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Abstract
Electrocorticography (ECoG) has emerged as a new signal platform for brain–computer
interface (BCI) systems. Classically, the cortical physiology that has been commonly
investigated and utilized for device control in humans has been brain signals from the
sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates,
such as the speech network, could be used to further improve on or complement existing
motor-based control paradigms. We demonstrate here for the first time that ECoG signals
associated with different overt and imagined phoneme articulation can enable invasively
monitored human patients to control a one-dimensional computer cursor rapidly and
accurately. This phonetic content was distinguishable within higher gamma frequency
oscillations and enabled users to achieve final target accuracies between 68% and 91% within
15 min. Additionally, one of the patients achieved robust control using recordings from a
microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical
network associated with speech could provide an additional cognitive and physiologic
substrate for BCI operation and that these signals can be acquired from a cortical array that is
small and minimally invasive.

S Online supplementary data available from stacks.iop.org/JNE/8/036004/mmedia

1. Introduction

The use of electrocorticographic (ECoG) signals has recently
gained substantial interest as a practical and robust platform

8 Author to whom any correspondence should be addressed.

for basic and translational neuroscience research. This interest
is based in part on ECoG’s robustness, but also on its tradeoff
of signal fidelity and invasiveness. Compared with scalp-
recorded electroencephalographic (EEG) signals, ECoG has
much larger signal magnitude, increased spatial resolution
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(0.1 versus 5.0 cm for EEG), and higher frequency bandwidth
(0–500 versus 0–40 Hz for EEG) (Ball et al 2009, Freeman et al
2003, Boulton et al 1990, Slutzky et al 2010). Of particular
note, amplitudes in frequencies higher than 40 Hz carry
information that appears to be particularly amenable to BCI
operation. These signals, which are challenging to detect with
EEG, are thought to be produced by smaller cortical assemblies
and show stronger correlations with neuronal action potential
firings than classic lower frequency rhythms (Ray et al 2008,
Heldman et al 2006). Furthermore, these high-frequency
changes have also been associated with numerous aspects of
speech and motor function in humans (Crone et al 1998, 2001a,
2001b, Leuthardt et al 2004, Schalk et al 2007b, Wisneski
et al 2008, Pei et al 2011). Because ECoG electrodes do not
penetrate the brain, they have been shown to have superior
long-term stability in different animal models (Bullara et al
1979, Loeb et al 1977, Yuen et al 1987, Margalit et al 2003,
Chao et al 2010). In addition to its superior long-term stability,
a study recently showed that the neural substrate that encodes
movements is also stable over many months (Chao et al 2010).
In summary, there is substantial evidence that ECoG should
have critical advantages for brain–computer interface (BCI)
operation.

Up to now, ECoG signals have been used to achieve
rapid acquisition of control in one- and two-dimensional
cursor tasks in humans using actual and imagined motor
movements (Leuthardt et al 2004, Schalk et al 2008a). It
was unknown whether other neurophysiological substrates,
such as the speech network, could be used to further
improve on or complement existing motor-based control
paradigms. Human speech has been extensively studied
using different types of neuroimaging (i.e. positron emission
spectroscopy (PET) or functional magnetic resonance
imaging (fMRI)), neurophysiological functional mapping (i.e.
magnetoencephalography (MEG) or ECoG), lesional models,
or behavioral studies (Price et al 1996, Fiez and Petersen
1998, Towle et al 2008, Sinai et al 2005, Crone et al 2001a,
Pulvermuller et al 2006, Dronkers et al 2004). These and
other studies have shown that speech processing involves a
widely distributed network of cortical areas that are located
predominantly in the temporal perisylvian regions (Specht
and Reul 2003, Scott and Johnsrude 2003). In particular,
these regions include Wernicke’s area, which is located in the
posterior–superior temporal lobe, and Broca’s area located in
the posterior–inferior frontal gyrus (Fiez and Petersen 1998,
Towle et al 2008, Billingsley-Marshall et al 2007). Other
findings have suggested that the left premotor cortex also
plays a major role in language tasks, in particular for the
planning of articulation and speech production (Duffau et al
2003, Heim et al 2002). Given the numerous cortical networks
associated with speech and the intuitive nature by which people
regularly imagine speech, the separable physiology and the
different cognitive task of utilizing speech may provide the
basis for BCI control that can be used independently or as an
adjunct to motor-derived control. Some recent studies have
begun to explore the value of these language networks for the
purpose of neuroprosthetic applications. Wilson et al (2006)
demonstrated that the auditory cortex can be used for real-time

Table 1. Demographic and clinical information for the four patients.

Age at
Cognitive Speech seizure Seizure Seizure

Patient Age Sex capacity capacity onset type focus

1 48 F Normal Normal 1.5 CP L temporal
2 45 F Normal Normal 14 CP L temporal

parietal region
3 49 M Normal Normal 45 CP L temporal
4 36 F Normal Normal 0.5 CP L frontal lobe

CP—complex partial; M—male; F—female; L—left.

control of a cursor. More recent studies have shown initial
evidence that some phonemes and words are separable during
actual speech with ECoG (Blakely et al 2008, Kellis et al 2010,
Schalk et al 2007a), but concrete evidence that BCI control
can be achieved using the speech network has been absent.

In this study, we examined the possibility that different
elements of speech, in particular real and imagined articulation
of phonemic sounds, can be used to achieve ECoG-based
device control. We demonstrate for the first time that the
electrocorticographic signals associated with speech can be
effectively used to select from one of the two choices with
minimal training. These findings further extend the cognitive
and cortical signal repertoire that may be used to functionally
augment patients with severe disabilities.

2. Patients and methods

2.1. Patients

This study included four patients (ages 36–48) with intractable
epilepsy undergoing temporary placement of a subdural
electrode array (four left hemispheric 8 × 8 grids) for clinical
monitoring to identify and resect their epileptic foci. The study
was approved by the Human Research Protection Organization
of the Washington University Medical Center. Prior to
inclusion in the study, patients gave their written informed
consent. A craniotomy was performed to place the electrode
array according to clinical criteria (figure 1). Patients were
then moved to a 24 h video monitoring unit for a period of
approximately one week, during which time the data for this
study were collected. Patients had no prior training on a BCI
system. Demographic and clinical information for each of the
four study participants is shown in table 1.

2.2. Signal acquisition

Electrode arrays (AdTech, Racine, WI) consisted of 64
electrodes (8 × 8) spaced 10 mm apart, with a 2.3 mm
diameter exposed surface. Additionally, subject 2 had an
experimental microarray placed. This array consisted of
16 microwires, 75 μm in diameter, that were spaced 1 mm
apart (figure 1). Electrocortical signals were acquired using
g.tec biosignal amplifiers (Graz, Austria). All signals were
internally sampled at 38.4 kHz with a 6.6 kHz low pass filter.
For patients 1–3, the signals were then digitally bandpass
filtered within the amplifiers between 0.1 and 500 Hz, and
subsequently downsampled to a 1200 Hz output sampling rate.
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Figure 1. Micro and macro grid arrays. (A) and (B) Micro array size and configuration. (C) Intraoperative view of the macro grid array.
(D) Lateral radiograph of the skull with a macro array.

The data for patient 4 was digitally lowpass filtered at 4800 Hz
and downsampled to 9600 Hz. A Dell computer running
the BCI2000 software, a platform for real-time stimulus
presentation and time-locked acquisition and analysis of brain
signals, was used to acquire, process and store the data (Schalk
et al 2004, Schalk and Mellinger 2010). The amount of data
collected from each subject varied depending on the subject’s
physical health and willingness to continue.

2.3. Screening for control features

Patients underwent initial screening to identify control features
for use in subsequent closed-loop control experiments. This
screening procedure began with an experiment in which ECoG
signals were recorded while the subject either overtly (patient
1, 2, and 3) or covertly (patient 3 and 4) expressed a series of
four phonemes (‘oo’, ‘ah’, ‘eh’, and ‘ee’) or rested. Cues for
the rest and phoneme tasks were presented as words on a video
screen that was positioned about 75 cm in front of the subject.
Cues were presented in random order for a period of 2–3 s,
during which the subject repeatedly performed the specified
action (e.g., to repeatedly say ‘oo’). During intervals between
cued activity, patients were instructed to remain inactive.

The data collected during this screening experiment were
converted to the frequency domain by autoregressive spectral
estimation in 2 Hz bins ranging from 0 to 550 Hz. For each
electrode and frequency bin, candidate features were identified
by calculating the coefficient of determination (r2) between
the ‘rest’ spectral power levels and the activity spectral power
levels for each phoneme, and also between spectral power
levels for all possible phoneme combinations. Those ECoG
features (particular electrodes and frequency bins) with the
highest r2 values, i.e. the features that had most of their
variance explained by the task, were chosen as control features

for subsequent closed-loop control experiments. Electrode
selection was further constrained to anatomic areas associated
with speech processing (i.e. motor cortex, Wernicke’s, and
Broca’s area) (see figure 2). Because the microgrid had
to be positioned outside the clinical grid, this was placed
more peripherally on the dorsal premotor cortex. These
areas were determined by the electrode’s Talairach coordinate,
which was derived using lateral radiographs and the getLOC
MATLAB package (Miller et al 2007) (see figure 3 for
electrode locations).

2.4. Closed-loop control experiments

Using the ECoG features and their associated tasks that were
derived using the screening procedure above, the patients
participated in closed-loop control experiments (figure 4)
during which the patients’ objective was to perform the
particular phoneme articulation task so as to move a cursor
on a screen along one dimension to hit a presented targeted
on either side of the screen. Two scenarios were tested,
(1) overt phoneme versus phoneme (patients 1 and 2); and
(2) imagined phoneme versus rest (patients 3 and 4). Cursor
velocity was derived from the ECoG features in real-time by
the BCI2000 software package as follows. The power levels of
the identified ECoG features (i.e., the power in the particular
frequency bin at the particular electrode) were weighted and
summed in order to provide the patient with an intuitive means
of cursor control. Features with task-related power decreases
were first assigned negative weights so that all features had
task-related score increases. For patients who achieved control
using two different phonemes, one phoneme-related feature
was weighted to give the cursor a positive score and the other
a negative score to create a push–pull control mechanism. For
patients that achieved control using a single phoneme and rest,
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(C) (D)

Figure 2. Screening for control features. Patients underwent initial screening to identify control features for use in subsequent closed-loop
control experiments. Exemplar data from patient 1 illustrates the screening process. The screening data was converted to the frequency
domain by autoregressive spectral estimation. This exemplar feature plot (A) shows the r2 values between trials when the patient spoke the
phonemes ‘oo’ and ‘ee’ for 25 trials of each. For each electrode and frequency bin, the significant task related spectral power increases or
decreases were identified by calculating the r2 value between the baseline spectra and the activity spectra for each of phoneme speech tasks
and between the phonemes. Note that the greatest contrast occurs on electrode 48 between 75 and 175 Hz. Those ECoG features (i.e.
particular electrodes and frequency bins) with the most substantive changes in power (B) that accounted for a significant amount of the
variance between the tasks (as indicated by their relatively higher r2 values(C)) were chosen as potential control features for the subsequent
closed loop control experiments. (D) The anatomic distribution of r2 values for the control frequencies (75–100 Hz). The location of ECoG
features used for BCI control was constrained to perisylvian areas involved in the speech network.

the phoneme feature was weighted to give the cursor a positive
score. To translate the summated feature power levels into a
cursor score, the scores were normalized. Using the weighted
and summed features, the normalizer was trained on several
trials for each direction in which the patient attempted to use
the control tasks (i.e. speaking phonemes, imaging phonemes
or resting) to control the cursor. After the training period
(approximately 1 min), the mean and variance of the weighted
and summed features from the training trials were calculated.
The mean and variance were then used to normalize the scores
to have zero mean and unit variance. The normalized score
then set the cursor velocity. Cursor velocity was updated
every 40 ms and based on spectral estimates acquired over
the previous 280 ms. Patients performed consecutive trials
attempting to move the cursor to targets. Each trial began
with the appearance of a target that was placed randomly at
the left or right side of the screen. After a 1 s delay, a cursor
appeared in the middle of the screen with its one-dimensional
left or right movement driven by the subject’s ECoG signals,
as described above. The subject would perform the particular
task or rest in order to move the cursor toward the target on

the left or right of the screen, respectively. Each trial ended
with either success (cursor hit the target), failure (cursor hit
side of the screen opposite the target), or a time-out (time ran
out before success or failure occurred, 8–15 s). Trials were
grouped into blocks of up to 3 min, separated by rest periods
of approximately 1 min. Accuracy, calculated as the number
of successes divided by the total number of trials, was assessed
after each block. Performance curves were assessed over
the entire duration of the closed-loop experiments (multiple
blocks) after training with a particular task and associated set of
control features. Chance performance levels were determined
by running 32 blocks of 425 control trials using only white
Gaussian noise signals. The mean chance performance was
46.2% (2.7% SD). Patients performed between 61 and 139
trials for control (patient 1, 98 trials; patient 2, 139 trials;
patient 3, 61 trials, patient 4, 69 trials.)

3. Results

Each subject demonstrated notable widespread cortical
activations associated with overt and imagined phoneme
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Figure 3. Electrode localization. The electrode positions for each patient are shown on the Montreal Neurologic Institute standardized
brain. These sites were determined by the electrode’s Talairach coordinate, which was derived using lateral radiographs and the getLOC
MATLAB package (Miller et al 2007). The electrodes used for device control are indicated in red.

Figure 4. Closed loop control with real and imagined speech.
Experimental setup for a closed-loop control task. On screen cursor
moves toward target with performance of appropriate phoneme
articulation. Cursor movement is determined by pre-screened
control features from the ECoG signals recorded directly from the
patient’s cortex.

articulation. In particular, this is demonstrated in the classic
high gamma band (75–100 Hz) that has been used for
speech mapping in the past (Wu et al 2010) (see figure 5).
Additionally, in each subject, particular locations and ECoG
frequencies separated phonemes from rest, and also phonemes
from each other. These locations were in Wernicke’s area
(BA 40), auditory cortex (BA 42 and BA 22), premotor cortex
(BA 6), and sensorimotor cortex (BA 3). For each of the
patients, one or more sites were utilized to either distinguish
the phoneme articulation versus rest (subjects 3 and 4), or
one phoneme versus another phoneme (subjects 1 and 2)

Table 2. Closed loop speech BCI performance data.

Task Brodmann Frequency Final
Patient (direction) area used accuracy

1 EE—right 42 92.5–97.5 Hz 91%
OO—left

2 OO—right 6 410–420 Hz 76%
AH—left

3 AH—right 40 75–100 Hz 73%
Rest—left

4 EE—right 3 40 Hz 69%
Rest—left 22 560 Hz

43 550 Hz

(summarized in figure 6). Figure 3 illustrates the cortical
location of each patient’s electrodes highlighting the electrodes
used for online control. Consistent with findings by Gaona et al
2011 that demonstrated significant nonuniform behavior of
gamma activity during speech tasks, we observed that a cortical
activation for different phonemes could occur at different
gamma frequencies, even within the same location (Gaona
et al 2011, #1187). These frequencies varied substantially
and occurred as high as 550 Hz. Also of note in the patient
who was screened for both real and imagined phonemes, the
ECoG differences, with regards to their topographical and
frequency distribution, were often distinct between real and
imagined phoneme articulation. These differences are shown
for subject 3 in color-coded time-frequency plots with the
correlate anatomic location (figure 7).

The time course of the subject’s performance during
online control is shown in figure 8. Final target accuracies for
all patients were between 68% and 91% (chance performance
= 46.2%). Closed-loop control experiment durations ranged
from 4 to 15 min. Table 2 summarizes the tasks performed,
ECoG features used, and final accuracies achieved by the

5



J. Neural Eng. 8 (2011) 036004 E C Leuthardt et al

Figure 5. Cortical activation during real and imagined phoneme articulation. Topographic distribution of cortical activation for each patient
as represented by statistically significant (p < 0.001) r2 values increases in classic high gamma frequency amplitudes (75–100 Hz) during
real and imagined speech articulation. Yellow row represents topographic distribution of cortical activation associated with overt
articulation screening (patients 1–3). Blue row represents topographic distribution of cortical activation associated with imagined
articulation screening (patients 3 and 4).

(A) (C)

(B) (D)

Figure 6. Summary of screening data for control signals. The optimal comparison of various phoneme articulations against each other or
against rest is shown for each subject. In the r2 versus frequency line plots, the dotted red line represents a p-value cutoff of p < 0.001 for
the r2 values displayed. The data from these line plots are anatomically derived from the site identified by the star. These sites were also
chosen as subsequent control features. The yellow bar represents the frequency that was chosen for control. The color distribution on the
adjacent standardized brains represents the topographic distribution of the maxima and minima of r2 values acquired for the conditional
comparisons of the selected frequency band.

patients during each of the control experiments. Data are
shown in figure 9 to demonstrate the different topographic
and spectral activations associated with distinct phoneme
articulations.

Our findings demonstrate that there are widespread
variations in topographic activations between different

phoneme articulations that provide signals that could be used
for device control. Such differences between phonemes were
also present on the microscale. Subject 2 had a microgrid
that was placed over the dorsal premotor cortex. The feature
plot in figure 10 demonstrates anatomically and spectrally
diverse changes that occurred at very high frequencies that
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Figure 7. Difference between real and imagined speech. Time frequency plots from three exemplar electrodes (patient 3, sensorimotor
cortex, angular gyrus, and the temporal lobe) that demonstrate substantial differences in power modulation depending on whether overt or
imagined speech screening was performed. Time zero indicates the time when the visual cue for a phoneme was presented. Significant
power modulation was thresholded to a p-value < 0.05. Only power modulations surpassing that threshold are shown. Statistics were
calculated over 160 trials for overt speech and 99 trials for imagined speech.

Figure 8. Learning curves for BCI control tasks. All patients finished with greater than 69% accuracy after 4 to 15 min of closed-loop
control experiments.
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(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

Figure 9. Separable features between phoneme articulation. Data taken from subjects 1 and 2, who demonstrated significant spectral and
anatomic differences in phoneme articulation. For patient 1, in (A) and (C), the variable cortical topographies of activation that are different
between imagined ‘oo’ and ‘ee’ are demonstrated. (B) and (D) The associated variance of the power change (r2) associated with the two
conditions compared to rest across spectral estimates from 25 trials of each phoneme (positively or negatively weighted depending on the
increase or decrease of power, respectively). The power increase at 95 Hz was used to drive the cursor to the left, while the power decrease
associated with ‘ee’ drove the cursor to the right. Similarly, the large-scale spectral topographies were separable for patient 2 (E) and (G).
The control features shown in (F) and (H), however, were taken from the dorsal premotor cortex recorded with a microgrid array (shown in
figure 10). Statistics were calculated using spectral estimates from 24 trials of each phoneme. The dotted red line represents a p-value cutoff
of p < 0.001 for the r2 values displayed.

(A) (B)

Figure 10. Separable features between phoneme articulation on the
microscale. Data taken from subject 2. (A) Electrode configuration
of the micro electrode array. (B) Feature plot demonstrating the
very local high frequency change that was distinct between overt
articulation of ‘oo’ and ‘ah’. Statistics were calculated using
spectral estimates from 24 trials of each phoneme.

enabled effective control of a cursor (see movie 1, available at
stacks.iop.org/JNE/8/036004/mmedia).

4. Discussion

This paper reports the first demonstration that neural correlates
of different actual and imagined phoneme articulations can be
used for rapid and effective control of a cursor on a screen. This
is also the first demonstration that microscale ECoG recordings
can be utilized for device control in humans. These findings
further expand the range of ECoG signals that could be used

for neuroprosthetic operation, and also demonstrate that the
implant array may be quite small and minimally invasive.

The results of this work build on previous ECoG-related
and other BCI studies. Previous ECoG–BCI experiments
for device operation have thus far primarily used cortical
physiology associated with motor movements or imagery
(Schalk et al 2008a, Leuthardt et al 2004, 2006, Hinterberger
et al 2008). Generally, these have included hand movements,
tongue movements, and articulation of single words. More
recently, there has been work to extend the control repertoire
available to ECoG-BCI systems. Wilson et al (2006) showed
that non-motor regions (e.g., auditory cortex) can also be
engaged by an individual to achieve brain-derived control.
Wisneski et al (2008) demonstrated that signals associated
with ipsilateral motor intentions could also be used. Beyond
using alternate motor signals and plasticity, recent work by
Vansteensel et al (2010) has shown that a wholly non-motor
system, namely the left dorsolateral prefrontal cortex, can
also be utilized for device operation. The findings in our
present work extend this exploration into the cortical networks
associated with speech. This system may provide distinct
advantages for neuroprosthetic operation. Both real and
imagined speech are commonly utilized by an individual in
day-to-day life (we are often talking to others overtly and
ourselves covertly). Thus, using this cognitive operation
may offer the opportunity for a more intuitive and easily
operable system. In contrast, this is distinct from the
non-motor operations presented by Vansteensel et al 2010,
where to achieve control required the performance of serial
subtractions. That said, while achievement of control required
serial subtractions would probably be too distracting and less
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practical in a real-world setting, with training patients may
be able to produce the necessary control. On this topic,
it is encouraging that two of our four patients immediately
had greater than 90% accuracy without any prior training.
Moreover, all patients achieved high levels of control within
minutes, similar to results achieved previously only for ECoG-
based BCIs based on actual/imagined motor tasks (Leuthardt
et al 2004, 2006, Schalk et al 2008a).

Although performance of control with speech-related
physiology was comparable to motor physiology-derived BCI
operation, there are some notable distinctions that should be
highlighted between these two systems. Motor signals used
for BCI operation tend to be much more focal within the
primary motor cortex. Speech signals, however, engage broad
regions of the brain, focused primarily around the perisylvian
cortex (Specht and Reul 2003, Scott and Johnsrude 2003).
Consistent with this broad network, we found that there were
numerous motor and non-motor areas that could be used for
control. Given that there are multiple levels by which speech
is processed (i.e. auditory, phonological, semantic, motor
preparation/execution), this would explain why different areas
are able to enable one to distinguish phonemes at numerous
different sites. Namely, that they may represent different
elements of processing along the language hierarchy (Binder
2000, Binder et al 1994, 1997, 2000, 2003). This broad
network is attractive from an implant standpoint. The notion
that the entire perisylvian region could be used would make
a speech-derived BCI potentially more flexible in where it
would need to placed. Another key difference from the motor
BCI experience is the differences between actual and imagined
performance of the task. These findings are consistent with
other fMRI and ECoG studies that have also noted differences
in overt and covert speech (Palmer et al 2001, Pei et al 2011).
The substantial difference between actual and imagined speech
is in marked contrast to results from EEG and ECoG-based
studies that demonstrated that motor movements and motor
imagery have similar neural signatures (McFarland et al 2000,
Miller et al 2010). This is an important consideration for
optimally screening signals that will be subsequently used for
BCI control.

There has been growing interest in microscale ECoG
recordings. Recent studies have shown that a substantial
quantity of motor and speech information can be derived
from closely spaced and small electrodes on the order of
millimeters (Leuthardt et al 2009a, Kellis et al 2010, Blakely
et al 2008, Wang et al 2009). In this study, the microgrid
was located over the dorsal premotor cortex. Although the
ventral premotor cortex is putatively thought to be associated
with Broca’s region and language expression, recent studies
have demonstrated that the dorsal premotor cortex plays a
role in the dorsal stream of language processing in which
sublexical acoustic information is transformed into motoric
articulation (Hickok and Poeppel 2007, Saur et al 2008).
This study is the first to use this differential information
for BCI device control. Additionally, the small scale at
which speech information was acquired and used in this
study has important surgical implications for future brain–
computer interface applications. To date, ECoG recordings

have primarily been conducted using electrode arrays that were
made specifically for epilepsy monitoring. The role of these
grid electrodes is to achieve broad cortical coverage for the
localization of a seizure focus. As a result, they require a fairly
large craniotomy for their placement. The demonstration that
separable speech intentions can be acquired from a site in the
premotor cortex that is less than a centimeter indicates that
the practical array for neuroprosthetic applications may only
require a relatively small burr hole. This would significantly
reduce the risk of the surgical procedure for placement of the
BCI construct. Furthermore, previous studies have shown that
an epidurally acquired ECoG signal can be utilized for brain-
derived device control (Leuthardt et al 2006) and that when
compared to subdural signals in rats and humans appear to be
similar (Slutzky et al 2010). If the quality of these microscale
signals is preserved above and below the dura, a construct that
requires a burr hole and an epidural array could be even less
risky. At the same time, it is important to note that signal
characteristics in open-loop situations may not generalize to
closed-loop situations. Thus, the practical influence on BCI
performance of different recording techniques (e.g., epidural
versus subdural) needs to be empirically tested in online
experiments. The significant risk reduction could improve the
risk-benefit consideration for implantation in either medically
fragile patients (e.g., amyotrophic lateral sclerosis) or in
patients for whom the construct would be placed over normal
brain (e.g., spinal cord injury and unaffected hemisphere in
unilateral stroke). This ultimately could hasten the adoption
of the BCI technology across a wider patient population.

Although we report an exciting initial demonstration of
what may be possible using speech networks in humans
and microscale signals, there are some important limitations
and future considerations that merit attention. This study
utilized different phonemes as the cognitive task for device
operation. This was done intentionally to cover the vowel
articulation space. These phonemes, however, probably
do not access higher-order lexical processing. Thus, in
this work, lower-order phonetic processing can indeed be
used for BCI operation, but whether higher-order semantic
encoding can be used remains unknown. Fortunately, there
is preliminary evidence from several groups that consonants,
vowels, and whole words are distinguishable using macro
and microscale ECoG (Kellis et al 2010, Schalk et al 2007a,
2008b). Their utility for BCI operation will need to be studied
further. Ideally, these speech-related signals would provide
additive control features to those provided by more established
motor paradigms. The question of whether a multimodal
BCI incorporating different cognitive operations will provide
added operational benefit will also require explicit validation
(Leuthardt et al 2009b).

In summary, these results push forward the broad potential
of the ECoG signal platform for neuroprosthetic application.
The study shows that speech operations can be exploited
for control signals from small regions of a cortex within
a broad perisylvian network. Additionally, that separable
control signals are accessible on the microscale (1 mm) further
supports the notion that ECoG neuroprosthetics could be
minimally invasive.
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