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can capture fast-moving objects10,11. Thus, automated capture 
of flies seemed feasible, but a robot needs unusual precision and 
speed to gently capture a fly (a fly’s thorax is ~1 mm across; walking  
speed is ~3 cm/s; ref. 12). To avoid causing injury, the machine 
must exert ultralow, millinewton forces to carry a fly (~1.0 mg) 
and overcome flight or walking forces (~0.1–1 mN) (refs. 13,14). 
To manipulate flies, biologists typically anesthetize them, but 
anesthesia affects the insect nervous system15,16 and necessitates 
a recovery period to restore normal behavior and physiology17. 
We avoided anesthesia. By integrating machine vision into the 
robot’s effector head, we created a device that captures, manipu-
lates, mounts, releases and dissects nonanesthetized flies.

The robot has parallel kinematic chains that connect a base plat-
form to the effector that picks the fly (Fig. 1a and Supplementary 
Fig. 1). Compared to cascaded serial chains, parallel chains offer 
superior rigidity and keep the moving mass lightweight, which 
are key advantages for precise execution of rapid movements.  
Three rotary motors drive the effector’s three-dimensional  
translations. To implement this, we invented magnetic ball joints. 
Magnetic forces hold the joint and allow greater angular range 
than conventional ball-and-sockets while minimizing backlash 
and improving precision. As a safety mechanism, the joints  
detach during an accidental collision. To rotate the picked fly in 
yaw, another rotary motor turns the picking effector, which holds 
the fly by suction.

The system tracks and picks individual flies by machine 
vision, using infrared illumination as flies generally do not initi-
ate flight in visible darkness (Fig. 1, Supplementary Figs. 1–3  
and Supplementary Videos 1 and 2). After a vial of flies is screwed 
into a loading chamber, flies climb the vial walls and emerge  
onto the picking platform (Supplementary Fig. 4 and 
Supplementary Video 3). A stationary camera provides coarse 
locations of all available flies (up to ~50) and guides selection  
of one for picking (Fig. 1a and Supplementary Fig. 5).  
We exchanged vials as needed, allowing one-by-one studies of 
~1,000 flies in ~10 h.

The robot head has a camera and a ring of infrared LEDs that 
move over the chosen fly to determine its location and orientation.  
The ring creates a stereotyped reflection off the thorax (Fig. 1b) 
that scarcely varies with the fly’s orientation or position, allowing 
the robot to reliably identify it for real-time tracking of fly motion 
(Supplementary Figs. 1–3 and 6 and Supplementary Video 1). 
Given the <20% size variability of the thorax and the mechani-
cal compliance of fly legs, it sufficed for the robot to pick flies at 
a fixed height above the picking platform. Unlike humans, the 
robot has sufficient speed (maximum: 22 cm/s) and precision to 
connect the fly to the picking effector.
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We present a robot that enables high-content studies of alert 
adult Drosophila by combining operations including gentle 
picking; translations and rotations; characterizations of fly 
phenotypes and behaviors; microdissection; or release. to 
illustrate, we assessed fly morphology, tracked odor-evoked 
locomotion, sorted flies by sex, and dissected the cuticle to 
image neural activity. the robot’s tireless capacity for precise 
manipulations enables a scalable platform for screening flies’ 
complex attributes and behavioral patterns.

Biologists increasingly rely on automated systems to improve the 
consistency, speed, precision, duration and throughput of experi-
mentation with small animal species. For nematodes, zebrafish, 
and larval or embryonic flies, fluidic systems can sort and screen 
individual animals on the basis of phenotypes or behavior1–5. 
Unlike animals living in aqueous media, adult fruit flies have 
largely eluded automated handling. Given the fly’s prominence 
in multiple research fields, automated handling would have a 
major impact.

Video tracking systems can classify some fly behaviors6–9, but 
active manipulation, sorting, microdissection and many detailed 
assessments have evaded automation owing to the delicacy and 
complexity of the required operations. To clear this challenge, we 
created a robotic system that is programmable for diverse needs, 
as illustrated here by sex sorting, analyses of fly morphology, 
microinjection, fiber-optic light delivery, locomotor assessments, 
microdissection and imaging of neural activity. Users can pro-
gram other applications as sequences of existing operations or by 
adding machine vision analyses. The robot has a similar footprint 
to that of a laptop computer, uses affordable parts (<$5,000 total) 
and is scalable to multiple units.

Aspects of our instrumentation existed previously but not for 
handling flies. Robots with parallel kinematic architectures can 
make fast, precise movements, and machine vision–guided robots 
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A tubular suction effector gently holds the thorax 
(Supplementary Videos 1, 2, 4 and 5). Suction gating engages 
or disengages the holding force (~4.5 mN across 0.53 mm2 of 
thorax), and a pressure sensor detects a good connection. The 
robot can identify and pick a still fly in <2 s (Supplementary 
Table 1 and Supplementary Videos 1, 2, 6 and 7). For an 
ambulatory fly, the robot tracks the fly until it pauses and then  
gently lifts the fly upward (Supplementary Videos 1 and 2).  
The robot can rotate the fly in yaw, translate it in three dimen-
sions, bring it to an inspection camera, or tether or deliver it 
elsewhere (Supplementary Videos 4–7). These maneuvers are 
flexibly combinable to serve many applications.

To benchmark handling speed, we had the robot continu-
ously transfer flies back and forth across a divided platform 
(Supplementary Video 6). After selecting a fly, the robot attempted 
a pick; whenever the pressure sensor detected success, the robot 
delivered the fly to the platform’s opposite side. During continuous 
iteration (Supplementary Video 7), the robot picked a fly every 
8.4 ± 3.2 s (±s.d.), with 84% ± 5% (±s.d.) of the captures made on 
the thorax (Supplementary Table 2). The robot returned the 16% 
captured elsewhere on the body to the platform for another try.

Human visual inspection is often key to establishing fly matings, 
but computer vision should provide comparable reliability. After 
carrying a fly to a high-magnification camera (Supplementary 
Video 8 and Supplementary Fig. 7), the robot classified the sex 
by the number of dark abdominal segments (achieving 99% ± 1% 
(±s.d.) sexing accuracy in ~20 ms of computation; Fig. 2a and 
Supplementary Table 2). The total time to pick and sort each 
fly was ~20 s.

We used machine vision algorithms to measure cross-sectional 
head and body areas of 1046 Oregon-R flies (Supplementary 
Fig. 8). The robot picked each fly, classified its sex and took 
4,894 images total in ~10 h (Fig. 2b). Males and females had 
distinct head and body areas (heads: males, 0.32 ± 0.03 mm2; 
females, 0.39 ± 0.04 mm2; bodies: males, 1.6 ± 0.2 mm2; females, 
2.0 ± 0.2 mm2; mean ± s.d.; n = 1,288 male and 1,796 female 
images). Size distributions closely matched Gaussian fits across 
two orders of magnitudes of statistical frequency (Fig. 2c).

To demonstrate fine morphological discriminations, we used 
the robot to examine Drosophila melanogaster derived and inbred 
from native populations in the eastern United States (Online 
Methods). Initially, head areas (males, 0.33 ± 0.03 mm2; females, 

Forearm

Infrared  illuminator

Picking effector

Camera

Magnetic ball joint

Motor

Camera

Base

Encoder

a

Rotation
module

Ring pattern

Template

Fly platform

c Approach

280 ms

Transport

412 ms

Capture

374 ms

Target selection

0 ms

bfigure 1 | A high-speed robot that uses real-
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0.5 mm. (c) High-speed videography reveals the 
speed at which the robot tracks and grabs the 
fly. Insets show close-ups in each frame.  
Scale bars, 1.5 mm.
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figure 2 | Machine vision–based assessments of fly phenotypes. (a) The robot discriminated flies by sex to 99% accuracy. Top, guided by real-time 
machine vision, the robot rotated the fly to view the abdomen. Bottom, another algorithm counted the abdominal bands. Scale bar, 0.5 mm. (b) After 
sex determination, flies underwent analyses of body morphology. Top, raw image of a fly held by the robot’s picker. Inset, segmentation into head 
(green) and body (blue) regions. Scale bars, 0.5 mm. (c) Top, histograms (logarithmic y axis) and Gaussian fits (solid lines) of head and body areas 
determined as in b. Areas for male and female inbred flies and Oregon-R flies were compared. For head and body areas, the size distributions for males 
and females are markedly distinct for both fly groups. The two genotypes had distinguishable distributions for head and body areas, for males and 
females (P values: 10−5–0.05 for all four comparisons between Oregon-R and inbred; Kolmogorov-Smirnov test). Error bars show s.d., estimated as 
counting errors. Bottom, Gaussian fits (linear y axis), normalized to unity area to highlight the differences in the corresponding statistical distributions.
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0.39 ± 0.03 mm2) and body areas (males, 1.6 ± 0.1 mm2; females, 
2.2 ± 0.2 mm2) of these flies (n = 67) seemed indistinguishable 
from those of Oregon-R flies. However, the robot’s data set of 
1,113 flies revealed plain differences between the populations 
(Fig. 2c; Kolmogorov-Smirnov tests comparing male and female 
body sizes (both P < 10−5), male heads (P = 4 ×10−5) and female 
heads (P = 0.05) between inbred and Oregon-R flies). Inbred lines 
had larger median body areas (males, 4% larger than Oregon-
R; females, 7%) and finer differences in median head areas that 
would surely elude human inspection (males, 1.3% larger than 
Oregon-R; females, 0.3%) (Fig. 2c).

After picking a fly, the robot can tether it for behavioral  
studies, microsurgery or brain imaging. After locating the neck, 
the robot can glue it to a stationary fiber or detachably insert 
the proboscis into a suction tube (Supplementary Figs. 9–11  
and Supplementary Video 4). Like flies tethered manually18,19, 
those tethered robotically exhibited flying and walking behaviors. 
The robot placed flies on a trackball for automated determinations 
of odor-evoked locomotor responses (Fig. 3a–c, Supplementary 
Fig. 12 and Supplementary Video 9). Comparisons of locomotor 
responses revealed no speed differences between flies handled  
manually versus robotically (n = 10 trials per fly; n = 4 flies  
per group; Wilcoxon rank-sum test; P = 0.12–0.66 for side-
ways, forward and angular speeds). Flies held by suction can be  
released and saved for later experimentation (Supplementary 
Videos 4, 6, 7 and 9).

After tethering a fly, our system can drill holes (~25 µm in 
diameter or larger) for microinjection or fiber-optic light delivery 
(Supplementary Fig. 13). Alternatively, by transferring the fly 
to a three-dimensional translation stage beneath a high-speed 
end mill (≤25,000 r.p.m.; 25–254 µm in diameter) executing 
computer-programmable microsurgeries, the robot can open 
the fly’s cuticle with micrometer-scale precision (Fig. 3d). The 
stage moves the mounted fly along a predefined cutting trajec-
tory (Supplementary Video 10), removing cuticle, trachea and 
fat bodies under saline immersion, which keeps the tissue moist 
and clear of debris. Using these methods we prepared flies for 

two-photon microscopy (Supplementary Fig. 13d) and visual-
ized odor-evoked neural Ca2+ dynamics in the mushroom body 
(50% success on 14 dissected flies; Fig. 3e). In flies expressing a 
Ca2+ indicator in Kenyon cells (Online Methods), we observed 
spatially sparse but temporally prolonged odor-evoked neural 
activation, consistent with prior studies20.

Overall, our programmable system flexibly combines auto-
mated handling, surgical maneuvers, machine vision and  
behavioral assessments—without using anesthesia and while  
providing greater statistical power than humans can easily muster. 
A key virtue is the possibility of performing multiple analyses  
of individual flies, such as of morphological, behavioral and  
neurophysiological traits, for studies of how attributes interrelate. 
The capacity to catch and release individual flies will also enable  
time-lapse experiments involving repeated examinations of  
phenotypes across days or weeks, for studies of development, 
aging or disease. Future implementations might include additional 
mechanical capabilities or multiple picking units (Supplementary 
Fig. 14). As with any new technology, users will need time  
to explore the possibilities, but we expect a diverse library of  
programs will develop.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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figure 3 | Automated assessments of sensory-evoked behavioral 
responses, programmable microsurgery and two-photon imaging of 
olfactory neural dynamics. (a) To test odor-induced locomotion, the 
robot holds a fly on an air-suspended trackball. A glass capillary delivers 
benzaldehyde, a repulsive odor, to the antennae. Scale bar, 1 mm. 
(b,c) Total displacements (b) and velocities (c) of the fly’s sideways 
and forward locomotor responses for a representative trial (30-s odor 
stimulation; gray bars). Positive values denote rightward and forward 
walking. (d) With the fly head held by suction under robotic control, a 
128-µm-diameter end mill executes a preprogrammed trajectory under 
machine vision feedback to open the cuticle for brain imaging and remove 
trachea and fat bodies above the brain (supplementary Video 10). 
Inset, automated microsurgery yields a clean excision (enclosed by white 
dashed line) of the head capsule to expose the left lobe of the mushroom 
body calyx. Scale bars, 0.25 mm. (e) Two-photon fluorescence imaging 
of odor-evoked neural Ca2+ activity following robotic microsurgery in a 
UAS-GCaMP3;;OK107 fly. As the robot holds the fly detachably by suction, 
delivery of ethyl acetate odor evokes neural Ca2+ responses. Maps of 
fluorescence changes (∆F/F) show Ca2+ activity of the mushroom body 
Kenyon cells before (top) and during delivery of ethyl acetate (center). 
Time courses (bottom) of fluorescence changes (∆F/F) before (lavender 
trace) and in response (red trace) to ethyl acetate (gray bar) are shown, 
averaged over the area marked by the white arrow in the center panel. 
Spatial scale bar, 20 µm.
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Fly stocks. We performed automated handling and odor-evoked 
locomotion studies using 3- to 10-d-old male and female flies from 
the Oregon-R line (wild type). For machine vision analyses of fly 
morphology, we used both Oregon-R flies and recently derived, 
fully inbred lines from orchard populations in Pennsylvania and 
Maine, USA (gift from D. Petrov and A. Bergland of Stanford 
University). For experiments involving two-photon imaging, we 
used female UAS-GCaMP3;;OK107 fly lines. We raised flies on 
standard cornmeal agar media under a 12-h light/dark cycle at 
25 °C and 50% relative humidity.

Robot construction. We actuated the robot with three DC motors 
(Maxon RE-25 part 118743), mounted at 120° increments upon a 
flat, circular base (100-mm diameter) made by laser machining  
in acrylic. An optical encoder with 40,000 quadrature counts 
(US Digital EC35) accompanying each motor sensed its angular 
position. Three separate position controllers, one master (Maxon 
378308) controlling two slaves (Maxon 390438), synchronously 
drove the three motors (Supplementary Figs. 1–3).

We made the effector head (~50-mm diameter; Fig. 1a) in plastic  
(Objet, VeroWhitePlus) by 3D printing. It held an onboard 
camera (Imaging Source DMM 22BUC03-ML), a board lens  
( f = 8 mm; Edmund Optics NT-55574), the infrared ring illu-
minator (T1 package 880-nm LED with 17° emission angle), 
the picking effector (polished stainless steel hypodermic tube of 
0.508-mm outer diameter and 0.305-mm inner diameter), and a 
rotation module to alter the fly’s yaw.

The effector head connected to the three actuating  
motors through plastic (Objet, VeroWhitePlus) forearms and 
parallelograms. The forearms were 3D-printed shapes of 20-mm 
length (Fig. 1a), within which we press fit cylindrical neodymium 
magnets that had hollow cores. These magnets plus stainless steel 
(type 440C) balls allowed us to form the four ball joints of each 
parallelogram. Each ball was connected at one end of a stainless 
steel rod (62 mm long), creating two barbell-like structures along 
the long edges of each parallelogram (Fig. 1a).

The rotation module had a gear assembly and pager motor from 
a servo (Hitec nano HS-35HD) to drive the picking effector rota-
tion, via a flexible tube coupling, with position sensing from an 
optical encoder with 1,200 quadrature counts (US Digital E4). We 
drove the pager motor with a position controller (Maxon 390438 
in slave mode). The picking effector was connected to a suction 
source (−28 inch Hg of pressure) and a differential pressure sensor 
(Honeywell HSC TruStability rated at 1 p.s.i.) and was electroni-
cally gated by a solenoid valve (Humphreys H010E1).

We activated the picking suction and the LEDs and read the 
pressure sensor through a microcontroller (PIC32MX460 on a 
UBW32 board from Sparkfun) (Supplementary Fig. 2). We set 
the intensity of the LEDs by controlling the input voltage to an 
LED current driver (LuxDrive 1,000 mA BuckPuck) through a 
digital-to-analog converter (MCP4725).

Picking platforms for nonanesthetized flies. In our initial work, 
we aspirated flies onto a metal mesh (100 × 100 openings per inch) 
picking platform or gently tapped them out of a vial. Weak nega-
tive air pressure across the mesh ensured that the flies fell inside 
the picking workspace. Once the flies were inside the picking 
platform, we disengaged the platform suction so the flies could 

upright themselves. In later work, we replaced the mesh platform  
with the rapid-loading platform (Supplementary Fig. 4),  
which accepts standard vials of flies. To keep the flies inside  
either platform until all automatic handling tasks were done, 
we operated the robot with only near-infrared illumination to 
sharply curtail the flies’ escapes by flight. A thin layer of silicone  
grease (Bayer) surrounding the platform served as a barrier 
to impede the flies from escaping the robot’s picking work-
space (Supplementary Fig. 4b). We arranged LEDs (880-nm  
emission) around the boundary of the platform to provide  
illumination for the stationary localization camera (Imaging 
Source DMM 22BUC03-ML) (Fig. 1a).

This localization camera yielded the approximate location of all 
flies in the picking platform. We mounted this camera at a suitable 
position and angle so as not to obstruct the robot’s motion and 
adjusted the camera lens ( f = 16 mm, Edmund Optics NT-64108) 
to capture scenes of the entire picking platform. Flies appeared in 
these images as dark objects against the bright infrared illumina-
tion coming through the wire mesh.

To identify flies within these images (Supplementary Fig. 5), 
we first identified candidate flies by taking pixels that were darker 
than in a reference image of the platform without any flies, and 
then we binarized the images on the basis of this distinction. We 
transformed the coordinates of the objects in the binarized images 
to their actual locations on the picking platform by applying a 
homographic transform (Supplementary Fig. 5). We identified 
individual flies among the candidate objects by accepting only 
binarized objects of >50 pixels, and we estimated the location of 
each fly by the centroid of the binarized object.

Automated picking. After randomly selecting a fly from among 
those identified on the platform, the robot moved the onboard 
camera over this fly to track it. Using the illumination from the 
platform LEDs, the robot acquired an image from the onboard 
camera and binarized the pixel values in an attempt to find a fly. 
If a fly was present, the robot turned on the ring illuminator and 
triggered the onboard camera again.

To locate the ring reflection on the fly thorax (Supplementary 
Fig. 6), an image analysis algorithm compared a binarized version 
of the image from the onboard camera to a 33 × 33 pixel template 
region (Fig. 1b) that corresponded to 0.53 mm × 0.53 mm on the 
thorax. Across all possible displacements between the centroid of 
the template and the image center, we calculated an overlap score 
between the template and a binarized image region equal in size: 
bright image pixels within the ring template scored positively, 
whereas bright pixels outside the ring template scored negatively. 
We detected the presence of the ring if the net score exceeded a 
threshold; the position of the ring was determined from the tem-
plate displacement that yielded the highest score. We estimated 
the vectorial orientation of the picked fly by examining the first 
principal component of all segmented pixels and then identifying 
the position of the head by its proximity to the ring reflection. 
To assess picking performance, we instructed the robot to seri-
ally pick and release flies continually for 23 min (Supplementary 
Video 7 and Supplementary Table 2).

For high-magnification inspection of individual flies, the  
robot brought each picked fly to a camera (Imaging Source  
DMM 22BUC03-ML) equipped with a high-magnification lens 
( f = 16 mm, Edmund Optics NT-83107).
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Automated handling routines. We wrote the robot control 
software in the Visual C++ software development environment. 
Elemental operations include fly tracking, picking, release, three-
dimensional translation and yaw rotation of the picked fly, with 
each operation implemented as a separate routine. Users may 
program new fly-handling routines by specifying a sequence of 
operations and the desired time delays between successive steps. 
Through a graphical user interface, users can initiate execution 
of a predefined routine with a single button press and can mod-
ify destination coordinates and rotations angles during run time 
through text inputs.

If adaptive handling routines are desired, the user may also 
implement novel machine vision algorithms, using images 
or video acquired from the robot’s onboard camera or acces-
sory high-resolution cameras, to guide automated robotic 
navigation or to execute decision trees within the programmed 
sequence of operations. Inputs from other sensors can readily be  
accommodated as well.

To illustrate the interactions between sensing and decision-
making in an adaptive handling routine, we describe here the 
process of transferring a picked fly to a head tether. Using image 
feedback from the onboard camera, a first algorithm calculates 
the position and orientation of the tether. A second algorithm 
navigates the robot to a predefined inspection location, identifies 
the neck location of each picked fly from images taken by a static 
camera, and then commands the translational and rotational  
trajectory of the robot to guide the fly head onto the tether.  
If the fly is incorrectly picked, the algorithm will decide to release 
the fly onto the platform rather than tether it. Users may build a 
library of similar adaptive handling routines for different inspec-
tion tasks and behavioral assays and then combine these routines 
to automate increasingly complex experiments.

Automated neck-detection algorithm. To head-fix a fly for 
microsurgery and imaging, our machine vision algorithm deter-
mined the position of the apse of the fly’s neck, where it would 
be tethered (Supplementary Figs. 9–11). The algorithm had two 
main steps, which involved identifying the (i) fly’s yaw orienta-
tion, to help align the fly to the head holder, and (ii) position of 
the neck apse using the segmented and average silhouette of the 
fly, to help precisely tether the fly’s head to the tether.

Automated sex-sorting algorithm. The robot brought each 
picked fly to a stream of air to induce the animal to fly so that 
the wings did not occlude the abdomen. We rotated the yaw of 
the picked fly so that the abdomen was optimally visible to the 
inspection camera (Fig. 2a and Supplementary Fig. 7), which was 
mounted at an ~45° angle to the picking platform.

Once the fly was optimally oriented, an image analysis algo-
rithm checked for the presence of two distinct features: (i) >2 
dark bands, to indicate that we were looking at the abdomen, 
and (ii) the presence of a dark-colored segment at the posterior 
of the male abdomen, to discriminate between male and female 
flies (Supplementary Fig. 7).

Determination of body and head cross-sectional areas. In 
images of single flies acquired from a sideways view and with 
the animal’s long axis parallel to the plane of the image, we 
first segmented the image of the fly from the background area. 

We then further distinguished the head and body regions and  
computed their respective areas. Please see Supplementary 
Figure 8 for details.

Microsurgery. The robot attached the head-fixed fly to a head 
holder mounted on a kinematic magnetic base, which provided 
micrometer-scale reproducible mating to a three-dimensional 
translational stage (Sutter Microsystems MP-285). This stage sat 
under a stationary rotary tool (Proxxon 38481) with a micro-end 
mill (Performance Micro Tool). We limited the movements of the 
fly using a custom-made dome placed over the thorax to prevent 
the fly from accidentally cutting itself on the rotating micro-end 
mill (Supplementary Video 10). We maneuvered the fly’s head to 
the rotating end mill by moving the translational stage. Once the 
end mill punctured the cuticle, we applied an adult hemolymph-
like solution (AHLS)21 to the opening from a local reservoir above 
the dome. The three-dimensional translation stage then auto-
matically moved the fly’s head according to a preprogrammed  
trajectory under the rotating mill to cut cuticle, trachea and 
fat bodies above the brain. The AHLS kept the exposed brain 
hydrated and prevented surgically removed debris from  
adhering to the cutting surfaces or clogging the end mill’s flutes. 
After automated surgery was done, we immediately replenished 
the AHLS to ready the fly for brain imaging.

High-speed videography. We acquired high-speed movies of the 
robot picking a fly using a Phantom v1610 camera (500-Hz frame 
rate) under 880-nm illumination from LEDs.

Measurements of odor-evoked locomotion. The trackball setup 
closely resembled that of our prior work22. Two optical pen mice 
(Finger System, Korea) were directed at the equator of an air- 
suspended, hollow high-density polyethylene ball (6.35-mm 
diameter; ~80-mg mass; Precision Plastic Ball Co.). The pen mice 
were 2.3 cm away from the ball and tracked its rotational motion 
at a readout rate of 120 Hz. We converted the digital readouts to 
physical units and thereby computed the fly’s forward, sideways 
and turning velocities as described previously18, using custom 
software written in Matlab (MathWorks). Velocities shown in 
Figure 3 and Supplementary Figure 12 are smoothed over a 1-s 
time window. For calculations of the average odor-evoked veloci-
ties, stationary states (<1 mm/s forward velocity) were excluded 
from the analysis. Calculations of mean sideways and rotational 
speeds were based on the absolute values of velocity values.

Two hours before the behavioral experiments, we transferred  
2- to 3-d old female Oregon-R flies from culture vials to empty 
vials containing wet Kimwipes paper. For the flies in the manually 
handled group, we anesthetized the animals by inserting the vials 
into ice and then transferring them to a cold iron platform for 
mounting. We glued a fine syringe needle to the middle of the fly’s 
dorsal thorax using UV-cured glue. We positioned the glued flies 
atop the trackball by using a three-dimensional translation stage. 
For the flies in the robotic handling group, we loaded the animals 
onto the picking platform and instructed the robot to pick them 
as needed. Once a fly was well picked, we exchanged the picking 
platform for the trackball setup. The robot held the fly ~0.7 mm 
above the trackball, allowing the fly to walk in place. A custom-
built olfactometer delivered constant air flow (30 mL/min) and 
switched between clean air and air with odor. The flow exited 
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a glass capillary (0.35-mm inner diameter) ~1 mm in front of 
the fly’s antennae. We presented 10 trials of 2% benzaldehyde  
(a strong repulsive odor to flies), each lasting 30 s. Between each 
trial we presented clean air for 180 s.

Two-photon microscopy. We used a two-photon microscope 
(Prairie Technologies) equipped with a 20×, 0.95–numerical 
aperture (NA) water-immersion objective (Olympus XLUMPFL). 
We imaged the Kenyon cells of the mushroom body (4-Hz frame 
rate) using ultrashort pulsed illumination of 920 nm, with  
10–20 mW of power at the specimen plane. We delivered continuous  
air flow (142 mL/min) to the fly antennae through a stainless 
steel tube (0.3-mm inner diameter). We presented odor to the 
fly by redirecting the flow of air through a chamber containing  
filter paper dipped in ethyl acetate oil for 2-s intervals. Each 
fly was allowed at least 1 min of recovery time after each 2 s of  
odor presentation.

Analysis of neural Ca2+ dynamics. We aligned images acquired 
from two-photon microscopy with the TurboReg23 (http://
bigwww.epfl.ch/thevenaz/turboreg/) plug-in for NIH ImageJ  
software. We spatially filtered each aligned image with a Gaussian 
kernel (5 × 5 pixels; σ = 2 pixels). We computed the baseline 
fluorescence of each pixel, F0, by averaging the pixel intensity 
across a 12.5-s interval before odor delivery. To extract the  

temporal waveform of a cell’s Ca2+ dynamics, we selected pixels 
from the chosen neuron and computed the relative changes in 
fluorescence as (F(t) − F0)/F0. We averaged the resulting time 
traces to obtain the final waveform estimate (Fig. 3e).

Statistical analyses. We performed all statistical analyses using 
Matlab software. Sample sizes were chosen using our own and 
published empirical measurements to gauge effect magnitudes. 
There was no formal randomization procedure, but flies were 
informally chosen in a random manner for all studies. No animals 
were excluded from analyses. The experimenters were not blind 
to each fly’s genotype. For analyses of head and body areas, we 
excluded images of flies in which the wings occluded the body 
or in which the animals were incorrectly positioned. All statis-
tical tests were nonparametric to avoid assumptions of normal  
distributions or equal variance across groups.

Code availability. Readers interested in the software code for our 
analyses should please write the corresponding authors.

21. Wilson, R.I., Turner, G.C. & Laurent, G. Science 303, 366–370 (2004).
22. Clark, D.A., Bursztyn, L., Horowitz, M.A., Schnitzer, M.J. & Clandinin, T.R. 

Neuron 70, 1165–1177 (2011).
23. Thévenaz, P., Ruttimann, U.E. & Unser, M. IEEE Trans. Image Process. 7, 

27–41 (1998).
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