cytoplasmic region
consists of ZU5 and death domains, which are common to unc5-like
netrin receptors. We designated this novel member of the unc5 family
as unc5h4.

The expression profile during development showed a migrating be-
havior of unc5h4 expression. Layer 4 cells are born at E16-17 in the
ventricular zone and migrate to the subventricular and intermediate
zones at E18. At P0, they move to the most superficial part of the
CP, and gradually settle in layer 4 by P6. Unc5h4 expression closely
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Figure 5 Existence of the gene that is specifically expressed in layer 4 of P7 rat
cortex (From Zhong et al., 2004). A, Expression pattern of unc5h4, one of the
genes obtained from a subtraction cDNA library. Bar represents 1 mm. B, layer
4-specific expression of unc5h4 in the somoatosensory cortex. Bar represents
0.2 mm. C, Nissl-stained section.

resembles this migration pattern, suggesting that unc5h4 is expressed
during development by the cells destined to form layer 4 of the cortex.
Moreover, unc5h4 expression in embryonic stages was rather uniform
across all cortical areas, while it is weak in the motor cortex in postnatal
stages. This finding is consistent with the view that layer 4 cells express
unc5h4, as granular cells, the major population in layer 4, are scarce in
the motor cortex. Our recent study further showed that thalamic cells
tended to form axonal fasciculation on unc5h4-coated dishes (our own
unpublished observations). Thus, its molecular characteristics raise the
possibility that it is involved in the interactions between layer 4 cells, or
between layer 4 cells and TC fibers.

5. Regulatory Mechanisms by Secreted Factors

As described above, TC axonal targeting is primarily regulated by
membrane-associated molecules. However, secreted molecules could
also affect these axon behaviors. Indeed, some secreted factors from liv-
ing cortical cells have been shown to promote TC axon growth (Lotto
and Price, 1995; Rennie et al., 1994). Neurotrophins are plausible candi-
date molecules, since a number of studies have demonstrated that they
are involved in the regulation of axonal growth and branching in the
CNS as well as PNS (Davies et al., 1986; Morfini et al., 1994; Segal et al.,
1995; Cohen-Cory and Fraser, 1995).

First, we studied the precise time course of neurotrophin expression
in the developing cortex (Hanamura et al., 2004). A quantitative enzyme
immunoassay demonstrated that neurotrophin-3 (NT-3) expression was
strong between E18 and P7 with a peak value at P3, when TC axons
are invading the CP and begin to form branching. On the contrary,
brain-derived neurotrophic factor (BDNF) expression was negligible
until P7 but afterwards increased dramatically. Similar developmental
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Figure 6 TC axon growth on fixed cortical slices in the presence of NT-3 and
BDNF. E15-16 thalamic explants were juxtaposed to the lateral side of fixed P7
cortical slices in the presence of either NT-3 or BDNF (From Hanamura et al.,
2004). Quantitative analysis shows that NT-3 enhances axonal growth.

time courses of BDNF and NT-3 mRNA expressions are found in the cat
visual cortex (Lein et al., 2000). Thus, it is likely that NT-3 rather than
BDNF contributes to TC axon targeting processes.

Whether NT-3 affects TC axon behavior was examined in the culture
system where living thalamic explants were juxtaposed to the chemi-
cally fixed cortical slices (Yamamoto et al., 2000b; see above). This exper-
imental condition allows us to examine direct action of neurotrophins,
since endogenous neurotrophins are no longer secreted from the target
cortical cells. Furthermore, the possibility that dendritic changes of corti-
cal cells by the neurotrophin may bring some influences on TC axons can
also be excluded. The result showed that in NT-3 containing medium TC
axon growth dramatically increased in all cortical layers of fixed cortex
(Hanamura et al., 2004) (Fig. 6). In agreement with this, geniculocortical
axons have been demonstrated to fail to invade the CP in NT-3 knockout
mice (Ma et al., 2002). However, the growth-promoting activity of NT-3
was not found on collagen-coated dishes. This finding implies that NT-
3 enhances TC axon growth by cooperating with membrane-associated
molecules on cortical cells but not with collagen.

Although the component that cooperates with NT-3 has not been iden-
tified, it should be present in the membrane fraction (Castellani and
Bolz, 1999). Moreover, a quantitative analysis demonstrated that en-
hancement of axonal growth in the upper layers including layer 4 was
higher than that in the deep layers, indicating that the membrane-bound
component should appear in higher concentrations in the upper layers.
This cooperative activity of NT-3 may contribute to TC axon growth in
layer 4 by overcoming the inhibitory activity that is distributed in the
target layer (Fig. 7). Such a neutralization effect of NT-3 for growth in-
hibitory molecules has been demonstrated in regenerating axon growth
in the spinal cord (Schnell et al., 1994). In addition, NT-3 messages are
localized in layer 4 of the cat visual cortex (Lein et al., 2000), although
the protein expression pattern is not obvious. Such localization of NT-3
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Figure 7 NT-3 action in the developing neocortex. In the developing cortex, a
growth-inhibitory molecule (−) is present in the upper layers (A). NT-3 (closed
circle) can promote TC axon growth in the target layer, by neutralizing the
inhibitory activity (B).

expression can produce more restricted action on TC axon growth in
the target layer (Fig. 7).

6. Conclusion

Our findings in in vitro preparations have demonstrated that TC axonal
targeting involves axonal termination and branching processes. Evi-
dence further indicates that these processes are primarily regulated by
the cell surface molecules and/or ECM molecules that are expressed in a
lamina-specific manner in the developing cortex, although secreted fac-
tors such as neurotrophins also play a role in these axon behaviors. Our
extensive molecular screening has further shown that some membrane-
associated factors including unc5h4 are expressed specifically in layer
4, the target layer. A future study would be to reveal the role of the
candidate molecules and their regulatory mechanisms.
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Abstract

Citron-K (CIT-K) is a target molecule for activated Rho which is ex-
pressed at high levels in the proliferating areas of the CNS from E10.5
to E16. CIT-K −/− mice display severe defects in neurogenesis, due to
altered cytokinesis and aptoptosis: these cellular alterations result in
severe microencephaly and in death of the animal due to fatal seizures
between the 2nd and the 3rd week of age. We have analysed the devel-
opment of somatosensory cortex in the CIT-K −/− mice, showing i) a
decrease in the barrelfield area and in the size of single whisker-related
barrels, ii) a decrease in the cortical thickness, especially in supragran-
ular layers, iii) a decrease in the density of myelinated fibers. We also
report cellular changes in cortical neurons: i) both pyramidal neurons
and interneurons show altered dendritic development and frequent
polyploidy, and ii) the distribution of interneurons is affected by CIT-
K deletion. CIT-K −/− mice are a useful tool to study the role of this
molecule in the cellular development of cerebral cortex in vivo, and the
development and plasticity of cortical areas and connections in a mi-
croencephalic animal. Moreover, they represent an interesting model
of neonatal epilepsy, in which to study the role of changes in cellu-
lar morphology and interneuron distribution in the genesis of epileptic
seizures.

From a cellular point of view, the development of cerebral cortex consists
of a series of progressive events including cell proliferation, migration,
emission and growth of dendrites and axons and synaptogenesis, associ-
ated to regressive events such as normally occurring, developmentally-
regulated apoptosis, dendritic pruning, elimination of axon collaterals
and of inactive synapses.

Small GTPases of the Rho family have been implicated in the reg-
ulation of several of these phenomena in vitro and, more recently, in
vivo. These proteins act as critical regulators of cytoskeletal structures,
and have been involved in a wide variety of cellular events, including
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polarization, establishment of cell-to-cell contacts, motility, migration,
membrane trafficking, cell growth control, cytokinesis and transcrip-
tional activation by growth factors and environmental stress (Van Aelst
and Souza-Schorey, 1997; Hall, 1998; Bishop and Hall, 2000).

Rho GTPases exert their complex functions through a network of ef-
fector proteins, which physically interact with the GTP-bound confor-
mation and change their biologic activity upon binding (Narumiya et al.,
1997; Hall, 1998). These molecules could work as integration points in
Rho-dependent signal transduction pathways and play more restricted
roles in the regulation of cytoskeletal dynamics (Van Aelst and Souza-
Schorey, 1997). Therefore, inactivation of specific effectors is even more
informative than targeting of any given GTPase. Abnormalities in Rho
GTPase signalling are a prominent cause of mental retardation (Ramark-
ers, 2002).

Citron-N (CIT-N) and Citron-K (CIT-K) are two target molecules for
activated Rho, produced by the same transcription unit (Di Cunto et al.,
1998; Madaule et al., 1998). CIT-N was first identified for its ability to
interact with GTP-bound Rho and Rac (Madaule et al., 1995). It is specif-
ically expressed in the postnatal and adult nervous system and is local-
ized to postsynaptic densities, where it forms a stable complex with the
membrane-associated guanylate kinase PSD95 (Furuyashiki et al., 1999;
Zhang et al., 1999). The functions of CIT-N are unknown, although it
has been hypothesized that it may link the Rho signalling cascades to
NMDA receptor complexes (Furuyashiki et al., 1999; Zhang et al., 1999).
Recently, Di Cunto and coll. (2003) have shown that CIT-N is associated
with the Golgi apparatus and that inhibition of its expression results in
the dispersion of the Golgi apparatus in hippocampal neuron cultures.
On the contrary, CIT-K is expressed at high levels in the proliferating
areas of the CNS from E10.5 to E16, and in external granular layer of the
cerebellum postnatally.

Recently (Di Cunto et al., 2000), a CIT-K −/− mouse has been gener-
ated, bearing severe defects in neurogenesis, due to altered cytokinesis
and aptoptosis: these cellular alterations result in severe microencephaly
and in death of the animal due to fatal seizures between the 2nd and
the 3rd week of age. At the same time, a spontaneous mutation has
been shown to produce similar morphological and functional effects in
flathead rats (Sarkisian et al., 1999; Roberts et al., 2000): this mutation
causes a frameshift in the second coding exon, resulting in complete ab-
sence of the CIT-K protein (Sarkisian et al., 2002). BrdU labeling studies
have shown a normal DNA synthesis in the proliferative layers of the
cerebral cortex and of the cerebellum (Di Cunto et al., 2000). On the con-
trary, TUNEL staining and activated caspase 3 immunohistochemistry
showed a marked increase of apoptotic neurons in the intermediate zone
of the cerebral cortex and at the interface between the external granular
layer and the Purkinje cell layer of the CIT-K −/− mouse at the time of
cell proliferation and migration (Di Cunto et al., 2000). Flow cytometry
showed a marked increase in tetraploidy in the cerebellum: this obser-
vation was accompanied by the finding of frequent binucleated cells in
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Table 1 Volumes (mm3) of different brain areas in the wild type and
CIT-K −/− mouse, as measured in three-dimensional
reconstructions at the computer using the Neurolucida and
Neurorotate programs.

+/+ −/− Variation (%)

Hemisphere 80.155 ± 1.54 38.915 ± 0.09 −51

Cerebral cortex 22.1 ± 0.41 14.48 ± 0.11 −34

Corpus callosum 1.655 ± 0.12 0.52 ± 0.03 −69

Striatum 4.775 ± 0.21 2.695 ± 0.19 −44

Lateral ventricles 0.045 ± 0.04 0.13 ± 0 +189

Third ventricle 0.14 0.14 no

Hippocampus 8.14 ± 0.01 2.625 ± 0.08 −68

cerebral cortex, and lead to the hypothesis that increased apoptosis is
due to defective cytokinesis (Di Cunto et al., 2000).

1. Cerebral Cortex in the CIT-K −/− Mouse

CIT-K −/− mice are markedly microencephalic, showing striking reduc-
tion in the size of cerebral cortex and cerebellum. Three dimensional
reconstructions of the brain (from coronal sections, between a plane
through the caudal olfactory bulbs and a plane through the caudal end
of the superior colliculus) led to the observation that the decrease in size
at P13 is consistent (34 to 70%) in all structures considered (see Table 1).
The reduction in size of brain structures can be easily observed in Fig.
1A-I vs Fig. 1a-i. In parallel, there is a remarkable increase in size of the
lateral ventricles (189%), probably due to cell loss in the brain. In partic-
ular, the volume of cerebral cortex was reduced by 34%, and so are the
cortical surface (at P13 the surface is 69 mm2 in the control and 47 mm2

in the CIT-K −/− mice) and the cortical thickness (from 940 ± 86 µm in
controls to 752 ± 120 µm in the CIT-K −/− mice) (Fig. 1J-K vs 1j-k).

1.1. Pattern Formation in the CIT-K −/− Mouse

Notwithstanding microencephaly, pattern formation occurs around P4
as in controls: in the posteromedial subfield of the somatosensory cortex
the vibrissae-related barrels are regularly expressed, and all whiskers
are represented. In parallel with cortical shrinkage, barrelfield area is re-
duced, both as overall area and as single barrel area, whereas the barrel
septa are larger than in controls (Fig. 2). Barrel formation can still be in-
fluenced by manipulating the periphery: neonatal ablation of a whisker
row results in the enlargement of the barrels of the neighbour whiskers
and in the fusion of the barrels representing the whiskers which have
been ablated. Many investigators have shown that during the first few
days of postnatal life, cortical barrel patterns are exquisitely sensitive to
the state of the periphery (Killackey and Belford, 1980; Andrés and Van
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Figure 1 Rostrocaudal serial coronal sections through the encephalon of wild
type (A-I) and of CIT-K −/− mouse (a-i) at P13 (scale bar = 1 mm). Note the
reduction in thickness of visual (J vs j) and somatosensory (K vs k) cortex,
especially evident for the supragranular layers, and the decreased density of
myelinated fibers entering the cortex (scale bar = 200 µm). Details show the
reduction in size of the cortical peduncle (L-l, scale bar = 500 µm) and of the
corpus callosum (M-m, scale bar = 200 µm) in the CIT-K −/− mouse.

der Loos, 1982; Rhoades et al., 1990; Vercelli et al., 1999). Transection of
the infraorbital nerve (ION) during this period results in the formation
of five continuous stripes (whisker row representations) in layer IV of
the posteromedial barrel subfield, with no differentiation of individual
whisker-specific clusters within the stripes. Disruption of a single row of
vibrissae at birth leads to the development of a single, thin band of cells
and axons corresponding to the damaged whisker row (Killackey and
Belford, 1980; Welker and Van der Loos, 1986). Our results with CO histo-
chemistry in the CIT-K −/− mice confirm these reports (data not shown).
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Figure 2 Tangential sections through the barrelfield of somatosensory cortex in
P13 wild type (A) and CIT-K −/− (B) mice, revealed by CO histochemistry. The
barrelfield is reduced in area, and single barrels are reduced in size, whereas
barrel septa are expanded in the CIT-K −/− mice.

1.2. Cortical Layers

In the CIT-K −/− mice, cortical layering is conserved, but layers are
thinner than in controls, especially in supragranular layers. The den-
sity of neuronal profiles is decreased, and dendritic bundles of pyra-
midal neurons are disorganised. The density of myelinated fibers is
strikingly reduced: they are rare within the layers and the major fiber
systems originating from cerebral cortex (corpus callosum, internal cap-
sule and cerebral peduncles) are absent or strongly reduced in size com-
pared to controls. Myelinated fiber depletion can be observed both in
blackgold stained material (Figures 1L-l, cerebral peduncle; 1M-m, cor-
pus callosum) and in MBP-immunoreacted sections (data not shown),
and is probably due not only to the decreased number of projecting
neurons, but also to olygodendrocyte depletion. Changes in fiber sys-
tems reminds of some alterations in the organisation of cortical connec-
tions in the somatosensory cortex observed after E15 X-ray irradiation
(Funahashi et al., 1997) and in MAM-treated microencephalic rats (Ueda
et al., 1999)

In all cortical layers, but more frequent in infragranular layers, both
pyramidal neurons and interneurons may be binucleated (Fig. 3I and
4E): this aspect is striking in infragranular NADPH-diaphorase positive
interneurons (Fig. 4E).

1.3. Development of Cortical Neurons

Cerebral cortex consists of two major types of neurons: pyramidal neu-
rons, representing 60–70 % of total neurons, and GABAergic inhibitory
interneurons. Both populations are affected in their number due to the
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Figure 3 DiI (1,1 -dioctadecyl-3,3,3 ,3 -tetramethylindocarbocyanine perchlo-
rate)-labeled cellular elements: Callosally-projecting cortical neurons were ret-
rogradely labelled by inserting a crystal of DiI into the corpus callosum in
paraformaldehyde-fixed P4 brains of control (A, D, G and H) and CIT-K
−/− (B, C, E, F and I) mice. In A-C, the distribution of callosally-projecting
neurons in cerebral cortex can be compared in wild type and CIT-K −/−

mice: they are similar, but especially in the supragranular layers in formation
callosally-projecting neurons seem to be less frequent, and sometimes their den-
drites are not properly oriented. In infragranular layers, binucleated cell bod-
ies are frequently observed (I). Scale bar = 200 µm in A-C, 100 in D-G and
50 in H-I.

increase in neuronal death during development: Di Cunto and cowork-
ers (2000) showed that in the the CIT-K −/− mice neural progenitors
proliferate regularly in the subventricular zone, but die soon after hav-
ing been generated; similarly, LoTurco and coworkers (Sarkisian et al.,
1999, 2001, 2002; Lo Turco et al., 2003) showed an increased number
of dying neurons in the ganglionic eminence of the developing flathead
rat. The outcome is the reduced cortical thickness due to depletion of
both neuron types, more abundant in supragranular layers than in in-
fragranular ones: i) this could be explained by a diverse sensitivity of
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later generated neurons to defects in cytokinesis, as suggested by the
observation of an higher density of binucleated nuclei in the infragran-
ular layers. ii) Alternatively, and more likely, the major involvement of
supragranular layers could be ascribed to the progressive depletion of
progenitors due to cell death of newborn cells progressively reducing
the number of neurons that are generated in a time unit.

We have shown that, in both pyramidal neurons and in interneurons
of the CIT-K −/− mice, dendritic development is altered. A great num-
ber of in vitro and in vivo studies have recently implicated Rho GTPases
and their effectors in neurite extension and remodeling. In particular, ac-
tivation of RhoA induced neurite retraction in cultured mammalian neu-
ronal cells, while the activity of Rac1 and Cdc42 was required in the same
experimental models for neurite extension (Kozma et al., 1977; Gallo and
Letourneau, 1998). Accordingly, it has been shown that Drosophila Rho
is required in vivo to limit the extension of neuronal dendritic arboriza-
tions (Lee et al., 2000). Among the effector molecules of Rho, p160-ROCK
seems to play a particularly important role in mediating neurite collapse
(Hirose et al., 1998; Maekawa et al., 1999). Time-lapse microscopy of sin-
gle optic tectal neurons in Xenopus tadpoles has shown that enhanced
Rac and Cdc42 activity selectively increase branch addictions and re-
tractions, and dominant-negative RhoA increases branch extension
(Li et al., 2000). Expression of dominant –negative Rac1 results in pro-
gressive elimination of dendritic spines, whereas hyperactivation of
RhoA causes a drastic simplification of dendritic branch pattern depen-
dent on the activity of the downstream kinase ROCK (Nakayama et al.,
2000). Rho GTPases modulate dendritic spine formation, plasticity and
function; moreover, at least three genes (for Oligophrenin 1, PAK3 and
αPIX) involved in X-linked mental retardation participate directly in cel-
lular signalling through Rho GTPases (reviewed in Ramakers, 2002). In
addition, other genes involved in mental retardation are linked to Rho
signalling indirectly, such as in Aarskog-Scott syndrome, in Williams
syndrome and in fraX syndrome (Ramakers, 2002). However, despite the
evidence obtained with cell culture systems and with invertebrate ani-
mal models, the exact roles played by Rho-GTPases and by their effectors
during development of the mammalian CNS are still largely obscure.

In order to investigate the effects of deleting CIT-K gene on dendritic
development, we have performed a quantitative analysis of neuronal
processes in cortical pyramidal cells of CIT-K −/− mice and of their lit-
termate +/+ controls. We studied the development of cortico-collicular
and of callosally-projecting neurons at P8 and P14 (after which age the
CIT-K −/− usually die), after retrograde labeling with DiI crystals in-
serted in the superior colliculus and in the corpus callosum (Di Cunto
et al., 2003). The length and complexity of neuronal processes were quan-
titatively analyzed by fluorescence microscopy using the Neurolucida
imaging system (Glaser and Glaser, 1990). The distribution of cortico-
collicular neurons did not change compared to controls, but the mean
distance between their cell bodies and the pial surface was significantly
decreased (454.66 ± 118.69 µm in ko vs 541.25 ± 89.8 µm in wt at
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P8 − p = 0.02, and 466.74 ± 38.29 µm vs 642.97 ± 124.62 µm respec-
tively, at P14 − p < 0.001). Callosally-projecting neurons were found
both in supragranular and in infragranular layers, but, due to the strong
decrease in thickness and cellularity of supragranular layers (Di Cunto
et al., 2000), it was difficult to discriminate supra- and infragranular
neurons. Nevertheless, supragranular neurons projecting to the corpus
callosum were still present. Quantitative analysis (Table 2) showed that,
in P8 CIT-K −/− mice, the apical dendrites of the cortico-collicular pyra-
midal neurons were significantly shorter than in controls. Interestingly,
no significant differences could be observed in the same cells at P14; if
anything, apical dendrites tended to be longer in the knockouts. The
same trend was observed in the callosally-projecting pyramidal neu-
rons, even if in this case the differences were not significant at both the
stages which were considered in the study.

In contrast, basal dendrites followed a different developmental pat-
tern in corticocollicular and callosally-projecting neurons. In corticocol-
licular neurons, the total dendritic length was significantly shorter than
in controls in both P8 and P14 knockout mice. The mean length of the
terminal segments was similar at P14, thus indicating that the decrease
in total length was due mainly to a slightly lower degree of arborization
(reflected by the higher number of nodes in the wild type). Basal den-
drites of callosally-projecting neurons were of the same length in +/+

and −/− mice at P8, but tended to be longer in −/− mice at P14. This
increase in length became statistically significant when we considered
terminal segments, since the degree of arborization was almost equal in
the two groups (Table 2).

At both ages considered, the size of the somata of corticocollicular
neurons was larger in control mice, whereas that of callosally-projecting
ones was larger in −/− mice (Table 2).

1.4. Development of Cortical Interneurons

GABA interneurons currently account for 1/6-1/4 of all cortical neu-
rons (15–25% in Jones, 1993; 14.6–22.8% in Gonchar and Burkhalter,
1997) probably close to the upper limit due to the low GABA expression
of some interneurons: they are anatomically (Cobas et al., 1987), phys-
iologically and molecularly heterogeneous (Fairen et al., 1984; Jones
and Hendry, 1986; Naegele and Barnstable, 1989; Kawaguchi, 1995).
They colocalize several different peptides such as somatostatin (SOM),
cholecystokinin (CCK), neuropeptide Y (NPY), vasointestinal peptide
(VIP) and the neurochemical markers choline acetyltransferase (ChAT)
and nitric oxide synthase (NOS) or NADPH-diaphorase (Vincent and
Kimura, 1992; Valtschanoff et al., 1993). In addition, different popu-
lations of cortical GABAergic neurons may express different calcium
binding proteins, such as parvalbumin (PV), calbindin-D28 (CB) and
calretinin (CR). GABAergic interneurons probably serve to sharpen the
selectivity of sensory responses (in the visual system, Somers et al., 1995)
and to prevent excessive firing (Benardo and Wong, 1995) by responding
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Table 2 Quantitative analysis of pyramidal neurons of the visual cortex projecting to the corpus callosum or to the superior
colliculus in wild type (WT) and CIT-K −/− (KO) mice. Each parameter is expressed as mean ± standard deviation of three
animals, five neurons each. Statistical analysis was performed using the unpaired Student T test, two tails (From Di Cunto et al.,
2003).

Age Cell type Genotype Cell body Basal Apical

Area (µm2) Total length (µm) # of nodes Length of terminal Total length (µm) # of nodes
segments (µm)

P8 Callosally-projecting WT 191.12 ± 43.89 378.43 ± 284.35 2.62 ± 1.74 1304.24 ± 797.76 8.73 ± 6.06
KO 232.14 ± 77.36 380.84 ± 216.23 2.89 ± 1.96 1074.7 ± 617.62 7 ± 3.89
P 0.05 0.966 0.494 0.217 0.216

Cortico-collicular WT 268.44 ± 49.34 340.57 ± 227.58 2.36 ± 1.37 2573.04 ± 1076.13 15.55 ± 3.95
KO 220.05 ± 48.92 264.64 ± 164.57 2 ± 1.52 1569.2 ± 697.7 14 ± 7.31
P 0.006 0.016 0.603 0.005 0.447

P14 Callosally-projecting WT 232.17 ± 30.52 418.17 ± 243.68 2.75 ± 1.65 77.04 ± 64.28 1360.82 ± 840.47 8.06 ± 4.6
KO 279.57 ± 48.88 513.94 ± 382.63 2.68 ± 1.66 106.88 ± 80.77 1545.71 ± 833.69 8.12 ± 4.11
P 0.001 0.073 0.775 < 0.001 0.259 0.967

Cortico-collicular WT 322.9 ± 71.18 574.83 ± 323.84 3.19 ± 2.02 101.14 ± 75.89 3199.81 ± 1247.84 13.47 ± 3.49
KO 269.68 ± 91.97 452.34 ± 228.25 2.5 ± 1.45 97.11 ± 67.77 3510.01 ± 1758.2 15.08 ± 5.55
P 0.1 0.022 0.039 0.55 0.597 0.354
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Figure 4 Cortical interneurons expressing calretinin (A-B) or calbindin (C-D)
in coronal sections through the somatosensory cortex of control (A and C) and
CIT-K −/− (B and D) P13 mice. In E-G, NADPH-d positive interneurons in
tangential (E) and coronal (F-G) sections of somatosensory cortex at P7 (E) and
P13 (F-G): note the enormous increase in size of the cell body in F (CIT-K −/−) vs
G (control), and the polyploidy of the nuclei (arrows) and the increased number
of dendrites in E (CIT-K −/−).

with opposing inhibition to the excitation in spiny neurons (Ferster and
Jagadeesh, 1992). On the other hand, GABAergic interneurons are in
turn inhibited by other GABAergic interneurons (Gonchar and Burkhal-
ter, 1999A and 1999B), thus disinhibiting spiny neurons and synchro-
nizing pyramidal cell activity (Jefferys et al., 1996).

We have recently studied the development of cortical interneurons in
the somatosensory cortex of CIT-K −/− mice (Muzzi et al., 2005, sub-
mitted). To map their distribution and obtain their density, we have
labelled interneurons immunohistochemically with antibodies (Fig. 4)
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against gamma aminobutyric acid decarboxylase 67 (GAD67), CB, PV
and CR; in addition, nitric oxide synthesizing interneurons were la-
belled by ßnicotinamide dinucleotide phosphate-diaphorase (NADPH-
d) histochemistry.

The density of NADPH-d-positive interneurons was significantly de-
creased by 59% in the supragranular layers, whereas in the infragranular
layers their density was comparable to controls. Similar results were ob-
tained with GAD67 and CR immmunohistochemistry, whereas PV-IR
interneurons were significantly decreased both in supra- and in infra-
granular layers, and CB-IR were decreased in infragranular layers. These
findings suggest that the syndrome affecting CIT-K mice involves in-
terneuron types differently. Disruptions of the developmental plans for
the generation of interneuronal diversity, both of genetic and epigenetic
origin (Santhakumar and Soltesz, 2004), lead to pathological alterations
in cerebral cortex. For example, i) in schizophrenia PV-positive (Benes
and Berretta, 2001) and CB-positive (Reynolds et al., 2001) interneurons
are selectively depleted, or ii) in mutations of homeobox genes, related
to Dlx1 and Dlx2, associated with infantile spasms, mental retardation
and autism the GABAergic system is altered (Sherr, 2003). iii) A decrease
in PV immunoreactivity can be observed in the binocular area of the rat
visual cortex following monocular deprivation (Cellerino et al., 1992).
Deletion of several genes may affect interneuron migration and distri-
bution into the developing cerebral cortex. In the somatosensory cortex
of Otx1 (the murine homolog of the Drosophila orthodenticle gene) −/−

mice (which is thinner than in controls, and shows a decreased density
of layer V large pyramidal neurons) PV-expressing interneurons are dis-
tributed in patches, thus indicating that chandelier and basket cells (the
most important inhibitory input to pyramidal neurons) are unevenly
distributed (Cipelletti et al., 2002; Pantò et al., 2004). This situation re-
minds of patients with intractable epilepsy associated with architectural
dysplasia (DeFelipe et al., 1994; Spreafico et al., 2000). In the motor cor-
tex of mdx (dystrophin deficient) mice, cortical interneurons express-
ing calcium-binding proteins are increased in numbers, possibly due
to an increased intracellular calcium secondary to lack of dystrophin
that stimulates the expression of calcium binding proteins or changes
in neuronal activity (Carretta et al., 2003).

The morphology of cortical interneurons of the different types was
altered from normal, mostly in infragranular layers: their somata were
significantly larger then normal, and bore more dendrites, such that
we called these interneurons “cockroach cells’’. Some of these findings
remind of morphological aspects in human cortical dysplasias and dis-
orders of development and might explain the recurrence of epileptic
seizures that bring these mice to death by the end of the 2nd week of
life. Alterations in neuronal morphology, size and in number and mor-
phology of dendrites affect especially in interneurons: in fact, alterations
in pyramidal neurons are much more subtle (Di Cunto et al., 2003). An
interesting hypothesis has been raised by Sarkisian et al. (2001), who
suggest that interneuron hypertrophy might be due to an increased
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availability of neurotrophins, especially of BDNF. Similar changes in
interneuron morphology have been reported in patients bearing corti-
cal malformations and epilepsy (Ferrer et al., 1992; Garbelli et al., 1999;
Thom et al., 2000). As for pyramidal neurons, these effects could be the
outcome of a complex interplay between genetic and epigenetic con-
straints. The cerebral cortex in the CIT-K −/− mice is strikingly altered,
with an overall decrease in thickness due to deprivation of supragran-
ular layers. This might change the availability of trophic factors, which
are reported to be very important in dendritic growth (McAllister et al.,
1995). Also, afferents are capable to influence PV expression in visual
cortex (Cellerino et al., 1992).

2. Conclusion

CIT-K −/− mice are a useful tool to study the role of this molecule in the
cellular development of cerebral cortex in vivo, and the development
and plasticity of cortical areas and connections in a microencephalic ani-
mal. Moreover, they represent an interesting model of neonatal epilepsy,
in which to study the role of changes in cellular morphology and in-
terneuron distribution in the genesis of epileptic seizures.
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7
The Absence of Layer 4 Dramatically
Alters Cortical Development in
Ferret Somatosensory Cortex

Debra F. McLaughlin, Sylvie Poluch, Beata Jablonska, and
Sharon L. Juliano

Anatomical Findings in the Model of
Cortical Dysplasia

The failure of neurons to migrate into the neocortex properly causes
many problems. Dysplastic cortex can result from genetic causes, which
produces dramatic failures of neurons to migrate properly, such as
lissencephaly or double cortex. These topics have been reviewed re-
cently by Crino (2004) and Bielas et al. (2004). More subtle abnormal
migration patterns can also occur, resulting in human disorders such
as dyslexia or epilepsy. Epigenetic factors that interfere with normal
developmental mechanisms also contribute to malformations of cere-
bral cortex (Castro et al., 2002; Ross, 2002). These can include expo-
sure to toxic substances or radiation, or ingesting substances such as
alcohol or cocaine during pregnancy. Altered GABAergic systems are
a common finding in models of human cortical dysplasia (Benardete
and Kreigstein, 2002). GABAergic interneurons may be exceptionally
vulnerable to trauma and errors in neurodevelopment partly because
they are generated remotely from the developing cortical plate; the
long distance they migrate to their target site may leave them par-
ticularly susceptible (Santhakumar and Soltesz, 2004). In schizophre-
nia, which is likely due to a combination of genetic and environmen-
tal factors, the number of parvalbumin-positive interneurons decrease,
which could reflect an actual loss of GABAergic neurons or de-
creased expression of this GABAergic cell marker (Benes and Berretta,
2001).

We developed a model of cortical dysplasia that interrupts the birth
of cells populating layer 4 in ferret somatosensory cortex. Most neurons
that eventually reside in layer 4 are born on E33 in the ferret (Noctor
et al., 1997); the gestational period for ferrets is 41–42 days. To do this,
we use a toxin that prevents mitosis for a restricted period of time.
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Figure 1 This is a Nissl stain demonstrating the cytoarchitecture in normal and
E33 MAM treated somatosensory cortex. The normal cortex clearly demon-
strates six layers. The architecture and lamination are relatively normal in the
MAM treated section, but layer 4 is very thin. The MAM treated cortex is
slightly thinner than the normal cortex, due to a deficit of layer 4 neurons.
Scale = 100 µm.

When methylazoxy methanol (MAM) is injected into pregnant ferrets
on embryonic day 33 (E33), layer 4 is dramatically thinner than normal,
while leaving the remaining layers relatively free of deficits (Noctor
et al., 2001) (Figure 1). In the model we developed, the cell size of the
remaining layers and the cell density outside of layer 4 are similar in
normal and MAM treated cortex (Noctor et al., 2001). Although many
features after E33 MAM treatment appear normal, other cortical prop-
erties diverge from typical somatosensory cortex. An obvious feature
to assess after the diminishment of layer 4 is the trajectory of projec-
tions from the thalamus. In somatosensory cortex, the bulk of thalamic
afferents usually terminate in layer 4, which is largely absent in the E33
MAM-treated animals. We found that rather than the normal, centrally
located, distribution of thalamic afferents, the projection to somatosen-
sory cortex was widespread, with axons from the thalamus distributing
nearly equally in all cortical layers (Figure 2).
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Figure 2 Shown are examples of thalamic axons labeled with DiI terminating
in the somatosensory cortex of normal and MAM treated cortex at P14. In the
normal cortex (top) the axons do not extend above layer 4 (arrows). In the MAM
treated cortex (bottom) the axons extend through and terminate in all cortical
layers.

Cortical Information Processing in the Relative
Absence of Cortical Layer 4

The widespread distribution of thalamic afferents implied that the cor-
tical responses to stimulation might be altered in the MAM-treated ani-
mals. The treated ferrets appear normal for daily activities, although
we did not specifically test them on behavioral tasks. They interact
with other ferrets, appear well groomed, and live to a normal life span.
To evaluate neuronal activity in response to stimulation, we recorded
extracellular responses from normal and MAM treated somatosen-
sory cortex. First, we determined that the map of the body in E33
MAM-treated cortex is normal. The position of the limbs and other
body parts are similar to those in normal cortex as are the receptive
field size and distribution. This observation suggests that although the
thalamic projections are not focused regarding their laminar distribu-
tion, they are guided appropriately to form a topographical map in the
cortex, so that the body loci represented in the thalamus project to their
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corresponding proper sites in the somatosensory cortex (Noctor et al.,
2001).

In further analysis, we determined that in contrast to the normal soma-
totopic arrangement, the pattern of activity evoked through the cortical
layers after stimulation was disturbed in MAM treated somatosensory
cortex. Examination of current source density (CSD) profiles in response
to a single tap to a digit, the normal pattern of evoked activity was simi-
lar to those generally reported for sensory cortex (Aizenman et al., 1996;
Di et al., 1990; Kenan-Vaknin and Teyler, 1994; Mitzdorf, 1988; Schroeder
et al., 1995) (Figure 3). This includes initial current sinks in layer 4, which
progress to the upper and lower layers (McLaughlin and Juliano, 2005).
The same general pattern can be observed in the laminar distribution
of multiunit responses (MUR). In the somatosensory cortex of MAM
treated animals, however, there was no distinct pattern of activity, and
the CSD profiles appeared to have little organization with very few dis-
tinct sinks (Figure 3). The laminar distribution of MURs in MAM treated
cortex is likely to underlie this pattern; they display simultaneous ac-
tivation across all cortical layers (McLaughlin and Juliano, 2005). This
pattern of synchronized activation may reflect the finding that thalamic
afferent fibers distribute equally in all layers, resulting in concomitant
layer activation.

The concurrent activation pattern across layers could account for
the observation that the body map in E33 MAM-treated animals was
relatively normal, since the somatosensory cortex appears able to re-
spond strongly to a single tap to the skin. That is, a single tap to
the skin elicits a strong response that conveys where the body was
stimulated. When we tested the ability of normal and MAM treated
somatosensory cortex to respond to a more complex or richer stim-
ulus, however, distinct differences emerged. For these richer stimuli
we used intermittent taps delivered at 20 Hz. In normal animals, the
cortical response entrained to the stimulus within 100–150 millisec-
onds, so that all cortical layers exhibited responses with periodicity in
the range of the stimulation rate. The initial activity occurred in layer
4 and then transferred to the upper and lower layers (Figure 3). In
the MAM treated animals, however, an initial response to the stimu-
lus occurred simultaneously across all cortical layers, but then failed
to sustain or entrain, most likely due to an inability to transfer in-
formation properly from layer 4 to other layers and alterations in
GABAergic mechanisms as discussed below (McLaughlin and Juliano,
2005).

Distribution of Excitatory and Inhibitory Receptors

The observation that the flow of activity through the cortical layers was
disturbed after layer 4 disruption suggested that the balance of exci-
tation and inhibition in treated somatosensory cortex may be altered.
To test this idea we studied the distribution of selected excitatory and
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Figure 3 A. Illustrated are current source density (CSD) and multiunit response
(MUR) profiles obtained after single taps to a digit on a ferret forepaw of a
normal (top) and E33 MAM treated (bottom) animal. One-dimensional CSDs
were computed for sequential recording levels through the full thickness of the
cortical layers. The smoothed contour surface maps represent current source
density measures over space (the y axis) and time (x axis). The gray scale rep-
resents values that are normalized across treatment groups. The arrowheads
follow the activation pattern of the sinks through different cortical layers. In
normal cortex, the initial response occurs in layer 4 and then progresses to the
upper and lower layers. The time axis is 80 msec. B. Multiunit activity evoked
by a single tap to a digit in normal (top) and MAM treated cortex (bottom). Each
trace represents activity recorded through the cortical layers, beginning at the
surface. In the normal somatosensory cortex, the response initiates in layer 4 and
progresses to other layers. In the MAM treated cortex, a response to the stimulus
occurs almost simultaneously in all layers. C. Cortical responses recorded at 3
different cortical levels and shown on a different time scale from those shown
in B. The stimuli were intermittent taps delivered at 20 Hz. In normal cortex,
the response develops over a period of 100–150 msec, is initiated in central cor-
tical regions and then transferred to the upper and lower layers, and becomes
entrained to the stimulus. The entrainment is best in the central layers. In MAM
treated cortex, a strong initial response occurs simultaneously across layers and
does not successfully entrain at the stimulation rate. Scale = 50 msec.

inhibitory receptors in normal and MAM treated ferret cortex. The
pattern of binding for NMDA, AMPA, and kainate receptors showed
little difference between the normal and MAM treated somatosensory
cortex. Although there were subtle distinctions, the overall laminar pat-
terns were similar. When we assessed the distribution of GABAA re-
ceptors, however, the binding shifted and expanded into the upper and
lower layers compared with the normal pattern, heavily concentrated in
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layer 4 (Jablonska et al., 2004). To assess this pattern shift in more detail
we used immunohistochemistry to evaluate the distribution of GABAAα

receptors. In normal animals, these receptors are dense in layer 4, and
sparsely represented in the other layers, whereas in MAM treated an-
imals the GABAAα receptors are dense centrally and expand into the
upper and lower layers. This expanded distribution also parallels the
widespread distribution of thalamic afferent fibers. Several studies sug-
gest that there is an association between termination of the thalamic
afferents and GABAA receptors although questions remain regarding
the exact relationship between thalamic terminations and these recep-
tors (Studler et al., 2002; Meier et al., 2003; Paysan and Fritschy, 1998).
To determine the relation between GABAA receptors and thalamic pro-
jections in our system, we labeled both the afferent fibers and GABAAα

receptors in the same sections. This revealed that the thalamic afferents
and GABAAα receptors are often colocalized, suggesting that they may
follow similar cues in determining their ultimate locations. They also
may respond to parallel cues in creating an altered distribution, such as
that seen in E33 MAM treated somatosensory cortex.

Our findings indicate that layer 4 plays a key role in orchestrating
overall development of sensory cortex. In our ferret model of cortical
dysplasia, the relative absence of cells in layer 4, a major target for thala-
mic afferent fibers, is most likely related to a broad termination pattern
of the ingrowing thalamocortical axons that terminate on the cells re-
maining in the E33 MAM treated cortex. Since the remaining pyramidal
cells are not the most effective in transferring information to other lay-
ers, and there are only a few cells in layer 4, the appropriate sequence of
projection through the cortex does not occur. This leads to the failure of
columns of cells in the somatosensory cortex to process complex stimuli.
The inability to process information because layer 4 fails to develop may
be similar to deficits in humans where simple incoming information can
be processed adequately, but breakdowns occur in attempts to manage
more complex stimuli.

Distribution of GABAergic Neurons

Because we found evidence of interruption to the GABAergic system
and disorganization of the balance of excitation and inhibition, we stud-
ied the distribution and migration of GABAergic interneurons into the
cerebral cortex of normal and MAM-treated ferrets. We first assessed
the distribution of GABAergic interneurons by evaluating the positions
of neurons expressing calcium binding proteins (parvalbumin, calre-
tinin, calbindin) or synthesizing enzymes of GABA, GAD65-67. Cal-
cium binding proteins colocalize with GABA and are often used as
markers for GABAergic cells in the cerebral cortex (Jones and Hendry,
1989). We also determined the distribution of MAP2- and GluR2/R3-
positive cells, which are presumed to be excitatory. The MAP2-labeled
cells were not different in the MAM treated vs normal cortex in re-
gard to cell morphology or size of the soma. The overall distribution of
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Figure 4 Shown on the left is an example of parvalbumin immunoreactivity
in normal and MAM treated somatosensory cortex on P28. The size and shape
of the labeled neurons are similar in both cortices. The overall distributions
for cells labeled with different markers are shown on the right. The distance
between the pia and the bottom of layer 6 was divided into 10 equal bins for
each cortical region and the percent of the total cells in each bin indicated on
the y-axis, averaged for 4 animals. There are no statistical differences for the
distributions of MAP2 and calretinin in normal and E33 MAM treated cortex.
The stars indicate regions of statistical significance between normal and MAM
treated distributions as measured by ANOVA and post hoc analyses.

MAP2- (Figure 4) and GluR2/R3-positive cells was similar in the nor-
mal and MAM treated somatosensory cortex. For a subset of inhibitory
markers, however, the labeled cells were distributed differently in MAM
treated compared with normal cortex. These include the distributions
of parvalbumin, calbindin, and GAD65/67. In the MAM treated cortex,
distributions of cells labeled with these markers concentrate around
deep or central cortical regions, rather than the more distinct laminar
patterns seen in normal cortex. For example, calbindin immunoreac-
tivity is almost bimodal in the normal distribution, with two peaks of
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increased numbers of neurons, one located in the upper layers, and
one in layers 5–6. In the MAM treated cortex, however, more calbindin
expressing cells are located centrally, without clear peaks in the distri-
bution. In the parvalbumin distribution, although the peaks in upper
and lower layers are subtler, similar patterns of cell dispersal occur,
with a large concentration of cells in the middle region of cortex in
the MAM treated brains. For the GAD65/67 distribution in normal cor-
tex, the distribution peaks in the upper layers, which is not seen in the
MAM-treated cortex. The calretinin patterns of immunoreactivity are
comparable for the normal and MAM treated brains. Since the calretinin
pattern was relatively normal, this suggests that, although a population
of neurons expressing GABA has difficulty reaching its cortical target,
this difficulty may be restricted to certain subtypes, since not all neurons
expressing GABA have trouble reaching their cortical target. This also
corresponded to our earlier receptor binding data, which revealed alter-
ations in the GABAergic receptor system but not in glutamatergic ones
(Jablonska et al., 2004). Taken together, these findings suggest that spe-
cific subtypes of GABAergic neurons are not able to successfully migrate
to their target location in the somatosensory cortex after treatment with
MAM on E33, while the system of excitatory neurons remains relatively
unaffected.

Origin of GABAergic Neurons

In recent years, it has become evident that the majority of cortical in-
hibitory neurons in rats and mice originate in the lateral and medial
ganglionic eminence and migrate tangentially into the cerebral cortex
(for review see Corbin et al., 2001; Marin and Rubenstein, 2003). The
same feature had not been specifically demonstrated in ferrets, but we
investigated this process in organotypic cultures of normal and MAM-
treated neonatal ferrets. To do this, we prepared organotypic cultures
of normal ferret cortex at ages ranging from E27 to postnatal day 2 (P2).
The cultured slices were injected in the ganglionic eminence with DiI
or other dyes taken up by cells migrating away from this site. The
slices remained in culture for 2–5 days. We observed that large num-
bers of neurons leave the ganglionic eminence in normal and treated
neonatal ferrets. Because ferrets are altricial animals that mature slowly
during development, large numbers of neurons are migrating from the
ganglionic eminence at birth and continue to migrate up to P2 (probably
even later, but these dates were not tested). At younger ages, the neu-
rons leaving the ganglionic eminence follow overall trajectories similar
to those described by others in rodents. There is a deep route of migra-
tion that runs just above the cortical ventricular zone before turning to
enter the neocortex and a more superficial route in which neurons travel
in the subplate or in layer 1 before joining the cortical layers (Marin and
Rubenstein, 2003). In rats and mice, the majority of these neurons express
GABA and are interneurons in mature cortex. We tested this in our ferret
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model by immunoreacting the slices containing migrating neurons with
antibodies directed against GABA; 68% of the labeled neurons leaving
the ganglionic eminence are GABAergic, showing similar properties to
these neurons in rodents.

The same set of experiments in MAM treated cortex (examined at
E38-P2) indicated that similar numbers of neurons leave the ganglionic
eminence and migrate into the cerebral cortex (Figure 5). In MAM-
treated animals, however, the neurons migrating from the ganglionic
eminence appeared more disorganized on their route to the cerebral cor-
tex. To verify this observation, we determined the angle of orientation
of each leading process of a migrating cell for normal and MAM-treated
organotypic cultures. The leading process was measured in relation to
the pia. An angle was calculated and placed into a bin that contained
the 90◦ orientation (out of 360◦), i.e., either oriented radially (toward the
pia or the ventricle) or oriented tangentially (medially or laterally). Ori-
entations either radially toward the pia or tangentially in the dorsal di-
rection were considered the “proper’’ directions. After 2 days in culture,
cells migrating from the ganglionic eminence of either normal or MAM
treated brains were oriented properly, while after 5 days in culture,
the migrating neurons were less likely oriented in the proper direction
than those originating from the normal ganglionic eminence (Figure 5).
In addition, when the labeled neurons migrating from the ganglionic
eminence were immunoreacted for GABA, fewer of them were double
labeled (37%), suggesting that the environment in E33 MAM-treated
cortex was not conducive to maintaining a GABAergic phenotype.

This led us to wonder whether the source of disorientation was in
the migrating neurons themselves, or due to cues originating from the
route of migration or target site. To evaluate these questions we prepared
mixed organotypic co-cultures obtained at P0, which included explants
of normal ganglionic eminence paired with MAM-treated cortical ex-
plants and vice versa. DiI was injected into the ganglionic eminence and
the paired explants remained in culture for 5 days. If the cortical ex-
plant was normal, the neurons migrating from the ganglionic eminence
were oriented in the designated “proper’’ directions, even if the gan-
glionic eminence explant originated from a MAM-treated animal. This
suggests that a property of E33 MAM treated cortex impaired proper
migration of neurons leaving the ganglionic eminence, while features
of normal cortex encouraged proper tangential migration (Figure 5).

Conclusion

MAM treatment on E33 leads to dramatic diminution of layer 4.
The relative absence of layer 4 leads to further changes that include
improper termination of thalamic afferent fibers, widespread distribu-
tion of GABAAα receptors, and the failure of information transfer in
cortical responses to sensory stimulation (Noctor et al., 2001; Palmer
et al., 2001; Jablonska et al., 2004; McLaughlin and Juliano, 2005). Further
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Figure 5 A. An example of cells leaving the ganglionic eminence after an injec-
tion of DiI into a normal organotypic culture. The injection was made on P0 and
the slice remained in culture for 2 days. The red line indicates the border of the
pia. B. These pie charts indicate the percent of neurons that left the ganglionic
eminence and their direction of migration as indicated by the angle of the lead-
ing process after 2 days in culture (DIC) or after 5 days in culture. The “proper’’
orientation is indicated in yellow, either toward the pia or medially. The other
orientations are indicated in gray. C. Examples of migrating neurons originat-
ing from the ganglionic eminence and labeled with DiI in E33 MAM treated
animals. Neurons oriented correctly and migrating for 2 days in culture are on
the left, neurons that are more disoriented and migrating for 5 days in culture
are indicated on the right. D. Pie charts indicating the orientation of migrat-
ing neurons from cocultures of normal cortex and E33 MAM treated ganglionic
eminence (LGE) or E33 MAM treated cortex and normal LGE. Indicated in the
graphs on the left the orientations of the migrating neurons injected on E38 and
maintained in culture for 5 days. On the right are graphs of the directions of
neurons migrating after injection on P0 after 5 days in culture. In each case,
more neurons are oriented in the “proper’’ direction (yellow) when the cortex
is normal. Normal ganglionic eminence did not result in a normal pattern of
migration.
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analysis shows that cells expressing GABA do not migrate properly and
neurons expressing distinct types of calcium binding proteins accumu-
late in the lower and central layers, rather than reaching their proper
sites in the upper layers. Presumed excitatory cells do not show abnor-
mal distributions in MAM treated cortex. Further support for the failure
of GABAergic cells to migrate properly is seen in the disorientation of
cells leaving the ganglionic eminence and heading toward the cortex in
E33 MAM treated animals. We suggest that the relative absence of layer 4
leads to a cascade of effects that result in the inability of cells originating
in the ganglionic eminence (presumptive GABAergic cells) to migrate
effectively. This leads to a mature cortex in which many GABAergic
cells fail to reach their proper targets. As a result, the cortex is not able
to appropriately respond to somatic stimulation, probably due to im-
properly placed GABAergic cells and GABAA receptors combined with
widespread thalamic afferents, which results in an inability to trans-
fer information through the cortical layers. Findings from our model
of cortical dysplasia coincide with many observations for human cor-
tical dysplasia, including the consistent finding of altered GABAergic
systems (Baraban et al., 2000; Castro et al., 2002; Jablonska et al., 2004;
Luhmann et al., 1998).
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8
Influence of Thalamocortical Activity
on Sensory Cortical Development
and Plasticity

Sarah L. Pallas, Mei Xu, and Khaleel A. Razak

Abstract

The cerebral cortical hemispheres are organized into multiple struc-
turally and functionally distinct areas. The positioning of these areas is
nearly invariant across individuals within a species and even between
closely related species. We are interested in determining how these cor-
tical areas are specified during development. Another main area of in-
terest is how one cortical area might be induced to take on the identity
of, and thus substitute for, another cortical area. We have been taking
several different approaches to this long-standing issue. This chapter
will report on some of our most recent findings. A more complete sum-
mary of our previous work can be found in several other review articles
(Pallas, 2001, 2002, 2005, and in press).

Thalamocortical afferent (TCA) targeting is relatively specific during
development, in that TCAs do not exhibit the level of exuberancy and
subsequent pruning seen in corticofugal projections. The mechanism
underlying TCA targeting, however, is unknown. We are exploring the
relative roles of gene expression patterns and neuronal activity in direct-
ing thalamocortical targeting specificity and thus in specifying cortical
areas. We summarize data from three studies of cortical development
and plasticity in ferrets, an altricial species with protracted postnatal
development. In one study, we investigated the temporal relationship
between the targeted ingrowth of TCAs and opposing expression gradi-
ents of Pax6, Emx2, Cad6, and Cad8. Using real-time PCR coupled with
tracing of TCA projections, we found that Pax6 and Emx2 expression
gradients are declining during TCA ingrowth. They may orchestrate
gradients of neurogenesis and/or provide regional patterning signals.
On the other hand, differential expression of Cad6 and Cad8 is maximal
during TCA targeting and synapse formation, and could play a causal
role. In the second set of studies described here, we examined the ef-
fect of sensory deprivation on cortical specification. If normal levels or
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sources of neural activity are necessary for targeting, then manipulations
of activity during TCA ingrowth should disrupt targeting. Consistent
with this prediction, we find that bilateral cochlear ablation in P14 fer-
rets results in mistargeting of LGN axons to primary auditory cortex.
The third section discusses results from cross-modal plasticity stud-
ies. In contrast to sensory deprivation, redirection of retinal axons into
auditory thalamus does not cause TCA mistargeting, but does respec-
ify several aspects of auditory cortical structure and function. Finally,
we examine the relationship between gene expression and the changes
seen in cross-modal plasticity. Together these experiments support the
idea that early gene expression patterns provide positional information
contributes to gradients of neurogenesis and regional identity, but ac-
tivity plays an essential role in later patterning and plasticity at the level
of TCA targeting to functionally defined cortical areas.

Cortical Parcellation is a Stepwise Process

Cortical parcellation, or areal specification, occurs through several dif-
ferent stages, and at each step, the fate of the cells or tissue is further
restricted (Fig. 1). Like development of other brain regions, cortical de-
velopment doubtless depends upon a multitude of critically timed fac-
tors. The undifferentiated cortical epithelium may contain information
about positional identity and polarity, which then informs the regional
specification process, during which gradients and boundaries of gene
expression differentiate large regions of cortex as distinct from one an-
other. After this regionalization process, and approximately simulta-
neous with thalamocortical ingrowth, the cortical areal boundaries are
established. To date, no genes have been found to express in a way that

Figure 1 Specification of functionally defined cortical areas occurs through sev-
eral stages. First, the undifferentiated cortical epithelium develops regional spe-
cializations, manifested as local variations in gene expression. At approximately
the time when thalamocortical axons enter the cortical plate, which occurs at
birth in rats and mice but at P14 in ferrets, areas become distinguishable. Sub-
sequently the unique features of each cortical area appear including formation
of modular processing units such as barrels, bands, and blobs for in S1, A1, and
V1, respectively.
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defines the sharp boundaries between areas, yet the thalamocortical
axons (TCAs) project to these areas in a very directed fashion (Crandall
and Caviness, 1984), as if there were road markers along the way. Af-
ter the areas are specified, processing modules are formed that perform
area-specific computations on the information received. The long-term
goal is to define the mechanisms that are responsible for this stepwise
cortical parcellation process at these multiple levels.

Intrinsic and Extrinsic Factors Direct Cortical Parcellation

Some specification events depend on factors intrinsic to cortex, such
as patterned expression of molecular cues, and others depend on ex-
trinsic information, either from other brain regions or from the outside
world (Fig. 2). The relative contribution of these intrinsic and extrinsic
factors to the parcellation of cerebral cortex into different functional ar-
eas has been under debate for some time (Pallas, 2001, for review). At
one extreme, we could imagine that the location and functional iden-
tity of cortical areas are preprogrammed from the beginning, perhaps
by intrinsic patterns of gene expression (Bishop et al., 2000; Mallamaci
et al., 2000; Huffman et al., 2004). At the other extreme, cortex could be a
tabula rasa, entirely specified by the extrinsic information it receives.
The answer probably lies somewhere in between. Intrinsic factors are
the only information available early in development, but once the thala-
mocortical pathway is formed, cortical development can be influenced

Figure 2 Both intrinsic gradients of gene expression (left) and modality-specific
extrinsic neural activity (right) influence the specification of cortical areas. S1-
primary somatosensory cortex; A1-primary auditory cortex; V1-primary visual
cortex.
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by sensory experience as well as by spontaneous afferent activity (We-
liky and Katz, 1999; Chiu and Weliky, 2001) or molecular cues present
in the afferent fibers (e.g. Dufour et al., 2003).

Thalamocortical projections are obviously an important source of ex-
trinsic information, and could provide a scaffold for parcellation; they
are accurately targeted throughout their trajectory and do not exhibit the
exuberant overgrowth to extraneous targets seen in corticofugal projec-
tions (Innocenti et al., 1977; Olavarria and Van Sluyters, 1985; O’Leary
and Stanfield, 1986). It seems simple enough to propose that, for exam-
ple, visual cortex becomes visual cortex simply because it receives input
from the eyes via the visual thalamus. This begs the question of how
the TCAs know what path to follow. Do they find their way through
intrinsic programming, or does a pre-specified cortical area direct their
pathfinding from some distance? Are there other, intermediate cues that
help them stay on track? Clearly ventral telencephalon and the cortical
subplate contain important guidance information (Ghosh et al., 1990;
Garel and Rubenstein, 2004; Molnár, this volume). Given that there are
no known molecular markers that correspond with areal boundaries,
how are the sharp demarcations between the TCA projections to ad-
jacent cortical areas formed? Projections from visual thalamus (LGN)
never stray into auditory or somatosensory cortex at any time during
development. Another conundrum is that any mechanism proposed
to underlie areal specification during development must be compatible
with the fact of cortical evolution– not only has cerebral cortex expanded
in size, but there has also been a tremendous increase in the number of
cortical areas during mammalian evolution (Felleman and Van Essen,
1991; Kaas, 1993; Rosa and Krubitzer, 1999), requiring concomitant shifts
in thalamocortical targeting. The answers to these intriguing questions
have been elusive, but it is our hope that our unique experimental ap-
proaches can inform future investigations.

Role of Cortical Patterning Genes in TCA Targeting

The first series of experiments that we will discuss in this review address
the question of whether there is a direct causal link between known
cortical gene expression gradients and TCA targeting. For this work we
chose to examine two transcription factor genes that had been suggested
as cortical patterning genes by other investigators. The homeobox genes
Pax6 and Emx2 are expressed in opposing gradients across the cortical
epithelium in E18 mouse cortex, and it has been suggested that these
genes or their downstream effectors specify cortical areas directly by
guiding TCAs to their proper targets (Bishop et al., 2000; Mallamaci
et al., 2000). In the hindbrain (Keynes and Krumlauf, 1994) and spinal
cord (Stoeckli and Landmesser, 1998), patterned gene expression directs
the specification of axonal projection patterns, and the possibility that
thalamocortical pathways would exhibit similar pre-specification is a
compelling one.
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We reasoned that if gradients of Pax6 and Emx2 provide targeting
information for TCAs, then there should be differences in gene expres-
sion in different cortical areas at the time of TCA ingrowth. Evidence in
favor of this hypothesis is that knockout of either of the genes causes
respecification of cortical gene expression patterns, caudalizing cortex
in the case of Pax6 knockout, and anteriorizing it in the case of Emx2
knockout. Unfortunately these knockout mice die before experimen-
tal identification of cortical areal boundaries is possible, necessitating
reliance on downstream marker molecules to infer areal boundary lo-
cation. Importantly, recent information from gain of function mutations
(Leingartner et al., 2003; Hamasaki et al., 2004) has demonstrated that
ectopically-expressed Emx2 leads to mistargeting of TCAs, supporting
an important, though not necessarily direct, involvement of the gene in
TCA targeting.

There are alternative interpretations of the results of these genetic
manipulation studies, however. One issue that needs to be addressed is
that in the cerebral cortex of Pax6 and Emx2 knockouts, TCAs actually
become lost in the ventral telencephalon, not in the cortical subplate
(López-Bendito and Molnár, 2003; Garel and Rubenstein, 2004). Thus
the genes may direct the establishment of guidance cues there, and may
not be involved in targeting within the neocortex itself (Caric et al., 1997;
Jones et al., 2002; Garel et al., 2003). Furthermore, Pax6 and Emx2 are
known to be involved in setting up gradients of neurogenesis (Estivill-
Torrus et al., 2002; Hevner et al., 2002; Scardigli et al., 2003). It is possible
that areal boundaries only appear to shift in the knockouts because of
failure to generate neurons destined for that area. The brains in the
Pax6 knockout mice are substantially reduced in size (Schmahl et al.,
1993; Caric et al., 1997; Heins et al., 2001). Conversely, Emx2 promotes
proliferation of neural progenitors (Cecchi, 2002).

Ferret Sensory Cortex as a Model System

In order to investigate these alternative possibilities, we compared the
time course of TCA ingrowth with gene expression patterns during post-
natal development using ferrets as a model system. Although mice have
the obvious benefits of a short generation time and tractable genetics,
ferrets provide special advantages for studies of cortical development.
They have a gyrencephalic cortex, meaning that there are reliable land-
marks for future areal boundaries and that cortex is well differentiated
functionally (Kelly et al., 1986; Law et al., 1988; Phillips et al., 1988;
Jackson et al., 1989; Pallas et al., 1990; Pallas and Sur, 1993). Another
advantage is that the physiology of ferret sensory cortex is similar to
that of cats, which has been well described. In addition, ferrets are born
early in the process of cortical development (Fig. 3). In both cats and
ferrets, approximately 50 days pass between conception and thalamo-
cortical invasion of the cortical plate. Ferret kits are born at embryonic
day 42, however, three weeks before parturition in cats. Importantly,
TCAs do not reach the cortical plate until approximately P14, and ferret
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Figure 3 Ferrets have a protracted period of postnatal brain development. Un-
like in rodents, cats or monkeys, much of the migration of neurons into the
cortical plate occurs after birth, thalamic axons do not reach the cortical plate
until approximately P14, and kits do not see or hear until one month of postnatal
age. (Data taken from Shatz and Luskin, 1986; Jackson et al., 1989; Herrmann
et al., 1994; Issa et al., 1999)

kits do not see or hear until after P30 (Cucchiaro and Guillery, 1984;
Moore and Hine, 1992). Thus they provide the advantage of protracted
development, which facilitates identification of causal relationships and
postnatal access to important developmental events.

Timing of Thalamocortical Ingrowth to Sensory Cortex

We have been interested in the specification events that organize fer-
ret sensory cortical areas, specifically primary visual (V1) and auditory
(A1) cortex. The time course of thalamic innervation of ferret visual cor-
tex in the second postnatal week has been described (Herrmann et al.,
1994). We determined using retrograde and anterograde tracers placed
in A1 and medial geniculate nucleus (MGN), respectively, that MGN is
beginning to reach the cortical plate by P14, and has established large
numbers of geniculocortical synapses by P20. We then determined when
the putative patterning genes are expressed in relation to TCA ingrowth.
We hypothesized that if gradients of Pax6 or Emx2 are directly involved
in guidance of TCAs to their correct cortical target, then they would
have to be present and differentially distributed in the cortical plate be-
tween P14 and P20. Alternatively, if the genes are providing positional
information, specifying gradients of neurogenesis, or setting up expres-
sion of later-appearing targeting molecules, they would be present ear-
lier but not necessarily at the time of TCA ingrowth. In addition to
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Figure 4 Genes differentially expressed in E18 mouse cortex and purported to be
involved in patterning of cortical areas include the transcription factors Emx2
and Pax6 and the calcium-dependent, homophilic adhesion factors Cad6 and
Cad8 (from Bishop et al., 2002). Emx2 and Cad8 are high caudomedially, where
visual cortex is located; Pax6 and Cad6 are high rostrolaterally, and thus should
be expressed more highly in auditory than visual cortex. These genes could in
principle specify the location of cortical areal boundaries.

examining Pax6 and Emx2, we examined the expression pattern of two
other genes, cadherin (Cad) 6 and Cad8, which are differentially expressed
in embryonic mouse cortex (Fig. 4). The distribution of Cad6 overlaps
with the pattern of Pax6 and Cad8 expression overlaps that of Emx2
expression (Suzuki et al., 1997; Nakagawa et al., 1999; Gil et al., 2002),
although there is no evidence to date that there is a causal relationship.
Cadherins are calcium-dependent, homophilic adhesion molecules that
could serve to guide TCAs to targets that co-express them at the same
time point.

Expression of Patterning Molecules During
Thalamocortical Ingrowth

We examined the expression of Pax6, Emx2, Cad6, and Cad8 in V1 and A1
during postnatal development, using a quantitative technique. Quan-
titative real-time (QRT-)PCR provides a measurement of the absolute
amount of mRNA in a sample by comparison to a standard curve. We
found that the expression gradient of Pax6 and Emx2 was sharply de-
clining by P14, and that there was very little Emx2 expressed in postnatal
ferret cortex (Fig. 5). We interpret this data to mean that it is highly un-
likely for Pax6 and Emx2 to be involved in guidance of TCAs as they
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Figure 5 Quantitative real-time PCR was used to investigate the spatiotempo-
ral relationship between thalamocortical axon ingrowth and patterning gene
expression. Early in postnatal cortical development, Pax6 and Emx2 show com-
plementary expression patterns. As the levels of these transcription factors de-
cline, the complementary expression of Cad6 and Cad8 increases, reaching a
peak as the thalamic axons arrive.

enter the cortical plate during the second postnatal week. On the other
hand, Cad6 and Cad8 were differentially expressed in V1 and A1, re-
spectively, during the time when TCAs choose a cortical target. Thus
the cadherins are expressed at a place and time that would allow them
to play an important role in thalamocortical targeting (Xu et al., 2003
and submitted).

The QRT-PCR technique requires that tissue be homogenized prior
to measurement, and thus does not provide spatial resolution at a scale
sufficient to assess its distribution within the cortical tissue. In addi-
tion, it measures mRNA, not protein. For a guidance molecule to be
functional in guiding TCAs, the protein would have to be expressed
below the cortical plate, where the axons make the decision to leave the
white matter and enter the subplate. To examine the spatial distribution
of the cadherin proteins, we employed Western blots as well as im-
munocytochemistry on coronal sections of A1 and V1. We found Cad6
protein expressed in migrating neurons in the deep layers of the cortical
plate, in the subplate of both A1 and V1, and in the subventricular and
ependymal zones of A1. Semi-quantitative Western blots of Cad6 protein
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showed that protein expression levels were higher in A1, whereas Cad8
levels were higher in V1, matching the pattern of gene expression. These
data provide further support for a role of these particular cadherins in
thalamocortical targeting. Evidence from other groups supports the in-
volvement of the cadherin family in general in thalamocortical targeting
(Inoue et al., 1998; Gil et al., 2002; Poskanzer et al., 2003; Redies et al.,
2003). No doubt there are other guidance molecules involved as well,
and the several labs currently doing the gene screening will certainly
identify other candidates that can be tested in the near future.

Role of Thalamocortical Activity Patterns in Cortical
Areal Specification

An alternative explanation for specific thalamocortical targeting pat-
terns is that the TCAs have intrinsic information about where to project
within cortex. They could then specify sharp areal borders in the corti-
cal epithelium through differences in their own activity patterns. A pre-
vious study has shown that activity blockade can interfere with TCA
targeting within the subplate (Catalano and Shatz, 1998), supporting
this hypothesis. We have examined the role of TCA activity in corti-
cal development using two different manipulations. In one case, the
normal sensory input to a cortical area is eliminated by ablation of the
peripheral sensory organ, resulting in miswiring of TCAs. In the other,
rewiring at the periphery alters the modality of information carried by
thalamocortical afferents, thus altering functional properties of cortex.

Peripheral Deafferentation Can Alter Thalamocortical Targeting

To address whether normal sensory activity is necessary for TCA target-
ing, we induced neonatal hearing loss in ferret kits by bilateral cochlear
ablation prior to the onset of auditory function (Moore and Hine, 1992).
We reasoned that if sensory activity is essential to guide TCA pathfind-
ing, then a change in activity should affect targeting. On the other hand, if
targeting is molecularly-specified, then manipulations of activity should
have no effect. We found that loss of the peripheral hearing organs led
to a redirection of axons from visual thalamus (LGN) to primary audi-
tory cortex (Pallas et al., 2002, and in prep.) (Fig. 6). This is a startling
finding, in part because many previous attempts to induce TCA mistar-
geting have failed (e.g. Miller et al., 1991; Miller et al., 1993; Croquelois
et al., 2005), and in part because the cochleae are several synapses distant
from the auditory cortex. These results support a model whereby target-
ing of thalamocortical axons is not irreversibly determined by intrinsic
information, but is at least partially dependent on sensory activity.

Cross-Modal Plasticity Alters the Functional Identity
of Sensory Cortex

In cross-modal plasticity, early loss of function in one sensory system
is compensated for by another sensory system taking over the lost
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Figure 6 Early bilateral ablation of the cochlear hearing organs leads to ectopic
innervation of primary auditory cortex by axons from visual thalamus (LGN and
LP/Pul). Shown at left is a coronal section through thalamus following injection
of HRP throughout primary auditory cortex. Label is restricted to auditory tha-
lamus (MGN). At right is an equivalent section from an early-deafened ferret,
showing that in addition to backfilled cells in auditory thalamus, injection of
HRP in A1 backfills many cells in visual thalamus.

function. Sometimes referred to as sensory substitution (Rauschecker,
1995), this phenomenon has been demonstrated in clinical settings with
deaf or blind individuals (Sadato et al., 1996; Finney et al., 2001; Bave-
lier and Neville, 2002). It is also familiar to evolutionary biologists who
study fossorial species with reduced or absent visual systems (Heil et al.,
1991; Bronchti et al., 2002).

Cross-modal retinal projections to auditory thalamus have been ex-
perimentally induced in ferrets by combining unilateral lesion of the
superior colliculus (SC), which eliminates a retinal target, with bilateral
lesion of the inferior colliculus, which eliminates the major source of in-
put to MGN (Sur et al., 1988; Angelucci et al., 1997) (Fig. 7). Seeking target
space, the retinal axons then innervate the ipsilateral, denervated MGN.
In this procedure, unlike in the deafened ferrets described above, LGN
is unaffected and does not form ectopic projections to auditory cortex.
The retinal axons form arbors in MGN that are similar in morphology
to those that would form in SC or LGN (Pallas et al., 1994; Pallas and
Sur, 1994), conferring a retinotopic map of visual space onto the MGN
(Roe et al., 1993). This cross-modal rewiring of retinal output thus alters
the modality of patterned activity reaching primary auditory cortex, but
without altering the source or identity of the TCAs. The manipulation
thus effectively decouples the effects of patterned activity and the effects
of patterned gene expression on cortical areal specification, because the
activity pattern is changed without altering the thalamocortical path-
way. This allows the effects of activity and gene expression patterns to
be studied independently of each other.
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Figure 7 Cross-modal induction of retinal projections to auditory cortex is ac-
complished by midbrain ablations at birth. Unilateral ablation of the superior
colliculus (SC) and bilateral ablation of the inferior colliculus (IC) promotes
sprouting of retinal axons into the MGN. As a result, visual activity patterns
reach A1, without changing the identity of the thalamocortical pathway from
MGN.

The cross-modal pathway has been studied using both anatomical
and physiological methods. With respect to anatomy, the TCA projec-
tion to A1 in cross-modal ferrets remains typically auditory in form. It
retains its laminar, cochleotopic organization rather than adopting the
point-to-point, two-dimensional, retinotopic type of pattern seen in the
visual pathway (Pallas and Sur, 1993). Projections from cross-modal A1
to other cortical areas also remain unaffected; A1 in the cross-modal an-
imals projects to other auditory cortical areas, and not to visual cortical
areas (Pallas and Sur, 1993; see also Huffman et al., 2004). Function-
ally, however, cross-modal A1 becomes similar to visual cortex, with its
retinotopic organization and its visual receptive field properties such
as end-inhibition, orientation tuning, and simple or complex receptive
field types (Roe et al., 1990; Roe et al., 1992). The emergence of retinotopy
from the overlapped thalamocortical projections suggests that retino-
topy is recreated within A1 itself, although the underlying mechanism
remains unclear.

Further insight into the functional specification process came from
our studies of modular organization in cross-modal A1. In sensory cor-
tical areas, intracortical projections link clusters or laminae of neurons
with similar response properties. In visual cortex, for example, neu-
rons with similar orientation tuning and ocular dominance are inter-
connected (Katz and Callaway, 1992). In the auditory cortex, slabs of
neurons tuned to the same sound frequency and binaural response type
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Figure 8 Intracortical horizontal connectivity and callosal connectivity of A1
in normal, deafened, and cross-modal animals. In normal ferrets (left), hori-
zontal connections are revealed by restricted biotinylated dextran amine (BDA)
injections of the left A1 to occupy isofrequency laminae. Callosal connections,
as demonstrated by injection of HRP throughout the left A1, delineate the E–E
binaural bands on the right side. In cross-modal cases (center panels), horizontal
and callosal projections are more similar to those seen in visual cortex, and are
shifted in location. This different pattern does not result from stabilization of
an early, exuberant pattern, as shown by the more diffuse and extensive label
produced by a loss of sensory input (right panels) (adapted from Gao and Pallas,
1999; Pallas et al, 1999, 2002)

are linked (Imig et al., 1982). The obvious question for cross-modal A1
was whether its visual inputs led to alterations in modular organiza-
tion that could explain its visual response properties. We demonstrated
that the intracortical connectivity of cross-modal A1 is altered from a
slab-like, isofrequency band organization to resemble the clusters of ter-
minals seen in visual cortex (Gao and Pallas, 1999) (FIG 8, top). Callosal
projections are also modified (Pallas et al., 1999) (FIG 8, bottom). The
callosal connectivity between cross-modal A1 and the contralateral, un-
manipulated A1 are shifted in position, suggesting that A1 itself has
been shifted. This suggestion is further supported by the observation
that intracortical connections within cross-modal A1, which apparently
support visual stimulus orientation tuning (Sharma et al., 2000), are ar-
ranged in an inverse pattern to the callosal projections. We would like
to know whether the manipulated hemisphere has both 1) an auditory
A1 that is laterally shifted and connected callosally with the contralat-
eral, normal A1, and 2) a “visualized’’ A1, containing local projections
that unite neurons with similar visual orientation tuning. If this is the
case, the cross-modal rewiring manipulation creates a new cortical area,
and thus a convenient model system for studying cortical evolution in
a developmental framework. These results are consistent with extrinsic
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control of many important aspects of cortical identity in a functional
sense. Our studies of cross-modal plasticity thus provide a concrete
demonstration that changing only the modality and pattern of activity
in TCAs can profoundly change cortical circuitry.

Does Cross-Modal Auditory Cortex have an Altered
Genetic Identity?

The results of our gene expression studies in normal ferrets, combined
with our results from the cross-modal animals, raised an interesting
question. Does the expression of patterning genes influence the devel-
opment of corticocortical connectivity patterns? If so, then we would
expect the changes in connectivity that we saw in the experimental ani-
mals to be correlated with changes in expression. Cadherins are candidate
molecules for this function (Morishita et al., 2004). There is evidence
that they are involved in the establishment of normal corticocortical
connectivity patterns. Cadherin expression is unaffected in Mash-1 mu-
tants lacking TCA projections (Nakagawa et al., 1999), indicating that
the presence of TCAs is not required for expression. Gbx2 mutants have
no TCAs but have normal corticocortical connectivity (Huffman et al.,
2004), indicating that TCAs are not required to establish normal intra-
and intercortical projections. To test the hypothesis that rearrangements
of cadherin expression underlie changes in corticortical connectivity
patterns in cross-modal ferrets, we compared expression of Cad6 and
Cad8 mRNA and protein in visual (V1) and auditory (A1) cortices dur-
ing postnatal development in normal and cross-modal ferrets. As noted
above, Cad6 expression in normal animals was much greater in A1 than
in V1, whereas Cad8 expression was significantly higher in V1 than
in A1. In contrast, in cross-modal ferrets expression of Cad6 and Cad8
was similar in A1 and V1 (Xu and Pallas, Soc Neurosci. Abstr. 2005),
indicating a loss of molecular distinctions between these two cortical
areas that correlates with A1’s acquisition of visual processing circuitry.
These data suggest that Cad6 and Cad8 may be involved in cross-modal
re-specification through alterations in cortical features such as corticor-
tical connectivity patterns.

Further Questions

The experimental approaches discussed here are providing important
information about the relative roles of intrinsic genetic information and
extrinsic neural activity in thalamocortical axon guidance and the areal
specification of cortex. However much remains to be discovered. For
example, given the broad expression patterns of genes known to be in-
volved in cortical patterning, how are the sharp boundaries between
areas established? Should we be looking for the putative factors that are
restricted to cortical areas? Can functional identity be established inde-
pendent of early genetic identity, as our cross-modal plasticity experi-
ments suggest? If gene expression gradients define cortical areal iden-
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tity, how is it possible to get entirely new cortical areas in evolution? The
mechanisms for areal boundary formation must work in all species, for
different degrees of subdivision of cortical areas representing particular
sensory modalities. Does this require coordinated evolutionary changes
in TCAs and cortical patterning, or can changes in TCA projection pat-
terns drive formation of new boundaries? We now have the tools to
answer these and other fascinating questions about the development of
the most interesting part of the brain, the cerebral cortex.
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Pathways to Barrel Development

Mark W. Barnett∗, Ruth F. Watson∗, and Peter C. Kind

Abstract

Understanding the cellular mechanism by which glutamate recep-
tors mediate changes in neuronal phenotype is key to understanding
activity-dependent development of the nervous system. The primary
somatosensory cortex (S1) of rodents offers a unique opportunity to
identify key molecules that regulate glutamate-dependent cortical de-
velopment because of its unique cytoarchitectonic structures in layer 4
termed “barrels”. Analysis of knockout mice has revealed that both
NMDA receptors, and metabotropic glutamate receptor 5 (mGluR5)
activation of phospholipase C-β1 (PLC-β1), are necessary for normal
barrel development (Erzurumlu and Kind, 2001). Over the last several
years, we have been using analysis of barrel cortex development in
knockout (KO) mice to identify the signalling pathways downstream
of glutamate receptors that regulate cortical development. This ap-
proach has been greatly helped by the isolation and characterisation
of proteins associated with the postsynaptic density (PSD; Walikonis
et al., 2000; Husi et al., 2000). To date we have analysed more than
35 mice with selective deletion of key PSD components. Two of these
mutants, those lacking Syngap (Barnett et al., 2006) and those lacking
the RIIβ subunit of PKA (PKARIIβ−/−, Watson et al., in press), also
showed defects in barrel development. This chapter reviews the prin-
ciple cellular processes involved in barrel development. It also reviews
the current state of knowledge of the intracellular signalling pathways,
initiated by glutamate neurotransmission, that regulate barrel devel-
opment, with specific focus on SynGAP and mGluR5 activation of
PLC-β1. Finally, we examine how the analysis of mutant mice has in-
creased our knowledge about the cellular processes that underlie barrel
development.

The role of activity in cortical development and plasticity has been the
focus of intense research ever since Hubel and Wiesel demonstrated
that the physiological and anatomical development of visual system

∗
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was dependent on the nature of the animal’s early visual experience
(Wiesel and Hubel, 1963a,b). The discovery of the N-methyl-D-aspartate
receptor (NMDAR) and its control over visual plasticity during devel-
opment greatly increased our understanding of the molecular basis of
activity-dependent cortical plasticity (Kleinschmidt et al., 1987). Since
that time, much has been learned of the NMDA receptor-dependent
pathways and cellular mechanisms that control Long Term Potenti-
ation (LTP) and Long Term Depression (LTD) in the hippocampus.
However, far less is known of the cellular mechanisms by which
NMDARs regulate neocortical development and plasticity. Using phar-
macological blockade and more recently, transgenic animals, several
NMDAR-dependent pathways have been shown to be involved in cor-
tical development and plasticity including cyclic AMP/Protein kinase
A (PKA; Abdel-Majid et al., 1998, Beaver et al., 2001; Lu et al., 2003;
Fischer et al., 2004; Watson et al., in press; Kind and Neumann, 2001),
Calcium/calmodulin-dependent kinase II (CaMKII) (Taha et al., 2002;
Glasewski et al., 1996), Extracellular signal-regulated kinases (ERKs)
(Di Cristo et al., 2001), Calcineurin (Yang et al., 2005) and phospholipase
C-β1 (Hannan et al., 2001). All of these pathways have been shown to
play crucial roles in various forms of LTP and LTD in hippocampus,
suggesting a conservation of plasticity pathways in different brain struc-
tures. This chapter focuses on several PSD component mutants that we
have identified as playing a crucial role in the differentiation of the pri-
mary somatosensory cortex.

In addition to their role in synaptic plasticity, NMDA receptors have
been shown to regulate early developmental events that are likely to be
distinct from synaptic plasticity. For example NMDARs regulate axon
dynamics and dendritogenesis and hence map formation in a range of
systems, including neocortex (Dickson and Kind, 2003). However, while
NMDARs are known to play a crucial role in many of these early de-
velopmental events (see Erzurumlu and Iwasato, 2005, this volume),
very little is known of the intracellular pathways through which they
mediate their effects. One approach to identify the intracellular path-
ways by which NMDARs regulate development and plasticity is to
screen mutants of NMDAR associated proteins for defects in cortical de-
velopment. Such an approach has been greatly aided by the recent large-
scale isolation and proteomic characterisation of the NMDAR complex
(NRC) and postsynaptic density (PSD; Husi et al, 2000; Walikonis et al,
2000). These studies identified proteins that associate with NMDARs in
adult forebrain and have provided a large list of candidate molecules
that could be acting downstream of NMDAR signalling during corti-
cal development. We adopted such an approach taking advantage of
a large number of transgenic animals that have been generated previ-
ously, primarily for examining their role in hippocampal plasticity and
learning and memory. We have focussed on the development of the so-
matosensory cortex because of the clear anatomical structures known
as “barrels’’.
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Trigeminal Pathway Organisation and Development

Brainstem and Thalamus

Each whisker follicle is innervated by bundles of axons from trigeminal
ganglion cells (TGCs) that form individual branches of the infraorbital
nerve. The TGCs project centrally to the caudal brainstem where they
extend collaterals to four nuclei in the brainstem trigeminal complex
(Hayashi et al., 1980). Both the incoming axons and the cell bodies in
three of the four nuclei (principal nucleus (nVp), subnucleus interpolaris
(nVi) and subnucleus caudalis (nVc) accurately recapitulate the ipsilat-
eral whisker pattern (Bates and Killackey, 1985; Ma and Woolsey, 1983,
1984). These cytoarchitectonic arrangements are termed “barrelettes’’.
Barrelettes can be first seen in the mouse on the day of birth (P0) using
cytochrome oxidase histochemistry (Ma, 1993) and are well-segregated
by P1. The cellular aggregation, as visualized by Nissl staining, begins
on P1, however, complete segregation into five rows is not seen until
P4 (Ma, 1993). Neurons in the nVp and nVi nuclei and to a lesser extent
in nVo (subnucleus oralis) and nVc project axons across the midline to
the ventral posterior nucleus (VpM) of the thalamus. Brainstem axon
terminals and cell bodies within the contralateral thalamus replicate the
whisker pattern in cytoarchitectonic arrangements termed “barreloids’’
(Van der Loos, 1976). Barreloids begin to form at P3 as visualized by cy-
tochrome oxidase histochemistry (Yamakodo, 1985). Interestingly, dur-
ing development the dendrites of VpM neurons project selectively to-
wards the incoming brainstem axons to form a dense plexus of synapses
in the centre of each barreloid (Brown et al., 1995; Zantua et al., 1996).
This selective aggregation of dendrites is transient however and distal
dendrites extend outside individual barreloids. By P18 the dendrites
have grown to span several barrels a state that is maintained into adult-
hood (Brown et al., 1995; Zantua et al., 1996).

TCA Segregation and Barrel Formation

As is the case in brainstem and thalamus the primary somatosensory
cortex (S1) of mammals is organized into a topographic map that re-
produces the pattern of peripheral sensory receptors. Thalamocortical
axons from VpM project into the barrel hollows (Killackey, 1973) and to
a lesser extent to the interbarrel region or septa (Pierret et al., 2000). At
P1, TCAs are uniformly distributed within layer 4 with each axon occu-
pying 1 to 2 prospective barrel diameters (Rebsam et al., 2002: Agmon
et al., 1995). At P7 TCAs arborize exclusively in a single barrel with
few, if any, extending between barrels. Some fibres divide into two or
three branches in layer 6a that converge on the same barrel in layer 4.
The segregation of TCAs into whisker-related patches occurs between
P2 and P5 and involves the retraction of inappropriately located arbors
and elaboration of appropriately placed arbors (Rebsam et al., 2002). The
developmental mechanisms mediating TCA patch formation, therefore,
appear to be different from those that underlie eye specific segregation
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into ocular dominance bands in higher mammals since the latter process
appears to involve specific targeting of TCAs rather than axon retraction
(Katz and Crowley, 2002).

A unique feature of rodent somatosensory cortex that makes it partic-
ularly useful for identifying molecules involved in cortical development
is that the layer 4 neurons also aggregate into functional units referred
to as “barrels” (Woolsey and Van der Loos, 1970). Barrels are a highly
stereotypical array of cellular aggregates that recapitulate the whisker
array on the facepad. They consist of cell dense walls and cell sparse
hollows; septa are the relatively acellular areas that separate individual
barrels. The three dimensional structure of a barrel is that of a bowed
cylinder and this shape, along with Hendrik Van der Loos’ fascination
with 17th century dutch art, led to the choice of “barrel’’ being used to
illustrate the anatomy (the barrel used is depicted in Pieter Bruegel’s Fair
of St. George’s Day; Woolsey, 1996). In the posteromedial barrel subfield
(PMBSF), the region representing the large mystacial vibrissae, each
barrel receives input from a single whisker.

The cell bodies of layer 4 neurons begin to aggregate to form cell-
dense barrel walls subsequent to TCA segregation (Rice and Van der
Loos, 1977). Evidence of this cellular segregation can first be seen on P4
and a full barrel field can be seen by P6, although barrel segregation
is most distinct between P10–P14. The septa are clearly visible by P7.
Another key feature of the layer 4 neurons is the selective orientation of
their dendrites into the barrel hollows (Woolsey et al., 1975). The precise
timing of this dendritic orientation is not clear, however, it appears to
result from a selective pruning of inappropriate branches combined with
an elaboration of appropriate branches (Greenough and Chang, 1988)
and unlike in VpM, the dendrites remain selectively oriented in adults
(Woolsey et al., 1975).

Though the cellular mechanisms responsible for barrel wall forma-
tion are not known, several possibilities exist (Figure 1). First there
may be a selective cell death in the region of TCA innervation al-
though no preferential distribution of apoptotic nuclei has been seen
in developing S1 (Miller, 1995). Second, the massive elaboration of neu-
ropil, both axons and dendrites, could cause the cortical neurons to be
passively displaced to form a cell-dense barrel wall; analysis of mu-
tant mice, however, indicates that this possibility is unlikely (see below,
Hannan et al., 2001). Third, neurons of layer 4 may actively migrate
away from the incoming thalamocortical afferents. Fourth, differential
cell adhesion regulated by signals from TCAs combined with cortical
growth may lead to a barrel pattern. Whether barrel development is
controlled by one or some combination of these processes remains to be
determined.

Synaptic Development in Layer 4 of S1

In order to understand the role of glutamate neurotransmission in
barrel development, it is essential to briefly review the anatomical
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Figure 1 Schematic showing the various cellular mechanisms that could control
layer 4 cell segregation. Elaboration of Neuropil: During barrel formation, TCAs
segregate and elaborate terminal arbors to form whisker-related patches. Subse-
quent to TCA segregation, the dendrites of layer 4 neurons selectively elaborate
branches within the TCA patches to form a dense plexus of synapses. This large
increase in neuropil could passively displace the cell bodies of layer 4 neurons
to form a cell-dense barrel wall. Plc-β1−/− mice develop TCA patches of normal
size and distribution and layer 4 neuronal dendrites with normal complexity
and orientation, but do not form barrels. Hence elaboration of neuropil is an
unlikely mechanism for forming barrels. Cell death could also account for barrel
formation if there were selective death of neurons within TCA patches. How-
ever Miller (1995) found no preferential distribution of dying cells within layer
4 (although differential distribution between emerging barrel walls and hollows
were not examined). Also the decrease in cellular segregation in Syngap+/− can-
not be explained by changes in cell death since the overall density of layer 4
neurons was unaltered. Cell Migration: It is possible that layer 4 neuronal soma
migrate away from the TCA terminals. There is little evidence to speak to this
possibility although glutamate can initiate cell migration. Differential cell adhe-
sion combined with cortical growth could create a cell dense barrel wall. Glutamate
receptor activation could cause a local decrease in cell adhesion molecules, such
that only soma at the edge of TCA patches remained tightly bound. The increase
in the tangential size of the cortex between P3 and P7 could result in the emer-
gence of tightly bound, high-density regions around TCA patches (i.e. barrel
walls), and low-density, loosely bound regions in the TCA patches (i.e. barrel
hollows). We are currently addressing this possibility using computer models
of patch and barrel formation.

and functional development of cortical, and more specifically, layer 4
synapses. In P4 rodent S1 cortex, the density of total synapses is about
15–25% that of the adult and postsynaptic densities can be clearly identi-
fied under the electron microscope. (Micheva and Beaulieu, 1996; Spires
et al, 2005). In the mouse, the presence of asymmetrical (putatively
excitatory) and symmetrical (putatively inhibitory) synapses has been
demonstrated at P4 in all layers of the posteromedial barrel subfield
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(De Felipe et al., 1997). In adult animals, 85% of synapses in the rodent
barrel cortex are glutamatergic (Micheva and Beaulieu, 1995). From P4
to P8 there are 57% excitatory and 43% inhibitory synapses (De Felipe et
al., 1997). Asymmetrical (excitatory) synapse density increases rapidly
from P6 to P8 slowly from P9 to P12 and sharply between P13 and P14
along with the onset of patterned whisking (White et al., 1997). Twenty
to twenty five percent of synapses in layer 4 come from the VpM and
make asymmetrical contact on the stellate cells, and on all other neu-
rons with processes in layers 4 and 6 (White, 1979). Importantly, even
at early postnatal ages (P3) during TCA segregation, functional TCA
synapses can be detected using electrophysiological methods (Lu et al.,
2003). NMDAR-dependent synaptic plasticity (LTP/LTD) can only be
induced during a narrow time window between P3 and P7 (Crair and
Malenka, 1995; Lu et al., 2003). Similarly the ratio of NR2B to NR2A-
containing NMDA receptors decreases over a similar, but not identical,
time-course (Lu et al., 2001).

To identify the intracellular pathways by which these glutamate re-
ceptors initiate barrel formation and layer 4 synaptic plasticity, we have
used biochemical approaches on isolated PSD fractions from barrel cor-
tex to determine the protein constituents of the NRC during barrel for-
mation. In agreement with the presence of clear PSDs and functional
synapses in P4 mouse somatosensory cortex, we have shown that the
main components of the NMDA receptor complex are present at these
ages and can be isolated from biochemical postsynaptic density prepa-
rations. To address the role of PSD proteins in barrel development, we
have examined barrel formation in transgenic mice with deletions of
NRC components. The rest of the chapter reviews the data from these
experiments and compares the results with proteins found to be in-
volved in visual cortical development and plasticity.

The Cellular and Molecular Mechanisms of
Barrel Formation

The development of orderly maps in sensory systems is a complex inter-
play between guidance molecules and activity (both spontaneous and
sensory-evoked). In the rodent somatosensory cortex, Ephrins appear
to play a key role in the tangential organisation of the whisker map
(Vanderhaeghen et al., 2000), serotonin modulates TCA complexity and
patch formation (Gaspar et al., 2003) and glutamate neurotransmission
regulates TCA complexity and cellular aggregation in layer 4 (Erzu-
rumlu and Kind, 2001, Datwani et al., 2002, Lee et al., 2005). The first
demonstration that glutamate neurotransmission was necessary for seg-
regation in the trigeminal system came from analysis of Nr1−/− (the
essential subunit of NMDARs) mice that failed to develop barrelettes
(Li et al. 1994). Iwasato et al. (2000) then generated conditional trans-
genic mice in which deletion of the Nr1 gene was restricted to excita-
tory cortical neurones (Cxnr1−/− mice). These Cxnr1−/− mice developed
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normal barrelettes and barreloids but failed to form cellular aggregates
in layer 4 even though TCAs segregated, albeit with decreased TCA
patch size in the posteromedial barrel subfield (PMBSF). Hannan et al.,
(2001) later reported that mice with a deletion of metabotropic gluta-
mate receptor 5 (Mglur5−/−) also fail to form whisker-related cellular
aggregates, despite partial TCA segregation into rows in the PMBSF.
Analysis of both the Cxnr1−/− and Mglur5−/− mutants has convincingly
demonstrated that postsynaptic neurotransmitter receptor activation is
vital in communicating the peripherally related sensory patterns from
TCAs to barrel cells (reviewed by Erzurumlu & Kind 2001; Kind &
Neumann 2001).

These findings raise several questions that our laboratory has been
addressing over the last 5 years. What are the signalling pathways
downstream of these glutamate receptors that regulate cortical devel-
opment? Do NMDARs and mGluR5 modulate the same intracellular
pathways to regulate barrel development? And what are the cellular
events underlying barrel formation? To elucidate the glutamate recep-
tor dependent intracellular pathways underlying barrel differentiation,
we have been examining mice with genetic deletion of genes encoding
PSD proteins. To date we have completed a preliminary analysis of the
barrel cortex phenotype (cellular aggregation and TCA segregation in
layer 4) of over 30 mutants. From these mutants, animals with dele-
tions in the genes encoding phospholipase C-beta1 (PLC-β1), synaptic
ras GTPase Activating Protein (SynGAP) and Protein Kinase A type
2 regulatory beta subunit (PKAR2β) have indicated that each of these
molecules play a role in barrel development. This review will now fo-
cus on the aberrant barrel phenotypes of the Plc-β1−/− and Syngap−/−

mice and will examine what is known about their downstream
targets.

mGluR5/PLC-β1 Pathway

PLC-β1 is one of four PLC-β family members that are part of a larger
family of phosphoinositide (PI)-specific PLCs. The β subfamily are
G-protein-coupled and, of the PLC-βs, β1 is the most highly expressed
in the neocortex. The PI-specific PLCs hydrolyse phosphatidylinosi-
tol 4,5-bisphosphate (PIP2) into two second messengers, diacylglyc-
erol (DAG) and 1,4,5-inositol triphosphate (IP3). Subsequently, DAG
activates Protein Kinase C (PKC) and IP3 activates the IP3 receptor
(IP3R) to release intracellular Ca2+ from the endoplasmic reticulum (ER;
Figure 2A).

A role for G-protein coupled phospholipases in developing cortical
neurons was first suggested when Dudek and Bear (1989) found that
mGluR-mediated PI hydrolysis paralleled the sensitive period in vi-
sual cortex. PLC-β1 was subsequently isolated from a screen designed
to identify molecules selectively expressed in the developing cat vi-
sual cortex (Kind et al., 1994, 1997) raising the possibility that PLC-β1
was a primary target of phosphoinositide-coupled (i.e. group 1) mGluR



9 Pathways to Barrel Development 145

PLC-ββ1

Homer

Activity-dependent

Calcium release

Ca2+

Endoplasmic

Reticulum

DAG

IP3R

PKC

Gq

mGluR5

IP3

IP3R

Ca2+

Ras
GTP

raf

MEK

MAPK

PSD-95

SynGAP

Ras
GDP

NMDAR

A B

Figure 2 Schematic of the 3 major signalling pathways known to affect barrel
development. a) mGluR5 activation of PLC-β1 is a key pathway to cortical cell
segregation but not TCA segregation. b) SynGAP activation, likely resulting
from NMDAR stimulation regulates both barreloid and barrel formation.

signalling during cat visual cortical development. Interestingly Kind
et al (1997) found that PLC-β1 is highly expressed in intermediate-
compartment-like organelles called botrysomes, located selectively near
the roots of, and within, dendrites. These findings led to the hypoth-
esis that PLC-β1 might regulate protein trafficking to dendrites in re-
sponse to mGluR activation and hence may be a key regulator of activity-
dependent dendritic development.

In support of a role for PLC-β1 in cortical development, Hannan et
al. (1998, 2001) showed that PLC-β1 levels are high in layers 2–4 of
rodent S1 in the first two postnatal weeks, corresponding spatially and
temporally with barrel formation and dendritogenesis. Furthermore, ge-
netic deletion of Plc-β1 disrupted the cytoarchitectural differentiation of
barrels, but did not affect the pattern, distribution or size of TCA patches
(although the structure and size of individual TCA axons has not been
examined). Group 1 mGluR-mediated PI-hydrolysis was dramatically
reduced in neocortex of young Plc-β1−/− mice supporting the hypoth-
esis that mGluR5 activation of PLC-β1 regulates cellular aggregation
in layer 4. The normal pattern of TCAs in Plc-β1−/− mice compared
with the disrupted pattern in Mglur5−/− mice, however, indicates that
mGluR5 regulation of TCA segregation may be mediated by a PLC-
β1-independent mechanism. mGluR5, but not PLC-β1 is expressed at
high levels in the somatosensory thalamus (Munoz et al., 1999; Watanabe
et al., 1998) suggesting that mGluR5 in VpM neurons may regulate TCA
segregation. However, the defects in TCA segregation do not appear to
result from a loss of segregation at lower levels in the trigeminal path-
way since barreloid development, as revealed by cytochrome oxidase
histochemistry, appears normal in both Mglur5−/− and Plc-β1−/− mice.
These findings suggest that mGluR5 may regulate TCA segregation by
controlling the release of retrograde signals from layer 4 in a similar
manner to NMDARs (Iwasato et al., 2000) although a direct role in the
TCAs cannot be ruled out.
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To directly test the hypothesis that PLC-β1 regulates activity-
dependent dendritic rearrangements during cortical development, we
have recently examined dendritic complexity and orientation of layer 4
neurons in Plc-β1−/− mice using Rapid Golgi staining (Upton et al., in
preparation). No significant difference in total dendrite length, dendrite
number and number of branch points of layer 4 neurons was observed
between Plc-β1−/− and wild type mice. In addition layer 4 neuronal den-
drites were normally oriented toward TCA patches. This study indicates
that PLC-β1 is not regulating dendritic complexity and orientation of
layer 4 neurons and selective dendritic elaboration within TCA patches
is not sufficient to form barrels. We have also analysed spine density in
the barrel cortex of Plc-β1−/− mice. In contrast to the Cxnr1−/− (Datwani
et al., 2002), spine density is also unaltered in Plc-β1−/− mice. These dif-
ferences in dendritic phenotype between Plc-β1−/− and Cxnr1−/− mice
indicate that multiple pathways activated by glutamate receptors are
not simply converging to regulate cortical development. Instead differ-
ent combinations of pathways are likely needed to differentially regulate
aspects of cortical differentiation such as barrel development, dendritic
complexity, dendritic orientation and spine density.

Interestingly, Spires et al. (2005) demonstrated a reduced symmet-
ric/asymmetric synaptic ratio within the barrel cortex at P5 in Plc-
β1−/− mice, possibly resulting in an imbalance in excitatory and
inhibitory circuitry. Spine morphology of layer 5 pyramidal neurons
passing through layer 4 also showed a reduction in mushroom type
spines compared to age-matched wildtypes indicating a disruption in
spine maturation. These observations correlate well with findings in
the hippocampus that the stimulation of group 1 mGluRs causes spine
elongation (Vanderklish & Edelman, 2002) and that calcium release from
intracellular stores affects spine morphology (Harris, 1999). In conclu-
sion, PLC-β1 signalling appears to be important in the development of
cortical connectivity by regulating spine shape and synapse formation,
but not spine number or dendritic complexity.

Although the cellular mechanisms regulated by PLC-β1 are begin-
ning to be elucidated, the biochemical pathways through which mGluR5
activation of PLCβ1 regulates these cellular processes remains largely
unknown. One hypothesis proposed by Spires et al. (2005) is that PLCβ1
could affect spine morphology through its interaction with Homer pro-
teins. Homer proteins are encoded by 3 genes (Homers1-3) and are mul-
tidomain, scaffolding molecules that link mGluR5/PLCβ1 to the IP3R.
They also link mGluR5 with the NMDAR complex (Xiao et al., 2000;
Fagni et al., 2002) by binding to Shank, another scaffolding molecule that
associates with the guanylate kinase-associated protein GKAP/PSD95
complex. Homers have previously been shown to be involved in reg-
ulating the morphology of dendritic spines (Sala et al., 2003) and one
splice variant, Homerla, has been shown to regulate spine formation in
an activity-dependent manner (Sala et al., 2003). In collaboration with
Professor Paul Worley we have examined the barrel cortex of individual
Homer null mutant mice and Homer triple mutants (h1−/−h2−/−h3−/−).
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Nissl staining showed normal cellular segregation of layer 4 neurons
into barrel walls and barrel septa also appeared normal. Therefore the
mechanisms by which PLC-β1 controls barrel development are Homer-
independent. These findings suggest that IP3-stimulated release from
the ER may not be a crucial step in barrel development. However, it may
be that a limited release of Ca2+ from the ER, that is not dependent on a
close association of mGluR5 with the IP3 receptor, may be sufficient to
drive barrel formation. Alternatively, DAG activation of PKC or direct
regulation of PIP2 levels by PLC-β1 may be the crucial step to barrel
development. A role for PKC in spine plasticity via its interaction with
Rac and Rho has been shown (Pilpel & Segal, 2004). It is important to
note that we have not examined whether Homers are critical for PLC-β1
dependent spine and synapse development. Further work will be nec-
essary to determine the cellular mechanism regulated by PLC-β1 that
underlie barrel formation and spine maturation.

SynGAP

SynGAP is a Synaptic Ras-GTPase Activating Protein (Chen et al., 1998)
that is highly enriched in excitatory synapses (Kim et al., 1998; Chen
et al., 1998; Petralia et al., 2005). It associates with the NMDAR com-
plex (Husi et al., 2000) via direct interactions with the PDZ domains of
MAGUKs, namely SAP102 and PSD95 (Chen et al., 1998; Kim et al., 1998;
Kim et al., 2005; Figure 2B). SynGAP regulates the level of phosphory-
lated ERK (Komiyama et al., 2002), by regulating levels of Ras-GTP (but
see below; Chen et al., 1998; Oh et al., 2004). However, regulation of
ERK levels is likely key to functional synapse maturation since follow-
ing NMDAR activation, pERK levels rise and regulate AMPA receptor
insertion into the PSD (Zhu et al, 2002).

Recently, we showed that Syngap mRNA and SynGAP protein are
expressed in developing S1 with highest levels in layer 4 during bar-
rel formation (Barnett et al., 2006). Syngap mRNA is also expressed at
high levels in developing VpM but not in brainstem. Mice carrying tar-
geted mutations in Syngap have defects in barrel cortex development
(Barnett et al., submitted). Nissl staining revealed that P6/7 Syngap−/−

mice have a complete loss of cellular segregation into barrels. 5-HT
immunohistochemistry revealed a partial segregation into rows but no
segregation into whisker-specific patches. Using cytochrome oxidase
histochemistry, Syngap−/− mice also show only partial segregation of
barreloids in the VpM with only a few of the largest barreloids visible
at P6. In contrast Syngap+/− mice have significantly reduced barrel for-
mation but show normal afferent (as identified by 5-HT staining) and
barreloid segregation (as shown by CO) (Barnett et al., 2006). This deficit
in cellular segregation in layer 4, despite normal TCA segregation in-
dicates that SynGAP plays a pivotal role in barrel formation. SynGAP
expression is low in the developing brainstem and barrelettes develop
normally in both the PrV and nVi. Therefore although NMDARs are
necessary for whisker patterning at all levels of the trigeminal axis, the
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intracellular pathways they utilise to achieve these whisker-related pat-
terns are different.

Our data are in good agreement with research from Kennedy’s lab-
oratory showing a role for SynGAP in several developmental events
(Vasquez et al., 2004; Kneusel et al., 2005). Syngap−/− neurons prema-
turely form spines and functional synapses in culture and develop
much larger mature spines compared to wild type neurons (Vasquez
et al., 2004). These larger spines demonstrate a precocious incorpora-
tion of PSD proteins relative to wild type spines indicating that Syn-
GAP plays an important role in regulating spine formation and matu-
rity. More recently, SynGAP has also been shown to regulate neuronal
apoptosis (Kneusel et al., 2005). Measurements of caspase-3 activation
in Syngap−/− brains show that significantly more neurons in the hip-
pocampus and the cortex undergo apoptosis at P0/P1 and that this
apoptosis only occurs in regions where the Syngap gene is lost (Kneusel
et al., 2005). Also by examining heterozygote and homozygous dele-
tion of Syngap, the level of neuronal apoptosis was shown to corre-
late with the level of SynGAP protein present. Cell death selectively
in the presumptive barrel hollow could underlie barrel formation and
the loss or decreased segregation of barrels in Syngap−/− and Syngap+/−

animals, respectively, could reflect an altered distribution of apoptotic
cells, however, this possibility seems unlikely for 2 reasons. First, Miller
(1995) reported no pattern to the distribution of apoptotic cells in layer 4
during barrel formation. Second, Syngap+/− mice show a normal over-
all density of layer 4 neurons despite significantly reduced segregation
of cortical cells (Barnett et al., 2006). Instead it appears that SynGAP is
playing a critical role in barrel development by mediating active cellular
aggregation, either through directed cell movement or differential cell
adhesion.

SynGAP was previously shown to associate with the NMDARs via
an interaction with PSD-95 a highly abundant scaffolding protein found
in developing cortical PSDs (Chen et al., 1998; Kim et al., 1998). To de-
termine whether its association with PSD-95 was critical for barrel for-
mation we examined barrel formation in two different lines of psd-95
null mutant mice. Both lines show normal cellular segregation in layer
4 producing clearly defined barrel fields. Furthermore using PSD prepa-
rations from barrel cortex of psd-95−/− animals we demonstrated that
SynGAP can associate with the PSD during barrel development in a
PSD-95 independent manner suggesting 1) that there is either compen-
sation between scaffolding molecules or redundancy of these molecules
with respect to barrel formation or 2) SynGAP uses other domains (i.e. its
pleckstrin homology or C2 domain) or other PDZ-containing proteins
(i.e. SAP-102, PSD-93, or MUPP1) to associate with the PSD (Barnett
et al., 2006; Kim et al., 2005; Krapivinsky et al., 2004). The structure and
in vitro activity of SynGAP suggested that H-Ras, a small G-protein,
could be the substrate for SynGAP. However no barrel defects were
detected in either adult or P7 h-ras−/− mutant mice (Barnett et al., sub-
mitted), so H-Ras does not appear to act as a key effector of cortical
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development. However other Ras isoforms could potentially provide
the substrate for SynGAP during barrel development.

ERK and Barrel Development

Our findings of a role for SynGAP in barrel cortex development are
also in good agreement with previous findings showing a role for the
ERK pathway in many forms of NMDAR-dependent synaptic plas-
ticity (Sweatt 2001), including the shift in ocular dominance that oc-
curs in the visual cortex after monocular deprivation (MD; Di Cristo
et al., 2001). As mentioned above, NMDA receptor activation causes
an increase in pERK. One way that NMDA could increase pERK lev-
els is by inhibiting SynGAP activity, causing a build-up of Ras-GTP
and hence ERK phosphorylation (Chen et al., 1998; Kim et al., 2003).
However, Oh et al. (2004) have shown that phosphorylation of Syn-
GAP by CaMKII increases SynGAP’s activity by 70–95%. Since CaMKII
is activated by NMDA receptor stimulation, SynGAP activity would
be expected to increase following NMDA receptor stimulation and
pERK levels would decrease. In hippocampal slices, Komiyama et al.
(2002), found an increase in basal pERK levels in Syngap+/− support-
ing the hypothesis that SynGAP regulates the ERK pathway. They
also reported an increase in NMDA receptor-mediated pERK levels
in Syngap+/− animals. These findings indicate that ERK can still be
phosphorylated in an NMDAR-dependent manner in the absence of
SynGAP (possibly via PKA or PKC-dependent pathways). Stimulation
of NMDARs may simultaneously activate SynGAP-independent and
SynGAP-dependent pathways to regulate the precise levels of Ras-GTP
and pERK. The SynGAP-independent pathway could positively regu-
late ERK phosphorylation and the SynGAP/CaMKII pathway would
negatively regulate ERK phosphorylation. The removal of SynGAP
would therefore result in a release from SynGAP-mediated inhibition
of NMDAR/CaMKII-activated ERK phosphorylation and an increase
in NMDAR stimulated pERK levels.

It has previously been proposed that a primary role for ERK may be
to integrate signals initiated from a variety of sources to produce co-
ordinated cellular events (reviewed by Adams and Sweatt, 2002). Since
multiple receptors (mGluR5 and NMDARs) signalling via numerous in-
tracellular signalling pathways (PLC-β1, SynGAP, PKA) are necessary
for barrel development, it is tempting to hypothesize that ERK may be
acting to integrate these signals to mediate the various cellular events
involved in barrel formation. In support of this notion, mGluR5 sig-
nalling has been shown to activate the ERK pathway (Gallagher et al.,
2004; Berkeley & Levey 2003; Choe & Wang 2001) as can PKA (Cancedda
et al., 2003) and PKC activity (Sweatt, 2004). The disruption of any single
signalling pathway could alter ERK activity to such an extent that barrel
development is disrupted. The degree to which ERK is altered in each
mutant may dictate the severity of the phenotype. Deleting SynGAP
has been shown to increase ERK activity and disrupt barrel formation,
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while blocking ERK activation using MEK inhibitors prevents the ocular
dominance plasticity to MD and LTP in visual cortex and hippocampus
(Di Cristo, 2001; Sweatt, 2001). Therefore there may be a critical band of
ERK activity necessary for normal neuronal development.

Non-ERK Pathways

It is important to note that SynGAP could be regulating barrel develop-
ment independently of ERK. For example, SynGAP could be regulating
Ras-dependent, but ERK-independent pathways or Ras-independent
pathways. Several ERK-independent signalling cascades have been de-
scribed downstream of Ras in response to NMDA receptor activation
(Cullen & Lockyer, 2002) including the Ras-PI3K pathway (Cullen &
Lockyer, 2002). PI3K is a major effector of Ras and has been shown to
be involved in cytoskeletal remodelling and is necessary for NMDAR-
stimulated delivery of AMPARs to the neuronal surface, a mechanism
of synaptic plasticity (Man et al., 2003; Opazo et al., 2003). Recent studies
have also revealed that SynGAP can act as a Rab-GAP (Tomoda et al.,
2004) and a Rap-GAP (Krapivinsky et al., 2004). While SynGAP is more
closely related to other RasGAPs, Krapivinsky et al. (2004) found that for
in vitro hippocampus, SynGAP has more efficient GAP activity for Rap
than it does for Ras. Krapivinsky et al. (2004) also showed that dephos-
phorylated SynGAP that is dissociated from its complex with MUPP1
and CaMKII, causes an inactivation of Rap and subsequent increase in
p38MAPK activity. p38MAPK is therefore another potential signalling
cascade through which SynGAP might regulate barrel formation. Fi-
nally, Tomoda et al. (2004) showed that SynGAP regulates Rab5 activity,
whose activity regulates the actin cytoskeleton during “circular ruffle’’
formation and cell migration (Lanzetti et al., 2004). It is possible there-
fore, that other small non-Ras G-proteins are crucial effectors of SynGAP
during barrel development.

Conclusions

Cellular Processes of Barrel Formation

A central question in developmental neurobiology concerns the molec-
ular mechanisms by which glutamate neurotransmission regulates cor-
tical development. Over the last several years we have identified sev-
eral key members of the postsynaptic density that are essential for the
formation of “barrels’’, the prominent anatomical features of the rodent
somatosensory cortex. Interestingly, no two mutants have identical phe-
notypes indicating that while different signalling pathways may regu-
late some of the same cellular processes, the cohort of processes regu-
lated by each pathway must be unique. Furthermore, the finding that
Plc-β1−/− mice develop normal axon segregation and dendritic orien-
tation and complexity indicates that barrel development is not sim-
ply a result of neuropil expansion within the barrel hollow. Instead a
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glutamate-dependent process of cell migration, cell adhesion or possibly
cell death seems to be the driving force for barrel development.

Heterogeneity of PSDs

Our results also indicate that there is significant functional and struc-
tural heterogeneity between PSD complexes in different brain regions
and within the same regions at different developmental stages. For ex-
ample, while NMDA receptors are needed at all levels of the trigemi-
nal axis (see Erzurumlu chapter), mGluR5 and PLC-β1 are crucial for
cortical cellular differentiation to form barrels but not needed for seg-
regation of the barrelettes or barreloids in the brainstem or thalamus,
respectively. SynGAP is expressed in both thalamus and cortex where it
plays a role in pattern formation, but is not expressed in the brainstem
where whisker-related patterns form normally. These findings indicate
that understanding the pathways that underlie cortical development
will first require the characterisation of the spatio-temporal expression
patterns of NRC components.

It is interesting to note that all of the molecules identified that reg-
ulate barrel development are either receptors or signalling enzymes.
We have examined 5 scaffolding molecules (Homers 1-3, PSD-95 and
AKAP79/150), none of which show an obvious defect in barrel forma-
tion (although roles in dendritogenesis have not been examined). These
results suggest that the scaffolding molecules that tether each of these
molecules to the PSD are not essential for barrel development. Alterna-
tively, there may be a high degree of redundancy in scaffolding system
such that the loss of an individual scaffolding molecule (i.e. PSD-95)
does not disrupt the association of a particular enzyme from the protein
complex. Indeed, genetic deletion of psd-95 does not significantly alter
NMDA receptor association with the PSD, although it does alter synap-
tic plasticity (Migaud et al., 1998). The issue of compensation will be
addressed using double and triple knockout mice as well as conditional
mutants in which a particular gene can be ablated at particular times
during development, namely when barrels are developing.

Activity-dependent plasticity during neuronal development has been
the subject of intense interest over the last several decades because
of the hope that it could shed light on the mechanisms that underlie
and possibly provide treatments for childhood learning disorders and
neurodegenerative diseases. With the recent applications of advanced
molecular and biochemical techniques, there is realistic optimism that
these hopes will eventually become reality. For example, there is recent
evidence suggesting that the primary defects in Fragile X mental retar-
dation could result from alterations in mGluR5 signalling, a hypothesis
that if correct, could lead to the development of powerful drug thera-
pies for patients (Bear et al., 2004; Dolen and Bear, 2005). In addition,
SAP-102, a key MAGUK present in the NRC during cortical develop-
ment has been identified as the gene disrupted in a form of familial
X-linked mental retardation (Tarpey et al., 2003). Similarly, several Rho
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or Rab GTPases also appear to be involved in certain forms of X-linked
mental retardation (Renieri et al., 2005). Unfortunately, simply know-
ing the proteins necessary for normal development does not always
lead to treatment for afflicted patients. However, knowing the biochem-
ical pathways by which these genes regulate normal development may
provide novel avenues for the development of treatments for a range of
neurodevelopmental disorders.
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10
Patterning of the Somatosensory
Maps with NMDA Receptors

Reha S. Erzurumlu and Takuji Iwasato

Abstract

Neural maps of the somatosensory periphery are characterized by their
somatotopic organization, and whisker- and digit-specific patterning in
rodents. While a variety of molecular guidance cues help set up the
topographic axonal projections in the brain, activity-dependent interac-
tions between pre- and postsynaptic elements play a key role in neu-
ral patterning. Here we review our and other groups’ analyses of the
phenotypes of mice with various types of NMDA receptor (NMDAR)
subunit mutations as they relate to the development and patterning
of somatosensory pathways. Our recent studies on axonal and den-
dritic development in region specific NMDAR subunit NR1 knockout
and transgenic rescue of global NR1 knockout mice show that NMDAR
signaling is necessary for dendritic and axonal pruning and pattern-
ing. Further development of region and cell type-specific gene targeting
strategies in mice will undoubtedly reveal cellular and molecular mech-
anisms that underlie the formation of patterned somatotopic maps and
their plasticity.

N-Methyl-D-Aspartate (NMDA) Receptors

Glutamate is the main excitatory neurotransmitter in the vertebrate cen-
tral nervous system (CNS). The diverse functions of glutamate neuro-
transmission are mediated by glutamate receptors that are classified
into two major groups, ionotropic receptors and metabotropic re-
ceptors. The ionotropic receptors are subdivided into N-methyl-
D-aspartate (NMDA) receptors (NMDARs), α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) receptors and kainate
receptors (Hollmann and Heinemann, 1994; Dingledine et al., 1999; Holl-
mann, 1999). Upon ligand binding, these receptors participate in a large
variety of neural events from wiring of synaptic circuits to their plas-
ticity. Of the three types of ionotropic glutamate receptors, NMDARs
have distinctive characteristics (Mayer and Westbrook, 1987; Ascher and
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Nowak, 1988; Bliss and Collingridge, 1993; Wisden and Seeburg, 1993;
Spruston et al., 1995; Monyer et al., 1999; Wisden et al., 2000). First, a
voltage-dependent Mg2+ block permits channel opening only when the
patch of the membrane they are situated in is sufficiently depolarized
at the time of ligand binding. Second, they show a slow response to
L-glutamate by significantly longer channel opening time compared to
other glutamate receptors. Finally they are highly permeable to Ca2+

ions linked to initiation of multiple intracellular signaling pathways
from localized actions at the postsynaptic site to immediate early gene
expression.

In both the developing and mature brain, NMDARs are thought to
be coincidence detectors of pre- and postsynaptic activity because of
their channel gating properties that require simultaneous postsynap-
tic membrane depolarization and presynaptic glutamate release (Bliss
and Collingridge, 1993; Malenka and Nicoll, 1993). Such coincidence
detectors of synaptic activity would then be poised to play a major role
in selective consolidation of coactive synapses and elimination of oth-
ers, a highly plausible mechanism underlying adult synaptic plasticity
(e.g., learning and memory) and developmental sculpting and pattern-
ing of neural circuits (Stent, 1973; Constantine-Paton et al., 1990; Bliss
and Collingridge, 1993; Fox and Daw, 1993.).

There are seven NMDAR subunits (NR1, NR2A-D, and NR3A, B)
(Moriyoshi et al., 1991; Ikeda et al., 1992; Kutsuwada et al., 1992; Meguro
et al., 1992; Monyer et al., 1992; Ciabarra et al., 1995; Sucher et al., 1995;
Andersson et al., 2001; Nishi et al., 2001). Most NMDARs are thought
to be tetramer complexes composed of two NR1 subunits and two NR2
subunits (Clements and Westbrook, 1991). NR1 subunits have binding
sites for co-agonist, glycine and NR2 subunits have binding sites for
L-glutamate (Kuryatov et al., 1994; Laube et al., 1997). The combination
of NR1 with different NR2 subunits shows variability in electrophysio-
logical and pharmacological properties (Monyer et al., 1994). Therefore,
NR1 and NR2 subunits are essential and modulatory subunits, respec-
tively.

Virtually all CNS neurons express NR1 subunit mRNA throughout
development and in adulthood. While four NR2 subunit genes are differ-
entially expressed temporally and spatially (Monyer et al., 1994; Watan-
abe et al., 1992; 1993; 1994a; 1994b). NR2A mRNA is hardly detected in
the embryonic brain but increases in the entire brain during the first two
weeks after birth. NR2B mRNA is detected in various brain regions at
embryonic stages. Its expression in the cerebellum and brainstem is di-
minished by postnatal day (P)14, whereas that in the forebrain remains
high. NR2C mRNA is mainly detected in cerebellar granule cells. NR2D
expression is detected in the diencephalon and brainstem of embryonic
and neonatal brains, but after P7 expression is faint. Protein distribution
of NR1 and NR2 subunits was examined with several antibodies and
similar conclusions were reached (Petralia et al., 1994; Laurie et al., 1997).

While most neurons in the CNS express both NR1 and NR2 (A, B,
C and/or D) subunits, expression of NR3 subunits is very restricted.



160 Reha S. Erzurumlu and Takuji Iwasato

NR3A is expressed primarily during brain development (Das et al.,
1998; Sasaki et al., 2002). NR3B expression is restricted to motorneu-
rons of the brainstem and spinal cord (Nishi et al., 2001). NR3A sub-
unit forms a complex with NR1 and NR2 subunits and suppresses
NMDA response in vitro and in vivo. NR3B subunit similarly suppresses
glutamate-induced current in vitro, while its in vivo function is not
known yet.

During the past decade, loss-of-function studies, particularly targeted
gene disruption in vivo, have yielded important information on the role
of NMDARs in adult neural plasticity and in patterning of neural con-
nections during development of the sensory pathways. In this review,
we describe and discuss the results of our and other groups’ analyses of
the phenotypes of mice with various types of NMDAR subunit muta-
tions as they relate to the development and patterning of somatosensory
pathways.

Sensory Periphery-Related Patterning in Rodent
Somatosensory System

The somatosensory pathways of rodents have topographically ordered
and patterned ”somatotopic maps” in the primary somatosensory (SI)
cortex and subcortical nuclei, which can be visualized by a number of
histological stains (Figure 1). The trigeminal and dorsal column path-
ways are the major ascending systems to the SI cortex. The trigemi-
nal pathway transmits somatosensory inputs from the face and oral
structures to SI cortex via the brainstem trigeminal complex (BSTC)
and the ventral posterior medial (VPM) nucleus of the thalamus. The
dorsal column pathway carries the somatosensory inputs from the rest
of the body and involves the dorsal column nuclei of the medulla
and the ventral posterior lateral (VPL) nucleus of the thalamus (re-
viewed by Killackey et al., 1995). Along the trigeminal pathway, the
afferent axons and target cells are organized in modules that repli-
cate the patterned array of whiskers and sinus hairs on the animal’s
snout (Woolsey and Van der Loos, 1970; Van der Loos, 1976; Belford
and Killackey, 1979; Ma and Woolsey, 1984). These modules are called
’barrels” in SI cortex, ”barreloids” in VPM, and ”barrelettes” in BSTC. A
similar patterned organization is observed in the forepaw representa-
tion areas along the dorsal column pathway (Belford and Killackey,
1978; Dawson and Killackey, 1987). At each level of the somatosen-
sory pathway histochemical stains for mitochondrial enzymes such as
cytochrome oxidase or succinic dehydrogenase reveal the overall pat-
terning of pre and postsynaptic elements, axonal markers distinguish
patterning of presynaptic terminals, and Nissl stains and cellular labels
allow visualization of postsynaptic elements; i.e., barrels, barreloids and
barrelettes.

During embryonic development, cortical area map is initially de-
termined by at least two types of molecular cues: gradient of locally
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Figure 1 Illustration of somatosensory map phenotypes in the neocortex, thala-
mus, and trigeminal brainstem in wild type, CxNR1KO, and NR1KD mice. Top
panel shows cortical, thalamic and brainstem trigeminal (PrV and SpI) pattern-
ing in wild type mice as revealed with cytochrome oxidase (CO) histochemistry.
Whisker rows A-E are indicated for the cortical map and in SpI. Dashed circles
in the photomicrograph of the PrV indicate the whisker representation area.
Wp: whiskerpad representation; as: anterior snout representation; lj: lower jaw
representation; fp: forepaw representation. Note that in the middle panel of
photomicrographs subcortical patterns in the thalamus, PrV and SpI are nor-
mal in CxNR1KO mice, but in the SI cortex there is only patterning in the large
whisker representation area, and these CO-patches are considerably smaller. In
NR1KD mice, there is no patterning in the cortical face area, but digit-related
patterns can be seen in the forepaw representation zone. In the thalamus, VPL
has patterning but VPM does not. In these mice the PrV also lacks patterning
(area indicated by dashed circle), but there is rudimentary patterning in the
SpI.

secreted proteins such as FGF8, BMPs and Wnts, and graded expression
of transcription factors such as Emx2 and Pax6 (Fukuchi-Shimogori and
Grove, 2001; Grove and Fukuchi-Shimogori, 2003; Hamasaki et al., 2004,
Polleux, 2004; Fukuchi-Shimogori and Grove, 2005, this volume). Within
the primary somatosensory cortex, another molecular cue, ephrin-A5 is
expressed in a medial > lateral gradient, whereas within somatosen-
sory thalamus (VPM and VPL), EphA4 is expressed in a ventrome-
dial > dorsolateral gradient during the perinatal stage. Studies using
Ephrin-A5 knockout mice indicate that cortical Ephrin-A5 is an impor-
tant molecular cue for the topographic projection of EphA4 expressing
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thalamocortical axons (Vanderhaeghen et al., 2000). Interestingly
ephrin-A5 also plays an important role in controlling the establish-
ment of proper axonal projections between areas (Bolz et al., 2004).
Consistent with this, the graded expression of the ephrin-A5 is found
not only in the cortex but also in the ventral thalamus during develop-
ment (Dufour et al., 2003). Another molecule implicated in topographic
projection of thalamocortical axons is phosphoprotein GAP-43 local-
ized in thalamocortical axons and shows patterned expression during
barrel formation (Erzurumlu et al., 1990). The GAP-43 heterozygous
knockout mice have enlarged barrels due to defects in thalamocortical
path finding (McIlvain et al., 2003). The homozygous knockout mice of
this molecule have normal barrelettes and barreloids in the brainstem
and thalamus, respectively, but abnormal somatotopy of thalamocorti-
cal projection leading to impaired barrels. Furthermore, thalamocortical
afferents often project to widely separated cortical targets (Maier et al.,
1999). Current understanding is that, these topographically organized
projections (somatotopic maps) along the somatosensory systems are
established via neural activity-independent mechanisms (but see Cata-
lano and Shatz, 1998; Molnár et al., 2005, this volume) and patterning of
neural connections within “somatotopic’’ maps is controlled by neural
activity-mediated mechanisms (Erzurumlu and Kind, 2001), particu-
larly involving NMDARs. Aside from patterning of somatotopic maps,
NMDARs also contribute to the areal parcellation of body map subdivi-
sions in the mouse SI cortex. In transgenic mice with differential levels of
NR1 expression along the trigeminal and dorsal column pathways, the
cortical face representation area, (which does not show any patterning)
is diminished in size, while the paw representation areas with digit-
related patterns expand (Lee and Erzurumlu, 2005). The shrinkage of
cortical face representation in these mice can be attributed to dimin-
ished volume of principal sensory nucleus (PrV) of the trigeminal nerve
and VPM. However, expansion of the paw representation areas indi-
cates cortical activity-dependent competitive mechanisms, as there are
no volumetric changes in the dorsal column nuclei and the VPL.

The rodent somatosensory pathway is a well-established model sys-
tem for studies on mechanisms of sensory map formation and plasticity.
The instructive role of the sensory periphery in sculpting central neu-
ral patterns have been demonstrated by lesion studies performed in
perinatal rodents, or in mice selectively bred for aberrant numbers of
whiskers (Welker and Van der Loos, 1986; Woolsey, 1990; O’Leary et al.,
1994; Killackey et al., 1995; Ohsaki et al., 2002). Several lines of evidence
also indicate that somatosensory periphery-related neural maps and
patterns are conveyed to target cells by the afferents at each synaptic
relay station (Erzurumlu and Jhaveri, 1990; 1992a, b; Senft and Woolsey,
1991). Recent studies have begun unveiling the mechanisms by which
thalamocortical afferent terminals develop patterns, how their postsy-
naptic partners use these templates to pattern their dendritic trees, and
how differential proportions of neural tissues are devoted to subcom-
ponents isolated by septa within the body map.
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Patterning of Somatosensory Pathways and NMDARs

First reports on the role of NMDARs in patterning of developing
sensory projections were results of pharmacological blockade exper-
iments in the vertebrate visual system. For example, NMDA antag-
onist APV application prevented eye specific segregation of retinal
inputs in three-eyed tadpoles (Cline et al., 1987), ocular dominance
plasticity in the cat visual cortex (Kleinschmidt et al., 1987; Bear
et al., 1990), segregation of retinogeniculate sublaminae in the ferret
(Hahm et al., 1991), and refinement of retinotectal projections in the
rat (Simon et al., 1992). Pharmacological activity or NMDAR block-
ade studies along the whisker-barrel pathway of neonatal rats initially
gave negative results (Chiaia et al., 1992a; 1994a, b; Henderson et al.,
1992; Schlaggar et al., 1993), while later studies provided evidence
for the disruption of barrel cortex organization and its functional at-
tributes (Fox et al., 1996; Mitrovich et al., 1996). Such variations in
the effects of pharmacological blockade of NMDARs in postnatal rats
could be attributed to the selectivity and effectiveness of the blockade
and the relatively late timing of drug application as whisker-specific
patterns emerge in the brainstem of rats prenatally and shortly af-
ter birth in the SI cortex (Chiaia et al.,1992b; Schlaggar and O’Leary,
1994).

In contrast, targeted mutations of the NMDAR subunit genes in mice
consistently demonstrated the importance of NMDAR-mediated ac-
tivity in patterning of the somatosensory maps. At least, three labo-
ratories developed knockout mice of the gene for NR1 subunit, the
critical NMDAR subunit (Forrest et al., 1994; Li et al., 1994, Tokita
et al., 1996). Following complete deletion of NR1, topography of so-
matosensory brainstem projections were not altered but whisker re-
lated neural patterns failed to form in the first relay stations of the
somatosensory pathway (Li et al., 1994). These mice followed a rela-
tively normal developmental scheme until parturition, but after birth
they could not feed, and died within 24 hrs due to respiratory fail-
ure. In an attempt to prolong their life span and to confirm the ab-
sence of brainstem somatosensory patterns at early postnatal times,
Li et al., (1994) blocked the birth of mutant mice for an additional
day by pharmacological interventions and after birth stimulation of
mutant pups by CO2. There were no whisker-specific patterns in the
BSTC of NR1 knockout mice at an age equivalent to postnatal day 2
(P2) in normal mice. Similar results were later reported for the NR2B
subunit knockout mice (Kutsuwada et al., 1996). NR2B-deficient mice
could not suckle and starved to death within 24 hrs after birth. When
these mice were handfed to prolong their survival for two more days,
they too failed to develop patterns in the BSTC. In contrast, knockout
mice of NR2D subunit, the other NR2 subunit highly expressed in em-
bryonic and perinatal brains, grew normally and had normal barrels,
barreloids and barrelettes (Ikeda et al., 1995). Since both NR1 knock-
out and NR2B knockout mice are postnatal lethal, pattern formation
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at higher trigeminal centers, including the barrel cortex could not be
studied.

We then “rescued’’ the NR1 knockout mice by transgenic expression
of the NR1-1a splice variant (Iwasato et al., 1997). NR1 knockout mice
rescued with ”high” levels of the transgene expression could survive
to adulthood, though their body weight was slightly lower than that
of wild-type mice. Their sensory periphery-related patterns were nor-
mal along both the trigeminal and dorsal column pathways. On the
other hand, in NR1 knockout mice rescued with ”low” levels of trans-
gene expression, pattern formation all along the trigeminal pathway,
including the trigeminal recipient zone of the barrel cortex, was abol-
ished. In these mice (NR1KD mice), there is approximately 70% reduc-
tion of NR1 expression and NMDAR function in the PrV and rostral
neuraxis. However, these mice had higher levels of NR1 expression in
dorsal column nuclei (DCN) than in PrV, and consequently developed
digit-related patterning therein and in the VPL and the paw represen-
tation areas of the neocortex. As noted above, volumes of the subcor-
tical trigeminal nuclei and the face representation area in the SI cortex
were diminished in these mice (Lee and Erzurumlu, 2005). While there
were no volumetric changes in subcortical dorsal column relay stations,
the paw representation area of the SI cortex expanded, suggesting that
NMDARs also play a role in allocation of cortical tissue to body map
subdivisions.

A number of studies on recombinant NMDARs revealed that a single
amino acid residue in the NR1 subunit aspargine 598 (N598) is criti-
cal for key properties of the NMDAR function such as Ca2+ influx and
Mg2+ block (Burnashev et al., 1992; Sakurada et al., 1993; Kuner et al.,
1996; Wollmuth et al., 1996; Kashiwagi et al., 1997; Schneggenburger
and Ascher, 1997; Traynelis et al., 1998; Zheng et al., 1999). Mg2+ block
and Ca2+ permeability of the NMDARs are abolished by the aspargine
(N) to arginine (R) point mutation in the channel-lining region of the
membrane domain (Burnashev et al., 1992; Sakurada et al., 1993). Intro-
duction of the N598R mutation in the NR1 subunit impaired coincidence
detection properties of NMDARs, and subsequent Ca2+ signaling, and
NR1 N598R mutant mice failed to develop barrelette patterns in the
brainstem trigeminal nuclei (Rudhard et al., 2003). Previously, Single et
al., (2000) also generated mice expressing mutant NMDARs by substi-
tuting aspargine (N) with glutamine (Q) or arginine (R). Animals with
these point mutations in NR1 subunit displayed similar phenotypes to
that of NR1 knockout mice, and were postnatal lethal mainly due to res-
piratory failure. The phenotype was partially rescued in heterozygous
mice that expressed both wild-type and mutant NR1 subunits at the
same level. The authors noted that barrels in the somatosensory cortex
formed in heterozygous mice in which 25% of the NMDARs are pure
wild-type receptors and the remaining 75% are Ca2+-impermeable re-
ceptors carrying one or two mutant NR1 subunits. This study and an ear-
lier study by Iwasato et al., (1997) suggest that neural patterning within
the somatosensory map regions requires a threshold level of NMDAR
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Figure 2 Cortical excitatory neuron-specific gene targeting by Cre/loxP recom-
bination. In an Emx1-Cre mouse, Cre recombinase gene is expressed in the cortical
excitatory neurons but not in cells in the thalamus or brainstem. In a flox mouse,
a target gene is flanked by two loxP sequences but is functional. A cortex-specific
gene knockout (CxKO) mouse carrying both Emx1-Cre and flox alleles is gen-
erated by mating between an Emx1-Cre and a flox mouse. In cortical excitatory
neurons of CxKO mouse, the target gene is disrupted by Cre-mediated exci-
sion from the chromosome, while in thalamic and brainstem cells, target gene
remains intact because Cre recombinase is not expressed.

function, the precise level of which is yet to be determined for different
relay stations along the pathway.

To delineate the specific role of cortical NMDARs in patterning of the
somatosensory cortex, we took advantage of the Cre/loxP conditional
gene targeting approach (Figure 2). We expressed Cre recombinase gene
under the control of the dorsal telencephalon-specific Emx1 promoter
by knock-in or BAC/PAC transgenic approaches (Iwasato et al., 2000,
2004). By crossing each Emx1-Cre mouse line with floxed NR1 mice, we
generated cortex-restricted NR1 knockout (CxNR1KO) mice (Iwasato et
al., 2000; T.I. and S. Itohara, unpublished data). In these mice, NR1 gene
is deleted in virtually all of the excitatory neurons of the cerebral cortex,
hippocampus and olfactory bulb, but remained intact in the thalamus,
brainstem, striatum and cerebellum during the period of patterning of
the somatosensory pathways. In this mouse model, inhibitory interneu-
rons that migrate to the neocortex from Emx1 negative regions of the
pallidum also escaped the NR1 deletion (Iwasato et al., 2000). Unlike
NR1 global knockout mice, CxNR1KO mice survived through postna-
tal stages. In CxNR1 KO mice, whisker-specific patterns in the brain-
stem trigeminal nuclei and in the thalamus, where the NR1 expression
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remains intact, developed normally. In the SI cortex, however, thala-
mocortical afferents (TCAs) formed only small, rudimentary patterns
(as visualized with histochemical and immunohistochemical markers)
in regions corresponding to the representation of larger whiskers. Fur-
thermore, layer IV granule cells failed to develop barrels even in regions
where there were rudimentary patterning of TCAs (Iwasato et al., 2000).
These results demonstrated critical roles of cortical NMDAR-mediated
activity in the patterning of both presynaptic component (TC axonal
termini) and postsynaptic component (layer IV granule cell bodies and
dendrites). Rudimentary patterning of TCAs in CxNR1KO mice might
be due to NMDAR activation in cortical GABAergic cells, which escaped
the NR1 deletion. This is a possibility that remains to be experimentally
tested. Another interesting observation in these mice was that neonatal
whisker-induced structural plasticity followed the same time course as
in wild type mice, and rudimentary cortical patterns could be altered
up to postnatal day 3 but not thereafter (Datwani et al., 2002a).

An important caveat to all these reports underscoring the involvement
of NMDARs in patterning of developing somatosensory pathways (as
well as the vast majority of other studies documenting barrel cortex phe-
notypes in other lines of mutant mice) is that the morphological assays
have been done at a gross microscopic level using a variety of histolog-
ical and immunohistochemical markers for barrel patterns (Erzurumlu
and Kind, 2001; López-Bendito and Molnár, 2003). If NMDARs serve as
coincidence detectors between pre and postsynaptic elements, how is
presynaptic terminal and dendritic differentiation of pattern forming el-
ements in somatosensory centers affected in mice with various types of
genetic alterations of the NMDAR function? What are the downstream
signaling mechanisms that allow detection of patterning of presynap-
tic inputs by postsynaptic cells, and consolidation of patterns at both
sites? To date there is very little documentation of fine structural de-
fects in mice with reported barrel pattern defects. Below we review our
recent results on axonal and dendritic differentiation in mice with NR1
mutations.

NMDAR-Mediated Differentiation of Trigeminal
Sensory and Thalamocortical Axon Terminals

Whisker-specific information is carried to the CNS by the axonal pro-
cesses of the infraorbital (IO) branch of the maxillary division of the
trigeminal nerve. Damage to this nerve or to whisker follicles up to
3 days after birth (critical period) irreversibly alters all neural pattern-
ing at each level of the trigeminal neuraxis (Woolsey 1990; O’Leary et al.
1994). During normal development, whisker-related brainstem patterns
(barrelettes) appear around P2-3 and are consolidated by P5(Ma 1993).
Both in NR1 knockout mice and in NR1KD mice these patterns fail to
develop in the PrV (the nucleus which is solely responsible from trans-
mitting whisker-patterns to the contralateral ventrobasal thalamus and
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subsequently to the barrel cortex), but rudimentary patterns can be seen
in portions of the spinal trigeminal nucleus, subnucleus interpolaris
(SpI) only in NR1KD mice. Peripheral trigeminal (IO) axons invade the
developing whisker fields around embryonic day (E) 10 in the mouse,
and their central counterparts lay down the trigeminal tract in the brain-
stem by E13 (Stainier and Gilbert 1990; 1991). Once the tract extends cau-
dally to the level of the cervical spinal cord, axon extension is halted, and
these single axons begin emitting radial collaterals into the brainstem
trigeminal nuclei, where they eventually start to form whisker-specific
patchy terminals by E17.

Carbocyanine dye labeling of single trigeminal axons from individ-
ual whisker follicles during development of the central trigeminal path-
way in NMDAR mutant and control animals revealed striking differ-
ences (Lee et al., 2005a; Figure 3). In control, NR1 knockout and NR1KD
mice initial arborization patterns in the PrV are simple and similar at
E15, but by E17 terminal fields show notable differences. Trigeminal
arbors in control cases show patchiness and elaboration of small termi-
nal branches, while much larger and highly branched terminal arbor
field is emergent in NR1KD and more so in NR1 knockout cases. At
the time of birth, the whisker afferent arbors are the largest and most
complex in NR1 knockout mice and conspicuously larger in NR1KD
animals in comparison to controls. By P5, after the end of the critical
period for whisker-lesion induced morphological plasticity (Woolsey
1990), trigeminal terminal arbors in the NR1KD PrV occupy five-fold
larger area than those in control cases. Clearly wide spread terminal
arbors, increased branch tips and overlapping distribution of whisker
afferents within the PrV of NR1 knockout and NR1KD mice are major de-
fects that contribute to the absence of barrelette patterns. Most whisker
afferents bifurcate upon entry into the brainstem, one branch extends
rostrally to form the ascending component of the central trigeminal tract
and the other elongates caudally to contribute to the descending trigemi-
nal tract (Jacquin et al., 1993). In NR1KD mice, there are differential levels
of expression of NR1 between the PrV and SpI, the latter having more
expression (Iwasato et al., 1997). Consequently in the middle portion
of the SpI in NR1KD mice, there is rudimentary whisker-specific pat-
terning. Comparison of single axons terminating in the PrV and SpI in
NR1 knockout and NR1KD mice revealed that the same axon can form
restricted terminal patches in the SpI of the NR1KD mice in compari-
son to wide terminal fields in the PrV, whereas both branches formed
extensive terminals in the SpI and PrV of the NR1 knockout mice (Lee
and Erzurumlu, unpublished observations). These findings, along with
those from CxNR1KO mice (see below), provide a strong argument for
the involvement of postsynaptic NMDARs in restricting terminal arbor
fields of whisker afferents and formation of whisker-specific patches.

CxNR1KO mice develop normal barrelette and barreloid patterns in
the brainstem and thalamus, respectively, but in the barrel cortex, cellu-
lar aggregates (barrels) fail to form (Figure 1). A rudimentary patterning
corresponding to the large whiskers can be visualized with serotonin
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Figure 3 Illustration of trigeminal afferent terminals in the PrV of control,
NR1KD, and global NR1 knockout, mice and TCA terminals in control, and
CxNR1KO mice at different developmental time points. Top two rows show
examples of single whisker afferent terminals in the PrV at E15, E17, and P0
for control (C), NR1KD (KD), and NR1 global knockout (KO) cases (from left
to right) and control and NR1KD cases at P5. Bottom two rows show examples
of single TCA terminals labeled from the VPM for control (C) and CxNR1KO
(CxKO) cases at P0, P3, P5, and P7 (from left to right). Cortical laminae are indi-
cated to the left of each pair. Note that both in the PrV and SI cortex these afferent
terminals start branching in a similar fashion at early stages of development,
but when NR1 gene is disrupted afferent terminals grow extensive branches.
Bottom panel shows comparison of single TCA terminals with respect to CO-
dense patches seen in the control and CxNR1 cortex. Figure adapted from Lee
et al., 2005a and 2005b).

transporter (5-HTT) immunohistochemistry and cytochrome oxidase
(CO) histochemistry (Iwasato et al., 2000; Datwani et al., 2002b). Because
developing TCAs transiently express 5-HTT (Lebrand et al., 1996; 1998),
it has been used as a reliable marker for developing somatosensory,
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visual and auditory TCAs. CO histochemistry is also a common bar-
rel pattern marker for pre and postsynaptic zones rich in mitochon-
dria (Wong-Riley and Welt, 1980; Wong-Riley, 1989). These individual
patches in the CxNR1KO mice are much smaller and inter-patch dis-
tances are wider than those in the wild-type mice. The emergence of
whisker specific patterning in the wild-type mice barrel cortex was vi-
sualized with 5-HTT immunohistochemistry as early as P3. This marker
for TCAs and a CO histochemistry show the emergence and con-
solidation of whisker-specific TCA patterns in the wild-type mouse
barrel cortex between P3-7. In CxNR1KO mice, these patterns con-
solidate during the same period as in wild-type mice (Lee et al.,
2005b).

Detailed analyses of single TCA development in the barrel cortex
of CxNR1KO mice between P1-7 revealed that while whisker-specific
TCAs target proper cortical layers at first and begin arborization similar
to that seen in control cases, their growth is not confined to layer IV (Lee
et al., 2005b). At P1, TCAs invade the cortical plate as simple axons with
few small branches, and their morphological appearance is similar in
both control and CxNR1KO mice (Figure 3). By P3, TCAs of the control
animals display focalized branches in layer IV and to a lesser extent in
layer VI. In contrast, in CxNR1KO cortex, TCAs display a wider termi-
nal territory and more branches in other layers. At P5 and later on, as
the normal TCAs consolidate their focal terminal arbors in layer IV and
fewer terminal arbors in layer VI, TCAs of CxNR1KO mice continue
their expansion and branching in other layers. In this study (Lee et al.,
2005b) it was calculated that in control animals, bifurcation points and
terminal tips were mostly distributed in layer IV (about 75-80% of the
total number), with some in layer VI (10–15%). In CxNR1KO cases from
P5 and on, significantly reduced numbers of both bifurcation points and
terminal tips were counted in layer IV. Greatly increased bifurcations
of TCAs, as well as their terminals, were found in layers II/III and V in
CxNR1KO cortices at P3 and older ages, also suggesting that when corti-
cal excitatory neurons lack functional NMDARs, TCAs fail to recognize
any putative layer-specific “stop’’ signals (Molnár and Blakemore, 1995;
see Yamamoto et al., 2005, this volume). Interestingly, the total num-
bers of bifurcation points and terminal tips in all cortical layers for each
age did not show any significant differences, however, the total axonal
branch length within the terminal field of all reconstructed single ax-
ons for each age was significantly higher in CxNR1KO cases beginning
on P5. This increase indicates that as the terminal arbors begin shap-
ing, terminal branch segments get longer, thereby contributing to the
wider span of terminal arbors seen in CxNR1KO animals. Despite these
large arbors in the CxNR1KO cortex, zones of TCA terminal condensa-
tions were seen in layer IV. These terminal condensations correspond to
the rudimentary patterning seen with histochemical and immunohisto-
chemical markers.

In addition to terminal spreading in several cortical layers, the medi-
olateral span of CxNR1KO TCAs was also double that of control TCAs
by P7 (Lee et al., 2005b). Since in control and knockout phenotypes
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TCA arbor mediolateral extent is similar during initial phases of cortical
target invasion, exuberant growth of TCA terminals in CxNR1KO SI
cortex indicate that postsynaptic NMDARs might act as “stop and elab-
orate’’ signals for their presynaptic partners. Both studies (Lee et al.,
2005a, b) at the level of the first (brainstem) and third (SI cortex layer
IV) relay stations of the trigeminal pathway clearly show that NMDAR
deficiency leads to exuberant presynaptic axon terminal branching, sug-
gesting the presence of retrograde signals released through NMDAR
activation of cortical cells that control pruning and patterning of presy-
naptic terminals.

NMDAR Function on Dendritic Differentiation of
Barrelette and Barrel Cells

In the rodent PrV, there are three main cell types: small GABAergic in-
terneurons, small trigeminothalamic projection cells (barrelette cells),
and very large internuclear projection cells (interbarrelette cells) with
dendrites that span multiple barrelettes. All three cell types have distin-
guishing electrophysiological properties in addition to their morpho-
logical characteristics (Lo et al., 1999; Lo and Erzurumlu 2001). Affer-
ent patterning is detected only by the trigeminothalamic projection or
“barrelette’’ neurons. These cells orient their dendrites toward discrete
patches of trigeminal afferent terminals. As a result, whisker-specific
barrelette units are formed (Ma and Woolsey 1984; Bates and Killackey
1985; Ma 1993). PrV barrelette cells convey these patterns to the tha-
lamic barreloids and subsequently to the somatosensory barrel cortex
(Woolsey and Van der Loos 1970; Van der Loos 1976; Killackey and
Fleming 1985; Erzurumlu and Jhaveri 1990; Senft and Woolsey 1991).
In NR1KD mice, electrophysiological properties of barrelette neurons
are not altered, and synaptic communication is intact, except for 80%
reduction in NMDAR currents (Lee et al., 2005a). While membrane
properties of barrelette neurons remain unchanged in these transgenic
mice, their dendritic differentiation is dramatically altered. Normally
barrelette neurons have three primary dendrites emanating from the
soma with restricted dendritic fields that are oriented towards the bar-
relette centers. NR1KD barrelette neurons were found to have four
primary dendrites that radiated in all directions from the soma (Lee
et al., 2005a). Overall, NR1KD barrelette neuron dendrites showed
little or no orientation preference, had longer segments and fewer
high order branches, indicating that NMDAR-mediated mechanisms
play a major role in dendritic sculpting, complexity, and orientation
(Figure 4).

Similar dendritic defects were reported for the layer IV spiny stellate
(or barrel) cells in the barrel cortex of the CxNR1KO mice (Datwani
et al., 2002b). Normally, barrel cells in layer IV orient their den-
drites towards tufts of TCA terminals, and in mice form cellular rings
around them. In CxNR1KO mice both the dendritic orientation and
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Figure 4 Illustration of barrelette cells in NR1KD (top row) and barrel cells in
CxNR1KO (bottom row) cases. In normal mice barrelette and barrel cells orient
their dendrites toward the center of whisker-related cytoarchitectonic units (in-
dicated by purple cellular profiles). In NR1KD mice there are no barrelettes in
the PrV and barrelette cells (as identified by their electrophysiological properties
and morphologies) fail to orient their dendrites and show exuberant dendritic
growth. In the barrel cortex of CxNR1KO mice, spiny stellate cells also fail to
develop dendritic orientation bias and grow extensive dendritic trees. Figure
adapted from Lee et al., 2005a; Datwani et al., 2002b).

cellular rings were absent (Figure 4). Additionally, increased den-
dritic spines were noted in second order dendritic branches. Thus, it
is likely that a major consequence of NMDAR impairment is over-
growth of pre and postsynaptic neuronal processes. During the pro-
cess of concurrent addition and pruning of presynaptic terminal and
postsynaptic dendritic branches NMDAR-mediated activity could act
as a stop/stabilization signal, thereby contributing to their focaliza-
tion and patterning. Whether these structural changes in pre- and post-
synaptic elements occur independently and concurrently or one fol-
lows the other remains to be determined. Comparison of presynaptic
arbor differentiation between control, NR1 knockout and NR1KD an-
imals suggest the presence of a threshold level of NMDAR function
below which morphological differentiation is affected while synaptic
transmission is not. Presently this threshold and the signaling path-
ways downstream from NMDARs utilized in clustering of whisker af-
ferent terminals and dendrites of their postsynaptic partners are not
known.
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Molecules Involved in Patterning of the
Somatosensory System

Besides NMDAR subunit mutants, there are other genetically altered
or spontaneous mutant mice, which show deficiencies in patterning of
the SI cortex (see Gaspar and Rebsam, 2005, this volume and Molnár et
al., 2005; this volume). In a transgenic mouse line (MAOA knockout) in
which insertion of a transgene disrupted a monoamine oxidase (MAO)-
A gene, patterning in the SI cortex was completely impaired, though
barreloids and barrellettes formed (Cases et al., 1996). Subsequently, it
was found that in MAOA knockout mice, barrel impairment is caused
by the excessive activation of serotonin (5-HT) 1B receptors on thala-
mocortical axons by excess levels of extracellular 5-HT (Salichon et al.,
2001). Consistently, 5-HTT knockout mice revealed a nearly complete
absence of barrels and barreloids and less organized barrelettes (Persico
et al., 2001). In 1996, a spontaneous mutant mouse line, barrelless, was
reported. In this mouse, barrels are completely impaired and barreloids
in the thalamus are partially impaired (Welker et al., 1996). By a link-
age analysis, the barrelless gene was found to be adenylyl cyclase Type 1
(AC1), the neuron-specific calcium/calmodulin-stimulated adenylyl cy-
clase. AC1 knockout mice generated by a regular gene targeting method
also showed similar phenotypes as barrelless mice (Abdel-Majid et al.,
1998).

These results demonstrate that serotoninergic system and cAMP path-
way play critical roles in somatosensory cortical patterning. However,
it is important to note that these studies used global knockout mice
in which gene product is lost in all cells. Therefore except for a few
serendipitous cases, it is not clear where along the somatosensory sys-
tem a given molecule plays a role in development. For example, it is
not clear whether AC1 plays an important role at the pre or post synap-
tic site (or both) during TCA patterning and barrel formation. AC1 is
highly expressed in the somatosensory brainstem and thalamus in ad-
dition to the neocortex during early postnatal stages (Matsuoka et al.,
1997). In hippocampus, cerebellum and other systems, AC1 is reported
to play a role in neuronal plasticity at the pre and postsynaptic sites
(Wu et al., 1995, Villacres, et al., 1998, Storm et al., 1998, Ferguson and
Storm, 2004; Wang et al., 2004). In the SI cortex, barrelless mice show im-
pairment of both TCA terminal arbors and layer IV neurons. Barrelless
mice contain few functional AMPARs at the postsynaptic site and LTP
and LTD at thalamocortical synapses are difficult to induce (Lu et al.,
2003). At the presynaptic side, neurotransmitter release is reduced (Lu
et al., 2002). By global knockout studies, only PLC-β1 is clearly shown to
play a role in the postsynaptic side of thalamocortical synapses (Hannan
et al., 2001), because in wild-type brain, PLC-β1 is predominantly ex-
pressed in the telencephalon during early postnatal stages (Watanabe
et al., 1998). Hannan et al. (2001) further showed that mGluR5 knockout
mice also have impairment of barrel formation and they suggested that
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mGluR5 works an upstream molecule of PLC-β1 at the postsynaptic
side. However, because mGluR5 protein is found in the somatosensory
thalamus and brainstem in addition to the cortex during the barrel for-
mation (Munoz et al., 1999), again global knockout mice cannot help
pinpoint where in the somatosensory system, mGluR5 plays a role in
patterning. Region-specific knockout models using the Cre/loxP system
is a powerful tool to overcome such problems and can help dissociate
between pre and postsynaptic mechanisms and the specific role of each
molecule in barrel formation (Iwasato et al., 2000, 2004).

In the case of cortex-restricted NR1 knockout (CxNR1KO) mice, it is
clear that NMDARs in cortical cells play a major role in development
and patterning of both pre and postsynaptic components. Morphologi-
cal defects at both sites indicate active communication via anterograde
and retrograde signaling mechanisms. The nature of these signals is
poorly understood. In other systems, nitric oxide (NO), brain-derived
neurotrophic factor (BDNF), and arachidonic acid (AA) have been im-
plicated as potential retrograde signals that might affect structural dif-
ferentiation of presynaptic terminals (see Schmidt, 2004 for a review). In
addition, a number of molecules downstream from NMDAR-initiated
Ca2+ influx and those that act cooperatively with NMDARs at the post-
synaptic density have been noted in modulating dendritic cytoskele-
tal dynamics, spine morphology, and presynaptic terminal sculpting
(Carroll and Zukin, 2002; Scheiffele, 2003; Wenthold et al., 2003). Cal-
cium/calmodulin dependent protein kinase II (CaMKII) (Wu and Cline
1998; Zou and Cline 1999), neuroligins and neurexins (Nguyen and
Südhof, 1997; Scheiffele et al., 2000) and Eph proteins (Dalva et al., 2000)
are among these candidates.

At present, molecular cascades downstream of NMDAR in pattern
formation are unclear. They should be gradually revealed by studies
with new lines of genetically altered mice. Especially it is important
to use and further develop conditional knockout systems, which allow
gene targeting with distinct region and cell type-specificities, such as
cortical excitatory neuron-, all cortical neuron- and thalamic cell-specific
ones.
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Axon Terminal Remodeling
in the Thalamocortical and
Retinogeniculate Systems

Alexandra Rebsam and Patricia Gaspar

Abstract

The establishment of point to point sensory maps requires that affer-
ent inputs restrict their connections to a limited number of target neu-
rons. This targeting involves axon terminal and synaptic remodeling, as
clearly shown in the mammalian visual system. Retinal ganglion cells
(RGCs) axon terminals from each eye segregate into separate territo-
ries after selective branching and pruning. In the primary somatosen-
sory cortex (S1), the remodeling of the thalamocortical axons (TCAs)
remained controversial but was recently shown by the use of specific
markers and by single axon reconstructions. Moreover, molecular ge-
netic studies in mice demonstrated that similar presynaptic mechanisms
control the segregation of the retinogeniculate projections and the emer-
gence of TCA barrels in S1. The thalamic neurons and the RGCs both
express the serotonin transporter (5-HTT), the vesicular monoamine
transporter, the 5-HT1B receptors, and the calcium-stimulated adeny-
late cyclase 1 (AC1) at the height of the plasticity period for these sys-
tems, during the first postnatal week. Mutations that affect the levels
of serotonin (monoamine oxidase A and 5-HTT-null mice) prevent the
segregation of eye-specific inputs in the lateral geniculate nucleus and
the emergence of barrels in S1. Double knockout strategies indicated
that an abnormal activation of the presynaptic 5-HT1B receptor plays a
key role in this developmental abnormality. The 5-HT1B receptors can
modulate the growth and branching of TCAs. Downstream events could
involve the control of glutamate release and/or the control of cAMP lev-
els. Observations in the AC1 defective mice, showing abnormal axon
branching of the TCAs and RGCs suggest that the latter mechanism is
critical.
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Thus, current evidences indicate that presynaptic 5-HT receptors and
cAMP mediated signaling are important modulators of axon terminal
remodeling in the barrelfield and the retinogeniculate system.

1. Introduction

Establishing topographic point to point projections in the brain requires
from axons to have a high degree of selectivity in the choice of the neu-
rons with which they establish synaptic contacts. A large part of this
selectivity is ensured by molecular guidance of the axons to their tar-
gets by attractive and repulsive factors. However, once the axons reach
these targets, the precision of the connection is acquired only gradually
and involves activity-dependent mechanisms and competitive interac-
tions among axon terminals for target sites (Purves and Lichtman, 1980;
Goodman and Shatz, 1993). This construction scheme has been most
clearly validated in the visual system, where developing RGC axons
initially extend broadly in their target areas, the lateral geniculate nu-
cleus (LGN) and the superior colliculus (SC), and subsequently restrict
their terminal arbors and the number of neurons with which they estab-
lish synaptic contacts (Shatz, 1996, Toborg and Feller, 2005; Guido, this
volume). The secondary refinement of the map involves axon terminal
branching, stabilisation of branches, as well as axon terminal elimina-
tion, in coordination with activity-dependent synaptic stabilisation and
synaptic elimination (Sanes and Lichtman, 1999).

In the rodent somatosensory cortex, the barrel patterning is deter-
mined by the organisation of the thalamocortical axons (TCAs) from
the ventrobasal thalamic nucleus (VB) into axon clusters that replicate
the organisation of sensory receptors in the periphery. However, the
mechanisms involved in the clustering of TCAs into barrel domains
has remained controversial. After a period when a tight parallelism was
thought to exist between the visual and the somatosensory systems, con-
flicting evidence suggested that the development of the two systems
was opposed (O’Leary et al., 1994). Thus, the importance of activity-
dependent refinement mechanisms was generally accepted in the visual
system, but was considered to be marginal in the whisker to barrel path-
way. This was based on studies that suggested that TCAs arrived into
their target layer IV in the cerebral cortex more or less “pre-assembled’’
into periphery related patterns (Agmon et al., 1993). Furthermore, phar-
macological experiments interfering with neural transmission did not
alter the development of barrels in the primary somatosensory cortex
(Chiaia et al., 1992; Schlaggar et al., 1993b; Henderson et al., 1992).

As shown by a number of chapter contributors of this book, this
view has now largely evolved owing to a body of genetic evidence for
shared molecular mechanisms during the development of the barrelfield
and the retinogeniculate projections. First, it now appears clearly that
axon terminal remodeling is required for the emergence of periphery-
related patterns (Erzurumlu and Iwasato, this volume). Second, the role
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of glutamatergic neurotransmission and NMDA-dependent transduc-
tion pathways has now been demonstrated in both the visual system
and the barrelfield (Erzurumlu and Kind, 2001, and see Erzurumlu and
Iwasato, this volume). Finally, as discussed in the present chapter, there
is mounting evidence that similar presynaptic mechanisms are required
for the emergence of periphery-related patterns in the retinal visual
system and in the barrelfield. This view results largely from molecular
genetic studies demonstrating the role of serotonin neurotransmission
and adenylate cyclase signaling for the formation of barrel patterns,
and the emergence of eye-specific segregation of the retinogeniculate
projections.

2. Axon Terminal Remodeling in the Retinogeniculate
and Thalamocortical Projections

2.1. Retinal Projections to the Lateral Geniculate Nucleus

Numerous anatomical studies, single axon reconstructions, and cellular
electrophysiological studies, have demonstrated that the sorting of eye-
specific retinal afferents involves extensive axon remodeling (reviewed
in Shatz 1996, Guido, this volume). During embryonic life and early
postnatal period, retinal afferents from each eye largely overlap in the
LGN, and converge onto single neurones, which can receive inputs from
as much as 20 RGC neurons (Chen and Regehr, 2000). Over the first two
postnatal weeks, the RGC axons segregate into separate territories and
the convergence onto a single neuron becomes minimal (Figure 1A).
This segregation coincides with the removal of retinal axons from the
inappropriate eye and with extensive terminal branching of the retinal
axons from the appropriate eye (Shatz and Stryker, 1988, but see Snider
et al., 1999). In amphibians and fish, although the topographic connec-
tion appears to be more specific from the outset, in vivo visualisation of
single axons at different developmental times showed that axons reach-
ing out for their targets are highly dynamic with a constant process
of branch addition and retraction (Witte et al., 1996; Cohen-Cory, 1999;
Niell et al., 2004).

2.2. Thalamocortical Projections to the Somatosensory Cortex

A similar progressive activity-dependent remodeling of the somatosen-
sory TCAs was initially proposed in the barrelfield (Senft and Woolsey,
1991) but was subsequently dismissed. Anatomical studies showed that
the topography of the trigeminal projection is established early dur-
ing embryonic life. Trigeminal axons reach the whisker pad by E14
and thalamocortical axons reach the cortex by E14.5 in mice (E15.5
in rats) and both have a clear topographic organisation from the out-
set (Erzurumlu and Killackey, 1983; Erzurumlu and Jhaveri, 1990). At
these embryonic stages, each component of the sensory circuit devel-
ops independently: trigeminal axons are guided to the whisker pad by



Figure 1 Axon terminal remodeling of retinogeniculate projections and of the
whisker to barrel pathway. (A) Progressive separation of the ipsi and con-
tralateral retinal afferents in the mouse lateral geniculate nucleus. As shown
on the photomicrographs (upper panel), the HRP-labeled ipsilateral retinal ax-
ons, cover a large portion of the lateral geniculate nucleus (LGN) at P3, and
become restricted to a central core of the LGN at P9. The diagram (lower panel)
illustrates the intermix of the ipsilateral and contralateral retinal axons at P3;
at this stage the retinal axons display very few axon collateral branches. At P9,
the ipsi- and contralateral fibers are segregated and occupy distinctive terminal
fields; the axon terminals have then produced abundant collateral branches.
(B) The photomicrographs illustrate the somatosensory thalamocortical axons
(TCAs), labeled with 5-HT transporter immunoreactivity. At P1, TCAs are dis-
tributed uniformly in the cortical plate (CP) and in layer VI. This uniform pattern
is related to the intermix of individual TCAs extending in the tangential plane.
At P5, sensory TCAs become segregated into barrel domains. This segregation
is correlated with a pronounced remodeling of the TCAs, involving the addi-
tion of collateral branches towards the centre of the barrel and the retraction of
collaterals from neighbouring domains.
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attractive and branching guidance cues (Ulupinar et al., 1999; Ozdinler
and Erzurumlu, 2002) whereas the thalamic axons are guided to the
somatosensory cortex by a complex interplay of repulsive and at-
tractive guidance cues that are posted along their way to the cortex
(semaphorins, ephrins, and netrin); they also use descending cortical
output axons and transient subplate neurons as guides (Molnár et al.,
1998; López-Bendito and Molnár, 2003). Once the axons reach the cortex
they immediately start growing into the cortex, and they are topolog-
ically organised with a degree of order that has been estimated to be
either high (Dawson and Killackey, 1985; Agmon et al., 1993; Agmon
et al., 1995) or more divergent than in adults (Naegele et al., 1988; Krug
et al., 1998). The emergence of barrel patterning occurs only secondarily,
approximately seven days after the TCA projections have reached the
cortex. This delay can vary among species, it may be slightly shorter
in rats; six days if one refers to the data of Schlaggar et al. (1993a) but
it can be much longer: in the wallaby for instance, thalamic axons re-
main in their target for about 60 days before forming clusters (Marotte
et al., 1997). The formation of the whisker related patterns is initiated
by the segregation of the TCAs which conduct the sensory information
from one whisker. This is shortly followed by a response of the target
neurons which organise their cell bodies and dendrites around these
clusters (Rice and Van der Loos, 1977; Jhaveri et al., 1991). The post-
natal emergence of the whisker-related patterning follows a peripheral
to central sequence: it is first visible in the brainstem (by E19 in rats
and P1 in mice), (Belford and Killackey, 1979; Ma, 1993 ) and becomes
apparent in the thalamus and the cortex two days later, by P3 in mice
(Erzurumlu and Jhaveri, 1990). Within the cerebral cortex, as in the lower
sensory relays (Ma, 1993), the emergence of the periphery-related pat-
tern is gradual. The first segregation step is the distribution of the VB
somatosensory axons along broad unsegmented rows that correspond
to the principal whisker rows of the muzzle. This organisation emerges
at P2 in mice (Rebsam et al., 2002) but it is already visible at P0–P1 in rats
( Rhoades et al., 1990; Schlaggar et al., 1993a; Auso et al., 2001). The next
step, at P3–P4, is the separation of the rows into clusters that correspond
to the large whiskers. Finally, at P5, the smaller barrels that correspond
to the smaller face whiskers and to the digits appear (Rhoades et al.,
1990; Rebsam et al., 2002). As shown by lesions of the sensory receptors
or of the trigeminal nerve, the patterning of the afferent axons requires
the transmission of a peripheral signal that is provided by the whisker
pad during a critical period (P0–P4) in mice (Van der Loos and Woolsey,
1973; Jeanmonod et al., 1981; Jensen and Killackey, 1987; Rebsam et al.,
2005).

The way periphery-related TCA barrel patterns emerge in the cere-
bral cortex has been controversial. Are they sculpted within the cortex
by activity-dependent remodeling of the thalamic axon arbors, or do
they arrive pre-formed in the cortex? The first anterograde tracing stud-
ies using DiI showed that TCAs were uniformly distributed in layer IV
before they segregated into separate clusters (Senft and Woolsey, 1991).
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However, subsequent studies that used an elegant combination of an-
terograde and retrograde tracers in mice (Agmon et al., 1993; Agmon
et al., 1995) or acetylcholinesterase labelling of the sensory thalamic ax-
ons in the rat (Schlaggar et al., 1993a) concluded that the barrel patterns
emerged in the deep cortical layers and were then “projected’’ into layer
IV. Subsequent analyses of single TCAs in the developing rat cerebral
cortex supported this interpretation, by showing no signs of TCA exu-
berance or axon overgrowth within the cortex, or cortical plate (Catalano
et al., 1991). Thus, the general scheme that was retained was that TCAs
branched off in the deep cortical layers/subplate and then grew radi-
ally into the cortex to their appropriate radial and laminar destination.
Our recent observations in this system, using a new marker of the so-
matosensory TCAs, give credit to the first interpretation of Woolsey and
colleagues (Figure 1B). We benefited from the fact that the 5-HT trans-
porter (5-HTT) is selectively expressed in all the VB axons from E14.5
to about P10, in mice and rats (Lebrand et al., 1998; Boylan et al., 2000).
Thus, 5-HT or 5-HTT immunocytochemistry, allow a clear visualization
of the entire TCA projection during barrel development (Figure 2). This
approach removed a potential source of confusion that exists when us-
ing tracers such as DiI which can either label too many axons (e.g. from
neighbouring thalamic nuclei such as the posteromedial thalamic nu-
cleus) or too few axons (small ramifications of the TCAs may be lost
when using small amounts of fluorescent tracers). With 5-HTT immuno-
labeling, TCAs are seen to invade the cortical plate at E16.5 (Figure 2B)
they are uniformly distributed within layers IV and VI during the first 3
postnatal days (Figure 1B), and barrel separations emerge within layer
IV itself over the next two days (Figure 1B, 2C). Clustering of the TC
axons was also visible in layer VI but this feature was much clearer in
rats (Figure 2D) than in mice (Figure 2C). No periphery related patterns
were revealed at the level of the cortical subplate.

Single axon reconstructions showed that at P1, TCAs begin by extend-
ing beyond their prospective terminal field. In the tangential dimension,
they can cover distances equivalent to 2 barrel domains (Rebsam et al.,
2002) (Figure 3); in the radial dimension they frequently overshoot layer
IV extending in layers 1–2. A more confined distribution of the TCAS
in the tangential and radial dimension is visible at P7 (Figure 2C, 3).
Similar observations, suggestive of a pruning of the TCAs between P1
and P4, were made by Welker and collaborators (Hage, 2003). This is
also coherent with electron microscopic observations, that showed the
presence of degenerated axons in the mouse barrel field during the first
postnatal week (White et al., 1997) although the nature of the degener-
ated profiles was not identified. Thus, although the TCA overgrowth
is less marked in the somatosensory cortex than in the retinal visual
system, some degree of TCA pruning coincides with the emergence of
barrel domains in S1. This retraction of branches coincides also with
an extensive and focused axon branching toward the barrel centers, an
observation that is highly consistent across studies (Agmon et al., 1993;
Catalano et al. 1996; Rebsam et al., 2002; Hage, 2003 ; Lee et al., 2005).
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Figure 2 5-HT and 5-HTT immunolabeling of the developing sensory thalam-
ocortical axons. At E16.5, the 5-HT labeled thalamocortical fibers are visible in
the internal capsule and course up to the cortex. Dense staining in the basal fore-
brain corresponds to the ascending serotoninergic fibers coursing in the medial
forebrain bundle (A). TCAs course within the subplate and invade the cortical
plate (arrow) (B). At P7 in mice (C) and rats (D) the 5-HTT-labeled thalamocor-
tical fibers are most dense within layers IV and VIa. The segregation of terminal
fields into barrel domains is most clear in layer IV. Coronal segregation of the
TCAs in layer VI is often difficult to visualise in mice (C) and is somewhat clearer
in rats (D).

In mice, a 10 fold increase in the number of terminal branches per axon
was found between P1 and P7 (Rebsam et al., 2002; Lee et al. 2005).

An interesting point that has not yet been investigated to our knowl-
edge is the relationship that exists between axon terminal remodeling
and synaptic refinement in the barrel field. In the retinogeniculate sys-
tem (Shatz, 1996; Chen and Regehr, 2000), the climbing fibers of the
cerebellum (Hashimoto and Kano, 2003), and the neuromuscular junc-
tion (Sanes and Lichtman, 1999), the reshaping of the axon terminal
arbors has been correlated to the acquisition of an increased synaptic
specificity: a reduced level of convergence of afferents on a single neu-
ron coincides with the retraction of exuberant branches. In the retino-
geniculate system, the synaptic refinement persists beyond the visible
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Figure 3 Resconstructions of individual axon arbors in the somatosensory cor-
tex. At P1, the TCAs have very heterogeneous phenotypes. Some axons run
tangentially in the cortical plane and emit few branches (A, B); others have a
wide lateral extension (C, D, F, H) and a greater number of branches (E, F, G,
H). The mean number of branches is of 2, 9 ± 2 in layer IV and 1.4 ± 1.1 in
layer VIa (n = 42). At P7, the TCAs have a stereotyped phenotype, with the
main arborization confined to a barrel domain, in layer IV. The mean number
of branches is of 32 ± 10.9 in layer IV and 2 ± 3.7 in layer VIa (n = 13). These
quantifications show the strong elaboration of branches in layer IV between P1
and P7.

anatomical changes, until P21 (Chen and Regehr, 2000). Electrophysi-
ological studies in the sensory cortex analysing the receptive field of
single barrels have indicated that there is a focusing of the receptive
fields and that responses to the stimulation of neighbouring barrels de-
creases over the first postnatal weeks (Armstrong-James and Fox, 1987).
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However, no physiological studies have, to our knowledge, analysed
the convergence of different TCA inputs on single layer IV neurons in
the somatosensory cortex. Synaptic responses can be recorded at the
TC synapses (Agmon and Connors, 1992; Feldman et al., 1999; Laurent
et al., 2002), and an age-dependent LTP has been demonstrated at the
thalamocortical synapse between P3 and P10 (Feldman et al., 1999).
However this synaptic plasticity coincides only partially with the major
phase of axon arbor remodeling which occurs between P2 and P5. The
number of morphologically identified synapses is very low at this time
and the peak of synaptic production occurs a few days later around
the second postnatal week (White et al., 1997), that is after the emer-
gence of barrels. Analysing the degree of convergence of TCA inputs on
single layer IV spiny neurons would be of interest as it may well reveal
a more extensive period of synaptic remodeling than what is currently
detectable with the anatomical methods.

3. Transient Expression of Genes in the Thalamus and
Retina During the Period of Axon Terminal Remodeling

Changes in the intrinsic growth properties of afferent axons are likely to
underlie the dynamic activity of the retinal and thalamic axon growth
cones as they explore their target zones to select their preferred partners.
In addition to the neurotrophins, a growing number of neurotransmit-
ter receptors and their signaling pathways have been involved in axon
remodeling. This was principally indicated by gene expression stud-
ies that showed transient expression of candidate genes in the VB and
the RGCs. Studies of the null mutations of these genes, further showed
alterations in the patterning and refinement of afferents.

3.1. Growth Associated Proteins

Genes encoding growth associated proteins such as GAP43 and L1 are
transiently expressed in the retinal ganglion cells and the thalamus dur-
ing the development of their projections (Erzurumlu et al., 1990; Jung
et al., 1997; Fukuda et al., 1997). These proteins have been implicated
in neurite growth, branching, and/or axon terminal sprouting (Aigner
and Caroni, 1993). The loss of function of these genes however results in
an abnormal fasciculation and growth of the retinal and thalamic axons
(Zhu and Julien, 1999; Maier et al., 1999; Demyanenko and Maness, 2003;
Wiencken-Barger et al., 2004), making it difficult to interpret the altered
patterning of the axon terminals. Interestingly, the afferent axons are
still able to segregate into periphery-related patterns, even though their
shape is somewhat distorted. This is reminiscent of a number of mouse
mutants that have thalamocortical axon guidance defects but in which
the TCAs are still able to form barrel clusters once they have reached
the cerebral cortex (López-Bendito and Molnár, 2003).
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3.2. Neurotrophins

Neurotrophins and their receptors are another class of candidate
molecules that could play a major role to regulate axon patterning since
the expression of neurotrophins is modulated by neural activity and in
turn, neurotrophins control the growth and branching of axons. In the
retinal ganglion cells, BDNF and its high affinity tyrosine kinase receptor
TrkB are expressed at high levels during late embryonic and early post-
natal life (Masana et al., 1993; Ugolini et al., 1995). Inhibition of BDNF
activity by siRNA in the RGCs causes the retraction of the correspond-
ing RGCs in the lateral geniculate nucleus (Menna et al., 2003) and an
altered patterning of the ipsi-contralateral projection. However, genetic
invalidation of the TrkB gene failed to show clear segregation abnor-
malities in the ipsi/contralateral retinal axons (Pollock et al., 2003). A
similar situation has been described in the barrelfield. Both BDNF and
TrkB are highly expressed in the thalamic neurons during the critical
period of TCA segregation. Blockade of function experiments indicated
that TrkB could be a major player in the segregation of the TCAs in
the visual cortex (Berardi et al., 2000). However in the TrkB KO, an
almost normal barrel development was found although TCAs were ab-
normally outspread in the upper cortical layers, in layers II to III (Vitalis
et al., 2002). This could indicate that TrkB signaling is required for the
appropriate branching within layer IV. Alternatively, TrkB could be re-
quired for the retraction of exuberant collaterals from layers III and
II. In normal mice, a fair amount of TCAs are visible in these upper
layers by P3 that are no longer observed by P7, possibly as a conse-
quence of axon retraction from the upper layers (Rebsam et al., 2002).
This retraction could be compromised in the TrkB KO mice (Vitalis et al.,
2002).

3.3. Serotonin

3.3.1. Transient Expression of the Serotonin Transporter
This is probably one of the most intriguing changes of gene expression
pattern that occurs in the retina and the thalamus during this period
(reviewed in Gaspar et al., 2003). It appears as though at the same pe-
riod when the axons are still undecided on the choice of their final tar-
get they are also flickering about which neurotransmitter and receptors
they should use. The thalamic neurons and the RGCs are glutamater-
gic and they establish functional glutamatergic synapses early during
development (Agmon and Connors, 1992 ; Mooney et al., 1996). Nev-
ertheless, both the thalamic and retinal neurons express a fairly large
amount of genes that are related to serotonin neurotransmission. These
genes are normally found only in the raphe neurons. However, as al-
ready mentioned, the serotonin plasma membrane transporter (5-HTT)
is expressed in the somatosensory thalamus at the height of its plasticity
period (E15-P10). This finding explains early descriptions of transient
5-HT innervation in the primary sensory areas (D’Amato et al., 1987;
Rhoades et al., 1990). This was initially interpreted as a transient projec-
tion from the raphe (Killackey et al., 1995), however the raphe neurons,
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establish in fact a relatively loose axon terminal network in the cor-
tex at that age (Lidov and Molliver, 1982 see also Fig. 1B in Rebsam
et al. 2002). It was demonstrated that the 5-HT produced and released
by raphe terminals is captured with nanomolar affinity by the thala-
mic axon terminals. Since the vesicular transporter for monoamines,
VMAT2, is also expressed by the thalamic neurons, 5-HT could be accu-
mulated in synaptic vesicles (Lebrand et al., 1996). The term “borrowed
neurotransmitter” was coined, to describe this phenomenon since 5-HT
is not produced by the thalamic neurons themselves. A release of 5-HT
by thalamic terminals has not yet been directly demonstrated, although
indirect support has recently been brought by electrophysiological stud-
ies (Binshtok et al., 2004). Another intriguing and as yet unresolved issue
in this system is the possibility of a co-release of 5-HT and glutamate.
Glutamate was shown to be released at the thalamocortical synapse dur-
ing barrel development (Laurent, et al., 2002) and the TCAs express the
vesicular transporters of glutamate, VGlut2 (Boulland et al., 2004). Inter-
estingly, a co-existence between serotonin and glutamate as transmitters
could exist also in the adult raphe neurons, in which the vesicular trans-
porter of glutamate Vglut3 is expressed (Gras et al., 2002; Herzog et al.,
2004).

A similar combination of transporter expression (VMAT2 and 5-HTT)
was found in the developing retina (Figure 4). In the retina, 5-HTT

Figure 4 Transient expression of serotoninergic markers in the retinogeniculate
pathway. 5-HT is found in a subset of retinal ganglion cells (RGCs) that are
localized in the ventrotemporal part of the retina (E16 mouse retina). Labeled
axons can be followed in the optic tract (arrowhead) (A). This localization of
5-HT is due to the uptake of extracellular 5-HT by the 5-HT transporter (5-HTT)
which is expressed in the ventrotemporal RGCs (arrowhead in B). The vesicular
transporter for monoamines, VMAT2, is expressed in all the RGCs (C). Labeled
5-HTT retinal axons can be followed up to the dLGN, where they form a central
patch (D, immunolabeling at P9), which resembles the central patch of HRP
labeled ipsilateral fibers at the same age (E).
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expression and 5-HT high affinity capture was restricted to a periph-
eral ventral crescent of the retina (Figure 4B) which coincides in part
with the localization of the ipsilateral retinal ganglion cells. The distri-
bution of 5-HTT axon in the lateral geniculate nucleus and the superior
colliculus also partially overlapped with the ipsilateral retinal termi-
nals (Figure 4D, E), although a complete overlap could not be demon-
strated (Upton et al., 1999). It is possible that the unequal capture of
5-HT among different contingents of afferent retinal axons could confer
different growth properties to the retinal axons. Interestingly, transient
expression of 5-HTT and VMAT2 is also observed in the primate reti-
nal axons during embryogenesis in humans (Verney et al., 2002) and in
monkeys (Lebrand et al., in press).

3.3.2. Role of 5-HT for Emergence of Patterns in the Barrelfield and
Retinogeniculate Projections
The role of 5-HT in these systems was initially indicated by neurotox-
ins or pharmacological treatments that reduced 5-HT levels. These ex-
periments delayed the separation of the ipsi-contralateral projections
in the lateral geniculate nucleus (Rhoades et al., 1993) and caused a
delay in barrel development and a reduction in barrel size (Osterheld-
Haas et al., 1994; Bennett-Clarke et al., 1994). Similar observations were
made in the VMAT2-KO mice, a model in which the brain levels of
monoamines are drastically reduced (Persico et al., 2001 ; Alvarez et al.,
2002). However the most conclusive demonstration of the 5-HT effects
in these 2 systems came from genetic manipulations that increased 5-
HT brain levels, rather than decreasing them. The monoamine oxidase
A (MAOA)-KO mice proved a most valuable model in this regard, since
they displayed a clear disruption of the thalamocortical and retinogenic-
ulate segregation (Cases et al., 1996; Upton et al., 1999). MAOA-KO mice
are unable to degrade 5-HT and accumulate it in considerable amounts
in the brain during the first postnatal weeks. In P3 MAOA-KO mice, 5-
HT brain levels are increased ten fold in comparison with control mice
(Cases et al., 1995).

In the MAOA-KO mice, the development of the TCAs appear to be
normal until P2, but thereafter, the process of thalamocortical axon seg-
regation does not occur and the TCAs retain a uniform distribution
within layers IV and VI. Similarly, retinal axons develop normally until
P3 , but the later separation of the ipsi and contralateral retinal axons
does not occur in the LGN or the superior colliculus (Upton et al., 1999).
These phenotypes can be reproduced by the pharmacological inhibi-
tion of MAOs in normal mice during the first postnatal week (Vitalis
et al., 1998) and they can be rescued in the MAOA-KO mice and 5-HTT-
KO mice by lowering the levels of 5-HT with parachlorophenylanine
(PCPA), a drug that inhibits, the synthetic enzyme of 5-HT, tryptophane
hydroxylase (Cases et al., 1996). The optimal time period for a rescue of
the phenotype matches the time of segregation of the TCAs and of the
RGCs. After this period, the capacity for the RGCs and TCAs to remodel
from a diffuse to a segregated pattern is gradually decreased (Persico
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et al., 2001; Upton, et al. 2002, Rebsam et al., 2005). In the MAOA-KO
mice, barrels can be induced to form beyond the normal developmen-
tal period, between P6 and P10, but thereafter, the capacity of TCAs to
remodel is lost. Interestingly, when barrels form at these relatively late
stages they do not appear to require a signal from the whiskers (Boylan
et al., 2001; Rebsam et al., 2005). This indicates that the periphery-related
patterns are probably fixed in the subcortical sensory relays by P3.

Similar phenotypes were demonstrated in the 5-HTT-KO mice. An
interesting difference of the 5-HTT-KO model relatively to the MAOA-
KO mice is that the 5-HTT-KO mice are unable to take up 5-HT in the
RGCs or the TCAs (Cases et al., 1998; Persico et al., 2001). This indi-
cated that the accumulation of 5-HT in the extracellular space and not
within the thalamic and retinal neurons causes the abnormal segrega-
tion of the axon terminals (Persico et al., 2001; Salichon et al., 2001). In the
5-HTT-KO, the increase in 5-HT levels in the brain is not as extreme as
in the MAOA-KO mice, because of feedback mechanisms that reduce
serotonin synthesis (Ravary et al., 2001). This might explain why the
phenotypic changes are less marked than in the MAOA-KO. For in-
stance, in the 5-HTT-KO, the larger caudal barrels are still formed and
the enlargement of the ipsilateral retinal projections is less marked than
in the MAOA-KO mice (Figure 5).

3.3.3. Role of the 5-HT1B Receptor
The presynaptic receptor 5-HT1B, is another serotonin-related gene
that is transiently expressed in the developing sensory thalamocortical
neurons (Bennett-Clarke et al., 1993). In the retinal ganglion cells, the
5-HT1B receptor expression begins by E15 (Upton et al., 1999) but per-
sists throughout adult life (Mooney et al., 1994). The 5-HT1B receptor
is presynaptic (Boschert et al., 1994), it is localized on axon terminals
and has been shown to modulate neurotransmitter release. In particu-
lar, it negatively regulates glutamate release at the developing retino-
tectal and thalamocortical synapses (Rhoades et al., 1994; Laurent et al.,
2002). The crucial role of this receptor in the developmental abnormal-
ities of the MAOA-KO mice was shown with a double knockout strat-
egy. The MAOA/5-HT1B DKO, the 5-HTT/5-HT1B DKO as well as the
MAOA/5-HTT/5-HT1B triple KO mice develop an almost normal bar-
relfield and display a normal segregation of the retinal axons, despite
the increased levels of brain serotonin (Salichon et al., 2001) (Figure 5).
The lack of the 5-HT1B receptor by itself is insufficient to cause a visi-
ble alteration in the segregation of the thalamocortical axons in the so-
matosensory cortex (Figure 5), although a subtle phenotype is observed
in the superior colliculus where the ipsilateral retinal axons are more
broadly distributed than in control mice (Upton et al., 2002).

3.4. Adenylate Cyclase 1

Given the role of cAMP modulation for the growth of axons and
their response to chemical guidance cues (Lohof et al., 1992; Song and
Poo, 1999), the developmental expression of the calcium calmodulin
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Figure 5 Summary diagram of the altered patterning of retinogeniculate and of the barrelfield in differ-
ent mutant mouse strains. In wild type mice (WT), retinogeniculate axons from each eye are segregated:
in the ipsilateral dLGN the retinal axons are grouped in a central patch; in the contralateral dLGN
retinal projection are widely distributed leaving an empty central core. In the primary somatosensory
cortex, the VB thalamocortical axons are segregated in clusters that define the barrel domains. The
largest TCA clusters correspond to large vibrissae of the whisker pad, whereas smaller rostral barrels
correspond to the small vibrissae of the anterior snout. In the 5-HT1B-KO, the MAOA/5-HT1B-DKO,
the 5-HTT/5-HT1B-DKO and the 5-HTT/MAOA/5-HT1B-TKO mice the patterning of these inputs is
undistinguishable from normal. In the 5-HTT-KO mice, the contralateral retinogeniculate projections
cover the entire dLGN, and do not leave an empty gap, but the size of the ipsilateral retinal projection
is not modified. In the somatosensory cortex, poorly outlined barrel domain can be distinguished in the
caudal whisker pad, but TCAs retain a diffuse, non-segregated, distribution in the rest of the somatosen-
sory representation. In the brl and the MAOA-KO mice, the ipsilateral projection domain is enlarged
and the contralateral fibers occupy the entire dLGN. Thalamocortical axons are distributed uniformly
in the whisker representation of the somatosensory cortex, and no segregation into barrel domain is
observed.

stimulated cyclase, AC1 in the thalamus and retina is of particular inter-
est. This transmembrane adenylate cyclase isoform is directly activated
by calcium influx through voltage sensitive calcium channels (Cooper
et al., 1998). Furthermore, the activity of AC1 is negatively coupled
to Gi heteromeric proteins and could thus also be modulated by the
5-HT1B receptor (Mendez et al., 1999; Sari, 2004). In the adult brain, the
expression of AC1 is restricted to the hippocampus and to the cerebellum
(Xia et al., 1991). However, during development AC1 expression is much
broader (Matsuoka et al., 1997; Nicol et al., 2005). In particular, a strong
AC1 expression is found in all the RGCs from E14 to P10 and strong
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transient AC1 expression is found all along the whisker to barrel path-
way, including the nucleus trigeminalis principalis in the brainstem, the
ventrobasal thalamic nucleus, and the barrel cortex (Nicol et al., 2005).
A strain of “barrelless’’ mice, the brl of Lausanne was characterized as
a spontaneous mutation of the AC1 gene, caused by the insertion of a
retrotransposon in the AC1 coding sequence (Abdel-Majid et al., 1998).
The brl mice do not develop barrels (Welker et al., 1996) and have an
altered segregation of the ipsi/contralateral retinal inputs (Ravary et
al., 2003). Similar phenotypes are observed after the genetic invalida-
tion of the AC1 gene in both the barrelfield (Abdel-Majid et al., 1998)
and the retinal projections (Nicol et al., in revision). A decrease in the
number of “silent synapses’’ has been reported in the brl mice (Lu et al.,
2003). This was interpreted as a reduced turnover of the AMPA subtype
of glutamate receptor in the cortical neurons, suggesting that altered
post-synaptic potentiation mechanisms could be involved in the altered
barrel development. Observations in the retinotectal system indicate
however that altered remodeling of the retinal axons in the colliculus
is due to the AC1 deficiency in the RGCs and not in the post-synaptic
neurons (Ravary et al., 2003; Nicol et al., 2006).

4. Presynaptic Mechanisms Involved in the Modulation
of Axon Remodeling

Clearly the results discussed above indicate that neurotransmission and
its regulation by modulatory transmitters such as serotonin play a role in
“sculpting’’ the terminal fields of thalamic and retinal axons (Erzurumlu
and Kind, 2001). They also indicate that pre-synaptic mechanisms op-
erating in the thalamocortical and retinogeniculate synapses are proba-
bly as important as the post-synaptic mechanisms for the refinement of
connections during development. How can these molecular and genetic
observations be integrated in a mechanistic framework of axon terminal
modelling?

Based on the previously discussed genetic evidence we can conclude
that 3 molecular actors, the 5-HT1B receptor, the calcium stimulated
adenylate cyclase AC1, and the TrkB receptor, are present in the thala-
mic and retinal neurons and control the distribution of the axon arbors.
Based on the localisation of the 5-HT1B receptor and TrkB in axon ter-
minals, one can hypothesize that this action is local, at the level of axon
terminals.

4.1. Trophic Mechanisms

A possible working model that integrates these molecular actors is
that the final downstream effects is a direct control of axon growth
and branching. This assumption is based on the study of knockout
mice showing alterations in the axon branching of the thalamic and
retinal axons. The AC1 defective brl mice, the TrkB-KO mice and the
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gain of function of the 5-HT1B receptor (in the MAOA KO mice)
all have defective TCA arbors. In the MAOA-KO mice, TCAs are
abnormally wide, and the number of branches is significantly reduced
(Rebsam et al., 2002). In the brl mice, axon branches are abnormally
widespread (Welker et al., 1996; Hage, 2003). In the TrkB-KO the TCAs
extend abnormally in the upper cortical layers (Vitalis et al., 2002).
However, these genetic observations in vivo are difficult to interpret,
since similar alterations in the axon branching phenotypes have also
been observed in the NR1 cortex-specific KO, indicating that signals
arising from the post-synaptic neurons modulate pre-synaptic axon
branching (Lee et al., 2005). More direct evidence for an effect of
presynaptic signaling pathways on axon growth have been observed
in vitro, on cultures of retinal and thalamic neurons. 5-HT and 5-HT1B
receptor agonists stimulate the growth and branching of rodent
thalamic axons (Lotto et al., 1999; Lieske et al., 1999). Furthermore,
activation of the cAMP pathways and of BDNF, via the TrkB recep-
tors, has major growth promoting effects on RGCs (Meyer-Franke et
al., 1998), and axons from brl mice show altered branching. In this
scheme, the 5-HT1B receptor could be coupled to the heterotrimeric
protein Gi, which in turn inhibits AC1. Thus, overactivation of the
5-HT1B receptors, when there is an excess of 5-HT (such as observed
in the MAOA and 5-HTT KO mice), would be expected to reduce AC1
function, and to decrease the production of cAMP in the retinal and
thalamic axon terminals. This hypothesis seems to be corroborated
by the similar phenotype of the MAOA and AC1-KO mice. Since
cAMP and PKA control the phosphorylation of a very wide number
of proteins (Shabb, 2001), there are many different possibilities beyond
that point to modulate axon growth and its response to guidance and
trophic molecules. One of the consequences could be a reduced cycling
of the TrkB receptor at the plasma membrane resulting in a reduced
trophic growth support for the ingrowing axons (Figure 6). A more
direct consequence of deregulated cAMP in the growth cone could be
a modified response to repulsive and attractive molecules expressed in
the target fields (Song and Poo, 1999,). Evidence in our laboratory argue
strongly to such mechanism (Nicol et al., 2006). This effect could be via
PKA-dependent phosphorylation of cytoskeletal proteins and regula-
tory proteins which are involved in the dynamic control of the actin
and microtubule cytoskeleton in the growth cone (Dent and Gertler,
2003) (Figure 6) and thus has the potential of directly affecting growth
cone motility. Finally, cAMP could have a transcriptional control on
target genes containing a cAMP- responsive element (CRE) which is
important for these remodeling events (West et al., 2001) (Figure 6).

4.2. Presynaptic Potentiation Mechanisms

An alternative model is that serotonin and cAMP modulate activ-
ity dependent mechanisms via a pre-synaptic control of glutamate
release (Figure 6). 5-HT1B receptors are localised pre-synaptically
in the thalamocortical, retinogeniculate and retinotectal synapses



11 Presynaptic Mechanisms Controlling Axon Terminal Remodeling 199

Figure 6 Models of the presynaptic mechanisms involving serotonin and adeny-
late cyclase1 in the thalamocortical and retinogeniculate axon terminals. Retinal
and thalamic axons express 5-HTT, VMAT2, 5-HT1B receptors and AC1. Extra-
cellular serotonin is taken up by 5-HTT and stored into synaptic vesicles by
the VMAT2. On the postsynaptic site, glutamate receptors such as AMPA or
NMDA receptor and other 5-HT receptor (5-HT?-R) are expressed. The 5-HT1B
presynaptic receptor is coupled to a Gi protein which inhibits adenylate cyclase
1 (AC1). AC1 synthesizes cAMP which activates Protein Kinase A (PKA). Ac-
tivation of PKA controls a number of cellular processes that are important for
axon terminal remodeling. Non exclusive hypothesis include: 1) a control of
neurotransmitter release mechanisms, 2) a control of the membrane trafficking
of neurotrophin receptors such as TrkB, thereby modifying the axonal response
to BDNF, 3) a control of axon dynamic behaviour, via the phosphorylation of
cytoskeletal proteins, 4) a transcriptional effect via CREB.

(Bennett-Clarke et al., 1993; Boschert et al., 1994; Sari et al., 1999). In
these systems, electrophysiological studies showed that 5-HT1B recep-
tor activation results in the inhibition of glutamate release (Rhoades et
al., 1994; Laurent et al., 2002). Moreover, using the thalamocortical slice
preparation it was demonstrated that the effects of 5-HT1B receptors
could be that of a low pass filter. 5-HT1B receptor stimulation reduces
EPSCs evoked by low frequency stimulation whereas it relieves the
short depression evoked by high frequency stimulation (Laurent et al.,
2002). Thus, the 5-HT1B receptors could control afferent neural activity
generated in the whisker pad or in the thalamus and allow activity-
dependent stabilization of synapses and the consolidation of the corre-
sponding branches. In this hypothesis the uptake of serotonin by the
thalamic and retinal axons, as well as its possible co-release, would act
to finely adjust the levels of 5-HT at the developing synapses (Figure 6).
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Similarly, AC1 could play a role in the activity-dependent strength-
ening of active synapses. Indeed, AC1 is involved in long term poten-
tiation in a number of systems including the somatosensory cortex (Lu
et al. 2003). In the hippocampus, AC1 has been involved in pre-synaptic
potentiation mechanisms that are observed at the mossy fiber synapse
(Villacres et al., 1998). The existence of such presynaptic plasticity mech-
anisms has not yet been shown in the developing retinotectal and thala-
mocortical synapses, but could constitute another mechanism for synap-
tic consolidation and refinement of connections during development.

5. Conclusion

The molecular composition of the developing retinal and thalamic ax-
ons display striking similarities during the phases of axon elaboration
and refinement of sensory maps. This concerns not only general growth
associated proteins, but a more specific repertoire of serotonin recep-
tors and their associated signaling pathways. Mutant mouse analyses
demonstrate the requirement of such molecular pathways for the refine-
ment of the visual and somatosensory maps. However, it remains uncer-
tain whether this involves activity-driven mechanisms or a modulation
of neural growth. These are two likely hypothesis that are not necessar-
ily exclusive since activity-dependent and activity-independent path-
ways could cooperate, either in synchrony, or at different stages to refine
the retino-geniculate and thalamo-cortical projections. For instance, it is
conceivable that the 5-HT1B receptor and downstream AC1-mediated
mechanisms could act on the growth of axons during early stages of
development whereas they may act on synaptic consolidation during
later stages of development. It will be the role of future studies to tease
out the contribution of these mechanisms.
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12
Cellular Mechanisms Underlying the
Remodeling of Retinogeniculate
Connections

William Guido

A fundamental issue in developmental neurobiology is to elucidate the
cellular mechanisms underlying the establishment and refinement of
synaptic connectivity between developing sense organs and their cen-
tral targets. For the past two decades, the mammalian retinogenicu-
late pathway has served as an important model for demonstrating how
patterned spontaneous activity shapes synaptic connections (see Shatz,
1990; Cramer and Sur, 1995; Shatz, 1996). In more recent years, the ro-
dent visual system has been the focus of intense inquiry largely because
transgenic mouse models are used with increasing regularity to un-
ravel the molecular mechanisms underlying the remodeling process (see
Grubb and Thompson, 2004, see chapters by Rebsam and Gaspar; Hooks
and Chen ). While some information about the rodent retinogeniculate
pathway exists (Godement et al., 1984; Mooney et al., 1993; Mooney et
al., 1996; MacLeod et al., 1997; Chen and Regehr 2000) a detailed ex-
amination of ontogeny is lacking. In this review we present our work-
ing model of the developing rodent retinogeniculate pathway (Jaubert-
Miazza et al., 2005; Ziburkus and Guido, 2005) and propose a mechanism
we think contributes to the refinement of retinogeniculate connections.

1. Structural Organization of the Developing
Retinogeniculate Pathway

The topographic representation of visual fields in the retina and the
brain is cardinal feature of vision. In mammals the most distinguish-
ing feature of central visual maps is the segregation of inputs from
the two eyes. For example, retinal projections to the lateral geniculate
nucleus (LGN) of the dorsal thalamus are segregated and terminate
into discrete non-overlapping territories. In carnivores and primates,
retinal projections from the two eyes are partitioned by cytoarchitec-
tural boundaries or laminae. In rodents the LGN lacks an obvious lam-
ination pattern (Fig.1A) but retinal projections are still organized into
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Figure 1 Anatomical organization of the rodent lateral geniculate nucleus
(LGN). A. Coronal section through the LGN using a nissl stain. The LGN can
be distinguished from the intrageniculate leaflet (IGL) and the ventral genic-
ulate nuclei (VLGP and VLGMC). Boundaries are outlined in white. Note the
cytoarchitecture of the LGN lacks an eye-specific laminar pattern. B. Antero-
grade labeling of retinal projections with fluorescent conjugates of cholera toxin
B (CTB) reveals eye-specific organization. Shown are coronal sections through
the LGN of the left and right hemisphere. Alexa Fluor 594 (red), injected into
the left eye labels the terminal fields of uncrossed (ipsilateral) retinal axons
in the left hemisphere and crossed (contralateral) axons in the right hemi-
sphere. Alexa Fluor 488 (green) injected into the right eye labels contralateral
axons of the left hemisphere and ipsilateral axons in the right hemisphere. Scale
bar = 100 µm. Below the fluorescent images is a diagram depicting the quadrants
of the retina and corresponding Alexa Fluor. The gray region is the “temporal
crescent’’ and represents the location and origin of the uncrossed pathway. Ab-
breviations: D = dorsal, N = nasal, T = temporal, V = ventral quadrants of the
retina.
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eye-specific domains (see Reese, 1988; Sefton and Dreher, 1994). Such
eye-specific patterning can be visualized by the anterograde labeling
of retinal ganglion cells (Godement et al., 1984; Jeffery, 1984). In recent
years, the use of the cholera toxin β subunit (CTB) has proven to be an
effective and reliable tracer, labeling very thin axons even at early post-
natal ages (Angelucci et al., 1996; Muir- Robinson et al., 2002; Torborg
and Feller, 2004; Jaubert-Miazza et al., 2005; Ziburkus and Guido, 2005)
By making eye injections of CTB conjugated to different fluorescent dyes
(Alexa Fluor 488 and Alex Flour 594) it is possible to visualize retinal
projections from both eyes simultaneously in single sections of the LGN
(Fig. 1B). In the adult, axons from nasal retina and most of temporal
retina cross at the optic chiasm and project contralaterally to the lateral
and ventral regions of LGN (Reese and Jeffery, 1983; Reese and Cowey,
1987). Crossed or contralateral projections occupy as much as 85–90%
of the total area in LGN (Fig 1B). A much smaller group of retinal ax-
ons arising from ventro-temporal regions of retina (i.e., the “temporal
crescent’’), do not cross at the optic chiasm, but remain uncrossed and
project ipsilaterally into the antero-medial region of LGN (Reese and
Cowey, 1983; Reese and Jeffery, 1983). Uncrossed or ipsilateral projec-
tions form a cylinder that runs through LGN and occupies about 10–15%
of the nucleus (Fig 1B). This form of eye specific patterning is not present
during development but emerges sometime during early postnatal life
(Fig. 2; Jaubert-Miazza et al., 2005). Between P3-5, the inputs from the
two eyes share a substantial amount of terminal space in LGN. By P7,
retinal projections from the two eyes begin to show clear signs of segre-
gation, and certainly by the time of natural eye opening (P 12-14), they
are well segregated and resemble the pattern found at older ages. An
analysis of the spatial extent of the terminal fields in LGN reveals that the
bulk of anatomical rearrangements occur among ipsilateral projections
(Fig. 2B). At P3 they occupy about 60% of the LGN and overlap with
contralateral ones by as much as 57%. By P7, the ipsilateral projections
begin to recede but are still fairly robust (26%), sharing about 18% of
LGN with contralateral projections. By P 12-14, the time of natural eye
opening, ipsilateral inputs resemble the adult profile, occupying about
12% of LGN and sharing little (<2%) if any territory with contralateral
projections.

>
Figure 2 Pattern of retinogeniculate projections in the developing mouse. A.
Retinogeniculate axon segregation in the developing mouse revealed by the
anterograde transport of CTB conjugated two different fluorescent probes. Alexa
Fluor 594 (red) labels crossed (contralateral eye) projections and Alexa Fluor 488
(green) labels uncrossed (ipsilateral eye) projections. Panels from left to right
depict red and green fluorescence labeling of the same section of LGN, the
superimposed fluorescence pattern, and corresponding pseudo-colored image.
For the latter, pixel intensity is “normalized’’ so that every pixel ≥ to a defined
threshold level is assigned a value of 255. Pixels that contain both red and green
fluorescence are considered as areas of overlap and represented as yellow. Scale
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Figure 2 (Continued) bar = 100 µm. B. Spatial extent of retinal projections in
the developing LGN. Graphs plot the percent area in LGN occupied by the
crossed (contralateral eye), uncrossed (ipsilateral eye), and overlapping terminal
fields at different ages. Each point represents the mean and SEM at P3 (n = 3),
P7(n = 3), P12 (n = 5), P14 (n = 9), P17 (n = 4), P19 (n = 5), P21 (n = 4), P28 (n = 8).
Crossed projections show modest changes with age. Uncrossed ones undergo
substantial retraction between P3-12 and account for the high degree of overlap
at P3 and P7. Analysis of pixel intensity. Top: Scatterplots of pixel intensity for
a single section of LGN at P3 and P28. Each point represents a pixel in which
the fluorescence intensity of the contralateral projection is plotted against the
intensity of the ipsilateral projection. At P3, the projections from the two eyes
overlap and pixel intensities are positively correlated. At P28, the inputs are
segregated and the points are inversely related. Middle: R-distributions of pixel
intensity. For each pixel (see A), the logarithm of the intensity ratio, R (log10

FI/FC), is plotted as a frequency histogram (bin size = 0.1 log units). Narrow
r-distributions (P3) reflect unsegregated patterns and wide ones (P28) show
segregated ones. Bottom: Graph showing the variance values obtained from R-
distributions at different ages. Each point represents the mean and SEM for
same animals in A. Variance increases with age and indicates a progressive
increase in the degree of eye specific segregation between P3-12. Adopted from
(Jaubert-Miazza et al., 2005).
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The difference between unsegregated and segregated retinal projec-
tions can be further quantified by analyzing the fluorescence intensity of
individual pixels (Fig. 2C). These measures have advantages over those
that rely on measures of spatial extent because they provide an un-
biased or threshold-independent index of segregation (Muir-Robinson
et al., 2002; Torborg and Feller, 2004; Jaubert-Miazza et al., 2005). Scat-
terplots of pixel intensity reveal important differences between unseg-
regated and segregated patterning (Fig. 2C). For these, each point on the
scatterplot represents a pixel in which the fluorescence intensity of the
contralateral projection is plotted against the intensity of the ipsilateral
one. When contralateral and ipsilateral inputs share terminal space in
LGN (at P3), pixel intensities show a positive correlation (i.e., high con-
tralateral and ipsilateral intensities in the same pixels). In contrast, when
the projections from the two eyes no longer overlap (at P28), intensities
become inversely related (i.e., high contralateral and low ipsilateral in-
tensities in the same pixels, or visa versa). Pixel intensity can also be
expressed as the logarithm of the ratio fluorescence intensities repre-
senting the ipsilateral and contralateral projections (R = log10 FI/FC).
R-values representing each pixel of LGN can then be plotted as a fre-
quency distribution (Fig. 2C). Narrow, unimodal R-distributions, which
are found at young postnatal ages, indicate that the majority of pixels
have intensity values that are not dominated by one projection or the
other. In contrast, wide distributions, which are seen at older ages are
bimodal. There is a large peak (between −2 and −1) that represents
the great majority of pixels dominated by a high contralateral inten-
sity and a smaller one (between 0.5 and 1) that corresponds to pixels
dominated by a high ipsilateral value. The variance of R-distributions
can be used statistically to compare the relative widths of distributions
either across mice of different ages (Fig 2C) or to compare wild-type
mice against transgenic strains that lack an element suspected to play a
role in remodeling of retinogeniculate connections (Torborg and Feller,
2004; Torborg et al., 2005). In the case of retinogeniculate development,
a significant increase in variance occurs between P3 and P12 (Fig. 2C).
This pattern coincides with estimates of spatial extent (Fig. 2A-B) and
indicates that axon segregation stabilizes at about the time of natural
eye opening (P12-14).

A closer inspection of our developmental results suggest that segre-
gation occurs more gradually than previously recognized (Jeffery, 1984;
Godement et al., 1984), and in two stages (Muir Robinson et al., 2002;
Jaubert-Miazza et al., 2005). During the first postnatal week a more
macroscopic level of organization is achieved where the final position-
ing of contralateral and ipsilateral projections are established and the ini-
tial pruning of arbors begin. Between the first and second week, a more
focal form of retraction occurs, as ipsilateral projections undergo ex-
tensive attrition and discrete non-overlapping fields are formed. These
events appear to be regulated by two types of spontaneous retinal ac-
tivity; an early phase (P0-8) of cholinergic transmission that contributes
to a large-scale establishment of eye specific territories, and a late one
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(P10-P14) involving glutamate signaling that drives local patterns of
segregation (Feller, 2002; Muir-Robinson et al., 2002).

2. Functional Organization of the Developing
Retinogeniculate Pathway

To explore the functional implications of these anatomical rearrange-
ments, we examine the pharmacology and underlying circuitry of the
synaptic responses of developing LGN cells by utilizing an in vitro iso-
lated brainstem recording preparation (Hu, 1993; Lo et al., 2002). This ex-
plant is especially suited for the study of retinogeniculate transmission
because unlike a conventional slice preparation, in the isolated brain-
stem, retinal axons innervating LGN as well as the intrinsic circuitry
of LGN remain intact. Additionally, by sparing large segments of each
optic nerve and applying separate stimulation to them, we can deter-
mine the degree to which inputs from the two eyes converge onto single
LGN cells (Ziburkus et al., 2003; Jaubert-Miazza et al., 2005; Ziburkus
and Guido, 2005).

In a mature thalamic relay cell, retinal stimulation evokes an excita-
tory postsynaptic potential (EPSP) that is followed by inhibitory postsy-
naptic (IPSP) activity (Fig. 3B). These EPSP/IPSP pairs reveal that retinal
axons make excitatory connections with relay cells (Fig. 5). Additionally,
retinal axons possess collaterals that form excitatory connections with
neighboring interneurons (Fig. 5), which in turn form feed- forward in-
hibitory connections with relay cells (Lindstrom, 1982; Ziburkus et al.,
2003; Blitz and Regehr, 2005). IPSP activity serves many functions in
LGN, from shaping the receptive field structure of relay cells to estab-
lishing the overall gain of signal transmission (Sherman and Guillery,
1996).

These inhibitory aspects of synaptic circuitry are not present during
early postnatal development (Ziburkus et al., 2003). Instead, the ma-
jority of synaptic responses (70%) at early ages are purely excitatory
(Fig. 3B-D). Pharmacology experiments indicate excitatory responses
are mediated by glutamate receptor activation and involve the coinci-
dent activation of two receptor subtypes, conventionally classified as N-
methyl-D-aspartate (NMDA) and non-NMDA (Scharfman et al., 1990).
At early ages, the excitatory response is comprised largely of NMDA
activity (Ramoa and McCormick, 1994; Ramoa and Prusky, 1997; Chen
and Regehr, 2000). The unique voltage dependency of NMDA recep-
tors figures prominently in development because it allows for an influx
of Ca2+ ions (along with a Na+2 influx and K+ efflux) during periods
of heightened neural activity. It is the activity dependent sequestration
of Ca2+ that triggers a cascade of intracellular signaling events respon-
sible for the eventual consolidation of adult patterns of connectivity
(Constantine-Paton et al., 1990; Goodman and Shatz, 1993). After the
first few postnatal days of pure excitatory activity, inhibitory responses
begin to emerge, but the full complement of IPSP activity is not evident
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until P10 (Fig. 3D). Inhibitory responses are mediated by two types of
GABA receptors (Crunelli et al., 1988; Ziburkus et al., 2003). The first
to appear is an early, fast hyperpolarizing response which involves a
Cl− conductance acting through the GABAA receptor subtype. These
early fast GABAA mediated IPSPs also affect EPSP activity, often
times curtailing the late NMDA component of the excitatory response
(Fig. 3B). A second type of IPSP emerges near the end of the first week
and involves a G-protein activated K+ conductance through a GABAB

receptor subtype. It follows the GABAA IPSP and is slower and long-
lasting. Thus, excitatory and inhibitory synapses in LGN develop at
different rates, with inhibitory ones maturing more slowly than exci-
tatory ones (Fig. 3B-D). The functional significance of this sequence is
not clear but the delayed onset of inhibitory activity may promote an in-
creased level of excitatory postsynaptic events implicated in synaptic re-
modeling (e.g., NMDA and high threshold voltage-gated Ca2+ channel
activity).

Accompanying these age related changes in postsynaptic receptor
function, are changes in the pattern of synaptic connectivity (Fig 3C). As
one would expect from the eye-specific patterning in the adult LGN, ma-
ture relay cells are monocular, receiving input from one or the other eye

<

Figure 3 (Continued) Synaptic responses of developing LGN cells. A. Camera
lucida drawings of an immature and mature relay cells labeled with biocytin
during intracellular recording. At early and late ages, cells have relatively large
somata and multipolar dendritic arbors consistent with those of class A thalam-
ocortical cells (Grossman et al., 1973). Note the dendritic tree of immature cells
is sparse with arbors having fewer and shorter branches (Parnavelas et al., 1977;
Ziburkus et al., 2003). Beneath each cell are representative examples of synap-
tic responses evoked by electrical stimulation of the optic tract (B) and optic
nerves (C). Immature activity (left) is purely excitatory and has a large NMDA
component. ON stimulation at different stimulus intensities evokes binocular
responses. The graded responses evoked at different stimulus intensities reflect
multiple retinal inputs. Mature activity (right) consists of a short duration EPSP
followed by two IPSPs, one mediated by GABAA and the other by GABAB recep-
tor activation. ON stimulation at different stimulus intensities evokes a response
of constant amplitude and reflects a single monocular input. Recordings in C
were done in the presence of GABA antagonists. D. Graph showing the inci-
dence of EPSPs followed by GABAA and GABAB IPSPs at different ages. “Pure
EPSPs’’which lack inhibitory activity, prevail at young ages (P1-4). IPSP activity
emerges during the first week so that by P9-10 postsynaptic activity is comprised
of EPSP/IPSP pairs. B. Graph showing the incidence of binocular and monoc-
ular excitatory responses at P0-7, P8-14, and P15-21. Binocular responses are
frequently encountered between P0-14. After P14 binocular responses are rare
and the majority of responses are monocular. Summary graphs depicting the
age related changes in retinal convergence. Left: Plot showing means and SEMs
for the total number of inputs cells receive at different ages. Right: Histogram
showing the average number of inputs a cell receives from the contralateral and
ipsilateral eye between P0-7, P8-14, P15-24. There is a decrease in retinal conver-
gence with age, due largely to the loss of inputs arising from the ipsilateral eye.
All recordings were conducted in regions of the LGN that in the adult receive
input exclusively from the contralateral eye.
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(Reese and Jeffery 1983; Reese, 1988; Sefton and Dreher, 1994; Ziburkus
and Guido 2005; but see Grieve, 2005). However, given the diffuse na-
ture of early retinal projections, we expect and do indeed find a high
incidence of binocular responses (70%) during the early phases of axon
segregation (Ziburkus et al., 2003; Jaubert-Miazza et al., 2005 Ziburkus
and Guido, 2005). When recording in regions of the LGN that in the
mature state receive input exclusively from the contralateral eye, sep-
arate and distinct EPSPs are readily evoked by stimulation of either
optic nerve (figure 3C-D). After P14, there is a rapid decrease in the inci-
dence of excitatory binocular responses. By P18 recorded responses are
monocular (Jaubert-Miazza et al., 2005; Ziburkus and Guido, 2005). In-
terestingly, what remains in a subset of mature relay cells is a binocularly
mediated inhibitory response (Fig. 5; Ziburkus et al., 2003). Binocular
inhibitory responses seem to arise from interneurons that receive in-
put from one eye and then inhibit relay cell activity from the other eye
(Alhsen et al., 1985). Our observations in the rodent are consistent with
those made in the cat and monkey (Alhsen et al., 1985; Guido et al., 1989;
Schroeder et al., 1990) and suggest that binocular inhibitory interactions
are a fundamental (albeit ignored) feature of mammalian geniculate
circuitry.

Another transient feature in synaptic connectivity is the prevalence
of responses that reflect the convergence of multiple retinal ganglion
cell inputs onto a single LGN cell (Chen and Regehr, 2000; Ziburkus
and Guido, 2003; Jaubert-Miazza et al., 2005; Ziburkus and Guido 2005,
see chapter by Hooks and Chen). To estimate the number of retinal in-
puts converging onto a signal relay cell, the optic nerves are electrically
shocked at various levels of stimulus intensity and the amplitude of
evoked EPSPs are measured. In developing LGN cells that receive mul-
tiple inputs, a progressive increase in stimulus intensity gives rise to a
step-wise increase in EPSP amplitude (Fig. 3C). These graded changes
reflect the successive recruitment of active inputs innervating a sin-
gle cell. In adult LGN cells, the amplitude of EPSPs remain relatively
constant when increasing levels of stimulation are used (Fig. 3C). Our
estimates indicate mature cells receive monocular input from 1–3 retinal
ganglion cells (Lo et al., 2002; Jaubert-Miazza et al., 2005; Ziburkus and
Guido 2005). In contrast, cells recorded between P0-7 receive at least
3–6 inputs from each eye. In fact our estimates seem conservative; some
LGN cells are reported to receive in excess of 20 retinal inputs even
during the second postnatal week (Chen and Regehr, 2000). In our lab
we find that between P15-21, the degree of retinal convergence rapidly
declines to resemble the mature state, with the most significant attrition
occurring among ipsilateral eye inputs (Fig. 3D).

Our results indicate the anatomical rearrangements occurring in the
developing LGN translate directly into functional changes in connectiv-
ity (Fig. 5). Initially, overlapping projections from the two eyes lead to a
high degree of retinal convergence. As retinal projections from the two
eyes recede and overlapping territories dissipate, synapses are elimi-
nated and cells receive far fewer inputs from just one eye. This form of
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synaptic refinement also correlates well with the maturation of recep-
tive field properties reported in a number of mammalian species (Shatz
and Kirkwood 1984; Tootle and Friedlander, 1986; Sefton and Dreher,
1994; Tavazoie and Reid, 2000; Grubb and Thompson, 2003; Grieve,
2005). Immature receptive fields are typically binocular, quite large and
irregularly shaped, and lack distinct on- and off- subregions. In con-
trast, mature fields are monocular, much smaller, and have well defined
concentric center-surround organization.

Finally, it is worth noting the discovery of a somewhat novel synaptic
event that occurs in LGN during early postnatal life. Strong activation of
optic tract fibers with either a single or repetitive (25–100 Hz) shock often
evokes EPSPs that gave rise to a high amplitude (25–40 mV), long-lasting
(300–1300 msec), slow decaying depolarization (Fig. 4). These “plateau
potentials’’ have a voltage dependency and pharmacology consistent
with the activation of high-threshold L-type Ca2+ channels activation
(Kammermeier and Jones, 1998; Lo et al., 2002). The L-type (long lasting)
channel is a voltage gated, high threshold Ca 2+ channel that is found
in many different neuronal structures and cell types. These channels
have been implicated in a variety of cellular function including activity
dependent gene expression, cellular excitability, synaptic plasticity, and
cell survival (Lipscombe et al., 2004). In thalamic relay nuclei such as
the LGN, L-type channels are prevalent, although their role in synaptic
integration has been largely ignored. They are localized primarily on
somata and proximal dendrites (Budde et al., 1998), thus placing them
in an ideal location to modulate retinally evoked EPSPs (Wilson et al.,
1987).

Plateau potentials recorded in LGN are encountered far more fre-
quently between P0-7, then decline gradually with age so that by P18-21
they are rarely recorded (Fig. 4 D). There are at least two factors that
contribute to the developmental regulation of plateau potentials. First,
the high degree of retinal convergence and heightened NMDA activity
seen at early ages favors the spatial and temporal summation of EPSPs
(Fig. 4C). Such sustained levels of synaptically induced depolarizations
greatly increase the likelihood that high-threshold L-type channels are
activated (Fig. 4C). Secondly, the density of L-type Ca2+ channels found
among LGN cells varies with age. Using an antibody that recognizes and
labels the pore forming α1C subunit of the L-type channel, we found ex-
pression to peak between P0-7, but then declines gradually so by P28
there is a four-fold reduction in the density of labeled cells (Jaubert-
Miazza et al., 2005).

3. Early Retinal Activity Shapes the Developing
Retinogeniculate Pathway

As discussed in detail by other chapter contributors, the refinement
of retinogeniculate connections depends on the coordinated firing pat-
terns of developing retinal ganglion cells. Even before photoreceptors
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Figure 4 Synaptically evoked plateau potentials in the developing LGN. A.
Pharmacology and voltage dependency of the plateau potential. Shown are the
synaptic responses evoked by single or repetitive stimulation of optic tract.
At −65 mV, a single shock at high stimulus intensity evokes a large plateau
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form functional connections, groups of neighboring retinal ganglion
cells fire spontaneously in rhythmic bursts of activity that travel across
the retina in wave-like fashion (see Wong 1999; Demas et al., 2003). These
spontaneous discharges are of sufficient strength to generate prolonged
bursts of action potentials in LGN (Mooney et al., 1996; Weliky and Katz,
1999). In fact, they also seem ideally suited to activate L-type mediated
plateau potentials (Lo et al., 2002). Repetitive stimulation of retinal af-
ferents in a manner that approximates the high frequency discharge of
spontaneously active retinal ganglion cells leads to a massive summa-
tion of EPSP activity and triggers robust plateau-like activity (Fig. 3B).

When early spontaneous retinal activity is blocked or the wave like
patterns severely altered, retinal axon arbors in LGN fail to segregate
and maintain a diffuse projection pattern (see Shatz 1990, Shatz 1996;
Goodman and Shatz, 1993; Chapman 2004, see chapter by Huberman
and Chapman). Perhaps the most celebrated model for explaining how
the activity of immature neurons can form orderly connections is the
Hebb (1949) synapse. In this model (Fig. 6A), high levels of coincident
activity between pre- and postsynaptic elements leads to a strengthening
and consolidation of synapses. A corollary of this principle is that low
levels of activity result in synapse weakening and elimination (Stent,
1973; Bear et al., 1987; Constantine-Paton et al., 1990; Cramer and Sur,
1995). A proposed substrate for activity dependent remodeling is based
on forms of synaptic plasticity first demonstrated in the hippocampus,
in which the degree of frequency pairing between pre- and postsynap-
tic elements leads to a long-term potentiation (LTP) or depression (LTD)
in synaptic strength (see Bear and Malenka, 1994; Malenka and Bear,
2004). In this model, NMDA receptor activation is needed for the in-
duction of changes in synaptic efficacy (Collingridge, 1992). The voltage
dependency of NMDA receptors enables them to act as ”coincident
detectors”. That is, Ca 2+ entry through NMDA receptors only occurs
when there is sufficient depolarization. A large increase in the intracel-
lular concentration of Ca2+ (high levels of NMDA receptor activation)

<

Figure 4 (Continued)depolarization (control). At a more hyperpolarized level
(−93 mV), the same stimulation fails to evoke one, but results in a large post-
synaptic response. In the presence of the L-type Ca2+ channel antagonist ni-
trendipine, the plateau potential is abolished, but what remains is an underlying
EPSP and IPSP. At −105 mV, a large postsynaptic potential is present, indicat-
ing nitrendipine does not impede synaptic transmission. B. A large long-lasting
plateau potential is evoked by repetitive stimulus train (50Hz). Nitrendipine
application blocks the plateau potential but has no effect on the underlying
EPSP/IPSP. C. Summation of convergent retinal input evokes a plateau poten-
tial. Progressive increase in stimulus intensity leads to a step-wise increase in
EPSP amplitude. At high levels of stimulation the graded responses give rise
to plateau potentials. Numbered traces depict different retinal inputs. D. Sum-
mary graph plotting the incidence of plateau potentials at different ages. Each
point depicts the percentage of cells exhibiting a plateau response. The age re-
lated decrease coincides with the period of retinal geniculate axon segregation.
Adopetd from (Lo et al., 2002).
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triggers a distinct signaling cascade that leads to the strengthening of
co-active elements. Modest or low levels of intracellular Ca2+ (low levels
of NMDA receptor activation) trigger a different signaling cascade that
leads to the weakening and eventual loss of less active, asynchronous
ones. In the developing neocortex, there is evidence indicating that LTP
and LTD exists and an influx of Ca2+ through NMDA receptors con-
tributes to the formation of orderly connections (Kirkwood and Bear,
1994a; 1994b). Such long-term modifications in synaptic strength may
therefore embody the synaptic rearrangements occurring during the
time of retinogeniculate axon segregation, when afferents from the two
eyes are competing for synaptic space with the dendrites of relay cells.
To test for this possibility we examined the synaptic responses of LGN
cells before and after high frequency stimulation (HFS ) of a single optic
nerve. The tetanus protocol, which consists of six 1-sec trains of 50 Hz
stimulation delivered every 30 sec for 3 min, is designed to mimic (at
least in the temporal domain) the intrinsic firing patterns of develop-
ing retinal ganglion cells (Wong et al., 1993; Wong and Oakley, 1996).
This form of stimulation produces robust changes in synaptic strength
(figure 6B). In cells that receive monocular input from the contralateral
eye, HFS of the contralateral optic nerve produces a long-term, “ho-
mosynaptic’’ form of potentiation (>150%). In cells that receive input
from the two eyes, HFS of the contralateral optic nerve produces both
homo- and heterosynaptic changes in synaptic strength. That is, EP-
SPs evoked by a single shock delivered to the tetanized, contralateral
nerve are increased (homosynaptic potentiation) while those responses
evoked by stimulation of the untetanized, ipsilateral optic nerve are re-
duced (>50%) (heterosynaptic depression). Thus, heightened activity
along one pathway leads to a increase in synaptic strength as well as a
concomitant decrease in strength along a less active pathway.

Another important aspect of these results is the underlying pharma-
cology. Many examples of synaptic plasticity in the hippocampus and
the neocortex seem to rely on NMDA receptor activation (Bear and
Malenka, 1994; Constantine-Paton et al., 1990; Cramer and Sur, 1995;
Malenka and Bear 2004)). However, the plasticity we observe in LGN
seems to rely on the activation of a high threshold L-type Ca2+ channel.
HFS of the optic nerve triggers a sustained L-type mediated plateau
potential, which is likely activated by massive spatial and temporal
summation of EPSPs evoked by HFS (Fig. 4B). When this activity is
blocked pharmacologically, HFS fails to induce any changes in synaptic
strength (Fig. 6B).

The L-type activity recorded in the rodent LGN is identical to the
synaptically-evoked plateau potentials recorded in neurons of the de-
veloping rodent superior colliculus (Lo and Mize, 2000) and brainstem
trigeminal nuclei (Lo and Erzurumlu, 2002) and shares some similari-
ties to plateau related activity reported in the rodent brainstem (Rekling
and Feldman, 1997), spinal cord (Kien and Eken 1998), and invertebrate
motor neurons (Dicaprio, 1997). Thus, this event may reflect a highly
conserved mechanism by which cells can acquire large amounts of Ca2+

in an activity dependent manner.
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A role for L-type Ca2+ channels in synaptic plasticity has been well
documented. Activity through these channels can induce long term
depression and potentiation in the hippocampus (Magee and Johnston,
1997), superior colliculus (Lo and Mize, 2000) and the principal nucleus
of brainstem (Guido et al., 2001). Retinal axons also fail to segregate
properly in the developing LGN and superior colliculus of transgenic
mice that show reduced levels of L-type channel activity (Guido, un-
published results, Cork et al., 2001). Finally, the Ca2+ influx associated
with the synaptically evoked plateau potential could also contribute
to signaling events and gene expression involved in the stabilization
of developing connections (Ghosh and Greenberg, 1995; Greenberg and
Ziff, 2001). For example, Ca2+ entry via L-type channels favors signaling
cascades brought on by heightened periods of neural activity (Mermel-
stein et al., 2000). One in particular involves the cAMP response element
(CRE/CREB) transcription pathway. The CRE binding protein (CREB) is
a calcium and cAMP regulated transcriptional activating protein shown
to be important for thalamic circuit development and retinogeniculate
axon segregation (Pham et al., 2001).

4. Conclusions

The retinogeniculate synapse undergoes a significant period of remod-
eling during early postnatal life (Fig. 5). At birth, retinal axons from the
two eyes share common terminal space in LGN but prior to the time of
natural eye opening (P12) they segregate to form distinct and separate
eye specific domains. These structural rearrangements are accompanied
by changes in postsynaptic receptor function and patterns in synaptic
connectivity. At young ages, synaptic responses are largely excitatory,
dominated by NMDA receptor activity and plateau-like depolarizations
mediated by L-type Ca 2+ channel activation. Additionally, LGN cells
are binocularly responsive, receiving input from several different reti-
nal ganglion cells. As retinal inputs from the two eyes segregate into
non-overlapping territories, NMDA and L-type activity subsides and
inhibitory activity emerges. There is also a loss of binocular responsive-
ness and a decrease in retinal convergence. During the period of synaptic
remodeling, changes in synaptic strength can be induced by the high
frequency stimulation of retinal fibers in a manner that approximates
their spontaneous activity. These alterations last several minutes, rely
on the activation of the L-type Ca2+ channels, and are consistent with a
Hebbian model of activity-dependent synaptic plasticity.
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Figure 5 Developmental remodeling at the retinogeniculate synapse. Drawings
of immature and mature relay cells (R) summarizing the major developmental
changes that occur in receptor function, synaptic connectivity, and L-type chan-
nel expression. Immature relay neurons display robust excitatory activity via
NMDA receptor activation, receive multiple inputs from the two eyes, and have
a high density of L-type Ca2+ channels that give rise to plateau-like depolariza-
tions. During maturation, inhibitory responses emerge through a feed-forward
circuit involving intrinsic interneurons (I). There is a loss of binocular respon-
siveness, a reduction in retinal convergence, and a decline in the expression of
L-type Ca2+ channels which all contribute to the eventual elimination of plateau
potential activity. Note that a subset of mature relay neurons continue to display
binocular inhibitory responses.

>

Figure 6 LTP and LTD at the retinogeniculate synapse. A. The Hebbian model
of synaptic plasticity. Schematic showing how retinal activity leads to long-term
changes in synaptic strength and the stabilization of retinogeniculate connec-
tions. Shown are two retinal axons competing for terminal space on an LGN cell.
Retinal activity is illustrated above each input as spike trains. Heightened reti-
nal activity evokes robust postsynaptic activity in LGN. The coincident pairing
of heightened pre- and post-synaptic activity leads to a long-term potentiation
(LTP) in subsequent synaptic activity. Accompanying this is a large Ca2+ influx
through the NMDA iontophore and/or voltage gated Ca2+ channels. Increased
levels of intracellular Ca2+ triggers a series of signaling events that leads to
the strengthening and eventual consolidation of the active synapse. In contrast,
low levels of retinal activity evokes smaller postsynaptic excitatory responses,
weaker and less synchronous pairing of pre- and post-synaptic activity, a long-
term depression (LTD) of subsequent synaptic activity, and less Ca2+ influx.
Low levels of intracellular Ca 2+ activates a separate set of signaling events that
results in a weakening and eventual elimination of the less active synapse. B.
Activity dependent modifications in the synaptic strength of LGN cells. Exam-
ples of synaptic responses in three different LGN cells (A-C) recorded before
(pre-tetanus, left) and after (post-tetanus, right) high frequency stimulation of
the contralateral optic nerve (ON). Representative responses are obtained 5 min.
before and 10 min. after tetanus. Corresponding plots show changes in EPSP
amplitude before and after tetanus. Values are expressed as a percentage of
the average baseline response and reflect an average obtained from responses
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Figure 6 (Continued) evoked once every 5–15 sec. A. Synaptic responses along
the contralateral, tetanized pathway leads to a homosynaptic potentiation. B. In
a binocular cell the synaptic responses along along the contralateral tetanized
pathway leads to homosynaptic potentiation (black symbols) and a heterosy-
naptic depression of responses along the ipsilateral, untetanized pathway (grey
symbols). C. The blockade of L-type Ca2+ activity during tetanus results in no
change in synaptic strength.
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A Model for Synaptic Refinement
in Visual Thalamus

Bryan M. Hooks and Chinfei Chen

Abstract

How the developing brain specifies precise neural connectivity has long
interested neuroscientists. Because of the immense number of cells and
synapses in the CNS, it seems unlikely that each individual cell’s iden-
tity and connectivity is intrinsically or genetically specified. Both neu-
ral activity and molecular cues provide possible mechanisms by which
network properties of the developing brain can emerge from relative
disorder. Emphasizing the visual system as a model for synaptic devel-
opment, we review the role of various factors in synaptic maturation,
including sensory activity. Furthermore, we elucidate why the mouse vi-
sual system could prove advantageous for investigation of mechanisms
governing circuit development.

A Unilinear View of Synaptic Development

The development of synaptic connections in the central nervous system
(CNS) can be divided into several stages. Axons from the presynaptic
cell must map to postsynaptic neurons, distinguishing them from inap-
propriate targets. Once axons have reached a set of potentially appro-
priate targets, they form synaptic connections. Initial connections tend
to be relatively weak and redundant, with connections made to a large
number of postsynaptic cells. Over development, these connections are
refined, as some inputs are eliminated while others are strengthened
(Figure 1). While it is unlikely that all CNS connections develop in this
manner, this canonical view of synaptic development helps provide a
framework upon which we can begin to understand the mechanisms
that underlie synapse maturation and circuit development.

One model synapse for studying functional changes in the maturing
CNS is the retinogeniculate synapse in the visual system. This synapse
is the connection between the principal output layer of retina, the reti-
nal ganglion cells, and its targets in thalamus, the dorsal lateral genic-
ulate nucleus (dLGN) relay neurons that project to the visual cortex.
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Figure 1 Synaptic refinement during development. Early in development,
synaptic connections in the central nervous system are often weak, imprecise
and redundant (immature). Over development, these connections are refined
as some inputs are strengthened and others are eliminated (mature).

Developmental pruning and strengthening of retinogeniculate connec-
tions follows a unilinear pattern, beginning with many inputs and ter-
minating with as few as one afferent (Mouse: (Chen and Regehr, 2000);
Ferret: (Tavazoie and Reid, 2000); Rat: (Ziburkus and Guido, 2005) and
see this volume, Guido, 2005). However, details of the mechanisms un-
derlying these later steps are not clearly understood. Since the retino-
geniculate system recapitulates typical developmental patterns seen in
the strengthening of a strong driving input in the CNS, we review the
advantages of studying the visual system for understanding sensory
circuit development and synaptic maturation, with particular attention
to the mouse as a model organism.

The Visual Thalamus As A Model For Studying
Synaptic Development

The retinogeniculate synapse shares many general features with other
CNS connections and thus provides a useful model for the study of
development of CNS synaptic transmission. First, it is an excitatory
glutamatergic connection, with the postsynaptic membrane character-
ized by both major subtypes of glutamate receptors, AMPA and NMDA
receptors (AMPAR and NMDAR). The contribution of each subtype
changes over development, with NMDAR contribution to early trans-
mission being greater, sometimes to the exclusion of AMPAR (Chen and
Regehr, 2000). Furthermore, the subunit composition of the receptors
may change during maturation as well: consistent with this, NMDAR
excitatory synaptic current timecourse accelerates during development
(Carmignoto and Vicini, 1992; Monyer et al., 1994; Chen and Regehr,
2000).

Previous experiments have revealed several of the factors govern-
ing the anatomical development of this connection, making this one of
the best-studied CNS connections. Retinal ganglion cells form a precise
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long distance connection to the dLGN. The molecular guidance cues
responsible for directing optic tract formation, such as the Ephrin/Eph
receptor signaling pathway, are thought to place the axon terminal in
a general area of potentially appropriate targets in the LGN and supe-
rior colliculus ((Feldheim et al., 1998; Lyckman et al., 2001; Oster and
Sretavan, 2003)). Once the axon reaches an appropriate target region,
it forms connections to many relay neurons. For example, in develop-
ing cat LGN, HRP-labeled retinogeniculate axons are seen to initially
form sparse synaptic contacts in both ipsi- and contra-lateral eye layers
(Campbell and Shatz, 1992).

However, as the animal matures, more elaborate arbors are seen in the
appropriate layer (ipsi- or contra-), while inappropriate connections re-
tract and disappear (Sretavan et al., 1988). In the dLGN, this results in the
segregation of projections to eye-specific LGN laminae, with afferents
to each layer exclusively from the ipsi- or contra-lateral eye. The pro-
cess is activity-dependent, and ipsi- and contra-lateral segregation can
be blocked by intraventricular infusion of TTX (Shatz and Stryker, 1988;
Sretavan et al., 1988). Indeed, the blockade of activity does not result
in stasis in axon morphology, but instead TTX-treated axons continue
to arborize extensively in both appropriate and inappropriate areas,
resulting in an anatomy that is unlike normal axons at any stage of de-
velopment (Sretavan et al., 1988). Later axon refinement into ON/OFF
sublaminae is also activity-mediated, depending on NMDA receptor
function (Hahm et al., 1999). Since segregation occurs before birth or
eye-opening in a variety of mammals, spontaneous waves of retinal
activity provide the in vivo source of activity required for lamination
(Galli and Maffei, 1988; Meister et al., 1991; Wong et al., 1995; Penn et
al., 1998; Stellwagen and Shatz, 2002), though the specific features of the
pattern of spontaneous activity necessary for establishing appropriate
connections is debated (Huberman et al., 2003).

Synaptic structures continue to develop even after eye-specific layers
are complete. Light and electron microscopic studies of retinal afferents
in cat LGN indicate that refinement of the terminal arborization con-
tinues for several weeks after eye-opening, including an increase in ter-
minal size and involution into glomerular structures (Mason, 1982a, b).
This complements functional data, which show an increase in the am-
plitude of postsynaptic response, a change in the AMPAR/NMDAR
current ratio, and NMDAR current timecourse, as well as a change in
the number of afferents connected to each dLGN target. Indeed, synap-
tic maturation proceeds in the canonical manner, with many weaker
functional inputs onto postsynaptic cells pruning to several strong
ones after eye opening (Chen and Regehr, 2000; Tavazoie and Reid,
2000).

This previous work sets the table for investigations of mechanisms
of maturation in several key ways. First, the normal timecourse and
trajectory of synaptic maturation are well defined, both morphologically
and functionally. Second, a number of the molecular players of early
stages in development are identified. Lastly, the pattern of “pre-sensory’’
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spontaneous activity and visually-evoked activity have been extensively
studied.

Mouse as a Model for Studying the Visual System

The synaptic organization of the mouse visual system is grossly similar
to that in other mammals, such as cats, ferrets, and primates, used in
vision research. Recent research suggests that mice and rats are evolu-
tionarily more closely related to primates than cats (grouping Glires and
Primates within Euarchontoglires) (Amrine-Madsen et al., 2003), though
there is no consensus on placental mammal higher order relationships.
With divergence from the felines dating to greater than 90 mya, it is pos-
sible that shared neurological features represent convergence instead of
homology. One recent paper underscoring this phylogenetic distinction
between cat and human shows convergence of center-surround inputs
to form orientation-selective cells, typical of cat LGN to layer 4 striate
cortex connections, occurs at the layer 4 to layer 2/3 projection in tree
shrew—also more closely related to primates than cat (Mooser et al.,
2004). Information flows from the retinal ganglion cells (RGCs) in the
eye to thalamocortical projection neurons in the dLGN; these in turn
project to layer 4 of visual cortex. Since mice, like ferrets, have eyes
positioned on the side of their heads and consequently small arcs of
binocular vision, the visual system is more monocular than binocular.
Thus, instead of multiple eye-specific thalamic layers, the mouse dLGN
is divided into one large region innervated by RGCs of the contralateral
eye, with a small region devoted to ipsilateral projections. This contrast
persists in cortex, where layer 4 pyramidal cell responses are dominated
by the contralateral eye.

At a cellular level in the mouse LGN, the structure is also similar
to that in primates and cats. Intrathalamic inhibitory circuits include
both intrinsic interneurons and thalamic reticular nucleus (NRT) neu-
rons, which provide fast ionotropic inhibition to thalamic relay cells.
The dLGN is the only sensory nucleus of rodent LGN that contains in-
trinsic interneurons (Steriade et al., 1997). These neurons form triadic
connections with RGC afferents and their thalamocortical targets, which
provide inhibition to relay cells from the presynaptic dendrites (PSD) of
intrinsic interneurons when excited by retinal afferents. Glomeruli have
been studied at the EM level in cat, and are present in rodents as well
(Rafols and Valverde, 1973). One cellular difference in rodents is that the
presence of X and Y cells in cat (alpha and beta cells in primate) has not
yet been demonstrated, although almost all relay neurons exhibit linear
spatial summation responses consistent with a predominance of X cells
(Grubb and Thompson, 2003).

One model system for studying synapse development is the retino-
geniculate slice preparation developed in rat (Turner and Salt, 1998)
and mouse (Chen and Regehr, 2000). This model sacrifices in vivo
recording for the ability to study synaptic changes at the cellular level.
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Experimentally, the retinogeniculate slice preparation has the advan-
tage of geographic and pharmacological separation of inputs. GABAer-
gic connections can be blocked, avoiding complications of intrinsic
interneuron activity also excited by retinal afferents. Although retino-
geniculate and corticothalamic synapses share similar pharmacology
(both are glutamatergic), they are easily separable by stimulation of the
optic tract only (retinal axons) using a bipolar stimulation configura-
tion. Additionally, retinal afferents make contact on proximal spines,
compared to more distal corticothalamic connections, allowing effec-
tive space clamp of the cell (in whole cell voltage clamp mode) even
for relatively large (5nA) and fast (decay <10ms) synaptic events. Dis-
tinguishing between these afferents is important, since they may follow
distinct cell type-specific rules for synaptic maturation. Because of the
size of the mouse brain and the thickness of the slice (250 um), it is pos-
sible to capture most of the nucleus in a single slice. Thus, the retino-
geniculate slice preparation gives anatomical access to one specific class
of afferents, as well as neurophysiological access for clean recording.

Synaptic Strengthening and Pruning of the Mouse
Retinogeniculate Synapse

Although axon morphological development appears macroscopically
complete once eye-specific layers have formed (largely complete by P8
in mice), functional (electrophysiological) responses at the retinogenic-
ulate synapse continue to develop after the time of eye opening (P14)
(Godement et al., 1984; Chen and Regehr, 2000).

Figure 2 demonstrates the normal developmental changes that oc-
cur at the retinogeniculate synapse over a period ranging from P10 to
P32. Retinal fibers in the optic tract are activated with gradually in-
creasing intensities, and the synaptic current elicited at −70 mV and
+40 mV are recorded. All recordings are obtained from relay neurons
located in the ventral-lateral area of the dLGN, a region that is largely
monocularly innervated by p7-8 (Muir Robinson et al., 2002; Jaubert-
Miazza et al, 2005; see this volume, Guido, 2005). In Figure 2A, the
peak currents evoked from a relatively young animal, before eyes are
open, plotted as a function of the stimulus intensity is shown on the
left, while on the right, currents elicited at all stimulus intensities from
the cell are overlaid. The total amount of current increases with the in-
crease in stimulus intensity, consistent with the wiring model shown in
Figure 1(left).

In contrast, a similar experiment performed on thalamic relay neu-
rons in older animals, two weeks after eye opening, revealed dramatic
changes in the synaptic response (Figure 2C). Rather than a graded in-
crease in synaptic current in response to increased stimulus intensity,
in many cells, there appears to be only one step-like increase in synap-
tic current. This functional change is consistent with a refinement of the
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Figure 2 Representative responses to incremental increase in stimulus intensi-
ties from animals of different ages. (Left panels) Plots of the peak amplitudes of
the AMPAR (black circles) and NMDAR (triangles) components of the synaptic
current elicited as a function of stimulus intensity. (Right panels) Superposition
of the synaptic currents elicited over the range of stimulus intensities while al-
ternating between holding potentials of +40 mV (outward currents, NMDAR)
and −70 mV (inward currents, AMPAR). Adapted, with permission, from (Chen
and Regehr, 2000; Copyright 2000 by Elsevier).

synaptic inputs to the recorded cell over development as predicted with
the wiring model shown in Figure 1.

These results indicate that, at the time of eye-opening, the LGN prin-
cipal cells of mice are still innervated by approximately 15–20 inputs
(Chen and Regehr, 2000). However, over the next two weeks, the num-
ber of afferents is reduced to about one to three. In addition to the
pruning phenomenon, each individual retinogeniculate afferent acti-
vates a larger current (synaptic strengthening by more than 50-fold).
Furthermore, the ratio of excitatory current carried by two subclasses of
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glutamate receptors changes: in younger animals, the NMDA receptor
dominates; the AMPA receptor current component increases in more
mature animals. Lastly, the timecourse of NMDA receptor mediated
current changes, suggesting a change in NR2 subunit composition, pos-
sibly from NR2B to NR2A (Carmignoto and Vicini, 1992; Monyer et al.,
1994).

The disparity in timing of the completion of morphological develop-
ment (eye-specific layering) and electrophysiological maturation raises
the question of whether the same mechanisms govern both processes.
Specifically, is neural activity involved in the process of functional
retinogeniculate synaptic maturation? The influence of activity on de-
velopment in this electrophysiological assay may be different from the
results with eye-specific layer formation for several reasons. First, at dif-
ferent developmental stages, different sources of activity (spontaneous
retinal waves early, or visually-evoked spikes late) prevail, perhaps
conveying distinct information. Second, in contrast to earlier work in
eye-specific layer formation, these electrophysiological recordings fo-
cus on the region of LGN that is innervated almost exclusively by con-
tralateral afferents. Although synaptic remodeling found in the monoc-
ular region appears very similar to that in binocularly innervated ar-
eas of the LGN (Ziburkus et al., 2003; Ziburkus and Guido, 2005; see
this volume, Guido, 2005), some of the rules that govern afferent prun-
ing and development in a region where retinal ganglion cells of the
same eye compete may differ. This is suggested by the finding that
retinal ganglion cell activity block disrupts the contralateral projec-
tions to the binocular but not monocular region of the LGN (see figure
2C,D of Penn et al., 1998). Finally, the electrophysiological assay can
reveal functional changes that occur at the synaptic or molecular level
of axon terminals that are not visible in light microscopy of entire axon
branches.

Possible Mechanisms Underlying Synaptic Maturation
in the Visual System

Maturation of Receptive Fields after Eye-Opening

Specific studies mapping LGN receptive fields indicate that completion
of eye-specific layer formation does not mark the end of synaptic de-
velopment. Studies in ferret demonstrate that, shortly after eyes open
(P35), receptive fields of principal dLGN neurons take a variety of non-
specific shapes that are diffuse and irregular (Daniels et al., 1978; Blake-
more and Vital-Durand, 1986; Tavazoie and Reid, 2000). However, over
the course of two weeks following eye opening, the receptive fields
sharpen into the classical circular center-surround structure. This de-
velopmental pattern is consistent with the changes in the strength and
innervation of retinogeniculate connections described at the synaptic
level in mice (Chen and Regehr, 2000). The receptive field changes and
synaptic maturation that occur in the days following eye-opening may
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depend visually-evoked patterned activity, spontaneous activity, and
activity-independent mechanisms, and it will be interesting to test the
degree to which each contributes.

Recent work shows that visually experience does play a role in some
components of visual system development, permitting, for instance,
segregation of ON/OFF dendritic arbors in retinal ganglion cells (Tian
and Copenhagen, 2003). Yet in cat dLGN, dark rearing does not change
the orientation and direction selectivity of relay cells (Zhou et al., 1995);
this finding corresponds with the failure to find morphological changes
in X and Y retinogeniculate cell arbors (Garraghty et al., 1987). However,
activity does play a part in distinguishing ON and OFF cells in the LGN.
Intraocular injection of TTX postnatally to silence all retinal activity
leads to unusual LGN cells that respond to both ON and OFF transients,
as well as binocular responses from cells in layers corresponding to the
injected eye (Archer et al., 1982). More recent work demonstrates that
visual experience through closed eyelids (i.e., before eye opening) can
also play a role in segregating ON/OFF responses as well as tuning
orientation selectivity in dLGN, suggesting a role of visual experience
in dLGN development (Akerman et al., 2002).

By comparison, the striate cortex is much more plastic than the LGN.
Early studies in the development of the visual system by Hubel and
Wiesel showed that a developmental critical period exists, during which
monocular deprivation can reduce responsiveness of cortical cells to in-
puts from one eye or the other. This effect is due to imbalanced com-
petition between inputs, as binocular deprivation does not reduce re-
sponses to either eye (reviewed in Hubel and Wiesel, 1998). Further
studies revealed that orientation and direction selectivity could be re-
duced in dark-rearing (Blakemore and Van Sluyters, 1975), while only
responses from direction-selective cells (sensitive to motion) were re-
duced in strobe rearing (Cynader and Chernenko, 1976). The develop-
ment of cortical maps for ocular dominance and orientation proceeds
normally in binocularly deprived cats, but maintenance of these maps
requires visual experience (Crair et al., 1998). These findings suggest
that experiential factors may be important in the final refinement of
the synaptic circuitry moreso than in their initial establishment. Thus,
patterned vision is important for the proper maturation of cortical cir-
cuits, though debate continues on the degree to which visual experience
contributes to the full developmental process.

In other regions of the visual system, such as the superior colliculus,
eye opening causes an acceleration in the normal reduction of neuronal
inputs that synapse onto superficial collicular neurons in rat (Lu and
Constantine-Paton, 2004). Because these cells receive inputs from the
cortex, retina and brainstem that cannot be distinguished in the brain
slice preparation, the specific class of inputs that exhibits sensitivity to
visual activity during development is not yet clear. Since cortical and
subcortical synapses appear to obey different rules of plasticity, it will be
important to identify the specific presynaptic cell populations in order
to better understand the role of activity in circuit development.
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Neural Activity and Activity-Independent Cues

Several mechanisms could contribute to the retinogeniculate pruning
and synaptic strengthening that is illustrated schematically in Figure
1. First, development may proceed in an activity-independent manner,
with pruning and synaptic maturation governed by the interactions of
cell surface proteins on the retinogeniculate axon and its target cell.
These processes could also be genetically programmed. Second, spon-
taneous activity (such as retinal waves) may play a role in pruning and
strengthening. For the purposes of the synaptic maturation time course,
it is important to note that, while retinal wave activity persists after eye
opening, in mouse it is found to be largely gone by P15 and completely
extinct by P21 (Demas et al., 2003). Though this activity ends many
days before synaptic refinement is complete, it may initiate molecu-
lar mechanisms that then proceed in an activity-independent manner,
functioning even days or weeks after this activity subsides. Indeed, a
recent study in the spinal cord demonstrated interactions between ac-
tivity and molecular cues; reduction of spontaneous activity prevented
the normal expression of molecular pathfinding cues such as ephrins
and NCAM (Hanson and Landmesser 2004). Lastly, the specific activity
from visually-evoked stimuli may be responsible for refining the pro-
jection and driving it to maturation. Figure 3 illustrates the timeline of
key functional and anatomical changes in the mouse visual system over
development, and compares these events to the time periods during
which different sources of activity occur.

Arguing in favor of the activity independence of early synaptogene-
sis, studies in the visual cortex find early formation of ocular dominance
columns, even in the absence of retinal input (Crowley and Katz, 1999,
2000). However, contributions from intrinsic thalamic activity cannot be
ruled out. Alternatively, other investigators argue for an important role

Figure 3 Timeline of major events in visual system. Developmental periods in
the rodent associated with changes in the anatomy and function of synaptic
circuits in different areas of the visual system are plotted with respect to the
postnatal age. Time windows for different forms of activity are superimposed
for comparison.



13 A Model for Synaptic Refinement in Visual Thalamus 237

of activity in the developing visual system. The source of this activity,
then, is of interest: early in development, spontaneous activity medi-
ated by cholinergic retinal waves contributes to retinal ganglion cell
firing patterns; later, spontaneous waves cease and excitation of pho-
toreceptors begins to drive ganglion cell spiking. Some specific features
of high frequency presynaptic activity required for normal eye-specific
layer segregation have been identified (Torborg et al 2005), though
other work challenges the notion that any pattern of activity is required
(Huberman et al 2003). Thus, depending on the time in development in
which they occur, changes in activity may have a large effect on either
axon anatomy or postsynaptic cell physiology. For example, in cat visual
cortex, blocking activity late in development produces a shift in cortical
ocular dominance profiles, but no anatomic change is detected in dLGN
axonal arborizations (reviewed in Katz and Shatz 1996). It is likely that
future experiments will reveal a cooperative role of both activity and
gene expression in the strengthening and pruning of synaptic connec-
tions over development, much like what has recently been described for
the determination of the shape, location and segregation of eye-specific
layers (Pfeiffenberger et al, 2005; Huberman et al, 2005; see this volume,
Huberman and Chapman, 2005).

Hebbian versus Homeostatic Mechanisms

A leading theory for the role of activity in synapse formation, derived
from Donald Hebb, is that synapses are strengthened when pre- and
post-synaptic cells are simultaneously excited (reviewed in (Katz and
Shatz, 1996)). This principle, and a time window critical for its occur-
rence was demonstrated in tadpole; it was even shown that weak sub-
threshold inputs can be strengthened by pairing with either postsynap-
tic depolarization or the simultaneous excitation of a suprathreshold
input (Zhang et al., 1998). Long lasting changes in synaptic function,
such as LTP and LTD, have also been extensively studied due to their
possible role in learning and memory. These mechanisms may also be
present in different synapses of the visual system, including the retino-
geniculate synapse (Artola and Singer, 1987, 1993; Mooney et al., 1993;
Bear and Malenka, 1994).

Opposing the synaptic strengthening, however, is the requirement for
a homeostatic mechanism to keep Hebbian mechanisms from strength-
ening inputs ad infinitum, as well as to keep weaker inputs from be-
coming stronger lest they simply are activated simultaneously with a
stronger, more frequently active input. Synaptic scaling, as described
by Turrigiano and colleagues (Turrigiano et al., 1998; Desai et al., 2002),
is a form of global non-synapse-specific plasticity that allows individ-
ual neurons to scale the strength of postsynaptic response to the overall
level of synaptic inputs. How do Hebbian and homeostatic mechanisms
coexist? One hypothesis is proposed by Murthy and colleagues: they
show that altering the amount of activity in cultured neurons has differ-
ent effects if it occurs before or after synapse formation (Burrone et al.,



238 Bryan M. Hooks and Chinfei Chen

2002). Thus, while activity is important both in determining synaptic
strength of developing connections, the developmental timing of the ac-
tivity with respect to synaptogenesis is also important. While exploring
the rules by which activity governs synaptic strengthening and pruning
in vivo, it is necessary to bear in mind mechanisms previously proposed
to govern activity-dependent changes in synaptic strength.

Comparison to the Development of Other Synapses

Lessons from the Neuromuscular Junction

Our understanding of synaptic refinement comes from a number of
studies at a variety of synapses. The best understood system for study-
ing synaptic refinement is the neuromuscular junction of rat (reviewed
by Sanes and Lichtman, 1999; Wyatt and Balice-Gordon, 2003). Electro-
physiological studies recording from skeletal muscle and incrementally
stimulating the motor nerve demonstrated a decrease in the number of
inputs from 2–3 to 1 between the ages of p0 and p14 (Redfern, 1970;
Brown et al., 1976; O’Brien et al., 1978). Initially, the multiple inputs are
relatively equal in size, and then over time, a disparity grows between
the strength of the inputs until one remains (Colman et al., 1997). Presy-
naptically, a decrease in release probability at weaker inputs contributes
to this disparity (Kopp et al., 2000) and precedes elimination of the in-
put. Monitoring of the postsynaptic ACh receptor with fluorescently
labeled bungarotoxin revealed that in some instances, postsynaptic re-
ceptors also disappear prior to the elimination of the input innervating
the region (Balice-Gordon et al., 1993).

More recently, optical and genetic tools have allowed the fluorescent
labeling of a few motor neurons, and thus more detailed visualization of
changes that occur as the neuromuscular junction undergoes develop-
mental refinement (reviewed in Lichtman and Sanes, 2003). Images of
the retraction of axon terminals away from the muscle during develop-
ment demonstrated that the functional elimination of synaptic current
correspond to an active process of atrophy and withdrawal of the presy-
naptic axons (Colman et al., 1997). Moreover, mice containing GFP and
CFP labeled motor neurons innervating the same motor fiber provided
insight into the competition between these inputs. These studies demon-
strated a takeover of the postsynaptic territory of the eliminated input
by the strengthening terminal in cases when the postsynaptic receptors
did not disappear from the territory of the eliminated input (Walsh and
Lichtman, 2003).

Activity contributes to synaptic refinement at the neuromuscular
junction. Increasing or decreasing action potential activity in motor neu-
rons leads to an enhancement or retardation of synaptic refinement, re-
spectively (O’Brien et al., 1978; Thompson et al., 1979; Ribchester and
Taxt, 1983; Thompson, 1983). The relative activity between competing
motor neurons appears to be more important than the absolute levels
of activity. Consistent with the hypothesis that the more active neuron
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wins the refinement competition is the result of a study using a geneti-
cally titratable knockout of the choline acetyltransferase (ChAT; biosyn-
thetic enzyme of acetylcholine, the NMJ neurotransmitter) to control the
amount of neurotransmission at individual motor neurons. In all cases
of doubly innervated neuromuscular junctions, the more active neu-
ron (ChAT+) occupied more than 50% of the site (Buffelli et al., 2003).
However, in motor fibrils doubly innervated by ChAT- motor neurons,
synaptic connections are maintained, suggesting that inactive neurons
are still competent to maintain synaptic contact and it is specifically their
reduction in activity relative to ChAT+ fibers that causes withdrawal.

It is still unclear the extent or degree that activity contributes to synap-
tic refinement at the neuromuscular junction. Synaptic refinement at the
neuromuscular junction starts prenatally in rat and mice when up to 15
motor neurons are estimated to innervate a single motor fibril (personal
communication, Wylie and Lichtman); no previous experiments block-
ing activity have tested whether all initial inputs can be maintained in
the absence of competition. Whether activity drives or modulates the full
extent of synaptic refinement, or only the later (postnatal) phase of this
process has yet to be determined. However, these studies in the neuro-
muscular junction provide a framework within which the mechanisms
important in synaptic refinement in CNS synapses can be compared.

Development at Other CNS Synapses

A number of synapses in the central nervous system have also been
shown to refine during development. These include the chick cochlear
nerve to nucleus magnocellularis synapse and the climbing fiber to Purk-
inje cell (CF-PC) synapse. At both synapses, the extent of input pruning
documented postnatally is much less than that observed at the retino-
geniculate synapse, decreasing from four to one inputs over a one-week
period. However, some mechanisms underlying this process are likely
to be shared with other central and peripheral synapses. Consistent
with synaptic refinement at the neuromuscular junction, the strength
of the CF-PC input, which correlates with the glutamate concentration
transients in the synaptic cleft, is predictive of the input that will be
eliminated (Hashimoto and Kano, 2003).

Molecules that contribute to synaptic refinement have also been iden-
tified at the CF-PC synapse. Insulin-like growth factor-I was found to
enhance both synaptic current amplitudes and the degree of multiple
fiber innervation of Purkinje cells by climbing fibers (Kakizawa et al.,
2003), suggesting that loss of survival factors is associated with synapse
elimination. The IGF-1 results are particularly interesting, as chronic
IGF-1 application starting at P8 but not P12 was effective in increas-
ing synaptic currents and blocking synaptic pruning, even though de-
velopment was monitored until P24-P36. Thus, events during an early
developmental time window may continue to exert their effects in phe-
nomena weeks later. The same authors propose a role for activation
of mGluR1 in pruning, thus implicating activity as well (Kano et al.,
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1997); furthermore, they propose that IGF and mGluR1 could medi-
ate early and late phases of synaptic pruning respectively. Evidence
points to a postsynaptic site of action for this metabotropic glutamate
receptor, possibly involving an intracellular signal transduction cascade
that includes protein kinase C, the guanine nucleotide binding pro-
tein, Gaq, phospholipase Cb4 and P/Q-type calcium channels (Kano
et al., 1995; Offermanns et al., 1997; Kano et al., 1998; Miyazaki et al.,
2004).

Inhibitory CNS synapses have also been shown to undergo synap-
tic remodeling during development (Sanes and Friauf, 2000; Kandler,
2004). Synaptic refinement occurs at the glycinergic connection between
the medial nucleus of the trapezoid body and the lateral superior olive in
the rat auditory system during the first postnatal week. A four-fold de-
crease in the input area to the LSO is accompanied by a 12-fold increase
in synaptic strength, resulting in a two-fold sharpening of the tonotopic
map (Kim and Kandler, 2003). It is also worth noting that this refinement
occurs at a developmental time when the ionic currents associated with
inhibitory glycinergic channels are depolarizing to immature cells. In
addition, some inhibitory inputs actually release glutamate as the neu-
rotransmitter (Gillespie et al., 2005). In contrast to the neuromuscular
junction, there appears to be a temporal dissociation between functional
development, which occurs during the first postnatal week, when com-
pared to morphological refinement, which takes place after the onset of
hearing, in the third postnatal week (Sanes and Siverls, 1991). There-
fore patterned auditory activity does not seem to drive the functional
refinement of this connection.

Multiple Forms of Synaptic Refinement in the CNS

Functional refinement at different types of synapses may differ both in
terms of the final synaptic configuration (i.e., many presynaptic afferents
vs. a few) as well as the underlying cellular mechanisms mediating the
result. The organization and architecture of the mature retinogeniculate
synapse represents only one of many synaptic configurations that have
been described in the CNS. An example of alternative synaptic orga-
nization can be seen in the other glutamatergic input to relay neurons,
the corticothalamic projections to the LGN. Many cortical neurons con-
nect to a given relay neuron, each with relatively weak synaptic strength
(Deschenes et al., 1984; Granseth and Lindstrom, 2003; Li et al., 2003; Re-
ichova and Sherman, 2004). The difference in the synaptic organization
between the two glutamatergic inputs likely arises from their functional
roles. While the retinogeniculate input is often referred to as a “driver’’
input, one that carries primary information, the corticothalamic input is
considered a “modulator’’ of that information (Sherman and Guillery,
1998; Alitto and Usrey, 2003). Thus, it would not be surprising that rules
governing synaptic refinement at the corticogeniculate synapse would
be quite different from that of the retinogeniculate connection (Clasca
et al., 1995; Reichova and Sherman, 2004).
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Supporting this idea are recent studies in the cortex illustrating that
many synaptic connections develop with striking specificity, without a
period of exuberant innervation that is subsequently pruned (Callaway
and Lieber, 1996; Bender et al., 2003; Bureau et al., 2004). What, then, is
the link between the synapses that have been shown to exhibit consider-
able functional synaptic remodeling during development? The retino-
geniculate synapse, the excitatory and inhibitory auditory synapses, the
neuromuscular junction, and the climbing fiber to purkinje cell synapse
in the cerebellum, could all be classified as strong projections that con-
vey primary information or instruction. Thus the ultimate function of
the synaptic connection could dictate the specific rules of synaptic de-
velopment in the CNS. The degree to which these disparate cell types
share molecular mechanisms governing synapse pruning and elimina-
tion will become clear from future studies.

Conclusions

The great diversity of connections in the nervous system affords the test-
ing of a large number of potential rules governing their formation, mat-
uration, and plasticity. The retinogeniculate synapse of the mouse visual
system provides one model system where the anatomical development
and patterns of presynaptic activity are well-known and synaptic re-
finement is robust and large. The features of this experimental model
provide an opportunity to identify the molecules and rules important in
strengthening and remodeling at strong, precise, driving inputs of the
central nervous system.
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Projections to the Lateral
Geniculate Nucleus
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Introduction

In mammals, axons from the two eyes are segregated within their
targets. A striking example of this is found in the lateral geniculate
nucleus (LGN) wherein ganglion cell axons arising from the right-
and left-eyes are organized into a highly stereotyped arrangement of
non-overlapping domains called eye-specific layers (Jones, 1985). Rakic
(1976) was the first to examine the development of eye-specific retino-
geniculate projections. By injecting tritiated proline into one eye of
macaque embryos in utero, he found that early in prenatal development,
axons from the labeled eye filled the entire LGN, whereas later in prena-
tal life, the labeled axons were restricted to distinct portions of the LGN
and were mirror-symmetric on the two sides of the brain (Rakic, 1976).
This indicated that eye-specific layers emerge from a state in which ax-
ons from the two eyes initially intermingle. Subsequent experiments
examined the development of eye-specific retinogeniculate projections
in various species using higher sensitivity tracers (ferret: Linden et al.,
1981; cat: Shatz, 1983; rat: Jeffery, 1984; mouse: Godement et al., 1984;
macaque: Huberman et al., 2005a). Although the timing of eye-specific
segregation was found to vary depending on the species under investi-
gation and the sensitivity of tracer used, the results of all these experi-
ments confirmed that i) eye-specific projections emerge from a state in
which axons from the two eyes initially overlap and ii) the segregation
process occurs before vision is possible. For example, in cat, eye-specific
retinogeniculate segregation also occurs prenatally, in the darkness of
the uterus (Shatz, 1983). In ferrets and mice, eye-specific segregation
occurs after birth, between postnatal day 1 (P1) and P10 (Linden et al.,
1981; Godement et al., 1984) but still before the onset of phototransduc-
tion, which begins around P15-P20 in these species (ferret: Akerman
et al., 2002; mouse: Demas et al., 2003).
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Competition and Hebbian Mechanisms

Several experiments have demonstrated a role for binocular competi-
tion in eye-specific retinogeniculate segregation. If one eye is removed
at the stage of development when axons from the two eyes overlap, pro-
jections from the remaining eye end up distributed throughout the LGN
(rat: Lund et al., 1973; macaque: Rakic, 1981; cat: Chalupa and Williams,
1984; ferret: Guillery et al., 1985a). Toward the late 1980’s and early
1990’s eye-specific retinogeniculate projections emerged as a premier
model system for addressing the role of competition in development of
precise neural connections. A competition-based model for eye-specific
development was appealing because, in several respects it appeared to
obey Hebb’s postulate (Hebb, 1949). Within the context of segregating
binocular connections into eye-specific layers, a Hebbian based model
predicted that co-active inputs arising from the same eye onto a single
LGN neuron would be more efficient at depolarizing the LGN neuron
than would inputs arising from different eyes onto the a single LGN neu-
ron. In theory, inputs arising from different eyes onto the same LGN cell
would tend to be uncorrelated in their firing. Thus, whichever input was
stronger would tend to be maintained whereas the weaker input would
tend to be eliminated (reviewed in Shatz, 1990; 1996; Katz and Shatz,
1996). A Hebbian-based model was also compelling because, at the time,
studies carried out on other brain regions (mainly the hippocampus)
were beginning to identify the molecular mechanisms by which synap-
tic coincidence detection might occur, such as through NMDA receptor
activation (for an early review see: Brown et al., 1988). Also, much at-
tention was paid to experiments by Constantine-Paton and colleagues
wherein they grafted a third eye onto a tadpole, forcing binocular projec-
tions into one lobe of the visual tectum. Within the dual-eye innervated
tectum, axons from the native and the grafted eye segregated from one
another into a series of alternating eye-specific stripes (Constantine-
Paton and Law, 1978). Pharmacological blockade of NMDA receptors
desegregated eye-specific stripes (Cline et al., 1987) and pharmacolog-
ically augmenting tectal NMDA receptor function caused formation of
especially distinct stripes (Cline et al., 1987). Thus, multiple lines of ev-
idence suggested that eye-specific retinogeniculate segregation is me-
diated by NMDA-receptor-dependent Hebbian mechanisms (also see:
Ramoa and McCormick, 1994).

Waves Roll in

It was obvious how visual stimulation would drive correlated firing
of neighboring ganglion cells located within the same eye more so than
correlated firing of ganglion cells located in opposite eyes. However, be-
cause eye-specific LGN layers emerged before the onset of vision, it re-
mained unclear how such correlations could arise spontaneously. Then,
a series of remarkable experiments by Maffei and colleagues reported
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the presence of en utero correlated spontaneous retinal activity (Galli and
Maffei, 1988; Maffei and Galli-Resta, 1990). By recording extracellularly
from retinal ganglion cells of fetal rat embryos, they showed that gan-
glion cells spontaneously fire periodic bursts of action potentials (Galli
and Maffei, 1988) and that neighboring ganglion cells were highly cor-
related in their firing (Maffei and Galli-Resta, 1990). In rats, eye-specific
segregation occurs postnatally, not en utero (Jeffery, 1984). Nonetheless,
these findings intrigued those interested in eye-specific LGN segrega-
tion. Other labs began careful documentation of the patterns of sponta-
neous retinal activity. The ferret was selected for these studies because,
as a carnivore, it has robust eye-specific layers. However, unlike in other
carnivores such cats, in ferrets eye-specific segregation occurs postna-
tally (from P1-P10), greatly facilitating in vivo manipulations. Using a
multi-electrode recording array to extracellularly record from retinal ex-
plants in vitro, Shatz and colleagues simultaneously assessed the action
potential activity of dozens of retinal ganglion cells (Meister et al., 1991).
They showed that, during the stage of development when eye-specific
segregation occurs, regions of excitation periodically spread across the
retina in “wave’’-like fashion, causing closely positioned ganglion cells
to fire in synchrony. Individual waves were restricted in their size and
random in their site of origin. Thus, over time, waves tiled the entire
retinal surface (Meister et al., 1991; Wong et al., 1993). Based in their
precise spatio-temporal properties, waves were hypothesized to play
an instructive role in eye-specific segregation in the LGN, by engaging
Hebbian-based plasticity at retino-LGN synapses (reviewed in: Shatz,
1996; Katz and Shatz, 1996).

Activity Block Experiments and Segregation

The first test of the role of spontaneous activity on eye-specific segrega-
tion was carried out by Shatz and Stryker (1988). They chronically in-
fused the sodium channel blocker tetrodotoxin (TTX) into fetal cat brains
during the period of eye-specific segregation and then labeled retino-
LGN projections. In contrast to control kittens, which had normally seg-
regated eye-specific layers in the LGN, eye-specific segregation did not
occur in the TTX treated animals (Shatz and Stryker, 1988). Whole-eye
labeling showed that axons from one eye were spread throughout the
LGN and labeling of single retino-LGN axons revealed that this overlap
reflected a massive increase in the size of ganglion cell arbors (Sretavan
et al., 1988). Chronic intracranial infusion of TTX likely blocks all spiking
activity throughout the fetal brain. However, by continuing to study the
mechanisms by which retinal waves are generated, Shatz and colleagues
discovered that P1-P10 waves are driven by acetylcholine (ACh) acting
through nicotinic receptors (Feller et al., 1996). Since starburst amacrine
cells are the only retinal neurons that synthesize ACh, they concluded
that cholinergic drive arising from starburst amacrine cells drives reti-
nal waves (Feller et al., 1996). Other groups later confirmed this finding
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Figure 1 Retinogeniculate projections in P1, P10 and P25 ferrets subjected to
control (saline) or epibatidine (EPI) injections from P1-P10. In control P1 ferrets,
axons from the right eye (labeled green) and the left eye (red) are intermingled
(yellow) throughout much of the LGN. In P10 control ferrets, axons from the
two eyes are segregated into A (contra) and A1 (ipsi) layers. In P10 ferrets that
received EPI injections from P1-P10, axons from the two eyes remain overlap-
ping. In contrast to control P25 ferrets (in which normal segregated A and A1
layers are present) EPI treated ferrets allowed to survive until P25 or older show
abnormal, patchy patterns of eye-specific projections to the LGN. Axons from
the two eyes are segregated but normal A and A1 layers are not present. Scale
bars (P1 = 50µm), (P10 = 75µm), (P25 = 100µm).

in rabbit (Zhou, 1998) and mouse (Bansal et al., 2000). They also found
that the cholinergic agonist, Epibatidine (EPI) blocked retinal waves
(through receptor desensitization) when acutely applied at high concen-
trations in vitro (Penn et al., 1998). Penn et al., (1998) found that binocular
injections of EPI from P1-P10 completely prevented eye-specific segre-
gation in the LGN (Figure 1). They also injected EPI into one eye from
P1-P10 and then traced retinogeniculate projections on P10. Axons from
the EPI treated eye retracted to occupy a much smaller-than-normal re-
gion of the LGN and the projection from the other eye expanded its
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projection. These findings represented the first demonstration that eye-
specific segregation in the LGN relies on activity mediated binocular
competition. Although the morphology of single axons in EPI treated
animals was not assessed in these studies, comparison of the results
obtained from the monocular versus binocular EPI treatment strongly
suggests that their do not simply reflect drug-induced aberrant axon
growth; binocular EPI treatment caused axons from both eyes to ex-
pand whereas monocular EPI treatment caused axons from the treated
eye to shrink. Such opposite effects are difficult to reconcile with the idea
that EPI simply causes aberrant axon growth.

The next demonstration of a role for activity-mediated binocular com-
petition in segregation of eye-specific retinogeniculate projections came
from an elegant study by Stellwagen and Shatz. They had previously
discovered that the size, speed and frequency of retinal waves are medi-
ated by adenosine acting through a cAMP-dependent pathway and that
pharmacologic agents that increase intracellular levels of cAMP (such
as forskolin) significantly increased the size, speed and frequency of
retinal waves in vitro (Stellwagen et al., 1999). So, by injecting forskolin
into one or both eyes of ferrets from P1-P10, Stellwagen and Shatz (2002)
tested the role of binocular competition in eye-specific segregation by
elevating, as opposed to blocking, wave activity. When wave activity
was increased in both eyes, they observed no effect on patterning of
eye-specific retinogeniculate projections. However, when wave activity
was increased only in one eye, axons from the more active eye acquired
more LGN territory than the projection from the normally active, un-
treated eye. Thus, the relative level of activity in the two eyes that is the
key parameter for patterning of eye-specific projections.

Maintenance of Eye-specific Projections to the LGN

As mentioned above, in ferrets and mice, eye-specific segregation oc-
curs between P1 and P10. However, retinal waves do not only occur dur-
ing the eye-segregation phase of development; waves are also present
prenatally and they continue until ∼P25-P30 (ferret: Wong et al., 1993;
mouse: Demas, 2003). From P1-P10 spontaneous retinal activity is driven
by ACh, whereas waves that occur from P12-P30 are driven by glutamate
released from bipolar cells (Wong et al., 2000) and possibly photore-
ceptors as well (Johnson et al., 2000). To test whether the spontaneous
retinal activity is important for maintenance of eye-specific retinogenic-
ulate projections, Chapman (2000) used intraocular injections of amino-
phosphobutyric acid (APB) to silence spontaneous all retinal activity
from P10-P25. In mature ferrets, APB selectively blocks the activity of
ON-center ganglion cells (Chapman and Godecke, 2000). In ferret reti-
nae younger than P30, however, APB completely blocks all calcium
waves and ganglion cell spiking (Chapman, 2000). Remarkably, even
though ganglion cell projections to the LGN are completely segregated
in the P10 ferret LGN (the age when the APB treatment began), blocking



252 Andrew D. Huberman and Barbara Chapman

retinal activity from P10-P25 caused axons from the two eyes to com-
pletely desegregate within then LGN. The pattern of overlap observed
in these animals was notably different from that observed in previous
experiments (Stryker and Shatz, 1988; Penn et al., 1998). Rather than
causing axons from the two eyes to spread out across the LGN, blocking
activity from P10-P25 caused axons from contralateral eye to remain in
their normal location within the inner segment of the LGN (layer “A’’)
whereas axons from the ipsilateral eye abandoned their normal terri-
tory in the outer segment of the LGN (“A1’’) and translocated into layer
A, wherein they intermingled with axons from the contralateral eye.
These results showed that spontaneous retinal activity is necessary for
the maintenance of eye-specific segregation and it also suggested that
activity-independent cues favor lamina A as the target for arborization
of afferents from both eyes (Chapman, 2000). In these experiments APB
was injected into both eyes, so whether maintenance of eye-specific seg-
regation relies on binocular competition was not addressed. However,
taken together with the results of Penn et al., (1998) and Stellwagen
and Shatz (2002), the results of Chapman (2000) indicated that sponta-
neous neural activity of retinal origin is a key parameter for both the
establishment and maintenance of eye-specific segregation in the LGN.

Challenges to the Hebbian Model

Several features of eye-specific retinogeniculate segregation cannot be
easily explained by the Hebbian model. First, the Hebbian model cannot,
by itself, explain the highly stereotyped patterning of eye-specific lay-
ers in the LGN. Eye-specific layers consist of two main features: 1) non-
overlapping regions of afferents from the two eyes and 2) eye-specific
cellular laminae formed by LGN neurons (Jones, 1985). Within a given
species, both of these features are remarkably stereotyped in terms of
their shape, size and position within the LGN. For example in carni-
vores such as ferrets and cats the axons from the contralateral eye al-
ways occupy the innermost LGN (layer A) and axons from the ipsilateral
eye always project to the more outer LGN (layer A1). Although, theo-
retically, Hebbian models can explain how inputs from the two eyes
segregate from one another on the basis of activity mediated binocu-
lar competition, Hebbian models cannot explain how the ipsilateral eye
axons always segregate into layer A1 and contralateral axons always
segregate into layer A. Simply put, there must be a bias for one or the
other eye to win a given piece of LGN real estate. Also, Hebbian models
cannot explain the differentiation of cellular eye-specific lamination in
the LGN. The development of cellular layers occurs after afferents from
the two eyes segregate and normal development of cellular eye-specific
layers relies, at least in part, on retinal ganglion cell axons (Linden et al.,
1981; Cucchiaro and Guillery, 1984; Hutchins and Casagrande, 1990). If
the pattern of retinogeniculate afferents is abnormal, the cytoarchitec-
ture of the LGN directly reflects these abnormal inputs. For example,
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in monocularly or binocularly enucleated animals eye-specific cellular
laminae do not develop (Brunso-Bechtold and Casagrande, 1981; Rakic,
1981; Guillery et al., 1985a; 1985b; Sretavan and Shatz, 1986b; Garraghty
et al., 1988a; Morgan and Thompson, 1993). Moreover, in coat color mu-
tants, where the density of the ipsilateral-eye projection to the LGN is
reduced, the cellular laminae mirror the reduced ipsilateral input and
the associated abnormal topography of the retinal projections (Guillery,
1969; 1971; Guillery and Kaas, 1971). However, non-retinal influences
on eye-specific cellular lamination in the LGN have been demonstrated
(Casagrande and Condo, 1988) and the factors that cause both afferent
and cellular layers to develop in the same shape, size and position within
the LGN were completely unknown.

Second, despite growing evidence that Hebbian mechanisms might
be involved in segregation of eye-specific retino-LGN projections (Penn
et al., 1998; Stellwagen and Shatz, 2002), experiments to directly test this
hypothesis had not yet been carried out. To directly test the Hebbian
model, one would have to find means to alter the correlational structure
of spontaneous ganglion cell activity without altering activity levels and
techniques. In addition, there was reason to suspect that the Hebbian
model for eye segregation might not be correct. Williams et al., (1994)
showed that in achiasmatic carnivores (where all axons from the eye
project to the ipsilateral LGN), axons from the ganglion cells in the
nasal retina formed a layer A (normally innervated by the nasally sit-
uated ganglion cells axons from the contralateral eye) and axons from
the ganglion cells in the temporal portion of the same eye formed a layer
A1. This revealed that binocular competition is not required for segre-
gation of nasal versus temporal ganglion cell inputs to the LGN and
it suggested the involvement of activity independent cues (i.e., axon
guidance molecules) for patterning of left and right eye projections into
their stereotyped layered arrangement. Also, TTX application to one or
both retinae of postnatal ferrets caused only mild transient effects of
this retinal activity block on eye-specific segregation (Cook et al., 1999).
TTX completely blocks ganglion cell spiking in explants of P1-P10 ferret
retina, but TTX does not prevent periodic calcium waves (Stellwagen
et al., 1999). Since EPI and APB block both ganglion cell spiking and
calcium waves (Penn et al., 1998; Chapman, 2000), it thus became ap-
parent that the effects of these drugs on retinogeniculate anatomy could
be due to their effects on calcium and not on spiking/synaptic events
at retino-LGN synapses- the latter of which is of course central to the
Hebbian model.

Segregation versus Lamination

Several studies have addressed the question of what mediates the stereo-
typed size, shape and positioning of eye-specific LGN layers and what
is the relationship between afferents from the two eyes in patterning
of cellular layers in the LGN (Brunso-Bechtold and Casagrande, 1981;
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Casagrande and Condo, 1988). We carried out experiments in which
we prevented the segregation of retinogeniculate inputs (by silencing
spontaneous retinal activity in both eyes with EPI) and then allowed
these animals an extended period of recovery, during which sponta-
neous retinal activity returned to normal (Huberman et al., 2002). We
then assessed the effects of this manipulation on the pattern retinogenic-
ulate inputs, the cytoarchitecture of the LGN and the physiology of LGN
neurons, including their receptive field properties and retinotopic orga-
nization. As shown previously, in normal postnatal day 1 (P1) ferrets,
ganglion cell axons from the two retinae overlap extensively and by P10,
axons from the two eyes are segregated (Linden et al., 1981). As seen by
Penn et al., in ferrets that received binocular EPI injections from P1-P10
inputs from the two eyes remain overlapped (Figure 1). In ferrets that
receive binocular intravitreal injections of EPI from P1-P10, but were
then allowed to survive until P25 or older (called EPI-recovery ferrets)
retinogeniculate afferents end up completely segregated. However, un-
like control ferrets, the spatial pattern of eye-specific retinogeniculate
projections is highly aberrant. There are multiple ipsilateral projections
of various shapes, positions and sizes, distributed over a significantly
greater-than-normal extent of the LGN. The ipsilateral projections even
extended into the region of the LGN normally occupied by only axons
from the contralateral eye (Figure 1). Control experiments confirmed
that the observed effects were not due to damage to the retina or resid-
ual blockade of retinal activity past P10. In fact, in ferrets that received
binocular injections of EPI from P12-P25, retinogeniculate projections
appeared normal, confirming that the effects were due to cholinergic
block of early (P1-P10) retinal activity.

In the mature ferret, LGN cells form cytoarchitectural layers that lie
in direct registration with the layers formed by the terminals of retinal
afferents; they are concentrated into distinct A, and A1 laminae, as well
as ON and OFF sublaminae, each separated by a cell-sparse interlaminar
space (Linden et al., 1981; Stryker and Zahs, 1983; Zahs and Stryker,
1985; Hutchins and Casagrande, 1990; Hahm et al., 1999). In contrast,
the LGN of the EPI-recovery animals completely lack normal patterns of
cellular lamination. Clusters of cells, surrounded by cell-sparse regions
are occasionally visible, but comparison of these clusters with the pattern
of retinogeniculate afferents in the same tissue sections reveals that they
do not correspond to eye-specific terminations zones of ganglion cell
axons. (Figure 2)

To determine whether disrupting the pattern of retinal afferent lami-
nation alters the physiology of LGN neurons, we performed multi-unit
extracellular recordings in the LGN of EPI-recovery animals. All cells en-
countered were monocular, indicating that functional as well as anatom-
ical segregation of eye-specific inputs to the LGN occurred following the
termination of the EPI treatment. Cells in the LGN of the treated animals
exhibited ON- or OFF-center responses typical of normal ferrets (Stryker
and Zahs, 1983; Zahs and Stryker, 1985; Godecke and Chapman, 2000)
and normal center-surround receptive field organization (Tavazoie and



14 Making and Breaking Eye-specific Projections to the Lateral Geniculate Nucleus 255

Figure 2 Cytoarchitecture of the LGN from control P25 ferrets and P25 ferrets
that received intraocular injections of EPI from P1-P10 and then were allowed
to recover until P25. Normal patterns of cellular lamination such as A and A1
layers and interlaminar spaces (arrowheads) are present in control P25 ferret
LGN but absent from the EPI-recovery P25 LGN. Scale = 100µm.

Reid, 2000) and were present. Surprisingly, in the EPI-recovery animals,
the topographic representation of the binocular visual field was mapped
normally, even across the boundaries of eye-specific borders. Thus, dra-
matically disrupting the organization of eye-specific lamination does not
affect the gross topographic representation of visual space in the LGN.
This finding is unexpected given the widely varying pattern of eye-
specific layers both between and within the LGN’s of the EPI-recovery
animals.

These experiments showed that the development of lamination in the
LGN reflects three processes: the segregation of retinogeniculate affer-
ents, the patterning of those afferents into layers, and the emergence of
cellular layers that correspond to the pattern of afferent layers. Prevent-
ing spontaneous retinal activity from P1-10 prevents the formation of
normal afferent and cellular layers. This indicates that there is something
noteworthy about the developmental time window in which retino-
geniculate segregation normally occurs for proper patterning of afferent
and cellular laminae in the LGN. It is possible that the pattern of spon-
taneous retinal activity present from P1-P10 provides an instructive cue
for eye-specific segregation. Indeed, the pattern of spontaneous retinal
activity is different from P1-P10, when eye-specific segregation normally
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results in eye-specific lamination, than it is from P10-P25 (Wong et al.,
1993), when we show that eye-specific segregation results in eye-specific
patches (Huberman et al., 2002). However, during the same develop-
mental stage when retinogeniculate afferents segregate into eye-specific
laminae, retinal activity also induces ganglion cell afferents to segre-
gate into eye-specific clusters (not layers) in the rostral superior collicu-
lus (Thompson and Holt, 1989). Also, in studies where retinal inputs
destined for the LGN were rewired into the medial geniculate nucleus
(MGN) axons from the two eyes segregate into eye-specific patches, not
layers (Angelucci et al., 1997). Spontaneous retinal activity is normal
throughout development in these cases and yet this did not produce
normal lamination. These results collectively indicate that layer forma-
tion is controlled by cues which are intrinsic and unique to the LGN,
rather than by patterns of retinal activity. Moreover, it is hard to imag-
ine how activity could give rise to highly stereotyped eye-specific layers
since activity is likely to differ across animals and yet eye specific layer
in the LGN always form in the same positions as layers of essentially
invariant size, shape, and orientation. Patterning of layers thus almost
certainly relies on the presence of signals that bias the location and
boundaries of the regions into which afferents from one or the other eye
segregate.

Is the Pattern of Retinal Activity Relevant for
Eye-Specific Segregation?

The segregation of initially intermingled inputs to the LGN has long
been hypothesized to be in response to precise spatial and temporal pat-
terns of spontaneous ganglion cell activity. Manipulations that eliminate
all spontaneous retinal activity prevent the segregation of eye-specific
inputs to the LGN (Penn et al., 1998; Huberman et al., 2002), and al-
tering the balance of retinal activity between the two eyes leads to an
increase in the size of the terminal field arising from the more active eye,
at the expense of the less active eye (Penn et al., 1998; Stellwagen and
Shatz, 2002). However, in every experiment where spontaneous retinal
activity has been blocked, all retinal activity was abolished (Penn et al.,
1998; Huberman et al., 2002; Stellwagen and Shatz, 2002), and in the
one experiment where retinal activity was elevated rather than elimi-
nated (Stellwagen and Shatz, 2002), correlated ganglion cell activity was
maintained. Thus, while the relative level of activity in the two eyes is
important for normal retinogeniculate development, whether the nor-
mal spatio-temporal pattern (waves) of retinal activity are necessary for
eye-specific segregation remained unknown.

We directly tested the idea that correlated firing of retinal ganglion
cells drives eye-specific segregation. (Huberman et al., 2003). As men-
tioned above, during the period of eye-specific segregation, sponta-
neous retinal activity is driven by acetylcholine released from starburst
amacrine cells (Feller et al., 1996). Therefore we injected an immunotoxin
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that rapidly depletes starburst amacrine cells (Gunhan et al., 2002) into
the eye of postnatal day 0 (P0) ferrets. Single cell patch-clamp recordings
indicated that 93% of recorded ganglion cells in control P2-P9 ferret reti-
nae confined their spontaneous activity to periodic bursts whereas only
23% of toxin-treated cells showed periodic bursting activity, and the
frequency of these bursting events was significantly reduced relative to
controls. Importantly, despite the marked perturbation in ganglion cell
activity patterns caused by starburst amacrine cell depletion, the mean
firing rate of ganglion cells in the two treatment groups was not sig-
nificantly different. To assess the correlational structure of spontaneous
ganglion cell activity, we carried out dual patch-clamp recordings from
neighboring ganglion cells in control and toxin-treated P2-P9 retinae. In
control retinae, the spontaneous spiking activity and membrane poten-
tial changes of neighboring ganglion cells were significantly correlated,
whereas the spiking and membrane potential activity of ganglion cell
pairs from toxin-treated retinae were not. Cross correlation analysis con-
firmed that, for all the toxin-treated pairs in which both cells spiked, their
spiking activity was not significantly correlated, but instead showed a
distribution similar to a random spike shuffle. For the toxin treated pairs
in which only one ganglion cell spiked, the membrane fluctuations of
the non-spiking cell were not visibly correlated with the activity of the
neighboring cell. (Figure 3)

Does disrupting the correlated firing of ganglion cells alter eye-
specific segregation in the LGN? To address this we examined the pat-
tern of retinogeniculate connections in P10 ferrets that had received
toxin injections on P0. In every case, retinal projections in these ani-
mals were indistinguishable from those observed in control P10 ani-
mals: there was a clear gap in the contralateral projection that was filled
by the more circumscribed projection from the ipsilateral eye. Thus,
while numerous experiments have shown that blocking spontaneous
activity can prevent the formation of eye-specific retinogeniculate con-
nections (Sretavan et al., 1988; Shatz and Stryker, 1988; Penn et al., 1998;
Huberman et al., 2002; Stellwagen and Shatz, 2002; Rossi et al., 2001), we
showed that if the normal patterns of spontaneous activity in individual
and neighboring ganglion cells are disrupted, axons from the two eyes
still segregate into non-overlapping layers in the LGN. The results indi-
cate that the presence, but not the pattern of spontaneous ganglion cell
discharges, is important for eye-specific retinogeniculate segregation.

Axon Guidance Cues and Eye-specific Segregation

The above described results (Huberman et al., 2002; 2003) corroborated
previous hypothesis (Williams et al., 1994; Crowley and Katz, 1999;
Chapman, 2000) that molecular cues direct sorting of binocular inputs
into their stereotyped pattern of eye-specific layers in the LGN. What
sort of axon guidance cues might contribute to eye-specific develop-
ment? The results of Williams et al., (1994) clearly showed that the nasal
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Figure 3 Paired patch clamp recordings from two neighboring retinal ganglion cells in a control ferret
retina and ferret retina treated with immunotoxin to deplete cholinergic amacrine cells. In the control
ganglion cell pair, firing of the two cells is highly correlated whereas in the toxin treated pair, activity
does not appear correlated. Cross correlation plots of membrane potential indicate that for all 15 pairs
recorded in control retinae, activity of neighboring cells is highly correlated (bottom right plot represents
the mean correlation of all 15 pairs).In toxin treated pairs, none of the pairs showed significant correlations
in activity (bottom right plot represents mean of all toxin pairs). Horizontal scale = 1 min. Vertical scale
= 20mV.

versus temporal distinction is the essential parameter for segregating
retinal inputs into A and A1 layers in the LGN. A good candidate axon
guidance cue that could mediate this process were the ephrin-As be-
cause ephrin-As and their receptors (EphAs) are known to regulate to-
pographic mapping of the nasal-temporal retina in the SC and LGN of
lower vertebrates and mice (Cheng et al., 1995; Drescher et al., 1995;
Nakamoto et al., 1996; Frisen et al, 1998; Feldheim et al., 1998; 2000;
Feldheim, 2004). In those species, EphAs are distributed in a gradient
that peaks at the far temporal retina and reaches lowest density at the
far nasal retina, with matching, complementary gradients of ephrin-As
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distributed along the anterior-posterior axis of the target SC (Cheng
et al., 1995; Drescher et al., 1995; Nakamoto et al., 1996; Frisen et al,
1998; Feldheim et al., 2000; Feldheim et al., 2004) and LGN (Feldheim
et al., 1998). There are obvious differences between retinotopic maps
(which are smooth and continuous) and eye-specific LGN layers (which
have abrupt borders). However, the known role of ephrin-As on nasal-
temporal mapping as well as on inter- and intra-areal pathfinding in
other projection systems (Dufour et al., 2003) lead us to hypothesize
that in species where eye-specific layers obey the nasal- versus temporal-
retina distinction, ephrin-As would mediate patterning of eye-specific
layers.

Using affinity-probe binding of EphA5-Alkaline Phosphatase
(EphA5-AP) to detect ephrin-A proteins (Flanagan et al., 2000) and in
situ hybridization for ephrin-A5 mRNA we examined the distribution
of ephrin-As in the ferret LGN and observed the presence of an outer
> inner gradient of ephrin-A5 mRNA. We also examined the pattern
of EphAs and ephrinAs in the developing ferret retina and observed a
central greater than peripheral (central > peripheral) gradient of EphAs
proteins and mRNA and a nasal > temporal gradient of ephrin-A5
mRNA within the retinal ganglion cell layer. This nasal > temporal
ephrin-A5 expression indicates that the central > peripheral retina ex-
pression of EphA5 receptor is not simply a consequence of relatively
lower ganglion cell densities in the peripheral versus central retina.

Since ephrin-As have consistently been shown to be repellant toward
ganglion cell axons expressing relatively higher levels of EphAs (Cheng
et al., 1995; Drescher et al., 1995; Nakamoto et al., 1996; Frisen et al,
1998; Feldheim et al., 1998; 2000; 2004; Brown et al., 2000), the outer >

inner gradient of ephrin-As in the LGN, combined with the central >

peripheral gradient of EphAs in the retina therefore leads to a scenario
whereby there are relatively higher levels of EphAs expressed in the
crossed versus uncrossed ganglion cell axons that converge on a single
line of projection. This could explain why the contralateral-eye layer
(layer A) always maps to the inner LGN whereas the ipsilateral-eye
layer (layer A1) maps to more outer LGN. For instance, consider a ferret
viewing the head-neck junction of a white ferret in its left visual field;
ganglion cells in the right temporal retina (orange arrow #1) view this
location in the visual field and express relatively lower levels of EphAs
compared to ganglion cells in the left retina (orange arrow #2) that view
this same location in the visual field. These ganglion cell populations
both project to the right LGN, and to the same line of projection, but
the ipsilateral-eye ganglion cells maps to the more outer LGN (which
contains higher concentrations of ephrin-As) than the contralateral-eye
axons, which map to the more inner LGN (which contains lower con-
centrations of ephrin-As). (Figure 4)

To test directly whether ephrin-A:EphAs regulate eye-specific layer
formation, we developed an in vivo retinal electroporation strategy
to overexpress cDNA plasmids in ganglion cells of postnatal ferrets
(Huberman et al., 2005b). Preliminary control experiments showed that
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Figure 4 Schematic of eye-specific pathfinding according to central > peripheral
expression of EphA receptor in the retina and outer > inner gradient of ephrin-A
ligand in the LGN of the ferret.

our electroporation protocol resulted in widespread gene expression
in the ganglion cell layer of the retina within 24–48 hours, that a very
large percentage of ganglion cells expressed GFP and importantly, that
the axons of ganglion cells transfected with GFP or other control plas-
mids were targeted normally in the P10 LGN. By contrast, ferrets that
were electroporated with EphA3 or EphA5 cDNAs on P1, and then
had their retinogeniculate projections traced on P10 showed markedly
perturbed retinogeniculate projections. Axons from the ipsilateral eye
were displaced to the inner LGN and into territory dominated by the
contralateral-eye. This resulted in ipsilateral-eye input to the LGN that
was significantly expanded along the axis perpendicular to eye spe-
cific layers (i.e., along lines of projection). In addition, axons from
the contralateral-eye were found in the region of the P10 LGN nor-
mally only occupied by axons from the ipsilateral-eye (Figure 5). Thus,
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Figure 5 In vivo retinal electroporation strategy: A DNA expression plasmid
is injected into the vitreal chamber of the eye and the whole eye is subjected
to a series of square wave pulses using tweezer electrodes. Transient pores are
created in the ganglion cell membranes, allowing DNA to access the nucleus
where the construct is transcribed. Retinogeniculate projections to the LGN of
a control electroporated P10 ferret and a P10 ferret electroporated with EphA5.
In the EphA5 overexpressing ferret, axons from the ipsilateral eye misproject to
the inner LGN, which normally only receives axons from the contralateral eye.
Scale = µm. For additional details on electroporation technique see Huberman
et al., (2005b).

whereas in normal and control electroporated P10 ferrets, retinogenic-
ulate inputs are segregated into highly stereotyped eye-specific layers
by P10 (Linden et al., 1981; Penn et al., 1998; Chapman 2000; Huberman
et al., 2002; 2003) there was significant intermingling of contralateral-
and ipsilateral-eye axons observed in the LGN of EphA3/5 electro-
porated P10 ferrets (Huberman et al., 2005b). The phenotype induced
by EphA3/5 overexpression was almost as severe as the most extreme
cases observed following complete retinal activity blockade from P1–
P10 (see: Penn et al., 1998; Huberman et al., 2002). However, whereas
retinal activity blockade from P0-P10 results in the maintenance of the
immature pattern of binocular inputs to the LGN wherein axons from
both eyes extend both anteriorly and across the outer-inner axis of the
LGN (Penn et al., 1998; Huberman et al., 2002; 2003) disruption EphAs
through electroporation-induced overexpression misdirected ganglion
cell axons primarily along the outer-inner axis of the LGN, perpendicu-
lar to eye-specific layers. We also traced single retinogeniculate axons.
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In every control ferret examined, ganglion cell axons from temporal
portion of the ipsilateral retina were restricted to layer A1 within the ip-
silateral LGN, as expected for animals of this age (Hahm et al., 1999). By
contrast, ganglion cell axons labeled from the temporal retina of EphA5
electroporated ferrets at both ages extended much further along across
the outer-inner axis of LGN than was observed in controls.

By examining the time-course of ephrin-A and EphA expression in
normal ferrets we found that, whereas ephrin-A ligands are robustly ex-
pressed in the P0-P3 LGN, by P5 their levels are reduced conspicuously.
Our previous work in EPI-recovery ferrets showed that normal develop-
ment of stereotyped layers in the LGN is restricted to the early postna-
tal period, when eye-specific segregation normally occurs (Huberman
et al., 2002), suggesting there may be a critical period for eye-specific
layer formation. To test if the presence of ephrin-As in the LGN con-
tributes to this critical period, we electroporated ferrets with EphA3/5
at P5. Remarkably, despite the robust overexpression induced by reti-
nal electroporation at P5, this had no detectable effect on patterning of
eye-specific retinogeniculate inputs.

These results (Huberman et al., 2005b) and those of an accompanying
paper in mouse (Pfiffenberger et al., 2005) represent the first evidence for
axon guidance cue-based targeting of eye-specific projections. Of course,
ephrin-As likely represent one of several (and perhaps many) cues that
nasal and temporal retinal axons rely on to find to their stereotyped
locations in the LGN. Our ephrin-A model does not address eye-specific
segregation in the C layers because eye-specificity within the C layers is
not well established anatomically until ∼P20. Mapping of ganglion cell
inputs in the C-layers may rely on ephrins and/or non-ephrin-A cues.
Microarray-based genetic screens have begun to reveal the presence of
cues that distinguish between the C versus A/A1 layers of the LGN
(Kawasaki et al., 2004), but these same screens did not identify eye-
specific markers in the LGN. Kawasaki et al., thus suggested that the
molecules that regulate eye-specific segregation may be expressed in
gradients in the LGN.Our findings (Huberman et al., 2005b) directly
support this hypothesis.

The issue of whether specific patterns of retinal activity (i.e., “waves’’)
are required for eye-specific segregation in the LGN remains de-
bated (reviewed recently in: Chalupa and Huberman, 2004; Grubb and
Thompson, 2004). Torborg and Feller recently reported that eye-specific
LGN segregation is absent in the β2 nAChR KO mouse, which lacks reti-
nal waves (Torborg et al., 2005). The absence of eye-specific segregation
in the LGN of P8 β2 nAChR mice is perhaps not surprising given the
topographic errors present in this transgenic (McLaughlin et al., 2003;
Grubb et al., 2002). In any event, it does directly contrast with our re-
sults in immunotoxin treated ferrets (Huberman et al., 2003). One likely
explanation for this discepancy is a genuine species difference. Notably,
in mice, ganglion cell projections to the LGN are segregated into eye-
specific regions, but they are somewhat variable in shape and the LGN of
rodents lacks eye-specific cellular lamination. Also, eye-specific layers
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in the mouse LGN are not nasal- or temporal-retina specific; each LGN
receives ganglion cell axons from the entire contralateral retina (Hererra
et al., 2003). Thus neural activity may play more important roles than
axon guidance cues in patterning eye-specific inputs to the rodent LGN.
By contrast, the pattern of eye-specific inputs to the carnivore and pri-
mate LGN is highly stereotyped and robust eye-specific cellular layers
are always present. Therefore, in carnivores and primates axon guid-
ance cues such as ephrin-As may be critical for eye-specific segregation
and layer formation- whereas retinal activity may play less important
roles. Indeed, the use of modern, high sensitivity tracers revealed that in
the macaque visual system (which is highly similar to that of humans),
eye-specific segregation occurs prior to the onset of synapse elimination
in the LGN, suggesting that Hebbian plasticity does not drive segre-
gation in this species (Huberman et al., 2005a). Regardless of species
differences, it is worth considering that the β2 nAChR KO mouse is a
brainwide null mutation and thus, it is unclear whether the LGN pheno-
type seen in the β2 nAChR KO is due directly to disruptions in retinal
activity patterns or lack of β2 nAChR in the target LGN. Indeed, β2
nAChR receptors are robustly expressed in the developing and mature
LGN and SC (Hill et al., 1993; Zoli et al., 1995) and cholinergic receptors
on LGN neurons are critical for their firing in response to retinal input
(Uhlrich et al., 1995). The studies of McLaughlin et al. (2003), Grubb
et al. (2003) and Torborg et al., (2005) all cite data reported in Penn et al.,
(1998) that intracranial application of EPI did not alter eye-specific seg-
regation in the ferret LGN as evidence that the phenotypes seen in the
β2 AChR KO mouse are likely due to defects in patterned retinal activity
and not lack of postsynaptic responsiveness. However, we have repeat-
edly observed that intracranial EPI injections from P1-P10 completely
mimic the effects of intraocular P1-P10 EPI treatment. The source of the
discrepancy between our results and those of Penn et al., (1998) are un-
known. Regardless, caution should be exercised when interpreting the
phenotypes observed in the β2 nAChR KO mouse (and for that mat-
ter, any phenotype observed in a brainwide null mutation transgenic).
Only through the use of retinal- or LGN-specific knockouts can causal
statements about the role of retinal activity patterns in eye-specific seg-
regation be drawn.

Blocking Activity or Forcing it to Change?

There is another inherent problem with experiments involving activ-
ity perturbations. Namely, because of the difficulties associated with
recording spontaneous activity in vivo (anesthetic shut down all spon-
taneous retinal activity), the field as a whole has had to assume that
in vivo chronic application of EPI or APB or transgenic KO of recep-
tors in fact blocks/alters activity for the full duration of the treatment.
This may be a flawed assumption. In fact, the few groups that have suc-
ceeded in recording spontaneous activity in vivo report that removing
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afferent input can dramatically increase activity in the de-afferented tar-
get (Weliky and Katz, 1999) and recently, Demas et al., (FASEB Abstracts,
2004) examined in vitro spontaneous activity in retinae from a transgenic
mouse in which of choline acetyltransferase (ChAT)- the rate-limiting
enzyme for ACh synthesis was knocked out selectively in the retina.
The logical prediction is that, because P1-P10 represents the choliner-
gic phase of spontaneous retinal activity, these KO mice would exhibit
no ganglion cell spiking at this stage. However, Demas et al., 2004 ob-
served a complete rescue of correlated ganglion cell firing by P5 and this
activity was driven by non-cholinergic sources. Others too recently re-
ported that in the rabbit retina, blocking ACh-mediated waves silences
activity for short time but then soon after, causes a novel form of gap-
junction mediated waves to emerge (Syed et al., 2004). So, while there
is no evidence that genetic or pharmacologic alteration of spontaneous
activity causes a compensatory rescue of activity levels or patterns in
vivo, one should exercise caution in interpreting the results of studies
that employed “chronic activity blockades’’ (Shatz and Stryker, 1988;
Penn et al., 1998; Cook et al., 1999; Chapman et al., 2000; Rossi et al.,
2001; Stellwagen and Shatz, 2002; Huberman et al., 2002; 2003). At the
very least, one would be wise to assess the effects of chronic drug ap-
plication in vitro. Regardless, to better understand the role of activity in
eye-specific circuit development, there is motivation to develop strate-
gies for chronically recording spontaneous neural activity in vivo.

Activity Versus Molecules?! A False Dichotomy:

There are serious challenges in assigning a mutually exclusive role for
axon guidance cues versus neural activity in eye-specific segregation
and layer formation. Here, we tried to emphasize that both these factors
are likely to be important, albeit for different aspects of retinogeniculate
development. In addition, we tried to emphasize that the mechanisms
that drive eye-specific segregation and patterning may differ accord-
ing to species. Indeed in mouse, both axon guidance cues and neural
activity have been shown to act in parallel to induce eye-specific LGN
layers (Pfieffenberger et al., 2005) whereas in carnivores and primates,
axon guidance cues appear to be more important than patterned ac-
tivity (Huberman et al., 2005b). In all species, however, the bulk of ev-
idence points to a model whereby the segregation of axons from the
two eyes relies, at least in part, on spontaneous retinal activity whereas
the positioning of eye-specific projections into their stereotyped lay-
ered pattern relies on activity-independent (axon guidance) cues such as
ephrin-A:EphAs (Huberman et al., 2005b; Pfieffenberger et al., 2005). Do
neural activity and axon guidance cues interact directly to influence eye-
specific pathfinding? Hanson and Landmesser (2004) recently showed
that altering spontaneous activity patterns perturbs expression of axon
guidance cues and, as a result, axon pathfinding in the limb bud. How-
ever, this is not seen in the retingeniculate system. EPI injections do not
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alter ephrin-A or EphA mRNA expression (Pfieffenberger et al., 2005).
However, the field of eye-specific circuit development is in desperate
need of studies that combine electrophysiology and pharmacology with
molecular biology and genetics, to identify the relative contributions of
neural activity and axon guidance cues.
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LTP and LTD as Cellular Mechanisms for
Sensory Map Plasticity

The ability of neural circuits to adapt to new experiences and to store
information about the environment is central to brain development and
learning. An important paradigm for studying this adaptive ability is
sensory map plasticity, in which sensory and motor maps are modi-
fied based on recent experience, including training on learning tasks.
Map plasticity occurs with highly similar functional properties across
many brain areas, including primary visual, auditory, somatosensory,
and motor cortex (Wiesel and Hubel, 1963; Buonomano and Merzenich,
1998; Sanes and Donoghue, 2000). However, the cellular and synaptic
mechanisms that mediate map plasticity are only beginning to be un-
derstood.

Long-term potentiation (LTP) and depression (LTD) of cortical
synapses emerged as prominent candidate mechanisms for cortical map
plasticity relatively soon after the discovery of ocular dominance plastic-
ity in the visual cortex (Stent, 1973; Bear et al., 1987). These mechanisms
instantiate Hebbian synaptic plasticity, which can explain many features
of cortical map plasticity (Hebb, 1949; Bear et al., 1987; Buonomano and
Merzenich, 1998). LTP and LTD are generally hypothesized to medi-
ate rapid components of map plasticity, while anatomical changes that
often occur during map plasticity may mediate slower components.

LTD has been hypothesized to play two major roles in map devel-
opment and plasticity. First, during developmental refinement of topo-
graphic projections, LTD is thought to act to weaken aberrant synapses
according to Hebbian learning rules, perhaps leading ultimately to
synapse elimination (Stent, 1973; Buonomano and Merzenich, 1998).
Second, even after maps have formed, patterns of sensory use and dis-
use powerfully regulate map topography. During this phase, LTD is
thought to be involved in weakening excitatory synapses that are un-
derused or behaviorally irrelevant, thus reducing the representation of
these inputs in cortical maps (Bear et al., 1987; Singer, 1995; Buonomano
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and Merzenich, 1998; Ruthazer and Cline, 2004). Though the capacity for
LTD may decline somewhat with age, recent studies have clearly demon-
strated LTD in adults, indicating that it may contribute to both devel-
opmental and adult plasticity (Heynen et al., 1996; Manahan-Vaughan
and Braunewell, 1999).

Though LTD has long been hypothesized to contribute to sensory cor-
tical map plasticity, and despite strong evidence for LTD being involved
in cerebellar learning (Boyden et al., 2004), direct evidence for LTD in
cortical map plasticity was lacking until recently. In this chapter, we re-
view recent evidence that LTD is involved in plasticity of the whisker
map in rat primary somatosensory cortex (S1). In S1, both in vivo and
in vitro techniques have been used to provide insight into the locus of
LTD during plasticity and the induction mechanisms that drive LTD in
response to altered experience. This evidence indicates that LTD is a
major mechanism for a common feature of cortical map plasticity, the
reduction in cortical responsiveness to deprived sensory inputs.

Map Plasticity in Barrel Cortex

In the rat primary somatosensory cortex, the ∼30 large facial whiskers
are represented by clusters of cells in cortical layer 4 (L4) called barrels.
Barrels are arranged in a map isomorphic with the whiskers on the rat’s
snout (Woolsey and Van der Loos, 1970; Welker and Woolsey, 1974), and
neurons in each barrel are driven best by deflection of a single whisker,
termed the principal whisker, which corresponds to the identity of the
barrel within the map. Excitatory cells in each L4 barrel make a dense,
columnar projection onto layer 2/3 (L2/3) neurons in the cortical col-
umn surrounding that barrel, termed the barrel column (Petersen and
Sakmann, 2001; Feldmeyer et al., 2002). The vast majority of neurons
in each barrel column are driven most strongly by the anatomically ap-
propriate principal whisker, and only weakly by neighboring, surround
whiskers (Simons, 1978; Keller, 1995). Thus, an orderly map of whisker
receptive fields is present across S1, and the barrels in L4 provide an
anatomical reference for this functional whisker map.

The whisker receptive field map in S1 is modifiable by sensory ex-
perience. If a whisker is plucked or trimmed for several days or weeks
in adolescent animals (7 to ∼60 days of age), receptive fields of L2/3
cells within the corresponding column change in two ways. First, L2/3
neurons within the deprived column lose responses to the deprived
principal whisker, a phenomenon called principal whisker response
depression (PWRD). Second, neurons begin to respond more strongly
to neighboring, spared whiskers, termed spared whisker response po-
tentiation (SWRP). These two components of plasticity can be sepa-
rated genetically and developmentally, indicating that they represent
two independent mechanisms for plasticity in S1 (Glazewski and Fox,
1996; Glazewski et al., 2000). Together, PWRD and SWRP cause recep-
tive fields in deprived columns to become dominated by neighboring,
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Figure 1 Whisker receptive field plasticity and a possible synaptic basis in rat
S1 cortex. A, Receptive field of L2/3 neuron “a’’. Principal whisker deprivation
causes a rapid (7 days) loss of responses to the deprived, principal whisker, and
a slower (20 days) increase in responses to spared, surround whiskers. Dashed
lines, control receptive field. Data schematized from Glazewski and Fox, 1996.
B, Hypothesized site of LTD mediating principal whisker response depression
in adolescent rats.

spared inputs, rather than deprived principal whisker inputs. This
makes the representation of the spared whisker expand within the
whisker map (Fox, 1992; Diamond et al., 1994) (Fig. 1A). Highly sim-
ilar components of plasticity occur in visual cortex during monocular
deprivation (Sawtell et al., 2003; Frenkel and Bear, 2004).

In animals older than the first postnatal week, PWRD and SWRP
occur primarily and most rapidly in L2/3, with less or no receptive
field plasticity in L4. This indicates that PWRD and SWRP are me-
diated by functional changes in intracortical, rather than subcortical,
circuits. Substantial progress has been made in identifying the neural
basis for PWRD. Fox’s group originally hypothesized that PWRD is due
to deprivation-induced weakening, perhaps LTD, of the excitatory L4
to L2/3 projection in deprived columns, which normally drives prin-
cipal whisker responses in L2/3 (Glazewski and Fox, 1996; Fox, 2002)
(Fig. 1B). Strong evidence now exists for this hypothesis (see below).
In contrast, the mechanisms underlying SWRP are less clear. SWRP is
likely to involve LTP, since transgenic mice with autophosphorylation-
incompetent CaMKII, which lack cortical LTP, have substantially im-
paired SWRP (Glazewski et al., 2000; Hardingham and Fox, 2004). One
possibility is that SWRP involves LTP of excitatory trans-columnar pro-
jections, which would increase surround whisker responses in L2/3
neurons However, the site(s) of LTP for SWRP are not yet known, and
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other mechanisms besides LTP and LTD are likely to contribute to this
and other aspects of whisker map plasticity (eg., Lendvai et al., 2000;
Knott et al., 2002; Shepherd et al., 2003).

Here we summarize recent work focusing on how LTD at the L4-
L2/3 excitatory synapse might contribute to the first component of
deprivation-induced plasticity, PWRD. This work shows that L4-L2/3
synapses are capable of LTD in vitro, and that whisker deprivation in-
duces marked LTD-like depression of these synapses in vivo. Record-
ings of spiking patterns in L4 and L2/3 in vivo suggest that this LTD
is induced by a reversal in the precise, millisecond-scale timing of
L4 and L2/3 spikes during deprivation, which is known to induce
spike timing-dependent LTD at this synapse. Finally, anatomical exper-
iments suggest that large-scale changes in L4 neuron number or axonal
anatomy do not occur during map plasticity. Therefore, at this synapse,
experience primarily regulates synaptic efficacy, not large-scale axonal
structure.

Deprivation Induces LTD-Like Weakening
of L4-L2/3 Synapses In Vivo

To determine if deprivation weakens L4-L2/3 synapses, Allen et al. took
advantage of the fact that synaptic and cellular plasticity induced by ex-
perience in vivo persists and can be measured in acute, ex vivo brain
slices (McKernan and Shinnick-Gallagher, 1997; Finnerty et al., 1999;
Rioult-Pedotti et al., 2000). Rats were raised with one or more rows
of whiskers plucked starting at postnatal day (P) 12, and slices were
prepared 10–20 days later, after whisker map plasticity had presum-
ably occurred (Fig. 2A). Slices were cut in an “across-row’’ plane that
contained one barrel column from each of the 5 rows (termed A–E),
so that spared and deprived columns could be identified unambigu-
ously in the slice (Fig. 2B). Bulk synaptic strength of the L4-L2/3 pro-
jection was assayed using input-output curves in field potential and
whole cell recordings, and was found to be 30–40% weaker in deprived
columns than either neighboring, spared columns (Fig. 2C, D) or control
columns from sham-plucked littermates (not shown). Plucking did not
affect measures of intrinsic postsynaptic excitability, suggesting that the
measured depression was due to synaptic changes (Allen et al., 2003).
In more recent experiments, deprivation was shown to increase paired
pulse ratios, suggesting that deprivation may decrease release proba-
bility at L4-L2/3 synapses (Allen, 2004; K.J. Bender, C.B. Allen, and D.E.
Feldman, unpublished data).

To determine whether this deprivation-induced synaptic depression
represents a reduction in the strength of preexisting, strong synapses,
versus a failure of initially weak synapses to strengthen with develop-
ment, deprivation was begun at the older age of P20, when synapses are
more developed. Four to six days of deprivation starting at P20 caused
the same magnitude of synaptic depression as did deprivation from P12,
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Figure 2 Whisker deprivation causes LTD-like weakening of L4 to L2/3 excita-
tory synapses. A, Deprivation of D row whiskers on the snout (X’s). B, Living
S1 slice containing five barrels corresponding to whisker rows A–E, visualized
by transillumination. Stimulation and whole-cell recording sites for studying
L4-L2/3 synapses are shown. C, Family of EPSPs in response to increasing
stimulation intensity in L4, for two cells in a deprived D column, and 2 cells in
the spared B column of the same slice. D, Comparison of mean EPSP amplitude
between deprived and spared columns. All amplitudes are normalized to the
mean maximal amplitude in the non-deprived column of each slice. E, Occlu-
sion of LTD by whisker deprivation. LFS, 900 presynaptic stimuli at 1 Hz. Bars
are S.E.M. Data from Allen et al., 2003.

suggesting that deprivation does not simply cause a failure of synaptic
development, but actively weakens existing synapses. In addition, the
time course of depression was determined by recording in slices made
from animals deprived of whiskers for 3, 5, and 7 days, beginning at
P12. Significant synaptic depression was observed after 5 days of de-
privation, but not 3 days, suggesting that 4–5 days of deprivation are
required to alter synaptic strength at these ages (Allen, 2004).

To determine whether deprivation-induced synaptic weakening rep-
resents LTD, Allen et al. tested for occlusion. Because LTD is typically
a saturable phenomenon (Dudek and Bear, 1992; Mulkey and Malenka,
1992; Lebel et al., 2001), LTD induced by deprivation in vivo should oc-
clude further LTD induction in vitro. Results showed that deprivation-
induced synaptic weakening profoundly occluded LTD induction by
low frequency stimulation (900 pulses at 1 Hz) (Fig. 2D). Consistent with
the occlusion model, the capacity for LTP was enhanced by deprivation,
indicating that deprived synapses were not merely deficient in plasticity.
These findings were recently replicated (Hardingham and Fox, 2004).
Thus, these experiments demonstrate that whisker deprivation reduces
the physiological strength of L4-L2/3 synapses via LTD or an LTD-like
mechanism. Similar results have been found for monocular deprivation,
which causes both physiological and biochemical signatures of LTD at
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L4-L2/3 synapses in visual cortex (Heynen et al., 2003). Together, these
results suggest that LTD is likely to be an important mechanism for plas-
ticity in S1 and V1. Whether deprivation also weakens circuits through
reduction in synapse or neuron number is addressed by experiments
below.

How is LTD Induced During Sensory Deprivation In Vivo?

At L4-L2/3 synapses in vitro, like at many excitatory synapses, LTP and
LTD can be induced by multiple induction protocols. These include alter-
ing presynaptic firing rate (termed rate-dependent plasticity) (Madison
et al., 1991; Linden and Connor, 1995), and modulating the relative tim-
ing of pre- and postsynaptic spikes on a millisecond timescale, largely
independent of firing rate (spike-timing dependent plasticity, STDP)
(Dan and Poo, 2004). Most models of experience-dependent cortical
plasticity assume rate-dependent induction of LTP and LTD. However,
Celikel et al. conducted experiments to determine which of these modes
of LTP/LTD induction drives LTD at L4-L2/3 synapses in S1 in response
to whisker deprivation and found strong evidence that STDP is the rel-
evant mechanism (Celikel et al., 2004).

L4-L2/3 synapses in visual cortex exhibit a standard rate-dependent
LTP/LTD learning rule in which presynaptic firing rates of a few Hz
drive LTD, and rates >10 Hz drive LTP (Fig. 3A). Though the full learn-
ing rule is not known in S1, its basic form is similar, with a cross-over
point between LTP and LTD at about 10 Hz (S. Bergquist and D.E. Feld-
man, unpublished data). To determine whether deprivation alters spike
rate in a manner appropriate to drive rate-dependent LTD at L4-L2/3
synapses in vivo, Celikel et al. made extracellular recordings from L4 and
L2/3 neurons in awake, behaving rats. When all whiskers were intact,
L4 and L2/3 neurons fired at mean rates of 2.7 and 2.1 Hz, respec-
tively, across several whisker-related behavioral states. Trimming of the

Figure 3 Rate-dependent and spike timing-dependent learning rules for LTP
and LTD. A, Summary plot of the learning rule for firing rate-dependent LTP
and LTD from Schaffer collateral-CA1 synapses (open symbols) and L4-L2/3
synapses in V1 (filled symbols). Data are from the indicated papers. B, Mean
firing rate of L4 neurons in awake behaving rats recording when all whiskers
were intact (“ctrl’’) and immediately after trimming the principal whisker to the
level of the fur (“trim’’). C, Learning rule for STDP at L4 to L2/3 synapses in S1.
Data from Celikel et al., 2004.
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principal whisker corresponding to the recorded column caused mean
firing rates to reduce, but only modestly, to 2.1 and 1.7 Hz, respectively
(Fig. 3B). Because 2–4 Hz firing elicits similar, near-maximal LTD at L4-
L2/3 synapses in V1, as well as in CA1 hippocampus, it seems unlikely
that these modest changes in spike rate could drive rate-dependent LTD
in vivo (Dudek and Bear, 1992; Bear, 1996; Kirkwood et al., 1996; Huber
et al., 1998) (Fig. 3A). Indeed, the low frequency of firing observed with
all whiskers intact suggests that precise spike timing, rather than firing
rate, may be most relevant for plasticity in vivo.

How spike timing may drive LTD in vivo can be inferred from the
precise shape of the STDP learning rule measured in vitro. LTP is in-
duced at L4-L2/3 synapses when presynaptic spikes lead postsynaptic
spikes by 0–15 ms. In contrast, LTD results when postsynaptic spikes
lead presynaptic spikes by a longer interval of 0–50 ms (Fig. 3C). The
longer temporal window for LTD predicts that LTD can be induced in
vivo by two means: either by reliable post-leading-pre firing within the
LTD window, or by uncorrelated spiking at low rates, which drives net
LTD because uncorrelated spike trains contain more interspike delays
that fall within the long LTD window than delays that fall within the
brief LTP window (Feldman, 2000).

To determine whether deprivation may drive spike timing-dependent
LTD in vivo, Celikel et al. measured the spiking of L4 and L2/3 neurons
simultaneously in the same barrel column in anesthetized rats. To mimic
normal whisking, all whiskers were deflected together by inserting them
into a piezoelectric-driven plastic mesh. Under this condition, L4 neu-
rons faithfully spiked several milliseconds before neurons in L2/3, a
pre-leading-post firing order that is appropriate to drive spike timing-
dependent LTP (Fig. 4). To simulate whisker deprivation, the principal
whisker was cut to narrowly escape the mesh, so that the mesh now
deflected all whiskers but the principal whisker. This resulted in two
immediate changes in L4 and L2/3 firing correlations in the deprived
column. First, mean firing order reversed, with most L2/3 neurons now
spiking before L4 neurons (Fig. 4). This reversal was most pronounced
between L4 and L2 neurons. Second, overall firing correlations between
pairs of L4 and L2/3 neurons significantly decreased (not shown). These
changes recovered immediately when the principal whisker was rein-
serted into the mesh. Thus, whisker deprivation acutely altered spike
timing at L4-L2/3 synapses in a manner that was exactly appropriate to
drive spike timing-dependent LTD (Celikel et al., 2004).

These experiments suggest that spike timing, not spike rate, is the key
feature of S1 spike trains that drives deprivation-induced weakening of
L4-L2/3 synapses, and that STDP is the relevant mode of LTD induction.
However, it will be critical to verify that these use-dependent changes
in spike timing occur in awake-behaving, not just anesthetized, rats.
In addition, the prevalence of STDP as a learning mechanism in vivo
needs to be examined. Is it most relevant only in sparsely spiking brain
regions, like S1, in which rate-dependent plasticity is unlikely, or is it
utilized more generally?
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Figure 4 Acute deprivation of a single principal whisker causes a reversal in L4-
L2/3 firing order appropriate to drive spike timing-dependent LTD in vivo. A,
Spike trains of a pair of L4 and L2 neurons, recorded simultaneously in a single S1
column, under 3 sequential conditions: simultaneous deflection of all whiskers,
deflection of all but the principal whisker (PW cut, to mimic acute deprivation of
one whisker). and all-whisker deflection (recovery). Note reversal in L4-L2 firing
order during PW cut. B, Peristimulus time histograms of L4 and L2 responses
for each stimulus condition (900 stimulus repetitions). Stimulus onset, 0 ms.
C, Cross-correlograms representing relative timing of L4 and L2 spikes during
sensory responses in each condition. Data from Celikel et al., 2004.

Deprivation does not Alter the Anatomy of
L4-L2/3 Projection

In mature S1, excitatory cells within L4 barrels extend dense, ascend-
ing axonal projections to L2/3. These projections are highly column-
specific, preferentially targeting L2/3 within the home column (Petersen
and Sakmann, 2001; Feldmeyer et al., 2002). This columnar precision is
thought to be important for conferring appropriate principal whisker
responses in L2/3 neurons. As for many projections, there is a debate
over whether the L4-L2/3 axonal projection arises during development
from an initially precise or imprecise projection. Axonal reconstruc-
tions from biocytin-filled L4 neurons in thick S1 slices (400 µm) showed
that roughly one third of L4 spiny neurons extended non-column spe-
cific axonal arbors at P8-10, and that column specificity developed by
P14 through selective addition of branches in the correct target column
(Bender et al., 2003). However, another study that used axonal fills and
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functional mapping of projections in thinner slices (300 µm) found that
initial axons showed adult-like columnar precision (Bureau et al., 2004).
Whether this discrepancy arises from loss of longer, non-columnar ax-
onal branches in thin slices is unclear. However, both studies do make
clear that axons are still growing during the developmental period in
which whisker deprivation induces weakening at L4-L2/3 synapses.
Therefore, deprivation-induced changes in arbor size, arbor topogra-
phy, and synapse number need to be considered as additional possible
mechanisms for deprivation-induced weakening of the L4-L2/3 synap-
tic connection.

To test whether deprivation alters L4 axonal morphology or synapse
number, axonal arbors of L4 excitatory cells projecting to L2/3 were
examined using single-cell reconstructions (Bender et al., 2003). Animals
were raised with all whiskers intact or the D-row deprived from P8
to P23-26, a manipulation known to drive synaptic depression at this
projection (Allen et al., 2003). Slices were cut in the across-row plane
to contain one barrel from each row. Excitatory spiny stellate and star
pyramidal cells in the center of the D-barrel were filled with biocytin
during whole-cell recording and visualized with a diaminobenzidine-
based reaction (Fig. 5A). Axonal reconstructions were made relative to
column boundaries, determined by counterstaining for L4 barrels with
osmium tetroxide (Fig. 5B).

To determine whether deprivation reduced axonal length or distribu-
tion in L2/3, we quantified the length of axon in L2/3 as a function of
location tangential to the pial surface. In control rats, the projection was
largely columnar, with ∼90% of axon in L2/3 contained in the home
(D) column. D-row deprivation did not alter the tangential distribution
of this projection, or the total length of each axon in L2/3 (Fig. 5C, D).
Deprivation of all contralateral whiskers (A–E rows) also produced no
detectable effect on axonal length or topography (Bender et al., 2003;
Bureau et al., 2004).

As a first step in determining whether deprivation reduced synapse
number, we calculated axonal bouton density for randomly selected
axon segments in L2/3. Bouton density is relatively constant across
axonal branches for cortical excitatory cells (Yabuta and Callaway, 1998;
Bender et al., 2003). Deprivation did not detectably alter bouton density,
suggesting that anatomical synapse number remains constant during
sensory deprivation, despite the 40% reduction in bulk synaptic strength
shown above (Fig. 5E). It is important to stress that these results show
only that deprivation does not lead to massive synaptic withdrawal
observable at the light level, and that ultrastructural changes including
changes in the number of release sites per bouton may still occur.

Whisker deprivation may also reduce L4-L2/3 connection strength
by reducing the number of L4 neurons in deprived barrels, rather than
decreasing the number of L4-L2/3 synapses per L4 axon. Since barrel
size does not change with deprivation (Fox, 1992), we estimated changes
in cell number by calculating cell density within L4 barrels in control
and whisker deprived animals. In these experiments, which have not
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Figure 5 Whisker deprivation does not alter gross anatomy of L4 axons in L2/3.
A, Single-section montage showing biocytin-labelled L4 spiny stellate neuron.
Inset, High power view showing axonal boutons (arrows). B, Full reconstruc-
tion of neuron in (A). Barrel position was determined from neighboring osmium
tetroxide-stained section. Black: dendrite. Grey: axon. Light grey: barrel outlines
and pia. Numbers indicate layers. C, Distribution of axon tangential to the pial
surface for control and D-row deprived rats. Bars are SEM. Ellipses show ap-
proximate barrel boundaries. D and E, Deprivation of D row whiskers did not
alter total axon length or bouton density in layers 1–3. Bars are mean. Triangles,
age-matched control and deprived rats. Data from Bender et al., 2003.

been previously reported, Long-Evans rats were D-row deprived from
P12-P23, or had normal whisker experience. Rats were perfused at P23
with 4% paraformaldehyde, the contralateral hemisphere was sectioned
at 40 µm in the across-row plane, and alternate sections were stained for
NeuN, a neuron-specific nuclear protein, or cytochrome oxidase (CO) to
visualize barrels. NeuN staining (mouse anti-NeuN, Chemicon, 1:1000
dilution, 18 hr at 4◦C) was visualized using a fluorescent secondary an-
tibody (Alexa-488 anti-mouse, Jackson ImmunoResearch, 1:1000, 1 hr at
25◦C). NeuN-immunoreactive neurons were marked using Neurolucida
software (Microbrightfield) with the experimenter blind to deprivation
history and barrel boundaries. Barrel boundaries were then projected
from neighboring CO sections (Fig. 6A, B). Neuronal density was calcu-
lated for B–E barrels in 3 separate slices per animal, and corrected for 2%
tissue shrinkage, assessed by comparing the average distance between
C, D, and E barrel centroids in fixed, CO-stained tissue, versus living,
transilluminated acute brain slices. Shrinkage values matched previous
measurements in our lab (Bender et al., 2003).
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Figure 6 Whisker deprivation does not alter neuronal density in L4 barrels. A,
Neu-N staining in single “across-row’’ section of S1. Barrel borders from neigh-
boring CO-stained section (B) are shown. Dashed rectangle in B shows region
corresponding to panel A. Scale bars in (A) and (B) are 500 µm. C, Absolute
neuronal density in barrels B–E corrected for tissue shrinkage (see text). Solid
lines: control animals. Dashed lines: D-row deprived. Error bars are S.E.M.

Results showed that neuronal density was constant across B–E bar-
rels for both control rats (n = 3) and D-row deprived rats (n = 2)
(Fig. 6C). Across all sections, the average neuronal density within bar-
rels was 122,000 ± 4,000 neurons/mm3 (mean ± S.E.M). At this density,
an average barrel, approximated as a cube of across-row width 460 µm,
within-row width 410 µm, and height 310 µm, would contain roughly
7000 neurons. Deprivation did not appear to alter neuronal density in
the deprived D column (Fig. 6C).

Together, these anatomical results indicate that deprivation-induced
map plasticity does not involve large scale loss of L4 neurons or axons.
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Instead, deprivation seems to reduce the physiological strength of L4-
L2/3 synapses while gross anatomical features of the projection remain
intact. Similar results have been observed in the barn owl sound localiza-
tion system. In the barn owl, auditory-visual misalignment induced by
wearing prismatic spectacles causes visually guided learning of sound
localization. This learning involves the loss of pre-existing, inappro-
priate auditory responses, and the growth of new axonal projections to
mediate new auditory responses appropriate to the visual displacement.
Axonal connections mediating normal auditory responses persist with
extended prism experience, even though these responses are physiolog-
ically reduced or absent, suggesting that experience weakens functional
synaptic efficacy but does not cause gross synaptic withdrawal (DeBello
et al., 2001). Similarly, new axonal connections formed during learning
remain anatomically intact even after they are functionally silenced by
prism removal (Linkenhoker et al., 2005).

Why deprivation appears to affect synaptic efficacy but not axonal
anatomy of L4 cells is unclear, especially because in visual cortex, axonal
restructuring of thalamocortical and L2/3 horizontal axons does occur
during deprivation-induced map plasticity (Antonini and Stryker, 1993;
Darian-Smith and Gilbert, 1994). Similarly in S1, all-whisker unilateral
deprivation does alter the branch structure of L2/3 pyramidal cells at
these ages (Maravall et al., 2004), indicating that cortical neurons are ca-
pable of experience-dependent anatomical plasticity. Perhaps L4 axons
could undergo anatomical plasticity given longer deprivation durations.

Conclusions

Work presented here suggests that LTD or LTD-like synaptic depression
is an important component of developmental map plasticity in sensory
cortex. A working hypothesis for how LTD is induced by deprivation is
summarized in Fig. 7. In this hypothesis, feedforward connectivity from
thalamus to L4 to L2/3 ensures that during normal sensory use, most L4
spikes occur before L2/3 spikes. Deprivation causes immediate rever-
sal in firing order for L4 and L2/3 neurons (illustrated) and decreases
overall firing correlations (not shown), with little change in spike rate.
What cortical circuits mediate the firing order reversal are not yet clear,
although trans-columnar excitatory inputs from surrounding columns
with intact whiskers seem well-suited to mediate the residual L2/3 re-
sponses in deprived columns. We hypothesize that these acute changes
in spike timing, over several days, drive spike timing-dependent LTD at
L4-L2/3 synapses, and that this LTD is a primary mechanism for weak-
ening of responses to the deprived principal whisker in L2/3. Anatomi-
cal measurements indicate that this reduction in L4-L2/3 synapse ef-
ficacy occurs without large-scale changes in L4 cell number, axonal
anatomy, or bouton number, although changes in dendrites, spines, and
synaptic ultrastructure may occur (Lendvai et al., 2000; Maravall et al.,
2004).
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Figure 7 Model for deprivation-driven induction of LTD at L4-L2/3 synapses
in vivo. Left, When all whiskers are intact, deflection of the principal whisker
drives spikes from L4 neurons, which in turn activate L2/3 neurons via ascend-
ing, feedforward L4-L2/3 synapses. Thus, L4 neurons tend to spike before L2/3
neurons. Middle, whisker deprivation is known to acutely alter L4-L2/3 firing
correlations in two ways: firing order reverses, so that L2/3 neurons tend to fire
before L4 neurons (illustrated), and L4 and L2/3 spike trains become decorre-
lated (not illustrated). Together, these changes in spike timing are hypothesized
to drive spike timing-dependent LTD at L4-L2/3 synapses (right panel).

If whisker deprivation causes immediate reversal of L4-L2/3 spike
timing, and spike timing-dependent LTD occurs rapidly in vitro (within
minutes), why is 5 days of deprivation required for measurable weak-
ening of L4-L2/3 synapses in vivo? One likely factor is that in behaving
animals, only a small fraction of total spikes in a given S1 column are
driven by whisker deflections, with the rest being spontaneous or driven
by whisker self-motion (Fee et al., 1997). Because deprivation only alters
the timing of whisker-driven spikes, deprivation may produce only rela-
tively small biases of overall spiking statistics, leading to relatively slow
accrual of timing-dependent LTD. Another related factor is that ongoing,
spontaneous network activity is known to powerfully reverse recently
induced LTP and LTD, which could slow the accrual of these forms of
plasticity in vivo (Xu et al., 1998; Zhou et al., 2003). Third, receptive field
plasticity is known to be faster when whiskers are plucked singly or in
a checkerboard pattern, so that each deprived column has many spared
neighboring columns (Fox, 2002). In our studies of deprivation-induced
synaptic weakening in vivo, we plucked whole rows of whiskers, thus
leaving fewer spared whiskers around each deprived whisker. We are
currently investigating whether this pattern of plucking may alter spike
timing more modestly than single-whisker deprivation, which could
explain the slower development of synaptic plasticity in this case.
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Several key experiments are also necessary to test the working hy-
pothesis in Fig. 7. First, it is unknown whether the changes in spike tim-
ing observed with acute whisker deprivation in anesthetized animals
occur similarly in awake-behaving animals. Second, current evidence is
only correlative that LTD contributes to receptive field plasticity; tests
for causality are required. To test causality, it will be necessary to selec-
tively block or manipulate LTD, either pharmacologically or genetically,
and to determine if whisker map plasticity is altered or impaired. In vi-
sual cortex, this strategy has produced mixed results, so the causality
of LTD in ocular dominance plasticity remains unknown (Hensch and
Stryker, 1996; Renger et al., 2002; Fischer et al., 2004). To resolve this
issue it will be critical to improve our understanding of the molecular
basis of LTD at relevant cortical synapses, in order to develop more se-
lective and effective reagents that interfere with LTD. These reagents
could then be used to probe the role of LTD in cortical map plasticity.
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Introduction

The recognition that adult sensory plasticity is both common and robust
is one of the most important advances in neuroscience over the past
50 years. Many of the best cellular and systems level studies have ex-
plored the mechanisms and limitations of neural reorganization. Unique
challenges exist, however, in the study of plasticity. In humans, it is typ-
ically impossible to obtain measures of brain organization prior to clin-
ically relevant plasticity-inducing events (for example, stroke, spinal-
cord injury or amputation: Cramer et al., 2000; Moore et al., 2000; Staines
et al., 2002). Further, a classic paradox in the study of plasticity is that
while intervention is necessary to induce reorganization (for example,
training, deafferentation, or cortical stimulation) it is also typically re-
quired to assess reorganization (for example, craniotomies, injection of
anatomical tracers or lesions). While the intent of these studies is to ex-
amine plasticity induced by a specific manipulation, the act of probing
the system could in some non-linear way combine with the induction
process to alter the findings.

The ideal technique for assessing plastic modification of the brain
is, therefore, one that is minimally invasive and repeatable, permit-
ting measurement before and after manipulation. Further, this approach
should be applicable in non-human primates—respecting the cost and
ethical issues that come into play in this regard—and in human sub-
jects, so that parallel studies can be conducted. A technique that permits
whole-brain coverage at a relatively fine scale resolution would be an
additional benefit, especially for studies of sensory map organization
where simultaneous estimation of multiple brain areas can be crucial to
a proper understanding of the etiology of neural plasticity.
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Non-invasive fMRI is ideally suited for studies of cortical plasticity. In
animal model systems, neural organization can be repeatedly assessed
following a variety of manipulations (some even performed during a
single scanning session), allowing for short and long-term monitoring.
Monkey imaging is a particularly powerful tool for studies of plastic-
ity when it is performed using high-field magnets. High-fields deliver
the spatial resolution necessary to reveal cortical column-level changes,
while still providing whole-brain coverage. Human studies are also
commonly conducted with fMRI, allowing direct comparisons between
monkeys and humans.

This chapter describes methods we have developed for functional
magnetic resonance imaging (fMRI) in squirrel monkeys using a
9.4 Tesla small diameter bore magnet. We begin with a discussion of the
strengths and weaknesses of this approach relative to traditional electro-
physiology. We then review the methods developed, with an emphasis
on the logic driving experimental decisions that have proven critical to
the success of imaging experiments. Examples of the anatomical and
functional resolution obtained using this paradigm are provided.

Our current discussion is targeted to neuroscientists who may be
considering this approach. As such, we attempt to provide a specific
and practical discussion of the methods developed, and an introductory
background to the factors driving different MR imaging choices.

Classical Sensory Neurophysiology and fMRI: Complimentary
Strengths and Weaknesses

A central goal of neurophysiology is to understand how neural activ-
ity contributes to sensory perception. To this end, single-neuron elec-
trophysiological techniques, including single electrode, multi-electrode
(stereotrode, tetrode) and intracellular recording approaches are invalu-
able. These approaches are, however, limited in several ways. Each elec-
trode has a small field of view (FOV) and can only sample the activity
of, at most, several neurons. Also, despite many recent advances in im-
plant technology, only ≤200 electrodes can be maintained in a single
animal. Given the presence of millions of neurons in a single cortical
area, this sampling coverage is restrictive. Another problem faced by
single neuron recording techniques is that they are invasive. They re-
quire surgical intervention, leading to the termination of the animal at
the cessation of acute experiments, or to implantation of a systemic al-
teration in the anatomy and physiology of the animal (e.g., the addition
of a novel head apparatus). Further, these techniques are inappropriate
for studying human subjects except in the case of brain surgery.

Perhaps the most profound problem with sensory electrophysiology
is that an investigator must choose the optimal brain site for electrode
placement prior to investigation. In some cases, this assumption can be
guided by prior research using alternate methods: In other cases, sub-
stantial effort can be exerted to explicate the function of a brain area that
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is only tangentially related to the execution of a given sensory process-
ing function.

Functional magnetic resonance imaging (fMRI) provides a compli-
mentary set of strengths and weaknesses to those of classic electro-
physiology. The weaknesses of fMRI derive from the uncertainties sur-
rounding the origin of the blood flow signal and the resolution of fMRI
measurements. The most common method used to measure fMRI activ-
ity is the blood-oxygen level dependent signal (BOLD) (Ogawa et al.,
1990). Several studies suggest that the BOLD signal is correlated with
electrophysiological activity, and that this hemodynamic measure may
reflect more subtle, subthreshold potential changes (Logothetis et al.,
2001; Heeger et al., 2000; Rees et al., 2000; Backes et al., 2000; Arthurs
et al., 2000; Ances et al., 2000). Despite these several correlative findings,
the mechanisms linking neural activity and BOLD signals are not fully
understood. Further, even if a perfect correlation between net changes
in activity level and BOLD can be assumed, this measure is likely ‘blind’
to changes in temporal patterning that do not require increased neural
activity (but see Thompson et al., 2004).

A second weakness is that, relative to electrophysiology measures,
the resolution of fMRI is limited in spatial and temporal specificity.
The spatial resolution of human fMRI studies is typically on the order
of millimeters. The temporal resolution of fMRI is limited due to the
slow onset of the BOLD signal, and because sampling intervals (TR) are
typically ≥1 sec.

Despite these inherent limitations, the complimentary strengths of
fMRI are unique, and the technique is ideally positioned for integration
with electrophysiological approaches. First, fMRI provides a remark-
able field of view: In many experiments, functional activation can be
measured across the entire brain. Second, it is not surgically invasive,
and does not require the injection of radioisotopes as used in PET imag-
ing. As such, fMRI is safe for repeated use in humans and animals. Third,
fMRI offers the best spatial resolution of the non-invasive neuroimaging
techniques available, and advances in MR tools (e.g., scanners, coils) and
techniques (e.g., scan sequence design, analysis approaches) continue
to enhance the precision of this approach.

Monkey fMRI

For several reasons, conducting fMRI in monkeys has the potential to
allow for the ‘best of both measurement worlds.’Repeated non-invasive
imaging can be combined with subsequent invasive approaches such as
electrophysiology and optical imaging, permitting whole brain cover-
age or, alternatively, high spatial resolution in a region of interest.

Historically, electrophysiology has been conducted in monkey sub-
jects under the assumption that this model provides the most accu-
rate parallel to neural mechanisms employed in the human. This as-
sumption, while logical, has seldom been directly tested using identical
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measurement techniques in the two species. The use of fMRI in humans
and monkeys provides the opportunity for parallel investigation. Using
this approach, the areas activated by identical stimuli can be compared,
as can aspects of the dynamics of activation in these regions (e.g., adap-
tation patterns). If parallel activations are observed, then extensive and
detailed electrophysiological studies conducted in non-human primates
provide the best inferential link currently possible between normal hu-
man brain function and the activity of single neurons. Interestingly, us-
ing fMRI, differences between species have already been noted in what
are believed to be homologous brain areas (Vanduffel et al., 2002).

Monkey fMRI also provides an ideal system for longitudinal monitor-
ing of plastic changes in brain organization. Because fMRI can be used
repeatedly within subjects, baseline data can be acquired by imaging
for months prior to the introduction of a manipulation. The plasticity
induced by this change (or, the lack thereof) can then be tracked sys-
tematically and without further damage to the research subject (e.g.,
Smirnakis et al., 2005).

Importantly, monkey fMRI can also provide a guide for electrophys-
iological studies. This prior estimation allows a researcher to screen for
the brain areas of greatest potential interest, and allows for targeting
recordings to precise sub-regions of a given a brain area. As fMRI res-
olution increases, for example, specific column(s) of interest within a
cortical area can be identified (Kim & Duong, 2002; Duong et al., 2001;
Duong et al., 2000; Kim et al., 2000; Menon et al., 1997) and measured
using electrophysiology.

High-Field Imaging

One advance in technology that has helped overcome some of the con-
cerns regarding fMRI resolution is the increasing use of high magnetic
field strengths (e.g., 9.4T). The signal to noise ratio (SNR) of anatomical
and functional MRI increases with the static magnetic field strength:
Thus, higher spatial sampling is achievable while still maintaining high
SNR within each sample volume, improving both anatomical and func-
tional resolution.

Despite these benefits, machines with high-field strengths such as
9.4 T are currently not available for human testing. One reason is that
the small diameter of the magnet bore on most high-field machines
precludes the use of humans or large primates. Additionally, there are
safety issues that arise when imaging at high-fields (Bottomley & An-
drew, 1978). For example, human subjects may experience dizziness or
other balance-related symptoms (e.g., vertigo, nausea) upon entering or
exiting high-field magnets (Schenck et al., 2000), and there is also a risk
of peripheral nerve stimulation (Schaefer et al., 2000; Ham et al., 1997).
The full scope of these physiological effects has not been determined,
therefore restricting high-field imaging to non-human subjects.
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Squirrel Monkey Scanning at 9.4 T

To take advantage of the several benefits of monkey MR for sensory
neurophysiology, we have developed techniques for imaging squir-
rel monkeys (SM) at 9.4 T. The squirrel monkey (SM) was selected as
our model system for several reasons. First, SM are semi-lissencephalic
(Emmers & Alkert, 1963; Benjamin & Welker, 1957; Welker et al., 1957).
Their relatively flat cortical surface is ideal for mapping studies us-
ing techniques such as optical imaging (Tommerdahl et al., 2002; Chen
et al., 2003) and electrophysiology (Sur, 1984), and facilitate the transi-
tion from voxel localization in fMRI to these other approaches. Second,
a great deal is already known about the cortical organization of SM.
Specifically, the representations and receptive field properties in many
sensory modalities have been characterized, including tactile (Jain et al.,
2001; Merzenich et al., 1987; Sur et al., 1984), visual (Livingstone, 1996),
auditory (Cheung et al., 2001), and vestibular (Akbarian et al., 1992;
Guldin et al., 1992) cortices. This species has also been used extensively
as a model for studies of cortical plasticity (Plautz et al., 2003; Frost et al.,
2003; Nudo et al, 2003; Churchill et al., 2001; Xerri et al., 1996; Merzenich
et al., 1993; Garraghty & Kaas, 1991), basal ganglia (Flaherty and Gray-
biel, 1991;1993;1994;1995), and disease (e.g., dystonia and Parkinson’s
disease: Blake et al., 2002; Rupniak et al., 1992; Boyce et al., 1990).

Several practical considerations also recommend SM use. They habit-
uate well to handling (Abee, 2000) and, relative to macaque monkeys,
there is a reduced risk of zoonotic disease transmission to experimenters.
Also, because they are bred successfully in captivity, there is greater ease
of acquisition. Last, and perhaps most important to our logic in selecting
this model system, SM are relatively small. They have a body weight
of ∼717 ± 170.4 g (Gergen & MacLean, 1962), and have a slender max-
imal body width: As such, SM can fit within the tight space limitations
of higher field scanners (e.g., the 11.7 cm gradient-insert diameter of
the 9.4 T we currently use). The primary drawback to using SM is that
they are not favored for behavioral studies in primates: However, as
discussed below, limitations on the tolerance for subject motion at high-
fields likely preclude the use of a monkey behavioral preparation with
our current methods.

Methods

Overview of an Experiment

In a typical experiment, monkeys are obtained from our vivarium and
transported to the imaging center. In a surgical preparation room on site,
anesthesia is induced, the monkey is intubated and catheterized, and
subsequently maintained on isoflurane anesthesia for the duration of
the experiment. The animal is positioned in an MR-compatible holding
device that reduces head movement and secures one of several surface
coils on the head. Sensory presentation equipment is positioned (e.g.,
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a tactile stimulator or a visual screen), and the animal placed in the
scanner. A series of anatomical and functional images are then acquired
over a 3–6 hour period. Following scanning, anesthesia is terminated,
and the animal is transferred back to our home facility.

Non-MR Aspects of the Experimental Approach

Transport
The monkeys are kept in a temperature (20 – 23◦C), humidity (30 – 70%),
and photoperiod (12 h dark/12 h light) controlled environment where
they are single-housed in standard cages with a variety of perches and
enrichment devices. The evening prior to an experiment, animals are
placed on overnight food restriction. Animals are transferred to off-site
experiments in a customized transport box (Primacarrier, by Primate
Products) in a climate-controlled vehicle. To minimize the stress in-
curred by direct handling, animals are trained to enter the box, and the
majority of our SM (3 of 4 tested) will enter without further interaction.

Anesthetic Induction
The transport box was customized for these studies. The front opening
of the box has a sliding plastic door, through which the animal climbs
when being collected for transport, and the two longer side panels have
an array of openings for ventilation and observation. Two modifications
were made. First, a clear, acrylic panel was inserted and secured against
one interior side of the box. A pair of removable handles can be attached
to receptacles built onto this panel. These handles pass through the
holes in the outer wall of the box and enable one to push the panel to
the opposite interior side of the box, creating a squeeze apparatus for
anesthetic injection. Second, additional openings were added to the side
of the box opposite the acrylic panel, to improve access to the lower limb
for the initial intramuscular (IM) anesthetic injection.

Using the squeeze-box apparatus, initial sedation is achieved with
Telazol delivered IM to a thigh muscle. Active components of Telazol in-
clude tiletamine, a dissociative anesthetic that blocks NMDA receptors
(Fish, 1997), and zolazepam, a benzodiazepine tranquilizer that poten-
tiates GABA receptors (Reves & Glass, 1990). The dosages used (6.7–8.8
mg/kg) are similar to those recommended for use in dogs: For a ∼700 g
squirrel monkey, 7.1 mg/kg (0.05 ml) of Telazol provides sufficient se-
dation (∼30 min) to intubate and prepare the intravenous (IV) catheter.
In several experiments, we have observed that higher concentrations of
Telazol, or repeated injections of low doses, compromise the measure-
ment of stimulus-evoked BOLD signals and delay anesthetic recovery
after isoflurane is terminated. Though we have not tested other drugs or
procedures for induction, a similar drug, ketamine, is often used in SM
(Greenstein, 1975) and, if used at low-levels in macaques (1–2 mg/kg),
preserves the fMRI BOLD signal (Leopold et al., 2002).

Atropine sulfate (0.04 mg/kg IM) is administered with the initial Tela-
zol injection (same syringe). The anti-cholinergic action of atropine re-
duces respiratory secretions, keeping airways clear. Once the animal is



294 Aimee J. Nelson et al.

positioned in the magnet, atropine is delivered through the IV catheter
every 45–60 minutes. When access to the IV line is not an option, (e.g.,
during long anatomical sequences), glycopyrrolate is administered IM
(0.01 mg/kg) prior to the scan. The anti-cholinergic action of glycopy-
rrolate has a longer acting duration (2–3 hours) than atropine.

Intubation and Catheterization
Endotracheal tubes (ET) used with SM must have an appropriately small
diameter, smaller than those used for pediatric purposes. We employ
customized, re-usable silicone cuffed 2.5 mm (inner diameter) ETs with-
out wire reinforcement (Med-Caire, Vernon, CT). The length of each
tube is customized to fit each monkey such that it spans the distance
from the mouth to the manubrium sternum (6.7 cm and 8.0 cm for two
monkeys whose data is presented in this Chapter). The patency of the ET
cuff is tested prior to intubation by inflating with a syringe. Two to three
minutes prior to intubation, a single spray of the topical anesthetic, Ceta-
caine, is delivered to the glottis to reduce the incidence of laryngospasm.
The ET is coated with Lidocaine Hydrochloride Oral Topical Solution
and inserted into the trachea using a stylet and laryngoscope (size 1
Macintosh blade). Successful ET placement is determined by observing
motion of hairs held at the opening of the ET, condensation on a mirror,
and/or expansion/contraction of a latex covering placed at the end of
the ET tube. The cuff is then inflated with air (∼2–2.5 ml). The ET is
secured by way of a velcro strap customized with an opening that fits
around the ET connector (15 mm) and wraps around the head.

An IV catheter is then placed in the lateral or medial tarsal, metatarsal
or saphenous vein, or alternatively in the lateral tail vein (Brady, 2000)
using a 24G × 3/4’’Surflo catheter with a 27G needle and Surflo injection
plug (Terumo Medical Corporation). A small splint is typically used to
prevent the ankle from rotating and corrupting the catheter. To mitigate
venous injury, catheter placement alternates between the left or right
lower limb, and occasionally the tail, across experiments. Currently, this
IV line is used to deliver Lactated Ringers solution throughout scanning
(7.5 ml/kg/hr), atropine at 45–60 minute intervals, and slow injections
of dextrose following scanning (100–250 mg/kg IV; 5% dextrose in water
as a single ∼3.0 ml slow dosage). In experiments now under way, the
IV permits the infusion of contrast agents (e.g., MION see discussion)
prior to or during imaging.

Anesthesia, Respiration Rate and CO2-Level Maintenance
Following ET and catheter placement, the monkey is transported to the
shielded imaging room and placed on mechanical ventilation (SAR-830
Series Small Animal Ventilator, CWE, Inc.). Anesthesia is maintained
via isoflurane in balance oxygen (0.5–0.6L O2/min). During animal posi-
tioning (ear bar insertion, head restraint, placement in cradle), isoflurane
is maintained at 1.5% and is subsequently reduced in three incremental
steps over ∼30 minutes to achieve ∼0.5–0.6% expired isoflurane (mea-
sured with a V9004 Capnograph Series with inspired/expired anesthetic
gas, Surgivet). Ventilation is maintained at a rate between 34–39 breaths
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per minute with an inspiration time of 0.5 s and expiration duration of
∼1.1 s. The inspired/expired duration ratio of the SAR-830 may be ad-
justed, an important feature to counteract the effects of positive pressure
ventilation. Such ventilation may impede venous return via changes in
pleural pressure during the inspiration phase; reducing the inspiration
duration relative to expiration time blunts the negative effects of positive
pressure ventilation.

Isoflurane is a recommended anesthetic for use in SM (Brady, 2000),
and for maintaining stimulus-evoked fMRI signals (Nair & Duong, 2004;
Sicard & Duong, 2005; Liu et al., 2004). Isoflurane is a volatile anesthetic
that causes a dose-dependent decrease in blood pressure through va-
sodilation, though the effect of increasing cerebral blood flow is less
than that caused by halothane (Reinstrup et al., 1995). The molecular
mechanisms of isoflurane action are not completely understood, but
it is considered to act on multiple neural membrane proteins, includ-
ing GABA A chloride channels. Isoflurane has a wide safety margin,
analgesic properties, and is associated with a relatively rapid recovery.
Importantly, this anesthetic is sufficient to induce muscle relaxation in
SM, and muscle relaxants such as mivacurium, often used when imag-
ing larger monkeys (Logothetis et al., 1999), are not necessary for our
research.

At the end of the experiment, SM awaken quickly after low level
isoflurane is discontinued (∼5–15 minutes). Therefore, it is important to
maintain anesthesia while removing items that could potentially dam-
age an awakening monkey (ear bars, head restraints, surface coils). This
transient consciousness is followed by ∼2 hours of recovery and the
monkey is kept warm using a hot water blanket or rechargeable hot
packs during transport. Pulse oximetry is monitored during recovery
and fluids (Lactated Ringer’s) are delivered IV.

The use of anesthesia is essential for collecting high-resolution pri-
mate data in our paradigm. In our preparation, and at the resolution
employed, the motion generated in the anesthetized animal is already
in some cases in excess of required tolerances (e.g., see Figure 2). The
motion observed by an awake, head restrained monkey will almost cer-
tainly exceed the spatial resolution at 9.4T and create signal artifacts
that are further enhanced because of the greater susceptibility at higher
fields. There are nevertheless clear drawbacks to the use of anesthe-
sia. First, anesthesia may depress the BOLD signal, requiring averaging
across several fMRI runs for a sufficient contrast to noise ratio. Second,
fMRI BOLD signals obtained under anesthetic can be difficult to in-
terpret, as isoflurane has a direct impact on central neural processing
and substantial vasodilatory properties (Warltier & Pagel, 1992). Fur-
ther studies directed to examine the impact of anesthesia on BOLD
signals and central nervous system function are essential (Disbrow
et al., 2000; Ishizawa et al., 2005). However, preliminary data suggest
that the increased SNR afforded by higher field strength may recoup
some of the anesthetic induced suppression of the BOLD signal (see
Figure 13B).
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Table 1 Physiological measures (5 scan sessions,
3–6 hours each).
Physiological measures Mean (n = 5 sessions)

[Inspired isoflurane] 0.65% ± 0.061

[Expired isoflurane] 0.65% ± 0.056

End-tidal CO2 32.6 ± 9.92 mm Hg

Systolic blood pressure 127.01 ± 15.21 mm Hg

Diastolic blood pressure 79.54 ± 14.35 mm Hg

Mean arterial blood pressure 96.84 ± 13.76 mm Hg

SpO2 97.9 ± 1.54

Heart rate (beats per minute) 240 ± 24 BPM

Rectal Temperature 36.0 ± 1.5 C

Physiological Monitoring
Proper physiological monitoring is particularly important where nar-
row, long bores prevent visual inspection of the animal. Variables we
typically measure include: end-tidal CO2, expired/inspired isoflurane
concentration (V9004 Capnograph Series, Surgivet), non-invasive blood
pressure from the femoral artery measured between EPI scans (V6004
Series Non-Invasive Blood Pressure, Surgivet), heart rate and arterial
oxygen saturation via a pulse oximetry sensor secured to the palm
(Nonin 8600V), and rectal temperature. Published normative physio-
logical data for anesthetized SM is scarce, and for this reason Table 1
lists the physiological data (mean, standard deviation) recorded over
five typical scan sessions. In the awake restrained SM, body tempera-
ture is 37–39◦C (Brady, 2000; Pinneo, 1968), mean arterial blood pressure
is 140 ± 4 mmHg (Byrd & Gonzalez, 1981), and the heart rate may ex-
ceed 300 beats per minute (Pinneo, 1968). As Table 1 indicates, isoflurane
anesthesia decreases body temperature, blood pressure and heart rate.
Stimulus-evoked activation is robust in sessions when end-tidal CO2

levels range between 35–40 mm Hg; sessions with lower capnic levels
require greater signal averaging to reveal significant activation.

Monitoring animal physiology in small bore magnets is challenging.
One challenge is to locate devices that are MR compatible at high-field
strengths: In our experience, devices advertised as ‘MR compatible’ can
have components that are readily corrupted at 9.4 T. Also, as mentioned
above, there is virtually no visual information available to indicate the
health condition of the monkey, making physiological monitoring across
several variables a necessity. Another practical consideration is that in-
put/output connections (e.g. the pulse oximeter cable) should avoid
coursing beneath the surface coil (Figure 1).

One benefit of fMRI is that it can be repeatedly conducted in the same
subject (animal or human). Nevertheless, the anesthetized preparation
described above involves repeated procedures that could impact the
health of the animal. These include the increased risk of infection as-
sociated with repeated intubation, anesthesia and IV, a risk of sensory
damage to repeated placement of the animal in the noise environment
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Figure 1 Animal positioning in cradle The scanning cradle is shown with a
cartoon image of the basic monkey position. The arms are extended forward,
and one hand is secured to the tactile stimulator hand mold, while the other is
used for pulse oximetry measures. The cradle with foam rubber application on
the base fits precisely in the diameter of the 11.7 cm 9.4 T bore. Arrows at each
end of the cradle indicate the direction that specified cables exit the cradle.

of the scanner, and potential adaptation to anesthetic state. Thus far, we
have observed that the above procedures promote a healthy recovery
and allow longevity of the animals in experiments: The fMRI data and
most anatomical images reported here are from two monkeys scanned
repeatedly (∼twice per month) over the course of 1 year. In two cases
where significant complications were observed, monkeys had not been
sufficiently acclimated to the anesthetic treatment and/or to travel to
the scanning facility: These steps are now standard procedures in our
design.

Body Positioning and Head Stabilization During Scanning
Following intubation, catheter placement, and ∼10 minutes of isoflu-
rane, muscle tone is sufficiently low and the monkey is placed in the
custom-made cradle shown in Figure 1. The length of the cradle encases
the entire elongated outstretched body, including the tail. The body of
the cradle is made from plastic piping (ID 9.5 cm, OD 11 cm), and the
outer surface is covered in rubber foam pipe insulation tape (∼1 mm
thick) to dampen the transfer of magnet vibrations to the preparation,
and to provide frictional resistance to micro-motions of the apparatus.
Placement of SM in the cradle is in the prone position, atop a heated
water blanket (Gaymar Therma Pump, Harvard Apparatus). The body
is extended with the arms outstretched in front of the animal for pre-
sentation of tactile stimuli.

One advantage of using an anesthetized preparation is that subject
motion is minimized. However, the resolution of EPI images (e.g., 625
µm in-plane) and typical anatomical images (e.g., 195 µm) demands
minimal motion, and motion-related signal artifacts are amplified at
high-fields. Therefore, proper head restraint is mandatory for success-
ful experiments. We have found that a triangulation of restraint—chin
rest, ear bars and head piece—is necessary to reduce subject motion to an
acceptable level. Examples of subject motion in a functional scan taken
with and without this triangulation are shown in Figure 2. With each
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Figure 2 Head motion Head motion plots (mm of displacement in the pitch
direction) are shown for two functional scans. A clear reduction in head motion
was observed following the use of the chin rest and head restraint elements (see
Figure 8C). Motion of the amplitude observed in the ‘ear bar, coil’ condition,
where ear bars and mild padding between the fixed coil and the head were
employed, leads to non-usable functional data.

restraint in place, subject motions of less than ∼190 µm are routinely
observed across a ≥3 hour scanning period. Because subject motion
poses a substantial challenge at the resolution we employ, each func-
tional scan is subjected to motion assessment immediately following its
acquisition (AFNI: Analysis of Functional Neuroimages). The on-line
motion estimation provides a rapid assessment of the effectiveness of
the head restraint and anesthesia depth, either of which can be subse-
quently adjusted.

Using three points of restraint is key to the precise repetition of the
head position across experiments and to the reduction of head motion
within experiments. These points are the chin rest, ear bars and head piece.
The chin rest consists of a hard rubber stopper (2.4 cm height) secured on
the bottom of the cradle. This piece prevents downward motions of the
head, ensures accuracy of the height and angle of head placement, and
helps prevent the ET from being inadvertently dislodged or compressed
(see Figure 8A). The ear bars are cylinders (3.7 cm length × 0.4 mm
diameter) tapered at their insertion tip to be non-rupturing. They are
positioned at a height of 4.2 cm from the floor of the cradle. The ear
bars are held in a 0.5 mm slot with a tapped opening on the posterior
side for a delrin plastic thumb screw. Prior to insertion into the ears, the
bars are coated with topical anesthetic (Lidocaine HCL Jelly, 2%, Teva).
The head piece, as shown in Figure 8C, consists of a horizontal rubber
slab joined at 2 points to a ‘Y’ support. The anterior-posterior position of
the Y-piece is adjusted to compensate for the head dimensions of each
monkey. To achieve identical cradle placement across scan sessions, a
peg is inserted through an opening in the posterior base of the cradle
into a hole in the gradient coil insert.
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Tactile Sensory Stimulation
We have conducted successful tactile and visual BOLD fMRI of SM in
the 9.4 T scanner: Because the focus of our studies thus far has been on
the tactile, we describe our approach in that modality here. In tactile
experiments, accurate between-session hand placement and consistent
site of stimulus delivery within a session are essential. To provide stabil-
ity, the left hand of the monkey is fitted into a custom rubber mold made
from a double casting of the monkey’s hand (Mix-a-Mold, AMACO, In-
dianapolis, IN), the positive is then cast into a rubber mold (PMC-121,
Smooth-on, Inc., Easton, PA). This mold regularizes hand placement,
separates the fingers and damps non-specific vibration transmission.
The hand mold is mounted to an L-shaped acetyl plastic housing (2.0 cm
thickness) that also secures the vibrotactile elements. The finger position
is maintained via plastic cable ties, and two velcro strips maintain the
wrist. Figure 3 shows a schematic of the stimulator. Piezoelectric (PZ)
elements (Noliac, Denmark: 3.2 × 0.78 × 0.18 cm) are used to deliver
mechanical vibrotactile stimulation to the glabrous surface of the hand.
These elements are favored because their multi-layered PZ synthesis
provides a high relative force generation and a high fundamental reso-
nance (typically >700 Hz in a fixed-free condition). Stimuli are usually
applied to the distal and middle segments of the second digit, though
fMRI-compatible stimulators have been made for human and monkey
with a greater number of elements (e.g., 9 independent stimulators).
Each PZ is equipped with a 3 mm diameter delrin post that vibrates per-
pendicular to the skin surface through an opening in the mold. A third
PZ element secured at a 2.0 cm distance from the hand (not in contact

Figure 3 Vibrotactile stimulator A side profile schematic of the tactile stimula-
tor in contact with the digit tip. The PZ element is mounted in a plastic brace,
and a small plastic post that contacts the skin is slotted into a base affixed to the
PZ element.
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Figure 4 Stimulus calibrator Left A picture of the calibrator hardware set-up.
Waveform signals are sent from the calibration software (portable computer,
BSI) specifying the desired frequency and amplitude of PZ vibration. Actual PZ
excursion is measured via an optical sensor mounted on a micromanipulator
and captured by an analogue input PCI card (IOTech). An immovable steel
platform is used to eliminate vibration that arises from non-PZ sources. Right
A plot of PZ displacement as a function of driving voltage. These data were
obtained while the monkey’s finger was in contact with the vibrating probe.
The asterisk indicates the voltage (150 V) and displacement (∼80 µm) typically
used in our tactile studies.

with the skin) has been used to deliver vibration to the device but not
directly to the finger, to emulate non-specific effects of PZ activation
during control, non-stimulation runs.

Tactile presentation is controlled via custom software developed in
MATLAB. Using a portable computer (BSI) with slots for four full sized
PCI cards, signals are sent through an array of National Instruments
digital output cards connected to a BNC panel. Currently, the system
controls up to 16 tactile and 2 audio independent channels, though the
software is designed to accommodate additional output. For a typical
experiment, a ≤10V signal is sent through a 15X amplifier (Sensor Tech-
nologies) to the PZ. During imaging, timing of stimulus presentation is
yoked to data sampling to prevent errors due to drift in scanner tim-
ing: The scanner sends a TTL output at the beginning of the scan that is
routed through a digital port on the BNC panel. The MATLAB program
registers this pulse and triggers the program to output a signal that con-
tains the programmed on/off durations, waveform type, amplitude and
frequency.

To calibrate the amplitude of PZ movement, we built an optical sensor
system with custom software. This calibration is important for reducing
between-session variability in the output of the PZ, as these elements
can degrade steadily or suddenly over time. As shown in Figure 4 (left),
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the optical sensor (Fairchild Semiconductors, QVE11233) is mounted on
a micromanipulator, and recordings are made on an immovable steel
platform. While the plastic post extension of the PZ is in contact with the
monkey skin, the optical sensor registers changes in the displacement of
the vibrating probe by detecting motion of a side attachment that breaks
the light beam, and changes an input driving voltage. An example of a
calibration experiment is shown in Figure 4 (right). The input voltage
used in typical tactile experiments, indicated by an asterisk, evokes ∼80
µm of indentation to the skin surface.

MR Aspects of the Experimental Approach

The MRI system we currently use is a Magnex Scientific 9.4 T 20 cm inner
diameter horizontal bore magnet, with a gradient strength of 200 mT/m
with fast gradient switching (100 µs rise time). The system is equipped
with Bruker Avance console, and has an effective ID of 11.7 cm with
the gradient inset. The advantage of higher static field strength (B0) is
increased SNR, due to the greater proportion of proton magnetization,
with the net gain of SNR increasing as the square root of the static
magnetic field (Gati et al., 1997). One benefit of greater SNR is the gain in
anatomical resolution, which permits the identification of subtle features
(e.g., cortical laminae). Similarly, for functional imaging purposes, the
contrast to noise ratio of magnetization differences between oxy- and
deoxy-hemoglobin is much greater at higher field (Yacoub et al., 2003;
Yacoub et al., 2005), enhancing the BOLD signal.

The BOLD signal is the most common contrast agent used to mea-
sure functional activity, and there are many excellent reviews that de-
scribe what is known of its neural origins (Arthurs & Boniface, 2002;
Logothetis & Pfeuffer, 2004; Logothetis & Wandell, 2004). In brief, the
BOLD signal depends on blood flow, blood volume and the ratio of de-
oxygenated to oxygenated hemoglobin. An increase in neural activity
evokes a concomitant increase in the BOLD signal due to an increase in
the relative concentration of oxygenated hemoglobin that exceeds the
local requirement for oxygen.

The BOLD signal can be obtained using gradient echo (GRE) or spin
echo (SE) imaging. In GRE imaging, the BOLD effect is derived from both
microvascular (e.g., those that perfuse brain tissue) and macrovascular
(e.g., large draining veins) sources, and generally provides greater SNR
than SE. In SE imaging, a refocusing pulse reduces the contribution of
large blood vessels to the BOLD signal, thereby improving the spatial
localization of fMRI activity to the activated neural tissue (Lee et al., 1999;
Yacoub et al., 2003; Yacoub et al., 2005). For example, visually evoked
signal changes obtained with SE have been localized to the approximate
position of layer IV in cat visual cortex (the input layer), while under the
same paradigm GRE BOLD signals were observed at the cortical surface
(Zhao et al., 2004; see also Yacoub et al., 2005). Because of the increased
SNR at high-field, which helps compensate for potential loss of signal
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Figure 5 Spin echo versus gradient echo imaging Coronal images taken at
identical slice positions using GRE (TR 2.0 s, TE = 13.0 ms) and SE (TR 2.0 s, TE
= 25.4 ms) sequences. Signal loss at regions with high magnetic susceptibility
is observed in the GRE images (arrow). FOV =5.0 cm, 80 × 80 matrix, 625 µm,
1 mm slice thickness.

when not using GRE, SE imaging provides an excellent opportunity to
reveal the spatial specificity of the BOLD signal.

The second reason for choosing SE imaging relates to signal loss at tis-
sue interfaces. Each tissue type (e.g., bone, dura, brain) exhibits its own
magnetic properties when subjected to a static magnetic field. The inter-
face at mismatched tissue types creates a local magnetic gradient that
results in an inhomogeneous magnetic field, an effect called magnetic
susceptibility. This effect is amplified at high-field, and poses a greater
challenge to imaging across a large, inhomogeneous sample. The GRE
sequence is specifically sensitive to the susceptibility effects, and signal
dropout is often seen at locations where mismatched tissue types meet
(e.g., near the sinuses and ear canal). Effects of the susceptibility induced
signal inhomogeneity on SE and GRE images are shown in Figure 5.



16 High-Field (9.4T) Magnetic Resonance Imaging in Squirrel Monkey 303

Figure 6 Single shot spin-echo pulse sequence The pulse sequence schematic
displays the frequency encoding performed along the x axis (‘Read’) with 80
points and 100 µs rise time, the phase encode along the y axis (‘Phase’) with
80 phase encode lines, and the slice excitation (‘Slice’) surrounded by crusher
gradients. The bottom line displays the occurrence of the first radiofrequency
pulse (flip angle = 90◦) and the second refocusing pulse (flip angle = 180◦) that
creates the spin echo with maximum amplitude at the echo time (TE). Data were
sampled at TE = 25.4 ms. Typical EPI parameters used for fMRI data include
a TR of 2.0 s; 17 coronal slices, 1 mm thick; FOV is 5.0 cm; 80 × 80 acquisition
matrix; reconstructed using 128 × 128 matrix with zero filling.

For the reasons highlighted above, our BOLD fMRI sequence is a
single-shot SE sequence and is depicted in Figure 6. Using this sequence,
the entire spatial frequency domain (k-space) is acquired with a single
repetition (90◦ RF, 180◦ RF pair), requiring only ∼40 ms per 2-D image
set. However, as is common in echo-planar imaging, in exchange for
rapid data acquisition, images suffer from geometric image distortions.
The fMRI acquisition can stretch or compress images when compared
to the non-distorted anatomical images. These geometric distortions
may be caused by magnetic susceptibility and are particularly severe
at high-field strengths. Distortion reduction requires improvement in
the magnetic homogeneity over the sample volume by optimizing elec-
tric currents in shim coils. Although we had some success with auto-
mated shimming routines (e.g., FASTMAP; Greuetter & Tkac, 2000), the
improvements were modest, and we found that manual shimming im-
proved image quality substantially. Using this technique, the sample
volume was determined to be a cuboidal region of interest that encom-
passed the entire monkey brain: Manual shimming was then performed
using linear, second and higher-order polynomials. The results of such a
shim are shown in Figure 7, where EPI slices and analogous anatomical
images are comparable in global brain shape and local features. Each
monkey subject has a unique shim parameter, and these provide a good
initial shimming basis for each fMRI session.

The surface coil plays an important role in optimizing SNR. Fea-
tures to be considered in designing or purchasing a coil include its size,
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Figure 7 EPI and corresponding anatomical images The fMRI and correspond-
ing anatomical images taken during a single imaging session with coil C in Fig-
ure 8. Numbers indicate slices moving from the anterior to posterior direction.
Anatomical images were collected with a RARE sequence. To achieve the grey-
white matter contrast shown in RARE images, the following parameters were
used; TE = 12.447 ms, TR = 10000 ms, RARE factor = 8, 256 × 256 matrix, 17
× 1 mm thick slices, 195 µm in-plane, 1 mm thick; acquired in 340 s. The EPI
images do not exhibit gross distortions in geometry and mirror the anatomical
data in the right to left and superior to inferior dimensions. The arrow (slice 5)
points to layer IV in primary somatosensory cortex.

position and shape. In choosing the size of the coil, a compromise must
be made between greater SNR with smaller coils or greater depth of
coverage with larger coils. Irrespective of size, the SNR will decrease
with increasing distance from the center of the coil, thereby limiting the
sensitivity of the coil to roughly its radius. Our custom-made coils are
shown in Figure 8. The coils in Figure 8A and 8C are similar in size,
and when positioned 1.0 cm above the ear bars, provide excellent full
brain coverage. The oval coil in 8C is smaller in length and width than
the circular coil (8A) and fits snuggly around the circumference of the
SM head, maximizing SNR for our preparation. The images shown in
Figure 7, and fMRI data reported here, were taken with the coil shown
in Figure 8C. The small coil in Figure 8B provides increased SNR over
a small circumference and depth, and is used in applications requiring
high resolution over small spatial volumes. All of the coils shown in
Figure 8 are ‘receive-transmit’—they transmit RF pulses and receive the
subsequent signal. Adjustable capacitors were incorporated into those
shown in Figure 8B and 8C, to compensate for different loads. The coil
in Figure 8A was tuned outside of the magnet to 400 MHz (Larmor
frequency for the 9.4 T magnet).

Anatomical MRI Paradigm
Anatomical imaging is most frequently performed with RARE (Rapid
Acquisition Relaxation Enhancement) and MSME (multi-slice multi-
echo) sequences. Using either of these SE sequences, high resolution
and high gray-white matter contrast images are acquired. For our pur-
poses, the RARE sequence is ideal for fast 2-D anatomy to align with
fMRI EPI data. Examples of RARE images are shown in Figures 7 and
10A (bottom). The data shown in Figure 7 was acquired in 340 seconds
and reveals the laminar structure of primary somatosensory cortex (SI:
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Figure 8 Receive-transmit custom-made surface coils A. Top view of 7 cm
circular coil mounted in plastic and secured to the cradle. This coil is used for
3-D anatomical imaging with a 6.4 cm FOV. B. A 2 × 1 cm oval coil. This coil is
used for high-resolution anatomy and fMRI over a small region (FOV = 3.0 cm).
The matching and tuning capacitors for coils A and B are accessed remotely by a
tuning rod. C. A 6 × 5 cm oval coil (FOV = 5.0 cm). Also shown are the chin rest
and Y-piece head restraint. Once a coil is positioned, the head piece is swiveled
forward and secured by a second screw. The rubber end of the Y-piece sits at the
level of the brow on the forehead and is manipulated in the anterior-posterior
direction by a screw.

slice 5, arrow). The MSME sequence is a conventional SE anatomical
acquisition, and requires a longer time scale (TR × 256, if a 256 × 256
matrix). Examples of MSME are shown in Figure 10A (top) and 10B,
and also are used in later figures for overlaying fMRI statistical maps.
Either sequence is used to collect data over the entire brain or a region
of interest using slice thicknesses ranging from 80–500 µm.

Functional MRI Paradigm and Data Analysis
In our current studies, we have had success applying vibrotactile stimuli
in a blocked design with alternate periods of stimulation (8 seconds) and
no stimulation (12 seconds). The off-on pattern is repeated eight times
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(8 epochs) during a single functional scan for a total run length of 160 s.
Due to the known decreases in BOLD signal with isoflurane anesthesia
(Disbrow et al., 2000), averages across several runs are required to detect
stimulus-evoked activity. All runs deemed acceptable (motion of less
than 200 µm) are averaged for each stimulus condition (∼10–15 runs of
160 s each) to create a grand average for each stimulus condition. Using
an orthogonalized boxcar correlation and the AFNI software, the grand
averaged time series is correlated with the hypothesized hemodynamic
response function. The resulting statistical maps are typically smoothed
at 625 µm (one pixel, in-plane) or not spatially smoothed.

Stimulus conditions include vibration of one focus on the distal digit
tip, and of two foci placed on the distal and middle segment of the same
digit, vibrated simultaneously or with inter-stimulus onset asynchrony
of 100 ms offset (Nelson et al., 2005). The latter stimulus condition elicits
the percept of tactile apparent motion in humans (Kirman, 1974; Apari-
cio and Moore, 2005).

A consistent challenge in functional imaging is to find an appropriate
‘significance’ level for the determination of functional activation. While
the risk of false positives is high due to the enormous sample space (often
thousands of voxels), many corrections are overly conservative (Locas-
cio et al., 1997). To determine criteria for deeming activation statistically
significant, we constructed statistical maps during ‘no stimulus’presen-
tation, in which a PZ embedded in an identical holder just distal to the
hand was activated, but without direct skin contact. This stimulus condi-
tion is used to estimate the non-physiological noise potentially induced
by the PZ elements. The runs were acquired in the same session in alter-
nation with vibrotactile stimulation, and an equivalent number of ‘no’
stimulus runs were acquired (10–15). Using data from several sessions
across 2 monkeys, we empirically defined the probability of aberrant
activation in our scanning conditions using the coil shown in Figure 8C.
Specifically, the correlation threshold level at which p = 0.005 in the
‘no’ stimulation data—5 aberrant voxels are activated in 1000 voxels—
is typically set as our threshold in the vibrotactile scans. Figure 9 shows
an example of non-overlapping distributions of correlation values for a
stimulus run versus a ‘no’ stimulus run. As noted by the black line and
asterisk in this example, significance was determined at r = .12.

Results

Anatomical Images at 9.4 T

The ability to obtain detailed anatomy is a clear advantage of imaging
at high-field strengths. A hallmark of high-resolution brain MRI is the
ability to detect layer IV in primary visual cortex. This signature feature
is known as the stria of Genari (Gross, 1998), and reflects the dense cell
body and thalamocortical axonal termination layer in primary visual
cortex. The stria can be seen with the naked eye in unstained tissue, and
is easily observed in images at high-field strengths. Compared with the
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Figure 9 Correlation threshold criteria Plotted are the frequency distributions
of correlation values for a vibrotactile condition and a ‘no’ stimulus condition,
during which a PZ element attached to the hand holder was driven using the
on/off paradigm but was not in direct contact with the skin surface. Thresholds
in functional imaging studies were empirically determined using ‘no’ stimu-
lus false positive distributions to define the correlation threshold cutoff for
p < 0.005. In this example (one slice with ∼1000 voxels), only responses in
the stimulus condition with correlation values greater than r = .12 would be
considered significant (black bar and asterisk).

prominent layer IV in visual cortex, layer IV in primary somatosensory
cortex (SI) is more subtle. However, as shown in the coronal slices in Fig-
ure 10A (bottom), at 9.4 T with an in-plane resolution of 195 µm, layer IV
in SI is clearly defined. These coronal slices were taken at a slice travers-
ing the central sulcus (CS: shown in a 3-D rendered brain in the top image
in 10A). A clear macro-anatomical marker for the ‘Rolandic’ cortex of
the SM can also be appreciated in this coronal image, the thickening
and bending of the gray matter at approximately mid-way through its
medio-lateral course.

Another preparation that we have found useful for high-resolution
imaging is the post-mortem SM brain. While there are obvious issues in
making inferences from this non-living brain tissue preparation, high-
resolution anatomical scans can be run for several hours. An example of
such an image is shown in Figure 10B (40 hour scan). In the post-mortem
SM brain, layer IV in SI is readily observed (thin arrow), as are electrode
track penetrations (thick arrow). This approach allows relatively precise
localization of the track orientation and depth. Using high-field imaging,
electrode track information could also be obtained from living primates
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Figure 10 Anatomical imaging, primary somatosensory cortex Top A three di-
mensional volume rendered image of a SM brain to display locations of the
central sulcus (CS), lateral sulcus (LS) and superior temporal sulcus (STS). The
3-D image was acquired with coil A in Figure 8 using an MSME sequence.
Bottom Coronal images taken through the central sulcus. Data were acquired
using a RARE sequence, with an oval coil (3 × 2 cm, not shown) positioned
unilaterally over the central sulcus (FOV 5.0 cm isotropic, 195 µm in-plane, 1
mm slice thickness). Layer IV appears darker than the surrounding gray matter
in these T2 images, indicating a higher density of white matter. B. An image
from a post-mortem monkey brain imaged with small oval coil (coil B, Figure
8) taken through the central sulcus region. Note the prominent layer IV and the
microelectrode track penetrating through all layers and white matter (arrows).
Data were acquired using MSME (FOV 3.0 × 2.5 × 2.5 cm; matrix 300 × 256 ×

256; isotropic resolution 100 µm). Four echoes were collected (15 ms, 30 ms, 45
ms, 60 ms), data shown are from TE = 15 ms. The scan lasted 40 hours.

and could ultimately reduce the need for euthanasia and increase the
lifespan of research monkey subjects.

Functional MRI at 9.4 T

Electrophysiological maps in SM reveal discrete representations of the
distal fingertips in areas 3b and 1, separated by ∼2–3 mm in the anterior-
posterior axis (Sur et al., 1982). Vibrotactile stimulation to the second
digit tip was, therefore, predicted to evoke BOLD signal increases in ar-
eas 3b and 1, paralleling these maps. In the example shown in Figure 11,
activation occurred in an anterior focus, putative area 3b, and at a region
located ∼2 mm posterior, putative area 1. Anatomical and electrophysi-
ological considerations from other species suggest that the more poste-
rior activation may also encompass part of area 2 (Pons et al., 1985). The
distance between the fMRI activation foci is similar to the area 3b to 1
distance obtained from electrophysiology maps (Figure 11A, top). The
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Figure 11 Functional imaging, primary somatosensory cortex A. Top diagrams
Schematic figures from Sur et al., (1982) depicting areas 3b and 1 in the SM. Top
inset A sagittal slice through a 3-D rendering showing the position of the central
sulcus (yellow arrow). Below Functional activity overlaid on sagittal images
showing activation of putative areas 3b and 1/2 (p3b and p1/2). B. p3b and
p1/2 activation superimposed on coronal images. A characteristic thickening
of the cortical mantle is localized to the p3b activation (see also Figure 10). The
distance between the p3b and p1/2 activation regions is between 2 and 3 mm,
as predicted by electrophysiology maps (A, top).

ability to distinguish between these regions in the SM requires higher
spatial resolution than is typically employed in human imaging at lower
field strengths (e.g., 3 mm voxels: Moore et al., 2000; Nelson et al., 2004).
In the medio-lateral direction, the location of each BOLD focus shows
good correspondence to the location of the 2nd digit receptive field maps
in areas 3b and 1, and the thickening of the central sulcus in Figure 11B
(bottom) again provides an anatomical correlate of the Rolandic region.

Time courses for the putative area 3b and 1/2 activation clusters are
shown in Figure 12. The figure on the left reveals the full time course
over the eight stimulation periods (shaded in gray) for 3b and 1/2. The
response patterns are similar for the two different clusters, including
within-epoch parallels (e.g., see the 4th stimulation epoch). A decline of
stimulus-evoked response towards the end of the EPI run was also ob-
served, an effect commonly observed in human fMRI (CIM and AJN, un-
published observations). The ‘on-off’ cycle averaged across all 8 epochs
is shown on the right and reveals a similar response in both regions.

The lateral sulcus of New World monkeys has several distinct so-
matosensory regions (Krubitzer et al., 1995). An example of SM activa-
tion in this region is shown in Figure 13 with recent data from the New
World Titi monkey (top right: Coq et al., 2004). From the fMRI statistical
map, three distinct activation foci were observed. In accordance with the
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Figure 12 BOLD signal time courses for activation in putative areas 3b and
1/2 Left Time series from p3b and p1/2 averaged over 10 EPI runs. Right The
average ‘on/off’ stimulus cycle (averaged from the full time series on the left).
The vibrotactile stimulus ‘on’ period is indicated with gray background.

Figure 13 Functional imaging, lateral sulcus A. Top left An fMRI statistical
map of three distinct activation foci in the lateral sulcus, the putative ventral
somatosensory (pVS), second somatosensory (pS2), caudo-medial (pCM) areas.
Top right A schematic from Coq et al., (2004) showing the position of tactile re-
ceptive fields and cortical areas in the lateral sulcus of New World Titi monkeys.
Bottom left Average BOLD time courses for pVS voxels during tactile stimula-
tion and also ‘no’ stimulation. B. An average BOLD time course for two sessions
with different levels of isoflurane anesthesia. Session A (1.0% isoflurane) re-
veals a slower onset and an initial negativity in response to the vibrotactile
stimulus than Session B (0.65%), differences that may reflect anesthetic concen-
tration differences. The vibrotactile stimulus ‘on’ period is indicated with gray
background.
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electrophysiology map, two loci have been labeled the putative ventral
somatosensory (pVS) and secondary somatosensory (pS2) regions. A
third activation focus, located on the inferior bank of the lateral sulcus
is labeled the putative caudo-medial region (pCM). This area may be
the homologue of macaque area CM, a region that is responsive to both
auditory and tactile stimulation (Schroeder et al., 2001).

While preliminary, our data also suggest that higher field imaging al-
lows observation of activation at deeper anesthetic levels than at lower
fields. Previous studies of lateral sulcus somatosensory regions in the
human and macaque at 1.5 T reported that 0.8% isoflurane anesthesia
suppressed all significant BOLD activation, even when using a GRE
sequence (Disbrow et al., 2000). We have, however, consistently ob-
served activation at higher isoflurane levels using SE imaging and the
paradigms described above. The percent signal change at 0.65% and
1% were approximately equivalent, though the lower anesthetic level
appeared to have a faster onset time.

Conclusion

Squirrel monkey imaging at 9.4 T is a promising technique for non-
invasive studies of the primate brain, and the anatomical and func-
tional resolution obtained with this approach is complimentary to elec-
trophysiological and optical techniques. We emphasize in closing that
the SM model presented is applicable to studies beyond the tactile-
related examples described. This model is also ideal for performing lon-
gitudinal studies in lesioned or pathological states. Future directions in
our research include parallel sensory mapping in other modalities—
we are currently conducting visual fMRI studies with a projection
beam focused within the bore, and have obtained preliminary data
demonstrating significant activation of multiple visual cortical areas.
Another advantage of using a smaller animal in a higher field is the
relatively greater resolution obtained in subcortical structures, making
this preparation potentially ideal for studies of subcortical anatomy and
functional organization of structures such as the thalamus and basal
ganglia.

Another important future direction is the enlistment of contrast
agents. While there is a clear advantage of using BOLD—because an
identical measure can be obtained in humans—animal models permit
the use of contrast agents that enhance functional signals and, po-
tentially, provide a closer match to the electrophysiological signals of
interest. To this end, we are beginning to scan with Dextran-coated
Monocrystalline iron oxide nanoparticle (MION). This contrast agent
has been used in repeat monkey and rat imaging studies where en-
hanced contrast to noise has been observed (Leite et al., 2002; Vanduffel
et al., 2001), even at the high field strengths employed here (Mandeville
et al., 2004).
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