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SUMMARY

Assigning behavioral functions to neural structures
has long been a central goal in neuroscience and is
a necessary first step toward a circuit-level under-
standing of how the brain generates behavior. Here,
we map the neural substrates of locomotion and
social behaviors for Drosophila melanogaster using
automated machine-vision and machine-learning
techniques. From videos of 400,000 flies, we quanti-
fied the behavioral effects of activating 2,204 genet-
ically targeted populations of neurons. We combined
a novel quantification of anatomy with our behavioral
analysis to create brain-behavior correlation maps,
which are shared as browsable web pages and inter-
active software. Based on thesemaps, we generated
hypotheses of regions of the brain causally related to
sensory processing, locomotor control, courtship,
aggression, and sleep. Our maps directly specify ge-
netic tools to target these regions, which we used to
identify a small population of neurons with a role in
the control of walking.

INTRODUCTION

To address the fundamental question of how nervous systems

generate behavior, we must first identify which neurons consti-

tute the neural circuits generating these behaviors. In model

organisms like Drosophila melanogaster, if we furthermore

obtain genetic access to these neurons, we can leverage power-

ful genetic tools for manipulating and recording neural activity

(Owald et al., 2015; Sivanantharajah and Zhang, 2015) to probe,

observe, and ultimately understand the neural computations that

give rise to behavior. Comprehensive functional mapping of

each neuron to its behavioral roles is difficult, even in model

organisms, because of the scales involved: hundreds of thou-

sands of interconnected neurons and approaching-infinite vari-

ety of behavior. To create a map of the neural substrates of a

single behavior would require the ability to monitor neural activity

at the resolution of individual cells across the entire brain in freely

behaving animals. Calcium imaging (Ahrens et al., 2013; Seelig

and Jayaraman, 2013), calcium integrators (Fosque et al.,
2015), and related approaches (Randlett et al., 2015) have

recently been used to measure neural activity in large neuronal

populations of behaving animals. As yet, these approaches are

limited in at least one of the following ways: the need to restrain

the animal or study a single behavior, spatial extent, sensitivity,

and spatial and temporal resolution. A complementary method

for mapping the neural substrates of behavior, with different

strengths and weaknesses, is to manipulate neural activity and

observe the behavioral effects. Here, we synthesized whole-

brain-behavior maps by combining the results of manipulating

activity in thousands of small neural populations across the brain

in hundreds of thousands of animals. To make these maps of the

neural substrates of behavior, we have taken an approach

analogous to early stimulation experiments used to map so-

matosensory cortex (Penfield, 1950), usingmodern genetic tools

to activate thousands of sparse populations of neurons, and

machine-vision and machine-learning methods to extract

behavior-anatomy maps from the resulting mass of data. These

maps can serve as a guide for future mechanistic and functional

studies of the neural substrates of behavior.

We leveraged a powerful resource available in Drosophila: a

collection of thousands of GAL4 driver lines, each providing con-

trol over activity in the same neuronal populations across individ-

uals (Jenett et al., 2012). These neuronal populations consist of

tens to hundreds of (often) functionally unrelated cell types

across the brain (Pfeiffer et al., 2008). While this feature of

GAL4 lines is often viewed as a limitation, it implies that many

lines will have overlapping expression, a fact we exploit to accu-

mulate evidence to identify the neural substrates of a behavior.

As these driver lines often have expression in multiple regions

throughout the brain, we could efficiently test the role of all brain

regions by systematically assaying the locomotor and social

behavior of flies across a large collection of driver lines. To this

end, we quantified the behavioral effects of neuronal activation

for over 400,000 flies across 2,204 GAL4 lines, resulting in over

100 billion annotations of behavior. The size of this dataset—

over 500 TB of video data—necessitated automation, and we

developed computer-vision-based methods to quantitatively

profile the behavioral effects of activation.We furthermoremined

high-resolution, volumetric images of the GAL4 driver line

expression patterns to create a new subdivision of the fly brain

into genetically defined subcompartments, then automatically

identified which GAL4 lines targeted each neuronal subcompart-

ment. We developed an analytical framework for combining
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Figure 1. Behavior Video Data Collection and Tracking

(A) Schematic diagram of the Fly Bowl behavior rig. Each of our two rigs consisted of four walking arenas that can be used in parallel; diagram shows a cross-

section through the two nearest arenas. i: A camerawith an IR-pass filter was positioned above each arena. ii: Visible light was provided by LED lights and diffused

through iii, a thin sheet of white acrylic. iv: A cylinder with white paper inside and black-out material outside provided a constant visual surround. v: A sheet of glass

coatedwith Sigmacote provided a low, slippery ceiling to the arenas. vi: The arenasweremilled into a sheet of polycarbonate, eachwith a diameter of 127mmand

a center height of 3.5mm. To reduce the amount of time spent at the edges, each arena has slopedwalls (Simon andDickinson, 2010). vii: A panel of near-IR LEDs

provided bright, constant illumination to the camera that was invisible to the flies.

(B) Collected video. Each video consisted of �30,000 102431024 pixel frames of �10 male and �10 female flies.

(C) Example results of automatic tracking of flies’ bodies andwings.We usedCtrax (Branson et al., 2009) to automatically track the flies and fit directed-ellipses to

their bodies in each frame (size and orientation indicated by triangles; color indicates identity). The sex of each fly was classified automatically based on fit-ellipse

area (M, male; F, female). Thin lines indicate wing angles tracked using custom MATLAB software.
these large, quantitative behavior and anatomy datasets, the re-

sults of which were brain-wide maps of the neural substrates for

a broad range of behavior phenotypes.

These maps identify distinct neural substrates for the control

of at least six behavior features (increased walking, jumping,

backing up, wing-grooming, female aggression, andwing angle).

They can contain multiple behavior-circuit components, as in the

case of the increased walking map, and thus facilitate a circuit-

level understanding of behavior control. Additionally, these

maps allow immediate identification of genetic tools to further

test and investigate the proposed structure-function relation-

ships. We demonstrate how our maps can be used to create

sparse, intersectional genetic driver lines targeting specific sub-

populations of neurons within the map. To foster the systematic

identification and investigation of many more behavior-anatomy

relationships throughout the brain, we created searchable web-

sites and interactive software.

RESULTS

Computer-Vision-Based Quantification of the Effects of
Neural Activation
2,204 GAL4 lines from the Janelia GAL4 collection were selected

for behavioral measurement (Table S1) based on their expres-

sion patterns, as imaged by the Janelia Fly Light project (Jenett

et al., 2012), prioritizing lines with sparser expression and

providing coverage of the entire brain (Figure S1). To genetically

activate subsets of neurons, we used the GAL4-UAS system to

target expression of the temperature-sensitive dTRPA1 cation

channel. For each of these lines, we recorded approximately

eight videos of mixed-sex groups of �20 flies freely behaving

in a Fly Bowl (Simon and Dickinson, 2010), a shallow arena de-

signed to facilitate automatic tracking of groups of walking flies,

above the activating temperature for dTRPA1. Parameters of our

behavior assaywere chosen so that flies from our genetic control
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(an empty GAL4 line crossed to the same effector) performed

both independent locomotion/foraging behaviors and social be-

haviors such as courtship, allowing us to see activation-induced

increases and decreases in activity and social behavior. Our Fly

Bowl apparatus and custom data-capture software were opti-

mized for high-throughput, high-fidelity, consistent behavior

data collection (Figures 1A, 1B, and S2A; Method Details). Using

this system, we collected data at a rate of up to 116 videos from

25 GAL4 lines per day and recorded and curated in total 20,288

1,000 s videos at 30.3 fps (>500 TB of uncompressed data) over

a 1.5-year period. The data collected were sufficiently stereo-

typed that we could use identical parameters for all analyses,

and retests of each GAL4 line produced consistent behavioral

measurements.

We used fully automated computer vision methods to mea-

sure a broad range of detailed statistics of the flies’ locomotion

and social behavior at scale. We automatically tracked the

body position, orientation, and wing positions and classified

the sex of each fly in each video (Figures 1C and S2B–S2D;

Method Details) (Branson et al., 2009). From these trajectories,

we computed a suite of 128 hand-engineered features, termed

per-frame features, that captured behaviorally relevant, contin-

uous properties of the flies’ instantaneous poses and move-

ments in each frame, such as the instantaneous speed, the

distance to the closest fly, and the angle between the two wings

(Figure 2A; Method Details; Table S2) (Kabra et al., 2013).

We created 14 automatic behavior classifiers for locomotion

behaviors (walk, stop, back up, crabwalk, pivot-tail, pivot-cen-

ter, jump, righting, wing grooming) and social behaviors (chase,

touch, wing extension, attempted copulation, wing flick) (Fig-

ure 2B; Method Details; Movie S1), chosen based on our initial

observations of control-line behavior and previously described

components of courtship (Yamamoto and Koganezawa, 2013).

While this description of fly behavior is not complete, 84% of

control-line frames fell into at least one of these categories.
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Figure 2. Automated Quantification of Behavior

(A) Example per-frame feature time series for one fly for 20 s. Per-frame features are simple, engineered functions of the trajectories.

(B) Automatic behavior classification results for the same fly and time interval as (A). Each row and color corresponds to a different behavior classifier. Color

indicates that the classifier predicted that the behavior was occurring.

(C) Accuracy of automated behavior classifiers. We quantified the classifiers’ precision for each behavior classifier—for all frames predicted by the classifier to be

of a given class, what fraction were also manually labeled to be of that class? Positive, Negative class refers to frames for which the behavior is, is not occurring,

resp. We report precision (Prec.), computed across all frames and lines annotated, and the number of frames predicted as positive and negative (N, number of

points from which precision is computed). Per-line results are in Table S4.

(D) Example population-level behavior statistics (x axis) for line R82E08, computed from both per-frame features (A) and behavior classifications (B). y axis in-

dicates the signed number of control standard deviations different from control mean. Circles corresponds to videos, squares to retests of the line at different

times of year from different crosses, and black horizontal lines to the line-level mean. Across retests, R82E08 spendsmore time performing social behaviors, e.g.,

attempted copulation, wing extension, and chase. ‘‘Unclassified’’ is the fraction of time when behavior is not classified as any of our 14 behaviors. Data was

clipped at 60 standard deviations.
The automatic classifiers were trained using JAABA, an interac-

tive machine-learning tool (Kabra et al., 2013), to match our

behavior definitions. Here, we manually labeled the behaviors

the flies were performing in a small set of frames, and the

machine-learning algorithm learned classifiers that could auto-

matically reproduce these manual labels. To ensure that the

classifiers were accurate across all the behaviorally diverse lines

assayed, we used JAABA’s interactive training framework to iter-

atively add training labels for lines selected based on several

heuristics (Method Details). On average, to train each classifier,

we labeled 9,000 frames from 750 contiguous bouts, nine

videos, and eight lines (Table S3). To our knowledge, this is the
largest, most diverse dataset to which machine-vision-based

behavior classification has been applied. Averaging across be-

haviors and GAL4 lines, the classifiers’ per-frame average accu-

racy was 97.6%, measured comparing the automatic classifiers’

predictions to human annotations on videos from each of 5–23

representative GAL4 lines (Figures 2C and S3A; Method Details;

Table S4).

By combining time series of per-frame features and behavior

classifications for a given video, we computed 203 statistics

to describe the behavior of the population, such as the

fraction of time the flies spent walking, the average speed

of the flies, and the average speed of the flies while walking
Cell 170, 393–406, July 13, 2017 395
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Figure 3. Behavioral Effects of Neural Activation

(A) i: Table of behavioral effects of neural activation for all 2,205 GAL4 lines assayed. Rows correspond to line-level behavior statistics (Table S6), columns to

GAL4 lines. Color indicates how much higher (red) or lower (blue) the behavior statistic was for the line than control. Lines are sorted to highlight behavioral

similarities. ii: Number of GAL4 lines that had significantly larger (red) and smaller (blue) values for each of the behavior statistics shown (FDR [false discovery

rate] % 0.1). iii: Zoom-in of green box in i.

(legend continued on next page)
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(Figures 2D and 3A; Method Details; Tables S5 and S6). These

statistics were hand engineered without looking at the results

of the screen and included measures we hypothesized might

be independently modulated. We obtained line-level statistics

by averaging in a manner chosen to account for the strengths

of dependencies: the approximately four videos recorded simul-

taneously from the same cohort were more similar than the

approximately two biological replicates of the same line

recorded at different times of the year (Figures 2D and 3B;

Method Details). Each line-level behavior statistic was the

average of �4 million per-fly, per-frame measurements of

behavior and, as measurement noise averaged out, were accu-

rate and consistent across retests (Figures S3B and S3C). This

allowed our analyses to be sensitive to smaller changes than

were apparent to the human eye; for example, our analyses of

walking behavior used increases in walking rates of under 5%.

To measure behavior changes due to neural activation, we

compared the measurements for each GAL4 line to those from

a genetic control (Figures 3A and 3C; Method Details). For

each behavior statistic, we computed both the statistical signif-

icance (Method Details) and the magnitude of the effect of acti-

vation in terms of the signed number of standard deviations from

control. Figure 3A summarizes the effects of neural activation for

all 2,205 lines assayed and a subset of the behavior statistics.

As we measured the effects of activation for a large, unbiased

sample of neuronal populations, patterns in the observed behav-

ioral effects may be informative about how behavior is modu-

lated by, and thus its representation in, the nervous system.

Many of our behavior measurements were strongly correlated

or anti-correlated (Figures 3D, 3E, and S4A). Some correlations

were a result of our behavior definitions; e.g., fraction of time

stopped and average speed are necessarily anti-correlated.

Other correlations were a result of the structure of fly behavior;

e.g., fraction of time chasing and attempting copulation are

highly correlated (Figures 3D, 3E, S4A, and S4B). Both across

retests of the control line and across GAL4 lines, behavior ap-

peared to be most commonly modulated on the axes of activity

level (e.g., fraction of time stopped) and howmuch the flies inter-

acted (e.g., average inter-fly distance). Indeed, the first two prin-

cipal components of the line-versus-behavior matrix (Figure 3A)

corresponded to these two properties (Figures 3G, 3H, S4D, and

S4E). Furthermore, we observed significant differences in these

properties for many lines (60% of lines showed a significant dif-
(B) Histogram across GAL4 lines of the total number of videos recorded.

(C) Histogram across GAL4 lines of the number of behavior statistics (out of the 22

value for than control (FDR % 0.1).

(D) Spearman’s rank correlation coefficient between line-level behavior statistics

between attempted copulation and male chasing; blue indicates negative correlat

are sorted according to their hierarchical clustering, shown at the top. We give

sentative behavior statistics for each (left). The same ordering is used in (E) and

(E) As in (D), but for the 1646 GAL4 lines that are active (stopped less than 55% of

active lines.

(F) Differences in correlations between active GAL4 lines and control retests. Red

retests, blue that it is significantly lower (FDR % 0.1), white that correlation differ

(G) Principal directions of behavioral effects of neural activation. Behavior vecto

correspond to GAL4 lines, color indicates average fraction of time stopped (left) a

line, and gray circles to 1–3 standard deviations. The first component represents

(H) Amount of variance of GAL4-line behavior explained by its principal compon
ference in fraction of time stopped, 40% in inter-fly distance, Fig-

ure 3A, ii). For both properties, we observed lines with extreme

values (flies that rarely moved and flies that rarely stopped, flies

that clustered together and flies that actively avoided each other;

Method Details), as well as for every value in between.

Groups of behavior measures that were strongly correlated

across control retests (Figure 3D) were usually modulated

together by neural activation as well, and the correlation struc-

ture across control line retests and across GAL4 lines was

remarkably similar (Figures 3D–3F, and S4A–S4C). For example,

it was the rare exception to evoke male chasing without also

evoking other courtship behaviors such as attempted copulation

(though such exceptions did occur; Figure S4B). Similarly, loco-

motion behaviors were modulated together; e.g., increases in

walking were accompanied by increases in turning (Figure S4B).

We were surprised by how common it was to observe behav-

ioral effects of activation, despite the sparsity of the expression

patterns of the lines we assayed; based on our sensitive quanti-

tative analyses, we observed a significant difference for at least

one behavioral statistic for 98% of the GAL4 lines (FDR % 0.1;

Method Details). We observed a variety of extreme phenotypes,

including lines that jumped up to 1003 more than control and

maintained large inter-fly distances (R68C07, R73E12), lines for

which males chased up to 203 more than control (R82E08,

R71G01), lines for which females chased over 20% of the time

(R26F09, R26E01), lines that groomed their wings over 53

more than control (R29E04, R73E01), a single line that copulated

(R34H05), and lines that stopped a large fraction of the time in

close proximity to other flies and pivoted around their centers

(R61C12, R66A06). The high rate of behavioral phenotypes sug-

gests that the activation of almost any subset of neurons can

generate a detectable change in behavior (due to direct as well

as indirect effects of activation); thus, our behavior dataset is

rich in information about the functional roles of neural structures.

However, this also presents a computational challenge for

discovering meaningful behavior-anatomy correlations and ne-

cessitates analyses that take advantage of automation.

As a resource for the neuroscience community, we have

created a website summarizing the measured behavioral effects

of activation for each GAL4 line (http://research.janelia.org/

bransonlab/FlyBowl/BehaviorResults). These webpages can

be searched by line name, allowing researchers who have iden-

tified anatomically interesting GAL4 lines to find behavioral
shown in [A]) that a givenGAL4 line has a significantly higher (red) or lower (blue)

across 762 retests of the control line (red indicates positive correlation, e.g.,

ion, e.g., between stop and walk; and white indicates no correlation). Statistics

descriptive names to several clusters (colored bars) and indicate a few repre-

(F) and Figure S4A.

the time). The correlation structure between control lines is similar to that of the

indicates that correlation is significantly higher for the GAL4 lines than control

ences are not significant.

rs for all GAL4 lines projected onto their first two principal components. Dots

nd inter-fly distance (D center, right). The black dot corresponds to the control

activity level, while the second represents how much the flies interacted.

ents.
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Figure 4. Expression Pattern Image Pro-

cessing

(A) Maximum intensity projections (MIPs) of raw

image stacks of three dissected brain samples for

R26C06 (Jenett et al., 2012). GFP expression is in

green, and nc82 reference stain is in magenta. All

panels: scale bar, 50 mm.

(B) Histogram across GAL4 lines of the number of

image stacks combined to create the per-line

expression pattern.

(C) Raw image stacks are aligned, normalized,

averaged, and blurred to create a single image

stack for the GAL4 line.
annotations of the effects of neural activation. Alternatively, they

can be indexed by any of our behavior statistics, allowing re-

searchers interested in a particular behavior to find GAL4 lines

that exhibit strong phenotypes for those behaviors upon neural

activation.

Mapping Behavior to Neural Anatomy
To find regions of the brain correlated with each behavior mea-

sure, we combined our behavior dataset with a novel quantifica-

tion of the neural expression pattern for each GAL4 line. As there

is no cell-type annotation of the Janelia GAL4 collection, we

developed a method to quantify expression pattern from 3D im-

ages of the expression pattern in the brain of each line (Jenett

et al., 2012) (Figures 4A and 4B). We aligned (Peng et al.,

2011) and normalized the expression pattern images so that,

across images and GAL4 lines, each voxel location corre-

sponded to approximately the same location in the brain, and

voxel intensity approximated our confidence that there was

expression at that location (Figures 4C and S5; Method Details).

For each of the 30 million voxels in the brain images, each rep-

resenting <1 mm3 of the brain, we could test for statistically sig-

nificant correlation across GAL4 lines between anatomical

expression (intensity) at that voxel location and a given behavior

measure. However, this amounts to performing 30 million hy-

pothesis tests, and correcting for the effects of this large

number of comparisons would require the original correlation

hypothesis tests to have extremely high significance. Thus, a

subdivision of the brain into larger regions was necessary. The

Drosophila brain has been partitioned into 68 named structures,

such as the mushroom body and the medulla, based on neuro-

anatomy (Ito et al., 2014). Thus, we could instead perform just 68

correlation hypothesis tests, one for each of these named

structures, in which expression for the region is computed by

averaging voxel intensities across the region. However, these

regions are large and imprecise, and averaging expression

across them obscured signal and resulted in incomplete, low-

resolution maps.
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To perform a reasonable number of

statistical tests, increase signal-to-noise

ratio, obtain high-resolution behavior-

anatomy maps, and improve speed, we

developed a novel segmentation of the

entire fly brain into 7,065 supervoxels—

spatially coherent clusters of voxels with
similar expression across the GAL4 lines. This clustering was

based on the assumption that if the expression for a pair of vox-

els was the same across most GAL4 lines, they might be part of

the same neuronal cell type or functional unit (Figures 5A and S7;

Method Details). The resulting segmentation shows correspon-

dence to known structures in the fly brain (Figures 5B–5D;

Data S1; Movie S2). For example, our segmentation consists of

layers in the medulla (Nern et al., 2015) and fan-shaped body

(Wolff et al., 2015) and annuli in the ellipsoid body (Wolff et al.,

2015). A similar methodology has been employed to discover

novel optic glomeruli (Panser et al., 2016) (Method Details).

We used this clustering of the entire fly brain to quantitatively

represent the neural expression pattern for each GAL4 line by

computing the average pixel intensity within each supervoxel

(Figure 6). Then, for a given behavior measure (e.g., walking

more than control), we tested whether, for each supervoxel,

there was a positive correlation between the behavior measure

and the neural expression across the GAL4 lines (Method

Details). We visualized the correlated neural regions by mapping

the p values of these correlation hypothesis tests back to the

supervoxel locations (Figure 7A; Movie S3), creating 3D maps

of the neural regions related to the behavior phenotype.

Combining information from thousands of lines allowed us to

find these correlations despite confounding factors—that multi-

ple regions of the brain are likely involved in a given behavior and

that the expression patterns of the majority of GAL4 lines likely

contain multiple cell types that interact (Figure 7B).

For each of the behavior statistics we measured, we made

such maps for unexpectedly high (e.g., wing grooming more

than control) and unexpectedly low values (e.g., wing grooming

less than control). In addition, we made behavior-anatomy maps

for combined behavior measures (e.g., stopping more but not

wing grooming more than control).

We can further analyze these maps by focusing on those lines

most important in producing high correlations (lines that both

have expression in some of the significantly correlated super-

voxels and show the given behavior phenotype; Method Details).
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Figure 5. Clustering the Fly Brain

(A) Illustration of voxel clustering distance function. For the voxel indicated by the red dot, we show in pseudocolor the distance to each other voxel (minimum

projection over z). Distances to voxels in related regions are smaller. Scale bar, 50 mm.

(B) Resulting clustering of brain into supervoxels. We show cross-sections of supervoxels at z = 72.5 mm; each supervoxel has a different, randomly selected

color. White box indicates location of zoomed-in region in right panel. Scale bar, 50 mm.

(C) As in (B), clustering for selected z-slices through 12 compartments. Regions outside the given compartment are darkened. Scale bars, 10 mm.

(D) Locations of each of the shown compartments (C) within the brain.
We used these lines to automatically cluster the increased-

walking map (Figure 7A) based on expression correlation

between supervoxels (Figure S7A). The resulting clustering re-

vealed components of a putative visual information pathway

from the optic lobes, through the optic tubercles, to the bulb

and ellipsoid body (Figure 7C). Such a visual pathway has

been described in other insects (Pfeiffer et al., 2005; Träger

et al., 2008), and neurons in the ellipsoid body of Drosophila

have been shown to have visual response properties (Seelig

and Jayaraman, 2013). Our results imply that this visual circuit

feeds into the neuronal control of locomotion, and activation of

any component of it increases the probability of walking.

The lines most important in producing high correlations for a

selected neuronal region also provide direct and immediate ge-
netic access for further investigation of the observed behavior-

anatomy correlation. The intersectional split-GAL4 method can

be used to refine the expression patterns of these GAL4 lines

(Luan et al., 2006; Pfeiffer et al., 2010), creating more precise

genetic tools and potentially identifying the specific cell types

involved in neural control of the behavior. To demonstrate

this, we used the split-GAL4 intersectional strategy with GAL4

lines identified based on our increased-walking map (Figures

7D–7F) to discover a small population of R2/R4 ring neurons

in the ellipsoid body that were sufficient to elicit an increase

in walking probability (Figures 7D–7F and S7; Method Details;

Table S7). A role for these neurons in the control of walking is

consistent with earlier studies of structural mutations and

inactivation of ellipsoid body neurons, both of which caused
Cell 170, 393–406, July 13, 2017 399



Figure 6. Anatomical Expression Data

(A) Reduced-dimensional representation of the GAL4 expression pattern for R26C06 using the supervoxel clustering. i: High-dimensional representation of the

expression pattern for R26C06 at z = 72.5 mm. ii: Expression pattern overlaid on supervoxel clustering, with color indicating supervoxel and brightness indicating

expression. Expression appears constant within each supervoxel. Our low-dimensional representation is the average expression within each supervoxel.

iii: Reconstruction of original 30-million-dimensional expression pattern from 7,065-dimensional supervoxel representation, by setting the expression within an

entire supervoxel to its average. Right panel of i and iii appear similar.

(B) i: Table of anatomical expression levels for all GAL4 lines assayed (columns, ordered as in Figure 3A). Rows correspond to supervoxels, which are grouped by

compartment (Jenett et al., 2012). Row heights are set so each compartment has the same height. Darkness indicates amount of expression. Colored bar (left)

indicates the relative number of supervoxels in each compartment. ii: Number of GAL4 lines with expression in each supervoxel. As expression level is a number

between 0 and 1, we sum the total expression level values over lines, interpreting non-integer values as probabilities. These counts are mapped to supervoxel

location in Figure S1. iii: Zoom-in of orange box in i.

(C) For each GAL4 line, we computed the fraction of supervoxels with expression, i.e., how dense the expression pattern is (as in [B], interpreting non-integer

values as probabilities). We histogram this value across GAL4 lines.
locomotor deficits (Martı́n-Peña et al., 2014; Strauss and Hei-

senberg, 1993).

We discovered several other behavior-anatomy correlations

by exploring the data collected in our unbiased activation

study using our behavior-anatomy maps. We both identified

previously known structure-function relationships (Figures 8A

and 8B; Movie S3), further confirming the validity of our

method, and discovered novel correlations (Figures 8C–8G;

Movie S3), demonstrating the potential for identifying novel
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neural substrates of behavior. We briefly describe these

maps next.

Our map of regions of the brain correlated with increased uni-

lateral wing extension by males (a component of courtship

behavior [Yamamoto and Koganezawa, 2013]; Figure 8A; Movie

S3) closely resembles the fruitless circuit in the protocerebrum

(Yu et al., 2010), neuronal regions previously demonstrated to

control courtship behavior. Also confirming the validity of our

approach, our map of regions of the brain correlated with an
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Figure 7. Neural Correlates of Walking
(A) Regions of the brain significantly correlated with an increase in fraction of time spent walking (FDR% 0.25). For each supervoxel, we compute the significance

of the observed correlation between expression in the supervoxel and increase in fraction of time spent walking and color by this p value. We show the minimum

intensity projection. All panels: Scale bar, 50 mm.

(B) For two significantly correlated supervoxels, relationship between expression and walking behavior across GAL4 lines. Left: Supervoxel within cluster 3; right:

cluster 4. We plot expression level versus normalized increased-walking statistic (Method Details) for each GAL4 line (dots). Colored circles indicate lines shown

in (D). Red lines indicate average behavior score for GAL4 lines for sliding intervals of supervoxel expression level. While expression level andwalking behavior are

significantly correlated, we observe both lines in the upper-left of the plots for which other brain regions might be causing the behavior phenotype and lines in the

bottom-right for which activation of other brain regions may be masking the behavior phenotype.

(C) Clustering of significantly correlated regions of the increased-walking map (p % 0.005) into substructures (Method Details). We indicate locations of i: optic

lobe, ii: optic tubercle, iii: bulb, and iv: ellipsoid body.

(D) For each cluster in (C), we show MIPs of expression patterns for lines important in creating the behavior-anatomy correlation for the cluster (those with the

highest product of behavior score and average anatomy score over all supervoxels in the cluster).

(E) Boxplot of fraction of time walking for each of the 20 split-GAL4 lines created from parental lines important in creating the behavior-anatomy correlation for

cluster 4. Asterisks indicate significant increases compared to control (Mann-Whitney test, p < 0.05 with Bonferroni correction, number of videos ranged from 6 to

22 [Table S7]); boxes indicate 25th and 75th percentiles of data; pluses indicate points outside whiskers. Red indicates split lines shown in (F).

(F) MIPs of expression patterns for split-GAL4 lines with expression in the R2/R4 ring neurons. Arrows indicate parental lines used to create split-half lines.
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Figure 8. Behavior-Anatomy Correlation Maps

(A–G) Each panel corresponds to a different behavior phenotype. For each, we show:

i: Cartoon illustrating the behavior phenotype.

ii: A map of brain regions significantly correlated with the behavior phenotype (FDR % 0.25, as in Figure 7A).

iii: Left: Average expression pattern for lines important in creating the significant behavior-anatomy correlations shown in ii (p% 0.005). Right: Selected important

lines. All: MIPs for which intensity indicates maximum expression level and hue indicates depth at this maximum (anterior, red; posterior, blue). No average shown

in panels (A) and (D). Average shown in (B) corresponds to a selected cluster of supervoxels.

Scale bars, 50 mm.
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approximate measure of increased sleep (Figure 8B; Method

Details) identified a cell type with morphology similar to a subset

of a previously identified heterogeneous population of neuromo-

dulatory neurons involved in sleep, circadian rhythms, and

feeding (Cavanaugh et al., 2014; Dus et al., 2015; Foltenyi

et al., 2007).

While components of the motor circuits of escape in the fly

(jumping) have been well described (Hale et al., 2016), the visual

inputs to these circuits are not. Our increased-jumping map (Fig-

ure 8C) suggests several such inputs: lobular columnar (LC)

neurons with morphologies similar to those of types LC6, LC9,

and LC10 (Otsuna and Ito, 2006). Concurrent to our study,

using novel split-GAL4 lines targeting each LC type, Wu

et al. independently found a jumping activation phenotype for

LC6 neurons (Wu et al., 2016), confirming a portion of our

increased-jumping map.

The sparse increased-backing-up map (Figure 8D) indicates

that there is also a strong correlation between visual projection

neurons and the backing-up behavior, which may be an avoid-

ance or lower-intensity escape behavior. These maps contain

a previously undescribed LC neuron that projects to a region

close to the LC6 glomeruli and enters the ventrolateral proto-

cerebrum (VLPR) from the posterior side. Wu et al. concurrently

found a back-up activation phenotype for this cell type, which

they termed LC16 (Wu et al., 2016), confirming our increased-

backing-up map.

Female aggression has been described in flies (Nilsen et al.,

2004), but, unlike male aggression, its neural substrates have

not been well characterized. The map corresponding to an in-

crease in chasing (a phenotype of aggression) exclusively in fe-

males is very sparse (Figure 8E)—a single bilateral region in the

protocerebrum. Besides this increase in female chasing, we

also observed that, for lines important for this map, females per-

formed other aggressive behaviors such as low-posture fencing,

shoving, and headbutting.

The map corresponding to increased wing grooming (Fig-

ure 8F) is similarly sparse and contains a single bilateral brain re-

gion within the antennal mechanosensory and motor center

(AMMC). There are two plausible alternatives for this observed

correlation. The first is causal: connectivity between antennal

and wing sensory-motor circuits in the ventral nerve cord

(VNC), which cause wing grooming. The second is correlational:

activation of a different population of neurons, one for which

GAL4 expression is genetically correlated with that in the

AMMC, causes wing grooming. This second hypothesis is sup-

ported by the fact that the AMMC receives multiple types of

mechanosensory input from the antenna, and proteins of me-

chanosensory transduction are shared across many sensory

organs (Walker et al., 2000). To investigate this, we examined

VNC images for lines important to the wing-grooming map (Fig-

ure S8).While there appears to be expression in thewing sensory

neuropil of at least three to five lines, there does not appear to be

a common neuronal cell-type throughout. Such images of VNC

expression exist for many of the lines we assayed; thus, our

methodology could be extended to the VNC, an interesting di-

rection for future research.

The regions of the brain most correlated with the flies’ wings

being held out are within the subesophageal zone (SEZ) (Fig-
ure 8G). While interactions between feeding and locomotion cir-

cuits in the VNC have been described (Mann et al., 2013;

Schoofs et al., 2014), this map suggests a novel role for circuits

within the SEZ in wing motor control and is congruous with evi-

dence that the SEZ has dense innervation by descending neu-

rons (Hsu and Bhandawat, 2016) that connect the brain and

the VNC, where wing motor control circuits are located.

These and other behavior-anatomy correlations suggested by

our whole-brain maps will be a source of hypotheses for future

research in Drosophila neurobiology. As we can create maps

not only for the 203 behavior statistics we measured but also

for combinations of them, the number of behavior-anatomy

maps to explore is practically unlimited. To allow researchers

to explore our data, we have created the Browsable Atlas of

Behavior-Anatomy Maps (BABAM) software that allows users

to select behavior measures and generate behavior-anatomy

maps (Data S1; https://kristinbranson.github.io/BABAM/; Movie

S4). BABAM allows users to explore maps in a variety of ways.

Following our analysis of the increased-walking map, they can

further cluster the correlated regions of the map (Figure 7C)

and explore subregions of a given map. Users can find the

GAL4 lines that contribute most to the correlation between a

selected behavior and supervoxel or cluster of supervoxels

and access the per-line web pages describing their behavior

and anatomy. Finally, they can examine the supervoxel clus-

tering of the brain. This software will facilitate testing of our

structure-function hypotheses by refining expression using the

intersectional split-GAL4 strategy, activating and silencing using

other effectors, and/or neural recording.

DISCUSSION

In this work, we used machine-vision and machine-learning

methods to quantify the behavioral effects of neural activation

for thousands of GAL4 lines with overlapping expression in mul-

tiple, often unrelated, cell types. When activating multiple cell

types with distinct behavioral roles, it is likely that behavioral ef-

fects will combine complexly; for example, behavioral effects of

one cell type couldmask another’s. By using this large dataset to

jointly analyze the effects of neural activation across many lines

with overlapping expression, we were able to find the same,

sometimes subtle, behavioral effects in multiple lines with re-

gions of common expression and thus develop testable hypoth-

eses of the neural substrates of a variety of locomotion and

social behaviors across the entire Drosophila brain.

These behavior-anatomy maps both recapitulate known and

suggest novel structure-function relationships. Novel relation-

ships we discovered include a putative visual information

pathway from the optic lobes to the central complex involved

in production of walking behavior, visual output neurons involved

in escape and avoidance behavior, a subregion of the protocere-

brum involved in female aggression, a subregion of the AMMC

involved in wing grooming, and a subregion of the SEZ involved

in controlling wing position. Our study resulted in thousands

such behavior-anatomy maps, which we share with the neuro-

science community in the form of our interactive atlas software.

This software allows the user to identify GAL4 lines most impor-

tant in creating a selected region of a map, allowing one to gain
Cell 170, 393–406, July 13, 2017 403

https://kristinbranson.github.io/BABAM/


genetic access to sparse neuronal populations within a map.

Using these GAL4 lines and lines derived from them via split-

intersectional strategies, one can target effectors, markers,

and activity indicators to these cells, allowing researchers to

manipulate and record activity, test the hypothesized relation-

ship, and further investigate the behavior circuit. Taken together

with efforts to find and identify neuronal cell types in these GAL4

lines (Chiang et al., 2011; Costa et al., 2016; Panser et al., 2016),

our functional description of the fly brain will enhance the pace of

research tackling neural circuit mechanisms.

Our work builds upon a long history of behavior screens in

model organisms, from genetic screens elucidating the molecu-

lar and genetic bases of behavior to more recent, genetically tar-

geted neural activation and silencing screens in Drosophila to

identify cellular and circuit mechanisms of behavior control

(Owald et al., 2015). Recent behavioral screens of large GAL4

collections have resulted in the identification of behavioral roles

for a handful of neurons (Hampel et al., 2015; Hoopfer et al.,

2015; Triphan et al., 2016; von Philipsborn et al., 2011). Each

of these studies were focused on a single behavior and only pro-

vided careful behavior quantification for a few ‘‘hits’’ from their

screens. In contrast, we have created a searchable, detailed

quantification of the effects of activation for a broad range of

behaviors across all 2,204 GAL4 lines assayed. Most similarly,

activation phenotypes of 1,054 GAL4 lines were quantified in

Drosophila larvae but without analysis of the neural anatomy

of those lines (Vogelstein et al., 2014). Our work uniquely com-

bines analysis of the behavioral effects of activation and quanti-

fication of the anatomical expression patterns to discover

correlations between behavior and anatomy: a brain-wide atlas

of behavior-anatomy maps.

We collected, to our knowledge, the largest-to-date video

behavior dataset as part of this study. It describes the behavioral

effects of perturbing the neural activity of thousands of sets of

neurons throughout the nervous system. As such, characteris-

tics of the space of behavioral effects may be indicative of the

structure and organization of behavior and its neural representa-

tion. Despite the sparsity of the expression patterns, we

observed significant behavioral effects of activation for a large

fraction of GAL4 lines. However, in other ways, for the majority

of lines, the behavior statistics we measured were surprisingly

normal. We rarely observed abnormal correlations between our

measured behavior statistics. Instead, the correlational structure

across GAL4 lines was similar to that across retests of our

control. This suggests that behavior modules (e.g., courtship,

foraging, escape) were more commonly modulated by neural

activation, as opposed to individual behavior components within

these modules (e.g., chasing and wing extension, walking and

turning, jumping and backing up). One explanation is that

many of the effects we observed were from sensory or near-sen-

sory neural populations, or neurons that affect the concentra-

tions of neuromodulators, which then affect large downstream

populations of neurons—entire behavior modules. Alternatively,

one could speculate that the observation that GAL4 line behavior

remains within the low-dimensional manifold of normal fly

behavior is evidence that neural activity is also regulated to

remain within a low-dimensional manifold. By exciting a small

population of neurons, we push neural activity away from this
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manifold, and one could envision homeostatic mechanisms

that pull neural activity back to the closest point on the manifold

by compensatory changes in other neurons involved in the

behavior module. Low-dimensional neural dynamics during

locomotion behaviors have been observed previously in the

C. elegans (Kato et al., 2015). In the fly, two of the major axes

of this manifold, according to our measures of behavior, are ac-

tivity and interaction levels, the most important features for

describing the effects of activation. A potentially fruitful direction

of future research is thus to activate sparse neuronal populations

suggested by our study and observe the resulting neural dy-

namics across large populations via calcium imaging. For two

lines with seemingly unrelated expression patterns but similar

behavior, do we observe similar neural activity patterns upon

activation? How does neural activity after activation compare

to activity observed in control flies in different environments

and states?

An important qualification to the results of this study is that

they are based on potentially nonphysiological patterns of neural

activity—those induced by several minutes of continuous excita-

tion via the dTrpA effector of multiple, possibly unrelated, neu-

rons. However, as our maps are based on activation effects

across many GAL4 lines, they should be less susceptible to

irregularities in any single line. Because dTrpA perturbations, in

addition to direct effects, will also yield phenotypes due to

nonspecific network effects, future experiments will be neces-

sary to establish a causal role for identified brain regions. How-

ever, dTrpA activation has been used previously to successfully

identify neural substrates of behavior (Hampel et al., 2015;

Hoopfer et al., 2015; von Philipsborn et al., 2011). A second qual-

ification of our results is that they are based on correlational an-

alyses, which are not necessarily causal. For example, if there is

a strong genetic correlation in expression between region A,

which controls a behavior, and one region B, which does not,

there will still be a correlation between expression in B and the

behavior. However, we rarely observed genetic correlations in

expression between regions not known or suspected to be func-

tionally related. For example, in Figure S7A, we observe expres-

sion correlation between the selected supervoxel in the crepine

and other regions in the central complex. Genetic correlations in

expression can be investigated using our interactive software

(Movie S4). The structure-function hypotheses suggested by

our analyses should be followed up using intersectional genetic

techniques, silencing and manipulation with other effectors such

as temporally acute optogenetic activators, and/or neural re-

cordings. Our interactive software and web pages will facilitate

these follow-up experiments.

Further analyses of our dataset will reveal more about the

neural correlates of behavior and its organization, and we

make our data publicly available, in the raw video form, at the

level of per-fly trajectories and finally at the level of a condensed

matrix of per-line behavior statistics. From the videos and trajec-

tories, new behavior classifiers can be trained and applied to our

dataset using supervised machine learning (Kabra et al., 2013),

and new behavior modes and representations can be discov-

ered using unsupervised clustering or manifold learning tech-

niques (Berman et al., 2014; Schwarz et al., 2015; Vogelstein

et al., 2014). We believe that this data will be of interest to



computational ethologists interested in understanding the

vocabulary and structure of behavior, neuroanatomists inter-

ested in cataloguing cell types, and machine-vision and ma-

chine-learning researchers interested in developing behavior

analysis techniques that are effective on such large, diverse

datasets. From our matrices of per-line behavior statistics and

per-line anatomical expression patterns, theorists could develop

brain-wide models predicting behavior from neural activity,

perhaps in combination with brain-wide electron-microscopy

connectomics and whole-brain calcium imaging data currently

being collected for Drosophila.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit anti-GFP Thermo Fisher Scientific Cat #: A-11122; RRID: AB_221569

Alexa Fluor 488-conjugated goat anti-rabbit Thermo Fisher Scientific Cat #: A-11034; RRID: AB_2576217

Alexa Fluor 568-conjugated goat anti-mouse Thermo Fisher Scientific Cat #: A-11031; RRID: AB_144696

Biological Samples

Drosophila: GAL4 collection see Table S1 Pfeiffer et al., 2010 See Table S1

Drosophila: Split GAL4 lines see Table S2 this paper http://splitgal4.janelia.org

Drosophila: +;UAS-dTRPA1/(CyO);+ Hoopfer et al., 2015 N/A

Drosophila: w1118; ; pBDPGAL4U (attP2) Pfeiffer et al., 2010 N/A

Drosophila: w1118:pBPp65ADZpUw (attP40);

pBPZpGAL4DBDUw (attP2)

Hampel et al., 2015 http://splitgal4.janelia.org

Drosophila: pJFRC2-10xUAS-IVS-mCD8::

GFP (attP2)

Pfeiffer et al., 2010 FlyBase: FBst0032185

Deposited Data

Janelia FlyLight imagery data Jenett et al., 2012 http://flweb.janelia.org/

Drosophila template brain Jenett et al., 2012 JFRC2/JFRC2010, https://github.com/

VirtualFlyBrain/DrosAdultBRAINdomains

Drosophila brain mask Jenett et al., 2012 https://github.com/VirtualFlyBrain/

DrosAdultBRAINdomains

Software and Algorithms

MATLAB MathWorks https://www.mathworks.com/

FlyBowlDataCapture GUI this paper SuppData/code/FlyBowlDataCapture

Ctrax: The Caltech Multiple Walking Fly Tracker modified from Branson et al., 2009 SuppData/code/Ctrax

Wing tracking software this paper SuppData/code/simplewing

Sex classification software this paper SuppData/code/FlyBowlAnalysis

JAABA: Janelia Automatic Animal Behavior

Annotator

Kabra et al., 2013 http://jaaba.sourceforge.net/

Brain Aligner Peng et al., 2011 https://github.com/Vaa3D

BABAM: Browsable Atlas of Behavior-

Anatomy Maps

this paper https://kristinbranson.github.io/BABAM/

Other

Fly Bowl arena design this paper SuppData/design

Fly Bowl behavior results this paper http://research.janelia.org/bransonlab/

FlyBowl/BehaviorResults/

Supervoxel clustering data this paper SuppData/data/SupervoxelClusteringData.mat

JAABA behavior classifiers this paper SuppData/params/JAABAClassifiers
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kristin

Branson (bransonk@janelia.hhmi.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

2,205 Drosophila melanogaster lines were selected from the Janelia GAL4 collection (Jenett et al., 2012) based on their expression

patterns (Table S1). The negative control line used for behavioral comparisons was pBDPGALU (aGAL4 insertion without a promoter
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in w1118;attp2) (Pfeiffer et al., 2008). The Janelia GAL4 collection was created using an injection stock that was re-isogenized every

1-2 years, but subsequent crossesweremade to remove the integrase and homozygose each line (Janelia Fly Core personal commu-

nication). The GAL4 lines were used to drive the expression of dTRPA1 using the effector +;UAS-dTRPA1/(CyO);+ (X and third chro-

mosomes backcrossed to Canton-S from M. Heisenberg for six generations).

For the GAL4 lines with high behavior-anatomy scores for the increased-walking map, we obtained AD and DBD stocks that had

previously been constructed using those promoter sequences (provided by G. Rubin prior to publication). These AD (in attP40) and

DBD (in attP2) stocks were constructed as previously described (Pfeiffer et al., 2010). We used combinations of these AD and DBD

stocks to make the set of 20 split-GAL4 stocks listed in Table S7. The negative control line used for behavioral comparisons of the

split-GAL4 lines was an empty split-GAL4 line made from AD and DBD without enhancers to drive expression (Hampel et al., 2015).

In all behavior experiments, flies were approximately 3-5 days old, and sorted into groups of 10 males and 10 females 2-4 days

prior to video recording. To ensure that our genetic control flies were sufficiently active, all flies were wet-starved for 1 day prior

to video recording during the flies’ evening activity peak.

For our assay of the Janelia GAL4 collection, all flies used were reared in standard vials on dextrose-based food in a 16/8 light/dark

cycle at 21.8�C and 55% relative humidity (RH). The parental flies were crossed on day 0 (cross date), after 4 days were transferred to

fresh food vials (flip date) and then discarded after an additional 3 days of egg-laying. Egg laying periods were restricted to limit the

age-range of flies collected for experiments. The first set of cross vials were used for a different assay and the post-flip set were used

the Fly Bowl screen. 14 days after the flip date, the offspring were collected and sorted into groups of 10 males and 10 females under

cold anesthesia. These experimental flies were maintained on dextrose media until 24 ± 2 hr prior to the experiments, at which point

they were transferred to agar-basedmedia for wet starvation. Experiments were performed 2-4 days after collection, and as no newly

eclosed flies were selected, the majority of flies used were 3-5 days post-eclosion. Two sets of rearing incubators were used: AM

incubators programmed set for lights off at 12:00 and PM incubators were set for lights off at 17:00. All experiments were done during

the respective evening activity peak – 8:00 to 12:00 for morning experiments and 13:00 to 17:00 for afternoon experiments.

Split-GAL4 line flies for behavioral experiments were raised as above, except that the experimental flies were collected from eggs

laid during the first 4 days of egg-laying.

To image the expression pattern of the split-GAL4 set, each line was crossed to pJFRC2-10XUAS-IVS-mCD8::GFP in attP2

(Pfeiffer et al., 2010). The dissections, immunohistochemistry, imaging and registration of the split-GAL4 set used protocols modified

from Aso et al. (2014). Brains (�4 per line) and VNCs (�2 per line) were dissected from 3-7 day old flies in Schneider’s insect medium

and fixed in 2% paraformaldehyde (PFA) at room temperature for 55 min. Tissues were washed in PBT (0.5% Triton X-100 in phos-

phate buffered saline (PBS) and blocked using 5% normal goat serum). Primary antibodies (rabbit anti-GFP A-11122 fromMolecular

Probes at 2 mg/ml andmouse anti-Bruchpilot nc82 hybridoma supernatant from Developmental Studies Hybridoma Bank (University

of Iowa) diluted 1:30) were applied for 2-3 days. After a rinse and four 15min washes in PBT, tissues were then incubated for 2-3 days

in secondary antibodies (Alexa Fluor 488-conjugated goat anti-rabbit and Alexa Fluor 568-conjugated goat anti-mouse from Molec-

ular Probes; 2.5 mg/ml and 5 mg/ml, respectively). Each of the antibody incubations were done for 4 hr at room temperature before

placing the samples at 4�C for the remainder of the incubation time. After a rinse and four 15 min washes in PBT, tissues were fixed

with 4% PFA in PBS for 4 hr, followed by a rinse and four 15 min washes in PBT. Directly before mounting, tissues were rinsed and

washed for 15 min in PBS to remove the Triton. The tissues were mounted on poly-L-lysine-coated coverslips and then dehydrated

with 10 min ethanol baths of 30%, 50%, 75%, 95% and 33 100% followed by three 5 min washes in 100% xylene. Finally, mounted

samples were embedded in xylene-based mounting medium (DPX; Electron Microscopy Science, Hatfield, PA) and dried for 2 days.

Images were collected using an LSM710 confocal microscope (Zeiss, Germany) fitted with a Plan-Apochromat 20x/ 0.8 M27 objec-

tive. Brain images were aligned to the JFRC2013 standard brain (Aso et al., 2014) using the Janelia Brain Aligner (Peng et al., 2011).

METHOD DETAILS

Data collection
We simultaneously recorded 4 16min videos, each of groups of 10male and 10 female flies from the sameGAL4 line at the permissive

temperature for dTRPA1 of 30�C. For the majority of lines, we collected videos twice at different times of the year, thus for each GAL4

line, we collected on average 8 videos (Figure 3B). Each morning and afternoon of data collection, we also collected 8 videos of the

genetic control line, pBDPGAL4U, 4 videos per rig. These datawere used as indicators of issueswith fly rearing and data collection. In

addition, to account for small changes in the flies’ behavior over time, we normalized our behavior measurements based on those of

control flies in the surrounding month.

Apparatus

Wedeveloped a high-throughput behavioral assay for walking fruit flies. The arena shape for this assay was based on a design devel-

oped by Simon and Dickinson (Simon and Dickinson, 2010), with modifications for high-throughput data collection, experimental

monitoring and consistency, and image quality (CAD designs included in Data S1). Each Fly Bowl arena was shaped like a shallow

plate, with a total diameter of 127 mm, center depth of 3.5 mm, and edges that gently sloped up at an 11-degree angle starting at a

diameter of 79mm. Each arena was undercut to a depth of 5mm following the contour of the arena to create a uniform floor thickness

(we later found this to be an unnecessary design feature but maintained it for consistency).
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Four of these arenas, arranged on a 127mmgrid, weremilled into a 12.73 3053 381mmclear polycarbonate plate. This plate was

secured to a 9.5 3 305 3 381 mm anodized aluminum backing-plate to ensure flatness. The ceiling of the 4 arenas was a single

6.353 3053 381 mm lime-soda laminated safety glass sheet with four counter bored 3.18 mm diameter loading holes. The bottom

of this glass sheet was treated with Sigmacote, Sigma-Aldrich, St Louis, MO, a siliconizing reagent that was slippery to flies and pre-

vented the flies from walking on the ceiling of the arena. The Sigmacote was reapplied once per week at least 24 hr before data

collection.

We built two video recording rigs, each constructed around a 4-arena plate with each Fly Bowl arena video-recorded by a separate

camera. In each rig, the arena plate was mounted on four 54 mm standoffs, each with a set screw in the top that aligned to the

outmost through-hole in the corners of the plate. This secured the lateral positioning of the arenas in the recording apparatus.

The arenas were backlit from below by a 3303 330mm880nm near-IR LED panel fabricated by Advanced Illumination, Rochester,

VT. This backlight was cooled in twoways: it wasmounted on a 3053 305mmwater-cooled bread board, Thorlabs, Newton, NJ, and

eight 45 mm, 12VDC, 10.4 CFM computer fans, Mouser Electronics, Czech Republic, created ambient temperature airflow between

the backlight and plate (four each on opposing sides but blowing the same direction). The water-cooled bread board was cooled by a

radiator systemwith a circulating pump, Koolance, Auburn, WA. A 3.183 3053 305mmwhite acrylic diffuser was placed directly on

top of the backlight (assembly schematic of 4-arena plate and backlight included in Data S1).

Each of the four arenas in the plate were video-recorded from abovewith an A622f FireWire camera, Basler, Inc., Exton, PA, using a

25mmfixed focal length lens and an IR pass filter (Hoya R-72), both fromEdmundOptics, Barrington, NJ. Each camera wasmounted

with an XZ 0.5-in translation stage on a dovetail rail carrier Thorlabs Newton, NJ which allowed fine-scale X, Y, Z adjustments to po-

sition each arena in the field of view of the respective camera. The cameras were mounted 472 mm above the arenas as measured

from the top of the arena plate to bottom of the dovetail rail on which the cameras were mounted.

We optimized the camera settings for image quality and frame rate: the region-of-interest was set to 10243 1024, the brightness to

25, the gain to 170, and the shutter to 100. Imageswere collected in Format 7Mode 0, which allowed themaximum frame rate for data

acquisition. The frame rate for video collection was 30.3 frames per second, and we used the median frame rate for a given movie in

calculating the per-frame behavior metrics.

The visual environment of the flies during experiments was carefully controlled. A visual surround, a 535mm diameter and 415mm

tall cylinder with white interior walls and blackout material external walls, was place around the plate after the flies were loaded to

block any external visual cues such as experimenters moving around. A fixed white acrylic sheet (585 3 585 mm), mounted

40 mm below the cameras with openings for each camera, provided a consistent overhead visual environment. To provide visible

light at 1340-1400 lux for the flies, this sheet was backlight from above with nine evenly spaced natural daylight LED lamps,

Buylighting.com, Burnsville, MN.

Environmental control and monitoring

All experiments were performed in a walk-in environmental control chamber. The 8-ft x 12-ft chamber controlled temperature and

humidity, and was custom built by Bahnson Environmental Specialties, LLC (Raleigh, NC). For dTRPA1 activation, the chamber tem-

perature and humidity were set to 29�C and 50% RH respectively. We measured an average temperature of 29.7�C and humidity of

47% RH in the chamber during all experiments included in the analysis (outliers in temperature and humidity were excluded from the

analysis (see Data curation, below). As mentioned above, the IR backlight generated heat that caused a relative increase in the Fly

Bowl plate temperature. The average temperature of the Fly Bowl plates across the screen was 29.9�C, and reflects the shifted tem-

perature the flies experienced during experiments. We turned the lights on for each rig at least 30 min prior to each recording session

to ensure the temperature stabilized before data collection began.

We automatically recorded the temperature and humidity of the environmental chamber during each experiment using a Precon

HS-2000D sensor, Kele Precision Manufacturing, Memphis, TN. Additionally, the temperature of the polycarbonate plate adjacent to

each walking arena was measured and logged once per second during video collection with a T-type thermocouple PT-6 Physitemp

Instruments, Inc., Clifton, NJ and a TC-08 thermocouple data acquisition module, OMEGA Engineering, Inc., Norwalk, CT.

Data capture software

Videos were recorded using a Basler A622f camera for each of the 8 arenas at a temporal resolution of 30.3 frames per second (fps)

and a spatial resolution of 1024x1024 pixels (7.9 pixels/mm). We created custom MATLAB software (FlyBowlDataCapture (FBDC)

GUI, Figure S2A, Data S1) to collect all behavior videos and to record experiment metadata such as the genotype and room

temperature.

This GUI was initialized with a parameter file that controlled the details of the experimental set-up such as camera parameters,

video capture and compression parameters, temperature and humidity capture parameters, and ranges and values for metadata

input. Use of the FBDC GUI, the parameter file entries, and metadata definitions and xml file are detailed in the FBDC User Guide

in the Data S1 and S3.

After initializing the GUI, the experimenter selected the camera and temperature probe for a given bowl, and the FBDC GUI dis-

played the live video, frame rate, and temperature readings throughout the experiment (Figure S2A(i)). Next, the experimenter brought

a set of four vials containing flies of one genotype into the environmental chamber, and recorded the timing of this by pressing the

‘‘Shift Fly Temp’’ button in the FBDC GUI. Then, the experimenter loaded the pre-sorted vials of 10 male and 10 female flies into the

four bowls, one vial per bowl. Loading was facilitated by a custom designed device with a 3-D print fly vial-to-culture tube adaptor,

allowing the experimenter to tap the entire group of flies from the food vial into a small chamber made from a culture tube and then
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mouth aspirate the group of flies into the arena through the loading hole in the glass cover plate. After loading, this hole was plugged

to prevent flies escaping while the other bowls were loaded. The time point of loading each bowl, when the flies were shifted the

permissive temperature, was recorded by pressing the ‘‘Flies Loaded’’ button in the respective FBDC GUI. This also started a

count-down timer that indicated to the experimenter how much of the 225 s loading period remained. When all four bowls were

loaded, the glass cover plate was slid into the recording position with the loading holes outside of the bowls, the hole plugs removed,

and the visual surround put into place around the four bowls. At this point, the experimenter started video collection by pressing the

‘‘Start Recording’’ button.

During the recording, the experimenter could enter behavior observations as well as notes about technical issues during the data

collection. After the recording finished, the experimenter scanned the barcode attached to each fly vial, automatically populating

metadata information such as genotype, cross date, sorting time, and other information about the flies in the experiment.

Finally, the FBDC software showed the experimenter the recorded video and a technical summary of the experiment (Fig-

ure S2A(ii)), which allowed the user to quickly detect and flag any experiments with technical problems. When finished, the experi-

menter pressed the ‘‘Done’’ button and reset the FBDC GUI for the next experiment. To reset the rig for the next experiment, the

experimenter removed the visual surround, anesthetized the flies with CO2, and removed them from the bowls with vacuum suction.

Then the experimenter cleaned the bowlswith 70%ethanol and allowed them to dry for at least 1min before the glass cover plate was

replaced.

The FlyBowlDataCapture program created a single directory for each experiment.Within this directory, all files had the same name.

Important files recorded into this directory were the video (movie.ufmf), an XML file containing all metadata (Metadata.xml), and a

temperature log (temperature.txt).

Real-time video compression

To control the camera and record the video, we used theMATLAB Image Acquisition Toolbox. In real time, we compressed video into

the micro-Fly Movie Format (ufmf) using a custom C++-based adaptor (udcam, Data S2). The ufmf compression is based on back-

ground subtraction, and first stores an estimate of the appearance of the video if no flies were present (the background image,

Figure S2B). Then, for each frame, it stores only the locations and intensities of pixels that are very different from the background

appearance (foreground pixels, Figure S2A(iii-iv)). The majority of these foreground pixels correspond to the flies in the arena.

The background image is computed as the median pixel intensity across a sample of frames:

Buv =median
�
It0uv; I

t0 + t
uv ; It0 +2t

uv ;.; It1uv
�
;

where Buv is the background image appearance at pixel location ð
u; vÞ, Ituv is the intensity of pixel ðu; vÞ in frame t of the video, t is the

sampling period, and t0 and t1 are the start and end frames of the video clip. To estimate themedian efficiently, we update a histogram

of the number of sampled frames with each of the 256 possible intensity values. We require a 256-bin histogram for each pixel loca-

tion ðu; vÞ. Foreground pixels are those that are very different from the background intensity: jIuv � Buv jRl.

Early in the video (e.g., at frame 2), we have not collected enough frames to estimate a goodmodel of the background appearance

(the initial background estimate, computed from just the first frame, was the first frame itself), and there is the potential that the back-

ground appearance changes over time. Thus, we output estimates of the background appearance at set intervals during the video

collection. An inaccurate background appearance model primarily affects compression rate, not video quality.

Data curation
While we carefully engineered our data capture system tominimize errors, bothmistakes and technical failures still occurred over the

course of collecting 20,288 videos. To identify and remove these experiments from our dataset, we employed both automatic and

manual methods to curate experiments.

Experiments were automatically failed by the analysis pipeline after data transfer if the: (1) video file or metadata file did not exist,

(2) time the flies were in the environmental chamber before loading exceeded 300 s, (3) loading timewas less than 25 s or greater than

225 s (4) video file was truncated, (5) barcode was not recorded, or (6) experimenter set the ‘‘Redo’’ flag during data collection.

A second automatic quality control check was performed at the end of the analysis pipeline. Experiments were automatically failed

if: (1) they were missing the results of any of the pipeline steps, (2) the number of flies tracked was less than 18 or more than 22, or

(3) the number of male or female flies was less than 7. The automatic curation steps resulted in the failure of 601 experiments.

After passing the automatic quality control, each experiment was also manually curated. Additionally, each experiment with a

review flag or a technical note were assessed for issues. In order to further detect possible errors, we developed a software GUI

(FlyBowlExamineVariables, Data S1 and S2) to review the metadata and diagnostic statistics from data collection and the analysis

pipeline. Outliers in these variables were identified and reviewed for problems. In total, 622 experiments were manually failed and

removed from the dataset for the following reasons: 220 videos had dead or damaged flies in the arena, 167 videos had irreconcilable

line name swaps or possible line contamination, 56 videos had debris in the arena, 53 videos had temperatures below 29�C, above
30.5�C, or humidity below 40%RH, 31 videos contained lines with wing-development phenotypes, 24 videos had loading procedure

errors, 22 videos had data capture software errors, 16 videos had issues with the environmental chamber during the experiment,
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7 videos contained flies with irregular rearing conditions, and in 1 video the number of males or females did not meet the required

minimum. The thorough and complete curation of the data collected in the GAL4 screen removed any potential confounds from

the data analysis due to experiments with identifiable errors.

Tracking
Tracking fly bodies using Ctrax

In each frame of each video, we fit an ellipse to the body of each of the 20 flies using amodified version of Ctrax version 0.3.1 (Branson

et al., 2009). Ctrax uses background subtraction to classify pixels as either fly body (not wings or legs) or background, then connected

components analysis and Expectation-Maximization for Gaussian mixture models to cluster the foreground pixels into groups cor-

responding to each fly. The Gaussian distribution fit to each fly’s pixels is used to estimate an ellipse fit to the body. Identities are

matched between frames using a dampened constant velocity model. Head-tail ambiguities in the ellipse orientation are resolved

using a dynamic programming algorithm that maximized consistency in both the fly’s orientation between pairs of frames and the

fly’s orientation and velocity direction. We made two main modifications to Ctrax to allow it to run completely automatically on

our large collection of videos of behaviorally diverse animals (Ctrax modifications, below).

We ran Ctrax on each video using its command-line interface on Janelia’s cluster, allowing the 100 videos collected in a day to be

processed overnight.We used the same tracking parameters for all videos (with a different pooled background and foregroundmodel

for the first set of Fly Bowl plates used before August 1, 2011 than the second set of plates used after this date). All tracking parameter

files are included in Data S1 and S3. Tracking parameters were initially set by observation on a handful of videos. Ctrax was then run

on a larger subset of videos using these parameters. The results were examined, and several heuristics were used to select tracking

parameters that would work well on this larger dataset. These parameters were used for the rest of the video collection.

Ctrax modifications

The originally published version of Ctrax uses the median of each pixel appearance over time to estimate the background appear-

ance – the appearance of the arena if no flies were present, which is only accurate if the flies are sufficiently active. Thus, the original

background estimation algorithm failed for lines that had greatly decreased activity. To ameliorate this, we learned pooled models of

the background and foreground appearance from a collection of 16-50 videos of sufficiently active GAL4 lines (Figure S2B). When

learning the background appearance for a new video, we estimated the probability that a pixel in a frame is foreground based on

these pooled models. To estimate the background appearance for a new video, we used a weighted median of pixel appearance,

in which each pixel is weighted by the probability that it is foreground (as opposed to each pixel having equal weight in the original

version of Ctrax).

The learned foreground and background models are based on a combination of the pixel’s location in the image, its appearance,

and its distance in pixels from an object detection. The appearance of a pixel is its grayscale intensity. Object detections are based on

thresholding and non-maximal suppression of the output of Laplacian of Gaussian filtering. Let l indicate the label of a given pixel

(either foreground or backgroud), x the location of the pixel in the image, y the appearance of the pixel in the current image, and

d the distance to the closest object detection. By assuming conditional independence between the different types of features given

the pixel label, we can compute the probability that a pixel is foreground or background by multiplying marginal likelihoods:

Pðl j x; y;dÞfpðy j l; xÞpðd jlÞPðl jxÞ
To decompose the probability, we assume that the distance to an object detection d is conditionally independent to both pixel

appearance y and location x given the label l: dty j l; x and dtx j l.
Wemodel the pixel appearance given its label and location, pðy j l; xÞ as a Gaussian, with mean and variance fit as the samplemean

and variance (Figure S2B(i-ii)). We estimate the distribution of the distance to an object detection pðd j lÞ using a sample histogram

(Figure S2B(iii)), and the label marginal given location Pðl j xÞ by the sample fractions.

When estimating the background appearance as the median of each pixel over time, we use the foreground probability

Pðforeground j x; y;dÞ to weight each pixel in the median computation.

Python code for estimating these foreground and background models is included in Data S1 and S3.

We also modified Ctrax to output diagnostic statistics of the number of trajectory births and deaths, as well as statistics of the

number of merges and splits resolved using the Ctrax ‘‘hindsight’’ module.

Wing tracking

We tracked the wings of the flies using custom MATLAB software which implemented an image morphology-based algorithm

(Data S1). Our wing tracking algorithm operates on each frame independently, and begins by classifying pixels as body, wing, or

background by thresholding pixel intensity difference between the current frame and the background appearance (estimated using

Ctrax), followed by a sequence of morphological erosions and dilations to incorporate some spatial information into this classification

(Figure S2D(i)).

Next, pixels classified as wing are then assigned to individual flies based on the path distance to the back of the fly’s body through

wing or body pixels (Figure S2D(ii-iii)). To do this, we perform connected component analysis on the foreground (either wing or body)

pixels, and assign each fly identity output by Ctrax to a connected component. We assign a fly to the closest connected component

using theMahalanobis distance (according to the tracked body covariance matrix) between the tracked fly center and any pixel in the
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connected component (Figure S2D(ii)). Small, unassigned connected components are ignored. Large, unassigned connected com-

ponents are assigned to the nearest fly, and merged with that fly’s originally assigned connected component.

If a connected component is assigned to exactly one fly, then all pixels in that connected component are assigned to that fly. Other-

wise, we need to segment the pixels in the connected component and assign them to individual flies. Body pixels are assigned to flies

according to theMahalanobis distance to the tracked fly center. Wing pixels are over-segmented using the watershed algorithm, and

each cluster of wing pixels is assigned to a single fly based on the shortest-path distance to body pixels in the back half of the fly

(Figure S2D(iii)). We then remove spurious wing pixel detections (usually corresponding to legs) that are outside of the interval

½�ð3p=4Þ; ð3p=4Þ� relative to each fly’s tail are ignored.

Once the wing pixels for a given fly have been identified, we histogram the angle from the center of the fly to each of its assigned

wing pixels angles. We then find peaks in this histogram, and assign each wing’s angle to a peak (Figure S2D(iv)). We find up to two

peaks in this histogram, which will roughly correspond to the wing angles. If two peaks are found, we obtain sub-histogram-bin pre-

cision in our estimate of thewing angles by fitting quadratic functions to the histogram counts for eachwing, and finding themaximum

of the quadratic. These angles are then returned as thewing angles. If a single peak is found, we instead compute themedian angle to

all wing pixels, and return this as the wing angle for both wings. If no peaks are found, then we return that both wings are directly

behind the fly (Figure S2D(iv)).

Temporal and spatial registration of trajectories
We analyze portions of the flies’ trajectories corresponding to 225 to 1,015 s after the flies have been loaded into the Fly Bowl arena

(the time when flies are loaded into arenas is recorded as part of the data capture).

For each video, using landmarks automatically detected in the background image output by Ctrax, we scale, translate, and rotate

the trajectories so that they correspond to a common coordinate system in the world. We scale the trajectories so that a unit corre-

sponds to amillimeter, translate them so that (0,0) is the center of the Fly Bowl arena, and rotate them so that the x- and y-axes corre-

spond to the same directions in all arenas. Thus, small changes in e.g. the camera position will have little effect on the trajectories. The

landmarks detected are the circular arena wall (detected using Canny edge detection and the Hough transform) and a registration

mark (detected using cross correlation).

Classification of fly sex
Each video corresponded to a mixed population of approximately 10 males and 10 females. In order to obtain measures of the be-

haviors of males and females separately, for example to find sex-specific behavioral effects, we automatically annotate the sex of

each fly in each video. As female flies are bigger thanmales, we do this using the area of the ellipses fit to the fly byCtrax.We annotate

the sex of each fly in each frame, in case there are identity swaps in the tracking, but assume that these are rare, thus, in most cases,

the sex assigned in consecutive frames for a given fly should be the same. We combine these two heuristics (that females are larger

than males and that the sex assigned in consecutive frames should be the same) via a hidden Markov model (HMM) whose param-

eters are fit for each video, and find the globally optimal sequence of sex classifications for each trajectory.

We do this using an HMM in which the hidden states are the sex classifications for the fly for each frame and the observations are

the areas of the ellipses fit by Ctrax. Let xt represent the unknown sex classification for the fly at frame t and yt the area of the ellipse fit

to the fly by Ctrax at frame t. Using the first-order HMM conditional independence assumptions, we can factor the joint posterior

distribution of sex classification at each frame given the observed ellipse areas as

Pðx1:T j y1:TÞf
YT
t =1

Pðxt j xt�1Þpðyt j xtÞ

Here, the transition probability Pðxt j xt�1Þ is fixed so that it is much more likely that xt = xt�1. The appearance likelihood pðyt j xtÞ is
modeled as a Gaussian whose parameters are learned for a specific video using the Baum-Welch algorithm. Once the parameters of

the HMM have been learned, we use the Viterbi algorithm to find the globally optimal sequence of sex classifications for the given fly.

Our custom MATLAB code for implementing this automatic sex classification is provided in Data S1.

To evaluate the accuracy of our sex classification algorithm, we manually annotated the sex of 1,000 randomly selected flies and

frameswithin 7 videos from theGAL4 line R14C07 (chosen because themales showed an increase in chasing, thus behavior could be

used to aid in manual sex classification). We compared the automatic classifications of our algorithm to these manual annotations.

Our classification algorithm was 99% accurate (Figure S2C).

We expect sex classification to be similar across GAL4 lines, as the sizes of the flies did not varymuch between lines, and the stan-

dard deviation across lines was similar to that across retests of the same line. In more detail, the mean difference in female and male

area is 0.47 mm2, with standard deviation 0.040 mm2 across all lines screened, while the average standard deviation in area differ-

ence across retests was 0.038mm2. Themean area difference for R14C07 was 0.5175mm2with a standard deviation of 0.0672mm2

across retests.
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JAABA behavior classifiers
As described in Kabra et al., we created 14 behavior classifiers using our JAABA interactive machine learning software (Kabra et al.,

2013). Each binary classifier corresponded to a different behavior, with positive examples being frames in which the fly is performing

the behavior of interest and negative examples being frames in which the fly is not performing the behavior. These classifiers are not

mutually exclusive — a fly can perform multiple behaviors at the same time, such as performing walk, chase, and wing extension

simultaneously. A brief description of criteria used to train each behavior classifier is listed below (examples of each behavior are

shown in Movie S1). We also created a copulation classifier but only one line, R34H05, had a strong and repeatable increase in copu-

lation so we excluded copulation from further analysis.

Attempted copulation – the fly curls its abdomen in preparation for copulation (also called abdominal bending).

Backup – the fly moves at least two legs with a backward swing phase and the center of mass of the fly moves backward without

much rotation about the body axis.

Chase – one fly follows another moving fly and maintains a small, somewhat constant distance to the fly it is following (not depen-

dent on sex of flies, and does not require co-occurrence with wing extension).

Crabwalk – the fly translates sideways with the angle between its velocity vector and the orientation of the body axis greater

than �60�.
Jump – the fly launches itself into the air. This is often accompanied by wing movement, but this classifier does not use wing-

based features.

Pivot-center – the fly performs a large and rapid change in orientation in which the center of rotation is close to the centroid of the

fly and little to no translational movement.

Pivot-tail – the fly performs a large and rapid change in orientation in which the center of rotation is close to the end of abdomen,

followed by translational movement in the new orientation.

Righting – to return itself to an upright posture from a supine posture, the fly performs high velocity rolling to and fro before suc-

ceeding in righting itself.

Stop – the fly has almost no translational or rotational body movement. Stop is not the lack of all movement — the fly can perform

grooming movements and touches while stopped.

Touch – the fly makes contact with the body, wings, or legs of another fly, using its body or legs. This behavior is non-transitive:

a fly is not necessarily performing a ‘touch’ because it is being touched by another fly.

Walk – the fly moves forward using approximately alternating movements of the mesothoracic legs.

Wing extension – the fly unilaterally rotates a wing out from its body in the horizontal plane, often for extended periods of time. This

behavior is likely an indication of the fly producing courtship song with the extended wing.

Wing flick – the fly rapidly and symmetrically moves its wings out and back into their rest position, performing a quick scissoring

movement in the horizontal plane. This is often done multiple times in a row.

Wing grooming – the fly wipes its mesothoracic leg over the dorsal surface of a wing, folding it down against its abdomen.

Machine learning algorithms are based on the assumption that the distributions of the training and test data are the same. As the

behavior of many of our GAL4 lines are extremely different from that of our genetic control, this assumption would be violated if we

trained only on our genetic control and applied the resulting classifier to our GAL4 lines. Conversely, it would be impractical to train on

data from all of our 2,205 GAL4 lines. To efficiently train classifiers that were accurate across all 2,205 phenotypically-diverse GAL4

lines, we used the following protocol. First, we trained an initial version of the classifier on flies from our genetic control. For behaviors

such as attempted copulation which are rarely performed by control flies, to easily obtain positive examples of the behavior, we

includedGAL4 lines we observed performing canonical versions of the behaviors at a higher rate. We then applied this initial classifier

to our entire video dataset. We visually inspected the output of this initial classifier on GAL4 lines that were outliers in line-level

behavior statistics based on per-frame features, for example the average speed of the animals or the average distance to the closest

other fly. When classification errors were identified, we added new training data to refine and retrain the classifier. We also visually

inspected and added training data for lines for which the co-occurrence rates of pairs of behaviors were abnormal, and lines for which

selected per-frame features had abnormal values within positively classified frames. As a final check for false positives, we applied

the refined classifier to the entire video collection and visually confirmed the behavior for the 50 lines that were classified as perform-

ing the behavior the most.

Details of training each classifier, including parameters and training set sizes, are given in Table S3.

Accuracy of automatic behavior classifiers
To quantitatively measure the generalization error of the classifiers across the entire dataset, we manually labeled the behavior in

selected GAL4 lines, and compared these manual labels with the output of the automatic behavior classifiers (Figure 2C, Table

S4). To manually label data, we used the JAABA software in ‘‘groundtruthing mode.’’ Intervals of frames to label were selected

randomly using the ‘‘balanced random’’ method, which set the probability that a given interval of frameswas selected so that approx-

imately the same number of frames would be selected that were classified as positive and negative. Thus, for behaviors that were

performed rarely by a given line, the intervals containing positively classified examples were up-weighted. To obtain an unbiased
Cell 170, 393–406.e1–e17, July 13, 2017 e7



estimate of accuracy, we then scaled by the inverse of this weight. This importance-sampling approach was necessary to estimate

the false negative rate for rare behaviors from a reasonable number of manual labels.

For each behavior, wemanually labeled up to 2,000 frames in theGAL4 lines that were at the 0th, 5th, 15th, 50th, and 100th-percentile

for fraction of time spent performing that behavior (according to the automatic classifier), and the control line. For 3 classifiers

(attempted copulation, jump, and wing extension), we performed more extensive groundtruthing, and manually labeled frames in

an additional 17 (totaling 23) representative lines:

d To find lines for which the classifier might be performing poorly, we selected the 2 lines with the highest fraction of frames with

low-confidence classifications for the given behavior (classifier scores between -.25 and 0.25).

d To find lines that well-represented the diversity of observed behavior phenotypes, we clustered the lines into 10 groups using

k-means based on their line-level behavior statistics, and selected the line closest to the cluster mean as a representative.

d To find lines with unusual behavior, we ranked the lines by the fraction of frames which were not classified as any of our 14

behaviors, and sampled the 0th, 5th, 15th, 50th, and 100th-percentile lines.

The average accuracy of each classifier across all lines is shown in Figure 2C, and the accuracy for each GAL4 line is shown in

Table S4. Note that the accuracy is high for all lines that perform the behavior a reasonable amount of the time.

We further examined the effect of behavior classification errors on the accuracy of our line-level behavior statistics (Figure S3A). For

the lines with groundtruth behavior labels, we compared the line-level statistics calculated from the subset of frames we manually

labeled with those from the automatic behavior classification across all frames. These comparisons show good concordance be-

tween statistics from manually and automatically classified behaviors.

Computation of per-line behavior statistics
Following the JAABA analysis (Kabra et al., 2013), we computed a suite of 128 continuous-valued per-frame features, describing the

instantaneous locomotion of each fly, and their relative positions and motion (Table S2).

These per-frame features were used in two ways. First, they were the inputs to the 14 JAABA behavior classifiers. Second, we

used both the per-frame features and the per-frame behavior annotations to compute a suite of summary behavior statistics to

summarize the behavior of the flies in a video (per-video behavior statistics). Each of our behavior statistics is defined by a

per-frame feature (Tables S2 and S5) and conditions on which frames and flies to include in the computation (Table S5):

<perframe>_fly<flycondition>_frame<framecondition>.

For example, velmag_ctr_flymale_framechase, which corresponds to the average velmag_ctr per-frame feature (velocity magni-

tude of the fly center) in fly-frames which are classified as both males and chasing, is computed by pooling together all frames that

satisfy the fly and frame conditions, and computing the average of the per-frame feature in those frames:Pnflies
i = 1

PTi
t = 1Iðchaseit = 1ÞIðsexit =MÞvelmag ctritPnflies
i =1

PTi
t = 1Iðchaseit = 1ÞIðsexit =MÞ ;
where nflies is the number of trajectories, Ti is the length of trajecto
ry i, chaseit is the binary output of the chase classifier for trajectory i

and frame t, sexit is the output of the sex classifier for trajectory i and frame t, Ið,Þ is the indicator function, and velmag ctrit is the

instantaneous speed of fly i between frames t and t + 1.

Our code for computing these per-video behavior statistics is modular, and new behavior statistics can be specified using a

controlled vocabulary without coding. Any of the per-frame features in Table S2 as well as a few special case keywords (Table

S5, type = perframe) can be specified as a per-frame feature. We define a controlled vocabulary of conditions on the frames (Table

S5, type = framecondition) and flies (Table S5, type = flycondition) whose data is pooled to compute a given behavior statistic, spec-

ified in Table S5.

Our behavior statistic computations pool together frames across flies in the video, all with equal weight. We exclude very short

trajectories from this analysis: we specify a minimum number of frames within each trajectory for which both the frame and fly con-

ditionsmust be satisfied and the number of frames in which just the fly conditionsmust be satisfied. A full list of the behavior statistics

computed, and the minimum number of frames for a trajectory to be included, is in Table S6.

Per-retest (�4 videos collected simultaneously from the same cross) behavior statistics were obtained by averaging together the

per-video statistics. Retests with only a single video were discarded from analysis.

As the behavior of our genetic control changed slightly over time (Figure S3B), we normalize each per-retest behavior statistic using

the measured average behavior of the genetic control in the surrounding month: x = x0 � mmonth +mtotal, where x is the normalized re-

test behavior statistic, x0 is the measured, unnormalized retest behavior statistic, mmonth is the average of control retests recorded in

the surrounding month, and mtotal is the average of all control retests recorded.

To obtain (per-line) statistics to describe the behavioral effects of neural activation for a given GAL4 line, we averaged the normal-

ized behavior statistics for all retests of the line. All retests were given the sameweight regardless of whether they consisted of 2, 3, or

4 videos. Thus, our per-line behavior statistics were computed by first pooling data from frames and flies in a single video, then across

the �4 videos recorded simultaneously from the same cross, and finally across the �2 retests of the line.
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Automatic, high-throughput behavior analysis pipeline
Behavior analysis for each video was automatically performed the night after the video was recorded. Our analysis pipeline was trig-

gered to automatically run each night on all newly collected data using the Hudson continuous integration server v. 3.1.0. First, a

script was automatically launched to search each data collection computer for newly recorded videos and transfer them to our

data server. Then, each step of the behavior analysis pipeline was automatically launched on videos that had completed the previous

step. The steps of the pipeline were: (0) data transfer, (1) initial automatic quality checks (seeData curation), (2) Ctrax-based tracking

of body positions (see Tracking), (3) spatial and registration of data to a common coordinate system (see Temporal and spatial

registration of trajectories), (4) sex classification (see Classification of fly sex), (5) tracking of flies’ wings (see Tracking),

(6) computation of per-frame feature time series (seeComputation of per-line behavior statistics), (7) JAABA-based behavior clas-

sification (see JAABA behavior classifiers), (8) compilation of per-video behavior statistics (seeComputation of per-line behavior

statistics), (9) generation of short video clips showing the behavior of the flies and tracking accuracy, and (10) final automatic quality

checks (see Data curation).

Testing for significant effects on behavior
We used a bootstrapping method to estimate the probability of observing a value at least as large as the measured per-line behavior

statistic for our genetic control. Each sample consisted of retests of the genetic control with sizes matched to the dataset size for the

given GAL4 line (same number of retests, each with the same number of videos as the GAL4 line). Our bootstrap distribution was

constructed from n = 762 retests (2,881 videos, 56,768 flies) of the control line. We constructed 10,000 such samples, and computed

the fraction of these samples with at least as large values as our measured per-line behavior statistic. This is the estimated p-value

that the GAL4 line has a larger value for the behavior statistic than the genetic control. A similar computation was performed to es-

timate the p-value that the GAL4 line has a smaller value for the behavior statistic than the genetic control.

To account for multiple comparisons when estimating the number of lines with a significant increase in a given behavior statistic

(Figure 3A(ii)), we compute the Benjamini-Hochberg (B-H) FDR correction (Benjamini and Hochberg, 1995; Groppe et al., 2011) over

2,205 tests (one for each line), and threshold at FDR = 0.1. This correction assumes independence or positive dependency be-

tween tests.

To correct for multiple comparison tests when estimating that 98% of lines have a significant change in some behavior statistic, we

compute the Benjamini-Yekutieli (B-Y) FDR (Benjamini and Yekutieli, 2001; Groppe et al., 2011) across tests for both increases and

decreases in all 203 behavior statistics and all lines (203*2*2,205 = 895,230 hypothesis tests), and threshold at 0.1. This FDR correc-

tion is valid for all forms of dependency.We say that a line has a significant behavioral difference if the null hypothesis is rejected for at

least one of the 203*2 tests. For a line to be a false positive, all positive tests for that line must be erroneous. Thus, we can upper-

bound the FDR over lines as the minimum FDR over the 406 tests for that line. Based on this upper bound, the expected number

of false positives is 2 out of the 2,165 lines with a significant difference, a FDR of 0.001.

Behavior statistic correlation analysis
To look for interesting relationships between our behavior statistics across GAL4 lines, we computed Spearman’s rank correlation

coefficient between each of

�
83
2

�
= 3;403 pairs of 83 selected behavior statistics (Table S6). We computed these rank correlation

coefficients both across all GAL4 lines, across only those GAL4 lines that moved at least 55% of the time, and across retests of the

negative control line.

We estimated the significance of the hypothesis test that each correlation was non-zero with a bootstrap-based test in which we

computed the Spearman rank correlation coefficients after disordering the lines/retests:

rij0s = rankcorr
�
xi1:N; x

j
ns1 ;.;nsN

�

where xi is the value of behavior statistic i for line/retest n and ns
n k

� Uniformðf1;.;NgÞ. We computed S= 300;000 such samples,

and counted the number of samples with larger and smaller correlations. The two-tailed significance was then estimated as:

pij =
2

S
min

(XS
s= 1

I
�
rij0sRrij

�
;
XS
s= 1

I
�
rij0s%rij

�)
where rij is the true measured rank correlation between behavior
 statistics i and j.

We also used a bootstrapping approach to determine whether the correlation coefficients were different between control retests

and GAL4 lines. A sample s of the bootstrap distribution was created by randomly partition the 762 control retests into two (approx-

imately) equal halves, Cs and Cs, computing the Spearman rank correlation coefficients for each half, and computing the difference:

rij0s = rankcorr
�
xicontrol;Cs

; xjcontrol;Cs

�
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rij0s = rankcorr

�
xi
control;Cs

; xj
control;Cs

�

We computed S= 30;000 such samples, then counted the numbe
r of samples with bigger absolute differences between the corre-

lations, and estimated the significance as

pij =
1

S

XS
s= 1

I

���rij0s � rij0s
�� > ��rijGAL4 � rijcontrol

�� �
where rij and rij are the true correlation coefficients for the
GAL4 control GAL4 lines and control retests. To account for multiple compari-

sons, we compute the B-Y FDR across the 3,403 pairs of behavior statistics.

In Figure S4C, we histogram the sign-flipped rank correlation coefficients for subsets of the pairs of behavior statistics. We choose

these subsets based on the control correlation coefficients. In red, we histogram behavior statistic pairs for which the magnitude of

the rank correlation coefficient across control retests was both significantly nonzero (FDR% 0.1) and large ð��rijcontrol ��R:5Þ. We try to

remove trivially correlated behavior statistic pairs by also requiring that there be at least oneGAL4 line which did not follow the control

correlation trend. We require there to be some line for which one of the behavior statistics is very different from control and the other

behavior statistic is either near 0 or has the opposite sign:

noutliersij^
XN

n=1

	
I
�
sijzinRllarge

�
I
�
zjn%lsmall

�
+ I

�
zjnRllarge

�
I
�
sijzin%lsmall

�
+ I

�
sijzin%� llarge

�
I
�
zjnR� lsmall

�
+ I

�
zjn%� llarge

�
I
�
sijzinR� lsmall

�


where sij˛f�1;+ 1g is the sign of the rank correlation coefficient
 between behavior statistics i and j across control retests, zin is the

number of control standard deviations behavior statistic i for GAL4 line n is from the control mean, zin = ðxin � mi
controlÞ=sicontrol, llarge = 5

is a threshold defining a large difference from control, and lsmall = 1 is a threshold defining a small difference from control. We also

histogram the Spearman correlation coefficients across GAL4 lines for pairs of behavior statistics for which themagnitude of the cor-

relation coefficient across control retests was not significantly different from 0 (FDR > 0.1) and small ð��rijcontrol ��R:1Þ

Behavioral effects of activation
To visualize the types of behavioral effects we observe as a result of neural activation across the GAL4 collection, we project the 203-

dimensional vector representing the behavior statistics for a given GAL4 line down to two dimensions. We first normalize each

behavior statistic based on the distribution of values observed in retests of the control line. For behavior statistic x, let z be the number

of control standard deviations from the control mean:

z= ðx � mcontrolÞ=scontrol
where m and scontrol are the mean and standard deviations for
control this behavior statistic across retests of the control line. To prevent

extreme behavioral outliers from being over-represented, we use a log-transform for values more than l= 3 standard deviations from

control:

znorm =

8<: z �l%z%l

l+ logðz� l+ 1Þ z > l

�l� logð�z� l+ 1Þ z < � l

Using these normalized vectors znorm, we project the behavior data down to two dimensions using principal component analysis

(PCA, Figures 3G and 3H) or t-distributed Stochastic Neighbor Embedding (Figure S4E). For t-SNE, we use Euclidean distance in this

normalized space, and first project the data down to 50 dimensions using PCA, and set the perplexity parameter to 30.

We observed a broad range of effects on both the locomotion and social behavior of the flies. The activity level varied continuously

from lines that rarely moved to lines that moved over 95% of the time (control flies moved on average 58% of the time), with 60% of

lines showing a significant difference in the fraction of time stopped (FDR% 0.1, Figure 3A(ii)). Similarly, the average center-to-center

inter-fly distance varied continuously from 5mmz2 body lengths – flies were nearly touching) to 16 mm (1.5x the average distance if

uniformly distributed in the arena – flies were actively avoiding each other), with 40% of GAL4 lines showing a significant difference in

inter-fly distance (FDR % 0.1, Figure 3A(ii)).

Among lines that walked more than control, we observed a few qualitatively different phenotypes, including lines that walked in

long bouts that often crossed the arena, lines that walked much faster than control, lines that chased more than control, and lines

that appeared to have general increases in their activity level.

To further narrow our behavior categories, we found it useful to combine behavior measures, for example categorizing lines that

walked more but did not chase more than control, or lines that stopped more but did not groom their wings more.
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Janelia Fly Light imagery data
Weused the Janelia FlyLight imagery data (Jenett et al., 2012) to characterize the anatomical expression of each GAL4 line. To create

this dataset, the authors used the UAS-GAL4 system to express GFP in the targeted neurons. Our analyses were performed on, on

average, 5.6 sample brains from female flies (Figure 4B) kindly provided by the Janelia Fly Light Team.

Processing of neural expression pattern images
Registration

We used the BrainAligner (Peng et al., 2011) to automatically register all brain images to a common template brain (JFRC2 template,

(Jenett et al., 2012)), resulting in a total of 6,542 well-registered image stacks of size 1024 3 512 3 218 pixels, across 2,082/2,204

GAL4 lines for which we measured behavior (Figure 4B). Different from previously published registered images, we used 500 land-

mark points, including 269 landmark points in the optic lobes (all code for improved BrainAligner registration was kindly provided by

Yang Yu). Besides producing a registered image stack, the BrainAligner also outputs an indicator of the quality of the alignment. As

cell bodies were not well-aligned by this procedure, we limited our analysis to neuropil. This was achieved by confining analysis to the

mask developed by Jenett et al. (Jenett et al., 2012)). However, as this masking is imperfect, it should be noted that cell body fluo-

rescence may be contributing to the putative neuropil signal in some cases.

Intensity normalization

As brightness and contrast were extremely variable across images (because of genetic differences, differences in dissection, and

differences in imaging parameters such as laser power), we normalized the intensity of pixels in each image. We performed the

same normalization on all pixels in a given image stack:

xnorm =max

�
0; min

�
1;

xraw � llow

lhigh � llow

��
Here, xraw is the original intensity of the pixel, and llow and lhigh are intensity thresholds for the current image.When appropriate, we

thought of this normalized intensity as our estimate of the probability that there was expression in a given voxel.

Different thresholds llow and lhigh are chosen for each image stack, but are shared across all pixels in a single image. The values of

these thresholds are automatically set based on the following measured statistics of a downsampled version (by x = 5; y = 5; z= 3) of

a given image stack:

d Mean of pixels outside the brain foreground mask (background pixels).

d Standard deviation of background pixels.

d Mean of pixels inside the brain foreground mask (foreground pixels).

d Standard deviation of foreground pixels.

d Fraction of background pixels with intesities between a sequence of 20 intervals.

d Fraction of foreground pixels with intesities between a sequence of 20 intervals.

d Percentiles of background pixel intensities (0, 1, 5, 10, 25, 50, 75, 90, 95, 99, 100).

d Percentiles of foreground pixel intensities.

The thresholds llow and lhigh are linear functions of these image statistics. The coefficients of these linear functions are learned

using lasso regression from a training set of 148 image stacks for which we manually annotated the desired llow and lhigh. The

GUI for annotating thresholds, as well as an example annotation, are shown in Figure S5.

Combining images of the same line

For themajority of lines, the Fly Light Dataset contained several images corresponding to different dissections and flies from the same

GAL4 line (Figure 4B). To create the representation of the expression pattern we used in all further analyses, we averaged together

several of these image stacks. Averaging multiple images allowed us to capture both the stochasticity of expression (e.g., if one im-

age had expression in a given neuron and another did not, then the average would have a value of 0.5) as well as imprecision in the

registration and normalization algorithms. We averaged together all images of a given GAL4 line with sufficiently good registration

quality. In addition, we blurred the image with a 5 3 5 x 2 pixel box filter to account for imprecision in the registration.

Clustering the brain into supervoxels
We cluster voxels in the fly brain template into supervoxels based on the expression in each voxel across GAL4 lines sampled as well

as the (x,y,z) location of the voxel. Let xev be the L-dimensional vector for which entry xevl is the expression in voxel v for line l, and let xsv
be the 3-dimensional vector indicating the location of voxel v in the image stack. Ourmeasure of the distance between voxels u and v

is the weighted average of L1 distances:

dðu; vÞ=
XL

l =1

��xevl � xeul
�� +ws

X3

i = 1

��xsvi � xsui
�� ;
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where ws is the weight of the spatial term. Both for efficiency and to make use of existing knowledge of compartmentalization of the

Drosophila brain, we clustered each compartment, as defined in (Jenett et al., 2012), separately. We use the farthest-first algorithm to

construct a hierarchical clustering of the voxels into a pre-specified number of sub-regions. The farthest-first algorithm starts with

one data point to represent the first cluster, then iteratively selects the data point farthest from the first k � 1 chosen data points

to represent the kth cluster (Dasgupta and Long, 2005). This simple algorithm is relatively fast and memory-efficient. This clustering

produces regions of varying sizes. To force the ratio of the volume of the largest to the smallest cluster to be below some threshold,

we next split all large clusters, again using the farthest-first algorithm, with an increased weight given to the spatial term. Once all

clusters are sufficiently small, we iteratively merge clusters that were too small. Supervoxel clustering of selected compartments

are shown in Figure 5B–5D. We tried a variety of values for the three parameters of our clustering the algorithm: the number of super-

voxels, the weight of the spatial component in the distance, and the maximum allowed ratio in supervoxel volumes. The results

(Figure S6) were qualitatively similar across parameter values, and we chose one parameter setting that holistically and heuristically

corresponded with our knowledge of Drosophila brain anatomy: number of supervoxels = 7,065, position weight = 10�5, and volume

ratio = 2.

A related clustering technique was independently developed by (Panser et al., 2016). This approach was based on a similar hy-

pothesis, that voxels with similar expression across GAL4 lines might be part of the same functional unit. However, the algorithms

differ in their details, in particular, the preprocessing of the anatomy images, the distance function, and the clustering algorithm.

Potential improvements in our implementation are (1) we use two thresholds set based on a machine learning algorithm to normalize

intensity in each image and (2) our clustering algorithm is relatively fast, thus we could apply it to the entire brain without downsam-

pling, instead of a downsampled version of the central brain. Important differences include that (1) our algorithm has an expression

component as well as a spatial component and (2) our clusters are much smaller. Finally, the goals of these projects are quite

different. Panser et al.’s work searches for new anatomical understanding of the brain, while our work is looking for a low-dimensional

representation of expression for our behavior-anatomy correlation.

Behavior-anatomy correlation
For every pair consisting of a supervoxel and ameasured behavior statistic, we can compute the correlation ruv between estimates of

whether supervoxel v has expression and whether behavior statistic u has a high value, across all GAL4 lines:

r+
uv =

XL

l = 1

avlb
+
ul =au

v b+
u :

Here, avl˛½0; 1� is the normalized and thresholded expression image intensity in supervoxel v for line l and b+
ul˛½0; 1� is a normalized

and thresholded version of the value of behavior statistic u for line l. The parameters of the normalization and thresholding of the

expression intensity and behavior statistic are chosen so that avl and b+
ul can be interpreted probabilistically as estimates of whether

supervoxel v has expression and whether behavior statistic u has a high value for line l given our observations, and the correlation r+
uv

is an estimate of the probability of co-occurrence of an increase in the behavior and expression in the supervoxel.

Normalization and thresholding of anatomical expression is described above (Processing of neural expression patterns, Intensity

normalization). We normalize and threshold the behavior statistic as

b+
ul =max

(
0;min

(
1;
xul � mu

l+
u

))
where xul is the measured per-line value for behavior statistic u a
nd line l (see Computation of per-line behavior statistics), mu is the

value of behavior statistic u for the genetic control line, and l+
u is a threshold defined as the minimum of 5 standard deviations of the

control line behavior (measured over retests) and the 99th-percentile over all lines that have a higher value for behavior statistic u:

l+
u =min

�
5su;percentile

�fxul � mu : xul � mu > 0gLl = 1; 99
��

A similar computation was performed to estimate the probability that behavior statistic u had a low value for line l:

b�
ul =max

(
0;min

(
1;
xul � mu

l�u

))
where
l�u =min
�
5su;percentile

�fmu � xul : xul � mu < 0gLl = 1; 99
��

Using our interpretation of the value bul as a probability, we can create logical combinations of our behavior statistics such as the

probability that line l has a high value for both behavior statistics u1 and u2 as

bðu1 = + Þ^ðu2 = + Þ;l =b+
u1 ;l

b+
u2 ;l
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or the probability that line l has a high value for behavior statistic
 u1 but not u2 as

bðu1 = + Þ^ðu2s+ Þ;l =b+
u1 ;l

�
1� b+

u2 ;l

�

or the probability that line line l has a high value for either u1 or u
2 as

bðu1 = + Þnðu2 = + Þ;l =min
n
1; b+

u1 ;l
+b+

u2 ;l

o
We use a bootstrapping method to compute the probability of observing a correlation as high as that measured, given the null hy-

pothesis that there is no correlation between behavior and anatomy, which we estimate by shuffling the lines. Let ~b
+

ul =b+
ul0 for a

randomly chosen l0 � Uniformf1;.;Lg. As av and
fb+
u are necessarily uncorrelated, we estimate the probability of observing at least

as high a correlation ruv when the data are uncorrelated by drawing N= 100;000 such samples ~b
+ i

u and computing the fraction with

higher correlation ~r+ i
uvRr+

uv. We report this fraction as an estimate of the p value of there being a correlation between expression in the

supervoxel v and an increase in the value for behavior statistic u. We perform a similar computation tomeasure whether how likely it is

that there is a correlation between expression in a supervoxel and a decrease in the value of a given behavior statistic by using a

normalized version of the negative value of the behavior statistic.

For each behavior statistic, we compute the B-H FDR over the 7,065 correlation tests for all supervoxels (these are the tests that are

performed to create a single behavior-anatomy correlation map). Our maps threshold correlation p-values at 0.05 and B-H FDR at

0.25. We used a permissive FDR because p value is indicated in pseudocolor.

Our analysis tests for correlations between these probabilistic behavior and anatomy scores. While our model doesmake assump-

tions, we nonetheless can find significant effects of activation when there are nonlinear interactions between cell groups. To demon-

strate this, we simulated data from one such extreme interaction, in which one cell group completely masks the behavioral effect of

activating another, and show that we can still find significant correlations. We used our measured anatomical expression data, and

generated synthetic behavior phenotypes bl for each line l as follows. For each line l and supervoxel i, we generated

xli � BernoulliðaliÞ, which represented there is truly expression, probabilistically according to the anatomical expression score ali.

We randomly chose one supervoxel u, and assume that activating supervoxel u alone results in the behavior phenotype ðb= 1Þ.
The rest of the supervoxels will either not affect this behavior measure or will completely mask it, resulting in the complete absence

of the behavior phenotype ðb= 0Þ. Thus, we set that the behavior phenotype for line l based on the randomly generated true expres-

sion pattern xl as

bl =

8<: 0; xlu = 0
0; dm˛M : xlm = 0

1; xlu = 1 and xlm = 0c m˛M

Here, M are the set of supervoxels that will mask the behavior phenotype. We varied the fraction of supervoxels with masking

behavior. For reasonable numbers of masking supervoxels (on average 38 masking supervoxels, resulting in, on average 18 lines

showing the behavior phenotype), we do indeed find a significant correlation (p % 0.0001). Figure S8D shows the results of this

simulation.

Some of our maps are quite dense, while others are sparse. For example, the increased walking map is dense, while the increased

female chase map is sparse. There are many possible reasons for the density of a map. One potential explanation for the density of

the map is the specificity of the behavior. There are many reasons a fly might walk, for example, it might walk because it is hungry or

because it is chasing another fly. For this reason, we believe combining behavior statistics using our BABAM software (Data S1) will

be useful in refining maps. While it could be that a map is denser because more neurons are involved in control of the behavior, it is

important to remember that lack of statistical significance for our behavior-anatomy correlation test does not imply that there is no

correlation. Frequency of positive tests will depend on the signal-to-noise ratio (SNR) for both the behavior and the brain region.

Behavior SNR depends on whether the behavior change is obvious when other parts of the brain are activated, and the variability

of the behavior across flies from the same genotype. Anatomy SNR depends on the structure of the brain region, as large processes

have higher contrast in the image stacks and are better aligned by the BrainAligner. Other important factors contributing to sensitivity

of a given behavior-anatomy correlation test are whether a given behavior can be stimulated with thermogenetic activation, and the

frequency of expression in a given anatomical region in the Janelia GAL4 collection.

Behavior-anatomy maps
Wecreated a behavior-anatomymap of neuronal regions correlatedwith a selected behavior measure having a high value by coloring

the region corresponding to each supervoxel by our estimate of the p value of the correlation hypothesis test. We compute the B-H

FDR across all supervoxels, i.e., all hypothesis tests used to create a single map, and color supervoxels for which the FDR was over

0.25 as though the p value was 1. In Figures 7 and 8 and Movie S3, we show the minimum projection of this 3D map over z-slices.

The same technique was used to create behavior-anatomy maps of regions correlated with a selected behavior measure having a

low value, or for any logical combination of behavior statistics.
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In Figure 7, we show the behavior-anatomy map corresponding to the fraction of time walking for all flies, fractime_flyany_frame-

walk, having a high value.

In Figure 8A, we show the behavior-anatomy map corresponding to the fraction of time male flies perform wing extensions,

fractime_flymale_framewingextension, having a high value.

In Figure 8B, we show the behavior-anatomymap corresponding to the fraction of time all flies are stopped, fractime_flyany_frame-

stop, having a high value, and the fraction of time all flies perform wing grooming, fractime_flyany_framewinggrooming not having a

high ðbðstop= + Þ^ðwinggrooms+ ÞÞ.
In Figure 8C, we show the behavior-anatomy map corresponding to the fraction of time all flies jump, fractime_flyany_framejump,

having a high value.

In Figure 8D, we show the behavior-anatomy map corresponding to the fraction of time all flies back up, fractime_flyany_frame-

backup, having a high value.

In Figure 8E, we show the behavior-anatomy map corresponding to the fraction of time female flies chase, fractime_flyfemale_

framechase, having a high value, and the fraction of time male flies chase, fractime_flymale_framechase not having a high

value ðbðchase female= + Þ^ðchase males+ ÞÞ.
In Figure 8F, we show the behavior-anatomy map corresponding to the fraction of time all flies perform wing-grooming, fractime_

flyany_framewinggrooming, having a high value.

In Figure 8G, we show the behavior-anatomy map corresponding to the average maximum angle of either wing, max_wing_angle_

flyany_frameany, having a high value.

We note that our clustering and behavior-anatomymaps are not left-right symmetric. This is because the template brain to which all

our images were aligned is a single fly brain, and thus is not perfectly symmetric. In addition, z-slices cut through different portions of

the brain in the left and right hemispheres. Our analyses did not enforce symmetry. However, we found looking for such symmetries in

both the clustering and behavior-anatomy maps to be a useful confirmation of our findings.

Clustering behavior-anatomy maps

In Figure 7C, we cluster the supervoxels with sufficiently significant correlation (p-value% 0.005) according to their expression level in

GAL4 lines which both show the given behavior phenotype (behavior score R 0.5) and have expression in some sufficiently corre-

lated supervoxel (expression level R 0.5). We cluster using average-linkage hierarchical clustering and the L1 distance metric.

Identifying important GAL4 lines

For a given brain region (corresponding to a set of supervoxels) V = fv1;.vngwhich is significantly correlated with a behavior pheno-

type u, we define the importance of a given GAL4 line l to the behavior-anatomy correlation as sVl = aVlbul, where the anatomy score

for a region is the average of the anatomy scores for the contained supervoxels, aVl = ð1=nÞPn
i =1ail. To find the most important lines,

we sort the lines in descending order of the behavior-anatomy product sVl. When computing the average expression pattern over the

important lines as in Figures 8B–8G(iii), we selected m out of the L lines in order of importance until they make up half the total cor-

relation:
Pm

l = 1sVlR0:5
PL

l =1sVl.

Identifying ring neurons associated with walking
The increased-walking map (Figure 7A) shows correlations between this behavior phenotype and expression in components of a pu-

tative circuit involved in the control of walking (Figure 7C), consisting of the optic lobes, the optic tubercles, and the ellipsoid body.We

used the split-GAL4 intersectional strategy (Luan et al., 2006; Pfeiffer et al., 2010) in conjunction with this behavior-anatomy map to

identify a small population of R2/R4 ring neurons in the ellipsoid body that were sufficient to elicit an increase in walking probability.

First, we created 20 novel split-GAL4 lines based on 10 of the most important GAL4 lines for the walk-ellipsoid body correlation (Fig-

ures 7D–7F). We then independently tested these split-GAL4 lines for (1) whether we saw an increase in the fraction of time the flies

spent walking and (2) whether and where we saw expression in the ellipsoid body.

Of the split-GAL4 lines, 8/20walked significantlymore than the empty split-GAL4 control when tested for a neural activation pheno-

type (Figure 7E). We characterized the expression patterns of these split-GAL4 lines (Split GAL4 line annotation, below, Figure S7,

Table S7), and for 15/20 lines, there was expression in the ring neurons of the ellipsoid body, the region implicated in our walking-

more behavior-anatomymap. This 75% success rate of finding split-GAL4 lines with strong expression in the ellipsoid body suggests

that it is beneficial to use both behavior and anatomy information to target expression to sparse neural regions (for comparison, a

screen based only on anatomical expression patterns had a much lower rate of success, 16%, in finding split-GAL4 lines with strong

expression in the desired region (Aso et al., 2014)).

Three of the split-GAL4 lineswith increasedwalking, SS02769, SS02767, and SS02766 also had relatively clean expression in what

appears to be the same small population of R2/R4 ring neurons (Figure 7F). These three lines are intersections of pairs of three

enhancer fragments (Figures 7D and 7F), further suggesting that they are the same population of neurons. Four of the other lines

that walked more contained many more ring neuron types, and may also contain this population of neurons, or other neurons suffi-

cient to induce increases in walking probability. These results demonstrate that, using our behavior-anatomy maps, we can identify

and gain genetic access to sparse neuronal populations that are involved in the production of a given behavior.
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Split-GAL4 line annotation
Identification of ring neurons was based on cell body position, microglomeruli processes in the bulb, and tangential processes in the

ellipsoid body (EB) (Hanesch et al., 1989). As it was well stated by Wolff et al., ‘‘without exhaustive cell type analysis of all ring-like

neurons, an accurate and complete catalog of the ring neurons does not exist’’ (Wolff et al., 2015). Using the categories previously

described (Hanesch et al., 1989; Renn et al., 1999; Young and Armstrong, 2010), we used the following criteria to subcategorize the

EB rings neurons in the split-GAL4 lines.

1. If there were EB ring processes entering the EB peripherally from the RF track, the line was annotated as containing R4 ring

neurons.

2. If (1) and a distinct gap between the distal edge of the ellipsoid body neuropil and expression, the line was annotated as con-

taining R4m type neurons.

3. If (1), and expression in the most distal ring of the ellipsoid body, the line was annotated as containing R4d neurons.

4. If (1), but (2) versus (3) could not be clearly determined, the line was labeled simply as R4 containing.

5. If there were processes entering the EB canal from the RF track and no other CC expression, the line was annotated as con-

taining R1, R2, or R3 neurons.

6. If (5), and only expression in the outer ring, the line was annotated as containing R2 type neurons.

7. If (5), and continuous expression throughout the anterior portion of the inner, middle and outer rings, the line was annotated as

containing R3 neurons.

8. If (5), and expression in the posterior inner ring of EB, the line was annotated as containing R1 type neurons.

These criteria resulted in annotations that are inclusive of those identifiable cell types but not exclusive of those not noted. Due to

the density of expression within the ellipsoid body in some of our lines it is not possible to parse all cell types present without exten-

sive further characterization. For example, R2 neurons cannot be definitively identified in a line that also contains R4 (overlap of

expression) and R1 or R3 (axons enter through the EB canal), and for this reason was left out of annotation of such lines even though

R2 type neurons very well may be present in such lines. For all lines, we noted the presence of expression in the radial inner, middle, or

outer rings and anterior or posterior shells. Similarly, the presence of R4d and R2 neurons couldmask the presence of additional R4m

type neurons. The number of EB ring neurons present in each line was estimated from cell body clusters and categorized as less than

10, 10-30, more than 30. Expression outside the central complex in the central brain is reported by number of cell bodies or as ‘optic

lobe’ with an estimate of the number of cell types.

QUANTIFICATION AND STATISTICAL ANALYSIS

The Method Details section above details the methods we used for quantitatively analyzing our data. In this section, we overview the

types of statistical tests we used, which parts of the analyses they were used for, and, for each of these, the dataset sizes and def-

initions of significance. The table below summarizes this information for each result.

Themajority of our statistical tests are based on bootstrap-based estimates of the null hypothesis distribution. In all cases, multiple

comparisons are accounted for by controlling the false discovery rate (FDR). We use the Benjamini-Hochberg (B-H) FDR when the

assumption that tests were independent or positively dependent was satisfied, and the Benjamini-Yekutieli (B-Y) FDR when tests

might have other dependencies.

Figure 3A(ii) shows the results of our tests of whether the value of a given behavior statistic for a given GAL4 line was significantly

higher than that we observed for our genetic control. This process is detailed above (Methods, Testing for significant effects of neural

activation on behavior). Here, we use bootstrapping to estimate the distribution of the per-line behavior statistic computation for sets

of retests of our genetic control. The number of retests for eachGAL4 linewas approximately 2 (see ‘‘N. sets’’ of Table S1 for the exact

numbers per line). Each sample of the bootstrap distribution was created by combining k retests of the control (of which there were in

total 762), where k is the number of retests of the selected GAL4 line.We approximated the bootstrap distribution by sampling 10,000

points from

�
762+ k � 1

k

�
possible combinations of our 762 independent retests. To account for multiple comparisons across the

2,205 lines tested for each behavior statistic, we used the B-H FDR, and significance was determined so that the FDR was 0.1.

Our claim that 98% of lines showed a significant change in some behavior statistic used the p value estimates from this same

bootstrap test (Methods, Testing for significant effects of neural activation on behavior). Here, we accounted for the multiple

comparisons across all 895,230 line-behavior statistic combinations using the B-Y FDR, and significance was thresholded so that

the FDR was 0.1.

As shown in Figure S4C, we tested whether the Spearman rank correlation coefficient for a given pair of behavior statistics was

significantly non-zero for both the GAL4 lines and the control retests. Here, we used bootstrapping to estimate the distribution of

correlation coefficients for the pair of behavior statistics given that they are uncorrelated. We did this by comparing the true corre-

lation coefficient to that measured for the same pair of behavior statistics after randomly resampling lines/control retests for the
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second statistic (Methods, Behavior statistic correlation analysis). For the GAL4 lines, we approximated the bootstrap distribution by

sampling 300,000 points from 2; 2052;205 possible combinations of our 2,205 independent measurements. For control retests, we

approximated the bootstrap distribution by sampling 300,000 points from 762762 possible combinations of our 762 independent

measurements. To account for multiple comparisons across the 3,403 pairs of behavior statistics tested, we used the B-Y FDR,

and significance was determined so that the FDR was 0.1.

As shown in Figures 3F and S4B, we tested whether, for a given pair of behavior statistics, the Spearman correlation coefficient

across GAL4 lines were significantly different from that across retests of the control line. Here, we used bootstrapping to estimate

the distribution of the absolute difference between correlation coefficients if they are both computed from our control retests.

We did this by comparing the absolute difference between the correlation coefficient across the GAL4 lines and that across

control retests to the absolute difference in correlation coefficients across approximately equal partitions of the control retests

(Methods, Behavior statistic correlation analysis). The number of data points used to estimate the GAL4 correlation coefficient is

2,205, and the number used to estimate the control correlation coefficient is 762. We approximated the bootstrap distribution

by sampling 30,000 points from 2762 possible partitions of our 762 independent measurements. To account for multiple

comparisons across the 3,403 pairs of behavior statistics tested, we used the B-Y FDR, and significance was determined so that

the FDR was 0.1.

Each behavior-anatomy map (Figures 7 and 8, Movie S3) shows the results of our test of whether there is a positive correlation

between the value of a given behavior statistic and the expression for a given supervoxel across GAL4 lines. This process is detailed

above (Methods, Behavior-anatomy correlation). Here, we used bootstrapping to estimate the distribution of the behavior-anatomy

correlation if behavior and anatomy are not correlated. We did this by comparing the true behavior-anatomy correlation to that

measured for the same pair of behavior statistic and supervoxel after randomly resampling lines for the supervoxel expression.

We approximated the bootstrap distribution by sampling 100,000 points from 2;0822;082 possible combinations of our 2,082 inde-

pendent measurements (number of lines with both behavior and anatomy data). To account for multiple comparisons across the

7,065 supervoxels tested for each behavior statistic, we used the B-H FDR, and significance was determined so that the FDR

was 0.25. We chose this less restrictive threshold because p value is shown in the map.

In Figure 7E, we show the results of testing the split-GAL4 lines for increased walking. We used a one-sided Mann-Whitney test,

with each sample corresponding to a video (20 flies), and the number of videos varying between 6 and 16 for each GAL4 line (Table

S7), and the number of control videos equal to 22. To correct for multiple comparisons across the 20 split-GAL4 lines, we use the

Bonferroni correction, and threshold significance at 0.05.

Statistical analysis test summary: For each of the types of hypothesis tests, we summarize the following. Result: Description of the

results this test corresponds to. Details: Where to find a detailed description of the hypothesis test and bootstrapping procedure.

N. drawn samples: Number of samples we draw to approximate the bootstrap distribution. Max samples: Number of different (but

not necessarily independent) samples that can possibly be drawn from the bootstrap distribution. N. meas.: Number of measure-

ments used in combinations to generate the bootstrap distribution. Multiple comparison: Method for accounting for multiple com-

parisons. N. tests: Number of tests performed, for which the multiple comparison correction is done. Note that the last result is

not a bootstrap-based test. Here, we list the number of samples in each dataset under N. meas.
Result Details

N. drawn

samples Max samples N. meas.

Multiple

comparison N. tests

Figure 3C Methods, Testing for significant effects

of neural activation on behavior

100,000
�
762+ k � 1

k

�
762 B-H FDR = 0.1 2,205

Results, 98% of lines Methods, Testing for significant effects

of neural activation on behavior

100,000
�
762+ k � 1

k

�
762 B-Y FDR = 0.1 895,230

Figure S4C, GAL4 lines Methods, Behavior statistic correlation

analysis

300,000 2; 2052;205 2,205 B-Y FDR = 0.1 3,403

Figure S4C, control retests Methods, Behavior statistic correlation

analysis

300,000 762762 762 B-Y FDR = 0.1 3,403

Figure 3F Methods, Behavior statistic correlation

analysis

30,000 2762 762 B-Y FDR = 0.1 3,403

Behavior-anatomy maps,

Figures 7A, 8, Movie S3

Methods, Behavior-anatomy correlation 100,000 2; 0822;082 2,082 B-H FDR = 0.25 7,065

Figure 7E Quantification and statistical analysis N/A N/A 6-16,20 Bonferroni, p < .05 20
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DATA AND SOFTWARE AVAILABILITY

Software
All software for collecting and analyzing our data is within Data S1, within the directory code. Top-level functions and modules are

described within the README.txt file. Parameters for this code are in Data S2 and S3. Maintained versions of some of this software is

available online:

BABAM, the Browsable Atlas of Behavior-Anatomy Maps: https://kristinbranson.github.io/BABAM/

Ctrax, the Caltech Multiple Walking Fly Tracker: http://ctrax.sourceforge.net/

JAABA, the Janelia Automatic Animal Behavior Annotator: http://jaaba.sourceforge.net/

Data
Compressed, processed forms of our data is available in Data S1. These are within the directory data, and their contents are

described in the README.txt file.

A browsable and searchable website with the results of our behavior analyses is at http://research.janelia.org/bransonlab/FlyBowl/

BehaviorResults.

Less processed versions of the data are available upon request, please contact Kristin Branson, bransonk@janelia.hhmi.org.
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Supplemental Figures

Figure S1. Max-Projection Image of the Number of Lines with Expression in Each Supervoxel, Related to Figure 6



Figure S2. Data Collection and Tracking, Related to Figure 1
(A) Video andmetadata collection. (i) Screen capture of GUI used for controlling and previewing video recording, and for inputting metadata, discussed in detail in

theMethodDetails, and included in Data S1 and S2. The left side of theGUI is used for metadata entry, such as line name (1) and notes on behavioral observations

(2) or technical issues (3). The right side of the GUI shows the recorded video (4), video frame rate (5), and arena temperature (6), updated in real time. (ii) Technical

feedback returned to the user immediately after the video recording has completed. This feedback includes information about the video recording (e.g., number

of frames recorded, (1)), information about the video compression (e.g., compression rate, (2)), information about the environment (e.g., temperature, (3)), and

information about the arena appearance (e.g., background image, (4)). In the tables at the top, the red highlights indicate the how abnormal the recorded values

are (compared to a pilot dataset). In the plots at the bottom, the gray regions indicate the mean and standard devation of the pilot data, and the red lines

correspond to the current experiments. (iii) Compression of a sample frame. The red boxes indicate a tiling of the foreground pixels by small 5 3 5 boxes. The

locations of these boxes and the intensities of pixels inside them are stored to represent this frame. (iv) Reconstruction of the sample frame region corresponding

to teal box in (i) and (iii).

(B) Pooled foreground and background appearance models learned using Ctrax. (i) Per-pixel-location means of the foreground and (ii) background appearance.

(iii)Histogram-based estimate of the distribution of distances to the nearest object detection for pixels classified as background (black) and foreground (red).

(C) Error rate of automatic sex classification. We compute the error rates separately for flies labeled female and male, as well as the total error rate. Black circles

indicate the error rates across all seven videos labeled for GAL4 line R14C07, while colored dots indicate error rates per video.

(D) Illustration of steps of wing tracking. (i) Segmentation of pixels into those corresponding to body (red), wing (green) and background (not colored). (ii)

Assignment of fly identities output by Ctrax (indicated by numbers) to each connected component of foreground (wing or body) pixels. Each color corresponds to

a different connected component. The purple connected component is assigned to three fly identities. (iii) Assignment of pixels to fly identities (indicated by

numbers) output by Ctrax. Each color corresponds to a different identity. The large purple connected component in (ii) has been segmented. (iv) Wing angles fit

(indicated by line segments) to wing pixels for each fly.

All: Scale bar indicates 1 cm.
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Figure S3. Behavior Analysis, Related to Figure 2

(A) Accuracy of automatically-computed line-level behavior statistics. We compare the fraction of time performing each behavior computed from the automatic

behavior classifier’s predictions (red), with the fraction of time computed from the sample of% 2,000manually labeled frames (black) for 5 GAL4 lines and control

(Method Details). Vertical lines indicate the 10th and 90th percentiles of the estimated distributions, computed over videos.

(B) Genetic control line’s behavior as a function of the experiment date, over the 1.5-year data collection period. Each black dot corresponds to a retest (a set of

z4 simultaneously recorded videos ofz20 flies from the same cross). The solid black line indicates the mean over the surrounding 30-day window. The darker

and lighter gray regions indicate one and two standard deviations within these time windows.

(C) Behavior statistics across retests of each line. Each plot corresponds to a different behavior statistic. Each plot shows a histogram of the behavior statistic

measured in the second retest (y) given the value measured in the first retest (x), for each pair of retests of each line (color indicates fraction of retests). Each

column is normalized to sum to one. Bin sizes grow logarithmically from the control mean (white solid line). Dashed white lines show the 2.5th and 97.5th per-

centiles of retests of the genetic control. Across retests, we see that the sign and approximate magnitude of behavioral differences repeats.



BA

D

C

E

Figure S4. Behavior Data, Related to Figure 3

(A) Correlations between behavior statistics. For each pair of selected per-line behavior statistics, we compute the Spearman’s rank correlation coefficient

between these values across all GAL4 lines. Red indicates highly positively correlated behavior statistics (e.g., chase and chase_male are highly correlated), blue

(legend continued on next page)



indicates highly negatively correlated statistics (e.g., stop and walk are negatively correlated), and white indicates uncorrelated statistics. Colored bars on the

side correspond to the groupings of behavior statistics shown in Figure 3D. Order of behavior statistics set as in Figure 3D.

(B) Behavior statistic correlations across GAL4 lines and control line retests. Each plot corresponds to a different pair of behavior statistics. In each plot, each red

or cyan point corresponds to a different GAL4 line and indicates the behavior statistics measured for that GAL4 line. Each gray point corresponds to a different

retest of the control line. We plot all GAL4 lines in red and only those GAL4 lines that are active (move at least 55% of the time) in cyan. The red and cyan lines

indicate the linear regression fit for the GAL4 lines and the black lines indicate the linear regression fit for the control retests. Correlation coefficients are printed at

the top right of each plot, with an asterisk indicating they were significantly different between the GAL4 lines and control retests (FDR % 0.1). Correlation co-

efficients were significantly non-zero for all the pairs of statistics plotted except stop versus wing grooming (FDR % 0.1). Pairs of behavior statistics within the

same group (Figure 3D) were selected. Formany of these pairs, the correlation trends were quite similar, e.g., for themajority of lines that have increased amounts

of chasing, we also see increased amounts of wing extension.

(C) Comparison between behavior-statistic correlations for GAL4 lines and control retests. Top: Red line: for all 798/3,403 pairs of behavior statistics for which (i)

the magnitude of the control retest Spearman’s rank correlation coefficient was large (R0.5) and (ii) significantly non-zero (FDR% 0.1), and (iii) there was at least

one GAL4 line which did not follow this correlation structure (Method Details), we histogram the sign-flipped rank correlation coefficient across the GAL4 lines

(sign(rcontrol) rGAL4). This histogram shows that almost all the behavior statistics have high correlations across GAL4 lines of the same sign as the control. In blue,

we plot the same histogram for the 1,880/3,403 pairs of behavior statistics for which (i) themagnitude of the control retest Spearman’s rank correlation coefficient

was small (%0.1) and (ii) not significantly non-zero (FDR > 0.1). This histogram shows that themagnitude of correlations for these behavior statistics is small for the

GAL4 lines as well. Bottom: Histogram of the ratio of the behavior statistic correlation coefficients across GAL4 lines to that across control retests for the 798/

3,403 pairs of behavior statistics with significantly large control correlation magnitudes (red line in top plot).

(D) First (left) and second (right) principal components of GAL4-line behavior vectors plotted against average fraction of time stopped (left) and average distance

to nearest other fly (right). Each gray circle corresponds to a GAL4 line.

(E) As in Figure 3G, behavior vectors of all GAL4 lines projected onto their 2-dimensional t-SNE embedding. The t-SNE embedding shows similar gradients to

those in the PCA embedding.
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Figure S5. Interface for Manual Annotation of Intensity Normalization Thresholds, Related to Figure 4

(A) Annotation manager lets the user select a line to annotate.

(B) After choosing a line, the user chooses a sample from that line to annotate. The GUI displays a max-projection image, as well as metadata such as the

registration quality and the collection date to help the user choose a good image to annotate.

(C) Using the slider bars on the right, the user can adjust the high and low thresholds. The bottom image shows the raw pixel intensity, while the top image shows

the normalized intensity for the selected image.



Figure S6. Comparison of Behavior-Anatomy Correlation Maps Obtained with Different Supervoxel Clusterings, Related to Figure 5

(A–C) Each row shows the behavior-anatomy correlation maps for a given behavior (specifically, performing the Wing extension (top), Walk (middle), and Wing

grooming (bottom) behaviors more than control), as in Figure 8. Each column corresponds to different values of one of the parameters of the anatomy clustering

algorithm. The maps corresponding to the clustering used in the rest of the paper are indicated by the gray boxes, which had 7,065 supervoxels, position weight

10�5, and volume ratio 2 (gray shaded region, all panels). The scale bar indicates 50 mm.

(A) Results for different numbers of supervoxels, from 9,428 (left) to 68 (right). The rightmost column corresponds to a single supervoxel per compartment.

(B) Results of varying the weight of the voxel position versus the expression pattern, from 10�5 (left) to 10�3 (second-to-right). In the rightmost column, we show

themaps resulting from defining supervoxels as 193 193 19 voxel-cubes (corresponding to an infinite weight to voxel position and ignoring expression pattern).

(C) Results of varying the allowed maximum ratio in volume between the largest and smallest supervoxels from 2 (left) to 12 (right).



(legend on next page)



Figure S7. Walking Map, Related to Figure 7

(A) Correlation in expression across GAL4 lines. We color each supervoxel according to the correlation coefficient of its expression to the expression of the

selected supervoxel (outlined in black). To project over the z axis, we select the pixel with the maximum absolute correlation. Some of the supervoxels for which

expression is highly correlated correspond to different neurons than those corresponding to the selected supervoxel, and are a result of genetic correlations in

expression between different neuronal populations.

(B) Expression pattern of split-GAL4 lines made from walking-more map. A representative brain expression pattern is shown for each of the split-GAL4 lines

created based on thewalking-moremap ellipsoid body region. Expression patternswere obtainedwith anti-GFP antibody staining and confocal imaging. All split-

GAL4 lines except SS02711, SS02713, SS02768, SS02703, and SS02708 had expression in the ellipsoid body. Detailed annotation of the expression patterns is

provided in Table S7.

All: Scale bars indicate 50 mm.



Figure S8. Behavior-Anatomy Maps, Related to Figure 8

(A–C) Maximum projection of expression patterns in (a) the brain and (b-c) the VNC for the 5 lines most important for the increased wing grooming map. VNC

images are from the Janelia Fly Light project (Jenett et al., 2012).White box in (b) indicates the location of thewing neuropil, and (c) shows themaximumprojection

over y for this box. While we see expression in the wing neuropil in several of these lines, we do not see expression in a consistent set of neurons.

(D) Correlation hypothesis test significance for synthetized behavior data in which activation of some supervoxels can mask the behavioral effects of activation

another’s. The x axis corresponds to the fraction of supervoxels with masking behavior, and the y axis corresponds to the significance of the hypothesis test for

the supervoxel whose activation effects can be masked. We plot the mean and standard error over 100 simulations.
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