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Foreword: Computing the Mind

After millennia of philosophical debate, neuroscience now tackles the problem of
conscious experience. Cognitive neuroscience investigates the neural correlates of
perception, action, and cognition in the conscious state. At the same time, anesthesia
and sleep are the exclusive models for the investigation of the reversible transitions
between conscious and unconscious states. Anesthesia is particularly useful in that
it allows a controlled manipulation of the state of consciousness in a graded manner.
While certain system parameters in the brain may change rather abruptly, changes
in others are rather graded. The interplay of these processes creates an interesting
dynamics that is characteristic to each anesthetic agent. The wide variety of known
anesthetic agents with respect to their chemical structure and pharmacological pro-
file allows the fine dissection of their specific molecular, synaptic neuronal effects
that mediate the agents’ local and global functional and behavioral effects. While
we know a lot about the interaction of anesthetic agents with molecular and receptor
targets, their actions at systems level trails in understanding. Since the early 1980s,
metabolic and functional brain imaging has contributed significantly to the under-
standing of regional changes in the brain in both sleep and anesthesia. However
the regional targets of drug effects underlying the observed images have been more
difficult to identify. The brain is so highly interconnected that extrapolation of the
underlying mechanism from empirical observations is nearly prohibitive. Theoreti-
cal models of causal interactions and computational approaches have been invoked
to help overcome this difficulty.

Bridging molecular events that occur under anesthesia or sleep, systems level
events, and observable behavior is obviously important for a full understanding of
the underlying mechanisms. There has been few attempts to explicitly model large-
scale interactions in the brain and to examine state-dependent changes in complexity
and dynamics with respect to specific functional systems. In this regard, empirical
investigations by functional brain imaging and quantitative electrophysiology are
leading the progress ahead of systems modeling. Continued progress from mod-
eling homogeneous systems to structured systems with identified neurofunctional
modules and networks is necessary.

A gentle warning toward modeling efforts is in order. In order to describe real-
ity more and more faithfully, computational models of the brain are getting more
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vi Foreword: Computing the Mind

and more complex. It becomes relatively easy to simulate a particular behavior, es-
pecially when modeling is guided by preconceived notions of what the result has
to be. Without very tight experimental validation of all elements in the model, the
modeling effort easily become circular. For example, we may think that we know
from experimental studies how anesthetics alter the EEG, and we are able to sim-
ulate such EEG changes in a generic model of the cortical neuronal network, and
then conclude that the model explains how anesthetics work. From this point of
view, our experimental techniques lag behind our modeling armamentary; which
highlights a serious need for advancing our measurement techniques. There is an
appeal in keeping the models as simple as possible while reproducing a principal
behavior of question, commensurate with the experimental data available to verify
the predictions against.

As another cautionary example, many of the computational studies of EEG dy-
namics to date model anesthetic action or sleep as a reduction in high-frequency
components in the beta–gamma range. But the notion that anesthetic agents attenu-
ate these oscillations near the critical concentration that produces unconsciousness
is not at all certain. In fact, experimental studies suggest that robust increases in
gamma power occur near the transition point of conscious and unconscious states.
Moreover, the results are different in humans, primates and small mammals. Yet all
creatures can be anesthetized by the same drugs. This means that our current models
are not flexible enough to account for the effect of various anesthetic agents, con-
ditions and species. Yet to understand the specific neural correlates of unconscious-
ness, defined as minimal necessary conditions, we have to find the common ingredi-
ent, the final common pathway or functional change. This requirement continues to
present a formidable challenge for future research. A synthesis of knowledge across
all relevant levels of complexity and variability has not been achieved. However, the
works presented in the current book collectively make a serious attempt toward this
goal.

There is another, more fundamental issue that points to future perspectives. Most
of the modeling work has been focused on particular features of brain dynamics. For
example, in case of the EEG, the variables of interest that describe the dynamics in-
clude changes in spectrum, bispectrum, synchrony, coherence, state transition and
fluctuation, etc. However, we are interested in the neural correlates of consciousness
and its removal in unconsciousness. Can we say that a computer that generates par-
ticular waking EEG pattern is conscious? At this point of development, obviously
not. Perhaps the dynamics has to be implemented in the wetware of the brain. But
then something really important is missing from the model. Even if we interpret our
results as a description, not simulation, of dynamics in the wetware of the brain, how
do we know that this dynamics is sufficient for conscious experience? A zombie or
a very smart computer may have the same dynamics, may be behaviorally awake,
but not conscious. It may just process implicit (subconscious) information, in spite
of the reproduced familiar functional patterns. But we do not yet know what would
make this pattern or dynamics conscious as opposed to unconscious. We are facing



Foreword: Computing the Mind vii

the famous explanatory gap between the objective and subjective realms.1 Can we
bridge this gap?

One possibility to make progress is to try to incorporate the missing “extra in-
gredient” that goes beyond brain dynamics. Short of assuming something extra-
physical or transcendental, a possible postulate is information, particularly, inte-
grated information. One then may ask the question: if a certain brain dynamics is
present, does it entail processing of information? A modest first step is an attempt
to measure the information capacity in a given brain state. This can be done in many
different ways and at many levels from regional, columnar, neuronal, synaptic, re-
ceptor, molecular, and quantum levels. Clearly, the higher the resolution the higher
the information capacity, but the unit of information in the brain is currently unclear.
A second step is to realize that what really counts is integrated information.2 A high
number of parallel information channels transmits a large amount information but
does not process it. It has large information capacity but lacks integration. Informa-
tion processing involves the transformation, manipulation, storage and retrieval of
information, together with plasticity of the functional architecture performing these
operations. Moreover, integrated information is produced by a system with causal,
generative architecture. The resulting dynamics of integrated information is thus
thought to give rise to the stream of consciousness.

If consciousness is tied to integrated information, this implies that conscious-
ness can be graded in its content and complexity. As the theory stands, the state of
consciousness is determined by the total amount of integrated information alone.
It has been postulated that in general anesthesia or dreamless sleep, when there
is no subjective experience, information integration is reduced in a graded man-
ner to a level incompatible with conscious perception and purposeful behavior.3 On
the other hand, personal experience suggests that we normally lose consciousness
abruptly, which may seem to conflict with the theorized graded nature of conscious-
ness. However, such personal impression may in part be a result of amnesia under
both anesthetic and sleep conditions. Also, numerous mathematical modeling stud-
ies, e.g. by Steyn-Ross and colleagues,4 suggested that rapid state transitions of
neural dynamics can occur upon graded changes in model parameters relevant to
anesthesia and sleep. Thus, even if consciousness might exist at many levels, the
process of transition across these levels may be accelerated by physiological regula-
tion, as in sleep-wake transitions, and pharmacological interventions, as in general
anesthesia. This calls for an investigation of spontaneous transitions of the state
of consciousness near the critical state while exogenous stimuli are controlled and
neural parameters are recorded.

1Chalmers DJ (1996) The Conscious Mind: In Search of a Fundamental Theory. Oxford University
Press.
2Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42.
3Alkire MT, Hudetz AG and Tononi G (2008) Consciousness and anesthesia. Science
322(5903):876–880.
4Cf. Chap. 8 in this book.
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Whether specific brain structures or cortical regions are more critical than oth-
ers to support the degree of information integration necessary for consciousness is
an area of active research. It is most likely that certain enabling systems, such as
the ascending activating system, are necessary for information integration in the
thalamocortical system. In addition, certain cortical regions may serve as hubs of
information exchange and may thus be more critical targets of anesthesia than oth-
ers. Moreover, different brain regions may play the primary role in removing vs.
restoring the conscious state.

Finally, an important distinction to be made is the difference between wakeful-
ness and consciousness because even coordinated movement and behavior does not
imply the presence of conscious control, e.g., sleepwalking. It is correct when from
gross movement or spontaneous speech the anesthesiologist concludes the patient is
“waking up” but this may not be conscious awakening. Thus, the neural correlates
of wakefulness and consciousness have to be considered separately. Our current
models do not fully account for this difference. The same is true to falling asleep.
A further distinction to be made is between losing consciousness (induction) and
regaining consciousness (emergence), as these processes may, at least in part, be
mediated by different mechanisms. To describe transitions in and out of conscious-
ness during anesthesia or dreamless sleep, one should consider the neural correlates
of induction, unconsciousness, and emergence separately.

Anthony G. HudetzMilwaukee, USA



Preface

Natural sleep and the accompanying loss of consciousness is part of everybody’s
life. Similarly, general anaesthesia is part of the daily routine in hospital surgery
whose aim is, inter alia, to induce hypnosis in patients. The two phenomena share
some common features, however differ in other aspects. For instance, it has been
shown that the final state in deep sleep and anaesthetic-induced unconsciousness
are remarkably similar. However a sleeper may be woken up by shaking or noise
whereas an anaesthetized person cannot be brought back to consciousness by exter-
nal stimuli.

Notwithstanding the importance of sleep for all mammals and many other species
and the successful administration of general anaesthesia in surgery, the physiologi-
cal mechanisms of sleep and anaesthesia are far from being understood. The current
book aims to elucidate the similarities and differences of sleep and anaesthesia and
gives an overview over corresponding experimental and theoretical techniques. The
idea for the book came up after two workshops on the same topic that I had or-
ganized during the Computational Neuroscience Conferences 2007 in Toronto and
2009 in Berlin. Many of the contributors to this book have participated in these
workshops and stimulated discussions triggered the idea to summarize the different
experimental and theoretical approaches. Moreover, interestingly not few contrib-
utors to this book working on either sleep or anaesthesia have switched between
the two topics in the last years illustrating the strong link between the two research
topics.

Typical experiments apply invasive electrophysiology, encephalography and
high-resolution imaging technique to extract neural correlates during sleep or anaes-
thesia. Theoretical models aim to explain the experimentally observed activity and
attempt to extract the corresponding underlying neural mechanisms frequently by
mathematical models. Since both approaches fertilize each other, the book brings
together both experimental and theoretical studies reflecting the current status of re-
search and demonstrating their strong link. The first chapter introduces to the phys-
iological basis of sleep and anaesthesia mostly based on experiments and discusses
similarities and differences in physiology. The subsequent chapter then introduces
into a unifying theoretical model which explains elements of both sleep and anaes-
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x Preface

thesia. More detailed investigations on either sleep or anaesthesia follow in the sub-
sequent two separate sections.

The book gives an overview of the major approaches and concepts in experiments
and theory and hence is ideal for graduate students in anesthesiology and sleep
science. It also serves theoretical neuroscientists who are new to anesthesia and
sleep and would like to gain an overview of the recent theoretical achievements and
hypothesis.

I like to thank the staff of Springer–New York, especially Ann Avouris, for tire-
less assistance and support to make this book happen.

Axel HuttNancy, France
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Chapter 1
Sleep and Anesthesia: A Consideration of States,
Traits, and Mechanisms

D. Pal and G.A. Mashour

1.1 Introduction

Sleep and anesthesia are distinct states of consciousness that share numerous traits.
Like anesthesia, sleep is characterized by the loss of consciousness, behavioral im-
mobility and little recall of environmental events (Pace-Schott and Hobson 2002;
Tung and Mendelson 2004). However, unlike anesthesia, sleep is a spontaneous and
endogenous process, shows homeostatic and circadian regulation, can be reversed
with external stimuli and does not eliminate the sensitivity to pain (Pace-Schott and
Hobson 2002; Tung and Mendelson 2004). As opposed to the historical viewpoint of
sleep as a passive process consisting of the mere cessation of waking, it is now well
established that sleep is actively generated from the interaction of distinct brain nu-
clei (Steriade and McCarley 2005). There is now experimental evidence supporting
the earlier hypothesis (Lydic and Biebuyck 1994) that the effects of anesthesia may
also be mediated through the subcortical brain nuclei that control sleep–wake states
(Franks 2008; Lydic and Baghdoyan 2005). In this chapter, we will elaborate on the
phenomenology and mechanism of sleep and anesthesia, discussing the similarities
as well as differences.

1.2 Sleep—A Physiological Altered State of Consciousness

Sleep can be defined as a naturally occurring physiological altered state of con-
sciousness. A consensus definition of consciousness eludes the scientific commu-
nity, although most of the definitions would include brain arousal and subjective

G.A. Mashour (�)
University of Michigan Medical School, 1H247 University Hospital, SPC-5048, 1500 East
Medical Center Drive, Ann Arbor, MI 48109-5048, USA
e-mail: gmashour@umich.edu

A. Hutt (ed.), Sleep and Anesthesia, Springer Series in Computational Neuroscience 15,
DOI 10.1007/978-1-4614-0173-5_1, © Springer Science+Business Media, LLC 2011
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2 D. Pal and G.A. Mashour

experience as two critical components. In common parlance, ‘conscious’ connotes
awake or aroused and is often used interchangeably with the term ‘aware.’ Scien-
tifically, ‘aware’ implies the realization of external and internal cues that together
define the world around us and is not the same as being awake or aroused. The
dissociation of arousal and awareness is evidenced by patients in vegetative states,
who exhibit periodic electroencephalographic arousal in the presumed absence of
awareness. A distinction between ‘arousal’ and ‘awareness’ is important because
our understanding of sleep–wake processes is derived primarily from animal ex-
perimentation that relies solely on the ‘arousal’ component that can be objectively
assessed, but does not take into consideration the subjective ‘awareness’ component
of consciousness.

Humans have been fascinated with the phenomena of sleep–wake states since the
advent of civilization. Some of the oldest references alluding to sleep–wake phe-
nomena can be found in ancient Hindu philosophical texts (Mandukya Upanishads,
16–11 BC). However, because of the lack of objective experimental tools, it was not
until the twentieth century that any focused experimental approach could be applied
to study sleep–wake states (Gottesmann 2001). The introduction of electrophysio-
logical techniques, in particular electroencephalography, to study sleep–wake states
brought the much needed measure of objectivity to an otherwise highly speculative
field. The advent of electroencephalography spurred intense efforts to describe brain
activity during sleep–wake states, which culminated in the serendipitous discovery
of the state of rapid eye movement (REM) sleep (Aserinsky and Kleitman 1953;
see Gottesmann 2001 for an excellent review). It was known that the wake state is
marked by low-voltage high-frequency electroencephalogram (EEG) that changes
to high-voltage low-frequency at the onset of behavioral sleep (Gottesmann 2001).
Aserinsky and Kleitman (1953) first reported the occurrence of low-voltage EEG
during behavioral sleep, which otherwise could be observed during the wake state.
The low-voltage EEG episodes were accompanied by bursts of rapid eye move-
ments, leading Aserinsky and Kleitman (1953) to coin the term REM sleep. Shortly
afterwards, a similar state in cats was demonstrated by Dement (1958). Around the
same time Jouvet and colleagues (1959) reported that low-voltage EEG episodes
during sleep are accompanied by complete atonia of the neck muscles, thus unrav-
eling a hallmark and unique feature of the state of REM sleep. It was also found that
during this state, cats exhibited an increased arousal threshold, which was paradox-
ical because the electroencephalographic recordings showed an active EEG pattern
as was observed during the wake state (Jouvet 2004). This led Jouvet (2004) to name
the state of REM sleep as ‘paradoxical’ sleep or ‘rhombencephalic sleep’ because
of the rhombencephalic or hindbrain/brainstem origin. The discovery of REM sleep
was a paradigm shift in the conceptual understanding of sleep because it became
obvious that sleep is not a homogeneous state. Because of the distinct REM sleep
phase, the rest of the high-voltage low-frequency sleep period came to be known as
non-REM (NREM) sleep.

Besides the changes in EEG, there are distinct physiological changes associ-
ated with different sleep states. During NREM sleep, brain metabolism, cerebral
blood flow, heart rate and blood pressure decrease while the onset of REM sleep
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causes a marked increase in all of these physiological processes (Rechtschaffen
and Siegel 2000). Brain temperature, which decreases during NREM sleep, in-
creases with the onset of REM sleep (Rechtschaffen and Siegel 2000). The neural
activity and hence the neurochemical milieu of the brain shows specific changes
associated with different sleep–wake states. The monoaminergic neurons [locus
coeruleus (LC)—noradrenergic, dorsal raphe (DR)—serotonergic, and tuberomam-
millary nucleus (TMN)—histaminergic] discharge at the highest rate during wake-
fulness, slow down at the onset of NREM sleep and reach the lowest point of activ-
ity during REM sleep (Aston-Jones and Bloom 1981; Lin 2000; Lydic et al. 1987;
Pace-Schott and Hobson 2002; Steriade and McCarley 2005). The cholinergic
neurons in laterodorsal/pedunculopontine tegmentum (LDT/PPT) and basal fore-
brain (BF) show increased discharge with electroencephalographic arousal as dur-
ing wakefulness and REM sleep (Jones 2008; Thakkar et al. 1998). A state-
dependent modulation of GABAergic tone has been reported from multiple sleep–
wake-related areas across the brain (Hassani et al. 2010; Pal and Mallick 2010;
Steriade and McCarley 2005; Szymusiak et al. 2007). The changes in regional neu-
ronal activity have been broadly confirmed through neuroimaging studies, which
showed (i) a selective deactivation of brainstem, thalamus and BF/hypothalamic re-
gion during NREM sleep, and (ii) activation of pontine tegmentum, thalamus and
BF during REM sleep (Dang-Vu et al. 2007).

Although the universality of sleep is a matter of intense debate (Mignot 2008;
Siegel 2008; Zimmerman et al. 2008), all mammals (terrestrial and marine) as well
as birds studied so far show NREM and REM sleep (Siegel 2008). Further, it is
to be noted that although characterization of sleep–wake states based on electro-
physiological parameters has been successful in humans as well as in laboratory
animals, there seems to be a compelling argument to include behavioral criteria
to define sleep in species in which electrophysiological recording is not feasible
either because of the lack of brain structures comparable to mammals or because
of the ecological niche (Siegel 2008; Zimmerman et al. 2008). Our current un-
derstanding of sleep–wake phenomena is based on the data from laboratory ani-
mals (mostly from cats, rats and mice) and clinical studies. However, unlike hu-
man sleep, there is no consensus on the characterization of sleep states in ani-
mals, leading to a varied description of sleep states by different laboratories. In
addition, interspecies differences in sleep architecture and underlying processes
have been shown from the behavioral to cellular level, thus making it imperative
to exercise caution when extrapolating the results to humans (Capece et al. 1999;
Siegel 2008).

1.2.1 Brain Mechanisms Underlying Wakefulness and NREM
Sleep Generation/Regulation

Role of forebrain in sleep–wake generation/regulation The first clear assertion
of sleep as an active phenomenon and the existence of sleep and wake regulatory
centers can be attributed to Constantin von Economo (reviewed in Triarhou 2006).
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He observed that some of the patients afflicted with encephalitica lethargica, the
disease that now bears his name, showed extreme lethargy and somnolence whereas
other patients in the chronic phase showed insomnia. On the basis of postmortem
neuropathological observations, he concluded that the area encompassing posterior
hypothalamus/rostral midbrain is involved in wake regulation whereas the anterior
hypothalamic region regulates sleep. His clinical observations were later confirmed
by experimental evidence that showed the presence of a sleep-promoting structure in
the anterior hypothalamus (preoptic area—POA) and a wake-promoting structure in
the posterior hypothalamus (Steriade and McCarley 2005; Szymusiak et al. 2007).

Loss/gain of function studies as well as physiological data from neuronal record-
ings have provided considerable insights into the functioning of the subdivisions of
the hypothalamic region in sleep–wake regulation (Szymusiak et al. 2007). Thus,
the median preoptic (MnPO) and ventrolateral preoptic (VLPO) subdivisions of
the anterior hypothalamic/POA have GABAergic neurons that show increased dis-
charge rate during NREM sleep and are sleep-active neurons (Szymusiak et al.
2007). TMN in posterior hypothalamus (PH) and perifornical area in the lateral
hypothalamus (LH) have histaminergic and orexinergic neurons, respectively, both
of which are the ‘wake-ON’ type of neurons (Szymusiak et al. 2007). LH also con-
tains GABAergic neurons intermingled with orexinergic neurons and neurons pos-
itive for melanin concentrating hormones (MCH). A recent report showed that in
contrast to the orexinergic neurons, which discharge at highest rate during wake-
fulness, the GABAergic and MCH containing neurons in LH are inactive during
wake state and instead fire during sleep (Hassani et al. 2009, 2010; Jones 2008).
Therefore, within LH there are two opposing influences on sleep–wake states—
orexinergic neurons promote wake/arousal and GABA and MCH positive neurons
promote sleep. Cholinergic neurons in the BF are active during wakefulness and
REM sleep (Jones 2008), thus contributing to cortical activation. Co-distributed
with cholinergic neurons in the BF are GABAergic neurons, which are active dur-
ing sleep (Jones 2008). To summarize, the forebrain has arousal promoting neurons
in (i) LH (orexinergic), (ii) PH (histaminergic) and (iii) BF (cholinergic) whereas
sleep related neurons are (i) GABAergic neurons located in VLPO, MnPO, LH and
BF, and (ii) MCH neurons in LH (Hassani et al. 2009, 2010; Jones 2008; Lin 2000;
Szymusiak et al. 2007).

Role of brainstem in sleep–wake generation/regulation The forebrain is ca-
pable of maintaining states resembling sleep and wakefulness in isolation from the
rest of the brain (Villablanca 2004). However, normal sleep–wake states are a result
of the interaction between forebrain and brainstem processes. There are reciprocal
connections between forebrain and brainstem sleep–wake-related neurons (Franks
2008; Jones 2008; Szymusiak et al. 2007; Villablanca 2004). The pioneering stud-
ies done in the laboratory of Horace Magoun unequivocally demonstrated the role
of rostral brainstem/midbrain in arousal and EEG activation. Electrical stimulation
of the midbrain reticular formation (MRF) produced EEG activation (Moruzzi and
Magoun 1949) whereas lesions in the midbrain tegmentum caused behavioral stu-
por and a continuous synchronized (high-voltage low-frequency) EEG (Lindsley
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et al. 1949). Neuronal recordings showed the presence of wake-related neurons in
MRF (Manohar et al. 1972) and electrical stimulation of MRF excited the wake-
ON neurons in LC (Thankachan et al. 2001). Inactivation of MRF and the ante-
rior pontine region by intracarotid injection of thiopental replaced the low-voltage
high-frequency EEG with high-voltage low-frequency EEG (Magni et al. 1959).
Similar inactivation of the posterior pontine region and medulla oblongata by in-
travertebral injections resulted in EEG activation, thus indicating the presence of
a hypnogenic influence in the caudal brainstem (Magni et al. 1959). Stimulation of
the medullary nucleus of the solitary tract (NTS) in caudal brainstem produced EEG
synchronization (Magnes et al. 1961) while microinjection of morphine into NTS
caused a dose-dependent increase in NREM sleep (Reinoso-Barbero and de Andres
1995). Stimulation of caudal brainstem in free moving, normally behaving cats pro-
duced an excitatory effect on the REM-ON neurons in PPT (Mallick et al. 2004).
Similar mild electrical stimulation of prepositus hypoglossi in rats increased sleep
(Kaur et al. 2001). Further, a recent study has shown the presence of neurons ac-
tive during REM sleep in dorsal paragigantocellular nucleus (Goutagny et al. 2008).
Collectively, these studies demonstrate the role of midbrain in arousal and caudal
brainstem in sleep-promoting activity.

1.2.2 Brain Mechanisms Underlying REM Sleep
Generation/Regulation

Noradrenergic and cholinergic regulation of REM sleep Brainstem transec-
tions along the neuraxis showed that the ponto-medullary region plays a criti-
cal role in the generation of REM sleep (Jouvet 1962; Siegel et al. 1984; Vanni-
Mercier et al. 1989). Extracellular recordings from different brainstem sites pro-
vided the crucial insights into the neural circuitry involved in REM sleep regu-
lation. Initial studies showed the presence of neurons in pontine reticular forma-
tion (PRF) that (i) increase discharge before the onset of REM sleep and continue
for the duration of the state, known as REM-ON neurons, and (ii) decrease dis-
charge before the onset of REM sleep and remain suppressed for the duration of
the state, known as REM-OFF neurons (Chu and Bloom 1974; Hobson et al. 1975;
McGinty and Harper 1976; Vertes 1977). Refinement of the histological techniques
over the decades allowed the identification of these REM sleep related neurons.
Thus, the monoaminergic REM-OFF neurons in the pontine region—noradrenergic
neurons in LC and serotonergic neurons in DR—show a state-dependent discharge
with maximum activity during wakefulness, which progressively decreases through
NREM sleep to almost cessation during REM sleep (Aston-Jones and Bloom 1981;
Lydic et al. 1987). The cholinergic neurons in LDT/PPT in the pontine region can
be categorized into two sub-populations: (i) REM-ON neurons that start firing just
before the onset of REM sleep, and (ii) wake-ON/REM-ON neurons that fire dur-
ing both wake and REM sleep states (Thakkar et al. 1998). Stimulation of LC,
the site of REM-OFF neurons, decreases REM sleep (Singh and Mallick 1996)
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whereas stimulation of LDT/PPT increases REM sleep (Datta and Siwek 1997;
Thakkar et al. 1996). LC and LDT/PPT receive orexinergic projections from wake-
active perifornical hypothalamic neurons (Peyron et al. 1998). Disinhibition of peri-
fornical hypothalamic neurons excites LC noradrenergic neurons (Lu et al. 2007)
and bath application of orexin depolarizes PPT cholinergic neurons (Kim et al.
2009). Infusion of orexin, an excitatory neuropeptide, into LC and LDT increased
waking and decreased REM sleep (Bourgin et al. 2000; Xi et al. 2001).

LC and LDT/PPT share reciprocal anatomical connections and the neurochem-
ical interplay between the monoaminergic and cholinergic neurons plays a funda-
mental role in the generation and maintenance of REM sleep (Hobson et al. 1975;
Steriade and McCarley 2005). Pharmacological blockade of cholinergic transmis-
sion in LC decreases REM sleep (Mallick et al. 2001) whereas blocking noradren-
ergic transmission in PPT increases REM sleep (Pal and Mallick 2006). Cholin-
ergic efferents from LDT/PPT innervate PRF, which is also known as the REM
sleep induction zone (Reinoso-Suárez et al. 2001). Stimulation of PPT increases
acetylcholine (ACh) release in PRF (Lydic and Baghdoyan 1993) and ACh levels
increase in PRF during spontaneous REM sleep (Lydic and Baghdoyan 2005). Mi-
croinjection of cholinergic agonists into PRF increases REM sleep (Baghdoyan et
al. 1984), which can be blocked by systemic co-administration of a cholinergic an-
tagonist (Baghdoyan et al. 1989). Therefore, ACh plays an executive role whereas
noradrenaline plays a permissive role in REM sleep generation.

Role of GABA in REM sleep generation An increasing number of studies
indicate that GABA plays a central role in the generation of REM sleep, possi-
bly through the modulation of pontine REM-OFF and REM-ON neurons (Pal and
Mallick 2011). GABAergic neurons in LC and LDT/PPT are active during recovery
REM sleep following REM sleep deprivation (Maloney et al. 1999). GABA concen-
tration increases in LC during REM sleep (Nitz and Siegel 1997). Enhancement of
GABAergic transmission in LC through GABA microinjection (Mallick et al. 2001)
or stimulation of prepositus hypoglossi, which increases GABA concentration in
LC, increases REM sleep (Kaur et al. 2001). Microinjection of GABA antagonist
into LC decreases REM sleep (Mallick et al. 2001) whereas iontophoretic applica-
tion of GABA into LC inhibits the putative noradrenergic REM-OFF neurons (Ger-
vasoni et al. 1998). LC receives GABAergic projections from the extended VLPO
area and these neurons have been shown to be active during REM sleep (Lu et al.
2002). Microinjection of GABA-A antagonist into PPT decreases REM sleep (Pal
and Mallick 2004; Torterolo et al. 2002) whereas GABA-A agonist injection into
PPT increases REM sleep (Pal and Mallick 2009; Torterolo et al. 2002). Pharmaco-
logical stimulation of GABAergic substantia nigra pars reticulata, which should in-
crease GABA levels in PPT, increased the time spent in REM sleep (Pal and Mallick
2009). Therefore, GABA in LC and PPT promotes REM sleep (Mallick et al. 2001;
Nitz and Siegel 1997; Pal and Mallick 2004, 2009; Torterolo et al. 2002). In addi-
tion, there is strong evidence that GABA from ventrolateral periaqueductal gray and
dorsal paragigantocellular nucleus plays a critical role in REM sleep regulation, pos-
sibly through the modulation of the pontine monoaminergic and cholinergic neurons
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(Goutagny et al. 2008; Sastre et al. 1996; Vanini et al. 2007). Interestingly, a recent
study showed that the GABA levels in mPRF are lowest during REM sleep as com-
pared to wake state (Vanini et al. 2011). This is in contrast to LC and LDT/PPT
where the GABA level/tone is high during REM sleep (Nitz and Siegel 1997;
Maloney et al. 1999). Therefore, the GABAergic modulation of sleep–wake states
is site dependent.

1.3 Anesthesia—A Pharmacological Induced Altered State
of Consciousness

Sleep is a ubiquitous metaphor for the state of general anesthesia because it serves
as our experiential basis of unconsciousness and has the reassuring association with
restoration. Sleep, like anesthesia, is characterized by the loss of consciousness.
The decrease in global cerebral metabolism during NREM sleep is similar to that
observed under anesthesia (Boveroux et al. 2008). Furthermore, regionally spe-
cific metabolic decreases in the polymodal cortices (the fronto-parietal network)
during NREM sleep is comparable to that occurring under intravenous (IV) and
inhalational anesthesia (Boveroux et al. 2008). Most general anesthetics produce
high-voltage low-frequency EEG, which is also a characteristic feature of NREM
sleep. Halothane and propofol cause spindles in EEG, which show a remarkable
similarity to the spindles occurring during NREM sleep (Ferenets et al. 2006;
Keifer et al. 1996). In spite of the apparent similarities in the behavioral and elec-
troencephalographic traits, sleep and anesthesia have notable differences. Sleep is a
naturally occurring altered state of consciousness whereas anesthesia is exogenously
induced. As opposed to anesthesia, sleep does not eliminate the sensitivity to pain,
is homeostatically regulated and is tightly coupled with hormonal release. Unlike
sleep, the neurophysiology of general anesthesia is not characterized by cycles of
cortical deactivation and activation, but rather a stable pattern once steady-state drug
levels have been achieved. Furthermore, electrophysiological correlates of deeper
anesthesia such as burst suppression are not observed during natural sleep.

There is a growing body of literature supporting the thought that loss of con-
sciousness associated with anesthesia results in part from the activity at the subcor-
tical nuclei involved in sleep–wake regulation (Franks 2008; Lydic and Baghdoyan
2005; Lydic and Biebuyck 1994). Anesthetics can induce loss of consciousness by
inactivating the arousal-related centers or by activating the sleep or EEG synchrony
areas. The arousal network is comprised of (i) monoaminergic neurons in LC, DR,
TMN, (ii) cholinergic neurons in LDT/PPT and BF, and (iii) orexinergic neurons
in LH-perifornical area (Franks 2008; Jones 2008; Lydic and Baghdoyan 2005;
Steriade and McCarley 2005). The sleep or EEG synchrony-inducing neurons
are located in anterior hypothalamic-POA, BF and NTS (Magnes et al. 1961;
Mallick et al. 1983; Szymusiak et al. 2007). Redundancy is a common feature of
the central nervous system, which is also true for sleep–wake/arousal pathways.
The redundancy of the sleep–wake structures was highlighted by a recent report
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that the daily wake levels were unaltered after the ablation of three arousal-related
neuronal populations—cholinergic BF, noradrenergic LC and histaminergic TMN
(Blanco-Centurion et al. 2007). Therefore, it is unlikely that any one group of
neurons will be sufficient to generate arousal or sleep states. By corollary, it can
be argued that a functional network rather than a single locus may underlie the
state of anesthesia. Although more is known about the neuronal structures involved
in sleep–wake regulation (Franks 2008; Jones 2008; Lydic and Baghdoyan 2005;
Steriade and McCarley 2005), our understanding of the mechanism underlying the
anesthetic-induced loss of consciousness is rapidly growing.

1.3.1 GABAergic Processes and Anesthetic Mechanisms

GABA-A agonist injection into the septohippocampal system potentiates the effect
of general anesthetics by reducing the dose required for the induction of loss of
righting reflex (Ma et al. 2002). Infusion of muscimol, a GABA-A agonist, into
TMN produced a dose-dependent sedation as measured by the loss of righting re-
flex (Nelson et al. 2002). By contrast, GABA antagonism in TMN decreases the
efficacy of systemically administered propofol and pentobarbital as reflected by a
decrease in the duration of loss of righting reflex (Nelson et al. 2002). Devor and
Zalkind (2001) reported that infusion of pentobarbital into mesopontine tegmentum
induced a short latency, short lasting anesthesia-like state, which is similar to the
state of anesthesia induced by systemic pentobarbital injection. The pentobarbital
microinjection into mesopontine tegmentum caused a marked decrease in the neu-
ronal activity (as measured by c-fos assay) throughout the cerebral cortex as well
as subcortical structures, an effect replicated by intraperitoneal pentobarbital ad-
ministration (Abulafia et al. 2009). Interestingly, lidocaine injection into the same
site did not induce an anesthesia-like state, which indicates that the pentobarbital-
induced loss of consciousness is not mediated through the local inactivation of this
area (Devor and Zalkind 2001). It has been demonstrated that carbachol (choliner-
gic agonist) injections in and around mesopontine tegmentum induces REM sleep
in rats (Bourgin et al. 1995), indicating similar neuroanatomic loci underlying sleep
and anesthesia. Further, a number of studies have demonstrated the effect of GABA-
active sedative/anesthetics on sleep architecture and sleep–wake-related areas. Sys-
temic administration of pentobarbital and propofol (i) increased c-fos expression in
VLPO, which is a part of the sleep-promoting network, and (ii) decreased c-fos ex-
pression in TMN, which is a part of the arousal promoting network (Nelson et al.
2002). Barbiturates (pentobarbital) and benzodiazepines administered systemically
at sub-anesthetic doses increase the intermediate stage of sleep at the expense of
REM sleep (Gottesmann et al. 1998). Infusion of pentobarbital (Mendelson 1996),
triazolam (Mendelson and Martin 1992) and propofol (Tung et al. 2001a) into me-
dial preoptic area decreased sleep latency and increased NREM sleep. GABA in me-
dial pontine reticular formation (mPRF) increases arousal (Xi et al. 1999) whereas
GABA levels in mPRF decrease during isoflurane anesthesia (Vanini et al. 2008).
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Increasing GABA transmission in mPRF increased the isoflurane induction time
(i.e., reduced efficacy) whereas decreasing GABA transmission in the same site
decreased isoflurane induction time (Vanini et al. 2008). Keifer et al. (1996) re-
ported that halothane decreases the release of ACh in mPRF. Infusion of GABA
antagonist into mPRF increases ACh release, possibly by blocking the pre-synaptic
GABAergic receptors on the cholinergic terminals (Vazquez and Baghdoyan 2004).
In a recent study, Vanini et al. (2011) showed a significant increase in PRF GABA
levels during wake state as compared to REM sleep. These studies reinforce the
idea that a neuronal network rather than a single locus underlies a behavioral trait,
which is also an outcome of the interaction among multiple neurotransmitter sys-
tems.

1.3.2 Cholinergic Processes and Anesthetic Mechanisms

A vast body of literature supports cholinergic generation of arousal states (Jones
2008; Lydic and Baghdoyan 2005). Cholinergic neurons in (i) LDT/PPT through
efferents to intralaminar and midline thalamic nuclei, and (ii) BF through efferents
to cortex, promote behavioral and electroencephalographic arousal (Jones 2008;
Lydic and Baghdoyan 2005; Steriade and McCarley 2005). ACh levels in cor-
tex, thalamus and mPRF are highest during waking and REM sleep, the states
characterized by cortical activation (Jones 2008; Lydic and Baghdoyan 2005;
Lydic et al. 1991; Steriade and McCarley 2005). Therefore, it is evident that ACh
suppresses the high-voltage low-frequency EEG and the spindles associated with
NREM sleep. Halothane decreases ACh release in mPRF (Keifer et al. 1994, 1996)
and in addition causes EEG spindles that are similar to the spindles observed dur-
ing NREM sleep (Keifer et al. 1994). Microinjection of cholinergic agonist carba-
chol into mPRF before halothane administration significantly reduced the number
of EEG spindles (Keifer et al. 1996). Ketamine has also been shown to decrease
ACh release in mPRF (Lydic and Baghdoyan 2002) whereas intraperitoneal propo-
fol decreases the cortical and hippocampal ACh levels in a dose-dependent manner
(Kikuchi et al. 1998). 192IgG-Saporin lesion of cholinergic neurons in BF, which
should putatively decrease the cortical and hippocampal ACh levels, enhanced the
potency of propofol anesthesia (Laalou et al. 2008). Infusion of nicotine into the
centromedian thalamus, which receives afferents from LDT/PPT, restored mobility
and righting in sevoflurane-anesthetized rats (Alkire et al. 2007).

Cholinergic involvement in anesthetic mechanisms is further demonstrated by a
study showing that the dose required to induce loss of consciousness is increased
following prior IV administration of a cholinesterase inhibitor, physostigmine (Fas-
soulaki et al. 1997). IV administration of physostigmine following propofol-induced
anesthesia reversed the anesthetic-induced loss of consciousness (Meuret et al.
2000) and significantly reduced the recovery time following IV ketamine admin-
istration (Toro-Matos et al. 1980). The arousing effect of physostigmine could be
reversed with the prior administration of scopolamine, a cholinergic antagonist
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(Meuret et al. 2000). Physostigmine has also been shown to antagonize the hyp-
notic effects of sevoflurane (Plourde et al. 2003). Therefore, a decrease in the central
cholinergic tone is conducive to the state of anesthesia.

1.3.3 Monoaminergic Processes and Anesthetic Mechanisms

Noradrenergic and histaminergic systems are causally and positively related to be-
havioral and EEG indices of arousal (Aston-Jones and Bloom 1981; Berridge and
Foote 1996; Bovet et al. 1958; Lin 2000). The activity of histaminergic neurons has
been shown to be linked to vigilance and the degree of alertness (Takahashi et al.
2006). Inhalational anesthetics hyperpolarize neurons in LC and DR (Sirois et al.
2000; Washburn et al. 2002). Infusion of an alpha-2 agonist, dexmedetomidine, into
LC produces hypnosis that could be prevented through simultaneous infusion of
alpha-2 antagonist atipamezole (Correa-Sales et al. 1992). The sedation produced
by the action of dexmedetomidine on LC is through the disinhibition of VLPO
neurons, which are thought to play an executive role in the generation of NREM
sleep (Nelson et al. 2003). Activation of adrenergic alpha-1 receptors decreases
whereas antagonism of alpha-1 receptors increases barbiturate anesthesia time (Ma-
son and Angel 1983; Matsumoto et al. 1997). Pretreatment with a beta-adrenergic
blocker also increased barbiturate anesthesia time in a dose-dependent manner (Ma-
son and Angel 1983). Halothane decreased the histamine release in anterior hy-
pothalamus, which is also reported to occur during sleep (Mammoto et al. 1997;
Strecker et al. 2002). Intracerebroventricular (ICV) administration of histamine de-
creased pentobarbital-related hypnosis and hypothermia (Kalivas 1982). A recent
study by Luo and Leung (2009) showed that the infusion of histamine into BF dur-
ing isoflurane anesthesia in rats caused a decrease in burst suppression, which could
be blocked by a prior infusion of H1 antagonist into BF. Further, histamine signif-
icantly reduced the time to recovery whereas H1 antagonist into BF significantly
increased the time to recovery (Luo and Leung 2009). Collectively, these studies
indicate that the activation and inactivation of monoaminergic nuclei, respectively,
inhibit and enhance the efficacy of anesthetics.

1.3.4 Orexinergic Processes and Anesthetic Mechanisms

Orexinergic neurons in LH-perifornical area send dense projections to the arousal-
related nuclei LC, DR, TMN, PPT and LDT (Peyron et al. 1998). ICV or local
infusion of orexins into LC increases wakefulness (Bourgin et al. 2000). Interest-
ingly, ICV application of orexin (i) decreased ketamine-induced noradrenaline re-
lease in medial prefrontal cortex, a target site of LC neurons (Tose et al. 2009), and
(ii) reduced the time under anesthesia induced by ketamine (Tose et al. 2009) and
barbiturates (Kushikata et al. 2003). Similar results have been reported with the use
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of inhalational anesthesia. ICV orexin in isoflurane-anesthetized rats reduced burst
suppression and produced EEG activation (Yasuda et al. 2003). Infusion of orexin-A
into BF of isoflurane-anesthetized rats caused electroencephalographic arousal and
a significant increase in the cortical ACh release (Dong et al. 2006). In sevoflurane-
anesthetized rats, infusion of orexin-A into BF caused not only electroencephalo-
graphic arousal but also significantly decreased emergence time from anesthesia
(Dong et al. 2009).

Orexinergic neurons in C57BL/6J mice show decreased c-fos expression, a
marker for neural activity, under isoflurane and sevoflurane anesthesia (Kelz et al.
2008). Systemic administration of orexin-A antagonist delayed the emergence from
the inhalational anesthesia (Kelz et al. 2008). Delayed emergence from sevoflurane
and isoflurane was also observed in orexin/ataxin-3 narcoleptic mice, which have
a deficient orexinergic system (Kelz et al. 2008). Studies from different laborato-
ries have indicated the pre-eminence of orexin-A over orexin-B in the mediation of
anesthetic effects (Dong et al. 2006, 2009; Kelz et al. 2008; Kushikata et al. 2003;
Tose et al. 2009). Orexin-A directly depolarizes the PPT neurons (Kim et al. 2009),
which innervate PRF (Reinoso-Suárez et al. 2001). Microdialysis delivery of orexin-
A into PRF increases local ACh release (Bernard et al. 2003), whereas halothane
and ketamine decrease the ACh release in PRF (Keifer et al. 1994, 1996; Lydic and
Baghdoyan 2002). Therefore, it is evident that inactivation of orexinergic system
is associated with the hypnotic component of general anesthesia. Furthermore, the
orexinergic system interacts with noradrenergic and cholinergic systems to maintain
arousal states and possibly emergence from certain anesthetics.

1.3.5 Adenosinergic Processes and Anesthetic Mechanisms

Adenosine, a purine nucleoside, is a product of serial dephosphorylation of adeno-
sine triphosphate. Adenosine receptors are expressed in high concentration in brain,
where adenosine acts as a neuromodulator through extracellular and intracellular
signaling pathways (Dunwiddie and Masino 2001). A role for adenosine in neuro-
protection, epilepsy, vasodilation, and analgesia has been demonstrated (Dunwiddie
and Masino 2001). Adenosine has hypnogenic properties and has been shown to
play a role in sleep–wake homeostasis (reviewed in McCarley 2007). Adenosine
concentration in BF has been reported to increase during sleep deprivation (Mc-
Carley 2007). Systemic and ICV application of adenosine agonist in rat increases
delta power and the changes produced in EEG power spectra were comparable to
that observed after sleep deprivation (Benington et al. 1995). In addition to a role
in the modulation of sleep–wake states, adenosine is also known to impact the ef-
fects of anesthetics. Sleep deprivation decreases the time to loss of righting reflex
and increases post-anesthetic recovery time (Tung et al. 2002). However, pretreat-
ment of sleep-deprived rats with systemic and/or local administration of adenosine
antagonist into BF increased the time to loss of righting reflex and decreased the
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post-anesthetic recovery time, demonstrating a role for adenosine in increased sen-
sitivity to anesthetics after sleep deprivation (Tung et al. 2005). Intraperitoneal ad-
ministration of adenosine shortened the induction time and enhanced the potency of
thiopental, propofol and midazolam (Kaputlu et al. 1998). Perioperative administra-
tion of adenosine decreased the requirement for isoflurane anesthesia and postoper-
ative analgesics (Segerdahl et al. 1995) whereas theophylline, an adenosine antag-
onist, partially reversed the effects of isoflurane in dogs as indicated by increased
cerebral metabolic rate for oxygen and the appearance of higher frequencies in EEG
(Roald et al. 1990). Dialysis delivery of adenosine A1 receptor agonist into mPRF
of cats produced a significant delay in the post-halothane recovery and a decrease in
the ACh release in mPRF (Tanase et al. 2003). The effect of adenosine agonist on
post-halothane recovery period and ACh release in mPRF could be reversed with co-
administration of an adenosine antagonist (Tanase et al. 2003). IV administration of
adenosine caused significant reduction in minimum alveolar concentration (MAC)
for halothane in dogs (Seitz et al. 1990). Although the effects of IV adenosine in
dogs could be blocked by concurrent administration of the adenosine antagonist
aminophylline (Seitz et al. 1990), aminophylline alone has not been shown to af-
fect halothane MAC in dogs (Nicholls et al. 1986). Similar results were obtained in
human volunteers in whom aminophylline administration alone did not affect des-
flurane MAC (Turan et al. 2010). However, in the same study it was reported that
aminophylline increased the time to loss of consciousness and decreased the time
to regain consciousness in humans subjects anesthetized with propofol (Turan et al.
2010).

1.4 Functional Relationship of Sleep and Anesthesia

Both sleep and anesthesia are marked by a significant decrease in global cerebral
metabolism and immobility. Further, the anesthetic state is a period of physiological
and behavioral quiescence, which may provide a sleep-like experience. Tung and
colleagues (2001b) found that prolonged IV administration of propofol in rats did
not cause sleep rebound during the post-propofol recovery period, indicating that no
sleep debt had accrued during the time under anesthesia. Under normal conditions,
sleep deprivation is followed by a period of increased sleep or rebound in sleep,
thereby compensating for the lost sleep time. Administration of propofol for 6 h
in previously sleep-deprived rats demonstrated no difference in sleep during the
post-anesthesia period as compared to natural recovery, thereby suggesting that the
period under propofol anesthesia may serve a restorative purpose akin to sleep (Tung
et al. 2004). In contrast to the propofol study (Tung et al. 2004), we recently showed
that 4 h of isoflurane treatment following 24 h of selective REM sleep deprivation
did not allow the recovery of REM sleep (Mashour et al. 2010). However, as has
been reported earlier for total sleep deprivation (Tung et al. 2002), selective REM
sleep restriction reduced the anesthetic requirement to achieve the same behavioral
and electrophysiologic endpoint (Mashour et al. 2010). Thus, propofol allows the
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Fig. 1.1 Schematic showing the relationship between different anesthetics and sleep homeostasis.
Propofol has a balanced reciprocal relationship with sleep homeostasis: it allows the recovery from
sleep deprivation and sleep deprivation enhances its efficacy (Tung et al. 2004). Sevoflurane shows
state-specific effects: it allows the recovery of NREM sleep but does not allow the recovery of REM
sleep from total sleep deprivation (Pal et al. 2011). Like propofol, sleep deprivation enhances the
potency of sevoflurane (Pal et al. 2011). Isoflurane does not allow the recovery of REM sleep from
REM sleep deprivation while REM sleep deprivation enhances the efficacy of isoflurane (Mashour
et al. 2010; Tung et al. 2004)

homeostatic recovery of both NREM and REM sleep, whereas isoflurane does not
allow the recovery of REM sleep (Mashour et al. 2010; Tung et al. 2004).

However, in both studies (Mashour et al. 2010; Tung et al. 2004) the anesthet-
ics were titrated to a level that allowed the continuous presence of high-voltage
low-frequency waves as are observed during NREM sleep. Thus, it is not entirely
possible to preclude the possibility of NREM sleep expression during anesthe-
sia. In order to overcome this confound, we conducted a recent study in which
the effects of sevoflurane, titrated to approximately 50% burst suppression ratio,
were investigated on sleep homeostasis (Pal et al. 2011). Rats were chronically in-
strumented and sleep–wake states were recorded under three conditions: (1) 36 h
ad libitum sleep, (2) 12 h sleep deprivation followed by 24 h ad libitum sleep,
and (3) 12 h sleep deprivation, followed by 6 h sevoflurane exposure, followed
by 18 h ad libitum sleep. Sevoflurane exposure to sleep-deprived rats eliminated
the homeostatic increase in NREM sleep and produced a significant decrease in
the NREM sleep delta power during the post-anesthetic period, indicating a com-
plete recovery from the effects of sleep deprivation. However, sevoflurane exposure
did not affect the time course of REM sleep recovery. Therefore, unlike propofol,
sevoflurane anesthesia has differential effects on NREM and REM sleep home-
ostasis. Further, the effect of sevoflurane on REM sleep recovery is similar to
that reported for isoflurane, thereby confirming the previous hypothesis that the
relationship between sleep and anesthesia is likely to be agent- and state-specific
(Mashour et al. 2010). Consistent with the previous results from isoflurane and
propofol studies (Mashour et al. 2010; Tung et al. 2002), sleep deprivation de-
creased the time to loss of righting reflex induced with sevoflurane (Pal et al.
2011). The relationship between these anesthetics and sleep homeostasis is sum-
marized in Fig. 1.1. The study of sleep homeostasis and anesthesia may provide
a ‘composite picture’ of the effects of general anesthetics on sleep–wake systems.
Agent- and state-specific differences may have clinical relevance in the periopera-
tive care of surgical patients that have sleep disorders or that have been sleep de-
prived.
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1.5 Conclusion

Sleep and anesthesia are distinct states that share important traits. The shared behav-
ioral and electroencephalographic phenotypes of sleep and anesthesia likely relate
to the neurochemical interfaces at subcortical arousal and sleep-promoting centers.
It remains to be elucidated whether the induction of anesthesia is accomplished via
the ‘bottom-up’ mechanisms of sleep, or through more direct cortical effects (Velly
et al. 2007). Further study of sleep neurobiology will likely continue to be a fruit-
ful line of investigation to better understand anesthetic mechanisms. Finally, the
interfaces of sleep homeostasis and general anesthesia may be of increasing clini-
cal importance, especially given the rising incidence of obstructive sleep apnea and
other disorders that result in sleep deprivation.
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Chapter 2
Modelling Sleep and General Anaesthesia

J.W. Sleigh, L. Voss, M.L. Steyn-Ross, D.A. Steyn-Ross, and M.T. Wilson

2.1 Introduction

There is active controversy concerning the ideas about the relationship between
the states of natural sleep and general anaesthesia (Hudetz 2008; Lu et al. 2008;
Zecharia et al. 2009). Because, by definition, general anaesthetic drugs act to di-
minish the conscious state of the central nervous system—they are said to bias the
central nervous system to enter natural sleep-like modes of operation (Franks 2008;
Lancel 1999; Lin et al. 1989). This is manifest in the many similarities between the
electroencephalogram (EEG) of natural sleep and the EEG when the patient is re-
ceiving modest doses of general anaesthetic. Further evidence to support this idea
is found in a number of studies in which a sedated state may be induced (or re-
versed) by microinjection of various anaesthetic (and anti-anaesthetic) substances
into some discrete areas of the brain-stem and midbrain which have been shown to
be critical in the co-ordination of natural sleep-wake transitions (Hudetz et al. 2003;
Nelson et al. 2002; Alkire et al. 2007, 2009; Sukhotinsky et al. 2007). These sub-
cortical arousal structures facilitate wakefulness by providing ongoing depolarizing
neuromodulatory input to the cortex. It is hard to imagine a more evolutionarily
important behavior for an animal than the ability to achieve the state of wakeful-
ness. Therefore, it is not surprising that there exist many overlapping brain-stem
systems that can activate the cerebral cortex—acting via a number of different
chemical substances such as glutamate, acetylcholine, amines, and orexin. Presum-
ably this huge redundancy makes the animal relatively insensitive to natural neu-
romodulator toxins. However, there is a problem. The sleep state seems, also, to
be essential for the survival of animals with adaptive nervous systems. Therefore,
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in tandem with the robust systems required to maintain wakefulness, the animal
must also be able to reliably achieve sleep. In mammals the ability to be ‘prop-
erly awake’ or ‘properly asleep’ seems to have been achieved by the evolution-
ary development of neuronal mechanisms that interact over a variety of different
scales of size. If we want to model the processes of sleep and anaesthesia, the
challenge is to include the processes that are occurring at many different spatial
scales. The global behavioral states of wakefulness and sleep reflect large-scale al-
terations in activity encompassing virtually the entire cerebral cortex. At the scale
of traditional anatomic ‘brain-centers’ (millimetre-to-centimetre size) we could en-
visage the cerebral cortex as being strongly influenced by distant brain-stem servo-
controlling systems based on mutual inhibition. These models typically have sets
of equations that hope to capture the dynamics of the interacting groups of brain-
stem neurons (Behn et al. 2007; Rempe et al. 2010; Fulcher et al. 2008; Phillips and
Robinson 2008); and thus replicate observed activity in various wake-ON, sleep-
ON, wake-OFF, and sleep-OFF neuronal populations (Leung and Mason 1999;
Lin et al. 1988; Saint-Mleux et al. 2004; Saito et al. 1977). However, the complexity
of the thalamo-cortical response to the brain-stem neuromodulator input cannot be
ignored; and should be included in the modelling process. At the smaller cellular
and molecular scale (sub-millimeter), there is also a strong tendency for thalamo-
cortical neuronal populations to abruptly jump between active and silent modes of
operation—without externally derived driving. This bistability is probably driven
by both intrinsic neuronal ion currents, and synaptic effects (Fuentealba et al. 2005;
Hill and Tononi 2005; Compte et al. 2003; Contreras et al. 1996; Steriade et al. 2001;
Steriade and Amzica 1998). The modelling of sleep has thus developed in two
somewhat divergent directions, reflecting these diversity of scales. On one hand are
the ideas that the brain-stem control is pre-eminent, and the cortical responses are
just subservient to the brain-stem neuromodulator outputs (Clearwater et al. 2008;
Phillips and Robinson 2008). The opposing body of work, does not look at how
the neuromodulator milieu is generated, but assumes that it is simply an externally
imposed parameter; and instead looks in great detail at the cortical (and sometimes
thalamic) responses to the change in neuromodulator environment (Wilson et al.
2005, 2006). As yet there does not seem to be a single comprehensive model of
both brain-stem and neocortical interactions. The diagram in Fig. 2.1 summarizes
the components that would be included in such a model.

At higher concentrations of anaesthetic drugs, the similarities between gen-
eral anaesthesia and natural sleep are less obvious. In particular, the ability for
painful (nociceptive) stimuli to activate awakening is markedly suppressed by gen-
eral anaesthetic drugs. With further increases in anaesthetic dosage, the EEG tends
toward a burst-suppression pattern—which is not found in natural sleep states; and
the animal becomes behaviorally impervious to all nociceptive arousal. It is un-
clear exactly how general anaesthetic drugs cause this suppression of responsive-
ness in the animal. In this chapter we will address this question using a neocortical
mean-field model. We explicitly concentrate on modelling cerebro-cortical dynam-
ics. Brain-stem neuromodulation is limited to exogenously imposed variations in
cortical neuronal resting membrane potential, with no attempt to quantify the com-
plex multimodal brain-stem feedback mechanisms. With this cortico-centric model
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Fig. 2.1 Diagram of various components of sleep processes in the brain. For clarity the circadian
and limbic inputs have not been included. The non-italic lettering indicates the various anatomical
brain regions and nuclei (vlPAG = ventro-lateral peri-aqueductal gray matter, PPT = peduncu-
lo-pontaine-tegmentum, LPT = lateral pontine tegmentum, LC = locus ceruleus)). The black lines
indicate excitatory interactions, and the dashed lines indicate inhibitory interactions. The italic
lettering indicates the various neuromodulators (ACh = acetylcholine, Hist = histamine, NA =
Noradrenaline, 5HT = serotonin, GABA = gamma-amino-butyric acid)

we propose that the gamma-amino-butyric-acid (GABA)-ergic effect of common
general anaesthetic drugs is a sufficient explanation of both:

1. the ability of general anaesthetic drugs to precipitate the central nervous system
into a sleep-like state, and is also

2. the mechanism by which general anaesthetic drugs obtund nociceptive arousal.

2.2 Mechanisms of Natural Sleep

Sleep is a phenomenon that is ubiquitous in the animal kingdom. It is essential
for survival; even though—from a superficial evolutionary viewpoint—the act of
becoming unresponsive to the outside world for a considerable period each day
would not appear to be very advantageous. The investigation of the control mecha-
nisms in mammalian sleep has been very intense in recent years and we would refer
the reader to a number of excellent reviews (Rosenwasser 2009; McCarley 2007;
McCarley and Chokroverty 2007; Saper et al. 2005; Fuller et al. 2006, 2007), and
also the Chap. 1 in this volume. In brief, there is an interlinked system of mutually
inhibitory neuronal populations—located in the brain stem and basal forebrain—
that will tend to cause the state of the animal to be either awake or asleep. This has
been described as being analogous to a ‘flip-flop’ electrical circuit. These neuronal
populations are made up of relatively few cells (perhaps only a few thousand), but
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have a very wide projection, and so are able to influence huge areas of the neocor-
tex. The systems are set up so that an intermediate state is not inherently stable—the
animal does not remain in a half-asleep state.

Traditionally sleep has been described as being under the control of two pro-
cesses: (i) homeostatic and (ii) circadian. Sleep is then further classified into rapid-
eye-movement (REM) or paradoxical sleep; and non-REM (NREM) or slow-wave
sleep states. REM sleep is associated with relatively high levels of activity in cholin-
ergic and glutamatergic neurons, whereas NREM sleep is predominantly a GABAer-
gic state (Fuller et al. 2007; Goutagny et al. 2008; Luppi et al. 2006). The amount of
sleep varies widely between different species of mammals. A mathematical model
of the brain-stem control of circadian and ultradian sleep rhythms of V. Booth et al.
can be found in Chap. 5. The various states of sleep and wakefulness have been de-
fined mainly by using stereotypical heuristic EEG patterns. These changes in EEG
pattern are usually quite clear. Questions arise as to what is the real biological sig-
nificance to the animal of these EEG changes, and also how they can be quantified.
An accurate mathematically based model of sleep would go a long way toward an-
swering both these questions.

There is increasing evidence that ‘sleep’ is a phenomenon that can occur in
quite small localized populations of neurons (Krueger et al. 2008). As a homeo-
static response to periods of prolonged neuronal activity, neurons show a propen-
sity to enter a state where they undergo fluctuations of hyperpolarized quies-
cence and depolarized activity that are indistinguishable from those seen in clas-
sical slow-wave sleep. The reason for this phenomenon is not known with cer-
tainty, but probably involves some synaptic re-organization which is required
for more efficient information handling (Tononi 2009; Tononi and Cirelli 2006;
Vyazovskiy et al. 2008). This process has been modeled (Roy et al. 2008; Ried-
ner et al. 2007). There is therefore a tension between the requirements for local
populations of neurons to engage in a period of sleep for their efficient operation,
and the requirements for the whole mammal to function as safely as possible in a
dangerous world. The solution appears to be utilization of the primitive brain-stem
systems as controllers of mammalian sleep. The process of falling asleep involves
the interaction of many large-scale brain systems. It can be easily imagined that the
roles of these systems are to:

• Minimize the tendency for small parts of the brain to fall asleep, while the
rest of the brain is awake. In aquatic mammals half the brain sleeps at any
one time. Presumably this occurs because some responsiveness is required for
the continued swimming and breathing necessary for survival in dolphins and
whales (Siegel 2009). In land mammals, it seems that there is a preference for
the whole brain to sleep synchronously. This is probably because higher forms
of mammalian consciousness require co-ordination and synchrony within neu-
ronal assemblies that span widely separated parts of the brain (Harris 2005;
Massimini et al. 2009). Thus the maintenance of function within these spatially
disparate assemblies would require that these large portions of the brain enter the
sleep state at the same time. This requirement for total-brain sleep would suggest
that localized unsynchronized sleep episodes are not sufficient for the large-scale
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synaptic re-modelling required for effective mammalian cognition. Also spatially
synchronous EEG activity is a notable feature of slow-wave sleep (Destexhe et al.
1999).

• Co-ordinate the sleep phase with the part of the day that the animal is least ac-
tive. Thus predominantly visual animals (like man) tend to sleep at night, and
predominantly smell-oriented animals (like rats) tend to sleep in the day.

2.2.1 The Neurobiology of Falling Asleep and Waking up

The sensation of sleepiness can arise from at least two sources; (1) either directly
from circadian inputs (the suprachiasmatic nucleus of the hypothalamus (Fuller
et al. 2006; Saper et al. 2005)), or (2) from other less well-specified, homeo-
statically derived, neuromodulator somnogens (such as adenosine) (Krueger 2008;
Basheer et al. 2007; Arrigoni et al. 2006). These chemicals can be generated as
the result of prolonged neuronal activity, or from other pathological origins—such
as is found in the drowsiness of septic encephalopathy. In the awake state, the
gamma-amino-butyric-acid(GABA)-ergic neurons of the ventro-lateral preoptic nu-
cleus (VLPO) of the hypothalamus (Winsky-Sommerer 2009) are suppressed by
many excitatory arousal substances (amines, glutamate, acetylcholine, orexin). If the
somnogen levels—or the suprachiasmatic circadian input—are sufficient to reduce
the effect of these arousal neuromodulators, the sleep-active GABAergic neurons
in the VLPO become active and these cells then further suppress the activity in the
excitatory arousal systems. Thus a positive feedback is set up leading to rapid and al-
most complete suppression of activity in the arousal systems (Lin et al. 1988; Luppi
et al. 2004; Moreno-Balandran et al. 2008; Ohno and Sakurai 2008; Saito et al. 1977;
Verret et al. 2006; Villablanca 2004). Removal of the tonic neuromodulator-induced
depolarization of the cortico-thalamic circuits allows these circuits to enter hyper-
polarized silent ‘DOWN’ states that are characteristic of slow-wave, or NREM
sleep (Steriade et al. 2001). The EEG signature of these modes of operation are
sleep spindles, delta waves, and the slow oscillation (Steriade and Amzica 1998;
Amzica and Steriade 1998). These patterns are associated with inability to form
the spatially dispersed large synchronous networks (Massimini et al. 2005; Sakurai
2007) that are presumably the prerequisite of the wakeful state. At the scale of in-
dividual neurons, the hyperpolarized state causes sequential activation of a variety
of slow intrinsic currents, which are primarily responsible for the various aforemen-
tioned EEG oscillations observed in NREM sleep (Crunelli and Hughes 2010). It is
well established that GABAergic drugs act to decrease sleep latency, inhibit REM
sleep, and increase stage 2 type NREM sleep (Lancel 1999). Figure 2.2 shows a
summary diagram of the changes in activity amongst the various neuromodulators
in the Awake, REM, and NREM states.

The reverse process is involved in waking up. The GABAergic neurons (princi-
pally in the VLPO, but also in the thalamus and elsewhere) are, for some reason,
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Fig. 2.2 A diagram of
changes in neuromodulators
in different states of sleep and
wakefulness. The vertical
axes are arbitrary units (REM
= rapid-eye-movement sleep,
NREM = non-rapid-eye-
movement sleep, ACh
= acetylcholine, Hist =
histamine, GABA =
gamma-amino-butyric acid,
NA = noradrenaline). The
main Awake–Sleep
differentiators are orexin and
noradrenaline, whereas
acetylcholine and histamine
differentiate active (= REM
and Awake) from inactive
(NREM) states

switched off. This removal of suppression of the brain-stem nuclei allows the ac-
tivation of the, previously quiescent, excitatory aminergic, glutamatergic, choliner-
gic, and orexinergic systems. Acting via various receptors, these neuromodulators
cause closure of potassium channels and neural depolarization. Thus this brain-stem
reticular activation induces a depolarized active ‘UP’ state in the cortex; which in
turn, allows the formation of spatially dispersed large synchronous networks, and
hence the wakeful state (Massimini et al. 2009; Tononi and Sporns 2003). The
obvious question is: ‘What could cause the VLPO to switch off?’ In the natural
course of the day, this is primarily a question about the influences of the home-
ostatic and circadian processes. At the end of a good night’s sleep, the hyperpo-
larizing somnogen and circadian input has diminished to such an extent that the
balance shifts in favor of the aminergic activating systems; which then inhibit the
VLPO and initiate a positive feedback of arousal that is the inverse of that de-
scribed above when the person falls asleep (Rempe et al. 2010; Riedner et al. 2007;
Wilson et al. 2005). It is tempting to speculate that the increase in REM activity
later in the night is acting as a ‘ping’ to test the progress of the sleep-induced synap-
tic remodelling. Unlike in the awake state, in REM sleep the brain aminergic and
orexinergic systems are quiescent, and the cortex is partially activated with acetyl-
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choline only. There is a good case to be made for the orexin system as performing
the up-stream ‘executive function’ controlling wakefulness.

Perhaps the more intriguing question is: ‘What is happening when the person
wakes in response to a strange noise in the house?’ This implies that the natural
sub-conscious circadian and homeostatic rhythms have been overruled by a partic-
ular circumstance, which may be of specific importance to the person. The neu-
robiological details in this situation are not well understood at present, but there
is clearly some degree of unconscious cognitive control of arousal during natural
sleep in adults (Lovejoy and Krauzlis 2010). For example an unusual noise like a
telephone ringing will be recognized and result in the adult waking (although anyone
who has had children can tell you that a deeply asleep child is much more difficult
to waken). It would seem that the arousal signal has originated from some sort of
low-grade attention process that clearly functions quite well during natural sleep.
This ‘top-down’ input—probably originating in the amygdala (Alkire et al. 2008)—
is then able to switch off the GABAergic VLPO suppression of the aminergic and
orexinergic arousal systems. At its heart, the final common pathway of natural wak-
ing is the activation of various arousal systems to alter intrinsic currents within the
neurons to make them more depolarized and excitable. In contrast the defining fea-
ture of general anaesthesia is the complete inability to waken—even in response to
the most severe painful stimulus imaginable. As is further elaborated below, general
anaesthesia has at least two pharmacological effects to impair arousal:

1. The person is not able to turn the arousal-suppressing VLPO switch to the ‘off’
position; and thus set in train the downstream aminergic cortical activation pro-
cesses (Plourde et al. 2006).

2. The anaesthesia also directly prevents the effector-organ of wakefulness (the neo-
cortex) from responding to these aminergic depolarizing inputs with a suitable
increase in spike-rate.

2.3 Mechanisms of General Anaesthesia

Surprisingly, general anaesthesia—like sleep—is also a phenomenon that is ubiqui-
tous in the animal kingdom. Why this should be so is unknown, but it would seem
likely that general anaesthesia is—in part—a chemical hijacking of natural sleep
mechanisms (Franks 2008; Pang et al. 2009). At the molecular level this would in-
volve interactions with evolutionarily conserved protein ion channels and pumps
that are necessary for homeostatic control of nervous system activity. It is note-
worthy that—while drugs which antagonize the excitatory neuromodulators, e.g.
antihistamines, clonidine, antimuscarinics, will augment sleepiness—they are not,
on their own, capable of inducing a state of proper anaesthesia. It seems that the
ability to directly open the chloride channels is a prerequisite for a sedative drug to
be an anaesthetic drug. There are clearly both similarities and differences between
the two states:

• Similarities between sleep and general anaesthesia
– Behavioral effects (unconsciousness/unawareness)
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– EEG patterns (spindles, K-complexes, delta waves) (Ferenets et al. 2006;
Koskinen et al. 2001)

– fMRI distribution metabolism (Peltier et al. 2005)
– Demonstration of general anaesthetic drug action on specific sleep nuclei

(Kerssens et al. 2005; Nelson et al. 2002)
– some functional effect—restfulness/sleep rebound studies (Nelson et al. 2004).

• Differences between general anaesthesia and sleep
– Unrousability
– EEG burst suppression
– Circadian rhythm disturbance
– Side effects of general anaesthesia—nausea, etc.

As is described in the rest of this book, modelling of sleep and anaesthesia can
be done at a variety of different levels. In the following sections we will explic-
itly concentrate on modelling the neocortical dynamics. We have used a mean-field
method, but other neuron-by-neuron models have been published (Esser et al. 2009;
Hill and Tononi 2005; Compte et al. 2003). The recently published paper by Esser
and co-workers came to very similar conclusions about the neurophysiological
mechanism of unconsciousness as those we have obtained from our model in this
chapter. They compared various possible intrinsic neuronal current effects, with an
increase in effective inhibitory post-synaptic potential (IPSP). They found that the
increase in IPSP is the most likely mechanism to cause ‘gating’ of propagation of
information flow between different neocortical regions in NREM. They suggested
that this occurs during natural sleep as a result of the reduction in cholinergic tone.
Acetylcholine acts via M1 and M2 receptors to inhibit GABA release in the supra-
granular cortical layers (Salgado et al. 2007). As is described below, the critical
point of difference between natural sleep and general anaesthesia is that activation
of the cholinergic arousal systems on waking from natural sleep causes the IPSP to
return to normal amplitude. In contrast, if the patient has an appreciable concentra-
tion of general anaesthetic drug present, the IPSP cannot be reduced in amplitude;
because the drug is directly holding the chloride channels open—and hence the cor-
tical ‘gating’ is held closed.

2.3.1 Mean-Field Modelling of General Anaesthesia and Sleep

In recent years variations of a mean-field model have been used with some suc-
cess to model the cortical effects of both sleep and general anaesthesia (Steyn-Ross
et al. 1999; Bojak and Liley 2005; Liley and Bojak 2005; Robinson et al. 2003;
Sleigh and Galletly 1997; Steyn-Ross et al. 2001; Steyn-Ross et al. 2004; Wilson
et al. 2006; Wright and Liley 1995). The usual output from these models is the
change in time of the mean soma potential—which can be related to the EEG sig-
nal. Since the EEG (or local field potential) is the most commonly observed ex-
perimental output, the output from the theoretical model can be directly compared
to experimental results. In the following description, however, we will be using
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the mean firing rate as the primary model output. The reason for choosing this is
that the firing rate is clearly related to anaesthetic blockade of arousal (Antkowiak
1999). If the brain cannot achieve an active state, it does not have the informa-
tion flux capacity to be complex enough to be conscious. The technical details of
this model have been previously published (Sleigh et al. 2009; Wilson et al. 2006;
Sleigh et al. 2010), but are described briefly below. The model has been parame-
terized using information about cortical anatomy, but the ideas could apply more
generally to any suitably large interacting populations of inhibitory and excitatory
neurons. We term the computer instantiation of this set of equations as the ‘pseudo-
cortex’.

2.3.1.1 Mathematical Description of the Mean-Field Model

The model consists of a set of partial differential equations that describe the time
evolution of the mean soma potential in a homogeneous, isotropic 2-dimensional
sheet of macrocolumns. The macrocolumns contain a population of excitatory pyra-
midal neurons (denoted with subscript e), and a population inhibitory interneurons
(subscript i). The two populations interact by means of ‘fast’ chemical synapses;
that simulate AMPA and GABAA kinetics. We do not explicitly model the effects of
gap junctions, glia, slow synaptic currents (NMDA or GABAB), or slower modula-
tion of synaptic receptor trafficking. We have used the convention of a → b indicat-
ing that the direction of transmission in the synaptic connections is from the presy-
naptic nerve a, to post-synaptic nerve b. The model cortex is driven by a subcortical
random white noise input (superscript sc), which is independent of the neocortical
membrane potential. The time evolutions of the mean neuronal soma membrane po-
tential (Va) in each population of neurons, in response to synaptic input (ρaΨabΦab)
are given by the following set of equations:

τe
∂Ve

∂t
= V rest

e − Ve + δV rest
e + ρeΨeeΦee + ρiΨieΦie (2.1)

τi

∂Vi

∂t
= V rest

i − Vi + ρeΨeiΦei + ρiΨiiΦii (2.2)

where τa are the neuron soma time constants, ρa are the strength of the post-synaptic
potentials (they are multipliers of the total area under the post-synaptic potentials),
Ψab are the weighting functions that allow for the effects of reversal potentials and
are described by the equation:

Ψab = V rev
a − Vb

V rev
a − V rest

a

. (2.3)

V rev are the reversal potentials for chloride or sodium (as appropriate), and V rest

is the resting soma potential. (For clarity in later sections we have put the ‘rest’
as a subscript instead of a superscript). The Φab are the synaptic input spike-rate
densities which are described by the following equations (2.4) to (2.7). These are
a set of second-order differential equations which describe the post-synaptic (den-
dritic) impact of a delta-function spike of activity at the synapse. The shape of the
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post-synaptic potential is given by the solution (Green’s function) to the differential
equation, and is a so-called ‘alpha-function’.(
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Φee = γ 2
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where γab are the synaptic rate constants, Nα are the typical number of long-
range connections between macrocolumns, and Nβ the number of local intra-
macrocolumn connections. It should be noted that these equations are describing
the average impact of the excitatory and inhibitory dendritic input onto the soma
of the neuron; and thus would include dendritic modulation and summation of pure
synaptic input. The mean axonal velocity is given by ν, and the characteristic length
(the length at which the connectivity between neuronal populations decays to 1/e)
is 1/Λea . These spatial interactions amongst the macrocolumns are described by the
two equations (2.8) and (2.9):(

∂2

∂t2
+ 2νΛee

∂

∂t
+ ν2Λ2

ee − ν2∇2
)

φee = ν2Λ2
eeQe (2.8)

(
∂2

∂t2 + 2νΛei

∂

∂t
+ ν2Λ2

ei − ν2∇2
)

φei = ν2Λ2
eiQe. (2.9)

The relationship between the mean neuronal population firing rate and the mean
soma potential is given by sigmoidal functions (see (2.10) and (2.11)). An alternative
interpretation is the probability of a neuron firing at a particular membrane potential.

Qe(Ve) = Qmax
e

1 + exp(−π(Ve − θe)/
√

3σe)
(2.10)

Qi(Vi) = Qmax
i

1 + exp(−π(Vi − θi)/
√

3σi)
(2.11)

where θa describes the inflection point membrane potential, and σa the standard de-
viation of the threshold potential. This parameter is a composite indicator of both:
(i) the degree of homogeneity within the population of neurons, and (ii) whether
the neurons show ‘bursting’ vs. ‘regular-spiking’ responses to injected current. The
parameters and ranges used in our simulations are shown below in Table 2.1. The
parameter values are a composite, derived from numerous different published pa-
pers in which the real neurophysiological values for individual neurons have been
measured. The parameters are not freely adjusted post-hoc. Real nervous systems
seem to tolerate quite a lot of variation in parameter values. A good argument could
be made that the real nervous system will homeostatically adjust its connectivity
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Table 2.1 Parameters for model cortex

Symbol Description Value

τe, τi membrane time constant 15, 15 ms

Qe,i maximum firing rates 30, 60 Hz

Θe,i sigmoidal thresholds −58, −58 mV

σe,i standard deviation of thresholds 3, 5 mV

ρe,i gain per synapse at resting voltage 0.001, −0.001 mV s

V rev
e,i cell reversal potential 0, −70 mV

V rest
e,i cell resting potential −64, −64 mV

Nα
e,a long-range e to e or i connectivity 2500, 1000

N
β
ea short-range e to e or i connectivity 1000

N
β
i,a short-range i to e or i connectivity 500, 250

φsc
ea mean e to e or i subcortical flux 80/s

γea baseline excitatory synaptic rate constant 100/s

γia baseline inhibitory synaptic rate constant 50/s

Lx,y spatial length of cortex 25 cm

amac area of macrocolumn 0.5 mm2

Λea Inverse length connection scale 14/cm

ν mean axonal conduction speed 140 cm/s

(via synaptic up- and down-regulation) and excitability (via intrinsic ion channel
expression) to maximize flexibility in its responses and activity regimes—and thus
its ability to generate information.

2.3.2 Modelling Nociceptive Arousal

The neurobiological effects of a surgical stimulus are surprisingly poorly under-
stood, but can be plausibly modeled as pain-induced activation of the various nuclei
of the reticular activating system (as described above in Sect. 2.2). These ascending
nuclei then act both:

1. indirectly to switch off the GABAergic neurons (in the VLPO, peri-aqueductal
gray matter, and reticular thalamus) that are dominant in the state of slow-wave
sleep; and also,

2. directly to depolarize the thalamo-cortical structures.

The increase in excitatory neuromodulatory substances (amines, orexin, acetyl-
choline) closes various potassium channels (Arrigoni et al. 2006; Espinosa et al.
2008; Leonard and Llinas 1994; McCormick 1989; McCormick et al. 1991; Rowell
et al. 2003; Saint-Mleux et al. 2004; Wu et al. 2004), and thus causes the resting
membrane potential to become more depolarized. This is easily incorporated in the
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model as a depolarization of the resting soma potential V rest (by setting the δVrest

offset to a positive value). We examined the effects of altering the resting membrane
potential values over quite a large range, from −68 mV to −56 mV. Alternatively
the arousal effect could also be included in the model as increased excitatory sub-
cortical input flux (φsc). This approach has mathematically equivalent effects on the
dynamics of the pseudo-cortex.

2.3.2.1 Modelling Anaesthetic-Induced Suppression of Arousal

There is ongoing debate about the exact molecular mechanisms of action of gen-
eral anaesthetics, but it is widely acknowledged that—for intravenous drugs like
propofol and etomidate—they have fairly specific actions to increase the area under
the inhibitory post-synaptic potential (IPSP), and thus increase inhibition within the
brain (Campagna et al. 2003; Grasshoff et al. 2006; Rudolph and Antkowiak 2004;
Antkowiak 1999). This effect is mainly the result of prolongation of the IPSP, rather
than an increase in the peak amplitude of the IPSP. In higher concentrations this
action is independent of the presence of endogenous GABA. At the dose required
to suppress awakening to a surgical incision, propofol increases the area of the IPSP
between 1.5-fold and 3-fold. The opening of the chloride channels in the post-
synaptic membrane also increases the effective membrane conductance. This has
the effect of decreasing the degree of depolarization induced by excitatory post-
synaptic currents—which magnifies the inhibition effects. We have not included
this in our modelling; and thus have tended to underestimate the inhibitory effects
of propofol. We have also not included the hyperpolarizing effects in tonic non-
synaptic GABA receptors. While we have concentrated on the GABAergic synaptic
effects of general anaesthetic drugs, we acknowledge other possible effects on in-
trinsic neuronal channels; especially by volatile anaesthetic agents. This group of
drugs is well known to have a multitude of actions, including opening various 2-
pore-domain potassium channels, and NMDA receptor antagonism (Franks 2008).
The effects on the model are more fully explored later in this chapter.

The most obvious and important question is whether the simple IPSP augmenta-
tion by propofol, is sufficient to explain the extraordinary ability of general anaes-
thetic drugs to block extreme nociceptive arousal of the cerebral cortex. Assuming
that the model has at least some fidelity in representing the dynamics of the cere-
bral cortex, we may then use this model to explore possible answers to this ques-
tion. Accordingly, the natural space to envisage the competing effects of the general
anaesthetic drug and those of painful arousal has three axes:

• IPSP magnitude, which is an indicator of the general anaesthetic effect.
• Change in resting membrane potential (via δVrest) which reflects the input of

brain-stem neuromodulator activation. This Î Vrest parameter will be a compos-
ite indicator of the balance between activation of the sleep systems (to decrease
δVrest) and their opposition by nociceptive input (to increase δVrest).

• The mean neuronal firing rate is the output variable on the vertical axis.
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Fig. 2.3 Diagram of model steady-state solutions in neuronal firing rate (vertical axis) versus
changes in inhibitory post-synaptic potential (IPSP) and resting membrane potential (δVrest), on
the horizontal axes. The trajectories of steady states followed by increasing δVrest at three fixed
magnitudes of IPSP are shown by the white lines, ‘A’ (Sleep-wake), ‘B’ (Sedation), and ‘C’ (Anaes-
thesia). These correspond to the diagrams ‘A’, ‘B’, and ‘C’ in Fig. 2.4

We obtained the steady-state solutions to the set of equations that comprise the
model at various input parameter values (IPSP and δVrest). We assume that a high-
firing state is a necessary (but not sufficient) condition for wakefulness to occur in
a real animal. Conversely a low-firing state is thought to be consonant with uncon-
scious states—and precludes wakefulness. Using parameters as shown in Table 2.1,
the resultant output from the model is shown in Figs. 2.3 and 2.4. The subplots
(Figs. 2.4A to 2.4C) show trajectories indicated by the white lines on the manifold
in Fig. 2.3. These are the response of the model cortex to a progressive increase in
δVrest such as might occur with painful stimulation.

• Figure 2.4A: If there is no increase in IPSP magnitude (i.e. in a state of
natural sleep—in the absence of general anaesthesia), it can be seen that a
small neuromodulator-induced depolarization of the resting membrane potential
(δVrest ≈ 2–3 mV) results in an abrupt jump from a low-firing state to an active
state (firing rate 2̃5/s). This would correspond to the cortex moving from NREM
to the wakeful state in response to activation of the aforementioned brain-stem
neuromodulator systems. It is interesting to note that this abrupt change is a prop-
erty that is intrinsic to the cortical population behavior, and does not require a
separate mutually inhibitory brain-stem flip-flop system.

• Figures 2.4B, and 2.4C show the effects if propofol is included in the model
and the magnitude (and duration) of the IPSP is increased. The region of interest
shifts to the left of the manifold in Fig. 2.3. We see that there has to be a much
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Fig. 2.4 Changes in firing rate with changes in resting membrane potential (lower graphs) for
three different values of IPSP magnitude (shown in upper graphs). MAC = minimal alveolar
concentration of anaesthetic vapor that prevents movement in response to a surgical incision in
50% patients. This concept has been loosely applied to the effects of the intravenous drug propofol.
There are data to support the assertion that the concentration of propofol (2 µM) that is required to
increase the IPSP area to 150% of the starting values is associated with sedation/light anaesthesia,
and that required (8 µM) to increase the IPSP area to 300% of the starting value is associated with
deep burst-suppression pattern anaesthesia

greater arousal-induced activation of neuromodulators (δVrest ≈ 10 mV) to allow
the cortex to achieve some sort of active state, and once the IPSP magnitude is
greater than about twice normal, the firing rate of the active state is much dimin-
ished (5̃/s)—no matter how much the soma potential is depolarized. The synaptic
effects of the general anaesthesia always ‘trump’ the intrinsic effects of the noci-
ceptive activation of the neuromodulators. This makes intuitive sense. The effect
of the increased IPSP area is to amplify negative feedback on excitatory neurons.
Thus any increased activity in the excitatory/pyramidal cells quickly translates
into increased activity in their ‘downstream’ inhibitory interneurons which then
‘chokes’ the possible ceiling of activity in the model cortex. More excitatory ac-
tivity simply results in more inhibitory activity. To the extent that the model re-
flects reality, we may conclude that; if the IPSP is increased by general anaesthetic
drugs, the cortex become increasingly difficult to activate by the usual arousal
mechanisms of potassium channel closure and neuronal depolarization. Once the
IPSP is greater than double the baseline amplitude, it becomes almost impossible
to activate the cortex by increasing intrinsic neuronal excitability. The low-firing
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coma state can only be reversed by blockade of chloride conductance, or possibly
be an increased EPSP.

It is also of interest that the bistability of the pseudo-cortex is reduced as the IPSP
increases—and the transition between silent and firing modes becomes continuous
rather than discontinuous.

2.3.3 Robustness of Parameters and Drug Interactions

The conclusions are largely independent of parameter values. The important point
of all this is the fact that the high-firing state exists as a sort of ‘hilltop’ in the back
right-hand side of the manifold. Changes in various parameters alter the size of the
‘hilltop’ in a predictable fashion. Increase in excitability (increases in Nee,Nii , sub-
cortical input (〈φsc

ea〉ãâ), EPSP magnitude (ρe), and decreases in Nei , and Nie) will
increase the area of the ‘hilltop’ and shift it forward and to the left—thus increas-
ing the propensity for activity and wakefulness. Parameter changes in the opposite
direction will decrease the size of the ‘hilltop’ and shift it backwards and to the
right—thus increasing the propensity for coma. However, the basic shape of the
‘hilltop’ is unchanged; with increasing IPSP always reducing the peak firing rate.

The known anaesthetic drug interactions are consonant with this model. Drugs
that open potassium channels and hence hyperpolarize Vrest (opioids), and drugs
that reduce ρe (ketamine) will potentiate the GABAergic anaesthesia of propo-
fol. Indeed volatile anaesthetic agents are known to have a significant potassium
channel opening activity themselves (Franks 2008). Drugs that inhibit the aminer-
gic arousal systems (such as dexmedetomidine) also potentiate general anaesthesia.
Drugs that close potassium channels (such a physostigmine (Meuret et al. 2000;
Plourde et al. 2003)), and enhance ρe (pentylenetetrazole, or direct glutamate ap-
plication) will tend to antagonize GABAergic general anaesthesia. However, the
ability of these antagonists to recover the conscious state is limited to sedative doses
of propofol. Alkire and co-workers have done some seminal work on the behavioral
reversal of anaesthesia (Alkire et al. 2007, 2009). They injected the cholinergic drug
nicotine into the central medial thalamus, and found that rats, which had received
about 0.5MAC sevoflurane (i.e. just enough to eliminate their loss-of-righting re-
flex) woke-up. That is they regained normal behavior patterns, even in the ongoing
presence of sevoflurane. There are various interpretations of these results, but we
would suggest that the sevoflurane had impaired the rats’ cortical activity so as to
move off the active state ‘hilltop’ (i.e. back along the Fig. 2.4A–B trajectory). The
injection of nicotine in a crucial area of the thalamus with widely diverging cortical
projection, was enough to depolarize the cortex back up the ‘hilltop’, and thus the
rat regained wakefulness. Although it is not explicitly described in the paper, it ap-
pears that the nicotine-induced awakening is not successful if a full one-MAC dose
of sevoflurane was used, i.e. trajectory 2.4C in Figs. 2.3 and 2.4. We can conclude
that at higher doses of propofol, the IPSP-induced suppression of firing rate is not
able to be effectively opposed by potassium channel closure by boosting (δVrest).
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The model thus explains the experimental observation that deep anaesthesia could
only be reversed chemically by direct chloride channel blockade.

This exposes one problem with our model. As mentioned previously, an active
cortex is necessary but not sufficient for wakefulness. We do not distinguish be-
tween the state of REM sleep and wakefulness. On both states the cortex is in an
active state—however, in REM sleep the ‘consciousness’ is entirely internally di-
rected; whereas in the wakeful state input from the external world is included in
the consciousness. Analogous states are often seen during recovery from general
anaesthesia. The patient commonly has an active cortex—as measured by an EEG
monitor—but has no interaction with the external world, and is unresponsive to ver-
bal command. The reasons for this lack of perception are unknown at present; but
presumably are related in some way to aminergic and orexinergic functions. For
anyone who wants to develop a monitor of anaesthesia, this question is clearly of
utmost relevance.

2.4 Conclusions

If this model has some correspondence with reality, we may summarize the relation-
ship between natural sleep and GABAergic anaesthesia as follows.

• In natural sleep there is activation of specific GABAergic pathways involving hy-
pothalamic and brain-stem systems that cause hyperpolarization of the thalamo-
cortical systems, which in turn, precipitates the state of slow-wave sleep. This
state is characterized primarily by increased firing rates in GABAergic neurons,
and an increase in effective IPSP that is contingent on low levels of acetylcholine.
In this state the GABAergic systems are under normal homeostatic control, and
even mild stimuli are able to switch them off and allow normal neuromodulator-
induced cortical depolarization, and the transition to wakefulness (or REM sleep);
see Figs. 2.3 and 2.4A.

• At low (sedative) doses of propofol, the IPSPs are moderately increased by
the drug; which allows the GABAergic brain systems to become dominant and
the subject has an increased tendency to enter the sleep state. However, an in-
creased intensity of nociceptive stimuli may still induce sufficient depolarization
to achieve the awake state; see Figs. 2.3 and 2.4B.

• At a higher (anaesthetic) dose of propofol, the large-scale global increase in
inhibitory gain within the brain is of such a magnitude that no amount of
nociceptive-induced closure of potassium channels is able to counteract the IPSP
effects and the cortex is denied the possibility of reaching a high-firing state that
is necessary for the state of wakefulness. This absolute resistance to nocicep-
tive arousal is the sine qua non of the state of general anaesthesia: see Figs. 2.3
and 2.4C.
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Chapter 3
Quantitative Modeling of Sleep Dynamics

P.A. Robinson, A.J.K. Phillips, B.D. Fulcher, M. Puckeridge, J.A. Roberts,
and C.J. Rennie

3.1 Introduction

Brain dynamics involves interactions across many scales—spatially from micro-
scopic (synapses, neurons) to the whole brain, and temporally from the sub-
millisecond range (ion channel dynamics) to seconds [electroencephalographic
(EEG) and functional MRI phenomena] or even years (learning, memory, develop-
ment). Except under artificial conditions that isolate a single scale, these multiscale
aspects of the underlying physiology and anatomy must be included to model the
behavior adequately at any scale. In particular, bottom-up influences of microscale
behavior must be included to understand large-scale dynamics, which in turn has
top-down influences at the microscale (Binney et al. 1992).

Sleep–wake (or arousal) dynamics involves not just changes in the cortex, as is
sometimes assumed, but require the dynamics of the whole corticothalamic sys-
tem to be considered, since it is this composite system that generates the dominant
EEG rhythms that are widely used in characterizing arousal states (Nunez 1995;
Nunez and Srinivasan 2006; Robinson et al. 2002; Deco et al. 2008; Steriade
et al. 1990, 1997). Moreover, the transitions between wake and sleep states of
the brain are primarily generated by the ascending arousal system of the dor-
sal hypothalamus and brainstem, driven by homeostatic influences, light inputs
via the suprachiasmatic nucleus, and cortical feedbacks (Kandel et al. 2000;
Saper et al. 2001). Hence, it is necessary to include network aspects that connect
the nuclei of these various systems, ultimately combining them into a dynamical
whole. Figure 3.1 shows some of the key brain structures, connections, and feed-
backs involved in arousal dynamics.
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Fig. 3.1 Schematic of structures involved in corticothalamic generation of EEGs and the brain-
stem-hypothalamus ascending arousal system, with some of their main inputs, connections, and
feedbacks shown by arrows. The basal ganglia are also shown

Neural-field theories (often termed mean-field theories) provide a natural ba-
sis for modeling and analyzing multiscale neural systems. Moreover, links to typi-
cal measurements can be directly included—an essential point because most mea-
surement processes aggregate over many neurons and all modify signals in some
way. Mean-field theories that incorporate measurement effects thus provide natural
links between theoretical and experimental results. In the neural-field models de-
scribed here, averages are taken over microscopic neural structure to obtain mean-
field descriptions on scales from tenths of a millimeter up to the whole brain, in-
corporating representations of the anatomy and physiology of separate excitatory
and inhibitory neural populations, nonlinear neural responses, multiscale intercon-
nections, synaptic, dendritic, cell-body, and axonal dynamics, and feedbacks be-
tween structures (Breakspear et al. 2006; Freeman 1975; Jirsa and Haken 1996;
Lopes da Silva et al. 1974; Nunez 1974, 1995; Rennie et al. 1999, 2002; Robin-
son 2003a, 2003b; Robinson et al. 1997, 1998, 2001a, 2001b, 2002, 2003a,
2003b, 2004; Rowe et al. 2004; Steriade et al. 1990; Wilson and Cowan 1973;
Wright and Liley 1996). These models readily include measurement effects such
as the volume conduction that spatially smooths EEG signals, and hemodynamic
responses that temporally filter functional MRI signals. Neural-field theories thus
average over microstructure to yield field equations that complement cellular-level
and neural-network analyses.
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Essential features of a realistic neurodynamic model are that it: (i) be based on
physiology and anatomy, including salient features at many spatial and temporal
scales, (ii) be quantitative with predictions that can be calculated analytically or nu-
merically, including measurement effects, (iii) have parameters that relate directly
to physiology and anatomy, and can be estimated in independent experiments, (iv)
be applicable to multiple phenomena and data types, rather than being a theory of
a single phenomenon or type of experiment, and (v) be invertible, if possible, al-
lowing parameters to be deduced by fitting model predictions to data (these must
be consistent with independent measurements). These criteria rule out highly ideal-
ized models of abstract neurons, models tailored to single phenomena, models with
completely free parameters, and models that ignore measurement effects.

We have developed a physiologically based neural-field model of brain dynamics
that satisfies the above criteria. When applied to the corticothalamic system, it repro-
duces and unifies many features of EEGs, including spectral peaks seen in waking
and sleeping states (Robinson et al. 1997, 2001b, 2004), evoked potentials (Rennie
et al. 2002), correlation and coherence functions (O’Connor and Robinson 2003;
O’Connor et al. 2002; Robinson 2003a, 2003b), epileptic seizure dynamics (Break-
spear et al. 2006; Robinson et al. 2002), Parkinsonian activity (van Albada and
Robinson 2009; van Albada et al. 2009b), parameter determination (Robinson et al.
2004; Rowe et al. 2004; van Albada et al. 2009a; Phillips and Robinson 2007, 2008),
and sleep–wake dynamics in the ascending arousal system (Phillips and Robinson
2007, 2008; Fulcher et al. 2008, 2010).

In Sect. 3.2 we outline our model, including its physiological and anatomical
foundations, basic predictions, and its connection to measurements. In Sects. 3.3
and 3.4 we then discuss a range of predictions of brain dynamics and compare them
with experimental data. Section 3.5 summarizes and discusses the material.

3.2 Neural-Field Theory

Here we briefly review our model and its connections with measurable quantities.
Further discussion and generalizations are found elsewhere (Rennie et al. 1999,
2002; Robinson 2005, 2006; Robinson et al. 1997, 2010).

3.2.1 Neural-Field Modeling

The brain contains multiple populations of neurons, which we distinguish by a sub-
script a that designates both the structure in which a given population lies (e.g., a
particular nucleus) and the type of neuron (e.g., interneuron, pyramidal cell). We
average their properties over scales of order 0.1 mm and seek equations for the re-
sulting mean-field quantities.

The mean soma potential Va(r, t) relative to resting is approximated as the sum
of contributions Vab(r, t) arriving as a result of activity at each type of (mainly)
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dendritic synapse b, where b denotes both the population and neurotransmitter type,
r denotes the spatial location, and t the time. This gives

Va(r, t) =
∑

b

Vab(r, t). (3.1)

The potential Vab is generated when synaptic inputs from afferent neurons are tem-
porally low-pass filtered and smeared out in time as a result of receptor dynam-
ics, passage through the dendritic tree, and soma charging. The resulting soma re-
sponse approximately obeys the differential equation (Robinson 2005; Robinson et
al. 1997, 2001b, 2004)

DabVab(r, t) = Nabsabφb(r, t − τab), (3.2)

Dab = 1

αabβab

d2

dt2
+

(
1

αab

+ 1

βab

)
d

dt
+ 1, (3.3)

where 1/βab and 1/αab are rise and decay times of the cell-body potential produced
by impulse at a dendritic synapse. The right of (3.2) describes the influence of the
firing rates φb from neuronal populations b, in general delayed by a time τab due to
discrete anatomical separations between different structures, where Nab is the mean
number of synapses on neurons of type a from type b and sab is the time-integrated
response in neurons a to a unit signal from neurons b. Here we do not model explicit
dynamics of sab , driven by neuromodulators, plasticity, and similar effects; such
dynamics can be incorporated straightforwardly (Clearwater et al. 2007; Rennie et
al. 1999; Robinson 2011, submitted).

Action potentials are produced at the axonal hillock when Va exceeds a threshold.
In effect, Va acts as a control variable for the fast spike dynamics, and is proportional
to the applied current of single-neuron experiments (Robinson et al. 2008). Spikes in
most cortical cells arise via a saddle-node bifurcation in a set of Hodgkin–Huxley-
like equations for ionic currents (Wilson 1999) and are produced only for Va above
an individual threshold θ̃a , at a mean rate Qa ∝ (Va − θ̃a)

1/2, at low Qa (Strogatz
1994), leveling off due to saturation effects at higher Va (Wilson 1999). Individual
cells differ from the mean in the number and strength of ion channels, and hence
in θ̃a , and fluctuations in Va also exist, so the response must be modified to include
saturation and convolved with a distribution of individual deviations. These steps
yield the population-average response function

Qa(r, t) = S[Va(r, t)], (3.4)

= Qmax

1 + exp{−[Va(r, t) − θ ]/σ ′} , (3.5)

where Qmax is the maximum firing rate, θ is the mean neural firing threshold, and
σ ′π/

√
3 is its standard deviation (here these quantities are assumed to be the same

for all populations). In the linear regime, we make the approximation

Qa(r, t) = ρaVa(r, t), (3.6)

where ρa is the derivative of the sigmoid at an assumed steady state of the system
(we discuss the existence and stability of such states below).
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Each neuronal population a within the corticothalamic system produces a field
φa of pulses that travels to other neuronal populations at a velocity va through axons
with a characteristic range ra (more generally, these quantities can depend on both a

and b (Robinson 2005)). These pulses spread out and dissipate if not regenerated. To
a good approximation, axonal propagation obeys the damped wave equation (Jirsa
and Haken 1996; Nunez 1995; Robinson et al. 1997)

Daφa(r, t) = S[Va(r, t)], (3.7)

Da =
(

1

γ 2
a

∂2

∂t2 + 2

γa

∂

∂t
+ 1 − r2

a∇2
)

φa(r, t), (3.8)

where the damping coefficient is γa = va/ra . Equations (3.7) and (3.8) yield prop-
agation ranges in good agreement with anatomical results (Braitenberg and Schüz
1991) and with other phenomena.

Equations (3.1)–(3.3), (3.4), (3.5), (3.7), and (3.8) form a closed nonlinear set,
which can be solved numerically, or studied analytically in appropriate limits (see
Sect. 3.3). Once a set of specific neural populations has been chosen, and physio-
logically realistic values have been assigned to their parameters, these equations can
be used to predict neural activity. These equations govern spatiotemporal dynamics
of firing rates, not of the individual spike dynamics. The two are closely correlated,
but the nonlinearities of our equations are weaker than those that produce the spikes
themselves, in that they only produce effects on much longer timescales than those
of spikes. We thus stress that the oscillations predicted from our equations are col-
lective oscillations of the rate of spiking, whose frequencies are not usually equal to
the spike rate itself—a common misunderstanding of neural-field models.

3.2.2 Measurements

Once neural activity has been predicted from stimuli, one must relate it to measure-
ments to interpret experimental results. The limited spatiotemporal resolution of
such measurements often provides an additional justification for the use of neural-
field modeling, since finer-scale structure is not resolvable.

In the case of EEG measurements, the effects of volume conduction on the prop-
agation of neural potential changes to the scalp have been incorporated into our
model, via attenuation and spatial filtering parameters (O’Connor et al. 2002; Robin-
son et al. 2001b, 2004; Rowe et al. 2004). These are included in the bulk of the re-
sults reviewed here; space limitations preclude a detailed discussion, but their effects
on spectral shape, for example, are slight at frequencies below about 20 Hz, since
these correspond to the longest wavelengths. We have also shown how to include the
effects of reference electrode and multielectrode derivations (Henderson et al. 2006;
Robinson 2003a). It should also be noted that scalp potentials are primarily gener-
ated by excitatory (mainly pyramidal) neurons owing to their greater size and degree
of alignment compared to other types (Nunez 1995; Nunez and Srinivasan 2006;
O’Connor and Robinson 2003; Rennie et al. 2002). In the linear regime at least, the
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scalp potential is proportional to the cortical potential, which is itself proportional to
the mean cellular membrane currents, which are in turn proportional to φe. Hence,
apart from a (dimensional) constant of proportionality, and the spatial low-pass fil-
tering effects of volume conduction, scalp EEG signals correspond to φe to a good
approximation in the linear domain (Robinson et al. 2003b).

3.3 Corticothalamic Model

Much work has been done on applications of mean-field theory to cortical and cor-
ticothalamic systems. Here we consider the latter because inclusion of the thalamus
has been found to be essential to reproduce a wide range of phenomena at typical
EEG frequencies.

3.3.1 Corticothalamic Connectivities

Figure 3.2 shows the large-scale structures and connectivities incorporated in the
model, including the thalamic reticular nucleus r , which inhibits relay (or specific)
nuclei s (Sherman and Guillery 2001; Steriade et al. 1997). Relay nuclei convey
external stimuli φn to the cortex, as well as passing on corticothalamic feedback.
In this section we consider long-range excitatory cortical neurons (a = e), short-
range mainly inhibitory cortical neurons (a = i), neurons in the reticular nucleus of
the thalamus (a = r), neurons of thalamic relay nuclei (a = s), and external inputs
(a = n) from non-corticothalamic neurons.

A point that is sometimes mistaken in the literature is that mean-field models do
not need to divide the cortex into discrete pieces. In particular, there is no need to
divide the cortex into hypercolumns, and this is actually likely to be a poor approx-
imation, especially if it is implemented in a way that imposes sharp hypercolumn

Fig. 3.2 More detailed
schematic of corticothalamic
interactions from Fig. 3.1,
showing the locations at
which the νab of (3.9) and
linear gains Gab act, where
c, c′ = e, i denote cortical
quantities (Robinson et al.
2010)
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boundaries, since no such boundaries exist in nature (Horton and Adams 2005).
A related misunderstanding in the literature is the idea that short-range and long-
range interactions must be treated by different means. This is often encapsulated in a
division into short-range connections within hypercolumns and long-range cortico-
cortical connections between hypercolumns. In fact, all connections can be handled
using the same approach, with different ranges simply incorporated via separate
neural populations with different axonal range parameters ra (Robinson 2005).

3.3.2 Corticothalamic Parameters

If intracortical connectivities are proportional to the numbers of neurons involved—
the random connectivity approximation—and sib = seb , Lib = Leb for each b, then
Vi = Ve and Qi = Qe (Robinson et al. 1997; Wright and Liley 1996), which lets
us concentrate on excitatory quantities, with inhibitory ones derivable from them
(inhibition is not neglected in this approximation). The short range of i neurons and
the small size of the thalamic nuclei enables us to set ra ≈ 0 and, hence, γa ≈ ∞ for
a = i, r, s. The only nonzero discrete delays are τes = τse = τre = t0/2, where t0 is
the time for signals to pass from cortex to thalamus and back again. We also assume
that all the synaptodendritic time constants are equal, for simplicity, and set αab = α

and βab = β for all a and b in what follows; this allows us to drop the subscripts ab

in (3.2) and (3.3) and write Dα in place of Dab .
Including only the connections shown in Fig. 3.2 and making the above approxi-

mations, our nonlinear model has 16 parameters (not all of which appear separately
in the linear limit). By defining

νab = Nabsab, (3.9)

these parameters are Qmax, θ , σ ′, α, β , γe, re, t0, νee, νei , νes , νse, νsr , νsn, νre ,
and νrs . These are sufficient in number to allow adequate representation of the most
important anatomy and physiology, but few enough to yield useful interpretations
and to enable reliable determination of values by fitting theoretical predictions to
data. The parameters are approximately known from experiment (Robinson 2005,
2006; Robinson et al. 2001b, 2004; Rowe et al. 2004) leading to the indicative values
in Table 3.1, which are all compatible with physiology. Sensitivities of the model
to parameter variations have been explored in general (Robinson et al. 2001b) and
in connection with variations between sleep, wake, and other states (Robinson et al.
2002). Because normal sleep and wake are global brain phenomena, we concentrate
on results for which the model parameters are assumed to be spatially uniform,
but where the activity is free to be nonuniform; generalization to include spatial
parameter dependences is straightforward (Robinson et al. 2003b).

An important implication of the parameters above is that the corticothalamic loop
delay t0 places any oscillations that involve this loop at frequencies of order 10 Hz.
This means that inclusion of the thalamus and the dynamics of these loops is es-
sential to understand phenomena at frequencies below circa 20 Hz. At very low
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Table 3.1 Indicative
parameters for the alert,
eyes-open state in normal
adults (Robinson et al. 2004).
Parameters used in the figures
in this chapter are similar, but
not always identical

Quantity Nominal Unit

Qmax 340 s−1

ve 10 m s−1

re 86 mm

θ 13 mV

σ ′ 3.8 mV

γe 116 s−1

α 80 s−1

β 500 s−1

t0 85 ms

νee 1.6 mV s

−νei 1.9 mV s

νes 0.4 mV s

νse 0.6 mV s

−νsr 0.45 mV s

νsn 0.2 mV s

νre 0.15 mV s

νrs 0.03 mV s

φ
(0)
n 16 s−1

frequencies (�10 Hz) it is sufficient to include a static corticothalamic feedback
strength to the cortex, and at very high frequencies (	10 Hz) the corticothalamic
feedback is too slow to affect the dynamics strongly. As we will see in the next sec-
tion, thalamic effects dominate much of the dynamics at intermediate frequencies.

3.3.3 Dynamical Equations

Using (3.1)–(3.3), the above connectivities and parameters imply

DαVe(t) = νeeφe(t) + νeiφi(t) + νesφs(t − t0/2), (3.10)

DαVi(t) = νeeφe(t) + νeiφi(t) + νesφs(t − t0/2), (3.11)

DαVr(t) = νreφe(t − t0/2) + νrsφs(t), (3.12)

DαVs(t) = νseφe(t − t0/2) + νsrφr (t) + νsnφn(t), (3.13)

whence Vi = Ve and Qi = Qe , as asserted above. The right sides of (3.10)–(3.13)
describe, for each population, the sum of all afferent activity (including via self-
connections), and Dα describes the temporal dynamics. The short ranges of the
axons i, r , and s imply that Dα ≈ 1 for these populations, giving

φa = Qa = S(Va), (3.14)
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for a = i, r, s. For the remaining e population, (3.7) and (3.8) yield(
1

γ 2
e

∂2

∂t2
+ 2

γe

∂

∂t
+ 1 − r2

e ∇2
)

φe(r, t) = S[Ve(r, t)], (3.15)

with γe = ve/re. Equations (3.10)–(3.15) describe our corticothalamic model.

3.3.4 Steady States

We find spatially uniform steady states of our system by setting all the spatial and
temporal derivatives to zero in (3.10)–(3.15). The resulting equations can be rear-
ranged to yield a single equation for the steady-state value of φe (Robinson et al.
2004):

0 = S−1(φ(0)
e

) − (νee + νei)φ
(0)
e − νesS

(
νseφ

(0)
e + νsnφ

(0)
n

+ νsrS

[
νreφ

(0)
e + νrs

νes

{
S−1(φ(0)

e

) − (νee + νei)φ
(0)
e

}])
, (3.16)

where S−1 denotes the inverse of the sigmoid function S. The function on the right
of (3.16) is continuous and approaches −∞ as φ

(0)
e → 0 and +∞ as φ

(0)
e → Qmax.

Hence, it has an odd number of zeros, usually one or three (five are possible in
narrow parameter ranges). Addition of neuromodulatory feedbacks on synaptic
strengths sab in (3.9) can increase the number of zeros and broaden parameter ranges
where five or more are possible (Clearwater et al. 2007). We consider the main case
of three zeros for now.

When there are three zeros, one stable zero occurs at low φ
(0)
e , and we identify

this as the baseline activity level of normal brain function. The other stable zero is at
high φ

(0)
e with all neurons firing near to their physiological maximum. This would

thus represent a seizure state, but would require further physiology (e.g., of hypoxia
at high activity levels) to be treated adequately. The states are shown in Fig. 3.3,
where they are linked by the unstable fixed point to form a “fold.” It should be noted
that purely cortical sleep models have variously postulated that a similar pair of
stable states represents anesthesia/sleep, sleep/wake, or non-REM sleep/REM sleep,
often using parameters that lower φ

(0)
e in the upper state to acceptable levels (Steyn-

Ross et al. 1999, 2005, 2006). However, they do not seem to have made a self-
consistent identification of cases with branches to unify them, and purely cortical
models also leave out the central roles of the thalamus and ascending arousal system
(see Fig. 3.1 and Sect. 3.4).

3.3.5 Transfer Functions and Linear Waves

Small perturbations relative to steady states can be treated using linear analysis.
A stimulus φn(k,ω) of angular frequency ω (= 2πf , where f is the frequency in
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Fig. 3.3 Qe vs φn, showing the stable states with low firing rates (<15 s−1) and with firing rates
near saturation (>85 s−1). These two branches are linked by an unstable branch to form a “fold”.
Note that the negative steady-state values of φn in the figure can be physical, provided this variable
includes inhibitory neuromodulation in addition to tonic sensory activity

Hz) and wave vector k (= 2π/λ in magnitude, where λ is the wavelength) has the
transfer function to φe(k,ω)

φe(k,ω)

φn(k,ω)
= GesL

1 − GeiL

GsnLeiωt0/2

1 − GsrsL2

1

q2(ω)r2
e + k2r2

e

, (3.17)

q2(ω)r2
e = (1 − iω/γe)

2

− L

1 − GeiL

[
Gee + (Gese + GesreL)L

1 − GsrsL2
eiωt0

]
, (3.18)

Gab = φ
(0)
a

σ ′

(
1 − φ

(0)
a

Qmax

)
νab, (3.19)

where L = (1 − iω/α)−1(1 − iω/β)−1 embodies the low-pass filter characteristics
of synaptodendritic dynamics and φ

(0)
a is the steady-state value of φa . The transfer

function (3.17) is the cortical excitatory response per unit external stimulus, and
encapsulates the relative phase via its complex value (Rennie et al. 2002; Robinson
2005; Robinson et al. 2001b); it is the key to linear properties of the system. The
gain Gab is the differential output produced by neurons a per unit change in input
from neurons b, and the static gains for loops in Fig. 3.2 are Gese = GesGse for
feedback via relay nuclei only, Gesre = GesGsrGre for the loop through reticular
and relay nuclei, and Gsrs = GsrGrs for the intrathalamic loop.

Waves obey the dispersion relation (Robinson et al. 1997)

q2(ω) + k2 = 0, (3.20)

which corresponds to singularity of the transfer function (3.17). Solutions of this
equation satisfy ω = kve − iγe at high frequencies (Robinson et al. 1997).



3 Quantitative Modeling of Sleep Dynamics 55

3.3.6 Spectra and Instabilities

The EEG frequency spectrum is obtained by squaring |φe(k,ω)| and integrating (or
summing for discrete modes) over k, giving

Pe(ω) =
∫ ∣∣∣∣φe(k,ω)

φn(k,ω)

∣∣∣∣
2∣∣φn(k,ω)

∣∣2d2k. (3.21)

If we make the assumption that under conditions of spontaneous EEG the field of
external stimuli φn(k,ω) is so complex that it can be approximated by spatiotem-
poral white noise, this gives |φn(k,ω)|2 = constant, whence

Pe(ω) = 〈φ2
n〉

4πr4
e

∣∣∣∣ GesnL
2

(1 − GeiL)(1 − GsrsL2)

∣∣∣∣
2 Argq2

Imq2
, (3.22)

where 〈φ2
n〉 is the mean-square noise level. Figure 3.4(a) shows excellent agreement

of (3.22) with an observed spectrum over several decades. The features reproduced
include the alpha and beta peaks at frequencies f ≈ 1/t0,2/t0, and the asymptotic
low- and high-frequency behaviors; key differences between waking and sleep spec-
tra can also be reproduced, including the strong increase in low-frequency activity
in sleep, where our model predicts a steepening of the spectrum from 1/f toward
1/f 3, as seen in Fig. 3.4(b) and discussed further below (Robinson et al. 2001b).
Each of the features can be related to underlying anatomy and physiology: Low-
frequency 1/f or 1/f 3 behavior is a signature of marginally stable, near-critical dy-
namics, which allow complex behavior (Robinson et al. 1997, 2001b, 2002), while
the steep high-frequency fall-off results from low-pass filtering by synaptodendritic
dynamics. Corticothalamic loop resonances account for the alpha and beta peaks,
their relative frequencies, the correlated changes in spectral peaks between sleep
and waking, and splitting of the alpha peak in a large proportion of normal subjects
[see Fig. 3.4(b)], for example (Robinson et al. 2001b, 2002, 2003b). Proposed al-
ternatives, including “pacemakers” and purely cortical resonances, can account for
some features of the data, but the trend in mode frequency predicted for purely cor-
tical eigenmodes is likely to be in the opposite direction to that observed. Likewise,
the pacemaker hypothesis is ad hoc, with a new pacemaker proposed for every spec-
tral peak (Nunez 1995; Robinson et al. 2001a, 2003b). Overall, the evidence is now
strong that the thalamus must be included to account for most salient EEG features
at frequencies below about 20 Hz, as underlined by the ability of the resulting theory
to simultaneously account for the wide range of phenomena mentioned in Sect. 3.1.

Linear waves obey the dispersion relation (3.20), with instability boundaries oc-
curring where this equation is satisfied for real ω (Robinson et al. 1997, 2001b,
2002). In most circumstances, waves with k = 0 (i.e., spatially uniform) are the
most unstable (Robinson et al. 1997), and it is found that only the first few (i.e.,
lowest frequency) spectral resonances can become unstable. Analysis of stability of
perturbations relative to the steady state that represents normal activity for realistic
parameter ranges finds just four k = 0 instabilities, leading to global nonlinear dy-
namics (Breakspear et al. 2006; Robinson et al. 2002, 2003a): (a) Slow-wave insta-
bility (f ≈ 0) via a saddle-node bifurcation that leads to a low-frequency spike-wave
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Fig. 3.4 Exemplar spectra. (a) Experimental spectrum (solid) and model fit (dashed) from a typ-
ical adult subject in the eyes-closed (EC) state (Robinson et al. 2002). (b) Spectra for EC (solid)
and sleep stage 2 (dashed), the latter showing approximately 1/f 2 dependence at low f , which
steepens further in stages 3 and 4

limit cycle, (b) theta instability, via a supercritical Hopf bifurcation that saturates in
a nonlinear limit cycle near 3 Hz, with a spike-wave form, interpreted as an absence
seizure (Breakspear et al. 2006; Robinson et al. 2002, 2003a), (c) alpha instability,
via a subcritical Hopf bifurcation, giving a limit cycle near 10 Hz, interpreted as
a tonic-clonic seizure (Breakspear et al. 2006; Robinson et al. 2002, 2003a), and
(d) spindle instability at ω ≈ (αβ)1/2, leading to a limit cycle at 10–15 Hz (the
nature of this bifurcation has not yet been fully investigated).

At low frequencies the state and physical stability of the corticothalamic system
can approximately represented in a 3D space with axes

x = Gee/(1 − Gei), (3.23)

y = (Gese + Gesre)/[(1 − Gsrs)(1 − Gei)], (3.24)

z = −Gsrsαβ/(α + β)2, (3.25)

which parameterize cortical, corticothalamic, and thalamic stability, respectively
(Breakspear et al. 2006; Robinson et al. 2002). In terms of these quantities, param-
eters corresponding to linearly stable brain states lie in a stability zone illustrated in
Fig. 3.5. The back is at x = 0 and the base at z = 0. A pure spindle instability occurs
at z = 1, which couples to the alpha instability, with spindle dominating at top and
left, and alpha at right. At small z, the left surface is defined by a theta instability
(Breakspear et al. 2006; Robinson et al. 2002). The front right surface corresponds
to slow-wave instability at x + y = 1. Normal brain states lie within the stability
zone. Detailed arguments regarding the sign of feedback via the thalamus, proxim-
ity between neighboring behavioral states, and the results of explicit fitting to data
(enabled by the present model), place the arousal sequence, from alert eyes-open
(EO) to deep sleep, including relaxed eyes-closed (EC) and sleep stages 1–4 (S1–
S4), as shown in Fig. 3.5(a), corresponding to the typical time series in Fig. 3.5(b)
(Robinson et al. 2002).
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Fig. 3.5 Brain stability and time series. (a) Stability zone (Robinson et al. 2002). The surface
is shaded according to instability, as labeled (blue = spindle, green = alpha, red = theta), with
the front right-hand face left transparent as it corresponds to a slow-wave instability. Approximate
locations are shown of alert eyes-open (EO), relaxed, eyes-closed (EC), sleep stage 2 (S2) and 4
(S4) states, with each state located at the top of its bar, whose x–y coordinates can be read from
the grid. (b) Simulated time series corresponding to EO, EC, S2, and S4, approximating sensory
inputs as white noise (Robinson et al. 2002)

Each of the above instabilities corresponds to a point where the imaginary part
of the dispersion solution ω changes sign, leading to exponential growth away from
the fixed point. Corresponding spectral changes at low frequencies can be examined
by expanding the quantity q2r2

e in (3.22) in powers of −iω:

q2r2
e = A0 + A1(−iω) + A2(−iω)2 + A3(−iω)3 + · · · , (3.26)

where the Aj are constants that can be expressed in terms of the physiological pa-
rameters of the model (Robinson et al. 1997, 2002). The saddle-node bifurcation
where A0 = 0 [x + y = 1 in terms of the quantities in (3.23)–(3.25)] is thus marked
by a spectral divergence at f = 0, giving a 1/f spectrum at low f and long-range
correlations and coherence. A 1/f 3 spectrum at low f results when A0 = 0 and
A1 = 0 simultaneously [the latter corresponding to y ≈ −2(1 − Gsrs)/(γet0) for
parameter values from Table 1], thereby accounting for steeper spectra such as that
seen in Fig. 3.4(b).

3.4 Neural-Field Model of Arousal

Wake-sleep transitions of the brain are mainly governed by the nuclei of the as-
cending arousal system (AAS) of the brainstem and hypothalamus, which project
diffusely to the corticothalamic system. As we will see shortly, the AAS network
can also undergo instabilities. Hence, a full description of both sleep–wake transi-
tions and their EEG correlates requires an integrated model of the ascending arousal
system and the corticothalamic system (at least), including their mutual interactions.
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Here we describe how the nuclei of the ascending arousal system (AAS) are mod-
eled using the same methods as above, review some of the main results to date, and
outline steps toward integrating the AAS and corticothalamic models.

3.4.1 Ascending Arousal System Model

The most important nuclei to model in the AAS are well established from de-
tailed physiological investigations, and are shown in the green block in Fig. 3.1.
These include the monoaminergic (MA) group and the ventrolateral preoptic nu-
cleus (VLPO), which mutually inhibit one another, resulting in flip-flop dynamics
if the interaction is sufficiently strong—only one can be active at a time, and it sup-
presses the other (Saper et al. 2001). During wake, the MA group is dominant, while
the VLPO is dominant in sleep. Transitions between states are driven by inputs to
the VLPO, which include the circadian drive C from the suprachiasmatic nucleus
(SCN) (mainly as a result of light exposure), and the homeostatic sleep drive H

arising from buildup of metabolic byproducts (mostly adenosine, but possibly in-
cluding other somnogens) during wake, and their clearance during sleep. There is
also an input to the MA group from cholinergic (ACh), as shown (Pace-Schott and
Hobson 2002; Saper et al. 2001).

Until recently, models of AAS dynamics have been either nonmathematical (e.g.,
based on sleep diaries or qualitative considerations) or abstract (mathematical, but
not derived directly from physiology). The widely known two-process model is of
the latter form, and includes circadian and homeostatic influences (Achermann and
Borbély 2003). In this section, we use the methods of Sects. 3.2 and 3.3 to model the
dynamics of the AAS nuclei (Phillips and Robinson 2007). Several simplifications
and approximations are appropriate: the nuclei are small, so ra ≈ 0 and γa → ∞ in
(3.8), implying that (3.14) applies for these nuclei. (In this limit, neural-field the-
ory reduces to neural-mass theory, in which each population is treated as a lumped
mass (Freeman 1975; Deco et al. 2008)). Also, since the transitions take place on
timescales of many seconds to minutes, first-order in time versions of (3.3) can be
used. We also assume that (i) since the system spends little time in transitions, the
generation rate of H has just two values, one for wake and one for sleep, (ii) that
the clearance rate of H is proportional to H , and (iii) the variation of C can be
approximated as sinusoidal. These steps yield

τ
dVv

dt
+ Vv = νvmQm + D, (3.27)

τ
dVm

dt
+ Vm = νmvQv + A, (3.28)

χ
dH

dt
+ H = μQm, (3.29)

C = c0 + cos(Ωt), (3.30)

D = νvcC + νvhH, (3.31)
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Table 3.2 Nominal
parameter values for the
ascending arousal system
model

Quantity Nominal Unit

−νvc 2.9 mV

νvh 1.0 mV nM−1

χ 45 h

μ 4.4 nM s

c0 4.5 –

Qmax 100 s−1

θ 10 mV

σ ′ 3 mV

A 1.3 mV

−νvm 2.1 mV s

−νmv 1.8 mV s

τ 10 s

with (3.14) and where the time constants τ of the nuclear responses have been as-
sumed equal [these replace 1/α in (3.3), with β → ∞ formally], χ is the somnogen
clearance time, v denotes the VLPO, m denotes MA nuclei, the νab , Va , and Qa

have the same meanings as in previous sections, μ gives the proportionality be-
tween MA activity and somnogen generation rate, the amplitude of the C cycle is
absorbed into νvc so it is set to unity in (3.30), and Ω = 2π/(1 day).

Our AAS model has 12 physiological parameters—τ , χ , νvm, νmv , A, μ, c0, νvc,
νvh, Qmax, θ , and σ ′, whose nominal values are given in Table 3.2, as determined
by a combination of physiological constraints from the literature, and comparison of
the dynamics with behavior in a restricted set of sleep experiments on normal sleep
and sleep deprivation (Phillips and Robinson 2007, 2008). The theory then predicts
phenomena in regimes outside those of the calibration experiments.

3.4.2 Normal Sleep Dynamics

The first key result from the model in Sect. 3.4.1 is that the steady states of (3.27)–
(3.31) display a “fold” as a function of the total drive D. The upper and lower
branches represent wake and sleep, respectively, with an unstable branch in between.
Cyclic variations in D cause the system to move around the hysteresis loop shown in
Fig. 3.6, with saddle-node bifurcations from wake to sleep and back again. The two
stable branches are separated by an unstable state, and near-stable ghost states are lo-
cated just beyond saddle-node bifurcations of the wake and sleep states, respectively.

3.4.3 Sleep Deprivation and Recovery

This model has been applied to study the effects of total sleep deprivation and re-
covery, including the typical time course of recovery sleep and the recovery of sleep
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Fig. 3.6 Sleep dynamics. (a) Stable wake and sleep branches are linked by an unstable branch
(dashed). Wake and sleep ghosts are also shown. Shading indicates regions of small |V̇m|. (b) Plot
of Vm versus the sleep drive D across a 24 h period. As D oscillates with a 24 h period, arrows
show how Vm cycles (as does Vv ) around its hysteresis loop between wake and sleep states. Figure
adapted from Fulcher et al. (2008)

Fig. 3.7 Sleep latencies following deprivation for (a) model simulations, and (b) experimental
data (showing mean ± SEM), adapted from (Phillips and Robinson 2008). Triangles are for 9 h
time in bed (TIB) following 63 h sleep deprivation. All other curves are after 39 h sleep deprivation,
with 9 h TIB (squares), 6 h TIB (circles), plus 7 h TIB (dotted), for which there are no comparable
experimental data. In (a) sleep latencies are measured at the end of each day, for baseline (B), and
each night of recovery (N1, N2, etc.). In (b) latencies are measured across the day for baseline (B),
during deprivation (SD), and during each recovery day (R1, R2, etc.). Data in (b) are adapted from
Lamond et al. (2007)

latency times to baseline levels, as shown in Fig. 3.7 (Phillips and Robinson 2008).
The model also predicts that initiating sleep near the normal bed time minimizes the
total amount of recovery sleep required (Phillips and Robinson 2008).
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Fig. 3.8 Model predictions of the arousal threshold (Fulcher et al. 2010). (a) The model’s arousal
threshold A (mV) shows good agreement with experimental values of the auditory arousal thresh-
old Ic (dB) measured across a normal night of sleep (Bonnet et al. 1979). (b) The model also
predicts the arousal threshold while simulating a sleep fragmentation study (Lammers et al. 1991),
and simultaneously predicts the body temperature from a linear scaling of the sleep drive D. Data
are shown with circles; model predictions are curves

3.4.4 Stimuli

The impact of external stimuli, to either the MA or the VLPO, can be modeled as
perturbations on the model drives (Fulcher et al. 2008). In particular, since sensory
stimuli are known to excite the MA (Berridge and Waterhouse 2003), they can be
modeled with an additional term �Dm on the right of (3.28). The dynamics of the
model’s excursion from equilibrium can therefore be interpreted as an arousal state
response to a stimulus. One application of this approach is to sleep fragmentation,
in which auditory stimuli are applied to sleeping subjects to simulate the frequent
brief awakenings caused by sleep apneas (Stepanski 2002). Excitatory stimuli �Dm

perturb the system from the sleep branch to higher Vm [a ‘vertical’ perturbation in
Fig. 3.6(a)]. The wake ghost in Fig. 3.6(a) is crucial to the dynamics in this regime.
For small impulses, the system returns quickly to the sleep branch, but if the im-
pulse is large enough, the return is via the wake ghost where the system lingers for
an extended period, representing a brief awakening (Fulcher et al. 2008). The in-
fluence of the wake ghost on the dynamics therefore motivates a definition of the
arousal threshold as the magnitude of the drive |�Dm| required to perturb the sys-
tem to the wake ghost and produce an awakening. A linear fit from our definition
of the arousal threshold (a drive with units of voltage) to an auditory decibel scale
used in clinical experiments allows us to predict the arousal threshold vs. time since
sleep onset, which exhibits good agreement with data, as seen in Fig. 3.8. This pro-
cedure is generalizable to other types of external stimuli, including pharmaceuticals
(cf. Sect. 3.4.6), which can be represented similarly in terms of their relative drives
to the MA and VLPO. The present approach allows arousal state responses to be
interpreted in terms of the underlying physiological interactions that produce them,
a feature that is lacking in phenomenological treatments.
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Fig. 3.9 Model fits to clinical subjective fatigue data (Fulcher et al. 2010). Data are shown with
circles and model fits with a dashed line. (a) Subjective ‘effort’ data from a seven-day sleep depri-
vation study reported by Pasnau et al. (1968). Simulated wake effort over the same period of sleep
deprivation is rescaled by a proportionality factor to reproduce the observations. (b) Subjective
fatigue from a study by Fröberg et al. (1975) scaled to the model’s wake-effort drive

3.4.5 Wake Effort and Fatigue

The wake ghost is a near-stable waking state at high D, where only sleep is stable.
Ordinarily, as D increases past its wake-sleep bifurcation value (D ≈ 2.5 mV), the
system drops to sleep. However, with the application of an external drive, it is pos-
sible to keep the system in the wake ghost to maintain wakefulness during normal
sleep periods. Since this drive corresponds to an additional input required to prevent
the system from falling asleep, we term it ‘wake effort’ and model it as a drive to
the MA, as motivated by physiological findings that suggest a possible orexinergic
pathway (Yoshida et al. 2001). The effort required to remain awake is zero on the
wake branch, and increases with D in the wake ghost, consistent with the intuitive
increase in difficulty to remain awake at high sleep drives. Simulating sleep depriva-
tion in this way produces a wake-effort time series that can be compared directly to
experiment. We have confirmed our hypothesized correlation between wake effort
and subjective fatigue levels with multiple comparisons to data (Fulcher et al. 2010),
as shown in Fig. 3.9.

Performance levels are also expected to correlate with our wake-effort drive to
the MA, although the relationship is both nonlinear and task-dependent. For ex-
ample, since orexinergic neurons in the lateral hypothalamic area receive motiva-
tional inputs from the limbic system (Scammell 2003), this additional motivation-
dependent drive might decrease that required from other sources (e.g., cortical) and
hence improve performance (Fulcher et al. 2010). Future work will investigate the
relationship between performance and wake effort during sleep deprivation, includ-
ing modeling catastrophic lapses, in which the subject fails to provide the required
wake effort and arousal drops with a fall in Vm toward the sleep branch. The imple-
mentation of the wake-effort drive to simulating sleep deprivation is a step toward a
quantitative, physiologically based treatment of performance during sleep depriva-
tion, which is of great importance for the safety of many shift workers.
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3.4.6 Caffeine

Caffeine is a competitive antagonist of adenosine, since it competes for adenosine
receptor sites in the brain, reducing the amount of adenosine bound, and partially
masking its effects. It also reduces inhibition of basal forebrain ACh by adenosine,
increasing the firing rate of ACh nuclei (Carter et al. 1995), and the value of A in
(28). These effects are modeled by the replacements:

νvh → νvh[1 − ζH ZC(t)], (3.32)

A → A + ζAZC(t), (3.33)

where ZC is the concentration of caffeine in mg/kg and ζA and ζH are constants de-
termined from comparison with experiments on caffeine’s disruption of sleep (Puck-
eridge et al. 2010).

We model the pharmacokinetics of caffeine using a one-compartment approxi-
mation that treats brain and body as a single well-mixed container (Csajka et al.
2004; Gibaldi and Perrier 1975). Caffeine is absorbed into the body at a rate pro-
portional to the dosage, and is subsequently eliminated at a rate proportional its
concentration, giving

ZC(t) = γ
[
e−ke(t−t0) − e−ka(t−t0)

]
, for t ≥ t0, (3.34)

where ka ≈ 10−3 s−1 and ke ≈ 4.5×10−5 s−1 are rate constants (which may depend
on individual caffeine tolerance), respectively, and γ and t0 are the level and time
of the dose, respectively.

Figure 3.10 shows model output for a subject with a habitual bed time of 23:00
who takes 200 mg of caffeine at 22:00. Caffeine delays sleep onset and shortens
sleep duration because: (i) D decreases temporarily, shifting the system away from
sleep; and (ii) the increase in A moves the bifurcation points to higher D, allowing
wake to be stable at larger D. The delay in sleep onset is associated with a smaller
delay in waking, because C grows during early morning, prompting the subject
to wake. The subject thus has shorter sleep and more accumulated adenosine than
without caffeine. The amount of sleep loss Sl and delay to sleep Sd , are found to
follow

Sl ≈ γNle
−keT , (3.35)

Sd ≈ γNde−keT , (3.36)

where T is the time between caffeine intake and normal sleep time, and the pro-
portionality constants are Nl ≈ 5 min (mg/kg)−1 and Nd ≈ 9 min (mg/kg)−1, for
subjects of low caffeine sensitivity.

The model successfully matches the clinical data of Peneta et al. (1993), who
followed the sleepiness of subjects over a 60 h period of total sleep deprivation.
They compared the effectiveness of 600 mg of caffeine against a placebo on the
49th hour of the study. The sleepiness of the subjects was assessed via the Stanford
Sleepiness Scale (Hoddes et al. 1973) in which the subject reported their level of
alertness S with S = 1 corresponding to “feeling active and wide awake” to S = 7
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Fig. 3.10 Examples of the
model dynamics with and
without a caffeine dose of
200 mg taken at 22:00 (true
clock time resets to zero at
24:00 on the time axis). The
caffeine case is shown solid,
while a baseline case (no
caffeine taken) is shown
dashed. In (b), the effective
homeostatic drive felt by the
subject who takes caffeine is
shown gray

Fig. 3.11 Model output vs. clinical fatigue data from a sleep deprivation experiment (Peneta et
al. 1993). Subjects took either caffeine or placebo at 54 h (corresponding to 49 h of total sleep
deprivation). Experimental values are shown with squares, triangles, and circles, for S before
either dose, after a caffeine dose, and after a placebo dose, respectively, using the linear fit (3.37).
Simulated values are shown solid and dashed, for subjects with low caffeine sensitivity who took
or did not take caffeine, respectively

denoting “losing the struggle to remain awake”. The score S is found to be linearly
related to D, with

S = c1D + c2, (3.37)

where c1 ≈ 0.23 (mV)−1 and c2 ≈ 2.33 (Puckeridge et al. 2010). Comparison with
experimental data in Fig. 3.11 shows that both exhibit a steady increase in S with
superposed circadian oscillations. They concur that caffeine reduces S by approxi-
mately 2.5 and that its effects are lost after about 15 h (≈ 3 decay times).
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3.5 Summary and Discussion

Physiologically based neural-field theories of the brain are able to incorporate es-
sential physiology and anatomy across the many scales necessary to a wide range of
neural phenomena. They can achieve this for physiologically realistic parameters,
and yield numerous predictions that accord with observations using a variety of ex-
perimental methods in both the linear and nonlinear regimes. Moreover, they do this
in a way that unifies what have hitherto been disparate subfields and experimen-
tal modalities in a single framework, and which permits parameter determination
via fits of model predictions to experimental data. In addition to these specific re-
sults, major qualitative conclusions that are reached using such models include the
necessity of incorporating the thalamus to understand EEG phenomena at frequen-
cies below about 20 Hz, and the need to include the ascending arousal system to
understand sleep–wake dynamics.

The models reviewed here provide a framework for additional applications to
phenomena such as chronic sleep deprivation and sleep in other species. It also
lays the foundation for further generalization and integration of additional physiol-
ogy. In particular, inclusion and calibration of more realistic circadian inputs via the
suprachiasmatic nucleus in order to treat shiftwork, jetlag, and chronotypes (morn-
ing and evening types), and inclusion of orexinergic nuclei. Incorporation of the
diffusely projecting output from ACh nuclei to cortex and thalamus will enable key
corticothalamic parameters that determine EEGs to be set by the sleep–wake sys-
tem, although other feedforwards and feedbacks (see Fig. 3.1) will also need to be
incorporated to obtain a detailed model of such interactions.
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Chapter 4
The Fine Structure of Slow-Wave Sleep
Oscillations: from Single Neurons to Large
Networks

A. Destexhe and D. Contreras

4.1 Introduction

The discovery that the electrical activity of the brain oscillates during sleep is almost
as old as the discovery of the electroencephalogram (EEG). The first human EEG
recordings already reported a propensity to show oscillations, of which type, fre-
quency and amplitude highly depend on behavioral state (Berger 1929; see Fig. 4.1).
In an alert, awake subject, the EEG is dominated by low-amplitude fast activity
(“desynchronized EEG”) with high-frequency oscillations (beta, gamma), whereas
during slow-wave sleep, the EEG shifts to large-amplitude, slow oscillations. The
early stage of slow-wave sleep is associated with the appearance of spindle waves,
which occur at a frequency of 7 to 14 Hz. As sleep deepens, EEG waves with slower
frequencies (0.1 to 4 Hz), including delta waves and slow oscillations, appear and
progressively dominate the EEG. During paradoxical sleep, also called rapid-eye
movement (REM) sleep, EEG activities are desynchronized and resemble those of
wakefulness. Finally, some pathological states also display clear-cut oscillations,
such as the “spike-and-wave” patterns (∼3 Hz) characteristic of many types of gen-
eralized epileptic seizures.

The cellular bases of slow-wave sleep oscillations have been investigated since
the first extracellular and intracellular recordings in mammals. The major brain re-
gions which have been identified are the thalamus and cerebral cortex, which are
intimately linked by means of reciprocal projections. The activities of thalamic and
cortical neurons during sleep have been largely documented by electrophysiologi-
cal studies. The cellular mechanisms underlying these oscillations depend on many
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Fig. 4.1 Electroencephalographic recordings during different brain states in humans. 5 seconds of
EEG activity are shown for different brain states, from top to bottom: Awake with eyes open, in
which the EEG is dominated by low-amplitude fast activities (>15 Hz, beta and gamma frequency
range); Awake with eyes closed, in which alpha rhythm (10–12 Hz) appears; Sleep stage 2, charac-
terized by sleep spindles (7–14 Hz); Sleep Stage 4, characterized by delta and slow-wave activity
(0.1–4 Hz). During REM sleep, the activity is similar to wakefulness. During absence epileptic
seizures (bottom), the EEG displays spike-and-wave patterns at ∼3 Hz. Modified from Destexhe
(1992)

factors, such as the connectivity and intrinsic properties of the different types of tha-
lamic and cortical neurons. Of great help to understand these cellular mechanisms,
is the use of computational models, which are based on experimental data, and if
possible, generate predictions to test them. This type of interaction between experi-
mental results and modeling efforts has been quite successful in the (still ongoing)
exploration of the mechanisms of sleep oscillations, which this chapter attempts to
summarize.

4.2 Relation Between EEG and Single Cells During Sleep and
Waking Oscillatory Activity in Cats

In cats, the electroencephalogram (EEG) exhibits a rich variety of oscillatory pat-
terns during wake and sleep. Here we review the spatiotemporal distribution of two
oscillations characteristic of slow-wave sleep as well as fast oscillations that char-
acterize wake and rapid-eye movement (REM) sleep episodes. We also relate these
oscillations to the firing of extracellularly recorded cortical neurons at multiple sites
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and to the Vm and firing of single cells recorded intracellularly, thus setting the
stage for exploring the possible physiological roles of these oscillations. This spa-
tiotemporal characterization can be found in more detail in a previous publication
(Destexhe et al. 1999a).

Multisite local field potentials (LFPs) were recorded using a set of 8 equidistant
bipolar electrodes in the cerebral cortex (suprasylvian gyrus) of un-anesthetized
cats. Wake/sleep states were identified using the following criteria: Wake: low-
amplitude fast activity in LFPs, high electrooculogram (EOG) and high electromyo-
gram (EMG) activity; Slow-wave sleep: LFPs dominated by high-amplitude slow-
waves, low EOG activity and EMG activity present; REM sleep: low-amplitude fast
LFP activity, high EOG activity and abolition of EMG activity. During waking and
attentive behavior, LFPs were characterized by low-amplitude fast (15–75 Hz) ac-
tivity (Fig. 4.2A, Awake). During slow-wave sleep, LFPs were dominated by high-
amplitude slow-wave complexes occurring at a frequency of <1 Hz (Fig. 4.2B,
Slow-wave sleep). Slow-wave complexes of higher frequency (1–4 Hz) and spin-
dle waves (7–14 Hz) were also present in slow-wave sleep. During periods of REM
sleep, cortical activity was similar to that observed during awake states (Fig. 4.2C,
REM sleep).

The decay of correlations as a function of distance revealed marked differences
in large-scale coherence between awake/REM and slow-wave sleep (Fig. 4.2, right
panels). Slow-wave complexes during slow-wave sleep episodes displayed high spa-
tiotemporal coherence, in contrast with the steeper decline of the correlations with
distance during wakefulness and REM sleep. The same patterns of the spatial corre-
lations were observed in different animals and during different wake/sleep episodes
in the same animals (Fig. 4.2) (see details in Destexhe et al. 1999a, and references
therein).

Spindle oscillations were also present in the early phases of slow-wave sleep, and
were recorded not only in natural sleep, but also under different types of anesthesia
(Fig. 4.3; Contreras et al. 1997). Under ketamine-xylazine anesthesia (10–15 mg/kg;
2–3 mg/kg, i.m.), spindles are preceded by a depth-positive cortical EEG wave that
ends with a sharp negative wave followed by a waning spindle sequence, usually
at the upper frequency limit of spindling (13–14 Hz) (Fig. 4.3, Ketamine). Under
barbiturate anesthesia (25–35 mg/kg), spindling is waxing and waning, and its fre-
quency is lower with increasing barbiturate doses (Fig. 4.3 Barbiturate). During
natural slow-wave sleep, two types of spindle patterns were observed, one with the
characteristic waxing-and-waning pattern (Fig. 4.3 Natural sleep, right panel), while
the other was similar to K-complexes in which spindles were preceded by an EEG
biphasic complex (depth-positive, depth-negative) and lacked the initial waxing fea-
ture (Fig. 4.3, Natural sleep, left panel).

The relation between extracellularly recorded units and the corresponding LFP
activities (from the same set of electrodes) during wakefulness and natural sleep is
shown in Fig. 4.4. When the animal was awake, the desynchronized EEG was asso-
ciated with very irregular firing activity in the units (Fig. 4.4A,B, Wake). There was
no apparent relation between units and LFP by visual inspection, although a statis-
tical analysis revealed that the depth-negative deflections were on average related to
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Fig. 4.2 Multisite local field potentials in cat cerebral cortex during natural wake and sleep states.
Eight bipolar electrodes (inter-electrode distance of 1 mm) were inserted into the depth (1 mm)
of areas 5–7 of cat neocortex (suprasylvian gyrus, area 5–7; see top scheme for arrangement of
electrodes). Local field potentials (LFPs) are shown (left panels) together with a representation of
the correlations as a function of distance (Spatial correlations; middle panels) and time (Temporal
correlations; right panels). A. When the animal was awake, LFPs were characterized by low-am-
plitude fast activities in the beta/gamma frequency range (15–75 Hz). Correlations decayed steeply
with distance and time. B. During slow-wave sleep, the LFPs were dominated by large-amplitude
slow-wave complexes recurring at a slow frequency (<1 Hz; up to 4 Hz). Correlations stayed high
for large distances. C. During episodes of REM sleep, LFPs and correlations had similar charac-
teristics as during wake periods (∗ indicates a PGO wave). Modified from Destexhe et al. (1999a)

an increase of firing activity in the units (Fig. 4.4C, Wake; see details in Destexhe et
al. 1999a). During slow-wave sleep, the ensemble activity was surprisingly similar
to wakefulness (Fig. 4.4A, SWS), but at closer scrutiny (Fig. 4.4B), it appeared that
synchronous “silences” in all the units appear systematically and simultaneously
with the depth-positive part of the slow wave (Fig. 4.4A, SWS). This type of syn-
chronized silence will be later referred as “Down-state”. This activity is also visible
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Fig. 4.3 Multisite local field potentials of spindle oscillations in cat cerebral cortex during sleep
and anesthetized states. Top panel: scheme of the position of the recording electrodes in the supra-
sylvian gyrus. Bottom panels: examples of spindles recorded with the eight electrodes under anes-
thesia (ketamine-xylazine or barbiturate) are compared to spindling recorded in un-anesthetized,
naturally sleeping animals. In each panel, the top trace is a superposition (1–8) of the eight traces
displayed below. Two types of spindles are shown for natural sleep, a spindle oscillation following
a K-complex (bottom left) and a waxing-and-waning spindle oscillation (bottom right). Modified
from Contreras et al. (1997)

when computing the statistical relation between units and slow waves (Fig. 4.4C,
SWS).

An analysis of spatial coherence was not done for spindle oscillations in cortex,
but LFP and intracellular activity were recorded simultaneously in many studies
demonstrating the broad synchronization of spindle oscillations. In particular, one
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Fig. 4.4 Distributed firing activity in relation to LFPs during wake and sleep states. A. Irregular
firing activity of 8 multi-units shown at the same time as the LFP recorded in electrode 1 (same
setting as in Fig. 4.13). During wakefulness, the activity is sustained and irregular (see magnifi-
cation below). During slow-wave sleep (SWS), the activity is similar to wakefulness, except that
synchronized “silences” of firing activity occur in all cells simultaneously, and in relation to the
slow waves. B. Same activity as in A at 20 times higher temporal resolution. The gray box indi-
cates the synchronized silence (Down-state) simultaneous in all cells, and occurring in parallel with
slow waves. C. Wave-triggered averages of spiking activity. During wakefulness, the LFP negative
peaks were correlated with an increased firing activity in the units. During SWS, the negative peak
of the slow wave was correlated with a strong decrease of firing in the units (Down-state), followed
by a rebound a sustained activity (Up-state). Modified from Destexhe et al. (1999a)
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Fig. 4.5 Intracellular activity in cat parietal cortex during spindle waves. A. Two neurobiotin-s-
tained pyramidal cells that were simultaneously recorded intracellularly in area 5–7 (distant by
about 2.5 mm). B. Simultaneous activity of depth EEG (top) and the two cells during a sponta-
neous spindle oscillation (light barbiturate anesthesia). Modified from Contreras et al. (1997)

study (Contreras et al. 1997) obtained dual simultaneous intracellular recordings of
morphologically identified pyramidal neurons (Fig. 4.5A) during spindles in bar-
biturate anesthesia. These intracellular recordings show synchronized, strong sub-
threshold modulation of the membrane potential during spindles (Fig. 4.5B). The
two recorded cells in this example fired sparsely during spindle oscillations. The
relatively weak level of firing during spindles was commonly observed in a large
database of intracellularly recorded neurons under different anesthetics and in nat-
ural slow-wave sleep states. It was attributed to an unusually strong intracortical
inhibition, specifically recruited during spindle oscillations (Contreras et al. 1997).

Intracellular recordings were also obtained during natural slow-wave sleep (Ste-
riade et al. 2001; Timofeev et al. 2001). As described above for extracellular activity
(Fig. 4.4) the intracellular activity during wakefulness was very irregular, with lit-
tle apparent relation between LFP and membrane potential recorded in the same
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Fig. 4.6 Intracellular activity in cat parietal cortex during wakefulness and slow-wave sleep. LFP
(called here EEG) and intracellular recording were obtained in area 5–7 of cat cortex (scheme).
When the animal was awake (top traces), the EEG was desynchronized and the intracellular activ-
ity was sustained and irregular. During slow-wave sleep (SWS), the EEG displayed slow waves,
which were correlated with “Down-states”: brief hyperpolarizations with interruption of firing. In
between slow waves, the EEG was closer to desynchronized and the activity displayed “Up-states”
with sustained and irregular firing similar to wakefulness. The right panels show a magnification
of the Vm activity in each case. Modified from Steriade et al. (2001)

brain area (Fig. 4.6, Wake). During slow-wave sleep, the “silence” described above
appeared as a hyperpolarization of the cell, simultaneous with the depth-positive
part of the slow wave (Fig. 4.6, SWS). These define “Up” and “Down” states very
clearly from the membrane potential activity. Such Up–Down-state dynamics was
first described under anesthesia and constitutes the dominant oscillatory pattern un-
der many anesthetic regimes (Steriade et al. 1993b; Contreras and Steriade 1995).

4.3 Genesis of Sleep Spindle Oscillations

As seen in the preceding section, sleep spindles consist of 7 to 14 Hz waxing-and-
waning potentials, grouped in sequences lasting for 1 to 3 s and recurring every 3
to 10 s. Spindle oscillations constitute an interesting and well-constrained problem
to investigate by computational models for several reasons. First, these oscillations
are generated in the thalamus, which is a well-known structure anatomically, with
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well-defined connectivity between the different cell types (see circuit in Fig. 4.11A).
Second, spindles are remarkably well documented experimentally and have been ex-
tensively characterized both in vivo and in vitro (reviewed in Steriade et al. 1997;
Steriade 2003; Destexhe and Sejnowski 2001, 2003). Third, this oscillation is gen-
erated by an interplay of complex cellular properties (schematized in Fig. 4.11B),
such as burst firing (Jahnsen and Llinás 1984), and synaptic interactions via multiple
types of postsynaptic receptors (see Fig. 4.11C). Computational models are needed
to understand this complex interplay (reviewed in Destexhe and Sejnowski 2003).

The typical electrophysiological features of spindle oscillations in the thalamus
are shown in Fig. 4.7. The two cell types involved, thalamocortical (TC) and tha-
lamic reticular (RE) neurons oscillate synchronously and display burst discharges
according to a mirror image: RE cells display bursts following excitatory synaptic
potentials (EPSPs) while TC cells burst following inhibitory postsynaptic potentials
(IPSPs). While RE cells tend to burst at every cycle of the oscillation, TC cells
only produce bursts once every few cycles. These features are typical of spindles
recorded in thalamic neurons in different mammals.

4.3.1 Thalamic Pacemakers for Spindles

Although it is clear that spindles are generated in the thalamus, several hypotheses
for the genesis of oscillations by thalamic circuits have been proposed and tested by
models (reviewed in Destexhe and Sejnowski 2001, 2003). These involve reciprocal
synaptic interactions between TC neurons and local inhibitory interneurons, loops
between TC and RE neurons, or loops within the RE nucleus. The involvement of
the RE nucleus was firmly demonstrated in a series of experiments by Steriade’s
group (reviewed in Steriade et al. 1993d; Destexhe and Sejnowski 2001, 2003). In
particular, the deafferented RE nucleus in vivo can exhibit spindle rhythmicity in
extracellular recordings. In contrast, the RE nucleus does not display autonomous
oscillations in vitro, but spindles have been observed in thalamic slices based on TC-
RE interactions (see Steriade et al. 1997 a detailed account of these issues). These
in vitro spindles display the same intracellular features as in vivo.

Computational models were designed to attempt clarifying these contrasting
results, but here also, several hypothetic mechanisms were tested. First, mod-
els investigated whether the RE nucleus is capable of displaying oscillations
consistent with experiments. Models found that RE neurons interacting through
GABAergic synapses can generate spindle rhythmicity (Wang and Rinzel 1993;
Destexhe et al. 1994c; Bazhenov et al. 1999; reviewed in Destexhe and Sejnowski
2001), but two different mechanisms were proposed. First, based on a Hodgkin-
Huxley (1952) type model of the voltage-dependent Ca2+ current (T-type current)
responsible for burst generation in RE cells, Wang and Rinzel (1993) proposed a
“slow-inhibition hypothesis” to generate spindle oscillations. The interaction of RE
cells endowed with the T-type current and interacting through inhibitory synapses
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Fig. 4.7 Thalamocortical circuits and spindle oscillations. A. Thalamocortical network with four
cell types and their connectivity: thalamocortical (TC) relay cells, thalamic reticular (RE) neuron,
cortical pyramidal cells (PY) and interneurons (IN). TC cells receive prethalamic (Pre) afferent
connections, which may be sensory afferents in the case of specific thalamic nuclei involved in
vision, audition and somatosensory modalities. This information is relayed to the corresponding
area of cerebral cortex through ascending thalamocortical fibers (upward arrow). These axons have
collaterals that contact the RE nucleus on the way to the cerebral cortex, where they arborize in
superficial layers I and II, layer IV and layer VI. Corticothalamic feedback is mediated primarily
by a population of layer VI PY neurons that project to the thalamus. The corticothalamic fibers
(downward arrow) also leave collaterals within the RE nucleus and dorsal thalamus. RE cells thus
form an inhibitory network that surrounds the thalamus, receive a copy of nearly all thalamocortical
and corticothalamic activity, and project inhibitory connections solely to neurons in the thalamic
relay nuclei. B. Spindle oscillations in thalamic neurons in vivo, as seen through intracellular ex-
periments in cats under barbiturate anesthesia. The activity of thalamocortical (TC) and thalamic
reticular (RE) cells is shown during spindle waves (modified from Steriade and Deschênes 1984).
C. In vitro intracellular experiments realized in ferret visual thalamic slices, showing the activity
of the same type of thalamic neuron during spindle waves (modified from von Krosigk et al. 1993)

was found to be able to generate synchronized oscillations but only for slow-
inhibitory interactions (Fig. 4.8A–B). They quantified the synchrony of RE oscil-
lations as a function of the parameters of synaptic interactions and found a large
region of parameter space supporting synchronized oscillations based on GABAer-
gic interactions (Fig. 4.8C; Wang and Rinzel 1993).

Another hypothesis was later proposed based on fast GABAergic interactions
(Destexhe et al. 1994c). This “fast-inhibition hypothesis” was proposed to palliate to
the two main drawbacks of the slow-inhibition hypothesis, namely that the synchro-
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Fig. 4.8 The “slow-inhibition hypothesis” for generating synchronized oscillations with thalamic
reticular neurons. A. Anti-phase oscillation with fast synaptic decay (kr = 0.5 ms−1; V1 and V2
indicate two RE neurons interconnected with slow GABAergic synapses). B. In-phase oscillation
with a fast-rising and slow-decaying synaptic conductance (kr = 0.005 ms−1). C. State diagram
indicating the behavior of the model as a function of the synaptic current decay (kr ) and reversal
potential (Vsyn). SSS, symmetric steady-state (blank); ASS asymmetric steady-state (stippled); IP,
in-phase oscillation (shaded) as in B; AP, anti-phase oscillation (striped) as in A. The synchronous
rhythmic behavior was possible only for sufficiently slow inhibition (small kr ) and negative Vsyn.
Modified from Wang and Rinzel (1993)

nized oscillations are too slow compared to experimental recordings in the isolated
RE nucleus in vivo (Steriade et al. 1997), and that RE neurons were found exper-
imentally to interact through fast GABAA synapses (Huntsman et al. 1999). The
problem was that according to the slow-inhibition model, fast decaying GABAergic
synapses should not synchronize (Fig. 4.8C). However, by considering more ex-
tended connectivity (where each RE neuron connects densely to an extended neigh-
borhood), it was found that synchronized fast oscillations can emerge with fast,
GABAA-mediated synapses (Fig. 4.9; Destexhe et al. 1994c). This conclusion was
reached by using Hodgkin and Huxley (1952) type models for the T-type current,
as well as for the Na+ and K+ to generate action potentials, while synaptic inter-
actions were modeled by conductance-based kinetic models (Destexhe et al. 1994a,
1994b). This model displayed fast oscillation in the 10–15 Hz frequency range, and
which showed “waxing-and-waning” patterns in the average activity (Fig. 4.9), as
observed experimentally. Other models based on fast GABAergic synapses were
proposed and also produced oscillations consistent with experiments (Bazhenov et
al. 1999).

Thus, in vivo experiments and models indicate that the RE nucleus can display
self-sustained oscillations in the spindle frequency range. However, in vitro exper-
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Fig. 4.9 “Fast-inhibition hypothesis” for spindle oscillations in the isolated RE nucleus. Snap-
shots of activity in a 100 neuron network during waxing-and-waning oscillations corresponding
to the regions of the averaged membrane potential as indicated. The top series of snapshots was
taken during the “desynchronized” phase and shows highly irregular spatiotemporal behavior. The
bottom series of snapshots was taken during the “oscillatory” phase, when the network is more
synchronized and coherent oscillations were found in the averaged activity. The time interval be-
tween frames was 40 ms. B. Averaged membrane potentials for networks with N = 100, N = 400
and N = 1600 neurons. For N = 400 and N = 1600, the local average membrane potential was
obtained by averaging over a disk of 113 neurons in the center of the network. Vertical calibration
bars for the average membrane potential traces are from −80 to −70 mV. Modified from Destexhe
et al. (1994c)

iments on ferret thalamic slices demonstrated that spindle oscillations require the
integrity of the interconnection between TC and RE cells, and disappear if a cut is
realized in the slice between the two nuclei (Fig. 4.10A; von Krosigk et al. 1993).
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Fig. 4.10 In vitro spindle waves require functional interconnections between thalamic relay and
reticular neurons. A. A small knife cut (1 mm) was performed between the LGNd and PGN in a
thalamic slice from a ferret. Extracellular recordings at various locations of the LGNd and PGN
revealed robust spindling in locations away from the cut (+), and the absence of spindling (−)

in regions anterior and posterior to the center of the cut. B. Mechanism proposed based on in
vitro observations: The oscillations are generated by a loop involving interconnected PGN and
LGNd neurons, with AMPA-mediated excitation (LGNd → PGN) and GABAA-mediated inhibi-
tion (PGN → LGNd; PGN → PGN). Modified from von Krosigk et al. (1993)

This suggests another mechanism for spindle generation, based on the reciprocal
interaction between TC and RE cells (Fig. 4.10B).

These findings motivated the construction of another series of computational
models that include TC and RE cells. Such models showed that spindle oscillations
can indeed be obtained from TC-RE loops (Destexhe et al. 1996; Golomb et al.
1996). This TC-RE loop model is shown in Fig. 4.11. Neurons were modeled using
Hodgkin and Huxley (1952) type representations of Na+, K+ and Ca2+ voltage-
dependent currents, which were based on voltage-clamp data on thalamic neurons
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Fig. 4.11 Models of spindle oscillations as a reciprocal interaction between thalamocortical and
thalamic reticular cells. A. Circuit of interconnected thalamocortical (TC) and thalamic reticu-
lar (RE) neurons with different receptor types. B. Models of the intrinsic properties of thalamic
neurons. C. Models of the synaptic receptor types mediating their interactions. D. Computational
model of spindle oscillations in circuits of interconnected TC and RE cells. The expanded trace
below shows the phase relations of the two cell types. E. Phase relations of TC cells during spindle
oscillations in a different computational model. Panels A, B, D are modified from Destexhe et al.
(1996); Panel C is modified from von Krosigk et al. (1993); Panel E is modified from Wang et al.
(1995)

(see details in Destexhe et al. 1996). These models reproduced the most salient in-
trinsic properties of thalamic neurons, such as the production of bursts of action po-
tentials (Fig. 4.11B). Synaptic interactions were modeled using conductance-based
kinetic models (Destexhe et al. 1994a) which were used to simulate the main recep-
tor types (AMPA, GABAA and GABAB ) identified in thalamic circuits (Fig. 4.11C).
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Fig. 4.12 Possible explanation for why the RE nucleus oscillates in vivo but not in vitro. Sim-
ulation of a network with 100 RE cells locally interconnected through GABAergic synapses and
where the noradernergic (NE) and serotonergic (5HT) neuromodulation was taken into account.
A moderate stimulation of NE/5HT activity may be present in vivo, but not in vitro. In the presence
of NE/5HT activity, the resting level of RE cells is more depolarized, and the network oscillates at
a frequency of 10–16 Hz (bar), while the average membrane potential displays waxing-and-waning
amplitude fluctuations. After 2 seconds (first arrow), all NE/5HT synaptic activity was suppressed;
the resulting hyperpolarization prevented the network from sustaining oscillations. Depolarizing
(second arrow) or hyperpolarizing (third arrow) current pulses injected simultaneously in all neu-
rons (with random amplitude) could not restore spontaneous oscillations. The latter simulation
might correspond to the conditions of RE cells in vitro. Modified from Destexhe et al. (1994d)

Under these conditions, the circuit generated 7–14 Hz spindle oscillations with the
typical features described intracellularly in the different thalamic neuronal types.
The model reproduced the mirror image between TC and RE cells during spin-
dles, as well as the phase relations between cells (see Fig. 4.11D). In particular,
TC cells produced bursts once every 2–3 cycles within a spindle sequence, a feature
consistently observed experimentally (compare with Fig. 4.11C). More irregular be-
havior, similar to the experiments, was obtained in larger networks (Fig. 4.11E), or
in the presence of the cortex (see below). The oscillations also showed the defin-
ing waxing-and-waning envelope of spindles; this property was due in the model to
Ca2+-mediated slow regulation of the Ih current (Destexhe et al. 1993), a prediction
that was later verified experimentally (Luthi and McCormick 1998).

Thus, models show that taking into account the complex bursting properties of
thalamic neurons, combined with their interactions through well-defined synaptic
receptors, account for both RE pacemaker oscillations as well as spindle oscilla-
tions arising from TC-RE loops in which pacemaker activity in the RE nucleus is
not required. The models therefore do not invalidate any of the experiments men-
tioned here but rather support the validity of both types of experimental results.
However, it remains to be explained why the RE nucleus does not oscillate in vitro
(Fig. 4.10A). This question was addressed by a computational model of the RE nu-
cleus which took into account the action of neuromodulators (such as noradrenaline)
in depolarizing RE cells. This model produced oscillations only when a sufficient
level of neuromodulator was present (Fig. 4.12; Destexhe et al. 1994d). The differ-
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ence between in vivo and in vitro preparations may therefore be explained by the
limited connectivity between the RE neurons in the slice, and/or by the fact that
slices lack the necessary level of neuromodulation to maintain isolated RE oscilla-
tions (Destexhe et al. 1994d). The main prediction from this model is that applying
neuromodulators to slices of the RE nucleus should induce oscillations similar to
those observed in vivo, but if sufficient connectivity is present between RE neurons.
This prediction still awaits to be tested.

4.3.2 Mechanisms for Large-Scale Synchrony of Spindles

Another property of spindle oscillations is their large-scale synchrony in the brain.
Figure 4.13 (Intact) shows that in the intact brain, multisite recordings from the
whole anterior to posterior axis of the thalamus (spanning the occipital to frontal ar-
eas) displayed a large-scale synchrony. This synchrony is remarkable because each
of the recorded thalamic nuclei is capable of generating spindle oscillations on its
own. However, more interestingly, it was found that this large-scale synchrony de-
pends on cerebral cortex (Contreras et al. 1996a). Unilateral decortication did not
abolish the ability of each thalamic site to display spindle oscillations, but destroyed
the large-scale coherence of oscillations (Fig. 4.13, Decorticated). In other words,
different thalamic oscillators seem to be set in phase by their interaction with cere-
bral cortex (Contreras et al. 1996a).

It was further shown that this cortical-dependent large-scale coherence is not de-
pendent on intracortical connections (Contreras et al. 1996a). Multisite recordings
in suprasylvian cortex (area 5–7), an area known for its high density of intracortical
connections, showed that the synchrony between distant sites is resistant to cutting
the corticocortical connections (Fig. 4.14; Contreras et al. 1996a). Thus, the large-
scale synchrony seems to depend on either callosal connections (which were unaf-
fected in these experiments) or to reciprocal relations between cortex and thalamus.
The latter hypothesis was explored by computational models.

Models of thalamocortical networks were designed, based on Hodgkin-Huxley
type representations of the different classes of neurons, TC and RE cells as be-
fore, with cortical pyramidal (PY) cells and inhibitory interneurons (IN). The lat-
ter two cell types were regular-spiking and fast-spiking cells, respectively, and
were modeled by Na+ and K+ currents for action potentials, augmented by an
spike-frequency adaptation current (voltage-dependent slow K+ current) in regular-
spiking cells (see details in Destexhe et al. 1998). This current generated adapt-
ing trains of action potentials, similar to experimental observations (Connors and
Gutnick 1990). Using these models, it was possible to reproduce the experimental
observations only when one important property was assumed: the corticothalamic
feedback on TC cells must operate mainly through inhibition (Destexhe et al. 1998).
This property of “inhibitory dominance” is illustrated in Fig. 4.15. In the vast ma-
jority of TC cells recorded intracellularly in vivo, cortical stimulation resulted in
a small amplitude EPSP followed by a large IPSP (Fig. 4.15A). In a small circuit
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Fig. 4.13 Removal of the cerebral cortex affects the pattern of spindle oscillations in the thala-
mus. In an intact network under barbiturate anesthesia (upper panel), three spontaneous spindle
sequences at 8–9 Hz and lasting for 1–3 s occurred at roughly the same time in the local field
potentials recorded from eight tungsten electrodes (Th1–Th8). Tip resistances were 1 to 5 M�

and inter-electrode distances of 1 mm. Negativity downward. Cortex was removed by suction after
careful cauterization with silver nitrate (Photo), exposing the head of the caudate nucleus (CA,
in the drawing), most of the dorsal thalamus (TH), the lateral geniculate body (LG), the medial
geniculate body (MG), the superior (SC) and inferior colliculli (IC). Also in the photograph, and
represented in the drawing at right, are the intact contralateral cortex (CX) and the cerebellum
(CB). The eight electrodes were held together and their tips lowered to the positions indicated by
the black dots in the drawing. The two or three most anterior electrodes crossed through the head
of the caudate nucleus to reach the thalamus. After decortication (lower panel), recordings from
approximately the same thalamic location showed that spindling continued at each electrode site,
but their coincidence in time was lost. The 8-electrode configuration was positioned at different
depths within the thalamus (from −2 to −6) and different lateral planes (from 2 to 5); all positions
gave the same result. Modified from Contreras et al. (1996a)
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Fig. 4.14 Synchrony of spindle oscillations is not determined by intracortical connectivity.
A. Multisite recordings from the depth (1 mm) of the suprasylvian (SS) gyrus using a similar
electrode array (Cx1 to Cx8) as described in Fig. 4.13. Spontaneous spindle sequences occurred
nearly simultaneously in control conditions (Intact). Following a 3 mm-deep coronal section (Cut)
of the SS gyrus (horizontal line between electrodes Cx4 and Cx5 in the scheme), crossing laterally
from the lateral aspect of the marginal gyrus (M) to the medial aspect of the ectosylvian gyrus
(ES), did not disrupt simultaneity of oscillations. B. Synchronization was evaluated by calculating
crosscorrelograms between electrode Cx1 and the others. Correlograms from 15 consecutive spin-
dle sequences were averaged before and after the cut. The value of the averaged crosscorrelation
at time zero was represented as a function of distance with respect to the first electrode (left panel;
" for intact cortex and ! after cut). Averaged crosscorrelograms for each pair of electrodes were
represented as surface plots for intact cortex (middle panel) and after cut (right panel). Correlation
values were displayed using a gray scale ranging from −0.4 (black) to 1 (white; see grayscale
bar). Secondary peaks around 120 ms indicate rhythmicity at 8–9 Hz. Modified from Contreras et
al. (1996a)

model with two TC interconnected with two RE cells (see scheme in Fig. 4.15B),
the cortical excitation of RE and TC cells reproduced the EPSP/IPSP sequences ob-
served experimentally provided that the cortical EPSPs on RE cells were stronger
than those on TC cells. In Fig. 4.15B, the conductance of AMPA-mediated cortical
drive on TC and RE cells, as well as the GABAA-mediated IPSP from RE cells were
of the same order of magnitude. In this case, cortical EPSPs were shunted by reticu-
lar IPSPs and cortical stimulation did not evoke oscillations in the thalamic circuit.
In contrast, when the EPSPs on TC cells had smaller conductances (5 nS compared
to 100 nS), the EPSP-IPSP sequence was similar to intracellular recordings and
cortical stimulation was effective in evoking oscillations (Fig. 4.15C).
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Fig. 4.15 “Inhibitory dominance” of corticothalamic feedback on thalamic relay cells. A. Intra-
cellular recording of a TC cell in the lateral posterior (LP) thalamic nucleus while stimulating the
anatomically related part of the suprasylvian cortex in cats during barbiturate anesthesia. Cortical
stimulation (arrow) evoked a small EPSP followed by a powerful biphasic IPSP. The IPSP gave
rise to a rebound burst in the TC cell. This example represented the majority of recorded TC cells.
B. Simulation of cortical EPSPs (AMPA-mediated) in a circuit of four interconnected thalamic
cells. Cortical EPSPs were stimulated by delivering a presynaptic burst of four spikes at 200 Hz to
AMPA receptors. The maximal conductance was similar in TC and RE cells (100 nS in this case)
and no rebound occurred following the stimulation (arrow). C. Simulation of dominant IPSP in TC
cell. In this example, the AMPA conductance of stimulated EPSPs in the TC cell was reduced to
5 nS. The stimulation of AMPA receptors evoked a weak EPSP followed by strong IPSP, then by a
rebound burst in the TC cells, as observed experimentally. Modified from Destexhe et al. (1998)

This property of “inhibitory dominance” was essential to reproduce the experi-
mental observations about the large-scale synchrony of spindle oscillations. An ex-
tended thalamocortical network was simulated based on local connectivity profiles,
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Fig. 4.16 Spontaneous spindle oscillations in a model thalamocortical network with 400 cells.
A. Schematic connectivity. The network had four layers of PY, IN, RE and TC cells. Each cell
is represented by a dot and the area to which it projects is depicted as a shaded area for a repre-
sentative cell. Intrathalamic and intracortical connections were topographic with a divergence of
11 cells, whereas thalamocortical and corticothalamic projections were more extended, spanning
over 21 cells. B1. Spontaneous spindle oscillation. Five cells of each type, equally spaced in the
network, are shown (0.5 ms time resolution). The asterisks indicate an initiator TC cell. B2. Detail
of spindle initiation. C. Locally averaged potentials. 21 adjacent PY cells, taken at eight equally
spaced sites on the network, were used to calculate each average. Asterisks indicate two nearly
simultaneous initiation sites. Modified from Destexhe et al. (1998)

as displayed in Fig. 4.16A. The network generated spindle oscillations which were
driven by the TC-RE loops, as in the previous section. However, in the presence of
the corticothalamic loops, the oscillation appeared almost synchronously over the
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Fig. 4.17 Effects of corticothalamic feedback on the simultaneity of spindle oscillations in corti-
cothalamic model. Spontaneous spindles are shown in the presence of the cortex (left panels) and
in an isolated thalamic network (right panels) under the same conditions (same parameters as in
Fig. 4.16). Single TC cells and local TC averages are shown for each case. 21 adjacent TC cells,
sampled from 8 equally spaced sites on the network, were used to calculate each average. The bot-
tom graphs represent averages of a representative spindle at 10 times higher temporal resolution.
The near-simultaneity of oscillations in the presence of the cortex is qualitatively different from the
propagating patterns of activity in the isolated thalamic network (arrows). Modified from Destexhe
et al. (1998)

whole network (Fig. 4.16B–C), although it was initiated only in localized sites (∗ in
Fig. 4.16B–C).

This thalamocortical network model was used to investigate how cortical feed-
back could organize the coherence of thalamic oscillations that were observed ex-
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perimentally (Contreras et al. 1996a). We reproduced these experimental recording
conditions in the model. The activity of individual thalamic cells as well as local av-
erage potentials were considerably more coherent in the presence of cortical feed-
back (Fig. 4.17): The left panel shows several spindle sequences using the same
parameters as in Fig. 4.16. The right panel shows the same simulation with cortical
cells removed. Without cortical feedback, different initiation sites for spindles were
not coordinated. Some of them remained local, while others gave rise to system-
atic propagation of oscillations from one side of the network to the other (Fig. 4.17,
bottom right panel), as observed in thalamic slices (Kim et al. 1995). This model
was also able to reproduce the different patterns of spindle oscillations observed in
natural sleep and anesthetized conditions (Destexhe et al. 1999b).

Thus, the thalamocortical model predicted that the main ingredient to reproduce
the experiments on large-scale synchrony is that the cortex must recruit the thalamus
through the RE nucleus. This property was central to explain large-scale synchrony,
but also pathological states such as epileptic seizures, as investigated in the next
section.

4.3.3 Consequences for Generalized Seizures

The cortical control of thalamic relay cells through dominant inhibitory mecha-
nisms has important consequences, not only for explaining large-scale synchrony,
but also to explain pathological situations such as absence epileptic seizures (Des-
texhe 1998). As a result of inhibitory dominance, a too strong corticothalamic feed-
back can over-activate thalamic GABAB receptors and entrain the physiologically
intact thalamus into hypersynchronous rhythms at ∼3 Hz. This scheme may ex-
plain the genesis of hypersynchronous ∼3 Hz rhythms that appear suddenly in the
thalamocortical system. A similar type of seizure activity can be induced exper-
imentally by increasing cortical excitability, while keeping a physiologically in-
tact thalamus (reviewed in Gloor and Fariello 1988). The same thalamocortical
model as above accounts for those experiments and can simulate seizures based on
inhibitory-dominant corticothalamic feedback (Destexhe 1998). This model directly
predicted that manipulating corticothalamic feedback should entrain intact thala-
mic circuits to generate hypersynchronous rhythms at ∼3 Hz, a prediction which
has been verified by two independent studies (Blumenfeld and McCormick 2000;
Bal et al. 2000). A similar mechanism, with a different balance between GABAA

and GABAB receptors, can also generate faster hypersynchronous rhythms (around
5–10 Hz), as observed in rat or mouse experimental models of absence seizures.

4.4 Slow Waves and Up/Down-State Dynamics

As seen in Sect. 4.2, during the deepest phases of sleep (stages 3 and 4 in humans),
as well as for some anesthetized states, cortical activity is dominated by delta and
slow oscillations, in a frequency range of 0.1 to 4 Hz. The intracellular correlate of
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Fig. 4.18 Transformation of spindle oscillations into ∼3 Hz oscillations with spike-and-wave field
potentials by reducing cortical inhibition. A. Spindle oscillations in the thalamocortical network in
control conditions. Five cells of each type, equally spaced in the network, are shown (0.5 ms time
resolution). The field potentials, consisting of successive negative deflections at ∼10 Hz, is shown
at the bottom. B. Oscillations following the suppression of GABAA-mediated inhibition in cortical
cells with thalamic inhibition intact. All cells displayed prolonged discharges in phase, separated
by long periods of silences, at a frequency of ∼2 Hz. GABAB currents were maximally activated in
TC and PY cells during the periods of silence. Field potentials (bottom) displayed spike-and-wave
complexes. Thalamic inhibition was intact in all cases. Modified from Destexhe (1998)

the slow oscillation is the alternation between depolarized states (Up-states) and hy-
perpolarized states (Down-states), which occurs in perfect synchrony with the EEG
(Steriade 2001). An example of slow oscillation in ketamine–xylazine anesthesia is
shown in Fig. 4.19A. Thus, entire cortical regions are simultaneously switching be-
tween Up- and Down-states, as also shown by multiple extracellular studies (Des-
texhe et al. 1999a). The origin of these oscillations seems to be cortical, because
they survive extensive thalamic lesions (Steriade 2001), and they are also observed
in cortical slices (Sanchez-Vives and McCormick 2000).

4.4.1 Up- and Down-States in Cortex

The observation of self-generated Up/Down-states in cortical slices (Sanchez-Vives
and McCormick 2000) has motivated the search for mechanisms for Up/Down-
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Fig. 4.19 Computational models of slow-wave oscillations in cerebral cortex. A. In vivo record-
ings of a morphologically identified pyramidal neuron during ketamine–xylazine anesthesia.
B. Schematic circuit showing the two main types of cortical neurons, pyramidal cells (PY) and
inhibitory interneurons (IN). Those neurons are connected via different types of synaptic recep-
tors, with the two main types illustrated here. C. Models of the intrinsic properties of cortical neu-
rons (left) and of the synaptic receptor types (right) mediating their interactions. D. Computational
model of slow-wave oscillations arising from reverberation of activity through recurrent connec-
tions in networks of cortical circuits. The network displays Up- and Down-states with different
frequency of occurrence depending on the level of spontaneous activity. E. Snapshot of activity in
the network showing the initiation and propagation of the Up-state. A. Modified from Rudolph et
al. (2005); D,E. Modified from Timofeev et al. (2000)

state generation within the cortex. Computational models were investigated based
on recurrent circuits of excitatory and inhibitory cortical neurons described by
Hodgkin–Huxley type models (Fig. 4.19B). The two main electrophysiological
types of cortical neurons were considered, as well as their synaptic interactions
through glutamate (AMPA) and GABAergic (GABAA) receptors (Fig. 4.19C).
These models showed that Up-states can be generated by recurrent excitatory
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and inhibitory connections, which self-sustain the activity (Fig. 4.19D). Differ-
ent exact mechanisms by which Up-states begin and terminate have been pro-
posed. Up-states can start either by the interaction between subthreshold Na cur-
rents (persistent Na current) and miniature excitatory synaptic potentials (Timo-
feev et al. 2000). Another possible mechanism is to consider spontaneously ac-
tive cells that would initiate the wave of activity in the network (Compte et al.
2003). In a third mechanism, Up states initiate due to self-sustained network ac-
tivity (Destexhe 2009). So far, none of these mechanisms has been verified exper-
imentally. The termination of the Up-state is apparently due to a progressive run
down of synaptic activity, as indicated by conductance measurements (Contreras et
al. 1996b). What causes this run down could be either an intrinsic property, such
as the progressive build-up of a slow potassium conductance (Compte et al. 2003;
Destexhe 2009), as the metabolically dependent KATP current demonstrated to con-
trol the termination of Up-states in cortical slices (Cunningham et al. 2006), or
depression of excitatory synapses. Both hypotheses are supported by experimen-
tal data, and are also consistent with the refractoriness of the Up-states found in
slices (Sanchez-Vives and McCormick 2000); this refractoriness could be due to the
potassium conductance, or recovery from synaptic depression.

Another property of Up/Down-states is that the duration of the Down is propor-
tional to network size. Down-states are typically short in vivo (a few hundred ms)
while they can last up to 20 seconds in slices. Cutting cortical slabs of different sizes
in vivo confirmed that the Down-state duration varies inversely proportional to slab
size (Timofeev et al. 2000). Here again, this property is consistent with the three
mechanisms of initiation outlined above, as they all depend on coincident activa-
tion of either miniature or spontaneously active cells, both of which will occur more
often in large networks.

A final property of slow waves is that the Up-states clearly show propagating
properties in vitro (Sanchez-Vives and McCormick 2000). This propagation can be
reproduced by computational models (Fig. 4.19E), assuming that synaptic connec-
tions are made locally in the cortical network. In contrast, there is evidence that
Up-states are highly synchronized in vivo, because the local EEG is always phase
locked with intracellular activity (Fig. 4.19A). Multiple extracellular recordings in
natural sleep also demonstrated that the Up-states of slow waves are highly synchro-
nized across distances up to 7 mm in cortex (Destexhe et al. 1999a; see Sect. 4.2).

Another type of model was proposed more recently (Destexhe 2009) based on
nonlinear integrate-and-fire (IF) neurons. These models are simpler than Hodgkin-
Huxley type models, but still can reproduce the main intrinsic properties of thalamic
and cortical cells (Fig. 4.20). In particular this so-called adaptative exponential IF
model (Brette and Gerstner 2005) can reproduce the rebound bursting activity of tha-
lamic TC and RE neurons, as well as the classical regular-spiking and fast-spiking
patterns.

Using this model, Up- and Down-state dynamics could be simulated by a two-
layer cortical network (Fig. 4.21). The Up–Down-state dynamics emerged from the
interaction of two layers, Layer B was a network displaying spontaneous activity
(as a self-sustained state), while Layer A had no spontaneous activity. The Up-state
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Fig. 4.20 Different classes of cortical and thalamic neurons modeled by the adaptive exponential
integrate-and-fire model. A. Regular-spiking (RS) pyramidal (PY) neuron with strong adaptation.
B. RS PY neuron with weak adaptation. C. Fast-spiking (FS) inhibitory (IN) interneuron with
negligible adaptation. D. Low-threshold spike (LTS) PY cell. E. Thalamocortical (TC) neuron.
F. Thalamic reticular (RE) neuron. In all cases, the response to a depolarizing current pulse of
0.25 nA is shown on top. For D–F, the bottom curves show the response to a hyperpolarizing
current pulse of −0.25 nA. The units of the adaptation parameter b in A–C are nA. Modified from
Destexhe (2009)

activity ceased due to adapting currents in PY cells in Layer A, leading to a Down-
state, which ended by the spontaneous firing of some of the cells in Layer B, which
restarted the next Up-state. This model is in agreement cortical slices where it was
shown that Up-states always start in Layer 5 and subsequently propagate to other
layers (Sanchez-Vives and McCormick 2000). The model displayed Up–Down-state
dynamics where the Down-state was nearly simultaneous in all cell types, with no
specific built-in mechanism to generate this synchronized activity. Contrary to pre-
vious models, the Up–Down-state dynamics was entirely self-generated by the net-
work, without the need for external input or spontaneously active cells (see details
in Destexhe 2009).

4.4.2 Thalamocortical Models of Up- and Down-States

The two-layer model of Up–Down-state shown in the preceding section was ex-
tended into a thalamocortical model. In this model, the cortical layer was identical
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Fig. 4.21 Up/Down-state dynamics in a two-layer cortex model with LTS cells. Top: Scheme
of connectivity between two networks of N = 2000 (Layer A) and N = 500 (Layer B) neurons.
Layer B had 10% LTS cells and was capable of displaying self-sustained asynchronous irregular
(AI) states. Bottom: Raster of the activity during 5 seconds (LTS cells shown in red). The stimu-
lation of the network started at t = 0 and lasted 50 ms, leading to self-sustained Up/Down-state
dynamics (CVISI = 2.49, CC = 0.069). The interlayer connectivity was only excitatory and had
a connection probability of 1%. Modified from Destexhe (2009)

to Layer A in the cortical model, and the thalamic network displayed spontaneous
activity, playing a similar role as Layer B above (Fig. 4.22). As in the two-layer
cortical model, the Up-states ceased due to adapting currents in PY cells, leading to
a Down-state, which occurred nearly simultaneously in the whole network. The dy-
namics was also entirely self-generated with no external input (see Destexhe 2009).
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Fig. 4.22 Self-sustained irregular and Up/Down-states in a thalamocortical network of adaptive
exponential IF neurons. Top: Scheme of connectivity of the thalamocortical network. The network
had four layers of cortical pyramidal (PY), cortical interneurons (IN), thalamic reticular (RE) and
thalamocortical (TC) relay cells. Each cell is represented by a filled circle (dark gray = excitatory
cells; light gray = inhibitory cells), and synaptic connections are schematized by arrows. Bottom
panels: From A to D, the same model was used (2200 cells total, 1600 PY, 400 IN, 100 TC and
100 RE cells), but with different strengths of adaptation (from b = 0.04 nA in A to b = 0.005 nA
in D). In all rasters, only 10% of cells are shown for each cell type, and the four layers of cells are
indicated on the right. For the AI state in D, cortical neurons were characterized by a mean firing
rate of 44 Hz, a coefficient of variation of CVISI = 2.45 and a pairwise correlation of CC = 0.004.
Modified from Destexhe (2009)

One of the features of interest of Up-states is that this activity is very similar
to that during the wake state (reviewed in Destexhe et al. 2007). This is supported
by several observations. First, during the Up-state, the EEG is of low-amplitude
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and fast activity, similar to desynchronized EEG. Second, extracellular recordings
showed that the Up-states obey the same dynamics of firing, have similar local
correlations, and display similar relations between EEG and unit firing, as dur-
ing wakefulness (Destexhe et al. 1999a). Third, simulating nuclei participating to
the ascending arousal system induces periods of desynchronized EEG, which cor-
respond intracellularly to prolonged Up-states. Fourth, conductance measurements
from intracellular recordings in anesthetized or EEG-activated states show similar
conductance patterns during both states.1 Fifth, computational models of Up/Down-
states and of activated states in cortical circuits suggest that both can be generated
by similar mechanisms (see below).

The thalamocortical model of Up–Down-states was used to simulate the transi-
tion to the sustained and irregular firing activity during wakefulness. Self-sustained
irregular states similar to activated states have been simulated by various models
(reviewed in Vogels et al. 2005). Only a few models, however, provided the transi-
tion from Up/Down-states to activated states (Brunel 2000; Bazhenov et al. 2002;
Compte et al. 2003). For all of such models, Up-states and activated states are very
similar and differ only by the level of excitability of the neurons (mostly by down-
regulating potassium conductances). Some of these models were confronted to in-
put resistance or conductance measurements and reproduced qualitatively the values
measured experimentally. The fact that Up-states and activated states can be simu-
lated using the same models with few differences is another indication that those
two states stem from similar network activity (see above).

4.5 Discussion

In this chapter, we have reviewed some selected aspects of the relation between cel-
lular and global (EEG, LFP) activities during different types of sleep oscillations.
We summarize below the mechanisms of these oscillations, and their possible phys-
iological role.

4.5.1 Cellular Mechanisms of Sleep Oscillations

Sleep spindle oscillations were investigated by experiments and modeling at differ-
ent levels. At the cellular level, thalamic neurons produce bursts of action poten-
tials in synchrony during spindles. Despite the fact that this represents an unusually
strong input to cortex, cortical pyramidal neurons display surprisingly low levels

1The absolute conductance is lower in activated states compared to Up-states, but both states are
characterized by similar ratios between excitatory and inhibitory conductances (Rudolph et al.
2005).
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of discharge. It was shown that the sleep spindles recruit strong inhibitory conduc-
tances in cortex, which explains this moderate level of discharge (Contreras et al.
1997).

At the level of the mechanisms of generation of spindles by thalamic cir-
cuits, two hypotheses were proposed based on experiments. First, in vivo exper-
iments support the “RE pacemaker” hypothesis for spindle generation (Steriade
et al. 1997). Different models point to the fact that such a pacemaker in the
reticularis is definitely possible (Wang and Rinzel 1993; Destexhe et al. 1994c;
Bazhenov et al. 1999), but it requires a critical amount of connectivity and sufficient
depolarization of RE cells, two conditions which may not be met in slices. Sec-
ond, the “TC-RE loop” hypothesis, first proposed by Scheibel and Scheibel (1966,
1967), was subsequently found and demonstrated in thalamic slices (von Krosigk
et al. 1993). Models also found that this mechanism is possible (Wang et al. 1995;
Destexhe et al. 1996). So far, only one model addressed the question of the compati-
bility between all experiments (Destexhe et al. 1994d), and predicted that neuromod-
ulation and depolarization of RE cells could explain the contrasting observations, a
prediction which still awaits to be tested experimentally.

At the level of the thalamocortical system, in vivo recordings demonstrated a
remarkable large-scale synchrony, which was dependent on the integrity of the
thalamocortical system (Contreras et al. 1996a). Models could reproduce these
observations based on the property of “inhibitory dominance” of corticothala-
mic feedback (Destexhe et al. 1998). This property was shown to be present in
the majority of intracellularly recorded thalamic cells, and it was subsequently
demonstrated that the cortical synapses are much stronger in RE cells compared
to TC cells (Golshani et al. 2001). Interestingly, this inhibitory-dominance also
can explain the emergence of hypersynchronous rhythms at ∼3 Hz following in-
creased cortical excitability (Destexhe 1998). This model predicted that stimula-
tion of corticothalamic fibers in slices should be able to “force” the intact thala-
mic circuit to produce synchronized ∼3 Hz oscillations. This prediction was suc-
cessfully tested by two independent studies (Blumenfeld and McCormick 2000;
Bal et al. 2000).

Thus, at this point, the current mechanism for large-scale synchronization of
spindles through successive recruitment loops between thalamus and cortex ac-
counts for a large body of experiments, including the genesis of pathological states
such as generalized seizures. It must be noted, however, that this synchronizing
mechanism was only investigated based on experiments in a cortical area of about
1 cm (area 5–7), but remains to be investigated for the synchrony over the whole
brain. It is likely that other factors, such as callosal connections or non-specific tha-
lamic nuclei, must be considered to fully account for large-scale synchrony. Indeed,
a strong role for the intracortical connectivity was emphasized by models (Destexhe
et al. 1999b).

Another type of sleep oscillation, the slow oscillation (0.1–4 Hz), including the
delta frequency range, was also intensely investigated by experiments and models.
The cellular correlates of slow waves is a “synchronized silence” in the firing of
cortical and thalamic cells, a feature which was first identified in anesthetized states
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and subsequently in natural sleep (Steriade et al. 1993a, 1993b, 1993c). The network
alternates between “Down-states”, associated with neuronal silence and membrane
hyperpolarization, and “Up-states” where cells are depolarized and display tonic
irregular firing similar to the activity during wakefulness.

The genesis of the slow rhythm is more complex than spindles, because multiple
“pacemakers” were found for this type of oscillation. The finding of a slow oscil-
lation in cortical slices (Sanchez-Vives and McCormick 2000) proves that cortical
circuits can autonomously generate this type of oscillation. Note that the charac-
teristics of the slow oscillation in vitro, such as the respective length of Up- and
Down-states, is markedly different from in vivo, although the size of the network
may explain this effect. Nevertheless, different computational models showed that
cortical circuits can generate either self-sustained asynchronous irregular states, or
Up–Down-state patterns

The thalamus has also been shown to generate Up- and Down-state patterns, as
an intrinsic property of thalamic neurons in the presence of glutamate metabotropic
receptor antagonists (Hughes et al. 2002; Blethyn et al. 2006). It is at present not
clear to what extent this conditional thalamic pacemaker plays a role in the Up–
Down-state patterns seen in vivo. Dual intracellular recordings indicate that thalamic
bursts tend to occur just before the onset of the Up-state in cortex (Contreras and
Steriade 1995). However, the lack of any obvious effect of massive thalamic lesions
on the slow oscillation recorded in vivo (Steriade et al. 1993b) suggests that thalamic
slow oscillations have a limited participation in the generation or maintenance of
slow oscillations in cortex.

Concerning the transition from slow waves to wakefulness, awakening of the an-
imal, or stimulation of the ascending activating system under anesthesia induces a
transition from Up/Down-states to sustained Up-states with desynchronized EEG
(Fig. 4.23A). This transition can be mimicked in the thalamocortical model by re-
ducing the adaptation in pyramidal neurons (Fig. 4.23B). This is consistent with
the action of neuromodulators implicated in arousal, such as acetylcholine or no-
radrenaline, which block or reduce the K+ conductances responsible for spike-
frequency adaptation (McCormick 1992). However, these state transitions are qual-
itative as not all experimental measurements have been taken into account, for ex-
ample the conductance measurements in natural wake and sleep states (Rudolph
et al. 2007) should be included in models. Reproducing the correct conductance
state in individual neurons requires large network sizes (El Boustani et al. 2007;
Kumar et al. 2008), and it should be done in a near future.

4.5.2 Possible Role of Sleep Oscillations

From the experiments and biophysical models outlined here, and in particular two
of the main sleep oscillations, spindles and slow waves, we can speculate about their
possible role.

One interesting aspect of sleep spindles is their relatively low level of discharge.
Investigating this issue, it was found that reversing inhibition leads to powerful
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Fig. 4.23 Experiments and model of the transition from Up/Down- to activated states. A. Tran-
sition from Up/Down-state dynamics to an activated state, evoked by stimulation of the pedoncu-
lo-pontine tegmentum (PPT) in an anesthetized cat. The two traces, respectively, show the EEG
and intracellular activity recorded in parietal cortex. B. Similar transition obtained by changing the
value of b from 0.02 nA to 0.005 nA (gray line). All other parameters were identical to Fig. 4.22.
Panel A modified from Rudolph et al. (2005). Panel B modified from Destexhe (2009)

bursts of action potentials, therefore revealing a powerful inhibition during spindles
in cortex (Contreras et al. 1997). Computational models drawn based on these data
concluded that spindles are characterized by strong excitatory and inhibitory con-
ductances. Because of the high density of excitatory synapses in dendrites, it was
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estimated that the dendrites are very depolarized during spindles, while the soma is
kept hyperpolarized by inhibition. This dendritic depolarization is characteristic to
spindles, so the physiological role of spindles may be related to this unusual event.
Because depolarization is an efficient way to induce calcium entry, it was speculated
that the role of spindles may be to induce repetitive volleys of massive calcium en-
try in pyramidal neurons (Contreras et al. 1997), a signal which may be ideal to
activate specific molecular gates such as protein-kinase A, perhaps in relation to
synaptic plasticity (Destexhe and Sejnowski 2001).

Concerning the slow waves, as mentioned above, the Up-states during slow
waves share many different features of the sustained activity during wakefulness,
and thus, Up-states can be viewed as brief periods of activity in which network dy-
namics are very similar to the dynamics during wakefulness. This is consistent with
the fact that Up-states would represent “replayed” events that have occurred previ-
ously during the wake state (Destexhe et al. 1999a). There is abundant experimental
evidence for such a replay during sleep from birds to higher mammals (see overview
in Ribeiro et al. 2004).

These observations lead to the following speculative scenario. During wake-
fulness, latent memories are formed throughout the cortex, together with links
to the hippocampal formation that allow top-down retrieval to occur. During
the early stages of sleep, spindle oscillations would mobilize the molecular ma-
chinery needed for memory consolidation. In the deeper phases of slow-wave
sleep, during the brief periods of wake-like activities (Up-states), the hippocam-
pal formation would activate latent memories stored in the neocortex (“replay”)
and induce permanent changes in intrinsic or synaptic conductances. This hypo-
thetical mechanism of memory consolidation during sleep is consistent with all
electrophysiological characteristics of sleep oscillations, and it predicts that spe-
cial correlations between hippocampal and cortical activities should occur dur-
ing the Up-states of slow waves (see details in Destexhe and Sejnowski 2001).
Such correlations have been found recently between cortical slow waves (Up-
states) and hippocampal sharp waves (Sirota et al. 2003; Battaglia et al. 2004;
Peyrache et al. 2009).

This replay during sleep was investigated more quantitatively by computing the
degree of similarity of the spatiotemporal patterns of spikes produced in sleep and
prior wakefulness in rats during exploratory behavior (Peyrache et al. 2009). This
degree of similarity, called “reactivation strength”, was found to be higher in the
slow-wave sleep period immediately following the novel experience. In particular,
the reactivation strength was computed in relation to spindle waves and Up/Down-
state events. Interestingly, the peak in reactivation strength was clearly correlated
with slow-waves events, both delta and slow oscillations (Fig. 4.24A–B, top pan-
els). There was also a strong reactivation correlated with spindle waves; in this case
reactivation tended to occur before the spindle (Fig. 4.24C, top panels). In all cases,
the increase of reactivation strength was strongly correlated with the occurrence of
hippocampal sharp waves (Fig. 4.24, middle panels) but not with the mean firing
rate of the ensemble of recorded cortical neurons (Fig. 4.24, bottom panels).

These results clearly show that there is a “replay” of spike patterns during slow-
wave sleep, and more specifically in relation with the different types of sleep slow
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Fig. 4.24 Reactivation strength in rat prefrontal cortex related to sleep spindles and slow oscilla-
tions following a learning task. Prefrontal cortical neurons and LFPs were recorded with multiple
tetrodes in chronically implanted rats, together with LFP electrodes in the anatomically related part
of the hippocampus (see details in Peyrache et al. 2009). A. Top: reactivation strength relative to
the depth-negative peak of delta waves, for sleep periods preceding (Pre, gray) and following (Post,
black) the task. Gray bars indicate significantly (P > 0.001, t -test) higher reactivation strengths
for signal components during post SWS with respect to baseline. Middle: cross-correlogram of
the occurrence of hippocampal sharp waves (SPW) relative to delta peaks. SPWs tended to occur
more frequently just before delta peaks, similar to reactivation. Bottom: spiking probability density
of multi-unit activity relative to delta waves and averaged over all recording sessions. Gray, pre
SWS; black, post SWS. Prefrontal cells showed a strong decrease in firing at the time of the delta
peak, preceded and followed by activity increases. B. Same plot as in A, but centered on putative
DOWN to UP state transitions (as defined by population average firing rate). Results are compara-
ble with those shown in A, except for spiking probability, which only showed a marked deflection
during the Down-state. C. Same plots as in A, but centered on spindle troughs (depth-LFP negative
peaks). The reactivation strength was significantly higher (P > 0.05) for over 1 s before spindles
(top) and this was clearly correlated to the occurrence of hippocampal SPWs (middle). Modified
from Peyrache et al. (2009)

waves. This replay of cortical spike patterns is correlated with the sharp waves of
hippocampus, which are one of the main types of hippocampal electrical activity
during slow-wave sleep (Buzsaki 2006). This analysis constitutes direct evidence
that there is a special dialogue between hippocampus and cerebral cortex during
slow-wave sleep, and that this dialogue is related to the consolidation of novel in-
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formation. It is presently not clear what are the exact mechanisms behind such a
dialogue, but it constitutes an exciting challenge for future experimental and theo-
retical studies.
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Chapter 5
A Population Network Model of Neuronal
and Neurotransmitter Interactions Regulating
Sleep–Wake Behavior in Rodent Species

C.G. Diniz Behn and V. Booth

5.1 Introduction

Although the reasons for sleep remain unknown, sleep appears to be a universal
necessity across mammals. All terrestrial mammalian species studied so far have
exhibited not only sleep but also classical characteristics for both rapid eye move-
ment (REM) sleep and non-REM (NREM) sleep (Siegel 2005; Zepelin et al. 2005),
and common dynamical features of sleep–wake behavior appear to be conserved
across species (Lo et al. 2004). However, there is much inter-specific variability in
the timing and fine architecture of sleep–wake behavior. Most strikingly, this vari-
ability is reflected by the contrast between the consolidated sleep of some primates
(Wexler and Moore-Ede 1985), including humans, and the polyphasic sleep–wake
behavior common among many other species. Variability is also present in the dis-
tribution of sleep–wake behavior over the 24-hour day. Typically, a given species
will be predominantly active during the day (diurnal) or night (nocturnal), but other
24-hour patterns of behavior, such as the concentration of activity at dawn and dusk
(crepuscular activity), have also been reported (Sterman et al. 1965). This circa-
dian modulation of sleep–wake behavior is a robust feature of terrestrial mammalian
sleep.

Mammalian sleep and wake states are controlled by the activation of brainstem
and hypothalamic neuronal nuclei (Steriade and McCarley 1990; Saper et al. 2001;
Lydic and Baghdoyan 2005). Excitatory and inhibitory projections among these
neuronal populations form a sleep–wake regulatory network. Both local effects
within the sleep–wake regulatory network and more global effects on higher thalam-
ocortical regions are driven by state-dependent activity within these populations and
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the resulting state-dependent release of their associated neurotransmitters (Saper et
al. 2005). Many of the key structures involved in sleep–wake regulation are con-
served across species. This suggests that perturbations of a single network structure
can produce the reported variability in inter-specific sleep–wake behavior.

The identification of sleep–wake regulatory nuclei, their efferents/afferents, and
the postsynaptic effects of their expressed neurotransmitters has resulted in the pro-
posal of a number of conceptual models of network architectures governing sleep–
wake behavior. However, such static conceptual models lack the ability to replicate
the time dynamics of transitions between sleep–wake states or evaluate dynamic
neuronal interactions that are dictated by network structure. In contrast, mathe-
matical models of sleep–wake regulatory networks capture all time-dependent as-
pects of sleep–wake patterning. In recent years, several mathematical models of the
sleep–wake regulatory network have been proposed. These models have primarily
focused on rodent (Tamakawa et al. 2006; Diniz Behn et al. 2007) and human sleep
(Tamakawa et al. 2006; Phillips and Robinson 2007; Rempe et al. 2010), and they
illustrate how sleep–wake dynamics are generated by and consistent with network
architecture.

We recently introduced a dynamic, mathematical model of a rat sleep–wake reg-
ulatory network using a novel modeling formalism that describes both the activity
levels of each neuronal population and the release of their associated neurotransmit-
ters in postsynaptic targets (Diniz Behn and Booth 2010). Using a specific architec-
ture of interactions among neuronal nuclei, this model network captures dynamical
patterns of state-dependent neuronal activity and state-dependent concentrations of
key neurotransmitters to produce patterns of wake, NREM sleep, and REM sleep
consistent with experimentally reported rat sleep–wake behavior in the light period.
By explicitly modeling the dynamics of neurotransmitter release at the level of the
neuronal population, this formalism provides the flexibility that is necessary to cap-
ture the complexity of the system.

Circadian variation in mammalian sleep–wake patterning is presumed to occur
through modulation of the sleep–wake regulatory nuclei by the circadian pacemaker
in the suprachiasmatic nucleus (SCN) (Saper et al. 2005). Both direct and indirect
projections from SCN to sleep–wake regulatory nuclei contribute to this modu-
latory effect, and these projections are largely conserved across species (Stephan
et al. 1981; Dai et al. 1997; Abrahamson et al. 2001; Kriegsfeld et al. 2004;
Deurveilher and Semba 2005). The fine architecture of sleep–wake behavior varies
significantly over 24 hours. These variations represent a constraint on underly-
ing network structures: by simulating circadian changes in network interactions, a
model network should accurately replicate differential light and dark period sleep–
wake patterning.

Similarly, since experimental evidence suggests that sleep–wake regulatory
mechanisms are conserved across species, the ability of a given architecture to gen-
erate sleep–wake patterning associated with multiple species represents an impor-
tant constraint on the proposed network structure. In earlier work, Tamakawa and
colleagues showed that, with minor variations in parameters, their network structure
could produce sleep–wake patterning that was qualitatively similar to both rat and
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human sleep (Tamakawa et al. 2006). To test the robustness of our model network
structure, we are interested in whether the structure we used to simulate rat sleep
could generate sleep–wake patterning associated with other species. Here, we inves-
tigate the ability of this network architecture to produce mouse sleep. Despite qual-
itative similarities, careful consideration of the fine architecture of sleep–wake be-
havior reveals significant variability within rodent sleep (van Twyver 1969; Franken
et al. 1999). For example, the number of bouts of wake and NREM sleep in 12-hr
light and dark periods were very similar for rats, but the number of NREM bouts
was greater than the number of wake bouts in mice (Blanco-Centurion et al. 2007;
Hu et al. 2007). These data highlight a structure difference between rat and mouse
sleep: mice often transition from REM sleep directly back to NREM sleep while rats
typically transition from REM sleep to wakefulness, at least briefly, before entering
NREM sleep again.

Using the network structure developed to produce rat sleep in the light period,
we identified key parameters associated with circadian modulation and varied these
parameters to assess their effect on sleep–wake behavior. In addition, we identified
parameters that could be modified to produce mouse sleep–wake behavior in both
the light and dark periods. By keeping the network structure, including the sites of
action of circadian effects, fixed between species, we identified both the flexibility
and the limitations of the prescribed network structure. Our analysis of model be-
havior illustrates how specific components of network architecture dictate dynamic
interactions influencing maintenance of states and transitions between states, and
it provides insights into mechanisms through which the network can generate the
range of sleep–wake patterning observed with circadian variation and across mam-
malian species.

5.2 Model

5.2.1 Population Firing Rate Model Formalism

We developed a model of the rat sleep–wake regulatory network (Fig. 5.1) using
our novel firing rate model formalism for the interaction of neuronal populations
and the neurotransmitters they express (Diniz Behn and Booth 2010). The network
includes the wake-promoting, sleep-promoting, and REM sleep-promoting neuronal
populations and their associated neurotransmitters summarized in Table 5.1.

Neurotransmitter-mediated coupling between populations includes inhibition
from the monoaminergic wake-promoting populations, LC and DR, to both the
sleep-promoting VLPO and the REM active subpopulation of the LDT/PPT (R),
but not the wake/REM active LDT/PPT subpopulation (WR) (Thakkar et al. 1998).
The sleep-promoting VLPO inhibits all wake-promoting and REM-promoting pop-
ulations and cholinergic REM-and wake/REM active populations excite the LC
and DR. Specific subcomponents of this coupling structure reflect current con-
ceptual models of the sleep–wake regulatory network. Specifically, mutual inhi-
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Table 5.1 Summary of key neuronal nuclei and associated neurotransmitters involved in sleep–
wake regulation

Population Neurotransmitter

Wake-promoting Dorsal raphe (DR) Serotonin (5-HT)

Locus coeruleus (LC) Noradrenaline (NE)

wake/REM active subpopulations of laterodorsal
tegmental nucleus and pedunculopontine tegmental
nucleus (LDT/PPT)

Acetylcholine (ACh)

Sleep-promoting Ventrolateral preoptic area (VLPO) GABA

REM-promoting REM active subpopulation of LDT/PPT Acetylcholine (ACh)

Fig. 5.1 Schematic of rat sleep–wake regulatory network model containing the neuronal popula-
tions and their associated neurotransmitters listed in Table 5.1, and the effects of direct and indirect
synaptic projections from the suprachiasmatic nucleus (SCN). Bold arrows indicate neurotransmit-
ter expression, circles (small arrows) indicate inhibitory (excitatory) postsynaptic action of neu-
rotransmitters. Model also includes a homeostatic sleep drive (triangle) and random, excitatory
inputs to wake-promoting populations (white arrows)

bition between the LC and DR, and the VLPO provides the basis for the sleep–
wake flip-flop switch (Saper et al. 2001), and reciprocal connectivity between
LC and DR, and REM-promoting populations (LDT/PPT) reflects the reciprocal-
interaction hypothesis for NREM-REM cycling (McCarley and Hobson 1975;
Massaquoi and McCarley 1992).
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In our firing rate model formalism, we retain the basic form of standard fir-
ing rate models (Wilson and Cowan 1972; see reviews in Ermentrout 1998;
Dayan and Abbott 2001; Deco et al. 2008), but we replace total synaptic input with
a weighted sum of neurotransmitter concentrations released by presynaptic popula-
tions, Ci(t). In this way, firing rate in the postsynaptic population X, FX(t) (in Hz,
X = LC,DR,VLPO,R or WR), is modeled by the standard equation of the follow-
ing form:

F ′
X = FX∞(

∑
i gi,XCi) − FX

τX

, (5.1)

where FX∞(·) is the steady-state firing rate function, the gi,X are constant weights,
and τX is the time constant associated with the response of the postsynaptic popula-
tion. For the steady-state firing rate function, we use the standard sigmoidal function

FX∞(c) = Xmax(0.5(1 + tanh((c − βX)/αX))), (5.2)

where the parameter Xmax sets the maximal firing rate and the parameters αX ,
and βX set slope and activation threshold properties, respectively (Fig. 5.2A). In-
teractions between populations are reflected in the terms included in the argument∑

i gi,XCi of the steady-state firing rate functions FX∞(·) for each population. Ad-
ditionally, random amplitude, excitatory pulses, arriving according to a Poisson pro-
cess, were included in the arguments of the LC and DR steady-state activation func-
tions to simulate activity of top-down excitatory projections from thalamocortical
circuits (Arnsten and Goldman-Rakic 1984; Jodo et al. 1998).

Neurotransmitter concentration, Ci(t), depends on the firing rate of the presy-
naptic population, generically referred to as FY (t) (i = N (NE) for Y = LC; i = S

(5-HT) for Y = DR; i = G (GABA) for Y = VLPO; i = A(R) (ACh) for Y = R;
and i = A(WR) (ACh) for Y = WR). In our formalism, Ci(t) evolves to a nonlinear
function of FY (t) as described by the following equation:

C′
i = Ci∞(FY ) − Ci

τi

, (5.3)

where steady-state neurotransmitter release, Ci∞(·), is a saturating function and
τi is the associated time constant. Because different microdialysis techniques lead
to differences in absolute reported neurotransmitter concentrations, we normal-
ize each neurotransmitter concentration between 0 and 1. The functional form of
Ci∞(f ) = tanh(f/γi), prescribes the relationship between presynaptic firing rate
and neurotransmitter release, and the shape of this function was chosen to be con-
sistent with experimental data (Aston-Jones and Bloom 1981; Lydic and Baghdoyan
1993) (Fig. 5.2B). The time scale described by τi reflects the time dynamics asso-
ciated with neurotransmitter release at the level of the population rather than at an
individual synapse.

Neurotransmitter release is correlated with the firing rate of the presynaptic pop-
ulation, and variability of release grows with concentration level (Aston-Jones and
Bloom 1981). To incorporate variability of neurotransmitter release into the model,
the steady-state neurotransmitter release function was multiplicatively scaled by a
noise factor whose amplitude randomly varied (with normal distribution and unit
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Fig. 5.2 Representative steady-state firing rate function (A) and neurotransmitter release function
(B) showing deterministic values (thick line) and randomly varying values (dashed lines). Modi-
fied from Diniz Behn and Booth, Journal of Neurophysiology, 2010 (Am Physiol Soc, used with
permission)

mean) according to a Poisson process with an average rate of 0.1 Hz. This mech-
anism introduced a time-varying element into steady-state neurotransmitter release
and resulted in variable target neurotransmitter concentrations for fixed presynaptic
firing rates (Fig. 5.2B).

Transitions between sustained bouts of wake and sleep are governed by a homeo-
static sleep drive that describes the universally recognized propensity for increasing
sleep need with time awake. The neuromodulator adenosine (reviewed in Basheer
et al. 2004; Huang et al. 2007) is one mechanism involved in mediating homeo-
static sleep drive. We modeled the sleep-promoting effects of adenosine through
the variable h that increases toward 1 during wakefulness and decreases toward 0
during sleep states with time scales τhw and τhs , respectively. To incorporate this
homeostatic sleep drive into the sleep–wake network model, we focused on the ef-
fects of adenosine on the VLPO (Chamberlin et al. 2003; Morairty et al. 2004;
Gallopin et al. 2005) by including an h-dependence in the activation threshold of
the VLPO population (compare to (5.2)):

FVLPO∞(c) = VLPOmax(0.5(1 + tanh((c − βVLPO(h))/αVLPO))), (5.4)

where βVLPO(h) = −kh with the parameter k relating the value of h to the VLPO
activation threshold.

Parameter values in the model were based on experimental data when possible,
inferred from related experimental data when plausible or optimized to replicate the
fine architecture of rat sleep–wake patterning. The full equations are given in Diniz
Behn and Booth (2010). All parameter values are the same as in Diniz Behn and
Booth (2010) except for the following: gG,LC = gG,DR = 2.7, gA,R = 1.5, gN,R =
gS,R = 3.8, gG,WR = 1.5, βLC = βDR = −0.3, βWR = −0.15, αWR = 0.5 and k =
−4. The following parameters were modified to obtain sleep–wake patterning for
the rat and the mouse: gA,LC = gA,DR = 3 (rat), 4 (mouse); gG,R = 1.1 (rat), 1
(mouse); gA,WR = 0.6 (rat), 0.7 (mouse); τA,R = τA,WR = 50s (rat), 40 s (mouse);
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αR = 0.28 (rat), 0.4 (mouse); βR = −0.66 (rat), −0.65 (mouse); τhw = 700 s (rat),
300 s (mouse); τhs = 250 s (rat), 200 s (mouse). Additionally, the random excitatory
pulses to the LC and DR had mean amplitude of 10 and standard deviation of 0.1 for
both the rat and mouse, and occurred according to a Poisson process with average
rate of 0.003 Hz (rat), 0.004 Hz (mouse). The pulses instantaneously activated and
decayed exponentially with a time constant of 10 s (rat), 20 s (mouse). The model
equations were numerically simulated using a modified Euler method with time step
0.005 s implemented with the software XPPAUT, developed by G.B. Ermentrout.1

In simulations of the model network, states of wake, NREM sleep, and REM
sleep were interpreted based on firing rates of neuronal populations and concentra-
tion levels of their associated neurotransmitters (see Fig. 5.3). For example, wake
was defined by activation of the wake-promoting populations (firing rates FLC,FDR
and FWR) and high expression of NE, 5-HT and ACh (concentration levels CN,CS

and CA(WR), respectively); NREM sleep was defined by activation of the VLPO
(firing rate FVLPO) and inactivation of wake-promoting populations, resulting in
high GABA expression (concentration level CG) and diminished monoamine and
cholinergic expression; and REM sleep was associated with high FVLPO levels and
activation of the REM-promoting population (firing rate FR) with its contribution
to ACh expression (concentration level CA(R)).

5.2.2 Suprachiasmatic Nucleus Projections to Sleep–Wake Centers

Direct projections from the SCN to the populations of the sleep–wake regulatory
network are sparse, but there are strong indirect projections that mediate circa-
dian regulation of sleep–wake behavior. The primary pathway projects from the
SCN to the ventral subparaventricular zone (sPVZ) and then to the dorsalme-
dial hypothalamus (DMH) (Saper et al. 2005). The primary neurotransmitter ex-
pressed by SCN synapses as well as synapses of sPVZ and DMH neurons is
GABA, thus the indirect projection pathway consists of sequential inhibitory pro-
jections. The DMH excites neurons in the lateral hypothalamus which project to
the wake-promoting populations LC and DR and to REM-promoting populations
in the LDT and PPT (Horvath et al. 1999; Burlet et al. 2002; Chou et al. 2003;
Espana et al. 2004). The sleep-promoting population VLPO receives projections
from both the sPVZ and the DMH, in addition to sparse direct projections from
the SCN that appear to be both GABAergic (inhibitory) and glutamatergic (excita-
tory) (Sun et al. 2001). Since the activity rhythm in the SCN is similarly phased for
diurnal and nocturnal animals, inversion of SCN circadian signaling in nocturnal
rodents is presumed to occur downstream from the SCN, with the sPVZ being a
likely candidate (Mistlberger 2005). For simplicity, we do not include the interme-
diary populations or their neurotransmitters in the current extension of our network
model. Instead, we introduce projections from the SCN that simulate the net effects

1Available at ftp://ftp.math.pitt.edu/pub/bardware.



114 C.G. Diniz Behn and V. Booth

of these direct and indirect projections to the sleep–wake populations. Specifically,
direct and indirect projections result in net excitatory effects of the SCN on the
VLPO, and indirect projections result in net inhibitory effects of the SCN on LC,
DR, LDT, and PPT, see Fig. 5.1.

The 24-hour period of the circadian pacemaker varies slowly compared to the
time scales of rodent sleep–wake behavior. Therefore, we modeled SCN activ-
ity as a fixed parameter, FSCN . For each sleep–wake population receiving indi-
rect SCN input, FSCN was appropriately weighted by the parameters gSCN,X (for
X = LC, DR, R, and VLPO), and the resulting terms were added to the arguments
of the associated steady-state firing rate function. The weighting parameters are
summarized in following table:

gSCN gSCN,DR gSCN,VLPO gSCN,R

Rat 1.8 1.8 1.4 0.33
Mouse 1.75 1.75 1.4 0.4

The parameter FSCN was switched from a low value during the dark period (FSCN =
0.15 (rat), 0.2 (mouse)) to a high value during the light period (FSCN = 0.73 for
both rat and mouse) to represent the general trend in firing rates of SCN neurons
(Schwartz et al. 1983; Gillette and Reppert 1987; Deboer et al. 2003). The FSCN and
gSCN,X values for the rat and mouse differ slightly so as to obtain optimal agreement
with experimental measurements of the fine architecture of sleep–wake patterning.
In addition, for the mouse, the average frequency of the random excitatory pulses
to LC and DR was increased from 0.004 to 0.007 Hz during the dark period to rep-
resent an increase in top-down sensory input during the animal’s active period that
acts to fragment NREM sleep more significantly in the mouse compared to the rat
(see below).

5.3 Results

5.3.1 Rat Sleep–Wake Patterns in Dark and Light Periods

Within this firing rate model formalism, neuronal firing activity is positively cor-
related with the strength of resulting neurotransmitter action on the postsynaptic
population. Thus, when SCN activity is low during the dark period, the action of
the simulated direct and indirect SCN afferents to the sleep–wake centers is mini-
mized. In this parameter regime, simulated sleep and wake patterning matched that
experimentally observed in the rat, including features such as consolidated wake
bouts, fragmented NREM bouts, and bidirectional transitions between both wake
and NREM sleep and between NREM and REM sleep (Fig. 5.3A). Consistent with
experimental observations, many REM bouts were immediately followed by transi-
tions to wake (Weitzman et al. 1980). In addition to these similarities in the struc-
ture of sleep–wake behavior, standard measures of wake, NREM sleep, and REM
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Fig. 5.3 Model simulations of rat sleep–wake behavior in the dark period (A) and the light period
(B). Hypnogram (top trace), population firing rates (curves in second to fifth traces) and neuro-
transmitter concentration levels (shaded regions in second to fifth traces) in wake-promoting pop-
ulations LC and DR (FLC,FDR and CN,CS , 2nd trace, light gray), NREM-promoting population
VLPO (FVLPO and CG, third trace, black), REM- promoting population (FR and CA(R), fourth
trace, dark gray) and wake/REM-promoting population (FWR and CA(WR), fifth trace, dark gray).
State-dependent firing rates in the second to fifth traces determine the sleep–wake state recorded
in the hypnogram

sleep were similar between simulations and experimental reports of baseline sleep–
wake behavior for adult male Sprague Dawley rats during the dark period (Blanco-
Centurion et al. 2007). These measures included total percentages of time in wake,
NREM sleep, and REM sleep, mean bout durations, and numbers of bouts across 12
hours, cf. Fig. 5.4 (dark unhatched bars).

In the dark period parameter regime, model dynamics are dominated by a NREM
sleep-REM sleep–wake cycling pattern. As described in Diniz Behn and Booth
(2010), when the noisy components of the model (variability of the neurotransmit-
ter release functions and random excitatory inputs to the LC and DR) are removed,
this cycle is a stable, periodic solution of the model that is inherent to the network
structure. On a qualitative level, we can understand how the network structure dic-
tates this cycling pattern by considering the action of the homeostatic sleep drive
on VLPO activation. In particular, this analysis clarifies the mechanisms that gov-
ern the occurrence of REM sleep and allow REM activation exclusively from the
NREM state.

During wakefulness, the homeostatic sleep drive variable h increases, thereby
causing a decrease in the activation threshold of the VLPO steady-state activation
function as described in (5.4). As h increases, this change in activation threshold
eventually causes VLPO to activate, and the resulting expressed GABA inhibits
LC and DR to eventually suppress their activity and drive a transition to NREM
sleep. During NREM sleep, h decreases in a manner consistent with dissipation of
homeostatic sleep drive. As h decreases, the VLPO activation threshold increases
until VLPO can no longer maintain activation, and LC and DR are released from
GABA-mediated inhibition. This allows LC and DR to activate, thereby driving a
transition to wake.
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Fig. 5.4 Simulated rat (unhatched bars) and mouse (hatched bars) sleep–wake behavior captures
inter-specific differences. The following standard measures for wake (W), NREM sleep (NR) and
REM sleep (R) during the light period (white bars) and the dark period (dark gray bars) are re-
ported: percent time spent in each state (A); mean bout duration (B); and mean number of bouts
over 12 hours (C). Means and standard deviations of model results determined from 10 simulation
runs

To understand the timing of REM sleep within this cycle, we consider the net-
work effects on the REM-promoting population during each of these transitions.
Since the REM-promoting population receives both monoaminergic inhibition from
LC and DR, and GABAergic inhibition from VLPO, the REM-promoting pop-
ulation is maximally inhibited and least likely to activate at the wake-to-NREM
sleep transition when VLPO, LC, and DR are all active. By contrast, at the NREM
sleep-to-wake transition, the REM-promoting population is minimally inhibited
since monoaminergic inhibition is absent, and GABAergic inhibition decreases
with VLPO inactivation. Thus, the differences in net inhibitory input to the REM-
promoting population at these two state transitions prevent REM activation at the
wake-to-NREM sleep transition but promote it at the NREM sleep-to-wake tran-
sition, consistent with experimentally observed patterns of REM sleep (Dijk and
Kronauer 1999; Carskadon and Dement 2000; Mochizuki et al. 2004).

SCN activity is higher in the light period, and we simulated this difference by in-
creasing the model parameter FSCN , representing the firing rate of the SCN, from the
dark period value of FSCN = 0.15 to the light period value of FSCN = 0.73. The re-
sulting coherent increase in the strength of SCN-mediated inhibition and excitation
of sleep–wake regulatory populations resulted in significant changes in simulated
sleep and wake patterning: extended wake bouts were shorter, and NREM bouts
were longer and more consolidated, though brief wake bouts and REM bouts con-
tinued to fragment NREM sleep. Additionally, REM bouts were longer and occurred
more often (Fig. 5.3B). Standard measures of the fine architecture of sleep–wake be-
havior, including total percentages of time in wake, NREM sleep, and REM sleep,
mean bout durations, and numbers of bouts across 12 hours agree well with exper-
imental measurements for adult male Sprague Dawley rats during the light period
(Blanco-Centurion et al. 2007), see Fig. 5.4 (white unhatched bars). We empha-
size that these experimentally consistent light and dark period associated changes
in state patterning are obtained by varying the single parameter, FSCN . Properties of
the homeostatic sleep drive, population activation, and neurotransmitter release, as
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well as all time constants governing population and neurotransmitter dynamics, are
identical in the simulated light and dark periods.

The increase in FSCN augmented both inhibitory input to LC, DR and the REM-
promoting population and excitatory input to the VLPO. We can understand how
SCN projections modulate network patterning by considering their effect on the
homeostatically driven alternation between NREM sleep and wake. Projections
from the SCN to both wake- and NREM sleep-promoting populations all contributed
to decreasing wake bout durations. The SCN excitatory input to the VLPO decreases
the net inhibition level the VLPO receives during the wake state. Thus, the homeo-
statically controlled VLPO activation threshold does not need to decrease as much,
or, equivalently, the homeostatic sleep drive h does not need to increase as much, to
drive VLPO activation. Since VLPO activation terminates wake bouts, this change
results in shorter wake bouts. In addition, SCN inhibitory input to LC and DR in-
creases the net inhibition level to the LC and DR. Thus, in the presence of strong
SCN activity, less GABAergic inhibition from the VLPO is necessary to suppress
LC or DR activation, so this mechanism also contributes to decreasing wake bout
durations.

Interestingly, effects of SCN inhibitory input to the LC and DR propagate
through the network to affect both NREM and REM bout durations. NREM bout
durations are decreased since the SCN inhibitory projection to LC and DR short-
ens wake bouts which, in turn, shorten the period of the homeostatically controlled
alternation between wake and NREM sleep by decreasing the time necessary to
return the homeostatically controlled VLPO activation threshold to values that in-
activate the VLPO. On the other hand, this projection acts to lengthen REM bout
durations. In the reciprocal-interaction structure of the network, a REM bout is ter-
minated by monoaminergic inhibition from the LC and DR. Therefore, increased
SCN inhibitory input to the LC and DR translates to an increase in the levels of
cholinergic excitation (from the REM-promoting and wake-REM-promoting pop-
ulations) needed for LC and DR activation. Thus, the REM-promoting population
is able to maintain activation for a longer period of time before it is inactivated by
monoaminergic inhibition.

The question remains, then, what role the effects of the SCN inhibitory pro-
jection to the REM-promoting population play. Increased inhibitory input to the
REM-promoting population has very limited impact on REM bout duration. How-
ever, this inhibition delays the activation of the REM-promoting population during
NREM sleep, thereby increasing NREM bout durations. Hence, SCN inhibitory
input to the LC and DR, and to the REM-promoting population have competing ef-
fects on NREM bout durations which may contribute to the general maintenance of
mean NREM bout durations across the light and dark periods in contrast to the more
significant changes observed in wake and REM bout durations (Blanco-Centurion
et al. 2007).

For high levels of FSCN , when SCN projections to the sleep–wake populations
are strong as occurs in our light period simulations (see Fig. 5.3B), the excitatory
input to the VLPO and the inhibitory input to the LC and DR can override the home-
ostatically controlled alternations between wake and NREM sleep, forcing sustained
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VLPO activation. Transitions from NREM sleep to an extended wake bout can occur
in this parameter regime due to the noisy components of the model, but their occur-
rence is irregular and sporadic. The duration of these extended wake bouts is con-
trolled by the homeostatic sleep drive variable h and is generally short due to the ef-
fects of the SCN projections on the homeostatically driven cycle as described above.

Although most of the sustained VLPO activation translates to NREM sleep, the
NREM sleep state is fragmented by the occurrence of brief wake bouts, driven
by the random excitatory inputs to LC and DR, and of REM bouts governed by
the reciprocal-interaction oscillations between the REM-promoting population and
wake-promoting LC and DR. These oscillations, similar to those in the original
reciprocal-interaction model for NREM-REM cycling (McCarley and Hobson 1975;
Massaquoi and McCarley 1992), occur through activation of the REM-promoting
population that provides cholinergic excitation to LC and DR, which, in turn, pro-
duce monoaminergic inhibition that terminates REM activation. In our model pa-
rameter set, the substantial SCN inhibitory input to LC and DR results in minimal
LC and DR activation in response to REM sleep-related cholinergic excitation. In
many instances, these minor activations do not trigger a wake bout. Therefore, at
the level of behavior, these interactions produce cycling between NREM sleep and
REM sleep that can be regular and relatively fast; however, this cycling is generally
interrupted by random, noise-induced brief wake bouts that delay REM activation.

5.3.2 Mouse Sleep–Wake Patterns in Light and Dark Periods

While there is variability within rat and mouse species, measurements of percent-
ages of time spent in the states of wake and NREM sleep for both rat and mouse
species in the light and dark periods do not differ greatly (Franken et al. 1999;
Blanco-Centurion et al. 2007; Hu et al. 2007). Instead, major differences between rat
and mouse sleep–wake patterning appear in the fine temporal architecture of sleep–
wake behavior. These include an increase in fragmentation of wake and NREM
bouts and a decrease in mean REM bout durations in the mouse compared to the
rat (Blanco-Centurion et al. 2007; Hu et al. 2007). We modified a limited number
of parameters in our model network from their values replicating rat sleep–wake
patterning in the dark period to obtain patterning that agreed well with standard
measures of sleep–wake patterning in adult male C57BL/6J mice in the dark pe-
riod (Hu et al. 2007), cf. Fig. 5.5A and Fig. 5.4 (dark hatched bars). Additionally,
and more importantly, by increasing our SCN activity variable FSCN by roughly
the same amount that accounted for the differences in rat sleep–wake patterning in
the light and dark periods, our model network replicated the differences in mouse
sleep–wake patterning in the light and dark periods (Hu et al. 2007) (Fig. 5.5B and
Fig. 5.4, hatched bars).

To obtain appropriate sleep–wake patterning for the mouse in the dark pe-
riod, we adjusted parameters to affect wake and NREM bout consolidation by
decreasing the time constants governing the increase and decrease of the home-
ostatic sleep drive variable h (τhw = 300 s, τhs = 200 s). For the mouse, then,
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Fig. 5.5 Model simulations of mouse sleep–wake behavior in the dark period (A) and the light
period (B). Hypnogram (top trace), population firing rates (curves in second to fifth traces) and
neurotransmitter concentration levels (shaded regions in second to fifth traces) in wake-promoting
populations LC and DR (FLC,FDR and CN,CS , second trace, light gray), NREM-promoting pop-
ulation VLPO (FVLPO and CG, third trace, black), REM-promoting population (FR and CA(R),
fourth trace, dark gray) and wake/REM-promoting population (FWR and CA(WR), fifth trace, dark
gray). State-dependent firing rates in the second to fifth traces determine the sleep–wake state
recorded in the hypnogram

the homeostatic sleep drive increased more quickly during wake states, caus-
ing earlier transitions to NREM sleep, and then dissipated slightly faster during
NREM sleep, providing a higher frequency of the homeostatically driven alter-
nations of wake and NREM sleep. To further promote increased fragmentation
of NREM bouts in the dark period, we altered random excitatory inputs to LC
and DR by increasing their frequency and amplitude as well as the time constant
governing their decay. To obtain the significantly shorter mean REM bout dura-
tions measured in the mouse compared to the rat (Blanco-Centurion et al. 2007;
Hu et al. 2007), we adjusted several parameters that control cholinergic expression
of the REM- and wake-REM-promoting populations and the response of the LC
and DR to cholinergic excitation. Specifically, to promote faster LC and DR re-
sponse to the release of ACh, we increased the weighting factors gA,LC and gA,DR
(gA,LC = gA,DR = 4); to promote faster activation of the wake-REM-promoting
population and thus increase the rate of ACh release, we increased the weighting fac-
tor gA,WR (gA,WR = 0.7); and to increase the rate of ACh expression, we decreased
the time constant governing ACh expression τA,R and τA,WR (τA,R = τA,WR = 40 s).
To further limit REM bout durations, we adjusted parameters that control the level
of activation of the REM-promoting population. In particular, we increased the pa-
rameter governing the slope of the steady-state activation function of the REM-
promoting population to make the slope shallower (αR = 0.4) and slightly increased
its activation threshold (βR = −0.65).

Model dynamics for the mouse in the dark period are generally similar to the dy-
namics for the rat; there is a dominant, homeostatically driven cycling pattern from
NREM sleep to REM sleep to wake. However, the parameter changes that promote
shorter REM bout durations occasionally result in minimal REM-population acti-
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vation at the NREM-to-wake transition (see Fig. 5.5A, fourth trace) so that a REM
bout is not triggered and NREM sleep transitions directly to an extended wake bout.

When the SCN activity parameter FSCN is increased to make SCN afferents to
the sleep–wake populations strong, effects on model dynamics similar to those in the
rat case described above are observed. There is a systematic decrease in wake bout
durations due to increased inhibition to the LC and DR, and increased excitation to
the VLPO. Network propagated effects of the increased inhibitory input to LC and
DR increase REM bout durations. In addition, competing effects of SCN inhibitory
input to the LC and DR, and to the REM-promoting population prevent significant
changes in NREM bout durations. For simulations of mouse sleep–wake patterning
in the light period (Fig. 5.5B), SCN activity levels are highest and suppress homeo-
statically driven alternations between NREM sleep and wake, similar to the case of
the rat. For the mouse, noise-initiated extended wake bouts occur more frequently
due to the parameter changes increasing LC and DR response described above, but
are shorter in length due to changes in the time constants governing the homeostatic
sleep drive. NREM-REM cycling occurs through reciprocal-interaction oscillations
between the REM-promoting population, and LC and DR, but more often LC and
DR activation terminating the REM bout triggers a brief wake bout. To promote
consolidation of NREM bouts during the light period for the mouse, we decreased
the frequency and amplitude of the random excitatory inputs to LC and DR back to
levels similar to the rat.

5.4 Discussion

5.4.1 Summary of Results

The propagation of circadian signals from the SCN to sleep–wake regulatory centers
involves myriad projection pathways, including multiple direct and indirect synaptic
projections that target both sleep-promoting and wake-promoting populations, and
paracrine signaling of diffusible molecules such as transforming growth factor-α
and prokineticin-2 (Mistlberger 2005). However, the dynamic effects of individ-
ual pathways on activity of sleep–wake regulatory populations have not been de-
termined. We have identified a parsimonious set of physiologically justified SCN
synaptic projections to key wake-, and sleep-promoting populations such that co-
herent changes in activity on these projections alter the fine architecture of ro-
dent sleep–wake patterning consistent with experimental measurements of circadian
modulation of sleep–wake behavior.

By analyzing model solutions, we have identified how these SCN projections
can shift the network into different dynamical regimes where sleep–wake patterning
shows characteristics typically observed in the light or dark circadian phases. When
the strength of these projections was low, consistent with low SCN firing rates ob-
served during the dark period, model dynamics were dominated by homeostatically
driven alternations of NREM sleep and extended wake states. NREM bouts were
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fragmented by brief wakes and REM bouts occurred infrequently and with short du-
ration. Increasing the strength of SCN projections, consistent with the higher SCN
firing rates observed during the light period, caused a systematic decrease in the du-
ration of extended wake bouts and an increase in REM bout durations. In addition,
these strong projections shifted network dynamics to a regime in which NREM sleep
bouts, though fragmented by brief wakes, were more consolidated; cycling between
NREM and REM bouts occurred more regularly; and NREM sleep was interrupted
irregularly and sporadically by relatively extended wake bouts. Model analysis also
illuminated how an inhibitory SCN projection to REM-promoting regions in the
LDT and PPT is not inconsistent with longer REM bout durations occurring when
SCN activity is high. Our analysis showed that, in the proposed network structure,
REM bout durations are more tightly regulated by monoaminergic inhibition from
LC and DR, while inhibitory input from the SCN had a greater effect on the timing
of REM bout initiation.

5.4.2 Network Structure Captures Salient Differences Between Rat
and Mouse Sleep

Experimental evidence suggests that sleep–wake regulatory mechanisms are gener-
ally conserved across species. We propose that an important constraint on a hypoth-
esized sleep–wake regulatory network structure is its ability to generate 24-hour
sleep–wake patterning associated with multiple species. While sleep–wake pattern-
ing among rodent species does not differ as dramatically as across other mammalian
species, there are several crucial differences in the fine architecture of rat and mouse
sleep.

Some of these differences appear to be independent of the detailed network struc-
ture. For example, all dynamic sleep–wake regulatory mathematical models include
a homeostatic sleep drive that regulates transitions of the mutually inhibitory “flip-
flop” interactions between NREM- and wake-promoting populations (Tamakawa et
al. 2006; Diniz Behn et al. 2007; Phillips and Robinson 2007; Rempe et al. 2010).
As we have shown, changes in the time scales governing the homeostatic sleep drive
can account for rat/mouse variations in wake and NREM bout durations in our net-
work structure. However, since the homeostatic sleep drive plays a comparable role
in regulating wake and NREM bout durations in other models, it is likely that wake
and NREM bout durations will be subject to a similar dependence on the time scales
of the growth and decay of the homeostatic sleep drive in other network structures.
Such differences in time scales may be linked to inter-specific variation in metabolic
rate (see below).

Other significant differences in the fine architecture of sleep–wake behavior are
critically tied to network structure. One such difference is the short REM bout dura-
tion in the mouse compared to the rat. The network mechanisms responsible for the
regulation for REM sleep are much debated, and a number of competing conceptual
models have been proposed (Lu et al. 2006; Luppi et al. 2006; Brown et al. 2008;
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Sapin et al. 2009). In the reciprocal-interaction-based network structure we con-
sider, REM bout duration is affected by the response properties of LC and DR to
cholinergic excitation from the REM-promoting population and the consequent re-
sponse of the REM-promoting population to LC- and DR-mediated monoaminergic
inhibition. The parameter modifications necessary to obtain appropriately decreased
REM bout durations indicate possible sources of physiological differences between
rat and mouse that can be experimentally probed (see below). Similarly, accounting
for this difference in REM bout duration in competing models for REM regulation
would suggest other targets for investigation of physiological differences between
rat and mouse or identify important constraints on network structure.

Another fundamental difference in the fine architecture of rat and mouse sleep is
the similarity in the number of bouts of wake and NREM sleep in 12-hr light and
dark periods for rats, and the greater number of NREM bouts compared to wake
bouts measured in mice (Blanco-Centurion et al. 2007; Hu et al. 2007). This differ-
ence indicates that mice often transition from REM sleep directly back to NREM
sleep while rats typically transition from REM sleep to wakefulness, at least briefly,
before entering NREM sleep again. A limitation of the reciprocal-interaction model
for REM sleep regulation is that such a network structure cannot produce REM sleep
without generating activity in LC and DR. In the parameter regimes presented here
for the rat and mouse, LC and DR activation following a REM bout was often min-
imal and did not trigger a wake bout. While these dynamics resulted in appropriate
differences in the numbers of NREM and wake bouts for the mouse simulations, the
imbalance in bout numbers was also present in the rat simulations (see Fig. 5.4).

We have identified other parameter values that give appropriately balanced wake
and NREM bouts for the rat in the light period (Diniz Behn and Booth 2010). How-
ever, we note that, in the reciprocal-interaction structure, increasing REM bout du-
ration and reliably obtaining a wake bout following a REM bout can be competing
mechanisms: increased REM bout durations result from weaker LC and DR activa-
tion, but weak LC and DR activation is not consistent with a post-REM sleep–wake
bout. While further parameter optimization may result in parameter values that give
the appropriate numbers of bouts for rat and mouse in the light and dark periods, the
sensitivity of this aspect of the fine architecture of our model dynamics suggests a
constraint on the proposed network structure.

A final species-dependent feature of the fine architecture of sleep–wake behavior
pertains to the pattern of REM sleep. In particular, a conserved network structure
should be able to produce REM bouts with either regular or variable timing. Al-
though periodic REM bouts have not been reported in rats or mice, the regular alter-
nation between NREM sleep and REM sleep has been well-characterized in many
species including humans (McCarley and Hobson 1975; Carskadon and Dement
2000). These periodic oscillations were a driving consideration in the original dy-
namic implementation of the reciprocal-interaction hypothesis (McCarley and Hob-
son 1975; Massaquoi and McCarley 1992). With minor variations in parameters,
a reciprocally connected network structure, such as ours, can produce both regular
alternations in NREM and REM sleep and the more variable REM sleep bouts ob-
served in rats and mice (Diniz Behn and Booth 2010). Such flexibility has not yet
been demonstrated for other conceptual models of REM sleep regulation.
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5.4.3 Model Predictions

The SCN projection pathways to sleep–wake regulatory populations that we have
considered here represent a parsimonious reduction of the myriad synaptic and
paracrine projections by which the SCN conveys circadian signaling to sleep–wake
centers. The ability of these projections to regulate the fine architecture of sleep pat-
terning in a manner consistent with experimentally measured circadian modulation
reinforces their contributions in the physiological system. Thus, model results pre-
dict that net inhibitory inputs to wake-promoting and REM-promoting populations
and net excitatory inputs to NREM sleep-promoting populations are key factors in
the SCN projection pathway. Analysis of model results predicts that the inhibitory
inputs to the wake-promoting populations have a direct effect on wake bout dura-
tions, but, interestingly, the inhibitory inputs to the REM-promoting population do
not affect REM bout durations significantly. We simulated coherent activation on
all projection pathways to obtain appropriate circadian modulation of sleep–wake
patterning. Further analysis that investigates effects on patterning of dissociated ac-
tivation of these pathways may provide specific predictions for experiments that
target manipulations of individual projection pathways.

The parameter changes required to obtain the different patterning of sleep and
wake states in the rat and the mouse within this network structure suggest physio-
logical differences between the species that can be experimentally tested. For ex-
ample, required changes to time constants governing the homeostatic sleep drive
variable h suggest differences in the accumulation and dissipation of sleep need that
may be linked to metabolic rate, body size, and other physiologic variables (Savage
and West 2007). The reciprocal-interaction network structure for regulation of REM
bout durations in our model suggests that the activation of LC and DR in response to
cholinergic excitation is faster in mice compared to rats. This faster response could
be mediated pre-synaptically in the release of ACh to the LC and DR, or postsynap-
tically in the distribution and kinetics of ACh receptors on the dendrites of LC and
DR neurons. Finally, our changes to parameters governing activation levels of the
REM-promoting population can be interpreted as suggesting higher firing thresholds
and greater threshold variability of neurons in the REM-promoting subpopulations
of the LDT and PPT in the mouse compared to the rat.

5.4.4 Regulation of REM Sleep

In the sleep research field, there is general consensus that mutually inhibitory
projections between wake-promoting populations, including LC and DR, and the
NREM sleep-promoting population VLPO are involved in the regulation of tran-
sitions between wake and NREM sleep states. There is less consensus regarding
the mechanisms involved in the regulation of REM sleep. The network structure
we consider here is based on the classical cholinergic hypothesis of REM sleep
regulation originally proposed by McCarley and Hobson (Hobson et al. 1975;
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McCarley and Hobson 1975). However, recent experimental evidence has chal-
lenged the cholinergic hypothesis. The role of the neurotransmitter GABA in si-
lencing activity in LC and DR (Nitz and Siegel 1997; Gervasoni et al. 1998),
and thereby gating the production of REM sleep, has led to a focus on REM
active GABAergic populations and their roles in proposed conceptual models of
REM sleep regulation (Lu et al. 2006; Luppi et al. 2006; Brown et al. 2008;
Sapin et al. 2009). These alternate conceptual models ascribe to the cholinergic
system varying levels of involvement (reviewed in Diniz Behn and Booth 2010).

Our model analysis has indicated that obtaining appropriate REM sleep struc-
ture and patterning across circadian phases and across rodent species sensitively de-
pends on specific network structure. Ongoing experimental work will help to refine
the anatomy relevant to different proposed conceptual models for REM regulation,
but without formal dynamic modeling it can be difficult to infer the full spectrum
of implications associated with a given model. By comparing network flexibility
with respect to the characteristics of REM sleep patterning across species and under
circadian modulation, modeling can clarify possibilities subject to anatomical and
physiological constraints.
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Chapter 6
Neural Correlates of Human NREM Sleep
Oscillations

A. Foret, A. Shaffii-Le Bourdiec, V. Muto, L. Mascetti, L. Matarazzo,
C. Kussé, and P. Maquet

6.1 Introduction

Behaviorally, sleep is a normal, reversible, periodically recurring behavior charac-
terized by a decreased responsiveness to external stimuli, a diminished motor ac-
tivity and a characteristic position. Sleep is often preceded by the active retreat to a
safe, secluded place. It is homeostatically regulated in such a way that any extension
of the waking period is followed by an increase in sleep depth and (to some extent)
duration (Borbely 1982). In homeotherms, additional neurophysiological parame-
ters allow one to recognize two main sleep states: a “regular” sleep, also known
as non rapid eye movement (NREM) sleep which shows gradual changes in sleep
depth, and a ‘paradoxical’ sleep or rapid eye movement (REM) sleep, which com-
bines nearly complete paralysis of the musculature, bursts of rapid eye movements
with elevated brain activity (Aserinsky and Kleitman 2003).

Because sleep is observed in a large number of species (Mammals and Birds but
also Reptiles, Fishes and even Invertebrates), it is thought to provide a substantial
adaptive advantage to these species and thus to support an important physiological
function. Accordingly, prolonged sleep deprivation leads rats to die within a few
weeks (Rechtschaffen et al. 1989). Although numerous hypotheses have been pro-
posed over the years, the functions of sleep are not yet fully specified.

A deeper understanding of sleep certainly requires the characterization of specific
sleep rhythms. In this chapter, we focus on NREM sleep oscillations: slow waves
and spindles. In a first section, we briefly review their cellular mechanisms.1 The

1Cf. Chap. 4 by Alain Destexhe and Diego Contreras.
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second section offers a description of their cerebral correlates in humans. The last
part of the chapter deals with the functional significance of NREM sleep oscillation
for brain function.

6.2 NREM Sleep Oscillations: Definitions and Neural
Mechanisms

In humans, NREM sleep is further divided in three stages (Rechtschaffen and Kales
1968). Stage 1 sleep corresponds to somnolence and technically is not considered
as proper sleep. NREM sleep is arbitrarily constituted of light sleep (stage 2 sleep)
and deep slow-wave sleep (SWS, stages 3 and 4 sleep). Light and deep NREM
sleep are defined by EEG criteria but are essentially characterized by two main
oscillations, sleep spindles and the slow oscillation, the abundance of which varies
on EEG recordings as sleep deepens.

6.2.1 The Slow Rhythm (<1 Hz) and Slow Waves

The slow rhythm (<1 Hz) constitutes the fundamental rhythm which characterizes
NREM sleep. Originally, unit recordings in cats showed that neuronal membrane
potential oscillates at low frequency (around 1 Hz). This oscillation shapes neu-
ronal activity, by alternating a depolarizing phase, associated with important neu-
ronal firing (“up state”), and a hyperpolarizing phase, during which cortical neurons
remain silent for a few hundred milliseconds (“down state”) (Steriade et al. 1993b;
Steriade et al. 2001). This so-called slow oscillation (<1 Hz) is recorded during
NREM sleep in all major types of neocortical neurons (both excitatory and in-
hibitory) and occurs synchronously in large neuronal populations. At the population
level, the activity is therefore made up of the alternation of ‘ON’ states and ‘OFF’
states’. Because these events represent massive and synchronous changes in large
neuronal populations, they can be reflected on EEG recordings as large amplitude
low frequency waves (Steriade et al. 1993a). The slow oscillation is generated by the
cortex as can be observed after thalamic destruction (Steriade et al. 1993a), in corti-
cal slabs isolated from thalamic influence (Timofeev et al. 2000) or in cortical slices
(Sanchez-Vives and McCormick 2000). However, two intrinsic conditional thala-
mic oscillators also participate in the generation of the slow oscillation (Crunelli
and Hughes 2009).

In humans, the taxonomy of SWS waves is not always clear. A slow rhythm was
initially identified on scalp EEG recordings as the recurrence of spindles (Acher-
mann and Borbely 1997) or their grouping by slow waves (Molle et al. 2002). More
recently, high amplitude slow waves themselves were taken as realization of the
slow rhythm (Massimini et al. 2004). On the other hand, historically, the power
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density in the 0.75–4 Hz frequency band, usually referred to as ‘slow-wave ac-
tivity’ (SWA), has proved a very useful and popular parameter because it quan-
tifies the dissipation of homeostatic sleep pressure during NREM sleep (Borbely
2001). The frequency bounds of SWA do not respect the dichotomy between slow
(<1 Hz) and delta rhythms (1–4 Hz), which is based on differences in the re-
spective cellular correlates of these rhythms in animals (Steriade and McCarley
2005). In the temporal domain, the amplitude of SWS waves is classically larger
than 75 µV (Rechtschaffen and Kales 1968) but only the largest waves (>140 µV)
were taken as realizations of the slow oscillation (<1 Hz) (Molle et al. 2002;
Massimini et al. 2004). This approach suggests that relatively smaller waves (am-
plitude between 75 and 140 V) correspond to delta waves (1–4 Hz). These faster
waves of smaller amplitude would also be an expression of the slow oscillation but
arise when the synchronization in the network is less marked (Esser et al. 2007;
Vyazovskiy et al. 2009).

6.2.2 Spindles

Spindles constitute the hallmark of light NREM sleep, although they can still be
detected in lower amounts during SWS. In humans, spindles consist of waxing-and-
waning 11–15 Hz oscillations, lasting 0.5 to 3 seconds. At the cellular level, spindles
arise from cyclic inhibition of thalamo-cortical (TC) neurons by reticular thalamic
(RT) neurons. Post-inhibitory rebound spike bursts in TC cells entrain cortical pop-
ulations in spindle oscillations (Steriade and McCarley 2005). In addition, two kinds
of spindles are described in humans. Slow spindles (grossly <13 Hz) predominate
over frontal areas, whereas fast spindles (>13 Hz) prevail over centro-parietal ar-
eas. These two spindling activities differ by their circadian and homeostatic regu-
lations, pharmacological reactivity, development in infancy, evolution during aging,
modulation during menstrual cycle and pregnancy (De Gennaro and Ferrara 2003)
and intriguingly, by their association with general cognitive capabilities (Bodizs et
al. 2005) and memory processing (Schabus 2009). Despite these functional differ-
ences, it is still debated whether slow and fast spindles reflect the activity of different
neural networks or the differential modulation of a single generator.

6.2.2.1 Coalescence of NREM Sleep Rhythms

At the cellular level, the slow rhythm organizes other NREMS oscillations in a
coalescence of rhythms so that spindles and gamma oscillations are more likely
to occur during the up phase of the slow oscillation (Steriade and Amzica 1998;
Molle et al. 2002). Likewise, hippocampal activity during NREMS is character-
ized by sharp waves and ripples, which are synchronous to the cortical slow os-
cillation (Isomura et al. 2006; Molle et al. 2006; Clemens et al. 2007), although
it is not yet clear which oscillation is driving the other (Isomura et al. 2006;
Tononi et al. 2006). Finally, the slow oscillation organizes the neural firing of arous-
ing structures such as the locus coeruleus (LC) (Eschenko and Sara 2008).
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6.3 Functional Neuroimaging of NREM Sleep Oscillations

6.3.1 The Slow Rhythm

On scalp EEG recording, SWA predominates over frontal areas (Finelli et al. 2001),
where indeed the largest waves are typically recorded. However, an analysis of in-
dividual waves demonstrated the spatial variability of slow waves. Each wave orig-
inates at a specific site and travels over the scalp following a particular trajectory
(Massimini et al. 2004). Waves originate more frequently in frontal regions and
travel backwards to posterior areas. Beyond this variability, slow waves seem to
recruit systematically various brain regions. Early studies based on cerebral blood
flow measurement by positron emission tomography (PET) reported that the power
density of delta waves (1.5–4 Hz) during NREM sleep was negatively correlated
with rCBF in the ventromedial prefrontal cortex, the basal forebrain, the striatum,
the anterior insula, and the precuneus (Dang-Vu et al. 2005). Using simultaneous
EEG and event-related functional magnetic resonance imaging (fMRI), it was pos-
sible to show that slow waves were associated with transient increases in regional
brain activity, in keeping with animal data (Dang-Vu et al. 2008), cf. Fig. 6.1. Slow
waves were associated with significant increases in activity in inferior and medial
frontal cortices, precuneus and posterior cingulate. As compared to baseline activ-
ity, the largest waves (>140 µV) were associated with significant activity in the
parahippocampal gyrus, cerebellum and brainstem whereas delta waves were re-
lated to frontal responses. Source reconstruction of scalp high density EEG record-
ings confirmed these results. Although slow waves originate more frequently in the
insula and cingulate gyrus, they preferentially involve the precuneus, the posterior
cingulate, ventro-lateral and medial frontal areas (Murphy et al. 2009). It is cur-
rently believed that these areas constitute a preferred propagation pathway because
they correspond to major structural connectivity nodes in the human brain (Murphy
et al. 2009).

6.3.2 Spindles

Little is known on the cerebral correlates of human spindles. Scalp multi-channel
EEG recordings showed that slow spindles (centered around 12 Hz) exhibit a vari-
able topography, primarily over the frontal cortex (Doran 2003). Fast spindles (cen-
tered at 14 Hz) are topographically and dynamically limited to the superior central
and parietal cortex (Doran 2003). Source reconstruction of scalp EEG recordings
identified two sources, one for slow spindles in a mesial frontal region and another
for fast spindles in the precuneus (Anderer et al. 2001). Early PET studies reported
a negative relationship between thalamic cerebral blood flow and the power spec-
trum in the spindle frequency band (Hofle et al. 1997). Taking advantage of the high
temporal resolution of EEG/fMRI, it was later shown that human spindles were also
associated with transient surge in activity in the thalami, paralimbic areas (anterior
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Fig. 6.1 Central panels: Brain responses to NREM sleep slow waves. Side panels: Time course
(in seconds) of fitted response amplitudes (in arbitrary units) during slow oscillation in the corre-
sponding circled brain area. All responses consisted in regional increases of brain activity. A, pon-
tine tegmentum; B, cerebellum; C, right parahippocampal gyrus; D, inferior frontal gyrus; E, pre-
cuneus; F, posterior cingulate cortex. Adapted from Dang-Vu et al. (2008)

cingulate and insular cortices) and superior temporal gyri (Schabus et al. 2007), cf.
Fig. 6.2. Slow spindles were further associated with increased activity in the superior
frontal gyrus. In contrast, fast spindles recruited a set of cortical regions involved
in sensorimotor processing, as well as the mesial frontal cortex and hippocampus.
The recruitment of partially segregated cortical networks for slow and fast spindles
further supports the existence of two spindle types during human NREM sleep, with
potentially different functional significance.

6.4 Functional Significance of NREM Sleep Oscillations

6.4.1 Slow Waves

An inspiring hypothesis assumes that during NREM sleep, the slow oscillation
would be associated with a downscaling of synaptic strength to a baseline level,
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Fig. 6.2 Left panels (a–e): fMRI responses to slow spindles. Leftmost panels: Responses time
course in (a) auditory cortices (circled), (b) thalamus, (c) anterior cingulate (circled) and midbrain
tegmentum (dotted), as well as (d) anterior insula and (e) superior frontal gyrus (circled). Center
panels (f–i): Common response pattern to all spindles. Right panels (j–m): fMRI responses to fast
spindles. Rightmost panels: response time course in (j) superior temporal gyri, (k) thalami, (l) mid
cingulate cortex (circled) and supplementary motor area (dotted), as well as (m) anterior insula.
Adapted from Schabus et al. (2007)

a process beneficial for learning and memory. The synaptic downscaling would be
a general phenomenon occurring throughout the brain which is modulated locally
by the amount of neural activity and synaptic strength enhancement accumulated
during the day. Wakefulness is associated with a net increase in synaptic strength in
the brain, which would become energetically unsustainable in the long term (Tononi
and Cirelli 2003, 2006). In support of this hypothesis, an increase in SWA, the power
density between 0.75 and 4 Hz during NREMS, is selectively observed after training
to a visuo-motor adaptation task, over scalp areas that are deemed critical in this type
of learning (Huber et al. 2004). In contrast, arm immobilization results in a decrease
in SWA over controlateral sensorimotor areas during subsequent NREMS (Huber et
al. 2006). Local increases in SWA were also reported when cortical activity is ex-
perimentally induced by a vibratory stimulation of the hand, transcranial magnetic
stimulation or when spike timing dependent activity is elicited during waking by
transcranial paired associative stimulation (Huber et al. 2007b). Similar increases
in SWA were reported in rats exposed to enriched environment and seem associ-
ated with release of BDNF (Huber et al. 2007a). At the cellular level, the slope and
amplitude of cortical evoked responses, taken as markers of local synaptic strength,
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increase after wakefulness and decrease after sleep in proportion with changes in
SWA (Vyazovskiy et al. 2008). At the cellular level, multi-unit recordings showed
that firing rates and synchrony decrease after sleep. Changes in firing patterns in
NREM sleep correlate with changes in slow-wave activity (Vyazovskiy et al. 2009).
At the molecular level, in rat cortex and hippocampus, GluR1-containing AMPA
receptor (AMPAR) levels are high during wakefulness and low during sleep, and
changes in the phosphorylation states of AMPARs, CamKII and GSK3beta are con-
sistent with synaptic potentiation during wakefulness and depression during sleep
(Vyazovskiy et al. 2009).

Another hypothesis assumes that sleep participates in this systems-level memory
consolidation by promoting the functional interplay between hippocampal neural
ensembles and neocortical areas (Buzsaki 1996). Indeed, the up-state of the cortical
slow oscillation constitutes a remarkable period during which the activity of vari-
ous brain structures, in the cortex (slow waves, spindles), the hippocampus (sharp-
wave ripples) and subcortical structures (striatum, LC) is synchronized, thereby fos-
tering functional interactions associated with systems-level memory consolidation
(Diekelmann et al. 2010).

A key finding supporting this hypothesis was that sequences of neural discharges
recorded in neural ensembles during wakefulness were spontaneously repeated dur-
ing sleep, especially during hippocampal sharp waves and ripples, which are co-
herent with cortical slow oscillation observed in various brain structures such as
the hippocampus (Hirase et al. 2001), neocortical areas (Euston et al. 2007), the
thalamus (Ribeiro et al. 2004) or the striatum (Lansink et al. 2009). Importantly, re-
activation of firing patterns in the neocortex is synchronized to hippocampal sharp
waves (Ji and Wilson 2007; Wierzynski et al. 2009), a condition favorable to cortico-
hippocampal interactions. In addition, these reactivations seem to depend on learn-
ing as the replayed firing patterns appear only after the acquisition of new rules
(Peyrache et al. 2009). Collectively, these data support the hypothesis that dur-
ing sleep, hippocampo-neocortical interactions may progressively transfer the bur-
den of memory from hippocampal ensembles to long-term neocortical stores. In
keeping with this hypothesis, in humans, after the exploration of a virtual tridi-
mensional maze the activity is enhanced during NREMS in occipital, parietal and
mesio-temporal areas (Peigneux et al. 2004). Moreover, the increase in hippocampal
activity is linearly related to the individual gain in the ability to navigate in the maze
the next day, suggesting that the changes in hippocampal activity during NREMS
relates to the offline processing of topographical memory.

6.4.2 Spindles

Because spindles entrain synchronous firing in large thalamo-cortical neural pop-
ulations, they are in a good position to allow for the modifications in the neural
representations of recent memories. In support to this hypothesis, spindle activ-
ity increases after training on declarative (Gais et al. 2002; Schmidt et al. 2006;
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Schabus 2009) and procedural (Fogel and Smith 2006; Fogel et al. 2007) mem-
ory tasks. Enhancing slow oscillations by direct current transcranial stimulation in-
creases the power in the spindle frequency band and leads to a better retention of
declarative memory the next morning (Marshall et al. 2006). At the cellular level,
it was shown that repetitive spike bursts mimicking firing patterns observed during
spontaneous spindles reliably induced short- and long-term potentiation in cortical
neurons of rat brain slices (Rosanova and Ulrich 2005). It has also been suggested
that activity in the spindle band would trigger molecular cascades involved in brain
plasticity by increasing intracellular calcium levels (Sejnowski and Destexhe 2000).

6.5 Conclusion

Recent advances were recently made in the characterization of the neural correlates
of NREM sleep oscillation in both animals and humans. They provide some hint
on why sleep is important for optimal waking brain function. Further research is
needed to characterize the difference in functional consequences between natural
sleep oscillations and EEG rhythms recorded in other altered states of conscious-
ness, including in general anesthesia, vegetative or minimally conscious patients.
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Chapter 7
A Mesoscopic Modelling Approach
to Anaesthetic Action on Brain Electrical
Activity

D.T.J. Liley, B.L. Foster, and I. Bojak

Everybody wants to have a hand in the great discovery. All I will do is give you a hint or
two as to names, or the name, to be applied to the state produced, and to the agent. The state
should, I think, be called anaesthesia.

Oliver Wendell Holmes in a letter to William Morton, 1846

7.1 Introduction

While history records many instances in which various substances such as wine,
hemp and opium were used to deaden sensibility to the pain of surgery, it was not
until William Morton’s public demonstration of the painless extraction of a tooth
in 1846 using ether that the modern era of anaesthesia can be said to have be-
gun. Within a few years of this demonstration chloroform, diethyl ether and ni-
trous oxide had all attained a widespread, and ardent, clinical following. While
these initial agents were variously highly toxic (chloroform), combustible (di-
ethyl ether, chloroform) or of insufficient potency (nitrous oxide), by the end of
the 20th century a range of intravenous and volatile general anaesthetic agents
(GAs) had been developed that had overcome all of these limitations. Anaesthe-
sia is now among the safest of all routine clinical procedures, with the mortality
attributable to anaesthesia having fallen dramatically from 1 per 10,000 healthy
patients in 1950 (when mortality rates began to be systematically assayed) to
less than 1 per 250,000 (Kohn et al. 2000). However, the dramatic advances in
the clinical certitude and confidence with which anaesthetic agents are adminis-
tered have not been paralleled by a similar increase in our knowledge of the neu-
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ral mechanisms responsible for their ability to remove consciousness. While the
last three decades or so have seen an explosion in our knowledge regarding the
molecular and cellular targets of anaesthetic agents (Franks 2008; Ishizawa 2007;
Rudolph and Antkowiak 2004; Grasshoff et al. 2005; Hemmings et al. 2005;
Campagna et al. 2003; Franks and Lieb 1994), we remain largely ignorant regard-
ing the mechanisms by which these microscopic effects produce alterations in large
scale neuronal network activity and hence behavior. Modelling the large scale elec-
trophysiological effects of anaesthetic agents may help to mechanistically unify the
multiple cellular and molecular targets of anaesthetic agents that have been identi-
fied to date.

7.1.1 Molecular Actions of Anaesthetics

Because a range of structurally unrelated compounds were able to induce anaesthe-
sia it was speculated that they all acted through a common mechanism. This unitary
hypothesis of anaesthetic action was further supported by the fact that there was a
strong linear relationship between the potency of anaesthetics and their solubility in
olive oil. This together with the unitary hypothesis inspired the Meyer–Overton the-
ory of anaesthetic action, in which anaesthetic agents were hypothesized to act by
disrupting the structure, and thereby the function, of the bilamellar lipid membrane
of neurons (Campagna et al. 2003). While this hypothesis seemed well placed to
explain the structural heterogeneity of anaesthetic agents, the failure to predict and
thereby account for a number of well established empirical results ultimately lead
to the demise of such simplistic speculations.1 For example, the prediction that the
potency of optical isomers of GAs would remain unchanged was violated (Franks
and Lieb 1994), as was the prediction that homologous series of anaesthetic alcohols
and alkanes would exhibit a steady increase in potency depending on temperature
(Koblin et al. 1994).

It is now thought that anaesthetics exert their effects by interacting with specific
protein targets through a combination of weak polarization forces (predominantly

1However, recently there has been renewed interest in such theories, because of the apparent in-
variance across a range of vertebrates of the concentrations of inhaled anaesthetic agents required
to extinguish the response to noxious (painful) stimuli (Eger et al. 2008). The ability of anaesthetic
agents to induce such immobility is, together with hypnosis and analgesia, a cardinal feature of
anaesthesia. While it is reasonably well established that immobility is mediated at the level of the
spinal chord, no present consensus holds regarding the corresponding molecular targets. Because
of their ubiquitous phylogenetic potency, evolutionarily highly conserved cellular and/or molecular
loci seem necessary (Sonner 2008). It has been suggested that volatile anaesthetics affect highly
conserved sodium channels through a nonspecific mechanism, such as being adsorbed into the
membrane, with a subsequent alteration of the function of the resident sodium channels and other
membrane-bound proteins (Cantor 1997). This is an interesting hypothesis, but difficult to test ex-
perimentally: sodium channels are everywhere in the central nervous system and are involved in a
wide variety of processes that may, or may not be, relevant to understanding volatile anaesthetic
effect, e.g., the genesis of the action potential, presynaptic neurotransmitter release and the post-
synaptic actions of a range of excitatory neurotransmitters and neuromodulators such as glutamate
and acetylcholine.
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London dispersion) and hydrogen bonding (Franks 2008). This explains the correla-
tion between potency and lipid partitioning, since London dispersion forces are the
predominant mechanism of interaction between apolar molecules (e.g., anaesthetics
and lipids). While a great variety of protein targets have been identified, it appears
that proteins associated with neuronal ion channels are the most important targets
for the action of anaesthetics (Franks 2008; Rudolph and Antkowiak 2004). High
resolution information of the actual anaesthetic binding sites on these ion channel
proteins is lacking, but a coherent picture is still emerging: anaesthetics bind prefer-
entially to pre-existing hydrophobic cavities on ion channel proteins which results
in alterations of the corresponding gating kinetics. As a consequence modern theo-
ries of anaesthetic action have focused upon the modulation of transmembrane ion
channel function and its effect on neuronal excitability.

To date the effects anaesthetics have on γ -amino-butyric-acid type A (GABAA)
ionotropic receptors has received the most attention (Rudolph and Antkowiak 2004).
It is the most abundant inhibitory neurotransmitter receptor in the central nervous
system. Each receptor is a heteropentameric transmembrane protein that has a wide
number of subunit compositions, which can influence anaesthetic affinity. To date
19 receptor subunits have been identified, however, the majority of GABAA recep-
tors are of the form 2α12β21γ2 (Rudolph and Antkowiak 2004). The subunits form
a transmembrane channel that becomes permeable to Cl− in response to the binding
of the endogenous ligand GABA. Because the extracellular concentration of Cl− is
greater than its intracellular concentration it mediates fast (<100 ms) synaptic inhi-
bition (Macdonald 1994). Almost all general anaesthetics prolong GABA-induced
Cl− currents, hence GABAA receptor mediated inhibitory neurotransmission is en-
hanced.

However, depending on the agent, synaptic GABAA receptors are neither the
major nor the only molecular targets of general anaesthetic action. Additional neu-
ronal molecular targets of anaesthetics that have been identified include extrasynap-
tic GABAA receptors (Belelli et al. 2009), two-pore K+ channels (2PK) (Bayliss
and Barrett 2008), and ionotropic N -methyl-D-aspartate (NMDA) (Solt et al. 2006;
Jevtovic-Todorovic et al. 1998), glycine (Mihic et al. 1997) and nicotinic acetyl-
choline (nACh) receptors (Violet et al. 1997). Extrasynaptic GABAA receptors re-
spond to low fluctuating levels of GABA and are thought to contribute to tonic in-
hibition which is enhanced in response to anaesthetic action. 2PK channels, which
are thought to modulate ‘background’ neuronal excitability, are activated by volatile
anaesthetic agents. Postsynaptically this results in diminished neuronal excitability
due to either membrane hyperpolarization or the shunting of excitatory postsynap-
tic currents due to increased membrane conductance. NMDA receptors mediate the
slow, voltage dependent, postsynaptic components of the glutamate induced excita-
tory postsynaptic currents. While most volatile agents inhibit NMDA receptor activ-
ity, such inhibition is thought to be particularly relevant for the anaesthetic actions
of nitrous oxide and the noble gas xenon. Neuronal nicotinic acetylcholine recep-
tors are ionotropic receptors that, when activated by the binding of endogenously
released acetylcholine, are permeable to Na+ and K+ ions. A variety of volatile and
intravenous anaesthetics have been shown to inhibit excitatory postsynaptic cholin-
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ergic currents. Glycine ionotropic receptors, which are homologs of GABAA recep-
tors, are particularly abundant in the brain stem and spinal chord, where they are the
major mediators of synaptic inhibition. The enhancement of the synaptic actions of
glycine on dorsal horn- and motor-neurons in the spinal chord is thought to underlie
the ability of many anaesthetic agents to induce immobility, independent of their
amnestic and hypnotic properties.

7.1.2 The Effects of Anaesthetics on Large Scale Neuronal Activity

Because behavior emerges out of the cooperative activity of large populations of
neurons it seems reasonable to expect anaesthetic agents to perturb macroscopic
neural activity. The hypnotic and amnestic effects of anaesthetics are widely be-
lieved to be mediated by neuronal populations in the cerebrum, whereas the im-
mobilizing and nociceptive effects of these agents are thought to arise as a conse-
quence of the perturbation of neuronal populations of the dorsal and ventral horns
of the spinal chord. A variety of neuroimaging techniques, which include the elec-
troencephalogram (EEG) and functional magnetic resonance imaging (fMRI), have
revealed that the activities of diverse ranges of cerebral neuronal populations are
affected by anaesthetics (Franks 2008; Alkire et al. 2008). While the majority of
positron-emission tomography (PET) and fMRI studies suggest non-uniform reduc-
tions in cerebral neuronal activity attend anaesthetic action, to date only changes in
EEG activity have been reliably correlated with the clinically documented effects of
anaesthesia.

During the progression to deep anaesthesia the EEG undergoes a series of well
described quantitative changes. In general terms, increasing concentrations of the
majority of anaesthetics slow the EEG (shift the spectral power towards low fre-
quencies) and abolish the common features of resting EEG, such as the alpha rhythm
(8–13 Hz). The arrival of deep anaesthesia is typically indicated by very slow iso-
electric periods, which are often interleaved with short bursting activity, referred
to as burst-suppression (Rampil 1998). Such quantitative features form the basis
for many of the approaches that have been developed to measure anaesthetic depth
based on the analysis of spontaneous EEG (Bruhn et al. 2000). While such features
are not universal to all anaesthetic agents (xenon, nitrous oxide and ketamine—
typically referred to as ‘dissociative’ agents—being clear exceptions), processed
EEG data often correlate well with hypnotic and immobilizing endpoints.

Although a comparison between deep anaesthesia and the awake state shows a
suppression of resting EEG power, the transition between these states is not neces-
sarily continuous. The commencement of anaesthetic induction is often associated
with a transient increase in total EEG power before the appearance of slow wave
dominance. This phenomena is typically referred to as the ‘biphasic response’. Work
by Kuizenga and colleagues (Kuizenga et al. 2001, 1998) has shown that an array of
anaesthetic compounds produce band limited (2–5 and 11–15 Hz) power increases
during the induction and emergence of anaesthesia. However, the biphasic response
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during the emergent phase is often more pronounced than induction, although both
are approximately coincident with the return and loss of consciousness, respectively.
Some of these findings have been replicated more recently for propofol (Koskinen
et al. 2005) and also for other frequency bands such as alpha (8–13 Hz) (Feshchenko
et al. 2004). Finally, work by John et al. (2001) has previously suggested that EEG
coherence is transiently enhanced just prior to loss of consciousness during anaes-
thesia, which inferentially coincides with the occurrence of the biphasic response.

To what extent these documented EEG effects are due to the direct cortical ac-
tions of anaesthetics or indirect subcortical ones (in particular the modulation of
arousal and sleep pathways/systems) is at present unclear. However, as we will sub-
sequently see the physiologically plausible modelling of electrocortical activity is
expected to make important contributions to the resolution of this uncertainty.

7.1.3 From Ion Channels to EEG Through Mesoscopic Models

As argued above, sedative and hypnotic effects may be conceived as arising from the
modulation of the activity of populations of cortical neurons. Of particular relevance
are approaches that link non-invasively observable, and hence “macroscopic”, neu-
ral dynamics to the behavior of “microscopic” ion channels, whose activity is mod-
ulated by anaesthetic action, by modelling the intervening “mesoscopic” level of
co-operative neuronal ensembles. Models of cortical activity formulated at this level
are variously referred to as neural (mean) field or neural mass (action) theories, de-
pending on whether a continuum approximation is invoked or not. A range of meso-
scopic modelling approaches were developed early on (Amari 1975; Nunez 1974;
Wilson and Cowan 1972, 1973), but it is those targeted at the EEG that are of most
relevance (Deco et al. 2008; Liley et al. 2003, 2002, 1999; Robinson et al. 1997;
Freeman 1975), since the EEG represents an inexpensive and readily available mea-
sure for cortical activity that is robustly affected by anaesthetic action.

While at the cellular and molecular level anaesthetics are generally characterized
as being simple depressants of neuronal activity, their action in networks of interact-
ing neuronal elements can be quite different. For example, anaesthetic and sedative
agents that act cortically through the enhancement of GABAergic synaptic activ-
ity may enhance inhibitory synaptic activity terminating on inhibitory neurons to a
greater extent than that terminating on excitatory neurons. In this case disinhibition,
rather than suppression, of oscillatory EEG activity may occur contrary to expecta-
tions based on studies of single neurons. For example, the light-driven activation of
fast-spiking interneurons2 in rat barrel cortex in vivo at varying frequencies selec-
tively amplifies gamma oscillations in the local field potentials of synaptically con-
nected pyramidal neurons (Cardin et al. 2009). Such ‘paradoxical’ network effects

2This is achieved through the targeted expression, by the viral transfection, of a light-sensitive
bacteriorhodopsin—a cation selective ion channel specifically activated by blue light.
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may help explain the increase in total EEG power that often attends the induction of
anaesthesia.

The small set of equations describing a neural mass is more amenable to analysis
than networks of many individual model neurons, but can nevertheless retain a great
deal of anatomical and physiological plausibility. The typical mesoscopic approach
to EEG modelling consists of physiologically motivated, spatially coarse-grained
equations describing the dynamics of excitatory and inhibitory neuronal popula-
tions. The resolution of the spatial coarse graining is generally chosen to match the
scale of some aspect of cortical modularity, for example the cortical macrocolumn.
Such models can be divided into activity- or voltage-based, depending on whether
spatially averaged membrane potentials or firing rates, respectively, serve as state
variables in the equations (Ermentout 1998). Usually, though not always, the dy-
namics of the mean soma membrane potential of excitatory neurons is the state
variable taken to best represent the sources of the recorded EEG.

7.1.4 Chapter Outline

This chapter outlines the application of one particular mesoscopic theory of neural
activity, that of Liley et al. (2003, 2002, 1999), to the characterization of the bulk
electrocortical effects of anaesthetic and sedative agents. The chapter is divided into
two major sections. The first section outlines the construction of the mean field
model of Liley et al., its physiological parameter space, and the types of electro-
physiologically plausible linear and nonlinear dynamics it is capable of producing.
The second section describes how the mean field equations of this model can be
parametrized to include a range of documented sub-cellular/molecular effects of
anaesthetic and sedative agents. In particular, incorporating the dominant anaes-
thetic action of GABAergic agonism is able to account for a range of anaesthetic
and sedative effects, which include alterations in the frequency spectrum of sponta-
neous EEG, and the ‘paradoxical’ ability of GAs to induce ictal activity. The chapter
then concludes with a discussion of how the mean field formulation can be extended
to model the effects of dissociative agents such as xenon and nitrous oxide, and how
modelling anaesthetic action represents a cornerstone for understanding more gen-
erally the physiological principles that underpin the dynamics of brain function.

7.2 Mean Field Model

7.2.1 Overview

The thin rind of the cerebrum that comprises the cortex of mammals is densely
populated with neurons. In a range of mammals from rats to humans it has been
estimated that there are between 20,000 to 90,000 neurons per cubic millimetre of
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cortical tissue, each of which receives of the order of 10,000 synaptic contacts from
as many other cortical, and to a much lesser degree subcortical, neurons. Viewed
from this perspective attempting to understand the dynamics of the resulting cortical
networks would appear to require that each of the brain’s 1010–1011 neurons and
its 1014–1015 synaptic connections would need to be adequately characterized and
modeled in order to understand the dynamics of brain activity, clearly an intractable
task.

The mean field approach, originally arising out of mathematical models of ferro-
magnetism in statistical physics, provides a way forward. Here interactions between
individual units are replaced by effective averages known as mean fields. The dy-
namics of the system is then approximated by the evolution of these mean fields.
For a single cortical neuron a mean field could be formed by the mean activity of
neurons from which it receives synaptic input. The spatial domain over which this
synaptic input arises defines a mesoscopic neural mass. Formulations of mesoscopic
neural dynamics that arise on the basis of this approach, while ignoring higher order
correlations of individual neuronal activity, can nevertheless contribute greatly to
our understanding of the dynamics of populations of neurons.

The current mathematical approach for formulating equations of motion for
mesoscopic cortical neuronal dynamics principally stems from the work of Wilson
and Cowan (1973, 1972), Nunez (1974) and Amari (1975). While these early mod-
els have been used for a range of biomathematical explorations, they have not been
particularly successful in articulating the genesis of rhythmic activity in the EEG
and its modulation by pharmacological agents. This can be attributed to a number
of factors, the most important of which are mathematical simplifications not ade-
quately justified by an appeal to the physiology. For example, both the models of
Amari and Wilson and Cowan unrealistically assume that the effects of synaptic ac-
tivity are felt instantaneously at the neuronal soma, whereas empirically these effects
are known to steadily increase to a maximum on time scales depending on whether
the synapse is excitatory or inhibitory and the passive electrical properties of neu-
rons. This failure to incorporate known time scales of neurotransmitter action makes
it impossible to include many of the well documented electrophysiological effects
that anaesthetics have on cortical neurons and their synaptic interactions. Therefore
physiologically more realistic mean field models are required to better understand
the effects that anaesthetics have on bulk neural and hence electrocortical activity.

7.2.2 The Liley et al. Model

The model of Liley et al. (2003, 2002, 1999) provides a physiologically more ac-
curate description of electrocortical activity. It can produce the main features of the
spontaneous human EEG with a biologically plausible parametrization. The Liley
et al. model identifies inhibitory synaptic activity as a particularly sensitive modula-
tor of the EEG and hypothesizes that the important 8–13 Hz alpha rhythm emerges
through reverberant oscillations between populations of inhibitory neurons. This
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Fig. 7.1 Schematic overview of the essential intracortical and cortico-cortical interactions be-
tween excitatory and inhibitory neuronal populations in the model of Liley et al. (2003 2002,
1999)

theory is therefore well placed to account for the electrocortical effects of altered
inhibitory activity that attends the action of the majority of GAs.

As is appropriate for a description of EEG data the model is spatially coarse
grained over roughly the extent of a cortical macrocolumn. The multiple interac-
tions between individual neuronal elements are replaced by effective interactions
between the “mean fields” of populations of neurons. In contrast to for example
the Wilson and Cowan equations, no averaging in time takes place. The essential
components of the theory are schematically represented in Fig. 7.1, which depicts
the interactions taking place within and between two different macrocolumns. The
two functionally distinct types of cortical neuronal populations, excitatory (E) and
inhibitory (I ), subsume a much wider variety of dynamically and morphologically
differentiated cortical neuronal subtypes. Within a cortical macrocolumn excitatory
neurons (pyramidal and spiny stellate neurons) and inhibitory neurons (interneu-
rons) interact with each other by all possible combinations of synaptic connections.

Cortical activity is here locally described by the mean soma membrane potentials
of the spatially distributed excitatory neuronal population, he, and the inhibitory
one, hi . The connection with physiological measurement is through he, which is
assumed to be linearly related to surface recorded EEG/ECoG (electrocorticogram)
(Nunez 1981; Freeman 1975). Excitatory and inhibitory neuronal populations are
modeled as single passive RC compartments into which all synaptically induced
postsynaptic currents flow. Thus the response of the mean soma membrane potential
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hk with k = e, i to induced postsynaptic activity Ilk is given by

τk

∂hk

∂t
= hr

k − hk(x, t) +
∑
l=e,i

h
eq
lk − hk(x, t)

|heq
lk − hr

k|
Ilk(x, t), (7.1)

where x ∈ R
2 is the position on the cortical sheet, hr

k is the resting mean soma mem-
brane potential and τk the mean membrane time constant. Double subscripts indicate
first source and then target, e.g., Iei indicates postsynaptic inputs from an excitatory
to an inhibitory population. The synaptic inputs correspond to postsynaptic channel
conductances and are weighted by ionic driving forces h

eq
jk − hk , where the h

eq
jk are

the respective synaptic reversal potentials. These weights are normalized to +1 (ex-
citatory) and −1 (inhibitory), respectively, at the corresponding resting mean soma
membrane potentials. This follows the conductance based approaches typically used
to model networks of synaptically interacting networks of individual model neurons
(Hines and Carnevale 2001; Bower and Beeman 1998).

The time course of the PSP is described by a critically damped oscillator driven
by the mean rate of incoming excitatory or inhibitory axonal pulses. Thus for exci-
tatory PSPs (EPSP) and inhibitory PSPs (IPSP) we have, respectively,

(
1

γlk

∂

∂t
+ 1

)2

Ilk(x, t) = Γlke

γlk

· Alk(x, t), (7.2)

Aek(x, t) =N
β
ekSe[he(x, t)] + φek(x, t) + pek(x, t),

Aik(x, t) = N
β
ikSi[hi(x, t)], (7.3)

where Alk comprises different sources of incoming axonal pulses: N
β
lkSl , the mean

number of connections from local neuronal population l times their mean firing
rate, models local inputs to target population k, pek represents extracortical (tha-
lamic) excitatory sources and φek pulses arriving across larger distances via the
excitatory cortico-cortical fibre system. We have assumed here, according to cur-
rent consensus, that subcortical input is dominated by excitatory projections to
either excitatory or inhibitory cortical population, i.e., pik(x, t) � 0. For a sin-
gle presynaptic spike Alk(t) = δ(t), Equation (7.2) yields a normalized version of
the well-known synaptic alpha function as postsynaptic response (Tuckwell 1988;
van Rotterdam et al. 1982):

PSPα
lk(t;γlk) = Γlke

γlk

· γ 2
lk t exp(−γlkt)Θ(t)︸ ︷︷ ︸

≡α(t;γlk)

, (7.4)

where Θ is the Heaviside function, Γlk is the mean PSP peak amplitude induced by
a single presynaptic spike of type l in population k, and 1/γlk the corresponding rise
time to this peak. PSPα

lk’s are taken to describe the time course of ‘fast’ excitatory
(l = e: α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) & kainate)
and inhibitory (l = i: GABAA) neurotransmitter kinetics.
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Mean neuronal population firing rates are assumed to be an instantaneous func-
tion of the respective mean soma membrane potential. By requiring that mean firing
rates increase monotonically with hl and are bounded below by zero and above by a
maximal firing rate Sl is defined to be a sigmoidal function of hl , here parametrized
by

Sl[hl(x, t)] = Smax
l ·

{
1 + exp

[√
2
hl(x, t) − μl

σl

]}−1

. (7.5)

The axonal pulses φek are propagated by long-range cortico-cortical fibre systems
having finite conduction delays. In the simplest case a single conduction velocity vek

is assumed with an exponential fall off of the strength of connectivity with increas-
ing distance between source and target populations with characteristic scale 1/Λek .
In this case it can be shown (Liley et al. 2002) that φek propagates approximately
according to the following two-dimensional telegraph equation

[(
1

vekΛek

∂

∂t
+ 1

)2

− 3

2Λ2
ek

∇2
]
φek(x, t) = Nα

ekSe[he(x, t)], (7.6)

where Nα
ek is the total number of excitatory synaptic connections formed by long-

range cortico-cortical axons on local population k. Robinson et al. (2001, 1997)
and Jirsa and Haken (1996) have both used similar equations. Empirical measure-
ments of conduction velocities suggest, however, that cortico-cortical conduction
velocities are rather broadly distributed. On this basis Bojak and Liley (2010) have
suggested an alternative propagator, which gives rise to realistic velocity distribu-
tions. While we will not pursue this question further here, it is interesting to note that
“matching” (7.6) as well as possible to this new propagator, with parameters fitted
to histopathological measurements of myelinated cortico-cortical fibres in human
corpus callosum, suggest rather large vek � 7 m/s.

Equations (7.1)–(7.6) typically define the model of Liley et al. (2003, 2002,
1999), and are capable of reproducing the main features of spontaneous human
EEG. In what follows it will be convenient to rewrite these as a system of 14 coupled
first order partial differential equations

∂S
∂t

= F[S] + P, (7.7)

S =(
he, hi, Iee, I aux

ee , Iei , I aux
ei , Iei , I aux

ie , Iii, I aux
ii , φee, φaux

ee ,

φei, φaux
ei

)T
, (7.8)

P = (0, 0, 0, p̂ee, 0, p̂ei , 0, 0, 0, 0, 0, 0, 0, 0)T (7.9)

where all quantities depend on x ∈ R
2 and t , the p̂ek are proportional to spatiotem-

poral deviations from the (parametrized) mean values pek , and the auxiliary vari-
ables are the time derivatives I aux

ee ≡ ∂Iee/∂t , etc. For further details see Bojak and
Liley (2005). Table 7.1 summarizes the models parameters and their approximate
physiological ranges.
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Table 7.1 List of spatially averaged parameters for different types k = e, i of neuronal target
populations in the electrocortical model of Liley et al. (2003, 2002, 1999), with typical ranges that
are assumed to be physiologically admissible. Table adapted from Bojak and Liley (2005)

Definition Min., Max. Units

hr
k resting membrane potential −80, −60 mV

τk passive membrane decay time 5, 150 ms

h
eq
ek excitatory reversal potential −20, 10 mV

h
eq
ik inhibitory reversal potential −90, hr

k − 5 mV

Γek EPSP peak amplitude 0.1, 2.0 mV

Γik IPSP peak amplitude 0.1, 2.0 mV

1/γek EPSP rise time to peak 1, 10 ms

1/γik IPSP rise time to peak 2, 100 ms

Nα
ek no. of excitatory cortico-cortical synapses k=e: 2000, 5000

k=i: 1000, 3000 –

N
β
ek no. of excitatory intracortical synapses 2000, 5000 –

N
β
ik no. of inhibitory intracortical synapses 100, 1000 –

vek axonal conduction velocity 0.1, 1 mm
ms

1/Λek decay scale of cortico-cortical connectivity 10, 100 mm

Smax
k maximum firing rate 0.05, 0.5 ms−1

μk firing threshold −55, −40 mV

σk standard deviation of firing threshold 2, 7 mV

pek extracortical synaptic input rate 0, 10 ms−1

7.2.3 Linearization of the Model

Detailed semi-analytical and numerical solutions of (7.1)–(7.6) have revealed a rich
repertoire of physiologically plausible dynamics. Of particular significance is the
generation of noise driven, limit cycle and chaotic oscillations at the frequency of
the mammalian alpha rhythm, with model parameters that are all within ranges re-
ported experimentally (Bojak and Liley 2007, 2005; Liley et al. 2002, 1999; Dafilis
et al. 2001). Because the state and parameter spaces of the defining equations are
large and the system is highly nonlinear, understanding the relationship between
particular parameters and the emergent dynamical states is difficult. Fortunately,
many important predictions can be obtained by studying the simplified linear equa-
tions that arise from linearizing the original nonlinear partial differential equations
about one or more time-invariant steady states. By expanding F[S] of (7.7) about a
time-invariant homogeneous steady state F[S∗] = 0, one obtains the following set
of linear partial differential equations:

∂s
∂t

= J · s(x, t) + P(x, t), (7.10)

where s(x, t) ≡ S(x, t) − S∗, and J is the Jacobian matrix of F[S] evaluated at S∗,
i.e., J = ∂F(S)/∂S|S=S∗ . For zero mean filtered noise input via P, power spec-
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tra of stable oscillatory components can be predicted rapidly by calculating the
eigensystem of J (Bojak and Liley 2005; Liley et al. 2002). Of particular rel-
evance are those oscillations occurring in delta (0–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz) and beta (13–30 Hz) bands. The alpha rhythm is thus assumed here
to arise from the filtering actions of cortex on a broad band stochastic input, a
view that accords well with the results of attempts to characterize the dynamics
of resting EEG (Jeleazcov and Schwilden 2003; Schwilden and Jeleazcov 2002;
Stam et al. 1999).

This linearization also enables a semi-analytical determination of the sensitiv-
ity of the modeled oscillatory activity to parametric perturbation. One can write
ĥe(x, t) ≡ he(x, t) − h∗

e , the first component of s defined by (7.10), in transfer func-
tion form following Fourier transformation (Bojak and Liley 2005) as

ĥe(k,ω) = Ge

(
k,ω;S∗,q

)
p̂ee(k,ω) = N(k,ω;S∗,q)

D(k,ω;S∗,q)
p̂ee(k,ω) (7.11)

where q is a vector collecting all model parameters, cf. Table 7.1, and Ge is the elec-
trocortical transfer function, which can be separated into a numerator N and a de-
nominator D. We have assumed for simplicity that spatiotemporal deviations from
mean extracortical input occur only in pee, i.e., p̂ei(x, t) � 0. Furthermore, ĥe is
only a function of the magnitude of the wave number k = |k|, since the transfer func-
tion here contains only powers of k2 and we assume that the innovating extracortical
input p̂ee is roughly isotropic. S∗ is a particular solution of F(S)q = 0, a solution
which, however, can be specified by h∗

e alone. The sensitivity of the model’s linear
resonances (or poles) ω∗ to a normalized parameter change q̂j = (qj − q∗

j )/q∗
j , can

then be calculated as (Bojak and Liley 2005)

∂ω∗

∂q̂j

= q∗
j

(
∂D

∂he

∂F

∂qj

− ∂D

∂qj

∂F

∂he

)/(
∂F

∂he

∂D

∂ω

)∣∣∣∣
h∗

e ,ω∗
, (7.12)

where Re[∂ω∗/∂q̂j ] and −Im[∂ω∗/∂q̂j ] give the sensitivities of angular frequency
and damping, respectively, to normalized parameter changes. It is found that param-
eters related to inhibitory-inhibitory interactions are the most sensitive determinants
of the frequency and damping of emergent alpha band activity (Bojak and Liley
2005; Liley et al. 2003, 2002). As will be discussed in more detail below, sensitivity
to inhibitory modulation appears to be central also for the effects that a range of
sedative and anaesthetic agents have on the EEG (Bojak and Liley 2005).

7.2.4 Searching Parameter Space for Physiological Behavior

Mean field models are necessarily semi-heuristic in nature. While much of their
structure can and should be motivated by anatomical and physiological considera-
tions, they also intend to provide a very parsimonious description of a wide range of
observed activity patterns. Hence one should not expect such models to match brain
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dynamics of interest without any tuning of their parameters. We will consider this
problem generally here, while illustrating the principle points with examples drawn
from the description of anaesthesia suggested by Bojak and Liley (2005).

Assume that there exists some ideal theory T[x, t;p(x, t)] with parameters p
and a state variable vector T sufficient to characterize the phenomena of interest.
The parameters p should have some clear anatomical or physiological meaning,
since then parameters obey biological constraints. In particular they can be bounded
pmin ≤ p ≤ pmax by independent experimental measurements. Furthermore, only
then will any parameter changes truly indicate that the corresponding biological
substrates have changed.

A particular process of interest confines components of T to a limited region
of state space, often to particular trajectories. For example, for the alpha rhythm
an “EEG variable” (he in the Liley model) must oscillate between low and high
values with a period of about 0.1 seconds. A key expectation is then that dynamical
confinement in state space is matched by a simple partitioning of parameter space. In
our example one would hope to find a compact region of parameter space supporting
the alpha rhythm, outside of which other dynamics reign. The size of such a region
then is a measure of stability to natural variation within the biological substrate and
to external disturbances.

Now consider some actual theory S[x, t;q(x, t)], which we have invented. In
general one expects that S ⊂ T and q ⊂ p, i.e., one errs on the side of parsimony
when building models. For example, perhaps modelling a dozen separate inhibitory
populations would be ideal, but we have chosen to model only one for simplicity’s
sake. One can now restrict some state variables to a process of interest, e.g., to
the generation of an alpha rhythm. Thus for these state variables [T]i � [S]j by
virtue of the fit. However, the mapping [T]k 
=i �→ [S]l 
=j and p �→ q is usually not
one of (approximate) equality, indeed, generally it is neither linear nor reversible.
To continue our example: tuning parameters so that the “EEG variable” produces
an alpha rhythm for one and a dozen inhibitory populations, respectively, does not
necessarily give the same results in other parts though the model structure may be
more similar there. Thus unfortunately a simple “alpha region” in ideal parameter
space can map to the actual parameter space in a complicated fashion.

When one fits the Liley model to produce “realistic alpha” activity, one indeed
finds parameter distributions that lack simple regional structure. First let us briefly
detail what we mean by “realistic alpha”: the goal is to generate a time series which
resembles that of a human EEG recorded in a state of wakeful rest with eyes closed.
Thus the power spectrum should show an overall “1/f ”-type decay plus a relatively
sharp resonance at alpha frequencies (8–13 Hz). It is non-trivial to find selection
criteria that allow a computer to evaluate whether a particular time series is suitable.
We have proceeded by trial and error until all power spectra were rejected that we
judged unacceptable. For example, one rule is that spectral power in the alpha band
may not be more than five times as great as that in the delta band (0–4 Hz). We also
require that the mean firing rate of the neuronal populations remains realistic, i.e.,
0.1–20 pulses per second. For a detailed list of the other criteria see Bojak and Liley
(2005).
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Fig. 7.2 Smoothed
histograms of some parameter
distributions in the Liley
model. Panels A–C (left
column) show important PSP
parameters as obtained for
“realistic alpha” activity,
panels D–F (right column)
the same parameters under
the influence of 2 MAC
isoflurane, cf. Sect. 7.3.3. The
first row (A & D) shows the
peak amplitudes of inhibitory
and excitatory PSPs averaged
over the inhibitory neuron
population. The second row
(B & E) displays the
corresponding PSP decay
rates. The third row (C & F)
exhibits derived quantities
proportional to the total
charge transferred by the
PSPs, see text. Panel C shows
the kind of parameter
concentration one ideally
expects, panel F suggests that
isoflurane mostly increases
inhibitory charge transfer

In the Liley model “realistic alpha” is widely distributed over the whole biolog-
ically valid parameter space without easily discernable structure in most parameter
dimensions. Furthermore, “alpha sets” are relatively rare. We hence hypothesize that
the unknown ideal theory has a simple but small “alpha parameter region” dispersed
by mapping to the Liley model. This has immediate consequences. The generation
of time series of sufficient length to produce smooth power spectrum estimates is
relatively slow with a nonlinear model. Hence searching “alpha sets” with their
unstructured and sparse parameter distribution is computationally demanding. In
Bojak and Liley (2005) 27 such sets were nevertheless found, which a posteriori
turned out to be described well by the linearization introduced above. The determi-
nation of power spectra by eigendecomposition of the Jacobian in (7.10) is several
orders of magnitude faster than by direct nonlinear simulation. Hence by assuming
that linearization is applicable in general a simple Monte Carlo scan of parame-
ter space became feasible and 73,454 “realistic alpha” parameter sets were thereby
found (Bojak and Liley 2005).

But can we trust results with actual parameters q apparently dispersed compared
to ideal parameters p, even if the mapping remains within the biological ranges? For
a first answer, consider Fig. 7.2A–C. Here we show the distribution of parameters
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for all 73,454 sets found with the linearized Monte Carlo. The plots are made by
selecting two parameters per panel, producing a two-dimensional histogram, which
is smoothed (200 bins/axis, λ = 10) with the method of Eilers and Goeman (2004).
Black color here corresponds to maximum frequency, white to no occurrence, and
grey linearly to intermediate values. Upper limits as listed in Table 7.1 were used for
the axes, lower limits were set to zero. In Fig. 7.2A we see the distribution of param-
eters for peaks amplitudes for excitatory Γei and inhibitory Γii PSPs in inhibitory
neurons. While some preference for low Γii and high Γei is visible (maximum
smoothed frequency is 4.38 out of 73,454 for the bin centred on Γii = 0.215 mV
and Γei = 1.555 mV), we see that practically the entire allowed range supports alpha
rhythms. A very different picture emerges for the corresponding decay rates γei and
γii . While γei is also spread out over the allowed range, with a weak trend to low val-
ues, γii is concentrated strongly at low values (maximum 32.1 for γii = 0.04125/ms
and γei = 0.1975), with 99% of sets having a γii < 0.08627/ms. In (7.2) to (7.4)
we have suggestively grouped the problematic Γlk parameters into combinations
qlk ≡ Γlk exp(1)/γlk . As can be understood from (7.4), the qlk correspond to the area
under the PSP curves and hence are proportional to the total charge transferred. The
distribution of qei and qii , see Fig. 7.2C, appears like the “alpha region” we would
expect ideally (maximum 58.5 for qii = 0.02039 mC� and qei = 0.005844 mC�).
Note that qei is computed from Γei and γei , both of which are distributed broadly.
Yet the nonlinearity 1/γei combines with the weak trends to produce a compact
region. But choosing qlk rather than Γlk as a parameter does not at all affect the
validity of the theory as such. One can reasonably hope that a large part of the pa-
rameter dispersion is due to similar non-ideal but equivalent choices. We will return
to this question in Sect. 7.3.3, where we will discuss the importance of extrinsic
parameter changes in the context of GA effects.

7.3 Mesoscopic Modelling of Anaesthetic and Sedative Action

The range of molecular and cellular targets identified to date as sites of anaesthetic
action is so varied that a unitary biological mechanism for anaesthetic effects seems
unlikely. However, because these multiple sites of action result in a restricted range
of functional disruptions (hypnosis, analgesia and immobility) modelling the ef-
fects of anaesthetics on neuronal activity should help to discover the underlying
functional principles of anaesthetic action. The EEG is an essential measure of neu-
ronal activity which is sensitively correlated with anaesthetic effect and hence can
be used to study the dynamical, and by inference functional, effects of GAs. Ta-
ble 7.2 illustrates that a number parameters in the Liley model can be related rather
straightforwardly to identified sites of anaesthetic action in cortex.

7.3.1 Incorporating the Effects of Anaesthetic and Sedative Agents

Because the most dominant site of action for anaesthetic effect appears to involve
inhibition, modelling the macroscopic dynamical effects of altered inhibition is a
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Table 7.2 Relationship between major experimentally identified sites of cortical anaesthetic ac-
tion and parameters of the electrocortical model of Liley et al. (2003 2002, 1999)

Site of action Main anaesthetic effect Parameters

2PK channels & extrasynaptic GABAA increase in tonic inhibition pik, hr
k

nACh receptors reduction in tonic excitation pek, hr
k

synaptic GABAA increase of IPSPs γik, Γik

AMPA/kainate receptors & NMDA receptorsa reduction of EPSPs γek, Γek

myelinated axons slowdown of conductionb vek

Na channels alteration of neuronal firing Smax
k , μk, σk

aParameters will depend on membrane potential in this case
bEffect demonstrated in periphery, speculative in cortex (Swindale 2003)

necessary step towards understanding anaesthetic action. Based on the parametriza-
tion of sufficiently detailed electrophysiological characterizations of the effects that
benzodiazepines and the halogenated volatile agents have on inhibition, we show
how the electrocortical model of Liley et al. (2003, 2002, 1999) can go some way to
explaining how anaesthetic agents may modulate electroencephalographic activity.

7.3.2 The Benzodiazepine-Induced Beta-Buzz

Benzodiazepines are positive allosteric modulators of the GABAA/benzodiazepine
receptor complex. By inducing a conformational change, they increase the fre-
quency of GABA initiated channel openings. Electrophysiologically, this increased
probability of channel opening is reflected in an augmentation of the amplitude
and the decay time of the associated unitary IPSP. Benzodiazepines have also been
reported to increase single GABAA channel conductances in the presence of low
synaptic concentrations of GABA. Figure 7.3 illustrates how the amplitude of IPSPs,
induced in rat hippocampal pyramidal (excitatory) neurons by nearby inhibitory
basket cell interneurons, is augmented by the action of the benzodiazepine di-
azepam (Pawelzik et al. 1999). Electroencephalographically benzodiazepines are
well known to decrease alpha (8–13 Hz) and increase low beta (13–16 Hz) ac-
tivity in a dose dependent manner—the so-called “beta-buzz” (Hotz et al. 2000;
Bertz et al. 1997; Breimer et al. 1990). However, despite careful and thorough char-
acterizations of the molecular pharmacology of the benzodiazepines and their var-
ious electrophysiological effects, the mechanism whereby they induce changes in
the spectral content of the EEG is unknown.

The simplest way of incorporating the action of benzodiazepines, such as di-
azepam, is to assume that they solely augment the amplitude of GABA mediated
IPSPs, as schematically shown in Fig. 7.4. While benzodiazepines are also capable
of altering the shape of the IPSP by prolonging their decay, we will defer incorpo-
rating and investigating such effects to our discussion of GAs below. Therefore for
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Fig. 7.3 IPSPs induced in
pyramidal neurons of rat
hippocampus by nearby
inhibitory basket cells are
enhanced by the action of
diazepam (1 µM). Panels A
and B are taken with
permission from Figs. 6
and 7, respectively, of
Pawelzik et al. (1999). In this
study, the amplitude of basket
cell-induced IPSPs was
principally increased with the
shape (rise time, width at half
amplitude) largely unaffected.
Note that the lower panel
shows the negative allosteric
effects of Zn2+ on GABAA
mediated postsynaptic
activity

benzodiazepine action it is hypothesized that

�ω∗ = μ

(
ε

∂ω∗

∂Γ̂ii

+ ∂ω∗

∂Γ̂ie

)
[BZ], (7.13)

where μ and ε are real constants, [BZ] is the extracellular benzodiazepine concen-
tration and �ω∗ (which will be complex) is the corresponding change in a domi-
nant electroencephalographic resonance (specifically alpha) in the complex Fourier
plane. Following Sect. 7.2.3, Re[∂ω∗/∂Γ̂ii] and Re[∂ω∗/∂Γ̂ie] represent the sen-
sitivity of the alpha resonance frequency to unit normalized changes in the peak
amplitude of IPSPs induced in inhibitory and excitatory neurons, respectively. Like-
wise, −Im[∂ω∗/∂Γ̂ii] and −Im[∂ω∗/∂Γ̂ie] represent the corresponding damping
sensitivities. These are evaluated using (7.12) with a fixed k chosen to reflect the
characteristic spatial scales of model and empirically recorded electrocortical activ-
ity.

Figure 7.5(A) qualitatively illustrates these as perturbations of a resting alpha
resonance in the z-plane (z = eiω/fs ) based on the analysis of parameter sets found
to give rise to electroencephalographically plausible activity in a physiologically
admissible parameter domain (see Sect. 7.2.4 for further details). Therefore based
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Fig. 7.4 A schematic
diagram of benzodiazepine
augmentation of the unitary
IPSP amplitude induced by a
presynaptic spike arriving at
t = 0 in an excitatory neuron
at rest. These IPSPs were
numerically calculated with
the model of Liley et al.
(2003, 2002, 1999)

on empirically estimating �ω∗ in response to benzodiazepine actual estimates for ε

and μ[BZ] can be found. Figure 7.5(B) illustrates estimates obtained for the location
of the alpha resonance (pole) in the z-plane in a single participant before and 2 hours
after the oral administration of a single 1 mg dose of the benzodiazepine alprazo-
lam. It is clearly seen that the alpha pole, determined for each 2 s EEG epoch and
estimated using a fixed order autoregressive moving average model derived from
(7.11), has moved to higher frequencies and has become more damped. By calcu-
lating such pole motion over a number of participants, and by using (7.13) together
with modeled pole sensitivities ε can be estimated. On this basis it is found that
ε ≈ 1.8 (Liley et al. 2003), suggesting that alprazolam augments IPSPs induced in
inhibitory neurons to a greater extent than those induced in excitatory neurons. This
result accords well with the reported distribution of the high benzodiazepine affinity
isoforms of the GABAA receptor in inhibitory interneurons (Mohler et al. 1996).

In summary experimental EEG results analyzed in the context of the model
of Liley et al. (2003, 2002, 1999) provide strong support for interpreting benzo-
diazepine-induced electroencephalographic changes as due to the parametrically se-
lective modulation of a cortical white noise filter.

7.3.3 Accounting for the Spectral Changes in Inductive GA Action

For the inhaled GA isoflurane one experimentally finds the following dependence
of PSPs on aqueous concentration c given in mM:

Γek(c) � Γek

0.7072.22

0.7072.22 + c2.22
, Γik(c) � Γek

0.792.6 + 0.56 c2.6

0.792.6 + c2.6
, (7.14)
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Fig. 7.5 (A) Schematic
representation of the
predicted effects of increasing
the strength of neuronal
population
inhibitory-inhibitory and
inhibitory-excitatory synaptic
interactions assuming that
scalp EEG activity has a fixed
characteristic physical scale.
The filled circle
approximately represents the
theoretical loci of the
dominant poles associated
with
electroencephalographically
plausible eyes-closed alpha
activity. The arrows indicate
the mean predicted direction
of motion of these poles in
response to increases in peak
IPSP amplitudes Γii and Γie

as per (7.13). For illustrative
purposes indicated changes
are not to scale. (B) Example
of fixed ARMA model
estimation of alpha pole
location in the z-plane before
and 2 hours after the 1 mg
oral administration of the
benzodiazepine (BZ)
alprazolam. Each cross
represents the pole estimated
from a different 2 s epoch of
the respective 66 s EEG
recording. The grey arrow
indicates the direction of
median pole motion. Figure
adapted from Liley et al.
(2003)

δek(c) � δek, δik(c) � δik, (7.15)

ζek(c) � ζek, ζik(c) � ζik

0.322.7 + 4.7 c2.7

0.322.7 + c2.7 , (7.16)

where Γlk is the peak amplitude of the PSP, δlk the time needed to reach this peak
after the incoming pulse, and ζek the time after the presynaptic spike by which the
PSP has fallen to Γlk/e again. See Bojak and Liley (2005) and references therein
for a detailed discussion of these Hill equations. In clinical practice one often en-
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counters as practical measure the minimum alveolar concentration (MAC) of gas
required to abolish the response to pain in 50% of (adult) subjects. We will use here
1 MAC = 1.17 vol% = 0.243 mM for isoflurane. During surgery a typical mainte-
nance dose for isoflurane is between 0.9 and 3 MAC, depending among other things
on whether additional drugs are given or not. This provides a practical range of
interest for c here.

Solving (7.4) for the time to peak δα , i.e., PSPα(t = δα) = Γ , and the character-
istic decay time ζ α , i.e., PSPα(t = ζ α) = Γ/e with ζ α > δα , yields:

δα = 1

γ
, ζα = wδα , (7.17)

where w ≡ −W−1(− 1
e2 ) � 3.1462 with W−1 the −1st branch of the Lambert-W

function, and we suppress indices lk here and in the following. Clearly increasing
ζ α then requires increasing δα , i.e., the synaptic alpha function model of the PSPs
cannot keep their rise times roughly constant while significantly prolonging their
decays. As seen above this is at odds with the experimental situation for IPSPs
under the influence of isoflurane.

A simple extension of the synaptic alpha function, which allows independent
adjustments of rise and decay times, is the bi-exponential form:

β(t;γ, γ̃ ) = γ γ̃
exp(−γ t) − exp(−γ̃ t)

γ̃ − γ
Θ(t). (7.18)

Note that the bi-exponential form is invariant under the exchange of decay rates
γ̃ ↔ γ and has the following interesting parametric limit:

lim
γ̃→γ

β(t; γ̃ , γ ) = α(t;γ ) ⇒ β(t; γ̃ = γ, γ ) ≡ α(t;γ ), (7.19)

i.e., the bi-exponential form becomes the synaptic alpha function for equal decay
rates. Actually, this limit is a removable discontinuity, where as indicated we define
the value at γ̃ = γ to be continuous. For the bi-exponential rise times one finds

δβ = log(γ̃ /γ )

γ̃ − γ
, lim

γ̃→γ
δβ = 1/γ = δα. (7.20)

The time to peak is a convenient quantity, since it can be measured easily in
experiments. It hence makes sense to require δβ = δα = δ, by re-parametrizing
β(t; γ̃ , γ ) as a family of functions with rise time δ that includes α(t;γ ) as a limit
case. To simplify solving (7.20) for the rates, define an auxiliary parameter ε:

ε ≡ log
γ̃

γ
⇒ δ = ε

γ̃ − γ
. (7.21)

Then one finds for the decay rates

γ̃ = exp(ε)γ, γ = ε

exp(ε) − 1

1

δ
⇒ γ |ε=0 ≡ 1

δ
≡ γ̃ |ε=0. (7.22)
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Note that for ε → 0, which means γ̃ → γ , we now find the removable discontinuity
in γ̃ and γ . We will consequently also define them as continuous with the limit.

Using these decay rates, one can show that β(t = δ; γ̃ , γ ) = γ̃ exp(−γ̃ δ) =
γ exp(−γ δ). This leads us to define the following bi-exponential PSP, with indices
for the sake of definiteness:

PSPβ
lk(t; δlk, εlk) = Γlk exp(γlkδlk)

γlk

·γlkγ̃lk
exp(−γlkt) − exp(−γ̃lkt)

γ̃lk − γlk

Θ(t)

︸ ︷︷ ︸
≡β(t;δlk,εlk)

, (7.23)

where γlk and γ̃lk depend on δlk and εlk as per (7.22). This form remains invariant
against εlk → −εlk (γ ↔ γ̃ ) and we use εlk ≥ 0 without loss of generality. One finds
that PSPβ

lk(t; δlk, εlk) ≥ PSPα
lk(t;γlk), with equality only for t = 0, δlk , and ∞. We

can now also write the appropriate PDE for this pulse response, cf. (7.2):
(

1

γ̃lk

∂

∂t
+ 1

)(
1

γlk

∂

∂t
+ 1

)
Ilk(x, t) = Γlk exp(γlkδlk)

γlk

· Alk(x, t) . (7.24)

Note finally that the area under the PSP curves (∼ total charge transferred) has now
become qlk = Γlk exp(γlkδlk)/γlk .

What is the characteristic decay time PSPβ(t = ζ ; δ, ε) = Γ/e with ζ > δ?
Defining r ≡ ζ/δ, one can find analytic results only for particular limits:

ε � 1: r � w

[
1 + ε2

24
(w − 1)

]
, ε �

√
24(r/w − 1)

w − 1
, (7.25)

ε � 1: r � 1 + exp(ε)

ε
, ε � −W−1

(
1

1 − r

)
. (7.26)

Now consider the following procedure: at zero isoflurane concentration c = 0 we fit
the model parameters using a synaptic alpha function (i.e., the ε = 0 bi-exponential
form). This yields r0 = ζ0/δ = w, which is the fastest decay for a specified δ. If one
measure a larger ζ(c) and thus larger r(c) = ζ(c)/δ(c) � ζ(c)/δ, how large must
ε(c) become to obtain this r(c)? Defining κ(c) ≡ r(c)/r0 = ζ(c)/ζ0, an approxi-
mate answer with better than 1% accuracy is given by

ε � e2.5466−1.3394κ
√

κ − 1

+ [
e−1.2699(κ−1) − 1

][ 1

κ2 + W−1

(
e
− 0.23630

κ2

1 − 3.1462κ

)]
. (7.27)

Of course, one can also solve for ε(c) numerically to obtain better precision.
The ratio κ(c) is given by (7.16), and together with (7.14) and (7.15) this fully

specifies the effect of isoflurane on the bi-exponential PSPs. In Fig. 7.2D–F we show
smoothed histograms of the PSP parameters of the inhibitory target population for
2 MAC isoflurane, using the “realistic alpha” activity parameters of Fig. 7.2A–C
as the basis at ε = 0. Comparing Fig. 7.2A and D, we see that the both excita-
tory and inhibitory peak amplitudes are reduced with anaesthesia, but the former
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faster than the latter. Panels B and E of Fig. 7.2 show that only the inhibitory de-
cay rates decrease, while the excitatory ones remain constant. Of course, the rise
times are assumed as constant as well and are not shown here. Finally, Fig. 7.2C
and F demonstrate that isoflurane increases significantly the charge transfer from
inhibitory sources, whereas that of excitatory one is slightly diminished.

What is the dynamical effect of these parametric changes plus the corresponding
ones for the excitatory target population (not shown in Fig. 7.2)? We can easily
generate predictions of the power spectral density (PSD) for all 73,454 sets at 0,
1, and 2 MAC using the eigendecomposition approach, see Bojak and Liley (2005)
for details. However, it is difficult to display the full variability of these results: the
PSDs differ not only in the shape, but also considerably in total power (area under
the PSD curve) and location of the alpha resonance (8 to 13 Hz). Hence we perform
two transformations: First, we norm the total power at 0 MAC to one. Second, we
scale frequencies so that at 0 MAC the peak of the alpha resonance always occurs at
f = 11.03 Hz, the mean alpha peak frequency over all 73,454 sets. Next we compute
PSD quantiles from 4.5% to 95.5% in steps of 1% for all frequencies and plot these
steps as bands in frequency each with a greyscale color, where the 49.5% to 50.5%
(median) band is colored black and the other bands linearly lighter according to the
difference from median.

We repeat this procedure for 1 MAC and 2 MAC isoflurane, but we use the same
0 MAC total power norm and alpha frequency scaling on a set-by-set basis. Finally,
we add constants to all PSD values for 0 MAC and 1 MAC, in order to separate the
bands along the ordinate. The resulting Fig. 7.6 shows the considerable variation
of alpha peak and “1/f ” amplitude, respectively, possible at 0 MAC for different
parameters. Nevertheless, these variations all look quite natural for human EEG.
The PSDs for 1 MAC and 2 MAC show that the former alpha peak moves to lower
frequencies while at the same time becoming broader. The “1/f ” part at lower fre-
quencies is less affected. Significantly, the PSDs do not “wash out” for the induction
with isoflurane, as one would expect if there was a large variation in the dynamic
responses of different parameter sets to the GA-induced parameter changes. Instead
there occurs a largely stereotypical response, which keeps the quantile bands at non-
zero concentration roughly as spread out around the median as for 0 MAC. Overall
then, we obtain very stable predictions well compatible with known changes of the
EEG under anaesthesia.

We briefly return to our discussion of ideal and actual theories from Sect. 7.2.4.
In the current subsection we have discussed a particular case of extrinsic parame-
ter change, impressed on “realistic alpha” parameter sets to model induction with
isoflurane. Consider now in general the procedure of varying some of the param-
eters [q]n(c) of the actual model according to some extrinsic control parameter c,
where we can assume without loss of generality that larger c causes “greater ef-
fect” in some sense, and a baseline fit of parameters was performed at c = 0 (the
“normal” state). Now as parameters [q]n(c) change with c, one can check whether
the predicted model state [S]i (c) continues to match the corresponding data without
adjusting the parameters not under extrinsic control [q]m 
=n(c) = [q]m 
=n(c = 0). If
so, then this provides evidence that the mechanistic explanation provided by the ac-
tual theory S is valid at least in an effective sense. In our case here we have shown
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Fig. 7.6 Distribution of predicted power spectral densities (PSDs) for 73,454 “realistic alpha”
parameter sets, and its change under induction with isoflurane. The variability in predicted total
power and alpha peak location has been suppressed here, see text. In order to separate the different
stages of anaesthesia visually, PSDs for 0 MAC and 1 MAC have been shifted up along the ordinate
with fixed offsets (0.3 and 0.13, respectively), as indicated by horizontal lines from 9 to 17 Hz
showing the corresponding zero baseline

that changing the bi-exponential PSP parameters alone will lead to spectral changes
compatible with observations from human EEG under anaesthesia.

Of course, the unknown ideal theory must agree with the actual one where the
latter predicts correctly: [S]i (c) � [T]j (c). Furthermore, parameters of similar na-

ture must be changed in like manner in both theories: [p]k(c) ∼�→ [q]n(c). Here we
have changed PSP parameters according to experimental data for isoflurane in the
Liley et al. model. But these effects would have to be incorporated rather similarly
in the ideal theory, simply because these changes are real. However, in the ideal
theory such changes would perhaps differentiate across a dozen inhibitory popula-
tions, whereas we have considered only one here. In the actual theory the parameter
changes cause the wanted state change, as confirmed by computing the predictions.
In the ideal theory, some other mechanism could be responsible, with the change
of [p]k(c) only being accidental. However, this becomes more unlikely the greater
the precision and stability of the actual model predictions, since parts of the ideal
theory would then have to conspire for all variations of c. By forcing the system
extrinsically onto some trajectory through parameter space, which is required to
produce a specific trajectory in observed state space, we hence gain considerable
confidence in the relevant part of the actual model. Given our good and stable re-
sults here for modelling isoflurane effects through PSP changes, it hence appears
likely that this mechanism at least contributes significantly in reality. Furthermore,
the PSP description appears sufficiently accurate in the current Liley theory and the
remaining parameter dispersion is likely due to other parts of the model.
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7.4 Conclusion

In recent years considerable progress has been made in identifying the targets and
mechanisms of anaesthetic drug action in the central nervous system. Such improve-
ments in identifying and characterizing the effects of anaesthetic agents, primarily
upon neuronal transmembrane ionotropic receptor proteins, suggests a variety of
postsynaptic targets as well as receptor subunit selectivity across anaesthetics. What
remains to be elucidated is the consequences of this cellular and molecular diversity
upon EEG recorded from humans to observe and monitor such effects on behavior.
Above we have presented a theoretical approach, based on the work of Liley et al.,
which attempts to connect the known cellular actions of anaesthetic agents with their
effects on the EEG through an intervening mesoscopic mean field theory. Whilst
the construction of these models incurs some exclusion of microscopic neural el-
ements, such reductions allow detailed analysis and simulation which reproduce
many of the features of resting EEG activity and its modulation by anaesthetics.
Furthermore these simulations at the mesoscopic scale also replicate EEG activities
observed during anaesthesia, such as the biphasic response, which are not observed
at the lower level sites of action. From these developments, future advances can be
made by enhancing the biological plausibility of modeled electrocortical activity,
not only through constrained parameter set selection as discussed, but also through
improvements in physiological and anatomical detail.

As noted in Table 7.2 a large number of existing model parameters in the Liley et
al. theory can be modified as a possible means to capturing the effects of anaes-
thetics, or other neuromodulators, at sites other than fast inhibitory GABAergic
synapses. Of particular future interest is the exploration of parametric changes in ex-
citatory neurotransmission, in particular it’s reduction as induced by the dissociative
anaesthetics such as nitrous oxide, ketamine and xenon. These agents all appear to
reduce excitatory neurotransmission chiefly through antagonism of NMDA receptor
currents, which contribute to the ‘late’ component of the glutamatergic EPSP. Whilst
existing model parameters may capture such effects, developments can be made to
better allow the inclusion of voltage sensitive ‘slow’ postsynaptic effects (NMDA)
into existing ‘fast’ synaptic activities (AMPA). Such improvements will assist in un-
derstanding the often paradoxical effects of dissociative agents on the EEG, such as
preservation of alert-like desynchronized activity and the subsequent insensitivity
of many commercial processed EEG monitors during dissociative anaesthesia. Fur-
thermore, the modelling of sole agent effects is at odds with the common admixture
of anaesthetic agents (adjuvants), thus improvements in modelling multiple sites of
action outside the dominant inhibitory or excitatory synaptic targets will help bring
such theoretical advances closer to the clinical setting.

This chapter has aimed to provide a comprehensive exposition of one particular
mesoscopic theory of general anaesthetic action. However, it has only discussed the
ability of this theory to describe, and putatively explain, the well-known stereo-
typical effects of anaesthetics in altering the spectral features of EEG—the ini-
tial ‘beta’ buzz and the subsequent reduction in mean frequency with increasing
anaesthetic concentration. But a variety of neuroimaging studies have revealed that



7 Mesoscopic Modelling of Anaesthetic Action 163

anaesthetics give rise to topographically non-uniform changes in cortical and sub-
cortical activity (Franks 2008; Alkire et al. 2008). Among the best documented of
such changes involve reductions in regional cerebral blood flow in the precuneus
and posterior cingulate cortex (parietal cortex) and the orbitofrontal and anterior
cingulate cortices (frontal cortex). Significant changes in topographic electroen-
cephalograhic activity while also seen, are spatially much coarser: reductions in pos-
terior (occipital) alpha power, increases in frontal/central beta power and changes in
areal coupling (based on calculating inter-hemispheric coherence) (John et al. 2001;
Gugino et al. 2001).

Because these and other changes have been interpreted as signaling that
anaesthetic-induced loss of consciousness is associated with a breakdown of cortical
connectivity, it is important that mean field theories of the type outlined in this chap-
ter are studied in the context of more realistic cortical geometries and connectivities.
While there are many challenges to achieving this, not least the empirical specifica-
tion of cortico-cortical connectivity, recent progress has been made by Bojak et al.
(2010) in configuring mean field theories to realistic cortical geometries extracted
from structural MR images which incorporate structural synaptic connectivity based
upon ex vivo tract-tracing experiments or in vivo diffusion MR tractography. Fur-
thermore, because this approach enables the simultaneous prediction of both the
scalp recorded EEG and fMRI BOLD signals from simulated activity it will aid
in theoretically unifying a range of empirical data relevant to better understanding
anaesthetic action.

In addition to mean field theories providing an attractive framework with which
to model the bulk effects that anaesthetic agents on brain activity, they also of-
fer the possibility of inspiring better approaches to characterizing and analyzing
such activity. While the mesoscopic mean field theory that we have outlined here
is mathematically elaborate, it does suggest, to first approximation, that the resting
electroencephalogram may be regarded as a filtered pseudorandom linear process.
Specifically it posits that the electroencephalogram arises from cortex linearly fil-
tering subcortical (thalamic) input, see Sect. 7.2.3, in particular (7.11). The direct
empirical consequence of this is that the electroencephalogram can be modeled as
a fixed order autoregressive moving average (ARMA) process (Liley et al. 2008).
Then the estimated ARMA coefficients characterize the properties of the “cortical
filter”, whereas the estimated amplitude of the white noise driving corresponds to
the assumed magnitude of the subcortical (thalamic) input. When such a method
of analysis is applied to real EEG it is found that the effects a synthetic opioid
(remifentanil) and a well-known hypnotic (propofol) have on frontally recorded
EEG activity can be quite clearly differentiated (Liley et al. 2010). It is found that
the hypnotic agent perturbs the state of the cortical filter whereas the opioid al-
ters the assumed magnitude of subcortical input. Such differentiation of effects is
currently not possible using other electroencephalographic monitoring approaches,
such as the bispectral index and the various entropy indices, but clearly of great im-
portance for understanding the action of distinct pharmacological agents on brain
activity.
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Chapter 8
Progress in Modeling EEG Effects of General
Anesthesia: Biphasic Response and Hysteresis

D.A. Steyn-Ross, M.L. Steyn-Ross, J.W. Sleigh, and M.T. Wilson

8.1 Introduction

The goal of the clinical anesthetist is to deliver to the surgeon a patient whose state
of consciousness has been sufficiently suppressed that the person is unaware of sur-
roundings, is unable to form memories, and is unresponsive to painful stimulus. Ex-
actly how anesthetic drugs act to induce this altered state of consciousness remains
poorly understood. There is clear evidence that general anesthetic agents, such as
propofol, have measurable effects at the individual neuron level, but, since “con-
sciousness” is not a property of individual neurons, its reversible suppression must
arise from cooperative inhibition of large populations of neurons. The presumption
of an anesthetic-induced cooperative change in the level of brain activity leads nat-
urally to the idea that induction of general anesthesia is an enforced global phase
transition from an activated, awake brain state to a fully inhibited, quiescent sleep-
like state; however, as described in Chap. 2 anesthetic “sleep” differs from natural
sleep in that, during anaesthesia, normal arousal mechanisms have been abolished.

We argue that loss of consciousness (LOC) is a global, whole-of-cortex phe-
nomenon. This claim is supported by the fact electroencephalogram- (EEG-) based
monitors are able to quantify depth of anesthesia using only a pair of scalp elec-
trodes: a high-density multiple-electrode montage is not required, and the precise
on-scalp location of the electrode pair is not critical. This suggests that a useful ap-
proach to the problem of modeling anesthesia is to develop a population-based de-
scription of cortical function that applies at the centimetric spatial scales sampled by
EEG electrodes, rather than attempting to scale up from micron-scale descriptions
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of neurons, dendrites, and glia; which in turn depend on nano-scale descriptions of
synapses, receptors, and ion channels.

8.1.1 Biphasic Effect and Hysteresis

One of the paradoxical features of general anesthesia is the so-called biphasic effect.
This refers to the observation that, at low concentrations, anesthetic drugs can pro-
duce an excited brain state—described by Guedel (1937) as “delirium”—showing
a rise above normal baseline levels in EEG power (Kuizenga et al. 1998, 2001b),
and an exaggerated sensitivity to benign environmental stimuli; this surge in brain
activity subsides as drug concentration is increased. Further increases in anesthetic
concentration suppress brain response to the extent that the patient is rendered safe
for surgery. At the end of surgery, anesthetic administration ceases, and the patient
moves toward recovery of normal consciousness as her body eliminates the anes-
thetic agent. During this return phase, a second surge in brain activity is observed
around the time of recovery of consciousness (ROC). This unexpected brain re-
sponse showing two biphasic surges per induction–recovery cycle is robust, and is
not abolished by multiple inductions of anesthesia. Kuizenga et al. (2001a) inves-
tigated EEG responses for patients undergoing three sequential inductions of anes-
thesia during a single surgical procedure. When the patient awoke after surgery, s/he
was put to sleep with a second drug infusion, allowed to recover, then put back to
sleep for a third time, followed by eventual recovery. For each of these multiple-
induction patients, a total of six EEG-activity surges (three at LOC, three at ROC)
were recorded.

The presence of the biphasic response contradicts our naive expectation that brain
activity should decline as anesthetic concentration increases. The biphasic effect not
only makes extraction of a reliable depth-of-anesthesia index a nontrivial task, but,
more fundamentally, it tells us that global brain response to enforced change can be
surprising, unpredictable, and highly nonlinear.

The transit from normal consciousness into anesthetic-induced unconsciousness
is typically rapid (occurring over a timescale of a few seconds), and binary (the pa-
tient is either responding normally or not at all), such that persistent “half-awake”
states are rare. This suggests that the descent into—and recovery from—anesthesia
might reasonably be modeled as a bistable switching between distinct conscious and
unconscious brain states (Steyn-Ross et al. 1999, 2004), and that it should be pos-
sible to observe a hysteresis separation between the drug concentrations measured
at the LOC and ROC transition points, i.e., the patient is expected to awaken at a
lower concentration of anesthetic drug than that required to put him or her to sleep.

8.1.2 Progress in Anesthesia Modeling

Our original anesthesia model, as described in Steyn-Ross et al. (1999), and in
follow-up papers (Steyn-Ross et al. 2001a, 2001b, 2003, 2004), was formulated as a
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stochastic generalization of the mean-field cortical equations of Liley et al. (1999).
The phenomenological addition of low-intensity white-noise stimulation entering
from subcortical sources allows the cortical system to explore its state space, and
recognizes the fact that the cortex, like all biological systems, is buffeted by a con-
tinuous flux of random perturbations generated by a variety of external and internal
sources. The effect of a GABAergic anesthetic drug (such as propofol) was modeled
as a temporal prolongation of the decay phase of the inhibitory postsynaptic poten-
tial (IPSP); the degree of prolongation was presumed to be a monotonic function
of anesthetic concentration in the brain. In order to simplify analysis of the cortical
equations, we imposed a separation of time-scales such that, relative to soma volt-
ages, the dendritic flux inputs were taken to be fast, rapidly equilibrating variables,
so could be set equal to their steady-state values; in addition, we neglected spatial
variations, taking the cortical sheet to be spatially homogeneous. These simplifica-
tions (the “slow-soma spatio-adiabatic limit”) reduced the system complexity to a
pair of coupled stochastic differential equations (for excitatory and inhibitory soma
voltages Ve and Vi ). We located numerically the homogeneous equilibrium states,
and established that, for some plausible values of cortical parameters, there could
be multiple steady states for a given value of anesthetic effect, leading to the possi-
bility that loss of consciousness (LOC) might correspond to a first-order switching
transition from an activated “up” state to a low-firing “down” state.

We computed the theoretical fluctuation variance and fluctuation spectrum of
the excitatory soma voltage (taken as a proxy for EEG) as a function of anesthetic
effect. The surprising and unanticipated finding was the prediction of a surge in
low-frequency cortical activity on close approach to the “up”-to-“down” jump point
(LOC), and a second, more pronounced surge for the return trajectory as the anes-
thetic concentration diminished toward the critical value for the “down”-to-“up”
ROC (recovery of consciousness) transition. It was subsequent to this discovery that
we learned that general anesthetic drugs are known to evoke biphasic EEG activ-
ity peaks during both induction and recovery (Kuizenga et al. 1998, 2001a, 2001b).
Mathematically, the power surge in the cortical equations arises from the divergent
critically slowed fluctuations generated in close proximity to a saddle–node annihi-
lation point (Steyn-Ross et al. 2006).

Bojak and Liley (2005) investigated isoflurane anesthesia using the Liley et al.
(1999) equations, and showed that, for suitable choices of cortical parameters (ob-
tained after running very extensive swarm searches), biphasic activity surges in EEG
activity can be generated without requiring a phase transition between distinct neural
states. Instead, they argue that the path from wakefulness to anesthesia is a smoothly
continuous transition, implying that the recovery trajectory out of anesthesia will be
a symmetric retracing of that for entry into anesthesia. This suggests that, aside from
pharmacokinetic delays, there should be no hysteresis effects in the EEG power
surges during the induction and recovery phases, i.e., the biphasic peaks for entry
and exit should occur at the same level of anesthetic concentration.

Liley and Bojak (2005) applied their mean-field model to the paradoxical clinical
finding that some anesthetic agents (such an enflurane) can act as pro-convulsants,
causing epileptiform activity in patients with no history of epilepsy. By compar-
ing the subtle differences in IPSP responses for isoflurane (a non-seizurogenic
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anesthetic) versus enflurane, Liley and Bojak were able to demonstrate that the
enflurane-induced reduction in IPSP amplitude could lead to a low-frequency
(∼3 Hz) Hopf instability of seizure-like character. Similar theoretical findings were
reported by Wilson et al. (2006), building on a continuum model developed to model
sleep dynamics (Wilson et al. 2005) and sleep cycling (Steyn-Ross et al. 2005).

Molaee-Ardekani et al. (2007) enhanced the earlier anesthesia models of Steyn-
Ross et al. (1999, 2004) and Bojak and Liley (2005) by incorporating a slow ionic
modulation of the sigmoidal voltage-to-firing-rate mapping for pyramidal (excita-
tory) neurons. This change introduces a gating variable that activates a slow inward
(depolarizing) current when the excitatory population is the “down” (low-firing)
state, and a slow outward (hyperpolarizing) current when the population is in the
“up” (high-firing) state, and allows the mean-field model to exhibit three distinct
modes of activity: continuous firing in the up-state (awake); phasic firing (bursts
followed by periods of silence) as the neurons cycle between up- and down-states
(anesthetized); and continuous silence in the down-state (deep coma). Although the
authors do not discuss hysteresis effects, their model traces a single equilibrium
branch into unconsciousness (see Fig. 11 of Molaee-Ardekani et al. 2007), so a
separation between LOC and ROC biphasic events is not predicted for steady-state
conditions, but might arise as a transient artifact when the rate of change of anes-
thetic concentration is rapid.

Foster et al. (2008) provides a comprehensive overview of mean-field anesthesia
modeling for the period up until 2007.

In two recent papers (Hutt and Schimansky-Geier 2008; Hutt and Longtin 2010),
Hutt and colleagues have developed a neural model to investigate anesthetic-induced
biphasic changes in EEG power. They derive the power spectrum for fluctuations in
the effective potential Ve −Vi , the difference between average soma potentials at the
excitatory and inhibitory neural populations, arguing that the dendritic current that
generates the scalp EEG is proportional to this voltage difference. They establish
analytical expressions for the EEG power spectrum, and demonstrate that biphasic
power surges can occur in both single- and multiple-steady-state cases. Thus their
new model can exhibit a first-order anesthetic phase transition similar to that of
Steyn-Ross et al. (2004), and also a smoothly continuous transition like that of Bo-
jak and Liley (2005) and Liley and Bojak (2005). This commonality in anesthetic
behaviors between the reduced Hutt model and variations of the Liley model is
attributed to fact that they share several major elements: interactions between exci-
tatory and inhibitory neural populations; a nonlinear (sigmoidal) mapping between
soma voltage and firing rate; distinct response functions at excitatory and inhibitory
synapses.

8.2 Mean-Field Model for Anesthesia

We now present a summary of our cortical model for anesthesia that is based on the
Liley et al. (1999) equations, but since modified to incorporate ideas and parameter
values drawn from Wright et al. (2001), Rennie et al. (2000), and Robinson et al.
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(1998). A full derivation of the present form of the cortical equations is given in
Steyn-Ross et al. (2007).

We represent the cortex as interacting populations of excitatory (e) and inhibitory
(i) neurons whose average soma voltages Ve and Vi determine the local firing rates
Qe and Qi . The mapping from membrane voltage to firing rate follows a standard
sigmoidal form given in (8.7) and plotted in Fig. 8.1. The firing rates Qe,i act as
local and long-range source terms for the pulse fluxes Φe,i entering the neural pop-
ulations via chemical synapses at the dendrites. These incoming dendritic fluxes,
moderated by ionic reversal potentials, induce excitatory or inhibitory postsynaptic
potentials (PSPs) that are integrated at the soma to determine the soma potential.
[In addition to flux input via chemical synapses, the model can be generalized to
include diffusive input via gap junctions—electrical synapses—that form direct re-
sistive links between inhibitory neurons (Steyn-Ross et al. 2007, 2009, 2010b), but
we do not consider gap-junction effects in this chapter.]

8.2.1 Model Equations

The excitatory and inhibitory soma voltages are given by partial differential equa-
tions,

τe

dVe

dt
= V rest

e + δV rest
e − Ve + ρeΦeψee + ρiΦiψie, (8.1)

τi

dVi

dt
= V rest

i − Vi + ρeΦeψei + ρiΦiψii . (8.2)

Here, τe,i are average neuron time-constants (see Table 8.1 for parameter values);
V rest

e,i are neuron resting voltages, and δV rest
e is a fixed offset in resting voltage repre-

senting an overall level of neural excitation (δV rest
e > 0) or suppression (δV rest

e < 0);
ρe,i are signed synaptic strengths with ρe > 0 (excitation) and ρi < 0 (inhibition).
Following Liley et al. (1999) and Rennie et al. (2000), the ψab (where a and b are
labels with a = e or i, and b = e or i) are reversal-potential functions that are nor-
malized to unity when the membrane voltage is at resting value, and zero when the
membrane voltage reaches the relevant reversal potential, taken to be V rev

e = 0 mV
for excitatory (AMPA) receptors, and V rev

i = −70 mV for inhibitory (GABA) re-
ceptors,

ψab = V rev
a − Vb

V rev
a − V rest

b

, a, b ∈ {e, i}. (8.3)

The Φe,i functions in (8.1)–(8.2) are postsynaptic input fluxes obeying second-
order differential equations,(

d

dt
+ γe

)2

Φe = γ 2
e

[
Nα

e φα
e + Nβ

e Qe + φsc
e

]
, (8.4)

(
d

dt
+ γi

)2

Φi = γ 2
i N

β
i Qi. (8.5)
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Table 8.1 Standard values for the cortical model

Symbol Description Value Unit

τe,i neuron time-constant 0.040, 0.040 s

V rev
e,i reversal potential at dendrite 0, −70 mV

V rest
e,i neuron resting potential −64, −64 mV

ρe excitatory synaptic gain 1.35 × 10−3 mV·s
ρ0

i inhibitory synaptic gain at zero anesthetic −1.00 × 10−3 mV·s
γe excitatory rate-constant 100 s−1

γ 0
i inhibitory rate-constant at zero anesthetic 85 s−1

Nα
e number of long-range connections from excitatory neurons 1550 –

N
β
e number of local connections from excitatory neurons 1000 –

N
β
i number of local connections from inhibitory neurons 450 –

〈φsc
e 〉 subcortical tonic activity 600 s−1

v axonal conduction speed 140 cm s−1

Λe inverse-length scale for long-range axonal connections 4 cm−1

Qmax
e,i maximum firing rate 30, 60 s−1

θe,i sigmoid threshold voltage −58, −58 mV

σe,i standard deviation for threshold 3, 5 mV

α noise amplitude scale-factor 0.2 –

The γe,i are rate-constants for the postsynaptic response. For anesthetic modeling,
we reduce the inhibitory rate-constant γi (i.e., we lengthen the duration of the in-
hibitory postsynaptic potential) while maintaining the IPSP amplitude—this is dis-
cussed further in Sect. 8.2.2. The three excitatory source fluxes appearing on the
right of (8.4) arise from delayed activity at nonlocal populations via myelinated
cortico-cortical connections (φα

e ), from immediate local activity (Qe), and from

a continuous background of nonspecific subcortical tone (φsc
e ). The Nα

e ,N
β
e are,

respectively, the number of long-range and local incoming excitatory synaptic con-
nections. The simpler form of (8.5) reflects the fact that inhibitory flux arrives ex-
clusively from local sources: there is no long-range inhibition in our cortical model.

For the long-range cortico-cortical flux φα
e , we follow Robinson et al. (1997)

by adopting a two-dimensional damped wave equation driven by excitatory sources
Qe , [(

∂

∂t
+ vΛe

)2

− v2∇2
]
φα

e = v2Λ2
eQe, (8.6)

where v is the average axonal conduction speed, and Λe is an inverse-length scale
for the long-range axonal connections.

The Qe,i sigmoidal functions plotted in Fig. 8.1 describe the population-averaged
mapping from soma voltage to firing rate,

Qa = Qmax
a

1 + exp[−C(Va − θa)/σa] , a = e, i, (8.7)
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Fig. 8.1 Sigmoidal mapping
(8.7) from membrane voltage
Ve,i to firing rate Qe,i .
Vertical dashed line marks
the threshold voltage which is
set at θe,i = −58 mV for both
excitatory (e) and inhibitory
(i) populations. (See
Table 8.1 for list of parameter
values)

with C = π/
√

3. Here, θa is the population-average threshold for firing, σa is its
standard deviation, and Qmax

a is the maximum firing rate.
We write the subcortical activation φsc

e in (8.4) as a noisy fluctuation about a
constant tonic background 〈φsc

e 〉,
φsc

e (r, t) = 〈φsc
e 〉 + α

√〈φsc
e 〉ξ(r, t) (8.8)

where ξ is a Gaussian-distributed, zero-mean, delta-correlated spatiotemporal white
noise,

〈ξ(r, t)〉 = 0, (8.9)〈
ξ(r, t)ξ

(
r′, t ′

)〉 = δ
(
r − r′)δ(t − t ′

)
, (8.10)

and α is a dimensionless factor for convenient scaling of the noise intensity. In a real
brain, it is known that silencing of the continuous wash of nonspecific background
activity entering from the brainstem (e.g., following lesion or traumatic accident)
causes the cortex to immediately lapse into a comatose state (Kelly 1991), there-
fore a noisy subcortical stimulus seems to be an essential prerequisite for normal
cortical function. The inclusion of additive white noise in the model is our heuristic
attempt to capture this element of neurophysiology. We use “white” (i.e., spectrally
flat) noise as a mathematical idealization that enables us to compute the theoretical
equilibrium spectrum of the electrocorticogram (ECoG), and to track its spectral
variations during induction of anesthesia. It turns out that our cortical model acts
as a lowpass filter that strongly attenuates higher frequencies, so the presence of
unphysiologically high frequencies in our stimulus noise is probably of little conse-
quence.

8.2.2 Modeling Effect of Propofol Anesthetic

There is accumulating evidence that, at the molecular level, general anesthetic
agents act directly on neurotransmitter-gated ion channels to suppress neural ac-
tivity by either decreasing excitation, or increasing inhibition, or both. Dissociative
anesthetics (such as ketamine, nitrous oxide, xenon) reduce excitatory currents by
blocking NMDA receptors (Franks et al. 1998), while inductive anesthetics (e.g.,
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Fig. 8.2 Time course of the inhibitory postsynaptic potential (IPSP) for three settings of anesthetic
effect λ. The curves are scaled alpha-functions of the form PSP(t) = ργ 2t exp(−γ t) with synaptic
strength ρ = λρi and rate-constant γ = γi/λ. With increasing anesthetic concentration, the area
and time-to-peak (1/γ ) both scale linearly with λ, while the peak height remains unchanged

halothane, isoflurane, propofol) strongly potentiate inhibitory currents by opening
GABA receptors (Franks and Lieb 1994), allowing more chloride (Cl−) ions to
enter the postsynaptic neuron. Unlike some inductive agents at clinically relevant
concentrations, propofol has little effect on excitatory synapses; its primary effect
is to prolong the duration of the decay phase of inhibitory response without altering
its peak amplitude (Kitamura et al. 2002).

The unitary impulse response (i.e., response per individual synaptic spike) for
our model inhibitory synapse is obtained by replacing the γ 2

i N
β
i Qi source term on

the right-hand side of (8.5) with the scaled delta-function γ 2
i δ(t),

(
d

dt
+ γi

)2

Φi = γ 2
i δ(t), (8.11)

whose solution has an alpha-function form,

Φi(t) = γ 2
i te−γi tΘ(t), (8.12)

where Θ(t) is the Heaviside (unit-step) function. Multiplying by synaptic strength
ρi gives the unitary inhibitory postsynaptic potential (IPSP) graphed with a solid-
black line in Fig. 8.2. To follow the IPSP effect of propofol, we introduce a dimen-
sionless scale-factor λ that is set to unity in the absence of propofol, and which
grows proportionately to propofol concentration. We then scale both the inhibitory
rate-constant γi and synaptic strength ρi ,

γi = γ 0
i /λ, ρi = λρ0

i

where γ 0
i and ρ0

i are the default values for rate-constant and synaptic strength (see
Table 8.1 for values) that apply when the concentration of propofol anesthetic is
zero (i.e., when λ = 1). These rescalings ensure that the area of the IPSP response
function (representing the total charge transfer) increases linearly with drug concen-
tration while retaining constant peak height. Figure 8.2 shows the result of setting
λ = 1,2,3. We note that this area-scaling of the alpha-function PSP is the same as
that used in our original anesthesia modeling paper (Steyn-Ross et al. 1999).
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One non-ideal aspect of using a constant-height alpha-function to model IPSP
is that the time-to-peak increases linearly with drug concentration, whereas experi-
mental measurements show that anesthetics prolong inhibitory rise-time much less
than decay-time. Bojak and Liley (2005) and Hutt and Longtin (2010) both ad-
dress this problem by replacing the alpha-function with a biexponential form of
constant height. Bojak and Liley constrain the rise-time to be constant, while Hutt
and Longtin adopt a slightly simpler algebraic form in which the time-to-peak in-
creases slightly with anesthetic concentration. In future work it would be interesting
to assess the dynamical consequences of these three different choices for IPSP re-
sponse.

8.2.3 Equilibrium States of the Cortex

In order to explore the effect of altering anesthetic concentration on the cortical
model, we identify the spatially uniform equilibrium states corresponding to a given
level of anesthetic effect λ and cortical activation δV rest

e , then investigate their sta-
bility with respect to small perturbations. Our working assumption is that noise-
induced voltage fluctuations about such steady states are the source of the ECoG
signal (detected via cortical electrodes) and of the EEG signal (via scalp electrodes).

To locate the homogeneous steady states, we remove the subcortical noise (i.e.,
set noise scale-factor α = 0 in (8.8)), set to zero all time- and space-derivatives
in (8.1)–(8.2), (8.4)–(8.6), then solve numerically the resulting nonlinear algebraic
equations for the steady-state excitatory and inhibitory soma voltages (V

(0)
e ,V

(0)
i )

and firing rates (Q
(0)
e ,Q

(0)
i ) across the anesthesia domain. By sampling the domain

coordinates sufficiently finely, we are able to map out the smooth distribution of
equilibrium states shown in Fig. 8.3. Of particular interest is the observation that,
for a certain subspace of the domain, the steady-states manifold folds back on itself
to form an S-shaped reentrancy. This means that all (λ, δV rest

e ) coordinates within
the fold boundaries—marked with a dashed-white line in Fig. 8.3—are associated
with two or three steady states, while all domain coordinates outside the extent of
the fold are associated with single steady states.

We have traced four putative induction–emergence anesthesia trajectories (la-
beled i, ii, iii, iv) on the Fig. 8.3 manifold. Respectively, each trajectory corresponds
to increasing, then decreasing, levels of propofol at one of four fixed levels for cor-
tical excitability, represented as fixed offsets δV rest

e = {0, 1.5, 2.9474, or 4.5} mV
from the default excitatory resting voltage V rest

e = −64 mV (see Table 8.1). Tours-i
(δV rest

e = 0 mV) and -ii (1.5 mV) traverse both the multi-state and single-state re-
gions, while tour iii (2.9474 mV) just grazes the cusp point separating the two, and
tour iv (4.5 mV) is entirely within the domain of single states.

We identify the conscious “awake” state (labeled A on path i) with the elevated
firing rates of the top branch, and the fully anesthetized or “comatose” state (la-
beled C) with the depressed firing rates of the bottom branch. The point labeled
I (“induction”) marks the saddle–node annihilation point beyond which the steady
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Fig. 8.3 Manifold of steady-state firing rates Q
(0)
e across the (λ, δV rest) anesthesia domain. Mul-

tiplicative control parameter λ sets the anesthetic effect; δV rest is an additive offset representing
the overall level of cortical excitation (δV rest > 0) or suppression (δV rest < 0) of the excitatory
neural population. Red curve marks the edge of the reentrant “fold” in the manifold; dashed-white
curve shows the projection of this edge onto the lower and upper surfaces, demarcating the region
containing multiple (two or three) steady states. Labels i to iv indicate four candidate induction–re-
covery tours (blue lines) across the domain; dashed-blue lines show jump discontinuities from a
saddle–node annihilation point to the other branch. For example, tour i runs from A (awake) to I

(induction) to J to C (coma), then recovers via C to E (emergence) back to awake at A. Tour-iii
passes through the double saddle–node (“opalescent”) critical point, while tour iv is entirely within
the single-root regime. The distance between the dashed-blue verticals on tour i (or -ii) shows the
maximum extent of the predicted hysteresis separation between induction and emergence transition
points. (See Figs. 8.4, 8.5 for stability characteristics of the manifold)

states belonging to the top and middle (i.e., the reentrant underhang) branches have
merged and disappeared. This is the last point at which induction of anesthesia can
occur since, being continuously buffeted by noise, a stochastically driven cortex
is likely to jump prior to the turning point, with the probability of an early jump
increasing with noise intensity.

For our idealized noise-free trajectory along tour i, increasing drug concentration
leads to an induction of anesthesia that proceeds from A to C via a downwards
jump transition I ↓ J . Later, as the drug wears off (via catabolism or elimination),
the cortex recovers its awake state via the reverse path from C to A via an upwards
jump E ↑ A from the lower-branch emergence point E. The fact that these two jump
transitions occur at different domain coordinates implies that the patient will awaken
at a lower level of anesthetic concentration than that required to put her to sleep.
Thus the model predicts that—for multi-root tours i and ii—the brain will exhibit
hysteresis, i.e., the brain response to anesthesia will show history-dependence, and
one cannot assume a one-to-one correspondence between brain state and anesthetic
level.

Such a hysteresis would provide a measure of “protective inertia” for the incum-
bent cortical state that would prevent unstable bouncing between wake and sleep at
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the critical point of induction.1 It has been suggested that similar hysteretic mech-
anisms help stabilize the wake and natural sleep states, and that lack of adequate
sleep/wake hysteresis might provide a natural explanation for narcolepsy (Phillips
and Robinson 2007; Robinson et al. 2010).

Because tours iii and iv on Fig. 8.3 are continuous descents into anesthesia, no
static hysteresis effects are expected, although, as we will show in our numerical
simulations in Sect. 8.2.6, a form of dynamic hysteresis can appear if the trajectory
traverses a region of temporal instability.

We acknowledge that increases in anesthetic concentration are likely to reduce
cortical excitability (e.g., via drug-induced reductions in subcortical tone) as induc-
tion of anesthesia proceeds. However, we have chosen to investigate the “pure-λ”
paths as a simple way of exploring the anesthetic domain. More realistic “slant-path”
tours in which λ and δV rest

e co-vary simultaneously could readily be investigated in
future work.

We now examine the stability characteristics of the model cortex during wake
and under anesthesia.

8.2.4 Cortical Stability Under Anesthesia

Our cortical system comprises two first-order (8.1)–(8.2) and three second-order
differential equations (8.4)–(8.6). We decompose the latter into pairs of first-order
equations, giving a total of eight first-order differential equations in time; the
state of the cortex is then defined by its eight-dimensional state vector X(r, t) =
[Ve,Vi,Φe, Φ̇e,Φi, Φ̇i, φ

α
e , φ̇α

e ]T.
To determine the linear stability of the deterministic system, we set the noise to

zero, then express each element of the state vector as the sum of its equilibrium value
X(0) plus a small plane-wave perturbation of magnitude X̃(t) in two-dimensional
space,

X(r, t) = X(0) + X̃(t)eiq·r (8.13)

where q is the wave-vector with magnitude q = |q| and wavelength 2π/q . After
substituting (8.13) into the differential equations (8.1)–(8.2), (8.4)–(8.6) and retain-
ing only first-order perturbations, the equations of motion for the cortex reduce to
the constant-matrix form,

d

dt
X̃(t) = M(q)X̃(t), (8.14)

where M is the 8 × 8 Jacobian matrix evaluated at equilibrium. This is a sparse
matrix containing 19 nonzero terms. Its q-dependence arises from the ∇2 operator
in (8.6), generating a −q2 term.

1This is analogous to the noise immunity provided by the positive-feedback hysteresis engineered
into an electronic Schmitt trigger for clean binary switching in digital circuits.
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At each equilibrium point, we compute the eight eigenvalues of M for a closely
spaced range of wavenumbers q , retaining only the dominant eigenvalue—i.e., that
eigenvalue which has the most positive (or least negative) real part—for each q-
value. Writing the spectrum of dominant eigenvalues as the sum of real and imagi-
nary parts,

Λdom(q) = α(q) + iω(q),

we assess linear stability as follows:

• if α(q) < 0 for all q-values, then all spatial modes will decay with time, so the
uniform (homogeneous) steady state is stable with respect to small perturbations;

• if α(q) > 0 for any q-value, then the equilibrium state is unstable; undamped q-
modes will grow monotonically if ω(q) = 0, or, if ω(q) �= 0, will develop grow-
ing oscillations at angular frequency ω(q);

• for the unstable case, early growth is dominated by the spatial mode with largest
α-value;

• for the marginal case α(q) = 0, spatial modes will be long-lived (i.e., neither
growing nor decaying), leading to critically slowed fluctuations.

For all settings of the present anesthesia model, our eigenvalue analysis shows
that the q = 0 mode is always less damped than all higher-frequency spatial modes,
and that if an instability sets in, it is always the q = 0 (i.e., infinite wavelength) mode
that is most unstable. This means that a cortical instability will tend to manifest as a
global, whole-of-cortex oscillation without spatial structure. This is consistent with
a stability analysis by Wilson et al. (2005, 2010) when examining a variant of the
present model to investigate sleep dynamics, and also with earlier work by Robinson
et al. (1997) using a different continuum model. (However, we should point out that
the inclusion of inhibitory gap-junction diffusion in a generalized version of the
present model predicts a range of spatiotemporal instabilities such as Turing patterns
and traveling waves (Stey-Ross et al. 2007, 2010b).)

Figures 8.4 and 8.5 illustrate two alternative stability maps for the anesthesia
equilibrium manifold drawn in Fig. 8.3; respectively, these maps correspond to zero-
anesthetic default values for IPSP rate-constant of γ 0

i = 85 and 50 s−1. Each map
is presented as a bird’s-eye view with “xray” penetration to the top, middle, and
bottom branches of the manifold. The multi-states boundary (red line in Fig. 8.3) is
represented by the outlined triangular wedges opening to the top-left corner of the
Figs. 8.4, 8.5 panels.

For both figures, the left-hand panels display α = Re(Λdom), the real part of the
dominant eigenvalue for the q = 0 spatial mode, while the right-hand panels show
the expected oscillation frequency (in Hz) f = ω/2π = Im(Λdom)/2π for those
regions for which an instability is predicted (i.e., at those (λ, δV rest

e ,Q
(0)
e ) domain

coordinates for which α > 0). The relative stability of the equilibrium states can be
determined from the colorbar on the left (blue = very stable; green = stable; yellow
= marginal; orange = unstable; red = highly unstable). The unstable equilibria sug-
gest emergence of growing Hopf oscillations (subsequently confirmed in numerical
simulations) whose frequencies range from 0 (blue) to 4 Hz (red)—see frequency
colorbar on the right.
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Inspection of Fig. 8.4 (middle-left panel) shows that the mid-branch (the reen-
trant upper surface “inside” the fold) is everywhere unstable, and that, apart from
a very narrow strip running along the upper and lower edges of the multi-root re-
gion, the top (upper-left panel) and bottom (lower-left panel) branches are stable
with respect to small perturbations. These narrow strips of zero-frequency instabil-
ity arise from the annihilation of node- and saddle-fixed points that occurs along the
manifold edge where three distinct equilibria collapse to one.

It is interesting to observe the fanlike aura of low-frequency instability that
radiates out from the cusp marking the double saddle–node annihilation event
at the extreme limit of the multi-root region. This projection of dynamical ef-
fect into the single-root region is similar to the bottleneck slowing for trajecto-
ries passing through the shadow zone of a saddle–node “ghost” (Strogatz 2000;
Fulcher et al. 2008; Steyn-Ross et al. 2010a), except that here, the zero-frequency
saddle–node remnant apparent in Fig. 8.4 (middle-right panel) is bracketed by low-
frequency Hopf instabilities.

Reducing the default IPSP rate-constant γ 0
i from 85 to 50 s−1 (Fig. 8.5) causes

the zone of Hopf instability to grow significantly, invading the mult-root region
(see top- and bottom-right panels). This invasion means that an anesthesia induc-
tion along say, δV rest

e = 0 mV, can now destabilize (and jump “early” to the bot-
tom branch) via a ∼3-Hz Hopf bifurcation prior to the trajectory encountering the
saddle–node bifurcation at the manifold edge. (This has been verified in numerical
simulations, but not shown here.)

We now compute the small-signal fluctuation spectra for the case of stable equi-
libria, then test the theoretical predictions against 2-D numerical grid simulations of
the full nonlinear system equations for three sample induction–emergence anesthe-
sia trajectories. Finally, we will compare our model results against clinical spectra
extracted from ECoG time-series recorded from a sheep undergoing propofol anes-
thesia.

8.2.5 Theoretical Fluctuation Spectra

In our cortical model, noise enters from the subcortex. This noisy stimulus evokes a
fluctuation spectrum which we can compute by linearizing the stochastic differen-
tial equations about homogeneous steady state to derive an eight-variable Ornstein–
Uhlenbeck (Brownian motion) description for the fluctuations,

d

dt
X̃(r, t) = M̂X̃(r, t) + √

Dv(r, t), (8.15)

where M̂ is an 8×8 matrix operator containing the ∇2-term, D is a sparse 8×8
diffusion matrix with a single nonzero element that defines noise intensity,√

D44 = γ 2
e α

√〈φsc
e 〉, (8.16)

and v is the sparse noise vector containing the white-noise source,

v(r, t) = [0, 0, 0, ξ(r, t), 0, 0, 0, 0]T. (8.17)
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Fig. 8.4 Stability and frequency map across the anesthetic domain for γ 0
i = 85 s−1. Left-hand

panels display the real part of the dominant eigenvalue α = Re(Λdom) (units: s−1) for the q = 0
(i.e., whole-of-cortex) spatial mode; right-hand panels show the predicted Hopf oscillation fre-
quency f = Im(Λdom)/2π (units: Hz) for the α > 0 instability points. Within the multi-root re-
gion, the zones of instability on the top and bottom branches are confined to a narrow strip close
to the edge; within these zones, the cortex destabilizes via a saddle–node bifurcation

Following Chaturvedi et al. (1977) and Wilson et al. (2005), we can write the power
fluctuation for each Fourier component S(q,ω) as

S(q,ω) = 1

2π
(M(q) + iωI)−1D

(
MT(q) − iωI

)−1
. (8.18)

We used this equation to track the changes in fluctuation spectra for three of the
sample anesthesia trajectories (tours i–iii) drawn on Fig. 8.3. Consistent with the
linear stability analysis, we found that the q = 0 uniform spatial mode dominates all
higher-frequency spatial modes, so the work reported here is confined to the q = 0
case. The theoretical band-power results for the induction–emergence trajectories
are presented in the next section (see Fig. 8.7) as (dotted) reference curves against
which the spectra obtained from numerical simulations could be checked. We em-
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Fig. 8.5 Stability and frequency map across the anesthetic domain for γ 0
i = 50 s−1. Compared

with Fig. 8.4, the lowering of the default value for IPSP rate-constant has reduced the area of the
stable region, with tongues of Hopf instability now invading both the top and bottom branches of
the multi-root region

phasize that the linear theory is only valid when the equilibrium state is stable; no
spectral predictions are possible when the equilibrium state becomes unstable—as
happens, for example, during the tour iii crossing of the Hopf “lake of instability”
(see panel (iii) of Figs. 8.6 and 8.7).

8.2.6 Numerical Simulations for Anesthesia Induction and
Recovery

As a cross-check on the (8.18) spectral predictions, we ran a series of numerical sim-
ulations of the full cortical system as defined by differential equations (8.1)–(8.2),
(8.4)–(8.6). In these simulations, the cortex is represented as a 6-cm square of tissue
whose opposite edges are joined to give toroidal boundary conditions. The cortical
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sheet is mapped to a 60 × 60 grid, giving a spatial resolution of �x = �y = 1 mm;
the time-step is set at �t = 0.4 ms. We use a first-order Euler updating algorithm
in time; the wave equation ∇2-operator is implemented using the MATLAB con-
volve2 function2 in wrap (toroidal) mode. The subcortical stimulation of (8.8)
contains deterministic and stochastic parts, and is discretized as

(
φsc

e

)n

i,j
= 〈

φsc
e

〉 + α
√〈φsc

e 〉 Rn
i,j√
�t

, i, j = 1, . . . ,60, (8.19)

where n is the time-index (i.e., t = n�t), and (i, j) is the grid coordinate. Here,
Ri,j is a zero-mean, unit-variance Gaussian-distributed spatiotemporal white noise
that is uncorrelated in space and time. It delivers continuous noisy stimulation to the
entire cortical grid.

For a given fixed value of δV rest
e , we ran two lengthy numerical experiments:

first, anesthetic scale-factor λ was gradually increased over 10 mins from 0.8 to 3.0
to simulate induction of anesthesia, then, for the recovery phase, λ was decreased
from 3.0 to 0.8 over a further 10-min interval.

Figure 8.6 shows representative time-series for a selected point on the corti-
cal grid for three settings of δV rest

e : (i) 0, (ii) 1.5, (iii) 2.9474 mV, for the induc-
tion and recovery experiments. The top three panels trace Ve(t)30,30, the excita-
tory soma voltage at grid-coordinate (30,30) for induction (black trace) and recov-
ery (gray). These time-series show the large-scale deterministic voltage trends as
the cortex follows the tour i, ii, and iii trajectories marked on the Fig. 8.3 man-
ifold. The step-like voltage jumps at the points of induction and emergence are
very obvious in panels (i) (δV rest

e = 0 mV) and (ii) (δV rest
e = 1.5 mV). For tour

iii, the transition region 1.8 � λ � 2.2 is swamped by large-amplitude limit-cycle
oscillations brought on by the low-frequency (�3 Hz) Hopf instability predicted in
Fig. 8.4.

In order to view the small-scale stochastic fluctuations about the deterministic
trend, we also record ∂Ve, the voltage differential between two grid points separated
by 4 mm,

∂Ve(t) = Ve(t)30,34 − Ve(t)30,30.

This subtraction eliminates all common-mode signals—such as dc trends or whole-
of-cortex Hopf oscillations—thus leaving a residual fluctuation voltage that we in-
terpret as being equivalent to the differential ECoG signal registered by a pair of
cortical electrodes embedded in the cortex and separated by a distance of 4 mm (thus
matching the electrode configuration used in the sheep experiments described in the
next section). These differential voltages are plotted in the middle and bottom pan-
els of Fig. 8.6. We see abrupt changes in fluctuation amplitude that are coincident
with the dc transitions between top (awake) and bottom (anesthetized) branches.
Counterintuitively, the simulation predicts larger ECoG fluctuation power in the

2The convolve2 function is written by David Young, and available for download from
www.mathworks.com/matlabcentral/fileexchange/22619-fast-2-d-convolution.
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Fig. 8.6 Nonlinear simulation results for anesthesia induction and emergence at three settings for
δV rest: (i) 0 mV; (ii) 1.5 mV; (iii) 2.9474 mV; default IPSP rate-constant is set at γ 0

i = 85 s−1.
Two 10-min simulations are run at each δV rest setting, with anesthetic factor λ either increasing
linearly from 0.8 to 3.0 (induction, shown in black), or decreasing from 3.0 to 0.8 (emergence,
in gray). Cortex is a 6- by 6-cm square of cortical tissue mapped to a 60 × 60 grid with toroidal
boundary conditions; spatial resolution is �x = �y = 1 mm; simulation time-step is �t = 0.4 ms.
Upper panels plot the excitatory voltage Ve (in mV) at reference pixel (30, 30) near the center of
the grid; lower panels plot ∂Ve = Ve(30,34) − Ve(30,30) (mV), the voltage difference between
pixel (30,34) and the reference pixel—this corresponds to the differential ECoG voltage measured
between a pair of cortical electrodes spaced 4 mm apart. For clarity in top-right panel, emergence
trace (gray) has been displaced vertically downwards by 10 mV. Both induction (black) and emer-
gence (gray) trajectories display large-amplitude low-frequency global oscillations for anesthetic
values λ ≈ 2; this seizure-like instability arises from a Hopf bifurcation (see Fig. 8.4). The gray
wavelet is a zoomed view of the circled (©) time-series showing exit from the “lake of instability”
during emergence from anesthesia

low-voltage, low-firing bottom-branch (comatose) state than in the high-voltage,
high-firing top-branch (conscious) state.

Of interest in the Fig. 8.6 graphs (panels (i), (ii)) is the clear hysteresis separation
between the points of induction and emergence. We also observe a form of dynamic
hysteresis in the Hopf instability in (iii): this arises, not from a jump between states
(the locus of steady states for (iii) remains single-valued and continuous through-
out), but from direction-sensitive delays in the birth and death of the seizure-like
oscillations.

The differential ECoG fluctuations of Fig. 8.6 were Fourier analyzed in overlap-
ping 10-s epochs in order to compute a time-series for S(f ), the short-time power
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Fig. 8.7 Narrowband-power values computed for 10-min simulations for anesthesia induction
(thick curves), and emergence (thin curves) at three values of excitatory voltage offset δV rest:
(i) 0 mV; (ii) 1.5 mV; (iii) 2.9474 mV; default IPSP rate-constant is set at γ 0

i = 85 s−1. Thick
and thin curves show the spectral analysis of the respective black and gray ∂Ve differential ECoG
time-series displayed in Fig. 8.6. Dotted points are spectral predictions from (8.18). For trajectory
(iii), stability analysis indicates a Hopf instability for 1.8 < λ < 2.2, so linear spectral predictions
are invalid here (dots suppressed). From top to bottom, frequency bands (in Hz) are 1–5 (blue);
10–15 (red); 20–25 (cyan); 30–35 (magenta); 40–45 (black). Each 10-min time-series was sub-
sampled by a factor of 10 to give an effective sampling rate of 250 s−1, analyzed in 10-s epochs
with 90% overlap, then smoothed with a Whittaker filter (Eilers 1994)

spectral density (PSD), and hence derive the narrowband spectral power P ,

P (n)(f1, f2) =
∫ f2

f1

S(n)(f ) df, (8.20)

plotted in Fig. 8.7. Here, S(n)(f ) is the PSD at epoch n, and P (n) is the narrowband
power for that epoch. The solid curves in Fig. 8.7 are the values computed from the
simulation results, and the dotted curves are theoretical predictions from the linear
theory of (8.18). There is good agreement between theory and numerical experi-
ment, except for the middle portion of panel (iii) where the dominant eigenvalue
predicts a Hopf instability, thus rendering the linear spectrum invalid.

Figure 8.7 shows that most fluctuation activity occurs at the lowest frequencies
(note the logarithmic power scale), with higher frequencies being strongly attenu-
ated. All frequency bands exhibit a strong boost in narrowband power on induction
of anesthesia, but only the lowest frequency band (1–5 Hz) also shows a power boost
on emergence. The fact that higher-frequency activity shows little, if any, suppres-
sion at deeper levels of anesthesia (i.e., at larger λ) is a limitation of the model—we
revisit this aspect in Sect. 8.3.3 following our investigation of ECoG spectra for
propofol anesthesia in an adult sheep.
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8.3 Induction of Propofol Anesthesia in a Sheep

During Aug–Nov 2002, colleagues3 at the University of Adelaide carried out a series
of anesthesia studies on seven adult Merino sheep. The anesthetic agents tested were
propofol, ketamine, and methohexital. Here we report on the analysis for propofol
induction for one of these sheep, then compare the animal results against the mean-
field cortical modeling described above.

8.3.1 Instrumentation

Under halothane anesthesia, the sheep was instrumented (as described by Voss et al.
2007; Ludbrook et al. 1996), then allowed to recover. This instrumentation enabled
the researchers to record electrical brain activity, blood-flow rate, and propofol con-
centrations in both the arterial blood entering the brain, and in the cerebral effluent
blood leaving the brain—the difference between these concentrations allows one to
deduce the rate of propofol accumulation in the brain (see (8.21) below).

8.3.1.1 Monitoring Brain Activity

ECoG brain activity in the sheep was detected using a linear array of nine stainless
steel electrodes implanted in the parasagittal plane of the cortex with the electrodes
penetrating 1–2 mm into the outer layers of the cortical gray matter. Electrodes were
spaced 2 mm apart, with alternate electrodes being connected to one of two EEG
monitors (A-1000 Aspect Medical Systems), thus giving an effective inter-electrode
recording separation of 4 mm. A network of passive divide-by-5 attenuators was
mounted on the electrode circuit board to ensure that the ECoG signal did not over-
drive the input stage of the EEG monitors. Sampling rate was set at 256 s−1, and
the ECoG voltages were recorded with a digital precision of 14 bits. We found that,
in response to a step-change in dc voltage, the Aspect monitors exhibit an exponen-
tial decay to zero voltage with a time-constant of 1.0 s, so we deduce an effective
high-pass filtering characteristic with corner frequency of 1/2π ≈ 0.16 Hz (this is
the “all filters off” default behavior; no additional signal filtering was applied by the
A-1000 monitor).

8.3.1.2 Drug Delivery and Blood Sampling

Propofol was administered intravenously as a 200-mg bolus delivered over a period
of 2 min via injection into the blood-stream at the sheep’s femoral vein (in the thigh).

3G. Ludbrook, C. Grant, and R. Upton, from the Department of Anaesthesia and Intensive Care,
University of Adelaide, Adelaide, South Australia, Australia. Experimental methods were ap-
proved by the Animal Ethics Committee of University of Adelaide.
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Following commencement of drug injection, 1-mL samples of arterial and sagittal-
sinus blood were taken every 15 s for 3 min, and then every minute out to 20 min.
Samples were cooled and stored for subsequent off-line assay of propofol concen-
trations. These samples provide point estimates of the upstream and downstream
drug concentrations [in µg propofol per mL of whole blood] for the blood-stream
servicing the brain.

8.3.2 Determination of Propofol Concentration in the Brain

Within 10–20 heartbeats of propofol injection, the increased drug concentration
would have been distributed throughout the arterial network, including the cere-
bral capillary system that provides blood flow to the brain. However, delivery
of propofol from the capillary blood into the brain parenchyma, the presumed
drug-effect site, is delayed by slow diffusive transport across the protective per-
meable membrane that acts as a blood–brain barrier. For propofol, the half-life
for blood:brain equilibration is of the order of 2–4 min (Ludbrook et al. 1999;
Olofsen et al. 2008). The propofol not taken up by the brain remains in the cere-
bral blood flow, and is drained via the sagittal sinus, the large vein at the top of the
brain, for return to the heart and subsequent recirculation.

Because propofol is neither catabolized (Ludbrook et al. 1999) nor manufac-
tured in the brain (i.e., no sinks or sources of propofol there), the rate of change of
Cb [units: µg/mL], the drug concentration in the brain, will be proportional to the
difference between the influx (arterial: Cart) and efflux (sagittal: Csag) blood-flow
concentrations. If the cerebral blood-flow (CBF) rate is Q [mL/min], and the effec-
tive blood volume drained by the sagittal sinus is Vb [mL], then a mass-conservation
argument (also referred to as mass balance) leads to the following expression for the
rate of drug uptake in the brain (Upton et al. 1988):

d

dt
Cb(t) = 1

Vb

[Cart(t) − Csag(t)]Q(t), (8.21)

with the time-integral of the drug flux giving the brain concentration at any time t ,

Cb(t) = 1

Vb

∫ t

0

[
Cart

(
t ′
) − Csag

(
t ′
)]

Q(t ′) dt ′. (8.22)

In the sheep study, the cerebral blood flow Q was determined from the product of
the flow velocity, measured via Doppler flowprobe, times the cross-sectional area of
the blood vessel to which the probe was attached. The effective blood volume for
the brain was taken to be Vb = 75 mL (Voss et al. 2007).

Figure 8.8 shows the distinct time courses for the measured and deduced propofol
concentrations in one sheep experiment. The 2-min infusion of propofol (solid-black
bar) commenced at time t = 3 min. The arterial propofol level (Cart: black curve)
rises rapidly to reach its maximum at cessation of drug delivery at t = 5 min, while
the venous propofol level (Csag: dashed-black) rises more slowly to a broader peak;
the resulting brain concentration (Cb: thick-gray), deduced from the accumulated
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Fig. 8.8 Time course of propofol concentration as measured on entry to (solid-black curve:
femoral artery), and exit from (dashed-black: sagittal sinus) the cerebral cortex of an adult sheep;
and calculated concentration in the brain (thick-gray curve). The curves are smooth fits (piece-
wise cubic Hermite polynomial) to the concentration point-data (black dots). A 200-mg infusion
of propofol was injected intravenously over a period of 2 min (indicated with upper black bar).
The resulting ECoG brain activity for this sheep is shown in Figs. 8.9 and 8.10

(Cart −Csag) influx-minus-outflux difference over time (see (8.22)), reaches its peak
value of 15.26 µg/mL at t = 6.0 min, 1 min after completion of drug delivery, then
declines slowly over the next 17 min.

We now examine the concomitant changes in electrical activity in the sheep cor-
tex recorded during induction and recovery of propofol anesthesia.

8.3.3 Analysis of Sheep ECoG Spectrum

Each Aspect A-1000 EEG monitor recorded four channels of ECoG activity from
the linear multielectrode array embedded on the cortical surface. An electrode at one
end of the array served as a common reference for all channels. With an effective
grid spacing of 4 mm, channels 1 through 4 registered the voltage differences devel-
oped over respective distances of 4, 8, 12, and 16 mm from the reference electrode.
We found little qualitative difference between the time-series or spectral character-
istics of the four channels, so we choose to present the analysis for channel-3 since
it is marginally clearer and less “noisy” than the others.

After applying a second-order Butterworth notch filter to remove 50-Hz mains
interference, we Fourier transformed the 25-min channel-3 ECoG time-series using
the MATLAB spectrogram function (5-s epochs with 90% overlap, Hamming
window), then smoothed the resulting frequency–time power spectrum by applying
Whittaker smoothing (Eilers 1994) over both time and frequency.

In Figs. 8.9 and 8.10 we present bird’s-eye and perspective views of the spec-
trogram with a logarithmic (dB) mapping between ECoG power and displayed col-
ormap. On the first spectrogram, we have superimposed the Cb brain-propofol trace
(from Fig. 8.8) as a convenient reference. We see two surges in fluctuation power:
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Fig. 8.9 Electrocorticogram (ECoG) power spectrum for propofol induction of anesthesia in an
adult Merino sheep. Three minutes into the recording, a 200-mg infusion of propofol was delivered
over a period of 2 min (indicated with upper black bar). White curve shows smooth fit to calculated
drug concentrations (black dots) in the brain. Propofol readings (in µg/mL) have been scaled by
×7 for ease of display against the frequency-axis; peak concentration of 15.26 µg/mL occurred at
t = 6.0 min, 1 min after cessation of drug infusion. Note the two biphasic surges in ECoG power:
the first narrow peak (4 < t < 5 min) marks induction of anesthesia; the second, broader peak
(8 < t < 18 min) corresponds to emergence. ECoG sample rate was 256 s−1. (Signal deficit at
50 Hz is an artifact resulting from removal of mains interference)

Fig. 8.10 Perspective surface view of ECoG spectrogram shown in Fig. 8.9 for induction of propo-
fol anesthesia in an adult sheep. Power spectral density (vertical axis) carries units of (µV)2/Hz,
expressed in dB. The inductive surge in brain activity at t = 5 min (arrowed) is immediately fol-
lowed by steep decline, with activity suppression moving progressively toward lower frequencies.
Minimum activity corresponds with maximum drug concentration at t = 6 min. Brain activity then
recovers gradually, displaying a second biphasic surge that peaks at t ∼ 15 min

the first peak occurs near t = 5 min as the level of propofol in the brain is rising
rapidly during induction of anesthesia; the second, much broader peak develops later
as propofol levels decline during the recovery phase. The presence of two biphasic
power surges in the sheep ECoG is consistent with the dual peaks reported for EEG
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Fig. 8.11 Narrowband spectral power for propofol anesthesia plotted (a) versus time; and (b) ver-
sus propofol concentration in the brain. Black-triangle (�) symbols in (a) and (b) mark the point
of maximum low-frequency power during induction. These plots show integrated ECoG activity∫ f2
f1

S(f )df over the (f1, f2) frequency intervals listed in the legend; S(f ) is the power spec-
tral density shown in the Fig. 8.10 spectrogram. All bands show a power surge during induction
(around 5 min), and a second surge during recovery (around 15 min); for both peaks, higher-fre-
quency activity tends to surge sooner. Consequently, hysteretic separation between induction and
emergence peaks is strongest at the lowest frequencies (1–5 Hz), and disappears at the highest
frequencies (e.g., 60–65 Hz)

recordings from human patients during induction–recovery cycling under propofol
anesthesia (e.g., Kuizenga et al. 1998, 2001a).

To quantify the spectral changes during sheep anesthesia, we computed the nar-
rowband spectral power in the same manner as we did earlier for the numerical
simulations (see (8.20) and Fig. 8.7). In Fig. 8.11 we plot band power (averaged
across all four ECoG channels to improve smoothing) (a) as a function of time, and
(b) as a function of brain-propofol concentration.

As was the case for the mean-field simulations, Fig. 8.11 shows that most of the
fluctuation power resides in the lowest frequencies, with a monotonic decrease in
power as the frequency band increases. Also, all bands show two power surges: a
brief surge during induction, and a broader peak during recovery. However, unlike
the simulation results, deeper levels of anesthesia are associated with significantly
diminished activity. Further, for both surges, higher-frequency activity tends to peak
earlier so that the hysteresis separation between induction and emergence peaks
is strongest for the lowest frequency bands, but seems to disappear at the highest
frequencies.
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8.4 Conclusion

In this chapter we have described a first-order phase-transition model for anesthesia
that was first elucidated in a reduced two-variable adiabatic form in Steyn-Ross et
al. (1999), and developed further in Steyn-Ross et al. (2001a, 2001b, 2003, 2004).
Subsequent analysis of the full non-adiabatic model (Wilson et al. 2006) revealed the
emergence of a low-frequency Hopf oscillation when the γ −1

i IPSP time-constant
is sufficiently prolonged, and we have demonstrated in the present chapter that the
Hopf instability is most likely to emerge at enhanced levels of cortical activation
(i.e., when δV rest

e is raised).
However, the primary focus of this chapter is not so much the large-scale non-

linear cortical dynamics of Hopf oscillations, but rather the small-scale stochastic
voltage fluctuations for a cortex transiting into anesthesia along constant-δV rest

e tra-
jectories that lie on the manifold of homogeneous steady states. Because anesthesia
appears to be steplike, all-or-nothing phenomenon—the subject is either aware and
responsive, or unaware and unresponsive—we have selected trajectories that tra-
verse the region of multiple steady states, with the implicit assumption that LOC
(loss of consciousness) corresponds to the abrupt transition from the high-firing up-
per branch to the low-firing lower branch. Also implicit in this choice of trajectory
is the prediction that ROC (recovery of consciousness) will occur at a lower level of
anesthetic concentration than that required to put the patient to sleep, and that this
transition will also be sudden and switch-like, and not smoothly graduated. Thus
we have a prediction that the subject’s cortical state will be history-dependent, with
asymmetric induction and recovery paths.

This notion of a “true” hysteretic separation between drug concentrations at the
LOC and ROC critical points is controversial, since it runs counter to accepted
practice in PKPD (pharmacokinetic–pharmacodynamic) modeling in which rate-
constants are adjusted to cancel the apparent hysteresis lag between changes in drug
concentration (in the arterial blood) and the resulting changes in brain EEG re-
sponse. Because of the ∼2-min diffusion time required for the anesthetic to cross
the blood–brain barrier, the need for some lag adjustment between the measurement
site (arterial blood supply) and the effect site (brain) to correct for site-displacement
error is indisputable; but even after appropriate correction, our first-order phase
transition picture suggests that some residual hysteresis will remain. Such hystere-
sis would give some protection against noise-induced multiple “bounces” between
awake and asleep states.

The analysis of the ECoG and propofol concentration records for the Adelaide
sheep (Sect. 8.3) provides some guidance. The very thorough instrumentation for
blood monitoring meant that actual drug concentrations in the brain could be de-
duced on the basis of a simple mass-conservation (integrated influx minus outflux)
argument, and no PKPD extrapolations to “null the hysteresis loop” were required.
We should acknowledge that although the mass-conservation approach gives the
propofol concentration in the brain, the actual concentration at the molecular effect
site (presumably the membrane GABA-receptor proteins that control chloride-ion
flow) remains unknown, so modeling of equilibration between bulk-brain versus
receptor site may still be needed.
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A second significant advantage provided by the sheep that is (normally) unavail-
able in human subjects is the direct access to the ECoG signal on the cortex itself
rather than via its remote on-scalp proxy, the EEG. Not only is the ECoG signal
unattenuated by scalp, skull, and cerebrospinal fluid, it is much less likely to be
contaminated by EMG (electromyogram) and EOG (electrooculogram) muscle ar-
tifacts, so provides a clearer view of the state of the cortex. It is possible that there
could be electrode-induced artifacts (e.g., from movement, electrochemistry, bio-
logical fouling) but these are likely to be very low-frequency effects, and we have
made no attempt to model them.

Examination of the sheep ECoG narrowband spectra shows clear evidence of
hysteresis effects, and these are most pronounced at the lowest frequencies. Unex-
pectedly, the hysteresis separation between induction and emergence paths seems
to disappear at the higher frequencies (�40 Hz), and this is contrary to the mean-
field prediction of hysteresis effects across all frequency bands. But because the
sheep ECoG spectrum exhibits a steeply lowpass-filtered response, it is plausible
than high-frequency hysteresis effects may have been swamped by inherent cortical
noise.

Another point of difference between the continuum prediction and sheep mea-
surement is the strong concentration-dependent attenuation of electrical activity that
is evident in the sheep, but absent (except at the lowest frequency band) in the cor-
tical model. This deficiency might be remedied by scaling back the noise intensity
(as well as the overall subcortical drive) in proportion to anesthetic concentration to
reflect drug-induced dampening of subcortical tone.

In modeling anesthesia, how significant is the choice of IPSP function? We have
used a constant-height alpha-function (see (8.12)) whose area and time-to-peak
increase proportionately to drug concentration, while other researchers have con-
structed a constant-height biexponential form whose time-to-peak is independent of
drug concentration (Liley and Bojak 2005; Bojak and Liley 2005), or nearly so (Hutt
and Longtin 2010). It would be interesting to establish what impact the various IPSP
functional forms have on spectral characteristics and cortical stability.

We now comment briefly on two significant challenges for anesthesia modeling:
the role of spatial interactions, and the puzzle posed by dissociative anesthetics.

During induction of anesthesia, is it reasonable to ignore interactions between
different brain regions? The fact that commercial EEG depth-of-anesthesia devices
(e.g., BIS monitor from Aspect Medical Systems; M-Entropy monitor from GE
Healthcare) can give satisfactory performance using a single electrode pair whose
on-scalp positioning is not particularly critical suggests that a single brain-area treat-
ment (such as that presented in this chapter) is a reasonable first approximation, but
this simplified approach ignores significant underlying neural structures such as the
thalamus and the pacemaking role of strong cortico-thalamic feedbacks. The 19-
channel quantitative EEG analysis by John et al. (2001) showed pronounced tran-
sient increases in fluctuation coherence across the cortex immediately prior to LOC,
and again at ROC, indicating strengthened coupling across brain areas. A satisfac-
tory model for anesthesia should be able to account for such observations.

To what extent can EEG and ECoG be used as a proxy for state of conscious-
ness? The EEG spectral effects caused by inductive anesthetics such as propofol
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and isoflurane are readily detected, since these bring on a form of enforced slow-
wave sleep. But the REM-like unconscious state brought on by dissociative agents
such as nitrous oxide, ketamine, xenon exhibits an EEG spectrum that seem to be
indistinguishable from that of normal consciousness. Developing a predictive model
for dissociative anesthesia would be a significant advance.
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Chapter 9
EEG Modeling in Anesthesia: A New Insight
into Mean-Field Approach for Delta Activity
Generation

B. Molaee-Ardekani, M.B. Shamsollahi, and L. Senhadji

9.1 Introduction

The pioneer works of Wilson and Cowan in early 1970s, introducing local mean-
field representation of the activity of ensembles of neurons, has opened a new av-
enue in mathematical description of the electrical functioning of neural tissues in
mesoscopic levels. In the last two decades, progress in neuroscience has contributed
to enhance mesoscopic models by including new mechanisms, and to employ them
to study different types of brain activities in different brain areas. Nowadays, meso-
scopic models have been developed both for normal and abnormal representation of
neural populations. For instance, Jansen group has proposed a lumped-parameter
model of the visual cortex to study the generation of evoked potentials (Jansen
et al. 1993; Jansen and Rit 1995). Wendling et al. (2002, 2005) have studied dif-
ferent phases of epilepsy from pre-ictal to ictal in hippocampus. They have also
hypothesized a mechanism by which low-amplitude high-frequency chirp-like ac-
tivities are generated at the onset of seizure in cortical areas (Molaee-Ardekani et
al. 2010a). Suffczynski et al. (2004) have investigated the mechanisms of transition
between normal EEG activity and epileptiform paroxysmal activity using a model
of thalamocortical circuits, and finally, Robinson and coworkers have studied dif-
ferent normal and abnormal EEG rhythms such as slow-wave sleep, alpha waves,
low-gamma waves and epileptic seizures (Rennie et al. 2000; Robinson et al. 2002;
Robinson et al. 2003; Deco et al. 2008).

Mean-field models have also been used in the context of anesthesia. In last few
years, different aspects of anesthesia mechanisms and their influences on brain ac-
tivities have been investigated theoretically by several groups such as Steyn-Ross et
al. (2004), Liley and Bojak group (Bojak and Liley 2005; Liley and Bojak 2005),
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Molaee-Ardekani et al. (2007), and Hutt and Longtin (2009). Most of the models
developed by these groups are in fact refined versions of a generic model that was
firstly introduced by Liley et al. (2002) in the context of mean-field theory of elec-
trocortical activities.

Research conducted by Steyn-Ross et al. (2001a, 2001b, 2002, 2004) was the
first attempt to use the generic Liley et al. model for reproducing electrical activities
of the neocortex in different depths of anesthesia. Steyn-Ross et al. had a hypothesis
to describe why gradual increase of an anesthetic drug produces a sudden transition
between awareness and unconsciousness. They referred to the influence of anes-
thetic drugs on prolongation of IPSPs due to the enhancement (prolongation) which
is seen on the GABAA neurotransmitter by holding the chloride ion channel open
longer and allowing more Cl to enter the postsynaptic neuron. To incorporate this
effect of anesthetics into the model, the biexponential function of IPSP response
to a Dirac delta function was prolonged by a λ factor when anesthesia deepened.
Calculating equilibrium solutions of the Steyn-Ross et al. model as a function of
anesthetic effect (λ) revealed that the model may have one or three equilibrium
solutions. These equilibrium solutions may produce three branches on an S-bend
shape. Basically, the top and the bottom branches are stable, whereas the middle
branch is unstable. This configuration provides the possibility of two phase transi-
tions between the top and the bottom branches in a hysteresis path during induction
of anesthesia and emergence from anesthesia. Indeed, according to the Steyn-Ross
et al. model, the amounts of drug concentrations at which the patient loses his con-
sciousness and returns to consciousness are not identical. As indicated in Fig. 9.1
loss of consciousness (LOC) occurs in a higher drug concentration than return of
consciousness (ROC).

In the Steyn-Ross et al. model, both phase transitions at LOC and ROC are ac-
companied with an increase followed by a decrease in the amplitude of the output
EEG signal. This amplitude variation is also observed in real EEG signals especially
in the beginning of anesthesia induction, and it is referred to as biphasic response of
the EEG (Kuizenga et al. 1998, 2001a, 2001b). Steyn-Ross et al. related this bipha-
sic response with the amplitude variation that is observed in the model at LOC or
ROC.

According to the Steyn-Ross et al. model, in the waking and anesthesia, the
equilibrium solution of the model is located somewhere on the top and the bottom
branches, respectively. The eigenspectrum corresponding to an equilibrium solu-
tion on the top branch has higher frequency components than the eigenspectrum
corresponding to an equilibrium point on the bottom branch. Basically, this is in ac-
cordance with the tendency of changing frequency components of the EEG before
and after anesthesia. However, a real EEG power spectrum in waking state is a bit
narrower than what is obtained in the Steyn-Ross et al. model. In the Steyn-Ross et
al. model, one can also find some eigenspectra with resonance frequency at about
12 Hz. Steyn-Ross et al. suggested that this resonance frequency might be related to
alpha and spindles activities that appear in sedation and light anesthesia.

In 2005 a newer version for mean-field models in the context of anesthesia was
introduced by Bojak and Liley (2005). This model had more fidelity with physio-
logical properties of neural cells in the brain especially in terms of expressing IPSP
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Fig. 9.1 (a) Steady states for he as a function of anesthetic effect λ in the Steyn-Ross et al. model.
Induction and emergence paths are indicated by two arrows. Dashed lines indicate the location
where phase transitions occur (LOC and ROC points). A time series of excitatory soma voltage he

(in gray) is shown along the equilibrium curve for induction into unconsciousness. The amplitude
of this time series increases gradually and then decreases abruptly when the phase transition oc-
curs (biphasic response). [Modified with author permission from Fig. 7.8 of Steyn-Ross (2002).]
(b, c) Eigenspectra corresponding to linearized equations about their steady states in the top branch
and bottom branch as a function of λ. Eigenspectra in the top branch are wider than those in the
bottom branch. Some eigenspectra corresponding to the top branch contain a resonance frequency
in the alpha band (∼12 Hz)

and EPSP functions. The Bojak–Liley model was a 2D brain model and a subtle
mixture of homogeneous and non-homogeneous conditions were considered for its
characterization. Indeed, while Bojak and Liley (2005) numerically simulated the
model on a grid to obtain a spatial time series of cortical signals, their analytical
analyses were performed in a homogeneous condition for a fixed spatial frequency
at k = 1.24 cm−1. The 37 free parameters of the model could be set automatically
to some values in a given physiological range. Bojak and Liley introduced 73454
valid sets of parameters for their model. A randomly generated set of parameters
was marked ‘valid’ if the eigenspectrum of the EEG signal corresponding to that set
could fulfill some criteria relating to bandwidths and power ratios of the delta, theta
and alpha bands.
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Although the basic structure of the Bojak–Liley model is almost the same as
the basic structure of the Steyn-Ross et al. model, the working modes of these two
models are different to reproduce cortical activities in different depths of anesthe-
sia. Indeed, Bojak and Liley had another hypothesis regarding the mechanism by
which anesthetics affect cortical activities. Steyn-Ross et al. had asserted that LOC
and ROC occur in a hysteresis path in relation with two different phase transitions
in two different drug concentrations. On the other hand, Bojak and Liley declared
that such a phase transition is not observed in real experimental data. They argued
that anesthetics reduce the firing rate of spontaneous action potentials in a rela-
tively smooth dose-dependent manner, and as a result, mean membrane potential
of excitatory and inhibitory populations do not change abruptly in response to a
slight increase or decrease of anesthetic drug concentration. This argument could
be supported by real electrical recording from cortical neural cells before and af-
ter administration of anesthetics (Antkowiak 1999), however, this argument did not
have the answer to this question that why ROC and LOC occur in different doses of
anesthetics.

The biphasic response of EEG could also be generated in the Bojak–Liley model,
however, not in a hysteresis path. Not all the 73454 sets of parameters could lead
to the biphasic response. Bojak and Liley divided these sets of parameters into two
groups. Group I could show a biphasic power rise in simulated EEG signals, whereas
group II could not show a strong biphasic response. The criterion for this division
was the ratio of the output EEG signal power at c = 0.243 mM saline aqueous
isoflurane concentration (equivalently c = 1.17 vol.% isoflurane or 1 MAC for 40-
year human) and at c = 0 mM. If this ratio was greater than 1.4, the corresponding
set of parameter was classified as a set with strong biphasic power rise. Out of
entire 73454 sets of parameters, 86 sets exhibited the biphasic response. Figure 9.2
illustrates some spectral features of the model output EEG signal for one of these 86
sets of parameters. Figure 9.2a,b shows eigenspectra and total power of the model
output EEG in different isoflurane concentrations. The total power at c = 0.243 mM
is greater than 1.4 times the total power at c = 0 mM. Relative power ratios of delta,
theta and alpha bands with respect to the total EEG power are illustrated in Fig. 9.2c.
For a low-valued drug concentration most of the EEG power is in the alpha band.
When the drug concentration increases a bit (e.g. at c = 0.4 mM), the theta band
becomes the dominant band. Finally, for a high-valued drug concentration, the delta
band has the biggest power among other bands.

9.2 Requirements for an Enhanced Model

In the previous section, we introduced two well-known mean-field models in the
context of anesthesia. Although many of anesthesia actions on brain activities such
as slowing EEG waves under the effect of anesthesia can be described by these mod-
els, there are still some rooms for improving these models. In this section, we present
some effects of anesthesia on brain activities that had been considered with less de-
grees in the two aforementioned models. The new model, presented in Sect. 9.3,
tries to take into account some of these effects.
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Fig. 9.2 (a) EEG
eigenspectra in the Bojak and
Liley model for different
isoflurane concentrations
from 0 to 0.8 mM. These
eigenspectra correspond to a
set of parameters in group I
(the group with strong
biphasic response). (b, c)
Total EEG power and power
ratios of delta, theta and alpha
bands in different drug
concentrations for the same
set of parameters used in
panel (a)

9.2.1 High-Amplitude Delta Waves

To our knowledge, the EEG power does not reduce a lot in the induction of anes-
thesia just after the LOC point (Schwender et al. 1998; Constant et al. 2005;
Molaee-Ardekani et al. 2006). In contrary, in the Steyn-Ross et al. model, the power
of the output EEG signal suddenly drops in the induction phase after the phase tran-
sition at LOC point. Similarly, the same behavior can be observed, more or less, in
the Bojak–Liley model. For a set of parameters that belongs to group II, the EEG
power decreases gradually with anesthesia, and for a set of parameters in group I,
the power decreases a lot after its maximal value at about 1 MAC.

Bojak and Liley (2005) show that there is a good compatibility between to-
tal powers of real and simulated EEGs (corresponding to group I) below 1 MAC
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(1.2 vol.%). Beyond this range, the total power of simulated EEG signal starts to
decrease and even becomes less than the EEG power at 0 MAC. In reality, this high
reduction of EEG power can only be observed if the EEG pattern changes from
regular high-amplitude slow-wave activities in the delta band to burst suppression,
which is not the case in the Bojak–Liley model. In addition, maximization of total
EEG power of simulated data at 1 MAC is claimed to be related to the biphasic effect
introduced by Kuizenga et al. (1998), whereas the real EEG signals that are used in
this study for model validation purposes are recorded in stabilized concentrations at
0,0.3,0.6,0.9 and 1.2 vol.% isoflurane. As we will show in Sect. 9.2.3, the entity
of the biphasic effect that Kuizenga et al. (1998, 2001a, 2001b) introduce basically
originates from rapid changes of anesthetic drug concentration, and should not be
mixed with a stabilized biphasic effect.

9.2.2 Two States Rather than One Single State

A survey of neuroscience related journals shows that anesthetic agents reduce
the activity of the brain in a pulsating manner (Antkowiak and Heck 1997;
Mahon et al. 2001; Kasanetz et al. 2002). Intra and extra cellular recordings show
that neurons have short periods of firing separated by silence phases. Some of
them may alternate synchronously between the firing phase (up state) and the si-
lence phase (down state). The mean histogram of membrane potentials of these
cells includes two distinct peaks one in a high potential (e.g., −57 mV) and one
in a low potential (e.g., −75 mV) (Destexhe et al. 2001; Steriade et al. 2001;
Rudolph et al. 2005). The reason for this is that during firing episodes, neural cells
have high membrane potentials and their firing rates are almost equal to those before
the application of anesthetics (Antkowiak and Heck 1997; Antkowiak and Helfrich-
Forster 1998), and during silence episodes they have low membrane potentials and
do not usually fire.

Surprisingly, in a given small brain area there is a correlation between syn-
chronous alternations of neural cells (between the up and down states) and the EEG
signal that is recorded in that area. The result of this correlation and synchronous
firing of neural cells is the generation of a high-amplitude slow-wave EEG signal on
the scalp. Figure 9.3 illustrates one example for in-phase oscillations between the
EEG and intracellular signals. Interested readers are recommended to study these
activities in detail in Contreras and Steriade (1995), Pare et al. (1998), Amzica and
Steriade (2002).

Saying that the EEG is in-phase with intracellular activities of neural cells that
switch to the up and down states conveys the meaning that the EEG is also re-
lated to the up and down states. As a result, from the modeling view point, it can
be mentioned that the same neuronal mechanisms that cause neural cells switch to
the up and down states during anesthesia should be implemented, in a dual way,
in mean-field models to generate the EEG. This statement is also supported by a
research conducted by Fujisawa et al. (2006). They declared that single neurons
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Fig. 9.3 Relation (in-phase oscillations) between spontaneous synaptic activity under ke-
tamine-xylazine anesthesia and depth and surface EEG signals. Simultaneous surface cortical EEG
and intracellular recording of a deep pyramidal neuron. This neuron was recorded at various volt-
ages induced by current injections. [Modified with permission from Fig. 4 of Pare et al. (1998)]

possess some internal firing states (hereafter, ‘mode’ is used instead of ‘state’ to
prevent ambiguities with the up state and the down state) that are coherent in adja-
cent neurons. Fujisawa et al. (2006) declared that an internal mode of a single cell
in a network may represent the working mode of the entire network. As a result,
it is not unlikely to say that the internal model of a single cell may determine the
characteristics of the EEG.

A comparison between different firing patterns of neural cells in different work-
ing states of the brain (Steriade et al. 2001; Weyand et al. 2001) and the five internal
modes that have been represented in Fujisawa et al. (2006) lead us to conclude
that anesthesia changes a higher-indexed internal mode to a lower-indexed inter-
nal mode. These different internal modes are conceptually illustrated in Fig. 9.4 by
some artificially made neural cell membrane potentials and histograms. The his-
tograms corresponding to the first three internal modes have only one peak in a low
potential. The forth mode has a histogram with two peaks (corresponding to the up
and down states), whereas the last mode has a histogram with one peak in a high
potential. Mean firing rates of neural cells increase with the index of internal modes.

9.2.3 Biphasic Response Is a Temporal Response

The biphasic response of the EEG that Kuizenga et al. (1998, 2001a, 2001b) intro-
duce is related to a rapid change of anesthetic drug concentration in induction or
emergence phase of anesthesia. The manner of changing the dose of an anesthetic
drug may influence the characteristics of the EEG signal and its biphasic response.
For example, the time it takes to change a drug concentration from a stabilized
value to another and the difference between the two values influence the biphasic
response. The speed of administration of an anesthetic drug may even change the
concentration in which the biphasic response is maximal; therefore, a fixed drug
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Fig. 9.4 Some examples of internal states (modes) of single neurons that can determine the work-
ing mode of the network. State I: neural cells do not fire for 10 s. State II: single spikes are observed
on a background activity. State III: a mixture of silence and burst episodes. State IV: the same as
the previous state, however, with different bursts characteristics. State V: regular spiking

concentration value cannot be corresponded to the biphasic power rise response.
Figure 9.5 shows EEG amplitudes obtained from two patients when propofol is in-
fused with different speeds in an aperiodic manner. The first two infusions have
almost the same speed and they are faster than the third infusion. Each infusion
process is followed by two EEG amplitude peaks: one when the infusion process
starts and one when the infusion ends. Peaks amplitudes and their relating drug con-
centrations may vary according to the correspondences of the peaks to starting or
to ending phases of infusion processes. In addition, the speed of infusion may also
change the peak amplitude and its corresponding drug concentration. Interestingly,
even if the infusion is repeated for a patient with, more or less, the same infusion
parameters (e.g., the first and the second infusions shown in Fig. 9.5), characteristics
of the biphasic responses may be different because of the past experience (history)
that the patient has in receiving anesthetics.

The biphasic response is not only confined to rapid changes of drug concentration
in transitions from waking to anesthesia and vice versa (i.e., loss of consciousness
(LOC) and return of consciousness (ROC)). Any rapid change in drug concentration
during anesthesia may induce a biphasic response. In addition, the characteristics of
biphasic responses are not identical for all EEG sub-bands (Kuizenga et al. 1998).
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Fig. 9.5 Response of the EEG amplitude to sudden administrations/stops of propofol on two pa-
tients. Administration of propofol is repeated three times during ∼1.5–2 hours. The initial per-
fusion is performed at the rate of 25 mg·kg−1·h−1 for 10 minutes. This fast initial perfusion is
followed by another perfusion at the rate of 22 mg·kg−1·h−1 for 10 minutes. Finally, the last per-
fusion is performed slowly at the rate of 12.5 mg·kg−1·h−1 for 20 minutes. (Solid line) Real values
of propofol concentration in the blood. (Dashed line) EEG amplitude in the 11–15 Hz band. [Data
provided by Dr. Karel Kuizenga]

Figure 9.6 is an example to show how delta, theta, alpha and beta bands may have
their own biphasic characteristics when desflurane concentration changes rapidly
from a stabilized value to another. In this example, EEG is recorded in a child in
the age of 8 years, and desflurane changes from 2 to 1 MAC at t = 1 min, and then
from 1 to 0.5 MAC at t = 10 min (see Wodey et al. 2005; Molaee-Ardekani et al.
2010b) for a detailed description of the protocol of EEG recording).

What can be understood from all above-mentioned characteristics of the biphasic
response is that the biphasic response is a complex transient response of the brain to
rapid changes of an anesthetic drug concentration. Basically, characteristics of EEG
signals at a given drug concentration in a steady-state condition and in a transient
condition (such as in the biphasic response) are not identical. This implies that char-
acteristics of those mean-field models that are designed to reproduce EEG signals in
a steady-state condition should not be evaluated by the information that is obtained
from the brain in a transient mode.

9.2.4 The Alpha Resonance Frequency Does not Shift to Theta
and Delta Bands

It is well known that, in waking state if the eyes are closed, an activity in the al-
pha band appears in the EEG signal. One of the key features in the Bojak–Liley
model is the existence of an alpha resonance frequency in reproduced EEG sig-
nals in waking state when the drug concentration is zero. As shown in Fig. 9.2a
when drug concentration increases, the alpha resonance frequency moves to lower
frequencies and enters into the theta and delta bands. To our knowledge, alpha reso-
nance frequency does not move gradually toward theta and delta bands when anes-
thesia deepens. In response to deepening the anesthesia, although alpha resonance
frequency decreases, it does not go bellow ∼7 Hz. Indeed, when the alpha peak
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Fig. 9.6 (Top) An EEG
signal and its powers in delta
(0.1–4 Hz), theta (4–7 Hz),
alpha (8–12 Hz) and
beta + gamma (> 15 Hz)
bands. The EEG is recorded
in a child at the age of 8 years
old. Desflurane varies from 2
MAC to 1 MAC and then to
0.5 MAC during 20 minutes.
(Bottom) Total EEG power
and relative EEG powers in
delta, theta, alpha and
beta + gamma bands.
Absolute and relative powers
in different bands show that
biphasic responses are not
identical in all EEG
sub-bands. In addition,
biphasic responses are
influenced by initial and final
concentration values that are
set for each variation of drug
concentration

resonance frequency decreases a bit, its amplitude also decreases until it vanishes
in deep anesthesia. In parallel, theta and delta powers increase a bit, as if alpha and
theta powers are two sides of a seesaw. In the Bojak–Liley model, when anesthesia
deepens, the amplitude of the resonance peak increases gradually, and it becomes
maximal in the theta band where it is declared as the biphasic response of EEG at
1 MAC.

9.3 The Enhanced Model

In 2007, a newer version of mean-field models in the context of anesthesia was in-
troduced by Molaee-Ardekani et al. (2007). In this paper authors tried to address



9 Mean-Field Model for EEG-Delta Activity 205

some of the mentioned limitations in the previous section. The basic structure of
this model, which is called hereafter the enhanced model, was taken partly from the
Steyn-Ross et al. model and partly from the Bojak–Liley model. In addition, a slow
ionic mechanism was also added into the basic structure of the enhanced model.
The enhanced model includes two neural populations: excitatory pyramidal cells
and inhibitory interneurons. The excitatory population is under the direct influence
of the slow ionic mechanism via its corresponding Wilson–Cowan sigmoid func-
tion (Wilson and Cowan 1972, 1973). Indeed, the sigmoid function was redefined
to be not only a function of the mean membrane potential of excitatory population,
but also a function of the activity of the slow ionic mechanism. This modification
can bring in the model the adaptation of firing rates of neural populations to slow
ionic activities in the brain. Under the effect of an anesthetic drug the slow mecha-
nism may lead neural populations to alternate between the up and down states. This
can resolve the first two limitations that were mentioned in the previous section
firstly because neural populations can switch to the up and down states, secondly
because the frequency of this switching is in the delta-band range (0–4 Hz). In fact,
alternating neural populations between up and down states in the delta band can
generate high-amplitude, low-frequency EEG signals in anesthesia. The enhanced
model and its two pioneer models have different interpretations from the biphasic
response. Biphasic responses at LOC and ROC are not reproduced in the enhanced
model because the authors were thinking that these biphasic responses are related
to the transient response of the brain to a fast varying anesthetic. They mentioned
that their mean-field model is designed for an equilibrium condition so transient
characteristics of real EEG signals should not be compared with the simulated EEG
signals in this model.

This model does not produce the alpha resonance in the waking period. Instead,
a wide-band background EEG activity substitutes the alpha activity. This issue will
be discussed in more detail in Sect. 9.6.2. In the following of this section we firstly
describe neurophysiologic reasons that a slow ionic mechanism was included in the
enhanced model. Then, we present the structure of the enhanced model and the slow
ionic mechanism in detail.

9.3.1 Neurophysiologic Reasons for Inserting a Slow Ionic
Mechanism

As synaptic receptors may respond differently to an external input in different po-
tentials, ion-channels may also have different dynamic characteristics during each
of firing states of neural cells (i.e., the up and down states). This means that as
synaptic interactions may be responsible for generating up and down states in neu-
ral cells, ionic currents may have the same importance in this process because of
their different characteristics in these two states. Indeed, a co-working between
synapses and ionic mechanisms is responsible for generating up and down states.
Different patterns of neural firings under different anesthetic drugs (Antkowiak et
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al. 1997) can be an indication for this co-working because each anesthetic drug
has its own unique influences on synaptic (Antkowiak 1999, 2001; Nishikawa and
MacIver 2001) as well as on ionic channels (Bleakman et al. 1995; Ries and Puil
1999a, 1999b; Barash et al. 2005). This indicates that simulating specialized dis-
tinguished effects of different anesthetic drugs on EEG signals is only possible by
the means of mean-field models if both synaptic and ionic currents are considered
properly in these models.

In the context of sleep and anesthesia, different ionic mechanisms have been hy-
pothesized for the slow switching of neural activities to the up and down states.
Compte et al. (2003) assert that existence of slow Na+-dependent K+ channels
(IKNa) on pyramidal cells is mainly responsible for pulling down the state of neu-
rons. Massimini and Amzica (2001) affirm that during the up state gradual reduc-
tion of extra cellular Ca2+ concentration in response to high activity of synapses,
or opening a kind of specific Ca2+ channel can produce a global dysfacilitation in
cortical network that lead it to down state. Bazhenov et al. (2002) suggest that pro-
gressive depression of excitatory interconnections and activation of Ca2+-dependent
K+ currents eventually terminate neural firing. Compte et al. (2003) and Bazhenov
et al. (2002) have the same opinion about transitions of neural populations from
down to up state. They declare that random summations of miniature EPSPs in
some neocortical pyramidal cells are responsible for the switching from down to
up state. They assert summations of miniature EPSPs activate persistent Na+ chan-
nels (INa(p)) which leads to generation of action potentials. Massimini and Amzica
(2001) suggest when neurons become hyperpolarized, extra cellular Ca2+ concen-
tration is increased linearly and dysfacilitation is removed from the network until
neurons resume their firing in the up state.

The aforementioned ionic mechanisms are only some possibly responsible
mechanisms for generating slow oscillation in the cortex. Although slow oscil-
lation is cortical in origin (Timofeev and Steriade 1996; Timofeev et al. 2000;
Kasanetz et al. 2002), other kinds of slow mechanisms may also interfere with
the ionic mechanisms in the cortex to generate a variety of slow activities in the
brain in the delta band. For instance, intrinsic properties of thalamocortical cells
(e.g., Ih and It ionic currents) may generate stereotype oscillations (Steriade et al.
1993) in the brain. During this activity neural cells alternate between a high and
a low firing rate. This activity is reflected on EEG if thalamic cells are synchro-
nized by a slow synchronizing signal such as the slow oscillation which is originated
from the cortex (Contreras and Steriade 1995, 1996; Steriade and Contreras 1995;
Contreras et al. 1996; Destexhe et al. 1998).

It can be imagined very easily how difficult it would be to include all the above-
mentioned cortical and subcortical ionic mechanisms into a mean-field model. In-
stead, in the enhanced model the overall characteristics of these mechanisms are for-
mulated by a generic slow mechanism. The activity of this mechanism is expressed
by a variable resembling a gating variable that describes dynamics of opening or
closing an ionic channel in a single cell level. In the enhanced model, this variable
is responsible to activate an inward current when the membrane potential of excita-
tory population is low (i.e., in the down state). However, this gating variable could
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Fig. 9.7 Schematic diagram of the enhanced model

also inactivate an outward current in a low membrane potential, or activate (or inac-
tivate) an outward (or inward) current in a high membrane potential (i.e., in the up
state).

As a general comment, it should be mentioned that neuronal-level equations of
gating variables describe properties of single ionic channels so they should not be
inserted directly in mean-field models. An ionic current which is activated in a high
potential by a burst of action potentials is not activated if it is included directly in
a mean-field model without any modification in its formulations. A counterpart for
this ionic current should be defined before inserting this ionic channel into mean-
field models.

9.3.2 Structure of the Enhanced Model

In this part, the equations of the enhanced model along with their physiological
interpretations are briefly described. Figure 9.7 illustrates a schematic diagram of
the enhanced model.

Equations (9.1) and (9.2) depict the two principal differential equations of the
model which express mean membrane potentials of excitatory and inhibitory popu-
lations.

τe

dhe(t)

dt
= −he + ψee(he)Iee(he) + ψie(he)Iie(hi), (9.1)

τi

dhi(t)

dt
= −hi + ψei(hi)Iei(he) + ψii(hi)Iii(hi), (9.2)
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where j and k represent either excitatory (e) or inhibitory (i). ψjk(hk) = (hrev
j −

hk)/(h
rev
j − hrest

k ) is a voltage-dependent scaling factor for a j -type PSP function
(i.e., PSP impulse response) on k population. Ijk represents the voltaic influence
of j -type PSPs on k population. Ijk is calculated by convolving the firing rate of
k population by j -type PSP function. The following two equations express all the
four combinations of these voltaic influences between j and k populations:(

d

dt
+ γe

)(
d

dt
+ γ̃e

)
Iek(t)

= [
N

β
ekSe(he, s) + Φek + pek

]
Geγ̃ee

γeδe(γe,γ̃e), k ∈ {e, i}, (9.3)(
d

dt
+ γi

)(
d

dt
+ γ̃i

)
Iik(t)

= [
N

β
ikSi(hi) + Φik + pik

]
Giγ̃ie

γiδi (γi ,γ̃i ), k ∈ {e, i}. (9.4)

In these equations, excitatory and inhibitory PSP functions are in fact represented
by two biexponential functions. Gj , γj and γ̃j , where j ∈ {e, i}, determine maxi-
mum values and time rates of these biexponential functions. These parameters may
vary with anesthetics concentrations. However, the influence of an anesthetic on the
biexponential functions can be formulated easier if two alternative parameters δi

and ζj are defined for γj and γ̃j parameters. δj is the time lag for maximum peak
of PSP function, and ζj is the decay time of PSP function (Bojak and Liley 2005).

Bracketed terms in right sides of equations and represent excitatory-type and
inhibitory-type firings, respectively. These brackets include two or three different
sources of firings: excitatory subcortical inputs (pjk), distant from other macro-

columns (Φjk), and, locally generated in the same macrocolumn (Nβ
jkSj ). N

β
jk is

the number of connections between j and k populations, and Sj is the firing rate of
j population.

Each subcortical input noise is modeled as below:

pjk(t) = p̄jk + αp̄jkξjk(t), (9.5)

where p̄jk express the mean firing that k population receive from j -type subcortical
firings. ξjk(t) is a zero mean uniform white noise and it is extended between −1
and +1, and α is a scaling factor that controls the variance of the noise (α2p̄2

jk/3)
and prevents generation of negative-value subcortical firings.

Distant generated firings (Φjk) are only confined to excitatory-type firings
(see (9.6) below). Φik is set to zero because long-distance coupling from inhibitory
populations is unlikely. In (9.6) v̄ is the mean axonal conduction speed, Λek is the
spatial drop off rate of long-range excitatory connections to population k, and N

β
ek

is the total number of long-range synaptic connections.(
d

dt
+ v̄Λek

)
Φek(t) = v̄2Λ2

ekN
α
ekSe(he, s). (9.6)

In the above equations, Se and Si are the last two functions that have not been
defined yet completely. These functions express firing rates of excitatory and in-
hibitory populations, respectively. The function Si determines the firing rate of the
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inhibitory population by a static function directly from actual value of mean mem-
brane potential of inhibitory population. A well-known sigmoid function, the so-
called Wilson and Cowan function, is employed to represent this relationship (Wil-
son and Cowan 1972).

Si(hi) = Smax
i /[1 + exp(−gi(hi − θi))]. (9.7)

In (9.7) above Smax
i defines the maximum firing rate, and θi and gi express in-

flection point of the sigmoid function and the slop of the function at this point, re-
spectively. In the enhanced model, Se is not only a function of actual value of mean
membrane potential of excitatory population, i.e., the Wilson–Cowan function, but
it is also a function of the activity of a generic slow ionic mechanism (s) as follows:

Se(he, s) = [
F1(s)S

WC
e (he) + F2(s)S

mod
e

]
/(F1(s) + F2(s)). (9.8)

SWC
e is the Wilson–Cowan sigmoid function which is defined to SWC

e (he) =
Smax

e /[1 + exp(−ge(he − θe))], and F1(s) and F2(s) are two anti-symmetric sig-
moid weighting functions as below:

F1(s) = a(1 − B)/[1 + exp(−gF (s − θF ))] + b1, (9.9)

F2(s) = aB/[1 + exp(gF (s − θF ))] + b2. (9.10)

Indeed, the equations above gather two different terms of firing rates: SWC
e and

a constant modulating firing rate Smod
e . The normalized weighted combination of

these two terms determines the overall firing rate of excitatory population. The ac-
tivity of slow ionic mechanism (s) determines these weighting factors. Activation
of the slow mechanism (i.e., an increase in the s value) increases the weighting
function F2(s) and augments the role of Smod

e in determining the value Se. In the
enhanced model, Smod

e is set to a value greater than Smax
e . This indicates that the ac-

tivation of slow ionic mechanism will increase firing rate of excitatory population,
and thus s serves as an activator mechanism in the enhanced model. In (9.9) and
(9.10), B is a free parameter which controls the maximum amount of modulating
effect of parameter Smod

e on Se, by changing the balance between F1(s) and F2(s).
θF and gF determine inflection points of F1(s) and F2(s) sigmoid functions, and
their corresponding slopes. gF takes negative values so F1(s) and F2(s) are always
descending and ascending functions, respectively. b1 and b2 are two constant val-
ues, and they are used to set the values of F1 and F2 to unity and zero, respectively,
at s = 0. θF determines the convexity of F1 and F2 in the interval [0, smax∞ ], and
finally, the parameter a ensures that F1(s) and F2(s) take always the same values in
their boundaries at s = 0 and smax∞ for a given value B regardless of the values θF

and gF . In brief, a, b1 and b2 can be expressed mathematically as below:

a = (1 + exp(gF (smax∞ − θF )))(1 + exp(−gF θF ))

(1 + exp(3.5(0.1 − smax∞ )))(1 + exp(0.1 × 3.5))

× (1 − exp(−3.5smax∞ )) exp(3.5 × 0.1)

(1 − exp(gF smax∞ )) exp(−gF θF )
, (9.11)

b1 = 1 − a(1 − B)/(1 + exp(gF θF )), (9.12)

b2 = −aB/(1 + exp(−gF θF )). (9.13)
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Fig. 9.8 Influences of θF and gF on weighting functions F1(s) and F2(s). These two functions
determine the firing rate of excitatory population based on two competing terms SWC

e (he) and
smod
e . Increment of s raises the firing rate by increasing and decreasing the value of F2(s) and

F1(s), respectively. θF determines convexities of these functions. If θF is smaller than zero, F1(s)

and F2(s) are convex and concave functions, respectively, in [0, smax] interval. Convexities are
reversed if θF is greater than smax. In the two betweens, these functions are inflected at the points
indicated by circles in the figure. gF controls the slope of weighting functions

Fig. 9.9 Influences of s, θF and B on excitatory firing rate. Increase of s raises the firing rate
especially in low membrane potentials. Increasing B from 0.04 to 0.16 increases the influence of
s on the increase of excitatory firing rate (compare panels a, c with panels b, d). θF affects the
ascending shape of firing rate function (compare panels a, b with panels c, d). However, it does
not change boundary values of the firing rate (i.e., at 0 and smax∞ = 1)

In the equations above, the parameter set {θF , gF } = {0.1,−3.5} has been chosen
as a reference parameter set. For these parameters, it is a = 1. Figure 9.8 illustrates
F1(s) and F2(s) for some different values of θF and gF . For each pair of θF and gF ,
b1, b2 and a are determined by (9.11), (9.12) and (9.13), so that boundary values of
F1(s) and F2(s) do not change for a given B value. In order to see the influences of
the parameters s, θF and B on firing rate of excitatory population, we select some
samples of these variables to {0,0.33,0.66,1}, {0.1,0.9} and {0.16,0.04}, respec-
tively, and show their corresponding excitatory firing rates in Fig. 9.9. Increasing the
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value of s raises the excitatory firing rate, especially when the membrane potential
is low. This characteristic is ideal for mimicking generation of spikes or bursts in
low membrane potentials when a slow ionic mechanism is activated. A comparison
between left and right panels in Fig. 9.9 indicates that B magnifies the influence of
s on the increase of firing rate. It is not worthy to say that B does not change the
firing rate of excitatory population when the ionic mechanism is inactive (s = 0).
By comparing the panels in top and bottom, it can be realized that θF changes the
ascending patterns of sigmoid functions. However, it does not modify the boundary
values of excitatory firing rates corresponding to s = 0 and smax∞ .

The latter equations expressed the firing rate of excitatory population as a func-
tion of membrane potential and slow ionic mechanism. Now the last thing that
should be expressed is the activity of slow ionic mechanism (s). As mentioned be-
fore, in single cell models s could be expressed by a set of gating variables that
describe activations or inactivations of desired slow ionic channels. However, in the
enhanced mean-field model an alternative way was used for expressing s. In fact,
it was assumed that the variable s slowly follows an instantly voltage-dependent
parameter s∞(he) based on a first order differential equation expressed in (9.14),
(9.15) below. s∞(he) is the activity of the slow mechanism when the membrane po-
tential is kept constant. Since the slow mechanism is assumed to be activated in the
down state, s∞(he) has to take a high value when the excitatory membrane potential
is low. This characteristic can be obtained by a descending sigmoid function as it is
expressed in previous equations.

τs
d

dt
s(t) = s∞ − s(t), (9.14)

s∞ = Ss(he) = smax∞ /(1 + exp(−gs(he − θs))), gs < 0. (9.15)

In the equations above, τs is the time constant of the slow mechanism, smax∞ is the
maximum value of the descending sigmoid function, θs is the inflection point of the
sigmoid function, and gs is the slope at the inflection point.

9.4 Investigation of the Theoretical Characteristics of the
Enhanced Model

The theoretical behavior of the model is investigated in order to identify equilibrium
solutions and transition areas in the space of parameters. The theoretical spectrum is
also determined in order to investigate the ability of the model to mimic EEG data.

9.4.1 Equilibrium Solutions and Eigenspectra

As there is no algebraic method for determining equilibrium solutions of the nine
connected differential equations presented in the previous section, they should be
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found numerically. In order to do so, all d/dt-terms and input noises are firstly
set to zero, and then he is treated as an independent variable so that Si(hi) can be
estimated as a function of he as follows:

Ŝi (he) = γi

eγiδi Giψie(he)N
β
ie

(
he − hrest

e − ψee(he)Iee(he)
) − p̄ie

N
β
ie

.

Using the inverse transform of the inhibitory firing rate function (i.e., the Wilson–
Cowan function), ĥi is calculated from Ŝi (he) as below:

ĥi

(
Ŝi (he)

) = θi − 1

gi

ln
(
Smax

i /Ŝi (he) − 1
)
.

Now, the parameter hi can be substituted by its estimated value ĥi . Doing so
provides the possibility of expressing the Wilson–Cowan term of excitatory firing
rate as below:

ŜWC
e

(
ĥi

)

= F1(s∞) + F2(s∞)

F1(s∞)(N
β
ei + Nα

ei)

(
γe

eγeδeGeψee(ĥi)

[
ĥi − hrest

i − ψii

(
ĥi

)
Iii

(
ĥi

)] − p̄ei

)

− F2(s∞)Smax
e

F1(s∞)
. (9.16)

Then utilizing the inverse form of the Wilson–Cowan function, it is possible to
express ĥe as follows:

ĥe(he) = ĥe

(
ŜWC

e

(
ĥi (he)

)) = θe − 1

ge

ln
(
Smax

e /ŜWC
e

(
ĥi

) − 1
)
.

A given he that fulfills the condition he − ĥe = 0 will be an equilibrium solu-
tion for excitatory population membrane potential which is expressed by h0

e . Cor-
respondingly, the equilibrium solution of inhibitory population membrane potential
is expressed by h0

i . For small deviations from a stable equilibrium solution a non-
linear system can be well approximated by the corresponding linear system derived
by linearizing the system about that equilibrium state. It is straightforward to take
Fourier transform of the linearized model to obtain the eigenspectrum. The eigen-
spectrum of the output signal (EEG) in the enhanced model is expressed as follows
(proof in Molaee-Ardekani 2008):

P(ω) = P(f )

2π
= h̃eh̃

∗
e

= α2(|DE|2p̄2
ee + |DF |2p̄2

ie + |BG|2p̄2
ei + |BH |2p̄2

ii )

6π |AD − BC|2 (9.17)

where

A = iωτe − c1 − ψ0
eec3Γe

Le(ω)M(ω)
− ψ0

eeN
β
eeρeΓe

Le(ω)
, B = N

β
ieρiψ

0
ieΓi

Li(ω)
,
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C = N
β
eiρeψ

0
eiΓe

Le(ω)
− ψ0

eic4Γe

Le(ω)M(ω)
, D = iωτi − c2 − ψ0

iiN
β
iiρiΓi

Li(ω)
,

E = ψ0
eeΓe

Le(ω)
, F = ψ0

ieΓi

Li(ω)
, G = ψ0

eiΓe

Le(ω)
, H = ψ0

iiΓi

Li(ω)
,

Lj∈{e,i}(ω) = (iω + γj )(iω + γ̃j ), M(ω) = (iω + v̄Λ)2,

c1 = −1 + dψee
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9.4.2 Isoclines of Slow Mechanism and Excitatory Population
Membrane Potential

One of the possible ways to study the influence of slow ionic mechanism s on the
model behavior in different anesthetic concentrations is to sketch ds/dt = 0 and
dhe/dt = 0 isoclines (for convenience they are nominated as s, he-isoclines) and
the trajectory of s(t) and he(t) signals in a same plane. In a stable equilibrium con-
dition, s is very close to its target value s∞, but when a transition occurs (e.g., a
transition from up to down state) s and s∞ may have quite different values due
to the existence of different time constants in the model especially τs . In such a
condition, the behavior of the model can be investigated by isoclines. To sketch
s, he-isoclines, all variables except s and he are set to their equilibrium values. If
we let ds/dt in (9.14) be equal to zero and then estimate ĥe as a function of inde-
pendent s parameter, we get an isocline nominated as ds/dt = 0 isocline because
ds/dt is equal to zero for any point on this isocline. For simplicity we call this iso-
cline the s-isocline. Similarly, estimating ŝ as a function of independent parameter
he while dhe/dt = 0 (see (9.1)) leads to he-isocline. Note that in the latter case,
corresponding to each given value he , hi should be set to its equilibrium value (ĥ0

i ).

It means that for each fixed value of he we have to numerically compute ĥ0
i and ŝ

in parallel. An alternative method is to use the method, described in Sect. 9.4.1, for
finding equilibrium solutions of the model. In this case, the parameter s is treated as
an independent variable, and corresponding to each value of s which is selected on
the interval [0, smax], equilibrium values of he and hi parameters are found. These
equilibrium solutions are indicated by h∗

e and h∗
i symbols, respectively.

Figure 9.10 illustrates two typical he-isocline and s-isocline superimposed in a
same plane. Intersection points of these isoclines represent equilibrium solutions of
the model. Except these points, any other point on the isoclines plane have non-zero
ds/dt or dhe/dt values. A vector field can be assigned to this plane to show ds/dt

and dhe/dt values at each given point in the plane. Length and direction of any
member vector in this vector field show how and to what extent s and he vary if the
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Fig. 9.10 A typical s-isocline (dashed line) and he-isocline (hexagrams) and nine candidate planar
vectors. Origins of the vectors are located in (s = 0.4, h∗

e + �he) where �he = {−1,0,+1} mV
and h∗

e is the equilibrium point of the model for a given value of s (blue hexagrams). Coordinates
of the intersection point of the two isoclines (s, he-isoclines) indicate equilibrium values of he and
s parameters. Convergent or divergent directions of vectors around a given point on he-isocline
determine stability or instability status of that point. [Taken with permission from Fig. 4 of Mo-
laee-Ardekani et al. (2007)]

state of the model is located on the origin of that member vector. The nine indicated
planar vectors in Fig. 9.10 are some examples of these member vectors. Since he

is a faster variable than s, we are more interested in member vectors located in the
vicinity of he-isocline. In fact, if a transition occurs in the model (e.g., from up
to down state) he converges to its equilibrium value faster than s. This conveys the
meaning that it is more likely that the trajectory of s and he signals is observed in the
vicinity of he-isocline than in other points in the isoclines plane because he-isocline
includes the points for which dhe/dt is equal to zero.

9.5 Behavior of the Enhanced Model in Various Desflurane
Concentrations

In this section, the behavior of the enhanced model is studied for different doses of
a generic anesthetic agent from light to deep anesthesia. In each drug concentration,
the simulated EEG signal is compared with a real EEG signal recorded in desflu-
rane anesthesia. The protocol of real EEG recordings is the same as that described
in Sect. 9.2.3. Interested readers may get more detailed information about this pro-
tocol in Tirel et al. (2006). In the enhanced model, amplitudes and time decays of
IPSP and EPSP functions are the only parameters that are modified with anesthesia.
These parameters are expressed by the following Hill equations as functions of drug
concentration:
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, ζe(cMAC) = ζ 0
e .

cMAC is the alveolar drug concentration expressed in MAC (1 MAC is the minimum
alveolar concentration of an anesthetic agent at 1 atmosphere pressure at which 50%
of patients still move in response to a noxious stimulus). G0

j and ζ 0
j are maximum

amplitude and decay time of j -type PSP at zero drug concentration, respectively,
and finally, Ki,Mi,Ni,Ke,Me,Ne, ki,mi and ni are free parameters of the Hill
equations, and they can be tuned specifically for each anesthetic drug. In the en-
hanced model these parameters were given for a generic anesthetic agent because
no information was available relating the influence of desflurane agent on EPSP and
IPSP functions.

Since MAC is an age dependent drug concentration measure, it is better to use
a more solid units such as aqueous concentration (cAq) or vol% (cvol) to express a
drug concentration in above Hill equations. To do so, it is only necessary to multi-
ply Kj and ki parameters with a unit correction factor μ. For example, in desflurane
anesthesia, 1 MAC is equivalent to administration of 8.3 vol% of this gas to young
children (Mapleson 1996). This value corresponds to c = 0.73 mM aqueous con-
centrations of desflurane in saline (Franks and Lieb 1993, 1996) considering that
saline/gas partition coefficient is 0.225 for desflurane (Eger 1987). In such a case,
µis equal to 0.73 and 8.3 for cAq and cvol, respectively. Hereafter, the generic drug
concentration (c) is given in aqueous format cAq.

9.5.1 Waking and Sedation

In the enhanced model, s, he-isoclines in waking state are very similar to those de-
rived for very low drug concentrations. Figure 9.11a1–a4 illustrates some different
aspects of the behavior of the enhanced model when drug concentration is set to a
low value (here, c = 0.2 mM). Panel a1 illustrates a typical trajectory of he(t) and
s(t) signals superimposed on s, he-isoclines, panel a2 shows time series of he in the
time domain, panel a3 represent the histogram of he , and panel a4 shows the power
spectrum of he and its corresponding eigenspectrum (solid line) which is calculated
from (9.17). For comparison, a real EEG signal that is recorded in a child a few
minutes before administration of desflurane is illustrated in Fig. 9.11a5.

Coordinates of the intersection point of the two isoclines determine equilibrium
values of s and he. Head to head directions of the vectors about this point predict
that it must be a stable equilibrium point. This was confirmed by performing the
stability analysis of the model for this point (i.e., calculating eigenvalues of Jacobian
matrix).

he-isocline shows that those equilibrium h∗
e values corresponding to 0.25 ≤ s ≤ 1

make a single branch in the up state area, while those corresponding to s ≤ 0.25
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Fig. 9.11 Behavior of the enhanced model and comparison between simulated and real EEG
signals recorded in children in different depths of desflurane anesthesia. (a1) superposition of
s,he-isoclines (dashed line and hexagrams) and a 10 s trajectory of simulated (s, he) signals when
the anesthetic concentration is set to 0.2 mM in the model. (a2) Time series of the he(t) signal
relating to the same trajectory shown in panel (a1). (a3) Histogram of he(t). The histogram was
calculated from 1 min of simulated he(t). (a4) Power spectrum of he(t) and its corresponding
eigenspectrum (solid line). (a5) A real EEG signal recorded in a child a few minutes before ad-
ministration of anesthesia. The above descriptions for panel (a1) to (a5) are also applied for all
sub-panels in sections (b) to (d) in the figure. The only difference is that section (b) refers to
simulated signals at c = 0.75 mM, section (c) refers to c = 0.9 mM, and section (d) refers to
c = 1.5 mM. Real EEG signals in panels (b5), (c5) and (d5) are recorded in 1 MAC, transition
from 1 to 2 MAC, and 2 MAC, respectively



9 Mean-Field Model for EEG-Delta Activity 217

make three branches in down, middle and up state areas. Equilibrium points locat-
ing in the middle branch are unstable, and the probability of finding a trajectory
in the vicinity of these points is very low. On the other hand, it is highly prob-
able that trajectories are found in the vicinity of h∗

e equilibrium points in the up
state area. If he is initialized with a value greater than −64 mV, there is a high
probability that he(t) directly approaches to its equilibrium point in the up state
area even without a transient trend to move toward the down state area. The very
sharp peak in the histogram of he(t) shows that the excitatory population is al-
ways located in the up state, without sudden transitions from the up to the down
state.

9.5.2 Moderate Anesthetic Drug Concentration at About 1 MAC

When anesthetic concentration increases to a higher value (e.g. c = 0.75 mM) the
right branch of he-isocline moves a little bit toward negative potentials, and the mid-
dle and the left branches (∩-shape branches) move toward up and right (Fig. 9.11b1).
Since s has a positive modulation effect on the firing rate of excitatory population,
the movement of the ∩-shape branches toward higher values of s, is an indication
that anesthesia shifts the balance between pyramidal and interneuron populations
toward inhibition. For instance, when s is equal to 0.4, three equilibrium points now
exist on he-isocline, whereas, for the same value of s, only one equilibrium point
could be found on he-isocline when drug concentration was equal 0.2 mM.

The reduction of the distance between right and middle branches of he-isocline,
spreads the distribution of he-fluctuations over a wider region along the up state
area, and as a result, the probability of finding the trajectory in the vicinity of the
middle branch increases. This can lead the trajectory to move along the barrier of
the unstable branch or even to cross it to reach the down state area. This is the be-
ginning phase of the appearance of slow-wave episodes on EEG signal. At first,
most of trajectory cycles encounter the attraction of the top branch and the repul-
sion of the middle branch so they move back to the up state area. Those who reach
the down state area appear semi-periodic high-amplitude negative pulses on he(t)

(Fig. 9.11b2). Such negative pulses extend the histogram of he(t) toward negative
potentials (Fig. 9.11b3), and it is the beginning phase of generating bimodal his-
tograms. Negative pulses of he(t) increase the overall power of the signal especially
in the slow delta band (0–2 Hz) as is shown in Fig. 9.11b4.

If anesthetic concentration increases a bit more, trajectories jump easier over
the barrier of the unstable area so the up-to-down state transitions become more
regular. Figure 9.11c1 shows a typical trajectory of he(t) and s(t) signals when
c = 0.9 mM. In a transition from the up to the down state, s∞ increases rapidly
and s follows it gradually. Increase of s continues until the trajectory approaches
a returning point where sufficient modulating factors have been accumulated in the
excitatory population. As a consequence, the trajectory switches back to the up state
area. When the switching takes place, s gradually decreases until another up-to-
down state transition occurs.
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9.5.3 High Anesthetic Drug Concentration at About 2 MAC

For high concentrations of anesthetic drugs, the intersection point of the two iso-
clines is basically on the middle branch of he-isocline or very close to it. In such a
case, the equilibrium point of the model may become an unstable point. The equi-
librium solution of the model in c = 1.5 mM is one of the examples for which the
equilibrium solution becomes unstable (see Fig. 9.11d). In such a condition, switch-
ing the trajectories to the up and down states is regular. This can be testified by
means of the histogram of he fluctuations which depicts two dominant peaks: one
in the up state and one in the down state area.

Surprisingly, although the equilibrium solution of the model in c = 1.5 mM is
unstable, one can see that the top and the bottom branch of he-isocline are stable
(note: on these branches s is treated as an independent parameter). Since s is not a
very fast variable in the model, in short periods of time, it can be assumed that he

fluctuations are, more or less, stable fluctuations during the up and down states. This
characteristics is somehow consistent with what Wilson et al. (2009) have speculated
regarding the existence of phase transitions and bi-stabilities within cortical neurons.

9.5.4 Burst Suppression

In very deep anesthesia, burst suppression may be generated when neural cells jump
transiently from the down state to the up state. The enhanced model can reproduce
such an activity if s, he-isoclines intersect in the down state area in the vicinity of
the unstable middle branch of he-isocline (Fig. 9.12). In such a case, the trajectory
of he and s(t) signals is basically located in the down state area. However, it may
transiently switch to the up state and then it comes back to its settling point in
the down state area. The histogram of he fluctuations only includes one narrow
peak in the down state area. If we assume that the variance of the input subcortical

Fig. 9.12 Burst suppression in the enhanced model. (a) s, heâà’ isoclines and a 20-second (s, he)
trajectory in high anesthetic drug concentration. (b) Time series of he(t). (c) Histogram of the
burst-suppression activity. The histogram only has one peak in down state area
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noise reduces when anesthesia deepens, the histogram of he fluctuations becomes
narrower and the amplitude of background EEG becomes smaller than what has
been shown in Fig. 9.12b.

9.6 Discussions, Limitations and Challenges

9.6.1 Different Working Modes in the Enhanced Model

The enhanced model can have different working modes driven by anesthetic drug
concentration. The model settles in the up state in waking period, it may work in the
up state with some transient switches from the up state to the down state in moderate
anesthesia, it switches in a regular manner to the up and to the down states in deep
anesthesia, and finally, it remains in the down state with some transient switches
to the up state in very deep anesthesia. In all above-mentioned working modes, the
model always has only a single equilibrium solution which varies smoothly in a
dose-dependent manner.

Since the concept of the up and down states has been considered in the enhanced
model, it is guaranteed that maximum firing rates of excitatory and inhibitory pop-
ulations do not change noticeably with anesthesia. In addition, smooth variation of
the equilibrium solution of the model as shown in Molaee-Ardekani et al. (2007)
implies that mean firing rates of neural population decrease smoothly with anesthe-
sia. Indeed, what we know from literatures is that (i) maximum firing rates of neural
cells do not change noticeably before and after infusion of an anesthetic (Antkowiak
1999), (ii) mean firing rates of neural cells mainly reduce by occurrences of silence
phases between firing phases (Antkowiak and Heck 1997).

In the enhanced model, the sudden transition between awareness and uncon-
sciousness may be interpreted by sudden transitions between the internal modes
of neural populations that are induced by similar behaviors in single neurons as Fu-
jisawa et al. (2006) explain. Our hypothesis is that awareness and unconsciousness
are two disjoint mental states probably because firing patterns that correspond to
these states (modes) are different from each other. In fact, these firing patterns can
change rapidly from one mode to another mode (e.g. from a continuous mode to
a phasic mode shown in Fig. 9.4) as if they change information processing modes
of the brain suddenly from one mode to another. Nevertheless, the enhanced model
cannot describe why LOC and ROC occur for different doses of anesthesia. Maybe
in reality, changing the working modes of the brain is a process with some memories
(as it is in the Steyn-Ross et al. model).

9.6.2 Spindles and Alpha Activity

A limitation for the enhanced model is that it only includes a single homogeneous
neocortical module without considering other parts of the brain such as thalamus
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and hippocampus. As a result, the enhanced model cannot be used to study trav-
eling waves in the cortex. It also does not generate the 12 Hz activity in the alpha
band that is usually observed in very light anesthesia. In fact, there are still some un-
solved technical problems corresponding to the generation of alpha waves by mean-
field models. Because of these problems that will be described here a little bit, the
enhanced model was not forced to generate alpha activities in light anesthesia.

Basically, technical problems for generating alpha waves by the means of mean-
field models arise from two different domains. Firstly, lack of a precise hypothesized
mechanism that is responsible for generating alpha waves and spindles. Secondly,
technical difficulties for the implementation the hypothesized mechanisms, which
are mostly related to ionic mechanisms, in mean-field models.

Knowledge about the mechanism of alpha waves and spindles is very limited.
To our knowledge, similarities and differences between underlying mechanisms of
alpha waves and spindles have not been described yet clearly. In addition, we do
not know exactly where and how these waves are generated in the brain. It has been
suggested that spindles are generated in the thalamus (Steriade et al. 1987) and cor-
ticothalamic inputs control the patterns of activities in thalamus and thalamocortical
networks (Destexhe et al. 1999; Blumenfeld and McCormick 2000). However, re-
cent studies showed that a distributed network which consists of thalamus, cortex
and hippocampus is engaged in alpha oscillations. It seems that a communication
exists between neocortex and hippocampus during alpha oscillations (Sirota et al.
2003) and hippocampus can react to sensory stimuli with a 10 Hz enhancement
(Schurmann et al. 2000).

Even if for simplicity we assume that spindles and alpha waves have, more or
less, the same underlying mechanisms and that they are generated in a thalamo-
cortical network (Steriade et al. 1987; Destexhe et al. 1999; Blumenfeld and Mc-
Cormick 2000), we are still facing some technical problems for the realization of
these modules and their corresponding ionic mechanisms in mean-field models. For
instance, to correctly express the functionality of thalamic reticular cells in a mean-
field model we need to redefine Ih and IT channels in the mesoscopic level. In
addition, bursting behavior of neural cells is another issue that should be also re-
defined in mesoscopic level. Fortunately, few works related to this issue have been
conducted (Suffczynski et al. 2004; Robinson et al. 2008), and they can be good
starting points for future studies.

One of the complex issues to face out for producing alpha waves or spindles in
mean-field models is that thalamocortical cells do not oscillate at 12 Hz. Instead, a
superposition of 2–4 Hz activities generated by different sub-populations of thalam-
ocortical cells is responsible for generation of 7–14 Hz oscillations (Bal et al. 1995;
McCormick and Bal 1997). This means that a well-designed physiologically-based
mean-field model for this purpose can probably be a model that includes a thalamus
module with a few interconnected thalamocritical sub-populations inside.

The complexity of reproducing alpha waves in mean-field models becomes more
complicated if we also consider the relation of alpha waves (or spindles) with delta-
band activities that are generated in the cortex. For example, it has been shown
that prolonged hyperpolarizations, induced by cortically generated slow waves, are
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necessary so that spindles appear on EEG clearly (Steriade 2006). In fact, activities
in delta and alpha bands are not disjoint activities in the brain. Slow oscillations in
the brain can group and modulate the alpha band oscillations (Benoit et al. 2000; Fell
et al. 2002; Steriade 2006). Recently, we have shown that the amplitude modulation
of alpha band is a function of slow and fast delta activities (Molaee-Ardekani et
al. 2010b). We have also shown that the characteristics of this modulation can vary
with anesthesia.

9.6.3 Differences in Amplitudes

Another challenging problem that one may encounter in simulating an EEG signal
by a mean-field model, including the enhanced model, is the difference between
amplitudes of the signals that are generated in a stable mode and amplitudes of the
signals that are generated in an unstable mode. For example, when the enhanced
model is in a stable mode, the amplitude of the output EEG signal is basically low
and it is mainly determined by the variances of input noises and the manner that tra-
jectories fluctuate around the equilibrium solution of the model. These fluctuations
can be characterized by transfer functions between input noises and the output EEG
signal in the working point (i.e. equilibrium solution) of the model. On the other
hand, in an unstable mode (e.g., limit-cycle), the amplitude of the output signal is
basically high and it is not influenced a lot by variances of input noises. Indeed,
when trajectories switch to the up and down states in an unstable condition, the
amplitude of the output signal is mainly determined by the potential difference be-
tween the right and the left branches of he-isocline that are located in the up and in
the down states, respectively.

In brief, it can be stated that the amplitude of a signal in a stable mode is de-
termined by a mechanism that is different from the mechanism that controls the
amplitude of a signal which is generated in an unstable condition. Due to this dif-
ference, sometimes the amplitude ratio of two reproduced signals in unstable and
stable conditions may be a bit higher than the normal physiological range for this
ratio. For instance, the increase in the amplitude ratio of K-complex and EEG back-
ground activities in the model of Wilson et al. (2006) is a bit higher than what is
shown in Amzica and Steriade (2002). In the enhanced model, the amplitude ratio
of reproduced EEG signals in unstable and stable conditions is in the order of 10,
which is comparable with the amplitude ratio of EEG signals recorded in children
by Constant group (Constant et al. 2005). However, this ratio is higher than what is
obtained in adults (Schultz et al. 2004).

These differences in amplitude ratios may be explained as follows: If in the en-
hanced model, a trajectory approaches the up (down) state, it means that all con-
stituting pyramidal neurons in the excitatory population are similarly approaching
the up (down) state. But in reality, due to dissimilarities which exist even between
similar neural cells locating in a same macrocolumn, they may switch to the up and
down states not in a fully synchronized manner. As a consequence, since the syn-
chronization is not perfect, the amplitude of the output signal may decrease a bit in
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real EEG signals. This effect has not been considered in the enhanced model, and it
can be a topic for future developments.

9.6.4 The Biphasic Response

What can be inferred from Sect. 9.2.3 is that the biphasic response that Kuizenga et
al. introduce can be observed a few minutes after any rapid changes in the concentra-
tion of anesthetic drug. The biphasic responses which are observed at LOC and ROC
are also two special cases of biphasic responses in which anesthetic drug is admin-
istered for the first time or removed permanently from the patient. These biphasic
responses are indeed originated from transient responses of the brain at LOC and
ROC. Since the enhanced model reproduces the EEG signals in a steady-state con-
dition (i.e., the drug concentration is stabilized), it was not forced to generate the
biphasic response which Kuizenga et al. introduce.

However, besides this kind of transient biphasic response, anesthetic agents can
also induce another kind of stabilized biphasic response in EEG signal power. As
shown by Fell group the EEG power in delta and theta bands is maximized at about
1/3 to 2/3 of concentration at the onset of burst suppression (CBS ) (Fell et al. 2005).
It seems that the biphasic responses in the Steyn-Ross et al. model and in the Bojak–
Liley model are more related to what is shown by Fell et al. than what is observed by
Kuizenga et al. in transient modes of the brain. From this view point, the enhanced
model can also generate a biphasic response because at 1 MAC it generates some
aperiodic large-amplitude negative peaks that can increase the EEG power in delta
and theta bands.
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Chapter 10
A Neural Population Model of the Bi-phasic
EEG-Power Spectrum During General
Anaesthesia

A. Hutt

10.1 Introduction

The neuronal mechanisms of general anaesthesia are still poorly understood, though
the induction of analgesia, amnesia, immobility and loss of consciousness by anaes-
thetic agents is well-established in hospital practice. To shed some light onto these
mysterious effects, the last decades have focused mainly onto the study of molec-
ular effects of agents and their relation to anaesthetic end points. Then, a decade
ago Steyn-Ross et al. were among the first who studied the anaesthetic effects by
a mathematical model of a neural population.1 This model assumed a single neural
population, i.e. a single brain area, that might experience external stochastic stimuli,
e.g. from other populations. Although this model could not reproduce the experi-
mental data in all details, it gave a rather simple answer to the question of the origin
of the loss of consciousness (LOC) during anaesthesia.

The success of this first model triggered the development of other mathematical
models that consider different features of neural populations than the ones in the
model of Steyn-Ross et al. and hence allow other answers to the question of LOC.
The present work introduces a new rather simple model of neural population activity
that shares properties with previous models and introduces others, see the following
sections for more details. By virtue of its mathematical simplicity, it might serve as
a basic model for general anaesthesia that may be extended easily by further neural
functions while retaining its simple structure.

In hospital practice, typically a perioperative information management system is
set up, e.g. to store medical records of patients and to manage different medical treat-

1Cf. Chap. 8 of Steyn-Ross et al. in this book.

A. Hutt (�)
Team CORTEX, INRIA Grand Est – Nancy, 615 rue du Jardin Botanique,
54602 Villeres-les-Nancy, France
e-mail: axel.hutt@inria.fr

A. Hutt (ed.), Sleep and Anesthesia, Springer Series in Computational Neuroscience 15,
DOI 10.1007/978-1-4614-0173-5_10, © Springer Science+Business Media, LLC 2011

227



228 A. Hutt

ments during the patients stay (see Longnecker et al. 2008, Chap. 28). The system
stores the physiological records extracted from monitoring systems that measure
certain medical variables. The origin of the word monitor is the Latin word monere,
which means to warn. Indeed, one of the important roles of monitoring is to alert
the anaesthetist of changes in the patients’ conditions. In addition, the monitoring
system allows one to use the information received to modify therapeutic interven-
tions and hence to regulate and control the medical treatment of the patient. Such
information may come from haemodynamic monitoring which measures e.g. arte-
rial blood pressure, respiratory monitoring or intraoperative neurologic monitoring.
The latter detects electric activity on the scalp, the so-called electroencephalogram
(EEG), which reveals information on neural activity. The present work focuses on
some anaesthetic-induced effects on the EEG.

The medical EEG may be classified into two subtypes, cf. Chap. 32 in Long-
necker et al. (2008). Desynchronous EEG exhibits rather large frequencies with low
amplitudes, which result from small groups of mutually active neurons. This EEG
pattern is contrasted by synchronous EEG showing low frequencies with large am-
plitudes which are assumed to result from large populations of cortical neurons that
are triggered by thalamic stimulation (Amzica and Steriade 1998). Desynchronous
EEG occurs when the subject is awake or during Rapid Eye Movement (REM)-
sleep, while synchronous EEG is observed during non-REM sleep, cerebral is-
chemia, sedation or anaesthesia. To detect the loss of consciousness in patients, the
anaesthetist is interested in the change from desynchronous to synchronous EEG.
To this end, typically the bispectral index BIS is computed indicating the depth of
anaesthesia (Rampil 1998). The decision at which index value the subject is uncon-
scious is based on experience but the index range is limited. Typical BIS-values of
the points of loss of consciousness are between 40 and 60 while BIS = 100 and
BIS � 40 mean fully awake and deep anaesthesia, respectively.

Increasing the administered dose of anaesthetic agent increases its blood plasma
concentration and the EEG changes from desynchronous to synchronous and the
corresponding power spectrum may exhibit a bi-phasic behavior: at low agent con-
centration the power in certain frequency bands increase and finally decreases again
for larger agent concentrations. This bi-phasic behavior can be found in the δ-, θ -,
α- and β-frequency bands and the BIS is based on the power relation between these
frequency bands. Since the BIS indicates well the loss of consciousness, the bi-
phasic power spectrum is supposed to play an important role for the understanding
of neural activity during anaesthesia.

To better understand the neural origin of the bi-phasic behavior of EEG, theoret-
ical models have been developed. Such models describe mathematically the activity
of a single neural population, cf. Chaps. 7, 8 and 9 of in this book. In brief, the
original model approach of Steyn-Ross et al. (2004) proposes the change of activ-
ity resting states as the deciding mechanism during the loss of consciousness and
explains the bi-phasic behavior by this state change. The original models of Liley
and Bojak (2005) and Molaee-Ardekani et al. (2007) describe mathematically the
bi-phasic behavior without a state change, but do not explain the loss of conscious-
ness.
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The model presented in this chapter differs mathematically from the previous
ones and explains the bi-phasic behavior without a state change, but takes into ac-
count the possible state change. To illustrate this result, the subsequent section in-
troduces the neural activity model and explains its difference to previous models in
some detail. Then the synaptic effect of the anaesthetic agent propofol and its imple-
mentation into the model is discussed in Sect. 10.2.2, followed by a brief analytical
study of the number of resting states. Finally, the last paragraphs in this section out-
lines the derivation of the systems’ power spectrum and discusses the bi-phasic be-
havior found in the model activity. The last section summarizes the achieved results.

10.2 A Neural Population Model

The present work considers an ensemble of neurons on a mesoscopic spatial scale
in the range of cortical macrocolumns, i.e. on a spatial scale of some millimeters.
It considers pyramidal cells and interneurons, and consequently involves excitatory
and inhibitory synapses. Both types of synapses may occur on dendritic branches of
both cell types. In the following, we consider excitatory synapses (abbreviated by e)
at excitatory (E) and inhibitory cells (I ) and take into account inhibitory synapses
(i) at both cell types.

Moreover, by virtue of the large number of neurons in the ensemble the activity
of synapses and neurons are treated as averages over the population in small spatial
patches and short time windows, see e.g. (Hutt and Atay 2005; Gerstner and Kistler
2002). The mean post-synaptic potentials (PSP) at excitatory cells in a spatial patch
at spatial location x and at time t is denoted VE,s(x, t) and originates from excitatory
(s = e) or inhibitory (s = i) synapses which receive spiking activity from other pre-
synaptic neurons. Similarly, the PSPs VI,s(x, t) are evoked at inhibitory cells by
pre-synaptic activity at excitatory (s = e) or inhibitory (s = i) synapses.

The four PSPs are modeled by

VN,e(x, t) − V r
N =

∫ t

−∞
he

(
t − t ′

)
PE

(
x, t ′

)
dt ′,

VN,i(x, t) − V r
N =

∫ t

−∞
hi

(
t − t ′

)
PI

(
x, t ′

)
dt ′

(10.1)

with N = E for excitatory cells and N = I for inhibitory cells, V r
N is the resting

potential of neurons of type N and PE and PI denote the pre-synaptic mean pulse
activity originating from excitatory and inhibitory cells, respectively. Here we as-
sume that axonal connections from excitatory cells terminate at excitatory synapses
only, which holds true for over 80 percent of excitatory cells (Nunez 1995). More-
over he(t) and hi(t) represent the mean synaptic response functions of excitatory
and inhibitory synapses and read (Koch 1999)

he(t) = ae

α1α2

α2 − α1

(
e−α1t − e−α2t

)
, (10.2)

hi(t) = aif (p)
β1(p)β2

β2 − β1(p)

(
e−β1(p)t − e−β2t

)
, (10.3)
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with the temporal rates of the excitatory and inhibitory synapses α1,2 and β1,2, re-
spectively. This formulation of the mean synaptic response involves the various time
scales of the synaptic response to an incoming spike, such as the membrane time
constant of the dendrite, the voltage-dependent conductance change of the mem-
brane (see e.g. Koch 1999, p. 18) and the propagation delays along the dendritic
tree (see e.g. Koch 1999, pp. 49). The parameter p ≥ 1 in (10.3) denotes a weight-
ing factor that reflects the propofol concentration and f (p) quantifies the propofol
action on the inhibitory synapses. This formulation considers the synaptic effects of
propofol only. In addition, ae and ai denote the level of excitation and inhibition,
respectively.

Equations (10.1) give the mean synaptic responses in the ensemble and thus rep-
resent averages over all microscopic details of the synapto-dendritic system in the
ensemble. Hence, the model does not take into account microscopic properties of
synapses explicitly but consider their effect in the population.

For convenience, we may re-scale the time by t �→ √
α1α2 t and (10.1) are re-

written as (Hutt and Longtin 2009)

L̂e

(
VN,e(x, t) − V r

N

) = aePE(x, t), (10.4)

L̂i(p)
(
VN,i(x, t) − V r

N

) = aif (p)ω2
0(p)PI (x, t), (10.5)

with the temporal operator L̂s = ∂2/∂t2 + γs∂/∂t + ω2
s , s = e, i and

ω2
e = 1, ωi = ω2

0(p) = β1(p)β2/α1α2,

γe = √
α1/α2 + √

α2/α1, γi = (β1(p) + β2)/
√

α1α2.

To model the pre-synaptic mean pulse activity PE(x, t),PI (x, t) at spatial lo-
cation x subjected to the firing activity of other neurons at spatial location y, we
assume spatially homogeneous synaptic interactions via axonal branches with

PN(x, t) = KN ∗ SN [V − ΘN ]
=

∫
Ω

KN(x − y)SN

[
V

(
y, t − |x − y|

v

)
− ΘN

]
dy.

This ansatz considers a one-dimensional neural population embedded in the spa-
tial domain Ω with periodic boundary conditions. Moreover v denotes the finite
conduction speed of axonal connections. The functionals SE[·], SI [·] represent
the somatic firing function of excitatory and inhibitory cells which have a sig-
moidal shape (Freeman 1979). The firing rate functions SE, SI are chosen as
SN(V ) = Sm/(1 + exp(−cN(V − ΘN))) and depend on the difference of the PSPs
VE,e − VE,i and VI,e − VI,i , respectively, since the corresponding synaptically
evoked post-synaptic currents sum up at the neuron somata, cf. Freeman (1992),
Hutt and Longtin (2009). Moreover ΘE, ΘI denote the corresponding mean fir-
ing thresholds. Synapses respond to cells which are located at different spatial lo-
cations and the functions KE, KI account for the corresponding spatial nonlocal
connectivity. They represent the probability density of connections from excitatory
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and inhibitory cells to excitatory and inhibitory synapses, respectively. This defini-
tion requires the normalization to unity, i.e.

∫
Ω

KE,I (x) dx = 1. Then (10.4), (10.5)
read (Hutt and Longtin 2009)

L̂e

(
Ve(x, t) − V r

E

) = aeKE ∗ SE

[
Ve(x, t) − Vi(x, t) − ΘE

]
,

L̂i(p)
(
Vi(x, t) − V r

E

) = aif (p)ω2
0(p)KI ∗ SI

[
Ve(x, t) − Vi(x, t) − ΘI

] (10.6)

with the excitatory and inhibitory PSPs now defined as Ve = VE,e and Vi = VE,i .
Equations (10.6) are the final evolution equations of the neural activity, while the
action of propofol is considered in L̂i(p), f (p) and ω2

0(p).

10.2.1 Yet Another Model?

The neural field model (10.6) defines some basic elements of neural interactions in
populations to describe the spectral properties in general anaesthesia. Other pop-
ulation models consider different neural interactions. Several of these models are
based on the model of Liley et al. (1999), see also Chap. 7 in this book. This model
considers a continuous spatial mean-field of neurons in one or two spatial dimen-
sions, synapses and axonal connections and where the synapses and neurons may be
excitatory and inhibitory. This mean-field represents the spatial average in a neural
population description similar to the present work and thus averages the spiking ac-
tivity of single neurons using a sigmoidal population firing rate. The firing activity is
assumed to spread diffusively via a damped activity wave along the axonal trees and
terminates at pre-synaptic terminals. The wave speed of this axonal wave is set to
the mean axonal conduction speed and hence assumes a volume conduction mech-
anisms for the spread along axonal fibers. At the synaptic terminals the incoming
pre-synaptic activity evokes the temporal synaptic response on the dendritic trees
according to the dynamics of a single synapse, i.e. treating the membrane as an RC-
circuit with a time-dependent conductance, see e.g. Koch (1999). Consequently the
model neglects the spatial extension of dendritic trees due to this explicit model of
single synapse responses.

The model considered in the present work is similar to the model of Liley et
al. in several aspects but differs in some other important elements. In contrast to
the Liley model the presented model considers a population of synapses on den-
dritic trees (Koch 1999) and the passive activity spread on dendrites (Agmon-Sir
and Segev 1993). To cope with the various delay distributions caused by the spa-
tial distribution of synapses on the dendritic branches, the present model considers
an average synaptic population response which obeys an average synaptic response
function. In addition the present work models the activity transmission along axonal
trees by taking into account the spatial probability density of axonal connections.
This contrasts to the Liley model, which assumes a volume conduction mechanism
for the activity spread along the axonal branch. Interestingly, previous theoretical
studies have shown that the mathematical treatment of connection probability den-
sities extends the damped activity wave considered in the model of Liley et al. to
nonlocal interactions, cf. Coombes et al. (2007), Hutt (2007).
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Previous studies have explained the bi-phasic behavior in the EEG-power spec-
trum by different mechanisms. Steyn-Ross et al. (2004) support the idea that the
bi-phasic spectrum and the LOC result from a first-order phase transition in the
population. This phase transition reflects a sudden disappearance of the system’s
resting state accompanied by a jump to another resting state. The associated jump in
state activity has been interpreted as the sudden loss of consciousness as observed
in experiments, see the corresponding chapter in this book. In contrast, Bojak and
Liley (2005) showed in an extensive numerical study of a slightly different model
that such a phase transition is not necessary to reproduce bi-phasic power changes,
but did not suggest a mechanism for the occurrence of LOC. Moreover, Molaee-
Ardekani et al. (2007) introduced the idea of slow adaptive firing rates which ex-
plains the bi-phasic spectrum and LOC without a phase transition, see the corre-
sponding chapter in this book. The present model aims to show that the bi-phasic
power spectrum is not restricted to a specific mechanism but may occur in the pres-
ence of both a single state, multiple states without an additional adaptive firing.

Summarizing, the model presented here simplifies specific aspects of the dynam-
ics in single neurons but takes into account its major features. These features are the
non-linear gain of cells originating from the distribution of the neurons firing thresh-
old, the synaptic response function covering the diverse properties of synapses and
dendritic compartments, and the spatial and temporal aspects of axonal branches.
By virtue of these simplifications, the model is mathematically less complex than
the Liley model since it has less parameters. This aspect allows for an analytical
treatment of the model and, consequently, the analytical derivation of conditions for
physiological parameters. The work aims to show that these elements are sufficient
to describe the macroscopic dynamics of the neural population. This idea is sup-
ported by the excellent work of Roxin et al. (2006), who showed that neural field
models may capture the macroscopic activity of a population of spiking neurons.

10.2.2 Synaptic Anaesthetic Effect

Our work focuses on the action of the anaesthetic agent propofol, which is a widely-
applied anesthetic drug (Marik 2004). It affects the cognitive abilities of subjects,
such as the response to auditory stimuli (Kuizenga et al. 2001) or pain (Andrews
et al. 1997) and acts mainly on GABAA receptors, i.e. changes the response of
inhibitory synapses. In detail, increasing the blood concentration of propofol yields
an increase of the charge transfer in synaptic GABAA-receptors and increases the
decay time constant of their synaptic response function (Kitamura et al. 2002).

The current model approach describes mathematically the effect of varying prop-
erties of inhibitory synapses on the spatio-temporal dynamics of the neural ensem-
bles, while the origin of such variations are the anaesthetic actions of propofol.
Specifically, increasing the concentration of propofol prolongs the temporal decay
phase of inhibitory GABAA synapses and increases the charge transfer in these
synapse. In addition, the height of the synaptic response function is maintained for
different propofol concentrations (Kitamura et al. 2002) in a good approximation.
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Fig. 10.1 Extraction of the charge transfer curve from experimental data (Fig. 6 in Kitamura
et al. 2002) subjected to the factor p. The panel (a) shows the experimentally measured mean
(circles) percental increase of the inhibitory decay time p, their maximum (squares) and minimum
(diamonds) values at the error interval borders and the corresponding fitted functions p(c) (dashed
line for maximum values, dashed-dotted line for the mean value and dotted line for the minimum
values). (b) shows the experimentally measured mean (circles) percental increase of the charge
transfer, their maximum (squares) and minimum (diamonds) values at the error interval borders and
the corresponding functions ct (c), the line coding is the same as in (a). (c) presents the calculated
relation ct (p) for the mean values, the lower and upper value border and the model (red solid line),
see text for model details. The line coding is the same as in (a)

To implement a similar behavior in our model, the factor p introduced in (10.3)
reflects the target concentration of propofol in the neural population with p = 1 for
vanishing propofol concentration. Since the function f (p) introduced in (10.3) is
set to affect the charge transfer in the inhibitory synapses, we choose the inhibitory
charge transfer at vanishing propofol concentration such that f (p = 1) = 1, and
identify the mean charge transfer with the level of the synaptic excitation or inhibi-
tion, cf. Hutt and Longtin (2009). Moreover, the model assumes that increasing p

reflects an increasing propofol concentration which decreases the inhibitory decay
rate by β1(p) = β0

1/p with β0
1 denoting the inhibitory decay rate in the absence

of propofol. Consequently, p = (1/β1)/(1/β0
1 ) represents the percentile increase of

the inhibitory decay time constant. To mimic these assumption mathematically, we
implement

f (p) = r−r/(r−1)(rp)rp/(rp−1), r = β2/β1 (10.7)

which guarantees a constant height of the impulse response function hi(t) and re-
flects an increasing charge transfer of the inhibitory synapse f (p) with increasing p.
Typically the decay phase of the synaptic response curve is much longer than its rise
phase, i.e. β1 � β2, r 
 1 and thus f (p) ≈ p.

To investigate the validity of the model assumptions, we consider experimental
results on the synaptic response of GABAA-synapses measured in vitro in cultured
cortical neurons of rats (Kitamura et al. 2002). Figure 10.1(a) shows the mean values
p obtained experimentally at GABAA-synapses subject to the propofol concentra-
tion c, together with the extreme values of p at the borders of the error bars. The
dependence of the percentile increase of the decay time constant p on the concentra-
tion c is set to p(c) = k1 ∗ ln(k2 +k3 ∗c) and the constants k1, k2, k3 are mean-least
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Fig. 10.2 The temporal
impulse response function
hi(t) of inhibitory synapses
subject to various values of p

taken from (10.3) and (10.7).
Parameters are set to
β0

1 = 75 Hz, β2 = 1000 Hz,
which are typical for
GABAA-synapses (Koch
1999)

square fitted to the experimental data. In addition Fig.10.1(b) gives the correspond-
ing mean and extreme values of the normalized charge transfer ct (c) obtained ex-
perimentally. This function is mean least-square fitted to ct (c) = k4 ∗ ln(k5 + k6 ∗ c)

with the constants k4, k5, k6. Then the normalized charge transfer subjected to the
factor p can be computed to ct (p) = f (p) = b0 ln(b1 +b2e

b3p) with b0 = k4, b1 =
k5 − k2k6/k3, b2 = k6/k3, b3 = 1/k1. Figure 10.1(c) shows ct (p), the correspond-
ing functions obtained from the error borders and the model function (10.7) with
r = 8.5 and we observe good accordance. Consequently the charge transfer model
(10.7) is reasonable for β2 ≈ 8.5β1.

Since the study of propofol effects in Kitamura et al. (2002) are based on ex-
periments on rats, it is interesting to link the results to humans. In human gen-
eral anaesthesia, the value EC50 gives the concentration of the anesthetic agent for
which 50 of 100 subjects are anesthetized, i.e. do not respond to external stim-
uli or surgical incision. For the administration of propofol, a typical concentra-
tion is 0.2 µM/ml (∼2 µg/ml) (Franks and Lieb 1994), which corresponds to
p ≈ 1.2, cf. Fig. 10.1. For unit conversion of the propofol concentrations, the rule
1 µg ≈ 0.1 µM holds (Franks and Lieb 1994).

Summarizing, increasing the factor p prolongs the decay phase and increases the
charge transfer in inhibitory synapses while maintaining the amplitude of the result-
ing IPSPs constant. Figure 10.2 shows the simulated temporal impulse response of
an inhibitory GABAA synapse hi as a function of time and of factor p. We observe
a constant amplitude and a prolonged decay phase for increasing p, as desired.

10.2.3 Multiple Resting States

To gain insight into the resting activity of the neural population, let us first investi-
gate the stationary solutions V̄e, V̄i of (10.6), which are assumed constant in space
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Fig. 10.3 The stationary solutions V̄− of (10.8), the firing rates of excitatory and inhibitory neu-
rons SE = SE(V −ΘE) and SI = SI (V −ΘI ), respectively, for both solution cases. (a) ΘE > ΘI ,
ce = ci , (b) ΘE = ΘI , ce = ci . The specific parameters are (a) ΘE = −53 mV, ΘI = −60 mV,
ce = ci = 0.84/mV, (b) ΘE = ΘI = −60 mV, ce = ci = 0.24/mV. Additional parameters are
ae = 1 mV/s, (a) ai = 0.2 mV/s, (b) ai = 1.4 mV/s

and time. Introducing the new variables V̄− = V̄e − V̄i and V̄+ = V̄e + V̄i , Equa-
tions (10.6) decouple to

V̄− = aeSE

[
V̄− − ΘE

] − f (p)aiSI

[
V̄− − ΘI

]
, (10.8)

V̄+ = aeSE

[
V̄− − ΘE

] + f (p)aiSI

[
V̄− − ΘI

] + 2V r
E. (10.9)

Here V̄− is the stationary mean membrane potential that triggers spike generation in
the neural population at the global resting state. Equations (10.8), (10.9) reveal that
it is sufficient to determine V̄− from (10.8) to find V̄− and V̄+ and hence the number
of solutions V̄− gives the number of stationary solutions.

A detailed study of the number of roots (Hutt and Longtin 2009) yields conditions
for (a) three resting states for a limited range of values of p and a single resting state
otherwise and (b) a single stationary state for all p. The three stationary solutions
have been studied previously in some analytical details by Steyn-Ross et al. (2001)
and the single stationary solution has been considered numerically by Bojak and
Liley (2005), Molaee-Ardekani et al. (2007). These studies are based on the Liley
model. In the following, we refer to the case of the single stationary solution as the
single solution case and to the case of three stationary solutions as the triple solution
case.

Figure 10.3 shows the solutions V̄−, and the resulting firing rates of excitatory
and inhibitory neurons SE(V̄− − ΘE) and SI (V̄− − ΘI ), resp., with respect to the
weight factor p. In the triple solution case (Fig. 10.3(a)), the system starts at a
high firing rate at p = 1 and shows an activity decrease up to point A. Then a fur-
ther increase of p causes the stationary excitatory firing activity to discontinuously
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jump to smaller values. In addition we observe a top, center and bottom solution
branch. Likewise, the single stationary solution (Fig. 10.3(b)) exhibits a decrease
of the firing rate while increasing p. However, here the drop of activity is contin-
uous and the firing rate changes less abruptly than in the triple solution case. Such
a continuous decrease of the firing rate while increasing the propofol concentration
has been reported experimentally in cultures of rat neocortical tissue (Antkowiak
1999).

In mathematical terms, the triple solution case exhibits a saddle-node bifurcation
and the first discontinuous drop of activity at point A. This bifurcation occurs if the
left and right hand side of (10.8) exhibit the same derivative with respect to V̄−, i.e.

1 = aeδE(p) − aif (p)δI (p). (10.10)

Here δE(p) = ∂SE[V (p) − ΘE]/∂V, δI (p) = ∂S[V (p) − ΘI ]/∂V evaluated at
V = V̄− represent the so-called non-linear gains of the system. Since δE(p), δI (p)

are the slopes of the transfer functions SE, SI , they reflect the conversion of
membrane potentials to the spike firing activity. In contrast to the triple solution
case, the single stationary solution does not show this activity drop and exhibits
1 > aeδE(p) − aif (p)δI (p) for all values of p, i.e. condition (10.10) never holds.

10.2.4 The Bi-phasic Power Spectrum

A prominent measure to determine the depth of general anaesthesia is the power
spectrum of the subject’s electroencephalogram (EEG). As outlined in Sect. 10.1,
the prominent effect in power spectra during general anaesthesia is the bi-phasic
change of frequency power while increasing the propofol concentration, i.e. the in-
crease and then decrease of spectral power in the δ, θ , α and β band. To model
this change of power spectrum with respect to factor p, the subsequent paragraphs
derive the power spectrum of the EEG. The derivation of the power spectrum fol-
lows from previous studies on the effect of finite axonal conduction speed on the
activity of neural populations involving a single neuron type (Hutt and Atay 2007;
Hutt and Frank 2005).

10.2.4.1 The Power Spectrum

The power spectrum represents a statistical measure of system’s linear response
to a spatio-temporal external input. This input might originate from other neu-
ral populations and is assumed to be small compared to the resting states V̄e, V̄i

defined by (10.8), (10.9). Moreover the power spectrum is defined in the linear
regime and the system remains close to the resting state if it is linearly stable,
see the work of Hutt and Longtin (2009) for a detailed study of the systems’
stability. In the following, we assume that the system is stable, i.e. small per-
turbations do not repel the system too far from its stationary state determined in
Sect. 10.2.3.
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Considering the excitatory external input Γ (x, t), the identities L̂e,ihe,i(t) = δ(t)

and linear terms only, (10.6) read

ue(x, t) = aeδE

∫ t

−∞
dτhe(t − τ)

∫
Ω

dyKe(x − y)

(
ue

(
y, τ − |x − y|

v

)

− ui

(
y, τ − |x − y|

v

))
+ Γ (x, t), (10.11)

ui(x, t) = aiδI f ω2
0

∫ t

−∞
dτhi(t − τ)

∫
Ω

dyKi(x − y)

(
ue

(
y, τ − |x − y|

v

)

− ui

(
y, τ − |x − y|

v

))
. (10.12)

The variables ue(x, t) = Ve(x, t) − V̄e and ui(x, t) = Vi(x, t) − V̄i denote the de-
viations from the stationary states V̄e and V̄i and depend linearly on the evoked
currents in the membrane that are present in the dendritic tree and its surrounding.
These evoked currents propagate along the dendritic branch toward and away from
the trigger zone at the neuron soma. Since excitatory and inhibitory currents add up
at the trigger zone and have different signs, the corresponding potentials also sum up
at the trigger zone. This means the effective membrane potential ue(x, t) − ui(x, t)

is proportional to the current that flows in the tissue close to the dendritic branch and
along the dendritic branch. This physical effect is supposed to represent the origin
of the EEG since the evoked current represents a current dipole that generates the
electromagnetic activity on the scalp. Such currents are measured experimentally by
electrodes in the neural tissue and the corresponding potentials are the LFPs. Conse-
quently LFPs reflect the dendritic currents or correspondingly the membrane poten-
tials on the dendrites. Since the EEG represents the spatial average of the dendritic
activity in a good approximation, cf. Nunez and Srinivasan (2006), we consider the
effective membrane potential u(x, t) = ue(x, t) − ui(x, t), which is proportional to
the dendritic currents.

The neural population activity is assumed to be in a stationary state in the pres-
ence of the external stationary input. Then the ergodicity assumption holds and the
power spectrum of u(x, t) at the spatial location x is given by the relation

PLFP (x,ω) = 1√
2π

∫ ∞

−∞
dτ CLFP (x, τ )eiωτ (10.13)

with the autocorrelation function CLFP (x, τ ) = 〈u(x, t)u(x, t − τ)〉 and the ensem-
ble average 〈· · ·〉, i.e. the average over many realizations.

The external input to the network Γ (x, t) represents the excitatory synap-
tic responses to random fluctuations uncorrelated in space and time ξ(x, t) with
〈ξ(x, t)〉 = 0, 〈ξ(x, t)ξ(y,T )〉 = Qδ(x − y)δ(t − T ) and the fluctuation strength Q

and the input reads

Γ (x, t) =
∫ t

−∞
dτhe(t − τ)ξ(x, τ ) (10.14)
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with the synaptic response function he(t) taken from (10.2). To obtain the auto-
correlation function, we apply linear response theory (Hutt and Longtin 2009) and
find

CLFP (x, τ ) = Q

(2π)3

∫ ∞

−∞
dk

∫ ∞

−∞
dω

∣∣G̃(k,ω)
∣∣2∣∣h̄e(ω)

∣∣2
e−iωτ . (10.15)

Here

G̃(k,ω) = 1√
2π

(
1 −

∞∑
n=0

Ln(k,ω)(−iω)n

)−1

is the Fourier transform of the Green function with

Ln(k,ω) = 1

n!
(

−1

v

)n ∫ ∞

0
dt

(
aeδEhe(t)K̃

n
e (k) − aiδI f ω2

0hi(t)K̃
n
i (k)

)
eiωt ,

K̃n(k) =
∫

Ω

dzK(z)|z|ne−ikz,

h̄e(ω) =
∫ ∞

0
dthe(t)e

iωt .

Then applying the Wiener–Khinchine theorem the power spectrum is computed
to be

PLFP (x, ν) = Q

(2π)7/2

∫ ∞

−∞
dk

∣∣G̃(k, ν)
∣∣2∣∣h̄e(ν)

∣∣2
. (10.16)

with the frequency ν = ω/2π . Equations (10.15) and (10.16) reveal that the correla-
tion function and the power spectrum are independent of the spatial location which
reflects the spatial homogeneity of the population.

To obtain the power spectrum of the EEG, we take into account the large distance
of the EEG-electrode from the neural sources and the spatial low-pass filtering by
the scalp and bone (Srinivasan et al. 1998; Nunez and Srinivasan 2006). Then as a
first good approximation the EEG activity represents the spatial summation of elec-
tric activity uEEG(t) = ∫

Ω
dx u(x, t). Here we assume that the EEG-electrodes are

far from the neural population compared to the spatial extent of the population. This
is reasonable since EEG is measured on the scalp, which typically has a distance of
a few centimeters from neural areas with a diameter of a few millimeters.

Assuming the external input as the excitatory synaptic response to uncorrelated
random fluctuations, we obtain finally

CEEG(τ) = Q(2π)2
∫ ∞

−∞
dω

∣∣G̃(0,ω)
∣∣2∣∣h̄e(ω)

∣∣2
e−iωτ , (10.17)

PEEG(ν) = Q√
2π

∣∣G̃(0, ν)
∣∣2∣∣h̄e(ν)

∣∣2
(10.18)

with the fluctuation strength Q. Equation (10.18) represents the power spectrum of
the EEG measured on the scalp and, hence, the quantity that is measured in general
anaesthesia. The advantage of this detailed mathematical formulation is the possi-
bility of an analytical study of the bi-phasic power spectrum behavior. This study
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has been performed in a recent work (Hutt and Longtin 2009) and conditions for the
occurrence of the bi-phasic spectrum have been derived analytically.

10.2.4.2 The Bi-phasic Spectrum

At first we impose the condition that the power increases at low frequencies when
increasing the propofol concentration, i.e. dPEEG(0)/dp > 0. For the triple solution
case, this condition yields

ae/ai > e−c̄η

(
1 − ρ

1 − ρec̄η

(
1 + ρec̄η

1 + ρ

)3

f

+ 1 − δEae + δI aif

Smc̄ai

(1 + ρec̄η)3

(1 + ρ)(1 − ρec̄η)

)
(10.19)

with ρ(p) = exp(−c̄(V̄− − ΘI)) and η = ΘE − ΘI > 0. We find that the parameter
regime of the power enhancement is large for shallow firing rate functions (Hutt and
Longtin 2009). Figure 10.4(a) shows the power spectrum enhancement for the triple
solution case and we observe a bi-phasic behavior in the spectrum.

To extend the imposed conditions on the power spectrum, the experimental find-
ings also stipulate the decrease of power at large frequencies for large values of p.
Hence the condition for a power increase at low frequencies and a power decrease
at high frequencies read dPEEG(0)/dp > 0 and dPEEG(ν)/dp < 0, ν 
 0, respec-
tively. For a large but finite axonal conduction speed, we find the conditions (Hutt
and Longtin 2009)

dPEEG(0)/dp > 0 → ae/ai >
∂

∂p

(
f (p)δI (p)

)/∂δE(p)

∂p
,

dPEEG(ν)/dp < 0 → dL0,r

dp
(1 − L0,r ) > 0

(10.20)

with

L0,r = Ae(ν)δE(p) − Ai(p, ν)δI (p)f (p)ω2
0(p),

Ae(ν) = 1 − (2πν)2

1 + (2πν)2(γ 2
e − 2) + (2πν)4 ,

Ai(p, ν) = ω2
0(p) − (2πν)2

ω4
0(p) + (2πν)2(γ 2

i (p) − ω2
0(p)) + (2πν)4

.

The conditions (10.20) define the parameter set for bi-phasic behavior. We focus on
the single solution case and apply a numerical parameter search in c̄, ai , β1 which
satisfies conditions (10.20) considering the result β2 = 8.5β1 from Sect. 10.2.2. Fig-
ure 10.4(b) presents the spectral power enhancement for a set of parameters obtained
numerically. The power in the δ, θ and α band exhibits a sequential increase and de-
crease of power in according to experiments. Moreover the maxima of the α and δ, θ

power occur at p ≈ 1.4 and p ≈ 1.6 and thus at concentrations 1 µM (∼0.5 µg) and
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Fig. 10.4 Spectral power enhancement Pe(p) for the triple (a) and single (b) solution case. Here
it is Pr(p) = 10 log10(PEEG(p)/PEEG(p = 1)) in the corresponding frequency bands, and the
frequency bands are defined in the intervals [0.1 Hz; 4 Hz] (δ-band), [4 Hz; 8 Hz] (θ -band), [8 Hz;
12 Hz] (α-band) and [12 Hz; 20 Hz] (β-band). Parameters are (a) ΘE = −50 mV, ΘI = −60 mV,
ce = ci = 0.114/mV and ai = 1.4 mV s on the top branch, (b) ΘE = ΘI = −60 mV,
ce = ci = 0.038/mV and ai = 0.2 mV s. Other parameters are ae = 1.0 mV s, β2 = 5780 Hz,
β1 = 680 Hz, α1 = 222 Hz, α2 = 5000 Hz

2 µM (∼1.1 µg), respectively. These concentrations are similar to medical effect-
site concentrations during surgery and Fig. 10.4(b) shows good accordance to the
bi-phasic behavior observed experimentally in general anaesthesia.

10.3 Summary

The presented work introduces a novel neural population model to describe math-
ematically the effect of the anaesthetic propofol on the EEG-power spectrum. The
study shows a bi-phasic spectrum in the presence of both multiple states and a single
state.

On the one hand, it can be concluded that multiple states are not necessary to
gain a bi-phasic power spectrum. Since the loss of consciousness (LOC) during
anaesthesia is related to the bi-phasic behavior, one may argue that LOC may occur
in the presence of a single stable state. Consequently the jump between stable states
at the LOC as argued by Steyn-Ross et al. is not necessary to observe the LOC.

On the other hand, a very recent experimental study on insects and mammals of
Friedman et al. (1992) demonstrates that changing the anaesthetic concentration in
neural tissue induces phase transitions with hysteresis. This transition is independent
of the pharmaco-dynamics and -kinetics of the agent. Consequently increasing the
anaesthetic agent concentration yields a drop of neural population activity from high
activity to low activity, which may explain the loss of consciousness as a loss of
neural activity.

More future experimental and theoretical work on this topic will elucidate the
details of the LOC.
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Chapter 11
In-vivo Electrophysiology of Anesthetic Action

F. von Dincklage and B. Rehberg

11.1 Introduction

Since the introduction of general anesthesia over a century ago several concepts have
been developed to clinically define the anesthetic state and quantitative measures
of anesthetic depth. A modern definition presented by Shafer and Stanski defines
anesthetic depth generally as the probability of non-response to stimulation (Shafer
and Stanski 2008). Anesthetic depth in this concept is therefore determined by the
strength and nature of the applied stimulus as well as the strength and nature of the
observed response, which have to be evaluated in the context of the drug concentra-
tions at the sites of action that blunt the responsiveness.

After reducing all possible stimuli and all possible responses to only the clinical
relevant ones, the matrix that combines the remaining parameters can be regarded as
a precise tool for a quantitative evaluation of the anesthetic depth. This tool would
still have to include many different stimulation modalities ranging from verbal stim-
uli over innocuous contact stimuli like touching or shaking to noxious stimuli like
incision, laryngoscopy and intubation. Also on the response side many different
types of reaction would have to be included ranging from verbal responses over
memory formation, movement responses, tearing and sweating to hemodynamic re-
sponses.

To simplify this complex tool, one can divide stimuli and responses into classes in
which stimuli and responses of the same modality are grouped together, and which
can be assumed to follow a rank order in which they are suppressed by anesthetic
drugs. Stimuli for example can be roughly divided into the classes of innocuous and
noxious stimuli. Innocuous stimuli would follow a rank order, in which reactions to
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light touch or calling the name would precede shaking or shouting, since the latter
ones are less readily suppressed by anesthetics. In a similar way noxious stimuli fol-
low a rank order in which a pinprick would precede an incision, which again would
precede laryngoscopy and intubation. Responses can also be divided in categories
like verbal responses, movement reactions, memory formation, autonomous or su-
domotor responses and hemodynamic responses. These could again be put in some
sort of rank order in that the loss of verbal responses can be expected to precede
the loss of purposeful movement. But between the different categories the order
of suppression can differ according to which drugs are used for anesthesia. Opi-
oids for example seem to suppress hemodynamic responses at lower concentrations
than movement responses, while hypnotics show the inverse order of suppression
(Kazama et al. 1997, 1998a, 1998b).

So how is the state of non-responsiveness to the stimuli achieved by anesthetics?
In the model described by Shafer and Stanski at least two components are needed
to create the anesthetic state: hypnosis, achieved through the use of hypnotics as
propofol or inhalational agents, and anti-nociception accomplished with opioids,
nitrous oxide or peripheral analgesic procedures. To achieve unconsciousness for
example, these components are regarded to act together in a hierarchical order where
anti-nociceptive substances attenuate the transmission of sensation to the cortex in
the spinal cord and other sub-cortical sites of action, see Fig. 11.1. This reduces
the arousal effect of stimuli and therefore reduces the amount of hypnotic required
to suppress thalamo-cortical information processing and thus maintaining the state
of unconsciousness. The state of immobility in response to noxious stimulation on
the other hand is mainly mediated through the spinal cord, rather than the cortex
(Rampil 1994; Rampil et al. 1993). But again the same hierarchical model can be
applied, in which anti-nociceptive substances are considered to attenuate the effect
of the noxious sensation on the spinal cord, reducing the amount of hypnotic needed
(or nitrous oxide) to suppress the excitability of the spinal motoneurons to maintain
the state of immobility.

Based on this hierarchical model, every of the above described clinical responses
to the different stimuli can be mathematically modeled as a hierarchical combina-
tion of the effects on the strength of the input (like anti-nociceptive effects) and
the effects reducing the excitability of the structure mediating the response (like
hypnotic effects or motor-inhibiting effects). However, the relative potency of the
different effects has to be adjusted, depending on the quality of the investigated
stimuli and responses. Verbal reactions or memory formation after innocuous stim-
uli would be hardly affected by anti-nociceptive substances, but very strongly by
hypnotic effects. Autonomous responses to noxious stimuli on the other hand are
much stronger effected by anti-nociceptive substances than by hypnotic effects.

So how can the hypnotic, anti-nociceptive or motor suppressant effects of anes-
thetics be quantified to perform this hierarchical modeling? One very common way
would be to use the applied drug concentrations, reducing substances to their main
effects. In this case substances like propofol or volatile anesthetics would be re-
garded as pure hypnotics and opioids as pure anti-nociceptive substances. Another
way to quantify the different effects would be the use of physiological surrogate
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Fig. 11.1 Hierarchical interaction model. The Stimulus–Response relationship under anesthesia
can be modeled using opioid and hypnotic concentrations or other surrogates for anti-nociception,
hypnosis and motor suppression. Model adapted from Shafer and Stanski (2008)

parameters, which has the advantage that the secondary and minor effects of anes-
thetics are not neglected.

In the following two sections we would like to present some electrophysiological
methods which can be used as surrogate parameters for different effects of anesthet-
ics. The second sub-section will focus on EEG-based methods, which predominately
reflect the anesthetic action in the brain, while the third sub-section will focus on
electrophysiological reflexes, which predominately reflect the anesthetic action in
the spinal cord. The fourth sub-section will introduce the concept of combination of
electrophysiological methods with functional imaging, aiming to validate the speci-
ficity of the proposed surrogate parameters.

11.2 EEG-Based Methods

Since the first experiments with electroencephalography (EEG) in man by Berger it
is known that anesthetics alter the EEG, and since then EEG analysis has accompa-
nied the development of anesthesia. Mostly, the EEG has been used by anesthesiolo-
gists to monitor what is called “anesthetic depth”, although the concept of anesthetic
depth has always been debated (see review in Palanca et al. 2009) and has often been
confused with “level of consciousness”. Only in recent years theories have prevailed
in which “anesthetic depth” is viewed as a two-dimensional representation of two
different components (Kent and Domino 2009). Shafer and Stanski have defined
depth of anesthesia as the “drug-induced probability of non-response to a stimulus,
calibrated against the strength of the stimulus”, whereby the stimulus is sequentially
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Fig. 11.2 Two-dimensional model of anesthetic depth (or consciousness). Consciousness or anes-
thesia as non-consciousness can be seen as a state defined by awareness, which is suppressed by the
hypnotic effect of anesthetic drugs, and arousability, which is suppressed by the analgesic effect.
Arousability itself is defined by the relation between the probability of a response and the intensity
of the arousing stimulus. The addition of an analgesic to an regime used for sedation for example
will not alter the content of the possible response, but reduce the probability of the response to
a particular stimulus (e.g. memory formation following intratracheal suctioning). Model adapted
from Boly et al. (2008) and Palanca et al. (2009)

attenuated by analgesics (primarily on a sub-cortical level) and by hypnotics (on a
thalamo-cortical level) (Shafer and Stanski 2008). Thus the interaction between the
effect of analgesics (analgesia or anti-nociception) and that of hypnotics (hypnosis)
is seen as fundamental to the definition of anesthetic depth.

In parallel, studies on patients in a vegetative state have shown that conscious-
ness itself can be divided in two components, “awareness” denoting the content of
consciousness per se, and “arousal”, denoting the level of consciousness (Boly et
al. 2008), see Fig. 11.2. During anesthesia, awareness is suppressed by hypnotics,
whereas arousal is attenuated by analgesics, leading again to the two-dimensional
interaction of analgesics and hypnotics.

Next to the concept of “anesthetic depth”, the methodology of EEG-based analy-
sis of CNS suppression by anesthetics has also evolved. Concerning the monitoring
of “depth of anesthesia”, combinations of different EEG parameters, e.g. as imple-
mented in the “bispectral index BIS” (Rampil 1998), have proved superior to single
parameters. Combination with parameters from auditory evoked responses leads to
an even better correlation with anesthetic depth, at least in volunteers during single-
agent anesthesia (Horn et al. 2009). However, these combination indices do not yield
insight in the mechanisms by which anesthetics produce unconsciousness.

The subparameters of these indices, such as median frequency, beta ratio, burst
suppression ration, and also the nonlinear parameters such as correlation dimension
(Widman et al. 2000) or approximate entropy (Bruhn et al. 2000), correlate with
the synchronization of cortical activity or hyperpolarization of the thalamus. How-
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ever, they merely reflect the concentration-dependent anesthetic effect, but do not
indicate loss of consciousness itself. It has long been suggested that suppression of
thalamic activity by anesthetic leads to unconsciousness (see discussion in Alkire
et al. 2008), but the recent discovery that thalamic EEG activity, recorded from im-
planted electrodes, is much later suppressed during anesthetic induction compared
to cortical EEG activity, is currently the main argument against a leading role of the
thalamus (Velly et al. 2007).

Recently it has been hypothesized that the loss of long-range cortico-cortical
phase synchronization of neuronal activity is ultimately responsible for anesthetic-
induced loss of consciousness (Alkire et al. 2008). Indeed, at least isoflurane has
been shown to suppress synchrony between left and right frontal cortices as well
as between occipital and frontal regions (Imas et al. 2006). Nevertheless, as men-
tioned above, a change in “awareness” induced by the hypnotic effect of anesthetics
is not sufficient to fully describe the anesthetic effect, without a sufficient suppres-
sion of the state of “arousal” an external stimulus will be able to change the state
of awareness in an instant. Until now no EEG-derived parameter exists which can
measure the state of arousal (or “arousability”). Although opioid analgesics do have
an effect on the EEG, this is indistinguishable from the non-analgesic hypnotic ef-
fect. To measure “arousability”, which is in effect the balance between (nociceptive)
stimulation and (anti-nociceptive) suppression, it is necessary to analyze responses
evoked by a strong, potentially painful, stimulus. Since analgesics primarily act at a
sub-cortical level, is seems appropriate to use responses recorded at this sub-cortical
level, too, such as electrophysiological reflexes.

11.3 Electrophysiological Reflexes

The effects of anesthetics are mediated through various sites across the human body
and the central nervous system. The electroencephalogram as described in the pre-
vious section can be used to study those effects that are predominately located in the
brain, but for the investigation of peripheral actions or actions located in the spinal
cord a different methodology is required. This is particularly important for the effect
of analgesic drugs, which primarily act a sub-cortical level. Electrophysiological re-
flexes have been applied for the study of spinal pathways in animals and humans
since the early last century (Pierrot-Deseilligny 2005). In this section we would like
to present some exemplary methods which already have been used to quantify spinal
effects of anesthetics in humans.

11.3.1 The H Reflex

The H reflex (or Hoffmann reflex) can be regarded as the electrophysiological anal-
ogon of the tendon jerk. It is elicited through electrical stimulation of Ia afferents,
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Fig. 11.3 Recording
paradigm of the soleus H
reflex. Electrical stimulation
of Ia nerve afferents of the
soleus muscle excite
homonymous motoneurones
in the spinal cord, which
leads to a muscle potential
recordable over the soleus
muscle

coming from the muscle spindle, which results in a contraction of the correspond-
ing muscle due to the activation of homonymous motoneurons, cf. Fig. 11.3. Most
commonly the tibial nerve is used as the stimulation site producing a reflex response
in the soleus muscle. Investigation of the H reflex allows one to assess changes in
excitability of the motoneurone pool. Several studies have been performed using the
H reflex under anesthesia as a tool to evaluate the drug induced changes in motoneu-
ronal excitability (von Dincklage et al. 2006; Rehberg et al. 2004; Kerz et al. 2001;
Kammer et al. 2002; Baars et al. 2006a, 2007, 2009).

Also the H reflex can be used as a test reflex, to investigate the effects of sev-
eral conditioning volleys in peripheral afferents or descending tracts. Heterony-
mous facilitation of the soleus H reflex via stimulation of the femoral nerve for
example can be used to quantify the GABAergic presynaptic inhibition on Ia fibers
(Baars et al. 2006c, 2007; Hultborn et al. 1987), see Fig. 11.4. Similar condi-
tioning methods can be applied to investigate the reciprocal Ia and Ib inhibition,
the recurrent inhibition or the homonymous facilitation (Pierrot-Deseilligny 2005;
Katz and Pierrot-Deseilligny 1999; Crone et al. 1987).

11.3.2 The F Wave

After supramaximal stimulation of a nerve containing motor axonal fibers, a small
late response is elicited in the target muscle, which has been termed F wave. The
F wave is believed to be evoked by antidromic activation of motoneurons through
stimulation of their axons. Since the F wave may only be produced if the axon
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Fig. 11.4 Recording
paradigm of the
heteronymous facilitation of
the soleus H reflex. The
soleus H reflex which is
recorded as described above
can be facilitated by
appropriately timed
stimulation of the femoral
nerve. Exact timing of the
stimuli ensures a
mono-synaptic facilitation
which is uniquely influenced
by GABAergic presynaptic
inhibition. Under these
circumstances can changes in
heteronymous facilitation be
ascribed to changes in
presynaptic inhibition

hillock and proximal axon are ready to be excited at the moment when the an-
tidromic activation potential discharges the soma, it is suggested that the size of the
F wave response correlates with the excitability of the motoneurone pool (Fisher
1992).

Compared to the H reflex the F wave is considered as being much less sensible
in detecting changes in motoneuronal excitability. However, since in contrast to the
H reflex for the F wave response large motor units are preferentially recruited, the
investigation of F waves can provide additional insight into the inhibitory effects
of anesthetics on a different part of the motoneurone pool (Hultborn and Nielsen
1995). The F wave has been used in several studies to investigate the effects of
anesthetics (Zhou et al. 1997; Kakinohana and Sugahara 2006; Kakinohana et al.
2006; Dominguez et al. 2005; Baars et al. 2006b, 2005).

11.3.3 The Nociceptive Flexion Reflex

The nociceptive flexion reflex is a polysynaptic spinal withdrawal reflex that is
elicited by stimulation of nociceptive nerve afferents, see Fig. 11.5. A common way
to assess the nociceptive flexion reflex is the monitoring of biceps femoris muscle
activity using an electromyogram during the application of electrocutaneous stimuli
to the ipsilateral sural nerve (Sandrini et al. 2005).

The nociceptive flexion reflex can be used as a tool for the investigation of no-
ciception in conscious and unconscious subjects. Generally it can be applied in two
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Fig. 11.5 Recording paradigm of the nociceptive flexion reflex. Stimulation of the sural nerve
at its retromalleolar pathways elicits a muscle potential over the biceps femoris muscle. The RIII
component of the reflex correlates with the subjective pain sensation and can therefore be possibly
used as a surrogate for nociception

different ways: either can the reflex threshold be used as an objective measure of the
nociceptive threshold or changes in the magnitude of the reflex following constant
suprathreshold stimuli can be used to assess changes in the nociceptive responding.

Several studies have been performed investigating the influence of anesthetics on
the nociceptive flexion reflex as a surrogate of immobility and possibly also as a
surrogate of nociception under anesthesia (Baars et al. 2009; von Dincklage et al.
2009, 2010).

11.3.4 The Nociception Specific Blink Reflex

The blink reflex is a trigeminofacial brain-stem reflex and can therefore be used
as a noninvasive tool to study trigeminal transmission in humans. It is elicited by
stimulation of the supraorbital nerve and assessed by an electromyogram of the or-
bicularis occuli muscles. To increase the nociceptive specificity of the reflex a spe-
cial concentric planar electrode can be used for stimulation which produces a high
current density in superficial skin layers already at low current intensities, therefore
predominately exciting superficial A delta fibers (Kaube et al. 2000). This nocicep-
tive blink reflex paradigm is used in experimental pain research as a tool to evaluate
the modulation of pain perception by pharmacological or physiological influences
and could therefore be applied as a tool to quantify the influence of anesthetics on
trigeminal nociceptive processing as the nociceptive flexion reflex can be used to
investigate spinal nociceptive processing.

Summarizing this section, the above mentioned reflexes can be used to measure
the excitability of different spinal and sub-cortical structures. Especially the no-
ciceptive responses appear to be appropriate measures of the “arousability” of the
central nervous system during anesthesia and thus complement EEG-derived param-
eters indicating the state of awareness. Interestingly, these nociceptive responses are
also influenced during sleep (Sandrini et al. 2001).
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11.4 Combining Clinical Electrophysiology and Functional
Imaging

The introduction of modern functional imaging methods like positron emission to-
mography (PET) and functional magnetic resonance imaging (fMRI) has made a
tremendous impact in diverse fields such as cognitive neuroscience, psychiatry and
psychology. However, only during the recent years these have been applied to gain
more insight into the actions underlying general anesthesia.

The main advantage that these rather new methods provide is the good spatial
resolution for the imaging of effects which are specifically linked to neuronal activ-
ity. In the case of positron emission tomography the regional glucose metabolism
(Phelps et al. 1979; Huang et al. 1980) as well as the regional cerebral blood flow
(Raichle et al. 1983; Herscovitch et al. 1983) can be investigated as parameters of
regional neuronal activity. In the case of functional magnetic resonance imaging
neuronal activity can be quantified by the blood oxygen dependent (BOLD) effects
(Logothetis et al. 2001; Babiloni et al. 2009).

While these imaging parameters are assumed as reliably correlating with neu-
ronal activity in the awake subject, the cerebrovascular effects of anesthetics pose
a serious challenge for functional imaging and especially fMRI studies under anes-
thesia. Inhaled anesthetics for example are potent cerebral vasodilators which can
result in saturating the BOLD response (Matta et al. 1995, 1999). Also indirect
effects of anesthetics on the regional blood flow like changes in the partial pres-
sure of carbon dioxide due to hypoventilation could confound the BOLD signal
(Hoge et al. 1999). However, different endpoints of general anesthesia like hyp-
nosis or anti-nociception can be imaged as the reduction of activity in different
areas of the brain and the spinal cord (Fiset et al. 1999; Antognini et al. 1997;
Alkire et al. 2000). Therefore the functional activity in these areas can be used as
a specific surrogate parameter for the respective anesthesia endpoint. This is es-
pecially of interest for those endpoints that are difficult to evaluate clinically, like
anti-nociception under anesthesia, or for those endpoints that show a sporadic oc-
currence like implicit and explicit memory formation under anesthesia.

Unfortunately the monetary and personnel expense of functional imaging studies
under anesthesia as well as the impossibility to perform PET or fMRI imaging in
the normal clinical setting in the operating room prevent that these precise surro-
gate parameters or “first level” surrogates can be broadly applied in clinical stud-
ies. Therefore further surrogate parameters for these surrogates, or “second level”
surrogate parameters are required, which may be evaluated without the mentioned
restrictions.

Electrophysiological methods as described in the previous sections hold the ad-
vantage of simple applicability and low costs, as well as a high temporal resolution
compared to functional imaging, which qualifies them as possible second level sur-
rogates. However, since such second level surrogates are not as closely linked to
the physiological processes as first level surrogates, a validation of the concordance
between the surrogates is required, before the second level surrogate could be used
as a monitoring instrument. If a second level surrogate would indeed show a high
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specificity and sensibility in concordance with the first level surrogate, it would al-
low for a continual quantification of those anesthetic effects in the clinical setting,
which are difficult to evaluate by clinical means. Such a validation of concordance
between surrogates is complicated by the fact that the different endpoints of general
anesthesia are generally induced using combinations of various drugs. Therefore a
validation study would have to investigate the relationship of the endpoint parameter
or the first level surrogate with the second level surrogate for each of the drugs, as
well as for the interaction effects. This is necessary to prevent overrating a surrogate
parameter which shows a very good accuracy for every single drug, but which fails
for others or when different drugs are combined.

Blood pressure as a simple example correlates with the dose of the propofol
or the dose of the opioid remifentanil. Since movement to noxious stimulation is
also dose-dependent for both of these drugs one can expect that blood pressure can
be used as a surrogate for immobility during anesthesia using either propofol or
remifentanil. However, since the relative effect of each of the drugs on the blood
pressure is different compared to the relative effect of each drug on immobility,
blood pressure can be expected to perform with a far worse accuracy when used as
a surrogate for movement to noxious stimulation during anesthesia induced with a
combination of both drugs.

11.5 Discussion

In summary, modern functional imaging methods provide the means for a specific
quantification of anesthetic effects in the central nervous system. By combining
these imaging techniques with surrogates that can be investigated with less effort
and expenses like the electrophysiological methods described in the previous sec-
tions, instruments can be created that allow a quantification of those anesthetic effect
in the clinical setting which are difficult to evaluate with clinical means. However,
the design of validation studies has to incorporate the relative effects of different
drugs that can be used to induce the investigated anesthetic endpoint as well as in-
teraction effects between the drugs.
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