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Preface

One can say that the field of computational neuroscience started with the 1952 paper
of Hodgkin and Huxley in which they describe, through nonlinear partial differential
equations, the genesis of the action potential in the giant axon of the squid. These
equations and the methods that arose from this combination of modeling and ex-
periments have since formed the basis for nearly every subsequent model for active
cells. The Hodgkin–Huxley model and a host of simplified equations that are derived
from it have inspired the development of new and beautiful mathematics. Dynamical
systems and computational methods are now being used to study activity patterns
in a variety of neuronal systems. It is becoming increasingly recognized, by both
experimentalists and theoreticians, that issues raised in neuroscience and the math-
ematical analysis of neuronal models provide unique interdisciplinary collaborative
research and educational opportunities.

This book is motivated by a perceived need for an overview of how dynamical
systems and computational analysis have been used in understanding the types of
models that come out of neuroscience. Our hope is that this will help to stimulate
an increasing number of collaborations between mathematicians and other theo-
reticians, looking for interesting and relevant problems in applied mathematics and
dynamical systems, and neuroscientists, looking for new ways to think about the
biological mechanisms underlying experimental data.

The book arose out of several courses that the authors have taught. One of these
is a graduate course in computational neuroscience that has students from the dis-
ciplines of psychology, mathematics, computer science, physics, and neuroscience.
Of course, teaching a course to students with such diverse backgrounds presents
many challenges. However, the course provides many opportunities to encourage
students, who may not normally interact with each other, to collaborate on exercises
and projects. Throughout the book are many exercises that involve both computa-
tion and analysis. All of the exercises are motivated by issues that arise from the
biology.

We have attempted to provide a comprehensive introduction to the vocabulary
of neuroscience for mathematicians who are just becoming interested in the field,
but who have struggled with the biological details. Anyone who wants to work in
computational neuroscience should learn these details as this is the only way one
can be sure that the analysis and modeling is actually saying something useful to
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biologists. We highly recommend the reader study this material in more detail by
consulting one of the many excellent books devoted primarily to neuroscience. Such
books include those by Kandel et al. [144] and Johnston and Wu [139].

We have also tried to provide background material on dynamical systems theory,
including phase plane methods, oscillations, singular perturbations, and bifurcation
analysis. An excellent way to learn this material is by using it, together with com-
puter simulations, to analyze interesting, concrete examples. The only prerequisites
are a basic knowledge of calculus, knowledge of a little linear algebra (matrices,
eigenvalues), and understanding of some basic theory of ordinary differential equa-
tions. Much of the mathematics is at the level of Strogatz [255].

The book is organized from the bottom up. The first part of the book is con-
cerned with properties of a single neuron. We start with the biophysics of the cell
membrane, add active ion channels, introduce cable theory, and then derive the
Hodgkin–Huxley model. Chapter 2 is concerned with the basic properties of den-
drites. We then introduce dynamical systems theory, using a simple neuron model to
illustrate the basic concepts. We return to the biology in Chap. 4, where we discuss
the variety of ion channels which have been found in neurons. Chapters 5 and 6
are devoted to bursting oscillations and propagating action potentials, respectively.
Here, we use many of the dynamical systems techniques to describe mechanisms
underlying these behaviors. The second part of the book is concerned with neu-
ronal networks. In Chap. 7, we describe synaptic channels, which are the primary
way that neurons communicate with each other. Chapters 8 and 9 discuss two dif-
ferent approaches for studying networks. First, we assume weak coupling and use
phase-response methods. We then demonstrate how one can analyze firing patterns
in neuronal networks using fast/slow analysis. In Chap. 10, we discuss the role of
noise in neuron models. Here, we briefly introduce the reader to the mathematical
theory of stochastic differential equations. Finally, in Chaps. 11 and 12 we discuss
firing rate models and spatially distributed networks.

There is far more material in this book than could be covered in a one-semester
course. Furthermore, some of the material is quite advanced. A course in computa-
tional neuroscience slanted toward mechanisms and dynamics could easily be made
out of the first five chapters along with Chap. 7. These chapters would cover most
of the basics of single-cell modeling as well as introduce students to dynamical sys-
tems. The remainder of such a course could include selections from Chaps. 8–12.
For example, Chap. 11 contains firing rate models, with many applications provided
in Sect. 11.3. Parts of Chap. 12 could comprise the remainder of the course.

For more mathematically inclined students, the elementary dynamics chapter
(Chap. 3) could be skipped and the more technical chapters could be emphasized.
There is lovely nonlinear dynamics in Chaps. 5, 6, 8, and 9, which along with the
earlier chapters could form the core of a mathematical neuroscience course.

There are several recent books that cover some of the same material as in
the present volume. Theoretical Neuroscience by Dayan and Abbott [53] has a
broader range of topics than our book; however, it does not go very deeply into
the mathematical analysis of neurons and networks, nor does it emphasize the
dynamical systems approach. A much more similar book is Dynamical Systems
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in Neuroscience by Izhikevich [136]. This book emphasizes the same approach
as we take here; however, the main emphasis of Dynamical Systems in Neu-
roscience is on single-neuron behavior. We cover a good deal of single-neuron
biophysics, but include a much larger proportion of theory on systems neuro-
science and applications to networks. There are many specific models and equa-
tions in this text. The forms of these models and their parameters are available at
http://www.math.pitt.edu/�bard/bardware/neurobook/allodes.html.

Pittsburgh, PA G. Bard Ermentrout
Columbus, OH David H. Terman
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Chapter 1
The Hodgkin–Huxley Equations

1.1 The Resting Potential

All living cells have an electrical voltage, or potential difference, between their
inside and outside. Since the cell’s membrane is what separates the inside from
the outside, this potential difference is referred to as the membrane potential. In
mathematical terms, the membrane potential VM is defined as

VM D Vin � Vout;

where Vin is the potential on the inside of the cell and Vout is the potential on the
outside. This will change during an action potential, for example.

The resting potential refers to the potential across the membrane when the cell is
at rest. A typical neuron has a resting potential of about �70mV. An inward current
corresponds to a positively charged ion, such as NaC, entering the cell. This raises
the membrane potential; that is, it brings the membrane potential closer to zero. In
this case, the cell is said to be depolarized. An outward current corresponds to a
positively charged ion, such as KC, leaving the cell or a negatively charged ion,
such as Cl�, entering the cell. In this case, the cell becomes hyperpolarized.

The potential difference arises from differences in the concentrations of various
ions within and outside the cell. The maintenance of the potential difference also
involves the transport of ions across the cell membrane and the selective permeabil-
ity of the membrane to these ions. The principal ions found on either side of the
cell membrane are NaC, KC, and Cl�. The concentration of KC ions inside a cell
is about 10 times that in the extracellular fluid, whereas the concentrations of NaC
and Cl� are much higher outside the cell than inside.

The lipid bilayer of the cell membrane is a poor conductor of ionic current be-
cause it is not permeable to ions. However, the membrane does contain channel
proteins that allow for the ions to move through it. There are two types of ion chan-
nels in the membrane: gated and nongated. Nongated channels are always open,
whereas gated channels can open and close and the probability of opening often
depends on the membrane potential; these are referred to as voltage-gated chan-
nels. Gated channels are typically selective for a single ion. The permeability of the
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2 1 The Hodgkin–Huxley Equations

membrane to a particular ion depends on the number of open channels selective for
that ion. Most gated channels are closed at rest; hence, the nongated ion channels
are primarily responsible for establishing the resting potential. An action potential
is generated when gated channels open allowing for the flux of ions across the cell
membrane.

Because of concentration differences, when the appropriate channels are open,
NaC and Cl� ions tend to diffuse into the cell, whereas KC ions tend to diffuse
outward. Note that ions do not simply diffuse in or out of an open channel until the
concentration of that ion on either side of the cell is zero. This is because of the
electric field created by separation of positive and negative charges across the cell
membrane.

Suppose, for example, the cell is permeable only to KC. The concentration gra-
dient of KC moves KC ions out of the cell. However, the continued efflux of KC
builds up an excess of positive charge on the outside of the cell and leaves behind
an excess of negative charge on the inside. The negative charge consists mostly of
impermeable organic anions A�. This buildup of charge acts to impede the further
efflux of KC, so eventually an equilibrium is reached. At this equilibrium, the elec-
trical and chemical driving forces are equal and opposite (Fig. 1.1). The membrane
potential at which KC ions are in equilibrium across the membrane is called the KC
Nernst, equilibrium, or reversal potential .

In the next section, we shall derive the following expression for the KC Nernst
potential:

EK D �RT
zF

ln
ŒKC�in
ŒKC�out

: (1.1)

A− A−

A−

A−

+ + + + + + + + + + + +
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Fig. 1.1 The KC flux is determined by both the KC concentration gradient and the electrical
potential across the membrane. (a) For a cell that is permeable only to KC, the concentration
gradient of KC moves KC ions out of the cell. (b) The continued efflux of KC builds up an excess
of positive charge on the outside and an excess of negative charge on the inside. At equilibrium,
the electrical and chemical driving forces are equal and opposite
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Here, EK is the KC Nernst potential, R is the gas constant, T is the absolute
temperature in kelvin, z is the valence of KC, F is Faraday’s constant, and ŒKC�out

and ŒKC�in are the concentrations of KC ions outside and inside the cell. A similar
formula holds for the NaC and Cl� Nernst potentials.

Neurons at rest are permeable to NaC and Cl� in addition to KC. Because of
their concentration differences, NaC and Cl� ions move into the cell and KC ions
move outward. The influx of NaC ions tends to depolarize the cell, whereas the ef-
flux of KC and the influx of Cl� have the opposite effect. The resting potential of
the cell is the potential at which there is a balance between these fluxes. It depends
on the concentrations of the ions both inside and outside the cell, as well as the per-
meability of the cell membrane to each of the ions. We note that at rest, many more
KC and Cl� channels than NaC channels are open; hence, the cell’s resting poten-
tial is determined primarily by the KC and Cl� Nernst potentials. In the following
sections, we shall derive the Goldman–Hodgkin–Katz (GHK) equation, which gives
an explicit expression for how the resting potential depends on the concentrations,
both inside and outside, of ions and the permeabilities of the membrane to the ions.

For a cell to maintain a constant resting potential, the efflux of KC ions must
balance the influx of NaC ions (here we are ignoring Cl� ions). That is, the
charge separation across the membrane must be constant. If these steady ion leaks
continued unopposed, then KC ions within the cell would become depleted, whereas
the concentration of NaC ions inside the cell would increase. This would eventually
result in a loss of the ionic gradients, necessary for maintaining the resting poten-
tial. The dissipation of ionic gradients is prevented by active pumps that extrude
NaC ions from the cell while taking in KC. The NaC–KC pump is an integral mem-
brane protein that exchanges three NaC ions for two KC ions. This is probably the
most important ion transporter in biological membranes; however, there are many
other proteins in the membrane that are capable of pumping ions from one side of
the membrane to the other.

1.2 The Nernst Equation

Here we derive the Nernst equation and, in Sect. 1.3 we derive the GHK equation.
Recall that if the membrane is permeable to only one ion, then that ion’s Nernst
potential is the resting potential at which the electrical and chemical driving forces
balance. The GHK equation is, in some sense, a generalization of the Nernst equa-
tion in which we assume the membrane is permeable to more than just one ion. The
GHK equation determines the resting potential at which the electrical and chemical
forces, generated by each of these ions, balance each other. The first step in deriving
these equations is to derive the Nernst–Planck equation.

In what follows, let ŒC �.x/ be the concentration of some ion and V.x/ the poten-
tial at the point x across the membrane. Then, Fick’s law of diffusion says that the
diffusive flux, Jdiff, is given by

Jdiff D �D@ŒC �
@x

:
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The diffusion constant, D, has units of square centimeters per second and the
concentration is in molecules per cubic centimeter, so the diffusive flux has units of
molecules per square centimeter second. (Think of the flux as movement across the
two-dimensional cell surface.) The direction of movement is from high concentra-
tions to low concentrations. The diffusion constant (empirically measured) depends
on the size of the molecule and the medium in which it is diffusing. A typical value
for ions such as KC, Cl�, and NaC is 2:5� 10�6cm2/s. Calcium ion has a diffusion
constant about an order of magnitude less.

The other physical force that is responsible for the passive movement of ions is
the electrical drift described by the microscopic version of Ohm’s law:

Jdrift D ��zŒC �
@V

@x
:

The electric field, E � �@V =@x, is the gradient of the potential V (measured in
volts) and thus has units of volts per centimeter. z is the valence of the ion (˙1;˙2;
etc.). The parameter � is the mobility and has dimensions of square centimeters per
volt second and ŒC � is the concentration. The higher the concentration, the greater
the drift. Note that the drift has the same dimensions as the diffusive flux.

The total flux across the membrane is given by the sum of the diffusive flux and
the electrical drift:

Jtotal D �D@ŒC �
@x

� �zŒC �
@V

@x
:

Einstein’s relation connects the mobility with the diffusion coefficient:

D D kT

q
�;

where k is Boltzmann’s constant (J/K), T is the absolute temperature, and q is the
charge (measured in coulombs). Thus, we can write the total flux as

Jtotal D ��kT
q

@ŒC �

@x
� �zŒC �

@V

@x
:

It is convenient to convert this equation, which is in terms of the number of indi-
vidual molecules, into its molar equivalent, by dividing by Avogadro’s number. It
is also convenient to introduce RT=F , where R is the ideal gas constant and F is
Faraday’s constant, instead of kT=q. (A list of these constants is given at the end
of the next section.) This will yield the flux per mole. Multiplying this flux by the
valence and Faraday’s constant yields a current flux

I D �
�

uzRT
@ŒC �

@x
C uz2F ŒC �

@V

@x

�

measured in amperes per square centimeter. The quantity u is the molar mobility,
�=NA: This equation is the Nernst–Planck equation.
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The Nernst equation is obtained by setting the current equal to zero. That is, for
a given ionic species, at equilibrium, the diffusion and electric effects balance:

I D �
�

uzRT
@ŒC �

@x
C uz2F ŒC �

@V

@x

�
D 0:

As an exercise, it is left to the reader to prove this implies the Nernst equation:

Veq � Vin � Vout D �RT
zF

ln
ŒC �in

ŒC �out
: (1.2)

That is, the equilibrium (or Nernst) potential, which occurs when all the fluxes bal-
ance, depends on the logarithm of the ratio of the concentrations of the ions inside
and outside the cell.

To illustrate how to use the Nernst equation to compute an equilibrium potential,
note that in a typical mammalian cell, there is 140 mM KC inside the cell and 5 mM
outside. At room temperature, 37ıC, RT=F D 26:73mV. Hence, the equilibrium
potential of potassium is

�62 log
140

5
D �89:7mV:

1.3 The Goldman–Hodgkin–Katz Equation

The Nernst–Planck equation describes the movement of charged ions in aqueous
media. However, the cell membrane has thickness and there may be energy barriers
or blocking sites within the channel. In this case, the ions flowing through the open
channel may not obey the Nernst–Planck equation and we must model the com-
plex behavior within the membrane to get a true picture of the flux across the cell.
This type of biophysics is beyond the details that are needed for this book, but
the resulting equation does play a role in later parts. Thus, we will present a short-
ened derivation of a simplification of what happens within the membrane. Goldman,
Hodgkin, and Katz came up with this simplified model called the constant-field
equation. They assumed (1) the electric field across the lipid membrane is constant,
(2) the Nernst–Planck equation holds within the membrane, and (3) the ions all
move independently.

Let VM be the total potential across a membrane of width l and let V.x/ be the
potential at the point x across the membrane. Since the electric field is constant,
E D �VM=l . This implies that dV=dx D VM=l: The mobility of ions within the
membrane will be different from that in the aqueous solution; denote this mobility
by u�: Finally, let ˇ be the ratio of the ion solubility within the membrane to the ion
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solubility in the aqueous solution. Thus, if ŒC � is the aqueous concentration, then
ˇŒC � is the membrane concentration. With these assumptions, the Nernst–Planck
equation for current across the membrane is

I D �u�z2FˇŒC �
VM

l
� u�zRTˇ

dŒC �

dx
; 0 < x < l:

This is just a first-order linear ordinary differential equation for ŒC � subject to the
two boundary conditions

ŒC �.0/ D ŒC �in; ŒC �.l/ D ŒC �out:

One cannot, in general, solve a first-order equation with two boundary conditions.
However, the current I is unknown, so choosing this correctly will allow us to find
a solution that satisfies both boundary conditions. We leave this elementary exercise
for the reader. The result is

I D u�z2FVMˇ

l

 
ŒC �oute�� � ŒC �in

e�� � 1

!
;

where

� D zVMF

RT
:

This expression is often written in terms of the permeability,

P � ˇu�RT
lF

I

that is,

I D P zF �

 
ŒC �oute�� � ŒC �in

e�� � 1

!
: (1.3)

The permeability has dimensions of centimeters per second. Thus, the dimensions
are in terms of current per unit area. Equation (1.3) is called the constant-field
equation.

This is the current due to a single ionic species. The current vanishes at the equi-
librium or Nernst potential of the ionic species. A current–voltage (I–V ) plot is a
common plot. If the inside and outside concentrations are identical, then the I–V
plot is linear. For ŒC �out > ŒC �in (respectively, ŒC �out < ŒC �in ) the I–V plot is con-
cave down (respectively concave up). The reader is encouraged to plot the current as
a function of the voltage for different concentration ratios. If the concentrations are
quite different on the inside and outside, then the I–V curve is strongly rectifying.
This means the magnitude of the current depends strongly on whether or not the
potential is above or below the equilibrium.



1.3 The Goldman–Hodgkin–Katz Equation 7

Given several ionic species, the total current is just a sum of the individual cur-
rents. This is a consequence of assumption 3, which says that the ions do not interact.
Suppose there are three permeable ions, KC, NaC, and Cl� with corresponding
currents, IK; INa, and ICl: At equilibrium, the total current, I D IK C INa C ICl,
vanishes; that is, I D 0: The potential at which this occurs is

VM D RT

F
ln
PKŒKC�out C PNaŒNaC�out C PClŒCl��in
PKŒKC�in C PNaŒNaC�in C PClŒCl��out

; (1.4)

where the Pj ’s are the permeabilities of each of the three ionic species. This is a
generalization of the Nernst equilibrium discussed above and is called the Goldman–
Hodgkin–Katz (GHK) equation. With one species, the equation reduces to the
Nernst potential. For example, in the squid axon, the ratios of the permeabilities,
at rest, are PK W PNa W PCl D 1 W 0:03 W 0:1. The ion concentrations inside the cell
are, respectively, for KC, NaC, and Cl�, 400, 50, and 40 mM, whereas outside the
cell they are 10, 460, and 540 mM. Thus, at room temperature, the equilibrium or
resting potential is �74mV.

Table 1.1 Typical ion concentrations in cells (from Johnston and Wu [139])

Equilibrium potential (mV),

Ion Inside (mM) Outside (mM) Ei D RT
zF ln ŒC �out

ŒC �in

Frog muscle T D 20ıC

KC 124 2.25 58 log 2:25
124

D �101
NaC 10.4 109 58 log 109

10:4
D C59

Cl� 1.5 77.5 �58 log 77:5
1:5

D �99
Ca2C 10�4 2.1 29 log 2:1

10�4 D C125
Squid axon T D 20ıC

KC 400 20 58 log 20
400

D �75
NaC 50 440 58 log 440

50
D C55

Cl� 40–150 560 �58 log 560
40�150

D �66 to � 33

Ca2C 10�4 10 29 log 10
10�4 D C145

Mammalian cell T D 37ıC

KC 140 5 62 log 5
140

D �89:7
NaC 5–15 145 62 log 145

5�15
D C90� .C61/

Cl� 4 110 �62 log 110
4

D �89
Ca2C 10�4 2.5–5 31 log 2:5�5

10�4 D C 136� .C145/
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Table 1.2 Elementary
constants

NA 6:022 � 1023 mol (Avogadro’s number)
k 1:380658 � 10�23 J/K (Boltzmann’s constant)
R 8:31451 J/(mol K) (ideal gas constant)
e 1:602177 � 10�19 C (electron charge)
F 96; 485:3C/mol (Faraday’s constant)
�0 8:85 � 10�12 F/m (permittivity constant)
K Kelvin (degrees centigrade C273:16/
L Liter
N Newton
J Joule (N m); 1 J = 0:238845 cal
V Volt (J/C)
C Coulomb
A Ampere (C/s)
� Ohm (V/A)
S Siemens (A/V)
F Farad (s A/V or C/V)

1.4 Equivalent Circuits: The Electrical Analogue

We saw in Sect. 1.3 that the electrical properties of cells are determined by the ionic
species that move through the membrane. Currents flow according to the permeabili-
ties of ion channels and concentration gradients across the cell membrane. However,
all of our discussion so far has been in a steady-state environment. The GHK equa-
tion does not determine how the membrane potential changes in response to changes
in the permeabilities. For this reason, it cannot be used to understand how these
changes in permeabilities may generate an action potential. A very useful way to
describe the behavior of the membrane potential is in terms of electrical circuits;
this is commonly called the equivalent circuit model. The circuit consists of three
components: (1) conductors or resistors, representing the ion channels; (2) batteries,
representing the concentration gradients of the ions; and (3) capacitors, represent-
ing the ability of the membrane to store charge. The equivalent circuit model leads
to both an intuitive and a quantitative understanding of how the movement of ions
generates electrical signals in the nerve cell.

We first consider a membrane that is only permeable to potassium. The equivalent
circuit is shown in Fig. 1.2. The lipid bilayer that constitutes the cell membrane has
dielectric properties and as such behaves in much the same manner as a capacitor.
Recall that capacitors store charge and then release it in the form of currents. The
relationship between the charge stored and the potential is given by

q D CMVMI (1.5)

that is, the total charge q is proportional to the potential VM with a proportional-
ity constant CM called the membrane capacitance. Note that the total capacitance
depends on the total area of the dielectric; thus, larger neurons have a larger total
capacitance than smaller ones. The capacitance per square centimeter is called
the specific membrane capacitance and will be denoted as cM. Hence, the total
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CM VM

RK

EK

Lipid
bilayer

Channel

Fig. 1.2 The cell membrane showing the insulating lipid bilayer and a KC channel, which allows
current to flow. The equivalent electrical circuit is shown on the right

membrane capacitance CM is the specific membrane capacitance cM times the total
surface area of the cell. In general, the specific membrane capacitance may depend
on the potential; however, for most cell membranes, the specific membrane capaci-
tance is very close to 1�F/cm2.

Since current is the time derivative of charge, we can differentiate (1.5), divide
by the cell’s area, and obtain an expression for the specific capacitance current:

icap D cM
dVM

dt
: (1.6)

This gives the capacitance current per unit area. We will denote the total capacitance
current as Icap.

In the equivalent circuit, KC channels are represented as a conductor in series
with a battery. If OgK is the conductance of a single KC channel, then, using Ohm’s
law, the ionic current through this channel is

OIK D OgK.VM � EK/: (1.7)

Here, EK is the potential generated by the battery; this is given by the KC Nernst
potential. The driving force is VM�EK. Now suppose there areNK KC channels in a
unit area of membrane. These can all be combined into the single equivalent circuit
shown in Fig. 1.2. The conductance per unit area, or specific membrane conductance
(S/cm2), is given by gK D NK � OgK and the specific membrane resistance (� cm2) is
rK � 1=gK. Since the Nernst potential depends only on the concentration gradient
of KC, and not on the number of KC channels, it follows that the KC current, per
unit area, is given by

IK D gK.VM � EK/ D VM �EK

rK
: (1.8)

Kirchhoff’s current law states that the total current into the cell must sum to
zero. Together with the equivalent circuit representation, this leads to a differential
equation for the membrane potential:

0 D icap C IK D cM
dVM

dt
C VM �EK

rK
(1.9)
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Fig. 1.3 Equivalent circuit
for a membrane with three
channels

EK ENa

gCl

ECl

CM

gK gNa

I(t)

or

cM
dVM

dt
D �VM � EK

rK
D �gK.VM � EK/: (1.10)

Figure 1.3 shows an equivalent circuit with three parallel conductances and a
current source, I.t/. Here the capacitance current must be equal to the sum of the
ionic currents and the current source. As before, the capacitance current, per unit
area, is given by (1.6) and the ionic current, per unit area, is given by

iion D �gCl.VM �ECl/ � gK.VM �EK/ � gNa.VM �ENa/: (1.11)

The current source is not typically expressed as current per unit area, so we must
divide I.t/ by the total surface area of the neuron, A. It then follows that

cM
dVM

dt
D �gCl.VM �ECl/ � gK.VM � EK/ � gNa.VM � ENa/C I.t/=A: (1.12)

Note that we can rewrite this equation as

cM
dVM

dt
D � .VM �ER/

rM
C I.t/=A; (1.13)

where
ER D .gClECl C gKEK C gNaENa/rM

is the cell’s resting potential and

rM D 1

gCl C gK C gNa

is the specific membrane resistance.
For a passive membrane in which the conductances and currents are all constant,

VM will reach a steady state:

Vss D gClECl C gKEK C gNaENa C I=A

gCl C gk C gNa
:
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In the absence of the applied current, the steady-state potential is a weighted sum of
the equilibrium potentials of the three currents. This is similar to the GHK equation
(1.4), in which the contribution to the resting potential by each ion is weighted in
proportion to the permeability of the membrane to that particular ion. Note, however,
that in the equivalent circuit model, the equilibrium is a linear weighted sum of the
equilibrium potentials, whereas in the GHK equation, the sum is nonlinear.

We remark that membrane conductance and permeability are related concepts;
however, they are not the same. The permeability depends on the state of the mem-
brane, whereas conductance depends on both the state of the membrane and the
concentration of the ions. The permeability to KC, for example, may be high if
there are a large number of open KC channels. However, if the concentration of KC
ions is low on both sides of the membrane, then the KC conductance will be low.

1.5 The Membrane Time Constant

In this section, we consider how a passive, isopotential cell responds to an applied
current. This will help explain how each component of the electrical circuit con-
tributes to changes in the membrane potential. The cell is said to be passive if its
electrical properties do not change during signaling. Such a cell cannot generate
an action potential; however, it is important to understand how a cell’s passive, or
constant, properties influence changes in the membrane potential before consider-
ing active signaling. Moreover, many dendrites do not have gated channels, so their
behavior is influenced primarily by their passive properties. The cell is said to be
isopotential if the membrane potential is uniform at all points of the cell; that is,
the membrane potential depends only on time. To simplify the analysis, we will
consider a spherical cell with radius �.

Suppose this cell is injected with an applied current, I.t/, that is turned on at
t D 0 to some constant value, I0, and turned off at t D T . Here, we assume I0 > 0;
however, this is really not necessary. Note that for an isopotential cell, the injected
current distributes uniformly across the surface. It follows that for a spherical cell,
the current flowing across a unit area of the membrane is

IM.t/ D I.t/

4	�2
D

8̂
<
:̂

I0

4��2 if 0 < t < T

0 otherwise:

(1.14)

As before, suppose cM is the specific membrane capacitance, rM is the specific
membrane resistance, and ER is the cell’s resting potential. To simplify things, we
takeER D 0 so that VM measures the deviation of the membrane potential from rest.
From (1.13), the membrane potential satisfies the ordinary differential equation

cM
dVM

dt
D �VM

rM
C IM.t/: (1.15)
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Fig. 1.4 The change
of membrane potential in
response to a step of current.
The membrane potential is
shown with a solid line. The
dashed lines show the time
courses of the purely
capacitive and resistive
elements. The bottom panel
shows the time course of the
total membrane current, the
ionic current, and the
capacitive current

VM purely
capacitivepurely

resistive

ImRM

time

IM

Im

VM

Iion

Iion

Icap
Icap

IM

If the cell starts at rest, then the solution of this linear equation satisfies

VM.t/ D rMI0

4	�2

�
1 � e� t

�M

�
for 0 < t < T; (1.16)

where 
M � cMrM is the membrane time constant and

VM.t/ D VM.T /e
� t

�M for t > T: (1.17)

The solution is shown in Fig. 1.4. Once the current is turned on, the membrane
potential asymptotically approaches the steady-state value rMI0=.4	�

2/. The ap-
proach is exponential with the time constant 
M. The membrane time constant also
determines the rate at which the membrane potential decays back to rest after the
current is turned off. The steady-state membrane potential satisfies

I0

rM

4	�2
� I0RINP; (1.18)

where RINP is the input resistance of the cell. Note that if the input current changes
by �I , then the steady-state membrane potential changes by RINP�I ; that is, the
input resistance is the slope of the I–V curve obtained by plotting the steady-state
voltage against the injected current.

The initial rise in membrane potential is determined primarily by the membrane
capacitance. Initially, the voltage across the resistor and that across the capacitor
are both zero. From Ohm’s law, it follows that initially no current flows through the
resistor and all the current is due to the capacitor. Because of the capacitive current,
the potential across the capacitor, and hence the membrane potential, will become
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more positive. As VM increases, the membrane potential difference begins to drive
current across the membrane resistance, resulting in less current across the capacitor.
Eventually, the membrane potential reaches a value where all the membrane current
flows through the resistor. This value is given by VM D I0RINP.

Figure 1.4 also shows responses in which there are purely resistive or purely
capacitive elements. If there is no membrane capacitance, then VM satisfies

VM.t/ D rMIM.t/: (1.19)

That is, VM jumps to the steady-state potential, I0RINP, as soon as the injected cur-
rent is turned on and it jumps back to rest as soon as the current is turned off. If
there is only a capacitive element, then the membrane potential changes linearly as
long as there is an applied current.

1.6 The Cable Equation

We have, so far, considered the passive properties of an isopotential cell. This
analysis may be used to describe signaling within the cell body, which can be ap-
proximated by a sphere. However, it is clearly not appropriate for studying electrical
properties of the axon or dendrites. These are better approximated by cylinders that
are not isopotential. A subthreshold voltage signal that is initiated at one point along
the axon or dendrite will decrease in amplitude with distance from the point of initi-
ation. It is important to understand how the geometry of the cell affects the spread of
the signal. The signal may, for example, correspond to synaptic input from another
neuron. Understanding how geometry affects the spread of the signal will help deter-
mine whether the synaptic input will cause the cell to fire an action potential. Here,
we assume the membrane is passive, so the analysis is more applicable to dendrites
than to axons. However, as we shall describe later, the passive spread of current flow
helps determine the velocity of propagating action potentials in the axon.

We consider a cell that is shaped as a long cylinder, or cable, of radius a. We
assume the current flow is along a single spatial dimension, x, the distance along
the cable. In particular, the membrane potential depends only on the x variable,
not on the radial or angular components. The cable equation is a partial differential
equation that describes how the membrane potential VM.x; t/ depends on currents
entering, leaving, and flowing within the neuron. The equivalent circuit is shown in
Fig. 1.5. In what follows, we will assume Re D 0, so that the extracellular space is
isopotential. This assumption is justified if the cable is in a bath with large cross-
sectional area.

We first consider the axial current flowing along the neuron due to voltage gra-
dients. Note that the total resistance of the cytoplasm grows in proportion to the
length of the cable and is inversely proportional to the cross-sectional area of the
cable. The specific intracellular resistivity, which we denote as rL, is the constant of
proportionality. Hence, a cable of radius a and length �x has a total resistance of
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x

RL

Re

CMRM

Ilong

a
IM

Fig. 1.5 Equivalent circuit for a uniform passive cable. Ilong is the current along the inside of
the cable, IM is the current across the membrane, RL is the resistance of the cytoplasm, Re is the
resistance of the extracellular space, RM is the membrane resistance, and CM is the membrane
capacitance

RL D rL�x=.	a
2/. It follows from Ohm’s law that at any point x, the decrease in

VM with distance is equal to the current times the resistance. That is,

VM.x C�x; t/ � VM.x; t/ D �Ilong.x; t/RL D �Ilong.x; t/
�x

	a2
rL: (1.20)

There is a minus sign because of the convention that positive current is a flow of
positive charges from left to right. If voltage decreases with increasing x, then the
current is positive. In the limit �x ! 0,

Ilong.x; t/ D �	a
2

rL

@VM

@x
.x; t/: (1.21)

Let iion be the current per unit area due to ions flowing into and out of the cell.
Then the total ionic current that flows across a membrane of radius a and length�x
is given by Iion D .2	a�x/iion.

Recall that the rate of change of the membrane potential is determined by
the capacitance. The total capacitance of a membrane is equal to the specific
membrane capacitance cM multiplied by the total surface area of the membrane.
Hence, for a cable of radius a and length �x, the total capacitance is given by
CM D .2	a�x/cM and the amount of current needed to change the membrane
potential at a rate @VM=@t is

Icap.x; t/ D .2	a�x/cM
@VM

@t
: (1.22)

From Kirchhoff’s law, the change in intracellular axial current is equal to the
amount of current that flows across the membrane. Hence,

Icap.x; t/C Iion.x; t/ D �Ilong.x C�x; t/C Ilong.x; t/; (1.23)
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from which it follows that

.2	a�x/cM
@VM

@t
C .2	a�x/iion D 	a2

rL

@VM

@x
.x C�x; t/ � 	a2

rL

@VM

@x
.x; t/:

We divide both sides of this equation by 2	a�x and let�x ! 0 to obtain the cable
equation:

cM
@VM

@t
D a

2rL

@2VM

@x2
� iion: (1.24)

For a passive cable, in which the resting potential is assumed to be zero,

iion D VM.x; t/=rM; (1.25)

where rM is the specific membrane resistance. Then (1.24) becomes

cM
@VM

@t
D a

2rL

@2VM

@x2
� VM

rM
: (1.26)

We can rewrite this equation as


M
@VM

@t
D �2 @

2VM

@x2
� VM; (1.27)

where

� D
r
arM

2rL
and 
M D cMrM (1.28)

are the space or length constant and the membrane time constant, respectively. Note
that the space constant depends on the geometry of the cable, that is, the cable’s
diameter; however, the time constant does not.

Later, we shall give a detailed analysis of solutions to the cable equation and
properties of passive dendrites. For now, it is instructive to consider steady-state so-
lutions. Suppose, for example, we consider a semi-infinite cable (defined for x > 0)
and we inject a step of current, I0, at x D 0. As t ! 1, the solution VM.x; t/

approaches a steady-state solution Vss.x/ that does not depend on time. Setting
@VM
@t

D 0 in (1.27), we find that Vss satisfies

�2 d2Vss

dx2
� Vss D 0: (1.29)

To solve this equation, we need boundary conditions. Recall from (1.21) that

I0 D �	a
2

rL

@VM

@x
:
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It follows that Vss must satisfy the boundary condition

dVss

dx
.0/ D � rL

	a2
I0: (1.30)

The solution of (1.29) and (1.30) is

Vss.x/ D �rL

	a2
I0e�x=�: (1.31)

Note that the membrane potential decays exponentially. The distance at which
the potential has decayed to 1=e is the space constant �. Since the space constant
is proportional to the square root of the cable’s radius, we conclude that thicker
axons or dendrites have larger space constants than narrower processes. That is,
thicker processes transmit signals for greater distances. As we discuss later, this
is important because it influences the ability of the neuron to spatially summate
incoming synaptic potentials. Moreover, the electrotonic, or passive, conductance
plays an important role in the propagation of the action potential. Thicker cells with
a larger space constant are more easily excited and are able to generate faster action
potentials.

The input resistance is defined to be the steady-state membrane potential, evalu-
ated at x D 0, divided by the injected current. That is,

Rinp D Vss.0/=I0 D rL�

	a2
D 1

	a3=2

p
rMrL=2: (1.32)

Note that the input resistance of the cable varies with the �3=2 power of the cable
radius. Therefore, the input conductance is directly proportional to the 3=2 power of
the cable radius. The input resistance is important because it is something that can be
measured experimentally. Since it is also possible to measure the space constant �,
one can compute rM and rL from experimental data.

1.7 The Squid Action Potential

We have so far viewed the membrane as a passive cable. However, linear cables
cannot transmit information over long distances unless the cable has an enormous
diameter. For example, the squid axon is more than 5 cm long, has a diameter
of about a 0.5 mm, a resting membrane resistance of rM D 700 � cm2, and a
transmembrane resistance of rL D 30� cm: Thus, the space constant for the squid
axon is � D 5:4mm: This is an order of magnitude smaller than the length. If the
potential at one end of the axon is held at 120 mV above rest, then the potential at
the other end is about 10�V above the rest, a 10,000-fold decrement. For neural
signals to reach any distance, there must be another way to carry them so that they
do not degrade.
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Fig. 1.6 Equivalent circuit
underlying the
Hodgkin–Huxley equations

EK ENa

gL
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Nature has solved this problem by inserting voltage-gated channels into the
membranes of many cell types. These channels are proteins which selectively let
different ionic species into the cell. Furthermore, the permeability of the channels
depends on the local environment near the channel. In particular, for voltage-gated
channels, whether the channel is open or closed depends on the local potential near
the channel. It is the opening and closing of voltage-gated channels that is responsi-
ble for the generation of the action potential that propagates along the axon.

Hodgkin and Huxley (1952) were the first to provide a comprehensive, quanti-
tative description of the regenerative currents generating the action potential. The
choice of the squid axon was fortuitous since the electrical properties rely primarily
on NaC and KC ions. Consider the equivalent circuit shown in Fig. 1.6 and assume
the cell is isopotential. Then the membrane potential satisfies

cM
dV

dt
D �gNa.V �ENa/ � gK.V �EK/ � gL.V �EL/:

Here, we write V instead of VM and IL � gL.V � EL/ is called the leak current.
It corresponds to passive flow of ions through nongated channels. The leak conduc-
tance, gL, is constant. Since most nongated channels are permeable to KC ions, EL

is close to EK. The conductances gNa and gK may change with time since these cor-
respond to the opening and closing of NaC and KC channels, respectively. At rest,
gK is about 30-fold bigger than gNa, so the resting state is nearEK at about �65mV.
Suppose we could increase the conductance of gNa 100-fold, then the resting poten-
tial would be much closer to the Nernst potential of NaC, which is about C55mV.
Thus, the amplification of the potential, such as during an action potential, involves
changes in the relative conductances of the dominant ionic species. Hodgkin and
Huxley’s insight was that voltage-gated channels provide the substrate for this dy-
namic regulation of the conductances.

The basic mechanisms underlying action potentials are the following (Fig. 1.7).
At rest, most of the NaC channels are closed, so the membrane potential is deter-
mined primarily by the KC Nernst potential. If the cell is depolarized above some
threshold, then NaC channels open and this further depolarizes the cell. This allows
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Fig. 1.7 The action potential. During the upstroke, NaC channels open and the membrane po-
tential approaches the NaC Nernst potential. During the downstroke, NaC channels are closed,
KC channels are open, and the membrane potential approaches the KC Nernst potential

even more NaC channels to open, allowing more NaC ions to enter the cell and
forcing the cell toward the NaC Nernst potential. This is the upstroke of the ac-
tion potential. The NaC channel is transient, so even when they are depolarized,
the NaC channels eventually shut down. In the meantime, the depolarization opens
KC channels and KC ions exit the cell. This hyperpolarizes the cell as the mem-
brane potential moves toward the KC equilibrium potential. Until the voltage-gated
KC channels close up again, the membrane is refractory. During this time, pumps
exchange excess NaC ions inside the cell with excess KC ions outside the cell.

Only a very small change in the concentration of NaC ions is needed to generate
an action potential. From the exercises, we find that approximately 53 million NaC
ions must diffuse across the membrane to depolarize it from �60 to C50mV. This
influx of NaC ions represents only a 0.012% change in the internal NaC concentra-
tion, which is typically around 12 mM. Hence, changes in local charge separation,
not in concentration, are required for an action potential.

1.8 Voltage-Gated Channels

In the Hodgkin–Huxley model, each channel is viewed as a transmembrane protein
that forms a pore through which ions can diffuse down their concentration gradi-
ents. The pores have gates that can be either open or closed; the probability that a
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gate is open or closed depends on the membrane potential. The gate model can be
summarized by the diagram

C

˛.V /

•
ˇ.V /

O; (1.33)

where C and O correspond to the closed and open states, respectively, and ˛.V /
and ˇ.V / are the voltage-dependent rate constants at which a gate goes from the
closed to the open and from the open to the closed states, respectively. If we let m
be the fraction of open gates, then 1 � m is the fraction of closed gates, and, from
the law of mass action,

dm

dt
D ˛.V /.1 �m/� ˇ.V /m D .m1.V / �m/=
.V /; (1.34)

where

m1.V / D ˛.V /

˛.V /C ˇ.V /
and 
.V / D 1

˛.V /C ˇ.V /
: (1.35)

It is easy to solve this equation if V is constant. The solution starting at m.0/ is

m.t/ D m1.V /C .m.0/�m1.V //e�t=�.V /:

Note that the solution approaches the steady-state m1.V / at a rate determined by
the time constant 
.V /.

One must obtain expressions for the voltage-dependent rate constants ˛ and ˇ.
In the Hodgkin–Huxley model, these functions were derived by fitting the data.
Borg-Graham [17] and others have suggested a simple formulation based on thermo-
dynamics. The idea is that the probability of opening or closing a channel depends
exponentially on the potential. Thus,

˛.V / D A˛ exp.�B˛V / and ˇ.V / D Aˇ exp.�BˇV /: (1.36)

From this, we find that

m1.V / D 1

1C exp.�.V � Vh/=Vs/
;

where Vh and Vs are constants. We leave as an exercise the calculation of these
constants in terms of the constantsA andB . The time constant, 
.V /, will generally
be a skewed bell-shaped function of V: If Bˇ D �B˛ , then 
.V / is a hyperbolic
secant.
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1.9 Hodgkin–Huxley Model

We are now ready to derive the Hodgkin–Huxley model for the propagation of an
action potential along the squid’s giant axon. We view the axon as a cylinder of fixed
radius, a, so the membrane potential depends on the spatial variable x and time t .
Here, we assume there are voltage-gated KC and NaC channels and a leak current.
Then balancing currents, as in (1.23), we have

IL D Icap C Iion (1.37)

or, using (1.6) and (1.24),

a

2rL

@2VM

@x2
D cM

@VM

@t
C IK C INa C IL: (1.38)

If each ionic current is ohmic, then this can be written as

cM
@VM

@t
D a

2rL

@2VM

@x2
� gK.VM �EK/ � gNa.VM �ENa/� gL.VM � EL/: (1.39)

To complete the model, we need to describe how one computes the membrane con-
ductances gK; gNa, and gL. Note that the voltage-gated conductances gK and gNa

change with time during an action potential.
Hodgkin and Huxley used two experimental methods to separate the ionic cur-

rents and compute how the KC and NaC conductances depend on voltage. The first
was a simple feedback circuit called the voltage clamp that allows the experimenter
to hold the membrane potential at a constant or holding level VC. The voltage clamp
does so by injecting a current into the axon that is equal and opposite to the cur-
rent flowing through the voltage-gated channels. Electrical details can be found in
the book by Johnston and Wu [139]. Note that the voltage clamp separates the total
membrane current into its ionic and capacitive components. Recall that the capaci-
tive current satisfies Icap D CMdVM=dt. If the membrane potential is fixed at some
constant, then the capacitive current must be zero. Moreover, the total current can be
made spatially uniform by inserting a highly conductive axial wire inside the fiber;

the axon is then said to be space-clamped. In this case, @2VM
@x2 D 0: It then follows

that any changes in current must be due to either the leak or the opening and closing
of voltage-gated membrane channels.

We first consider how the voltage clamp can be used to determine the leak
conductance, gL. Note that most of the voltage-gated channels are closed at rest.
Moreover, if we hyperpolarize the cell, then we may assume all of the voltage-gated
channels are closed. It follows that if the membrane potential is clamped at some
sufficiently strong hyperpolarized level, then the total current is given by the leak;
that is,

IM � gL.VC �EL/:

From this equation, we can easily solve for gL.
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Fig. 1.8 Numerically
computed voltage-clamp
experiment. The membrane
potential is stepped from rest
to 0 mV. This results in an
inward current followed by an
outward current. The separate
KC and NaC currents are
also shown

0 1 2 3 4 5 6
time  (msec)

IK
IM

INa

VC = 0 mV

Figure 1.8 shows the results of a (numerically computed) voltage-clamp experi-
ment when the membrane potential is clamped at 0 mV. Note that there is an inward
current followed by an outward current. This result suggests the depolarizing volt-
age step turns on two voltage-gated channels. The inward current is due to the influx
of NaC ions, whereas the outward current is due to the outward flow of KC ions. It
is not clear, however, how these two separate ions contribute to the total membrane
current. For this it is necessary to isolate the two voltage-gated currents.

Hodgkin and Huxley were able to isolate the KC current by replacing NaC ions
in the external bathing solution with a larger, impermeant cation. This eliminated
the inward NaC current. Now there are dozens of compounds that selectively block
different currents, many derived from natural toxins. (For example, tetrodotoxin,
which blocks NaC channels, comes from the Pacific puffer fish, a tasty, if slightly
dangerous, Japanese delicacy called fugu.) Once NaC has been removed, the voltage
clamp can be used to determine how IK depends on the membrane potential. That is,
one holds the membrane potential at various levels and determines the time course of
the total membrane current IM. If NaC is removed, then the KC current is computed
by subtracting the leak current from IM.

It is also now possible to block KC channels using the drug tetraethylammonium.
This was not available to Hodgkin and Huxley; however, if IK and IL are known,
then one computes INa simply by subtracting IK and IL from IM. Once these cur-
rents have been determined, we can calculate the IK and INa conductances using
Ohm’s law. That is,

gK.t/ D IK.t/

.VM � EK/
and gNa.t/ D INa.t/

.VM � ENa/
: (1.40)

Figure 1.9 shows the IK and INa conductances for different levels of the holding
potential. Note than gNa turns on more rapidly that gK. Moreover, the NaC channels
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Fig. 1.9 Numerically computed voltage-clamp experiment. The membrane potential is stepped to
different values and the resulting KC and NaC conductances are computed

begin to close before the depolarization is turned off, whereas the KC channels
remain open as long as the membrane is depolarized. This suggests the NaC channel
can exist in three states: resting, activated, and inactivated. When the cell is depo-
larized, the NaC channels switch from the resting (closed) to the activated (open)
state. If the depolarization is maintained, then the channel switches to the inactivated
(closed) state.

A physical interpretation of the NaC channel is shown in Fig. 1.10. There are
two gates in the NaC channel: a fast one (the activation gate), represented by the
line, and a slow one (the inactivation gate), represented by the ball. Both gates must
be open for the channel to conduct NaC ions. At rest, the activation gate is closed
and the inactivation gate is open. When the membrane is depolarized, the activation
gate opens, which allows NaC into the cell. The inactivation gate (ball) closes at
the higher potential, so the flow of NaC is transient. Hodgkin and Huxley used a
more complicated voltage-clamp protocol, first stepping to a fixed voltage and then
applying brief voltage steps to probe the fast activation and slow inactivation gates.
Details can be found in [144].

Using the voltage-clamp data, Hodgkin and Huxley derived expressions for the
KC and NaC conductances. They proposed that

gK D NgKn
4 and gNa D NgNam

3h; (1.41)

where NgK and NgNa are maximum conductances and n, m, and h are gating variables
that take values between 0 and 1. Hence, n4 represents the probability that a KC



1.9 Hodgkin–Huxley Model 23

Fig. 1.10 The
Hodgkin–Huxley NaC

channel. (a–c) Voltage-clamp
dynamics. (d) Physical model
of the channel. If the voltage
step is small (d, top) then the
NaC channel’s activation gate
(line) is closed but the
inactivation gate (ball) is
open. At intermediate steps
(d, middle), both gates are
partially open. For large steps
(d, bottom), the activation
gate is open and the
inactivation gate is closed

Vrest
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channel is open: the KC channel has four independent components, all of which
are identical. The probability that the sodium activation gate is open is m3 and the
probability that the sodium inactivation gate is open is h. Each of the gating variables
satisfies a first-order differential equation of the form (1.34). That is, they satisfy
equations of the form

dn

dt
D ˛n.V /.1 � n/ � ˇn.V /n D .n1.V / � n/=
n.V /;

dm

dt
D ˛m.V /.1 �m/� ˇm.V /m D .m1.V /�m/=
m.V /;

dh

dt
D ˛h.V /.1� h/ � ˇh.V /h D .h1.V / � h/=
h.V /:

If X D n, m, or h, then

X1.V / D ˛X .V /

˛X .V /C ˇX .V /
and 
X .V / D 1

˛X .V /C ˇX .V /
: (1.42)

To match the data, Hodgkin and Huxley chose the following parameters and gat-
ing functions: NgNa D 120mS=cm3, NgK D 36mS=cm3, NgL D 0:3mS=cm3,
ENa D 50mV; EK D �77mV; EL D �54:4mV;

˛n.V / D 0:01.V C 55/=.1� exp.�.V C 55/=10//;

ˇn.V / D 0:125 exp.�.V C 65/=80/;

˛m.V / D 0:1.V C 40/=.1� exp.�.V C 40/=10//;
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ˇm.V / D 4 exp.�.V C 65/=18/;

˛h.V / D 0:07 exp.�.V C 65/=20/;

ˇh.V / D 1=.1C exp.�.V C 35/=10//:

In Fig. 1.11, we plot the activation curves n1.V /;m1.V /, and h1.V / along
with 
n.V /; 
m.V /, and 
h.V /. Note that n1 and m1 are increasing functions that
approach 0 for hyperpolarizing currents and approach 1 for depolarizing currents.
Hence, n and m become activated when the membrane is depolarized. On the other
hand, h1.V / is a decreasing function, so the NaC channels inactivate when the
membrane is depolarized. It is also important to note that 
m.V / is considerably
smaller than 
n or 
h. Hence, NaC channels activate much faster than they inactivate
or KC channels open. In Fig. 1.12, we show the response of m, h, and n to a step in
voltage.
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Fig. 1.11 Hodgkin–Huxley functions. Left the steady-state opening of the gates and right the time
constants
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Fig. 1.12 Response of the activation and inactivation variables m, h, and n to a step in voltage
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1.10 The Action Potential Revisited

In summary, the Hodgkin–Huxley model is a system of four differential equations;
there is one equation for the membrane potential and three equations for channel gat-
ing variables. In the case of a space-clamped squid axon, we write these equations as

cM
dV

dt
D � NgNam

3h.V �ENa/� NgKn
4.V � EK/� NgL.V �EL/;

dn

dt
D 
Œ˛n.V /.1� n/ � ˇn.V /n�;

dm

dt
D 
Œ˛m.V /.1 �m/� ˇm.V /m�;

dh

dt
D 
Œ˛h.V /.1 � h/� ˇh.V /h�: (1.43)

Here, we added a parameter 
; this is the temperature factor. It is important to real-
ize that the temperature at which an experiment is done can be very important. Since
channels are stochastic in nature, they are sensitive to the temperature, so the rates
of switching states depend exponentially on the temperature. Higher temperatures
cause faster switching. Thus, there is a factor


 D Q
.T �Tbase/=10
10 : (1.44)

Q10 is the ratio of the rates for an increase in temperature of 10ıC. For the squid
giant axon, Tbase D 6:3ıC and Q10 D 3:

Figure 1.13 shows solutions of these equations in response to different levels
of steps in currents. Note that there is “all-or-none” behavior: When the applied
current is below some threshold, the membrane potential returns quickly to the rest;
when the current is above some threshold, there is an action potential. If the applied
current is sufficiently large and held for a sufficiently long time, then the model
generates a periodic response.

0 10 20 30 40

−60

−40

−20

0

20

40

time (msec)

V (mV)

0 50 100 150

−80

−60

−40

−20

0

20

40

time (msec)

V (mV)

Fig. 1.13 Responses of the Hodgkin–Huxley model to applied currents. Left transient responses
showing “all-or-none” behavior and right sustained periodic response
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Fig. 1.14 Solution of the Hodgkin–Huxley equations showing an action potential. Also shown are
the NaC and KC conductances

Figure 1.14 shows an action potential along with plots of the NaC and KC
conductances, gNa and gK. Here, we start with the cell at rest and then depolar-
ize the cell by 10 mV at t D 0. The cell then generates a single action potential. In
Sect. 1.8, we described the events underlying the action potential in terms of the in-
ward and outward flow of NaC and KC ions. Here, we give a more “mathematical”
explanation in terms of the behavior of the dependent variables in the differential
equations.

When we depolarize the cell, we change the values of the activation curves:
n1.V / and m1.V / increase, whereas h1.V / decreases. Since n, m, and h tend
toward their activation curves, it follows that n and m initially increase, whereas h
decreases. That is, KC channels open, whereas NaC channels both activate and in-
activate. However, 
m is much smaller than both 
h and 
n. It follows that the NaC
channels activate much faster than they inactivate or KC channels open. Therefore,
the NaC conductance, gNa D NgNam

3h, increases faster than gK D NgKn
4.

The increase in the NaC conductance leads to a large increase in the NaC current,
INa D gNa.V � ENa/. As long as the cell is near rest, the driving force V � ENa

is large (recall that ENa � C55 mV). Hence, the NaC current will dominate the
equation for the membrane potential and V will increase toward the NaC Nernst
potential. As V increases, m1.V / increases further, leading to further increase in
NaC activation.

As V increases toward ENa, NaC channels inactivate. This is because h !
h1.V / � 0. Moreover, the NaC driving force V � ENa decreases. For both rea-
sons, the NaC current turns off. Meanwhile, the KC channel activates because
n ! n1.V / � 1. Moreover, the KC driving force V � EK becomes very large.
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Fig. 1.15 Mechanisms underlying the action potential

It follows that eventually, the KC current dominates and the membrane potential
must fall back toward the KC Nernst potential. This corresponds to the downstroke
of the action potential.

After the action potential (Fig. 1.15), the cell is hyperpolarized with m1 � 0;

n1 � 0, and h1 � 1. After some time, m, n, and h approach their steady-state
values and the cell returns to rest.
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1.12 Exercises

1. Suppose the external potassium in a mammalian cell is increased by a factor of
10. What is the new value of EK?

2. At 10ıC a cell contains 80 mM sodium inside and has only 100 mM sodium
outside. What is the equilibrium potential for sodium?

3. Compute the resting potential for the mammalian cell using the same perme-
abilities as were used for the squid axon and the ion concentrations listed in
Table 1.1.

4. Derive the Nernst equation (1.2) from the Nernst–Planck equation by setting the
current to zero and integrating with respect to x across the membrane.

5. Compute the calcium equilibrium potential for a mammalian cell assuming that
the extracellular concentration is 5 mM and the intracellular concentration is
10�4 mM.

6. Complete the derivation the constant-field equation (1.3) from the linear Nernst–
Planck equation.

7. Derive the GHK equation (1.4) from the constant-field equation.
8. Consider the GHK equation and plot the I–V relation for different values of

the inside and outside concentrations. Show that for ŒC �out > ŒC �in (respectively
ŒC �out < ŒC �in) the I–V plot is concave down (respectively up).

9. Consider a passive, spherical cell with radius 0:003 cm2, a resting membrane
potential of �65mV, a membrane capacitance of 1�F=cm2, and a membrane
resistance of RM D 700� cm2. Suppose the cell is injected with an applied
current of 5 nA/�m2 for 2 s and then the current is turned off. What is the mem-
brane potential at t D 1; t D 2, and t D 3?

10. Suppose a passive axon has a diameter of 0.5 mm, a resting membrane resis-
tance of RM D 700� cm2, and a transmembrane resistance of RL D 30� cm.
Compute the space constant. If the axon is 5 cm long and one end of the axon is
held at 120 mV above rest, then what is the potential at the other end?

11. (Johnston and Wu [139], page 12) The membrane capacitance of a typical cell
is 1�F=cm2 and the concentration of ions inside and outside the cell is about
0.5 M. Calculate the fraction of uncompensated ions on each side of the mem-
brane required to produce 100 mV in a spherical cell with a radius of 25�m.

12. Numerically solve the Hodgkin–Huxley equations. Start the system at rest and,
at some later time, inject an applied current to generate an action potential. Plot
the time courses of the NaC and KC conductances, as well as the gating vari-
ablesm, h and n.

13. Numerically perform space-clamp experiments. That is, start the Hodgkin–
Huxley model at rest and, at some later time, change the membrane potential
and keep it as some “clamped” level. Plot the NaC and KC conductances for
when the membrane potential is stepped to different values.



Chapter 2
Dendrites

We now present mathematical theories for describing dendrites. Dendrites are very
important for many reasons. Indeed, the majority of the total membrane area of
many neurons is occupied by the dendritic tree. Dendrites enable neurons to connect
to thousands of other cells, far more than would be possible with just a soma, as
there is a huge membrane area to make connections. Dendrites may direct many
subthreshold postsynaptic potentials toward the soma, which summates these inputs
and determines if the neuron will fire an action potential. In addition to the treelike
structure of dendrites, many dendrites have additional fine structures at the ends
of the branches called spines. During development, animals that are raised in rich
sensory environments have more extensive dendritic trees and more spines.

Here, we will mainly discuss classical models for dendritic structure, activity,
and function. There has been tremendous progress recently in understanding the role
dendrites play in, for example, learning and neuronal computations, and the classical
view of dendrites is changing. Dendrites were originally thought, for example, to be
passive, in which the conductances and currents are constant; however, it is now
recognized that dendrites may have active voltage-gated channels and these may
greatly influence the firing properties of the neuron and how the neuron responds
to synaptic inputs. At the end of this chapter, we will briefly describe more recent
developments in understanding dendritic function.

2.1 Multiple Compartments

A very useful way to treat complicated dendritic structures is the compartmental ap-
proach. Here, one divides the dendritic tree into small segments or compartments
that are all linked together. Examples are shown in Fig. 2.1. Each compartment
is assumed to be isopotential and spatially uniform in its properties. Differences
in voltage and nonuniformity in membrane properties, including diameter, occur
between compartments rather than within them.

As a simple example, consider a two-compartment model in which each compart-
ment is viewed as an isopotential cylinder with radius ai and lengthLi . Let Vi be the
membrane potential of the i th compartment and let ci and rMi be the corresponding

G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neuroscience,
Interdisciplinary Applied Mathematics 35, DOI 10.1007/978-0-387-87708-2 2,
c� Springer Science+Business Media, LLC 2010
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Fig. 2.1 (a) Branched
dendrite converted to a series
of cylinders for modeling.
(b) Simple
three-compartment model

a

b

2

3

1

specific membrane capacitance and specific membrane resistivity, respectively. We
assume each compartment has an electrode current and the total electrode current is
given by I i

electrode. Finally, we assume the intracellular, or longitudinal, resistivity is
given by rL.

Now the capacitive and ionic currents for each compartment must be balanced
by the longitudinal and electrode currents. That is,

i icap C i iion D i ilong C i ielectrode; (2.1)

where i icap and i iion are the capacitive and ionic currents per unit area of membrane
for compartment i . As before,

i icap D ci

dVi

dt
and i iion D Vi

rMi

(2.2)

if we assume the resting potential is 0. To compute i ilong, we need to determine the
total axial resistance. Note that the total resistance between the centers of the two
compartments is simply the sum of the two resistances of the half-cylinders that
separate the compartment centers. That is, the total resistance is given by

Rlong D rLL1

2�a2
1

C rLL2

2�a2
2

: (2.3)

Using Ohm’s law, we can write the expressions for the current from compartment i
to compartment j as

i1long D g1;2.V2 � V1/ and i2long D g2;1.V1 � V2/: (2.4)



2.1 Multiple Compartments 31

The coupling terms g1;2 and g2;1 are obtained by inverting (2.3) and dividing by the
surface area of the compartment of interest. That is,

g1;2 D a1a
2
2

rLL1.a
2
2L1 C a2

1L2/

and

g2;1 D a2a
2
1

rLL1.a
2
2L1 C a2

1L2/
:

Finally, to compute i ielectrode, we divide the total electrode currents by the surface
areas of the compartments. That is,

i ielectrode D I i
electrode

Ai

;

where Ai D 2�aiLi is the surface area of compartment i .
Putting this all together, we find that the equations for two connected cylin-

ders are

c1

dV1

dt
C V1

rM1

D g1;2.V2 � V1/C I 1
electrode

A1

;

c2

dV2

dt
C V2

rM2

D g2;1.V1 � V2/C I 2
electrode

A2

: (2.5)

If instead of using conductances, gi;j , we use r1 D 1=g1;2 and r2 D 1=g2;1 then
we can express this system as

c1

dV1

dt
C V1

rM1

D V2 � V1

r1
C i1;

c2

dV2

dt
C V2

rM2

D V1 � V2

r2
C i2; (2.6)

where ii D I i
electrode=Ai .

We can now explore the effects of two compartments on the input resistance
of the “cell.” Suppose we inject current into cell 1 only. Moreover, each cylinder
is identical, with the same length and radius. Then, r1 D r2 � r . What is the
input resistance due to the coupling? To find this, we must compute the steady-state
potential due to the coupling. Without loss in generality, define rM D rM1 D rM2:

A simple bit of algebra shows that

V1=i1 D rM.r C rM/

r C 2rM
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and thus the ratio of the coupled to the uncoupled input resistance is

Rinput;coupled

Rinput;uncoupled
D 1 � rM

r C 2rM
I

that is, the input resistance decreases. To get the same increment in potential, the
current required for the coupled system is more than that required for the uncoupled
system because some current is drained away by the second compartment.

In a similar way, we can derive a compartmental model for a general treelike
structure. A general algorithm for computing the correct equations is

� For each cylinder, j , with radius and length aj and Lj in micrometers,
compute the surface area, Aj D 2�ajLj , and the axial resistance factor,
Qj D Lj =.�a

2
j /:

� The membrane capacitance is Cj D cjAj � 10�8 and the membrane resistance
is Rj D .rMj =Aj / � 108.

� The coupling resistance between compartments j and k is Rjk D rL
2
.Qj C

Qk/ � 104.
� The equations are then

Cj

dVj

dt
D � Vj

Rj

C
X

k connected j

Vk � Vj

Rjk

C Ij :

The factors of 10˙8 and 104 are the conversion from micrometers to centimeters.
For example, consider a two-compartment model with (1) compartment 1 having a
length of 200�m and radius of 30�m and (2) compartment 2 having a length of
20�m and radius of 20�m. Then, R1 D 2:65 � 107�; C1 D 3:77 � 10�10 F,
R2 D 3:98 � 108�; C2 D 2:52 � 10�11 F, and Rlong D 4:34 � 104�: Thus,

10
dV1

dt
D �V1 C 611.V2 � V1/; 10

dV2

dt
D �V2 C 9;181.V2 � V1/;

where time is in milliseconds and the coupling coefficients are dimensionless. Note
how the ratio of the coupling strengths is the same as the reciprocal of the area ratios.
The bigger compartment has a much greater effect on the smaller compartment than
vice versa.

We also remark that the standard units used in most compartmental models are
microfarads per square centimeter, millisiemens per square centimeter, and mi-
croamperes per square centimeter for the capacitance, conductance, and applied
current, respectively. Experimentalists do not generally know the current density,
but only the total current injected. Typical currents injected into a cell are of the
order of less than 1 nA.

To generate arbitrary compartmental models, one needs only to compute the
length, diameter, and the connectivity of the cylinders that make up the dendritic
tree. The program NEURON [33] enables an experimentalist to input a digitized
picture of a neuron and the program will automatically produce a compartmental
model of the neuron by linking together many cylinders.
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2.2 The Cable Equation

Mathematically, dendrites and axons are regarded as continuous media rather than a
series of compartments. Previously, we derived the cable equation for a simple cable
in which the radius along the cable was assumed to be constant. Here we derive the
cable equation for more general geometries. This is done by considering the limit as
the number of compartments in an approximation of it tends to infinity.

Suppose the cable is defined on the interval .0; `/ with a circular cross-section
and diameter d.x/. We break the cable into n pieces and define xj D jh where
h D `=n: Each piece has a surface area Aj D �djh where dj D d.xj /, and
crossectional area, �d 2

j =4: Let cM and rM denote the specific membrane capacitance
and resistance, and let rL be the longitudinal resistance. Then, neglecting the end
points, the voltage satisfies:

cMAj

dVj

dt
D � Vj

rM=Aj

C Vj C1 � Vj

4rLh=.�d
2
j C1/

C Vj �1 � Vj

4rLh=.�d
2
j /
:

Note that we use the larger diameter for the transmembrane resistance; in simula-
tions, the average of the two would be preferred. Dividing by h the coupling term
simplifies to:

�

h

 
d 2

j C1.Vj C1 � Vj /

4rLh
� d 2

j .Vj � Vj �1/

4rLh

!
:

As h ! 0, this goes to the diffusion operator:

�

4rL

@

@x

�
d 2.x/

@V

@x

�
:

Thus, (dividing by �d.x/ the cable equation has the form:

cM
@V

@t
D � V

rM
C 1

4rLd.x/

@

@x

�
d 2.x/

@V

@x

�
: (2.7)

We remark that the term
�d 2

j .Vj �1 � Vj /

4rLh

has dimensions of current and in the limit as h ! 0 is called the longitudinal
current:

IL D ��d
2.x/

4rL

@V

@x
: (2.8)

If one is interested only in the passive cable and d.x/ D d is constant, then it is
convenient to multiply both sides by rM obtaining the linear cable equation:

�
@V

@t
D �V C �2 @

2V

@x2
(2.9)
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where

� D
s
drM

4rL
(2.10)

is the space constant. Since � depends on the diameter of the cable, this pa-
rameter depends on the geometry of the cable. The quantity � D rMcM is the
time constant and is independent of geometry. For example, if cM D 1�F=cm2,
rM D 20;000� cm2, rL D 100� cm; and the diameter of the cable is 2�m, then
� D 20ms and � D 1mm.

2.3 The Infinite Cable

We first consider the infinite cable, so �1 < x < 1, with some applied current:

�
@V

@t
C V.x; t/ � �2 @

2V

@x2
D rMI.x; t/: (2.11)

The current, I.x; t/ has units of microamperes per square centimeter. Additionally,
we also must provide an initial voltage distribution, V.x; 0/ D V0.x/: We will
solve this using Fourier transforms and then write the solution in terms of a Green
function. Let

OV .k; t/ D
Z 1

�1
e�ikxV.x; t/dx;

OV0.k/ D
Z 1

�1
e�ikxV0.x/dx;

OI .k; t/ D
Z 1

�1
e�ikxI.x; t/dx

denote the Fourier transforms of V; V0; and I . Then, OV satisfies the differential
equation

d OV
dt

C .1C �2k2/ OV =� D rM OI=�;
OV .0/ D OV0;

where we have dropped the k dependence for simplicity. This is a linear first-order
ordinary differential equation, so we can write the solution

OV .k; t/ D e�.1C�2k2/t=� OV0.k/C .rM=�/

Z t

0

e�.1C�2k2/
.t�s/

� OI .k; s/ds:
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Recalling that the inverse Fourier transform is

V.x; t/ D 1

2�

Z 1

�1
eikx OV .k; t/dk;

we find that V.x; t/ is given by

V.x; t/ D
Z 1

�1
G.x � y; t/V0.y/dy C rM

�

Z t

0

Z 1

�1
G.x � y; t � s/I.y; s/dy ds;

where

G.x; t/ D 1p
4��2t=�

e�t=� e�x2=.4�2t=�/: (2.12)

Note that G.x; t/ has dimensions of ��1.
Suppose V0.x/ D 0 (that is, the membrane is at rest) and at t D 0, the membrane

is perturbed by a delta function in space and time. That is, I.x; t/ D I0ı.x/ı.t/:

Then,

V.x; t/ D rMI0

��
p
4�t=�

exp

�
� �x2

4�2t

�
exp

�
� t
�

�
: (2.13)

In the exercises you are asked to analyze this. One interesting point is that at each
spatial location x, the function V.x; t/ reaches its maximum at t�.x/: You can ob-
tain this expression using calculus and show that for x large, t�.x/ � �x=2�; that
is, the voltage is a rapidly decaying “wave.”

For another example, consider an infinite cable with a step of constant applied
current at a single point: I.x; t/ D I0ı.x/: Plugging this into (2.12), we find that

V.x; t/ D rMI0�

4

�
e�.x=�/erfc

�
x

p
�

2�
p
t

�p
t=�

�

�e.x=�/erfc

�
x

p
�

2�
p
t

Cp
t=�

��
; (2.14)

where

erfc.x/ D 2p
�

Z 1

x

e�y2

dy:

Note that erfc.0/ D 1, erfc.1/ D 0, and erfc.�1/ D 2. If we let t ! 1 in (2.15),
then V.x; t/ approaches the steady-state solution:

Vss.x/ D rMI0

4�
e�jxj=�:

Often a cable is described in terms of its electrotonic length, which is L D `=�,
where ` is the physical length and � is the space constant.
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2.4 Finite and Semi-infinite Cables

For the infinite cable, the only physically reasonable boundary condition is that
V.x/ ! 0 as jxj ! 1: However, for the finite and semi-infinite cables, there are
several interesting boundary conditions that are often used:

� Sealed end, where no current can pass and so the longitudinal current IL D 0. It
then follows from (2.8) that @V

@x
.0/ D 0.

� Current injected at one end, where a current of magnitude I.t/ is injected at, say,
the end x D 0. In this case, @V

@x
.0/ D 4rL

�d 2 I.t/.
� Voltage clamp, in which the voltage is clamped to some fixed level, so V.0/ D Vc,

a constant.
� Short circuit or open end, where the voltage is clamped to 0.
� Lumped soma, where we regard the soma as a single compartment attached to the

nerve cable. Suppose the soma has total resistance Rs and capacitance Cs. Then,
the boundary condition at x D 0 is

V.0; t/

Rs
C CsVt .0; t/ � �d 2

4rL
Vx.0; t/ D 0:

Note that the general steady-state equation 0 D �V C �2Vxx has solutions of
the equivalent forms:

V.x/ D A1e�x=� CA2ex=�;

V .x/ D B1 cosh..l � x/=�/C B2 sinh..l � x/=�/;

V .x/ D C1 cosh.x=�/C C2 sinh.x=�/:

The constants are determined from the boundary conditions. First consider the semi-
infinite cable. This has a solution of the form V.x/ D A exp.�x=�/. Suppose we
inject current I0 into the end of the cable. Recall that the longitudinal current is
I0 D �.�d 2=4rL/dV=dx. Thus, we find that

A D 4�I0rL

�d 2
:

Recall that the input resistance, Rinp, of a cable is the ratio of the steady-state
potential divided by the current injected. Thus, for the semi-infinite cable,

Rinp D V.0/=I.0/ D 4�rL

�d 2
D 2

p
rMrL

�d 3=2
;

and the input conductance is given by

Ginp D 1=Rinp D �d 3=2

2
p
rMrL

:
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For finite cables, it is convenient to use dimensionless space, X D x=�, and the
electrotonic length,L D `=�. Assume the voltage atX D 0 is V0. Then, the general
solution of the steady-state equation is

V.X/ D V0

cosh.L �X/C BL sinh.L �X/
coshLC BL sinhL

;

where BL is an arbitrary constant. This general solution is equivalent to asserting
that the boundary condition at X D 0 is V0 and that at X D L

BLV.L/C dV

dX
.L/ D 0:

The free parameter, BL, is the ratio of the terminal conductance for the cable, GL,
to that of the semi-infinite cable, Ginp: That is, BL D GL=Ginp:

For example, if we want the sealed-end condition at X D L, we take BL D 0 so
that

V.X/ D V0

cosh.L � X/

coshL
:

If we want the open-end condition, we take BL D 1 so that

V.X/ D V0

sinh.L � X/

sinhL
:

If we choose BL D 1, then
V.X/ D V0e�X ;

which is precisely the solution for the semi-infinite cable.
From these equations for the membrane potential, we can compute the input

resistance and input conductance of a finite-length cable. For example, consider
the sealed-end condition at X D L. Suppose a current, I0, is injected into the other
end at X D 0. Then, the input resistance is given by

Rinp D V.0/=I0 D V0=I0:

Now,

I0 D � 1

�rL

@V

@X
D V0

�rL

sinh.L � X/

cosh.L/
:

It follows that

I0 D V0

�rL
tanh.L/ at X D 0:

Hence,

Rinp D �rL

tanh.L/
and Ginp D tanh.L/

�rL
:
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2.5 Branching and Equivalent Cylinders

The infinite cable and the finite cable are simple idealizations of the multibranched
structure of true neurons. Here, we briefly look at branch points and describe the Rall
model for dendrites. Figure 2.2 shows a simple branched dendritic structure. Con-
sider the cable with diameter d0, length `0, and space constant �0 which branches at
x D x1 into two semi-infinite cables with diameters d1 and d2 and space constants
�1 and �2: The cable equation for such a structure can be solved on the individual
segments coupled with continuity of the voltages and the conservation of current.
Under certain constraints on the geometry, we can attain a stronger result than con-
tinuity of the voltage and its derivative that is important physically and allows us to
significantly simplify the problem. With these constraints on the geometry, we will
show that having the branch point at x1 is exactly equivalent to extending branch d0

to infinity.
Conservation of current implies that the current leaving branch d0 equals the sum

of the currents entering branches d1 and d2. That is,

�d 2
0

4rL
V 0

0.x1/ D �d 2
1

4rL
V 0

1.x1/C �d 2
2

4rL
V 0

2.x1/: (2.15)

Here, we assume the material properties of the cables are the same; only their ge-
ometry differs. Now, if we let V0 � V0.x1/ D V1.x1/ D V2.x1/, then

V1.x/ D V0e�.x�x1/=�1 and V2.x/ D V0e�.x�x1/=�2

for x > x1. Moreover, if Veq.x/ is the membrane potential of the cable obtained by
extending branch d0 to infinity, then

Veq.x/ D V0e�.x�x1/=�0 :

Plugging these into (2.15), and recalling that �j / p
dj , we find that we can col-

lapse the three cables 0, 1, and 2 into a single semi-infinite cable with diameter d0 if

d
3
2

0 D d
3
2

1 C d
3
2

2 : (2.16)

Rall was the first to recognize that if (2.16) is satisfied and the material properties
of the cables are the same, then the three cables 0, 1, and 2 can be collapsed into an
equivalent cylinder. For a complex structure, starting at the ends, we can recursively

Fig. 2.2 A simple dendritic
tree

d1

d2

d0
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simplify the model to a single semi-infinite cylinder. In the previous example, we
considered only two branches at the branch point; however, we could have had any
number of branches at each branch point as long as

d
3
2

P D
X

d
3
2

D ;

where dP is the diameter of the parent dendrite and dD are the diameters of the
daughter dendrites. If this condition holds at every branch point and the material
properties of the cables are the same, then the entire dendritic tree can be reduced to
an equivalent semi-infinite cable.

We have so far assumed the branches attached to the final branch point extend
to infinity; that is, they correspond to semi-infinite cables. A similar analysis holds
if we assume all of the branches have finite lengths. Here, we must assume all den-
drites end at the same electrotonic length. Recall that the electrotonic length of a
cable of length ` and space constant � is `=�. Suppose, for example, cables 1 and
2 shown in Fig. 2.2 have lengths `1 and `2. If we assume `1=�1 D `2=�2, then
we can collapse the three cables 0, 1, and 2 into a single cable of diameter d0 and
electrotonic length equal to `0=�0 C `1=�1 D `0=�0 C `2=�2:

Example:

In Fig. 2.3, we depict a dendritic tree consisting of several branches with their
lengths and diameters in micrometers. Can this dendritic tree be reduced to an equiv-
alent cylinder? What is the electrotonic length? What is the input conductance?
Assume sealed ends for all terminal dendrites and assume rM D 2;000� cm2 and
that rL D 60� cm:

Fig. 2.3 Example of the Rall
reduction to an equivalent
cylinder

20

3.3

10

10
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2.0824
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f
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Answer:

d
3=2
a C d

3=2

b
C d

3=2
c D 1C 1C 1 D 3 D 2:083=2 D d

3=2

d
;

d
3=2

d
C d

3=2
e D 3C 3 D 6 D 3:33=2 D d

3=2

f

so the 3=2 rule is obeyed. Clearly a, b, and c are all the same electrotonic length.
The space constants are

�a D �b D �c D p
darM=4rL D 289�m;

�d D �e D p
derM=4rL D 416�m;

�f D p
df rM=4rL D 524�m:

Thus, the total electrotonic length of a, b, and c with d is

Labcd D `a

�a

C `d

�d

D 10

289
C 10

416
D 0:0586;

and

Le D `e

�e

D 24

416
D 0:0576;

which are close enough to be considered equal (2% difference). Thus, we can com-
bine the whole thing into an equivalent cylinder. The total electrotonic length is
then

L D Lf C Le D Lf C Labcd D `f

�f

CLe D 0:096 � 0:1:

Finally, the input conductance is

Ginp D G1 tanhL D �d 3=2

2
p
rLrM

tanhL;

which is

Ginp D tanh.0:1/.3:14159/.3:3� 10�4/3=2

2
p
2000 � 60 D 2:7 � 10�9 S:

2.6 An Isolated Junction

The equivalent cylinder is a very useful method for reducing the analysis of complex
dendritic trees to a simpler model. However, there are limitations. For example,
one must assume the so-called 3=2 law (see (2.16)) is satisfied. Another difficulty
is related to the problem of determining the response of the dendritic tree to an
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injected current. Consider, for example, the simple dendritic tree shown in Fig. 2.2.
If the injection site is at d0, then the principal initial cylinder, then the equivalent
cylinder will determine the membrane potential responses at this and the daughter
dendrites. However, if the injection site is along the daughter dendrites, then to use
the equivalent circuit, one must assume the current is spread out evenly along all of
the daughter dendrites that emerge from the same junction point. One cannot use the
equivalent circuit if only one of the daughter dendrites receives input and the others
receive no input.

In this section, we consider a single isolated junction of three semi-infinite ca-
bles with a point source of current injection. We do not assume the 3=2 law holds.
We note that a considerably more general analysis for dendritic trees with complex
geometries is given in [222].

We consider the branched cable shown in Fig. 2.4. The three cables are denoted
as C0, C1, and C2. Assume the diameters and specific membrane resistance of the
cables are di and rMi ; i D 0; 1; 2, respectively. Let rL be the longitudinal resistivity.
We assume the junction point is at x D 0. Finally, we assume there is an electrode
current at an isolated point, y, along C0 (here, y < 0).

We derive the steady-state solution to this problem. Except at the junction and
the injection points, each membrane potential Vi .x/ satisfies the steady-state cable
equation:

�i
2 @

2Vi

@x2
� Vi D 0;

I0
I0

0−2 0

a b

−2 22

V
/V

m
ax

Fig. 2.4 The membrane potential along three cables branched at an isolated junction for a
current injected at one point. The thick branch has a radius of 2�m and an electrotonic
length constant of 1mm. The thin cables have a radius of 1�m and an electrotonic
length constant of 2�1=2 mm. (a) Current injected along the thick cable. The solid curve
for x < 0 shows the voltage along the thick branch where current is being injected. The curve
for x > 0 shows the potential for both thin cables, which are identical. (b) Current injected along
one of the thin cables. The solid curve for x > 0 shows the potential along the cable where the
current is injected and the dashed curve for x > 0 shows the potential along the cable where
the injection does not occur. The solid curve for x < 0 shows the potential for the thick cable
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where

�i D
s
dirMi

4rL

is the space constant of the corresponding cable. We now need to determine the
boundary conditions that must be satisfied. At the junction point, the three mem-
brane potentials must be equal; moreover, the flow of current must be conserved.
Hence,

V0.0/ D V1.0/ D V2.0/ and
X

d 2
i

dVi

dx
.0/ D 0:

At the electrode site, the injection current is conserved and spreads toward (decreas-
ing x) or away from (increasing x) the junction point. Recall that the longitudinal
current is given by (2.8). It follows that the boundary condition at the junction
point is

dV0

dx
.y�/� dV0

dx
.yC/ D 4rL

�d 2
0

I0;

where I0 is the total electrode current and the two terms on the left-hand side repre-
sent the left-handed and right-handed derivatives of V0 at y, respectively.

We leave it as an exercise to demonstrate that the solution of this problem is
given by

V0.x/ D I0R�0

2
Œexp.�jy � xj=�0/C .2p0 � 1/ exp.�.jyj � x/=�0/�;

V1.x/ D p1I0R�1
exp.�x=�1 � jyj=�0/;

V2.x/ D p2I0R�2
exp.�x=�2 � jyj=�0/; (2.17)

where, for i D 0; 1; 2,

pi D d
3=2
i

d
3=2
0 C d

3=2
1 C d

3=2
2

and R�i
D 4rL�i

�d 2
i

:

An example is shown in Fig. 2.4. If the injection site is along the thickest den-
drite, then this has little effect on the attenuation of the potential along the thin
branches. However, if the injection site is along one of the thinner dendrites, then
the thick dendrite has a much greater effect on the attenuation between the two
thinner branches.

2.7 Dendrites with Active Processes

We have, so far, primarily considered passive dendrites in which all of the conduc-
tances and currents are constant. However, it is now recognized that neurons may
have active voltage-gated conductances along the dendritic trees and these active
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conductances may have a profound influence on the neuron’s firing properties and
the neuron’s response to synaptic inputs. We note that active channels are typically
unevenly distributed along the dendrites, so, for example, there may be a higher dis-
tribution of, say, sodium channels in the proximal region near the soma than in the
distal region far from the soma. A useful way to model neurons with active dendrites
is to use the multicompartment approach. Here, we present an example of this due
to Pinsky and Rinzel [215].

Pinsky and Rinzel developed a two-compartment model for CA3 hippocampal
pyramidal neurons in a guinea pig. This work was motivated by an earlier, consider-
ably more complex model of Traub [270], which consisted of 19 compartments.
The reduced Pinsky–Rinzel model contained elements of the full model which
were thought to be essential and was capable of reproducing many of the impor-
tant stimulus–response properties of the Traub model. By considering a minimal
reduced model, Pinsky and Rinzel were able to explain how interactions between
the somatic and dendritic compartments generate bursting with unusual waveforms
which do not seem to arise in single-compartment models. The reduced model is
also considerably easier to implement computationally.

A schemata of the two-compartment model is shown in Fig. 2.5. Motivated by
Traub’s model, Pinsky and Rinzel restricted the fast spiking currents to the soma,
whereas most of the calcium and calcium-modulated currents lie in the dendritic-
like compartment. The somatic-like compartment has two voltage-dependent cur-
rents, an inward sodium current and an outward delayed-rectifier potassium current.
The dendritic compartment has three voltage-dependent currents. There is a fast
calcium current and two types of potassium currents: a calcium-activated potassium
current and a potassium afterhyperpolarization. Electrotonic coupling between the
compartments is modeled using two parameters, gc and p, where gc represents the
strength of coupling and p represents the percentage of total area in the somatic-like
compartment. Finally, the model includes terms for applied current to the soma and
dendrite.

The model can generate bursting activity for appropriate values of the parame-
ters. Figure 2.6 shows the waveform of the spiking activity during a burst. This type

Fig. 2.5 A two-compartment
model showing applied
currents and outward and
inward currents from and to
soma and dendrite
compartments. Here, Atot is
the total cell membrane area.
(Redrawn from [215])
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Fig. 2.6 Voltage and calcium
traces of a bursting solution in
the two-compartment model

of activity does not typically arise in single-compartment models; it results from
interactions between the two compartments. Here, we step through how this burst is
generated; a more complete and detailed description is given in [215].

The burst shown in Fig. 2.6 results from electrotonic interactions between the
soma and the dendrite with significant coupling current that flows back and forth,
alternately providing depolarizing or hyperpolarizing current to each compartment.
The burst sequence is initiated by a somatic sodium spike. This is because INa is ac-
tivated at lower voltages than ICa. The leading sodium action potential depolarizes
the dendrite through the spread of electrotonic current. The soma then repolarizes,
but only partially. This causes the dendritic membrane potential to fall below the
threshold for calcium spike generation, thereby delaying the full dendritic spike.
During this repolarization phase, current flows into the soma from the dendrite,
which then initiates a second somatic spike. The second somatic spike stops the
drain of coupling current from the dendrite, enabling the dendrite to undergo a
full ICa-mediated voltage spike with accompanying rapid increase in calcium. The
dendritic spike then provides depolarization which drives soma activity. We note
that the calcium dendritic spikes are considerably broader than the somatic spikes.
The broad dendritic spike leads to strong stimulation of the soma, which leads to
damped, high-frequency spiking. The dendritic calcium spike, and hence the burst,
is terminated by the calcium-dependent potassium current. This builds up on a slow
timescale during the dendritic spiking activity. Hence, the burst duration is primarily
determined by the amount of time required for calcium to build up. Both of these
currents must decrease before a somatic action potential can be initiated.
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2.8 Concluding Remarks

In this chapter, we have only touched on certain aspects of dendritic processing. It
is now recognized that dendrites may play an active role determining how a neu-
ron’s firing pattern and how the neuron responds to synaptic inputs. Dendrites have
been implicated in numerous functions, including direction selectivity [10,97,193],
by which a neuron responds to images that move in a preferred direction but
not in the opposite direction, and coincidence detection [1]. The classical view is
that information flows from the dendrites to the soma; however, it is now clear
that in many neurons the presence of excitable ionic currents in the dendrites al-
lows for dendritic action potentials that travel in the opposite direction. Moreover,
the spatial distribution of active channels in the dendrites may vary, so individual
portions of the dendritic tree may act as independent subunits, each performing
separate computations. Each of these issues provides exciting opportunities for
mathematical modeling. London and Hausser [185] gave a recent review of dendritic
computation.

2.9 Bibliography

Much of the pioneering work on the modeling of dendrites was done by Wilfred
Rall. Reviews of this material can be found in Rall [221] and Koch and Segev [157].
The book by Segev et al. [243] was written in honor of Rall and contains many of
his original papers, along with commentaries by leading researchers in this field.
Other textbooks include those of Jack et al. [137], Tuckwell [274], Johnston and
Wu [139], and Koch [156].

2.10 Exercises

1. Derive the differential equations for the three-compartment model shown in
Fig. 2.1b, where you can take rM D 10;000� cm2, cM D 1� F=cm2, and rL D
100� cm. The compartments have dimensions .`j ; �j / D .50; 25/; .100; 15/;

.80; 10/, respectively. Compute the input resistance for a current applied to
compartments 1 and 3 (the “soma” and the “distal dendrite”).

2. Consider three identical compartments coupled in a chain by the same coupling
resistance:

C
dV1

dt
D �V1

R
C .V2 � V1/=Rcouple C I;

C
dV2

dt
D �V2

R
C .V3 � 2V2 C V1/=Rcouple;
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C
dV3

dt
D �V3

R
C .V2 � V3/=Rcouple:

Compute the input resistance. What do you think happens with more and more
compartments?

3. Consider an semi-infinite array of compartments with only the first one receiv-
ing injected current. Can you prove

V1=I1 D R

1C R
Rcouple

.1 � 	/ ;

where

	 D 1C z �
p

z2 C 2z; z D R

2Rcouple
‹

(Here is a hint. Show that the steady-state voltages satisfy

Vj C1 � 2.1C z/Vj C Vj �1 D 0

except for j D 1: The general solution to this difference equation is just Vj D
A	

j
1 C B	

j
2 , where 	1 and 	2 are roots of 	2 � 2.1 C z/	 C 1 D 0: One

of these roots, say, 	2, is greater than 1, so as j ! 1 you had better choose
B D 0. Choose A so that the correct equation for V1 holds:

0 D �V1

R
C V2 � V1

Rcouple
C I /:

4. Consider a general N -compartment model for a passive neuron with current
injected into some or all of the compartments. This will obey the following
differential equation:

Cj

dVj

dt
D Ij C

X
k

gjk.Vk � Vj / � gL;j .Vj � Vleak/:

Suppose gjk � 0, Cj > 0, and gL;j > 0. Prove there is a unique equilibrium
point for this and that it is asymptotically stable. (Hint: This is a diagonally
dominant system.)

5. Consider the infinite linear array of cells

�
dV1

dt
D V0 � V1 C ˇ.V2 � V1/;

�
dVj

dt
D �Vj C ˇ.Vj C1 � 2Vj C Vj �1/:
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Find the steady-state solution for this. [Hint: The second group of equations has
the form Vj C1 D Vj .2 C 1=ˇ/ � Vj �1, which is a finite difference equation.
The general solution to such equations is Vj D C1r

j
1 C C2r

j
2 :]

6. Consider a single-compartment model with a sinusoidal current:

C
dV

dt
D �gL.V � Vleak/C I0 sin!t:

Find the steady-state solution to this equation.
7. Consider the single-compartment model

C
dV

dt
D I � gL.V � Vleak/� g.t/.V � Vsyn/;

where g.t/ D 0 except when t 2 Œt1; t2�, where it is Ng: Solve this equation
assuming the cell starts from rest. For what values of Vsyn does V.t/ increase
above rest?

8. (a) Plot profiles of V.x; t/ for the response of an infinite cable (2.13) at different
spatial locations as a function of time. (b) Compute the time at which V.x; t/
reaches its maximum and show that for x large it is asymptotically linear in x.
(c) Compute the maximum value of the voltage for each spatial position.

9. Compute the steady-state response of the cable to a sustained periodic input.
That is, I.x; t/ D I0 sin.!t/ı.x/: [Hint: Everything will be easier if you write
the current as proportional to exp.i!t/ and use the linearity of the cable to
assume a solution of the form z.x/ exp.i!t/. Then use the steady-state infinite
cable result.] Compute the phase shift as a function of the distance from the
source. Plot the amplitude at x D 0 as a function of the frequency. Determine
how quickly the amplitude falls off with distance as a function of frequency.

10. Solve the cable equation �vt D �v C vxx C I.x; t/ on the finite interval 0 <
x < L subject to the boundary conditions v.0/ D 0 and vx.L/ D 0: [Hint:
You could compute a Green function for this, or you could expand it in an
eigenfunction expansion by solving v00 D ˇv with v.0/ D 0 and v0.L/ D 0:]

11. Consider a cable with electrotonic lengthL and a sealed end at x D L: Suppose
V.0/ D V0: Show that the input conductance at X D 0 is

GL D G1 tanhL:

12. Prove the homogeneous solution to equation

1

d.x/

d

dx

�
d2.x/dV

dx

�
D V.x/ (2.18)

with boundary conditions dV=dx.0/ D 0 and V.L/ D 0 has no nonzero solu-
tions. [Hint: Without loss of generality, you can assume V.0/ > 0: Show that
V.x/ must be concave up in the interval .0; L/:]
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13. Numerically compute the solution to (2.18) with d.x/ D 1 � cx=L, where
c < 1, V.0/ D 1 and V 0.L/ D 0: Compare the solutions for c D 0 with those
for c D 0:95 when L D 10: Try c D �0:5 (corresponding to a fattening cable).

14. Do the equivalent cylinder reduction to the bottom dendrite in Fig. 2.3.
15. Advanced exercise. Consider a cable with three currents, as shown in Fig. 1.6.

Suppose the concentrations of the ions are those given for the squid axon in
Table 1.1 and that the permeabilities are PK D 1; PCl D 0:1, and PNa D 0:03.
Suppose the temperature is 20ıC. Let I.V / denote the total current as defined
by (1.3). Simulate the response to the cable

cM
@V

@t
D �I.V /CK

@2V

@x2

to a current step at x D 0. You can make Cm D 1;K D 1 without loss of
generality since these just set the time and space scales. Compare this with
the passive linear conductance cable model. Convince yourself that there is
very little difference. In particular, you might want to solve the steady-state
boundary value problem for, say, V.0/ D V0 and Vx.L/ D 0: You cannot do
this analytically, but numerical solutions should be fairly simple.



Chapter 3
Dynamics

3.1 Introduction to Dynamical Systems

Dynamical systems theory provides a powerful tool for analyzing nonlinear systems
of differential equations, including those that arise in neuroscience. This theory al-
lows us to interpret solutions geometrically as curves in a phase space. By studying
the geometric structure of phase space, we are often able to classify the types of so-
lutions that a model may exhibit and determine how solutions depend on the model’s
parameters. For example, we can often predict if a model neuron will generate an
action potential, determine for which values of the parameters the model will pro-
duce oscillations, and compute how the frequency of oscillations depends on the
parameters.

In this chapter, we introduce many of the basic concepts of dynamical systems
theory using a reduced two-variable model: the Morris–Lecar equations. Although
this model is considerably simpler than the Hodgkin–Huxley equations, it still ex-
hibits many important features of neuronal activity. For example, the Morris–Lecar
model generates action potentials, there is a threshold for firing, and the model dis-
plays sustained oscillations at elevated levels of an applied current. By considering
a reduced model, we can more easily explain the geometric mechanisms underly-
ing each of these phenomena. Moreover, we can introduce important mathematical
concepts such as phase space analysis, bifurcation theory, oscillations, and stabil-
ity theory. Each of these concepts plays a fundamental role in the analysis of more
complex systems discussed throughout the book.

3.2 The Morris–Lecar Model

One of the simplest models for the production of action potentials is a model
proposed by Kathleen Morris and Harold Lecar. The model has three channels:
a potassium channel, a leak, and a calcium channel. In the simplest version of

G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neuroscience,
Interdisciplinary Applied Mathematics 35, DOI 10.1007/978-0-387-87708-2 3,
c� Springer Science+Business Media, LLC 2010
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the model, the calcium current depends instantaneously on the voltage. Thus, the
Morris–Lecar equations have the form

CM
dV

dt
D Iapp � gL.V �EL/� gKn.V � EK/; (3.1)

�gCam1.V /.V �ECa/ � Iapp � Iion.V; n/;

dn

dt
D �.n1.V /� n/=�n.V /;

where

m1.V / D 1

2
Œ1C tanh..V � V1/=V2/�;

�n.V / D 1= cosh..V � V3/=.2V4//;

n1.V / D 1

2
Œ1C tanh..V � V3/=V4/�:

Here, V1, V2, V3, and V4 are parameters chosen to fit voltage-clamp data.
The solutions shown in Fig. 3.1 demonstrate that the Morris–Lecar model ex-

hibits many of the properties displayed by neurons. Here, the parameters are listed
in Table 3.1 under the Hopf case. Figure 3.1a demonstrates that the model is ex-
citable if Iapp D 60. That is, there is a stable constant solution corresponding to the
resting state of the model neuron. A small perturbation decays to the resting state,
whereas a larger perturbation, above some threshold, generates an action potential.
The solution .V1.t/; n1.t// � .VR; nR/ is constant; VR is the resting state of the
model neuron. The solution .V2.t/; n2.t// corresponds to a subthreshold response.
Here, V2.0/ is slightly larger than VR and .V2.t/; n2.t// decays back to rest. Finally,

V

V2(t)

V3(t)

V1(t)
VR

a

−80

−60

−40
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0 40 80
time

V

b
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0 100 200 300
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Fig. 3.1 Solutions of the Morris–Lecar equations. Parameters are listed in Table 3.1, the Hopf
case. (a) A small perturbation from rest decays to the resting state, whereas a larger perturba-
tion generates an action potential. Here, Iapp D 60. (b) A periodic solution of the Morris–Lecar
equations. Here, Iapp D 100
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Table 3.1 Morris–Lecar parameters; the current, Iapp, is a
parameter

Parameter Hopf SNLC Homoclinic

� 0.04 0.067 0.23
gCa 4.4 4 4
V3 2 12 12
V4 30 17.4 17.4
ECa 120 120 120
EK �84 �84 �84
EL �60 �60 �60
gK 8 8 8
gL 2 2 2
V1 �1.2 �1.2 �1.2
V2 18 18 18
CM 20 20 20

SNLC saddle–node on a limit cycle

.V3.t/; n3.t// corresponds to an action potential. Here, we start with V3.0/ above
some threshold. There is then a large increase of V3.t/, followed by V3.t/ falling
below VR and then a return to rest.

Figure 3.1b shows a periodic solution of the Morris–Lecar equations. The param-
eter values are exactly the same as before; however, we have increased the parameter
Iapp, corresponding to the applied current. If we increase Iapp further, then the fre-
quency of oscillations increases; if Iapp is too large, then the solution approaches a
constant value.

In the following, we will show how dynamical systems methods can be used to
mathematically analyze these solutions. The analysis is extremely useful in under-
standing when this type of model, for a given set of parameters, displays a particular
type of behavior. The behavior may change as parameters are varied; an important
goal of bifurcation theory, which we describe later, is to determine when and what
types of transitions take place. Our introduction to dynamical systems will be brief
and we will only discuss those topics needed for the rest of the book. Readers in-
terested in learning more about dynamical systems should consult one of the books
listed in Sect. 3.8.

3.3 The Phase Plane

It will be convenient to write (3.1) as

dV

dt
D f .V; n/;

dn

dt
D g.V; n/: (3.2)
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The phase space for this system is simply the .V; n/ plane; this is usually referred
to as the phase plane. If .V .t/; n.t// is a solution of (3.2), then at each time t0,
.V .t0/; n.t0// defines a point in the phase plane. The point changes with time, so
the entire solution .V .t/; n.t// traces out a curve (or trajectory or orbit) in the phase
plane.

Of course, not every arbitrarily drawn curve in the phase plane corresponds to a
solution of the differential equations. What is special about solution curves is that the
velocity vector at each point along the curve is given by the right-hand side of (3.2).
That is, the velocity vector of the solution curve .V .t/; n.t// at a point .V0; n0/ is
given by .V 0.t/; n0.t// D .f .V0; n0/; g.V0; n0//. This geometric property – that the
vector .f .V; n/; g.V; n// always points in the direction that the solution is flowing –
completely characterizes the solution curves.

Two important types of trajectories are fixed points (sometimes called equilibria
or rest points) and closed orbits. At a fixed point, f .VR; nR/ D g.VR; nR/ D 0; this
corresponds to a constant solution. Closed orbits correspond to periodic solutions.
That is, if .v.t/; n.t// represents a closed orbit, then there exists T > 0 such that
.V .t/; n.t// D .V .t C T /; n.t C T // for all t .

A useful way to understand how trajectories behave in the phase plane is to con-
sider the nullclines. The V -nullcline is the curve defined by V 0 D f .V; n/ D 0 and
the n-nullcline is where n0 D g.V; n/ D 0. Note that along the V -nullcline, the
vector field .f .V; n/; g.V; n// points either up or down, and along the n-nullcline,
vectors point either to the left or to the right. Fixed points are where the two null-
clines intersect. The nullclines divide the phase plane into separate regions; in each
of these regions, the vector field points in the direction of one of the four quadrants:
(1) f > 0; g > 0; (2) f < 0; g > 0; (3) f < 0; g < 0; or (4) f > 0; g < 0.

3.3.1 Stability of Fixed Points

One can determine the stability of a fixed point by considering the linearization of
the vector field at the fixed point. The linearization of (3.2) at a fixed point .VR; nR/

is the matrix

M D

2
64
@f

@V
.VR; nR/

@f

@n
.VR; nR/

@g

@V
.VR; nR/

@g

@n
.VR; nR/

3
75 :

The fixed point is stable if both of the eigenvalues of this matrix have a negative real
part; the fixed point is unstable if at least one of the eigenvalues has a positive real
part. For the Morris–Lecar equations, the linearization is given by

M D
2
4�@Iion.VR; nR/

@V
=CM �gK.VR � EK/=CM

�n01.VR/=�n.VR/ ��=�n.VR/

3
5 �

�
a b

c d

�
:
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Moreover,

a � �@Iion.VR; nR/

@V

�
CM

D .�gL � gKnR � gCam1.VR/C .ECa � VR/gCam
01.VR//=CM:

We now find conditions on the nonlinear functions in (3.1) for when the fixed point
is stable.

Suppose the equilibrium voltage lies betweenEK andECa, a reasonable assump-
tion. Then b < 0, c > 0, and d < 0 in the linearization. Only a can be either
negative or positive and the only term contributing to the positivity of a is the slope
of the calcium activation function,m1.V /. If a < 0, then the fixed point is asymp-
totically stable since the trace of M is negative and the determinant is positive.
(Recall that the trace is the sum of the eigenvalues and the determinant is the prod-
uct of the eigenvalues.) Note that the slope of the V -nullcline near the fixed point is
given by �a=b. Since b < 0, it follows that if this slope is negative, then the fixed
point is stable; that is, if the fixed point lies along the left branch of the V -nullcline,
then it is stable (see Fig. 3.2).

Now suppose the fixed point lies along the middle branch of the V -nullcline, so
a > 0. Note that the slope of the n-nullcline, �c=d , is always positive. If the slope
of the V -nullcline is greater than the slope of the n-nullcline (i.e., �a=b > �c=d ),
then ad � bc < 0. In this case, the determinant is negative and the fixed point is
an unstable saddle point. In contrast, if the slope of the n-nullcline is greater than
that of the V -nullcline, then the fixed point is a node or a spiral. In this case, the
stability of the fixed point is determined by the trace of M : the fixed point is stable
if a C d < 0 and it is unstable if a C d > 0. Since a > 0 and d D ��=�n.VR/, it
follows that the fixed point is unstable if � is sufficiently small. Note that � governs
the speed of the potassium dynamics.

3.3.2 Excitable Systems

Recall that for the parameters given in Table 3.1 for the Hopf case, the system is
excitable if Iapp D 60. As Fig. 3.1a demonstrates, a small perturbation in voltage
from the resting state decays back to rest, whereas a sufficiently large perturbation
in voltage continues to increase and generates an action potential.

Phase plane analysis is very useful for understanding what separates the firing of
an action potential from the subthreshold return to rest in this model. The projec-
tion of the solutions shown in Fig. 3.1a onto the phase plane are shown in Fig. 3.2a.
This figure also shows the V -nullcline and the n-nullcline. Note that the V -nullcline
separates points along trajectories in which V 0 <0 and V 0>0. In particular, V in-
creases below the V -nullcline and V decreases above the V -nullcline. We further
note that the V -nullcline is “cubic.” This suggests a perturbation from rest that lies to
the “left” of the middle branch of the V -nullcline will return quickly to rest, whereas
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Fig. 3.2 Phase planes and voltage traces for the Morris–Lecar model in the Hopf regime.
(a) Iapp D 60; an excitable system with threshold at about �20 mV. Nullclines are included as
well. (b) Starting at n D nrest and varying V from �20 to �20.1 mV leads to graded action po-
tentials. (c) Iapp D 90 showing bistability between a stable limit cycle (SLC) and a fixed point,
separated by the unstable limit cycle (ULC). (d) Iapp D 100, the fixed point is unstable and only
a limit cycle remains

a perturbation that lies to the “right” of the middle branch of the V -nullcline will
initially display an increase in membrane potential, corresponding to an action po-
tential, before returning to rest. Therefore, the middle branch of the V -nullcline in
some sense separates the firing of an action potential from the subthreshold return
to rest.

This analysis can be made more precise if we assume the parameter � is small.
Looking at Table 3.1, we can see that � is relatively smaller in the Hopf case than
in the other two cases. For small �, n will not change much, so let us hold it at rest.
Figure 3.3 shows the phase plane with a horizontal line drawn through the fixed
point. If n does not change much, then the dynamics are governed by the behavior on
the phase line n D nR. Since the V -nullcline intersects this line at three points, there
are three equilibria for the system when n is held constant. The resting state (and
true equilibrium of the full system) VR is stable. There are two additional equilibria
(which are not equilibria of the full model, just the model when n is held at its resting
value): V� , which is unstable, and Ve, which is stable. On this line, if the voltage is
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Fig. 3.3 Threshold
construction for the
Morris–Lecar model
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perturbed past V� , then it will jump to the right fixed point, Ve. Otherwise, it will
decay to rest, VR. This shows that for small �, the “threshold” voltage for generating
an action potential is roughly the intersection of the horizontal line through the
resting state and the middle branch of the V -nullcline. Since experimentalists can
only move the voltage through current injection, we can use this to estimate the
magnitude of a current pulse needed to cross the threshold (see Exercise 2).

We note that the peak of the action potential occurs at some latency after the
initial perturbation, but this latency can never become very large. The action poten-
tial itself is graded and takes on a continuum of peak values, as shown in Fig. 3.2b.
If � is not “small” and it is increased, then the spike amplitudes are even more
graded than those shown in Fig. 3.2b. Recall that � is related to the temperature of
the preparation. Thus, increasing the temperature of a neuron should lead to a much
less sharp threshold distinction and graded action potentials. Indeed, Cole et al. [42]
demonstrated this in the squid axon.

3.3.3 Oscillations

We expect the phase plane to change if a parameter in the equations changes.
Figure 3.2d shows the phase plane corresponding to the periodic solution shown in
Fig. 3.1b. Here, Iapp D 100. Note that the periodic solution corresponds to a closed
curve or limit cycle. In general, whenever we wish to find periodic solutions of some
model, we look for closed orbits in phase space. In Fig. 3.2d, there is a unique fixed
point; this is where the nullclines intersect. This fixed point is unstable, however.

If we change Iapp to 90, then the model is bistable, and the phase plane is shown
in Fig. 3.2c. Note that there exist both a stable fixed point and a stable limit cycle.
Small perturbations from rest will decay back to the stable fixed point, whereas
large perturbations will approach the stable periodic solution. Note that there also
exists an unstable periodic solution. This orbit separates those initial conditions that
approach the stable fixed point from those that approach the stable limit cycle.



56 3 Dynamics

It is often difficult to show that a given model exhibits stable oscillations,
especially in higher-dimensional systems such as the Hodgkin–Huxley model. Limit
cycles are global objects, unlike fixed points, which are local. To demonstrate that a
given point is on a periodic solution, one must follow the trajectory passing through
that point and wait to see if the trajectory returns to where it started. This is clearly
not a useful strategy for finding periodic solutions. A powerful method for locating
oscillatory behavior is bifurcation theory, which we describe in Sect. 3.4.

3.4 Bifurcation Analysis

Bifurcation theory is concerned with how solutions change as parameters in a model
are varied. For example, in the previous section we showed that the Morris–Lecar
equations may exhibit different types of solutions for different values of the applied
current Iapp. If Iapp D 60, then there is a stable fixed point and no oscillations,
whereas if Iapp D 100, then the fixed point is unstable and a stable limit cycle
exists. Using bifurcation theory, we can classify the types of transitions that take
place as we change parameters. In particular, we can predict for which value of
Iapp the fixed point loses its stability and oscillations emerge. There are, in fact,
several different types of bifurcations; that is, there are different mechanisms by
which stable oscillations emerge. The most important types of bifurcations can be
realized by the Morris–Lecar model. These are described next.

3.4.1 The Hopf Bifurcation

In Fig. 3.4, we chose the parameters as in Table 3.1 for the Hopf regime and show
the bifurcation diagram for the Morris–Lecar equations as Iapp is varied. For each
value of Iapp, there is a unique fixed point, .VR.Iapp/; nR.Iapp//. In Fig. 3.4a, we plot
VR versus Iapp. The fixed point is stable for Iapp < 94 � I1 and Iapp > 212 � I2;
otherwise, it is unstable. A Hopf bifurcation occurs at Iapp D I1 and Iapp D I2. By
this we mean the following. Recall that a fixed point is stable if all of the eigenvalues
of the linearization have a negative real part; the fixed point is unstable if at least
one of the eigenvalues has a positive real part. The fixed point loses stability, as a
parameter is varied, when at least one eigenvalue crosses the imaginary axis. If the
eigenvalues are all real numbers, then they can cross the imaginary axis only at the
origin in the complex plane. However, if an eigenvalue is complex, then it (and its
complex conjugate) will cross the imaginary axis at some point that is not at the
origin. This latter case corresponds to the Hopf bifurcation and it is precisely what
happens for the example we are considering. In this example, .I1; VR.I1/; nR.I1//

and .I2; VR.I2/; nR.I2// are called bifurcation points. Sometimes, I1 and I2 are also
referred to as bifurcation points. The Hopf bifurcation theorem states that (if certain
technical assumptions are satisfied) there must exist values of the parameter Iapp
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Fig. 3.4 Bifurcation diagram for the Morris–Lecar model in the Hopf regime. (a) Voltage as a
function of current. The curves above and below the fixed-point curve correspond to the maximum
and minimum voltages along periodic orbits. Solid curves represent stable solutions and dashed
curves represent unstable solutions. Arrows shown at Iapp D 60; 90; and 100 correspond to the
solutions shown in Fig. 3.2a, c, and d, respectively. (b) Frequency (Hz) versus current. (c) Two-
parameter bifurcation showing the curve of Hopf bifurcations as � and Iapp vary

near I1 and I2 such that there exist periodic solutions that lie near the fixed points
.VR.Iapp/; nR.Iapp//. A more precise statement of the Hopf bifurcation theory can
be found in numerous texts on dynamical systems.

The curves in Fig. 3.4a represent fixed points and periodic solutions of the
Morris–Lecar model. This diagram was generated using the numerical software
program XPPAUT. The curve above the fixed-point curve represents the maximum
voltages on the periodic orbits and the curve below the fixed-point curve represents
the minimum voltages. The solid curves represent stable solutions and the dashed
curves represent unstable solutions. The bifurcation diagram shows many interest-
ing and important features. Note that the periodic solutions near the two bifurcation
points are unstable. These unstable, small-amplitude periodic solutions lie on the
same side of the bifurcation points as the stable fixed points. These are both ex-
amples of subcritical Hopf bifurcations. At a supercritical Hopf bifurcation, the
small-amplitude periodic solutions near the Hopf bifurcation point are stable and lie
on the side opposite the branch of stable fixed points.

If 88:3 < Iapp < I1 or I2 < Iapp < 217, then the Morris–Lecar model is
bistable. For these values of Iapp, there exist both a stable fixed point and a stable
periodic solution. The phase plane for Iapp D 90 is shown in Fig. 3.2c. Note that
small perturbations of initial conditions from the resting state will decay back to
rest; however, large perturbation from rest will generate solutions that approach the
stable limit cycles.

Figure 3.4b shows the frequency of the stable periodic solutions versus current.
Note that the frequency lies in a narrow range between 7 and 16 Hz. In particular,
the frequency does not approach zero as Iapp approaches the bifurcation points. This
is a general property of periodic solutions that arise via the Hopf bifurcation. In
Sect. 3.4.2, we shall consider another mechanism for the generation of stable limit
cycles. In that mechanism, the frequency does approach zero.

Finally, we can ask what happens if we change the speed of the potassium kinet-
ics. Figure 3.4c shows a two-parameter diagram with � along the vertical axis and
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Iapp along the horizontal axis. This shows the locus of Hopf bifurcations in these
two parameters. For fixed values of � below about 0:4, there are two currents at
which the Hopf bifurcation occurs. Inside the curve, the resting state is unstable.
One can numerically show that the Hopf bifurcation is subcritical outside the inter-
val 124:47 < Iapp < 165:68; inside this interval, the bifurcation is supercritical. The
reader can choose, for example, � D 0:35 and show that both Hopf bifurcations are
supercritical; the only oscillations are stable and have small amplitude.

3.4.2 Saddle–Node on a Limit Cycle

The Hopf bifurcation is the best known mechanism through which one can go from
a stable fixed point to an oscillation. Importantly, the fixed point persists through the
bifurcation. Furthermore, the limit cycles which bifurcate are of small amplitude and
are local, in the sense that they lie close to the branch of fixed points (although, as
we saw in the Morris–Lecar model, the bifurcation is subcritical at low currents and
thus bifurcating periodic orbits are unstable). Another mechanism through which an
oscillation can emerges from a fixed point is called a saddle–node on a limit cycle
(SNLC). It is also called a saddle–node on an invariant circle (SNIC). This is an
example of a global bifurcation.

The behavior of the Morris–Lecar model with these parameters is quite different,
as is shown in Fig. 3.5. First, unlike in Fig. 3.2b, the action potentials appear to occur
with arbitrary delay after the end of the stimulus. Second, the shape of the action
potentials is much less variable. The reason for this can be understood by looking at
the phase plane in Fig. 3.5b. Unlike the Hopf case, here there are three fixed points,
only one of which (labeled N ) is stable. The middle fixed point is a saddle point
(labeled S ). Thus, the linearized system at this fixed point has one positive and one
negative eigenvalue. Associated with these eigenvalues are the stable and unstable
manifolds. These manifolds consist of trajectories that approach the saddle point
in either forward or backward time, respectively. The two branches of the unstable
manifold, †C, form a loop with the stable node N and the saddle point S . This
loop in the plane constrains the spike shape; since trajectories cannot cross, any
trajectory starting outside the loop must remain outside it. Thus, the spike height
cannot fall below a certain level. More importantly, the stable manifold,†�, forms a
hard threshold that is precisely determined. This contrasts with the pseudothreshold
we saw in the Hopf case. Any perturbation which drives the potential to the right of
†� results in a spike and any perturbation which drives the potential to the left of
†� leads to a return to rest without a spike.

Figure 3.5 also explains the delay in firing. Suppose a stimulus drives the voltage
to a point exactly on the stable manifold †�: Then, the trajectory will go to the
saddle point, where it will remain. The closer a perturbation gets to †� (but to
the right of it), the longer the delay to the spike. Indeed, the spike with the longest
delay in Fig. 3.5a stays at a nearly constant voltage close to the value at the saddle
point before finally firing.
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Fig. 3.5 Dynamics of the Morris–Lecar model with saddle–node dynamics. (a) The delay to spik-
ing can be arbitrary but the spike height is invariant. For the different plots, we start with different
initial conditions. (b, c) Phase plane explaining (a). The fixed points N , S , and U are, respec-
tively a stable node (the resting state), a saddle point, and an unstable node. †˙ are the stable (�)
and unstable (C) manifolds of S . (d) There exists a stable limit cycle for sufficient current; the
nullclines are also shown

Like the Hopf case, as current is increased, the model fires repetitively. A typical
limit cycle is shown in Fig. 3.5d. Figure 3.6a shows the bifurcation diagram as the
current is increased. The steady-state voltage shows a region where there are three
equilibria for Iapp between about �15 and C40. Only the lower fixed point is stable.
As Iapp increases, the saddle point and the stable node merge together at a saddle–
node bifurcation, labeled SN2. When Iapp D ISN2

, the invariant loop formed from
†C becomes a homoclinic orbit; that is, it is a single trajectory that approaches a
single fixed point in both forward and backward time. This type of homoclinic orbit
is sometimes called a saddle–node homoclinic orbit or a SNIC. As Iapp increases
past Iapp D ISN2

, the saddle point and node disappear; the invariant loop formed
from †C becomes a stable limit cycle. The branch of limit cycles persists until
it meets a branch of unstable periodic solutions emerging from a subcritical Hopf
bifurcation.

Figure 3.6b shows the frequency of the oscillations as a function of the current.
Unlike in Fig. 3.4b, the frequency for this model can be arbitrarily low and there is a
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Fig. 3.6 Bifurcation for the Morris–Lecar model with saddle–node dynamics. (a) Voltage versus
current showing saddle–node (SN1, SN2) and Hopf (H ) bifurcations. (b) Frequency as a function
of current. (c) Two-parameter bifurcation diagram showing the curves of Hopf and saddle–node
bifurcations as the rate, �, of the potassium channel varies. The Hopf curve meets the leftmost
saddle–node curve at a double-zero eigenvalue characterizing a Takens–Bogdanov bifurcation (TB)

much greater dynamic range. Note that the nullclines in Fig. 3.5c can be very close
to touching each other and thus create a narrow channel where the flow is extremely
slow. This suggests why the frequency of firing can be arbitrarily low. Moreover,
as Iapp ! ISN2

, the limit cycles approach a homoclinic orbit. We expect that the
frequency should approach zero as Iapp ! ISN2

. In an exercise later, the reader is
asked to show that the frequency scales as the square root of Iapp � ISN2

and to
develop the theta model.

3.4.3 Saddle–Homoclinic Bifurcation

By changing the rate of the potassium channel, �, we can alter the dynamics of
the model so that the SNIC is replaced by another type of global bifurcation; this
is called a saddle–homoclinic bifurcation. In both types of bifurcations, the fre-
quency of oscillations approaches zero as the current approaches the bifurcation
value. However, there are important differences.

Since � only changes the rate of n, it has no effect on the number and values of
the fixed points, only their stability. Figure 3.7 shows the bifurcation diagram for
the model when � is increased from 0.067 to 0.23. As before, the fixed points are
lost at a saddle–node bifurcation. The Hopf bifurcation on the upper branch occurs
at a much lower value of current than in Fig. 3.6, but the Hopf bifurcation is still
subcritical. The main difference is that the stable branch of periodic orbits does not
terminate on the saddle–node as in Fig. 3.6. Rather it terminates on an orbit that
is homoclinic to one of the saddle points along the middle branch of fixed points.
Like the SNIC, this homoclinic orbit has an infinite period. However, the periods of
the limit cycles approach infinity quite differently from before. One can show that
the period scales as

T � ln
1

Iapp � IHc
;
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Fig. 3.8 Phase plane for the Morris–Lecar system near the homoclinic bifurcation showing
(a) Iapp < IHc, (b) Iapp � IHc, and (c) Iapp > IHc. Perturbations from rest that lie in the starred
region shown in (c) will approach the stable limit cycles

where IHc is the current at which there is a saddle–homoclinic orbit. The frequency
T �1 approaches zero much more rapidly than in the SNIC case.

Figure 3.8 shows the phase plane for the membrane model near the critical cur-
rent, IHc: There are three fixed points. The lower-left fixed point is always stable,
the middle point is a saddle, and the upper-right point is an unstable spiral. For
Iapp < IHc (Fig. 3.8a), the right branch of the unstable manifold of the saddle wraps
around and returns to the stable fixed point. The upper branch of the stable manifold
wraps around the spiral (in negative time). Note that the unstable manifold passes
on the outside of the stable manifold. In Fig. 3.8b, the stable and unstable manifolds
meet and form the homoclinic orbit at Iapp D IHc: For Iapp > IHc, the unstable
manifold passes inside the stable manifold and wraps around a stable limit cycle.
Thus, this model has a regime of bistability where there is a stable fixed point and
a stable periodic orbit. Unlike the bistability in the Hopf case, the stable limit cycle
does not surround the stable fixed point. In the Hopf case, an unstable periodic orbit
acted to separate the stable fixed point from the stable limit cycle. For the present
set of parameters, the stable manifold of the middle fixed point separates the two
stable states. To get onto the limit cycle, it is necessary to perturb the potential into
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the starred region in Fig. 3.8c. Consider a brief current pulse which perturbs the
voltage. If this pulse is weak, then the system returns to rest. If it is very strong and
passes the starred region, then the model will generate a single spike and return to
rest. However, for intermediate stimuli (like the baby bear’s porridge – just right),
the system will settle onto the stable limit cycle.

Finally, we look closely at the bifurcation diagram (Fig. 3.7b). Near Iapp D 37,
there are two stable fixed points as well as a stable limit cycle. Thus, the model is
actually “tristable.” The reader is urged to explore this aspect of the model more
carefully as an exercise.

3.4.4 Class I and Class II

The Morris–Lecar model illustrates several important features of neuronal firing.
Three different mechanisms for switching from rest to repetitive firing were illus-
trated. In particular, the most common mechanisms are through the Hopf and SNIC
bifurcations. In the 1940s, Hodgkin classified three types of axons according to
their properties. He called these classes I and II, with class III being somewhere
in-between the first two classes which we describe:

Class I. Axons have sharp thresholds, can have long latency to firing, and can
fire at arbitrarily low frequencies.

Class II. Axons have variable thresholds, short latency, and a positive minimal
frequency.

From this description, we can see that these two classes fall neatly into the dynamics
of the SNIC and the Hopf bifurcations, respectively. Rinzel and Ermentrout [230]
were the first to note this connection. Now there are many papers which classify
membrane properties as class I or class II and mean SNIC and Hopf bifurcation
dynamics, respectively.

Tateno et al. [259] have characterized regular spiking neurons (excitatory) and
fast spiking neurons (inhibitory) in rat somatosensory cortex using this classifica-
tion. (Note that many authors call the dynamics type I and type II instead of class I
and class II.) Figure 3.9 shows some properties of cortical neurons. Regular spiking
neurons appear to be class I; the minimal frequency is close to zero. Note that reg-
ular spiking neurons do not seem to have subthreshold oscillations (not shown). In
contrast, fast spiking neurons appear to be class II; they have a minimum frequency
of around 15 Hz. They also exhibit subthreshold oscillations. Near the critical cur-
rent, they seem to switch back and forth between rest and firing. This suggests
the possibility of a narrow range of bistability consistent with the subcritical Hopf
bifurcation.
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Fig. 3.9 Properties of regular spiking and fast spiking neurons in cortex. (a) Firing rate versus the
AMPA receptor-type conductance for regular spiking neurons. Each curve represents a different
level of GABA-type conductance. [Note that these cells have spike-frequency adaptation, so the
interspike interval is not constant. Thus, this shows the interspike interval after several spikes
as well as the steady state.] (b) Same as (a) for fast spiking neurons. (c) Mixture of spikes and
subthreshold oscillations near the critical current for fast spiking neurons. (From [259])

3.5 Bifurcation Analysis of the Hodgkin–Huxley Equations

We now consider the space-clamped Hodgkin–Huxley model (1.43). In Chap. 2, we
discussed the response to a brief current pulse. Figure 1.13 shows the effects of a
brief current pulse at amplitudes ranging from 1 to 5�A/cm2. There appears to be a
very sharp transition between an action potential and a minimal response. A constant
current can induce the membrane to oscillate repeatedly as seen in the right panel in
Fig. 1.13.

We can get a more global picture of the dynamics of the equations by looking at a
bifurcation diagram. Figure 3.10a shows the behavior of the voltage as a function of
the applied current, Iapp. Lines represent fixed points and circles represent periodic
orbits. The frequency of the oscillations is shown in Fig. 3.10c. The range is from
about 40 Hz to about 150 Hz.

Note that there is a unique equilibrium point for all Iapp. At Iapp � 10, the
resting state loses stability at a Hopf bifurcation. At a large value of Iapp � 154

there is another Hopf bifurcation. From the figure, it seems clear that the bifurcation
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Fig. 3.10 Bifurcation diagram for the Hodgkin–Huxley model. (a) V versus Iapp, the applied
current. (b) Expanded view of (a). (c) Frequency as a function of current. (d) .V; n/-phase plane
projection showing four different limit cycles

is subcritical at the low current and supercritical at the high current. At the lower
Hopf bifurcation, there is a subcritical branch of unstable periodic orbits. Hence, the
transition from resting behavior to oscillations is class II.

Figure 3.10b shows a blowup of the region near this Hopf bifurcation. Ev-
idently, there are values of Iapp near 7.88 where there are four different limit
cycles. Figure 3.10d shows the projection of these limit cycles in the .V; n/-plane.
Guckenheimer and Oliva [112] provide convincing numerical evidence for chaotic
behavior near this lower current value. The chaos that they compute is unstable, so
it will not be observed in simulations. For large values of current, the resting state
stabilizes again through a supercritical Hopf bifurcation.

The apparent fact that there is a unique equilibrium point for all Iapp has never
been rigorously proved for the Hodgkin–Huxley equations. At equilibrium, each of
the gating variablesm, n, and h can be written as a function of V , so we find

Iapp D NgL.V � EL/C NgNam
31.V /h1.V /.V �ENa/

C NgKn
41.V /.V �EK/ � F.V /: (3.3)
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The statement that there is a unique equilibrium is a statement that F.V / is
monotonic for all V . Since this monotonicity depends very much on the details
of the steady-state gate functions, it is not likely that any general theory of the
monotonicity of F exists. We leave it as an exercise to show that if jV j is large
enough, then there is a unique value of Iapp for which there exists an equilibrium.

If we assume the function F.V / is monotonic, then it is possible to rigorously
prove the existence of the two Hopf bifurcation points. Troy [272] proved under
fairly general assumptions that there are two values of Iapp at which the resting
state loses stability at a pair of imaginary eigenvalues. Thus, from the Hopf bifur-
cation theorem, he was able to conclude that there is a branch of periodic solutions
emerging from the fixed points. A rigorous proof of the direction of the bifurcation
remains an open question.

Troy’s proof relies on an analysis of the linearized equations and application of
Hurwitz’s criteria to the characteristic polynomial. We can sketch out some of the
details. Troy’s assumption that the functionF.V / is monotonic implies that for each
Iapp there is a unique V that satisfies (3.3). Furthermore, this implies that there are
never any zero eigenvalues of the linear system. The linearization about the fixed
point leads to a matrix with a very special form. It is zero except along the diagonal,
across the first row, and down the first column:

M D

0
BB@

�FV �Fm �Fh �Fn

�m01=�m ��=�m 0 0

�h01=�h 0 ��=�h 0

�n01=�n 0 0 ��=�n

1
CCA :

The characteristic polynomial for such matrices (which are called mammillary be-
cause they resemble a mammal with many suckling babies; here the voltage is the
mother and the gates are the babies) is easy to compute and the result is a fourth-
order polynomial of the form

PM .�/ D �4 C a3�
3 C a2�

2 C a1�C a0:

The coefficients are messy, but straightforward to compute. The Hopf bifurcation
occurs when there are purely imaginary roots. The Routh–Hurwitz criterion pro-
vides the simplest test for this condition (see the digression that follows). For a
fourth-order polynomial, there will be a Hopf bifurcation if a0 > 0, a3 > 0,
a3a2 � a1 > 0, and R � a3a2a1 � a2

1 � a2
3a0 vanishes. Thus, Troy used as-

sumptions for the shapes of the gating functions to prove there is a Hopf bifurcation
by showing that the quantity R changes sign.

Digression: The Routh–Hurwitz Criterion

Consider the polynomial

P.�/ D �n C an�1�
n�1 C � � � C a1�C a0: (3.4)
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The Routh–Hurwitz determinants provide a simple way to tell if the real parts of the
roots of P are negative. We define an D 1 and aj D 0 for j > n or for j < 0:

We will form a series of matrices containing the coefficients aj :

H1 D an�1;

H2 D
�
an�1 1

an�3 an�2

�
;

H3 D
2
4an�1 1 0

an�3 an�2 an�1

an�5 an�4 an�3

3
5 ;

and so on up to Hn. Each matrix is square and the first column contains every other
coefficient, an�1; an�3; : : :. The roots of P.�/ have negative real parts if and only
if det Hj > 0 for j D 1; : : : ; n. For example:

n D 1. a0 > 0

n D 2. a0 > 0 and a1 > 0

n D 3. a0 > 0, a2 > 0, a1a2 � a0 > 0

n D 4. a0 > 0, a3 > 0, a3a2 � a1 > 0, a3a2a1 � a2
1 � a2

3a0 > 0

We note the following:

� det Hn D a0det Hn�1, so this means a0 > 0 is necessary. If a0 D 0, then there
is a zero eigenvalue.

� If det Hn�1 D 0, a0 > 0, and detHj > 0 for j < n�1, then there are imaginary
roots.

These two criteria allow us to determine where possible saddle–node (eigenvalue 0)
and Hopf (imaginary eigenvalues) bifurcations occur.

End of digression

3.6 Reduction of the Hodgkin–Huxley Model
to a Two-Variable Model

We have seen that two-dimensional models, such as the Morris–Lecar equations,
exhibit many important features of the more complicated Hodgkin–Huxley equa-
tions. The Morris–Lecar equations generate action potentials, there is a threshold
for firing, and, depending on parameters, there are several mechanisms for the gen-
eration of oscillatory behavior. In this section, we shall describe two ways in which
dynamical systems methods can be used to formally reduce the four-dimensional
Hodgkin–Huxley model to a two-dimensional system of equations. Reduction meth-
ods will be very useful in later sections when we consider networks of neurons.

Rinzel [226] developed a simple method based on two observations. The first is
that �m.V /, the voltage-dependent time constant for the gating variablem, is much
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Fig. 3.11 Projection of limit cycles in Hodgkin–Huxley equations in the .n; h/-plane

smaller than both �h and �n. Because �m is small, m.t/ is very close to m1.V .t//.
If we replacem by m1.V / in the voltage equation, then this reduces the Hodgkin–
Huxley model by one equation. The second observation, first made by Krinskii and
Kokoz [164], is that .n.t/; h.t// lies nearly along a line n D b � rh, where b and r
are constants. Figure 3.11 shows these curves at three different currents. The slope
and the intercept depend somewhat on the current, but Rinzel ignored this. Hence,
we replace n by b � rh in the voltage equation and obtain the reduction to a two-
dimensional model. We leave the analysis of this model as an exercise.

A common method for comparing parameters which have different units is to
render the model in terms of dimensionless variables. Kepler et al. [150] described
a method for comparing the timescales of all the gating variables. Each voltage-
dependent gate x.t/ satisfies an equation of the form

x0 D .x1.V /� x/=�x.V /:

The functions x1.V / are monotonic, so they are invertible. Thus, Kepler et al. intro-
duced a new variable Vx for each gate, where x.t/ D x1.Vx.t//. They obtained an
equivalent dynamical system, but now every variable has the dimensions of voltage.
The equivalent potentials satisfy

dVx

dt
D x1.V /� x1.Vx/

�x.V /x01.Vx/
;

where x01.Vx/ is the derivative of x1 with respect to V: Now, we must simulate the
equations in these new variables and this allows us to compare the amplitudes and
the time courses of the responses of all the variables. Figure 3.12a shows a plot of
the equivalent potentials for the four-variable Hodgkin–Huxley equations. From the
figure, it looks as if Vm and V have roughly the same temporal dynamics, whereas
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Vh and Vn have similar time courses. Thus, we create a reduced model by setting
Vm D V and Vn D Vh. There are two possible reduced models: use the dynamics of
Vh and set n D n1.Vh/ or use the dynamics of Vn and set h D h1.Vn/: We leave
the latter case to the reader and consider the .V; Vh/ system.

The two-dimensional .V; Vh/ system has the following form:

cM
dV

dt
D Iapp � NgNam

31.V / Nh1.Vh/.V �ENa/

� NgKn
41.Vh/.V �EK/ � gL.V � EL/;

dVh

dt
D h1.V /� h1.Vh/

N�h.V; Vh/
;

where N�h is the effective time constant, �h.V /h
01.Vh/. Figure 3.12b shows the bi-

furcation diagram for the reduced system. It cannot have any more fixed points
than the full system since both have identical equilibria. There is a subcritical Hopf
bifurcation at roughly Iapp D 6:8 which is slightly lower than that for the orig-
inal Hodgkin–Huxley equations. What is strikingly different is that the reduced
model continues to oscillate at an extremely large applied current. The second
Hopf bifurcation does not occur until Iapp D 267, much higher than in the original
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Fig. 3.12 Equivalent potentials for the Hodgkin–Huxley model. (a) The voltages of the four vari-
ables. (b) Bifurcation diagram for the .V; Vh/ system, (c) Phase plane at rest. (d) Phase plane
showing how the fixed point moves to the middle branch as Iapp increases
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four-variable system. The phase plane is shown for Iapp D 0 in Fig. 3.12c. A con-
venient aspect of the equivalent potential method is that the Vh-nullcline is just
V D Vh. The V -nullcline has a cubic form which is typical in many neural models
and absolutely necessary to get oscillations.

3.7 FitzHugh–Nagumo Equations

The simplified .V; n/ version of the Hodgkin–Huxley equations and the Morris–
Lecar equations share a common feature insofar as their nullclines are concerned.
The V -nullcline has a cubic shape, whereas the recovery nullcline is a mono-
tonically increasing function of the voltage. In 1961, FitzHugh [89] developed a
simplified model which captures the essence of the cubic nature of the V -nullcline
and has many of the properties of the more complicated models that we have al-
ready discussed. Because of its pivotal importance in the literature (particularly, the
mathematical literature), we discuss it briefly at this point. We leave as an exercise
the numerical and qualitative analysis of these equations. The equations (called the
FHN equations) have the form

dV

dt
D V.V � a/.1 � V /� w C I; (3.5)

dw

dt
D �.V � �w/; (3.6)

where 0 < a < 1, � > 0, and � � 0: The actual model is based on a modification
of the van der Pol equation:

C
dV

dt
C F.V /C J D 0;

L
dJ

dt
D V:

The van der Pol equation arises from an electrical circuit with a linear capacitor,
linear inductor, and nonlinear resistor in parallel. C is the capacitance, L the induc-
tance, F.V / a nonlinear current depending on the voltage, V , across the capacitor,
and J the current through the inductor. By adding a driving current and the addi-
tional ��w, FitzHugh created a model for the action potential. At about the same
time, Nagumo and colleagues developed a similar model.

The FHN equations have been used to model many physiological systems from
nerve to heart to muscle and is a favorite model for the study of excitability. In most
applications, � is small, so the recovery variable is much slower than the voltage.
When I D 0 and � is small enough, there is a unique fixed point at the origin.
As I increases, this fixed point becomes unstable through a Hopf bifurcation and a
limit cycle emerges. We will provide an extensive exercise later for examining the
behavior of this popular and much studied model.
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3.8 Bibliography

An excellent reference for an introduction to dynamical systems is Strogatz [255].
More advanced textbooks include those of Guckenheimer and Holmes [111], Perko
[212], and Kuznetsov [167]. FitzHugh [89] was perhaps the first to use phase plane
analysis to study the Hodgkin–Huxley and reduced models. Much of the analysis in
this chapter builds on the paper by Rinzel and Ermentrout [230], who carefully de-
scribed geometric methods, including phase planes and bifurcation theory, applied
to reduced neuronal models. They also recognized the relationship between class I
and class II excitability and the geometric properties of different types of bifurca-
tions. Izhikevich [135] covers most of the material described in this chapter, but in
more detail.

3.9 Exercises

There are a number of exercises on simplified neural models which are popular
in the literature. Rather than discussing these in the text, we have chosen to leave
them as an extended set of exercises. In later chapters, we will refer to these models
and their properties. Thus, it would be a good idea to do those related to the leaky
integrate and fire and quadratic integrate and fire models.

1. Show that the gating functions used by Morris and Lecar are derived from the
Boltzmann model.

2. Near rest, the potential of the Morris–Lecar system can be approximated by its
linearization:

CM
dV

dt
D I.t/ � aCM.V � VR/;

where a is as computed above. Suppose I is a square pulse of current with
duration T and magnitude I0. Estimate the value of I0 needed to evoke an
action potential assuming that one will occur if V crosses Vt (see Fig. 3.3).
Sketch the critical value I0 as a function of T . This is called the strength–
duration curve. The minimum strength needed to elicit a response is called the
rheobase and the stimulus duration needed to elicit an action potential when the
stimulus is twice the strength of the rheobase is called the chronaxie. Compute
the rheobase and chronaxie using this estimate. Numerically determine them as
well.

3. Simulate the Morris–Lecar model with the homoclinic parameters and I D
36 corresponding the phase plane in Fig. 3.8c. (a) Starting at rest, give a 5-ms
current pulse sufficient to produce a single spike. Weaken the current pulse to
perturb the model to the stable limit cycle. (b) Set I D 38. This corresponds
to the vertical line in Fig. 3.7b where there is tristability. Starting at rest, is it
possible to inject a single pulse of current to get the system to go from the lower
resting state to the upper resting state? If not, figure out a stimulation sequence
that will let you go from rest to the upper state.
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4. Exploring the FHN model I. The fixed points of this model satisfy w D V=�

and I D V=� � V.V � a/.1� V / � h.V /: The latter is a cubic. It can have at
most three roots. Differentiating h.V / and setting this to zero allows us to find
local maxima and minima. (a) Find these as a function of a and �: Show that
� > 3=.1 � a C a2/ � ��.a/ for such extrema to exist. Next, set V to these
roots and use this to find values of I where there are saddle–node bifurcations.
This summarizes the steady-state behavior of the model. (b) Consider the case
when � < ��.a/ so that there is only a single root. Since there is one root,
there can be no bifurcation at a zero eigenvalue as I varies. Thus, the only way
to lose stability is a Hopf bifurcation. Show that the trace of the linearization is

T D �3V 2 C .2C a/V � a � �:

Show that there are two values of V such that the trace vanishes as long as
3� < a2 �aC1: These correspond to two distinct values of current (I D h.V /)
at which there is a Hopf bifurcation.

5. Exploring the FHN model II. (a) Choose � D 0:02, � D 1, and a D 0:1.
For I D 0 show that the system is excitable, that is, show that there is an
action potential if the voltage is taken sufficiently past threshold. (b) Compute
the bifurcation diagram and look at the frequency–current plot. Notice that the
bifurcation is nearly vertical. Compute several limit cycles along the nearly
vertical branch. Notice how they hug the middle branch of the nullcline. This is
an example of a phenomenon called a canard and is common in systems with a
small parameter (e.g., �).

6. The integrate and fire model. A classic approximation for the firing of a cell is
the leaky integrate and fire model [174]. This model has the form

�
dV

dt
D �.V � VR/CRMI; (3.7)

where RM is the membrane resistance, � the time constant, and VR the resting
potential. In addition to this linear equation, there is a nonlinear reset condition.
If V.t�/ D Vspike, then an action potential occurs and V.t/ is reset to Vreset:

In many cases, an additional condition is imposed in which V is prevented
from firing for a period, Tref, the “refractory” period. Assume VR < Vspike and
Vreset < Vspike. Find the critical value of I , Imin, under which the leaky integrate
and fire model fires repetitively. Compute the F –I curve; the firing rate as a
function of the applied current for I > Imin. Show that for large values of I ,
the firing rate is linear with respect to I when Tref D 0.

7. Spike response model. Consider the leaky integrate and fire model with a time-
dependent current, I.t/:

�
dV

dt
D I.t/ � V.t/ �A

X
j

ı.t � tj /;
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where A D �.Vspike � Vreset/: We have formally included the reset into the
equations by adding the delta function term. The values tj are the times for
which V.t/ crosses Vspike from below; that is, the spike times. Integrate this
equation to convert it to the following form:

V.t/ D V.0/e�t=� C
X

j

	.t � tj /C
Z t

0

k.t � s/I.s/ds;

where
	.t/ D H.t/.Vreset � Vspike/e�t=�

and

k.t/ D 1

�
e�t=� :

Here, H is the Heaviside step function. Gerstner et al. [99] considered classes
of models like this where 	 takes a more general form. These models are called
spike response models. For example, 	.t/ could include an additional spike
frequency adaptation term, for example,

	.t/ D H.t/Œk1e�t=� C k2e�t=�a �:

Unfortunately, once these extra terms are added, it becomes difficult to compute
even the steady-state firing rate. Later in the book, we will use this formula-
tion to compute the velocity of waves in networks of coupled integrate and fire
models.

8. In the Morris–Lecar model with class I dynamics (the SNIC), the potential near
the bifurcation satisfies the following differential equation:

dV

dt
D a.I � ISN/C b.V � VSN/

2; (3.8)

where a and b are positive numbers that can be determined from the actual
dynamics (see [167]). (What are the physical dimensions of a; b?) This is called
the quadratic integrate and fire model. (a) By integrating this equation, show
that V can go to infinity in finite time. When V.t/ goes to infinity, we say that
a spike has been generated. (b) Suppose I < ISN and find the fixed points
for this, Vrest and Vthr, corresponding to the stable and unstable fixed points,

Vr VspikeVthr < Vreset VspikeVr Vthr =Vreset
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respectively. Suppose V.0/ > Vthr: Compute the time to spiking as a function
of V.0/ � Vthr. (c) Show that if I > ISN, then V.t/ goes to infinity no matter
what the initial condition is. In particular, compute the time it takes to reach
infinity if V.0/ D �1. (d) Let

V.t/ D VSN C c

b
tan.
=2/:

where c�1 has dimensions of time. Show that 
.t/ satisfies

d


dt
D c.1 � cos 
/C ab

c
.1C cos 
/ŒI � ISN�: (3.9)

This is called the theta model. Ermentrout and Kopell [72] showed that this was
the normal form for a system near a saddle–node limit cycle bifurcation. Sketch
the phase line for this when I < ISN, I D ISN, and I > ISN. Compute the F –I
curve when c D 1.

9. A variant of the quadratic integrate and fire model truncates the spike and the
reset. [175] first suggested the model

�
dV

dt
D a.V � VR/.V � Vthr/CRMI (3.10)

with the condition that if V.t/ D Vspike > Vthr, then V.t/ is reset to Vreset:When
I D 0, Vr is the resting state and Vthr is the threshold. If V.0/ > Vthr, then the
model will spike. (a) Compute the F –I curve for this model. Note that it is
somewhat different from the quadratic integrate and fire in (3.8) owing to the
finite reset.
(b) Suppose Vreset > Vthr. Then, this model is bistable for I D 0 or I is
sufficiently small and has a fixed point near Vr and a periodic solution. As
Vreset ! V C

thr , the period goes to infinity and this model has the equivalent of
a homoclinic orbit. (see the diagram above.) Compute the period as a function
of Vreset � Vthr. (c) Now suppose VR < Vreset < Vthr. As I increases, either the
stable resting state will reach Vreset from below or the unstable fixed point will
reach Vreset from above and form a homoclinic. Find conditions for the latter
scenario and sketch the bifurcation diagram as I varies. Compare this with the
diagram for the Morris–Lecar model in parameter set 3. From this exercise, it
should be clear that the quadratic integrate and fire model has much richer dy-
namics than the leaky integrate and fire model precisely because it has a true
spiking threshold which is different from the value of the actual spike.

10. Karbowski and Kopell [145] introduced a linear model:

�
dV

dt
D RMI C ajV j; (3.11)
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where a > 0 is parameter. (a) Show that this is qualitatively like (3.10). How
does the firing rate scale near I D 0? (b) One can define a class of scalar neural
models by considering

�
dV

dt
D RMI C f .V /:

Suppose f .V / D jV jp, where p > 1. The model spikes when V.t/ reaches
infinity, in which case the neuron is reset to negative infinity. What is the fir-
ing rate of such a neuron for I large? That is, how does it scale with p? For
example, we know that when p D 2, the firing rate scales like the square root
of I:

11. A class of models related to the theta model are called ring models [75, 291].
These are models for excitable activity which lies on the unit circle:

dx

dt
D f .x/C I;

where f .xC2�/ D f .x/ is a bounded periodic function. For certain ranges of
I , the system has two fixed points: a saddle and a node. The saddle point acts
as a threshold. Since f .x/ is bounded, for I large enough, there are periodic
solutions to the equation and thus there is repetitive firing. Suppose f .x/ is
C 2Œ0; 2�/ and periodic. Write an expression for the period of the oscillations
when there is repetitive firing. Discuss the mechanism from going from a stable
resting state to repetitive firing. Can there ever be bistability?

12. Fourcaud et al. [91] introduced the exponential integrate and fire model:

C
dV

dt
D �gL.V � VL/C a exp.bV /C I:

x=1

y=1

(1,y)

(x,1)
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Set gL D 0 and assume a, b, and C are positive. Find an expression for the
firing rate as a function of I in terms of an integral. Show that if a and b
are positive, then for I large enough, the solution of the ordinary differential
equation blows up in finite time. Obtain an estimate for how fast it blows up by
ignoring the linear terms, gL.V �EL/: That is, the blowup time is roughly

Z 1

0

dV

I C a exp.bV /
:

Evaluate this as a function of I .
13. Period near a homoclinic. This is actually an exercise in dynamical systems,

but is instructive in that it shows the period of the homoclinic orbit. Assume
the origin is a saddle point with eigenvalues �� and 
, the y-axis is the stable
manifold, and the x-axis is the unstable manifold. Moreover, � > 
 > 0:

Consider a point .1; y/ on the little interval at x D 1: This is mapped onto the
little interval at y D 1, via .1; y/ ! .ay C b; 1/: The parameter a is positive
and will not really matter. The parameter b is the distance from the homoclinic
orbit. Note that if b D 0, then .1; 0/ ! .0; 1/ is the homoclinic orbit. Starting
at .x0; 1/, we follow the linear dynamics

x0 D 
xI y0 D ��y:

This maps the y D 1 interval onto the x D 1 interval. Thus, we obtain a map
from .1; yold/ ! .1; ynew/. (a) Show that the map of the y values is

ynew D .ayold C b/r ;

where r D �=
 > 1. For b sufficiently small, show that y D br C o.br/ is a
fixed point. Show that the fixed point is stable. (b) Since the map from x D 1

to y D 1 is instant, the period is the time it takes to go from y D 1 to x D 1:

Show that at the fixed point

T � �1



log b:

(Note: This relies on the fact that r > 1: If r < 1, then the fixed point will be
unstable and so the periodic orbit will also be unstable.)





Chapter 4
The Variety of Channels

We have discussed several types of active (voltage-gated) channels for specific
neuron models. The Hodgkin–Huxley model for the squid axon consisted of three
different ion channels: a passive leak, a transient sodium channel, and the delayed
rectifier potassium channel. Similarly, the Morris–Lecar model has a delayed recti-
fier and a simple calcium channel (with no dynamics). Hodgkin and Huxley were
smart and supremely lucky that they used the squid axon as a model to analyze the
action potential, as it turns out that most neurons have dozens of different ion chan-
nels. In this chapter, we briefly describe a number of them, provide some instances
of their formulas, and describe how they influence a cell’s firing properties. The
reader who is interested in finding out about other channels and other models for
the channels described here should consult http://senselab.med.yale.edu/modeldb/
default.asp, which is a database for neural models.

4.1 Overview

We briefly describe various ion channels in this section. Most of the voltage-gated
channels follow the usual formulation of the delayed rectifier, the calcium model,
and the transient sodium current we have already discussed. However, there are
several important channels which are gated by the internal calcium concentration,
so we will describe some simple models for intracellular calcium handling.

All of the channels that we describe below follow the classic Hodgkin–Huxley
formulation. The total current due to the channel is

Ichannel D mphqIdrive.V /;

where m and h are dynamic variables lying between 0 and 1, p and q are nonnega-
tive integers, and V is the membrane potential. Thus, the channel current is maximal
when m and h are both 1. By convention, h will generally inactivate (get smaller)
with higher potentials of the cell and m will activate. Not all channels have both
activation and inactivation. For example, the Hodgkin–Huxley potassium channel
and both the Morris–Lecar calcium and potassium channels have no inactivation.
The Hodgkin–Huxley sodium channel has both activation and inactivation.

G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neuroscience,
Interdisciplinary Applied Mathematics 35, DOI 10.1007/978-0-387-87708-2 4,
c� Springer Science+Business Media, LLC 2010
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The drive current generally takes two possible forms corresponding to the linear
model or the constant field model, respectively:

Ilin D gmax.V � Vrev/ (4.1)

and

Icfe D Pmax
z2F 2

RT
V

 
ŒC �in � ŒC �oute

�zVF
RT

1 � e
�zVF

RT

!
: (4.2)

The constant gmax has units of siemens per square centimeter and the constant Pmax

has units of centimeters per second, so the driving current has dimensions of am-
peres per square centimeter.

The gatesm and h generally satisfy equations of the form

dx

dt
D ax.1 � x/ � bxx

or
dx

dt
D .x1 � x/=�x;

where the quantities ax; bx; x1, and �x depend on voltage or some other quantities.
The functional forms of these equations often take one of the following three forms:

Fe.V; A;B; C / D Ae.V �B/=C ;

Fl.V; A;B; C / D A
.V � B/

1 � e.V �B/=C
;

Fh.V; A;B; C / D A=.1C e�.V �B/=C /:

Generally speaking, most of the voltage-gated ion channels can be fit with func-
tions of the form

x1.V / D 1

1C e.V �VT/=k
(4.3)

and

�x.V / D �min C �amp= cosh
V � Vmax

�
: (4.4)

4.2 Sodium Channels

Roughly speaking, there are two types of sodium currents: the transient or fast
sodium current and the persistent or slow sodium current. We have already described
the former when we discussed the Hodgkin–Huxley model. The fast sodium cur-
rent is found in the soma and axon hillocks of many neurons. The persistent (slow)
sodium current (which activates rapidly; the “slow” in its name refers to inactiva-
tion) has been implicated as underlying both subthreshold and suprathreshold firing
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in many neurons by adding a small depolarizing current which keeps them active.
The fast sodium current used in the Hodgkin–Huxley equations is not suitable for
neurons in the brains of mammal; instead, modelers often use a model that is due to
Roger Traub [269]. The equations for this channel and all others in this chapter can
be found online.

As an example of the utility of the persistent sodium channel we will introduce
a simple model of the pre-Bötzinger complex, a group of neurons responsible for
generating the respiratory pacemaker oscillations in the brainstem. (That is, these
are the cells that make us breathe.) Here, the persistent sodium channel and its inac-
tivation play a crucial role in generating the pacemaker potential for the oscillation
[55]. The model has the form

Cm
dV

dt
D �gL.V � EL/� gKn

4.V � EK/� gNam1.V /3.1 � n/.V � ENa/

�gNapw1.V /h.V �ENa/;

dn

dt
D .n1.V / � n/=�n.V /;

dh

dt
D .h1.V /� h/=�h.V /:

Note that for the fast sodium channel, the inactivation has been replaced by 1 � n

as in the Rinzel reduction of the Hodgkin–Huxley equations (see Sect. 3.6). The
variable h now corresponds to inactivation of the persistent sodium channel. The
key feature in this model is that the inactivation of the persistent sodium current
has a time constant of 10 s. Figure 4.1a shows a simulation of this model for 40 s.
The voltage oscillates at a period of about 6 s, which is commensurate with the 10-s
time constant for inactivation of the persistent sodium channel. In Chap. 5, we will
explore the role of the persistent sodium channel in producing the bursts. Here, we
restrict our discussion to the pacemaker duties of the persistent sodium channel.

Butera et al. [30,31] showed that one of the key parameters in inducing the burst-
ing is the leak potentialEL. IfEL D �65mV, then the system exhibits stable resting
behavior. By shifting this parameter from �65 to �60mV, they obtained the pattern
shown in Fig. 4.1a. If we block the transient sodium channel by setting gNa D 0,
then we can look at the bifurcation diagram of the “spikeless” model as a function
of EL. Figure 4.1b shows the voltage as a function of the leak current. There are
two Hopf bifurcations: a subcritical bifurcation at about �60mV and a supercritical
bifurcation at about �54mV. Thus, for a range of leak potentials there is a slow
pacemaker potential. We can further understand this by noting that the variable h is
much slower than .V; n/. If we set n D n1.V /, then this leads to a two-dimensional
system in .V; h/, the phase plane of which we show in Fig. 4.1c. At EL D �62mV,
there is a single stable fixed point. AsEL increases, the V -nullcline moves down and
intersects the h-nullcline in the middle branch. Since h is very slow, this leads to a
relaxation oscillation shown in the phase plane and in Fig. 4.1d. The period of the
pacemaker potential is about twice that of the full model (in Fig. 4.1a). This is be-
cause the spikes produced by the full model cause more inactivation of the persistent
sodium channel.
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Fig. 4.1 The persistent sodium channel provides the pacemaker current for the model pre-
Botzinger cell. (a) Potential with EL D �60mV for the full bursting model. (b) Bifurcation
diagram with the fast sodium channel blocked showing the onset of pacemaker oscillations at the
Hopf bifurcation. (c) Phase plane with n D n

1

.V / showing relaxation oscillation. (d) Potential
of the simple relaxation model

4.3 Calcium Channels

Calcium channels are quite similar to sodium channels in their form, function, and
dynamics. However, because the concentration of calcium in the cell is very low
(e.g., of the order of 10�8M), the small amount of calcium coming into the cell
from the channel opening can drastically alter the driving potential. Thus, many
modelers (but no theoreticians!) use the constant-field equation (CFE) (4.2) rather
than the simple ohmic drive (4.1). Using the CFE model requires an extra equation
for the intracellular calcium concentration, but this is often ignored. The CFE just
adds a nonlinearity to the current with little effect on the dynamics.

We can divide calcium channels into roughly two classes (although exper-
imentalists describe many more): (1) T-type calcium currents ICa;T, which are
low-threshold but inactivate, and (2) L-type calcium currents, ICa;L which have a
high threshold and do not inactivate. ICa;T is fast and both the activation and the
inactivation are voltage-dependent. This current is responsible for bursting in many
neurons, particularly in the thalamus, where it plays the dominant role in producing
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oscillatory activity during sleep [58,59]. ICa;L is responsible for spikes in some cells
(such as the Morris–Lecar model). It does, in fact, inactivate, but the inactivation is
calcium- rather than voltage-dependent.

The T-current has some interesting properties, such as the ability to produce re-
bound bursts and subthreshold oscillations. Let us see some of these features. We
will look at a simple model in which the spiking currents (sodium and potassium)
are blocked so that all that is left is the T-current and the leak:

C
dV

dt
D I0 � gL.V � EL/� IT; (4.5)

dh

dt
D .h1.V /� h/=�h.V /;

IT D m1.V /2hIcfe.V; ŒCa�o; ŒCa�i/;

m1.V / D 1=.1C exp.�.V C 59/=6:2//;

h1.V / D 1=.1C exp..V C 83/=4//;

�h.V / D 22:7C 0:27=.exp..V C 48/=4/C exp.�.V C 407/=50//:

To simplify the analysis of this model, we have set the activation variable m to its
steady state m1.V /. Full parameters for the model are given online. What sets the
behavior for this model is the resting potential. Various neural modulators (chemi-
cals which alter the behavior of neurons in a quasiconstant manner) set the resting
potential from either relatively depolarized at, say, �60mV to relatively hyperpo-
larized at �80mV. The inactivation h has a half-activation at �83mV in the present
model, so if the resting potential is �60mV, then h � 0: This means no amount
of depolarizing current can activate the current. In the sensory literature, when the
thalamic neurons are depolarized like this, the network is said to be in “relay” mode.
Inputs to the thalamus are transmitted as if the cell were just a nonlinear spiker like
we have already encountered. However, if the network is hyperpolarized, then inac-
tivation of the T-current, h, will be much larger and a subsequent stimulus will lead
to an explosive discharge of the neuron.

Suppose the leak is set so that the resting potential is around �60mV. Figure 4.2a
shows the response of the model to brief depolarizing and hyperpolarizing pulses.
At �60mV, the T-current is completely inactivated, so the response to depolarizing
pulses is the same as it would be if the current were not there. In this simplified
model, the result is a passive rise in voltage followed by a passive decay. However,
if the same membrane is provided with a brief and strong hyperpolarizing stimulus,
it responds with a calcium action potential when released from the stimulus. This
is called rebound and is a classic property of cells with a T-type calcium current.
Figure 4.2b provides a geometric explanation for rebound. At rest, the membrane
sits at the lower-right fixed point. At this point h � 0: A hyperpolarizing input
moves the V -nullcline upward; if the hyperpolarization is maintained, the tra-
jectory will move toward the new fixed point (upper-left circle.) If, instead, the
hyperpolarization is transient, then when the stimulus is removed, the V -nullcline
moves to its original position. Since h is slow compared with V , the potential will
rapidly move horizontally to reach the right branch of the V -nullcline, leading to
the calcium spike.
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Fig. 4.2 Properties of the T-type calcium current

In contrast, consider the system when the leak is �80mV. Then, the resting
state is about �78mV and the T-current inactivation, h, is no longer negligible.
Figure 4.2c shows that a small depolarizing input is now sufficient to elicit a cal-
cium action potential. Similarly, a small hyperpolarizing input will also result in
the firing of an action potential. Figure 4.2d provides an explanation for why depo-
larization will work in this case. Depolarizing lowers the V -nullcline, allowing the
trajectory to jump to the right branch of the nullcline and produce a spike.

The T-current also provides a mechanism for subthreshold calcium oscilla-
tions which can be pacemakers for bursting like the persistent sodium current. In
Exercise 2, you are asked to find these oscillations and give a geometric explanation
for them.

4.4 Voltage-Gated Potassium Channels

There is no doubt that the greatest variety of channels is found among those which
involve potassium. We have already seen the workhorse for spiking, the delayed
rectifier, in the Hodgkin–Huxley model, the Butera model of the pre-Botzinger
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complex, and the Morris–Lecar model. The delayed rectifier is rather fast and has
only an activation gate. Potassium channels provide the main repolarizing force for
nerve cells. If they are fast, then the cells are allowed to rapidly repolarize, so very
fast spike rates are possible. If they are slow, they cause the spike rate to slow down
with sustained depolarization, an important form of adaptation. In addition to the
voltage-gated potassium channels which we describe here, there are also calcium-
gated potassium channels which perform similar roles.

4.4.1 A-Current

The Hodgkin–Huxley model was based on a quantitative analysis of the squid axon.
In 1971, Connor and Stevens [45] introduced an alternative model for action po-
tentials in the axons of crab legs. The transient sodium current and the delayed
rectifier were similar to those in the Hodgkin–Huxley model although they were
faster. In addition, Connor and Stevens introduced a transient potassium current, the
A-current. Like the transient sodium current, this current has both an activation and
an inactivation gate:

IA D gAa
3b.V � EA/:

The reversal potentialEA is close to that of the delayed rectifier. The activation vari-
able a increases with voltage, whereas the inactivation variable b decreases; b1.V /
has a half-activation at about �78mV. (The full Connor–Stevens model is given on-
line.) One consequence of having this current is that it induces a delay to spiking
when the cell is relatively hyperpolarized. Intuitively, the reason for this is that when
the cell is somewhat hyperpolarized, b will be large. Depolarization engages a and
thus there will be a large potassium current. However, when the membrane is de-
polarized, b1.V / will be small, so b will decrease, leading to a gradual loss of the
A-current. The neuron will spike only when this current is sufficiently small. Thus,
the A-current causes a delay to spiking. Figure 4.3a shows an example of the delay
to spiking due to the A-current.

One of the most interesting dynamic consequences of the A-current in the
Conner–Stevens model is that it converts the transition to repetitive firing from class
II (like the Hodgkin–Huxley model) to class I. Recall that for a class II neuron, the
transition from resting behavior to oscillations is via a Hopf bifurcation; moreover,
the steady-state voltage–current (I–V) relationship is monotonic. For a class I neu-
ron, the transition to oscillations is via a saddle–node on an invariant circle (SNIC)
bifurcation and the I–V relationship is nonmonotonic.

The A-current provides a means to make the I–V relationship nonmonotonic
since the steady-state current,

IA;ss D gAa1.V /3b1.V /.V � EA/;
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Fig. 4.3 Connor–Stevens model. (a) Delay to spiking depends on the A-current. The dashed curve
shows gK D 27:7 and gA D 40, and the solid curve shows gK D 17:7 and gA D 50: (b) Steady-
state I–V curve with two different amounts of A-current. (c) Full bifurcation diagram for the
Connor–Stevens model with default parameters. (d) Frequency–current curve for the Connor–
Stevens model showing class I behavior

is nearly zero. Thus, if the majority of the potassium current is A-type rather than
the delayed rectifier current, then the steady-state I–V curve will be dominated by
the sodium current.

To explore this idea in more detail, we consider the Connor–Stevens model keep-
ing the maximal total potassium conductance constant: gA C gK D gtotal D 67:7.
The choice of 67.7 for the total is so that the Connor–Stevens model is our default,
gK D 20 and gA D 47:7: Figure 4.3b shows the steady-state I–V curve for the
standard Connor–Stevens parameters and also for when the A-current is reduced to
40 while the delayed rectifier is increased to 27.7. It is clear that the I–V curve is
monotonic with the reduced A-current, so class I (SNIC) dynamics is impossible.
Figure 4.3c shows the bifurcation diagram for the standard Connor–Stevens model
as current is injected. A branch of periodic orbits emerges at high applied currents at
a supercritical Hopf bifurcation (not shown). This branch terminates via a SNIC on
the steady-state I–V curve. The frequency is shown in Fig. 4.3d and as predicted by
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the general theory has a square-root shape and vanishes at the critical current. We
point out that the steady-state I–V curve in the standard parameter regime is not
a simple “cubic” as in the Morris–Lecar model. Rather, there are values of the ap-
plied current where there are five fixed points. Rush and Rinzel [239] were the first
to notice this. The phenomenon occurs over a very narrow range of values of gA.
In Exercise 5, you are asked to explore the behavior of the system with slightly
different values of gA.

4.4.2 M-Current

There are several slow potassium currents which are responsible for a phenomenon
known as spike-frequency adaptation. That is, this slow low-threshold outward
current gradually reduces the firing rate of a neuron which has been depolarized
sufficiently to cause repetitive firing. The M-current and related slow potassium
currents are able to stop neurons from firing if they are strong enough and thus can
provide an effective brake to runaway excitation in networks.

Figure 4.4 shows an example of spike-frequency adaptation in a simple cortical
neuron model due to Destexhe and ParKe [57]. The left-hand graphic shows the volt-
age as a function of time when the current is instantaneously increased to 6�A=cm2:

The initial interspike interval is short but over time this lengthens. Figure 4.4b shows
the instantaneous frequency (reciprocal of the initial interspike interval) as a func-
tion of the spike number. The frequency drops from 130 to 65 Hz over about 1 s.

The M-current does far more than just slow down the spike rate. Because it is
active at rest (the threshold is �30mV), the M-current can have profound effects
on the steady-state behavior. Figure 4.5a shows the bifurcation diagram of steady
states as the conductance of the M-current (gm) is increased. With no M-current,
the model has a SNIC bifurcation to a limit cycle, so it is a class I membrane. For
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Destexhe and ParKe [57] and represents a cortical pyramidal neuron. The applied current is
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larger values of gm (Destexhe and Paré used 2 < gm < 5) the resting state loses
stability at a Hopf bifurcation, so the membrane is class II. The transition from class
I to class II occurs for gm D 1 where the fold points (saddle–nodes) remain but the
lower branch of fixed points loses stability at a Hopf bifurcation. Figure 4.5b shows
a two-parameter bifurcation diagram of this system where the applied current and
gm vary. As gm increases, the two fold points merge at a cusp point (labeled C)
and for gm larger, there is only a single fixed point. Additionally, there is a curve
of Hopf points which terminates on the rightmost fold point at a Takens–Bogdanov
point. In some sense, the Takens–Bogdanov point marks the transition from class I
to class II excitability. The global picture is complex. For example, when gm D 0,
there is a single branch of periodic solutions terminating at the fold point via a
SNIC. However, when gm D 1, a branch of periodic solutions must bifurcate from
the Hopf point. This branch must somehow either merge with the SNIC branch or
disappear. The interested reader could attempt to put together a plausible global
picture as a project. (The reader could also consult [136], p 197.)

4.4.3 The Inward Rectifier

The inward rectifier is hyperpolarization-activated. That is, if the neuron is hyper-
polarized enough, the current is activated, further hyperpolarizing the model. This
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implies the possibility for bistability in the hyperpolarizing direction. The current
has the form

IKir D gKirh.V /.V � EK/;

where

h.V / D 1=.1C exp..V � Vth/=k//:

Typical values for the parameters are Vth D �85mV and k D 5mV. With a leak
current the steady-state current satisfies

I D gL.V �EL/C gKirh.V /.V � EK/:

Differentiating this equation, we obtain

dI

dV
D gL C gKirh.V /C gKirh

0.V /.V �EK/:

The first two terms are positive. However, if V > EK, then since h0.V / < 0, it is
possible that this last term can be large and negative enough so that the I–V curve
is cubic-like. Necessary conditions are that EK < Vth and k must be small enough.
Once there is bistability, it is possible to generate oscillations. Izhikevich [136]
points out that if you add a delayed rectifier potassium current, then it is possible
to generate oscillations with two potassium currents! Given the fact that this current
can induce bistability, this is not surprising. In Exercise 8, you can give this a try.
Another way to induce oscillations in this model is to assume there is extracellu-
lar potassium accumulation. This will result in the reversal potential for potassium
becoming more positive, inactivating the channel. Thus, there will be negative feed-
back to a bistable system and possibly oscillations; see Exercise 9.

4.5 Sag

We end our discussion of voltage-gated channels with a description of the so-
called sag current, Ih. This is a slow inward current with a reversal potential of
between �43 and 0 mV, but which requires hyperpolarization to become active; that
is, the activation curve decreases monotonically. The ions involved are a mixture
of sodium and potassium ions, so the reversal potential lies between that of sodium
and that of potassium. The sag current is implicated as a pacemaker in many dif-
ferent systems [158, 186]. It also plays an important role in dendritic computations
[203,277]. There are several models for this current; some have a single component
and others have multiple components. The simplest model is due to Huguenard and
McCormick [131]:

Ih D ghy.V C 43/; (4.6)



88 4 The Variety of Channels

Fig. 4.6 The sag (Ih) current
causes a slow repolarization
of the potential to
hyperpolarizing steps.
(Parameters are those from
McCormick et al. [131])
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dy

dt
D .y1.V /� y/=�y.V /;

y1.V / D 1=.1C exp..V � Vth/=k//;

�y.V / D �0sech..V � Vm/=b/:

The time constant �0 varies from 50 ms to over 1,000 ms. (Note that the function
�y.V / used by McCormick et al. is more complicated than the present version, but
they are almost identical in shape.) Figure 4.6 shows how the sag gets its name.
Hyperpolarizing the membrane causes the potential to drop and thus activates the
sag current, which then repolarizes the membrane. In Exercise 10, you combine this
current with IKir from Sect. 4.4.3 to obtain a slow pacemaker oscillation.

4.6 Currents and Ionic Concentrations

So far, we have assumed the ionic concentrations both inside and outside the cell
are held constant. This is usually a good assumption except for the calcium ion.
Because the internal free calcium levels are very low in a cell (10�4 mM), the en-
try of calcium through voltage-gated channels can substantially contribute to the
intracellular calcium. Indeed, calcium is a very important signaling molecule and it
often sets up complex reaction cascades within the cell. These reactions have both
long-term and short-term effects on the cell. Thus, it is useful to understand how
to model the flow of calcium due to voltage-gated channels. In certain pathological
cases, the buildup of extracellular potassium can also have profound effects on neu-
rons. Since the normal extracellular medium has quite a low level of potassium, if
many neurons are firing simultaneously, they are releasing large amounts of potas-
sium into the medium. The surrounding nonneural cells (glia) buffer the potassium
concentration, but this process can be slow.
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Consider a current due to some ionic species IX . Suppose this is a positive ion.
The current is typically measured in units of microamperes per square centimeter.
Recall that an ampere is a coulomb of charge per second. We need to convert this
current to a concentration flux which has dimensions of millimolar. Recall that 1 M
is 1 mol/L, or 1 mol per 1,000 cm3. Faraday’s constant, 96,485 C/mol, is just what
we need. Suppose the valance of the ion is z. Then, IX=.zF / gives us the transmem-
brane flux in units of micromolar per centimeter per second. To convert this into a
concentration flux, we suppose the ions collect in a thin layer of depth d (in microns)
near the surface of the cell. Thus, the change in concentration is IX=.zdF /: Finally,
we want our units of concentration to be in millimoles per liter per millisecond.
Noting that 1 L is 1,000 cm3, we find that the total in(out)flux of an ion is

fX D 10IX=.zFd/; (4.7)

whereF D 96;485; d is the depth in microns, and IX is the current in microamperes
per square centimeter.

Having defined the flux of ions moving through the cell, we need to write equa-
tions for the total concentration of the ion, X :

dX

dt
D ˙fX � ı.X/;

where ı.X/ is the decay of ion X through uptake or buffering. Which sign should
we take for the flux? If we are interested in the intracellular concentration, then we
take the negative sign and if we are interested in extracellular concentrations,
we take the positive sign. The simplest form for the decay is

ıP .X/ D .X �X0/=�;

which means in absence of the ionic current, X tends to X0: Another common
form is

ıM .X/ D K1X

Kh CX
;

which is a passive buffering model due to the reaction

X C B • XB �! B C Y;

where Y is the inactivated form of X . We finally note that the flux term fX can
have a factor multiplying it to account for buffering [84]. Thus, for intracellular ion
accumulation, we can write

dX

dt
D ��IX � ı.X/; (4.8)

where the parameter � takes into account the buffering and depth of the membrane
pool.
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The main ion of interest is calcium. Wang [282] used � D 0:002 �M
.ms�A/�1cm2 to produce a 200 nM influx of calcium per spike. This amount
is based on careful measurements reported in [120] in cortical pyramidal neurons.
Wang also used a simple decay for calcium, ı.X/ D X=� , where for the dendrite,
� D 80ms.

4.7 Calcium-Dependent Channels

The main reason to track calcium is that there are several important channels whose
behavior depends on the amount of intracellular calcium. The two most important
such channels are IK;Ca, the calcium-dependent potassium current, and Ican, the
calcium-dependent inward current. The former current appears in many neurons and
is responsible for slow afterhyperpolarizations (AHPs) and spike-frequency adapta-
tion. It is often referred to as the AHP current. The calcium-activated nonspecific
cation (CAN) current can last for many seconds and causes sustained depolariza-
tion. It has been implicated in graded persistent firing [64] and in the maintenance
of discharges by olfactory bulb granule cells [116]. To model these currents, we
need to keep track of the calcium. Thus, (1) there must be a source of calcium and
(2) we need to track it via (4.8).

4.7.1 Calcium Dependent Potassium: The Afterhyperpolarization

A typical model for IK;Ca is due to Destexhe et al. [61]:

IK;Ca D gK;Cam
2.V �EK/; (4.9)

dm

dt
D .m1.c/ �m/=�m.c/; (4.10)

m1.c/ D c2

K2 C c2
; (4.11)

�m.c/ D max.�min; �0=.1C .c=K/2//: (4.12)

Typically, K D 0.025 mM, �min D 0:1ms, and �0 varies. In [61] �0 was around
40 ms, but values as high as 400 ms can be found in the literature. A simple way to
incorporate this model into one which has a calcium channel is to assume it depends
instantly on the calcium concentration,

m D m1.c/;

so to incorporate this current into a spiking model one need only add an instan-
taneous calcium channel (if one is not present), the calcium dynamics, and the



4.7 Calcium-Dependent Channels 91

gAHP=0

gAHP=2

0 200 400 600 800 1000

V

a b

fr
eq

ue
nc

y

−80

−60

−40

−20

0

20

40

0
50

100
150
200
250
300
350
400
450
500

0 5 10 15 20 25 30
time (msec) current

Fig. 4.7 Calcium-dependent potassium channel. (a) Spike-frequency adaptation showing decrease
in frequency over time. (b) Steady-state firing rate with and without adaptation

instantaneous AHP current. As with all the models, the equations for this are found
online. Figure 4.7a shows the behavior of the firing rate over time when this cur-
rent is added to the Morris–Lecar model. The onset of spiking is unaffected by the
presence of this current because it turns on only when the cell is spiking (and cal-
cium enters the cell). Thus, unlike the M-current, the AHP current cannot alter the
stability of the resting state.

One very interesting effect of the AHP is shown in Fig. 4.7b. It is not surprising
that the AHP current lowers the frequency–current curve. However, it also tends to
make the curve more linear. This point was first described in [282] for a model simi-
lar to that depicted above. We now attempt to explain the origin of this linearization
effect [68]. We will first formulate this problem rather abstractly and then consider
a full biophysical model.

Suppose the unadapted neuron is able to fire at arbitrarily low rates and that the
derivative of the firing rate function tends to infinity as the threshold for firing is
approached. Let z be the degree of adaptation in the model and suppose z D f̨ ,
where f is the firing rate. The adaptation acts negatively on the total current injected
into the neuron; thus,

f .I / D F.I � gz/;

where F.I / is the unadapted firing rate function and g is some constant. Since
z D f̨ , this leads us to

f .I / D F.I � g f̨ /: (4.13)

Differentiating this with respect to I and rearranging, we obtain

df

dI
D F 0.I � ˛gf /

1C ˛gF 0.I � ˛gf /
:

For large F 0, we see that
df

dI
� 1

˛g
;
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showing that it is approximately linear. If we suppose F.I / D A
p
I so that the

neuron has a class I firing rate curve, we can exactly solve for f :

f .I / D �� C
p
�2 C A2I ; (4.14)

where � D A2˛g=2: For small I , the prominent nonlinearity in the firing rate curve
disappears and the slope at the origin of the firing rate curve is finite. Thus, for
currents near threshold, the firing rate is nearly linear.

What does this simple calculation have to do with the full biophysical model?
We can exploit the slow dynamics of adaptation to justify (4.13). For simplicity, we
assume the conductance of the adaptation is linear rather than the nonlinear model
we used as an illustration. Consider

C
dV

dt
D I � Ifast � gz.V �EK/; (4.15)

dz

dt
D �Œq.V /.1 � z/� z�: (4.16)

Here, Ifast represents all the “fast” currents which are responsible for spiking. There
are three keys to the analysis: (1) � is very small; (2) the fast system has class I
dynamics; (3) the width of the spikes does not change very much as a function of
the firing rate. Figure 4.7b shows that the present model is class I. The interested
reader can verify that the spike width is nearly independent of the frequency. Fi-
nally, we have chosen the calcium time constant to be 300 ms, which is at least an
order of magnitude slower than any of the other dynamics. (We remark that the cal-
culations that follow will be often used to justify the simplified firing rate dynamics
of biophysical models in Chap. 11.)

4.7.1.1 Slow–Fast Analysis

Since � is small, we can treat z as a constant as far as the dynamics of the fast
variables is concerned. Thus, we can examine (4.15) using I and z as parameters.
Since gz.V �EK/ is essentially a constant hyperpolarizing current (when z is fixed),
we expect that if we inject enough current into the cell, it will fire. We also expect
that the onset of firing will be a SNIC at some critical current, ISN.z/, depending
on z: A numerical analysis of the model illustrated in Fig. 4.7 shows that

ISN.z/ � I0 C gI1z:

Recall that the firing rate of class I neurons is (at least near the bifurcation) a square-
root function of the distance from the saddle–node:

f .I; z/ D A
p
I � ISN.z/ � A

p
I � I0 � gI1z: (4.17)
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Thus, if I < ISN, then the neuron does not fire and if I > ISN, the neuron fires
at a rate dependent on the distance from the saddle–node. Note that the function f
need not be exactly a square root. However, we do assume it depends only on the
distance from the saddle–node and that the saddle–node value is a linear function
of the degree of adaptation. Now we turn to the slow equation (4.16). We assume
the function q.V / is such that if the neuron does not fire an action potential, then
q.V / D 0: Thus, at rest, q D 0 and z D 0: Since the adaptation in this section
is high-threshold, the subthreshold membrane behavior will have no effect on the
degree of adaptation. Now, suppose the neuron is firing with period T . Then (4.16)
is a scalar periodically driven equation:

dz

dt
D �Œq.V .t//.1 � z/� z�:

Since � is small, we can use the method of averaging [111] and replace z by its
average Z:

dZ

dt
D � < q > .1 �Z/�Z;

where

< q >D 1

T

Z T

0

q.V .t// dt:

Now, we invoke the hypothesis that the spike width is independent of the frequency.
Since q.V / is zero except during a spike and the spike width is independent of the
frequency, the above integral simplifies to

< q >D c

T
:

Here, c is the integral of q.V .t//, a frequency-independent constant. But 1=T is just
the frequency and this is given by (4.17). Thus, we obtain a closed equation for the
degree of adaptation:

dZ

dt
D �

h
cA
p
I � I0 � I1Z.1 �Z/ �Z

i
: (4.18)

The steady states for this equation will yield the steady-state F –I curve. However,
one has to solve a cubic equation to get the steady states, so it is not analytically
tractable (but see Exercise 11).

4.7.2 Calcium-Activated Nonspecific Cation Current

The CAN channel is similar in many ways to the AHP except that it produces an
inward (depolarizing) current which can make the neuron fire quite actively. The
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CAN current can be modeled very much like the AHP, so we model the CAN current
simply as

ICAN D gCANm
p
CAN.V �ECAN/:

The gatemCAN obeys dynamics much like that of the AHP:

dmCAN

dt
D .q.c/.1 �mCAN/�mCAN/=�CAN;

where q.c/ is some monotonic function of the calcium. The reversal potential,
ECAN, ranges from �20mV to near the calcium reversal potential. Typically, q.c/ D
˛.c=c0/

2: The CAN current has been implicated in sustained firing of many neu-
rons, notably those in the entorhinal cortex [64]. A simple illustration of sustained
firing due to the CAN current is shown in Fig. 4.8. We use the Destexhe–Paré spik-
ing model for the generation of action potentials and add a small amount of the CAN
current:

ICan D gcanmc.V C 20/;

where
dmc

dt
D 0:005ŒCa�2.1 �mc/ �mc=3000:

Since the spiking model does not have any calcium channels, we suppose the synap-
tic stimulation of the model produces a square pulse of calcium of width 50 ms and
magnitude 1 mM (see Chap. 6). The results of three pulses at t D 200; 700; 1200

shows the long-lasting graded persistent activity. (This model is quite naive and
cannot maintain the firing rate since the CAN current eventually decays. One way
to rectify this is to have calcium channels in the model for spiking which will then
provide positive feedback. Problems related to this are explored below in one of the
exercises/projects.)
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Fig. 4.8 The calcium-activated nonspecific cation (CAN) current can explain long-lasting persis-
tent activity. (a) The voltage of a spiking model with three calcium stimuli. (b) The gate for the
CAN current
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4.8 Bibliography

There are thousands of papers in the neurophysiology literature that describe spe-
cific computational models for the channels here as well as dozens of other channels.
A good place to start is the book by Huguenard and McCormick [131]. Biophysical
intuition on what many of these channels do to the firing of the neuron is provided in
[140]. The ModelDB Web page (http://senselab.med.yale.edu/senselab/ModelDB/
default.asp) can be searched by specific current and contains hundreds of models.
Most of the models are in the scripting language NEURON [33]. Equations for all
of rechannels in this chapter and all of reexercises can be found online.

4.9 Exercises

1. On the basis of what you have seen in the Morris–Lecar system, one might
guess that there is the possibility of getting oscillations in the Butera model
when the fast sodium channel is blocked and the inactivation of the persistent
sodium channel is held constant (that is, dh=dt D 0). Thus, the model could be
reduced to a planar system in V; n:

Cm
dV

dt
D �gL.V � EL/ � gKn

4.V �EK/ � gNaPw1.V /h.V � ENa/;

dn

dt
D .n1.V / � n/=�n.V /:

Compute the bifurcation diagram of this using h as a parameter at a variety of
different values of EL: Conclude that there can be no oscillations for this. How
would you change the shape of n1.V / to generate oscillations in this model?

2. Compute the bifurcation diagram of the T-current model usingEL as a parame-
ter starting it at �60mV and decreasing it to �85mV. Simulate the model when
there are calcium oscillations.

3. Add sodium and potassium currents to the T-current model using the equations
online for cat-spike.ode. Show that when the resting potential is depolar-
ized (EL D �65), the application of sufficient depolarizing current leads to a
train of action potentials. Show the analogues of Fig. 4.2a and c for the spiking
model.

4. The T-type calcium current was shown to be capable of oscillations and rebound
depending on the leak current. Explore the L-type calcium current, which has
calcium-dependent inactivation. The model equations for this are given online.
The activation is set to its steady state so that the resulting model is planar.
Explore the bifurcation to periodic solutions as a function of the applied current.
Compute the bifurcation diagram as I0, the applied current, is increased.

5. The Connor–Stevens model has its parameters balanced at a nearly critical
value in that there are many complicated bifurcations which can occur nearby.

(http://senselab.med.yale.edu/senselab/ModelDB/default.asp)
(http://senselab.med.yale.edu/senselab/ModelDB/default.asp)
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This has not been systematically explored, although Rush and Rinzel mentioned
the unusual behavior. Use the Connor–Stevens model in which the A-current
and delayed rectifier current are balanced so that their total maximal conduc-
tance is fixed. (That is, let gK D 67:7 � gA in the Connor–Stevens model.)
The standard values are gA D 47:7 and gK D 20: (a) Change the model so
that gA D 48:7 and gK D 19: Compute the bifurcation diagram and show that
there are at most three fixed points. (b) Change gA D 47:4 and gK D 20:3:

Compute the bifurcation diagram as a function of the current. Show that there
is a small range of currents where there are two stable fixed points. Now, use
the parameters gA and I0 to create a two-parameter diagram of fold points and
Hopf points. You should find something that looks like the left figure below.
There are three cusp points corresponding to the coalescence of fold points.
There is also a curve of Hopf points which terminates on one to the folds at
a Takens–Bogdanov point. An expanded view is shown on the right. Thus, the
standard parameters for the Connor–Stevens model are quite weird!
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6. Compute the F –I curve for the Destexhe–Paré model with gm D 0 and with
gm D 5 and compare the two.

7. Create a figure like Fig. 4.4b for the Destexhe–Paré model (I D 6, gm D 2)
and try to fit the data to a function of the form

F D Fss C .Finst � Fss/	
n�1;

where Fss is the steady-state firing rate, Finst is the instantaneous rate, 	 is a
parameter, and n is the initial interspike interval number. The parameters Fss

and Finst characterize the degree of adaptation and the parameter	 characterizes
the timescale of adaptation.

8. Make a neural oscillator using the inward rectifier and a delayed rectifier model
of the form

IK D gKn
4.V � EK/;

where
dn

dt
D .1=.1C exp.�.V � a/=b//� n/=�:



4.9 Exercises 97

You should try to pick a, b, and � so that the model oscillates. Do not worry if
the choices of a are quite low values. Use gKir D 0:5, EK D �90, EL D 60,
gL D 0:05, and Vth; k as in the text.

9. Inward rectifier and potassium accumulation. Let

IK D gKm1.V /.V � EK/;

where
m1.V / D 1=Œ1C exp..V C 71/=0:8/�

and
EK D 85 log10Kout:

Consider the model with external potassium accumulation with passive uptake:

C
dV

dt
D I � gL.V � EL/ � IK;

�
dKout

dt
D ˛IK CK0 �Kout;

where K0 D 0:1, ˛ D 0:2, gL D 0:1, and gK D 0:1 Sketch the phase plane
for various hyperpolarizing currents. Show that if you choose I in some small
range and � to be sufficiently large, you will obtain oscillations in the poten-
tial. (Hint: Show that the V -nullcline can be cubic and that it can intersect the
Kout-nullcline in the middle branch. Then, increase � until this fixed point is
unstable.)

10. Consider a combination of the sag current and the inward rectifier. Parameters
should be taken from the model online. Draw the phase plane and integrate
the equations. Change the sag model from the McCormick parameters to the
Migliore parameters. Does the model still generate subthreshold oscillations?
Compute the bifurcation diagram for the model using I as a parameter. How is
the oscillation born and how does it die?

11. Suppose Z is small in (4.18) so that the equation is well approximated by

dZ

dt
D �ŒcA

p
I � I0 � gI1Z �Z�:

Find the steady states of Z and obtain the F –I curve from this.
12. Repeat the calculations for the slow-adaptation model by explicitly computing

the averaged quantities for the theta model:

d


dt
D 1 � cos 
 C .1C cos 
/ŒI � gz�;

dz

dt
D �Œı.
 � �/ � z�:

The right-hand side of z says that each time 
 crosses � , z is increased by an
amount �. Numerically compute the F –I curve for this model with different
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values of g (say, 0, 1, 5). Since the firing rate of the unadapted theta model is
known exactly (see Exercise 8, Chap. 3.), you should try to fit the numerically
computed F –I curves to (4.14).

13. A model related to that in the previous exercise adds spike adaptation to the
quadratic integrate-and-fire model. The simplest form of this model is

V 0 D I C V 2 � u; (4.19)

u0 D a.bV � u/;

along with reset conditions such that when V D Vspike, V is reset to c and u is
increased by d . By rescaling V , you can set Vspike D 1with no loss in generality.
(Do this.) The variable u plays several roles in this model. If a D 0, then it can
have no effect on the local behavior of the rest point. However, if a ¤ 0, the
adaptation can change the stability of rest. Touboul [268] provided a complete
analysis of this model as well as generalizations to other nonlinearities.

(a) Suppose there is a resting state, . NV ; Nu/: Linearize about the resting state
and find the parameters .a; b; I / where there is a saddle–node bifurcation,
a Hopf bifurcation, and where the two bifurcations merge at a Takens–
Bogdanov point. This is not surprising as the next part of this exercise will
show.

(b) The Takens–Bogdanov bifurcation occurs when there is a double-zero
eigenvalue which has geometric multiplicity 1. The Takens normal form
for this bifurcation takes the form

dw

dt
D z C ˇw C w2;

dz

dt
D ˛ C w2:

Let r D w � z and write equations for the new .r;w/ system. Next, let

x D w C ˇ C 1

2
;

z D r

ˇ C 1
C ˛ C .ˇ C 1/2=2

ˇ C 1
;

yielding

dx

dt
D �.ˇ C 1/z C x2 C k;

dy

dt
D x � y;

where
k D ˛ C .ˇ C 1/2=4:

Thus, the local dynamics of the quadratic integrate-and-fire model with
spike adaptation is the same as that of the normal form. Note that we can
get rid of the parameter a by rescaling time and V; z in (4.19). You should
attempt this.

(c) The F –I curve of this model cannot be analytically derived even when a D
0; nor can we use AUTO or other bifurcation tools to obtain the F –I curve
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since the reset condition makes the equations discontinuous. However, we
can pose this as a boundary value problem which is smooth and so can be
computed with AUTO. We suppose there is a repetitively firing solution
with period P . This means V.0/ D c and V.P / D 1: Thus, the boundary
conditions for V are specified. We also require that u.0/ D u.P /Cd since u
is increased whenever V crosses 1. Since the period is unknown, we rescale
time, t D Ps, and thus have the following equations:

V 0 D P.V 2 C I � u/;

u0 D Pa.bV � u/;

V .0/ D c;

V .1/ D 1;

u.0/ D u.1/C d:

There are three boundary conditions, but only two differential equations.
However, there is a free parameter P which can allow us to solve the equa-
tions. For example, take .a; b; c; d / D .0:1; 1;�0:25; 0:5/ and I D 1 and
you will find a repetitive spiking solution with u.0/ D 1:211 and period
P D 5:6488: Try this, and then use AUTO or some other method to com-
pute the F –I curve. The analysis of the resting state that you did above
should tell you the lowest possible current for repetitive firing.

14. Izhikevich [134] adapted the quadratic integrate-and-fire model with linear
adaptation (4.19) to look more like a biophysical model. The model has four
free parameters as well as the current. The equations are

dV

dt
D 0:04V 2 C 5V C 140C I � u; (4.20)

du

dt
D a.bV � u/

along with the reset conditions if V D 30 then V D c and u D u C d: Find
a change of variables which converts (4.20) to (4.19). Izhikevich suggested
the following sets of parameters .a; b; c; d; I / for various types of neurons.
Try these and classify the behavior: (0.02,0.2,�65,6,14), (0.02,0.2,�50,2,15),
(0.01,0.2,�65,8,30), (0.2,0.26,�65,0), and let I vary in this example. For each
of these, start with I D 0 and then increase I to the suggested value. Can you
derive a method for numerically following a bursting solution as a function of
some parameter? (It is likely you will have to fix the number of spikes in a
burst.)

15. Sakaguchi and Tobiishi [240] devised a simple model for a one-variable burst-
ing neuron. The equation is as follows:

C
dV

dt
D ˛.V0 � V CDH.V � VT//; (4.21)
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where H.X/ is the step function. There are two reset conditions. If V crosses
VT from below, then V is boosted to V1. If V crosses VT 2 from above, V is
reset to V2: Sakaguchi used ˛ D 0:035, C D 2, V0 D 30, D D 5, VT D �35,
V1 D 50, V2 D �50, and VT 2 D 40: Compute the period of the Sakaguchi
burster for these parameters. What are the conditions on the various resets and
thresholds for this model to have sustained periodic behavior?

4.10 Projects

In this section, we lay out some projects that could be used in a classroom setting.

1. Artificial respiration. The Hering–Breuer reflex is a phenomenon through which
it has been shown that mechanical deformation of the lungs can entrain the res-
piratory pattern generator. Use the full Butera model as your simple pacemaker.
This pacemaker provides the motor output for the inspiratory phase of breathing.
The ventilator provides both inflation and deflation. Inflation is known to inhibit
the motoneuron pools for inspiration, so assume the ventilator provides periodic
inhibitory input. Explore the range of frequencies and patterns of entrainment
and the conditions under which there is 1:1 locking.

2. Calcium feedback and bistability. Consider a spiking model

C
dV

dt
D �IL � INa � IKdr � ICa � ICan C I.t/;

where you can use the Destexhe–Paré model of the leak, sodium, and potassium
currents. Choose a very small instantaneous high-threshold calcium current as
was done for the calcium-dependent potassium current. Add calcium dynamics
and a CAN current. Try to adjust the parameters so that a sufficient stimulus
generates sustained firing. If you give a very strong stimulus, you should be able
to get more calcium into the system and thus increase the CAN current. This
may lead you to believe that you can get graded persistent firing. But simulations
should convince you that the best you can get is bistability. Can you design a
model (even an abstract one) which has many fixed points and thus admits a
variety of steady-state firing rates? (Hint: See [93, 184, 260].)

3. Bifurcation analysis of the adaptive exponential integrate-and-fire model (aEIF).
Brette and Gerstner [22] proposed the following simple two-variable integrate-
and-fire model

C
dV

dt
D I � gL.V � EL/C gL�Te.V �VT/=�T � w;

�w
dw

dt
D a.V � EL/� w
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with the provision that when V.t/ D 20, it is reset to Vr and w is increased
by an amount b. A lengthy project would be to study the local behavior of this
model using combined analytical and computational methods. For example, find
the saddle–node and Hopf bifurcations. Brette and Gerstner fit this model to a
detailed biophysical model with parameters C D 281 pF, gL D 20 nS, EL D
�70:6mV, VT D �50:4mV, �T D 2mV, �w D 144ms, a D 4 nS, and b D
0:0805nA. Note the units, w is a current and V is a voltage. The time constant of
the cell at rest is roughly 9 ms.





Chapter 5
Bursting Oscillations

5.1 Introduction to Bursting

Many neurons exhibit much more complicated firing patterns than simple repetitive
firing. A common mode of firing in many neurons and other excitable cells is burst-
ing oscillations. This is characterized by a silent phase of near-steady-state resting
behavior alternating with an active phase of rapid, spikelike oscillations. Examples
of bursting behavior are shown in Fig. 5.1. Note that bursting arises in neuronal
structures throughout the central nervous system. Bursting activity in certain thala-
mic cells, for example, is implicated in the generation of sleep rhythms, whereas
patients with parkinsonian tremor exhibit increased bursting activity in neurons
within the basal ganglia. Cells involved in the generation of respiratory rhythms
within the pre-Botzinger complex also display bursting oscillations.

At least two biophysical mechanisms are required to produce bursting: a mecha-
nism responsible for the generation of spiking and a separate mechanism underlying
the slow modulation, responsible for the switch between the silent and active phases.
The spikes are action potentials and typically arise from interactions between an
inward sodium current and an outward potassium current. To generate the slow
modulation, there must be another process that slowly builds up (or possibly de-
cays) during the spiking phase and then decays (builds up) during the silent phase.
This process typically involves an ionic current which either activates or inactivates
at a rate slower than the other currents.

A classic example of an ionic current underlying the slow modulation is the
calcium-dependent potassium current IKCa. Calcium enters the cell during the active
spiking phase and this leads to activation of the IKCa current. Once this outward cur-
rent is sufficiently large, the cell can no longer sustain spiking activity and the active
phase terminates. During the silent phase, calcium leaves the cell and calcium-
dependent potassium channels close. Spiking resumes once IKCa is sufficiently
small. This is just one of many mechanisms that may underlie the slow modula-
tion. In this example, an outward current slowly activates, because of the buildup
of calcium, and this eventually terminates the spiking phase. Another possibility is
that an inward current slowly inactivates, thereby weakening spiking activity. An
example of such a current is the persistent sodium current INaP and this mechanism
underlies bursting in models for cells in the pre-Botzinger complex.

G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neuroscience,
Interdisciplinary Applied Mathematics 35, DOI 10.1007/978-0-387-87708-2 5,
c� Springer Science+Business Media, LLC 2010

103



104 5 Bursting Oscillations

Fig. 5.1 Bursting patterns seen in different neurons. (From Wang and Rinzel [285])

The examples shown in Fig. 5.1 demonstrate that the firing properties of bursting
cells may be quite different. There has been considerable effort to classify mech-
anisms underlying bursting oscillations. Mathematical classifications have been in
terms of geometric properties of the corresponding phase-space dynamics. Note that
bursting cannot happen in a two-variable model such as the Morris–Lecar equations.
This is because each spike corresponds to a loop in phase space and trajectories can-
not cross each other in a two-dimensional phase plane. Hence, a minimal model for
bursting must include at least three dependent variables.
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Models for bursting typically involve multiple timescales and can often be
written as

dx

dt
D f .x; y/;

dy

dt
D �g.x; y/; (5.1)

where � > 0 is a small singular parameter. Here, x 2 Rn are fast variables respon-
sible for spike generation and y 2 Rm are slow variables responsible for the slow
modulation of silent and active phases. Note that if � D 0, then y is constant. We
denote the first equation in (5.1), with y is constant, as the fast subsystem. During
the silent phase, a bursting trajectory passes near a manifold of fixed points of the
fast subsystem, whereas during the active phase of repetitive spikes the trajectory
passes near a manifold of periodic solutions of the fast subsystem. The slow pro-
cesses modulate the fast dynamics between these two phases. Different classes of
bursting oscillations are distinguished by the mechanisms by which the bursting tra-
jectory switches between the silent and active phases. This is closely related to the
global bifurcation structure of the fast subsystem with the slow variables treated as
parameters.

Models for bursting may exhibit other types of oscillatory activity, as well as
more exotic behavior, including chaotic dynamics. Geometric dynamical systems
methods are extremely useful in determining what sorts of solutions may arise and
how the solutions depend on parameters. The models contain multiple timescales
and this often leads to very interesting issues related to the theory of singular per-
turbations. Transitions from one type of behavior to another usually involve global
bifurcations. Homoclinic orbits, for example, often play an important role in the gen-
eration of bursting activity: the active phase of rapid oscillations may either begin
or end (or both) as the bursting trajectory crosses near a homoclinic point in phase
space. At these points, standard singular perturbation methods may break down, so
more delicate analysis is required.

5.2 Square-Wave Bursters

Perhaps the best-studied form of bursting is so-called square-wave bursting. This
class of bursting was first considered in models for electrical activity in pancre-
atic “ cells; these play an important role in the release of insulin. Another example
of square-wave bursters is respiratory generating neurons within the pre-Botzinger
complex.

An example of a square-wave burster is shown in Fig. 5.2. Note that the active
phase of repetitive firing occurs at membrane potentials considerably more depolar-
ized than during the silent phase. Another feature of square-wave bursting is that the
frequency of spiking slows down during the active phase. These firing properties
reflect geometric properties of the trajectory in phase space corresponding to the
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Fig. 5.2 Square-wave bursting. Note that the active phase of repetitive firing is at membrane
potentials more depolarized than during the silent phase. Moreover, the frequency of spiking slows
down at the end of the active phase

bursting solution. In fact, it is these geometric properties which uniquely
characterize square-wave bursters and distinguish them from other classes of
bursters.

We have already noted that bursting cannot arise in two-variable models. There is
simply not enough room in a two-dimensional phase plane to generate the repetitive
spiking. However, it is rather simple to generate bursting activity if we periodically
drive a two-variable model. Consider, for example, the Morris–Lecar equations (3.1)
with parameters given in Table 3.1 for the homoclinic regime. The bifurcation dia-
gram, with bifurcation parameter Iapp, is shown in Fig. 5.3. The set of fixed points
forms an S-shaped curve. There is a branch of periodic orbits which originates at a
subcritical Hopf bifurcation along the upper branch of fixed points and terminates
at an orbit homoclinic to the middle branch of fixed points. (The fact that the Hopf
bifurcation is subcritical is not important here.) Moreover, there is an Iapp inter-
val between Iapp D IHOM and Iapp D ISN for which the model is bistable: there
are stable resting states along the lower branch of fixed points and stable, more
depolarized, limit cycles. When Iapp D IHOM, there is a homoclinic orbit and when
Iapp D ISN, there is a saddle–node bifurcation. Now suppose Iapp slowly varies back
and forth across this interval. Because of the bistability, it is easy to see how a hys-
teresis loop is formed in which the membrane potential alternates between resting
and spiking activity. Note that the frequency of firing slows down near the termina-
tion of the active phase. This is because the active phase ends as the solution crosses
the homoclinic orbit.

This example provides a simple mechanism, and geometric interpretation, for
square-wave bursting. However, this mechanism is unsatisfactory since we im-
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Fig. 5.3 A bifurcation diagram of the Morris–Lecar equations, homoclinic case. The set of fixed
points form an S-shaped curve (not all of which is shown). A branch of limit cycles originates at a
Hopf point and terminates at a homoclinic orbit. There is an interval of applied currents for which
the system displays bistability

posed an external, periodic applied current. What we really wish to understand is
autonomous bursting, that is, bursting that arises owing to interactions among in-
trinsic properties of the cell. One way to achieve autonomous square-wave bursting
is to again consider the Morris–Lecar model except now we redefine Iapp to be a dy-
namic dependent variable that decreases during the active phase of repetitive firing
and increases during the silent phase. This example demonstrates the basic principle
that slow negative feedback together with hysteresis in the fast dynamics underlie
square-wave bursting.

Many different ionic current mechanisms could produce the slow negative feed-
back. Here, we construct an autonomous model for square-wave bursting by starting
with the Morris–Lecar model (3.1) and adding a calcium-dependent potassium cur-
rent. The complete model can be written as

CM
dV

dt
D �gL.V � EL/ � gKn.V � EK/

�gCam1.V /.V � ECa/ � IKCa C Iapp;

dn

dt
D �.n1.V / � n/=�n.V /;

dŒCa�

dt
D �.��ICa � kCaŒCa�/; (5.2)
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where the calcium-dependent potassium current IKCa is given by

IKCa D gKCaz.V � EK/: (5.3)

Here, gKCa is the maximal conductance for this current and z is the gating vari-
able with a Hill-like dependence on the near-membrane calcium concentration, [Ca].
Hence,

z D ŒCa�p

ŒCa�p C 1
:

For simplicity, we set the Hill exponent p D 1. The third equation in (5.2) represents
the balance equation for [Ca]. The parameter � is used for converting current into
a concentration flux and involves the ratio of the cell’s surface area to the calcium
compartment’s volume. The parameter kCa represents the calcium removal rate and
� is the ratio of free to total calcium in the cell. Since calcium is highly buffered, �

is small, so the calcium dynamics is slow. We shall refer to the first two equations
in (5.2) as the fast subsystem and the third equation as the slow equation.

Note that IKCa is an outward current. If its conductance gKCaz is large, then
the cell is hyperpolarized and the cell exhibits steady-state resting behavior. If, on
the other hand, this conductance is small, then the cell can fire action potentials.
Figure 5.4 shows the bifurcation diagram of (5.2), in which z is the bifurcation pa-
rameter. Note that the curve of fixed points is now Z-shaped, not S-shaped. There is
a branch of limit cycles that begins at a subcritical Hopf point and terminates at an
orbit homoclinic to the middle branch of fixed points. Finally, there is an interval of
z values for which the fast subsystem exhibits both a stable fixed point and a stable
limit cycle.
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Fig. 5.4 (a) Bifurcation diagram of the fast subsystem for square-wave bursters. (b) The projection
of the bursting trajectory onto the bifurcation diagram
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Table 5.1 Bursting
parameters

Parameter Square wave Elliptic Parabolic

V1 �1.2 �1.2 �1.2
V2 18 18 18
V3 12 2 12
V4 17.4 30 17.4
ECa 120 120 120
EK �84 �84 �84
EL �60 �60 �60
gK 8 8 8
gL 2 2 2
gCa 4 4.4 4
gKCa 0.75 1 1
Cm 1 1 1
Iapp 45 120 65
� 4.6 0.8 1.33
� 0.1 0.04 0.01
kCa 1 1 1
� 0.02 0.01667 0.025
�s; gCaS 0.05, 1

Now the full system exhibits square-wave bursting, as shown in Fig. 5.2.
Parameter values are given in Table 5.1. When the membrane is firing, intracel-
lular calcium slowly accumulates, turning on the outward IKCa current. When this
current is sufficiently activated, the membrane can no longer maintain repetitive
firing, thus terminating the active phase. During the silent phase, the intracellular
calcium concentration decreases, thereby closing calcium-dependent potassium
channels. Once enough outward channels are closed, the cell may resume firing.

The projection of the bursting solution onto the bifurcation diagram of the fast
subsystem is shown in Fig. 5.4b. During the silent phase, the solution trajectory lies
close to the lower branch of fixed points of the fast subsystem. The silent phase
ends when the trajectory reaches the saddle–node of fixed points, at which point
the trajectory jumps close to the branch of stable limit cycles of the fast subsystem.
While the membrane is spiking, the solution remains close to this branch until it
crosses the homoclinic orbit of the fast subsystem. The trajectory is then forced to
jump down to the lower branch of fixed points and this completes one cycle of the
bursting trajectory.

This example illustrates some of the basic features of square-wave bursting. We
now consider a more general class of fast/slow systems and describe in more detail
what geometric properties are needed to generate square-wave bursting. In gen-
eral, square-wave bursting can arise in a system of the form (5.1) in which there
are at least two fast variables and one slow variable. To obtain square-wave burst-
ing, we must make assumptions regarding both the bifurcation structure of the fast
subsystem and the slow dynamics. To describe these assumptions, we consider a
three-variable model of the form
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v0 D f .v; w; y/;

w0 D g.v; w; y/;

y0 D �h.v; w; y; �/: (5.4)

In the third equation in (5.4), � represents a fixed parameter. Later, we discuss
complex bifurcations that arise when � is varied. What distinguishes square-wave
bursting is the bifurcation diagram of the fast subsystem: the set of fixed points of
the fast subsystem forms a Z-shaped (or possibly S-shaped) curve and there is a
branch of stable limit cycles that terminates at a homoclinic orbit. The fixed points
along the lower branch are stable with respect to the fast subsystem, whereas those
fixed points along the middle branch are saddles with one stable and one unstable di-
rection. The branch of limit cycles terminates at an orbit homoclinic to one of these
saddles. In what follows, we denote the curve of fixed points of the fast subsystem
as CFP and the branch of stable limit cycles as P .

Assumptions are also needed for the slow dynamics. The slow variable y must
decrease during the silent phase and increase during the active phase. (Here, we
are assuming that the set of fixed points of the fast subsystem is Z-shaped, not
S-shaped.) Note that the y-nullsurface fh D 0g is two-dimensional. We assume
this surface intersects CFP at a single point that lies along the middle branch of CFP

below the homoclinic point. Moreover, h > 0 above fh D 0g and h < 0 below
fh D 0g. This allows for y to slowly increase (decrease) while the bursting solution
is in the active (silent) phase. Note that the point where the y-nullsurface intersects
CFP is a fixed point of the full system (5.4) with � > 0.

It is important that the slow nullsurface fh D 0g intersects CFP below the homo-
clinic point; in particular, the nullsurface must lie between the lower branch of CFP

and the branch of stable limit cycles P . If this condition is not satisfied, then the sys-
tem may exhibit other types of solutions. For example, suppose fh D 0g intersects
the lower branch of CFP. This point of intersection will be a stable fixed point of
(5.4), corresponding to a resting state of the neuron. If, on the other hand, fh D 0g
intersects CFP along its middle branch above the homoclinic point, then (5.4) may
exhibit a stable limit cycle which lies near P . This type of solution is often referred
to as either continuous or tonic spiking.

Rigorous results concerning the existence and stability of bursting oscillations
and continuous spiking are presented in [263]. To describe these results, we suppose
there exists �0 such that if � < �0, then fh D 0g intersects CFP along its middle
branch below the homoclinic point, whereas if � > �0, then fh D 0g intersects
CFP along its middle branch above the homoclinic point. The results in [263] state
that if � is sufficiently small, then (5.1) exhibits bursting oscillations for � < �0

and continuous spiking for � > �0, just as expected. However, it is important to
realize that how small � needs to be depends on how close � is to �0. In particular,
� ! 0 as � ! �0. This is illustrated in Fig. 5.5. Note that there is a wedge-shaped
region emanating from .�; �/ D .�0; 0/ where we cannot conclude whether there
exists bursting or spiking. Numerical studies and rigorous analysis have shown that
as � varies across this wedge-shaped region, between the bursting and continuous
spiking regimes, the bifurcation structure of solutions must be very complicated.
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Fig. 5.5 Dependence of
bursting oscillations and
continuous spiking with
respect to � and �. Bursting
exists if � < �0 and spiking
exists if � > �0. However,
how small � must be depends
on how close � is to �0. There
is a wedge-shaped region in
which chaotic dynamics exist

In particular, there will be solutions in which the number of spikes per burst varies
considerably. Further discussion of chaotic dynamics in models for bursting oscil-
lations will be given later.

5.3 Elliptic Bursting

Square wave is only one type of bursting. Examples of two other types are shown
in Fig. 5.6; these are commonly known as elliptic and parabolic bursters. Elliptic
bursters exhibit small-amplitude oscillations during the silent phase and the am-
plitude of the spikes gradually waxes and wanes. An important feature of elliptic
bursters is that the frequency of spikes first increases and then decreases during
the active phase. Both elliptic and parabolic bursters arise in models for neuronal
activity and other excitable systems. Elliptic bursters arise in models for thalamic
neurons, rodent trigeminal neurons, certain neurons within the basal ganglia, and
40-Hz oscillations. Parabolic bursting is found in models for Aplysia R-15 neurons.

Elliptic bursting can arise in a system of the form (5.1) in which there are two fast
variables and one slow variable. Parabolic bursting, on the other hand, requires at
least two slow variables. What characterizes each class of bursting are the properties
of the bifurcation diagram of the fast subsystem in which the slow variables are
considered as bifurcation parameters.

The elliptic burster shown in Fig. 5.6 is a solution of (5.2) and (5.3) with param-
eter values given in Table 5.1. As before, we denote the first two equations in (5.2)
as the fast subsystem and the third equation, for calcium, as the slow equation. The
bifurcation diagram of the fast subsystem is shown in Fig. 5.7; the bifurcation pa-
rameter is the slow variable ŒCa�. Note that the fast subsystem exhibits bistability:
there are a range of values of ŒCa� for which there exist both a stable fixed point and
a stable limit cycle. Bistability is also an important feature of square-wave burst-
ing. An important difference, however, between square-wave and elliptic bursting
is that for elliptic bursting the curve CFP of fixed points of the fast subsystem need
not be Z-shaped; there may be only one fixed point of the fast subsystem for each
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Fig. 5.6 (a) Elliptic burster. Note the subthreshold oscillations. (b) Parabolic bursting. The fre-
quency of spiking first increases and then decreases during the active phase
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Fig. 5.7 (a) Bifurcation diagram associated with elliptic bursting. The projection of the elliptic
bursting trajectory onto the bifurcation diagram is shown in (b)

value of ŒCa�. The branch of periodic solutions P now originates at a subcritical
Hopf bifurcation along CFP. Suppose the Hopf point is at ŒCa� D ŒCa�HB. Then,
the fixed points of the fast subsystem are stable for ŒCa� > ŒCa�HB and unstable for
ŒCa� < ŒCa�HB. Since the Hopf bifurcation is subcritical, the branch of periodic or-
bits which bifurcates from the Hopf point is unstable. This branch “turns around”
at some ŒCa� D ŒCa�SN > ŒCa�HB, giving rise to a stable branch of limit cycles
for ŒCa� < ŒCa�SN. There are two limit cycles for ŒCa�HB < ŒCa� < ŒCa�SN, one
of which is stable and the other is unstable. The two limit cycles come together at
ŒCa� D ŒCa�SN, where there is a fold or saddle–node bifurcation of limit cycles. This
is where that active phase of the bursting trajectory terminates.
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To obtain bursting, we must make some assumptions regarding the slow variable
dynamics so that ŒCa� decreases during the silent phase and (on average) increases
during the active phase. In what follows, we define h.V; n; ŒCa�/ so that the right-
hand side of the third equation in (5.2) can be written as

dŒCa�

dt
D �h.V; n; ŒCa�/:

We hypothesize that h.V; n; ŒCa�/ < 0 near CFP. During the silent phase, the bursting
solution evolves near the stable portion of CFP, with ŒCa� decreasing, until it passes
the Hopf point, beyond which the fixed points along CFP are no longer stable. Note,
however, that the trajectory does not jump up to the active phase immediately after
crossing the Hopf point. The slow variable ŒCa� may traverse a distance that is O.1/

with respect to � past the Hopf point before jumping up. This type of delayed behav-
ior or slow passage past a Hopf point has been studied extensively in the singular
perturbation literature (see, for example, [7]).

We next consider the active phase. We cannot expect that h.V; n; ŒCa�/ > 0 near
all of P , as was the case for square-wave bursting. This follows from geometric
considerations. For square-wave bursting, the two-dimensional surface fh D 0g
separates the curve CFP and the cylindrical-shaped surface P . For elliptic bursting,
CFP lies “inside” P , so fh D 0g cannot separate them. Since h < 0 near CFP, it
follows that we must expect that h < 0 near at least some part of P , that is, [Ca]
must decrease during some portion of the active phase. The best we can hope for is
that there is a net increase of [Ca] as the bursting trajectory passes near P .

To make this more precise, we consider the average increase or decrease of [Ca]
along the bursting trajectory. For each fixed ŒCa� � ŒCa�SN, let .vŒCa�.t/; nŒCa�.t//

denote the periodic solution along the outer branch of P and let T .ŒCa�/ be the
corresponding period. Then

Nh.ŒCa�/ D 1

T .ŒCa�/

Z T .ŒCa�/

0

h.vŒCa�.t/; nŒCa�.t/; ŒCa�/dt

represents the average of h along this fixed limit cycle. We assume Nh.ŒCa�/ > 0 for
each ŒCa� < ŒCa�SN. This assumption implies that in the limit � ! 0, the net change
in ŒCa� during the active phase is positive. Thus, during the active phase, ŒCa� slowly
increases, on average, until the bursting solution passes the fold along P . The fast
dynamics then forces the trajectory back toward CFP and a new silent phase begins.

Both square-wave and elliptic bursting depend on bistability and hysteresis.
An important difference is how the active phase is initiated and terminates. For
square-wave bursting, the silent phase ends at a saddle–node of fixed points and the
active phase ends at a homoclinic orbit of the fast subsystem. For elliptic bursting,
the silent phase ends when there is a slow passage through a Hopf bifurcation and the
active phase ends at a saddle–node of limit cycles. These contrasting mechanisms
reflect differences in firing properties. For square-wave bursting, the frequency of
spiking slows down at the end of each active phase; for elliptic bursting, there are
subthreshold oscillations during each silent phase.



114 5 Bursting Oscillations

5.4 Parabolic Bursting

Both square-wave and elliptic bursting can be achieved in a system with only one
slow variable. Moreover, both depend on bistability of the fast dynamics. Parabolic
bursting, on the other hand, requires at least two slow variables and does not arise
from a hysteresis phenomenon. The parabolic burster shown in Fig. 5.6b satisfies
the equations

Cm
dV

dt
D �IL � IK � ICa � IKCa � ICaS C Iapp;

dn

dt
D �.n1.V / � n/=�n.V /;

dŒCa�

dt
D �.�ICa � ŒCa�/;

ds

dt
D �.s1.V / � s/=�s; (5.5)

where IL, IK, ICa, and IKCa are leak, potassium, calcium, and calcium-dependent
potassium currents, respectively, as described in (5.2) and (5.3). Here, we have
added a new calcium current

ICaS D gCaSs.V � ECa/ (5.6)

which depends on the gating variable s. Here, s1.V / D 0:5.1 C tanh.V � 12/=24/.
Parameter values are given in Table 5.1. Note that in this model there are two fast
variables, V and n, and two slow variables, ŒCa� and s.

A geometric model for parabolic bursting is the following. Consider a system
of the form (5.1) where x 2 Rn; n � 2; and y D .y1; y2/ 2 R2. (Here, .y1; y2/

corresponds to .ŒCa�; s/.) There are now two slow variables, namely, y1 and y2. We
first describe the bifurcation structure of the fast subsystem with both slow variables
considered as parameters. We then discuss the properties which the slow dynamics
must satisfy.

The bifurcation diagram of the fast subsystem is illustrated in Fig. 5.8, where we
plot one component of the fast variable, corresponding to the membrane potential. In
Fig. 5.8a, we fix one of the slow variables to be constant and compute the bifurcation
diagram with the other slow variable as a parameter. Note that there is a Z-shaped
curve of fixed points and a branch of periodic orbits that originates at a subcritical
Hopf point and terminates at a saddle–node on an invariant circle (SNIC). If we
allow both slow variables to vary, as shown in Fig. 5.8b, then the set of fixed points
and the branch of limit cycles become surfaces, whereas there is a curve of Hopf
points, as well as SNICs. The fixed points along the lower branch are assumed to be
stable fixed points of the fast subsystem. In Fig. 5.8b, we also show the maximum
and minimum values of the fast variable along each of these periodic solutions along
with the projection of the parabolic bursting solution shown in Fig. 5.6b. In Fig. 5.9,
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Fig. 5.9 Projection of the parabolic bursting solution onto .V; y1; y2/-space. There is a curve in
the slow .y1; y2/-plane corresponding to SNICs. This curve separates the regions where the fast
subsystem exhibits spiking and resting behavior

we show regions in the slow phase plane where the fast dynamics exhibit spiking
and stable resting behavior along with the projection of the bursting solution. Note
that these regions do not overlap; that is, the fast dynamics do not exhibit bistability.
The spiking and resting regions are divided by a curve at which the fast dynamics
exhibit a SNIC; this curve also corresponds to the fold of the fixed-point surface.

The existence of a parabolic bursting solution also requires hypotheses regarding
the slow dynamics. There must be a mechanism by which the slow variables drift
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back and forth between the spiking and resting regions. In what follows, we exploit
the singular nature of the fast/slow system to obtain reduced equations for just the
slow variables y1 and y2. This is done in two steps, one for the silent phase and
one for the active phase. The method we describe here is quite general and can be
applied to any bursting model of the form (5.1).

First consider the silent phase. We change to the slow timescale � D �t in (5.1)
and then set � D 0 to obtain

0 D f .x; y/;

dy

d�
D g.x; y/:

(5.7)

The first equation in (5.7) simply states that during the silent phase the (singular) so-
lution lies along the lower branch of the fixed-point surface. If we write this branch
as x D ˆ.y/, then the second equation in (5.7) becomes

dy

d�
D g.ˆ.y/; y/: (5.8)

This is then the reduced system for the evolution of the slow variables during the
silent phase.

To obtain the reduced equations for the evolution of the slow variables in the
active phase, we use the method of averaging. Suppose y D .y1; y2/ lies in
the region where there exists a stable limit cycle of the fast subsystem. Let xy.t/

be the corresponding periodic solution of the fast subsystem, with period T .y/, and
consider the averaged quantity

Ng.y/ D 1

T .y/

Z T .y/

0

g.xy.t/; y/dt:

The evolution of the slow variables during the active phase is then given by the
averaged equations

dy

d�
D Ng.y/: (5.9)

Parabolic bursting corresponds to the existence of a closed curve in the slow
.y1; y2/ phase plane which passes through both the region of stable fixed points and
the region of stable limit cycles. While passing through the silent and active regions,
the curve must satisfy (5.8) and (5.9), respectively.

The active phase of the bursting solution both begins and ends along a curve
of homoclinic bifurcations. Since the limit cycles have frequencies which approach
infinity at the homoclinic bifurcations, the interspike interval is longer at both the
beginning and the end of each burst. This accounts for the parabolic nature of the
period of fast oscillations.
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5.5 Classification of Bursters

We have now described three types of bursters. Other types are possible and do, in
fact, arise in important applications. There has been considerable effort to classify
the types of bursters, beginning with Rinzel, who was the first to analyze bursting
models using fast/slow geometric methods. He described square-wave, parabolic,
and elliptic bursting and this classification scheme was extended by Bertram et al.
[15]. Izhikevich [132] has given a complete topological classification of bursters
arising from codimension-1 bifurcations; he identified 120 different topological
types. All of these classification schemes are based on the bifurcation structure of
the fast subsystem in which the slow variables are considered to be bifurcation pa-
rameters. Different types of bursters correspond to different ways in which there can
be transitions between resting behavior and repetitive spiking. Since resting behav-
ior and repetitive spiking correspond to branches of stable equilibria and periodic
limit cycles of the fast subsystem, it follows that different classes of bursters rep-
resent different bifurcations of these branches. For example, square-wave bursting
corresponds to a saddle–node, or fold, bifurcation of the branch of stable fixed points
and a saddle–homoclinic bifurcation of the branch of stable limit cycles of the fast
subsystem. It follows that to classify bursters, we need to understand all possible
codimension-1 bifurcations of equilibria and limit cycles.

It turns out that there are just four types of bifurcations of equilibria and four
types of bifurcations of limit cycles. Hence, there are 16 types of bursting in which
the resting state is a stable equilibrium point and its spiking state is a stable limit
cycle. The four bifurcations of equilibria are saddle–node (fold), SNIC, supercrit-
ical Hopf, and subcritical Hopf. The four types of bifurcations of limit cycles are
SNIC, saddle–homoclinic orbit, supercritical Hopf, and fold cycle. In Izhikevich’s
classification scheme, each type of bursting is named according to bifurcation of
equilibria/bifurcation of limit cycle. Hence, the square-wave burster is denoted as
fold/homoclinic, whereas an elliptic burster is referred to as subHopf/fold cycle.

An example of a bursting type not discussed earlier is shown in Fig. 5.10. Here,
the branch of stable fixed points of the fast subsystem ends at a saddle–node

Fig. 5.10 Top hat bursting
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bifurcation (fold) and the branch of stable limit cycles of the fast subsystem ends
at a fold limit cycle bifurcation. Note that the branch of limit cycles that bifurcates
from the homoclinic orbit is unstable with respect to the fast subsystem. This branch
“turns around” at the fold limit cycle bifurcation to form the branch of stable limit
cycles. Bertram et al. referred to this as type IV bursting; it corresponds to a fold/fold
cycle in Izhikevich’s classification scheme. This type of bursting was first discovered
in the Chay–Cook model for bursting in pancreatic “ cells. It also arises in a model
for a leech heart interneuron and in a model for synaptically coupled pre-Botzinger
cells, where it was referred to as top hat bursting.

5.6 Chaotic Dynamics

5.6.1 Chaos in Square-Wave Bursting Models

Even three-variable minimal bursting models can exhibit complex dynamics as pa-
rameters are varied. There are at least two ways in which square-wave bursters,
for example, may generate chaotic behavior. As the singular perturbation parame-
ter � decreases, the number of spikes per bursts increases. The process of adding
a spike may be quite complicated. It was shown in [262] that chaotic dynamics
may arise during this transition. For example, Fig. 5.11a and c shows solutions of
(5.2) in which there are three and two spikes per burst. The parameters are given in
Table 5.1, with � D 0:0072 and � D 0:0073, respectively. For the solution shown
in Fig. 5.11b, � D 0:00721998. Note that there are bursts which possess two, three,
and four spikes. The pattern of spikes per burst does not appear to repeat in a pe-
riodic manner. We note that this mechanism for chaotic dynamics only arises for
a very small range of parameter values. It was shown in [262] that the size of this
range is of the order e�k=� for some k > 0. This is indeed very small, so the chaos
is probably not of much biological interest.

A second mechanism for chaos arises during the transition from bursting to con-
tinuous spiking. Figure 5.12 shows four solutions of (5.2); the parameters are chosen
as in Table 5.1, except for kCa. In Fig. 5.12, we set kCa D 1; 1:225; 1:228; and 1:3,
respectively. Note that as we increase kCa, the system appears to transition from
exhibiting periodic bursting, chaotic bursting, chaotic spiking, and finally periodic
spiking. For the chaotic bursting shown in Fig. 5.12b, some bursts are much longer
than others; the occurrence of long or short bursts appears to be random.

A standard way to analyze oscillatory behavior, including chaos, is in terms of a
Poincaré return map. We start with a given periodic bursting orbit and then consider
a two-dimensional cross section S that is transverse to the flow; i.e., trajectories
cross S at a nonzero angle. Then the Poincaré map is defined from some subset
of S back to S as follows. For each p0 2 S, let �.t; p0/ be the solution starting
at p0. If p0 is sufficiently close to the original periodic orbit, then this trajectory
must eventually cross S at some time T0 > 0. The Poincaré map is defined as
	.p0/ � �.T0; p0/. This is where the solution starting at p0 “returns” to the cross
section.
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Fig. 5.11 Chaotic dynamics may arise during the transition of adding spikes. As we increase
�, the number of spikes per burst will decrease from, for example, (a) three to (c) two. As (b)
demonstrates, during this transition there may exist solutions in which the number of spikes per
burst is not constant

Consider the example illustrated in Fig. 5.12c. Here, the solution exhibits repeti-
tive firing that is not regular. We compute a Poincaré map by recording the values of
n and ŒCa� each time that V decreases through 0. For this model, the recorded values
of n are all about 0:35; however, the value for calcium varies between 1:4 and 1:65.
The solution is approximately represented by the time series of values for calcium,
ŒCa�1; ŒCa�2; : : :. We can generate a one-variable map whose solutions approximate
this time series as follows. With initial conditions V D 0 and n D 0:35, we specify
a value for calcium, and then integrate the full differential equations until V crosses
0 again, obtaining the next value for calcium. This is then the Poincaré map, which
we denote as y D F.ŒCa�/, and is shown in Fig. 5.13. From the figure, it is evident
that there is an intersection of the line y D ŒCa� and y D F.ŒCa�/. This means
there is a single concentration of calcium ŒCa�� to which the trajectory returns af-
ter one cycle. This corresponds to a periodic solution to the model equations. If
jF 0.ŒCa��/j > 1, as is the case here, then the periodic solution is unstable. This type
of map is characteristic of dynamics that have chaotic behavior. Further analysis of
the map is presented in the exercises.
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Fig. 5.12 A chaotic burst arising during the transition between bursting and continuous spiking.
As we increase the parameter kCa, the model may exhibit (a) regular bursting, (b) chaotic bursting,
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5.6.2 Symbolic Dynamics

In the preceding section, we saw that the complex dynamics that arise during the
transition from bursting to continuous spiking in square-wave bursting models can
be described in terms of a one-dimensional map. This description must be an ap-
proximation of the full dynamics since the model has three dependent variables
and the Poincaré section, along with the return map, must be two-dimensional.
Terman [263] analyzed this two-dimensional map and rigorously demonstrated that
chaotic dynamics must arise during the transition from bursting to continuous spik-
ing; moreover, the dynamics can be described in terms of symbolic dynamics. Here,
we will present the main result given in [263].

To state this result, we need to recall some basic properties of two-dimensional
maps and how they relate to symbolic dynamics. The most famous two-dimensional
map that exhibits complex dynamics is the Smale-horseshoe map, which we will
now quickly describe. A more detailed discussion of this map can be found in [263].

Let S be the unit square in R2. Then the Smale-horseshoe map is a map, which
we denote as 	 , from S to R2. The construction of this map consists of two steps, as
shown in Fig. 5.14. First we contract S by an amount � in the horizontal direction
and expand S in the vertical direction by an amount �. Here, 0 < � < 1 and � > 1.
The second step is to fold the resulting rectangle so that 	.S/ \ S consists of two
vertical rectangles as shown in the figure.

Although the Smale-horseshoe map is easy to define, it is not at all clear if it has
any interesting properties. Note, for example, that not every point in S is mapped
back into S. It is not obvious if there is any point x0 whose entire orbit f	k.x0/ W
k D 0; ˙1; ˙2; : : :g lies entirely in S. In what follows, we let

ƒ D fx0 W 	k.x0/ 2 S for all kg:

We can also ask if there are any fixed points or periodic orbits of 	; that is, does
there exist x0 2 S and an integer k such that 	k.x0/ D x0? If there do exist
periodic orbits, then how many are there? Or, does there exist an orbit in S that

Fig. 5.14 The Smale
horseshoe. The square S is
stretched in the vertical
direction, contracted in the
horizontal direction and then
folded. The intersection of
	.S/ with S forms two
vertical strips

S

S
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is not periodic; that is, does there exist x0 2 S such that 	k.x0/ 2 S for every
integer k but 	k.x0/ ¤ x0 unless k D 0? It turns out that this map does indeed
have infinitely many periodic orbits and uncountably many aperiodic orbits. There
is a very eloquent way to prove this result and this involves symbolic dynamics.

Let † be the set of all bi-infinite sequences of two symbols; that is,

† D fai W i D 0; ˙1; ˙2; : : :g; where ai D 0 or 1:

Consider the shift map 
 W † ! † defined as follows. Suppose a D
fai g and 
.a/ D b, where b D fbig. Then bi D ai�1. That is, 
 shifts the
indices of a. Now 
 defines a dynamical system on † and it easy to see that this
dynamical system contains infinitely many periodic orbits. For example, if

a D f: : : 0 1 0 1 0 1 : : :g;

then the orbit f
k.a/g has period 2. It is also easy to see that there are uncountably
many aperiodic orbits. This is left as an exercise.

A remarkable fact is that † and ƒ are topologically equivalent. There is a one-to-
one correspondence between points in † and points in ƒ; moreover, there is a one-
to-one correspondence between orbits generated by 
 and orbits generated by 	 . It
follows that 	 has a countably infinite number of periodic orbits and uncountably
many aperiodic orbits.

To state the result concerning chaotic dynamics in square-wave bursting models,
we will need to consider more complex two-dimensional maps. These are shown in
Fig. 5.15. We start with two squares, denoted as S1 and S2. Each square is expanded,
contracted, folded, and mapped into R2 as shown in the middle-horseshoe map in
Fig. 5.15. Here, 	.S1/ intersects both S1 and S2 in a single vertical strip; 	.S2/

intersects S1 in a vertical strip but does not intersect S2. This map also generates
symbolic dynamics; however, the symbolic dynamics is somewhat different from
that generated by the Smale-horseshoe map. A description of the symbolic dynamics

Fig. 5.15 The transition
from bursting to spiking in
the square-wave bursting
model. If one fixes � > 0 and
increases �, then there is a
series of increasingly more
complex global bifurcations
in which the system exhibits
symbolic dynamics

ε
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is given in [177]. Finally, we will need to consider generalizations of this map. These
are also shown in Fig. 5.15. For each integer K > 1, there are K squares; each
rectangle is contracted, expanded, folded, and then mapped as shown. We denote
the map corresponding to K rectangles as 	K . These maps generate increasingly
more complicated symbolic dynamics.

We can now describe the main result given in [177]. Consider the .�; �/ param-
eter plane shown in Fig. 5.15. Recall that there is a wedge-shaped region, arising
from .�; �/ D .�0; 0/, in which we could not conclude whether the system exhibits
bursting or continuous spiking. Then there are infinitely many wedge-shaped re-
gions that emanate from .�0; 0/, as shown in Fig. 5.15. There is a return map 	.�; �/

such that in each odd sector, S2K�1, the map gives rise to dynamics topologically
equivalent to 	K . Hence, as we fix � > 0 to be sufficiently small and increase �

from the bursting to the spiking regions, then the system must undergo a series of
increasingly more complicated global bifurcations. We note that each sector may
only be defined for � sufficiently small. Hence, each horizontal line segment with �

constant may intersect only finitely many sectors. However, the number of sectors
which the line segment � D �0 intersects becomes unbounded as �0 ! 0.

5.6.3 Bistability and the Blue-Sky Catastrophe

Shilnikov et al. [245] described a mechanism in which a model can exhibit co-
existence of both stable continuous spiking and stable bursting oscillations. The
system also generates chaotic dynamics, through a mechanism known as the blue-
sky catastrophe. The mechanism underlying bistability between spiking and bursting
is shown in Fig. 5.16. Note that the fast subsystem has the bifurcation structure of
the fold/fold or top hat burster. This bifurcation structure is actually not that crucial
for what follows; a square-wave burster would work just as well. Here, we consider
the top hat burster, since this is what was used in the original papers.

For bistability, what is important is that there are two periodic orbits of the
full system that lie close to the branch of limit cycles of the fast subsystem (see
Fig. 5.16a). One of these periodic orbits is stable, whereas the other is unstable. The
unstable periodic orbit is a saddle with a two-dimensional stable manifold. Trajec-
tories which lie on one side of this manifold will approach the stable periodic orbit
and exhibit continuous spiking, whereas trajectories that lie on the other side will
display bursting. To explain the geometry in more detail, we need to say more about
the fast subsystem and how it is perturbed if the singular perturbation parameter is
positive.

Consider a fast/slow system of the form (5.1) in which there are two fast variables
and one slow variable; that is, x 2 R2 and y 2 R1. Suppose the set of fixed points of
the fast subsystem forms a Z-shaped curve whose left knee is at y D yLK. Moreover,
there is a branch of stable limit cycles of the fast subsystem, which we denote as P .
Recall that, for � > 0 but small, the dynamics near P is determined by the averaged
equations. That is, let xy.t/ denote the limit cycle of the fast subsystem for some
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Fig. 5.16 (a) Bistability of bursting and spiking. There are stable and unstable limit cycles of
the full system that lie close to P , the branch of periodic solutions of the fast subsystem. The
stable manifold of the unstable limit cycle separates those orbits approaching the bursting solution
from those that exhibit continuous spiking. (b) The periodic orbits lie to the right of the left knee.
Bursting is no longer exhibited; however, there are orbits heteroclinic between the two limit cycles.
(c) and (d) A blue-sky catastrophe occurs if the two limit cycles form a saddle–node bifurcation

y and suppose this periodic orbit has period T .y/. Then the evolution of the slow
variable near P for � > 0 is determined by the averaged equation

dy

d�
D Ng.y/ � 1

T .y/

Z T .y/

0

g.xy.t/; y/dt: (5.10)

Here, � D �t is the slow time variable. A fixed point of this equation corresponds to
a periodic solution of the full system. If Ng.y0/ D 0, then there is a periodic solution
��.t/ D .x�.t/; y�.t// of the full system (5.1) such that jy�.t/ � y0j D O.�/ for
all t and � sufficiently small. This periodic solution is stable, with respect to the
full system, if Ng0.y0/ < 0 and is unstable if Ng0.y0/ > 0. In general, a solution
.x.t/; y.t// with jy.0/ � y0j small will first evolve according to the fast dynamics
to near P and then evolve according to the slow averaged equation either toward or
away from ��.t/.
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Suppose g 0.y0/ > 0 so that ��.t/ is unstable. Then the stable manifold of ��

separates those solutions that drift to the left from those that drift to the right. To
understand this stable manifold further, consider the case � D 0. The local stable
manifold of �0.t/ D .x.y0I t/; y0/ is the set of points in the plane fy D y0g that
lie close to P . (By local we mean near the periodic orbit.) It follows that for � > 0,
the two-dimensional local stable manifold of ��.t/ lies very close, i.e., O.�/, to the
plane fy D y0g.

One can now see how the model can display both stable spiking and stable burst-
ing. Suppose the averaged equation has both a stable and an unstable fixed point at
ys < yu, respectively. Fix � > 0 and denote the corresponding periodic solutions
of the full system as �s.t/ and �u.t/. We further assume yu < yLK so that the left
knee lies to the “right” of the unstable periodic orbit. The two-dimensional stable
manifold of �u.t/ divides phase space into two regions. Trajectories in the region
y < yu will approach P and then drift toward �s, whereas trajectories in the region
y > yu will drift away from �u toward the fold in P . Once these trajectories cross
the fold, they will be forced down toward the branch of stable fixed points of the
fast subsystem. Since yLK > yu, a stable bursting oscillation will result.

Chaotic dynamics can arise in this model as follows. Suppose as some parameter
changes, the positions of yu and ys change. In particular, suppose both move to the
right so that at some parameter value ys > yLK. This is shown in Fig. 5.16b. In this
case, if a trajectory begins near P in the region where y > yu, then this solution will
drift away from �u toward the fold in P , fall down to the silent phase, and eventually
jump back up. Since ys > yLK, the trajectory will approach �s as t ! 1. We note
that this solution will approach �u as t ! �1. This corresponds to an orbit that is
heteroclinic between the two periodic orbits.

We now suppose as a parameter changes the stable and unstable periodic orbits
come together at a saddle–node of periodic bifurcation. This is shown in Fig. 5.16c.
In this case, there will be orbits that are homoclinic to the saddle–node periodic
orbit. A more detailed diagram of this is shown in Fig. 5.16d. Once the periodic
orbit near P disappears, the system exhibits bursting oscillations. However, it has
been demonstrated that the bursting is chaotic. The dynamics illustrated in Fig. 5.16
has been called the “blue-sky catastrophe” and the behavior described in this section
has been observed in neuronal models. Details can be found in [245].

5.7 Bibliography

Rinzel [227, 228] was the first to classify bursting oscillations using fast/slow
analysis and to consider their geometric properties in phase space. He described
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possible roles of bursting oscillations in neuronal computations.
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[177, 262, 263], Destexhe and Gaspard [56], Shilnikov and Cymbalyuk [245], and
Medvedev [198].

A recently published book edited by Coombes and Bressloff [47] contains many
review articles pertaining to various aspects of bursting oscillations.

5.8 Exercises

1. Consider the Hindmarsh–Rose model [123]:

x0 D y � x3 C 3x2 � z C I;

y0 D 1 � 5x2 � y; (5.11)

z0 D r.4.x C 1:6/ � z/;

where r D 0:001 and I D 2. This should give bursting oscillations. What kind of
bursting is it? Draw the bifurcation diagram of the fast subsystem with the slow
variable z as the bifurcation parameter.

2. Consider the FitzHugh–Rinzel model [228]:

v0 D v � v3=3 � w C y C I;

w0 D 0:08.0:7 C v � 0:8w/; (5.12)

z0 D �.�0:775 � v � y/;

where � D 0:0001 and I D 0:3125. This should give bursting oscillations. What
kind of bursting is it? Draw the bifurcation diagram of the fast subsystem with
the slow variable z as the bifurcation parameter.

3. Consider model (5.2) with the parameters for square-wave bursting given in
Table 5.1. Simulate this model to generate square-wave bursting. How many
spikes are there during each bursting cycle? Change a single parameter so that
there are now twice as many spikes per burst. Change this same parameter so
that the number of spikes per burst is not a single integer, but changes from burst
to burst. Now change another parameter so that the model exhibits continuous
spiking. Change this same parameter so that the duty cycle of bursting is twice
as large as it was originally. (By duty cycle we mean the ratio of the time the
solution spends in the spiking phase and the entire period.)

4. As in the previous exercise, consider model (5.2) with the parameters for square-
wave bursting given in Table 5.1. Compute the bifurcation diagram of the fast
subsystem (as shown in Fig. 5.4). Plot the projection of the bursting solution onto
this bifurcation diagram (as shown in Fig. 5.4b). Choose z1 < z2 < z3 < z4 < z5

so that the saddle–node bifurcation of periodic orbits is at z D z1, the “left”
saddle–node bifurcation of fixed points is at z D z2, the Hopf bifurcation is at
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z D z3, the homoclinic orbit is at z D z4, and the “right” saddle–node bifurcation
of fixed points is at z D z5. Draw the two-dimensional .v; w/ phase planes for
values of z that satisfy (a) z < z1, (b) z1 < z < z2, (c) z2 < z < z3, (d)
z3 < z < z4, (e) z4 < z < z5, and (f) z5 < z.

5. Consider model (5.2) with the parameters for elliptic bursting given in Table 5.1.
Compute the bifurcation diagram of the fast subsystem (as shown in Fig. 5.7).
Plot the projection of the bursting solution onto this bifurcation diagram (as
shown in Fig. 5.7b). Choose z1 < z2 so that the Hopf bifurcation is at z D z1 and
the saddle–node bifurcation of periodic orbits is at z D z2. Draw two-dimensional
.v; w/ phase planes for values of z that satisfy (a) z < z1, (b) z1 < z < z2, and (c)
z2 < z.

6. Consider model (5.5) with the parameters for parabolic bursting given in
Table 5.1. Here, there are two slow variables ŒCa� and s. Consider the two-
dimensional .v; n/ fast subsystem, fix s D 0, and compute the bifurcation
diagram with z D ŒCa�

1CŒCa�
as the bifurcation parameter. You should see some-

thing similar to Fig. 5.8a. There should be a SNIC bifurcation for some value
of z. Use XPPAUT to compute the two-parameter .z; s/ bifurcation diagram for
the location of the SNIC. Plot the projection of the bursting solution onto this
two-parameter slow phase plane (see Fig. 5.9).

7. Poincaré map. Consider the square-wave bursting model and choose parameters
so that it exhibits nice continuous spiking. Compute the Poincaré map defined in
Sect. 4.6.1 (see Fig. 5.13). Now change the parameters so that it goes into burst-
ing. Identify the parameters where periodic doubling bifurcations of the Poincaré
map take place. Find the parameter values where the map is chaotic.

8. Bistability of the fast subsystem. Start with a square-wave burster and solve it
until the solution is in the silent phase. Now introduce a short perturbation to
“kick” it into the spiking regime. How long is the subsequent burst of spiking
activity? How does the length of the spiking activity depend on the phase at
which the perturbation was introduced? Next, introduce the perturbation while
the bursting solution is spiking so that the perturbation kicks the solution into the
silent phase. How does the length of the subsequent silent phase depend on the
phase at which the perturbation was introduced? Do the same thing for elliptic
bursters. Justify your answers using fast/slow analysis.

9. Smale horseshoe.

(a) Prove the Smale-horseshoe map exhibits a countable number of periodic
orbits and uncountably many aperiodic orbits.

(b) How many periodic orbits are there with period N ?
(c) Prove there is a dense orbit.





Chapter 6
Propagating Action Potentials

Neurons need to communicate over long distances. This is accomplished by
electrical signals, or action potentials, that propagate along the axon. We have
seen that linear cables cannot transmit information very far; neural signals are able
to reach long distances because there exist voltage-gated channels in the cell mem-
brane. The combination of ions diffusing along the axon together with the nonlinear
flow of ions across the membrane allows for the existence of an action potential that
propagates along the axon with a constant shape and velocity.

One of the great successes of the Hodgkin–Huxley model is that it exhibits the
propagating action potential; moreover, it accurately predicts the speed of the action
potential. We remark that the Hodgkin–Huxley equation is a system of a nonlinear
partial differential equation coupled with three ordinary differential equations. It
is not at all clear how Hodgkin and Huxley were able to numerically solve these
equations to compute the speed of the propagating action potential.

Mathematically, the Hodgkin–Huxley model is an example of a system of
reaction–diffusion equations. The propagating action potential corresponds to a
traveling wave solution; that is, it is a solution that “moves” with constant shape
and velocity. Motivated to a large part by the Hodgkin–Huxley model, there was
a flowering of papers in the mid 1970s and 1980s in which mathematicians devel-
oped sophisticated techniques to rigorously analyze the existence, uniqueness, and
stability properties of traveling wave solutions to reaction–diffusion equations.

In this chapter, we will begin by describing a geometric way to think about the
propagating action potential. As we shall see, the traveling wave corresponds to a
homoclinic orbit of a system of ordinary differential equations. Hodgkin and Huxley
numerically computed the speed of the wave by considering this system of ordinary
differential equations and we shall briefly describe how Hodgkin and Huxley did
this. We will then describe mathematical methods for analyzing the existence and
stability properties of traveling waves. Here, we will consider reduced models such
as the Morris–Lecar equations. We will also consider periodic wave trains and mod-
els for myelinated axons and discrete diffusion.

Although much of the excitement over propagation of action potentials down
an axon has waned (particularly among neuroscientists), the exact same equations
and ideas are relevant for the dynamics of the membrane potential in active den-
drites. In Chap. 2, most of our analysis was predicated on the notion that dendrites
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obey the linear cable equation. However, better experimental techniques (which
allow neuroscientists to record currents on dendrites) point to strong experimen-
tal evidence that dendrites contain many voltage-gated currents and, like axons, can
propagate potentials with little attenuation [141,142,188,201,202]. Thus, the mathe-
matics in this chapter is quite relevant to questions which are being actively pursued
by neuroscientists.

6.1 Traveling Waves and Homoclinic Orbits

The propagating action potential corresponds to a traveling wave solution of the
Hodgkin–Huxley model. By this we mean the following. We rewrite the Hodgkin–
Huxley model from Chap. 2 as

Cm
@V

@t
D 4d

Ri

@2V

@x2
� Iion C I; (6.1)

@�

@t
D ˛� .V /.1 � � /� ˇ� .V /�;

where � D m; h, or n. Figure 6.1a shows a simulation of the action potential down
a 10-cm axon with a diameter of 1 mm. The time between the two action potentials
at 6 and 7 cm is about 8 ms, so the velocity of this action potential is 1.25 m/s. The
spatial profile looks just like the temporal profile in backward time and scaled by the
velocity, as shown in Fig. 6.1b. The propagating action potential thus corresponds
to a solution of (6.1) that “travels” with constant shape and velocity; that is, it is a
traveling wave solution. If we denote the shape of the wave as OV .x/ and the speed
of the wave as c, then the traveling wave solution satisfies V.x � ct; t/ D OV .x/.
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Fig. 6.1 Action potential for the Hodgkin–Huxley equations. Discretization of the nonlinear par-
tial differential equation for a 10-cm axon into 150 segments. Ri D 100˝ cm and d D 0:1 cm.
(a) Voltage at x D 6 cm and x D 7 cm, showing the velocity is about 1.25 m/s. (b) Spatial profile
at t D 20ms. (c) Three-dimensional trajectory of the wave at grid point 50; the axes are the
voltage, the potassium gating variable, and the voltage derivative



6.1 Traveling Waves and Homoclinic Orbits 131

Suppose we change coordinates and replace x by � D x � ct . For convenience,
we will also write V instead of OV . Then, the new equations are

Cm
@V

@t
D Cmc

@V

@�
C 4d

Ri

@2V

@�2
C I � Iion; (6.2)

@�

@t
D c

@�

@�
C ˛� .V /.1 � � / � ˇ� .V /�;

where, again, � D m; h, or n. A traveling wave is thus a time-independent solution
in � and satisfies a system of ordinary differential equations. We will consider an
infinite domain. Then, the traveling wave solution must also satisfy the boundary
conditions V.� D ˙1/ D Vrest.

It will be more convenient to write (6.2) as a first-order system; that is, we set
dV
d�

D U . Then, time-independent solutions of (6.2) satisfy the following system of
five first-order ordinary differential equations:

dV

d�
D U;

dU

d�
D Ri

4d
.Iion � I � cCmU /;

d�

d�
D �.˛� .V /.1 � � /� ˇ� .V /� /=c:

The solution must also satisfy the boundary conditions

.V; U;m; h; n/.˙1/ D .Vrest; 0;m1.Vrest/; h1.Vrest/; n1.Vrest//:

If follows that the propagating action potential corresponds to a homoclinic orbit of
(6.3). Figure 6.1c shows a projection of this orbit in the coordinates .V; n; c dV

d�
/.

This system is parameterized by c and one only expects homoclinic orbits to
exist for discrete values of c. This is because homoclinic orbits are generically
codimension-1 bifurcations – any perturbation of the system, including changing
the wave speed c – should destroy the homoclinic orbit. The mathematical question
is to prove there is such a c for which there is a homoclinic orbit. Once the homo-
clinic has been found, we have to determine whether it is a stable stationary solution
to (6.2). We generally expect that for parameters near the homoclinic orbit, there are
periodic orbits with arbitrarily long periods in the spacelike variable �: Furthermore,
in some cases, we can find very complex dynamics for (6.3).

Hodgkin and Huxley did not attempt to numerically solve the full partial differ-
ential equation (6.1) as they did not have the necessary computing equipment (we
can now do it in less than a few seconds on a laptop!). Rather, they used a shooting
procedure to estimate the speed of the wave. What they did was to first fix a value
of c and find a solution that decays to rest as � ! �1. Denote this solution as
OV .�; c/. They then needed to find a value of c for which lim�!C1 OV .�; c0/ D 0.
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Fig. 6.2 Numerical shooting for the Hodgkin–Huxley traveling wave equations. Shooting is from
the one-dimensional stable manifold (SM) by integrating backward in time. For c too low, the
stable manifold goes off the top and for c too high, it goes out the bottom

For most values of c, the solution OV .�; c/ satisfies either lim�!C1 V.�; c/ D C1
or lim�!C1 V.�; c/ D �1. If one finds two values of c, say, c1 and c2, such that
lim�!C1 V.�; c1/ D �1 and lim�!C1 V.�; c2/ D C1, then there must be a

value c0 between c1 and c2 for which lim�!C1 OV.�; c0/ D 0; that is, OV .�; c0/

is a homoclinic orbit and c0 is the speed of the traveling wave. Using an itera-
tion scheme, Hodgkin and Huxley used this idea to estimate the speed of the wave.
Figure 6.2 shows an example of numerical shooting to find the homoclinic orbit.

6.2 Scalar Bistable Equations

There have been numerous papers in which mathematical methods were developed
to rigorously analyze the existence and stability of traveling waves. Most of these
studies considered simplified neuronal models such as the FitzHugh–Nagumo or the
Morris–Lecar equations. These studies also often assumed the recovery dynamics
[.h; n/ in the Hodgkin–Huxley equations] is slow. One then lets the rates of these
equations go to zero and this leads to a singular perturbation problem. The basic
idea is to then piece together a traveling wave or periodic orbit. This basic idea has
also been used to analyze the stability of the wave.

We will discuss some of these methods in detail. However, before considering
a two-dimensional example, we first review the general theory of bistable scalar
reaction–diffusion equations. This theory will be important in the construction of
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traveling waves in higher-dimensional systems. Moreover, by considering a simpler
example, we can more easily introduce some of the geometric constructions that
will be needed later.

Consider the following equation defined on the real line:

@u

@t
D f .u/C @2u

@x2
; �1 < x < 1: (6.3)

We assume, for now, f .u/ D u.1�u/.u�˛/, where 0 < ˛ < 1=2. Then, 0 and 1 are
stable equilibria for the equation du=dt D f .u/ and ˛ is an unstable equilibrium.
We would like to find traveling wave solutions to (6.3) which join the two stable
states. That is, we want a solution of the form u.x; t/ D U.�/; � D x � ct; that
satisfies

lim�!�1U.�/ D 1 and lim�!C1U.�/ D 0:

Here, c is the velocity of the wave. Note that U.�/ satisfies the ordinary differential
equation

�c dU

d�
D f .U /C d2U

d�2
: (6.4)

We rewrite this as the first-order system

dU

d�
D Y;

dY

d�
D �cY � f .U /: (6.5)

We want to show that there exists a unique value of c, which we denote as c�, for
which there is a solution that satisfies the boundary conditions

lim�!�1.U.�/; Y.�// D .1; 0/ and lim�!C1.U.�/; Y.�// D .0; 0/:

Hence, we need to show that there is a (unique) value of the wave speed c for
which (6.5) exhibits a heteroclinic orbit. One proves the existence of a heteroclinic
orbit using a standard shooting argument. Here, we will only outline the geometric
construction and leave details to the reader as exercises.

Note that for every value of c, the fixed points at .0; 0/ and .1; 0/ are saddles.
Both the stable and the unstable manifold of each of these fixed points have dimen-
sion 1. A heteroclinic orbit corresponds to a trajectory that lies in both the unstable
manifold of .1; 0/ and the stable manifold of .0; 0/. The phase planes of (6.3) for
c D 0 and c very large are shown in Fig. 6.3. Note that when c D 0, the un-
stable manifold of .1; 0/ lies “below” the stable manifold of .0; 0/ (in the region
0 < U < 1), whereas if c is very large, then the opposite is true. Since these mani-
folds depend in a continuous way on the parameter c, one can show that there must
exist at least one value of c for which the manifolds “cross.” This then corresponds
to the heteroclinic orbit, or traveling wave solution of (6.3). In the exercises, you are
asked to fill in the details and prove the wave speed is uniquely determined.
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Fig. 6.3 Existence of a traveling front for the scalar bistable equation. If c D 0, then the system
is integrable and we can derive explicit formulas for the trajectories in phase space. For small c,
the unstable manifold of the right fixed point (UM) falls below the stable manifold of the left-
fixed point (SM). For large c, the opposite is true. For a single intermediate value of c D c�, the
manifolds intersect, creating a heteroclinic orbit

We note that this construction does not depend on the precise form of f .u/.
More generally, we may assume f is any smooth “cubic-shaped” function such that
f .0/ D f .1/ D 0, f 0.0/ < 0, and f 0.1/ < 0. (In fact, we do not even need f
to be “cubic shaped”; it may have an arbitrary number of zeros.) Then the shooting
argument outlined above can be used to demonstrate the existence of the traveling
wave solution.

A key point of interest for us is how c depends on f . Multiply (6.4) by dU=d�
and integrate over the real line:

� c
Z 1

�1
.dU.�/=d�/2 d� D

Z 1

�1
.dU.�/=d�/ f .U.�//d�

C
Z 1

�1
.dU.�/=d�/ .d2U=d�2/d�:

Since U.�/ is monotonic, we let u D U.�/ be a new variable. Then, du D
.dU=d�/d�, so the first integral on the right-hand side is now � R 1

0 f .u/du. The
second integral vanishes since

.dU=d�/.d2U=d�2/d� D 1

2
d

�
dU

d�

�2

;
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which integrates to zero because dU=d�.˙1/ D 0. Thus, we have

c

Z 1

�1
.U 0.�//2d� D

Z 1

0

f .u/du: (6.6)

Since the first integral in (6.6) is positive, this shows that the sign of the velocity, c,
is the same as the area of f between the two stable equilibria. What does this mean
intuitively? Suppose that the middle root ˛ is close to 0. Then, the region where
f .u/ is negative, .0; ˛/, is small compared with the region where f is positive.
Thus the integral will be positive and the wave will move to the right, converting
the medium from the 0-state to the 1-state. On the other hand, if ˛ is close to 1,
then the area will be negative, the velocity will be negative, the wave will move to
the left, and the 1-state will be converted to the 0-state. Finally, if the positive and
negative areas balance exactly, the velocity of the wave will be zero. The case of
more than two-stable equilibria can be handled similarly and under fairly general
circumstances; there can be multiple wavefronts with multiple speeds joining these
fixed points.

6.2.1 Numerical Shooting

How do we obtain the velocity c numerically? Let us write the traveling wave equa-
tions as a system:

U 0 D Y; Y 0 D �cY � f .U /:

Consider the fixed point at .1; 0/. The linearization is

A �
�

0 1

�f 0.1/ �c
�
:

Since f 0.1/ < 0, the determinant of A is negative, so the fixed point is a saddle and
the eigenvalues are

�˙ D �c ˙p
c2 � 4f 0.1/
2

:

The unstable manifold is a tangent to the eigenvector corresponding to �C, which is
simply Œ1; �C�T. Thus, we take initial conditions, .U; Y / D .1 � a;�a�C/, where
a is a small positive number. We then integrate the equations until the trajectory
crosses either theU -axis or the Y -axis. If theU -axis is hit, then c is too big, whereas
if the Y -axis is hit, c is too small. In the exercises, we have you try your hand at
shooting for the problem f .u/ D u.u � ˛/.1 � u/.
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6.3 Singular Construction of Waves

We now describe the construction of a traveling pulse for the equation

@v

@t
D f .v;w/C @2v

@x2
;

@w

@t
D �g.v;w/;

where � is a small positive number. We will consider a general class of nonlinear
functions f and g. We assume the v-nullcline, ff .v;w/ D 0g, is a cubic-shaped
curve; moreover, f > 0 .f < 0/ below (above) this nullcline. We further assume
the w-nullcline, fg.v;w/ D 0g, is a monotonically increasing function that intersects
the v-nullcline at precisely one point, which we denote as .vr;wr/. Moreover, this
point lies along the left branch of the cubic-shaped v-nullcline. Finally, we assume
g > 0 .g < 0/ below (above) the w-nullcline. Note that .vr;wr/ corresponds to a
stable (resting) state of the kinetic equations

dv

dt
D f .v;w/;

dw

dt
D �g.v;w/: (6.7)

We remark that these assumptions are satisfied for many two-variable models
for neurons, including the FitzHugh–Nagumo equations and the Morris–Lecar
equations.

A traveling wave solution is a solution of the form .v.x; t/;w.x; t// D
.V .�/;W.�//, where � D x C ct . As before, c is the (yet to be determined)
wave speed; .V;W / now corresponds to the profile of the wave. We note that we
have now chosen � D x C ct instead of � D x � ct as was done in the preceding
section. The wave is now “moving” to the left.

The traveling wave equations are

dV

d�
D U;

dU

d�
D cU � f .V;W /; (6.8)

dW

d�
D �

c
g.V;W /

together with the boundary conditions

lim�!˙1.V; U;W /.�/ D .vr; 0;wr/: (6.9)
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Fig. 6.4 Singular
construction of the traveling
pulse . During the jump up,
the singular solution lies in
the plane fw D 0g. The active
phase lies along the right
branch of the cubic in the
plane fU D 0g and the silent
phase lies along the left
branch of this cubic. The
jump down lies in a plane
fw D constantg where the
constant is chosen so that the
speed of the back of the pulse
is the same as that of the front
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Hence, we seek values of c for which there exists an orbit homoclinic to the fixed
point .vr; 0;wr/. There may, in fact, be at least two waves. This was demonstrated
for the FitzHugh–Nagumo model by Hastings, Carpenter, and Conley. It has been
demonstrated that the wave with the greater speed is the stable one and this is what
we will concentrate on. In a later section, we will consider the stability of this wave.

We demonstrate the existence of a homoclinic orbit using methods from the ge-
ometric theory of singular perturbations. The idea is to formally set � D 0 and
construct a singular homoclinic trajectory. Once we construct the singular trajectory,
we worry about proving that this trajectory is perturbed to an actual homoclinic or-
bit for � > 0. The singular trajectory will consist of four pieces; these correspond to
the jump up from the silent to the active phase, the active phase, the jump down
to the silent phase, and the return to rest in the silent phase (see Fig. 6.4). We note
that the jumps up and down take place on a fast timescale �, whereas the active phase
and the return to rest take place on a slower timescale � D ��. It will be important
to exploit this separation of timescales in the construction of the singular orbit.

It will be convenient to introduce some notation. Recall that the curve f.V;W / W
f .V;W / D 0g is cubic-shaped. For fixed W , let .VL.W /;W / and .VR.W /;W / be
the points that lie on the left and right branches of the cubic, respectively. (Here, we
are assumingW lies below the local maximum of the cubic.) Note that VL.wr/ D vr,
since .vr;wr/ is a fixed point of the kinetic equation (6.7).

We first consider the jump up to the active phase. Let � D 0 in (6.8); this leads to
the reduced system

V 0 D U;

U 0 D cU � f .V;W /; (6.10)

W 0 D 0:

Note that W must be constant. For the jump up, we take W � wr and (6.10) be-
comes just the traveling equation for the scalar equation. From the discussion in the
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previous section, we know that there exists a unique value of c, which we denote
as c�, for which there exists a unique heteroclinic orbit of (6.10) that connects
.vr; 0;wr/ along the left branch of the cubic nullcline to .VR.wr/; 0;wr/ along the
right branch. This heteroclinic orbit corresponds to the jump-up piece of the full
singular orbit and c� corresponds to the (� D 0) velocity of the traveling pulse. For
the remainder of the analysis, we assume c D c�.

We next consider the active phase. Here, we introduce in (6.8) the slow variable
� D �� and then set � D 0 to obtain the reduced system

0 D U;

0 D cU � f .V;W /; (6.11)
dW

d�
D 1

c
g.V;W /:

The first two equations state that this piece of the singular orbit lies on the cubic
nullcline f .V;W / D 0 and the third equation gives the rate at which the orbit
evolves along the cubic. For the active phase, the singular orbit lies on the right
branch of the cubic beginning at the point .VR.wr/; 0;wr/ (see Fig. 6.4).

Now consider the jump down. Once again we use the fast timescale and consider
the reduced system (6.10) with c D c�. Now W is constant, say, Wjd , along this
piece; however, it is not clear how we should choose this constant. Analysis similar
to that given in the preceding section demonstrates for each such W that lies below
the local maximum of the cubic, there exists a wave speed c.W / for which there
exists a solution of (6.10) that approaches .VR.W /; 0;W / along the right branch
as � ! �1 and approaches .VL.W /; 0;W / along the left branch as � ! C1.
Now the pulse must maintain a constant width, so the speed of the jump up and
that of the jump down must be the same. That is, we must choose the position of
the jump down so that c.Wjd / D c�. This condition determines Wjd uniquely. We
remark that this condition may not be satisfied. In this case, the jump down is at
the local maximum of the v-nullcline. Such systems admit traveling waves for a
continuum of velocities. For some models, it is possible to computeWjd explicitly.
In the exercises, the reader is asked to do this for the FitzHugh–Nagumo equations
in which f .v;w/ D v.1 � v/.v � ˛/ � w.

Finally, we consider the return to rest. Here, we use the slow timescale � and
consider the reduced system (6.11). This piece of the singular orbit lies along the
left branch of the cubic, as shown in Fig. 6.4, and approaches the resting state as
� ! 1.

Note that during the active phase, the traveling wave lies along the right branch
of the cubic V -nullcline; moreover, the slow variable W satisfies (6.11). From this
we can compute the width, � , of the action potential. Using the slow variable �, we
find that

„ D c�
Z Wjd

wr

dw

g.VR.w/;w/
:
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For the membrane models that we have considered, g.v;w/ D �.w1.v/� w/=	.v/:
If w1.v/ is very sharp, then w1.vR.w// will be close to 1. Assuming 	.v/ does
not vary much along the right branch of the cubic nullcline, we can approximate
g.VR.w/;w/ by .1� w/=	R, where 	R is a constant. Then, it is easy to show that the
width of the action potential is

„ D 	Rc
� ln

1 � wr

1 �Wjd

:

6.3.1 Wave Trains

How do we compute the periodic wave trains for this model? Basically, the method
is relatively easy. Instead of jumping from wr, we jump at a slightly higher value of
w, say, wP : Thus, we first compute a jump from VL.wP / to VR.wP /: This will have a
smaller velocity than the solitary pulse (why?); call it cP :As before, we need to find
a jump-back point, wQ, such that the velocity of the wave from VR.wQ/ to VL.wQ/

matches cP . Then we compute the dynamics on the left branch until w reaches wP

and the process repeats. The up-jump and down-jump are relatively fast compared
with the evolution time of w along the two branches. Thus, the actual period of these
wave trains is

„P � cP

�

"Z wQ

wP

dw

g.VR.w/;w/
C
Z wP

wQ

dw

g.VL.w/;w/

#
:

6.4 Dispersion Relations

In general, if a dynamical system has a homoclinic orbit for a special parameter
value, then for parameters nearby we expect to find periodic orbits. What do such
orbits correspond to in (6.2)? Consider the following “experiment.” We initiate an
action potential at one end of a semi-infinite cable. Then, after a period of time,
we initiate another one, and so on. This will asymptotically produce a traveling
wave train. Denote the temporal period by T , the spatial separation between the
successive action potentials by P , and assume the wave train travels at velocity c.
Note that c; P , and T are not independent of each other: P D cT , since the spatial
period is dictated by the velocity and the temporal period. The velocity c will not be
the same as the velocity of the homoclinic orbit (solitary action potential) because
successive action potentials travel on a cable which may be refractory from the
prior activity. As we will see below, this can lead to either lower values of c or,
surprisingly, higher values of c: Thus, we expect that c will be a function of T
(or P/: This notion is well known from nonlinear wave theory. The spatial and
temporal frequencies (1=P and 1=T ) are related through the so-called dispersion
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Fig. 6.5 Dispersion relations for the Hodgkin–Huxley equation. (a) The full dispersion relation
showing velocity versus period, P . (b) The temporal dispersion relation showing velocity versus
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relation. Traditionally, in mathematical neuroscience, the relationship is given by
c D c.P /, the spatial period between waves. A way to think about this is to suppose
we make the axon into a ring. A periodic wave train with spatial period P is a
solitary wave propagating around the ring with circumference P:

The dispersion relationship is very important since it tells us how the axon re-
sponds to multiple stimuli. As with the homoclinic orbit, it is possible to numerically
compute the dispersion relationship by looking for a periodic orbit and varying c,
the speed. Figure 6.5a shows the dispersion relationship for the Hodgkin–Huxley
equations. There are several important points to note. There is a minimum period,
P �, below which waves do not seem to exist. This means there is a limit to how
closely spaced action potentials can be on the axon – not surprising, given the re-
fractoriness (recovery from the hyperpolarization). For each P > P �, there are
two possible speeds, one is fast and the other slow. What is perhaps most interest-
ing is that the velocity exhibits damped oscillations around the solitary wave speed
c1: This means for some spatial periods, the waves move faster than the solitary
wave. The reason for this is complex, but we can provide a bit of intuition. Consider
the recovery to rest after the wave has passed. This is dominated by the behavior
of the linearization of (6.3) at rest. We note that this linearization has a single neg-
ative eigenvalue and all the remaining eigenvalues have positive real parts. Two of
these eigenvalues are complex, ˛˙ iˇ, so we expect that there will be some damped
oscillations on return to rest. (Note that we shoot backward in �, the traveling coordi-
nate, so the oscillations are damped rather than growing.) This means the membrane
potential shows damped oscillations near rest, for example,

V.�/ � Vrest C Ae˛� cosˇ�

for � large and negative. This implies that for some values of �, V.�/ is larger than
Vrest, so it takes less current to produce an action potential. Thus, waves which are
spaced close to the characteristic length 2�=ˇ would have the added “boost” and
would travel faster.
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6.4.1 Dispersion Kinematics

Rinzel and Maginu [231] came up with a clever method for studying multiple waves
along axons without using the full neuron model. The idea is to use the dispersion
relation to compute the instantaneous velocity of an action potential which is a cer-
tain distance (in space or time) from an initial impulse. Suppose an initial pulse is
initiated at x D 0 and at time t1. Then, the time at which this first impulse reaches a
point x is T1.x/ D t0 Cx=c1, where c1 is the speed of the solitary pulse. Suppose
we introduce a new spike at x D 0 at time t2: The instantaneous velocity of this new
spike at x D 0will depend on the time since the last spike occurred at x D 0; that is,
t2 � t1: Rinzel and Maginu suggested the instantaneous velocity should be approxi-
mated by c.t2 � t1/, where c.T / is the velocity of a wave with temporal period T .
[If one has the dispersion curve as a function of the spatial period, P , divide this by
c.P / to get the temporal period.] Figure 6.5b replots the data from Fig. 6.5a to show
the temporal dispersion relationship for the Hodgkin–Huxley equations. Given this
Rinzel–Maginu approximation, the time at which a second action potential reaches
a point x will evolve as

dT2

dx
D 1

c.T2.x/ � T1.x//
: (6.12)

The time interval, 
 � T2.x/� T1.x/; between two action potentials initiated at
x D 0 will evolve (in space, x) as

d


dx
D 1

c.
/
� 1

c1
� D.
/: (6.13)

If D.
/ has a zero(s), N
, then the time difference between the two action potentials
will lock at these zeros. Figure 6.5c shows a plot of D.
/ and two zeros of this
function. Viewed as an evolution equation, we see that ifD0.
/ < 0, then the timing
difference is stable. Intuitively, this says the following. Suppose 
 is slightly larger
than N
 so that D.
/ < 0: This means c.
/ > c1, so the trailing action potential
will speed up and the temporal difference, 
; decreases. The case of multiple action
potentials is easily analyzed by assuming the only action potential which matters is
the preceding one. The timing of the .j C 1/th action potential will depend only on
the time since the j th action potential,

dTj C1

dx
D 1

c.Tj C1 � Tj /
:

6.5 Morris–Lecar Revisited and Shilnikov Dynamics

Here, we will briefly describe additional properties of traveling wave solutions for
the Morris–Lecar equations. In particular, we point out that these properties depend
on whether the model cells exhibit class I or class II dynamics.
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6.5.1 Class II Dynamics

The Morris–Lecar model is two-dimensional, so the analysis of propagating action
potentials leads to a three-dimensional dynamical system of the form

dV

dt
D U; (6.14)

dU

dt
D �U=c � f .V;W /;

dW

dt
D �g.V;W /=c:

We start as in Chap. 3, with the Morris–Lacar model with class II dynamics. There
is a unique fixed point, .vr; 0;wr/, which has a one-dimensional stable manifold
and a two-dimensional unstable manifold. Figure 6.6a shows the dispersion relation
for the Morris–Lecar model in this regime. As expected, it looks very similar to
Fig. 6.2b as both types of cells are class II. At I D 80, the linearization of (6.14) at
the fixed point has eigenvalues �� and 
˙ i!, with � > 
 > 0: Thus, we can apply
a very powerful theorem from dynamical systems due to Shilnikov. This theorem
implies that if (6.14) has a homoclinic orbit for c D c�, and if the linearization of
the fixed point has a real eigenvalue, r , and a pair of complex conjugate eigenval-
ues, ˛ ˙ iˇ, with r and ˛ of opposite signs and 0 < j˛j < jr j, then there must exist
infinitely many periodic orbits for values of c near c�. Furthermore, the system con-
tains so-called Smale-horseshoe dynamics (see Chap. 5). This implies very complex
behavior. Indeed, we can expect very complicated sequences of action potentials to
persist on the axon. (An interesting project would be to use the kinematics of the
dispersion relationship to find some of these complex orbits.)
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We note that Shilnikov-type dynamics may also exist for the FitzHugh–Nagumo
model:

@v

@t
D @2v

@x2
C f .v/ � w C I;

@w

@t
D �.v � kw/;

where f .v/ D v.1 � v/.v � a/; 0 < a < 1; � > 0, and k � 0. Here, we as-
sume I D kD 0. Hastings [118] and Carpenter [34] proved the existence of traveling
wave solutions (or homoclinic orbits) for this model when the recovery variable �
is sufficiently small. However, it is easy to show that when the recovery is very
slow, then all the eigenvalues of the linearized system are real. Thus, one cannot
obtain Shilnikov-type dynamics in this case. However, Hastings [119] proved the
homoclinic orbit exists when the recovery is fast enough such that the linearized
system does have complex eigenvalues. In a related paper, Feroe [87] showed
the existence of the Shilnikov structure for the piecewise-linear McKean model,
f .v;w/ D I � v CH.v � a/� w, where H is the Heaviside step function. Finally,
Evans et al. [81] proved a theorem similar to the Shilnikov theorem and applied it
to the question of double-impulse solutions. They showed that if the return to the
fixed point is damped-oscillatory, then there are double-pulse solutions and that if
the return is monotonic, then there are no such solutions.

6.5.2 Class I Dynamics

Surprisingly, no one has looked at the propagation of action potentials in class I
membranes, except in a scalar case. Figure 6.6b shows the dispersion relationship
for the Morris–Lecar equations with class I dynamics at two different currents. At
I D 30, there is only a fast branch of waves. At I D 25, there is a new slow branch
of waves. The explanation of this is somewhat complicated and not suitable for a
textbook. Rather than go through the details, we consider the scalar model for an
excitable medium.

Class I excitability is characterized by dynamics which lies on a circle.
Figure 6.7a shows the phase space for simple scalar dynamics which is equiva-
lent to the �-model:

dV

dt
D f .V /;

where V lives on the circle of radius 1 and f .V / is 2�-periodic. We assume
f .V / has two roots in Œ0; 2�/ and denote the unique root r , where f .r/ D 0 and
f 0.r/ < 0. Ermentrout and Rinzel [76] considered

@V

@t
D @2V

@x2
C f .V /;
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Fig. 6.7 Ermentrout–Rinzel excitable model. (a) The dynamics lies on a circle; the nonlinearity
is periodic with period 2� and has two fixed points. (b) The phase space of the traveling wave
equations is a cylinder. For c D c

1

> 0, there is a “big” homoclinic which wraps around the
cylinder; for c D 0, there is also a small homoclinic. These are depicted on the unfolded cylinder;
the “big” homoclinic is now a heteroclinic joining .2� C r; 0/ to .r; 0/ where f .r/ D 0 and
f 0.r/ < 0. (c) Dispersion relation for f .V / D I � cos.V / when I D 0:95. (d) Velocity of the
large periodic wave as I varies

where V.x; t/ 2 S1, the unit circle. In traveling coordinates, we obtain

�cV 0 D V 00 C f .V /;

the dynamics of which lie on a cylinder. There are two types of homoclinic solu-
tions: a “big” homoclinic orbit and a “small” homoclinic orbit. Figure 6.7b shows
these solutions as well as their projections onto the unfolded cylinder. The small
homoclinic occurs when c D 0, for then the dynamics is

V 00 D �f .V /;

which is an integrable equation. That is, all solutions lie on a curve defined by

E D .V 0/2=2C F.V /;
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where F 0.V / D f .V / andE is constant. There is a family of periodic orbits (inside
the small homoclinic) whose period varies between pmin and 1: This branch of
solutions for c D 0 corresponds to the “slow” branch of solutions we have seen
in other models. The “big” homoclinic is actually a heteroclinic orbit joining r and
r � 2� . But in the cylindrical phase space, these two points are the same point, so,
projected on the cylinder, the solution is a homoclinic orbit. The theory of bistable
reaction–diffusion equations provides the existence of a unique value of c for the
heteroclinic orbit.

6.6 Stability of the Wave

Perhaps the most influential work done concerning the stability of traveling wave
solutions of nerve impulse equations was that done by John Evans. In a series of
four papers, he developed a general mathematical framework in which to study a
general class of models that include the Hodgkin–Huxley equations. In his fourth pa-
per, Evans constructed a complex analytic function, now called the Evans function,
with the property that eigenvalues of the equations linearized about the traveling
wave correspond to zeros of the Evans function. Using other properties developed
by Evans, this implies that the stability of the traveling wave is determined by
computing the roots of the Evans function. Here, we will briefly describe issues
surrounding stability of waves and define the Evans function. Defining the Evans
function is not that hard; what is difficult is to compute the Evans function and say
something concrete about the eigenvalues. Jones [143] applied the Evans function to
the FitzHugh–Nagumo equations and completed the rigorous proof of the stability
of the traveling wave solution. Another stability proof was given by Maginu [189].

Here, we consider the FitzHugh–Nagumo equations and we denote the traveling
wave solution as .V .�/;W.�//; � D x C ct . For stability, we need to consider the
initial value problem

vt D vxx C f .v/ � w;

wt D �.v � kw/; (6.15)

.v.x; 0/;w.x; 0// D .v0.x/;w0.x//:

It is not completely obvious how one should define asymptotic stability of the trav-
eling wave. Intuitively, we would like to say that the wave is asymptotically stable if
we start with initial data that is “close” to the wave, then the corresponding solution
will asymptotically approach the wave as t ! 1. One issue is how do we define
“close”; that is, what norm or function space should we use? This turns out not to
be a problem and any reasonable norm, such as the supremum norm, works. A more
serious issue is that the traveling wave is, in fact, not unique; every translate of a
traveling wave is also a traveling wave. That is, if .V .�/;W.�// is a traveling wave
solution, then so is .V .� C �0/;W.� C �0// for any constant �0. Now if we take our
initial data to be .V .� C �0/;W.� C �0// with �0 very small, then the initial data
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lies very close to the original traveling wave; however, the solution with this initial
data does not approach the original traveling wave as t ! 1. In general, the best
that we can hope for is that a perturbation of a traveling wave solution will approach
some translate of the original traveling wave solution. With this in mind, we define
asymptotic stability as follows. By jj � jj we mean the usual supremum or L1 norm.

Definition: The traveling wave .V .�/;W.�// is asymptotically stable if for each
ı0 > 0 there exists ı1 > 0 and �0 such that if jj.V .x/;W.x// � .v0.x/;w0

.x//jj < ı1, then jj.V .x C ct/;W.x C ct// � .v.x; t/;w.x; t//jj < ı0 for all t > 0.
Moreover, limt!1jj.V .x C ct C �0/;W.x C ct C �0// � .v.x; t/;w.x; t//jj D 0.

6.6.1 Linearization

A common approach to proving the stability of the wave is to use the method of
linearization. In fact, this is one of the few mathematical methods available to treat
the initial value problem for the system of partial differential equations (6.15). The
first step in applying this method is to reduce the issue of stability to an eigenvalue
problem. This is done as follows. We first change to the moving coordinate frame
� D x C ct . In this new variable, (6.15) becomes

vt D v�� � cv� C f .v/� w;

wt D �.v � kw/ � cw� ; (6.16)

.v.�; 0/;w.�; 0// D .v0.�/;w0.�//:

Note that the traveling wave .V .�/;W.�// is a steady solution of this system. We
then look for solutions of (6.16) that are perturbations of the traveling wave. In
particular, we look for solutions of the form

.v.�; t/;w.�; t// D .V .�/C p.�/e�t ;W.�/C r.�/e�t /:

This solution either grows or decays (in time) with rate �. If we plug a solution of
this form into (6.16), “linearize” around the traveling wave, drop higher-order terms,
use the fact that the traveling wave is a steady solution, and let q D p0, then we find
that .p.�/; q.�/; r.�// must solve the eigenvalue problem

p0 D q

q0 D cq C .� � f 0.V .�//p C r

r 0 D �

c
.p � kr/ � �

c
r: (6.17)

Note that we are interested in solutions of (6.17) that satisfy the boundary conditions

lim�!˙1.p; q; r/.�/ D .0; 0; 0/: (6.18)
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Now � is an eigenvalue if there exists a bounded, nonzero solution of (6.17) that
satisfies the boundary conditions (6.18). We note that � D 0 must be an eigen-
value because every translation of the wave is also a wave; in particular, .p; q; r/ D
.V 0; V 00;W 0/ is the corresponding eigenvector. Evans proved if all the remaining
eigenvalues are in the left-half complex plane (and 0 is a simple eigenvalue), then
the traveling wave is asymptotically stable.

6.6.2 The Evans Function

Here, we will show how to define the Evans functions for a broad class of reaction–
diffusion systems. Unfortunately, this class does not include the nerve impulse
equations, for reasons we point out below. Our discussion will at least give a taste
for how such a function is defined and why it has the properties that it does. It is
not too difficult to extend this definition to nerve impulse equations; however, this
becomes somewhat technical so we simply refer the interested reader to [143].

We consider a general class of reaction–diffusion equations of the form:

Ut D DUxx C F.U /: (6.19)

Here, U.x; t/ 2 Rn and F W Rn ! Rn is sufficiently smooth. We assume D is
an n-dimensional diagonal matrix with nonzero, positive entries along the diagonal.
Note that this rules out the nerve impulse equations since these do not have diffusion
in the recovery variables. We assume U D A and U D B are fixed points (that is,
F.A/ D F.B/ D 0) and there is a traveling wave solution V.�/ of (6.19), with
speed c, which connects A with B . Note that we do not rule out A D B .

As before, we change to a moving coordinate frame, � D x C ct , and consider
perturbations of the wave of the form p.�/e�t . This leads to an eigenvalue problem
of the form:

p0 D q;

q0 D D�1fcq C .� � F 0.V //gp: (6.20)

Then, � is an eigenvalue if there is a nontrivial solution (eigenfunction) .p.�/; q.�//
of (6.20) that satisfies

lim�!˙1.p; q/.�/ D .0; 0/: (6.21)

Note that an eigenfunction is a pair of (complex) functions that satisfy (6.20) and
decays at ˙1. To define the Evans function, we consider the two sets of solutions
that decay at either C1 or �1. That is, let

EC.�/ D fsolutions of .6:20/ such that lim�!C1.p.�/; q.�// D .0; 0/g;
E�.�/ D fsolutions of .6:20/ such that lim�!�1.p.�/; q.�// D .0; 0/g:
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It is obvious that � is an eigenvalue if the intersection of EC.�/ and E�.�/ is
nontrivial. It is important to realize that EC.�/ and E�.�/ are linear subspaces.
This is because (6.20) is linear. A standard result from the theory of linear ordinary
differential equations implies that the dimension of each of these linear subspaces
is n. We choose a basis for each of these linear subspaces. That is, suppose

EC.�/ D spanfQC
1 .�; �/; : : : ;Q

C
n .�; �/g

and
E�.�/ D spanfQ�

1 .�; �/; : : : ;Q
�
n .�; �/g:

Note that each QC
j and Q�

j is a 2n-dimensional vector. We next form the 2n � 2n-

dimensional matrix in which the first n columns are QC
1 ; : : : ;Q

C
n and the next n

columns are Q�
1 ; : : : ;Q

�
n . We denote this matrix by M.�; �/.

We are now ready to define the Evans function. Let

D.�/ D detM.�0; �/; (6.22)

where �0 is some arbitrary point (say, 0).
Now the Evans function is certainly well defined. Evans proved this function

has many important properties. Perhaps the most important property is that � is an
eigenvalue if and only if D.�/ D 0. This is actually trivial to prove. The proof is
simply:

D.�/ D 0

if and only if detM.�0; �/ D 0,
if and only if the rows of M.�; �/ are linearly dependent,
if and only if there exist constants c1; c2; : : : ; c2n such that

c1Q
C
1 C c2Q

C
2 C � � � C cnQ

C
N C cnC1Q

�
1 C cnC2Q

�
2 C � � � C c2nQ

�
n D 0;

if and only if

c1Q
C
1 C c2Q

C
2 C � � � C cnQ

C
N D �.cnC1Q

�
1 C cnC2Q

�
2 C � � � C c2nQ

�
n /;

if and only if EC.�/ and E�.�/ have nonzero intersection,
if and only if � is an eigenvalue.

Another important property of the Evans function is that it is analytic. Moreover,
if � is a zero of D, then the order of this zero is equal to the algebraic multiplicity of
� as an eigenvalue. These two properties are considerably more difficult to prove.

Although it is straightforward to define the Evans function, it is quite challenging
to actually compute this function in any given example. For stability, one needs
to prove there are no roots of D in the right-half plane, there are no roots on the
imaginary axis except at the origin (because of translation), and zero is a simple
eigenvalue. Methods that have been developed for computing D go well beyond the
scope of this book.
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6.7 Myelinated Axons and Discrete Diffusion

Many vertebrate axons are covered by a fatty substance called myelin which serves
to both insulate the axons and decrease the membrane capacitance. Myelin consists
of the membranes of glial cells which wrap around the axons to make a thick layer.
At regularly spaced intervals, the nodes of Ranvier, the axon is exposed to the ex-
tracellular medium and there is a high density of sodium channels. The increased
transmembrane resistance implies that little current leaks out along the myelinated
portions of the axon, so we can expect the velocity of propagation to be greatly
enhanced (see below).

Let a1 denote the diameter of the axon and a2 denote the diameter of the myeli-
nated axon. Dayan and Abbott [54] showed that the total capacitance due to the
myelination is

1

cm
D ln.a2=a1/

2Cm�dmL
;

where L is the length of the myelinated region, Cm is the usual material constant for
capacitance, and dm is the thickness of a cell layer. Because of the large transmem-
brane resistance and small capacitance, the potential in the myelinated membrane
satisfies the diffusion equation

cm

L

@V

@t
D 4�a2

1

RL

@2V

@x2
; (6.23)

where RL is the transmembrane resistivity. Dividing by cm=L, this is the diffusion
equation with D D 4a2

1 ln.a2=a1/=.2CmRLdm/. The larger the diffusion coeffi-
cient, the faster the propagation. Suppose we fix the outer diameter, a2. Then, we can
ask what inner diameter maximizes the diffusion coefficient. It is easy to show that
this occurs when a1 D a2 exp.�1=2/ � 0:6a2. At the optimal diameter,D D Ka2

2,
so the velocity of propagation (which scales as

p
D) scales linearly with diameter.

The velocity of propagation for unmyelinated axons scales as the square root of the
diameter.

Figure 6.8 shows a cartoon of a myelinated axon with nodes of Ranvier spaced
a distance L apart. We assume the nodes are sufficiently small so that they are

Fig. 6.8 Myelinated axon.
Currents in the myelinated
region are confined to the
axial direction. Potentials at
the nodes are governed by
active currents

Vn Vn+1
Vn−1

In In+1

Node of Ranvier

L
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isopotential. Let Vn denote the potential at a node. The transmembrane conductance
and the capacitance of myelinated regions are roughly 100-fold smaller than those
of the unmyelinated portions of the axon (the nodes of Ranvier). Thus, there is a
sense in which we can regard the myelinated axon as a collection of discrete active
nodes separated by a purely resistive medium. Take the limit as cm ! 0 in (6.23).
Then Vxx D 0 between nodes n � 1 and n. The voltage at x D 0 and x D L must
match the voltage at the nodes. Thus, the potential is linear between nodes: V.x/ D
Vn�1 C .Vn �Vn�1/x=L: The current flowing into node n is proportional to the gra-
dient of the voltage in the myelinated segments. Thus, at node n, the voltage satisfies

ACm
dVn

dt
D �AIionic.Vn; : : :/C In � InC1; (6.24)

where A is the area of membrane exposed at the node, and the longitudinal current
[recall (2.8)]

In D �4a
2
1

Rl

@V

@x
D 4�a2

1

.Vn � Vn�1/

RlL
:

The area A is �
a1, where 
 is the length of the node. Dividing through by the
area, we obtain

Cm
dVn

dt
D �Iionic.Vn; : : :/CD.VnC1 � 2Vn C Vn�1/; (6.25)

where D D 4a1=.RlL
/: Thus, the continuous axon equation, in the presence of
myelin, becomes a discrete system of differential equations. Surprisingly, this is
much more difficult to analyze, even in the simple bistable case. A traveling wave,
if it exists, satisfies VnC1.t/ D Vn.t � 	/; that is, translating by one space unit
results in a time shift of 	: The speed of the wave is thusL=	 since L is the distance
between nodes. With the traveling wave ansatz, we must solve the differential-delay
equations:

Cm
dV

dt
D DŒV.t C 	/ � 2V.t/C V.t � 	/� � Iionic.V;w; : : :/

dw

dt
D g.V;w/;

where w represents the gating variables, calcium, etc. In the scalar bistable case,
we set f .V / D �Iionic.V / and assume f .V / has three roots, Vrest,Vthr, and Vex,
the resting state, the threshold, and the excited state. We seek solutions to the delay
equation where V.�1/ D Vex and V.C1/ D Vex. There have been a few results
for this problem [35, 297].

Keener and Sneyd [148] offered the following approximate analysis. Approxi-
mate V.t C 	/ � 2V.t/C V.t � 	/ by 	2V 00 so that we have to solve

CmV
0 D f .V /C 	2

L


4a1

Rl

V 00;
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with 	 an unknown parameter. To compare this with the continuous cable, we
contrast the term multiplying V 00 with that in (2.7). We introduce the new space-
like variable � D p

L
=	: Then, the traveling wave equation is

Cm

p
L


	
V� D f .V /C 4a1

Rl

V�� :

Let c be the traveling wave speed of the unmyelinated axon. Then, we can immedi-
ately identify c D p

L
=	 , so

cmyelin D L=	 �
s
L



c:

Since 
 is often 1�m and L is around 100�m, the increase in velocity of myeli-
nated axons can be almost 10 times that of unmyelinated axons. In practice, the
factor is closer to 6, but we have made a rather crude approximation here.
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6.9 Exercises

1. Consider the scalar equation (6.3) with f .u/ D u.1 � u/. Prove there exists c�
such that a traveling wave solution U.x�ct/ exists for all wave speeds c � c�.
Here, U.�/ should satisfy U.�1/ D 1; U.C1/ D 0 and U.�/ > 0 for all �.
What is the precise value of c�?

2. Consider the scalar equation (6.3) with f .u/ D �u C H.u � a/, where H is
the Heaviside step function and 0 < a < 1=2. In this case, one can construct
the traveling wave solution explicitly and find a formula for the wave speed.
This is done as follows. Note that (6.5) consists of two linear systems: one for
U < a and the other for U > a. One can solve each of these systems explicitly
in terms of exponentials. For each a and c > 0, find a solution, UC.a; c/.�/,
of the system for U > a such that U.0/ D a and lim�!�1U.�/ D 1. Then
find a solution, U�.a; c/.�/, of the system for U < a such that U.0/ D a

and lim�!C1U.�/ D 0. Now fix a and derive a formula for the wave speed
by assuming the derivatives of these two solutions match up at U D a; that is,
U 0C.0/ D U 0�.0/. Plot the wave speed, c, versus the parameter a? What happens
to the wave speed as (a) a ! 0 and (b) a ! 1=2.

3. Prove the traveling wave solution of the bistable equation (6.3) exists for a
unique value of the wave speed. In what sense is the traveling wave unique?

4. Draw the phase plane corresponding to the equation U 00 C f .U / D 0, where
f .U / D U.1 � U /.U � ˛/; 0 < ˛ < 1=2. [Hint: Consider the total energy
function E.U; Y / D Y 2=2C F.U /, where Y D U 0 and

F.U / D
Z U

0

f .s/ds:

Show that E.U; Y / is constant along trajectories in the phase plane.]
5. Consider the scalar equation (6.3) where f .u/ D u.a�u/.u�b/.u�c/.u�d/,

where a < b < c < d . Note that the equation u0 D f .u/ has three stable fixed
points, at u D 0, b, and d . Show that there is a traveling wave solution such
that U.�1/ D b and U.C1/ D 0. Moreover, there is another traveling wave
solution U.�1/ D d and U.C1/ D b. Denote the speeds of these waves as
cb0 and cdb, respectively. Prove there exists a traveling wave solution such that
U.�1/ D d and U.C1/ D 0 if and only if cb0 � cdb. How does the speed
of this third wave compare with the speeds of the other two waves?

6. Aglantha digitale, a lovely jellyfish (see Fig. 6.9), has an interesting axon [187].
When the animal is moving through the water, slow-moving spikes are gener-
ated in the axon, but when it is trying to escape, the animal produces fast action
potentials. The slow waves occur at a lower threshold stimulus, have low am-
plitude, and are produced by a calcium spike. The fast waves are generated
by a high-threshold sodium current. One way to think about this behavior the-
oretically is to study the initiation of the spike by looking at a model with no
recovery. That is, imagine a tristable system in which there are five fixed points,
three of which are stable and two unstable. The slow wave is a front from rest
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Fig. 6.9 The jellyfish Aglantha digitale and the phase plane for a tristable system. The three
heteroclinic orbits corresponding to the three wavefronts are shown. Here, c12 < c13 < c23

to the middle stable fixed point. The fast wave is a front from rest to the highest
fixed point. Consider the simple model

Vt D Vxx C Iion.V /;

where

Iion.V / D gL.V �EL/C gCam1.V /.V �ECa/C gNam2.V /.V � ENa/

and eachmj .V / is of the formmj .V / D 1=.1C exp.�.V �Vtj /bj //. Assume
EL D �70, ENa D 55, and ECa D 150. Find values of the other parameters
so that Iion has five zeros. Arrange these zeros so that there are the requisite
traveling fronts. Figure 6.9 shows our attempt at this. The figure shows three
different fronts at three different speeds.

7. Here is a cool trick. Let f .u/ D Au.u � ˛/.1 � u/, where ˛ 2 .0; 1=2/, and
consider the traveling front equation

�cu0 D f .u/C u00;

where u.�1/ D 1 and u.C1/ D 0: Also consider the equation

u0 D �bu.1� u/:

Find a value of b and of c so that the solution to the second equation is a solution
to the first. Thus, find an exact expression for the wave speed. Solve the second
equation by quadrature to get a closed-form expression for the wavefront! Plot
the wave speed, c, versus the parameter ˛. What happens to the wave speed as
˛ ! 0 and ˛ ! 1=2?
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8. Consider the equation vt D vxx C f .v/ � w, where f .v/ D v.1 � v/.v �
˛/; 0 < ˛ < 1=2, and w is constant. Note that there is a range of w for which
there are three fixed points; we denote the left, middle, and right fixed points
as .vL.w/;w/; .vM.w/;w/, and .vR.w/;w/, respectively. For what values of w
does there exist a traveling wave solution such that lim�!�1V.�/ D vR.w/
and lim�!1V.�/ D vL.w/? How does the wave speed depend on w? For what
value of w is the wave speed zero? For what value of w does the speed of this
wave equal c	, the wave speed of the scalar equation, defined in Sect. 6.2. This
gives the value of Wjd , defined in Sect. 3.3.

9. Consider the FitzHugh–Nagumo equations (6.15) with k > 0 and I D 0. Note
that if k is sufficiently large, then the traveling wave equations have three fixed
points. One of these is at the origin O and we denote the fixed point on the
right branch of the cubic as q0. Construct a singular heteroclinic orbit of the
traveling wave equations which connects O at � D �1 to q0 at � D C1.
For what values of the wave k does there exist a singular heteroclinic orbit
that connects q0 to O? For what values of k does there exist a singular orbit
homoclinic to the origin?

10. Consider the FitzHugh–Nagumo equations (6.15) with k D I D 0. Construct
singular periodic orbits. The orbit should “jump up” from the left to the right
branch of the cubic nullcline for some fixed value of w, lie along the right
and left branches of this cubic during the active and silent phases, respectively,
and jump down from the right to the left branch of the cubic at some other fixed
value of w. The values of w for the jump up and jump down need to be chosen
so that the velocities of the front and back parts of the wave match. For what
values of w is there the jump up? How do the speeds of the waves depend on
these values of w?

11. Simulate the reduced Hodgkin–Huxley cable model using m D m1.V / and
h D 0:8 � n. Deduce that the velocity of an action potential is about 2–3 times
faster than that of a full model. Why do you think this is?

12. Consider the Morris–Lecar model with no potassium,

Cm
dV

dt
D d2V

dx2
� gL.V � EL/ � gCam1.V /.V � ECa/C I;

with parameters as in Chap. 4. Choose the injected current, I , so that this
equation is bistable. How does the velocity of the wavefront depend on I? Now,
in the original Morris–Lecar model, m is a dynamic variable, but we have set
it to its steady state. Study the velocity of the wavefronts for the Morris–Lecar
model,

Cm
dV

dt
D d2V

dx2
� gL.V � EL/� gCam.V �ECa/� I;

dm

dt
D �.m1.V / �m/;

as � increases.
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13. Use shooting to estimate the velocity of an action potential for the FitzHugh
–Nagumo equations. Try to find the slow-velocity wave and then use continua-
tion software (such as AUTO) to draw the dispersion relation.

14. What is the velocity of an action potential using the Hodgkin–Huxley dynamics
for an axon of diameter d D 0:1 cm and axial resistance Ri D 100� cm?

15. Consider the traveling wave equations (6.8) for the FitzHugh–Nagumo equa-
tions (6.15) with I D 0. Show that if b > 0 is sufficiently small, then the
linearization at the origin has two negative eigenvalues and one positive eigen-
value. Thus, there is a two-dimensional stable manifold and a one-dimensional
unstable manifold.

16. Analyze the traveling wave equations (6.8) for the FitzHugh–Nagumo equa-
tions (6.15) with k > 0 and show that the resting state can become unstable
as I increases. [Hint: Assume the resting state is at V D NV and show that a
Hopf bifurcation occurs when f 0. NV / D k. Then solve this last equation for
two values of NV and plug these values into the expression for the resting state.
This yields two values of I , thus showing there are two possible Hopf bifurca-
tion points. Find a relationship between a and k guaranteeing that these points
exist.]

17. Suppose the stable dispersion relation satisfies

c.P / D c1.1� ˛e�ˇ.P �Pmin//;

where ˛ D .c1 � cmin/=c1; c1 > cmin > 0 and ˇ > 0. Analyze the kine-
matics of this type of dispersion curve. What happens to a pair of spikes on an
axon? More generally, suppose c D F.P / and F is monotonically increasing.
Show that if F.P / > PF 0.P /, then D.
/ has no roots. Thus, show that if the
dispersion relation is monotonic, there are no double-pulse solutions (see [81]).

18. For many class II axons, the dispersion relation c.P / is oscillatory. For sim-
plicity, suppose

1

c.P /
D 1

c1
C �e�aP cos bP;

where a and b are positive constants and � > 0 is smaller than 1=c1. Find an
equation for the interspike interval of a pair of pulses on the cable. What is the
minimal interval? Pick some values of a; b, and � and look at the kinematics
of pulse triplets, etc.

19. Consider the simple ring model for excitability:

Vt D I � cosV C Vxx;

where 0 < I < 1. There are two fixed points of interest: V0 D � arccos.I / and
V1 D 2� � arccos.I /. For I D 0:95, find the velocity of the front joining V1 to
V0. Let c1 be the velocity of the front. Since the state space for this system is
a cylinder (recall Fig. 6.7), we can also look for “periodic” solutions. Take it as
a fact that if c < c1, then the unstable manifold of V1 hits the V 0-axis before it
hits the V -axis. Show that, on the cylinder, the unstable manifold approaches a
periodic solution – that is, V.� C P/ D V.�/ � 2� (see [76]).
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20. Show that � D 0 is an eigenvalue of the linear system (6.17).
21. Propagation failure. Consider the equation

dvn

dt
D f .vn/CD.vnC1 � 2vn C vn�1/:

Assume f has roots at 0, 1, and a 2 .0; 1/ such that 0 and 1 are stable fixed
points of v0 D f .v/.
(a) SupposeUn.t/ and Vn.t/ are solutions to this equation with initial data such
that Vn.0/ > Un.0/ for all n. Prove Vn.t/ � Un.t/ for all t > 0:
(b) Part (a) implies that if there is a stationary front (that is, a zero velocity
front) with Vn ! 1 as n ! 1 and Vn ! 0 as n ! �1, then there will be
no traveling front; this is because the stationary front blocks the propagation. It
is clear that if D D 0, then such a stationary front exists – just take Vn D 0

for n < 0, V0 D a and Vn D 1 for n > 0: This stationary front persists for
small D. (One can show that it is a hyperbolic fixed point.) Thus, we expect
that the stationary front exists for D sufficiently small. Keener [146] showed
that there is aD� > 0 such that ifD � D�, there is a stationary front. Suppose
f .v/ D �v CH.v � a/, where H is the Heaviside step function. Find D� for
this model. (Hint: Consult [148], page 280.) Answer:D� D a.1�a/=.2a�1/2.



Chapter 7
Synaptic Channels

So far, we have restricted our modeling and analysis efforts to single neurons. To
begin to develop networks and the theoretical background for networks, we need
to introduce an additional class of membrane channels. We have already looked at
voltage- and ion-gated channels. However, there are many other channels on the sur-
face of nerve cells which respond to various substances. Among the most important
of these, at least in computational neuroscience, are synaptic channels.

The events leading to the opening of synaptic channels involve several steps.
The action potential travels down the axon and terminates at many presynaptic sites
invading regions called synaptic terminals. These terminals contain calcium chan-
nels. When these are depolarized they cause release of calcium. The calcium then
activates a calcium binding protein, which promotes transmitter release by binding
to vesicles containing the transmitter. These “docked” vesicles release their trans-
mitter into the synaptic cleft. The transmitter diffuses through the cleft, where it
binds to various receptors on the postsynaptic neuron (often on protuberances on
the dendrites called spines). These receptors open channels which either depolarize
or hyperpolarize the neuron depending on the nature of the transmitter.

Transmitter release can become quite complex for there are sometimes presy-
naptic receptors near the site of transmission which can be modulated by various
chemicals. Furthermore, the release of transmitter is probabilistic and occurs in
discrete amounts called quanta. Presynaptic stimulation can lead to more vesicles
becoming docked to the membrane, so on the next presynaptic spike more trans-
mitter is released than on the first spike. This increase is called potentiation or
facilitation. Additionally, after several presynaptic spikes, the transmitter release
per spike can decrease through various means (such as depletion) and take some
time to recover. Decrease of transmitter over successive firings of action potentials
is called synaptic depression.

The consequences of synaptic dynamics and short-term plasticity (e.g., depres-
sion and facilitation) have not been thoroughly explored in terms of dynamical
systems theory. Here, we will develop several models for both synaptic release
and the plasticity of synaptic release. In Chap. 11, we will show some interesting
behavior which occurs because of synaptic depression.

G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neuroscience,
Interdisciplinary Applied Mathematics 35, DOI 10.1007/978-0-387-87708-2 7,
c� Springer Science+Business Media, LLC 2010
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7.1 Synaptic Dynamics

In this section, we deal with the five most common classes of synaptic dynamics.
The main transmitters associated with cortical neurons are glutamate and
”-aminobutyric acid (GABA). A good rule of thumb is that glutamate excites
the postsynaptic cell, whereas GABA inhibits it. However, the reversal potential
of some GABA receptors is mainly dependent on chloride concentration, so it can
be close to rest and even above rest. Thus, (particularly, early in development)
some GABA synapses can be excitatory. Like other currents, we model the synaptic
currents as the product of a conductance with a voltage difference:

Isyn D g.t/.Vpost � Vrev/:

Unlike our previously studied channels, the conductance g.t/ depends on the presy-
naptic neuron.

There are several ways to model the conductance g.t/: A popular method among
computational neuroscientists is to assume g.t/ is the sum of fixed functions which
depend only on the times at which that the presynaptic cell has spiked:

g.t/ D Ng
X

k

˛.t � tk/ � Ngz.t/; (7.1)

where Ng is a constant conductance and ˛.t/ is a prescribed function of time, vanish-
ing for t < 0 and positive for t > 0. The times tk are when the presynaptic cell has
spiked. The most general form for the function ˛.t/ is

˛.t/ D adar

ar � ad

.e�ad t � e�ar t /: (7.2)

The parameter ar characterizes the rise rate of the synaptic conductance and ad

characterizes the decay. Many modelers assume ad D ar , in which case the function
has the form

˛.t/ D a2
d te

�ad t :

Letting ar ! 1 reduces the model to a single exponential. The maximum of ˛.t/
occurs at t� D ln.ar=ad /=.ar � ad /. The constants multiplying these functions
are chosen so that the area under ˛.t/ is 1. Other normalizations are possible; for
example, choosing the value of ˛.t�/ D 1 for some t� > 0:

If one uses alpha functions in simulations, then (7.1) implies that it is necessary
to keep track of all the incoming spikes at times tk . Since z.t/ in (7.1) is the solution
to a second-order linear differential equation,

z00 C .ar C ad /z
0 C arad z D 0; (7.3)

we need only solve this equation in time with the proviso that each time tk that
a presynaptic spike arises, z0.t/ is increased by an amount adar : Formally, we
can write

z00 C .ar C ad /z
0 C arad z D arad

X
k

ı.t � tk/:
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If the spike train is random (say, Poisson) with a time-varying rate, �.t/, then we
can formally average this equation to obtain

z00 C .ar C ad /z
0 C arad z D arad�.t/: (7.4)

The solution to this linear equation provides a formula for the average net synaptic
input for a time-varying random stimulus.

Choosing a fixed function ˛.t/ for the synaptic response has some advantages
which will become apparent when we study networks. However, from a physical
point of view, the use of alpha functions is unsatisfactory. First, as noted above, we
need to track the time of a spike which could be ambiguous. Furthermore, this ap-
proach does not connect well with our notion of voltage- and ligand-gated channels.
We now introduce a simple model for synapses which is identical to the formalism
that we previously described for voltage-gated ionic channels. Let ŒT � denote the
concentration of transmitter released into the synaptic cleft by a presynaptic spike.
Note that ŒT � will be time-dependent since synaptic transmitter is rapidly taken up
and/or degraded. Then the conductance g.t/ D Ngs.t/, where s.t/ denotes the frac-
tion of open channels. s.t/ satisfies

ds

dt
D ar ŒT �.1 � s/ � ad s: (7.5)

Suppose at t D t0; ŒT � jumps to Tmax and at t D t1, ŒT � falls back to 0. Then

s.t � t0/ D s1 C .s.t0/ � s1/e�.t�t0/=�s ; for t0 < t < t1;

where

s1 D arTmax

arTmax C ad

and �s D 1

arTmax C ad

:

After the pulse of transmitter has gone, s.t/ decays as

s.t/ D s.t1/e�ad .t�t1/:

Although it may appear that, like the alpha function, there is a rise rate and a decay
rate, the formula for �s shows that the rates are not independent. If arTmax is large,
the synapse will saturate near 1, so it is not possible to make this rise rate arbitrary.
However, by varying the residence time of the transmitter, t1 � t0, we can mimic the
alpha function quite closely. We now must connect the transmitter release ŒT � with
the presynaptic neuron. We assume a model of the form

ŒT �.Vpre/ D Tmax

1C exp.�.Vpre � VT/=Kp/
: (7.6)
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Destexhe et al. [62] suggest Tmax D1 mM, VT D 2, and Kp D 5 mV. As this
synaptic channel is gated by the presynaptic spike, there could be some transmission
delay due to the propagation of the presynaptic spike down the axon to the postsy-
naptic receptor. Thus, modelers often include a delay term; that is, the term Vpre.t/

is replaced by Vpre.t � tdelay/ in (7.6). Synaptic delays can be fixed or depend on
the distance between the presynaptic and the postsynaptic neuron to account for the
finite propagation speed down the axon (see Chap. 6).

We now have a complete model of the conductance changes of a simple synapse
connected to the presynaptic voltage. We turn next to the four main classes of
synaptic transmission used in models of cortical neurons. Figure 7.1 shows the con-
ductance changes due to each of our four model synapses.
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Fig. 7.1 Model synaptic conductances. (a) AMPA (black) and GABAA (red ) conductance due to
a single presynaptic spike. (b) NMDA conductance due to a single spike (red ) and a burst of four
spikes (black). (c) GABAB conductance due to a burst of eight spikes. Single spike response is
negligible
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7.1.1 Glutamate

The neurotransmitter glutamate activates two different kinds of receptors:
AMPA/kainate, which are very fast, and NMDA, which is implicated in memory
and long-term potentiation of synapses. Both of these receptors lead to excitation of
the membrane.

7.1.1.1 AMPA/Kainate

The current from a fast AMPA synapse is

IAMPA D NgAMPAs.V � VAMPA/; (7.7)

where VAMPA D 0mV. For the synapse shown in Fig. 7.1a, s satisfies (7.5) and (7.6)
with ar D 1:1 mM�1 ms�1 and ad D 0:19 ms�1.

The AMPA synapses can be very fast. For example, in some auditory nuclei,
they have submillisecond rise and decay times. In typical cortical cells, the rise time
is 0.4–0.8 ms. Using the above model with a transmitter concentration of 1 mM, the
rise time would be 1/(1.1 C 0.19) D 0.8 ms. The decay is about 5 ms. As a final note,
AMPA receptors on inhibitory interneurons have rise and fall times about twice as
fast as those on excitatory neurons.

Real AMPA synapses show quite strong depression. That is, the peak amplitude
of the AMPA current decreases with each subsequent spike. We will address this
short-term plasticity in the next section. Figure 7.1a shows the conductance change
for a single presynaptic spike.

7.1.1.2 NMDA

The NMDA receptor is also sensitive to glutamate but has effects that last consider-
ably longer than those of AMPA. However, under normal physiological conditions,
the NMDA receptor is partially blocked by magnesium ions. The magnesium block
can be removed if the postsynaptic neuron is depolarized and, of course, if the neu-
ron is bathed in a low magnesium medium. Thus, if the postsynaptic cell is already
active, then the NMDA receptor opens and the effect of the current will be long-
lasting. Because of the property that both the presynaptic and the postsynaptic cells
must be active for the NMDA current to flow, the presence of these receptors is be-
lieved to be necessary for many types of long-term changes in the synapses which
presumably encode memories. Indeed, one of the ions carried by NMDA current
is calcium, which is a main player in long-term changes in neurons. This synaptic
current is also thought to play a role in maintaining persistent activity required for
short-term memory (see [182] and Chap. 12). The NMDA current is modeled as

INMDA D NgNMDAsB.V /.V � VNMDA/; (7.8)
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where s obeys (7.5) and (7.6) and B.V / represents the magnesium block [138]:

B.V / D 1

1C e�0:062V ŒMg2C�=3:57
:

It is convenient to rewrite this as

B.V / D 1

1C e�.V �VT/=16:13
;

where VT is the half activation and is given by

VT D 16:13 ln
ŒMg2C�
3:57

:

At the physiological concentration of 2 mM, VT � �10mV, so the postsynaptic
cell has to be quite depolarized. Even at the relatively low concentration of 1 mM,
VT � �20mV. The synaptic parameters for s are well fit by the choices ar D
0:072 mM�1 ms�1, ad D 0:0066; and VNMDA D 0mV. Figure 7.1b shows the
conductance change for a model NMDA synapse when there is a single spike and
when there are four spikes. The rise time is fast enough such that each spike can be
seen in the model trace.

Sometimes it is desirable to implement the NMDA channel so that there is greater
flexibility in the rise time. In this case, the channel is modeled by two variables,

dx

dt
D ˛1T .V /.1 � x/ � ˇ1x; (7.9)

ds

dt
D ˛2x.1 � s/ � s=�;

so that the first-order s in (7.8) is replaced by the s in (7.9).

7.1.2 ”-Aminobutyric Acid

GABA is the principal inhibitory neurotransmitter in the cortex. There are two main
receptors for GABA: GABAA and GABAB.

7.1.2.1 GABAA

GABAA is responsible for fast inhibition and, like AMPA and NMDA, requires a
single presynaptic spike to be evoked. The current is

IGABAA D NgGABAAs.V � VGABAA/; (7.10)
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where s obeys (7.5) and (7.6) with ar D 5 mM�1 ms�1, ad D 0:18 ms�1, and
VGABAA varying between �81 and �60 mV. This GABA current is carried by chlo-
ride (among other ions) and thus there is a wide range of values depending on the
physiological conditions and the developmental stage of the neurons. (Early in de-
velopment GABA is mainly depolarizing with a reversal potential well above rest.)
In many models in the literature, VGABAA D �75mV. Figure 7.1a shows the con-
ductance change for our model GABAA synapse.

7.1.2.2 GABAB

The three synapses described so far (AMPA/kainate, NMDA, and GABAA) share
the common feature that the ion channel and the receptor are the same protein.
Thus, the effect of transmitter on these synaptic receptors is direct. However, there
are other synaptic events which are indirect in that the activation of the receptor sets
off a cascade of intracellular events which eventually alter the conductivity of an ion
channel. The GABAB receptor is an example of this indirect effect: transmitter binds
to a receptor protein which activates an intracellular complex called a G-protein,
which in turn activates a potassium channel to hyperpolarize the membrane. Such
indirect effects can have several consequences. The responses can be (1) nonlinear,
(2) slow to activate, and (3) long-lasting. There are several models for the activation
of GABAB synapses; we will consider only the simplest one. There is a receptor r
which is activated exactly as described by (7.5) and (7.6). This receptor activates
the ion channel, s, and results in the GABAB current. The current is a nonlinear
saturating function of s. Thus, the model for GABAB is

IGABAB D NgGABAB

sn

Kd C sn
.V � EK/; (7.11)

dr

dt
D ar ŒT �.1 � r/ � brr;

ds

dt
D K3r �K4s:

For the synapse shown in Fig. 7.1c, ar D 0:09 mM�1ms�1, ad D 0:0012 ms�1,
n D 4, Kd D 100, K3 D 0:18 ms�1, and K4 D 0:034 ms�1. We use the same
function (7.6) for the transmitter release, T; as we have in the other synaptic models.
The nonlinearity in (7.11) means s must become large enough for the synapse to take
effect. GABAB is more effective when several action potentials occur in a row. Note
also that the reversal potential is that of potassium; in a cortical cell this can be
around �90 to �105mV. GABAB is unambiguously hyperpolarizing. Figure 7.1c
shows the effective synaptic conductance, seff D s4=.s4 CKd /; for a burst of eight
spikes. The conductance for a single spike is very close to 0.
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7.1.3 Gap or Electrical Junctions

Many cells can directly communicate with each other via tight junctions between
their membranes. These act as resistors connecting compartments in two different
cells and are called either electrical or gap junctions. The difference between gap
junctions and chemical synapses is that the former always keep the cells in commu-
nication, whereas the latter occur only when there is a presynaptic action potential.
(Although there are some neurons which release transmitter in a graded fashion,
these are rare and atypical. The granule cells in the olfactory bulb of mammals are
the best known example.) We model the current for this type of synapse as

Igap D Nggap.Vpost � Vpre/; (7.12)

where ggap is the conductance. Gap junctions may play an important role in syn-
chronizing the spiking of inhibitory neurons in the cerebral cortex [4, 12, 101, 102].

7.2 Short-Term Plasticity

Our conceptual model for synapses treats them as though there is no history de-
pendence. That is, the magnitude of the postsynaptic current is independent of how
many times that it has been invoked in recent history. However, the experimental
work of many groups over the years shows that many synapses exhibit short-term
plasticity. Here, the emphasis is on the phrase short-term as opposed to long-term
changes that are associated with learning and memory. Short-term plasticity oc-
curs over timescales of the order of milliseconds to minutes and takes the form
of short-term depression (the magnitude of successive postsynaptic currents de-
creases), facilitation (the magnitude of successive postsynaptic currents increases),
or possibly both. We point out that the GABAB model shows facilitation in that sev-
eral closely timed action potentials lead to a much larger current. Beierlein and
Gibson [12], Castro-Alamancos [36], and Markram et al. [191] have quantified
synaptic plasticity in mammalian brains. Varela et al. [279] were among the first to
recognize the computational consequences of short-term plasticity. Here, we briefly
describe some models and some consequences of this plasticity. Later, we will see
that the effects on networks or neurons can be much more interesting.

Figure 7.2a shows examples of synaptic depression and synaptic facilitation in
cortical neurons. We now describe phenomenological and mechanistic models for
short-term plasticity. The phenomenological model is due to Dayan and Abbott but
is closely related to many other models. Suppose we want to characterize the mag-
nitude,M.t/; of synaptic release per presynaptic spike. We write this magnitude as
the product of two factors, the depression q.t/ and the facilitation f .t/, so that

M.t/ D q.t/f .t/:
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Fig. 7.2 (a) Short-term synaptic plasticity in cortical neurons (from [12]). Connections between
cortical excitatory cells (RS) and cortical fast spike units (inhibitory) show synaptic depression
for 20-Hz stimuli, whereas connections between cortical excitatory cells and low threshold spike
(LTS) inhibitory cells show facilitation. (b–d) Simulations of (7.13) and (7.14) to periodic stimuli.
The parameters for (b) are �d D 300, ad D 0:5, d0 D 1, � D 10 and there is no facilita-
tion. The parameters for (c) are �f D 500, af D 0:2, f0 D 0, � D 10 with no depression. The
frequency is 20 Hz. (d) Both depression and facilitation with f0 D 0; d0 D 1, �f D 50; �d D 400,
af D 0:2; ad D 0:05, and � D 5. The frequency is 100 Hz

We could also call M.t/ the probability of release if we were interested in treating
the process stochastically. Both f .t/ and q.t/ lie between 0 and 1 and each has a
resting value of f0 and d0, respectively, to which it returns with time constant �f

and �d , respectively. Thus, in absence of any inputs,

�f

df

dt
D f0 � f and �d

dq

dt
D d0 � q:

Each time there is a spike, f .t/ is increased by an amount af .1 � f / and q.t/ is
decreased by an amount add: In both cases, the change is multiplied by a factor
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which keeps the variables bounded between 0 and 1. We assume both af and ad

are less than 1. Formally, we can write the facilitation equation as

df

dt
D f0 � f

�f

C
0
@X

j

ı.t � tj /
1
Aaf .1 � f /; (7.13)

where tj are the times of the incoming spikes. Similarly, for the depression equation,
we have

dq

dt
D d0 � q

�d

�
0
@X

j

ı.t � tj /

1
A adq: (7.14)

We leave the analysis of these equations when stimuli are periodic as an exercise.
Figure 7.2b–d shows the results of a simulation of these equations when there is a
periodic input. Each time a stimulus comes in, the synaptic variable s.t/ is increased
by M.t/ and both q.t/ and f .t/ are updated. Between stimuli, s.t/ decays expo-
nentially with a time constant of � .

Suppose the inputs to the synapse are Poisson with rate r . (see Chap. 10, Sect. 4
for a definition of Poisson) Averaging (7.13), we obtain

df

dt
D .f0 � f /=�f C af r.1 � f /:

The steady-state value of f is

fss D f0 C af �f r

1C af �f r
:

A similar calculation for q yields

qss D d0

1C ad �d r
:

The effective average rate is

reff D rfssdss D rd0

f0 C af �f r

.1C af �f r/.1C ad �d r/
:

If there is depression, then this function saturates as the true rate goes to infinity.
Varela et al. [279] pointed out that synaptic depression has a useful computational

property in that it emphasizes changes in input rates. That is, starting at a low rate
and jumping to a high rate results in a huge jump of reff. Suppose d0 D 1 and the
input jumps from rlo to rhi: At the moment before the jump

r�
eff D rlo

1C ad �d rlo
:
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Right after the jump,

rC
eff D rhi

1C ad �d rlo

since the depression has not had a chance to take effect. That is, the denominator
is still that for the low rate. Over time, the effective rate will decrease to the steady
state:

reff D rhi

1C ad �d rhi
:

By the same argument, if the rate is suddenly lowered again, the effective rate will
be very small since the denominator is large from the high prior rate. Thus, synaptic
depression behaves much like a differentiator of the input rate and allows for very
strong temporal contrast. We note that Bertram [14] called our depression model
a vesicle depletion mechanism as one can regard the variable d as the amount of
transmitter available for release.

7.2.1 Other Models

The models discussed so far for plasticity require that one track the time of spikes.
In this sense, they are analogous to using alpha functions for synapses rather than
the mechanistic models. Manor et al. [190] used a channel-like model for synaptic
depression. They combined an activation model like (7.5) with a depression model
of the form

dq

dt
D q1.V / � q
�1 C �2q1.V /

;

where

q1.V / D 1

1C ek.V �Vthr/

and k > 0 and Vthr are parameters. The threshold is set close to V D 0 and k is
somewhat large so that when V is near rest, q1.V / is close to 1 and q.t/ will relax
to 1 with a time constant roughly like �1 C�2:When the neuron spikes, q1 is nearly
0 and q.t/ will decay to 0 with a time constant of �1: Thus, 1=�1 is like ad and �2 is
like �d in the heuristic model. Given the equation for q.t/ and a model such as (7.5)
for s.t/, the total synaptic conductance is Ngs.t/q.t/: Similar models can be built for
potentiation of synapses, but with k < 0 so that at rest the potentiation variable goes
to a low value which is increased with each spike. A more direct mapping is

dq

dt
D .d0 � q/=�d � ad .V /q;

where
ad .V / D a

1C e�k.V �Vthr/
:

When the neuron spikes ad .V / is large, otherwise it is negative.
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We close this section with a three-state model for depression which is based on
a simple physical model:

A �! S;

S �! U;

U �! A:

A is the available transmitter, S is the conducting state which produces the synaptic
conductance, and U is the transmitter which is unavailable for release. Since A C
SCU is conserved, we can eliminateA and obtain the following pair of differential
equations:

ds

dt
D ˛.V /.1 � s � u/� ˇs and

du

dt
D ˇs � ˇ2u:

By varying ˇ2, we can incorporate various degrees of synaptic depression. This
simple model does not have the degree of freedom that other models have; there is
only one free parameter ˇ2 since ˇ determines the decay rate of the synapse and
˛.V / is voltage-dependent.

7.3 Long-Term Plasticity

One of the main hypotheses in neuroscience is that memories are encoded in the
strengths of synapses between neurons. There are dozens of “rules” for strengthen-
ing the connections between pair of neurons, far more than we can analyze in depth
in this book. Dayan and Abbott [53] (Chap. 8) gives a nice summary of so-called
Hebb and timing-based rules along with different ways to normalize the synap-
tic strengths. Hebb rules strengthen or weaken connections depending on whether
or not the presynaptic and postsynaptic neurons are active. (For example, in one
implementation, if both neurons are active, the synapse is strengthened; if the post-
synaptic neuron is silent, nothing is changed and if the postsynaptic neuron is active
but the presynaptic is silent, the synapse is weakened.) The problem with many
Hebb rules is that they can lead to runaway excitation since strengthening of (ex-
citatory) synapses results in more activity and thus greater strengthening. Thus, in
typical implementations of long-term plasticity, some normalization is applied. For
example, the total input to a neuron may be constrained to some constant value.
This results in competition between inputs. Exercise 9 provides an example of such
competition by developing a very simple model.

Timing-dependent inputs strength the synapse if presynaptic spikes precede the
spikes of the postsynaptic cell and weaken if vice versa. Such plasticity can be used
to develop networks of unidirectionally coupled neurons that can learn sequences.
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7.4 Bibliography

Destexhe et al. [62] were the first to systematically derive a set of differential equa-
tion models for synapses where they were treated like other channels. Varela et al.
[279] devised a number of short-term plasticity models and emphasized several use-
ful computational features of this kind of plasticity.

7.5 Exercises

1. Simulate and recreate all of Fig. 7.1 using the parameters in the text.
2. If inputs come into a synapse periodically, determine the steady-state values of
q.t/ and f .t/ at the moment after a stimulus has arrived.

3. What rate r maximizes the probability of release for a synapse which has both
facilitation (f0 D 0) and depression (d0 D 1)?

4. Simulate
dq

dt
D 1� q

�d

� ad r.t/q

with ad D 0:4, �d D 500ms, and r.t/ changes as follows: for the first 200 ms,
it is 25 Hz, it jumps to 100 Hz for the next 300 ms, then it falls to 10 Hz, and at
t=1,000 ms it jumps to 40 Hz. Plot the effective firing rate d.t/r.t/.

5. Castro-Alamancos [36] described a synapse with the following properties. The
ratio of the first spike to the second spike is 0.6 when the time between spikes is
50 ms. If the time between spikes is 25 ms, the ratio is 0.4. Given d0 D 1, find
the parameters ad and �d which match this assuming there is no potentiation.

6. Given an alpha function (7.2), compute the steady-state value of s.t/ assuming
the presynaptic spikes, tk D kP , are periodic with period P:

7. Suppose �.t/ in (7.4) is sinusoidal, �.t/ D sin!t: Find z.t/: Find the magnitude
of the response.

8. Gulledge and Stuart [113] demonstrated an interesting example of GABA en-
hancing the postsynaptic response to an excitatory synapse. They recorded from
pyramidal neurons in rat somatosensory cortex and produced both dendritic
and somatic GABA stimulation. Create a two-compartment passive model with
a resting potential of �78 mV, a leak of 0:05mS=cm2, and a capacitance of
1�F=cm2: Suppose the reversal potential of AMPA is 0 mV and that of GABA is
�68 mV. Apply a dendritic inhibitory postsynaptic current (use a synapse model
for GABA) and measure the depolarization in the soma. Apply an AMPA exci-
tatory postsynaptic current to the soma. Measure the deviation. Now apply both
simultaneously and arrange the parameters so that the sum is bigger than either
current by itself. Now apply the inhibitory postsynaptic current in the soma along
with the same excitatory postsynaptic current. You should get a smaller net de-
polarization owing to the shunting effects of the inhibitory postsynaptic current.
In other words, try to mimic Fig. 3 in the Gulledge and Stuart [113] paper.
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9. Synaptic competition. Consider a single linear neuron which receives inputs from
two different sources, I1 and I2, with weights w1 and w2:

�
dV

dt
D �V C w1I1.t/C w2I2.t/:

Hebbian learning is a mechanism for strengthening the weights according to
whether or not presynaptic and postsynaptic cells are active. In a typical model

�w D kIpreVpost;

where I is the input and V is the output. Many neural models use such a mech-
anism to strengthen the weights between two cells or between an input and an
output neuron. The problem with this kind of learning rule is that all synapses
will grow since there is nothing to reduce the weight of the synapse. Thus, in this
simple model, synaptic weights can also decay at a rate that is proportional to the
activity of the postsynaptic cell, V . As the inputs change randomly, we will look
at the averages and build a model based on them. Look at the averages

hI1V i D hI1.I1w1 C I2w2/i � hI1I1iw1 C hI1I2iw2:

This approximation is valid if the weights change slowly compared with the
inputs. The terms in the brackets are just the correlations between the two in-
puts; we will call them Cs and Cd, respectively, corresponding to the same and
different stimuli, respectively. It should be expected that Cs > Cd: On the other
hand, the average postsynaptic activity is approximately hI1iw1ChI2iw2:We as-
sume the average inputs are the same and that the change in weights is a function
of the averages:

dw1

dt
D f .Csw1 C Cdw2/.1 � w1/� g.w1 C w2/w1;

dw2

dt
D f .Csw2 C Cdw1/.1 � w2/� g.w1 C w2/w2:

The first term represents the growth of the weights to a maximum of 1 and the
second term represents the decay. (They are thus constrained to lie between 0 <
wj < 1 when f and g are positive.) Take Cs D 0:8; Cd D 0:2, and

f .x/ D 1=.1C exp.�˛.x � 1=2///;

g.x/ D 1=.1C exp.�ˇ.x � 1///:

a. Prove w1 D w2 D 1=2 is always a fixed point of this system.
b. Analyze the stability as a function of ˛ and ˇ:
c. Compute the bifurcation diagram as you vary ˛ and hold ˇ D 5:

d. Sketch the nullclines for ˛ D 10, 12, 15, and 20 and describe all the possible
qualitative behaviors.



Chapter 8
Neural Oscillators: Weak Coupling

This chapter begins the second part of the book. By now, we hope that the reader has
a thorough knowledge of single cell dynamics and is ready to move onto networks.
There are two main approaches to the analysis and modeling of networks of neurons.
In one approach, the details of the action potentials (spikes) matter a great deal. In
the second approach, we do not care about the timing of individual neurons; rather,
we are concerned only with the firing rates of populations. This division is reflected
in the sometimes acrimonious battles between those who believe that actual spike
times matter and those who believe that the rates are all that the brain cares about.
On these issues, we have our own opinions, but for the sake of the reader, we will
remain agnostic and try to present both sorts of models.

If spikes matter, then it is important to understand how the spikes of one neu-
ron affect the timing of the spikes of another neuron to which it is synaptically (or
otherwise) connected. General theories on the influence of inputs on the dynamics
of single neurons do not exist. Here, we have emphasized the word “general” as
there has been some work on the influence of transients on firing patterns of cells.
In order to say something rigorously, we consider, in this chapter, a very specific
situation in which the individual neurons intrinsically oscillate. This is not an un-
reasonable assumption at least for the short timescale. A neuron receiving a slowly
varying current may throw off a few fairly regularly spaced spikes; thus, at least for
those few moments it can be regarded as an oscillator. Hence, we are interested in
how networks of neural oscillators behave when they are allowed to interact. Such
oscillatory (or transiently oscillatory) networks arise in many areas of neuroscience.
There is absolutely no doubt that these networks play a critical role in motor pat-
terns for repetitive activity such as locomotion, feeding, breathing, and mating. Such
central pattern generators (CPGs) consist of networks of neurons which produce
robust rhythmic output. Kopell [159] was among the first to recognize the connec-
tion between the mathematical theory of coupled oscillators and CPGs. This alone
should be sufficient motivation for studying the properties of coupled neural oscil-
lators. However, a more controversial role for neural oscillations and synchrony has
emerged over the last 20 years. A major question in cognitive psychology concerns
how different sensory modalities are brought together to produce a unified percept.
The problem of how such different aspects of, say, an object, are brought together is
called the binding problem. Von der Malsburg and Schneider [281] were among the
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172 8 Neural Oscillators: Weak Coupling

first to suggest neural oscillations could “solve” this problem. That is, different areas
of the brain would synchronize when there was a common percept. Wolf Singer’s
group [107, 108] found tantalizing evidence for this theory in electrical recordings
of the cat visual cortex. So-called gamma oscillations (30–80 Hz) were found to
have a high degree of synchrony under certain situations presumably related to per-
ceptual grouping. Thus, an industry was born and there are now hundreds of papers
which concern the role of gamma oscillations and synchrony in perception. Our goal
here is not to ask whether these synchronous oscillations do in fact play a role, but
rather to use this possibility to motivate the study of spike synchronization between
neurons.

8.1 Neural Oscillators, Phase, and Isochrons

A single neuron often fires repetitively when it is injected with a constant current.
Indeed, we studied the onset of these oscillations in many different neural models
in previous chapters. Thus, it is not unreasonable to regard a stimulated neuron
as a limit cycle at least in the short term (over a period of several spikes.) Thus, it
behooves us to consider some general properties of limit cycles. Unlike a stable fixed
point, a stable limit cycle oscillator has a degeneracy associated with it; namely, any
solution X.t/ can be arbitrarily translated in time and still be a solution. In the first
two exercises, we explore the notion of linear stability for limit cycles. In particular,
one can never get the same kind of asymptotic stability as with fixed points. Instead,
one gets orbital asymptotic stability.

Consider the differential equation in Rn

dX

dt
D F.X/ (8.1)

and suppose � is a T -periodic limit cycle. Recall that the limit cycle is said to be
orbitally asymptotically stable if nearby initial conditions approach � as t ! 1.
We can parameterize � by time with respect to the period T (see Fig. 8.1a) and thus
define a phase, � 2 Œ0; T /; along the limit cycle. Let ‚.x/ denote the phase of the
oscillator for a point x on � . When the cycle is asymptotically stable, it is possible
to define a phase for points y in a neighborhood of the cycle. Let X.t Iy/ be the
solution to (8.1) with initial condition y. Suppose y is a point in the neighborhood
of the limit cycle and x is a point on the limit cycle such that jjX.t I x/�X.t Iy/jj !
0 as t ! 1. Then we define ‚.y/ D ‚.x/. That is, as t ! 1; the solutions
are indistinguishable. The set of points y which have the same asymptotic phase is
called the isochron of the limit cycle (see Fig. 8.1b). We denote the isochron through
a point x 2 � as N.x/. Isochrons are local invariant sections; that is, for a point
y 2 N.x/, X.T Iy/ � y0 2 N.x/. The map y ! y0 is a Poincaré map for the
limit cycle which takes time exactly T to return. The existence of isochrons (proven
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Fig. 8.1 Phase for a limit cycle. (a) Time trace showing the definition of the phase zero as the peak
of the potential. (b) Limit cycle in the phase plane showing contours with the same asymptotic
phase. These are called isochrons. Initial condition x.0/ is mapped to y0 on the limit cycle with
phase �. (c) Geometry of phase resetting. At point i a perturbation along the x-axis at phase �
tends to a new asymptotic phase �0 which is closer to spiking with respect to the original phase.
The same perturbation at point ii delays the next spike time

generally in [110]) allows us to define the phase of any point in the neighborhood
of the limit cycle, which as above we call ‚.x/. In most of this chapter, we define
the zero phase to be the peak of the voltage, so any point on the limit cycle has a
uniquely defined phase lying between 0 and T .

In practice, the isochrons can only be computed numerically. However, for some
simple models, an exact formula can be found (cf. Exercise 5). Izhikevich [136]
provided MATLAB code for computing isochrons for planar limit cycles. Figure 8.2
shows the color-coded isochrons for the Morris–Lecar model. The function ‚.x/
is not at all isotropic and shows very slow changes near the spike and very rapid
changes near the “ghost” of the saddle–node bifurcation. For example, the time
difference between the isochrons labeled a and b is about 2.5 ms, whereas the time
difference between those labeled c and d is about 40 ms. This says that small changes
in the variables near points c and d will have a much greater effect on the phase of
the oscillator than similar magnitude perturbations near points a and b. We will see
the implications of this next.
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Fig. 8.2 Morris–Lecar oscillator (class I parameters, I D 42) showing the asymptotic phase
function ‚.x/ and some representative isochrons. Black dots show values on the limit cycle in
increments of 2.5 ms. The period of the limit cycle is 145 ms

8.1.1 Phase Resetting and Adjoints

Suppose we are merrily rolling along the limit cycle and a brief stimulus is given.
For example, in Fig. 8.1c, we have applied a horizontal perturbation to the vector
field at phase �. This perturbation puts us on the isochron for �0 so that the phase
of the oscillator is reset to a different value which depends on its initial phase. For
each phase � at which the stimulus is applied, we get a new phase �0. The map from
old phase � to new phase �0 is called the phase transition curve (PTC), �0 D P.�/.
Winfree [291] and others have noted that the PTC has two different topological
forms that are called type 0 (strong) and type 1 (weak) resetting. In weak resetting,
the map P.�/ is an invertible map of the interval Œ0; T / to itself. With strong re-
setting, the map is not invertible. For example, suppose the stimulus is so strong
that the phase is always reset to 0 (that is, the neuron spikes immediately). For the
classic integrate-and-fire model, any finite increase of the voltage always results in
type 0 resetting (see Exercise 6), whereas for the quadratic integrate-and-fire model
with infinite reset, all perturbations show type 1 resetting. (Do not confuse type 1
and type 0 phase resetting with class I and class II excitability.) For the normal form
at a Hopf bifurcation, resetting can be both type 1 or type 0 depending on the size
of the perturbation.

In this chapter, we will be concerned almost exclusively with type 1 resetting,
where the function P.�/ is invertible. In Chap. 9, where strong coupling is applied
to relaxation oscillators, we will analyze the opposite extreme, in which essentially
all resetting is type 0.

Experimentalists are often interested not in the PTC, but rather in the actual
change in phase due to the perturbation. This function, known as the phase resetting
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curve (PRC), is defined as the difference between the new phase and the old
phase:

�.�/ � �0 � � D P.�/ � �:

Figure 8.3 shows some examples of experimentally computed PRCs from cortical
and related neurons. In each case, if the stimulus is given at the moment of spiking,
the PRC is zero. This says that a stimulus given at the moment of the action potential
is ignored.

Figure 8.1a shows the time trace of, say, the voltage of a neuron, with and without
the brief perturbation given at time (phase) �. Suppose the time of the spike given
the perturbation is at T 0. We now relate T 0 to the PRC. Note that the phase of a limit
cycle satisfies
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Fig. 8.3 Some experimentally measured phase resetting curves (PRCs) from neurons. (a) En-
torhinal cortex cells [207] for excitatory (i) and inhibitory (ii) synaptic perturbations; (b) rat barrel
cortex pyramidal cells [252] with excitatory (i) and inhibitory (ii) perturbations; (c) cat motor cor-
tex neurons [225]. Note that in (b), T 0.�/=T D g.�/ D 1C�.�/=T is plotted
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d�

dt
D 1:

Suppose at time � the stimulus is applied and this causes a shift to a new phase
�0. Assume for the moment the new phase is less than T , the period of the limit
cycle. (This is not an unreasonable assumption for neurons since it says that the
perturbation will never cause an immediate spike; rather there is some delay.) The
time until the next spike is just � D T � �0, so the time of the next spike is T 0 D
� C � D � C T � �0 D T ��.�/. Thus, we have

�.�/ D T � T 0: (8.2)

Typically, if one is trying to measure a PRC either experimentally or from a nu-
merical simulation, the time of the next event, e.g., is measured as a function of the
time of the stimulus. This is just T 0. If T 0 < T , then the stimulus advances the
phase (speeds up the cycle) and vice versa. Figure 8.3a and b(i) shows that exci-
tatory stimuli can lengthen the time to spiking if they occur very shortly after the
spike, but otherwise they shorten the time to spiking. Figure 8.3c essentially shows
only lengthening. Inhibitory stimuli (Fig. 8.3a, b(ii)) always appear to lengthen the
time to the next spike – they phase-delay the oscillator.

Many people normalize the phase to lie between 0 and 1 or 0 and 2� so that we
have to rescale � and �, e.g., multiply by 1=T or 2�=T . The rescaling is useful if
we want to compare the PRCs for oscillators at different frequencies since they then
have the same domain and range. Unless otherwise noted, we will not rescale the
phase and the PRC.

We now relate the PRC to the phase function ‚.x/ defined by the isochrons of
an attracting limit cycle. Let x D X0.�/ be the point on the limit cycle,X0.t/, with
phase (time) � 2 Œ0; T /. Note that ‚.x/ D � by definition. Consider an arbitrary
perturbation, y 2 Rn; of the vector field. The new phase is

�0 D ‚.x C y/ D � C rX‚.x/ � y CO.jyj2/:
Thus, for small perturbations

�.�Iy/ D rX‚.x/ � y:

(We have included y in the PRC to emphasize that this corresponds to a very general
perturbation.) If we suppose the first component of the differential equation is the
voltage of the neuron and take y D .a; 0; : : : ; 0/, where a is the scalar size of
the perturbation of the potential, then we see that the PRC is approximately the
first component of the gradient of the phase function ‚.x/ evaluated at X0.�/.
Indeed, for neuroscientists, the PRC comes from some experimental perturbation
which typically involves only at most a few of the variables which make up the
dynamical systems governing the oscillation. The vector function

Z.�/ � rX‚.X0.�// (8.3)
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provides a complete description of how infinitesimal perturbations of the limit cycle
change its phase. Kuramoto [166] introduced the function Z.�/ and Winfree [290]
was a long-time proponent of the utility of the PRC. In the correct limit, we see that
they are related. The PRC is exactly related to ‚.X0.�/C y/ � �, but in practice
the function‚.x/ for arbitrary x is very difficult to calculate. However, the gradient
evaluated at the limit cycle, the functionZ.�/, is very simple to compute as we will
now see.

8.1.2 The Adjoint

As we have noted, the phase function ‚.x/ is not easy to compute. The function
Z.�/ could be computed by applying small stimuli to the limit cycle along each of
the n components of the limit cycle and then linearly interpolating the results to zero
amplitude. The reader with time on her hands is urged to try this! However, it turns
out that the function Z.�/ is the solution to a linear differential equation which is
closely related to the linearization of (8.1) about the limit cycle.

Suppose X0.t/ is a T -periodic limit cycle solution to (8.1). Let

A.t/ D DXF.X/jX0.t/

be the n � n matrix resulting from linearizing (8.1) around the limit cycle. Then
solutions to the linearized equation satisfy

dy.t/

dt
� A.t/y.t/ � .Ly/.t/ D 0: (8.4)

Let

.u.t/; v.t// D
Z T

0

u.t/ � v.t/dt (8.5)

be the standard inner product on T -periodic functions in Rn. Recall that if L is a
linear operator, then the adjoint linear operator,L�, satisfies .u; Lv/ D .L�u; v/ for
all u; v. As shown in Exercise 3, the adjoint L� is

.L�y/.t/ D �dy.t/

dt
�A.t/T y.t/: (8.6)

We now use Brown et al.’s [25] simple proof thatZ.t/ satisfies the adjoint equation.
Recall that the asymptotic phase to an infinitesimal perturbation y.t/ is given by

Z.t/ � y.t/. By definition, this phase is independent of time. Note that since y.t/ is
arbitrarily close to the limit cycle, its dynamics are linear, so Ly D 0. Thus,

0 D d

dt
Z.t/ � y.t/

D dZ.t/

dt
� y.t/CZ.t/ � dy

dt
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D dZ.t/

dt
� y.t/CZ.t/ � A.t/y.t/

D dZ.t/

dt
� y.t/C A.t/TZ.t/ � y.t/

D
�

dZ.t/

dt
C A.t/TZ.t/

�
� y.t/:

Note that the operator inside the square brackets is �L�. Since y.t/ is arbitrary, we
must have that

L�Z.t/ D 0:

IfX0.t/ is a stable limit cycle, then the operatorL has a nullspace spanned by scalar
multiples of dX0.t/=dt (see Exercise 1) which is a periodic function. The adjoint
has a one-dimensional nullspace (in the space of T -periodic functions in Rn) as
well, so Z.t/ must be proportional to this eigenfunction. It remains to determine the
appropriate normalization. But this follows immediately from the observation that
‚.X0.�// D �. Differentiate this with respect to � and see that

Z.�/ � dX0.�/

d�
D 1:

This uniquely defines Z.t/ as the solution of L�Z D 0 and Z � dX0=dt D 1.
(Exercise 1 suggests a direct proof of this result.)

Numerically solving L�y D 0 is done by integrating the equation

dy

dt
D �A.t/T y

backward in time. Since the limit cycle is asymptotically stable, backward inte-
gration damps out all components except the periodic one which is the solution
of the adjoint equation. Suitable multiplication by a scalar provides the necessary
normalization.

8.1.3 Examples of Adjoints

8.1.3.1 Ring Models

Consider the differential equation

x0 D f .x/;

where f .x/ > 0 and x 2 S1. Thus, f .x C 1/ D f .x/. This equation has a
T -periodic solution x0.t/ with period
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T D
Z 1

0

dx

f .x/
:

The adjoint is just z.t/ D 1=f .x0.t// since z.t/dx0=dt D 1. For example,
consider the function f .x/ D 1 C a cos 2�x, where jaj < 1. This has a period
T D 1=

p
1 � a2 and a bit of algebra shows that the adjoint is just

z.t/ D 1 � a cos 2�t=T

1 � a2
: (8.7)

In particular, note that z.t/ is always positive. One can only phase-advance the oscil-
lator when the stimulus is positive. On the other hand, plotting �z.t/ as would be the
response to an inhibitory stimulus looks a great deal like the PRC in Fig. 8.3b(ii).
In general for any ring model, the PRC/adjoint is always nonnegative, a fact that
should be obvious. Exercise 10 asks the inverse problem – given a positive PRC,
find a ring model.

8.1.3.2 �–! Systems

Kopell and Howard [162] introduced a class of nonlinear oscillators (which is
closely related to the normal form for the Hopf and Bautin bifurcations):

u0 D �.r/u � !.r/vI v0 D �.r/v C !.r/u; (8.8)

where r2 D u2 C v2. Suppose �.1/ D 0; !.1/ D 1, and �0.1/ < 0. Then there is
a stable limit cycle solution .u; v/ D .cos t; sin t/. Ermentrout and Kopell [71] were
the first to compute the adjoint for this system; we leave it as an exercise to prove

z.t/ D .u�.t/; v�.t// D .a cos t � sin t; a sin t C cos t/; (8.9)

where a D �!0.1/=�0.1/. Note that the normal form of the Hopf bifurcation
�.r/ D 1 � r2 and !.r/ D 1C q.r2 � 1/; so a D q.

8.1.3.3 Quadratic Integrate-and-Fire Model

The quadratic integrate-and-fire model with infinite reset,

V 0 D V 2 C I;

is a singular example of a scalar “ring” model. The solution to this is

V.t/ D �p
I cot

p
I t:
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The adjoint is thus z.t/ D 1=V 0.t/:

z.t/ D sin2.
p
I t/=I D .1� cos.2

p
I t//=I:

An alternative way to find z.t/ is to compute the PTC for a finite perturbation,
b (Exercise 8), differentiate with respect to b, and evaluate at b D 0.

We note that for a finite reset and finite spike, the model is essentially a ring
model. In Exercise 11b, you will compute the adjoint for this case.

8.1.3.4 Singularly Perturbed Systems

In Exercise 9, you find a general formula for the adjoint of any stable planar limit
cycle. The result is not particularly transparent. However, for a relaxation oscillator,
the singular limit makes the calculation more useful. Izhikevich [133] was the first to
do this and we follow his presentation here. Figure 8.4 shows the singular trajectory
(	 D 0) for the system

	x0 D f .x; y/;

y0 D g.x; y/:

Let �.t/ be the singular trajectory. The x-component of �.t/ has jumps at t D
tj corresponding to the jumps in the phase plane from aj to bj . The linearized
equation is

0 D fx.�.t//x C fy.�.t//y;

y0 D gx.�.t//x C gy.�.t//y:

The linearized system has a solution � 0.t/ D .f .�.t//; g.�.t/// which, because of
the jumps at tj in �.t/, will consist of a smooth part and a singular part (with Dirac
delta functions at tj ). The adjoint equation is

0 D �fx.�.t//u � gx.�.t//v; (8.10)

a1

b1

a2
b2

t1 t2

y

x

x(t)

Fig. 8.4 Singular trajectory and the fast variable as a function of time
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v0 D �fy.�.t//u � gy.�.t//v: (8.11)

The normalization is

ux0 C vy0 D uf .�.t//C vg.�.t// D 1:

Consider, first, the smooth parts of the trajectory, t ¤ tj . Along the singular trajec-
tory, f .�.t// D 0, so the normalization yields

v D 1=g.�.t//: (8.12)

Since fx.�.t// is nonzero away from the jump points, equality (8.10) implies that

u D � gx.�.t//

g.�.t//fx.�.t//
: (8.13)

At t D tj , v.t/ jumps from 1=g.aj / to 1=g.bj /. From (8.11),

u.t/ D � 1

fy.�.t//

�
v0.t/C gy.�.t//v.t/

�
:

Since v jumps, u must have a Dirac delta function singularity. Integrating across
this, we have to have

u.tCj /� u.t�j / D � 1

fy.aj /

�
1

g.bj /
� 1

g.aj /

�
� cj :

Thus, at t D tj we have

.u; v/ D �
cj ı.t � tj /; 1=g.aj /

�
: (8.14)

Equations (8.12)–(8.14) provide the complete adjoint solution

8.1.4 Bifurcations and Adjoints

In general, except for the few examples described above, it is not possible to find the
adjoint explicitly for a limit cycle. Certainly, the minimal condition is that an explicit
solution for the limit cycle should be provided and there are very few examples of
that. However, several of the examples are suggestive they may be more general
than they first appear. For example, in class I excitability, the behavior near the
bifurcation is the same as that of the quadratic integrate-and-fire/theta model. Thus,
we expect that near the onset of rhythmicity, the adjoint of any class I oscillator
should look like 1 � cos t . How well does this actually work in practice? We can
numerically compute the adjoint for any oscillator and compare the shape with that
predicted near the bifurcation.
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8.1.4.1 Class I Excitability

From (8.7) we expect that near a saddle–node on an invariant circle bifurcation,
the adjoint should be proportional to 1 � cos � . As an example, we will look at the
Morris–Lecar model, about which we have already exhausted a great deal of ink.

Figure 8.5 shows the numerically computed adjoint (black) and the approxima-
tion (red) for two different currents. When I D 40, the model is very close to the
bifurcation as can be seen from the length of the period, which is nearly 1,000 ms.
The adjoint is quite close to the theoretical value from (8.7). When I D 50, the
period drops more than tenfold and the approximation is not as good, but remains
qualitatively similar.

8.1.4.2 Hopf Bifurcation

Very few neural models actually undergo supercritical Hopf bifurcation at least at
the onset of the rhythmic behavior. Thus, it is difficult to make comparisons. How-
ever, for illustrative purposes, we use a model from [104] which has a supercritical
Hopf bifurcation at high applied currents. The normal form for the supercritical
Hopf bifurcation is of the form (8.8) and, for this model, each component of the
adjoint is a pure sinusoid:

u�.�/ D ˛ sin � C ˇ cos �:

We thus compute the adjoint numerically and see how well it is approximated by
pure sinusoids. Figure 8.6 shows the results for currents close to the Hopf bifurca-
tion and further away. The key take-home lesson here is that models near a Hopf
bifurcation have regimes of phase advance and phase delay in contrast to class I
models, which are dominated by phase-advance dynamics.
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Fig. 8.5 The numerically computed adjoint for the Morris–Lecar model near the saddle–node
bifurcation and its comparison with the asymptotic solution. Left panel, I D 40 and T D 943;
right panel, I D 50 and T D 75:5
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8.1.4.3 Limit Point

In most class II neural models, the Hopf bifurcation is subcritical but the unstable
branch folds back to become stable. Thus, there is a saddle–node bifurcation of
limit cycles. What can we expect the adjoint to look like in this case? A hint for
the behavior can be found in returning to the �–! system (8.8) since we can easily
obtain this type of bifurcation by choosing

�.r/ D p C r2 � r4;

where p is a bifurcation parameter. For p < 0 and small, there are two roots of
�.r/ D 0, r1 < r2 < 1, corresponding to a stable and an unstable limit cycle. They
coalesce when r1 D r2, which occurs when �0.r1;2/ D 0. From (8.9), we see that
the magnitude of the adjoint is dominated by the terms multiplied by !0.r/=�0.r/
since �0.r/ goes to zero as the limit point is approached. Thus, we expect that the
magnitude of the adjoint will tend to infinity as the limit point is approached. This



184 8 Neural Oscillators: Weak Coupling

normalized phase
0 0.2 0.4 0.6 0.8

i=88.3
I=88.4
i=LP+eps

−100

−50

0

50

100

150

200

250

300

Fig. 8.7 The adjoint for the Morris–Lecar model near the turning point bifurcation. The black
curve is closest to the limit point and the adjoint has been scaled by a factor of 10 to fit on the same
figure. The phase is normalized from 0 to 1 for easier comparison since the periods are different

may seem somewhat counterintuitive since we know that u�.t/ � u0.t/ D 1. Thus, all
of the growth of the adjoint is in a direction orthogonal to the limit cycle. Exercise
9 gives an explicit formula for the adjoint to any planar system. The computation
depends on solving a scalar equation of the form

dc=dt D �.fu C gv/c C p.t/:

For a planar limit cycle the attraction is determined by (see Exercise 1)


 D
Z T

0

fu C gvdt:

As a limit point or saddle–node of limit cycles is approached, 
 tends to zero, so the
quantity c.t/ will grow like 1=
. This c.t/ multiplies a vector which is orthogonal
to the limit cycle, so we expect to see that adjoint grow rapidly as the bifurcation
is approached. Figure 8.7 confirms this fact for the Morris–Lecar model. As we
approach the bifurcation, the adjoint rapidly increases. Intuitively, this makes sense:
if the attraction to the limit cycle is weak, then the motion around the limit cycle
will be very fast compared with the motion into the limit cycle so the isochrons will
have a very pronounced twist.

8.1.4.4 Takens–Bogdanov

In Chap. 4 we showed that the M-type potassium channel (an outward current
which acts at voltages near rest) can convert the transition to oscillations from
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Fig. 8.8 The effects of outward currents on the PRC. (a) Adding an M-type potassium current
to the Destexhe–Paré model adds a negative component to the adjoint. (b) PRCs for the quadratic
integrate-and -fire model with adaptation computed by injecting a pulse with amplitude 1 for 0.2
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class I (saddle–node on an invariant circle) to class II (Hopf bifurcation). The
mechanism for this transition is organized around the Takens–Bogdanov bifurca-
tion (see Fig. 4.5b). Our results so far suggest this should have a big effect on the
shape of the PRC. Figure 8.8a shows the effects of adding an M-type current to the
Destexhe–Paré model described in Chap. 4. The PRC (where we have added suffi-
cient current so that the cell fires at about 40 Hz) switches from strict positivity to a
substantial negative region.

How can we understand this switch? In Exercise 13 in Chap. 4, you show that
the quadratic integrate-and-fire model with adaptation (4.19) is locally equivalent
to the normal form for the Takens–Bogdanov bifurcation. We compute a PRC for
this model by injecting a brief current (the discontinuous resetting makes the ad-
joint difficult to compute accurately) at different times in the spike cycle. Recall the
equations

V 0 D I C V 2 � u; u0 D a.bV � u/

with reset of V to c when there is a spike and at the same time the variable u is
increased by an amount d . The adaptation is manifested in two ways: the parameter
b governs subthreshold effects and the parameter d governs effects due to spikes.
Since only the parameter b (which acts at rest) can switch the cell from class I to
class II, we expect that this parameter will produce a negative component in the
PRC. This is illustrated in Fig. 8.8b. With no adaptation (b D d D 0), the PRC is
close to the canonical form, 1 � cos t . When b D 1, the resting state loses stability
at a Hopf bifurcation and the excitability class is II. The PRC shows a pronounced
negative component. However, if b D 0 and d is nonzero, then the PRC stays
positive but is flattened in the early part of the cycle. In Exercise 13, you explore
this effect more systematically in a biophysical model.
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8.1.4.5 Other Currents

Other currents affect the PRC in subtle ways. A good project would be to explore
these currents in a systematic fashion. Exercises 13 and 14 explore the roles of adap-
tation and the sag current. The reader should look at some of the other oscillators
from Chap. 4 and examine the adjoints of these models.

8.1.5 Spike-Time Response Curves

With the advent of the dynamic clamp, it is possible to add and subtract channels and
synapses in real neurons in a slice. (The dynamic clamp is an experimental method
in which the potential of a neuron is fed into a computer model for a channel and
the resulting current is injected into the cell. Thus, it is possible to add channels to
and remove channels from real neurons in real time.) Several experimental groups
now use the dynamic clamp to look at the behavior between two or more cells when
they are coupled with artificial (that is, computer) synapses. The first step in un-
derstanding the behavior of these coupled neurons is to understand how a single
neuron responds to a synaptic current. If this current is an infinitesimal perturbation
of the membrane potential, then we know that the response is precisely the adjoint.
More generally, we can compute a PRC to any stereotypical input. Indeed, we al-
ready used this idea to compute the PRC for the quadratic integrate-and-fire model
by applying a small rectangular pulse of current at different times.

Let us consider this generally. Let X be the vector of variables satisfying

dX

dt
D F.X/

and let G.t; t0/ be the vector of inputs parameterized by the onset time t0. Our
system is thus

dX

dt
D F.X/CG.t; t0/:

We assume X 0 D F.X/ has a stable limit cycle. We multiply by the phase gradient
function (8.3) and find that the phase of the oscillations satisfies

d�

dt
D 1CZ.t/ �G.t; t0/: (8.15)

This is an exact equation for the phase. We start with � D 0 and ask when
�.T 0/ D T , the period of the unperturbed limit cycle. T 0 is a function of t0 and
is the time of the spike. When G.t; t0/ D 0, T 0.t0/ � T . We integrate (8.15) and
find

�.T 0/ D T 0 C
Z T 0

0

Z.t/ �G.t; t0/dt D T:
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Solving this for T 0 tells us when the next spike occurs. The PRC for a stimulus
G.t; t0/ is just PRC.t0/ D T � T 0.t0/, which tells us how much the stimulus ad-
vances or delays the next spike. SupposeG.t; t0/ is small, say, G.t; t0/ D �g.t; t0/.
Then we can expand T 0.t0/ as

T 0.t0/ D T C ��.t0/C � � � :
This leads to

0 D �.t0/C
Z T

0

Z.t/ � g.t; t0/dt;

so to lowest order

PRC.t0/ D
Z T

0

Z.t/ �G.t; t0/dt: (8.16)

This is the time advance/delay due to the input G. Often one expresses it in terms
of the fraction of a cycle, in which case we divide by T . Note that if G.t/ is a Dirac
delta function along one of the components of X , then the PRC is exactly the same
as the adjoint as it is just a component of Z.

When X.t/ is a membrane equation and G.t; t0/ is a synaptic current generated
by an alpha function type of synapse,

G.t; t0/ D ˛.t � t0/.Vsyn � V.t//;
then function (8.16) is called the spike-time response curve (STRC). It tells us how
the spike time of a neuron is changed by a stereotypical input as a function of when
that input arrives. In the reduction to maps and phase equations which follows later
in this chapter, we do not distinguish between the STRC and the usual PRC.

8.2 Who Cares About Adjoints?

At long last, we come to the core of this chapter. We have spent several pages ex-
tolling the virtues of PRCs, STRCs, and adjoints. There are at least two ways in
which these response functions are useful. First, we can use them directly to create
systems of pulse-coupled equations which we can reduce to maps. Second, we can
use the weak coupling assumption and averaging to reduce arbitrarily coupled net-
works of neurons to systems of equations on a torus. The most obvious application
of a PRC is to study the effects of periodic drive on an oscillator; the subject of the
next section.

8.2.1 Relationship of the Adjoint and the Response to Inputs

The adjoint and its cousin the PRC are relevant beyond purely oscillating neurons
and they provide information about how a neuron responds to inputs even when it is
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not a regular oscillator. Clearly, if the neuron is in a stable resting state, then a weak
input will, by definition, have no effect on it and only strong inputs will produce a
spike. In this case, there is no dependence of the response on the time of the inputs
since the cell is at rest. However, if the neuron is subject to sufficient depolarization
so that it is firing (irregularly, perhaps), then even “weak” inputs can alter the time of
a spike. The amount by which the spike time is altered depends on when the neuron
last spiked and thus we can expect that there is some relationship to the PRC. Gutkin
et al. [114] numerically showed that the shifting of spikes in a nonstationary system
(that is, a nonconstant stimulation, either slowly varying input currents or fast noisy
inputs) is determined by the steady-state PRC of the neuron. That is, the PRC can
tell us how an input shifts a spike even when the neuron is not a regular oscillator.

One of the most common measurements done by neurophysiologists is the post-
stimulus time histogram (PSTH). The PSTH is the probability of a spike occurring
at a given time t after the onset of a stimulus. It is measured by collecting the spike
times of a neuron over many repetitions of the same stimulus. Implicit in the useful-
ness of the PSTH is that the dynamics are stationary. For example, the mean firing
rate of the neuron before the stimulus is constant and the time between repetitions
is long enough so that the effect of the stimulus wears off. A cartoon of the PSTH
is shown in Fig. 8.9. A brief stimulus is applied at t D 0 causing the probability of
firing for the neuron to increase transiently before returning to the baseline uniform
probability. Gutkin et al. [114] showed that the PSTH can be related to the PRC, an
argument that we now repeat. We assume:

1. The mean firing rate of the neuron is 1=T prior to the stimulus and the probability
over trials of firing is uniform.

2. The stimulus is sufficiently weak so that no new spikes are added. That is, the
probability of firing is shifted, but there are no new spikes.

3. The neuron rapidly returns to its baseline mean firing rate after one cycle.

Assumptions 2 and 3 imply that the area between t D T and t D 2T is 1 since no
new spikes are added and all the rearranging of spikes is finished within one average
period. Consider the spike at time s in the figure. In the absence of the stimulus, the
expected time of the next spike is s C T since the mean firing rate is 1=T . But,
because of the stimulus, the expected spike time is shifted to s0. The mean period
of the neuron is T , so with respect to the spike at time s, the stimulus comes T � s

milliseconds after the neuron last fired. From the definition of the PRC, the expected
time of s0 is

s0 D s C T ��.T � s/ � F.s/:

Note that F.0/ D T and F.T / D 2T . Furthermore, F 0.s/ D 1 C �0.T � s/ > 0

since the stimulus is assumed to be weak. Thus, F.s/ is an invertible map from

Fig. 8.9 Poststimulus time
histogram for a neuron

s s + Ts’

1/T

2TT0
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the interval Œ0; T � to ŒT; 2T �. The PSTH is the probability that a spike occurs in a
given window of time after the stimulus. Thus, the probability that s0 < t for some
t 2 ŒT; 2T � is just

Prfs0 < tg D
Z t

T

PSTH.t 0/dt 0:

However,

Prfs0 < tg D PrfF.s/ < tg
D Prfs < F �1.t/g
D 1

T
F�1.t/:

The last equality comes from the fact that the distribution of spikes before the
stimulus arrives is uniform. We thus have the relationship between the PSTH and
the PRC:

F�1.t/ D T

Z t

T

PSTH.t 0/dt 0: (8.17)

8.2.2 Forced Oscillators

PRCs are directly computable from experimental data; thus, they provide a way of
creating a model of a specific biological oscillator without needing a mechanistic ba-
sis. Let us first explore how one can use the PRC to develop a map for the dynamics
of a single oscillator which is periodically forced by an external pulsatile stimulus.
This type of analysis has a long history and the reader should consult the compre-
hensive book by Glass and Mackey [103] for references and applications to cardiac
and other oscillators. Stoop et al. [252, 253] as well as several older references also
used PRCs to compute the behavior of forced systems.

Suppose an oscillator X.t/ has a PRC, �.t/, which describes the advance or
delay as a function of the time of the stimulus, 0 � t < T , where T is the period of
the oscillator. Suppose a stimulus is applied every Tf time steps and let �n denote
the phase of the oscillator at the instant before the stimulus arrives. Right after the
stimulus, the phase is given by P.�n/ � �n C �.�n/. Recall that � 2 Œ0; T /.
Between stimuli, the oscillator advances by an amount Tf in phase. Thus, at the
moment of the next stimulus, we have

�nC1 D �n C�.�n/C Tf D P.�n/C Tf � M.�n/; (8.18)

where P.�/ is the PTC. This is a map on the circle and there is a huge literature on
such maps. Since PRC theory is valid mainly when stimuli are weak, the size of �
is assumed to be small. Therefore, P.�/ is monotonic and its derivative is

P 0.�/ D 1C�0.�/:
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Invertible maps on the circle are completely characterized by their rotation number ,
which is defined as the average number of cycles covered per stimulus. We can make
this more precise as follows. Instead of considering �n to be defined with respect to
T , we let it evolve on the real line. The rotation number is defined as


 � lim
n!1

1

T

�n

n
: (8.19)

This quantity has a nice intuitive appeal. For example, if 
 D 1, then, on average,
the oscillator completes one cycle per stimulus and we say that there is 1:1 locking.
On the other hand, if 
 D 2=3, then the oscillator completes two cycles for each
three cycles of the stimulus and we call this 2:3 locking. The rotation number is
described by a beautiful theorem which we state without proof. This version of the
theorem appears in Hale and Kocak [115].

Theorem. (Denjoy) The rotation number is well defined; that is, the limit exists and
is independent of the initial condition. Furthermore, if M.�/ .cf. .8.18// is twice
continuously differentiable, then:

1. (1) 
 is rational if and only if M.�/ has a periodic orbit of some period:
�nCN D �n mod T .

2. (2) 
 is irrational if and only if every orbit f�ng is dense in the circle.
3. (3) 
 is a continuous function of any parameters in the functionM .

We turn to the analysis of the map (8.18). We first find conditions for 1:1 locking,
2:1 locking, and 1:2 locking and determine the stability. We then look at the rotation
number of two relevant simple maps as a function of Tf , the period of forcing.

For 1:1 locking, we must have �nC1 D �n C T ; that is, the oscillator must
complete one cycle per stimulus. This means

� C T D � C�.�/C Tf ;

so we must solve

�.�/ D T � Tf (8.20)

for �. In class I neurons, the PRC is typically nonnegative everywhere, so to entrain
this type of neural oscillator, the period of the forcing stimulus must be smaller than
the natural period. On the other hand, for class II firing, the PRC can be both positive
and negative, so the period of the forcing stimulus can be both shorter and longer
than the natural period. Since �.�/ is a periodic function, we expect that there will
be at least two roots of (8.20) except at bifurcation points. To determine the stability,
we linearize and obtain

ynC1 D .1C�0.�//yn � cyn:

We know that c > 0 since the PTC is monotonic. If �0.�/ > 0, then c > 1 and the
fixed point is unstable, whereas if �0.�/ < 0, then 0 < c < 1 and the fixed point
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is stable. The only bifurcation that can occur corresponds to c D 1 or �0.�/ D 0,
which means � is a double root and occurs at a local maximum or minimum of
�.�/.

The 2:1 locking occurs when �nC1 D �n C 2T ; that is, the oscillator fires twice
for every cycle of the stimulus. In this case, we have to solve

�.�/ D 2T � Tf :

Note that if �.�/ is centered around zero, then we can solve this equation when T
is close to Tf =2. Stability follows in the same way as the 1:1 case. In general, phase
locking of the formm:1 is very simple to analyze and is done in a manner similar to
the 1:1 case.

The 1:2 locking means the oscillator fires only once for every two stimuli, so

�nC2 D �n C T:

We note that �nC2 D M.�nC1/ D M.M.�n//, where M.�/ is as in (8.18), so we
must solve

T D 2Tf C�.�/C�Œ� C�.�/C Tf �: (8.21)

Obviously, this is more difficult to solve than them:1 case. However, we note that if
� is small, then this can be solved only when 2Tf � T . That is, the stimulus must
be roughly twice as fast as the intrinsic period of the oscillator, another intuitively
appealing observation. Stability proceeds in a similar manner and we require that
c D M 0.M.�//M 0.�/ be less than 1 for stability. This gives a condition on �.�/
and its derivatives:

c D Œ1C�0.�/�Œ1C�0.� C�.�/C Tf /� < 1:

In general, for m:r locking, in which the stimulus fires r times and the oscillator
fires m times, we have to solve

� CmT D M r.�/;

whereM r is r iterates of M.�/. We note that

M r.�/ D � C rTf C � � � ;

where the remaining terms depend on �. Thus, for small PRCs, we want Tf =T �
m=r .

The analysis above hints that whenever Tf =T is near a rational number, m=r ,
then there can be phase-locking and thus a rational rotation number. If the PRC is
nontrivial (that is, it is not constant), then we should be able to solve for � and thus
find m:r locked solutions for some open set of forcing periods, Tf . This means if
Tf is a parameter, then 
.Tf / should be constant over the open regions where there
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Fig. 8.10 The rotation number for the map M.�/ D � C�.�/C Tf for �.�/ D 0:8.1� cos�/
(black) and�.�/ D 0:000013�6.2� ��/ (red) as Tf varies. The expanded region is shown at the
bottom. Some rational rotation numbers are shown. The right panel shows the relative sizes of the
two PRCs. The slope of the red PRC at � D 2� is the same as that of the black PRC at � D 3�=2

is locking. Figure 8.10 shows the rotation number for (8.18) for two different PRCs:
�1.�/ D 0:8.1 � cos�/ and �2.�/ D c�6.2� � �/, where c is chosen so that
the maximal magnitude of the slope is the same as �1. The shape of this PRC is
meant to mimic that in Fig. 8.3c. Since the magnitude of �2 is much smaller than
that of �1, the width of the plateaus is much shorter. In both cases, the rotation
number increases with Tf and is punctuated with regions where it is constant. This
diagram is called “the Devil’s staircase.” We note an interesting pattern in the steps.
The largest steps are 2:1, 1:1, and 0:1. The next largest are 3:2 and 1:2. Between
any flat regions a:b and c:d , the largest regime is always the one obeying the Farey
addition rule, .a C c/:.b C d/. Allen [2] was the first to notice this pattern in the
context of neural firing.

If the slope of the PRC becomes more negative than �1, the invertibility ofM.�/
is violated and it is possible to get very complex behavior in these simple maps, such
as chaos. In neural models, a slope of �1 means the neuron fires at the instant of the
stimulus. Thus, it is impossible to get slopes more negative than �1.
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8.2.3 Coupled Oscillators

We now turn our attention to the case of two mutually coupled cells where we use
the computed PRC to create a dynamical system. The cells are both oscillators and
to start, we assume they are identical with the same period, T0. Each time one cell
spikes, the cycle of the other cell is perturbed according to the PRC. This is the only
time there is interaction between the cells. There are at least two ways to derive the
dynamics. One is to derive equations for the spike times of the cells. The second is
to derive equations for the phase of one cell when the other cell fires. The latter is
considerably more convenient and can be formally generalized in a more straight-
forward manner. So that we can close this section on a good note, we start with the
firing time idea.

8.2.3.1 Firing Time Maps

Consider the spike times shown in Fig. 8.11. Our goal is to derive a map for t 0j
given tj . If there was no spike t2, then t 01 D t1 CT0; since the cell is oscillatory with
period T0. The spike from cell 2 occurs at time t2 � t1 after cell 1 spikes, so the time
of the next cell 1 spike is shifted according to the PRC. Recalling definition (8.2),
we obtain

t 01 D t1 C T0 ��.t2 � t1/:
Now, we turn our attention to t 02, the time of the next spike from cell 2. As with cell
1, without coupling, t 02 D t2 C T0, but the intervening spike at t 01 produces a phase
shift in the cell 2 spike. Thus, we obtain

t 02 D t2 C T0 ��.t 01 � t2/:

Note that t 02 depends on the difference between t 01 and t2, not the difference between
t1 and t2, since t 01 is the spike occurring between t2 and t 02. These equations are valid
provided that neither cell spikes twice before the other cell spikes. Thus, the spike
alternation must be maintained for all finite time. We can reduce this equation to a
one-dimensional map for the time difference between the cell 2 spike and the cell 1
spike. Let � D t2 � t1 and let � 0 D t 02 � t 01. Now,

t 01 � t2 D t1 � t2 C T0 ��.t2 � t1/ D T0 � � ��.�/ � D.�/;

Fig. 8.11 Spike times of two
coupled oscillators

t’1 t’2t1 t2

21 1 2
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so the t 02 equation is

t 02 D T0 C t2 ��ŒT0 � � ��.�/�:

We subtract the t 01 equation from the t 02 equation to obtain

�nC1 D �n ��ŒT0 � �n ��.�n/�C�.�n/ D DŒD.�n/�: (8.22)

The new time difference between cell 1 and cell 2 is just the composition of two
identical maps, D.�/ D T0 � � � �.�/. The map D.�/ tells us how much longer
we have to wait for a spike when a stimulus arrives � after the previous spike. This
map is the “time” equivalent of the PTC. Recall that a fixed point of a scalar map
x ! M.x/ satisfies x D M.x/ and it is stable provided that jM 0.x/j < 1. We seek
a fixed point for (8.22); thus,

0 D �.�/ ��.T0 � � ��.�//:

For many of the PRCs which we have encountered (e.g., see Figs. 8.3, 8.5) �.0/ D
�.T0/ D 0. That is, the oscillator is not affected by stimuli at the moment it spikes.
In this case, D.0/ D 0, so synchrony � D 0 is a fixed point. Synchrony is a stable
fixed point if

j1C�0.0/C�0.T0/.1C�0.0//j D jŒ1C�0.0/�Œ1C�0.T0/�j < 1:

We have not assumed �0.T0/ D �0.0/ since for experimental PRCs (e.g., see
Fig. 8.3c) this may not be the case. We can also remove the absolute value since
throughout this section we have assumed the phase transition map � C �.�/ is
monotonic. Thus, synchrony is stable when

Œ1C�0.0/�Œ1C�0.T0/� < 1: (8.23)

For “nice” PRCs such as the adjoint (in which the PRC is continuously differen-
tiable), this condition is reduced to �0.0/ < 0. There may be other fixed points as
well. Indeed, since D2.�/ is a monotonic map of the circle to itself, there must be
at least one other fixed point corresponding to the so-called antiphase solutions in
which � � T0=2. We can see this if, for example, �.�/ D a sin � (or any odd peri-
odic function for that matter). In this case, it is clear that � D � is also a fixed point;
as with the synchronous case, it is stable if �0.�/ < 0.

In the derivations, we have assumed the oscillators are identical. We leave it as an
exercise for the reader to show that, with nonidentical oscillators, the map becomes

�nC1 D T2 � T1 C �n C�1.�n/ ��2ŒT1 � �n ��1.�n/�; (8.24)

where Tj is the natural period of oscillator j and �j is the PRC.
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8.2.3.2 Phase Equations

The firing time methods that we derived above are useful for pairs of oscillators, but
it is difficult to generalize them to many oscillators. Instead, we will turn to the phase
description of oscillators. The phase of an oscillator is complementary to its firing
time in that, for our purposes, the phase is the amount of time since the oscillator
last fired. Many researchers define phase so that it is normalized and represents
not an absolute time, but rather the percentage or fraction of a cycle covered. As we
pointed out earlier in this chapter, normalization of phase makes it easier to compare
cells with different frequencies. Since the remainder of this chapter deals with phase
equations, we will normalize the PRC. To prevent confusion with the unnormalized
PRC, we define the normalized PRC as

d.�/ D 1

T0

�.T0�/: (8.25)

d.�/ is unitless and is 1-periodic. The derivative of d has the same magnitude as
that of �.

We now derive equations for a pair of cells coupled by their normalized PRCs:

� 0
1 D !1 C ı1.�2/d1.�1/; (8.26)

� 0
2 D !2 C ı1.�1/d2.�2/: (8.27)

ı1.�/ is the “periodized” Dirac delta function – a unit impulse at every integer:

ı1.t/ WD
1X

nD�1
ı.t � n/:

We interpret this equation to mean that each time �2 crosses an integer (completes a
cycle), �1 is increased by its normalized PRC, d1.�/. This equation is a flow on the
torus and if the PRCs are not too big and the frequencies are close, then we expect
that there will be a cycle of �1 for each cycle of �2. Thus, we can define a Poincaré
map; we take the Poincaré section to be �2 D 0. That is, we let � denote the phase
of oscillator 1 at the moment that oscillator 2 fires but before oscillator 1 is reset.
Figure 8.12 shows the setup. Between spikes, each oscillator runs according to its
frequency until it hits 1, is reset, and jolts the other oscillator. Let d1;2.�/ be the
response of oscillator 1 (respectively 2) to a spike from oscillator 2 (respectively
1). Let fj .�/ D dj .�/ C � be the PTC. This is the new phase after a stimulus
as a function of the current phase.  is the phase of oscillator 2 when oscillator 1
reaches 1:

 D !2

!1

Œ1 � f1.�/�:

To see this, note that the solution to (8.26) is �1 D !1t C f1.�/, so �1 fires at
t1 D .1 � f1.�//=!1. In that time, �2 has advanced by !2t1. Oscillator 2 is reset
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Fig. 8.12 Coupling of two
phase equations
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to f2. / and fires again at t2 D .1 � f2. //=!2. At this point, �1 has advanced to
�0 D !1t2. Thus, we find that

�0 D !1

!2

Œ1 � f2. /�;

where  is as above. We can think of the map � ! � 0 as the composition of two
maps:

�0 D G2.G1.�//; (8.28)

G1.�/ D !2

!1

Œ1 � � � d1.�/�;

G2.�/ D !1

!2

Œ1 � � � d2.�/�:

We must be very careful in applying this map and using it since it requires that the
spikes of the two oscillators alternate. If one oscillator is sufficiently fast compared
with the other, then the fast oscillator may spike twice before the slow oscillator
can spike. This violates the premise of alternation which we used to derive the map.
Thus, we will assume the ratio !2=!1 is sufficiently close to 1 to guarantee that this
happens. In fact, the main role of the map is to examine the existence and stability
of fixed points, which we now do. We note that the map (8.28) is quite similar to the
time map (8.24) in that it is the composition of the effects of one oscillator on the
other. Let us first suppose 
 � !1=!2 D 1. As in the rest of this chapter, we assume
dj .0/ D dj .1/ D 0. Then, Gj .0/ D 1 and Gj .1/ D 0, so � D 0 is a fixed point of
the composed map (8.28). A fixed point N� is linearly stable if

� D G0
2.G1. N�//G0

1.
N�/

is less than 1 in magnitude. That is,

Œ1C d 0
1.0/�Œ1C d 0

2.1/� < 1: (8.29)
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This is exactly the same condition as we saw for stability of the synchronous state
for the time map (8.23) since d.�/ D �.T0�/=T0 [see (8.23) and (8.25)]. Other
locking patterns besides 1:1 are possible. In Exercise 18, the reader is asked to de-
rive equations for 2:1 locking in which oscillator 1 fires twice for each firing of
oscillator 2.

8.2.3.3 Mirollo and Strogatz

It is possible to analyze larger systems of pulse-coupled oscillators, but owing to
the singular nature of the coupling, only special types of solutions can be easily
analyzed. In particular, “all-to-all” identical pulse coupling was first analyzed by
Mirollo and Strogatz [204]. These authors studied strong coupling between oscil-
lators; that is, the PTC is not invertible. Specifically, they assumed in absence of
coupling each oscillator obeys dynamics governed by xj .t/ D f .t/, where f .t/ is
a prescribed function satisfying f .0/ D 0, f .1/ D 1, f 0.t/ > 0, and f 00.t/ < 0.
When xj .t/ D 1, it is reset to 0. For example, if f .t/ is a solution to the integrate-
and-fire model, then with rescaling of time, f .t/ will satisfy the assumptions. Note
that the quadratic integrate-and-fire models do not satisfy the concavity assumption,
so the Mirollo–Strogatz theorem does not hold. Oscillators communicate with each
other by advancing those which have not fired by an amount � > 0. Each oscillator
is coupled identically to all the others with the following rules:

1. At time t�, if m oscillators fire (cross 1), then all other oscillators which are
below 1 are increased by m�

2. If this increment is sufficient to cause an oscillator to fire (cross 1), then it is set
to 1 but does not contribute a pulse to the others

3. All oscillators at 1 are immediately reset to 0.

Because the oscillators are identical, rule 2 implies that once an oscillator joins
a group which has fired (by crossing 1 due to the inputs) it is absorbed into the
group for all times and will remain synchronous with the oscillators in the group.
Intuitively, it is clear how this type of strong coupling will lead to synchronization of
the entire group by the process of absorption. Indeed, as more and more oscillators
become absorbed, their effect on the remaining oscillators becomes very large and
will rapidly bring them into the synchronized pool.

Mirollo and Strogatz [204] proved, with the above assumptions regarding f .t/
and the coupling, the set of initial conditions for which the oscillators are not com-
pletely absorbed has measure zero. We sketch the proof for N D 2 as it is the basis
for the general proof and it also exposes some problems with basic assumptions of
the model. As with the rest of this section, we reduce the analysis of the behavior of
a pair of oscillators to a simple map.

Since f .t/ is monotonic, f .0/ D 0, and f .1/ D 1, f .t/ has an inverse, t Dg.x/,
which provides the phase (or time) in the cycle given the value x 2 Œ0; 1/. Let � be
the phase of oscillator B right after oscillator A fires; that is, after oscillator B has
received a kick from oscillator A. If oscillator B is pushed past 1, we are done since
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now oscillators B and A are synchronous; we therefore assume � < 1. Oscillator B
will fire at time 1 � � and at this point oscillator A is at xA D f .1 � �/. Oscillator
A receives a kick of size � and if this now exceeds 1, we are done since the two
are synchronous. Thus, suppose f .1 � �/ C � < 1. The phase of oscillator A is
now g.f .1 � �/C �/ � h.�/. We are exactly where we started before except that
the roles of oscillators A and B are reversed. Since the oscillators are identical, the
complete map is just two iterates of h.�/. Thus, our map is

� ! h.h.�// � R.�/:

Note that the domain ofR.�/ is not the whole interval Œ0; 1� because for any finite �,
if � is sufficiently close to 0, then f .1 � �/ C � will cross 1. Let ı be such that
f .1 � ı/ C � D 1. The function h.�/ is defined for � 2 .ı; 1/. f and g are
monotonically increasing, so h0 < 0; that is, h is monotonically decreasing. Since
R.�/ D h.h.�//, we must have h.�/ > ı as well. That is, � < h�1.ı/ because h is
a decreasing function. Thus, the domain of R is the interval .ı; h�1.ı//. We need to
prove this is nonempty. That is, ı < h�1.ı/ or, equivalently, h.ı/ > ı. But, clearly,
h.ı/ D 1 > ı.

We can define the map on the whole of [0,1) as follows. For � > h�1.ı/, we
set R.�/ D 1 and for � < ı, we set R.�/ D 0. These conditions correspond to
absorption, that is, once you hit 0 or 1, you stay there for all time. Since the phase
space is the circle, point 1 is identified with 0.

Before continuing with the analysis, it is useful to consider a specific example,
say, f .t/ D t.2 � t/. Then, g.x/ D 1 � p

1 � x. Figure 8.13 shows R.�/ for this
example when � D 0:02. Note that the map is only defined for a subinterval of Œ0; 1�.
There is a single fixed point at � D 1=2 and it is evidently a repeller (since the slope
at the fixed point is greater than 1). The red curve shows successive iterates of the
map until there is absorption and � D 0. Any initial condition except the fixed point
will be absorbed into either 0 or 1 after a finite number of cycles.

Fig. 8.13 Mirollo–Strogatz
map with f .t/ D t .2� t /

and � D 0:02
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Thus, we can prove almost all initial data are eventually absorbed if we can prove
two things about R.�/: (1) there is a single fixed point and (2) it is unstable. Since
R.�/ D h.h.�//, we can prove the second of these if we can show that jh0.�/j > 1
for all � where it is defined. Since f and g are inverses, f 0.y/ D 1=g0.f .y//, so

h0.�/ D �g0.f .1 � �/C �/f 0.1 � �/ D �g
0.f .1 � �/C �/

g0.f .1 � �// :

Let u D f .1 � �/. Then,

h0 D �g0.u C �/=g0.u/:

By hypothesis, f 00 < 0, so g00 > 0; thus, g0.u/ is monotonically increasing. This
means g0.u C �/ > g0.u/ for � > 0. Thus, the above ratio is less than �1 and we
have proven that any fixed points (if they exist) are unstable.

All that is left to do is to prove there is a unique fixed point. If there is a fixed point
for � D h.�/, then this is also a fixed point for � D R.�/ since R.�/ D h.h.�//.
Let F.�/ D � � h.�/. Note that F.ı/ D ı � h.ı/ D ı � 1 < 0. On the other
hand, F.h�1.ı// D h�1.ı/ � ı > 0, so there is root between .ı; h�1.ı//. Since
F 0.�/ D 1 � h0.�/ > 2, this root is unique.

Mirollo and Strogatz prove the all-to-all case for N oscillators in a similar man-
ner. The original motivation for their work was a conjecture by Charles Peskin for
the leaky integrate-and-fire model. For the leaky integrate-and-fire model, the profile
of x.t/ is 1 � exp.�t/, so this satisfies the concavity assumption, which is critical.
On the other hand, the quadratic integrate-and-fire model and other models like it
rise to the spiking threshold in a manner which can be concave up. What happens in
this case is for the reader to explore.

8.2.4 Other Map Models

Ermentrout and Kopell [73] studied the circuit shown in Fig. 8.14 in order to under-
stand results from the Whittington laboratory [286]. Specifically, gamma (40 Hz)
rhythms were induced in brain slices which contained both halves of the hippocam-
pus. Long fibers connected the two halves and there was consequently a delay in the
coupling between the two networks. The experiments showed that for each spike
forced by the excitatory cells, the local inhibitory cells fired “doublets” or pairs of
spikes. But the doublets only occurred when the two halves were synchronized. The
figure shows a simple abstraction of the circuit (Fig. 8.14a) and the spiking pattern of
one side near synchrony (Fig. 8.14b). The single excitatory–inhibitory pair is driven
by the excitatory cell. That is, without the synaptic excitation, the inhibitory cell
would not fire. The feedback inhibition from the inhibitory cell slows the excitatory
cell down to about a 40-Hz rhythm. Thus, the first spike, I1; is a consequence of the
excitation from the local circuit and the second spike, I2; comes from the distant
excitation.
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Fig. 8.14 Hippocampal oscillatory circuit. (a) Two “columns” coupled via excitatory (E) to in-
hibitory (I) synapses with a delay. (b) Times of spikes in the two columns. (c) Spiking time map
for inhibitory neuron (see the text)

Let us devise a simple map for this model and then use this to analyze the
existence and stability of the synchronous state. To do this, we will make some
simplifying assumptions:

(1) The excitatory cell spikes a fixed time after the last inhibitory spike that it re-
ceived.

(2) All inhibitory spikes produce the same amount of inhibition of their target ex-
citatory cells.

(3) The second inhibitory spike (I2) occurs at a time which depends on the time
difference between its two excitatory inputs.

(4) The first inhibitory spike (I1) occurs a fixed time after the local excitatory spike
that it received.

(5) The delay � between columns is not long compared with the period of the un-
coupled system.

Assumption 1 implies the excitatory cells have no memory of when they last spiked
and what keeps them from spiking is the inhibition. They can only spike when the
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inhibition has worn off sufficiently. Assumption 2 says that each time the inhibitory
cell spikes, the total inhibition to the excitatory cell is reset to the maximum where
it then decays. Assumption 3 is crucial. It says the inhibitory cell has some memory
of when it last fired since a second excitatory input does not necessarily make it
spike immediately. Assumption 4 says the effect referred to in assumption 3 wears
off quickly. Assumption 5 is a necessary one to make the map well defined.

We now put these assumptions into mathematical terms to derive a simple map
for the timing difference between the excitatory cells. In the figure, we have labeled
several different times. Assumptions 1 and 2 say the time between Ot1 and t4 is a
fixed number we will call Tie. Assumption 4 says the time between t1 and t2 is fixed
at Tei . Thus, the key to the derivation of the map is to determine t4. In absence of
coupling, the period of the single circuit is Tie C Tei by assumptions 1 and 4. If
the distant excitatory cell spikes at time t3, then the local inhibitory cell receives
the input at time t3 C � , where � is the delay. Assumption 3 says t4 is a function of
the time difference, t3 C � � t1. Call this function M.t/; t4 D M.t3 C � � t1/ C
t3 C � . That is, the second inhibitory spike occurs with a delay M after its second
excitatory input.M.t/ is strictly decreasing since the longer we wait, the more time
the inhibitory cell has to recover from its prior firing and the less time it takes for a
second spike to occur. If t is too small, then it is possible that the inhibitory cell will
never fire, soM.t/ will tend to infinity as t gets smaller. We are now done, since we
can write

Ot1 D Tie C t4

D Tie CM.t3 C � � t1/C t3 C �:

We can write exactly the same type of equation for Ot3:

Ot3 D T 0
ie CM.t1 C � � t3/C t1 C �:

We have put a prime on Tie above to account for possible heterogeneities between
the two circuits. For example, if the drive to the right-hand circuit is larger than
that to the left-hand circuit, we would expect the right-hand circuit to recover from
inhibition more quickly and hence T 0

ie would be less than Tie. Let � D t3 � t1,
O� D Ot3 � Ot1, and 	 D T 0

ie � Tie. Then, subtracting these two equations leads to

O� D 	 � � CM.�� C �/ �M.� C �/ � F.�/: (8.30)

Note that because of the delay, the distant inhibitory input always occurs after the
local inhibitory input even if t3 < t1. This means, unlike our timing maps above,
we do not require the excitatory spikes keep the same order. Indeed, with effective
inhibition coupling the cells and with the delay, we never have to worry about a
distant input making the local excitatory cell fire immediately.
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Let us turn our attention to the map M.t/. This can be numerically computed
as follows. Create the single circuit so that the excitatory and inhibitory cells fire
exactly one spike per period. At time t after the excitatory cell spikes, stimulate
the inhibitory cell with an excitatory synaptic input and then examine when the
inhibitory cell spikes. This sounds, at first, like a PRC since the inhibitory cell fires
periodically and receives a stimulus. However, the basic premise of PRC theory is
that the stimulus is weak enough to move the spike but not strong enough to add
new spikes. In the present setting, the input from the distant excitatory cell is strong
enough to cause the inhibitory cell to produce an extra spike. Thus, this is a large-
amplitude theory, rather than an infinitesimal one. What accounts for the shape of
this map? A biophysical interpretation is that if the input comes in right after the
inhibitory cell has spiked, then the cell will not be able to fire again at all. As the
second input is delayed, the inhibitory cell just manages to cross the threshold. Since
the inhibitory cell is class I (cf. Chap. 4), the delay to spiking can be arbitrarily large.
This accounts for the vertical asymptote. Finally, for long times after spiking, the
inhibitory cell has forgotten the previous spike, so it fires at a finite delay after the
input. In Exercise 19, we put some mathematical meat on these meager heuristic
bones.

Turning back to (8.30), we know thatM.t/ is a strictly decreasing function which
has a rather steep slope for small t . Phase-locking between the two columns occurs
if there is a fixed point of the map in (8.30). Let N� be such a fixed point. It is linearly
stable if jF 0. N�/j < 1, which from the definition of F (8.30) means

�1 < 1

2
ŒM 0.�N� C �/CM 0. N� C �/� < 0:

The right-hand inequality is always true sinceM 0 is a decreasing function. However,
if M is very steep, then the left hand condition can be violated. Since the slope
decreases with large delay � , increasing � can stabilize a given fixed point. If the
two columns are identical, 	 D 0, and N� D 0 is the synchronous fixed point. The
stability condition reduces to M 0.�/ > �1. Thus, the delay must be large enough
to prevent the destabilization. However, the delay should also not be too long (see
Exercise 20).

8.3 Weak Coupling

We will now analyze a pair of nonlinear oscillators which are coupled in an arbitrary
fashion, but the coupling is “weak.” Kuramoto [166] popularized the methods and
ideas of weak coupling using a very intuitive geometric concept which employs the
gradient of the phase map rX‚.x/ – an object which we have seen is the solution
to the adjoint.
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8.3.1 Geometric Idea

Suppose X 0 D F.X/ has an asymptotically stable limit cycle, U.t/. Consider two
identical oscillators which are coupled:

dXj

dt
D F.Xj .t//C �Gj .Xj .t/; Xk.t//; (8.31)

where j D 1; 2 and k D 3 � j . Kuramoto suggested a simple approach to this. We
make the change of coordinates along the limit cycle, �j D ‚.Xj /, where ‚ is the
asymptotic phase function as in Fig. 8.1. Then

d�j

dt
D rX‚.Xj / � dXj

dt
D rX‚.Xj / � F.Xj .t//C �rX‚.Xj / �Gj .Xj ; Xk/

D 1C �rX‚.Xj / �Gj .Xj ; Xk/: (8.32)

This equation is exact but quite useless since we do not know what Xj .t/ is, so
we cannot evaluate the right-hand side. However, if � is small, then Xj .t/ is close
to U.t/, which is close to U.�j /. Thus, (8.32) becomes an equation which only
involves the phases, �1;2 W

d�j

dt
D 1C �rX‚ŒU.�j /� �Gj ŒU.�j /; U.�k/�: (8.33)

Equation (8.33) is intuitively appealing since it shows that the evolution of the phase
is determined by a product of the coupling with the response function. Winfree [290]
deduced this equation on first principles. For neurons, the coupling is often only
through input currents to the membrane potential of the cell, leading to a simpler
pair of equations:

d�1

dt
D 1C �P2.�2/d1.�1/;

d�2

dt
D 1C �P1.�1/d2.�2/;

where dj .�/ is the PRC for the oscillator and Pj .�/ is the synaptic input of the
presynaptic oscillator. Note the similarity between this simple equation and (8.26)
and (8.27). One can regard (8.33) as a smooth equivalent of the pulsatile coupling
we considered above.

We exploit the fact that � is small once more to further reduce (8.33). Let us
introduce the variables, �j D �j � t . Then (8.33) becomes

d�j

dt
D �r‚ŒU.t C �j /� �Gj ŒU.t C �j /; U.t C �k/�: (8.34)
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All functions involved are smooth and U is itself T -periodic. Thus, we have a
system of the form

y0 D �M.y; t/

and we can apply the method of averaging which says that y.t/ is close to Ny, where

Ny0 D �
1

T

Z T

0

M. Ny; t/dt:

Recall that rX‚.X/ is exactly the solution to the adjoint equation, Z.t/. Applying
averaging to (8.34) results in the following equations:

d�1

dt
D �H1.�2 � �1/; (8.35)

d�2

dt
D �H2.�1 � �2/;

where

Hj .�/ D 1

T

Z T

0

Z.t/ �Gj ŒU.t/; U.t C �/�dt: (8.36)

The beauty of (8.35) is that the interactions between the two oscillators only show up
in the phase differences between them: �2 ��1 D �2 � �1. Indeed, let  D �2 ��1

denote the phase difference between the two oscillators. Then subtracting the two
equations in (8.35) results in the following scalar equation for the phase difference:

d 

dt
D �ŒH2.� / �H1. /�: (8.37)

Stable (unstable) fixed points of (8.37) correspond to stable (unstable) periodic so-
lutions to the full equations (8.31). For example, if  D 0 is a stable fixed point of
(8.37), then the two oscillators will synchronize.

Equation (8.35) generalizes to N coupled neural oscillators, leading to the fol-
lowing system of differential equations:

d�j

dt
D �Hj .�1 � �j ; �2 � �j ; : : : ; �N � �j /; j D 1; : : : ; N: (8.38)

Although (8.38) represents a considerable simplification of a general system of N
coupled oscillators, it is by no means a trivial system to analyze and there are many
open problems concerning the behavior of this dynamical system on the N -torus.
An entire book could easily be devoted to the subject! We define a phase-locked
state of (8.38) to be a solution of the form

�j .t/ D �t C �j ;

where � is the ensemble frequency, �1 D 0, and �j are constants called the relative
phases. We pin �1 to zero since you can add an arbitrary constant to all of the phases
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�j .t/ corresponding to the arbitrary translation in time of any autonomous limit
cycle oscillator. Thus, the existence of a phase-locked solution to (8.38) reduces to
solving a set of N algebraic equations in the N unknowns,�; �2; : : : ; �N W

� D �Hj .��j ; �2 � �j ; : : : ; �N � �j /; j D 1; : : : ; N: (8.39)

If we can find such states, then there is a convenient theorem which provides suffi-
cient (but not necessary) conditions for stability.

Theorem [65]. Let S D f�; 0; �2; : : : ; �N g be a phase-locked solution to (8.38). Let
ajk denote the partial derivative ofHj .�1; : : : ; �N / with respect to �k evaluated at
S . Suppose ajk � 0 and that the matrix A D .ajk/ is irreducible. Then S is
asymptotically stable.

We provide an intuitive definition for irreducibility. Draw N points on a paper.
Draw a directed line from point j to point k if ajk > 0. The matrix A is irreducible
if and only if it is possible to start at any point n and go to any other point m
following the directed lines.

8.3.2 Applications of Weak Coupling

Before proceeding to specific neural examples, we examine (8.36) more closely.
Recall that Hj is the average of the interaction with the PRC. Let us break Gj into
two parts representing coupling terms and heterogeneity between the oscillators:

Gj .X; Y / D Bj .X/C gCj .X; Y /;

where g is the strength of the coupling between the two cells and Bj represents
intrinsic differences between the two neurons. For membrane models, the main
interactions are through the membrane potential, so Bj .X/ may be something as
simple as a small bias current and Cj .X; Y / is the synaptic current. In this case,
(8.39) becomes the equation typically studied:

� D �

 
!j C

X
k

Hjk.�k � �j /

!
(8.40)

with �1 D 0.
We consider two cases for the synaptic current – chemical synapses and electrical

synapses:

Csyn.X; Y / D �sY .VX � Vsyn/eV ;

Cgap.X; Y / D .VY � VX /eV ;
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where eV is the vector of all 0’s except for a 1 in the voltage component and sY .t/
is the synaptic response of the presynaptic cell. If we define V �.t/ to be the voltage
component of the adjoint solution, V.t/ the potential, and assume except for the
heterogenity both cells are identical, then we see that

Hj .�/ D !j C h.�/;

where

h.�/ D hsyn.�/ � 1

T

Z T

0

V �.t/s.t C �/ŒVsyn � V.t/�dt; (8.41)

h.�/ D hgap.�/ � 1

T

Z T

0

V �.t/ŒV .t C �/ � V.t/�dt: (8.42)

We remark that these equations have a nice intuitive interpretation. The adjoint is
(at least for weak perturbations) a scaled version of the PRC of a neuron. When the
PRC is computed, it is done by perturbing with a brief current. However, chemical
synapses between cells are best modeled as conductances. Thus, the effect of a
presynaptic conductance change on the postsynaptic cell is the product Q.t/ �
V �.t/.Vsyn � V.t//. The presynaptic cell alters the phase of the postsynaptic cell
by averaging the effective response, Q.t/, with the time course of the synapse. The
function Q.t/ will not differ substantially from the adjoint, V �.t/, for excitatory
conductances since Vsyn �V.t/ is positive except for a short period when the neuron
spikes. (Recall that Vsyn D 0mV for excitatory synapses.) However, there can be
a rather large difference between Q.t/ and V �.t/ for inhibitory synapses since the
reversal potential can sometimes be very close to the resting state of the neuron. In
Project 3 given later, you can explore how the reversal potential of the inhibition
affects the synchronization properties of pairs of cells. Since the reversal potential
of inhibition varies a great deal during the development of the nervous system, this
could have important implications in setting up local cortical circuits.

8.3.3 Synaptic Coupling near Bifurcations

Equation (8.41) provides a formula for the interaction function between a presy-
naptic and a postsynaptic neural oscillator. Equation (8.37) provides the equations
for the phase difference between two coupled neurons. Suppose both neurons are
identical. Then the phase difference,  , satisfies

 0 D �2Hodd. /; (8.43)

where 2Hodd. / D H. / � H.� /. Any continuous odd periodic function van-
ishes at  D 0 and  D T=2, where T is the period of the function. Thus, a pair
of mutually coupled neural oscillators will always have a synchronous and an an-
tiphase pattern of behavior. If N is a zero of Hodd. /, then from (8.43), it will be
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stable if and only if H 0
odd.

N / > 0. (Note the minus sign in the equation!) For a
pair of mutually coupled identical oscillators, the key function is the odd part of the
interaction function. Zeros of this function are phase-locked states. In general com-
puting H and its odd part must be obtained numerically since the explicit form for
the adjoint is not generally available. However, near bifurcations, we have a formula
for the adjoint and thus we can study some of the effects of frequency and synaptic
parameters on the ability of a pair of neurons to synchronize. Furthermore, near bi-
furcations V.t/ is close to a fixed point, so we replace p0 – gsyn.V .t/ � Vsyn/ by I ,
a constant current j positive for excitatory and negative for inhibitory synapses.

Suppose we choose

s.t/ D e�ˇŒt�C � e�˛Œt�C

˛ � ˇ

as our synaptic conductance. Here, Œt �C is the positive part of t ; the alpha-function
synaptic conductances vanish for t < 0.

H.�/ D I

T

Z T

0

V �.t/
1X

j D�1
s.t C jT C �/dt:

The sum arises since the synaptic function s.t/ is not itself periodic, so we have
to “periodize” it by adding the synaptic response for every spike at intervals of the
period. We leave it as an exercise to the reader to show that

H.�/ D I

T

Z 1

0

V �.t � �/s.t/dt:

Since the interval of integration is nonnegative, we can drop the Œ �C and just evaluate
the integrals. Finally, we can rescale the period of the oscillations, allowing us to
express V �.t/ andH.�/ in simple sines and cosines. Thus, a long-period oscillation
is like an oscillation of period 2� , but with very fast synapses: ˛ ! ˛=! and
ˇ ! ˇ=!, where T D 2�=!.

Near bifurcations we have an explicit formula for the adjoint, so we can analyze
H.�/ explicitly by evaluating the integrals. Suppose the neural oscillator is class I
so that the adjoint is V �.t/ D 1 � cos t . If the synaptic current is I s.t/ with I > 0
for excitatory synapses and I < 0 for inhibitory, then

Hodd.�/ D �I ˛ C ˇ

.˛2 C 1/.ˇ2 C 1/
sin �:

We recover the well-known result [67, 278] that excitatory coupling (I > 0) results
in stable antiphase and inhibitory coupling (I < 0) results in stable synchrony.

The behavior near a Hopf bifurcation depends on the parameters in the normal
form. The adjoint can be written as V �.t/ D � sin.t/ C q cos.t/, where q is a
parameter from the normal form. Evaluation of the integral yields

Hodd.�/ D I
q.˛ C ˇ/C ˛ˇ � 1
.˛2 C 1/.ˇ2 C 1/

sin�:
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Unlike systems near a saddle–node, the stability of, say, synchrony depends on the
timing of the synapses and the parameter q. Even when q D 0, it is possible to
switch from stable synchrony to stable antiphase as the frequency of the oscillator
(the timing of the synapses) changes.

In neither case does there exist bistability between synchrony and antiphase, nor
are any other phase-locked patterns possible. The reason for this is that the ad-
joint has only pure sines and cosines without any higher modes. Looking at, say,
Fig. 8.3a(i) or c, it is clear that these two simple models for the adjoint (PRC) are
not always good approximations. We can combine the two types and add two more
terms to obtain a pretty good approximation for neural PRCs:

V �.t/ D a.1 � cos.t//C c.1 � cos.2t//C b sin.t/C d sin.2t/: (8.44)

With this model, we find

Hodd.�/ D
��a.˛ C ˇ/ � b.˛ˇ � 1/

.˛2 C 1/.ˇ2 C 1/

�
sin � (8.45)

C
��2c.˛ C ˇ/ � d.˛ˇ � 4/

.˛2 C 4/.ˇ2 C 4/

�
sin 2�:

We remark that since we have normalized the period to be 2� , the parameters ˛ and
ˇ should be scaled as ˛ D ˛0T and similarly for ˇ, where ˛0 is the true synaptic
time scale and T is the period of the oscillator. Note that for T large, the terms b
and d dominate.

8.3.4 Small Central Pattern Generators

A CPG is a network of neurons which is able to produce a patterned oscillator output
to motor neurons. For example, in Chap. 4, we looked at a model for the respiratory
oscillation driven by the so-called pre-Bötzinger complex. Much research has been
done on simple locomotor CPGs which govern the different gaits for walking, run-
ning, etc. Most mammalian CPGs are poorly understood and their actual location
in the brain is not known. However, the story for certain fish and invertebrates is
much clearer. There are numerous review articles on CPGs and their modeling. (See
Grillner et al. [109] for a recent review with many references to other reviews or
Yuste et al. [294] for a call to treat cortical circuits in the way that motor patterns
have been treated.) We will consider three examples: finger tapping, hand clapping,
and quadrupedal locomotion.

In a clever series of experiments Kelso and collaborators (see his book for a
complete discussion and analysis [149]) studied the transition from one pattern to
another as the frequency of finger tapping increased. In the experiment (and you can
do this yourselves) the subject is asked to tap his fingers in an alternating rhythm.
The subject is asked to speed up the rhythm and try to maintain the pattern. However,
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Fig. 8.15 Weakly coupled Wang–Buszaki model for inhibitory (left) and excitatory (right)
coupling

at high enough frequencies, the subject tends to switch to synchronous tapping. The
subject is able to tap fingers synchronously at all frequencies, thus, there appears to
be bistability between the two types of coupling.

Imagine that each finger is controlled by an oscillatory circuit and that the two
sides are synaptically coupled. Then we can ask whether this kind of model can
explain the bistability and the switch as the frequency increases. Figure 8.15 shows
a numerical computation for the Wang–Buszaki model with inhibitory and exci-
tatory synapses as the frequency changes. (The Wang–Buszaki model is a simple
conductance-based model used for fast-spiking inhibitory neurons. It’s equations
are available on the online site). At low frequencies with inhibitory coupling (about
9 Hz) both the synchronous and the antiphase state are stable since the odd part
of H has a positive slope. However, at higher frequencies (30 Hz) only the syn-
chronous state is stable. Thus, there is a transition from bistability to monostability
at high frequencies. In contrast, with excitatory coupling (Fig. 8.15, right), the syn-
chronous state is unstable for both high and low frequencies. This simple model of
mutually coupled inhibitory circuits shows that we can induce a switch from the
antiphase state to synchrony as the frequency increases. Van Vreeswijk et al. [278]
demonstrated this phenomenon for weakly coupled integrate-and-fire neurons and
also showed that a similar effect occurs in the Hodgkin–Huxley model. We can use
(8.44) and (8.45) to analytically show this result.

8.3.4.1 Quadruped Gaits

An interesting and well-studied problem is the existence and stability of patterns
of movement in four-legged animals (quadrupeds). There are many subtly different
gaits; here we present only the so-called primary gaits. Table 8.1 shows the relative
phases of the six primary gaits. x1.t/ is the dynamics of a single limb, so all the
other limbs can be specified in terms of their relative phase with the left-rear limb.
Golubitsky et al. [106] derived minimal circuits which can explain the gaits using
symmetry arguments. Their methods are elegant and from them they concluded that
the minimal number of oscillators required is eight, corresponding to two oscillators



210 8 Neural Oscillators: Weak Coupling

Table 8.1 Common simple quadruped gaits

Name Left rear Right rear Left front Right front

Pronk x1.t/ x1.t/ x1.t/ x1.t/

Rack/pace x1.t/ x1.t C 1
2
/ x1.t/ x1.t C 1

2
/

Bound x1.t/ x1.t/ x1.t C 1
2
/ x1.t C 1

2
/

Trot x1.t/ x1.t C 1
2
/ x1.t C 1

2
/ x1.t/

Jump x1.t/ x1.t/ x1.t ˙ 1
4
/ x1.t ˙ 1

4
/

Walk x1.t/ x1.t ˙ 1
2
/ x1.t ˙ 1

4
/ x1.t ˙ 3

4
/

per limb. Their reasoning goes something like this. Suppose there are only four os-
cillators and suppose an animal has both a stable walk and a stable trot. Then, by
symmetry, it must also have a stable pace. Since no animal both paces and walks,
there must be additional structure to break the symmetry. We can see this for our-
selves by considering the following network of four coupled oscillators:

� 0
1 D Ha.�2 � �1/CHb.�3 � �1/CHc.�4 � �1/; (8.46)

� 0
2 D Ha.�1 � �2/CHb.�4 � �2/CHc.�3 � �2/;

� 0
3 D Ha.�4 � �3/CHb.�1 � �3/CHc.�2 � �3/;

� 0
4 D Ha.�3 � �4/CHb.�2 � �4/CHc.�1 � �4/:

Here, �1; : : : ; �4 are the left-front, right-front, right-rear, and left-rear limb oscilla-
tors, respectively. Connections labeledHa are left–right coupling, those labeledHb

couple “diagonal” limbs, and those labeled Hc couple the same side. Phase-locked
solutions have the form

�j D !t C �j ;

where �1 D 0, � is the ensemble frequency, and �2, �3, and �4 are the phases
of the other limbs relative to the left-front limb, �1. We are interested in several
types of solutions. The walk corresponds to W D .0; �; 3�=2; �=2/, the trot to
T D .0; �; 0; �/, the pace to P D .0; �; �; 0/ and the bound to B D .0; 0; �; �/.
The “pronk” is a fully synchronous state. If you walk your dog slowly, you will
notice that she moves using the walk, whereas as you speed up, she will switch to a
trot, the gait used in the show ring. (Hopefully, your dog will have nice long legs to
make this evident; my dog, a corgi, makes the observation somewhat difficult.) We
leave as an exercise the analysis of this network. If the functions Ha, Hb , and Hc

are general and periodic, then there will be a walk state if and only if Hb D Hc .
From this, you can deduce that there is also a trot and a pace state and that they must
have the same stability properties. This result (easily deduced in the present case)
actually follows from the symmetry arguments of Golubitsky et al.

8.3.4.2 Excitatory/Inhibitory Coupling

We have already seen that near a saddle–node bifurcation, weak excitatory coupling
tends to push pairs of oscillators into antiphase. However, most cortical networks
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consist of networks with both excitation and inhibition. Can the inhibition affect the
response of coupled networks? Naturally, this depends on the nature of the individ-
ual neurons, but, at least near bifurcations, we can explore these questions using
simple models such as the theta model. Consider a single “column” consisting of an
excitatory and an inhibitory cell:

� 0
e D 1 � cos �e C .1C cos �e/.0:25� 2si /; (8.47)

� 0
i D 1 � cos �i C .1C cos �i /.�0:2C 2se/; (8.48)

s0
e D 4Œ1C exp.�20.1C cos �e//�.1 � se/� se=3; (8.49)

s0
i D 4Œ1C exp.�20.1C cos �i //�.1 � si /� si=8: (8.50)

When there is simulation, this produces a nearly 40-Hz rhythm. (In absence of inhi-
bition, the network fires at 200 Hz.) Figure 8.16 shows the results of a weak coupling
analysis of the above network. There are several important points. The inset shows
the interaction function for a purely excitatory network adjusted so that the fre-
quency is about 40 Hz. H.�/ has a positive slope at the antiphase solution and a
negative slope at � D 0, so synchrony is unstable but the antiphase state is stable.
This, of course, was anticipated from our results above. However, in an excitatory–
inhibitory network, the period (at least for strong recurrent inhibition) is largely
determined from the decay of the inhibition. In this case, excitatory–excitatory
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coupling no longer stabilizes the antiphase state. Instead, there is a near synchronous
state which is stabilized. Coupling to the inhibitory cell is an order of magnitude less
efficacious than coupling to the excitatory cell. This is because the excitatory cell
is really the driver of the rhythm, with the inhibitory cell firing only because of the
strong transient excitatory cell input. Note that inhibitory!excitatory coupling is
quite strongly synchronizing but also produces a stable antiphase solution. We leave
it as an exercise for the reader to simulate a pair of these simple models and show
that the weak coupling results predict what happens for the full model.

It should not be surprising to the reader that the effect of, say, excitatory cou-
pling between a pair of cells in isolation is quite different from excitatory coupling
between the same pair in the presence of recurrent inhibition. In this case, we can re-
gard the inhibition as a delayed negative feedback – much like an additional outward
current. Since the PRC of an oscillator is sensitive to the presence of different cur-
rents, these same currents should affect the behavior of coupled pairs of oscillators.

Pfeuty et al. [214] explored how synchrony between neurons coupled with gap
junctions depends strongly of the shape of the PRC. We can see this geometrically
by recalling that the interaction function for a pair of cells coupled with gap junc-
tions has the form

Hgap.�/ D 1

T

Z T

0

V �.t/ŒV .t C �/ � V.t/�dt:

Here, V.t/ is the somatic potential and V �.t/ is the adjoint. Synchrony is stable if
H 0

gap.0/ > 0, which we write as

H 0
gap.0/ D 1

T

Z T

0

V �.t/V 0.t/dt:

Figure 8.17 provides a geometric interpretation for how the shape of the PRC can
alter synchrony for gap junctions. If the area of the product of V 0.t/ (the black

Fig. 8.17 V 0.t/ and two
different adjoints
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curve) and the adjoint (red or blue curves) is positive (negative), then synchrony
will be stable (unstable). Since the bulk of the PRC is toward the right for the blue
curve, the total area is positive and synchrony will be stable, whereas for a PRC like
that in the red curve, synchrony will be unstable. Ermentrout and Kopell [? ] were
the first to make this argument. Pfeuty et al. showed how the addition of a persistent
sodium current or removal of some potassium current can shift the PRC from the
rightward-leaning to the leftward-leaning case and thus demonstrated how intrinsic
membrane properties alter the stability of the synchronous state.

8.3.4.3 Dendritic Structure

All of the results for weak neural coupling have considered only point neurons. The
same methods here can be applied to models with active dendrites by discretizing
them to a finite number of compartments and then computing the adjoint. However,
if the dendrites are nothing more that passive cables, then we can treat the dendrite
as a cable with a sealed end at the apical tip and a periodic current at the somatic
end due to the oscillating soma. Suppose there is a synapse at a point x on the
dendrite (where x D 0 is the soma). Then, the synaptic current felt at the soma from
a synaptic current I.t/ at x is

Isoma.t/ D
Z 1

0

G.xI s/I.t � s/ds;

where G.xI t/ is the Green function associated with the dendrite. That is, the den-
drite acts as a linear filter. Thus, if H.�/ is the interaction function for a synapse
occurring at the soma, then the interaction function for a synapse a distance x from
the soma on a passive dendrite is simply

H.xI�/ D
Z 1

0

G.xI s/H.� � s/ds: (8.51)

Crook et al. [51] showed how stability of synchrony between two oscillators changes
as the position of the synapse is changed. For example, if we takeH.�/ D sin � and
G.xI t/ D exp.�t/ exp.�x2=t/=

p
�t (which is the Green function for an infinite

dendrite), then at x � 1:25, the slope of H.xI�/ at � D 0 changes sign. Thus,
distal synapses (further away than about 1 space constant) will have synchronization
properties opposite to those of proximal synapses.

8.3.5 Linear Arrays of Cells

There are a number of neural systems which can be regarded as a one-dimensional
array of oscillators, at least at a crude level. The locomotor pattern generator of the
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lamprey (an eel-like fish vampire) is among the best characterized examples of such
a model [41]. The leech swim generator is also organized in a linear array [23].
However, some sensory systems are similarly organized, notably the procerebral
lobe (“olfactory brain”) of the slug [77]. In both the lamprey and the slug brain,
the network of oscillators produces oscillatory waves which propagate down the
network. Interestingly, similar waves have been observed in cortical brain slices in
which the magnesium is reduced [292]. In all of these systems, the local uncoupled
network appears to oscillate, so the idea of a locally coupled network of intrinsic
oscillators is a good first approximation. Some jellyfish have swim generators which
are organized into a ring, so one-dimensional arrays of oscillators with periodic
boundary conditions could also be biologically relevant [199].

For simplicity, we discuss only nearest-neighbor coupling. The more general
types of coupling can also be analyzed but not as transparently. Consider a linear
array of N oscillators, possibly with heterogeneity in the frequencies:

� 0
j D !j CHj C1;j .�j C1 � �j /CHj �1;j .�j �1 � �j /: (8.52)

These equations are valid for j D 2; : : : ; N � 1, and at the ends we can impose a
number of different boundary conditions. For example, if we identify �0 with �N and
�N C1 with �1, then we have a periodic array. On the other hand, identifying �0 D �1

and �N C1 D �N gives reflecting conditions. Finally, the “cut” conditions assume
the interactions with j D 0 and j D N C 1 do not exist. Both the reflecting and the
periodic boundary conditions lead to a homogenization of the network, whereas the
cut condition can produce waves even in the absence of any heterogeneities.

8.3.5.1 Homogeneous Networks

Consider the case in which Hj;k D H for all j; k and such that there is no hetero-
geneity: !j D !. For the reflecting and the periodic boundary conditions, there is a
synchronous state, �j D �t , where � D ! C 2H.0/, which is stable if and only if
H 0.0/ > 0. (Note the “if” follows from the theorem in Sect. 8.3.1, but the “only if”
requires explicit calculation of the eigenvalues. Since the linearized matrix is just
tridiagonal, this is a relatively simple calculation. See Exercise 27). For periodic
boundary conditions, there is also a wave solution of the form �j D �t C 2�j=N ,
where � D ! C H.2�=N/ C H.�2�=N/. In the exercises, you are invited to
examine this solution in more detail.

8.3.5.2 Cut Ends

The “cut” end case is rather interesting, even when there is no frequency gradient.
The oscillators at j D 1 and j D N receive less input than the rest of the oscillators.
Thus, unless H.0/ D 0, there will be no synchronous solution. That being the
case, what happens? Suppose H.�/ is positive near the origin. Then, since the end
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oscillators receive less input than the middle ones, we expect that they will oscillate
faster, so we expect a phase gradient symmetric about the center of the chain such
that the phase increases from oscillator 1 until it reaches the middle and then the
phase decreases back to zero at oscillator N . If the chain is anisotropic, then we
expect to see a traveling wave. To understand why this is so, consider the following
model:

� 0
1 D !1 CHa.�2 � �1/; (8.53)

� 0
j D !j CHa.�j C1 � �j /CHd .�j �1 � �j /;

� 0
N D !N CHd .�N �1 � �N /:

Now, set !j D ! and suppose Ha.�/ � 0 so that there is only coupling from the
lower-numbered oscillator. Then, clearly �1 D !t and for there to be a phase-locked
solution, oscillator 2 must be of the form �2 D !tC �d . This meansHd .��d / D 0.
Continuing down the chain in this manner, we see that �j C1 � �j D �d . If Hd has
a nondegenerate zero (that is, one such thatH 0.x/ ¤ 0), then, since it is continuous
and periodic, it must have at least two zeroes and one of these has a positive slope.
This stable zero sets the wavelength of the traveling wave, so �j D !t C �.j � 1/.
If � > 0, then the wave travels to the left and if � < 0, it travels to the right. (If
oscillator 2 has a positive phase difference with respect to oscillator 1, then it fires
earlier, so the wave travels to the left.) So, for unidirectional coupling, if there is a
nondegenerate zero for Ha;d .x/ D 0, then this sets the phase difference between
successive oscillators in the chain. If the chain is anisotropic but bidirectional, then
the two types of coupling will “fight it out.” For large N , it can be shown that the
oscillators will form a wave (except near one end) of the form �j D �t C �.j � 1/,
where � is either �a or �d andHa.�a/ D 0 andHd .��d / D 0. A proof of this result
appears in [161]. If the chain is completely isotropic, Ha.�/ D Hd .�/, and H has
a zero with a positive slope, then for large N the chain will organize into a pattern
that consists of a pair of symmetric waves moving toward or away from the center of
the chain. Let � be such that H.��/ D 0 and H 0.��/ > 0. Then, the phase-locked
solution will look roughly like

�j D �t � j.N C 1/=2� j j�; j D 1; : : : ; N; (8.54)

where� D !CH.�/. Figure 8.19a shows the phase-locked solutions for a chain of
50 nearest-neighbor-coupled oscillators along with the above approximation. Since
H.�/ D sin � C 0:5 cos�, � D tan�1.0:5/. Except near the center, this approxima-
tion matches extremely well.

By manipulating the two end frequencies, !1 and !N , while keeping the middle
frequencies the same, we can produce waves of the form �j D �t C �.j � 1/.
Choose � so that H 0

a.�/ > 0 and H 0
d
.��/ > 0. Then choose

!1 D ! CHd .��/ and !N D Ha.�/:
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Fig. 8.18 50 Wang–Buszaki neurons coupled to nearest neighbors with inhibitory synapses (rever-
sal potential �80 mV, decay 6 ms). Each oscillator is driven by a constant current of 0:5 plus a small
random value (between �0:0035 and 0:0035) to produce heterogeneity. The coupling strength is
0.02. The phase-locked solution to the corresponding phase model is shown on the right. The
space–time plot from Bao and Wu [9] for a carbachol-treated slice is shown at the bottom

One must be cautious in using a linear array of oscillators for a cortical slice
because of the importance of the boundary effects and the fact that these boundary
effects can have global effects on the behavior of the network. For this reason, it
is best to use some type of homogeneous condition so as to avoid waves which are
driven solely from the boundaries. Weak coupling theory, nevertheless, works quite
well and one may be tempted to suggest the organized oscillations seen in phar-
macologically treated cortical slice preparations may be a consequence of nothing
more than coupled heterogeneous oscillators. Figure 8.18 shows an example of the
application of weak coupling to a linear array of cells. Fifty Wang–Buszaki neurons
were coupled with nearest-neighbor inhibition and a small degree of heterogene-
ity was introduced in the form of constant randomly chosen applied currents. The
figure shows approximately one period of the cycle after a steady state is reached.
Although the currents were random, the network organizes itself into a rather simple
pattern which consists of a rightward-moving wave which collides with a leftward-
moving wave. Using the single neuron model, we have computed the interaction
function H.�/ and used this to derive the phase model (8.53). The heterogeneous
currents become heterogeneous frequencies for the phase model. [In the full model,
we have a frequency–current relationship for an individual cell, ! D F.I /. Since
I is close to I0, we obtain, ! � F.I0/C c.I � I0/, so the frequency in the phase
model is just a scalar multiple of the heterogeneity of the currents.] The phase model
produces a pattern very similar to that of the full model. Such colliding waves are
seen in experiments as the bottom of the figure shows.
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8.3.6 Two-Dimensional Arrays

There are fewer studies (both experimentally and theoretically) of two-dimensional
arrays of neural oscillators. Ren and Ermentrout [223] proved phase-locked solu-
tions of two-dimensional arrays coupled to the four neighbors (left, right, above,
and below) decomposed into the product of one-dimensional chains. This behavior
is only “interesting” if the boundary effects dominate so the one-dimensional chains
themselves produce interesting patterns. For example, consider an isotropic two-
dimensional array of oscillators with “cut” boundary conditions. Let H.�/ have a
zero with H 0.�/ positive at the zero. Then the Ren theorem says that

�j;k � �t � �.jj � .N C 1/=2j C jk � .N C 1/=2j/:

Figure 8.19b shows an example. The pattern of phases is like a square target pattern.
This pattern completely disappears when the boundary condition is homogeneous;
it is driven by the boundary. Intuitively, as with the chain, neurons along the edges
receive less input than those in the center and if H.0/ > 0, this means they will lag
the oscillators in the middle, producing waves which begin at the center of the array.
If H.0/ < 0, then they will lead the center oscillators and waves start at the edges
and propagate to the center.

Patterns such as shown in Fig. 8.19 are derived from the inhomogeneities at
the boundaries which act like pacemakers along the edges of the medium. There
are, however, patterns which arise from the intrinsic two-dimensional nature of
the coupling. Spiral waves are well known in the reaction–diffusion literature and
are distinct from the target waves shown in Fig. 8.19 in that they do not require
any heterogeneity in the medium. Figure 8.20 shows examples of rotating waves
from a variety of neural systems. The first example (that we know of) of rotating
electrical activity in the central nervous system was of rabbit cortex treated with
penicillin (which makes the network “epileptic”). Petsche et al. [213] reconstructed
the spatiotemporal activity from a 4 � 4 array of electrodes placed on the surface
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Fig. 8.19 (a) Steady-state phases for a chain of 50 oscillators, H.�/ D sin� C 0:5 cos �, with
cut ends. The black line is (8.54). (b) An array of 50� 50 oscillators with the same H
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Fig. 8.20 Rotating and spiral wave patterns seen in neural tissue. (a) From [130], in a tangential
disinhibited cortical slice. (b) From [195], reconstructed from EEG electrodes in a human during
alpha activity. (c) From [70], optical activity in the turtle visual area. (d) Steady-state phases in a
20 � 20 array of nearest-neighbor phase oscillators (H.�/ D sin�). (e) As in (d) but H.�/ D
sin� C 0:5.cos � � 1/

of the occipital lobe (back of the brain). Mayville et al. [195] reconstructed activity
from a human electroencephalogram during resting (alpha) activity. Prechtl et al.
[220] used voltage-sensitive dyes to extract spatiotemporal activity from turtle cor-
tex when certain stimuli were presented. Most recently, Huang et al. [130] created
tangential slices of cortex and using voltage-sensitive dyes, they were able to record
over 30 rotations of a spiral wave on the slice.

The classic model for a spiral wave in the reaction–diffusion literature consists of
an excitable medium with local coupling. However, there is no need for the medium
to be excitable and intrinsically oscillatory media can exhibit rotating waves and
spiral waves, as seen in Fig. 8.20d and e. A simple discrete model has the form

� 0
i;j D ! C

X
k;l

H.�k;l � �i;j /;
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where the sum is over the four neighbors. Figure. 8.20 the phase distribution for
H.�/ as a pure sine and also with a cosine component. The existence and stability
of the first pattern was established through a theorem due to Paullet and Ermentrout
[210]. For any 2N �2N array with nearest-neighbor coupling such thatH.�/ is odd
and H 0.�/ > 0 for ��=2 < � < �=2, then Paullet and Ermentrout proved there
exists a rotating wave and it is asymptotically stable. The pattern of phases for the
wave is such that in the upper-left corner the phase is 0, in the upper-right corner it
is �=2, in the lower-right corner it is � , and in the lower-left corner it is 3�=2. The
diagonals from these four corners have the same phase as their respective corners
and all meet in the central 2 � 2 array of oscillators. We leave the 4 � 4 case as an
exercise for the reader. If H.�/ is not odd, then the behavior can be quite complex.
For a small amount of even periodic coupling, the pattern evolves into a spiral wave
(see Fig. 8.20e), but as the even component increases, the “core” of the spiral breaks
away and complicated (even chaotic) behavior ensues [66, 241]. The existence of
stable phase patterns for this case has yet to be proven.

8.3.7 All-to-All Coupling

(Note that this section may be a bit technical and could easily be skipped.) In this
section, we consider the so-called Kuramoto model and in so doing introduce a
powerful method for analyzing large networks of neurons. We will start with a very
general system of phase models with additive noise and heterogeneities in their
frequency:

� 0
j D !j C K

N

X
k

H.�k � �j /C �dWj : (8.55)

Here, dWj is a white noise process (see Chap. 10),K is the strength of the coupling,
which we will regard as a parameter, andH is a square-integrable periodic function.
We can assume without loss of generality the average value of H.�/ is zero for if
it is nonzero, we can write H.�/ D H1.�/C NH (where NH is the mean of H ) and
then replace !j by !j CK NH . The frequencies !j are taken from some distribution
(see below). Since we can always replace �j by �j CC t , where C is a constant, we
can assume the mean frequency is zero.

Rather than looking at the individual neurons, �j , the idea of the population
density method is to consider the distribution of phases, � , that any randomly cho-
sen neuron might take. Kuramoto [166] studied a particular case when the noise
is zero and H.�/ D sin �. His method was formal and we refer the reader to
the excellent review by Strogatz [256] to see how Kuramoto proceeded. Matthews
et al. [194] devised a method based on the phase density which was more rigorous
and can be readily generalized to equations such as (8.55). (Strogatz describes his
burst of insight for using the population density method in his popular book [254].
It reminded one of the authors of the present volume of Kekulé’s insight into the
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structure of benzene, both occurring in a near dreamlike state.) Neu [208] was the
first to introduce the notion of density to coupled oscillators, but he did not take it
to the extent that Strogatz and those who followed him did.

We will not attempt to rigorously derive the equations; rather, we write down an
equation for the population density which should allow the reader to apply it to her
own results and models. We assume N ! 1 and let 
.�; !; t/ denote the density
of oscillators with uncoupled frequency ! and phase � at time t . Note that the
oscillators cannot change their uncoupled frequency. Let g.!/ denote the density
function for the distribution of frequencies. We will define g on the real line with

Z 1

�1
g.!/d! D 1:

The density, 
, satisfies the continuity equation:

@


@t
D � @

@�
J.�; !; t/
:

This equation simply says that the phase of a given oscillator evolves in time and
that total “mass” of the oscillators,

R 2�

0

.�; !; t/d� , is conserved. The flux is given

by d�=dt , so

J.�; !; t/ D ! � �2

2

@


@�
CKQ.�; t/:

The first term is pretty obvious; the second is the diffusive flux from the noisy inputs,
dWj , which as usual are independent. The last term is

Q.�; t/ D lim
N !1

1

N

NX
kD1

H.�k � �/:

The reader will recognize this as the average of H over the phases of the other
oscillators, so we can write

Q.�; t/ D
Z 1

�1
g.!/

Z 2�

0

H.� � �/
.�; !; t/d�d!: (8.56)

Thus, we have the following continuity equation:

@


@t
D �2

2

@2


@�2
� @

@�
..! CKQ.�; t// 
/ : (8.57)

Equation (8.57) is nonlinear since Q is a functional of the density 
. Because of
the nonlinearity, it is difficult to write down any closed-form solutions. However,
one solution is the fully asynchronous state in which the distribution of phases is
uniform. Substitute 
 D 1=2� into (8.56) to see that Q D NH , the average value of
H.�/ over Œ0; 2�/. We can always absorb the average value ofH into the frequency
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and thus we suppose NH D 0. Plugging this into (8.57), we see that the uniform
density is in fact a solution. The key to Strogatz’s analysis (and, in fact, all other
analyses) is that we can linearize (8.57) about this stationary solution and study
stability as a function of the coupling strength, K . Let 
 D 1=2� C z. Then, to
lowest order

@z

@t
D �2

2

@2z

@�2
� ! @z

@�

C K

2�

Z 1

�1
g.!/

Z 2�

0

H 0.� � �/z.�; !; t/d!d�:

Note that the dependence on � appears through the convolution of z with the deriva-
tive ofH.�/. This linear equation is homogeneous with respect to t and to � and so
z must be 2�-periodic in � . Thus, we can look for solutions of the form

z.�; !; t/ D ein�e�tf .!/:

f .!/ is an unknown function which we must compute. Since H.�/ is periodic and
square-integrable, we can expand it in a trigonometric series,

H.�/ D
1X

nD�1
anein� ;

and since H is real, a�n D Nan. Finally, since the average of H is zero, we also
assume a0 D 0. If H is differentiable, then

H 0.�/ D i

1X
nD�1

nanein� :

With these preliminaries, we plug the solution z into the linearized equation and
obtain

�f .!/ D
�

�in! � �2n2

2

�
f .!/ � in NanK

Z 1

�1
g.!/f .!/d!: (8.58)

The last part of the equation follows from the fact that

1

2�

Z 2�

0

eim.���/ein�d�

vanishes unless n D m, in which case it is ein� . We will not worry about the essential
spectrum for this problem and instead will focus on the discrete spectrum. Let

A D
Z 1

�1
g.!/f .!/d!:
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Then from (8.58), we can solve for f .!/:

f .!/ D �ina�nKA

�C in! C �2n2=2
:

Recalling how A is defined, we find the equation for A must satisfy

A D �inAKa�n

Z 1

�1
g.!/

1

�C in! C �2n2=2
d!:

Dividing through by A (since A D 0 is the zero solution), we obtain

1 D �inKa�n

Z 1

�1
g.!/

1

�C in! C �2n2=2
d!: (8.59)

We will study two cases: (1) no noise and (2) no heterogeneity. In the first case, we
must have

1 D �inKa�n

Z 1

�1
� � in!

�2 C n2!2
g.!/d!: (8.60)

This is an equation for �, which depending on the function g.!/ may or may not
be possible to evaluate in closed form. Suppose g.!/ is symmetrically distributed
around 0. Then (8.60) becomes

1 D �2inKa�n

Z 1

0

�

�2 C n2!2
g.!/d!:

Finally, we make one last simplification. SupposeH.�/ is an odd function,

H.�/ D
X

n

bn sin n�;

so an D �ibn=2 and the eigenvalue equation is then

1 D nKbn

Z 1

0

�

�2 C n2!2
g.!/d!:

Stability of the asynchronous solution occurs as K changes if � crosses the imagi-
nary axis. Clearly, � D iˇ is impossible, so the only way to lose stability is through
a real eigenvalue. (We remark that if H has even components or if the frequency
distribution is asymmetric, then the zero eigenvalue will not generally occur and
instead stability will be lost through imaginary eigenvalues.) We will let � tend to
zero and use this to compute the critical value of the parameter K . Let ! D �� be
a change of integration variables. Then

Z 1

0

�

�2 C n2!2
g.!/d! D

Z 1

0

g.��/

1C n2�2
d�:
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As � ! 0, this integral is just

g.0/
�

2n
:

Thus, we find that for each n,

Kc.n/ D 2

�g.0/bn

:

In particular, for Kuramoto’s case of a pure sinusoidal coupling, b1 D 1 and all
other bm D 0, Kc D 2=�g.0/. If all the bj < 0, then the asynchronous state is
always stable. However, as long as g.0/ > 0, if there is a single positive bn, then
for strong enough coupling the asynchronous state will destabilize. Since the mode
exp.in�/ becomes unstable with stronger coupling, standard bifurcation methods
(see later chapters when we explore spatial models) predict that the new solutions
which bifurcate from the asynchronous state will have the form


.!; �/ D 1

2�
C cf .�/ cos n�;

where c is some small parameter.
We will leave the case of noise with no heterogeneity as an exercise for the reader,

but we provide a start here. Referring to (8.58), we can set f .!/ D 1, a constant,
since there is no frequency dependence. The integral with respect to ! becomes 1
and we have

� D
�

�in! � �2n2

2

�
� in NanK: (8.61)

If stability is lost for n > 1, then the solution which emerges will generally have
n peaks and is called a clustered state. Noise-free two-clustered states are left
as an exercise for the reader.

8.4 Pulse-Coupled Networks: Solitary Waves

The method of phase reduction provides a very general way to reduce systems of
coupled oscillatory neurons to simple phase models. However, it presumes that the
individual cells are intrinsically oscillatory. In the next chapter, we address the
behavior of networks with strong coupling, some of which are not intrinsically
oscillating. Recall that when a single nerve cell is stimulated, an action potential
propagates down the axon mediated by the diffusion of the potential along the un-
myelinated axon. Similar propagation of electrical activity can be found in networks
of neurons in which a spatially localized region is stimulated and results in the out-
ward spread of activity over distances of several millimeters. Figure 8.21 shows an
example of an experimental demonstration of synaptically generated waves in a net-
work of cortical cells with the inhibition blocked. A slice is removed from the brain
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Fig. 8.21 Propagating wave of activity in a brain slice preparation in which the inhibition has been
blocked [219]. (a) Where the slice comes from. (b) The extracellular potential recorded from a 16-
electrode array. (c) Plot of (b) in pseudocolor. (d) Simulation of an array of 200 Hodgkin–Huxley
neurons with excitatory synaptic coupling and exponentially decaying spatial connectivity. (e) The
membrane potential from cells at position 25 and 125 in the array

of a rat and bathed in a medium which blocks the effects of synaptic inhibition.
A stimulating electrode produces a brief local shock which causes neurons to fire
and this activity is transmitted via excitatory synapses to neighboring cells, excit-
ing them and so on. The result is a wave which propagates at 80–150 mm/s. This
is slower than axonal propagation (roughly 1 m/s) since the wave depends on the
activation of synapses rather than direct diffusive coupling. The figure also shows
a simulation of the Hodgkin–Huxley model coupled in a network of 200 neurons
with excitatory synapses. In Chap. 12, we study wave propagation in synaptically
coupled firing rate models. Because the waves we now explore are related to the
precise timing of spikes, and, because the equations we obtain are similar to phase
equations, we analyzed pulse coupled networks in this chapter.

We consider the following general system:

C
@V

@t
D �Iion.V; z; : : :/ �

�
gsyn

Z 1

�1
W.x � y/s.y; t/dy

�
(8.62)

.V .x; t/ � Vsyn/;

@z

@t
D Z.V; z; : : :/;

s.x; t/ D
X
m

˛.t � tk.x//;

where the sum is taken over all spikes produced by the neuron at spatial location x,
and ˛.t/ is a predefined function which vanishes for t < 0 and represents the time
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course of the synaptic conductance. z represents the possibly many gating variables
(such as the activation of potassium current and inactivation of sodium current).
W.x/ describes the distance-dependent strength of interactions between neurons.
We assume W is symmetric, nonnegative, and integrates to 1 over the whole line.
For the model in the figure, ˛.t/ D exp.�t=5/ and W.x/ D exp.�jxj/=2. We
define the time of a spike to be that time at which the potential crosses a predefined
threshold, VT. In Fig. 8.21d each neuron spikes exactly once during the course of
the wave. We can exploit this to construct and analyze the propagation of waves.
Suppose (as in the simulation, but not in the experiment) each neuron fires exactly
once at time T .x/. Then that cell contributes ˛.t � T .x// to the other cells and the
total conductance produced by the wave is

G.x; t/ D gsyn

Z 1

�1
W.x � y/˛.t � T .y//dy:

A constant-speed traveling wave satisfies, T .x/ D x=
 where 
 is the velocity of
the wave. The simulations in the figure suggest that we look for traveling wave
solutions to the integro-differential equation. That is, we seek solutions of the form,
V.x; t/ D Y.x � 
t/; z.x; t/ D U.x � 
t/ where Y;U are functions of the single
variable, � D x � 
t: We note that in these coordinates, the conductance, G.x; t/
can be written as

G.x; t/ D g.�; 
/ D gsyn

Z 0

�1
W.� � �/˛.��=
/ d�:

The traveling waves start at rest and end at rest. Thus equation (8.62) becomes the
non-autonomous ODE:

� 
C
dY

d�
D �Iion.Y; U / � g.�; 
/.Y � Vsyn/ (8.63)

�
 dU
d�

D Z.Y;U /:

We must solve this for Y.�/; U.�/ satisfying:

.Y.˙1/; U.˙1/ D .Vrest ; zrest /

Y.0/ D VT :

Here, .Vrest; zrest/ is the resting state for each neuron. Since traveling waves are
translation-invariant, the second condition sets the origin of the wave � D 0 to
be the point at which the neuron crosses the threshold. We note that g.�/ ! 0 as
� ! ˙1 since W.x/ is integrable, ˛.t/ decays as t ! 1 and vanishes for t < 0.
If the velocity, 
 is positive, then the boundary condition at �1 is simple to achieve
since the resting state is asymptotically stable and g decays to zero. On the other
hand, it is natural to ask how we can attain the decay of .v; u/ to rest as � ! 1
since the resting state is unstable as a solution to (8.63) for 
 > 0 and for � ! 1.
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There is no proof for the existence of a wave speed, 
, such that .v.�/; u.�// go to the
resting state as � ! 1. However, for simple models such as the integrate-and-fire
model, the solution can be explicitly computed.

8.4.1 Integrate-and-Fire Model

The analog of (8.62) for an integrate-and-fire model is

�
@V

@t
D Vrest � V C a.Vsyn � V /S.x; t/;

where a D gsynRM and

S.x; t/ D
Z 1

�1
W.x � y/

X
k

˛.t � tk.y//dy: (8.64)

Here, ˛.t/ is the prescribed synaptic gating variable (e.g., it could be a simple ex-
ponential, or a difference of exponentials) and tk.x/ represents the firing times of a
neuron at spatial point x. This says that the effect of other neurons on a neuron at
spatial point x depends on the distance (the function W.x/) and the times at which
those neurons fire, tk.y/. We note that in this formalism, there could be delays to
the synapse and it is clear that we could also introduce delays that depend on the
distance. This makes the model more complex, but it remains solvable. We have ab-
sorbed any current applied to the model into the constant Vrest, which we assume is
less than the threshold for firing. (Otherwise, the neuron would spontaneously fire
and we are interested in evoked waves, so we do not want spontaneous activity.)
We shift the potential by Vrest, OV D V � Vrest, so the driving force for the synaptic
coupling is

Vsyn � Vrest � OV :

The equation is still difficult to analyze since the potential OV is multiplied by the
synaptic activity S.x; t/, making it difficult to integrate the equation. Thus, we make
one more simplification. We replace the voltage-dependent drive by a constant drive,
Vsyn � Vrest. Noting that a is dimensionless, we absorb it into the drive, Vdrive D
.Vsyn � Vrest/gsynRM, and now turn our attention to the simpler problem:

�
@V

@t
D �V C VdriveS.x; t/; (8.65)

with S.x; t/ as defined in (8.64). We have dropped the hats on the voltage for nota-
tional simplicity. As in the conductance-based model, we suppose there is only one
spike per neuron, so the index k can be dropped from the sum in (8.64). By assuming
there is only one spike per wave, we do not have to worry about what happens after
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the wave passes through. This makes our work much simpler. Equation (8.65) can
be integrated with the integrating factor exp.t=�/, leading to the following equation:

V.x; t/ D C0e�t=� C Vdrive

Z 1

�1
W.x � y/A.t � T .y//dy; (8.66)

where

A.t/ D 1

�

Z t

0

˛.t � s/e�s=� ds:

(The proof of this statement is left as an exercise.) We take C0 D 0 since we are
interested in what happens when the neurons all start from rest. The function A.t/
vanishes for t < 0 since the function ˛.t/ vanishes for t < 0. A.t/ is the response
of a passive membrane with time constant � to a synaptic current of the form ˛.t/.
An obvious generalization of (8.66) could include passive dendrites between the
synapse and the spike-generating zone of the neuron. In this case, A.t/ is the con-
volution of ˛.t/ with the spatiotemporal Green’s function for the dendrite evaluated
at the spatial location of the synapse (see Chap. 3). Since each neuron fires exactly
once, this means the membrane potential of a neuron at t D T .x/ must be equal to
its firing threshold, VT (which has been shifted by Vrest); thus, we must have

V.x; T .x// D VT:

Evaluating (8.66) at t D T .x/, we have the following functional differential
equation:

VT D Vdrive

Z 1

�1
W.x � y/A.T .x/ � T .y//dy: (8.67)

We note that if the neuron fires multiple times, we have to take into account the re-
setting properties of the integrate-and-fire model and also that there will be a family
of firing times, tk.x/. This problem was investigated by Osan et al. [209]

A traveling wave with velocity 
 satisfies T .x/ D x=
. Keeping in mind that
A.t/ is nonzero only if t > 0, expression (8.67) reduces to

VT

Vdrive
D
Z x

�1
W.x � y/A..x � y/=
/dy

D
Z 1

0

W.y/A.y=
/dy

� Q.
/:

This is just an algebraic equation for 
 as a function of VT=Vdrive. For example, if
W.x/ D exp.�jxj=�/=.2�/ and ˛.t/ D exp.�ˇt/, then

Q.
/ D 1

2

�



2� C �
.1C �ˇ/C ˇ�2
:
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Fig. 8.22 (a) Calculation of the wave speed for single-spike traveling waves as a function of the
threshold and drive. (b) Experimental velocity in a one-dimensional cultured network as a function
of the amount of excitatory synaptic blocker 6,7-dinitroquinoxaline-2,3-dione (DNQX) (from [85]).
(c) Same for a disinhibited slice (from [219])

Notice that Q.0/ D 0 and as 
 ! 1, Q.
/ ! 0. Note also that Q.
/ has a single
maximum. Thus, if VT=Vdrive is too big, we cannot solve

VT=Vdrive D Q.
/

but that if it is small enough, then there are always two roots, 
. In Exercise 32,
you are asked to draw this function and solve for 
. For most functions W.x/, one
cannot evaluate the integral, Q; however, it is possible to prove some properties
(see Exercise 33). Figure 8.22a shows a typical plot of Q.
/ and the calculation of
roots of Q.
/ D VT=Vdrive. As long as this latter quantity is small enough, there
are two possible wave velocities, one slow and one fast. Intuition tells us that if we
increase the drive, the wave should travel faster; increasing the drive corresponds
to lowering the dashed line. The fast wave increases in speed and the slow wave
decreases in speed. Thus, we would like to conclude that the fast wave is the one that
is observed experimentally and numerically. Indeed, that is the case as would appear
from Fig. 8.22b and c, which shows experimentally determined wave velocities in
two different preparations as the strength of the recurrent excitatory connections is
pharmacologically decreased. In Fig. 8.22b, neurons are grown in a one-dimensional
cultured array [85] and the velocity of evoked waves is measured while different
concentrations of the excitatory synaptic blocker DNQX are applied. The authors of
this paper attempted to fit their data to a curve similar to that in Fig. 8.22a. The slow
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velocity is estimated by applying a minimal stimulation, which results in a slow
initial propagation that switches to the fast wave after a small transient. Pinto et al.
(Fig. 8.22c) observed a similar qualitative dependence of the velocity on the strength
of connections in a disinhibited cortical slice preparation [219]. The Wu laboratory
[8,9,293] examined many aspects of wave propagation in neocortex under a number
of pharmacological manipulations. Han et al. [117] suggested wave propagation
plays an important role in visual processing.

8.4.2 Stability

The stability problem for the traveling waves is difficult. However, we can explore
a simple version of stability called spatial stability. We suppose T .x/ D x=
 C
b exp.�x/, where b is a small deviation. Plugging this into (8.67), we see that

0 D b

Z 1

�1
W.x � y/A0..x � y/=
/Œe�x � e�y �dy:

Factoring out e�x and using the fact thatA.t/ and thereforeA0.t/ vanishes for t < 0,
we must have

0 D
Z 1

0

W.y/A0.y=
/Œ1 � e��y �dy � E.�/:

This is the “Evans” function and zeros correspond to eigenvalues. Any eigenvalues
with positive real parts will lead to an exponential growth of T .x/ away from the
traveling wave as x increases. In Exercise 36, you show that if W.x/ is a monoton-
ically decreasing function of x on the positive real line and if A.t/ � 0, then the
slow wave (cf. Fig. 8.22) is unstable. The stability of the fast wave is proven in [20].

8.5 Bibliography

The analysis of neural oscillations goes back to the original work of Hodgkin
and Huxley. Most recent work on neural oscillations concerns their behavior in
networks.

8.6 Exercises

1. Suppose X0.t/ is a T -periodic solution to the differential equation

dX

dt
D F.X/;
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where F.X/ is C 1. Show that X0.t C t0/ is also a solution for any number t0.
Let A.t/ D DXF.X0.t// be the matrix formed by linearizing the above ordi-
nary differential equation around the limit cycle. Show that

dY

dt
D A.t/Y.t/

has a nontrivial periodic solution, Y.t/ D dX0.t/=dt . Consider the adjoint
equation:

dX�

dt
D �A.t/TX�.t/:

Show that if X�.t/ is a periodic solution to the adjoint, then

X�.t/ � dX0

dt
D constant

for all t .
2. Floquet theory is the periodic analog of stability theory for fixed points. Flo-

quet’s theorem states the following. Consider the homogeneous linear periodic
system

dx

dt
D A.t/x; A.t C T / D A.t/; T > 0: (8.68)

Then every fundamental solution, X.t/, to (8.68) has the form

X.t/ D P.t/eBt ;

where P.t/ is a T -periodic matrix and B is a matrix. The matrix C D eBT

is called the monodromy matrix and the eigenvalues of C are called the Flo-
quet multipliers. If the Floquet multipliers are all inside the unit circle, then the
origin is an asymptotically stable solution to (8.68).
If A.t/ is as in Exercise 1, show that there is always at least one Floquet multi-
plier with value 1.
A classic result from linear differential equations is

det X.t/ D e
R t

0 Tr A.s/dsdet X.0/:

Use this to show that a planar limit cycle,

u0 D f .u; v/I v0 D g.u; v/;

is asymptotically stable if

Z T

0

fu.t/C gv.t/dt < 0:

Note that fu means the partial derivative of f .u; v/ with respect to u evaluated
along the limit cycle.
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3. Show by direct calculation that the adjoint L� of the operator L in (8.4) under
the inner product (8.5) is

L�y D �dy.t/

dt
� A.t/T y.t/:

4. Let ˆ.t/ be a fundamental solution to the differential equation

dX

dt
D A.t/X.t/:

Show that ‰.t/ D �
ˆ.t/�1

�T
satisfies the adjoint equation:

dY

dt
D �AT .t/Y.t/:

Suppose A.t/ is as in Exercise 1 so that there is a unique (up to a scalar factor)
periodic solution to (8.68). Let the first column ofˆ.t/ be this periodic solution.
Show that the first column of ‰.t/ is also periodic.

5. Consider the normal form for a Hopf bifurcation in polar coordinates:

r 0 D r.1 � r2/I � 0 D 1C q.r2 � 1/:

Suppose .r.0/; �.0// D .r0; �0/ and r.0/ > 0. Find the asymptotic phase and
use this to sketch the isochrons. (Hint: Let R D r2 and rewrite the equations in
terms ofR.) When q D 0, this oscillator is sometimes called the radial isochron
clock. Why?

6. Consider the leaky integrate-and-fire model:

�
dV

dt
D I � V;

with I > 1 such that when V D 1, it is reset to 0. Define phase zero as the
moment of reset to 0. Suppose at time (phase) t < T the voltage is increased
by an amount a. If V C a > 1, the voltage is immediately reset to 0. Compute
the PTC for this model and show that for any a > 0, the PTC is type 0.

7. Consider the model oscillator

r 0 D r.1 � r/I � 0 D 1:

The period of this is 2� . In rectangular coordinates, .u; v/ D r.cos �; sin �/,
we define the zero phase to be the peak of u.t/. Thus, � D 0 is the zero phase.
Suppose at time (phase) t , u.t/ is instantly increased by an amount a. Compute
the PTC for this model as a function of a. For what values of a is this type 1
resetting? Can you offer a geometric interpretation of this?



232 8 Neural Oscillators: Weak Coupling

8. Consider the quadratic integrate-and-fire on the whole line:

dV

dt
D V 2 C I;

where I > 0 and such that when V D C1, it is reset to �1. Define phase
zero to be the time of reset. You have already shown that the period of this
oscillator is T D �=

p
I . Suppose at time (phase) t 2 Œ0; T /, the voltage is

instantly increased by an amount a. Compute the PTC for this and show that no
matter how big a is, it is always type 1 resetting.

9. Davis Cope (personal communication) derived a formula for the adjoint equa-
tion for arbitrary nonlinear planar systems, u0 D f .u; v/, v0 D g.u; v/. He
showed that

�
u�.t/
v�.t/

�
D
 

u0.t/

u0.t/2Cv0.t/2

v0.t/

u0.t/2Cv0.t/2

!
C c.t/

��v0.t/
u0.t/

�
; (8.69)

where c.t/ is periodic and satisfies

dc

dt
D �.fu Cgv/cC 2u0.t/v0.t/Œfu � gv�C .v0.t/2 � u0.t/2/Œfv C gu�

.u0.t/2 C v0.t/2/2
: (8.70)

Here, fu is the derivative of f .u; v/ with respect to u evaluated along the limit
cycle. fv, gu, and gv are similarly defined. Prove this formula satisfies the ad-
joint equation

u�
t D �fuu� � guv�; v�

t D �fvu� � gvv�

along with the condition that u�u0 C v�v0 D 1. Also, prove if the limit cycle is
asymptotically stable, then the equation for c.t/ has a periodic solution.

10. We saw how a ring model has a strictly positive PRC. So, suppose you are given
a model with a continuous positive PRC, �.t/. Given the positive PRC, does
there exist a function f .x/ > 0 such that the ring model

x0 D f .x/

has the given PRC? (Note that the ring length is unspecified and it depends on
the choice of the PRC.) For the most part, you cannot arrive at a closed-form
solution for f .x/. However, for some problems, it is possible. Try, �.t/ D
a C t.1 � t/. Try�.t/ D exp.t/.

11. Compute the adjoint for

(a) The leaky integrate-and-fire model

�
dV

dt
D V0 � V

with the condition that if V.t/ D Vspike < V0, the voltage is reset to Vreset.
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(b) The quadratic integrate-and-fire model with finite reset

dV

dt
D aV 2 C I

with I > 0 and such that if V D Vspike, then V is reset to Vreset.

12. Consider

dV

dt
D V 2 C I

such that at time � < T after firing, the voltage is decreased by an amount
b > 0. If T is the period of the oscillation without the inhibition, compute the
period as a function of � and b. For � and b fixed, compute the PRC for this
model for a stimulus which arrives at time t after the spike and increases V by
a > 0. How does the shape of this PRC compare with that of the uninhibited
PRC.

13. In this exercise, you consider the Traub model for hippocampal pyramidal cells
(see online for the equations) in which a small high-threshold calcium current is
added (to produce calcium only when the cell spikes) and two types of adapta-
tion are included. There is an M-type voltage -dependent calcium current acting
at rest and a calcium-dependent potassium current acting only when there is a
spike. The conductances for these are gm and gahp , respectively. You should
first compute the bifurcation diagram for this model when both are set to zero
as the current varies. Now change the adaptation to 0:5; 1:0; 1:5 and compute
the bifurcation diagram. Note that the onset of spiking is still via a saddle–node
on an invariant circle. Do a similar analysis with gm and see that the onset of
spiking is via a Hopf bifurcation. Pick gahp D 0 and gm D 0 and add sufficient
current to get a 40-Hz oscillation. Compute the adjoint. Add gahp D 0:5 and
enough current so that the frequency stays at 40 Hz. Compute the adjoint and
compare it with the adaptation-free adjoint. Finally, set gahp D 0 and gm D 0:5

and add sufficient current to keep the frequency at 40 Hz. Compute the adjoint.
Show that the type of adaptation has a drastic effect on the adjoint.

14. In Exercise 13, you showed how some outward currents can affect the PRC. Use
the Traub model from Exercise 13 without the calcium and adaptation currents.
Add to this the sag current (which is an inward current – equations are online
as the sag+inward rectifier model) using the McCormick parameters and pick
gh D 4. Apply current so that the frequency is 40 Hz. Compute the adjoint.
You should see that there is a negative region in it. Check the nature of the
bifurcation to a limit cycle. Is it now a Hopf? Conclude that like the M-type
potassium current (Exercise 13), the sag converts a saddle–node limit cycle to
a Hopf limit.

15. Derive the analog of (8.22) when the oscillators have slightly different periods,
say, T0 and T0 C c. Suppose �.�/ D a sin �, with �1 < a < 0. Study the
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existence of fixed points as c varies with a held fixed. Use a computer to solve
for the fixed points and determine the magnitude of c such that there exists a
stable fixed point.

16. Suppose the PRC is �.�/ D b.1 � cos�/. What is the behavior of the map
(8.22)? Can you prove the synchronous state is asymptotically stable? (Hint:
What is the behavior of the map x ! x C cx2?)

17. (a) Consider the map (8.28) and use d.�/ D a sin 2��. For what values of a is
synchrony a stable fixed point when 
 D !1=!2 D 1. Fix a D �0:1 and vary

. Plot the map and figure out for what values of 
 there is a saddle–node and
locking is lost. You should be able to do this analytically, since a saddle–node
occurs when (8.29) is exactly equal to 1. (b) Suppose dj .�/ D aj sin 2��.
Even though the two PRCs are different, show that synchrony is still a solution
and find the conditions for which it is stable.

18. Derive a map for 2:1 locking of two oscillators satisfying (8.26) and (8.27)
with !1 � 2!2. That is, suppose the firing pattern is oscillator 1, oscillator 1,
oscillator 2, and so on. Let � denote the phase of oscillator 2 when oscillator
1 fires the first time. Assume � is close enough to 0:5 so that oscillator 1 fires
again before oscillator 2 fires. Use this sequence to devise a map for �. Find a
condition like (8.29) for determining stability. Suppose the normalized PRC is
an odd periodic function so that d.0/ D d.1=2/ D 0. Show that if the frequency
ratio is exactly 2:1, then � D 1=2 is the fixed point.

19. To better understand the shape of the mapM.t/ in Sect. 8.2.3, we will examine
the behavior near threshold. Recall that the inhibitory cell is a class I neuron,
so at threshold it undergoes a saddle–node bifurcation. Thus, we approximate
its dynamics as

V 0 D qV 2: .	/
Suppose after it fires, the inhibitory cell is set to V D �V0 < 0. The larger
is V0, the more refractory the cell is. Now, t� milliseconds later the second
excitatory spike arrives at the inhibitory cell and suppose all it does is increase
V.t/ by an amountA. If V.t�/CA > 0, then the inhibitory cell will fire (reach
infinity) in finite time. Compute this firing time, tf , and show that it can be
written as

tf .t
�/ D c C a

t� C b
;

where c, a, and b are parameters. In particular, parameter b can be positive or
negative. This simple function provides a good fit to the map M.t/ and each
parameter has a nice physical interpretation in terms of the size of the input A
and the degree of refractoriness V0. [Hint: Solve (	) starting at t D 0 with the
given initial data up to t�. Then increase V.t/ byA and solve (	) up to the point
where V.t/ becomes infinite. This is tf .t�/.]

20. What is the nature of the bifurcation which occurs in the map (8.30) when
M 0.�/ D �1? (If you need to recall what sorts of bifurcations occur in maps,
see Kuznetsov, 2004 [167].) Since we know that for sufficient delay, the syn-
chronous state can be stable, explain why a very long delay (thus, whereM 0.t/
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is small) might also be bad. (Hint: If M 0.t/ D ��, where � is a small positive
parameter, then the map reduces to

znC1 D 	 � zn C 2�zn:

What is the fixed point for this and how long does it take to settle into it?)
21. Mirollo and Strogatz I. (a) Analyze the map for two coupled Mirollo–Strogatz

oscillators when � < 0. (b) Analyze the map for f 00.t/ > 0 for � < 0 and
� > 0.

22. Mirollo and Strogatz II. Plot h.�/ and R.�/ when

(a)

f .t/ D 1 � e�ct

1 � e�c

for different values of c and �. This, of course, is the profile for the leaky
integrate-and-fire model. Explicitly compute the interval of existence for
R.�/.

(b) Repeat (a) for the firing map:

f .t/ D tanŒa.t � 1=2/�C tan.a=2/

2 tan.a=2/
;

where 0 < a < � . This is the map which occurs for a quadratic integrate-
and-fire model with finite reset. It is both concave and convex!

23. Using
V �.t/ D 1 � cos.t/ � sin.t/C sin.2t/=2

for the PRC and s.t/ D I0te�ˇt as the synaptic current, compute Hodd.�/.
[Hint: Use formula (8.45) and set ˛ D ˇ.] Compute the derivative of Hodd

at � D 0 and � D � and plot the result for excitatory (I0 D 1) and in-
hibitory (I0 D �1) coupling as a function of ˇ. Recalling that ˇ large means
low frequency, conclude that this simple model with inhibition could explain
the results of the finger-tapping experiment.

24. Find conditions for when the pronk is stable. Prove the walk exists as a solution
to (8.46) if and only ifHb.x/ D Hc.x/. Show that under these assumptions the
pace, trot, and bound all exist as phase-locked solutions. Find conditions such
that the walk is asymptotically stable. Prove if the trot is asymptotically stable,
then so is the pace. Prove it is possible for the bound to be stable, but for the
trot and pace to be unstable. Find conditions such that the walk is stable and
the trot/pace is unstable and vice versa. (Hint: You will have a 4� 4 matrix, but
it will have a great deal of symmetry so you should be able to explicitly write
down the eigenvalues since the eigenvectors will be chosen from the fourth
roots of unity.)

25. Make a model consisting of two sets of the excitatory–inhibitory pair
(8.47) and couple them with all four types of coupling (one at a time),
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excitatory!excitatory, excitatory!inhibitory, etc., and start with a variety
of initial conditions. Describe all the stable states and compare these with the
predictions you would get from Fig. 8.16.

26. Consider the nonisotropic chain for j D 1; : : : ; N :

� 0
j D ! CHa.�j C1 � �j /CHb.�j �1 � �j /:

Suppose the end conditions are either periodic �0 D �N and �N C1 D �1 or
reflecting �0 D �1 and �N C1 D �N . Prove the synchronous solution is asymp-
totically stable if and only if H 0

a.0/ > 0 and H 0
d
.0/ > 0.

27. Consider the same chain as in the previous problem with periodic boundary
conditions. Show that there is a wavelike solution of the form �j D �t C
2�j=N , determine �, and also the stability of this solution. (This leads to a
tridiagonal matrix whose eigenvalues are pretty easy to compute.) If synchrony
(the previous problem) is stable, then you should be able to prove this traveling
wave is also stable if N is sufficiently large.

28. Show that a 4� 4 network of nearest-neighbor phase oscillators has the follow-
ing phase-locked pattern and compute the unknown quantity 0 < � < �=2 for
sinusoidal coupling. Prove this solution is also asymptotically stable using the
theorem in Sect. 8.3.1.

0 � �=2� � �=2

�� 0 �=2 �=2C �

3�=2C � 3�=2 � � � �

3�=2 3�=2� � � C � �

29. Show that the only terms contributing to instability of the asynchronous state for
the all-to-all coupled oscillator model with noise and no heterogeneity are the
odd parts of H.�/. Equation (8.61) should provide the crucial clues. Compute
the critical values of K for each n.

30. Two-cluster states. Suppose there are N all-to-all oscillators with identical
frequencies and no noise:

� 0
j D ! C 1

N

NX
kD1

H.�k � �j /:

Let us look for a solution such that the first m oscillators are synchronized and
the remaining N �m oscillators have a phase difference � with respect to the
first group. As long as m < N and � ¤ 0, this is called a two-cluster state. Let
p D m=N . Show that a two -cluster state exists if and only if

� D ! C pH.0/C .1 � p/H.�/;
� D ! C pH.��/C .1 � p/H.0/:
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Here, � is the unknown ensemble frequency. You can parameterize this
using p as

p D H.�/�H.0/

H.�/CH.��/ � 2H.0/
:

Show that there is always a solution to this for � D � and p D 1=2. This is a
balanced cluster state with half of the oscillators in antiphase with the others. If
H is an odd function, show that p can be anything and � D � [since H.�/ D
H.0/ D 0]. Stability of the general clustered state is a more difficult problem,
but with some decent linear algebra skills you should be able to do it. The
stability matrix has a nice simple block form.

31. Derive (8.66) from (8.65).
32. Derive the equation in the text for Q.
/ whenW.x/ D exp.�jxj=�/=.2�/ and

˛.t/ D ˇ exp.�ˇt/ Plot the wave speed as a function of the ratio VT=Vdrive.
33. Suppose W.x/ � 0 and A.t/ � 0, A.0/ D 0 and both functions are integrable

over Œ0;1/. Consider the expression

Q.
/ D
Z 1

0

W.y/A.y=
/dy:

Prove Q.0/ D 0 and Q.1/ D 0. What happens if you relax the assumption
A.0/ D 0? IfW.y/ > 0 and A.t/ > 0 except at t D 0, where it vanishes, prove
Q.
/ > 0 for 0 < 
 < 1.

34. Suppose ˛.t/ D ˇ exp.�ˇ.t � �d //, where �d is a delay (fixed and space-
independent). Analyze the existence and stability of the one-spike waves in this
case.

35. Suppose there is a delay due to the conduction velocity so that it depends on
distance. Justify the expression for S.x; t/ below and analyze the existence
of traveling waves in this case when there is an exponential weight W.x/ D
exp.�jxj=�/=.2�/ and ˛.t/ D exp.�ˇt/.

S.x; t/ D
Z 1

�1
W.x � y/˛.t � T .y/ � jx � yj=c/dy;

where c > 0 is the conduction velocity.
36. Instability of the slow wave. In this exercise, you prove the slow wave is unsta-

ble by showing that there is a real positive root of the Evans function:

E.�/ D
Z 1

0

W.y/A0.y=
/Œ1 � e��y�dy:

Consulting Fig. 8.22, it is clear that for the slow wave, Q0.
slow/ > 0. We
suppose W.x/ is monotonically decreasing for x > 0, differentiable, and that
A.t/ > 0 for t > 0.
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(a) Clearly E.0/ D 0. As � ! 1,

E.�/ !
Z 1

0

W.y/A0.y=
/dy � E1:

By integrating E1 by parts, conclude that E1 > 0.
(b) Differentiate Q.
/ with respect to 
 and differentiate E.�/ with respect to

�. Show that the sign of E 0.0/ is the opposite of that of Q0.
/.
(c) Use the previous two parts of this exercise to show that at 
 D 
slow,

E.�/ < 0 for small positive � and E.�/ > 0 for large �. Thus, conclude
that there is a real positive value of � such that E.�/ D 0 and that the slow
wave is unstable.

8.7 Projects

1. Use the Izhikevich model or a similar “integrate-and-fire” model to compute a
PSTH for a weak perturbation and then use this to reconstruct the PRC.

2. Development and synchrony. During the development of the nervous system,
there are two important features of neural communication. First, there are many
electrical or gap junctions between cells. Second, the reversal potential of
GABAergic synapses is such that they actually act to depolarize rather than
hyperpolarize. In this project, you should perform the weak coupling analysis
for a pair (or more) of coupled neurons as the reversal potential of the inhibition
changes from, say, �40 to �75 mV. You should also apply the weak coupling
analysis to a gap junctionally coupled neuron. A good choice for the membrane
model is the Wang–Buszaki model (found in the list of models online). Drive
the Wang–Buszaki model so that it fires at about 40 Hz and use a fast GABA
synapse such as defined in Chap. 7. Vary the reversal potential of the synapse
and compute the interaction function H.�/. Use this to predict whether a pair
of synaptically coupled neurons will synchronize or fire in antiphase. With this
“prediction,” couple two Wang–Buszaki membrane models with weak inhibition
and see if the theoretical results agree. Look at larger networks either using a
phase model or the full-blown network.

3. Kuramoto and coupling. Suppose instead of heterogenity in the frequencies of
the Kuramoto model, there is instead heterogenity in the coupling. In general,
there is little one can do to analyze this case, but there is one type of coupling
which lends itself to rigorous analysis. SupposeH.0/ > 0 and consider

P�j D ! C 1

N

X
k

CjCkH.�k � �j /:

The coupling coefficients Cj are taken from some distribution with mean 	 and
variance � . Develop a population density theory for this and analyze the stability
(and existence) of the asynchronous state. (You could probably do this with Ck

replaced by Ek taken from author distribution.)
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4. Integrate-and-fire neurons and phase-locking. Consider a system of integrate-
and-fire neurons which we write simply as

dVj

dt
C Vj D Ij C

X
k;l

Cjk˛.t � t lk/ � B
X

l

ı.t � t lj /;

whereCjk are the coupling currents and t l
k

are the firing times. The delta function
appearing on the right-hand side represents the reset when the neuron fires. B is
the distance between threshold and reset. Let E.t/ D exp.�max.t; 0// and let
A.t/ denote the integral

A.t/ D
Z t

0

e�tCs˛.s/ds:

Show that we can rewrite this equation as

Vj .t/ D Vj .0/e�t C Ij .1 � e�t /� B
X

l

E.t � t lj /C
X
k;l

CjkA.t � t lk/:

Now suppose the integrate-and-fire neurons all fire with a period T (unknown)
so that they are phase-locked. That is, t lj D lT C �j . Let Vth denote the threshold

for firing; that is, Vj .t
l
j / D Vth. Let

AT .t/ D
X

l

A.t C lT / and ET .t/ D
X

l

E.t C lT /:

Show that a phase-locked solution for the integrate-and-fire model must satisfy

Vth D Ij � B

1 � e�T
C
X

k

CjkAT .�k � �j /:

This equation is very similar to (8.40), which provides a set of algebraic con-
ditions for locking in weakly coupled oscillators. The only difference here is
that the coupling function AT depends on the ensemble period. Bressloff and
his collaborators have shown that many of the results proven for weakly cou-
pled oscillators also hold for synaptically coupled integrate-and-fire models. As
a project, you should evaluate some of these functions and look at, say, a pair
of neurons or an array of neurons in a circle and compute the conditions for
phase-locking. In the case of neurons in a circular array, you could also find the
algebraic conditions for a traveling wave.

5. Solve the identical frequency, noisy, Kuramoto density model numerically as
follows. Assume 
.�; t/ can be written as a finite number of terms:


.�; t/ D
NX

nD�N

pn.t/ein� :
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Write
H.�/ D

X
m

hmeim� :

Show that

Z 2�

0

H.� � �/
.�; t/d� D 2�
X

n

h�npn.t/ein� :

From this, you should be able to write a series of ordinary differential equations
for pn.t/ satisfying

p0
n.t/ D ��2n2=2pn � 2�in

X
k

h�kpkpn�k:

Write these in real coordinates to get 2N C 1 differential equations. If, for
example, H.�/ D K sin �, then hk vanishes except when k D ˙1, so this is
a very simple set of equations. In the case for which H is the pure sine model,
show that the equations reduce to

p0
n D ��2n2=2pn CK�nŒp1pn�1 � p�1pnC1�:

Finally, since H is odd, we can assume the density is symmetric, so p�j D pj

and thus this becomes a set of N ordinary differential equations:

p0
n D ��2n2=2pn CK�np1Œpn�1 � pnC1�; n D 1; : : : ; N:

The end conditions are p0 D 1=.2�/ and pN C1 D 0. The condition at n D 0

comes from the fact that Z 2�

0


.�; t/d� D 1:

The condition at n D N C 1 is just our truncation. Use whatever methods
you have at your disposal (analytic, numerical) to study the stability of the state
pj D 0, j D 1; : : : ; N and compute the bifurcation diagram for K as a param-
eter. (Note that this numerical approximation of the partial differential equation
is considerably better than simply applying the method of lines to the density
model.) If you are ambitious, you can try H.�/ as a sum of several sines and
analyze the emergence of clustered states.



Chapter 9
Neuronal Networks: Fast/Slow Analysis

9.1 Introduction

In this chapter, we consider a very different approach to studying networks of
neurons from that presented in Chap. 8. In Chap. 8, we assumed each cell is an
intrinsic oscillator, the coupling is weak, and details of the spikes are not important.
By assuming weak coupling, we were able to exploit powerful analytic techniques
such as the phase response curve and the method of averaging. In this chapter, we
do not assume, in general, weak coupling or the cells are intrinsic oscillators. The
main mathematical tool used in this chapter is geometric singular perturbation the-
ory. Here, we assume the model has multiple timescales so we can dissect the full
system of equations into fast and slow subsystems. This will allow us to reduce the
complexity of the full model to a lower-dimensional system of equations. We have,
in fact, introduced this approach in earlier chapters when we discussed bursting os-
cillations and certain aspects of the Morris–Lecar model.

Complex population firing patterns, similar to those described in this and sub-
sequent chapters, are believed to play a critical role in many brain functions. For
example, oscillatory behavior has been observed in many systems; it has been impli-
cated in sensory processing, the generation of sleep rhythms, parkinsonian tremor,
and motor activity. The spatiotemporal structure of spiking activity can be very
complicated. For example, neurons may fire action potentials in a synchronous or
partially synchronous manner, or the spiking of different neurons may be uncorre-
lated. The activity may propagate through the population in a wavelike manner or
may remain localized.

We note that population rhythms arise through interactions between three net-
work components. These are (1) the intrinsic properties of cells within the network,
(2) the synaptic properties of connections between neurons, and (3) the topology of
network connectivity. Each of these may depend on numerous parameters and the
first two usually involve multiple timescales. We have described intrinsic properties
of cells in the preceding chapters. A cell’s dynamics depends primarily on its chan-
nel gating variables. These may activate or inactivate on disparate timescales and
a single cell may exhibit a variety of firing patterns, including continuous spiking,
bursting oscillations, and even chaotic dynamics. As described in Chap. 7, there are
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several classes of synapses. Synapses may be chemical or electrical and chemical
synapses may be excitatory or inhibitory. Different types of excitatory or inhibitory
synapses have distinct properties that determine how one cell influences another.
Finally, there are many possible classes of network architectures. The connectivity
may be sparse or dense; that is, each cell may communicate with a small number or
a large number of other cells. The connectivity may be random or it may be highly
structured. We also note that a given neuronal system may include many different
types of cells with different types of synaptic connections.

A goal of this chapter is to consider reduced two-variable neuron models and
classify the types of activity patterns that emerge. We also wish to understand
how the activity depends on the types of cells and synapses in the network, as well
as the network architecture. One traditional view is that excitatory synapses always
tend to promote synchronous activity in which different cells fire spikes at the same
time. Inhibitory synapses, on the other hand, are thought to promote out-of-phase
behavior. This traditional view is, in fact, often true. However, simple examples
demonstrate that it may not always be the case. The network behavior may depend
not only on whether the synapses are excitatory or inhibitory, but on the rates at
which the synapses turn on or turn off. The dynamics also depends on how synaptic
properties interact with intrinsic properties of cells within the network.

9.2 Mathematical Models for Neuronal Networks

Recall that a network consists of three components. These are (1) the individual
cells within the network, (2) the synaptic connections between cells, and (3) the
network architecture. We now describe how each of these components is modeled
for the analysis presented in this chapter. We also describe different categories of
cells, synapses, and network architectures.

9.2.1 Individual Cells

Throughout this chapter, we consider a general two-variable neuron model of
the form

dv

dt
D f .v; w/;

dw

dt
D �g.v; w/: (9.1)

We have seen several examples of models that can be written in this form. These
includes the Morris–Lecar equations. We write the equations in a rather general form
to emphasize that the analysis does not depend on the specific form of the equations.
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In (9.1), v is the membrane potential of the cell, w is a channel gating variable,
and � is a small positive parameter. Hence, w represents a channel state variable that
either activates or inactivates on a timescale slower than the other processes.

We need to make some assumptions regarding the nonlinear functions f and g.
We assume the v-nullcline ff D 0g defines a cubic-shaped curve and the w-nullcline
fg D 0g is a monotonically increasing curve. Moreover, f > 0 .f < 0/ below
(above) the v-nullcline and g > 0 .g < 0/ below (above) the w-nullcline. Note that
these assumptions are satisfied by the Morris–Lecar model for a robust range of pa-
rameter values. Throughout this chapter, we will describe a cell as being either in
the active or in the silent phase such that v is either on the left (silent) or on the right
(active) branch of the cubic nullcline. Since cells will be connected by synapses, we
suppose there is a threshold, VT, for the synapses so that if v is in the active (silent)
phase, it will be larger (smaller) than VT. In other words, unless stated otherwise, we
assume this threshold VT lies between the two “knees” – that is, the local maximum
and local minimum – of the v-nullcline.

We would like to understand how firing properties of individual cells influence
network behavior. For this reason, it would be useful to somehow classify the firing
properties of cells. One simple way to do this is that the cells may be oscillatory or
excitable; that is, a cell may or may not fire intrinsically without any synaptic input.
Recall that this depends on whether (9.1) has a fixed point that lies along the middle
or left branches of the cubic shaped v-nullcline.

If (9.1) is oscillatory, then there are several possible ways to classify the dynam-
ics. One is in terms of the frequency of oscillations. Another is in terms of the duty
cycle. This is defined to be the ratio of the time the cell spends in the active phase
over the time it spends in the silent phase. We sometimes interpret oscillations with
a long duty cycle as corresponding to bursting activity and oscillations with a short
duty cycle as corresponding to a spiking neuron.

In the following sections, we will demonstrate that the frequency or duty cycle
of a cell may have a significant influence on network behavior. In particular, it may
be crucially important in determining whether neurons synchronize or not.

9.2.2 Synaptic Connections

We model the synaptic current as described in Chap. 7. Most of the discussion
will be concerned with chemical synapses. In this case, the synaptic current can
be written as

Isyn D gsyns.Vpost � vsyn/; (9.2)

where gsyn is a constant maximal conductance, Vpost is the membrane potential of the
postsynaptic cell, and vsyn is the synaptic reversal potential. The dependent variable
s represents the fraction of open channels and depends on the presynaptic membrane
potential. We will usually assume s satisfies a first-order equation of the form

ds

dt
D ˛.1 � s/H1.Vpre � VT/ � ˇs: (9.3)
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Here, ˛ and ˇ represent the rates at which the synapse turns on and turns off,
respectively. Recall that different types of synapses may turn on or turn off at very
different rates. For example, GABAB synapses are slow to activate and slow to turn
off, compared with GABAA and AMPA synapses. We assume H1 is a smooth
approximation of the Heaviside step function (or actually is the Heaviside step func-
tion) and VT is some threshold.

The model for a pair of mutually coupled neurons is then

dvi

dt
D f .vi ; wi / � gsynsj .vi � vsyn/;

dwi

dt
D �g.vi ; wi /; (9.4)

dsi

dt
D ˛.1 � si /H1.vi � VT/ � ˇsi :

Here, i and j are 1 or 2 with i ¤ j . We are assuming the cells are identical so
that the nonlinear functions f and g do not depend on the particular cell. Later, we
consider networks with heterogeneities.

Note that the coupling between the cells is through the synaptic variables sj . In
particular, suppose cell 1 is the presynaptic cell. When cell 1 fires a spike, its mem-
brane potential v1 crosses the threshold VT. The synaptic variable s1 then activates
at a rate that depends on both ˛ and ˇ and this then changes the membrane poten-
tial of cell 2, the postsynaptic cell. When cell 1 is silent, such that v1 < VT, then s1

decays at rate ˇ.
We wish to classify different types of synapses to study how synaptic interactions

influence network behavior. A traditional way to classify synapses is whether they
are excitatory or inhibitory. This depends primarily on the synaptic reversal potential
vsyn. For example, the reversal potential of the AMPA receptor is VAMPA D 0 mV.
This is greater than the postsynaptic cell’s resting potential, so the AMPA synapse
is excitatory. The principal inhibitory synapses involve the neurotransmitter GABA.
Recall that the reversal potential of GABAA varies between �81 and � 60 mV; this
is usually less than the cell’s resting potential. However, there are examples of cells
in which the GABAA reversal potential is very near or even above rest and GABAA

synapses may be excitatory.
We can further classify synapses depending on the rates at which they activate

or deactivate. For example, GABAA synapses are often referred to as fast-inhibitory
synapses, whereas GABAB synapses are referred to as slow-inhibitory synapses.
As discussed above, the rates at which the synapses turn on or off depend on the
parameters ˛ and ˇ.

We will also classify synapses as being direct or indirect. The synapses we
have considered so far are direct synapses since they are activated as soon as a
membrane potential crosses the threshold VT. To more fully represent the range of
synapse dynamics observed biologically, it will sometimes be necessary to consider
more complicated connections. These will be referred to as indirect synapses, and
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they are modeled by introducing a new independent variable xi for each cell in the
network. To model indirect synapses, we replace the third equation in (9.4) with the
following equations for each .xi ; si /:

dxi

dt
D �˛x.1 � xi /H1.vi � VT/ � �ˇxxi ;

dsi

dt
D ˛.1 � si /H.xi � �x/ � ˇsi : (9.5)

The constants ˛, ˇ, ˛x , and ˇx are assumed to be independent of �. The variable x

corresponds to a secondary process that is activated when transmitters bind to the
postsynaptic cell. This form was used to model GABAB and NMDA in Chap. 7. The
effect of the indirect synapses is to introduce a delay from the time one cell jumps
up until the time the other cell feels the synaptic input. For example, if the first
cell jumps up, a secondary process is turned on when v1 crosses the threshold VT.
Synapse s1 does not turn on until x1 crosses some threshold �x ; this takes a finite
amount of (slow) time since x1 evolves on the slow timescale, like the wi .

9.2.3 Network Architecture

There are many possibilities for network architecture. For example, the architecture
may be global or local, dense or sparse, random or structured. In general, we model
an arbitrary network as

dvi

dt
D fi .vi ; wi / � gi

syn

0
@X

j

Wij sj

1
A�vi � vi

syn

�
;

dwi

dt
D �gi .vi ; wi /; (9.6)

dsi

dt
D ˛i .1 � si /H1.vi � VT/ � ˇi si :

Here, we are assuming the cells are heterogeneous so that the nonlinear functions
f and g may depend on cell i . Moreover, the reversal potential vsyn, as well as the
rates at which the synapses turn on and turn off, depends on the cell, so some of the
cells may be excitatory and some of the cells may be inhibitory. The sum in (9.6)
is over all presynaptic cells and the constants Wij represent synaptic weights. They
can viewed as the probability that there is a connection from cell j to cell i .

It is sometimes convenient to consider the limiting equations as the number of
cells in the network becomes unbounded. We assume the cells lie in some domain D
and v.x; t/ represents the membrane potential of the cell at position x 2 D at time t .
We now assume the cells are homogeneous; it is straightforward to generalize this
to heterogeneous networks. Then, after an appropriate rescaling, (9.6) becomes
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@v

@t
D f .v.x; t/; w.x; t// � gsyn.v.x; t/ � vsyn/

Z
y2D

W.x; y/s.y; t/dy;

@w

@t
D �g.v.x; t/; w.x; t//; (9.7)

@s

@t
D ˛.1 � s.x; t//H1.v.x; t/ � VT/ � ˇs.x; t/:

It will be convenient to introduce some notation that will be used throughout
the remainder of this chapter. Let ˆ.v; w; s/ � f .v; w/ � gsyns.v � vsyn/. Then the
right-hand side of the first equation in (9.4) is ˆ.vi ; wi ; sj /. If gsyn is not too large,
then each Cs � fˆ.v; w; s/ D 0g defines a cubic-shaped curve. We express the left
branch of Cs as fv D ˆL.w; s/g and the right branch of Cs as fv D ˆR.w; s/g.

For convenience, we will assume H1.v/ D H.v/, where H is the Heaviside step
function. That is, H1.v/ D 0 if v < 0 and H1.v/ D 1 if v > 0. It follows that if the
presynaptic membrane potential Vpre satisfies Vpre > VT, then we can rewrite (9.3) as

ds

dt
D .˛ C ˇ/

�
˛

˛ C ˇ
� s

�
: (9.8)

In this case,

s ! ˛

˛ C ˇ
� sA

at the rate ˛ C ˇ. While a cell receives synaptic input, it lies along the cubic CsA
.

We will often write CA instead of CsA
. We denote the positions of the left and

right knees of Cs as w D wL.s/ and w D wR.s/, respectively, and sometimes write
wA

L D wL.sA/.

9.3 Examples of Firing Patterns

We now describe some of the firing patterns that can arise in a network of the form
(9.6). In the following examples, each cell is modeled by the Morris–Lecar equa-
tions. We begin by considering a network with just two mutually coupled cells. The
model can then be written as

dvi

dt
D I � Iion.vi ; wi / � gsynsj .vi � vsyn/;

dwi

dt
D .w1.vi / � wi /=�w.vi /;

dsi

dt
D ˛.1 � si /H1.vi � VT/ � ˇsi ; (9.9)

where i and j are 1 or 2 and i ¤ j .
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Fig. 9.1 Solutions of a network of two mutually coupled Morris–Lecar neurons with excitatory
coupling. (a) Synchronous solution. The membrane potentials are equal so only one is shown.
(b) Antiphase behavior. The solutions shown in (a) and (b) are for the same parameter values but
different initial conditions. Hence, the system is bistable

Figure 9.1 shows two solutions of (9.9); vsyn D 0:5, so the synapses are exci-
tatory. A stable synchronous solution is shown in Fig. 9.1a. Here, .v1.t/; w1.t// D
.v2.t/; w2.t// for all t . Figure 9.1b shows a solution with antiphase behavior. This
solution is stable; moreover, the synchronous solution is also stable. Hence, for this
choice of parameters, the system is bistable. (Note that for Fig. 9.1, dimensionless
versions of the Morris–Lecar equations were used, so the actual voltage should be
scaled by 120 mV.)

Figure 9.2 shows solutions of (9.9) in which vsyn D �0:5, so the synapses are in-
hibitory. We choose parameters so that a single cell, without any input, is excitable;
that is, it does not generate oscillations. Therefore, a network of two cells, which
by themselves are silent, can generate oscillatory behavior with inhibitory synaptic
coupling. In Fig. 9.2a, the cells take turns firing. The mechanism underlying this
rhythm is postinhibitory rebound. As one cell spikes, it sends inhibition to the other
cell, thereby hyperpolarizing the silent cell’s membrane potential. When the active
cell stops firing, it releases the silent cell from inhibition, so the silent cell rebounds
and generates an action potential. Mechanisms underlying postinhibitory rebound
will be described later.

Figure 9.2b shows a solution in which one of the cells fires shortly after the other;
there is then a delay until the first cell fires again. This is sometimes referred to as
an almost-synchronous solution. We note, in fact, that an inhibitory network can
generate a stable synchronous solution. This will be discussed in more detail later.
In Fig. 9.2c, one of the cells fires periodically and the other cell never generates
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Fig. 9.2 Solutions of a network of two mutually coupled Morris–Lecar neurons with inhibitory
coupling. (a) Each cell fires owing to postinhibitory rebound. (b) An almost-synchronous solution.
(c) A suppressed solution. (d) The cells take turns firing three spikes while the other cell is silent

an action potential. This is sometimes referred to as a suppressed solution. Finally,
Fig. 9.2d illustrates a more exotic solution in which one cell generates three spikes
while the other cell is silent and then the roles of the cells are reversed. All of the
solutions shown in Fig. 9.2 are stable.

We next describe firing patterns in larger networks. An example of clustering
is shown in Fig. 9.3a and b. Here, a network of four cells with all-to-all inhibitory
coupling breaks up into different groups or clusters; cells within each cluster are
synchronized but different clusters fire out of phase. We note that these two solu-
tions correspond to the same network with the same parameter values. The only
difference between the solutions is the initial conditions. Figure 9.3c shows a so-
lution in which the four cells take turns firing in a wavelike manner. Waves may
arise in both excitatory and inhibitory networks. Figure 9.3d shows an example of
dynamic clustering. Here, there are seven cells in the network and different groups
of cells take turns firing. However, the membership of the groups changes, so two
different cells may fire together during one episode but not fire together during later
episodes.

We note that by “synchrony” we do not necessarily mean “perfect synchrony”
in a strict mathematical sense. That is, two cells exhibit perfect synchrony if the
dependent variables corresponding to each cell are exactly equal to each other
for all time. The cells within each cluster shown in Fig. 9.3 may not be perfectly
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Fig. 9.3 Firing patterns in inhibitory networks. (a) and (b) show examples of clustering. Wavelike
behavior is shown in (c) and dynamic clustering in (d). The columns represent the time evolution
of a single cell; a dark rectangle corresponds to when the cell is active

synchronous; however, they do jump up to the active phase and then jump down
at “approximately” the same time. As we shall see, the time difference from when
cells within each cluster jump up or jump down is O.�/, where � is the singular
perturbation parameter.

9.4 Singular Construction of the Action Potential

The main mathematical tool that will be used throughout this chapter is geomet-
ric singular perturbation theory. Here, one exploits the fact that neuronal systems
typically involve separate processes that evolve on very different timescales. For
example, the membrane potential may jump up or jump down on a much faster
timescale than some ionic gating or synaptic variable. By exploiting this discrep-
ancy in timescales, one can often reduce a complicated neuronal system to a
lower-dimensional system of equations, one that is easier to analyze and implement
numerically. We have, in fact, already seen examples of this method when we con-
sidered traveling wave solutions and bursting oscillations. Recall, for example, that
for parabolic bursting, we reduced the full four-dimensional system to equations
for just the two slow variables. Similar methods will be used to study networks of
coupled cells.
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In this section, we consider a single neuron modeled by (9.1). By considering a
single neuron, we are able to illustrate important features of the geometric singular
perturbation method with a rather simple example. We note that (9.1) is an example
of a relaxation oscillator. The Morris–Lecar equations will be used for all of the
numerics. The analysis, however, is quite general and does not depend on details
of the equations. In what follows, we refer to the v-nullcline as “the cubic” and the
local minimum and local maximum of the cubic as the left knee and right knee,
respectively.

Assume the cubic intersects the w-nullcline at a single point that lies along its
middle branch. This fixed point is unstable and there exists a stable periodic orbit.
The periodic solution is shown in Fig. 9.4a and its projection onto the phase plane
is shown in Fig. 9.4b. Using geometric singular perturbation methods, we will give
a rather explicit description of this periodic solution, in the limit � ! 0.

We dissect the periodic orbit into four pieces; these are referred to as (1) the silent
phase, (2) the jump up, (3) the active phase, and (4) the jump down. Note that during
the silent and active phases, the solution lies close to the left and right branches
of the cubic, whereas the jump up and the jump down occur when the trajectory
reaches the left and right knees. To obtain a more detailed description of each piece,
we consider two timescales: a fast timescale corresponding to the original variable
t and a slow timescale defined as � D �t . The fast timescale is used to describe the
evolution of the solution during the jumps up and down, whereas the slow timescale
is used to describe evolution during the silent and active phases.

First consider the slow timescale. If we let � D �t and set � D 0, then (9.1)
becomes

0 D f .v; w/;
dw

d�
D g.v; w/: (9.10)
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Fig. 9.4 (a) Periodic solution of the Morris–Lecar equations corresponding to an action potential.
The projection of this solution onto the .v; w/-phase plane is shown in (b)
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The first equation in (9.10) states that a singular periodic orbit lies along the left
and right branches of the cubic during the silent and active phases, respectively. The
second equation determines the time evolution along these branches. This evolution
can be written as a scalar equation for the single (slow) variable w. Suppose the left
and right branches can be written as v D ˆL.w/ for w > wL and v D ˆR.w/ for
w < wR, respectively. Here, wL and wR represent the positions of the left and right
knees. Then (9.10) can be written as

dw

d�
D g.ˆ˛.w/; w/ � ƒ˛.w/; (9.11)

where ˛ D L or R.
Now, consider the jumps up and down. These take place on the fast timescale.

Let � D 0 in (9.1) to obtain the reduced system:

dv

dt
D f .v; w/;

dw

dt
D 0: (9.12)

The second equation in (9.12) implies that w is constant during the jumps. During
the jump up, w D wL and v is a solution of (9.12) that approaches the left knee as
t ! �1 and approaches the right branch of the cubic as t ! C1. During the
jump down, w D wR and v is a solution of (9.12) that approaches the right knee as
t ! �1 and approaches the left branch of the cubic as t ! C1.

An important feature of geometric singular perturbation theory is that it gives
a systematic way to reduce complicated models to lower-dimensional systems of
equations. In the example illustrated here, the full model (9.1) is two-dimensional,
whereas each piece of the singular periodic solution corresponds to a solution of
a single differential equation: the jumps up and down satisfy the first equation in
(9.12), whereas the silent and active phases correspond to solutions of the second
equation in (9.10). We have therefore reduced the original two-dimensional model
to four first-order equations. This may not seem like such a big deal, since two-
dimensional systems can be easily analyzed using phase-plane methods; however,
for larger cell models or networks of cells, such a reduction may be crucially impor-
tant when analyzing the dynamics.

We conclude this section by considering how the geometric singular perturbation
approach can be used to analyze the response of a neuron to a time-varying injected
current. This analysis will be very useful when we consider networks of cells. It
will illustrate, with a simple example, how a neuron may respond to excitatory or
inhibitory input.

Consider the system

dv

dt
D f .v; w/ C I.t/;

dw

dt
D �g.v; w/: (9.13)
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We assume the system is excitable when I.t/ D 0; that is, the v- and w-nullclines
intersect at a stable fixed point along the left branch of the cubic. We further assume
there exist I0 and Ton < Toff such that

I.t/ D
�

I0 if Ton < t < Toff

0 otherwise:
(9.14)

We consider two cases: either I0 > 0, in which case the injected current is said to
be depolarizing, or I0 < 0 and the injected current is hyperpolarizing. Figure 9.5
illustrates a Morris–Lecar neuron’s response to depolarizing and hyperpolarizing
applied currents. In the depolarizing case, the neuron responds by firing a series of
action potentials. The cell returns to rest once the applied current is turned off. In the
hyperpolarizing case, the neuron’s membrane potential approaches a more negative
steady state until the current is turned off, at which time the neuron fires a single
action potential. This last response is an example of postinhibitory rebound.

The geometric approach is very useful in understanding these responses. As
before, we construct singular solutions in which � is formally set equal to zero. The
singular solutions lie along the left or right branches of some cubic-shaped nullcline
during the silent and active phases, respectively, as shown in Fig. 9.6. The cubics
depend on the value of I.t/. We denote the cubic corresponding to I D 0 as C0 and
the cubic corresponding to I0 as CA. Note that if I0 > 0, then CA lies “above” C0,
whereas if I0 < 0, then CA lies “below” C0.
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Fig. 9.5 Response of a model neuron to applied current. Current is applied at t D 500 and turned
off at t D 1;500. (a) The current is depolarizing and the neuron fires a series of action potentials.
(b) The current is hyperpolarizing and the neuron exhibits postinhibitory rebound
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Fig. 9.6 Phase-space representation of the response of a model neuron to applied current. Current
is applied at time t D Ton and turned off at t D Toff. (a) Depolarizing current. The cell jumps up
as soon as the current is turned on. (b) Hyperplorizing current. The cell jumps to the left branch of
CA when the current is turned on and jumps up to the active phase owing to postinhibitory rebound
when the current is turned off

Consider the depolarizing case I0 > 0. This is illustrated in Fig. 9.6a. For t <

Ton, I.t/ D 0 and the solution lies at the fixed point p0 along the left branch of C0.
When t D Ton, I.t/ changes to I0 > 0 and the cubic switches from C0 to CA. If
the left knee of CA lies above p0; then the cell jumps up to the right branch of CA;
this corresponds to the firing of an action potential. If the w-nullcline intersects CA

along its middle branch – that is, the cell with applied current is oscillatory – then
the solution oscillates, generating action potentials, until the input is turned off. The
number of action potentials depends on the size of Toff � Ton and the rates at which
the solution evolves along the left and right branches of CA. It is possible that the
w-nullcline intersects CA along its left or right branch. If the w-nullcline intersects
CA along its left branch, then the cell will fire a single action potential and then
approach the stable fixed point along the left branch of CA until the input is turned
off at t D Toff. If the w-nullcline intersects CA along its right branch, then the cell
will jump up and remain in the active phase until the input is turned off at t D Toff.

Next, consider the hyperpolarizing case I0 < 0, shown in Fig. 9.6b. In this case,
CA lies below C0 and the w-nullcline intersects CA at a point denoted by p1. At
t D Ton, the solution jumps to the left branch of CA and then evolves along this
branch approaching p1 for Ton < t < Toff. When t D Toff, I.t/ switches back to
0 and the cell now seeks the left or right branch of C0. If, at this time, the cell lies
below the left knee of C0, then the cell jumps up to the active phase, giving rise to
postinhibitory rebound.

Note that to generate postinhibitory rebound, the hyperpolarizing input must be
sufficiently large and last sufficiently long. I0 must be sufficiently negative so that
p1 lies below the left knee of C0. Moreover, Toff � Ton must be sufficiently large;
the cell needs enough time to evolve along the left branch of CA so that it lies below
the left knee of C0 when the input is turned off.
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9.5 Synchrony with Excitatory Synapses

We now find conditions for when excitatory networks exhibit stable synchronous
oscillations. Later we will find conditions for when excitatory connections lead to
stable out-of-phase behavior. We begin by considering a simple network of two
mutually coupled cells with fast, direct synapses. We assume throughout this section
that each cell, without any coupling, is oscillatory.

We use geometric singular perturbation methods to analyze solutions. As before,
we formally set � D 0 and construct singular solutions. The singular trajectory
corresponding to each cell lies along either the left or the right branch of the cubic
shaped v-nullcline during the silent or active phase. The jumps up and down between
the silent and active phases occur when a singular trajectory reaches the left or right
knee of some cubic. There are now a family of cubic-shaped nullclines, depending
on the total synaptic input.

It is straightforward to show that there exists a synchronous solution. This is
because along a synchronous solution, .v1; w1; s1/ D .v2; w2; s2/ � .v; w; s/ satisfy
the reduced system

dv

dt
D f .v; w/ � gsyns.v � vsyn/;

dw

dt
D �g.v; w/;

ds

dt
D ˛.1 � s/H1.v � VT/ � ˇs:

The singular trajectory consists of four pieces and is shown in Fig. 9.7a. During the
silent phase, s D 0 and .v; w/ lies along the left branch of C0. During the active
phase, s D sA and .v; w/ lies along the right branch of the cubic CA. The jumps be-
tween these two phases occur at the left and right knees of the corresponding cubics.
A similar construction holds if the synapses are inhibitory, as shown in Fig. 9.7b.
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Fig. 9.7 Synchronous singular trajectories corresponding to (a) excitatory synapses and
(b) inhibitory synapses
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Fig. 9.8 Fast threshold
modulation
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We next consider the stability of the synchronous solution for small perturbations.
We begin with both cells close to each other in the silent phase with cell 1 at the left
knee of C0 ready to jump up. We follow the cells around in phase space until one of
the cells returns to the left knee of C0. We wish to show that the cells are closer to
each other after this cycle than they were initially.

The singular solution consists of four pieces. The first piece begins when cell 1
jumps up. When v1.t/ crosses VT, s1.t/ ! sA. This raises the cubic corresponding
to cell 2 from C0 to CA. If w2.0/ � w1.0/ is sufficiently small, corresponding to a
sufficiently small perturbation, then cell 2 lies below the left knee of CA. The fast
equations then force cell 2 to also jump up to the active phase, as shown in Fig. 9.8.
Note that this piece takes place on the fast time scale. Hence, on the slow time scale,
both cells jump up together at precisely the same time.

During the second piece of the singular solution, both oscillators lie in the active
phase along the right branch of CA. Note that the ordering in which the oscillators
track along the left and right branches has been reversed. While in the silent phase,
cell 1 was ahead of cell 2. In the active phase, cell 2 leads the way. The oscillators
remain on the right branch of CA until cell 2 reaches the right knee of CA.

The oscillators then jump down to the silent phase. Cell 2 is the first to jump
down. When v2.t/ crosses VT, s2 switches from sA to 0 on the fast timescale. This
lowers the cubic corresponding to cell 1 from CA to C0. If, at this time, cell 1 lies
above the right knee of C0, then cell 1 must jump down to the silent phase. This will
certainly be the case if the cells are initially close enough to each other.

During the final piece of the singular solution, both oscillators move down the
left branch of C0 until cell 1 reaches the left knee. This completes one full cycle.

To prove the synchronous solution is stable, we must show that the cells are closer
to each other after this cycle; that is, there is compression in the distance between
the cells. There are actually several ways to demonstrate this compression; these
correspond to different ways to define what is meant by the “distance” between the
cells. Here, we consider a Euclidean metric. Sommers and Kopell [163] gave an
alternative stability proof using a time metric. They referred to the mechanism by
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which one cell fires, and thereby raises the cubic of the other cell such that it also
fires, as fast threshold modulation. We will use a time metric in later sections when
we discuss other types of solutions of (9.9).

By the Euclidean distance between the cells, we mean the following. Suppose
both cells lie along the same branch of the same cubic and the coordinates of cell i

are .vi ; wi /. Then the distance between cells 1 and 2 is defined as simply jw1 � w2j.
We wish to demonstrate that this distance decreases along the solutions described
above. Since the singular solution consists of four pieces, we need to consider four
cases. Note, however, that during the jump up and the jump down, the Euclidean
distance does not change. This is because the jumps are horizontal, so the values of
wi do not change. If there is compression, therefore, it must take place as the cells
evolve along the left and right branches of the cubics in the silent and active phases.
We now show that this is indeed the case if we make some very mild assumptions
regarding the nonlinearities f and g.

The first step in the analysis is to reduce the full model to equations for just the
slow variables w1 and w2. We introduce the slow timescale � D �t and then let
� D 0 in (9.4). This leads to the equations

0 D f .vi ; wi / � gsynsj .vi � vsyn/;

dwi

d�
D g.vi ; wi /; (9.15)

0 D ˛.1 � si /H1.vi � VT/ � ˇsi :

The first equation in (9.15) states that each .vi ; wi / lies on the cubic-shaped nullcline
determined by sj . Let

GL.w; s/ D g.ˆL.w; s/; w/ and GR.w; s/ D g.ˆR.w; s/; w/;

where ˆL and ˆR were defined earlier. Then, the second equation in (9.15) can be
written as

dwi

d�
D G�.wi ; sj /; (9.16)

where � D L if cell i is silent and � D R if cell i is active. Note that the third
equation in (9.15) implies that either si D 0 or si D sA depending on whether the
presynaptic cell is silent or active.

We now return to the stability analysis of the synchronous solution. We demon-
strate that the Euclidean distance between the cells decreases as both cells evolve
in either the silent phase or the active phase. Here, we consider the silent phase; the
analysis for the active phase is similar.

Suppose when � D 0, both cells lie in the silent phase; hence, each .vi ; wi / lies
on the left branch of C0. We assume, for convenience, w2.0/ > w1.0/. We need to
prove w2.�/ � w1.�/ decreases as long as the cells remain in the silent phase. Now
each wi .�/ satisfies (9.16) with � D L and sj D 0. Hence,
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wi .�/ D wi .0/ C
Z �

0

GL.wi .�/; 0/d�

and, using the mean value theorem,

w2.�/ � w1.�/ D w2.0/ � w1.0/

C
Z �

0

GL.w2.�/; 0/ � GL.w1.�/; 0/ d�

D w2.0/ � w1.0/ (9.17)

C
Z �

0

@GL

@w
.w�; 0/.w2.�/ � w1.�//d�

for some w�. Now GL.w; 0/ D g.ˆL.w; 0/; w/. Hence,

@GL

@w
D gv

@ˆL

@w
.w; 0/ C gw:

Note that

@g

@v
� 0 and

@g

@w
� 0 (9.18)

near the synchronous solution. This follows from our assumption that g > 0 .g < 0/

below (above) the w-nullcline. We now make the additional assumption that there
is a strict inequality in (9.18). We further note that ˆL

@w .w; 0/ < 0. This is because
v D ˆL.w; 0/ defines the left branch of the cubic C0, which has negative slope. It
follows that @GL=@w < 0 and, therefore,

w2.�/ � w1.�/ < w2.0/ � w1.0/:

This gives the desired compression. We note that if there exists � > 0 such that
@GL=@w < �� along the left branch, then Gronwall’s inequality can be used to
show that w2.�/ � w1.�/ decreases at an exponential rate.

We remark that this analysis generalizes to arbitrarily large networks of
homogeneous cells with excitatory synaptic coupling. Suppose initially all of
the cells are in the silent phase and are sufficiently close to each other. When one
cell, say, cell 1, jumps up, then those cells that receive excitatory input from cell
1 will be induced to jump up as long as they lie below the left knees of the cubics
corresponding the excitatory input. These cells will then induce other cells to jump
up and so forth. In this way, all of the cells will fire at the same time (on the slow
timescale).
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9.6 Postinhibitory Rebound

9.6.1 Two Mutually Coupled Cells

We now consider two mutually coupled cells with inhibitory synapses. We continue
to assume fast, direct synapses. Figure 9.2 shows that this network can exhibit a wide
variety of activity patterns. In this section, we consider the pattern shown in Fig. 9.2a
in which the cells take turns firing owing to postinhibitory rebound. In general, an
oscillating network with two cells in antiphase is known as a “half-center” oscillator.
This type of behavior is found in many applications, including networks governing
locomotion and other motor patterns.

As we shall see, the antiphase solution shown in Fig. 9.2a exists and is stable
only if certain conditions regarding the nonlinearities and parameters are satisfied.
In particular, the coupling strength gsyn must be sufficiently strong and the duty
cycle must be sufficiently long. Recall that by the duty cycle, we mean the ratio of
the times a cell spends in the active and silent phases.

We assume throughout this section the w-nullcline intersects the left branches of
both C0 and CA. We denote these points as p0 and pA. In particular, individual cells,
without any coupling, are excitable. We also note that the resting state .v1; w1/ D
.v2; w2/ D p0 is a stable solution of the coupled network. Hence, if the system
exhibits stable oscillations, as shown in Fig. 9.2, then the system is bistable.

There does exist a synchronous solution with .v1; w1; s1/ D .v2; w2; s2/; how-
ever, this solution is unstable. The singular trajectory corresponding to the syn-
chronous solution is shown in Fig. 9.7b. During the silent phase, it lies along the
left branch of C0 and during the active phase, it lies along the right branch of CA.

We now step through the construction of the singular solution corresponding to
the solution shown in Fig. 9.2a. We begin with cell 1 at the right knee of C0 ready
to jump down. We further assume cell 2 is silent and lies along the left branch of
CA below the left knee of C0. When cell 1 jumps down, s1 ! 0. Since .v2; w2/ lies
below the left knee of C0, cell 2 exhibits postinhibitory rebound and approaches the
right branch of C0 (Fig. 9.9).
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Cell 2 then moves up the right branch of C0 and cell 1 moves down the left
branch of CA toward pA. Eventually, cell 2 reaches the right knee of C0 and jumps
down. If at this time, cell 1 lies below the left knee of C0, then it jumps up owing
to postinhibitory rebound. The roles of cell 1 and cell 2 are now reversed. The cells
continue to take turns firing when they are released from inhibition.

The preceding construction requires several assumptions. Firstly, the coupling
strength gsyn needs to be sufficiently large. In particular, the fixed point pA must lie
below the left knee of C0. The duty cycle must also be sufficiently large. The active
cell must spend enough time in the active phase so that the silent cell can evolve
along the left branch of CA to below the left knee of C0. We note that if either gsyn

or the duty cycle is too small, then the only stable solution will be the resting state
.v1; w1/ D .v2; w2/ D p0. This last statement depends on our assumption that both
cells are excitable.

Wang and Rinzel [284] distinguished between “escape” and release” in produc-
ing out-of-phase oscillations. In the preceding construction, we assumed both cells
are excitable for all levels of synaptic input. Then the silent cell can only jump up
to the active phase once the active cell has jumped down and released the silent cell
from inhibition. This is referred to as the release mechanism. To describe the escape
mechanism, suppose each cell is oscillatory for some fixed levels of synaptic input.
Then the inactive cell may reach a left knee of its cubic and escape the silent phase.
When the silent cell jumps up, it inhibits the active cell. This lowers the cubic of
the active cell, so it may be forced to jump down before reaching a right knee, as
shown in Fig. 9.10a.

Another mechanism for generating antiphase oscillations is to relax the re-
striction that the synaptic threshold lies between the active and silent branches
(Fig. 9.10b). If the synaptic threshold lies along one of the branches, then the synap-
tic input given from one cell to the other changes as the cell traverses along its
branch, not during its jump between branches. As shown in [249], this may have a
large effect on the wave form and frequency of the resulting oscillation.
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Fig. 9.10 (a) Cellular and (b) synaptic escape mechanisms
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9.6.2 Clustering

We now consider larger networks with inhibitory synapses. By a clustered solution,
we mean one in which the population of cells breaks up into distinct groups or
clusters. Cells within each cluster fire in (near) synchrony, whereas cells in differ-
ent clusters fire out of phase. The basic mechanism underlying clustering is simply
postinhibitory rebound. Examples of clustered solutions are shown in Fig. 9.3. These
are for a network with four cells and all-to-all coupling. The solution shown in
Fig. 9.3a consists of two clusters with two cells within each cluster. The existence
of this solution is equivalent to the antiphase solution for a two-cell network de-
scribed in the previous section. We note that there are subtleties associated with
proving the stability of this two-clustered solution. One must demonstrate that cells
within each cluster are stable with respect to perturbations along with proving that
the different clusters remain separated.

Other types of clustered solutions are possible. For the solution shown in
Fig. 9.3b, there are two clusters; one of the clusters consists of three cells, and
the other cluster has only one cell. This is very similar to the clustered solution
described above; however, note that now cells within a cluster may lie on different
nullclines in phase space. This is because the total inhibition that a cell receives
depends on the number of cells within the active cluster.

Figure 9.3c shows a solution in which all the cells fire out of phase with each
other. This can be viewed as a four-cluster solution. When one of the cells jumps
down, another is released from inhibition. The cells then take turns firing. Note that
the existence of such a solution depends on the relative times the cells spend in the
silent and active phases. The active phase cannot be too long or the network will
exhibit a two-clustered solution. To obtain the four-clustered state, the time the cell
spends in the active phase must be roughly one third the time it spends in the silent
phase.

These considerations carry over to larger networks. There may exist a two-
clustered solution in which the entire network breaks up into two groups, which
take turns jumping up when released from inhibition. The existence of such a so-
lution clearly requires assumptions regarding the length of the active phase and the
strength of synaptic coupling. One can also obtain activity with more than two clus-
ters. The type of clustered solution that a network exhibits depends on the duty cycle
along with the strength of coupling. A more detailed analysis can be found in [236].

9.6.3 Dynamic Clustering

Dynamic clustering differs from clustering in that the membership of the active
groups may change. That is, two different cells may fire together during one episode,
but fire separately during subsequent episodes. An example of such a solution is
shown in Fig. 9.3d. Note that cell 2 sometimes fires with cell 3, but sometimes it does
not. We now explain a simple mechanism for the generation of dynamic clustering.



9.6 Postinhibitory Rebound 261

The mechanism depends on both postinhibitory rebound and network architecture.
We will explain the mechanism with a rather simple example; however, this gener-
alizes in a straightforward manner to larger networks. A complete analysis of this
type of solution is given in [267].

The example network consists of seven cells and the network architecture is
shown in Fig. 9.11a. All connections are assumed to be inhibitory. Different re-
sponses, for the same parameter values, but different initial conditions, are shown
in Fig. 9.11b and c. Each response consists of episodes in which some subset of the
cells fires in near synchrony. These subsets change from one episode to the next;
moreover, two different cells may belong to the same subset for one episode but be-
long to different subsets during other episodes. After a transient period the response
becomes periodic. For example, consider the solution shown in Fig. 9.11b. The cells
which fire during the sixth episode are cells 1, 2, and 7. These are precisely the same
cells which fire during the eighth episode. This subset of cells continues to fire to-
gether every second cycle thereafter. We say that this solution has a periodic attractor

Fig. 9.11 Dynamic clustering. (a) The network consists of 7 cells with connections indicated by
arrows. The connectivity is summarized in a table (bottom), in which the left column shows the
indices of all cells, and the remaining columns show the indices of all cells that receive connections
from the cell on the left. (b) An example of network activity. The top panel shows the time courses
of voltage in all 7 cells over 8 epochs of activity. Grey scale in the checkerboard panels corresponds
to the magnitude of voltage, with black areas indicating spikes. After a transient (white part of the
time bar under the checkerboard) the response converges to a repeating pattern (black part of the
time bar). The bottom panel shows the orbit of the discrete dynamical system corresponding to this
example. (c) Solutions of the same network, but with different initial conditions. These solutions
have different transients (white parts of the time bars), but they converge to the same attractor
(which, in turn, is different from the one in b)
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consisting of two episodes (or simply, the period is 2). Different initial conditions
produce different transients that may approach the different attractors (Figs. 9.11b, c
(top)) or the same attractor (Fig. 9.11c).

We next describe an algorithm which will allow us to determine how the network
responds to initial conditions and analyze properties of the periodic attractors. If we
know which subset of cells fire during one episode, then the algorithm determines
which subset of cells fire during the next episode. To derive the algorithm, we need
two assumptions. The first is that if a cell fires during an episode, then every cell
that receives input from that cell and which does not fire during that episode must
fire during the next episode. The second assumption is that no cell can fire in two
subsequent episodes.

Consider the solution shown in Fig. 9.11c (bottom). The cells which fire during
the first episode are cells 1, 3, and 7. Because of the two assumptions, these induce
cells 4, 5, and 6 to fire during the second episode. Continuing in this way, we can
determine which cells fire during each subsequent episode.

Note that if the number of cells is N (in this example N D 7), then the cells that
fire during an episode represent a subset of PN � f1; : : : ; N g. Let SN denote the
set of all subsets of PN . The algorithm represents a map ˆ from SN to itself. For
the example shown in Fig. 9.11c (bottom), we represent the cells which fire during
the first and second episodes by indices f1; 3; 7g and f4; 5; 6g, respectively; hence,
ˆ.f1; 3; 7g/ D f4; 5; 6g. Iterating ˆ, we obtain an orbit of subsets; these correspond
to those cells that fire during successive episodes. The orbits corresponding to the
three solutions illustrated in Fig. 9.11b and c are also shown in that figure. Note that
each orbit consists of two components: there is an initial transient until the orbit
returns to a subset that it has already visited. The orbit must then repeat itself. We
remark that every orbit must eventually become periodic; this is because there are
only a finite number of subsets of PN .

By considering every subset of PN , one obtains a directed graph. This graph has
2N nodes. Hence, even for the seemingly simple example shown in Fig. 9.11a, there
are 128 nodes and the directed graph is quite complicated. The entire graph is shown
in Fig. 9.12. Here, we do not include the trivial solutions in which every cell fires
or no cells fire during one episode. Examining this directed graph, we find that the
model exhibits seven periodic attractors.

Further details and analysis of this algorithm can be found in [267], where precise
conditions are given for when the differential equations model can be rigorously
reduced to discrete dynamics.

9.7 Antiphase Oscillations with Excitatory Synapses

We have, so far, found conditions for when excitatory coupling leads to synchrony
and inhibitory coupling leads to antiphase oscillations. The existence and stability
of these patterns depend on various assumptions. For example, to generate antiphase
behavior with inhibitory synapses, we required that the active phase, and therefore
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Fig. 9.12 Graph of discrete dynamics associated with the network shown in Fig. 9.11

the duty cycle, is sufficiently long. Note that a cell with a long duty cycle can be
viewed as a bursting oscillator; the active phase represents the envelope of spik-
ing activity. In this section, we consider what happens if the duty cycle is short.
We also assume each cell, without coupling, is oscillatory. We may, therefore, think
of the cell as exhibiting single, periodic spikes instead of bursts. We find condi-
tions for when excitatory coupling leads to stable antiphase behavior. The analysis
also demonstrates when the antiphase solution is unstable for inhibitory coupling.
Throughout the analysis, we assume the synapses are fast and direct.

We will demonstrate that stable antiphase solutions exist if the synapses are exci-
tatory and both the coupling strength gsyn and the duty cycle are sufficiently small.
In this case, the antiphase solution will exist but be unstable if the synapses are
inhibitory.

9.7.1 Existence of Antiphase Oscillations

We first find conditions for when there exists an antiphase solution. The stability of
this solution will be discussed in Sect. 9.7.2.

Figure 9.1b shows an antiphase solution with excitatory synapses. The projec-
tion of this solution onto the .v; w/ phase plane is shown in Fig. 9.13. We now step
through the various pieces of this trajectory. We start with both cells in the silent
phase with cell 1 at the left knee of C0 ready to jump up. Suppose w2.0/ D w�.
When cell 1 jumps up, s1 ! sA. If w� > wA

L , so that cell 2 lies above the left knee
of CA, then cell 2 approaches the left branch of CA. Cell 1 then moves up the right
branch of C0 and cell 2 moves down the left branch of CA. If the active phase is suf-
ficiently brief, then cell 1 reaches the right branch of C0 and jumps down before cell
2 reaches the left knee of CA. Suppose this happens when � D TA. (Here, we are
considering the slow timescale.) After cell 1 jumps down, both cells evolve along
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Fig. 9.13 Singular construction of antiphase solution. (a) Cell 1 and (b) cell 2

the left branch of C0 until cell 2 reaches the left knee of C0. Suppose this happens
when � D T0. If w1.T0/ D w�, then the roles of cell 1 and cell 2 are reversed and
this completes half of a complete antiphase cycle.

We prove the existence and stability of an antiphase solution by constructing
a one-dimensional map, which we denote as � . The definition of � is simply
�.w�/ D w1.T0/, where w� and T0 were defined above. Clearly, a stable fixed
point of � corresponds to a stable antiphase solution. Note that to define �.w�/ we
need that cell 1 jumps up to the active phase and then jumps back to the silent phase
before cell 2 is able to jump up. This requires a number of assumptions. In particu-
lar, the duty cycle cannot be too long, gsyn cannot be too big, and .w� � wL/ cannot
be too small. We now derive precise conditions for when � is well defined and has
a stable fixed point.

As before, we reduce the analysis to equations for just the slow variables
w1 and w2. Each of these variables satisfies (9.16), where � D L or R if cell i

is silent or active, and sj D 0 or sA if the presynaptic cell is silent or active. In
particular, if both cells are silent, then each wi satisfies

dwi

d�
D GL.wi ; 0/: (9.19)

If cell i is silent and cell j is active, then

dwi

d�
D GL.wi ; sA/ (9.20)

and

dwj

d�
D GR.wj ; 0/: (9.21)

Let TA denote the duration of the active phase. More precisely, this is the time
needed for a solution of (9.21) starting at wL to reach wR.
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We will need to consider the distance between the cells and determine how
the distance changes as trajectories evolve in phase space. Here, we use a time
metric. For now, we only consider the case when both cells are silent; that is,
.v1.0/; w1.0// and .v2.0/; w2.0// lie along the left branch of C0. Suppose w1.0/ <

w2.0/. Then the time metric �L.w1.0/; w2.0// is defined to be the time it takes for
the solution of (9.19) starting at w2.0/ to reach w1.0/. Note that this metric is time-
invariant in the following sense. Suppose wi .�/; i D 1; 2; are solutions of (9.19).
Then

�L.w1.�/; w2.�// D �L.w1.0/; w2.0//

for all � > 0, as long as the cells remain on the left branch of C0. The proof of this
statement is left as an exercise.

Note that � is not defined for all w� 2 .wL; wR/. We need that cell 1 jumps up
and down before cell 2 jumps up. This will be true if TA is sufficiently small and
w� �wL is sufficiently large. We assume, for the moment, this is true. Once we have
characterized w�, we will demonstrate that it is indeed in the domain of � .

We now find the conditions for � to have a fixed point. Since

wL < w2.TA/ < w� < wR;

it follows that

�L.wL; wR/ D �L.wL; w2.TA// C �L.w2.TA/; w�/ C �L.w�; wR/:

Let TS D �L.wL; wR/ be the length of the silent phase. If w� is a fixed point of � ,
then w2.T0/ D wL; w1.T0/ D w�; and w1.TA/ D wR. Hence,

TS D �L.w2.T0/; w2.TA// C �L.w2.TA/; w�/ C �L.w1.T0/; w1.TA//

D .T0 � TA/ C �L.w2.TA/; w2.0// C .T0 � TA/ (9.22)

D 2.T0 � TA/ C �L.w2.TA/; w2.0//:

Note that the last term tends to 0 as TA ! 0. Hence, in this limit, the solution of
(9.22) is T0 D 1

2
TS . It follows that (9.22) has a solution, and there exists a fixed

point of � if the duration of the active phase is sufficiently small.
It remains to prove the fixed point w� lies in the domain of � . Recall that cell 1

must jump up and jump down before cell 2 jumps up. Choose !D > wA
L so that the

time it takes a solution of (9.20) starting at !D to reach wA
L is TA. Then cell 1 will

jump up and jump down before cell 2 jumps up if w� > !D . This will be the case if

�L.wL; w�/ > �L.wL; !D/: (9.23)

We show that this is true if the coupling strength gsyn and the duration of the ac-
tive phase TA are sufficiently small. Note that the right-hand side of (9.23) can be
written as

�L.wL; !D/ D �L

�
wL; wA

L

�
C �L

�
wA

L ; !D

�
:
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Since wA
L ! wL as gsyn ! 0 and !D ! wA

L as TA ! 0, it follows that the right-
hand side of (9.23) is as small as we please if gsyn and TA are small. On the other
hand, the left-hand side of (9.23) can be rewritten as

�L.wL; w�/ D �L.wL; wR/ � �L.w�; wR/

D TS � T0

! 1

2
TS (9.24)

as TA ! 0. Hence, (9.23) is satisfied if gsyn and TA are sufficiently small. This
completes the proof that � has a fixed point corresponding to an antiphase solution.

9.7.2 Stability of Antiphase Oscillations

We now consider the stability of the fixed point w�. To prove the stability, we must
show that j� 0.w�/j < 1. We demonstrate that this is the case if the synapses are
excitatory and some rather natural assumptions regarding the nonlinearities f and g

are satisfied. The analysis also demonstrates that the fixed point is unstable if the
synapses are inhibitory.

We begin by describing another way to visualize the antiphase solution. Con-
sider the projection of the solution onto the .w1; w2/ slow phase plane as shown in
Fig. 9.14. Note that the solution lies within the rectangular region

R D f.w1; w2/ W wL � w1 � wR; wL � w2 � wRg:

wL

wL wL

wR

wR wR

w2

w1 w1

(w*)

w*

a b

Fig. 9.14 (a) Projection of the antiphase solution onto the slow .w1; w2/ phase plane. (b) The
one-dimensional map
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Denote the left, right, top, and bottom sides of R as RL;RR;RT; and RB, respec-
tively. These correspond to positions where one of the cells reaches a left or right
knee of C0; that is, where cell 1 jumps up, cell 1 jumps down, cell 2 jumps down,
and cell 2 jumps up, respectively.

We now view � as a map defined on RL and denote this new map as …. That
is, suppose we start at a point .wL; w�/ 2 RL. Then cell 1 is ready to jump up and
cell 2 is silent. We follow the trajectory until it reaches RL again. If the position
of cell 2 at this time is w0, we let ….w�/ D w0. Since we are now considering a
full cycle, and in the definition of � we only considered half of a cycle, it follows
that ….w�/ D �2.w�/. It suffices to show that j…0.w�/j < 1. We will, in fact,
demonstrate that j…0.w�/j < 1 for each w� such that ….w�/ is well defined.

Since the antiphase solution consists of four pieces, we can decompose … into
four pieces. We write ….w�/ D .…4 ı …3 ı …2 ı …1/.w�/, where each …k is a
flow-defined map from one side of R to another. Then

…0.w�/ D …0
4…0

3…0
2…0

1.w�/: (9.25)

Note that j…0
2j D j…0

4j D 1: This follows because the time metric �L is time-
invariant and each of these maps corresponds to when both cells are silent and lie
along the left branch of C0. We leave the details as an exercise. We must, therefore,
prove j…0

1j < 1 and j…0
3j < 1. Here, we consider j…0

1j since the other inequality is
similar. Note that …1 corresponds to when cell 1 is active and cell 2 is silent. Hence,
w1 satisfies (9.21) and w2 satisfies (9.20).

To calculate the derivative of …1, we write it as a difference quotient:

…0
1.a/ D limb!a

�L.…1.a/; …1.b//

�L.a; b/
: (9.26)

Here, we are assuming a < b. We now need a formula for �L in terms of the non-
linearities f and g. Recall that �L.a; b/ is the time for a solution of (9.19) starting
at w D b to reach w D a. Hence,

�L.a; b/ D
Z a

b

1

GL.w; 0/
dw: (9.27)

This formula is not convenient to work with because w2 does not satisfy (9.19);
it satisfies (9.20) instead. For this reason, we define a new time metric �A.a; b/

to be the time it takes a solution of (9.20) starting at w D b to reach w D a.
Changing variables in (9.27), we find that if w2.�; b/ is the solution of (9.20) with
w2.0; b/ D b, then

�L.a; b/ D
Z �A.a;b/

0

GL.w2.�; b/; sA/

GL.w2.�; b/; 0/
d�: (9.28)
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Since this holds for all a and b such that wA
L < a < b < wR, we also have that

�L.…1.a/; …1.b// D
Z �A.…1.a/;…1.b//

0

GL.w2.�; …1.b//; sA/

GL.w2.�; …1.b//; 0/
d�: (9.29)

We insert these expressions into (9.26) to conclude that

…0
1.a/ D

�
GL.…1.a/; sA/

GL.…1.a/; 0/

��
GL.a; 0/

GL.a; sA/

�
: (9.30)

We find conditions for the nonlinear functions f and g so that if the synapses are
excitatory, then GL.w; sA/=GL.w; 0/ is an increasing function of w; that is,

@

@w

�
GL.w; sA/

GL.w; 0/

�
> 0: (9.31)

Since …1.a/ < a this, together with (9.30), implies that j…0
1.a/j < 1 and the an-

tiphase solution is stable. A similar analysis shows that if the synapses are inhibitory,
then GL.w; sA/=GL.w; 0/ is a decreasing function of w; hence, the antiphase solu-
tion is unstable.

Let 	.w; s/ D GL.w; s/ � GL.w; 0/. Then

@

@w

�
GL.w; sA/

GL.w; 0/

�
D GL.w; 0/	w.w; sA/ � GLw.w; 0/	.w; sA/

ŒGL.w; 0/
2
:

We derive conditions for the nonlinear functions f and g so that

GL < 0;
@GL

@w
< 0; 	 > 0 and 	w < 0:

To do this, we need to express each of these inequalities in terms of f and g and
their derivatives.

Recall that GL.w; s/ D g.ˆL.w; s/; w/, where v D ˆL.w; s/ represents the left
branch of Cs. In particular, f .ˆL.w; s/; w/ � gsyns.v � vsyn/ D 0. Suppose g.v; w/

can be written in the usual form g.v; w/ D .h1.v/ � w/=�w.v/. To simplify the
analysis, we assume �w.v/ D �w is constant while the cell is in the silent phase. For
convenience, we assume �w D 1.

Clearly, GL.w; 0/ < 0; that is, w decreases in the silent phase. Moreover,

@GL

@w
D @g

@v

@ˆL

@w
C @g

@w
D h01.v/

@ˆL

@w
� 1 < 0

if h01.v/ > 0 and the left branch of the cubic C0 has negative slope. It is not hard
to give precise conditions for the nonlinear function f for when this last statement
is true.

We next consider 	 and 	w. Note that

	.w; sA/ D
Z sA

0

@GL

@s
.w; �/d� and 	w.w; sA/ D

Z sA

0

@2GL

@w@s
.w; �/d�:
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Now
@GL

@s
D @g

@v

@ˆL

@s
D h01.v/

@ˆL

@s
> 0

if h01.v/ > 0 and the cubics “increase” as s increases; that is, if s1 > s2, then the
cubic corresponding to s1 lies above the cubic corresponding to s2. This is the case
if the synapse is excitatory. Finally, note that

@2GL

@w@s
D h01.v/

@2ˆL

@w@s
:

We assume h01.v/ > 0; this is true for most neuronal models, including the Morris
–Lecar equations. Hence, it remains to find conditions for f so that @2ˆL=@w@s < 0.
We leave this as an exercise.

We remark that the analysis above leads to precise conditions for when the
antiphase solution is stable for excitatory synapses and unstable for inhibitory
synapses. It is possible to construct nonlinearities so that these conditions are not
satisfied, in which case excitatory synapses may lead to unstable antiphase solu-
tions. It is also important to note that the conclusions of this analysis holds only if
the singular perturbation parameter � is sufficiently small. It is not at all clear what
bifurcations may take place as � increases.

9.8 Almost-Synchronous Solutions

9.8.1 Almost Synchrony with Inhibitory Synapses

We now consider the almost-synchronous solution shown in Fig. 9.2b. Note that
one of the cells fires shortly after the other and there is then a delay until the cells
fire again. Here, we assume the coupling is inhibitory and each cell, without any
coupling, is oscillatory. We also assume the duty cycle is small. In this case, we
will demonstrate that the almost-synchronous solution exists and is stable. Note that
results from the previous section demonstrate that both the synchronous and the
antiphase solution exist but are unstable. Here, we consider a network consisting of
two mutually coupled cells. The analysis carries over to larger networks.

Figure 9.15 shows the projection of the almost-synchronous solution onto the
.v; w/ phase plane. We now step through this solution as it evolves in phase space.
This description leads to a one-dimensional map, a fixed point of which corresponds
to the almost-synchronous solution.

We start with both cells in the silent phase with cell 1 at the left knee ready
to jump up. When cell 1 jumps up, cell 2 approaches the left branch of CA. Then
cell 1 moves up the right branch of C0 and cell 2 moves down the left branch of
CA. We assume the active phase is sufficiently short so that cell 1 reaches the right
knee of C0 and jumps down before cell 2 reaches the left knee of CA. Note that
this assumption is not necessary if the w-nullcline intersects the left branch of CA
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a

W1(0)

W1(T1)

W1(TA)

CA

CO

V1

W1

b

V2

CO
CA

W2(T1)

W2(0)

W2(TA)

W2

Fig. 9.15 Singular construction of the almost-synchronous solution. Cell 1 is shown in (a) and
cell 2 in (b). Both cells begin in the silent phase. Cell 1 jumps up at � D 0 and jumps down at
� D TA. When cell 1 jumps down, cell 2 jumps up owing to postinhibitory rebound. Cell 2 jumps
down at � D T1. The cycle is complete when cell 1 returns to the left knee

at some point pA. We further assume w2.0/ � w1.0/ is sufficiently small so that
when cell 1 jumps down, cell 2 lies below the left knee of C0. Then cell 2 exhibits
postinhibitory rebound. Suppose cell 1 jumps down at time � D TA.

Cell 2 then moves up the right branch of C0 and cell 1 moves down the left branch
of CA. If the active phase is sufficiently short, then cell 2 jumps down before cell 1
can jump back up. Suppose this happens at time � D T1. We assume w1.T1/ > wL

so that cell 1 does not rebound at this time. This will be the case if the active phase
is short enough.

Finally, both cells move down the left branch of C0 until cell 1 reaches the left
knee. Suppose this happens at time T2. If w2.T2/ D w2.0/, then we have con-
structed an almost-synchronous periodic solution. We define the one-dimensional
map �.w2.0// D w2.T2/. We now derive conditions for when this map is well-
defined and has a stable fixed point.

We first consider the domain of � . For � to be well defined, three conditions need
to be satisfied: (1) cell 2 cannot jump up before cell 1 jumps down; (2) cell 2 must re-
bound when cell 1 does jump down; and (3) cell 1 cannot rebound when cell 2 jumps
down. We consider the time metrics �L and �A defined in the preceding section.

Note that condition 1 must be satisfied if the w-nullcline intersects the left
branch of CA. If this is not the case, then condition 1 will be satisfied if w2.0/ >

wL and TA < �A.wA
L ; wL/. We next choose ! > wL so that �A.wL; !/ D TA. If

wL < w2.0/ < !, then w2.TA/ < wL and condition 2 is satisfied. Finally, condi-
tion 3 is satisfied if we assume TA < �A.wL; wR/.

We now show that � has a stable fixed point. Recall that a fixed point satisfies
�.w2.0// D w2.T2/; that is, �L.wL; w2.0// D �L.wL; w2.T2//. Now cell 1 and cell
2 both lie on the left branch of C0 for T1 < � < T2. Since �L is time-invariant, it
follows that

�L.wL; w2.T2// D �L.w1.T2/; w2.T2// D �L.w1.T1/; w2.T1//

D �L.w1.T1/; wR/:
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Hence, it suffices to show that

�L.wL; w2.0// D �L.w1.T1/; wR/: (9.32)

To do this we consider two limiting cases: w2.0/ D wL and w2.0/ D !. If w2.0/ D
wL, then �L.wL; w2.0// D 0. Clearly, �L.w1.T1/; wR/ > 0. Hence,

�L.wL; w2.0// < �L.w1.T1/; wR/:

We will prove if w2.0/ D !, then �L.wL; w2.0// > �L.w1.T1/; wR/. It then follows
that there must exist w2.0/ 2 .wL; !/ such that (9.32) is satisfied.

So assume w2.0/ D !. Then �A.wL; w2.0// D �A.wL; !/ D TA and cell 2
jumps up at w2.TA/ D wL. Moreover, cell 2 lies in the active phase for TA < � < T1

with w2.TA/ D wL and w2.T1/ D wR. Recall that TA is the time it takes for a
solution of (9.21) to go from wL to wR. Hence, T1 � TA D TA. Since w1.TA/ D wR,
it follows that

�A.w1.T1/; wR/ D �A.w1.T1/; w1.TA// D T1 � TA D TA:

Therefore,
�A.wL; w2.0// D �A.w1.T1/; wR/ D TA:

Using (9.28), we find that if w.�; b/ is the solution of (9.20) with w.0; b/ D b, then

�L.wL; !/ D
Z TA

0

GL.w.�; !/; sA/

GL.w.�; !/; 0/
d�

and

�L.w1.T1/; wR/ D
Z TA

0

GL.w.�; wR/; sA/

GL.w.�; wR/; 0/
d�:

Finally, we showed in Sect. 9.7.2 that GL.w; sA/=GL.w; 0/ is a decreasing
function of w if the synapses are inhibitory. Moreover, ! < wR and, therefore,
w.�; !/ < w.�; wR/ for each � 2 .0; TA/. It follows that if w2.0/ D !, then
�L.wL; w2.0// > �L.w1.T1/; wR// and this completes the proof that there exists a
stable fixed point of � .

9.8.2 Almost Synchrony with Excitatory Synapses

It is also possible that two mutually coupled cells with excitatory coupling exhibit
almost-synchronous solutions. This was considered in several papers, including
[215]. In [19], it is proved almost synchrony may arise in excitatory networks if
we do not assume, as before, cells evolve on the slow timescale while in the active
phase. We note that if a cell evolves on the fast timescale while in the active phase,
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then the cell’s active phase would be shorter; this would then correspond more to a
spiking neuron rather than a bursting neuron that we have been considering so far in
this chapter.

We now write the equation for each cell as

dv

dt
D f .v; w/;

dw

dt
D �g.v; w/=�1.v/; (9.33)

where f .v; w/ and g.v; w/ are as before and the function �1.v/ is given by

�1.v/ D
�

1 if v < v�

�=� if v > v� :
(9.34)

Here, the parameter v� is the threshold for entering the active phase and � governs
the rate of passage through the active phase. We assume v� lies between the knees of
C0. A singular periodic solution of (9.33) is shown in Fig. 9.16a. While in the silent
phase, the singular solution lies along the left branch of the v-nullcline and evolves
according to (9.10). Once the singular solution reaches the left knee of C0, it begins
to jump up according to (9.12). However, this equation is valid only until v D v� ; at
this point the equations become

dv

dt
D f .v; w/;

dw

dt
D �g.v; w/: (9.35)

V

W
a

VT

b

Cell 1

Cell 2

Cell 2
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2
(T

2
)

c1(T1)

Fig. 9.16 Almost-synchronous solution with excitatory synapses. (a) The synchronous solution.
(b) Singular construction for stability proof. Note that the order in which the two cells fire switches
after one cycle
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These equations determine the evolution of the solution in the active phase. The
solution must eventually return to the line v D v� and the jump down corresponds
to a horizontal segment in the phase plane whose evolution is determined by (9.12).
Note that the singular solution now differs from that shown in Fig. 9.4; in particular,
the active phase does not lie on the right branch of the v-nullcline.

We now consider two mutually coupled oscillatory cells and write the model as

dvi

dt
D f .vi ; wi / � gsynsj .vi � vsyn/;

dwi

dt
D �g.vi ; wi /=�1.vi /; (9.36)

where f .v; w/ and g.v; w/ are as before and sj D H.vj � vT/, where H is the
Heaviside step function. To simplify the analysis, we will assume vT D v� .

The construction of a synchronous solution for the coupled system is done in
the same manner as that for the periodic solution for the uncoupled cell; the only
difference is that the dynamics are changed once the voltage passes across v� . Thus,
if each vi > v� , then (9.35) is replaced by

dvi

dt
D f .vi ; wi / � gsyn.vi � vsyn/;

dwi

dt
D �g.vi ; wi /: (9.37)

Note that the synchronous solution is not the same as the uncoupled periodic solu-
tion; this is because they satisfy different equations while in the active phase.

We now explain why the synchronous solution may be unstable and there exists
a stable almost-synchronous solution. To do this, we assume both cells lie initially
close to each other in the silent phase with cell 1 at the left knee of C0 ready to jump
up. We step through the construction of the singular solution until one of the cells
returns to the left knee of C0. We wish to show that if the cells are initially close
enough to each other, then after one cycle they are further apart than when they
started. This will demonstrate that the synchronous solution is unstable. The analysis
will also demonstrate when there exists a stable almost-synchronous solution.

The singular solution is shown in Fig. 9.16b. The first portion begins as cell 1
leaves the left knee. In this portion, cell 1 is governed by (9.12) and has a trajectory
that is horizontal until it crosses v� at, say, t D t1. During this time, cell 2 does
not move. At time t1, s1 switches from 0 to 1, so cell 2 is then governed by (9.12),
whereas cell 1 is governed by (9.35). Cell 2 can now move, and does so horizontally
until it reaches v� at, say, t D t2. Note that for t1 < t < t2, cell 1 moves both
horizontally and vertically, because it is governed by (9.37). At time t2; s2 switches
from 0 to 1; hence, cell 1 is then governed by (9.37). Eventually, both cells reach
v� . Once a cell crosses v� , it moves horizontally to the left branch of either C0 or C1,
depending on whether the other cell is still active or not. Once both cells are silent,
they both evolve along the left branch of C0 until one of them reaches the left knee.
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Note that there are parts of the trajectories in phase space in which the two cells
are governed by different equations. In terms of voltages, let vF denote the v-value
of the trajectory of cell 1 at t D t2. Then for v� < v < vF , the two cells satisfy
different equations. Cell 1 does not receive excitation from cell 2, and hence satis-
fies (9.35). Cell 2 does however receive excitation when it is in that portion of the
phase plane, so it is governed by (9.37). As shown in [19], this difference causes
a separation between the orbits of the cells which is bounded from below by k1�

and from above by k2� for some k2 > k1 > 0, independent of the initial differ-
ence, provided that the latter is small enough. It is this separation between the orbits
that leads to the instability of the synchronous solution. The analysis in [19] also
demonstrates that, because the separation is bounded from above, there must exist
a stable solution in which the cells fire at slightly different times: if one cell fires at
time 0, then the other cell will fire at t1, given above. This then corresponds to the
almost-synchronous solution.

We note that the order in which the cells fire may or may not switch from one
cycle to the next. This is illustrated in Fig. 9.16b and a complete analysis is given
in [19].

9.8.3 Synchrony with Inhibitory Synapses

It may be surprising that networks with only inhibitory synapses can generate stable
synchronous oscillations; however, this has indeed been demonstrated, both numer-
ically and analytically, in several studies [100, 265, 278, 284]. The main conclusion
of the analytic studies is that synchrony may arise in inhibitory networks if the in-
hibition is slow, corresponding to GABAB synapses. We note that if the inhibitory
synapses are fast and direct, the synchronous solution must be unstable. This is be-
cause when one cell jumps up, the resulting inhibition immediately “steps on” the
postsynaptic cell and delays its firing. For the synchronous solution to be stable,
there must be a delay from the time one cell fires until the resulting inhibition af-
fects the other cell. One convenient way to do this is to consider indirect synapses.
That is, as discussed earlier, we introduce a new synaptic variable xi and assume
.xi ; si / satisfy (9.5).

Using the analysis given in the preceding sections, one can show that if the
inhibitory synapses are indirect, the cells are oscillatory, and the active phase is
sufficiently short, then the synchronous solution is stable. We have shown that
in this case the antiphase solution is unstable. If there are direct synapses, then
the network will exhibit almost-synchronous solutions. With indirect synapses, the
delay in synaptic activation allows the trailing cell to fire shortly after the lead-
ing cell fires and before it receives synaptic input. We do not include the details
here.
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9.9 Slow Inhibitory Synapses

Recall that different types of synapses may turn on or turn off at very different rates.
For example, GABAB synapses are slow to activate and slow to turn off compared
with GABAA synapses. The rates at which synapses turn on or turn off may have
a profound affect on the network behavior. For example, the solutions shown in
Fig. 9.2c and d were generated by choosing the rate at which the inhibitory synapse
turns off to be small.

Note that ˛ and ˇ determine the rates at which the synapse turns on and turns off.
We have, so far, considered fast synapses. By this we mean that ˛ and ˇ are O.1/

with respect to �. When a cell either jumps up or jumps down, the corresponding
synaptic variable either approaches sA or approaches 0 on the fast timescale. In this
section, we consider slow synapses; that is, either ˛ or ˇ (or both) is O(�). We will
use fast/slow geometric analysis to construct singular trajectories corresponding to
synchronous and antiphase solutions.

9.9.1 Fast/Slow Decomposition

The first step in the analysis is to decompose the full network (9.4) into fast and
slow equations. Here, we assume ˛ D O.1/ with respect to � and ˇ D �K , where
K does not depend on �; hence, the synapses activate on the fast timescale and turn
off on the slow timescale.

We derive slow subsystems valid when cells lie in either the silent or the active
phase. There are several cases to consider and we only discuss two of these in detail.
First, suppose both cells are silent. Then each vi < VT and H1.vi �VT/ D 0: (Here,
we are assuming H1 is the Heaviside step function.) Hence, after letting � D �t

and setting � D 0, (9.4) becomes

0 D f .vi ; wi / � sj gsyn.vi � vsyn/;

dwi

d�
D g.vi ; wi /; (9.38)

dsi

d�
D �Ksi :

This system can be simplified as follows. As before we write the left branch of Cs

as v D ˆL.w; s/ and let GL.w; s/ D g.ˆL.w; s/; s/. Then,

dwi

d�
D GL.wi ; sj /;

dsi

d�
D �Ksi : (9.39)

These equations determine the evolution of the slow variables in the silent phase.
The equations are well defined as long as each .vi ; wi / lies along the left branch
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Fig. 9.17 Geometric
construction of an antiphase
solution for slow synapses.
The projection of the solution
is shown in the .w; s/ slow
phase plane. Cell 1 is shown
with a solid curve, and cell 2
is shown with a dashed curve

w

s=1

jump-up
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(w2(T1),s1(T1))

(w1(T1),s2(T1))

w2(0) = w1(T2)
w1(T1)

(w1(0),s2(0)) =
(w2(T2),s1(T2))

of the cubic determined by sj . Recall that the left knee of the cubic Cs depends
on s and we denote the position of this left knee as wL.s/. This defines a jump-up
curve CJUP � .wL.s/; s/ in the slow phase plane, as shown in Fig. 9.17. The cells
remain in the silent phase and each .wi ; si / satisfies (9.39) as long as wi > wL.sj /.
If wi .�/ D wL.sj /, then cell i jumps up to the active phase.

Now suppose cell i is silent and cell j is active. Then si is a slow variable, and
sj � 1 is a fast variable. In this case, .wi ; si / satisfies

dwi

d�
D GL.wi ; 1/;

dsi

d�
D �Ksi (9.40)

and .wj ; sj / satisfies

dwj

d�
D GR.wj ; si /

sj .�/ D 1 (9.41)

These equations are well defined as long as cell j lies on the right branch of the
cubic determined by si and cell i is on the left branch of the cubic C1. Cell j will
jump down if .vj ; wj / reaches the right knee of Csi

– that is, wj D wR.si /.

9.9.2 Antiphase Solution

We now construct singular trajectories corresponding to antiphase and suppressed
solutions of (9.4). We assume throughout that the synapses are inhibitory and decay
on the slow timescale. Throughout the analysis, we consider the projection of the
solution onto the .w; s/ slow phase plane. As we shall see, the existence of a partic-
ular type of solution depends on the relative sizes of the rate at which the synapse
decays and the rate at which the cells evolve during the silent phase.
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The projection of an antiphase solution onto the .w; s/ phase plane is shown in
Fig. 9.17. The curves represent .w1; s2/ and .w2; s1/, since the synaptic input to cell
i is determined by sj ; j ¤ i . We step through the evolution of this solution starting
at the time when both cells lie in the silent phase and cell 1 has just jumped down
from the active phase. This implies that s1.0/ D 1. Both cells then evolve in the
silent phase and each .wi ; sj / satisfies (9.39). This continues until cell 2 reaches the
jump-up curve CJUP. Suppose this occurs at � D T1, at which time the inhibition s2

felt by cell 1 jumps up to the line s2 D 1. Cell 2 then evolves in the active phase; we
illustrate the projection of cell 2’s trajectory during the active phase with a dotted
curve in Fig. 9.17. Note that s1.�/ still satisfies the second equation in (9.39); hence,
it keeps decreasing while cell 2 is active. During this time, cell 1 lies in the silent
phase with s2 D 1. This continues until cell 2 reaches the jump-down curve w D
wR.s1/. We denote this time as T2. Cell 2 then jumps down and this completes half
of a complete cycle. For this to be an antiphase solution, we must have w1.T2/ D
w2.0/ and s2.T2/ D s1.0/.

The construction of the antiphase solution requires a number of assumptions. It is
not clear, for example, why if we start with both cells in the silent phase one of them
will be able to reach the jump-up curve CJUP. If the cells are oscillatory for fixed
levels of synaptic input, then this will certainly be the case. However, it is possible
that even if the cells are excitable for fixed levels of synaptic input they are able
to reach CJUP. To explain why this is the case, we assume the cells are excitable
for fixed levels of synaptic input. That is, for each s; 0 � s � 1, the cubic-shaped
nullcline Cs intersects the w-nullcline along the left branch of Cs. Denote this point
as .vFP.s/; wFP.s// and let pFP.s/ D .wFP.s/; s/. Then CFP � pFP.s/ W 0 � s � 1g
defines a curve in the .w; s/ slow phase plane.

Note that CFP is the w-nullcline of the slow system (9.39). Along CFP; dw=d� D 0.
If w < WFP.s/, dw=d� > 0, so w increases, whereas if dw=d� < 0, w decreases.
Moreover, .wFP; 0/ is a fixed point of (9.39).

Solutions of (9.39) may reach the jump-up curve even though the cells are ex-
citable for fixed values of the synaptic input. Trajectories that begin to the “right”
of CFP (as will be the case for all of the cases considered here) will begin to move
to left with s decreasing. The trajectory may then cross CFP vertically, after which w
increases, and the trajectory may eventually cross the jump-up curve CFP. Note that
this will not be possible if the synaptic variable s decays too quickly; that is, if the
parameter K is too large. In this case, the trajectory will approach the fixed point
.wL.0/; 0/. We also note that trajectories cannot reach CJUP if the synapses decay
too slowly. In this case, the trajectories will approach near CFP and then follow this
curve until they approach the fixed point .wL.0/; 0/.

These considerations have the following consequences for the existence of an an-
tiphase solution. First, suppose the cells are excitable for each fixed level of synaptic
input. If the synapses decay too slowly, then there cannot exist an antiphase solu-
tion. If the synapses decay too quickly, then there cannot exist an antiphase solution
if the active phase is too short. There will exist an antiphase solution if the active
phase is long enough and the synapse decays fast enough. A similar analysis holds
if the cells are oscillatory for some (or all) fixed levels of synaptic input.
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9.9.3 Suppressed Solutions

We next consider the so-called suppressed solutions shown in Fig. 9.2c. In such
rhythms, one cell remains quiet while the other oscillates. Here, we assume a
single cell, without coupling, is oscillatory. Moreover, the cells are excitable
for sufficiently high levels of inhibition. That is, there exists s� 2 .0; 1/, so if
0 � s < s�, then the w-nullcline intersects Cs along its middle branch, whereas if
s� < s � 1, then the w-nullcline intersects the left branch of Cs at some point pFP.s/.
Note that fpFP.s/g W s� < s � 1g defines a curve CFP that touches CJUP when s D s�.

Suppressed solutions arise if the rate at which the synapse turns off is sufficiently
slower than the rate at which the cells evolve in the silent phase; that is, the parame-
ter K is sufficiently small. The reason for this is that if the inhibition decays slowly
enough, the leading cell can recover and fire again before the inhibition from its
previous active phase wears off enough to allow the other cell to fire.

This type of solution cannot exist if the cells are excitable rather than oscillatory,
since there is no input from the quiet cell to drive the active one. On the other hand,
suppressed solutions only arise if the cells are excitable for some fixed levels of
inhibition; i.e., some s 2 .0; 1
. If this is not the case, then the w-coordinate of the
suppressed cell must keep decreasing until that cell eventually reaches the jump-up
curve and fires.

If the synaptic inhibition decays at a rate comparable to the recovery of the cell,
complex hybrid solutions can occur, in which one cell is suppressed for several
cycles, while the other fires, and then fires while the other is suppressed. An example
is shown in Fig. 9.2d. In this example, each cell is excitable when uncoupled but is
oscillatory for higher levels of inhibition. A cell can fire a number of times while
the other cell is suppressed. The inhibition of the firing cell must eventually wear
off, such that that cell can no longer fire. This then allows the inhibition of the
suppressed cell to wear off to the level from which it can fire. The roles of the two
cells are then reversed.

9.10 Propagating Waves

We now consider propagating activity patterns. These may arise in both excita-
tory and inhibitory (as well as excitatory–inhibitory) networks and there have been
numerous theoretical studies of mechanisms underlying both the existence and sta-
bility of this phenomenon. Wavelike activity has been observed experimentally in
several brain regions (see also Chaps. 8, and 12).

Here, we will consider a conductance-based model of the region of the brain
called the thalamus. At its simplest, the network consists of two layers of neu-
rons, the excitatory thalamocortical cells and the inhibitory reticular nucleus cells.
These nuclei have been shown to play a key role in the generation of sleep rhythms.
Each neuron is modeled with a single- compartment, conductance-based model that
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includes the usual potassium and sodium channels for spike generation, as well as a
low threshold T-type calcium channel. This last channel allows the cells to produce
rebound excitation. Details of the model can be found in [266].

Each cell is modeled as

dv

dt
D f .v; h/;

dh

dt
D �g.v; h/=�.v/:

The phase plane for an individual cell is shown in Fig. 9.18a. Note that the cubic-
shaped v-nullcline is now “upside down” from what we had before. This is because
the slow variable h represents the availability of the inward T-current, instead of the
outward potassium current activation variable as before. If a cell receives inhibitory
input, then this raises the v-nullcline and the cell moves toward the new fixed point.
If the inhibition is then rapidly removed, the v-nullcline falls back to the original
position (s D 0), which leaves .v; h/ above hmax, the position of the left knee of
the v-nullcline. This causes the voltage to jump to the right branch of the nullcline
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Fig. 9.18 Thalamic network model. (a) Phase plane showing the h-nullcline (dashed line) and
v-nullcline at rest (s D 0). Several important values of h are shown. The approximate singular
trajectory of a lurching wave is drawn in thick lines. (b) The architecture of the full model. (c) A
simulation of a lurching wave. The gray scale depicts voltage; white corresponds to �40 mV and
black corresponds to �90 mV. TC thalamocortical, RE reticular nucleus
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(a rebound spike), before returning to rest. Suppose the two-layer network of these
cells is wired up as in Fig. 9.18b. Then, under some circumstance, the result is a
wave of activity across the network. Such a wave is shown in Fig. 9.18c. This is not
a smooth wave; rather we call this a lurching wave. Here is what happens. A group of
thalamocortical cells fire. This excites reticular nucleus cells nearby, causing them to
fire. They inhibit the thalamocortical cells, including those surrounding the original
population of firing cells. The fresh population is inhibited and when the inhibition
wears off, the cells fire as a group and so on.

We now use geometric singular perturbation theory to further explain this and
find a formula for the wave speed. To do this, we will simplify the situation a bit
and consider a single layer of cells with inhibitory coupling. Thus, when a group of
cells fire, they inhibit a neighboring group. After the inhibition wears off, the next
group of cells fire and so on. The present exposition will be a drastic approximation
to a fuller analysis of the model which can be found in [266].

We consider a one-dimensional array of cells coupled through fast and direct
inhibition. Each curve Cs ; 0 � s � 1; is assumed to be excitable. We assume
throughout that there is a square synaptic footprint of unit length; that is, each cell
sends the same amount of inhibition to each of its immediate neighbors, as well as
itself. One can view each cell as representing the dynamics of an effective footprint
of a cluster of cells in a more complicated network. Throughout this analysis, we
consider the slow timescale.

We consider a lurching wave propagating to the right and assume the “leading
edge” at time � D T1 is at cell 1. By this we mean that cell 1 fires at � D T1 and
none of the cells Ck with k > 1 have fired for � < T1. We follow the trajectories
of cell 1 and cell 2 in phase space until cell 2 fires. Suppose this is at time � D T2.
For there to be a lurching wave, we require that the position of cell 2 at � D T2

is exactly the same as the position of cell 1 at � D T1. This will lead to analytic
expressions for the time T2 � T1 D Ttot between firings; this then determines the
velocity of the propagating wave. For convenience, we assume T1 D 0, and thus
T2 D Ttot, the total duration of one cycle.

The trajectories of cell 1 and cell 2 are illustrated in Fig. 9.18a. Let C0 be the
cubic corresponding to a single cell without synaptic input and CA; A D ˛=.˛ Cˇ/

the cubic corresponding to a cell that does receive synaptic input. At � D 0, cell 1
jumps up to the right branch of CA. We assume at this time h1 D hJ , where hJ has
yet to be determined. Cell 2 lies at the rest point p0 D .v0; h0/ for � < 0 and jumps
to the left branch of cubic CA when � D 0. For � > 0, cell 1 moves down the right
branch of CA and cell 2 moves up the left branch of CA. This continues until cell 1
reaches the right knee of CA and jumps down. Suppose this happens at time Ttot. For
there to be a lurching wave, we require that h2.Ttot/ D hJ .

To simplify the analysis, We now make several assumptions concerning the non-
linear functions in the model. The simplifying assumptions are the following:

(1) In the silent phase, �.v/ D �L, a constant.
(2) In the active phase, �.v/ D �R, a constant, and h1.v/ D 0.
(3) The left branches v D vL.h; s/ do not depend on h.
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All of these assumptions are nearly satisfied for the model described in [266]. Ob-
serve that assumption 2 implies, in the active phase, the equation for h in the slow
time � D �t simplifies to

Ph D �h=�R: (9.42)

From assumption 1, h.�/ satisfies the following equation in the silent phase:

Ph D .h1.v/ � h/=�L: (9.43)

Since we are assuming the cells are excitable for each fixed value of s, we can define
.vFP.s/; hFP.s// to be the point where Cs intersects the h-nullcline. Using assump-
tion 3, we see that on the left branch of Cs, for any fixed s, v takes a constant value,
which must then be vFP.s/; therefore, h1.v/ is also a constant, namely, hFP.s/, and
hence we have the following equation describing the behavior in the silent phase:

Ph D .hFP.s/ � h/=�L: (9.44)

We now derive a formula for Ttot. Recall that cell 1 jumps up at h1 D hJ , where
hJ is yet to be determined. It then follows from assumption 2 that for 0 < � <

Ttot; h1.�/ satisfies equation (9.42) subject to h1.0/ D hJ . Now cell 1 jumps down
at the right knee of CA at � D Ttot. Denote the position of this knee as hRK.A/. Then
h1.Ttot/ D hRK.A/. Solving (9.42) together with these two boundary conditions
leads to the following expression relating the unknowns hJ and Ttot W

Ttot D �R ln
hJ

hRK.A/
: (9.45)

On the other hand, cell 2 lies along the left branch of CA for 0 < � < Ttot and
h2.�/ satisfies (9.44) with s D A, together with the initial condition h2.0/ D h0.
Hence,

h2.�/ D hFP.A/ C .h0 � hFP.A//e��=�L : (9.46)

Recall that we also have that h2.Ttot/ D hJ ; hence, hJ and Ttot must also satisfy

Ttot D �L ln
hFP.A/ � h0

hFP.A/ � hJ

: (9.47)

Combining (9.45) and (9.46) gives

A1.hJ / � hFP.A/ � hJ

hFP.1/ � h0

D
�

hRK.A/

hJ

� �R
�L � A2.hJ /: (9.48)
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This is a single equation for the unknown hJ . All of the other parameters in this
equation can be easily determined by properties of a single cell with constant input.
Once we solve for hJ , we can compute Ttot, the period of one cycle, from (9.45).

This equation has either two roots or no roots. To see this, note that A1.0/ <

1 while A2.h/ approaches 1 as h ! 0: Furthermore, A1.hFP.A// D 0 <

A2.hFP.A//: Thus, if there is one (nontangent) root, then there must be another.
One of these is close to 0 and the other is close to hFP.A/ and as the ratio �R=�L

increases, the second root approaches hFP.A/: Since no jump to the right branch can
occur if hFP.A/ < hLK.0/, we see that if we choose the larger root of (9.48), then
(9.45) will be defined.
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9.12 Exercises

1. Consider a system of the form (9.1) and assume the system is oscillatory.
Moreover,

g.v; w/ D .w1.v/ � w/=�.v/: (9.49)

Assume there are positive constants �L and �R so that (1) w1.v/ D 0 and
�.v/ D �L along the left branch of the v-nullcline and (2) w1.v/ D 1 and
�.v/ D �R along the right branch of the v-nullcline. Finally, assume the left and
right knees of the v-nullcline are at wL < wR, respectively. Compute the period
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of the singular periodic solution, with respect to the slow timescale. The answer
should be in terms of the constants �L; �R; wL, and wR.

2. Construct a network of two mutually coupled cells with excitatory synapses
that exhibits both a stable synchronous solution and a stable antiphase solution.

3. Construct a network of two mutually coupled cells with inhibitory synapses that
exhibits antiphase (postinhibitory rebound) behavior and, by adjusting a single
parameter, an almost synchronous solution. By adjusting another parameter, the
network should exhibit a suppressed solution.

4. Consider a network of two mutually coupled neurons, modeled as in (9.4).
Assume each cell, without coupling, is oscillatory and g.v; w/ satisfies the as-
sumption described in the first exercise. As before, assume the left knees of the
cubics C0 and CA are at wL and wA

L , respectively, and the right knees are at wR

and wA
R , respectively. Compute that frequencies of the synchronous solutions

corresponding to excitatory and inhibitory synapses. Which is larger? How do
these frequencies compare with that of a single cell without coupling?

5. Consider two cells that satisfy (9.1). Assume one of the cells is excitable so that
it has a unique fixed point on the left branch of its v-nullcline, and the other cell
has a unique fixed point on the right branch of its v-nullcline. Now suppose we
couple them as in (9.4). Under what conditions will the coupled system exhibit
stable oscillatory behavior? Are the oscillations synchronous or antiphase, or
can one obtain both?

6. Construct a network of four mutually coupled cells that exhibits (for different
values of parameters) (a) synchronous behavior, (b) a two-clustered solution in
which there are two clusters with two cells in each cluster, (c) a two-clustered
solution in which there are three cells in one cluster and only one cell in the
other cluster, (d) a three-clustered solution in which there are two cells in one
cluster and only one cell in the other two clusters, (e) a four-clustered solution
in which the cells take turns firing and the phase between the firings is constant,
(f) an almost-synchronous solution in which the cells take turns firing and the
phase between the “trailing cell” and the “leading cell” is longer than the phase
difference between other cells, (g) a suppressed solution in which one cell fires
periodically but the other cells are suppressed, and (h) a solution in which two
of the cells fire in antiphase and the other two cells are suppressed.

7. Give a detailed construction of the singular solutions corresponding to an-
tiphase solutions arising from postinhibitory rebound for the following cases:
(a) cellular escape, (b) synaptic escape, and (c) synaptic release.

8. Consider the antiphase solutions arising from postinhibitory rebound. How do
the frequency and duty cycle depend on gsyn and the synaptic threshold VT? You
should consider separate cases: the cellular escape and release mechanisms and
the synaptic escape and release mechanisms. Justify your answers using the
singular constructions.

9. In Sect. 9.7, we constructed the singular antiphase solution for excitatory
synapses when the cells have a short duty cycle. Do the same thing for in-
hibitory synapses. Show that this solution is unstable if the same conditions
described at the end of that section are satisfied.
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10. Construct a network of two mutually coupled cells with slow inhibitory net-
works which exhibits a firing pattern in which the cells take turns firing action
potentials; during each cycle, one of the cells fires two spikes, whereas the other
cell fires only one spike. How does this pattern change as you change the synap-
tic coupling strength gsyn and the rate of synaptic decay ˇ? Try to find a chaotic
solution in which the number of times a cell fires before the other cell takes
over appears to be random.

11. Saper et al. [242] suggested the regulation of sleep and wake is due to mutual
inhibitory interactions between sleep-active cells in the ventral lateral nucleus
and wake-promoting cells in nuclei including the dorsal raphe nucleus, the lo-
cus coeruleus, and the tuberomammillary nucleus. Construct a simple model
for the sleep–wake cycle that includes just two mutually coupled cells. Say
that cell 1 corresponds to the sleep-active nuclei and cell 2 corresponds to the
wake-active nuclei. The cells should take turns firing; cell 1 should be active
for approximately 8 h and cell 2 should be active for approximately 16 h.

12. In Fig. 9.18c, we show a lurching wave with no activity in its wake. It is also
possible that the cells continue to fire repetitively in the wake of the wave.
Construct a single-layered inhibitory network and a double-layered excitatory–
inhibitory network that exhibits both types of waves. What parameters do you
need to change so that the network switches from one type of wave to the other?

13. Prove as cells move along the same left or right branch of a cubic, the time
metric between the cells is invariant.

14. Prove …0
2 D …0

4 D 1, where …0
2 and …0

4 were defined in Sect. 9.7.2.



Chapter 10
Noise

Neurons live in a noisy environment; that is, they are subjected to many sources
of noise. For example, we treat ion channels deterministically, but in reality, open-
ing and closing of channels is a probablistic event. Similarly, there is spontaneous
release of neurotransmitter which leads to random bombardment of small depolar-
izations and hyperpolarizations. In vivo, there is increasing evidence that cortical
neurons live in a high-conductance state due to the asynchronous firing of the cells
which are presynaptic to them. Noise in neural and other excitable systems has been
the subject of research since the early 1960s. There are a number of good books and
reviews about the subject. We single out the extensive review [179] and the books
[169, 274].

Our goal in this chapter is to look at several aspects of the role of noise in neural
models. Most of the analysis that we do will be on scalar models for the firing of
action potentials, such as the leaky integrate-and-fire neuron. However, we also look
at more general ionic models and stochastic channel dynamics. Since few textbooks
in theoretical neuroscience address the issue of noise, we felt that a few words on
the subject were warranted. There is no way to introduce a comprehensive theory
of stochastic differential equations in the allotted space so we refer the reader to a
number of good texts; notably [96] and the first five chapters of [154]. The main
point of the analysis in this chapter is to see the effects of noise on the subthreshold
properties of neurons. This will allow us to develop heuristics for the firing rates of
neurons in networks later in the book.

Since the treatment of noise in this chapter is somewhat informal, we will not
describe the beautiful mathematical constructions such as the Ito integral. Our main
interest is the Langevin equation:

dX D A.X; t/dt CB.X; t/dW.t/: (10.1)

Here, X 2 Rn, A W Rn � R ! Rn, B is an n � n matrix of functions, Bjk W
Rn � R ! R, and W.t/ is a vector of independent Wiener processes. (A Wiener
process is formally defined below.) To get a feeling for this, it is helpful to solve this
numerically:

X.nC 1/ D X.n/C hA.X.n/; tn/C B.X.n/; tn/
p
h ON.0; 1/; (10.2)

G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neuroscience,
Interdisciplinary Applied Mathematics 35, DOI 10.1007/978-0-387-87708-2 10,
c� Springer Science+Business Media, LLC 2010
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where h is the discretization time step and ON.0; 1/ is a vector of normally distributed
independent random numbers with unit variance. (We will explain the strange

p
h

scaling below; you will just have to trust us on this for now.)
What does noise do to neurons? One of the main effects is that it allows them to

fire in the presence of subthreshold inputs. That is, if a current is applied that will
not cause the deterministic model to fire, the addition of zero mean noise can induce
the neuron to fire. Figure 10.1a shows a simulation of the integrate-and-fire model
with additive noise,

dV D .I � V /dt C �dWt ;
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Fig. 10.1 Noisy neurons. (a) Integrate-and-fire model dV D .I �V /dtC�dW.t/ with I D 0:75

and � D 0:1. This numerical solution was computed using (10.2) with h D 0:01. Vertical lines
represent times at which the model crosses V D 1 and is reset to 0. (b) Noise allows a subthreshold
stimulus to be encoded. (c) Noisy Morris-Lecar model with class II parameters, I D 85, and unit
variance noise in the voltage component. (d) Distribution of crossings of w D 0:3. ISI interspike
interval
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which is simulated with the simple scheme

VnC1 D Vn C h.I � Vn/C �
p
h ON.0; 1/:

In this figure, the threshold is V D 1 but I D 0:75, so in the deterministic model
(� D 0), V will never fire. The addition of noise allows the model to fire occasion-
ally. In fact, with sufficient noise, the neuron is able to sample the stimulus and, over
many trials, reconstruct it as in Fig. 10.1b (where I is time-varying).

Figure 10.1c shows the effects of noise on the Morris–Lecar model with class
II parameters. With I D 85, there is only a stable fixed point for the noiseless dy-
namics. Noise allows the neuron to spike with some regularity. How does one detect
a spike in a stochastically driven model? Because the voltage itself is the driven
variable, mathematically the trajectory will not be differentiable, so theoretically it
could cross a fixed value arbitrarily many times in a given time interval. This is not
an issue with the integrate-and-fire model since as soon as it crosses threshold, the
voltage is reset far away from threshold. In a simulation, we have access to all of the
variables; in particular, the potassium gate. Figure 10.1c shows that crossing level
of w is a very reliable indicator of a spike. Thus, we collect all the times at which
w D 0:3 is crossed from below. The interspike intervals (ISIs) are the times between
spikes. Figure 10.1d shows a histogram of the distribution for these times. The dis-
tribution shows a sharp peak at about 100 ms and a broader, smaller peak at about
175 ms. In Exercises 1–3 you are asked to look at these distributions more carefully.

The goal of this chapter is to provide some theoretical analysis of the results
shown in Fig. 10.1. To set this up, we next provide a rather terse review of the theory
of stochastic differential equations.

10.1 Stochastic Differential Equations

Our main interest in this chapter is (10.1). Almost everything that can be done
with this both practically and analytically concerns the scalar case where X is one-
dimensional. The more general theory is as expected but the equations that we get
are not easily solved either numerically or analytically. Thus, we start with the scalar
equation. We can rewrite (10.1) as

x.t/ D x.t0/C
Z t

t0

a.x.s/; s/ ds C
Z t

t0

b.x.s/; s/dW.s/:

The first integral is the standard integral that you are probably familiar with, but the
second integral is a stochastic integral. Let us briefly discuss some differences in
the interpretation since these will come up when we introduce the Fokker–Planck
equation.



288 10 Noise

10.1.1 The Wiener Process

We suppose W.t/ is a Wiener process. This is just the limiting case of a random
walk as the steps and the time between steps get smaller such that .�x/2=�t tends
to the finite limit of 1. That is, W.t/ is a simple diffusion process satisfying:

1. W.0/ D 0.
2. The probability distribution of W.t/ is Gaussian; that is, the density function

satisfies
@p.x; t/

@t
D �2

2

@2p.x; t/

@x2
; p.x; 0/ D ı.x/:

3. For any finite collection of times t1 < t2 < � � � < tn, the random variables
W.tj /�W.tj �1/ are independent.

4. EŒW.t/� D 0 and EŒ.W.t/�W.s//2� D �2.t � s/ for all 0 � s � t .
5. W.t/ is a continuous process.

Here, EŒU � is the expected value of the random process U . As we pointed out in
the introduction to this chapter, you can simulate a standard Wiener process by the
iteration

W.t C h/ D W.t/C
p
hN.0; 1/; (10.3)

where N.0; 1/ is a normally distributed random variable with zero mean and
unit variance. Figure 10.2 shows an example of such a simulation. Property 4 is
illustrated in Fig. 10.2a; the mean is zero and the variance grows linearly in time.
Figure 10.2b shows that the distribution is a Gaussian and a solution to the diffusion
equation

p.x; t/ D 1p
2�t

e�x2=.2t/:
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Fig. 10.2 Simulated Wiener process, h D 0:01. (a) Sample path and mean and variance of 1,000
sample paths. (b) Probability histogram for 100,000 sample paths starting at W.0/ D 0
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10.1.2 Stochastic Integrals

We now come to the main issue in stochastic calculus, the interpretation of an
integral:

I D
Z t

t0

G.s/dW.s/; (10.4)

whereG.t/ is a piecewise continuous function. As with usual integration, we divide
the interval Œt0; t � into finitely many points and write the partial sums

Sn D
nX

j D1

G.�j /ŒW.tj / �W.tj �1/�;

where we choose tj �1 � �j � tj . In Riemann integration, it does not matter
how we choose �j . However, for stochastic integration, the choice of �j matters
[96, p. 84]. For mathematical manipulation of the stochastic integrals, it turns out
that one should take �j D tj �1. In this case, the resulting integral is called the Itô
integral. The Itô calculus allows one to prove many rigorous results about stochas-
tic integrals and also allows one to evaluate the integrals. An alternative choice of
�j D .tj �1 C tj /=2 results in the Stratonovich integral and regular Stratonovich
calculus. There is a relationship between the two integrals in the context of stochas-
tic differential equations and there is a formula relating one to the other. The only
reason we bring these technical issues up is that when we define the Fokker–Planck
equations for (10.1), the choice of Itô or Stratonovich calculus matters. As far as
neural modeling is concerned, some people prefer Stratonovich calculus since it is
the appropriate model if we assume the “noise” has correlations and we take the
limit as the correlation time goes to zero. We cannot emphasize enough the point
that if B is constant in (10.1), then the two are exactly the same.

10.1.3 Change of Variables: Itô’s Formula

Later (when we discuss the theta model), we will need to make a change of vari-
ables. In ordinary calculus, changing variables is a simple application of the chain
rule. However, in stochastic calculus, certain higher-order terms are important. From
(10.3), it follows that

EŒ.W.t C h/�W.t//2� D hEŒN.0; 1/2� D h;

sinceN.0; 1/ is a normal random variable with unit variance. Thus, we formally find

EŒdW.t/2� D dt:
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Now suppose x satisfies

dx D a.x; t/dt C b.x; t/dW.t/:

Let y D f .x/, where f is twice differentiable. What differential equation does the
new variable y satisfy [96, p. 95]?

dy D f .x C dx/� f .x/

D f 0.x/dx C 1

2
f 00.x/dx2 C � � �

D f 0.x/Œa.x; t/dt C b.x; t/dW.t/�C 1

2
f 00.x/b2.x; t/.dW.t//2 C � � �

D
�
f 0.x/a.x; t/C 1

2
f 00.x/b2.x; t/

�
dt C f 0.x/b.x; t/dW.t/C � � � :

Unlike the standard chain rule, there is an additional term f 00.x/b2.x; t/=2 which
appears in the deterministic part of the equation for y. We call the equation

df Œx.t/� D
�
f 0Œx.t/�a.x.t/; t/ C 1

2
f 00Œx.t/�b2.x.t/; t/

�
dt

Cf 0Œx.t/�b.x.t/; t/dW.t/ (10.5)

Itô’s formula. There is an obvious multidimensional analogue of this equation.

10.1.4 Fokker–Planck Equation: General Considerations

The Fokker–Planck equation is the fundamental method that we have for studying
stochastic differential equations. There is a cost to this in terms of practicality. The
Fokker–Planck equation is a diffusion equation on Rn, so instead of solving an
n-dimensional stochastic differential equation, one has to solve a partial-differential
equation. For the scalar case, the trade-off is not too bad and we can learn a lot from
the analysis and simulation of the Fokker–Planck equation. Beyond the scalar case,
we have to say that it is probably more efficient to simulate the stochastic differential
equation.

Let us start with a general continuous scalar random process. Let P.x; t/ be the
probability that a random variable X D x at time t . We will assume the new state
of the system depends only on the current state. (This is called the Markov property
and such a process is called a Markov process.) Let M.x0; x; t/dt denote the rate at
which the process whose state is X D x0 at time t jumps to x at time t C dt . Then,

@P

@t
D
Z
ŒM.x0; x; t/P.x0; t/ �M.x; x0; t/P.x; t/� dx0: (10.6)
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This is the master equation and simply says that the rate of change of P is just the
difference between the rate at which X goes from x0 to x times the probability of
being in state x0 and the rate at which the process leaves state x for some other
state times the probability of being in state x. If X takes on discrete values, then the
integral is replaced by a sum. Let Q.y; x; t/ D M.x; x C y/ be the rate of making
a jump of size y from point x. Equation (10.6) can be written as

@P

@t
D
Z
ŒQ.y; x � y; t/P.x � y; t/ �Q.y; x; t/P.x; t/� dy:

The third-order Kramers–Moyal expansion is an approximation in which we expand
in y to second order:

@P

@t
D
Z

dyŒ�y @Q.y; x; t/P.x; t/
@x

C .y2=2/
@2Q.y; x; t/P.x; t/

@x2
: (10.7)

Letting

˛1.x; t/ D
Z

dyyQ.y; x; t/I ˛2.x; t/ D
Z

dyy2Q.y; x; t/;

we get an approximate partial differential equation:

@P

@t
D �@˛1.x; t/P

@x
C 1

2

@2˛2.x; t/P

@x2
:

Note that ˛1 is the mean jump size and ˛2 is the variance. By assuming a diffusion
process, all odd moments (y3, y5, etc.) vanish and the higher even moments turn
out to be expressible in terms of the second moment. Thus, for a diffusive process,
the Kramers–Moyal expansion is exact.

Let us return to the discretization of the scalar stochastic differential equation:

x.t C h/ D x.t/C ha.x; t/C
p
hb.x; t/N.0; 1/:

We can view this as a jump process in steps of h. The mean jump size is ha.x; t/
and the variance is hb2.x; t/. Since the mean and variance in the master equation
are defined in terms of the rate per unit time, we divide by h and obtain the Fokker–
Planck equation for the scalar Langevin equation (10.1):

@P

@t
D �@a.x; t/P

@x
C 1

2

@2

@x2

�
b.x; t/2P

�
: (10.8)

This equation can be more rigorously derived (see [96]), but the present expansion
provides the intuition behind it. The general n-dimensional Fokker–Planck equation
for (10.1) is
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@P.X; t/

@t
D �

nX
iD1

@Ai .X; t/P.X; t/

@xi

C1

2

nX
i;j D1

@2

@xi@xj

�
B.X; t/BT .X; t/P.X; t/

	
: (10.9)

In general, this partial differential equation is intractable and numerical solutions
must be computed. Since it is a partial differential equation, it may be impractical
to actually solve this, and instead the best approach is to run the stochastic equa-
tion many times and take averages. Below, we introduce a method for obtaining
equations for the moments, in particular, the mean and the variance in the small
noise case.

10.1.4.1 Derivation from Itô’s Formula

Here, we derive the Fokker–Planck equation using Itô’s formula and taking aver-
ages. This derivation is adapted from [237]. We only derive the scalar model version.
Consider the stochastic differential equation

dx D f .x; t/dt C g.x; t/dW:

Let y D h.x/ be a transformation, where h is arbitrary but twice differentiable.
From Ito’s formula,

dh.x/ D h0.x/f .x; t/dt C h00.x/g2.x; t/=2dt C h0.x/gdW:

Here, primes mean differentiation with respect to x. Taking the expectation of this,
we obtain

d

dt
EŒh.x/� D EŒh0.x/f .x; t/� CEŒh00.x/g2.x; t/=2�:

Let �.x; t/ be the probability distribution for the variable x. Note that

EŒU.x; t/� D
Z
U.x; t/�.x; t/dx:

The integral is over the domain of x, often the real line, but not always. Using the
definition of the expectation, we find

d

dt

Z
h.x/�.x; t/ dx D

Z
Œh0.x/f .x; t/C h00.x/g2.x; t/=2��.x; t/ dx:
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If we integrate the right-hand side by parts, we obtain

d

dt

Z
h.x/�.x; t/ dx D

Z
Œ�.f .x; t�.x; t//0 C .g2.x; t/=2�.x; t//00�h.x/ dx:

Since this must hold for any function h.x/, we must have

@�

@t
D @

@x



�f .x; t/�.x; t/ C 1

2

@

@x
Œg2.x; t/�.x; t/�

�
:

This is the Fokker–Planck equation.

10.1.5 Scalar with Constant Noise

Here, we are interested in the equation

dx D f .x; t/dt C �dW.t/; (10.10)

where W.t/ is the standard Wiener process. We are interested in the distribution of
x as well as various rates such as how quickly x leaves a region. We can integrate
(10.10) to obtain

x.t/ D x.0/C
Z t

0

f .x.s/; s/ dt C �

Z t

0

dW.t/:

We start with the Fokker–Planck equation for this process. By assuming additive
noise, we avoid issues about the interpretation of the stochastic integral. For a full
discussion of this topic, see [96]. From (10.8), the forward Fokker–Planck equation
for (10.10) is

@P.x; t/

@t
D �@f .x; t/P.x; t/

@x
C �2

2

@2P.x; t/

@x2
: (10.11)

This can also be written as a conservation law for probability,

@P.x; t/

@t
C @J.x; t/

@x
D 0;

where J.x; t/ is the probability current (in dimensions of dx=dt):

J.x; t/ D f .x; t/P.x; t/ � �2

2

@P.x; t/

@x
:
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The current J consists of two parts: an active transport term f .x; t/P.x; t/ and
a diffusive term .�2=2/@P=@x. The probability current is similar to the current we
saw earlier in our models of the cable equation. Unlike the axon equations, however,
here we have drift or transport terms f .x; t/ which actively direct the probability
flow according to the spatial location. Consider an interval Œa; b�. The change in
probability in the interval must equal the inward current minus the the outward
current. Thus, we have

@

@t

Z b

a

P.x; t/ dx D J.a; x/ � J.b; x/ D �
Z b

a

@

@x
J.x; t/ dx:

Since the interval is arbitrary, we obtain the standard continuity equations:

@P.x; t/

@t
D �@J.x; t/

@x
:

We note that this simple continuity equation assumes infinitesimal jumps (to write
this as a partial differential equation), but as we will encounter below, there may be
large jumps, so the corresponding conservation equations must be amended.

To solve the Fokker–Planck partial differential equation, we need boundary and
initial conditions. If we choose positive initial data, then the maximum principle for
the diffusion equation guarantees that P.x; t/ � 0. Furthermore, if

Z
�

P.x; 0/ dx D 1;

then Z
�

P.x; t/ dx D 1

from conservation of probability. (Here,� is the domain of x.) There are numerous
possible boundary conditions which are physically reasonable. If the domain is the
real line, then obviously we want P.x; t/ ! 0 as jxj ! 1. In some examples the
domain will be periodic, so P.a; t/ D P.b; t/ and J.a; t/ D J.b; t/.

We discuss two particularly important boundary conditions. If P.x; t/ D 0 at a
boundary point, a, we say that the boundary is absorbing. A particle reaching the
boundary is absorbed. In this case, we lose conservation of probability. So, if this
condition occurs, then it is necessary to add other terms to the continuity equations
or have the flux out of that end point appear somewhere else to keep the total prob-
ability at 1. (In the scalar neuron models, described below, this condition occurs at
the “spike” of the cell.) If J.x; t/ D 0 at a boundary point, a, we say it is a reflecting
boundary. A particle reaching the boundary cannot cross it (the current is zero), so
it bounces back.

Often one is only interested in stationary distributions (f .x; t/ is independent of
t , for example). Then we obtain

�2

2
P 00 � .fP /0 D 0;
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where P 0 is the derivative with respect to x. This is an ordinary differential equation
and can be integrated once:

��
2

2
P 0.x/C f .x/P.x/ D J: (10.12)

J is just a constant of integration; the current described above. Suppose the domain
is the real line. Then, P.˙1/ D P 0.˙1/ D 0 since P must be integrable. Thus,
J D 0 and we can solve for the steady state:

P.x/ D K exp
2F.x/

�2
; (10.13)

where F 0.x/ D f .x/ and K is a normalization constant so that
R
P.x/ D 1. The

function �F.x/ is called the potential for this process and local peaks in the proba-
bility correspond to minima of the potential. Consider, as an example, f .x/ D �x.
Then,

P.x/ D 1

�
p
�

e�.x=�/2

:

If the domain is not infinite, then J may be nonzero. However, if one of the
boundaries is reflecting, then J D 0, which means the other boundary must also
be reflecting unless there are additional terms in the continuity equation such as
jumps. Suppose the domain is .a; b/. In general, with J ¤ 0, we can still solve the
steady state. Let

‰.x/ D exp



.2=�2/

Z x

a

f .y/dy

�
:

Then we integrate (10.12) to obtain

P.x/ D ‰.x/

�
P.a/ � 2J

�2

Z x

a

dy=‰.y/

�
:

Suppose, for example, the boundary conditions are periodic. Then we require
P.a/ D P.b/. Then, we obtain

J D P.a/
Œ‰.b/ � 1��2

2‰.b/
R b

a
dy=‰.y/

: (10.14)

P.a/ is found by the normalization condition,
R b

a
P.x/ D 1.

10.1.6 First Passage Times

Consider (10.10). We now ask the following question: what is the distribution of
exit times from the domain Œa; b� for the stochastic process? Suppose x.0/ D x.
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Let p.x0; t jx; 0/ be the probability that the process defined by (10.10) is at x0 at
time t given it started at x at time 0. Define

G.x; t/ �
Z b

a

dx0p.x0; t jx; 0/:

G.x; t/ is the probability that x is still in the interval Œa; b� at time t . Thus, if T is the
time when x leaves the interval, thenG.x; t/ D prob.T � t/. Why do we care about
this function? Below, when we discuss scalar models such as the integrate-and-
fire model, we will be interested in when the voltage crosses the threshold. These
crossing times correspond to “spikes” and their distribution is the ISI distribution.
Gardiner [96] showed that G.x; t/ satisfies the backward Fokker–Planck equation:

@G.x; t/

@t
D f .x; t/

@G.x; t/

@x
C �2

2

@2G.x; t/

@x2
: (10.15)

What are the initial and boundary conditions? Clearly G.x; 0/ D 1 if a < x < b.
The boundary conditions depend on the nature of the problem. We will often take
absorbing conditions at x D b.

For many problems, we are interested in the mean exit time, T .x/, defined as
the expected time to leave the interval given a starting value at x. Suppose f is
independent of time. The definition of G.x; t/ implies that

G.x; t/ D
Z 1

t

�.x; t 0/ dt 0; (10.16)

where �.x; t/dt is the probability that x exits the domain in the interval .t; t C dt/.
The mean first passage time is thus

hT i.x/ D
Z 1

0

t�.x; t/:

Integration by parts (Exercise 6) shows that

hT i.x/ D
Z 1

0

G.x; t/ dt:

In the same exercise you show that (10.15) implies that hT i satisfies the simple
ordinary differential equation

�1 D f .x/hT i0 C �2

2
hT i00: (10.17)

Finally, a closed-form solution is provided in the exercise, although the integrals
cannot generally be evaluated except numerically. In addition to the mean first pas-
sage time, one is often interested in higher moments such as hT ni WD Tn. The nth
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moment, Tn, satisfies a simple second-order equation like (10.17) depending only
on the previous moments (Exercise 6). Since the first passage time is related to
the firing rate of a noisy neuron, spike statistics can be found from the solution to
the moment equations. For example, the coefficient of variation is a measure of the
irregularity of a process and is defined as the ratio of the standard deviation to the
mean. The standard deviation of the firing rate is just

� D
p
EŒ.T � EŒT �/2� D

p
EŒT 2� � EŒT �2;

so the coefficient of variation is

CVT D
p
EŒ.T=EŒT �/2� � 1:

10.1.6.1 Simple Derivation of the First Passage Time

Larry Abbott (personal communication) provided a very simple derivation of the
first passage time equation. As above, we let T .x/ denote the mean first passage
time. On a given trial, x moves from x to x C �x in time �t . Then on average,
hT .x C�x/i D T .x/ ��t . (Note that �x is a random variable but T .x/, x, and
�t are not.) From (10.10), we note that

�x D f .x/�t C �
p
�t	;

where 	 is a normally distributed random variable with zero mean and unit variance.
Thus, the mean of �x is f .x/�t . The mean of .�x/2 is

h�x2i D
D
Œf .x/�t C �

p
�t	�2

E
D Œf .x/�t�2 C �2�t D �2�t CO..�t/2/:

Now, expand T .x C�x/ in small �x, to get

T .x C�x/ � T .x/C�xT 0.x/C 1

2
.�x/2T 00.x/C � � � :

Taking the mean, using the above fact that h.�x/2i D �2�t C O..�t/2/, and
dividing by �t , we get

�2

2
T 00.x/C f .x/T 0.x/ D �1

as �t ! 0.



298 10 Noise

10.1.6.2 Some Comments on the Utility of First Passage Times

First passage time methods are an elegant tool for determining various questions
such as the firing rate of a neuron in the presence of noise. However, it is crucial
that one be able to actually determine what the crossing threshold is for the model.
In one-dimensional neurons, this is very clear – we set a point at which the cell is
said to fire and that is that. (Technically, we apply an absorbing boundary condition
at the spike, P.Vspike; t/ D 0.) However, consider a model that actually does pro-
duce spikes such as the Morris–Lecar model, for example. The phase space is no
longer an interval on the line with a well-defined boundary. Rather, the domain is
the whole plane. Given this, what do we mean when we say a neuron produces a
spike? We could, for example, look for a peak in the membrane potential and call
that a spike. This is what neuroscientists do when they attempt to detect spikes from
the extracellular or intracellular recordings of a neurons. However, with additive
white noise stimuli, the voltage can cross a set threshold arbitrarily many times in
any given interval, so a peak will not make any sense. There are two ways around
this difficulty. One way is to use colored noise, that is, noise which has been low-
pass-filtered so that the right-hand sides of the voltage equation are continuous. In
this case, the peak of the voltage is well defined, so we can, at least, run reasonable
stochastic simulations. Using colored noise presents a more realistic scenario for
the environment of a neuron, but the analysis of this process is far more difficult as
we have added an extra dimension, so, e.g., even in a scalar model, the mean first
passage time problem becomes a partial differential equation. Another way around
the problem (which is not available to an experimentalist) is to consider crossing of
one of the other variables in the ordinary differential equation. For example, in the
Morris–Lecar model, we could say that a spike is emitted if w.t/ crosses some set
value, Nw. This was done in the Monte Carlo simulation in Fig. 10.1c. Analytically
(but, rather impractically), we could write down the full Fokker–Planck equations
on a large enough domain and compute the flux through some region in the do-
main of the model and call this the firing rate. For example, if the model is planar,
dV D f .V;w/dt C �dW , dw D g.V;w/dt , then we solve the appropriate Fokker–
Planck equation

Pt D �2

2
PV V � Œf .V;w/P �V � Œg.V;w/P �w

on a large rectangle (large enough to ignore the boundaries, since the real problem is
actually defined on the whole plane). Suppose we obtain the stationary distribution,
P.V;w/. We can say that a spike has fired if, for example, w crosses some prescribed
value, Nw, while V lies in some specified interval. The total flux is the firing rate:

F D
Z V2

V1

Jw.V; Nw/dV;

where Jw.V;w/ D g.V;w/P.V;w/.
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In sum, from a practical viewpoint, most of the noise calculations that are done
for neuron models make sense only for simple one-dimensional dynamics. Once we
get to biophysical models, it is best to just simulate them as in Fig. 10.1c.

10.2 Firing Rates of Scalar Neuron Models

We now turn to the applications to scalar neuron models of the methods we outlined
above. Most scalar neuron models (such as the integrate-and-fire model) have a
reset condition when the voltages reaches a particular value, Vspike. Often, Vspike is
the maximum value that the potential can take; thus, the probability of finding the
neuron at this value vanishes – there is an absorbing boundary condition. However,
the probability current out of that point (which represents the neuron’s firing rate)
is “reinjected” at the reset potential, Vreset, so the total probability is conserved. We
begin with a generic scalar model with additive white noise,

dV D f .V; t/dt C �dW.t/; (10.18)

with the stipulation that when V.t/ reaches Vspike from below, it is reset to Vreset.
If f .V; t/ D �aV C I , then we have the leaky integrate-and-fire model, whereas
if f .V; t/ D aV 2 C I , we have the quadratic integrate-and-fire model. To obtain
the mean firing rate, we can solve either the steady-state Fokker–Planck equation
(10.11) or the mean first passage time equation (10.17). We can also use the back-
ward equation (10.15) to obtain ISI histograms for these scalar models. In the rest
of this section, we apply the theory described above. Unfortunately, the resulting
integrals are basically impossible to explicitly evaluate. On the other hand, the fact
that the steady-state Fokker–Planck equation and the first passage time equation
are ordinary differential equations allows us to find smooth numerical solutions as
parameters vary.

10.2.1 The Fokker–Planck Equation

The probability density for (10.18) subject to reset can be formally written as

@P.V; t/

@t
D � @

@V
J.V; t/C ı.V � Vreset/J.Vspike; t/; (10.19)

where

J.V; t/ D f .V; t/P.V; t/ � �2

2

@P.V; t/

@V
: (10.20)

This equation is defined on the interval �1 < V < Vspike. The boundary conditions
are P.�1; t/ D 0 and P.Vspike/ D 0. The latter condition is absorbing. However,
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probability is conserved owing to the delta-function term appearing in (10.19). In-
deed, the reader can integrate this equation over the interval on which it is defined
and see that

@

@t

Z Vspike

�1
P.V; t/ dV D 0:

Stationary solutions satisfy

0 D � d

dV
J.V /C ı.V � Vreset/J.Vspike/:

We integrate this with respect to V to obtain

J0 D �J.V /C J.Vspike/H.V � Vreset/;

where H.V / is the Heaviside step function. Since P.V / and its derivatives must
vanish at V D �1, we conclude that J0 D 0. Since P.Vspike D 0/, (10.20) implies
that at steady state

J.Vspike/ D ��
2

2

dP.Vspike/

dV
� 
:

The firing rate of the neuron is just J.Vspike; t/. Thus, we have the simple first-order
linear differential equation

J.V / � f .V /P.V / � �2

2

dP.V /

dV
D 
H.V � Vreset/:

We let P˙.V / denote the solutions to this equation for V < Vreset and for V > Vreset.
Then, with normalization we have

f .V /P�.V /� �2

2
P 0�.V / D 0 � 1 < V < Vreset;

f .V /PC.V / � �2

2
P 0C.V / D 
 Vreset < V < Vspike;

P�.�1/ D 0;

P�.Vreset/ D PC.Vreset/;

PC.Vspike/ D 0;Z Vreset

�1
P�.V / dV C

Z Vspike

Vreset

PC.V / dV D 1:

The solution to the stationary state depends on a single constant 
 and this constant
is determined by the normalization. Define F.x/ as F 0.x/ D f .x/. After a bit of
simple manipulation, we find


�1 D 2

�2

Z Vreset

�1
e

2F.x/

�2 dx
Z Vspike

Vreset

e
�2F.y/

�2 dy (10.21)
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C 2

�2

Z Vspike

Vreset

e
2F.x/

�2

Z Vspike

x

e
�2F.y/

�2 dy dx

D 2

�2

Z Vspike

�1
e

2F.x/

�2

Z Vspike

max.x;Vreset/

e
�2F.y/

�2 dy dx:

This equation and three dollars will get you a small cup of coffee at Starbucks.
We can simplify this equation for some particular cases although the evaluation of
the resulting expressions is still nontrivial. We note that the flux is always positive
because of the absorbing boundary at V D Vspike. The reason for this is that the flux
is proportional to �@V P.V / at Vspike. Since P is positive and vanishes at Vspike, its
derivative at Vspike must be negative.

10.2.1.1 Constant Drift

Suppose f .V / D I ; there is no dependence on the potential. We leave it as an
exercise for the reader to show that (10.21) is independent of � and the firing rate
is just


 D I

Vspike � Vreset
:

10.2.1.2 Leaky Integrate-and-Fire Model

For the leaky integrate-and-fire model, f .x/ D I � x, so F.x/ D Ix � x2=2.
Fourcaud and Brunel [90] provided the most compact form for the firing rate of the
leaky integrate-and-fire model:


�1 D p
�

Z Vspike�I

�

Vreset�I
�

es2

.1C erf.s// ds; (10.22)

where

erf.x/ D 1p
�

Z x

�x

e�s2

ds:

In spite of the simple form, this is not a simple function to compute. Indeed, evalu-
ating the integral numerically requires dealing with the very large exp.x2/ and the
very small 1C erf.x/. In Fig. 10.3, we plot some representative firing curves for the
leaky integrate-and-fire model (and other models) by solving an appropriate bound-
ary value problem. We can, however, do some asymptotic analysis is the cases of
either large I or large � . We leave all of this, including the derivation of (10.22), as
exercises for the reader.
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10.2.1.3 Quadratic Integrate-and-Fire Model

In the quadratic integrate-and-fire model, f .V / D V 2 C I , Vspike D C1, and
Vreset D �1. Sigeti and Horsthemke [248] evaluated the resulting integral exactly
for the first passage time in the case in which I D 0 (at the saddle–node) and
obtained


.I D 0/ D Œ�.1=3/��2



3�

2

�1=3

D 0:1595 : : : �2=3:

For positive I (the neuron is an oscillator) and for small noise, 
 	 p
I=� , the

deterministic firing rate. More interestingly, for I < 0 (the excitable neuron), noise-
induced firing occurs and the rate is given by


 D
pjI j
�

exp

 
�8jI j3=2

3�2

!

for �2 
 jI j3=2 [181].

10.2.1.4 Ring Models

In Exercise 10 in Chap. 9, we introduced ring models defined on the unit circle:

dV

dt
D f .V /C I;

where f .V / is continuous and 2�-periodic. We can consider the noisy version of
this:

dV D .f .V /C I /dt C �dW.t/: (10.23)

The stationary distribution, P.V /, must also be periodic, so it must satisfy

J D .f .V /C I /P.V / � �2

2

dP

dV
:

The constant J is the current and is also the firing rate of the neuron. Unlike the
integrate-and-fire models, there is no reset condition, so the current is equal at every
point. In particular, if I is large enough, then f .V /C I is positive, so in absence of
noise we have

J�1 D
Z 2�

0

dV

f .V /C I
:

More generally, we can apply (10.14), where

‰.x/ D exp



.2=�2/

Z x

0

.f .y/C I /dy

�
:
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We remark that, unlike integrate-and-fire-type models, the current can be either
positive or negative. (For I large and negative, the oscillator runs counterclock-
wise.) Thus, one has to be careful with the interpretation of ring models as neural
oscillators. One special case of a ring model was analyzed by Ritt [233]:

d� D
�
1 � cos � C .1C cos �/.I � �2

2
sin �/

�
dt C �.1C cos �/dW.t/:

Here, firing occurs when � D � . This model is equivalent to the quadratic integrate-
and-fire model under the transformation V ! tan.�=2/. Unlike for the ring models
with simple additive noise (10.23), the noise is state-dependent and vanishes at
� D � . Evaluation of the right-hand side at � D � shows that the current is al-
ways positive. Without the singular noise, we cannot guarantee that the current will
always be positive in general ring models.

10.2.2 First Passage Times

The Fokker–Planck equation gives us more than just the firing rate – it also pro-
vides the distribution of the potentials. However, it is rare that one would need this
information. (Although, Rudolph and Destexhe [237] showed that by measuring the
distribution of the noisy subthreshold potential in a neuron, it is possible to extract
estimates of the mean and variance of excitatory and inhibitory conductances; see
Exercise 13.) Instead, the ISI distribution, the mean firing rate, and the variance of
the firing rate are much more useful. In Sect. 10.1.6 we developed equations for the
mean time to reach a given point as well as the evolution of those times. We have

dV D f .V /C �dW.t/;

with V.0/ D Vreset, and we want to determine the distribution of times at which
V.t/ D Vspike. The domain of interest is �1 < V < Vspike. The average time
between spikes is just the expected time it takes to go from Vreset to Vspike and the
ISI histogram is just the probability density function for the exit times given that
the starting point is Vreset. From (10.16), the quantity �.Vreset; t/ is this probability
density function and is just the derivative of the solution to the backward equation
(10.15). Because there is no reset involved, it is often the case that the mean first
passage time solution results in a simpler, more compact, expression for the firing
rate in contrast to (10.21). From (10.17), the mean first passage time equation is

�2

2
T 00.V /C f .V /T 0 D �1 (10.24)

with appropriate boundary conditions. Recall that T .V / is the expected time to exit
some prescribed boundary given that at t D 0 the voltage is V . If we are working
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with an integrate-and-fire-type model where there is a spike at Vspike and a reset to
Vreset, then one of the boundary conditions is T .Vspike/ D 0. Gardiner [96, p. 139]
showed that the other desired condition is that T 0.V / ! 0 as V ! �1. However,
this does not imply that T .V / itself remains bounded. Equation (10.24) is just a
first-order equation in T 0.V /. We can use asymptotics to examine the large negative
V behavior. If f .V / D KV p C � � � , where the remaining terms are lower order in
V and p > 0, then clearly we must have that

T 0.V / D � 1

KV p
C � � �

as V ! 1. If, as in the case of the leaky integrate-and-fire model, p D 1, then
T 0.V / does go to zero as V ! �1, but T .V / diverges. The intuition behind
the divergence of T is that with the leaky integrate-and-fire model solutions to the
deterministic problem are exponentials which remain finite for all time – a solu-
tion with V.0/ arbitrarily large and negative reaches firing at a time proportional to
log.jV.0/j, which can be arbitrarily large. In contrast, the quadratic integrate-and-
fire model has p D 2 and thus T .V / converges as V ! 1 since the quadratic
equation V 0 D a C bV 2 “blows up” in finite time.

With the condition T .Vspike D 0 and T 0.�1/ D 0, the solution to (10.24) is

T .V / D 2

�2

Z Vspike

V

e
�2F.x/

�2

Z x

�1
e

2F.y/

�2 dy dx; (10.25)

where F.x/ D R
f .x/dx (see Exercise 8). Analogous expressions for periodic

boundary conditions can be found for ring models as long as the current is nonzero.
The current vanishes if and only if the average of f .V / over the domain is zero.
Equation (10.25) allows us (up to actually evaluating the integrals) to compute the
F–I curve in the presence of noise. By definition, T .Vreset/ is the mean time to fire
a spike, so the firing rate is just 1=T .Vreset/. We can numerically evaluate the dou-
ble integral, numerically solve the boundary value problem (10.24), or numerically
solve the Fokker–Planck equation (10.19). We find that the solution to the boundary
value problem seems to be the simplest choice.

Since we will use the noisy F–I curves later in the book, we illustrate them in
Fig. 10.3 for two levels of noise. Both the solutions to the boundary value problem
and the solutions to Monte Carlo simulations are shown. (For the Monte Carlo sim-
ulations, we solve the equations for a time interval of 2,000 and count the number of
spikes.) The main differences between the smaller and larger noise cases is that the
F–I curve is more linear with larger noise. This is a classic result: noise linearizes the
response. In all cases, the deterministic model is smeared by the noise, resulting in a
smoother sigmoidal curve. The firing rate curves will be useful for network models;
thus, we will attempt to create easily computed approximations of them. Suppose
F.I / is the deterministic F–I curve when there is zero noise. We will approximate
the noisy F–I curve by the composition of F.I / with a function M.I; p/ which
has the following properties. M.I; p/ is positive, monotonic, and asymptotically



10.2 Firing Rates of Scalar Neuron Models 305

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2 3 4

0

1

2

3

4

5

−1 0 1 2 3 4 5 0

1

2

3

4

5

−1 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2 3 4

a b

c d

ν ν

νν

ΙΙ

ΙΙ

Fig. 10.3 F–I curves for the leaky (spike is at 1 and reset at 0) and quadratic (spike is at 10 and
reset at �1) integrate-and-fire models. Solutions to the boundary value problem are shown in black
and solutions to the Monte-Carlo simulations are shown in red. Leaky integrate-and-fire model
with � D 0:25 (a) and � D 1:0 (b). Quadratic integrate-and-fire model with � D 0:25 (c) and
� D 1 (d)

approaches I for large I , independent of p. As p ! 0C, M.I; p/ ! ŒI �C, the
positive part of I . Several choices come to mind:

M1.I; p/ D I

1 � exp.�I=p/ ; (10.26)

M2.I; p/ D p log.1C exp.I=p//;

M3.I; p/ D 1

2

�
x.1C erf.I=p//C pp

�
exp.�.I=p/2/

�
:

The last function is the convolution of a Gaussian with the positive part of I . Thus,
we approximate the noisy F–I curve by


.I / D F.Mj .I; p//;
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wherep is chosen to best fit the true F–I curve. We find that the third choice provides
a pretty good fit with the F–I curves in Fig. 10.3. The parameterp is roughly linearly
proportional to the noise, � .

10.2.2.1 Other Statistics

There are other statistics besides the mean firing rate which may be useful. For
example, one might desire to compute the variance, �2, and thus the standard devi-
ation, � . A much-used characteristic of the “noisiness” of a neuron is the coefficient
of variation, which is �=T . Recall that the variance is just

�2 D ˝
.T � hT i/2˛ D hT 2i � hT i2:

Exercise 6 shows the second moment T2.V / obeys a simple second-order ordinary
differential equation:

�2

2
T 00

2 .V /C f .V /T 0
2 D �T .V /;

where T .V / is the already-determined mean first passage time. The boundary con-
ditions are the same as for T .V /.

10.2.2.2 Aside: Solving the Boundary Value Problem

Ideally, we would like to numerically solve (10.24) on the interval .�1; Vspike/;
however, this obviously impossible. Thus, we solve the problem on the interval
.�A; Vspike/, where we pick A large enough. We will use AUTO to do this since
it is very efficient and works better than simple shooting. Our estimates above in-
dicate that T .V / D O.V �p/, where p D 1 for the leaky integrate-and-fire model
and p D 2 for the quadratic integrate-and-fire model. Thus, we expect we will have
to make A larger for the leaky integrate-and-fire model to better approximate a re-
flecting boundary condition T 0.�A/ D 0. Since our asymptotics actually provide an
estimate for T 0.�A/ for large A, we use the boundary condition T 0.�A/ D KA�p

for better accuracy.

10.2.3 Interspike Intervals

Recall that the backward equation (10.15) provides a solution to G.V; t/ which is
the probability that no spike has fired up to time t given that the initial voltage is
at V . Each time there is a spike, V is reset to Vreset. Thus, if T is the time to spike
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after resetting,G.Vreset; t/ D probfT > tg. The ISI histogram is the probability of a
spike in a given interval of size �t . This means in limit as �t ! 0, we have

G.Vreset; t/ D
Z 1

t

ISI.s/ ds:

So the ISI is found by solving the backward equation and computing the negative
t-derivative of G.V; t/ at V D Vreset. To obtain the ISI distribution for an integrate-
and-fire model, we must solve the backward equation (10.15),

@G.V; t/

@t
D f .V /

@G.V; t/

@V
C �2

2

@2G.V; t/

@V 2
;

along with the boundary and initial conditions G.V; 0/ D 1 for V < Vspike and
G.Vspike; t/ D 0. Additionally, as with the mean first passage time, we require
that GV .V; t/ ! 0 as V ! �1. In general, we cannot write down a useable
closed-form solution for the backward equation so we must resort to numerical ap-
proximations. We solve a discretized version of the backward equation on an interval
.�A; Vspike/, where A is chosen large enough. Figure 10.4 shows some comparisons
between the Monte Carlo simulations of (10.18) and the solutions to (10.15). We
show both the leaky integrate-and-fire and the quadratic integrate-and-fire models
for subthreshold currents/high noise and suprathreshold currents/low noise.

10.2.4 Colored Noise

The sources for noise in neurons are manifold and include both channel noise (see
below) as well as synaptic noise, which comes about from the constant bombard-
ment of other cells within the same milieu. Our model for white noise is simple
and has the advantage of being tractable, at least insofar as providing some simple
scalar partial differential equations for the probability density and firing rates. Al-
though the formulae are not exactly useful, they are easy to numerically evaluate
as are the partial differential equations which result. The white noise model is a
somewhat crude approximation for synaptic noise especially if the time constants of
the synapses are not really short. Thus, some researchers replace white noise by the
following model:

�dz D �zdt C p
�dW: (10.27)

Here, � > 0 approximates the decay properties of the synapses. This stochastic
differential equation is called an Ornstein–Uhlenbeck process and has an exact so-
lution; the stationary distribution is Gaussian. Unlike the white noise case, which
is uncorrelated in time, Ornstein–Uhlenbeck noise has an autocorrelation function
which decays exponentially as exp.�t=�/. A natural question to ask is how this
can affect the responses of neurons to stimuli, e.g., the F–I curve. Lindner [179]
computed statistics for the ISIs of a perfect integrator (dV=dt D I ) when there is
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Fig. 10.4 Interspike interval distributions for noisy scalar models. Monte Carlo simulations are
shown as dashed lines and solid lines are solutions to (10.15). The Monte Carlo simulations are
50,000 interspike intervals from a Euler simulation of (10.18). The partial differential equation
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integrate-and-fire model, f .V / D I � V . The PDE is solved on the interval (�4,1) with V D 1

absorbing and V D 0 as the reset value. (c, d) Quadratic integrate-and-fire model, f .V / D ICV 2.
The PDE is solved on the interval (�5,5) with V D 5 absorbing and V D �1 as the reset value.
Currents and noise are indicated

colored noise. Brunel and coworkers [26, 27] computed the F–I curve for the noisy
leaky integrate-and-fire and quadratic integrate-and-fire models, respectively, with
this kind of colored noise in the limits of small and large � as well as a uniformly
valid approximation over all ranges of � . The calculations are heroic, but the bottom
line is that colored noise has only a small effect on the steady-state firing rate. For
example, if the current applied to the quadratic integrate-and-fire model is 0:5 and
� D 0:5, then the firing rate varies from 21.5 to 23 Hz for all values of � . We should
point out that colored noise does have a rather important effect on the behavior of
these models when periodic stimuli are added.
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10.2.5 Nonconstant Inputs and Filtering Properties

So far, we have considered situations in which the inputs to the noisy model are
constant. However, real inputs to neurons change in time, so we would like to ask
what can be said about the time-dependent firing rate. Figure 10.1b shows that one
advantage of noise is that it allows subthreshold inputs to be recovered and a com-
plex stimulus can be accurately encoded in the rates. Contrast this with a noise-free
model in which the neuron will not fire at all over a large range of inputs. The
analysis of the output from a nonautonomous model is considerably more difficult
than that of a stationary distribution. However, both Monte Carlo and numerical so-
lutions of the Fokker–Planck equation provide a good way to study the dynamics
of the response of noisy neurons to stimuli. Figure 10.5 shows the response of the
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Fig. 10.5 Response of a noisy leaky integrate-and fire model to nonconstant stimuli. The integrate-
and fire model has I D 0:75, Vspike D 1, Vreset D 0, and � D 0:4. (a) A nonperiodic stimulus.
The blue curve shows the stimulus. The lower curves show the response of the Fokker–Planck
equation (red) and the instantaneous firing rate (green) predicted by the steady-state F–I curve.
(b–d) Periodic stimuli at different periods (denoted by P ). The blue curve shows the stimulus and
red curve shows the solution to the Fokker–Planck equation. The instant response is shown in green
and the solution to the simple dynamic model (see the text) is shown in black (� D 0:2)



310 10 Noise

leaky integrate-and-fire model to aperiodic and periodic stimuli. Brunel et al. [28]
and Lindner and Schimansky-Geier [180] provided a formula for the response to
weak periodic stimuli which involves various special functions and is well beyond
the scope of this book. We point out two conclusions of their work: (1) with white
noise the system behaves as a low-pass filter whose magnitude decreases as 1=

p
!

and the response lags the input by about 45ı in phase and (2) with colored noise
(e.g., dx D �x=� C dW ) the lag disappears.

In the example shown in Fig. 10.5a, the stimulus is encoded with almost no lag
even though the noise is white. One approximation for slowly varying stimuli is to
treat them statically and use the steady-state F–I curve. We compute the F–I curve
for the level of noise in the model (� D 0:4) and fit this to a smooth function, F.I /
as in (10.26) so that we can approximate the time-dependent firing rate as


.t/ D F.I.t//;

where we use

F.I / D 0:16 log.1C exp..I � 0:51/=0:16//:
The red and green curves in Fig. 10.5a show that the static approximation works
quite well. Similarly, to periodic stimuli shown in Fig. 10.5b and c, the static re-
sponse is also very close to the numerically computed response. However, at high
frequencies, as shown in Fig. 10.5d, there is a substantial diminution in the ampli-
tude and there is a clear lag. Thus, we introduce a slightly more complicated model
for the firing rate:

�
d


dt
D �
 C F.I.t//: (10.28)

The results for � D 0:2 are shown by the black curves – this model provides a much
better fit. In Fig. 10.5b and c we also show the results from the dynamic model;
they are nearly identical to those from the static model since the frequency is very
low compared to � . We chose � in an ad hoc manner and expect that its choice
will depend on the amount of noise as well as other aspects of the particular neural
model. In one of the exercises/projects below, we illustrate that the situation is not so
simple with a noisy conductance-based model. Nevertheless, (10.28) is the simplest
dynamic model for the responses of neurons to time-varying stimuli and we will use
equations like this to model populations of coupled neurons later in the book.

10.3 Weak Noise and Moment Expansions

Rodriguez and Tuckwell [234] developed a clever approximation for analyzing neu-
ral models (and any other models) in the presence of small noise. The idea of such
methods is to assume the probability distributions are Gaussian, centered at the mean
values, NXj D EŒXj �, with covariancesKij D EŒ.Xi � NXi /.Xj � NXj /�. (Note that
EŒx� is the expectation of the process x.) Then one does an expansion and derives
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equations for the means and covariances. We briefly outline the idea and then apply
it to a simple polynomial neural model. Rodriguez and Tuckwell considered the
case of general multiplicative noise. To simplify the description here, we restrict the
method to additive noise. We start with

dXj D fj .X; t/dt C
X

k

gjkdWk.t/: (10.29)

The Wj .t/ are standard Wiener processes (zero mean, independent, delta-
correlated). Of the n2 quantities, Kij , n of them are variances, Vi DKi i , and,
the n.n � 1/=2 remaining are the distinct covariances between the n variables.
Taking the mean of (10.29), we immediately find

d NXj

dt
D EŒfj .X; t/�: (10.30)

We note that EŒdW � D 0, so this is an exact equation for the mean. Unfortunately,
we need to approximate the right-hand side to get a closed-system of equations,
since X is a random variable which we do not know except through (10.29). Simi-
larly, the covariances satisfy

dKij

dt
D E

"
.Xi � NXi /fj .X; t/C .Xj � NXj /fi .X; t/C

X
k

gikgjk

#
: (10.31)

This equation is obtained by differentiating the quantity

.Xi � NXi /.Xj � NXj /

with respect to t , taking expectations, and using (10.30). We also use the fact that

EŒ.Xi � NXi /EŒfj .X; t/�� D 0

since EŒfj .X; t/� is deterministic and .Xi � NXi / has zero mean. Equations (10.30)
and (10.31) are exact, but of course involve stochastic quantities whose values are
not known. (Note that we can also obtain the moment equations by applying Itô’s
formula to the quantities .Xi � NXi /.Xj � NXj / and then taking expectations of the
resulting differential equation.)

If we make the assumption that the distributions are concentrated near the means
and the third and higher moments are small relative to the second moment, we can
approximate the right-hand sides of these equations. If G.x1; : : : ; xn/ is a function
of n variables, then

EŒG.X; t/� � G.m; t/C 1

2

nX
lD1

nX
pD1

�
@2G.m; t/

@xl@xp

Clp ;

�
; (10.32)
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wherem is the approximation to NX , and Clp is the approximation toKlp. Applying
(10.32) to (10.30), we get

dmj

dt
D fj .m; t/C 1

2

nX
lD1

nX
pD1

@2fj .m; t/

@xl@xp

Clp : (10.33)

We now have an approximate equation for the means. Note that if we ignore the
covariances, we correctly recover the noise-free dynamics. The correction term in
(10.33) makes intuitive sense since it depends to the sensitivity of the functions fj

to the variables. The approximation for Clp is more difficult to obtain, but can be
derived in steps. We replace NXj by its approximation,mj , to obtain

EŒ.Xi �mi /fj .X; t/� � 1

2

nX
l;pD1

@2

@xl@xp

Œ.xi �mi /fj .m; t/�Clp :

This partial derivative is just

ıi l

@fj

@xp

C ıip

@fj

@xl

;

where ıjk is 0 unless j D k, when it is 1. We obtain a similar approximation for
EŒ.Xj �mj /fi .X; t/ which now leads to our approximation for the covariances:

dCij

dt
D

nX
lD1



@fi

@xl

Clj C @fj

@xl

Ci l C gi lglj

�
: (10.34)

It is instructive to apply this to a simple planar model with noise only in the first
variable,

dV D f .V; U /dt C �dW I dU D g.V; U /dt;

such as the Morris–Lecar equations. Let v an u be the approximate means of the
two equations and let w, y, and z be, respectively, the variance of V , the variance of
U , and the covariance between V and U . Then from (10.33) and (10.34) we get the
following equations:

v0 D f .v; u/C 1

2
.fvvw C fuuy C 2fvuz/;

u0 D g.v; u/C 1

2
.gvvw C guuy C 2gvuz/;

w0 D �2 C 2fvw C 2fuz; (10.35)

y0 D 2gvz C 2guy;

z0 D .fv C gu/z C fuy C gvw:



10.3 Weak Noise and Moment Expansions 313

Here, fv means the derivative of f with respect to v, etc. With no noise, � D 0, the
solution, .v.t/; u.t/; 0; 0; 0/; is an invariant solution, so we can ask if it is a stable
invariant solution. It turns out as you will show in an exercise later, that if .Nu; Nv/ is a
stable fixed point of

u0 D f .u; v/ and v0 D g.u; v/;

then .Nu; Nv; 0; 0; 0/ is also a stable fixed point of (10.35) when � D 0. Thus, for
small values of � , the fixed point still exists, is stable, and the covariances are finite.
However, if there are periodic orbits for the .u; v/ system, then the covariances grow
linearly in time for any positive � . Thus, the moment equations do not admit any
bounded periodic solutions if there is noise. They are only valid for a finite amount
of time.

The use of the moment equations is limited mainly to fixed points. However, we
can use them to see how the stability and the existence of fixed points change as a
function of the noise. Figure 10.6 shows an application of (10.35) to the Morris–
Lecar model when the dynamics are class I and class II. Consider the noise-free
case first. When there is a Hopf bifurcation for the noiseless system, the moment
equations have a zero eigenvalue (Exercise 15). Thus, in the computer analysis of
the full moment equations, there appears to be a branch point. Solutions along the
branch point can often correspond to negative values of w, which is not physically
possible; thus, they should be ignored. The same “feature” occurs at the fold point
for the class II example (Fig. 10.6b). When there is a small amount of noise, the loss
of a stable fixed point occurs at lower values of the current as is intuitively expected.
What is surprising is that the branch of solutions for the noiseless system disappears
at a fold point in the noisy system (Fig. 10.6a). The fold for class I is shifted to the
left in the presence of noise. In Exercise 15, you show that this will be generically
the case.

−34

−32

−30

−28

−26

−24

−22

−20

75 80 85 90 95 100
−45

−40

−35

−30

−25

−20

−15

26 28 30 32 34 36 38 40

σ2 =2
σ2 =2σ2 =0

σ2 =0

F

FF

HB

V V

a b

I I

Fig. 10.6 Bifurcation diagram for Morris–Lecar moment expansion for (a) class II and (b) class
I excitability as the current varies at zero noise and with large noise (�2 D 2). In each case, the
addition of noise shifts the loss of the stable fixed point to a lower value of I



314 10 Noise

As you will see in Exercise 15, these equations are of limited utility since they
generically grow without bound when there are limit cycles for the deterministic
equations. However, it has been noted that if higher-order terms are kept in the
moment equations (that is, beyond the simple linear dependences), then it is possible
to keep solutions bounded even away from stable fixed points [258]. The key point
is that in the Gaussian approximation, all moments can be expressed in terms of the
variances. For example,EŒx4� D 3EŒx2�. For equations with polynomial right-hand
sides, then all the expressions like EŒf .X/� can be expressed in terms of only the
means and the variances with a finite number of terms. (For nonpolynomial systems,
one can approximate f by a finite number of Taylor series terms.)

10.4 Poisson Processes

Many of the processes which occur at the molecular level in neuroscience are event-
related and random. For example, the opening of a single channel is a single event
and is random. The release of transmitter from an excited axon is also stochastic.
The usual assumption that is made about these processes is that they are Poisson
processes:

1. The number of events in nonoverlapping intervals of time is independent for all
intervals.

2. The probability of exactly one event occurring in an interval �t is P D r�t ,
where r is the rate of events and �t is sufficiently small.

3. The probability of more than one event occurring in a sufficiently small interval
is zero.

10.4.1 Basic Statistics

Consider the interarrival times, that is, the times between events. Since the number
of events in any nonoverlapping interval is independent, the intervals between events
are also independent. Let the events occur at time t1; t2; : : : and let I1 D t1 and
Ik D tk � tk�1 for k > 1 be the interarrival times. That these are independent
means the process has no memory of what has already happened. (This has the
following unfortunate consequence: if you have been waiting at the bus stop for a
half an hour, then your expected waiting time for the next bus is exactly the same as
that of the fellow who has just arrived at the bus stop!). Formally, this means

P.I > t C sjI > s/ D P.I > t/

for all s; t � 0. The Bayes theorem says

P.xjy/ D P.x; y/

P.y/
:
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But because the Poisson process “forgets” everything that happens, the joint
probability P.I > t C s; I > s/ D P.I > t C s/. Combining these two
equations, we obtain

P.I > t C s/

P.I > s/
D P.I > t/;

so
P.I > t C s/ D P.I > t/P.I > s/:

Let G.t/ D P.I > t/. Note that G.0/ D 1. It is straightforward to show that the
only solution to the functional equationG.t C s/ D G.t/G.s/; G.0/ D 1 is

G.t/ D e�rt :

Let F.t/ D 1 � G.t/ D P.I � t/ be the cumulative probability. Then the density
function is the derivative of the distribution function, f .t/ D re�rt . For this rea-
son, we say that the intervals of a constant-rate Poisson process are exponentially
distributed. The mean interevent interval is

EŒI � D
Z 1

0

tf .t/ dt D 1

r
:

The second moment is

EŒI 2� D 2

r2
I

thus, the variance (�2 D EŒ.I � EŒi�/2�) is 1=r2. The coefficient of variation is
defined as �=EŒI � and this a 1 for Poisson process. The ISI distributions for cortical
neurons have a coefficient of variation close to 1 [250].

Given we have the density function for the interval arrival times, we can now
determine the density of the kth arrival time. Let us approach this inductively. The
probability that the second event occurs at time t is the probability that the first
event occurs at time s < t and that the ISI is t � s. The first probability is F.s/ D
1 � exp.�rs/ and the second is f .t � s/. Thus,

F2.t/ � P.2nd event < t/ D
Z t

0

.1 � e�rs/re�r.t�s/ ds:

The density of the second event .k D 2/ distribution is the derivative of this and is
just the convolution of the density function with itself:

f2.t/ D
Z t

0

f .s/f .t � s/ ds:

Evaluating this integral, we find

f2.t/ D .rt/re�rt :
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Inductively, we find that the density of the kth event is the so-called gamma
distribution:

fk.t/ D .rt/k�1re�rt=.k � 1/Š:
Finally, we can use this result to determine the distribution for the number of events
in a given interval T . LetNT denote the number of arrivals by time T . Then clearly
Nt � k when the kth arrival time is less than or equal to T . That is,

P.NT � k/ D
Z T

0

fk.s/ ds:

This integral can be readily evaluated to yield

P.NT � k/ D 1 � e�rT

kX
j D0

.rT /j =j Š:

Thus, the density function for k spikes is

P.NT D k/ D .rT /k

kŠ
e�rT :

This is called the Poisson distribution. Themth moment for the Poisson distribution
is found by evaluating the sum

EŒNm� D
1X

j D1

km .rT /
k

kŠ
e�rT : (10.36)

This is not an easy task to do directly. Instead, it is easier to use a clever trick called
the moment generating function. Consider the sum

H.s/ D e�rT

1X
kD0

.rT /k

kŠ
esk: (10.37)

Themth derivative ofH.s/ with respect to s evaluated at s D 0 is precisely (10.36).
The sum in (10.37) can be rewritten as

H.s/ D e�rT

1X
kD0

.rT es/k

kŠ
D e�rT exp.rT es/:

We thus find that EŒN � D rT , EŒN 2� D rT C .rT /2, and the variance is rT . The
ratio of the variance in the number of events with the mean is called the Fano factor
and for a Poisson process is exactly 1.
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10.4.2 Channel Simulations

The easiest way to simulate an exponential waiting time with a constant rate r
is to draw random numbers from the exponential distribution. That is, let In D
� log.Xn/=r , whereXn are uniformly distributed numbers in the interval (0,1). This
is the key to the so-called Gillespie algorithm which is used to model chemical ki-
netics. For example, the opening and closing of channels is a simple random process

C • O

between the closed and open states. Let ˛ and ˇ be the respective rates for going
from closed to open and vice versa. Let N denote the total number of channels
and o the number of open channels. Since the channels are independent, the rate of
making a closed to open transition is r1 D ˛.N �o/ and the rate of making an open
to closed transition is r2 D ˇo. The rate of any event occurring is thus r D r1 C r2.
So we can choose a time to the next event as

tnew D � logŒX1�=r;

where X1 is uniform in .0; 1/. Now we have to pick which event occurred. We
choose another random number, X2, uniformly distributed between 0 and r . If
X2 < r1, then the first reaction (closed to open) occurs, otherwise the second re-
action (open to closed) occurs. In the former case, o is increased and in the latter
o is decreased. The total fraction of channels open is just o=N . Chow and White
[39] applied this idea to study the effects of a finite number of channels in the
Hodgkin–Huxley equations. We proceed here with a simpler model, the Morris–
Lecar model, since all of the channel equations are simple open/close events. Unlike
the reduced Morris–Lecar model in which we let the calcium channel have its equi-
librium value m1.V /, we must retain the temporal dynamics of the channel for
a stochastic model. We have four possible events: (1) calcium channel opens, (2)
calcium channel closes, (3) potassium channel opens, and (4) potassium channel
closes. The rates are dependent on the voltage which satisfies

Cm
dV

dt
D I � gl .V �El/ � .gKw=Nw/.V � EK/� gCa.M=Nm/.V � ECa/;

where W and M are the total number of open potassium and calcium channels.
We divide this by the number of each type of channel since maximal conductances
should be defined as conductance per channel. Thus, the total maximal conductance
possible will be independent of the numbers of channels. This voltage equation is
linear in V for any fixedW andM . Between events, bothW andM will be constant,
so we can write down the solution to the voltage equation exactly. We can rewrite
the V equation as

dV

dt
D .V1 � V /g;
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where V1 and g are functions of the parameters and W and M . Suppose voltage
was V0 at the end of the last event. The next event comes at a time tnew later. Thus,
the voltage at the beginning of the next event is

V.tnew/ D V1 C .V0 � V1/e�gtnew :

We use this new voltage to update the transition rates and calculate the next event.
The only numerical approximation we make is holding the rates constant between
events. Chow and White addressed some of these numerical issues. Figure 10.7
shows a simulation of the Morris–Lecar model with 100 potassium and calcium
channels and a subthreshold current. The noise due to the fluctuations in channels is
enough to cause the neuron to fire sporadically.

Computation of the channel openings and closing as in the above algorithm can
be laborious in more complex models or if the number of channels is large. (With
a large number, N , of channels, events occur very frequently, so advancing even a
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small amount of time can take thousands of steps – indeed the time step isO.1=N/.)
Thus, there a number of approximations are often made. The most straightforward
is to add noise to the deterministic channel models. That is, solve

dx D Œa.1 � x/C bx�dt C �xdW.t/: (10.38)

The key question is the choice for �x . Using methods from statistical physics, [84]
in Chap. 11 shows the following approximation:

�2
x D a.1 � x/C bx

N
; (10.39)

whereN is the number of channels. This has the right behavior for largeN ; from the
law of large numbers, we expect the standard deviation to scale as 1=

p
N . Fox and

Lu [92] made this approximation rigorous by (1) producing a master equation for
the channels, (2) approximating this by a Fokker–Planck equation, and (3) writing
down the corresponding Langevin equation. They made one more simplification of
(10.39) by replacing x with x1 D a=.aC b/ and thus obtained

�2
x D 1

N

ab

a C b
;

which is independent of x. Figure 10.7c and d shows the result of a simulation of
the Morris–Lecar model using approximation (10.39). One issue that must be dealt
with in using these approximations is that the variable x can fall out of the valid
range .0; 1/; thus, it is necessary cap x when it leaves the interval. Finally, we can
ask whether the behavior of these noisy versions of the Morris–Lecar model differ
substantially from the model with voltage noise only. A comparison of Fig. 10.7c
and d with Fig. 10.1c would lead one to suspect that there is little difference between
the figures. We would expect the difference in this physically derived model for
stochasticity from the ad hoc additive-noise model to become important only when
there are very few channels.

10.4.3 Stochastic Spike Models: Beyond Poisson

Rather than generating spikes with a noisy deterministic model (such as described
above) or with a fully deterministic model, sometimes it is desirable to create a
completely stochastic model for the spike times. For example, one could simulate
the spike times of a neuron with a purely Poisson process. However, biological neu-
rons rarely have perfectly exponential ISI histograms (see, e.g., Fig. 10.1d). One
reason for this is that once a neuron fires, the probability of a spike occurring again
is very low owing to refractoriness – there is history to the firing pattern. We now
derive distributions for such history-dependent models. Let f .t/ denote the ISI den-
sity function (this is the ISI histogram when defined in discrete time intervals).
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The probability of a spike occurring before t is F.t/ D R t

0
f .s/ ds. The proba-

bility that no spike has occurred up to time t is thus 1 � F.t/. Now, we introduce a
notion of history dependence. Let h.t/�t denote the probability that a spike occurs
in the interval Œt; t C�t� but not not at any time before. LetW be the random spike
time. Then, formally,

h.t/�t D P Œt � W � t C�t jW � t �:

For a pure Poisson process, h.t/ D r , the spike rate since the probability of the spike
occurring is independent of the previous history. The probability of a spike between
t and t C �t is just f .t/�t and the probability of no spike before t is 1 � F.t/;
thus, we have

h.t/ D f .t/

1 � F.t/ D � d

dt
log.1 � F.t//;

where we use the fact that F 0.t/ D f .t/. Given h.t/, we can solve this differential
equation to find

F.t/ D 1 � exp



�
Z t

0

h.s/ ds

�
: (10.40)

The density function F 0.t/ is

f .t/ D h.t/ exp



�
Z t

0

h.s/ ds

�
: (10.41)

As a first example, suppose h.t/ D r so there is no history dependence. Then we re-
cover the usual exponential function, f .t/ D re�rt . Suppose when the neuron fires,
the rate is set to zero and recovers exponentially. Then h.t/ D rŒ1�exp.�t=�/� and
we get the density function shown in Fig. 10.8a. In this example, the baseline fre-
quency is 40 Hz and � D 50ms. Note the peak in the ISI histogram at about 50 ms.
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Fig. 10.8 Poisson process with a relative refractory period. r.t/ D rmax.1 � exp.�t=�//.
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� D 50ms. (b) Coefficient of variation (CV) for different rates and refractory periods
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The mean ISI is 74 ms and the coefficient of variation is about 0.66. Figure 10.8b
shows the coefficient of variation for this model at three different baseline frequen-
cies over 6 orders of magnitude refractory period. Obviously, as � ! 0 the process
approaches a pure Poisson process. Some more examples are provided as exercises.

Chapter 5 in the book by Gerstner and Kistler [99] provides many examples
of stochastic neural models. In particular, there is a very readable discussion of
statistics of these generalized point processes such as the spike time autocorrelation
function and the spectral power. The interested reader should consult this book as it
is beyond the scope of the present text.

10.5 Bibliography

Noise is now recognized as playing a major role in neural dynamics. The lengthy
review [179], although not specific to neurons, contains most of the analytically
tractable results for the effects of noise on excitable systems. Laing and Lord [169]
is a comprehensive set of individual chapters that review noise from the channel
level on up to large networks. Whether or not noise is “good” for the nervous system
remains a subject of some controversy. Traynelis and Jaramillo [271] argue that it
can be very helpful. Indeed, in Fig. 10.1 it is clear that noise allows one to extract
many features for a signal that is subthreshold. Ermentrout et al. [79] argue that
noise is also good for encouraging synchrony. Faisal et al. [82] suggest the nervous
system has to work hard to compensate for the degree of noise. In this chapter, we
have briefly reviewed some of the mathematical techniques that can be applied to
the study of noise in active nonlinear systems. Unlike deterministic dynamics, the
study of noise often leads to high-dimensional partial differential equations. These
systems remain an active area of study.

10.6 Exercises

1. Compute the ISI distribution for the Morris–Lecar model with type II dynamics
and I D 95, which is in the oscillatory regime. Use noise of amplitude 1, i.e.,
V 0 D f .V;w/C �	.t/, w0 D g.V;w/, where � D 1. Show that the bimodality
of the ISI is lost. Change I to 85 and set � D 2 and then to 0:5. Compare the ISI
histograms for these with that in Fig. 10.1d. On the basis of these computations,
can you offer an explanation for the bimodality of the distribution?

2. Compute the ISI distribution for the Morris–Lecar model with type I dynamics,
unit noise, and I D 30. Change the amount of noise. Is the distribution always
unimodal?

3. Research problem. Consider the scalar neuron model

V 0 D f .V /C �	.t/;
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where 	 is the usual noise. Let V D Vreset be the reset voltage and let Vspike be
the voltage for a spike. Can the ISI distribution of this model ever be bimodal?

4. Suppose f .x/ has zero mean on the interval .a; b/. Show that J D 0 for the
Fokker–Planck equation (10.12) with periodic boundary conditions.

5. Consider the simple model on the circle

dx D .I � cos.x//dt C �dW:

Write down the steady state for the Fokker–Planck equation and numerically
compute the flux, J . This is the F–I curve.

6. First passage time. Show that

hT ni D
Z 1

0

tn�1G.x; t/ dt:

Use the fact that G.x; t/ satisfies

Gt .x; t/ D f .x/Gx.x; t/C .�2=2/Gxx.x; t/

when f is independent of time to show that the moments Tn � hT ni satisfy

�nTn�1 D f .x/T 0
n C .�2/=2T 00

n :

Suppose the domain is .�1; b/ and the condition at xD b is absorbing
(T .b/ D 0). Show that T .x/, the first moment, is given by

T .x/ D 2

�2

Z b

x

dy
Z y

�1
dze.2=�2/

R z
y f .s/ ds:

7. Provide a complete analysis of the firing rate for the piecewise linear ring
model:

dV D .I C abs.V � �//dt C �dW:

Start with a Monte Carlo simulation on the circle Œ0; 2�/ and compute the firing
rate as a function of I for several values of � . Fix the noise and the current I
and compute the ISI histogram. Write a closed-form expression for the firing
rate. Numerically solve the first passage time equation and use this to compute
the ISI histogram. Compare it with the Monte Carlo simulation.

8. Show that 
�1 from (10.21) is the same as T .Vreset/ in (10.25). From this, derive
the simple expression for the firing rate of the integrate-and-fire model (10.22).

9. For large negative arguments

p
�es2

.1C erf.x// 	 1

s
CO.s�3/:

Use this to obtain the firing rate for the leaky integrate-and-fire model when I
is large. Is this the same as the noiseless value?
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10. Provide an approximation to the firing rate of the leaky integrate-and-fire model
(10.22) when 1 
 � , the large-noise case. The approximation should be valid
up to order 1 in ��1. (Hint: Use Taylor’s theorem since both limits of the inte-
gral will be small.)

11. Lindner et al. [181] rescaled time and voltage in the quadratic integrate-and-fire
neuron with noise,

dV D .V 2 C I /C �2dW;

to eliminate I and absorb this into � . There are two cases, I < 0 and I > 0. Do
this rescaling to reduce the noisy model to one depending on a single parameter
multiplying the noise.

12. Starting with (10.24) with f .V / D jV jp C I , where p > 1, find a rescaling
analogous to that done with the quadratic integrate-and-fire neuron to reduce
the dependence of the firing rate on noise and current to one parameter and two
equations for I > 0 and I < 0. When I D 0, show


 D K�2
p�1
pC1 ;

whereK is some p-dependent constant. Note that for p D 2 you recover Sigeti
and Horsthemke’s result without doing much of anything!

13. Estimating conductances. Rudolph et al. [238] described a method for esti-
mating the conductances of excitatory and inhibitory inputs into a neuron by
measuring the distribution of the subthreshold voltages. They derived a system
of stochastic differential equations and then reduced this to a Fokker–Planck
equation for which they could find the stationary distribution. Their method has
some flaws [181], but some of the basic ideas still hold. In this exercise, we will
use some very simple approximations to perform the estimates. Consider the
following stochastic differential equation:

CdV=dt D I � gL.V �EL/C ge.t/.Ve � V.t//C gi .t/.Vi � V.t//;

where ge;i .t/ are stochastic conductances of the excitatory and inhibitory neu-
rons. [238] assumed these conductances obey a first-order stochastic differential
equation. Here, instead, we assume they are of the form

ge;i .t/ D Nge;i C �e;i

dWe;i

dt
;

whereWe;i .t/ are Wiener processes. The problem now is that the noise appears
multiplicatively in the voltage equation. Let us avoid this by making a rather
crude approximation. Replace V.t/ in the conductance terms by NV , the mean
voltage in the absence of the fluctuations. Then we obtain

CdV D ŒI � gL.V �EL/� Nge.V � Ve/� Ngi .V � Vt /�dt

C�e Œ NV � Ve �dWe.t/C �i Œ NV � Vi �:
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Now, the noise terms are constant; however, NV depends on Nge;i . Proceed as
follows: (1) Compute NV , the mean potential as a function of Nge;i and I . (2)
Using two different values of I , find Nge;i in terms of the mean voltage (exper-
imentally observed) and the other known parameters, VL, gL, I , and Ve;i . (3)
Use the fact that the sum of two independent Wiener processes with amplitudes
a and b is a Wiener process with amplitude

p
a2 C b2 to find the stationary

distribution of the voltages at the two different currents. This will be a Gaussian
with mean NV and variance �2. Express �2 in terms of the known parameters,
the already-determined Nge;i , and the unknowns, �e;i . Since � is experimentally
observable for each applied current, I , solve for �e;i in terms of known and
experimentally observable quantities using two applied currents.

14. Colored noise. Consider the rescaled voltage driven by colored noise:

dv

dt
D �ˇv C y; �dy D �ydt C p

2DdW:

Verify that the Fokker–Planck equation for this is

Pt D Œ.ˇv � y/P �v C ŒyP=� CDPy=�
2�y ;

where the domain is the plane. Amazingly enough, a steady state for this equa-
tion can be found exactly! Show that

P.v; y/ D N exp.Av2 C Bvy C Cy2/;

where N is a normalization constant and A, B , and C are unknown constants.
Find these constants in terms of ˇ, � , and D. (It will help a great deal to use a
symbolic package such as Maple.)

15. Analysis of moment equations. In this exercise, we will examine certain aspects
of the moment equations.

a. As you will show next in this exercise, the only situation in which there is
a bounded solution to the moment equations is near a stable fixed point. We
will first explore the effects of noise near a fold bifurcation. Consider the
following system:

x0 D x2 C a C v;

v0 D 2xv C �2:

Find all the stable fixed points and the curve of fold points in the two pa-
rameters a and �2. In particular, show that the effect of noise is to make the
bifurcation occur at lower values of a. Turn this into an integrate-and-fire
model by assuming when x reaches some large number, say, 10, it is reset
to a large negative number, say, �10; and the variance is reset to 0. Numer-
ically find the F–I curve for different values of � . Show that it is always
concave down, so it does not look like the F–I curve computed from the
Fokker–Planck equation. Finally, prove v.t/ is always nonnegative in this
model.
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b. We now consider the general moment equations (10.33) and (10.34) when
the noise is zero, that is, gij D 0. The covariance equations are redundant
since Cij D Cj i is enforced. However, it is much more convenient to work
with the full n2 equations rather than the n.n C 1/=2 independent ones.
Clearly, Cij D 0 is invariant and the first moments obey the determinis-
tic dynamics. We now look at the stability of these equations around some
deterministic solution, .m;C / D .m0.t/; 0/. Let A.t/ D aij .t/ be the lin-
earization of the deterministic system aboutm0.t/. That is,

aij .t/ D @fi

@xj

evaluated along the solution m0.t/. The linearization of the full .m;C / sys-
tem about .m0; 0/ is an n C n2-dimensional square matrix. However, the
lower-left n2 � n2 block is all zeros, so the linearized system is block-
triangular. Stability is determined solely by looking at the two blocks: the
n � n upper block, which is the matrix A.t/, and the lower-right n2 � n2

block, which is formed from (10.34). Note that the coefficients multiplying
Cij are entries of the matrix A.t/, so the lower block is very closely related
to the upper block. The linearization of (10.34) can be rewritten as

C 0
ij D

nX
lD1

�
ai l.t/Clj C ajl .t/Ci l

�
: (10.42)

Suppose u.t/and v.t/ are two solutions to y0 D A.t/y. u.t/ and v.t/ are vec-
tors with components ui .t/ and vi .t/, i D 1; : : : ; n. Prove Cij D ui .t/vj .t/

solves (10.42). Thus, if A is constant, then the solutions, u.t/ and v.t/, are
exponentials, say, Nue�t and Nve�t , where Nu and Nv are constant vectors. This
means the solutions to (10.42) are also exponentials with exponent � C 
.
Thus, the eigenvalues associated with (10.42) are just sums of the eigenval-
ues associated with A. From this, you can conclude that the full moment
expansion near an asymptotically stable fixed point of the deterministic sys-
tem is also asymptotically stable.
What about periodic orbits? Suppose the deterministic system has a stable
periodic solution, m0.t/. Then the system y0 D A.t/y has a periodic solu-
tion, m0

0.t/. This means (10.42) also has a periodic solution, where we take
u.t/ D v.t/ D m0.t/. All other solutions to y0 D A.t/y decay as do those
of (10.42). But the existence of a periodic solution to (10.42) is bad since as
soon as gij is nonzero, the solutions to (10.42) will grow. Prove this. That is,
suppose we have the system Z0 D B.t/Z, where B.t/ is a periodic matrix.
Suppose there is a unique periodic solution, Z0.t/, and all of the other lin-
early independent solutions to Z0 D A.t/Z exponentially decay as t ! 1.
Let P be a constant vector. Show that solutions to

Z0 D B.t/Z C P
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will grow in time unlessP is chosen very carefully. (This is a tricky problem
related to the Fredholm alternative.)

16. Solve the functional equationG.0/ D 1 andG.t C s/ D G.t/G.s/ for all t and
s. Assume G.t/ is continuously differentiable. (Hint: Take s small and derive a
differential equation for G.t/.)

17. Compute the coefficient of variation for spike production in the Morris–Lecar
model with class I and class II excitability parameters in both the subthreshold
and suprathreshold regimes of current with a fixed strength of additive white
noise.

18. Simulate a Poisson process with an absolute refractory period. That is, let rmax

be the maximal rate. Each time a spike occurs, the rate is set to 0 and after
� milliseconds it returns to rmax. Compute the coefficient of variation for this
process. Write down the ISI histogram using (10.41) and use this to compute
the coefficient of variation exactly.

19. Create a function h.t/ such that the density function f .t/ has power-law be-
havior for large t ; that is, f .t/ 	 1=tm as t ! 1. Compute the coefficient
of variation for this. Note that m must be larger than 2 in order to compute the
coefficient of variation. Show that the coefficient of variation is always larger
than 1 for this process.

20. Consider a renewal process such that h.t/ D r1 for t < 1 and h.t/ D 1 for
t > 1. Compute the coefficient of variation as a function of r1. Note that when
r1 < 1, the firing rate is diminished right after firing, so it is like a refractory
period, whereas if r1 > 1, then the neuron is briefly more likely to spike after it
has already fired. This can be likened to an afterdepolarization such as is seen in
neurons which produce dendritic spikes. For what value of r1 is the coefficient
of variation maximal?

10.7 Projects

1. Develop computer code to solve the Fokker–Planck equation for the Morris–
Lecar model. In particular, compute the noisy F–I curve as follows:

a. Solve the steady state:

0 D �@v.f .v;w; I /P.v;w// � @w.g.v;w/P.v;w//C .�2=2/@vvP.v;w/:

The domain is the plane, but if you choose a large rectangle, D �
.vmin; vmax/� .wmin;wmax/, this should be sufficient. You should use reflecting
boundaries, J.@D/ D 0.

b. For each I , define the firing rate as

f D �
Z vmax

vmin

J.v;wth/ dv;
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where we choose wth as in the Monte Carlo simulations. The reason we do not
choose a voltage threshold is that the noise is in the voltage variable and since
we are using a Brownian motion, V can cross any specific point infinitely
many times in any interval of time. Thus, we use a section which is transverse
to the flow in the recovery variable as this is a continuous process.
Compare the result with Monte Carlo simulations.

2. Consider the stochastic differential equation corresponding to the Izhikevich
model (normal form for the Takens–Bogdonov bifurcation with finite reset),

dV D .I C V 2 � z/dt C �dW I dz D a.bV � z/; (10.43)

with the reset condition that if V.t�/D 1, then V.tC/D c and z.tC/D z.t�/Cd

[275]. Explain why the probability density satisfies

@P

@t
D � @

@V
.fP /� @

@z
.gP /C �2

2

@2P

@V 2
CJ Œı.V �c/CP.V; z�d/�P.V; z/�;

where

J D �
Z 1

�1
dz
�2

2

@P.V; z/

@V
jV D1

and f D I C V 2 � z, g D a.bV � z/. This partial differential equation is
defined on the domain .V; z/ D .�1; 1/� .�1;1/. The stationary distribution
will give you the firing rate, J: Try to develop an expansion for the stationary
distribution for small a and d . This will be a fast–slow system. Tuckwell et al.
[275] developed expansions for the FitzHugh–Nagumo equation that may be of
use. Here, we suggest a way to attack the problem. For small a and d , z does
not change very much, so we can hold z constant. If z is fixed, suppose one can
obtain the steady-state firing rate, J , as well as the density function, P.V I z; I /.
Then z formally satisfies

z0 D d
 C a.bhV i � z/ � G.z/;

where 
 is the firing rate of the cell and hV i is the average potential. Note that
both 
 and hV i depend on z. Find a fixed point, G.z�/ D 0, and substitute back
into P.V I z; I / to obtain the stationary density at the steady state. One can con-
tinue this expansion to higher order to get the variance of z as well. We suspect
that methods related to the moment expansions in this chapter could be of use for
the z dynamics.
Another interesting phenomenon to explore is the ISI distribution for this model.
For example, choose I D 0:05, � C 0:015, a D 0:03, b D 1, c D 0:2,and d D 0

and perform a Monte Carlo simulation. You will see that there is a bimodal ISI.
(See Exercise 3 for some comments on bimodal ISIs). Is it possible to get a
bimodal ISI distribution in the limit as a becomes small but b remains finite?
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3. Set some parameters for the Morris–Lecar model with noise. A good choice
is to add a modest amount of noise (say, � D 2 and I D 35) in the class I
regime. First, numerically compute the F–I curve for a range of applied currents.
Now add a small periodic term as in Sect. 10.2.5 and compute the spike-time his-
togram. (That is, present the periodic stimulus, say, 10,000 times and count the
number of spikes (crossings of w D 0:3) in each bin of, say, 2 ms. From this, you
get the number of spikes per millisecond, which is the firing rate.) Compare the
spike-time histogram with a model for the firing rate as in Sect. 10.2.5:

u.t/ D LŒf .I.t//�;

whereL is some simple linear filter and f is the steady-state firing rate. Can you
come up with a simplified firing rate model for the Morris–Lecar system based
on these ideas? Repeat the Monte Carlo simulations above, but replace the white
noise with the following noise

�dz D �zdt C p
�dW

for different values of � . You should find that the lag between the stimulus and
the firing rate disappears for � roughly of the order of 10 ms.

4. Noisy synchrony. A model that has been used for a pair of coupled neurons in the
presence of noise is

d�1 D .!1 CH.�2 � �1//dt C �dW1;

d�2 D .!2 CH.�1 � �2//dt C �dW2;

where dWj is white noise. Subtract these two equations and let � D �2 � �1 to
obtain

d� D .ı � 2G.�//dt C �
p
2dW;

where ı D !2 � !1 and G.�/ is the odd part of H.�/. The
p
2 factor arises

because the sum of two Wiener processes with unit variance and zero mean is
also a Wiener process with variance 2. Write a Fokker–Planck equation for this
Langevin equation. For the case ı D 0, write the steady-state probability density
for �. (The more general case is doable but not so compactly.) Pfeuty et al. [214]
have shown that this density function is related to the spike-time cross correlation
of the two neural oscillators.

5. Synchrony without coupling. Two oscillators which are driven with common
weak noise can synchronize even if they are not coupled [261]. To see this, start
with any two oscillators (for example, the Izhikevich model) and drive them with
a common white noise process, started from slightly different initial conditions.
Over time, they will converge to a synchronous solution. In this project, you
use the results of this chapter to analyze the resulting equations. To simplify the
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analysis, we restrict our attention to simple ring model oscillators which are con-
tinuous and differentiable:

dx1 D a.x1/dt C �dW;

dx2 D a.x2/dt C �dW:

Assume a.x/ > 0, a.x C 2�/ D a.x/, and P D R 2�

0
dx

a.x/
< 1. Then we can

regard each x as an oscillator

Step 1. Make a change of variables x D U.�/, where U 0 D a.U /. Since
a.U / > 0, this is an invertible transformation. Let f .x/ be the inverse, so
� D f .x/. Recall Ito’s formula when you make the change of variables.

Step 2. Recall that for the scalar oscillator, the adjoint Z.�/ is given by
Z.�/ D 1=a.U.�//. Use regular calculus to show that with the change of
variables in step 1 the equations are

d�1 D
�
1C �2

2
Z0.�1/Z.�1/

�
dt C �Z.�1/dW;

d�2 D
�
1C �2

2
Z0.�2/Z.�2/

�
dt C �Z.�2/dW:

Step 3. One solution to this stochastic differential equation is �1 D �2 D � .
Let � D �2 � �1. Then � satisfies

d� D �2

2
ŒZ0.�/Z.�/�0�dt C �Z0.�/�dW:

Again, using Ito’s formula, let y D log.�/ and show that y satisfies

dy D �2

2
fŒZ0.�/Z.�/�0 �Z0.�/2gdt C �Z0.�/dW:

Step 4. The long-time behavior of y.t/ determines the stability of the syn-
chronous state. That is, if

� � lim
T !1

1

T
.y.T / � y.0//

is negative, then �.t/ will decay to zero. � is the time average of y.t/ and we
can replace this with the ensemble average:

� D �2

2

Z 2�

0

Pst.�/fŒZ0.�/Z.�/�0 �Z0.�/2gd�:
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Here, Pst.�/ is the stationary distribution of � which satisfies the stochastic
differential equation:

d� D Œ1C �2

2
Z0.�/Z.�/�dt C �Z.�/dW:

If the noise is small, then � is nearly uniform and you can approximate
Pst.�/ D 1=.2�/. Show that with approximation,

� D ��
2

2

1

2�

Z 2�

0

Z0.�/2 d�:

Conclude synchrony is stable.

Supplement the analysis with some numerical simulations. Additionally, add in-
dependent noise to each oscillator, say, 10% of the common noise. Solve this
numerically and look at the stationary distribution of the phase differences.



Chapter 11
Firing Rate Models

One of the most common ways to model large networks of neurons is to use a
simplification called a firing rate model. Rather than track the spiking of every neu-
ron, instead one tracks the averaged behavior of the spike rates of groups of neurons
within the circuit. These models are also called population models since they can
represent whole populations of neurons rather than single cells. In this book, we
will call them rate models although their physical meaning may not be the actual
firing rate of a neuron. In general, there will be some invertible relationship be-
tween the firing rate of the neuron and the variable at hand. We derive the individual
model equation in several different ways, some of the derivations are rigorous and
are directly related to some biophysical model and other derivations are ad hoc. Af-
ter deriving the rate models, we apply them to a number of interesting phenomena,
including working memory, hallucinations, binocular rivalry, optical illusions, and
traveling waves. We also describe a number of theorems about asymptotic states as
well as some of the now classical work on attractor networks.

There are many reasons to use firing rate models. First of all, there is the obvious
issue of computational efficiency. Modeling a network of thousands of individual
conductance-based neurons can tax even the fastest computers. For this reason,
many large-scale simulations use simple spiking models such as the integrate-
and-fire model. In many experimental preparations, what is measured is not the
intracellular potential of neurons, but instead the probability of firing. This type of
recording is done with an extracellular electrode and thus spikes can be detected but
the other aspects of the cell are unknown. Hence, to better make better comparisons
with experiments, it makes sense to consider the firing rate instead of the potential.
Field potential recordings, electroencephalograms, and functional magnetic reso-
nance imaging presumably represent large populations of neurons. Thus, a model at
this scale may be better posed in terms of population equations.

Rate models are among the oldest forms of modeling of the brain and the nervous
system, going back to the late 1930s. Cowan and Sharp [50] have written a very
comprehensive history of the early days of neural network research. A nice oral
history of the subject of neural nets can be found in [5].

Rate models are essentially the underlying “biology” in the very popular and use-
ful theory of neural networks. For example, the “connectionist” models developed
under the Parallel Distributed Processing program by McClelland and Rumelhart

G.B. Ermentrout and D.H. Terman, Mathematical Foundations of Neuroscience,
Interdisciplinary Applied Mathematics 35, DOI 10.1007/978-0-387-87708-2 11,
c� Springer Science+Business Media, LLC 2010
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[196] and the “back propagation” models are all connected to the wet nervous
system (albeit, occasionally rather tenuously) via rate models. Massively recur-
rent attractor networks, perceptrons, hidden layer models, adaptive resonance theory
(and its descendants) are all essentially rate models [98]. We will spend little time
in this chapter on the more machinelike and abstract ideas of neural network the-
ory and will instead focus on the connection of rate models to biophysics and the
usefulness of these networks in modeling biological phenomena.

11.1 A Number of Derivations

11.1.1 Heuristic Derivation

We start with a very simple, somewhat abstract derivation that was advocated
in early work of Cowan and later formalized in Ermentrout and Cowan [69].
Figure 11.1 shows a schematic for a pair of neurons with a synapse from one to
the other. The measurable output is the firing rate, ui .t/, which depends in a nonlin-
ear way on the somatic potential, Vi .t/ W

ui .t/ D Fi .Vi .t//:

Now, the reader might recall that most of our biophysical models produced firing
rates as a function of the applied current, so she may be puzzled at the use of voltage
as a driver for the output of the cell. We justify this by assuming the current flowing
into the axon hillock (which is the site of action potentials) is proportional to the
voltage drop between the soma and the resting potential of the hillock compartment.
Thus, the somatic potential is passively converted to an axon hillock current via
Ohm’s law, that is, I D V=RM, where RM is the membrane resistance. Each time
a presynaptic cell fires a spike, a postsynaptic potential appears at the soma. The
size of this potential, as well as the sign, depends on the nature of the synapse,
the position on the dendrite, and so on. We define ˆij .t/ to be the postsynaptic

Vj (t) Vi (t)

uj (t) ui (t)

Fig. 11.1 Schematic of a pair of neurons synaptically coupled
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potential appearing on postsynaptic cell i due to a single spike from presynaptic
cell j: Let t1; t2 ; : : : ; tm be the firing times of the presynaptic cell. By assuming
linear summation of the postsynaptic potentials, the total potential received at the
soma is

Gij .t/ D
X

l

ˆij .t � tl/:

The firing rate uj .t/ determines the instantaneous number of spikes that a neuron
fires in an infinitesimal time interval. That is, we can think of uj .t/dt as the proba-
bility of a spike occurring in the time interval .t; t C dt/: Thus, the above sum can
be rewritten as

Gij .t/ D
Z t

t0

ˆij .t � s/uj .s � �ij /ds;

where �ij is the possible axonal delay in the spike arising at cell j arriving at cell i:
If the effects of each cell linearly sum, then we can close this model, resulting in an
integral equation for either Vi or ui :

Vi .t/ D
X

j

Gij .t/ D
X

j

Z t

t0

ˆij .t � s/Fj .Vj .s � �ij //ds; (11.1)

ui .t/ D Fi

0
@X

j

Z t

t0

ˆij .t � s/uj .s � �ij /ds

1
A : (11.2)

Both of these rather formidable equations can be greatly simplified once we have
discussed the postsynaptic potential function ˆij .t/: To do this, let us consider a
passive membrane with a time constant �m and into which a presynaptic current is
injected:

�m

dˆ

dt
Cˆ D RMI.t/:

For simplicity, suppose I.t/ is an alpha function of the form

I.t/ D exp.�t=�d / � exp.�t=�r /:

Here, �d is the decay of the synaptic current and �r is the rise time of the current.
Assuming ˆ.0/ D 0, we can solve this simple differential equation to obtain the
postsynaptic voltage response:

ˆ.t/ D �d

�d � �m

�
e�t=�d � e�t=�m

�
� �r

�r � �m

�
e�t=�r � e�t=�m

�
: (11.3)

This response depends on three parameters: the postsynaptic time constant and the
presynaptic rise and decay times. One could make this response function far more
complex by including dendritic filtering properties and so on as long as it remains
linear. (If the response is nonlinear, then we cannot simply sum the inputs from
different neurons, nor can we even sum the individual postsynaptic potentials to
form the integral.)
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The Volterra integral equations (11.1) and (11.2) are not simple to analyze so one
generally attempts to convert them into differential or differential-delay equations.
For ˆ.t/ represented as a finite sum of exponentials, we can always invert the in-
tegral equation to form a set of differential equations. To see this, consider first the
simple integral equation

x.t/ D
Z t

t0

e�.t�s/=�y.s � r/ds;

where r is the possible delay. Differentiate x with respect to t to obtain

dx

dt
D y.t � r/� 1

�

Z t

t0

e�.t�s/=�y.s � r/ds D y.t � r/� x.t/=�:

Thus, we see that x.t/ satisfies

dx

dt
C x=� D y.t � r/:

If ˆ.t/ is the sum of several exponentials, then we can break the Volterra integral
equation into a set of differential equations using the above identity.

This approach is not entirely satisfactory since for each connection ˆij .t/ we
need (in the present case) three differential equations. If the network of interest con-
sists of a homogeneous population of neurons, that is, their synaptic time constants
are the same and they have the same membrane time constant, then we can write
ˆij .t/ D wijˆ.t/, where wij represent the magnitudes of the connections. Suppose
the delays, �ij are the same for all cells, say, �ij D r: Then the voltage equation
(11.1) now becomes

.LVi /.t/ D
X

j

wijFj .Vj .t � r//; (11.4)

whereL is a linear homogeneous differential operator. Equation (11.4) is essentially
the classical model for a neural network. We can similarly reduce (11.2) to a set of
differential equations. Let

zi .t/ D
Z t

t0

ˆ.t � s/ui .s � r/ds:

Thus,

.Lzi /.t/ D ui .t � r/ D Fi

0
@X

j

wij zj .t � r/
1
A : (11.5)

This is not quite the same as an equation for the firing rate, ui .t/, but this variable is
obtained easily from zi .t/ by differentiation [217]. zi .t/ is the synaptic drive.
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This drastically simplifies the simulation and analysis of single populations of
differential equations but we are still stuck with difficulties when we have, say,
an excitatory and an inhibitory population. Key to the reduction was the idea that
ˆij .t/ D wijˆ.t/: However, if we examine (11.1) carefully, we see that we can
make a less restrictive assumption that ˆij .t/ D wijˆi .t/ for then we obtain

.LiVi /.t/ D
X

j

wijFj .Vj .t � r//:

Similarly, examining (11.2), if we assume ˆij .t/ D wijˆj .t/, then we obtain

.Li zi /.t/ D Fi

0
@X

j

wij zj .t � r/

1
A :

Rather than a system of N 2 differential equations for a network of N neurons, we
just have N differential equations. Thus, we now want to examine more closely
what these two assumptions entail.

Suppose ˆij D wijˆi .t/: This means the response of neuron i to any inputs
depends (up to a scalar constant which could be negative or positive) only on the
properties of the postsynaptic cell. This assumption is valid if the shape and tem-
poral properties of the presynaptic currents are the same no matter what type the
presynaptic cell is. This kind of model would fail to distinguish between, say, a
slow NMDA current and a fast AMPA current, or even between the fast AMPA
and somewhat slower GABA currents. However, looking at (11.3), we see that if
�m � f�d ; �rg, then ˆ.t/ � exp.�t=�m/=�m, which is independent of the presy-
naptic timescales. That being the case, our system of differential equations is first
order:

�m;i

dVi .t/

dt
C Vi .t/ D

X
j

wijFj .Vj .t � r//: (11.6)

Equation (11.6) is commonly used as a model neural network and within the scope
of our derivation, the timescale associated with each element in the network is that
of the membrane time constant.

Now, supposeˆij D wijˆj .t/: This means the shape of the postsynaptic poten-
tial depends only on the presynaptic cell. To us, this is a more reasonable assumption
since we can distinguish different types of synapses (and, below, this allows us
to incorporate synaptic depression and potentiation). Suppose the rise time of the
synapse and the membrane time constant of the postsynaptic cell are small com-
pared with the decay of the synapse. Then ˆj .t/ � exp.�t=�d /=�d and, as above,
we derive the following equation for the synaptic drive:

�d

dzi .t/

dt
C zi .t/ D Fi

0
@X

j

wij zj .t � r/
1
A : (11.7)
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This model is also a very popular version for neural networks. In this case, the
temporal dynamics are dominated by the synaptic decay, �d .

Equations (11.6) and (11.7) are often regarded as equivalent, but in the present
derivation, they are not. Rather, they represent two distinct assumptions about the
dominant timescales.

Before discussing the forms of the firing rate functions, Fi , we turn to a deriva-
tion based on the theory of averaging and some assumptions about the types of
bifurcation in the conductance-based models.

11.1.2 Derivation from Averaging

Consider the following conductance-based network:

C
dVi

dt
C Ii .Vi ; : : :/ D �

X
j

gij sj .Vi � Vsyn;j /; (11.8)

�syn
dsi
dt

C si D Ri .Vi ; si /: (11.9)

Here, Ii represents all the nonlinear conductances which lead to action potentials. To
simplify the derivation, we have assumed a synapse from cell j produces the same
conductance change regardless of the postsynaptic target. This is not an unreason-
able assumption. Weakening this assumption results in more differential equations
just as the more general assumptions in the previous section. Suppose �syn � 1.
This means the synapses are slow. If the synapses are slow, then si .t/ will change
very slowly relative to the dynamics of the membrane; thus, we can treat si as con-
stant. For ease in exposition, we will suppose all the neurons are excitatory, which
means Vsyn;j D Ve . Let Gi D P

j gij sj . Since sj are roughly constant, so is Gi , so
we can treat it as a parameter. Equation (11.8) is now isolated from the rest of the
population because Gi is just a constant. We can compute the bifurcation diagram
of the membrane potential and obtain

Vi .t/ D NVi .t IGi /:

We will assume only two types of behavior: stable fixed points or limit cycles. In the
latter case, we assume the period is Ti .Gi /. We now return to the synaptic equations
(11.9) but substitute NVi .t IGi / for Vi since the potential changes on a faster timescale
than the synapses. Thus, (11.9) becomes

dsi
dt

D 1

�syn
.�si CRi . NVi .t IGi /; si //:

If NVi is a stable fixed point, then the si equation is straightforward since the right-
hand side is independent of t: However, if NVi is periodic, then we are still safe since
we can apply the averaging theorem and obtain
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dsi
dt

D 1

�syn
.�si C ˝

Ri . NVi .t IGi /; si /
˛
/;

where

˝
Ri . NVi .t IGi /; si /

˛ D 1

Ti .Gi /

Z Ti .Gi /

0

Ri . NVi .t IGi /; si /dt � Qi .Gi ; si /:

Thus, since all the quantities involved depend on Gi , we have reduced this
conductance-based model to a system of first-order equations for the synaptic
gates, si :

�syn
dsi
dt

C si D Qi

0
@X

j

gij sj ; si

1
A : (11.10)

We now explore (11.10), specifically Q.G; s/, in more detail. In Chap. 8, we mod-
eled synapses as

ds

dt
D ˛.V /.1 � s/ � ˇs

in much the same way as we model channels. Factoring out the ˇ D 1=�syn, we see
that R.V; s/ D ˛.V /�syn.1� s/: The function ˛.V / is zero except when the neuron
spikes. Let us suppose the width of a spike is independent of the firing rate of the
neuron, so Z T

0

˛. NV .t//�syndt D �;

where � is a constant essentially independent of T , the period. Let us define

F.G/ � 1

T .G/

as the firing rate of the conductance-based model given synaptic conductance G.
Then, with these approximations

Qi .Gi ; si / � 1

Ti .Gi /

Z Ti .Gi /

0

Ri . NVi .t IGi /; si /dt D �iFi .Gi /.1 � si /:

Putting all these terms together, we can now write (11.10) as

�i

dsi
dt

D �iFi

0
@X

j

gij sj

1
A .1 � si /� si : (11.11)

With the exception of the (1 � s) term, (11.11) is the same as (11.7). This makes
sense, for in both cases the timescale is the synaptic decay. Here, the variable si .t/
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is the fraction of open synaptic channels, whereas in (11.7), zi .t/ was called the
synaptic drive.

If there are different types of synapses, say, excitatory and inhibitory, the synaptic
current is

Isyn D Gex.V � Vex/CGin.V � Vin/

and the period, T , is a function of two variables, Gex and Gin: This may seem to
be a problem since it is not clear how T should depend on the two conductances;
we would like it to be additive or some simple functional. If the conductance-based
neuron is operating near a saddle–node bifurcation, then we know that

F.Isyn/ � K
p
Isyn � I�;

where I� is the critical current at which the saddle–node appears. Let V � be the
potential at the saddle–node. Then (at least near the saddle–node)

Isyn D Gex.V
� � Vex/CGin.V

� � Vin/;

so the firing rate is an additive function of the inhibitory and excitatory
conductances.

The big advantage of deriving firing rate models from conductance-based models
using averaging is that it is simple to incorporate slow currents such as spike-
frequency adaptation and also short-term synaptic plasticity. We will introduce some
of these models later and others will be provided as exercises.

11.1.3 Populations of Neurons

The derivations above were motivated by considering a single conductance-based
neuron and then from this deriving a model for the firing rate. However, the main
role of firing rate models is not to mimic single cells, but rather to examine large
numbers of neurons in some “average” fashion. We can draw the analogy between
intracellular and extracellular recordings in physiology. Intracellular recording en-
ables one to track the membrane potential of a single neuron. Extracellular record-
ings, such as the local field potential, represent the responses of many neurons.
Sharp electrodes (also extracellular) can resolve spikes of individual neurons. How-
ever, these spiking events are probabilistic, so experimentalists repeat the same
stimulus over many trials to obtain a poststimulus time histogram. The poststimulus
time histogram has units in spikes per unit time (often milliseconds), so it is ef-
fectively a rate. The intuition behind the poststimulus time histogram is that it is
assumed to be true that if we were able to record simultaneously from 100 nearby lo-
cations, we would get the same result as from recording from one location 100 times.
For this to be reasonable, we have to assume the neurons fire largely independently
of each other. Once this assumption has been made, then we see that the firing rate of
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the population is exactly the same as that of an individual neuron and the equations
derived in the previous section can thus be interpreted as the population firing rate.
However, in the derivation from averaging, the firing rate function is deterministic.
Thus, if every cell were identical, then all cells would fire in perfect concert. Thus,
we need to account for differences between neurons when we treat populations. One
way to do this is to include the effects of noise. In Chap. 10, we saw that extrinsic
noise can smooth the firing rate as a function of the input current. Thus, for exam-
ple, we could replace a firing rate function F D p

I by a smoothed version of this
which has a nonzero firing rate even for subthreshold inputs (I < 0). Another way
to smooth the firing rate function is to assume heterogeneity. For example, suppose
the firing rate is F.I � I �/ for I > I � and zero otherwise as would be the case for
a saddle–node on an invariant circle bifurcation. If the threshold values I� are taken
from some distribution,Q.I/, then we can write an “average” firing rate function

FQ.I / D
Z
Q.I�/F.I � I�/dI�: (11.12)

We will leave it as an exercise for the reader to explore specific forms for the
averaged firing rate.

Let us give a quick derivation of a typical firing rate or population model.
Consider N identical neurons which receive (possibly random inputs) and between
which there are recurrent connections. We will assume, for simplicity, all the neu-
rons are excitatory (multiple types of neurons are easily generalizable) and the
connections are all identical as are the inputs, the strengths of which are scaled
by 1=N . Each neuron undergoes dynamics

C
dVi

dt
D �Iion;i C Ngsi .Vi � Esyn/;

where Ngsi is the conductance felt by each neuron. Since all inputs are excitatory
and we assume the recurrent synapses have dynamics similar to the dynamics of the
input synapses, we have

.Lsi /.t/ D JT

X
k

ı
�
t � tTk

�
C
X
j;k

Jij ı
�
t � t

j

k

�
;

where L is a linear differential operator which governs the synapse. Alternatively,
we could generalize this and write

si .t/ D
Z t

t0

˛.t � t 0/

0
@JT

X
k

ı
�
t 0 � tTk

�
C
X
j;k

Jij ı
�
t 0 � t

j

k

�1A dt 0: (11.13)

Here, tT
k

are the spike times from the inputs and tj
k

are the spike times of the j th
cell in the network.
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Key to the notion of population models is the fact that we assume the neurons
are firing independently of each other within the network. Is this a good assump-
tion? If there is a great deal of extrinsic independent noise, then it is likely that
there are few correlations between neighboring neurons. A given population of in-
terest often receives inputs from an earlier processing stage. (For example, layer
4 in the cortex receives inputs from the thalamus.) If the incoming action poten-
tials come from randomly chosen subsets of the input layer, then we expect that
spiking within the output layer would be uncorrelated. However, it turns out that
this seemingly obvious assumption is not true. In recent experiments, Reyes [224]
examined the following scenario. From N independent Poisson trains of spikes,
a subset of m � N was selected and injected into a neuron. The spike times
of this neuron were recorded. A different set of m spikes was selected and the
experiment was repeated until there were N new spike trains. These formed the
basis for a repeat of the first set of experiments; N new spike trains were col-
lected from these spike trains and so on. By layer 10 (ten iterations), there was
considerable synchrony between the spike trains, so it was no longer reasonable
to assume independence. The reason for this is that even though each trial shared
only a few inputs, these inputs were enough to become amplified over multiple
layers, leading to synchrony. Thus, the assumption of independence is at best an
approximation and at worst is wrong. In the Reyes experiment, there was no re-
current coupling between cells within a layer. Recurrent connections can either
increase or decrease the synchrony, depending on the nature of the coupling. In-
deed, we saw in Chap. 8 that synaptic timescales, intrinsic currents, and the sign of
the coupling can all have dramatic effects on the synchronization between coupled
neurons. Since the only theory that has been done on the issue of asynchrony is
for very simple models (leaky integrate and fire, quadratic integrate and fire), little
more can be said about the assumption of independence for recurrently connected
neurons.

There is one last issue that we want to discuss before moving on to applications
of firing rate models. This is the issue of time constants. Figure 11.1 showed that
a noisy integrate-and-fire model with high noise could follow a stimulus rather ro-
bustly if we added a small time constant to the dynamics. Specifically, let I.t/ be a
time-varying input and let F.I / be the noisy firing rate as a function of the constant
input [cf. (11.19) or (11.20)]. Then the firing rate for a time-varying stimulus is

�f

df

dt
D �f C F.I.t//:

The parameter �f is ad hoc and chosen to be small. It is not related to a membrane
or synaptic time constants but depends on all of these as well as the characteristics
of the noise [90]. With low noise, then the instantaneous firing rate can be very
complicated. In Project 2, we suggest a way to look at these dynamics.
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11.2 Population Density Methods

Gerstner and Kistler [99] provided a quick derivation for firing rate models of whole
populations of neurons. Cai et al. [32] also derived such models. The equations
which result are similar to those that we derived for globally coupled oscillators
in Chap. 9. Basically, in all the derivations, the authors start with simple models for
neurons such as the leaky integrate-and-fire model and from these derive an equation
for the distribution of the potential. The flux of the potential across threshold is the
firing rate of the cells. In general, the equations which result from these derivations
are difficult to solve and often require special numerical methods. That said, they are
still much faster to solve than the full network of spiking neurons. We will eschew a
detailed study of the differences between the various derivations and sketch a fairly
general equation based on the work of Gerstner and Kistler, which to us is the most
transparent derivation. Thus, this section is closely related to Sect. 6.2 in [99]. We
will approach it slightly more generally so that the resulting model is not tied to
the specific form of the leaky integrate-and-fire neuron. The idea is to consider a
one-dimensional neural model with some reset conditions.

We will write
dvi

dt
D f .vi /C g.vi /Ii .t/;

where f is the spiking dynamics, g is the response to inputs, and Ii is all the
synaptic currents coming into the cell. If the model requires reset, then we have the
condition that when vi D � , vi is reset to vr < � . For example, the leaky integrate-
and-fire model has f .v/ D �v=� and g.v/ D R=� , where R is the membrane
resistance. We define

Z uC�u

u
p.u; t/du D lim

N !1

�
no. of cells with u < vi .t/ � u C�u

N

�
:

The function p.u; t/ is the membrane potential density. We have the following nor-
malization: Z �

�1
p.u; t/du D 1:

This says that the probability is conserved. The firing rate or population activity,
A.t/, is defined as the flux of cells across the threshold:

A.t/ D J.�; t/:

We will define this flux shortly. Neurons which cross the threshold reappear at the
reset value, vr, so this must be added to the evolution equations in the form of a
source term A.t/ı.v � vr/:We remark that these discontinuities will disappear if we
use a model such as the theta model instead of the leaky integrate-and-fire model
since the “threshold” at � is just part of the full cycle. We assume all neurons re-
ceive the same external input, Iext.t/, and that there is random background input.
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Excitatory and inhibitory synaptic inputs are allowed as well. Synapses of type k
occur at rate �k.t/: These could be from external sources or from within the net-
work if it is recurrent. To avoid adding an additional equation, we will assume the
synaptic inputs are in the form of delta functions. Consider the single cell

dv

dt
D f .v/C g.v/wı.t � t�/;

where t� is the time of the input and w is the amplitude. If v is the value right before
t�, then v C wg.v/ � G.v;w/ is the value of the potential right after the input. For
the derivation we provide below to be valid, we will assume the functionG.v;w/ is
invertible with respect to v. In Exercise 5, you are invited to show that for small w
the inverse of G is

H.v;w/ � G�1.v;w/ D v � g.v/w C g0.v/g.v/w2 CO.w3/: (11.14)

We note that if g.v/ is constant, then the inverse is exact. For the theta model, g.v/ D
1Ccos v, where v D � is the spike. Cai et al. [32] considered g.v/ D .vs �v/, where
vs is the synaptic reversal potential. An exact inverse can be found in this case.

With these asides out of the way, we continue the derivation. Each synapse of
type k has an amplitude of wk and occurs at rate �k.t/: The dynamics satisfy

@p.v; t/

@t
D � @

@v
..f .v/C g.v/Iext.t//p.v; t//

C
X

k

�k.t/Œp.H.v;wk/; t/Hv.v;wk/� p.v; t/�C A.t/ı.v � vr/:

(11.15)

The first term on the right-hand side is just the drift due to the uncoupled dynamics
of each neuron. The last term is the reinjection of cells which cross through the
threshold for spiking. The middle term is the gain of cells which were at H.v;wk/

and jumped to v owing to the synaptic input as well as the loss of those which
jump from v to G.v;wk/: The strange term Hv multiplying the probability arises
because we want to conserve total probability. Note that it is bounded because G is
invertible and thus monotonic. We remark that p.v; t/ D 0 for v > �: Right away,
we can see that there is trouble lurking about if you are interested in simulation.
Equation (11.15) is a functional partial differential equation because of the term
H appearing as an argument of the density p: The firing rate is determined from
the flux across the threshold. To determine this, we rewrite (11.15) as a continuity
equation. Note that

�kŒp.H.v;wk/; t/Hv.v;wk/ � p.v; t/� D � @

@v
�k

Z v

H.v;wk/

p.u; t/du:

Thus, for any v, (11.15) can be written as

@p

@t
D �@J

@v
C A.t/ı.v � vr/;
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where

J.v; t/ D Œf .v/C g.v/Iext.t/�p.v; t/C
X

k

Z v

H.v;wk/

p.u; t/ du:

Note that J.v; t/ D 0 for v > �: If wk is small, then we can expand this equation in
a Taylor series to obtain the diffusion approximation. From (11.14),

Z v

H.v;wk/

p.u; t/du �
Z v

v�wkg.v/Cw2
k

g 0.v/g.v/

p.u; t/du:

Applying the fundamental theorem of calculus, this integral is approximately

wkg.v/p.v; t/ � 1

2

�
w2

kg.v/
2p.v; t/

�
v
:

With this approximation, the diffusive approximation for the population density
equation is

@p.v; t/

@t
D A.t/ı.v � vr/� @JD.v; t/

@v
; (11.16)

where

JD.v; t/ D
"
f .v/C g.v/.Iext.t/C

X
k

wk�k.t//

#
p.v; t/ (11.17)

�1
2

@

@v

 X
k

�k.t/w
2
kg.v/

2p.v; t/

!
:

Since these are just partial differential equations, they are amenable to numerical
solution. If the inputs �k.t/ are external, then we can define

	2.t/ D
X

k

�k.t/w
2
k

and

r.t/ D Iext.t/C
X

k

�k.t/wk :

If everything is stationary, then

JD.v; t/ D Œf .v/C g.v/r�p.v; t/ � 	2

2

@g2.v/p.v; t/

@v
;

where r and 	2 are constant. Solving the steady-state equations is identical to
solving the single noisy integrate-and-fire model we studied in Chap. 10.
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If we are using a discontinuous neural model, such as the leaky integrate-and-fire
model, then we have p.�; t/ D 0 and the firing rate, A.t/, is given by

A.t/ D JD.�; t/ D �1
2

@

@v

 X
k

�k.t/w
2
kg.v/

2p.v; t/

!ˇ̌ˇ̌
ˇ
vD�

:

However, if we instead use a continuous model on the circle such as the theta model,
then the equations are considerably simpler. The term A.t/ı.v � vr/ no longer ap-
pears since the natural flow of the dynamics takes v through � and the domain of
the model is Œ0; 2�/: In this case, we get

A.t/ D JD.�; t/ D f .�/p.�; t/

since, for the theta model, g.�/ D 0: For time-dependent inputs to the theta model
(or other ring models), we can solve the full equations by writing p.x; t/ in a finite
Fourier series and then writing differential equations for the coefficients. See Project
5 in Chap. 8.

Because the partial differential equations that result from these models can be
quite difficult to solve (when the noise is low), we will generally use simple ordinary
differential equation forms of population models.

11.3 The Wilson–Cowan Equations

One of the most influential models in the neural network literature is the one de-
veloped by Hugh Wilson and Jack Cowan in the early 1970s [287]. The original
equations have the following form:

�e

dE

dt
D �E C .1 � reE/Fe.˛eeE � ˛ieI C Te.t//; (11.18)

�i

dI

dt
D �I C .1 � riI /Fi .˛eiE � ˛i iI C Ti .t//;

where Tj is the input from the thalamus and re and ri represent the refractory frac-
tion of the neurons available to fire. The term .1 � reE/ is an approximation of

1 �
Z t

t�re

E.s/ds;

which represents the fraction of neurons available to fire given they have an absolute
refractory period of re. Curtu and Ermentrout [52] analyzed the behavior of the
original integrodifferential equations for a single excitatory population. The extra
premultiplicative factor .1 � reE/ does not make too much of a difference in the
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analysis of the equations, so we will generally set re D ri D 0. We first consider
a single scalar model for one recurrent population of neurons. Then we turn to the
pair and we will look at mutually excitatory, inhibitory, and mixed populations. The
last case is the Wilson–Cowan equations.

A Note on the Gain Functions: What should one use for a gain function, F.u/?
The traditional form for this is the logistic function, F.u/ D 1=.1 C exp.�ˇ.u �
uT ///, which we have also encountered in our study of voltage-gated conductances.
With the use of a logistic function, we interpret the function F as a probability of
firing rather that an actual firing rate. A similar choice for F is F.u/ D 1C erf.u/,
where erf.u/ is the error function (integral of a Gaussian). Pinto et al. [219] used
this model to study the mean-field approximation for a model of cortex.

If we regard F as an actual firing rate of a single cell, then we could use an
approximation for a neuron which undergoes a saddle–node bifurcation of periodic
firing; namely,

F.u/ D A
p

max.u � uT /;

where uT is the minimal current needed to induce firing. This gain function is con-
tinuous, but not differentiable and so will lead to problems when it comes time to
numerically analyze models. In the presence of noise, we saw in Chap. 10 that the
function is smoothed out. The following two variants of the above function are good
approximations to the noisy firing rate:

F.u/ D A
p
.u � uT /=.1� exp.�.u � uT /=ˇ//; (11.19)

F.u/ D A
p
ˇ logŒ1C exp..u � uT /=ˇ/�: (11.20)

Here, ˇ is a measure of the “noise”; as ˇ ! 0, both of these functions approach
a pure square-root model. There are two more functions which are commonly en-
countered:

1. The step function, for which the neuron either is not firing at all or is firing at the
maximal rate. This turns out to be the easiest to analyze and we will return to it
when we get to networks.

2. The piecewise linear function

F.u/ D max.u � uT ; 0/:

Linearity makes it possible to also analyze this function.

For the most part, there is little to recommend for the piecewise linear function
other than it can be analyzed. The main objection we have for this function is that
the firing rate can become infinite in recurrent networks. The step function and the
logistic function, which both saturate, do not suffer from this problem. The square-
root model is sublinear for large inputs, so it, too, does not “run away.”
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11.3.1 Scalar Recurrent Model

As a warmup problem, we consider the simple recurrent neural network model:

du

dt
D �u C F.˛u C ˇ/;

where ˇ is the input and ˛ is the strength of the connections. We leave as an ex-
ercise the analysis of this scalar model. We will assume F.u/ � 0, F 0.u/ > 0, so
the firing rate is a monotonic function. If the connections are inhibitory, ˛ < 0,
then there is a unique asymptotically stable equilibrium point. If the connections
are excitatory, then the situation is more interesting. In many firing rate functions,
the derivative F 0.u/ has a single maximum (that is, F has a single inflection point).
If this is the case, then you should be able to show that there are at most three
fixed points of the scalar neural network. In general, if the nonlinear gain function
F.u/ has 2mC 1 inflection points and aside from these F 00.u/ is nonzero, then it is
possible for the recurrent excitatory neural network to have 2mC 3 fixed points of
which mC 1 are stable.

To analyze bifurcations in a scalar firing rate model, we consider the current to
be a parameter and ask when there is a saddle–node bifurcation. The condition is
straightforward:

�1C ˛F 0.˛u C ˇ/ D 0: (11.21)

SinceF 0.u/ has a single maximum, if ˛ is sufficiently large, then we can choose u so
that (11.21) has two roots. Given such a u, say, Nu, we plug this into the equilibrium
condition and solve for ˇ:

Nu D F.˛ Nu C ˇ/:

Since F is invertible, we can solve for ˇ: If ˛ is chosen to be precisely the recip-
rocal of the maximum of F 0, then the two saddle–node roots of (11.21) merge at
a codimension-2 cusp point. For more complex functions F with multiple inflec-
tion points, it is possible to have even higher codimension bifurcations such as the
“butterfly catastrophe” [49].

11.3.2 Two-Population Networks

Beer [11] provided a fairly exhaustive study of two-population networks. Here, we
concentrate on a few interesting cases.

We dispense with networks for which the interactions between the cells are the
same, excitatory or inhibitory. The following theorem allows us to concentrate on
fixed points alone:

Theorem. Consider the planar system

x0 D f .x; y/;

y0 D g.x; y/;

such that fygx > 0 for all .x; y/: Then there are no limit cycles.
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With some hints, we leave the proof of this to the reader. We note that this bears
a resemblance to Bendixon’s negative criterion, which states that if fx C gy is
of fixed sign in a region, R, then there will be no limit cycles contained wholly
in R:

An obvious consequence of this is that for the two-population neural model

�1u0
1 D �u1 C F1.w11u1 C w12u2/; (11.22)

�2u0
2 D �u2 C F2.w21u1 C w22u2/:

If F 0
j .u/ > 0 and w12w21 > 0, then there are no limit cycles and there are just

fixed points; thus, the entire phase portrait can be worked out by looking at the
intersections of the nullclines. We will suppose Fj are saturating nonlinearities with
a maximum of 1 and a minimum of 0 without loss of generality. We also assume
they are monotonic and have a single inflection point. Let Gj be the inverse of Fj :

Let Gj .x/ have vertical asymptotes at x D 0 and x D 1 and be monotonically
increasing. The u1 nullcline has the form

u2 D .G1.u1/ � w11u1/=w12 � H1.u1/:

If w11 < 0, then H1 is a monotonic function much like G1: However, if w11 > 0,
then if the self-connection is large enough, the functionH1 has a cubic shape. Simi-
lar considerations hold for the u2-nullcline: if w22 > 0, it can have a “cubic” shape.
Figure 11.2a and b shows several different possibilities. We can freely shift the u1-
nullcline up and down by varying the inputs and the u2-nullcline left and right as
well. Up to nine fixed points are possible or as few as one. Bifurcations are gener-
ically saddle–nodes (although below we consider an important symmetric situation
which results in a pitchfork). Consider the case when both nullclines are “cubic.”
Thus, we can define the outer and middle branches of the cubic. Any fixed point
which occurs on the intersection of two outer branches is a stable node. Any fixed
point occurring on two inner branches is an unstable node. The rest are saddle points.
We leave this as an exercise for the interested reader. Saddle points are important
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Fig. 11.2 Nullcline configurations for mutually excitatory–inhibitory networks: (a) mutual exci-
tation, (b) mutual inhibition, (c) mutual excitation with weak self-connections
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since their stable manifolds form separatrices dividing the plane into the domains
of attraction for multiple stable fixed points. Figure 11.2c shows such an example.
There are two states of this mutually excitatory network, one where both populations
are firing at a low rate and one where both populations are firing at a high rate.

Before turning to the excitatory–inhibitory networks which show the richest dy-
namics, we consider an important example that will appear throughout this chapter
and plays a fundamental role in later sections. Many cognitive and other processes
require making a choice between two or more competing sensory inputs. Suppose
you have a trusty musket and on your left is a charging lion and on your right a
charging pug. To which do you attend? There, the choice is rather obvious. How-
ever, suppose instead of the lion, you are confronted by another pug. Then, most
likely, unless you like dogs or are afraid of them, you will ignore them. Instead, if
you are being charged by two lions, it is likely you will select one of them at random
(if one is a bit closer, then there will be a strong bias) and stick with it.

Figure 11.3a shows a model for competition between two neural pools, labeled
1 and 2. Each receives an input and inhibits the other pool. Since this example
illustrates many of the mathematical concepts we will encounter later, we will sketch
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Fig. 11.3 The simplest model for competition between two populations: (a) the circuit, (b) null-
clines for identical inputs at three different strengths, (c) bifurcation diagram when the inputs are
identical, and (d) same as (c) but there is a small bias in favor of population 1
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most of the details. We write I1 D I.1 C a/ and I2 D I.1 � a/, where a is an
asymmetry parameter and I is the total input. When a D 0, the input is unbiased and
does not favor either unit (think of the two charging pugs). The extreme asymmetry
case (lion vs. pug) would have a D ˙1: We will restrict our analysis to a D 0 and
leave the a ¤ 0 case for numerical analysis. The equations for this case are

u0
1 D �u1 C F.I � wu2/; (11.23)

u0
2 D �u2 C F.I � wu1/:

We will assume F is a monotonically increasing positive function with F 0.x/ ! 0

as x ! 1 and we assume F is bounded as well. The weight w � 0: Because of the
symmetry, one solution to this equation is homogeneous, u1 D u2 D Nu and

Nu D F.I � wNu/:
We leave as an exercise the proof that there is a unique homogeneous equilibrium
point, that it is positive, and that it is a monotonically increasing function of I and
monotonically decreasing function of w: Let c D F 0.I � wNu/ > 0 be the derivative
of F at the equilibrium value. The linearization of (11.23) is

v0
1 D �v1 � cwv2;

v0
2 D �v2 � cwv1:

This is a simple 2 	 2 matrix, A, but rather than immediately writing down the
eigenvalues, we step aside for a moment to discuss matrices of a special form, so-
called circulant matrices.

ASIDE.
Let a0; : : : ; an�1 be fixed numbers (real or complex) and consider the matrix A

formed as follows:

A D

0
BBB@

a0 a1 : : : an�1

an�1 a0 : : : an�2

:::
:::

: : :
:::

a1 a1 : : : a0

1
CCCA :

Such a matrix is called a circulant matrix and the eigenvectors and eigenvalues are
easy to write down. Let zk D exp.2�ik=n/ for k D 0; : : : ; n � 1. Let vk be the
column vector whose j th entry is zj �1

k
: Then vk is an eigenvector for A and the

eigenvalue is


k D
n�1X
j D0

aj zj

k
:

For example, if n D 2, then the eigenvectors are .1; 1/T and .1;�1/T, with eigen-
values a0 C a1 and a0 � a1, respectively.
END ASIDE
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Since the linearization A is a circulant matrix, the eigenvectors and eigenvalues
are f.1; 1/;�1�cwg and f.1;�1/;�1Ccwg. The first of these eigenvalues is always
negative; thus, any homogeneous perturbation (along the eigenvector, .1; 1/) decays
to zero. However, if w is large enough, then �1Ccw can become positive for a range
of inputs I , which means asymmetric perturbations [along the eigenvector .1;�1/]
will grow in time. At a critical value of the input, say, I0, the asymmetric eigenvalue
will be zero and we expect a bifurcation to occur. Since this problem has symmetry,
the bifurcation at a zero eigenvalue will not be the generic fold, but rather a pitchfork
bifurcation. This is typical in systems in which a circulant matrix is involved (that
is, there is a symmetry.) Since the growth will be along the asymmetric eigenvector,
the bifurcation solutions will have the form

.u1; u2/ D .Nu C r; Nu � r/;
where jr j is the amplitude of the solution. r can be either positive or negative, cor-
responding to u1 “winning” or u2 “winning.” Figure 11.3b shows the phase plane
and nullclines for (11.23), where F.u/ D 1=.1 C exp.�.u � 1///, w D 5, and I
is a parameter. At low inputs, both units fire equally at the same value. For inter-
mediate values of the inputs, the homogeneous fixed point is unstable and there are
two stable fixed points corresponding to one of the two units “winning.” The saddle
point (gray circle) has a stable manifold (blue arrows) which separates the phase
plane into two regions; those in the upper-left region tend to the u2-dominant fixed
point and those in the lower-right region tend to the u1-dominant fixed point. Thus,
without any input bias, the final outcome of the competition depends on any initial
activity of the two units. At high inputs, once again, the homogeneous solution is
the only solution and both units fire at high rates. Figure 11.3c shows the bifurca-
tion diagram for the symmetric input case. For I between the two arrows, one or the
other population of neurons is dominant. If there is a slight bias in the inputs, then as
the input increases, the favored population will always win (Fig. 11.3d), but with a
strong enough perturbation it is possible to switch to the less favored population for
a limited range of inputs. This figure shows what is called an isola, a small island of
solutions. The arrows denote a pair of fold bifurcations. As the bias disappears, the
isola grows and merges with the main branch of solutions to give the diagram shown
in Fig. 11.3c. As the bias a increases, the isola shrinks to a point and disappears.

This example illustrates the basic concept underlying symmetry-breaking in-
stabilities and bifurcations and pattern formation. The symmetric solution loses
stability owing to the negative interactions and results in new solutions which are
no longer so symmetric.

11.3.3 Excitatory–Inhibitory Pairs

We turn our attention to two population models in which one population is excitatory
and the other inhibitory:

�1u0
1 D �u1 C F.w11u1 � w12u2 C I1/; (11.24)
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�2u0
2 D �u2 C F.w21u1 � w22u2 C I2/: (11.25)

u1 (u2) is the excitatory (inhibitory) population. It is possible to do a fairly
comprehensive local bifurcation analysis of this system if the inputs are the
main parameters. Borisyuk and Kirillov [18] provided such an analysis when
F.u/ D 1=.1C exp.�u//; Hoppensteadt and Izhikevich [128] performed a similar
analysis. Choosing this F has the advantage of allowing us to note that

dF

du
D F.1 � F /:

Let
G.y/ D ln

y

1 � y
be the inverse of F.u/: At an equilibrium point, we can solve for Ij :

Ij D G.uj /� wj1u1 C wj 2u2: (11.26)

Let Bj D wj1u1 �wj 2u2 CIj be the total input into each population. The lineariza-
tion matrix has the form

A D
 

�1C w11F
0.B1/ �w21F

0.B1/

w12F
0.B2/=� .�1 � w22F

0.B2//=�

!
:

We can rewrite F 0.Bj / D uj .1 � uj / using the fact that at equilibrium, F.Bj / D
uj and that F 0 D F.1 � F /: There are two types of bifurcations of interest for
this model: Hopf and saddle–node bifurcations. Saddle–nodes can be visualized by
examining intersections of the nullclines. For the Wilson–Cowan network, there
can be up to five different fixed points. Hopf bifurcations can be easily found using
the identities above. Recall that a necessary condition for there to be imaginary
eigenvalues for A is that the trace of A vanishes:

Tr � �1C w11u1.1 � u1/� 1=� � w22u2.1 � u2/=� D 0:

Clearly, since 0 < uj < 1, the trace is always negative unless w11 > 4, so there must
be sufficient recurrent excitation. We solve the above equation for u1 D U1̇ .u2/;
there are two roots since it is quadratic. Plugging u1 as a function of u2 into (11.26),
we can parameterize I1 and I2 by the single number u2: Letting u2 range between
0 and 1 for each of the two branches, U1̇ .u2/, we get curves of Hopf points. This
same method is not useful for the curve of folds (where the determinant vanishes)
since the determinant is a quartic function of u1 and u2 and so not readily solvable.

The easiest way to compute bifurcation diagrams is through numerical methods.
Figure 11.4 shows the behavior of this network for a fixed set of weights and time
constants. As the excitatory input increases, the resting state increases until it loses
stability at a Hopf bifurcation. Since increasing I1 lifts the u1-nullcline up, we can
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Fig. 11.4 Sample bifurcation diagram for an excitatory and inhibitory population. The parameters
are w11 D 12, w12 D 10, w21 D 16, w22 D 4, and � D 2: (a) Behavior of u1 as I1 increases,
I2 D �4. (b) Two-parameter diagram as a function of the inputs, I1; I2. Green circles indicate
Takens–Bogdanov points. (c) Phase plane for I2 D �4; I1 D 0

see the effect by looking at Fig. 11.4c. At negative inputs, the excitatory nullcline
intersects at a point where the slope of the nullcline is negative and thus the fixed
point is stable. As input increases, the intersection moves to the middle branch and
for sufficient input becomes unstable. This leads to a Hopf bifurcation and limit cy-
cle. Note that as the input increases, the excitatory nullcline gets closer and closer to
the upper part of the inhibitory nullcline, so the period of the limit cycle increases.
For sufficient input, there is an intersection of the nullclines at high values of exci-
tation and inhibition.

11.3.3.1 Up–Down States

Experiments [247] in prefrontal cortical slices show that local recurrent networks
of excitatory and inhibitory neurons are able to produce epochs of sustained firing
both spontaneously and through stimulation. These two states (firing and quiescent)
are observed in extracellular and intracellular recordings of neurons. Figure 11.5a
shows an example of a recording from a cortical slice preparation with inhibition and
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Fig. 11.5 Modeling up and down states in cortex. (a) Experimental data from Shu et al. [247]
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and (b) evoked states via external stimuli. (b) Simulation of up–down states in a noisy Wilson–
Cowan model showing spontaneous switching. (c) Phase-plane explanation of the balanced bistable
state. The parameters are �1 D 5, �2 D 3, w11 D 16, w21 D 24, w12 D 10, w22 D 6; I1 D �3:7,
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excitation intact. The network undergoes bouts of sustained activity lasting up to 4 s
followed by quiescence. Intracellular recordings of a pyramidal cell in the network
show that during the bouts of activity, the membrane potential is depolarized (“up
state”) compared with that during the quiescent period (“down state”). Stimuli allow
one to switch from the down to the up state and vice versa. Importantly, depolarizing
stimuli can switch the network from the up to the down state. Furthermore, when
the network is in the down state, very strong stimuli cause a brief bout of activity
immediately followed by a return to the down state. These two properties allow us to
make some good guesses as to what the local dynamics must be. Figure 11.5b shows
a simulation of (11.24) and (11.25) when there is colored noise added to the inputs.
The noise is needed to effect spontaneous switching between states. Holcman and
Tsodyks [125] proposed a model for this phenomenon using recurrent excitation
and synaptic depression and no inhibition. Here, we suggest a very simple explana-
tion for the properties of up and down states using a combination of excitation and
inhibition. Figure 11.5c shows the phase plane in the absence of noise for the sim-
ulation shown in Fig. 11.5b. As one would expect, there are two stable fixed points
corresponding to the up and down states in the network. Separating these states is a
saddle point whose stable manifold acts as a threshold. In bistable systems such as
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that shown in Fig. 11.3b, the stable manifold is such that only negative perturbations
of state (1,0) can take it to state (0,1). Thus, in the up–down model, the stable man-
ifold must be curved since strong depolarizing inputs can also cause a switch from
up to down. Figure 11.5c shows that the stable manifold of the saddle point curves
around, so if a stimulus takes the excitatory population beyond about 0.4, then there
will be an immediate return to the down state. Modest stimuli will take the system
from the down to the up state and vice versa. Other properties of the up–down states
follow immediately. For example, a depolarizing shock in the up state can take the
system to the down state. Shu et al. [247] observed that there is a delay before going
to the down state which is dependent on the amplitude of the stimulus. As can be
seen in the figure, a stimulus which is close to the stable manifold but slightly be-
yond the right-hand branch will take much longer to go to the down state than will
a stronger stimulus. Strong stimuli during the down state can induce a brief period
of activation followed by a return to the down state as well. Adding a small amount
of noise to the model equations can cause spontaneous transitions between up and
down states much as is seen in Fig. 11.5a. Because the upper state is closer to insta-
bility and has complex eigenvalues, this could explain the fact that the upper state
is much noisier than the lower state. Indeed, Volgushev et al. [280] used the large
standard deviation of the “up state” as a means of automatically determining when
neurons are in the up state.

11.3.3.2 Whisker Barrels

Everyone who has ever had the pleasure of playing with a rat knows that the rat
has several rows of whiskers which it uses to feel the world around it. Indeed, the
usual white laboratory rats, which are popular with neuroscientists, are virtually
blind and use their whiskers to navigate in their environment. Rats’ whiskers are al-
most as sensitive as human fingers in discriminating textures. Each whisker projects
(through the brainstem and then the thalamus) to a well-defined aggregate of neu-
rons in layer 4 of the cortex in the somatosensory area. These discrete areas are
called barrels (see Fig. 11.6a, b) and consist of a mixture of excitatory (70%) and
inhibitory (30%) neurons which are recurrently connected. Thus, the local circuitry
of the barrel is a perfect example of an excitatory–inhibitory network. Inputs to the
barrel come from other layers of cortex and from the thalamus. In this example,
we restrict our attention to the local recurrent interactions and the thalamic inputs
as shown in Fig. 11.6c. Dan Simons [218] and his collaborators have shown that
the barrel circuit is exquisitely sensitive to the timing of the inputs from the thala-
mus. That is, the barrels respond strongly to rapidly increasing inputs and weakly to
slow inputs. Figure 11.6d shows a typical example. The left-hand response is very
large compared to the right-hand one and the corresponding thalamic inputs show a
rapid onset and a more gradual onset. Pinto et al. [217] reduced a large-scale spiking
model due to [168] to a network which should be familiar to the reader by now:
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�e

du

dt
D �u C Fe.weeu � wiev C wteT .t//;

�i

dv

dt
D �v C Fi .wei u � wi i v C wt iT .t//:

The thalamic input, T .t/, consists of a constant background activity plus a triangle
lasting 15 ms. The height of the triangle is constant, but the onset slope can be
varied. The question is whether the network responds differently to different slopes
of input. The input drives both the inhibition and the excitation, which is crucial.
Intuitively, if the slope is too small, then the inhibition can catch up and suppress
the excitation. This provides what experimentalists call a “window of opportunity”
for the barrel cells to produce a response.
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Figure 11.7a shows that in the absence of inputs, the barrel network has a sta-
ble resting state. A perturbation in the excitatory direction past the right (middle)
branch of the excitatory nullcline will be greatly amplified before returning to rest
(an example of an excitable system). However, in the barrels, inputs come into
both the excitatory and the inhibitory cells, so it is not clear what type of response
occurs. Two responses are shown in the phase plane and in the accompanying plot
in Fig. 11.7b corresponding to triangle inputs which have a width of 15 ms and
identical amplitude. The only difference is that they reach the peak amplitude at 1.6
and 3.2 ms, respectively. By rising more quickly, the excitatory cells have a chance
to react before the inhibition is engaged. The result is a significantly larger response
for the fast-rising inputs compared with the slower-rising ones.

11.3.4 Generalizations of Firing Rate Models

Various bells and whistles can be added to firing rate models to match their architec-
ture with a more biologically realistic one. For example, many cortical neurons are
endowed with spike-frequency adaptation which occurs on a much slower timescale
than inhibition and is dependent only on the local neuron rather than on other neu-
rons. Another example is short-term synaptic plasticity such as the depression or
facilitation of synapses. Adaptation can be introduced as an activity-dependent neg-
ative feedback. For example, a single excitatory population with adaptation can be
written as

�
du

dt
D F.au � cz/; (11.27)

�z
dz

dt
D R.u; z/� z;
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where R.u; z/ is the activation of adaptation by excitation. There are several differ-
ent possible models of this. The simplest is that R.u; z/ D u: This linear adaptation
allows for various interesting dynamics. If we recall that F is actually the firing
rate, then a more realistic model would be R.u; z/ D ˛F and if there was saturation
(as would be the case if the adaptation were based on the conductance of some
channel), then

R.u; z/ D ˛F.1 � z/:

This ensures that the adaptation can never exceed 1. The reader should explore this

model on her own choosing, for example, �z � �:

Synaptic depression (or facilitation) is more interesting as its effects are multi-
plicative. Let us recall the model for short-term depression of a synapse (7.14) from
Chap. 8 (8.13):

dd

dt
D 1 � d

�d

�
0
@X

j

ı.t � tj /

1
A add;

where tj are the spike times of the presynaptic neuron, ad is the degree of depres-

sion, and �d is the rate of recovery back to full strength. If we average this model
over many repetitions of the same process, then the spike times are replaced by the
firing rate of the presynaptic cell; thus, in terms of the firing rate, the model for
synaptic depression is

dd

dt
D 1 � d

�d

� adFd:

We remark that several authors replace F in the above equation by u, which is often
also called the firing rate. Depending on the interpretation and derivation of the
firing rate, either can be correct. If the firing rate models are derived from synaptic
dynamics, thenF is the firing rate, but if we are approximating a noisy model neuron
response to inputs, then u is the approximation of the firing rate.

We illustrate extended firing rate models by looking at two examples.

11.3.4.1 Binocular Rivalry

When a person looks at two different objects in each of his eyes, such as vertical
stripes in the left and horizontal in the right, then he does not perceive a mixture,
but rather he sees only one or the other. After a second or two the dominant percept
disappears and the other object becomes dominant. Then there is another switch and
so on. The switching is random, but there is a peak in the switching time histogram.
There have been dozens of models for this kind of behavior, starting with that in
[178] and recently reviewed and summarized in [246]. As there is a preferred inter-
val for switching, many models assume the switching is governed by some sort of
oscillator. We will start with the competitive model, (11.23), but add the additional
adaptation
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u0
1 D �u1 C F.I � wu2 � gz1/; (11.28)

z0
1 D .u1 � z1/=�;

u0
2 D �u2 C F.I � wu1 � gz2/;

z0
2 D .u2 � z2/=�:

Here, u1 represents the right-eye pattern and u2 represents the left-eye pattern. If
the degree of adaptation, g, is small enough, then we expect the behavior should
be like that of (11.23); for large enough w, as I increases there will be a pitchfork
bifurcation from the homogeneous state to a state when one or the other “wins.”
Because of symmetry, either left or right can win. As in the competitive model, there
will be a homogeneous resting state, .u1; z1; u2; z2/ D .Nu; Nu; Nu; Nu/: The stability of
this state is found by studying the eigenvalues of a 4 	 4 matrix:

M D

0
BBB@

�1 �cg �cw 0

1=� �1=� 0 0

�cw 0 �1 �cg
0 0 1=� �1=�

1
CCCA D

�
A B

B A

�
;

where A and B are 2	2 matrices and c D F 0.I � .wCg/Nu/: Just like the competi-
tion model, the structure of M has symmetry, so we can reduce the computation of
the eigenvalues to those of two 2	2matrices,CC D ACB andC� D A�B: These
two matrices correspond to eigenvectors of the form .x; y; x; y/ and .x; y;�x;�y/:
The former represents symmetric perturbations of the steady state and the latter rep-
resents asymmetric ones. Consider, first, symmetric perturbations:

CC D
��1 � cw �cg

1=� �1=�
�
:

Since CC has a negative trace (recall that F 0 > 0, so c is positive and w and g are
nonnegative) and a positive determinant, all eigenvalues of CC have negative real
parts. The asymmetric perturbations are more interesting:

C� D
��1C cw �cg

1=� �1=�
�
:

If we treat c as a parameter (this is related to the intensity of the stimulus and, of
course, the shape of F ), then the determinant vanishes when w > g and c D c0 �
1=.w �g/ and the trace vanishes when c D cH � 1=w.1C1=�/: Thus, if g is close
to w and � is large, the trace will become positive at smaller inputs than it takes to
make the determinant negative. That is, there will be a Hopf bifurcation as the input
increases when the time constant of adaptation is large and the strength of adaptation
is also sufficiently large. In contrast, with weak or very fast adaptation, the network
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will maintain its winner-take-all behavior. This simple mechanism provides a means
by which there will be periodic switching of the dominance of the two percepts.
Although this is a somewhat naive model, it is able to explain some aspects of rivalry
and, in fact, make some testable predictions [289]. We will leave the full numerical
exploration of this model as an exercise for the reader.

11.3.4.2 Synaptic Depression and Oscillations

Many neuronal networks show spontaneous oscillations during development; it is
believed that the activity may help strengthen connections between neurons which
are important later in the animals life. A striking example of this is spontaneous
episodes of activity in the spinal cord of embryonic chickens. Isolated spinal cord
preparations produce bursts of activity every 2–30 min and within these bouts of
activity produce 0.1–2-Hz oscillations. Tabak et al. [257] suggested the mechanism
underlying this is recurrent excitatory connections coupled to synaptic depression
with two different timescales. The slow depression accounts for the long interburst
interval and the faster depression accounts for the oscillations within a burst. Here,
we will be concerned only with the higher-frequency oscillations. Let u.t/ denote
the firing rate of the population and d.t/ the efficacy of the synapse. Then the equa-
tions are

u0 D �u C f .wdu/; (11.29)

�d 0 D 1 � d � ˛ud:

Our model for d is slightly different from the one in Tabak et al., but the nullclines
are qualitatively similar. In the Tabak et al. paper, they used

f .x/ D 1=.1C exp.�.x � �/=k//;

with k D 0:05 and � D 0:18: By choosing w D 1; ˛ D 5; and � D 5, we can obtain
sustained oscillations. We leave a complete analysis of this to the reader. A related
model and phenomenon is found in [273].

11.3.5 Beyond Mean Field

The Wilson–Cowan equations (11.18) and their kin are meant to represent the mean-
field dynamics of networks of many thousands of individual neurons. Often, there
is a desire to understand how higher-order statistical fluctuations influence the dy-
namics. For example in the work reported in [32], some of the dynamics arises
from fluctuations rather than from the mean field. A number of authors, notably
Buice and Cowan [29] and Bressloff [21], have attempted to include fluctuations
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in the mean-field models by creating a stochastic system which has the desired
mean-field dynamics. From this model stochastic system, they derived an expansion
to include higher-order statistics such as the correlations between populations. As
with any noisy nonlinear system, the difficulty arises when computing the moments
(mean, variance, etc.) since, for example, the mean depends on second-order, third-
order, etc. statistics. We saw in Chap. 10 that approximations could be made in the
weak-noise limit for stochastic differential equations. We also saw that it is pos-
sible to approximate a Markov channel model by a simple Langevin equation via
(10.38) and (10.39). We can combine these two approaches to arrive at a very sim-
ple derivation of the system size expansion given in [21]. For simplicity, we will
consider just one population of neurons and leave the case of two populations and
beyond as an exercise. Let there beN neurons whose state, xi , can be either be silent
(0) or active (1). Each neuron is coupled to all the other neurons in an identical fash-
ion with weight w=N: The transition from active to silent occurs at a constant rate,
˛, and the transition from silent to active occurs at rate

ˇ WD f

 
1

N

NX
iD1

xi

!
:

Thus, we can think of these “neurons” as two-state “channels.” The mean field for
the firing neurons (open channels) is

dm

dt
D �˛mC f .m/:

This equation is like any other mean-field model that we have already considered in
this chapter. To get higher-order statistics, we use the Langevin approximation from
Chap. 10 [(10.38) and (10.39)]:

dm

dt
D �˛mC f .m/C

�
˛ C f .m/

N

� 1
2

dW.t/: (11.30)

We assume N is large and apply the Rodriguez–Tuckwell small-noise expansion to
this Langevin equation and arrive at the pair of equations

dm

dt
D �˛mC f .wm/C 1

2
w2f 00.wm/C; (11.31)

dc

dt
D �2˛C C 2wf 0.wm/C C 1

N
Œ˛mC f .wm/�: (11.32)

This is equivalent to the system-size expansion in [21].
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11.4 Some Methods for Delay Equations

Delay equations do not commonly appear in the curricula of most dynamics courses
so we review a number of well-known results mostly from the classic text of
Bellman and Cooke [13]. Here, we focus on systems with only one delay and only
consider the linear stability theory around equilibria for delay equations. We start
with a simple scalar example,

dx

dt
D f .x.t/; x.t � �//;

and let Nx be a fixed point, f . Nx; Nx/ D 0: The linearized equation has the form

dy

dt
D ay.t/C by.t � �/:

Here, a and b are the derivatives of f with respect to the first and second arguments
evaluated at the fixed point. As with ordinary differential equations, we look for
solutions of the form y.t/ D exp.
t/, leading to


 D a C be��� :

There are infinitely many roots of this equation; if any of them has a positive real
part, then we say the fixed point is unstable. If all roots have negative real parts, then
the fixed point is linearly asymptotically stable. For general systems with one delay,
if the delay appears only in one variable, then the characteristic equation will take
the form

M.
/ � P.
/CQ.
/e��� D 0:

Thus, for many commonly encountered problems, the stability of fixed points relies
on solving the polynomial–exponential characteristic equation. Before stating some
theorems about stability, we consider a more general question: can a delay destabi-
lize a fixed point which, in the absence of delay, was stable? Stability can be lost via
a zero eigenvalue or through complex conjugate eigenvalues. In the former case, one
must have P.0/ C Q.0/ D 0, which is clearly independent of the delay. Thus, we
focus on determining if it is possible for a delay to cause M.
/ to have imaginary
eigenvalues. If this happens, then

� .!/ � P.i!/

Q.i!/
D e�i!� :

The left-hand side of this expression traces out a curve in the complex plane (see
Fig. 11.8) and the right-hand side traces out the unit circle. Suppose � .0/ lies out-
side the unit circle and as! varies it never crosses the circle (case 1). Then, there will
be no delay � which can change the stability, since the two curves never intersect. If
� .0/ is inside the unit circle and never leaves it, then, again, no stability change can
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Fig. 11.8 Stability plots for
delay equations case 1case 2

occur. However, if � .!/ and the unit circle intersect (case 2), then we can always
choose � so that they intersect at the same value of !. Thus, we can destabilize the
equilibrium by changing the delay. Since the critical eigenvalue is i!, we expect to
get a bifurcation to periodic orbits, although the proof of this is much more diffi-
cult than that of the ordinary differential equation case. As an example, consider the
above scalar problem.

� .!/ D i! � a

b
:

This traces a vertical line in the complex plane. If ja=bj < 1, then � .!/ will cross
the unit circle and there will be delay-induced instability. Note that for the fixed
point to be stable in the absence of a delay, we have a C b < 0. For delay-induced
instability, the magnitude of b must be larger than a, so these two inequalities imply
that b is negative and sufficiently large. We have thus shown a classic result that
delayed negative feedback can induce oscillations.

We conclude with a theorem from Bellman and Cooke giving general results for
scalar delay equations. We rewrite the characteristic equation as

e��P.
/CQ.
/ D 0

and let z D 
�: Since � > 0, if z has a positive real part, then so does 
: The
following theorem provides necessary and sufficient conditions for stability of the
scalar delay equations, which can be written as H.z/ D �aez C b� � zez D 0.

Theorem. (Bellman and Cooke [13], p. 444). All roots of pez C q � zez have
negative real parts if and only if

.a/ p < 1 and

.b/ p < �q <
q
r2

1 C p2,

where r1 is a root of r D p tan r such that 0 < r < �: If p D 0, we take r1 D �=2:

Using this theorem as well as the easy graphical method above, you should have
no trouble solving the problems for delay equations.
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11.5 Exercises

1. Derive (11.3).
2. We can write (11.3) as

ˆ.t/ D Ae�at C Be�bt C C e�ct ;

where a, b, and c are positive numbers. Show that A, B , and C are such that
ˆ.0/ D ˆ0.0/ D 0: (Note the first part is by definition. Use the definition of
ˆ.t/ to prove the second part.) Now that you have done that, suppose

x.t/ D
Z t

0

ˆ.t � s/y.s/ds:

What third-order differential equation does x.t/ satisfy?
3. Consider the scalar neural network

u00 C .a C b/u0 C abu D F.u/;

where a and b are positive. Prove there can be no limit cycle solutions. Suppose
F.0/ D 0. What types of bifurcations are possible?

4. In Exercise 2 you showed that the generalˆ.t/ leads to a third-order differential
equation. Consider the scalar neural network

Œ.d=dt C a/.d=dt C b/.d=dt C c/�u D F.˛u/:

Suppose F 0 > 0 and a, b, and c are positive. For ˛ < 0 show that there exists
a unique fixed point and show that a Hopf bifurcation is possible as one of the
parameters varies. (Hint: Think about the Routh–Hurwitz criteria.) If ˛ > 0,
show there cannot be a Hopf bifurcation. We conjecture that there can be no
periodic solutions if ˛ > 0, but have no proof.

5. Derive (11.14).
6. Consider the delayed excitatory network

ut C u D F.˛u.t � �//;
where we have set �m D 1 without loss of generality. Assume F 0.u/ > 0 and
˛ > 0. Prove there exists at least one fixed point and prove there can never be a
Hopf bifurcation no matter what the delay.

7. Consider the delayed inhibitory network

ut C u D F.�˛u.t � �//;

where F.u/ � 0, F 0.u/ > 0, and ˛ > 0. Prove there is a unique fixed point
(see the next exercise) and that there can be a Hopf bifurcation. Simulate this
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network using F.u/ D 1=.1C exp.�.u C I //, where I is input to the network.
Use ˛ D 8 and I D 1 and treat � as a parameter.

8. Suppose G.u/ � 0 and G0.u/ < 0 for all u: Prove there is a unique root fixed
point of

ut C u D G.u/

and that it is asymptotically stable.
9. Consider (11.12). (a) If F.I / D p

I � I� for I > I� and is zero otherwise,
compute FQ.I / when I
 is taken from a uniform distribution Imin � I� �
Imax: (b) If F.I � I�/ D max.I � I�; 0/ and I� is taken from a Gaussian
distribution with mean NI and standard deviation 	 , compute FQ.I /: (c) Repeat
(b) for F.I � I�/ D 1 for I > I� and zero otherwise.

10. Compute the firing rate function for the integrate-and-fire model based on the
conductance of the synapse. That is, suppose V satisfies

C
dV

dt
D �gL.V �EL/� g.V � Esyn/;

where EL < VT < Esyn is the threshold to spiking and that upon spiking V is
reset to Er < VT: Compute the firing rate as a function of the synaptic conduc-
tance, g. What happens as g ! 1? Can you do some asymptotics of this to
get a simple formula for large conductances? Plot the F –g curve for C D 1,
gL D 0:05, EL D �65, Er D �70, ET D �50, and Esyn D 0.

11. Consider a recurrent scalar network with the threshold linear firing rate

du

dt
D �u C Œau � uT �C:

Show if a > 1, then sufficiently large initial conditions grow exponentially. For
a fixed positive value of uT and a > 1, find the critical value of u0 such that if
u.0/ > u0, u.t/ grows exponentially without bound.

12. Suppose F.u/ � 0, F 0.u/ > 0, and F 00.u/ has a single zero. Assume F and its
derivatives are continuous on R. Prove there are at most three fixed points of
the neural network equation u0 D �u C F.u/:

13. Hard. SupposeF 0.u/ � 0 and F.u/ has k inflection points. Show that there can
be up to k C 2 fixed points of u D F.u/: (Hint: Use the previous exercise and
proceed inductively.)

14. Find the saddle–nodes and the cusp bifurcation for the scalar model with
F.u/ D 1=.1C exp.�u//: (Note that F 0 D F.1 � F /.)

15. Prove if fygx > 0 in the plane, there are no limit cycles to x0 D f .x; y/,
y0 D g.x; y/: Here, is a brief hint to get you started. For there to be a limit
cycle, x0.t/ must change sign. Suppose, first, fy > 0 and gx > 0: (The other
case follows similarly.) Suppose x0.t/ is positive and then vanishes at t D t1:

We cannot have y0.t1/ D 0 since then we would be at a fixed point. Thus,
either y0.t1/ > 0 or y0.t1/ < 0: Suppose we have the first case. Then, x00.t1/ D
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fyy
0.t1/ > 0, so for t > t1 x

0.t/ > 0, so x0 does not change sign. Continue to
argue in this manner for all the other cases. You will need to use the fact that
gy > 0 for this.

16. Prove if F 0.u/ > 0, F.u/ > 0, and F.�1/ D 0, then there is a unique solution
to

u D F.I � wu/

for all I and w > 0: Prove u is a monotonically increasing function of I and
that u > 0. Prove u is a monotonically decreasing function of w.

17. In the mutual interaction model (11.23), what happens if the interaction is pos-
itive (that is, �w is positive)? Show that asymmetric perturbations are always
stable.

18. Disinhibition and epilepsy. One model for epilepsy is that it arises when the
inhibition is partially blocked. Consider the Wilson–Cowan model:

u0
1 D �u1 C F.12u1 � 12u2 � 3/;

3u0
2 D �u3 C F.18u1 � 4u2 � 5/:

Show through simulation that there is a unique stable equilibrium. Now, sup-
pose a drug such as bicuculline is applied which has the effect of reducing
the inhibitory strength. Incorporate a parameter p in the model multiplying the
strength of inhibition (do not forget the inhibitory–inhibitory connection) such
that when p D 1 the inhibition is at full strength and when p D 0 it is com-
pletely blocked. Compute the bifurcation diagram for the model as p decreases
and show that there can be a Hopf bifurcation and for severely reduced inhibi-
tion a completely active state.

19. Consider the binocular rivalry model described by (11.28) with w D 5,
g D 1; � D 20, and F.x/ D 1=.1C exp.�.x � 2///. Compute the bifurcation
diagram of this model as a function of the parameter I: Now set g D 0:25 and
compute the diagram again. Note that there is no Hopf bifurcation and there is
only the pitchfork. Set g D 0:5 and compute as much as you can of the bifur-
cation diagram. Find the curve of branch points and Hopf points as a function
of the two parameters g and I .

20. Use the ideas of (11.30) to derive the five-dimensional equivalents of the
Wilson–Cowan equations with means and second-order statistics.

11.6 Projects

1. Consider a pair of neurons (excitatory and inhibitory) coupled as

ue.t/ D Fe.weeˆee 
 ue.t/ � weiˆei .t/ 
 ui .t//;

ui .t/ D Fi .wieˆie 
 ue.t/ � wi iˆi i .t/ 
 ui .t//;
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where ˆjk.t/ D exp.�t=�ij /=�ij and U.t/ 
 V.t/ D R t

0
U.t � s/V .s/ds. If �ij

is independent of i or independent of j , then these can be converted to a pair
of first-order differential equations. However, if all �ij are different, then these
integral equations can be converted into four first-order differential equations.
Write down these four equations. Is there any behavior (e.g., limit cycles) that
occurs for the four-equation model which would not occur for the two-equation
model when �ij is independent of i or j ? For example, can you prove a fixed
point for the four-variable model is asymptotically stable if it is stable for the
two-variable model?

2. Consider a noisy integrate-and-fire model, V 0 D �V C I , for which the current
makes a step from I1 to I2: Using the Fokker–Planck equation, examine the
temporal dynamics on the firing rate for this transition in the low- and high-noise
regimes (	 D 0:4; 1). In the low-noise case, the approach to the steady-state rate
f is a damped oscillation. For different steps in the current, estimate both the
damping and the oscillation rate. The figure below illustrates an example of a
step and a fit to a damped oscillation. Use this to suggest a linear model for the
firing rate:

u00 C 2au0 C .a2 C f 2/.u � f / D 0;

where f is the instantaneous firing rate. It may be necessary to also include the
derivative of f in the calculation. You will find that for slowly varying stimuli,
this does not do any better than the simple ad hoc first-order equation, �f u0 D
f � u.
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3. On the basis of the previous exercise, the temporal dynamics of the response of a
neuron depends on the steady-state firing rate. Consider the same equation as in
the previous exercise, but f now depends on u as

f D F.wu � uth/;

where F is a nonlinear function as explored in this chapter. Do the dynamics of
the scalar recurrent network exhibit anything new? Show that even this second-
order model cannot produce limit cycle oscillations.
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4. Explore the effects of changing the temporal dynamics of inhibition on the barrel
network. For example, quantify how that “window of opportunity” depends on
the time constant of the inhibitory response.

5. Volgushev et al. [280] looked at the propagation of down to up and up to down
transitions in cortex by recording over a 12-mm spatial area in the cat cortex
during sleep. Adapt the population model for up–down states to an array of,
say, nearest -neighbor coupled populations and add independent noise to each
population sufficient to induce spontaneous switching. Do you see any evidence
for propagation of states, e.g., if one group of cells switches from down to up,
does this switch propagate across the network? Explore different levels of noise
and different degrees of coupling. To couple two networks, you should look at a
model of the form

�eu0
j C uj D Fe.wee Nuj � wie Nvj /;

where
Nuj D .1 � c/uj C .c=2/Œuj C1 C uj �1�

and c � 0 is the degree of coupling. Similar equations for the inhibitory popu-
lation, vj , should be written as well with a possibly different coupling strength.
Use parameters as in Fig. 11.5.





Chapter 12
Spatially Distributed Networks

12.1 Introduction

In the previous chapters, we focused generally on single neurons, small populations
of neurons, and the occasional array of neurons. With the advent of multielectrode
recording, intrinsic imaging, calcium imaging, and even functional magnetic reso-
nance imaging, it is becoming possible to explore spatiotemporal patterns of neural
activity. This leads to a wealth of interesting fodder for the mathematically inclined
and it is the goal of this chapter to provide some examples of this type of analysis.
In Chap. 6, we looked at the propagation of action potentials down an axon; this
is modeled as a partial differential equation. By looking for traveling waves, we
were able to reduce the equations to a set of ordinary differential equations. When
neurons are coupled together with chemical synapses, the natural form of coupling
is not through partial derivatives with respect to space, but rather through nonlocal
spatial interactions such as integral equations. In Sect. 8.4, we also looked at such
models under the assumption that there is a single spike wave, much like an action
potential. As with the partial differential equations, it is possible to look for specific
forms of a solution (such as traveling waves or stationary patterns), but the result-
ing simplified equations do not reduce to ordinary differential equations. Thus, new
techniques must be developed for solving these equations and (if desired) proving
their existence and stability.

This chapter begins with a few words on unstructured networks such as random
networks and Hopfield networks. Such networks are amenable to various types of
analysis and are popular among theoretical physicists owing to their similarity to
spin glasses. On the other hand, it is difficult to access their behavior experimentally
since they do not produce coherent activity that is easily visualized, measured, or
quantified.

We then turn to models for spatially structured networks where the connectivity
between neurons depends on their distance from each other. We focus our attention
on populations of firing rate models for which the theory is much more developed.
We discuss an important existence theorem for traveling fronts and then use this
to analyze traveling pulses in networks. We discuss the classic work of Shun-ichi
Amari and the relationship between localized stationary activity and working
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Interdisciplinary Applied Mathematics 35, DOI 10.1007/978-0-387-87708-2 12,
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memory. The Amari model sets the stage for stability analysis when there are
delays and other sorts of temporal dynamics. We then turn to so-called ring models
for the emergence of tuning curves in the visual system. Finally, we conclude with
a bifurcation theory analysis of pattern formation applied to visual hallucinations.

12.2 Unstructured Networks

In this section, we review some general results on “neural networks” or artificial
networks. These include some feed-forward models such as those used in the so-
called back propagation literature and Hopfield and related attractor networks. We
also state and prove the very general Cohen–Grossberg theorem. Specifically, we
are interested in networks of the two general forms:

�j

duj

dt
C uj D Fj

 X
k

wjkuk

!
; (12.1)

�j

dVj

dt
C Vj D

X
k

wjkFk.Vk/: (12.2)

The first of these is the so-called ‘firing rate’ formulation, whereas the second is the
voltage formulation. Cowan and Sharp [50] reviewed the history of neural networks
and provided a guide to the main results.

12.2.1 McCulloch–Pitts

McCulloch–Pitts models [197] consist of “neurons” that have two states, 0 and 1.
The next state of neuron i is determined by the quantity

�i D H

0
@X

j

wij�j � �i

1
A ;

where H is the step function and wij and �i are real numbers. It is important that
wi i D 0 for otherwise there may be ambiguity in the value of �i : Updating can be
done either synchronously (like a discrete dynamical system) or it could be done
asynchronously. In the latter case, an index, k, is randomly chosen and neuron k
is assigned the value �k according to the above quantity. For this network to do
something useful, it is necessary to make appropriate choices for the weights. There
are a number of learning algorithms which set the weights in such a way as to
produce a desired output for a given input. We point the reader to, for example,
Parallel Distributed Processes [196] as a classic text on learning algorithms for
feed-forward networks.
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12.2.2 Hopfield’s Model

As with the McCulloch–Pitts model, we will consider now a network of asyn-
chronously updated two-state neurons due to Hopfield [126]. Much of which follows
in this section is based on the classic text [121]. It is convenient to set their states to
be �1 and 1 instead of 0 and 1. Thus, consider a network of the form

Si .t C 1/ D sgn

0
@X

j

wijSj � �j

1
A ;

where sgn.x/ is C1 for nonnegative x and �1 for x < 0: If we update asyn-
chronously, then wi i should be zero. To see why, suppose we want to figure out
S given

S D sgn.S � 1=2/:
Clearly, we could choose S D 1 or S D �1 and satisfy this constraint. Thus, we
will assume wi i D 0: Furthermore, for simplicity, let us assume �i D 0: Hopfield
noticed that if wij D wj i , then this dynamical system has an energy function

U D �1
2

X
ij

wijSiSj :

To see that this is an energy function, let S 0
k

be a new state of the system. The change
in energy, U 0 � U , is

�1
2
.S 0

k � Sk/

0
@X

j

Sj wkj C
X

i

Si wik

1
A :

However, since wij D wj i , the energy difference is

�U D �.S 0
k � Sk/

X
j

wkjSj D �.S 0
k � Sk/S

0
k:

The last equality comes from the fact that S 0
k

D P
j wkjSj : If S 0

k
D 1, then

�U � 0 (with equality only if S 0
k

D Sk) and if S 0
k

D �1, then�U is also less than
or equal to 0. Thus, the energy U will decrease until a minimum is reached and the
dynamics always converges to an equilibrium. Note the importance of the symmetry
assumption. If wij ¤ wj i , then there is no guarantee that there will be convergence
to the steady state.

The ideas of Hopfield can be extended to continuous neural networks as long as
there are symmetric connections between the weights. Hopfield proved such a result
shortly after his discrete model came out [127]. At roughly the same time, Michael
Cohen and Steve Grossberg [40] proved a more general result. We now discuss
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the two different models. First consider the continuous network in the “voltage”
formulation:

Ci

dVi

dt
D
X

j

wijfj .Vj /� Vi=Ri C Ii ; (12.3)

where the functions fj .Vj / � Uj represent the firing rate at the axon hillock of a
neuron with somatic potential Vj (see Chap. 11). We assume wij D wj i and that fj

is a monotonically increasing function. Hopfield formed the following function:

E D �1
2

X
i;j

wijUiUj C
X

i

1

Ri

Z Ui

0

f �1
i .U /dU C

X
i

IiUi : (12.4)

In Exercise 2, you are asked to show the following:

dE

dt
D �

X
i

dUi

dt

0
@X

j

wijUj � Vi

Ri

C Ii

1
A : (12.5)

Note that the term in parentheses is just the dynamics of the individual neuron, that
is, Ci dVi=dt: Thus,

dE

dt
D �

X
i

Ci

dUi

dt

dVi

dt

D �
X

i

Ci .f
�1

i /0.Vi /.dVi=dt/2:

As long as fi are monotonically increasing, then dE=dt � 0: Thus, solutions to
(12.3) will converge to an equilibrium point.

Cohen and Grossberg [40] studied the following class of models:

dxi

dt
D ai .xi /

0
@bi .xi /�

NX
j D1

cijdj .xj /

1
A ; (12.6)

where

1. cj i D cij

2. ai .xi / � 0

3. d 0
i .xi / � 0

Suppose, for example, that ai D 1=�i , bi D Ii � xi , and cij D �wij . Then (12.6)
becomes

�i

dxi

dt
D Ii � xi C

NX
j D1

wijdj .xj /;
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which is identical to (12.3) after multiplication by Ri : Thus, the Cohen–Grossberg
equations cover the Hopfield model. Consider the following function:

E D �
X

i

Z xi

bi .y/d
0
i .y/dy C 1

2

X
j;k

cjkdj .xj /dk.xk/: (12.7)

Then,

dE

dt
D �

X
i

ai .xi /d
0
i .xi /

0
@bi .xi /�

X
j

cijdj .xj /

1
A

2

: (12.8)

From assumptions 2 and 3, this is nonpositive. This derivative vanishes only when
ai D 0; d 0

i D 0, or the terms in the parentheses vanish. Thus, they proved that E is
a Liapunov function and all solutions of (12.6) tend to equilibria.

12.2.3 Designing Memories

Given the unstructured networks we have described so far all converge to fixed
points, we can ask some questions about how to design the weights of the net-
work in such a way that they converge to a desired pattern. Many theoreticians (and
experimentalists) think of Hopfield networks as a kind of association cortex where
memories are stored in the weights and the resulting steady-state patterns are the
activities which are retrieved from the memory. That is, a memory is a vector of
activities or potentials which should be one of the stable fixed points of network
(12.1) or (12.2). If the initial data are close to this vector, then the network dynam-
ics should converge to it. Thus, the network is able to perform pattern completion
from partial information. Suppose the network has “stored” two memories. Then we
want it to be able to retrieve these when initial conditions or inputs are biased toward
one or the other. Our question in this section is: How do we choose the weights to
get a series of specified vectors as stable equilibria for the neural network?

Consider anN -neuron network which should converge to a single memory spec-
ified by a vector �: We take as the weight matrix the outer product

wij D �i�j =N:

Clearly, wij D wj i : The dynamics satisfy

dVi

dt
D �Vi C �i .1=N /

NX
j D1

�jF.Vj /:

Let U D .1=N /
P

j �jF.Vj /: Then,

V 0
i D �Vi C �iU:
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The steady state for this is just Vi D U�i : Finally, we see that U must satisfy

U D .1=N /

NX
j D1

�jF.�jU /:

Thus, if this nonlinear equation for U has a solution, then there will be a steady
state which is just proportional to the memory, �, where the constant of proportion-
ality is U: Exercise 7 asks you to explore the emergence of a stable memory when
F.V / D tanh.bV / and � is a vector of �1 and 1.

Now consider the case of two memories, �1 and �2, and weights,

wij D .�1
i �

1
j C �2

i �
2
j /=N:

Let
Um D .1=N /

X
j

�m
j F.Vj /

form D 1; 2: Notice that the vector V must satisfy

V 0 D �V C �1U1 C �2U2:

Suppose the memory vectors are linearly independent (This may be an unreasonable
assumption, but it is one that simplifies the analysis. However, if the network is large
and the memory vectors have only a few nonzero components, then the probability
of overlap will be small). Any component of the vector V orthogonal to �1 and �2

decays exponentially, so all the dynamics is along the directions corresponding to
�1 and �2. Thus, we can write

V.t/ D r1.t/�
1 C r2.t/�

2

and study the dynamics of r1.t/ and r2.t/. Clearly, we must have

�1.r 0
1 C r1 � U1/C �2.r 0

2 C r2 � U2/ D 0:

Since �1 and �2 are linearly independent, we must have

r 0
1 D �r1 C .1=N /

X
j

�1
jF.r1�

1
j C r2�

2
j /; (12.9)

r 0
2 D �r2 C .1=N /

X
j

�2
jF.r1�

1
j C r2�

2
j /:

With this choice of weights, we have reduced thisN -dimensional dynamical system
to a two-dimensional system. If there is a fixed point for this system where r1 � r2,
then V.t/ will be dominated by �1, so the first memory is recalled. In the perfect
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case, equilibria should be proportional to .1; 0/ or .0; 1/, implying that there is no
mixing of the memories. Exercise 8 explores the dynamics of a two-memory model.
In addition, we choose an odd function for F and take the �’s from the set f�1; 1g,
then it is possible to show that the recall will be perfect if the two memories are
orthogonal. In general, the “contamination” is related to the dot product of the two
memories. If the elements in the memories are ˙1, then h�m; �mi D N: Consider
h�1; �2i: If the two memories are independent and randomly chosen from ˙1, then
this dot product is just the result of a random walk of N steps of size ˙1: The ex-
pected value is 0 and the standard deviation is

p
N: Thus, the relative contamination

between the memories scales as
p
N=N D 1=

p
N: For largeN , the contamination

is small.

12.3 Waves

Waves of neural activity are commonly seen in a variety of experimental settings
ranging from slices to in vivo recordings. Wu et al. [293] provided an extensive and
recent review of their putative role in behavior and cognition. We saw in Chap. 8
that a brain slice preparation is able to generate traveling waves of activity in exper-
iments as well as in networks of biophysically based and simple spiking neurons.
In this section, we return to a model for neural waves in the context of firing rate
models. The mathematical theory developed in Chap. 8 presumed that the wave of
activity consisted of only a single-spike traveling wave. Section 9.10 showed how to
construct complex wave-like activity in singularly perturbed systems. In Fig. 12.1,

Fig. 12.1 Two examples of propagation in slices. (a–c) A cortical layer 2/3 slice. A multiple-
electrode array is placed into the slice in which inhibition is blocked. Local shocking produces an
event which propagates along the slice with a characteristic speed. (d, e) Similar experiment in the
ferret thalamus showing the propagation of sleep spindles. (a–c From [219], (d) from [152])
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we show two examples of traveling waves in brain slices. Figure 12.1e shows that
typically there are multiple spikes per wave. Other preparations show similar be-
havior – the single-spike assumption was to make the mathematical analysis of the
spiking models easier and to make a closed-form solution possible for the integrate-
and-fire model. In many of the brain slice experiments, the inhibition is blocked, so
all that remains is an excitatory population of cells. It should be clear to the reader
that the existence of propagation of activity across a slice is not surprising given the
large amount of recurrent excitation. Thus, a natural question is how does the ac-
tivity terminate? In all experimental preparations, the propagating burst of activity
stops after a few spikes. Pinto et al. [219] addressed this question experimentally
and suggested several plausible mechanisms for the termination of spiking in re-
current networks when the inhibition is blocked. Before turning to the modeling of
wave termination, we begin with a simulation and analysis of the propagation of a
front of activity.

12.3.1 Wavefronts

In Chap. 8 we saw that it was possible to produce a single-spike traveling wave by
“preventing” the cell from producing a spike after it has already spiked. In practice,
this is very hard to do without a very strong negative feedback term which prevents
the neuron from spiking again. Indeed, if we consider a biophysical model such
as the Traub model with excitatory synapses which (1) are strong enough to excite
neighboring cells and (2) have realistic decay times (2–3 ms), then the recurrent ex-
citation causes the neurons to fire again after they have spiked owing to neighboring
cells firing.

Consider, first, a network of biophysically based neurons with synaptic coupling.
The synaptic current is given by

Isyn.x; t/ D
�
gsyn

Z 1

�1
J.x � y/s.y; t/dt

�
.V .x; t/ � Vsyn/: (12.10)

s.x; t/ satisfies a differential equation of the form

�syn
@s

@t
D �s C f .V /h.s/: (12.11)

The function f .V / is zero unless the voltage is above some threshold (see Chap. 7).
If the synapses are saturating, then h.s/ D 1 � s (e.g., for NMDA synapses, cf.
Chap. 7), otherwise, h.s/ D 1. Figure 12.2a shows the voltage for a synaptically
connected network of 200 neurons which in the absence of synaptic inputs have a
unique stable resting state. The synapses have a fast time constant, �syn D 3ms.
Figure 12.2b shows the same simulation with a time constant of 10 ms. The synap-
tic gating variable, s.x; t/, for saturating synapses is shown. There appears to be
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Fig. 12.2 Space–time plots for the simulation of a network of 200 neurons coupled with an ex-
ponentially decaying weight function. Time goes down and spatial position is across. Colored
according to the synaptic gate, s. (a) Traub model with synaptic decay of 3 ms. (b) Traub model
with synaptic decay of 10 ms. (c) Firing rate model derived from the biophysical model

a wavefront with a constant velocity initiated by the first spike (more evident in
Fig. 12.2a), with a series of spikes occurring in the wake of the wave apparently
persisting forever. This kind of persistence is not biologically realistic; activity even-
tually terminates and the slice returns to rest as is seen in Fig. 12.1. In the next
section, we discuss various slow processes which act to terminate the wavefront ac-
tivity. We remark that, on the slower timescale, s.x; t/ is nearly constant, whereas on
the fast time scale, the large variations of s can clearly be seen. The slower timescale
simulation suggests we should use the reduction techniques of Chap. 11 to consider
a simpler scalar firing rate model.

Consider

�syn
@s.x; t/

@t
D �s.x; t/C F

�
Irev

Z 1

�1
J.x � y/s.y; t/dy

�
h.s.x; t//: (12.12)

The function F.I / is the average of f .V.t// when the single neuron is provided
with a constant current I: For example, at low currents, when the neuron is not
firing, F.I / D 0: Figure 12.2c shows a simulation of (12.12) when F is chosen
to match the Traub model simulated in Fig. 12.2a and b and �syn D 10ms. What
is apparent in this picture is that there is a constant-velocity wavefront joining two
stable resting states: the inactive state with no firing and s D 0 and a tonically firing
state with s > 0:Without loss of generality, we can assume the integral of J.x/ is 1
and, since this is an excitatory network, we supposeJ.x/ � 0:As in the simulations,
we suppose J.x/ is symmetric and monotonically decreasing for x > 0: Let

g.s/ D �s C F.Irevs/h.s/:

We suppose g.s/ has three roots, a < b < c, with g0.a/ < 0; g0.c/ < 0, and
g0.b/ > 0: That is, g.s/ is our favorite function: cubic-shaped. (The reader may
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ask if everything in biology is cubic shaped – the short answer is pretty much, yes!)
The simulation of the scalar network suggests there is a traveling wave solution to
(12.12) with constant velocity, �, that is a function, s.x; t/ D S.�/, where � D
x � �t , S.�1/ D c, and S.1/ D a: Since any wave is translation-invariant, we
set the origin so that S.0/ D b:With this assumption, we find that S.�/must satisfy
the integrodifferential equation

���syn
dS

d�
D �S C h.S/F.IrevJ.�/ � S.�//: (12.13)

Here, J.x/ � s.x/ is the spatial convolution over the real line of the function J.x/
with s.x/: Ermentrout and McLeod [74] proved the existence of such a traveling
wave when h.s/ D 1: Chen [37] generalized this proof to cover the case h.s/ D
1 � s, a fact which was exploited in [38] for a related model. We briefly sketch
the idea of the proof as the method has been used by many other authors to prove
existence theorems for nonlocal equations.

Parameterize the functions J.x/ and F.s/ by functions Jp.x/ and Fp.s/ where
0 � p � 1, F1.s/ D F.s/, and J1.x/ D J.x/: Each Fp has a corresponding gp

that has three roots with the properties above. Each Jp.x/ has the same properties as
J1.x/, that is, it is symmetric, integrates to 1, is nonnegative, and is monotonically
decreasing for x > 0: Choose J0.x/ D .1=2/ exp.�jxj/ and F0.x/ so that

Z c0

a0

g0.u/du D 0:

Then, it turns out (see Exercise 9) that there is a function S0.�/ satisfying (12.13)
with � D 0 and satisfying the conditions at ˙1: Using this basic solution, Ermen-
trout and McLeod [74] applied the implicit function theorem by linearizing (12.13)
about S0.�/: They obtained a linear operator,L0, and proved that this operator has a
simple zero eigenvalue (corresponding to the translation invariance of the traveling
wave). Thus, for small values of the parameter p, they had to solve

L0�.�/ D r0.�I �0/:

In general, since L has a one-dimensional nullspace, there is no hope for solving
this. However, the velocity � is not likely to remain at 0 as the function Fp changes,
so a judicious choice of � will put r0.�I �/ in the range of L0 so that it is possible
to find a traveling wave solution for p sufficiently close to 0. The solution can be
continued, say, up to p D p�: If p� D 1, then the desired wavefront has been
found. Otherwise, the method is repeated using Sp�.�/ as the base solution. There
are, of course, many technical details, but this is the essence of the proof. If F.I /
in (12.12) is chosen to be the Heaviside step function, then an exact expression can
be found for the traveling wave solution (this is Exercise 10). We remark that the
velocity of the waves is an increasing function of the parameter Irev if the function
F is monotonically increasing.
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12.3.2 Pulses

Wavefronts are almost never seen in experiments. Instead, pulses are commonly ob-
served in which each neuron involved in the activity produces a number of spikes
before returning to rest. Figure 12.3 shows an example of an experiment in which
the slice is imaged simultaneously with an intracellular recording of a neuron. The
neuron produces a finite number of spikes before returning to rest. What terminates
the activity remains an active area of research [219]. In Fig. 12.3b–d, we depict a
simulation of the same model which produced Fig. 12.2 but with the addition of a
slow outward current which becomes active only when the neuron is firing. (It is
much like the high-threshold adaptation described in 4.7.1). This slow current grad-
ually builds up enough to terminate the firing and thus the wavefront is turned into a
wave pulse. Here, eight spikes are produced in each neuron as the wave progresses
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Fig. 12.3 Waves in a slice preparation and simulations. (a) Experimental waves show spatial dis-
tribution of potential in an evoked wave (from David Pinto). The inset shows the intracellular
potential of a single cell as the wave passes through. (b) Simulation of the Traub model with an
additional slow potassium current which terminates spikes. (c) Single cell potential as the wave
passes through. (d) The synaptic gate against the slow potassium gate
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through the one-dimensional domain. Figure 12.3d shows a phase plane of the
synapse at a particular location versus the slow outward gate, z. Other mechanisms
could also be responsible for the termination of the wave. For example, synaptic
depression of the excitatory synapses [151] or inactivation of the sodium channels
(depolarization block) [78]. Figure 12.3a is suggestive of either spike adaptation (the
interspike interval increases over the duration of the pulse) or depolarization block
(the size of the spikes is smallest at the peak of the underlying depolarization). In
the subsequent analysis, we will assume the mechanism is adaptation – the slow
accumulation of an outward current.

We now describe a simple model for the pulse and sketch how it can be ana-
lyzed [216]. We first note that the recovery process, the slow potassium current, is
slow compared with the other currents in the model. In the absence of this recovery
variable, the model produces a front. If we turn off the slow outward current, the
velocity of the front is faster than with the adaptation, but only by about 25%. This
suggests an approach like the one we used to construct action potentials in Chap. 6,
where we exploited the timescale differences between the upstroke of the action
potential and the recovery variables. We start with a general model for a network
with slow processes. As in our firing rate model for the fronts, we start with two
“slow” currents added to the voltage equations: synaptic excitation and adaptation.
In reality, excitatory (AMPA) synapses are quite fast, but if the dominant excitatory
current is due to NMDA receptors, then �syn can be large (cf. Chap. 7). With this
conceit, the slow currents are

Islow.x; t/ D �gsynstotal.x; t/.Vsyn � V.x; t// � gzz.x; t/.Vz � V.x; t//;

where the synapses satisfy (12.11) and z satisfies

�z
dz

dt
D �z C fz.V /.1 � z/:

Here, fz.V / is zero unless the neuron is depolarized sufficiently and �z is the time
constant of the slow recovery process. As in the previous section, we will treat the
synapses as if they were slow enough to be considered constant and, in addition,
suppose the recovery variable, z, is also slow. The total current into a cell is approx-
imated by

Islow.x; t/ � Irevstotal.x; t/C Izz.x; t/;

where Irev D gsyn.Vrest � Vsyn/ > 0 and Iz D gz.Vrest � Vz/ < 0: As in the previ-
ous section, stotal is the total input at x from other cells. We now have a simplified
network model identical to (12.12) but with the additional slow recovery process:

�syn
@s.x; t/

@t
D �s.x; t/C ˛s�.x; t/h.s.x; t//; (12.14)

�z
@z.x; t/

@t
D �z.x; t/C ˛z�.x; t/.1 � z/; (12.15)

�.x; t/ D F ŒIrevJ.x/ � s.x; t/C Izz.x; t/	: (12.16)
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The firing rate of a neuron at position x is now a function of both the synaptic
activity and the degree of spike adaptation. We define 
 D �syn=�z 	 1 to be our
small parameter and use singular perturbation to find a traveling pulse solution,
.s.x; t/; z.x; t// D .S.�/;Z.�//, where � D x� ct and c is the velocity of the trav-
eling wave. By rescaling time, we can set �syn D 1: Letting U 0 denote the derivative
of U with respect to the moving coordinate �, we must solve

� cS 0 D �S C ˛s�.S;Z/.1� S/ � f .S;Z/; (12.17)

�cZ0 D 
Œ�Z C ˛z�.S;Z/.1�Z/	 � g 
 g.S;Z/

�.S;Z/ D F.IrevJ.�/ � S.�/C IzZ.�//:

That is, we need to find .S.�/;Z.�// such that as � ! ˙1, .S;Z/ tend to the
resting state of the network. Notice that � < 0 corresponds to events which occur
after the pulse has passed through and � > 0 corresponds to those before the pulse.

Figure 12.4a shows the time course of the synaptic dynamics and the adaptation
at a spatial location in the middle of the one-dimensional medium. Since this plot
shows the time course and �, the moving coordinate is proportional to �ct , and
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and (12.15) showing four stages in the evolution of the wave. Synaptic activity and adaptation are
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the dependent variables .S; z/ increase to the left and decrease to the right in this
picture. The behavior can be broken into four segments: (1) starting from rest, there
is an upstroke to the excited state; (2) there is a slow growth of the adaptation as the
excited neuron fires; (3) adaptation reaches a value which forces the synaptic activity
to make a fast downstroke to rest; and (4) a slow recovery of adaptation back to rest.
Since we assume 
 is small on the upstroke and downstroke of the pulse, we suppose
the adaptation is constant. On the initial upstroke, since the neuron starts from rest,
Z D zrest, the resting state of the adaptation. In this example, zrest is essentially 0.
At Z D zrest the S -dynamics is bistable. Figure 12.4c shows that the fast dynamics,
F.S;Z/ for Z D zrest, has three zeros, with those labeled a and b corresponding to
the stable roots. The Ermentrout–McLeod theory for the scalar neural network (or,
more precisely, the generalization by Chen) implies that there is a unique traveling
wavefront joining the two points a and b. This traveling front travels at velocity
c D c0, which is therefore the same velocity as that of the pulse. Once the up jump
has been made, the slow dynamics take over and we introduce a new space–time
scale: � D 
�: In these coordinates, equations (12.17) become


S� D f .S;Z/;

Z� D g.S;Z/;

and the convolution J.�/ � S.�/ becomes

R.�/ D 1




Z 1

�1
J Œ.� � �0/=
	S.�0/d�0:

We have assumed J.x/ is symmetric, peaked at x D 0, nonnegative, and has an
integral of 1. Thus, the function J.x=
/=
 tends to a Dirac delta function as 
 ! 0C:
Our equations become

0 D �S C ˛SF.IrecS C IzZ/.1 � S/ � f .S;Z/;

Z� D �Z C ˛ZF.IrecS C IzZ/.1 �Z/:

Figure 12.4b shows the phase plane for the local S;Z excitable system. The
S -nullcline is exactly the points where f .S;Z/ D 0: For a range of Z (here, be-
tween 0.025 and 0.2) there are three roots, S to f .S;Z/ D 0: Since the solution has
jumped to region II, which corresponds to the large value of S , we take the largest
root, call it SC.Z/, and plug this into the Z equation:

�c0

dZ

d�
D g.SC.Z/;Z/:

The phase plane in Fig. 12.4b shows that along this curve dZ=d� > 0, so Z.�/
grows for � decreasing. This is more easily seen in Fig. 12.4a in region II. At what
point is a jump made back to the left? In the case of the singular action potential
(Chap. 6), this jump occurred at a value of the recovery variable (the equivalent
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of Z, here) such that the traveling “back” has the same velocity as the front.
For the reaction–diffusion equations, such as the FitzHugh–Nagumo equations, the
existence of this jump point is guaranteed. However, there is no guarantee that there
will be a similar jump point for the integral equations. Indeed, it appears that for our
present wave model, the jump occurs when the recovery Z reaches the maximum
of the nullcline. Returning to the � coordinates, we have to solve

�cS 0 D f .S;Zmax/;

where f .S;Zmax/ has only two fixed points: one corresponding to the point a in
Fig. 12.4c and the other, a degenerate point, corresponding to point d in Fig. 12.4c.
The existence of a wavefront for this problem was proven by Diekmann [63], who
showed that there are infinitely many velocities, c: Assuming that one of these wave
velocities is the same as c0, we can complete the down jump. The last part of the
construction is the return to rest along the left branch of the nullcline, S�.Z/. For
our problem, �.S�.Z/;Z/ so that Z satisfies

c0Z� D Z;

so
Z D Zmaxe��=c0 :

Thus, as intuitively expected, once the wave passes by and there is no more neural
firing, the recovery variable, Z, decays with a time course of 1=
: An explicit solu-
tion for a simplified version of this model can be found when the firing rate is a step
function. Exercise 12 takes you through the necessary steps.

12.4 Bumps

Working memory refers to the short-term memory that is used for simple tasks such
as remembering a phone number as you walk from the phone directory to the tele-
phone. It is memory which you do not need to permanently store and is analogous
to the storage in the RAM of a computer during some task as opposed to keeping it
on the disk drive. One of several theories of the mechanism for working memory is
that it represents a transient but metastable state of neuronal activity. This theory is
based on experiments first done over three decades ago by Joachim Fuster [94, 95].
In these experiments, neurons in the prefrontal cortex of a monkey were recorded
while the monkey did a simple memory task. The monkey stared at a fixation point
on a video monitor. A brief spot of light (the stimulus) appeared somewhere in the
surrounding area of the screen. Typically, the stimulus lasted at most 1 s and was
then turned off. The monkey waited (for a period called the delay period). A signal
was given and the monkey had to make an eye movement (saccade) to the location
of the stimulus. Thus, the monkey had to remember the position of the stimulus for
up to several seconds after it had been turned off. What Fuster (and many subsequent
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experimentalists) found is that certain neurons would begin to fire at a rate above
the background level during the delay period and then return to background levels
after the monkey had made the saccade. This increased firing, which occurs in a
restricted spatial region, is believed to be the neuronal correlate of working mem-
ory. There are many other examples of this type of activity in the brain. Brody et al.
[235] found neurons in the prefrontal cortex of monkey which fired at a rate that was
proportional to the vibration frequency of a brief stimulus to the fingertip during the
delay period. That is, not only did the neurons fire during the memory period, but
they also coded for one of the stimulus properties.

Theoretically, these local regions of higher neural activity are regarded as sta-
tionary spatial patterns in a recurrent neural network often called “bumps” or “bump
attractors.” Wilson and Cowan [288] were among the first to try to define working
memory in terms of the behavior of firing rate models, mainly through simulations
of a two-layer neural network. In an influential paper, Amari [3] created a simpli-
fied neural network that was analytically tractable and allowed him to find explicit
solutions for stationary patterns as well as to ascertain their stability. Since these pa-
pers, there have been hundreds of theoretical and computational models for working
memory [43,46,170,172,182,283]. Most of the recent work has focused on obtain-
ing local increases in firing in spiking models such as integrate-and-fire and more
biophysical models. Although the details differ, the principle for the patterns re-
mains identical to that of the Amari paper.

12.4.1 The Wilson–Cowan Equations

Unlike traveling waves, inhibition plays a major role in the production of spatially
localized stationary patterns. We will start our analysis with the following “synapti-
cally” based neural network equations:

�e

@ue.x; t/

@t
D �ue.x; t/C Fe

� Z
�

Jee.x � y/ue.y; t/

�Jie.x � y/ui .y; t/dy C Ie.x; t/
�
; (12.18)

�i

@ui .x; t/

@t
D �ui .x; t/C Fi

� Z
�

Jei .x � y/ue.y; t/

�Ji i .x � y/ui .y; t/dy C Ii .x; t/
�
: (12.19)

This is a two-layer network model where ue.x; t/ and ui .x; t/ represent the synap-
tic activity of a population of excitatory and inhibitory neurons. The functions
J.x/ represent the connectivity between the two populations; these are nonneg-
ative functions which, in general, depend only on jx � yj, the distance between
two areas. The domain of the model, �, can be one- or two-dimensional. Although
not strictly true, we will call these the Wilson–Cowan equations. [The published
Wilson–Cowan equations have a term .1 � reue/ multiplying Se and a similar term
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for ui representing the refractory period.] If we pick re D 1 and ri D 1, then the
Wilson–Cowan equations are the same as those that we derived from averaging, e.g.,
(12.14) in this chapter.

The Wilson–Cowan equations can be transformed into equations similar to those
analyzed by Amari in which the nonlinearities are placed inside the spatial integra-
tion. We, instead, first make some simple assumptions about the inhibition to reduce
(12.18) and (12.19) to a scalar equation and then make the transformation. Suppose
�i 	 �e, Fi is linear, and Ji i D 0: The most unreasonable of these assumptions is
that inhibition is faster than excitation. (If we suppose the excitation is dominated
by the slow NMDA types of receptors, then this is not a bad assumption.) The as-
sumption regarding Ji i is unnecessary but simplifies the algebra. We set �i D 0 and
solve for ui .x; t/ W

ui .x; t/ D Fi

�Z
�

Jei .x � y/ue.y; t/dy C Ii .x; t/

�
:

The linearity assumption regarding Fi means we can absorb the slope and the inter-
cept of Fi into Jei and Ii : We substitute ui .x; t/ into (12.18) to obtain

�e

@ue.x; t/

@t
D �ue.x; t/C Fe

�Z
�

J.x � y/ue.y; t/C I.x; t/

�
;

where

J.x/ D Jee.x/ �
Z

�

Jei .x � y/Jie.y/dy

and

I.x; t/ D Ie.x; t/ �
Z

�

Jei .x � y/Ii .y; y/dy:

The spatial kernel, J.x/; is a composite of the excitatory and the inhibitory inter-
actions. If we suppose, for example, the connectivity is a Gaussian and that the
space constant (the decay of connectivity) for excitatory (inhibitory) connections is

e (
i ), then J.x/ comprises the difference of two Gaussians, one with a space

constant of 
e and the other with a space constant of 
 D
q

2

e C 
2
i . If recur-

rent excitation is strong, then J.x/ will be positive near x D 0 and negative for
larger values of x since 
 > 
e : Figure 12.5a shows a typical shape for J.x/:
Interactions like this are called “Mexican hat interactions” since, in two spatial
dimensions, the shape of the interactions resembles a sombrero. We let v.x; t/ D
J.x/ � ue.x; t/C I.x; t/ so that v.x; t/ satisfies

�evt C v D J.x/ � F.v.x; t//C OI .x; t/; (12.20)

where
OI D �It C I:

Equation (12.20) is the model that Amari analyzed in his famous 1977 paper when
F is the Heaviside step function.
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Fig. 12.5 (a) Composite interaction function; (b) “bump” solution; (c) integral of J.x/ showing
allowable widths of the “bump”

We now suppose F.v/ D H.v � �/ is a step function and that there is no input,
I D OI D 0: The spatial domain, �; will be the real line. A “bump” is defined as a
stationary solution to (12.20) which has a spatially localized peak (Fig. 12.5b). Such
a solution satisfies

v.x/ D
Z 1

�1
J.x � y/H.v.y/ � �/dy:

We construct a bump solution by supposing that v.x/ > � on an interval
�r < x < r and v.x/ < � outside this interval (see Fig. 12.5b). From the
definition of the step function,

v.x/ D
Z r

�r

J.x � y/dy D
Z xCr

x�r

J.y/dy D M.x C r/�M.x � r/;

where M.x/ D R x

0
J.y/dy: Continuity of v.x/ at x D ˙r implies that v.˙r/ D � ,

so we must have

� D M.2r/ D �M.�2r/:
If J.y/ is not symmetric, then we cannot satisfy both of these equations simulta-
neously and there will be no stationary bump. Instead, there will be motion of the
bump much like motion is induced with a transport term in diffusion equations (see
Exercise 19). However, if J.y/ is an even function, then M.y/ is odd and both of
these equations reduce to the same equation, M.2r/ D �: We remind the reader
that 2r is exactly the width of the bump. Figure 12.5c shows that for a Mexican
hat interaction as in Fig. 12.5a, there will be one, two, or no roots of this equation.
If the threshold, � , is larger than the maximum of M.x/, Mmax, then there are no
roots and no bumps. If the threshold lies betweenM1 andMmax, then there are two
roots and two different bumps. If M1 > 0, then for 0 < � < M1, there is a single
root. Laing et al. [172] considered more general functions J.x/ which have multiple
“wiggles” so thatM.x/ will oscillate; for example, J.x/ D exp.�jxj/ cos!x: This
means there can many (even infinitely many) roots of M.2r/ D � and, thus, many
different bump widths. We explore the stability below.
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12.4.2 Stability

We derived the Amari model from the full Wilson–Cowan equations by assuming
that the inhibition was fast so that we could eliminate its dynamics from the equa-
tions. Thus, to properly analyze the stability of the bump, we should consider the
bump with respect to the full set of (12.18) and (12.19). We will leave a variant of
this analysis as an exercise. For ease in exposition, we only examine stability with
respect to (12.20). Thus, we suppose

v0.x/ D
Z xCr

x�r

J.y/dy

is a stationary solution and that r satisfies, M.2r/ D �:We formally linearize about
this solution, resulting in the linear equation

�ewt C w D
Z 1

�1
J.x � y/ı.v0.y/� �/ w.y; t/dy:

Here, we use the fact that the derivative of the step function is the delta function.
Since the linear equation is autonomous, we can look for exponentially decaying
solutions, w.x; t/ D exp.�t/�.x/, where �.x/ obeys the eigenvalue problem

�e��.x/ D
Z 1

�1
J.x � y/ı.v0.y/ � �/�.y/dy: (12.21)

Recall that the delta function satisfies
Z 1

�1
ı.x � a/�.x/dx D �.a/

for any smooth functions �.x/: Furthermore, any standard text (see, e.g., [147])
provides the following identity. Suppose f .0/ D 0 and f 0.0/ ¤ 0: Then

Z 1

�1
ı.f .x//�.x/dx D �.0/

jf 0.0/j :

The argument inside the delta function in (12.21) vanishes at y D ˙r , so �.x/must
satisfy

.�e�C 1/�.x/ D J.x C r/

jv0
0.�r/j

�.�r/C J.x � r/

jv0
0.r/j

:

Using the definition of v0.x/, we can easily compute that

v0
0.x/ D J.x C r/ � J.x � r/;
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so jv0
0.˙r/j D jJ.2r/ � J.0/j: For the case illustrated in Fig. 12.5, jv0

0.˙r/j D
J.0/ � J.2r/: We let z˙ D �.˙r/ and setting x D ˙r in the eigenvalue equation,
we must satisfy

.�e�C 1/z� D J.0/

J.0/ � J.2r/ z� C J.2r/

J.0/ � J.2r/ zC

.�e�C 1/zC D J.2r/

J.0/ � J.2r/ z� C J.0/

J.0/ � J.2r/ zC:

Miraculously, the stability reduces to the analysis of a 2 
 2 symmetric matrix.
Because the matrix has the form

A D
�
a b

b a

�
;

the eigenvalues are aC b and a � b, which for our system translates to � D 0 and

� D 1

�e

� 1C J.0/C J.2r/

J.0/� J.2r/ :

This eigenvalue is negative if and only if J.2r/ < 0: Consulting Fig. 12.5a and c,
we see that only the wider bump (corresponding to 2r D c) falls in the region where
J.2r/ < 0: In conclusion, if � is betweenM1 andMmax, then there are two bumps
and the wider one is stable. The narrow bump is unstable and for 0 < � < M1,
where there is only one bump; this bump is also unstable.

12.4.3 More General Stability

We transformed the Wilson–Cowan equations and assumed the inhibition was fast
and linear to derive the Amari model (12.20). If we take a step back and consider
the dynamics of inhibition, then we can obtain some more interesting types of in-
stabilities. Consider the “dynamic” inhibition version of the Amari model where we
set the time constant of excitation to 1 and let �i be a parameter:

u0
e.x; t/ D �ue.x; t/C Jee.x/ �H.ue � �/ � Jie.x/ � ui ; (12.22)

�i u
0
i .x; t/ D �ui .x; t/C Jei .x/ �H.ue � �/: (12.23)

Here, the inhibition is linear and there is no inhibitory–inhibitory interaction. A
time-independent solution to these equations satisfies ue.x/ D U.x/, ui .x/ D
Jei .x/ �H.U.x/ � �/, where

U.x/ D J.x/ �H.U.x/� �/;
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with
J.x/ D Jee.x/� Jei .x/ � Jie.x/:

Thus, stationary solutions to (12.22) and (12.23) satisfy the same equations as the
simple Amari model, so there will be a bump. We will leave the analysis of the
stability of these bumps with respect to the full equations to the reader.

12.4.4 More General Firing Rates

The construction of solutions to the Amari model (12.20) depended on the fact that
the nonlinearity was a Heaviside step function. Kishimoto and Amari [153] used a
fixed-point theorem to prove there were bump solutions to a smooth version of the
equations. Specifically, consider

u.x/ D
Z 1

�1
J.x � y/F.u.y//dy: (12.24)

Suppose F.u/ D 0 for u < �1, F.u/ D 1 for u > �2, and F.u/ D �.u/ for
�1 < u < �2 with �.u/ differentiable, monotonic, and satisfying �.�1/ D 0,
�.�2/ D 1: This implies that H.u � �1/ � F.0/ � H.u � �2/: Assume there are
bump solutions for H.u � �j /; j D 1; 2: Then under fairly reasonable conditions
placed on the interaction functions, J.x/, there is a bump solution for F.u/:

Laing and Troy [170, 171] took a somewhat different approach. They chose in-
teraction functions, J.x/; whose Fourier transforms are rational functions:

OJ .k/ �
Z 1

�1
J.x/e�ikxdx D N.k2/

D.k2/
;

where N and D are polynomials. For example, the Fourier transform of

J.x/ D .1C b2/ exp.�jxj/.b cos.bx/C sin.x//=.4b/

is

OJ .k/ D .b2 C 1/2

.1C .k � b/2/.1C .k C b/2/
:

Formally, taking the Fourier transform of (12.24), we get

Ou.k/ D OJ .k/ OF.u/.k/:

Since OJ is a rational function, we unwrap it, obtaining

D.k2/Ou.k/ D N.k2/ OF.u/.k/:
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Since N and D are polynomials in k (in fact, even polynomials), we inverse-
transform the equation to obtain an ordinary differential equation:

L1u.x/ D L2F.u.x//;

where Lj are linear differential operators. For example, in the example above, u
formally satisfies

uxxxx C 2.b2 � 1/uxx C .1C b2/2u D .1C b2/2F.u/: (12.25)

This is a fourth-order differential equation. Suppose F.0/ D 0 and so u D 0 is a
resting state. Then a bump would be a solution to this partial differential equation
which is homoclinic to u D 0: Krisner [165] proved the existence of homoclinic
solutions to (12.25) using a shooting argument (see Exercise 20).

12.4.5 Applications of Bumps

We have thus far regarded bumps as the neural equivalent of working memory and
the delayed response task. But, stationary patterns of neural activity might be rel-
evant in many other neural phenomena. Suppose the “x” variable in our model
represents some other feature of the sensory world other than spatial location, for
example, angular preference. Cortical neurons associated with many sensory and
motor systems show increased firing rates when presented with oriented stimuli.
For example, neurons in the visual cortex show specificity for line segments that de-
pends on their angular orientation. Other visual cells are selective for the direction
of motion of a moving grating. In rats, cells in layer 4 of the cortex respond to move-
ments of the whiskers; some of these cells are very specific regarding the direction
of movement. Figure 12.6 shows a cartoon of orientation preference for a visual cor-
tical neuron and directional preference for a neuron in the rat somatosensory cortex.

0

90

0

270

180

45 90−45−90900 13545

a b c

Fig. 12.6 Orientation tuning in neurons. (a) Sample stimuli to the visual system consist of oriented
bars. (b) Firing rate of a visual cortex neuron as a function of the stimulus angle. (c) “Polar plot”
for a neuron in the somatosensory cortex of the rat showing the strength (radial coordinates) of the
response as a function of the direction of the whisker
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A number of researchers believe that the strength of these preferences for certain
features is a consequence of recurrent excitatory connections coupled with strong
inhibition.

When an oriented stimulus is presented, neurons show a tuning curve in which
their activity depends on the angle of the stimulus with a peak at the preferred an-
gle. Figure 12.6b and c shows two different ways to plot the degree of tuning. An
untuned neuron could produce a flat curve instead of the plot shown in Fig. 12.6b
and a perfect circle instead of the plot shown in Fig. 12.6c. The mechanism for this
tuning sensitivity is controversial, at least in the case of orientation tuning in the vi-
sual cortex. The arguments are as to whether this localized activity occurs owing to
feed-forward wiring from the thalamus or because recurrent connections and lateral
inhibition lead to the amplification, with the feed-forward behavior only biasing the
results.

Consider a periodic version of the Amari model:

@u.�; t/

@t
D �u.�; t/C

Z 2�

0

J.� � � 0/F.u.� 0; t//C S.�; t/: (12.26)

Here, u.�; t/ represents the activity of neurons responding to a stimulus moving in
the direction � . (If we wish to consider orientated bars, then the domain is Œ0; �/;
since there is no difference between a bar which is at 0ı and one which is at 180ı.)
S.�; t/ is the possible bias due to the inputs to the cortex from the thalamus. In
the pure feed-forward model, the recurrent connections J � F play very little role
and the activity is dominated by the inputs, S: In the recurrent model, S is small
and broadly tuned; the recurrent interactions amplify and sharpen the tuning. Both
arguments have experimental evidence to back them up. The Amari-type analysis
can be applied to the case where there is a step function nonlinearity with no inputs.
A time-independent input, S.�/, makes the analysis more difficult, but it is quite
“doable,” particularly if there is a single local peak. (See [3] for the analysis on the
real line.)

For a general nonlinearity, we can exploit the fact that the domain is periodic and
thus the function J is also periodic. Suppose, for example, J.�/ D A C B cos �:
If B > jAj, then J.�/ has a Mexican-hat-like shape. By approximating J.�/ by
only a few terms of its Fourier series (here only two), we can reduce the infinite-
dimensional equation (12.26) to a finite-dimensional one, since

K.�; t/ D
Z 2�

0

.AC B cos.� � � 0//F.u.� 0; t//d� 0

can be expressed as

K.�; t/ D C0.t/C cos �C1.t/C sin �D1.t/;
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where

C0.t/ D A

Z 2�

0

F.u.� 0; t/d� 0;

C1.t/ D B

Z 2�

0

cos.� 0/F.u.� 0; t/d� 0;

D1.t/ D B

Z 2�

0

sin.� 0/F.u.� 0; t/d� 0:

From this, (12.26) becomes

ut D �u C C0.t/C C1.t/ cos � CD1.t/ sin �:

Thus, only the constant and first Fourier modes of u.x; t/ are nontrivial; all other
modes decay to zero. This allows one to write

u.x; t/ D c0.t/C c1.t/ cos � C d1.t/ sin �

and, finally, to write

c0
0 D �c0 C C0;

c0
1 D �c1 C C1;

d 0
1 D �d1 CD1:

This is a third-order ordinary differential equation. Furthermore, d1 D 0 is invariant
(see Exercise 21) since we can always look for even solutions to this homoge-
neous translation-invariant set of equations. Thus, (12.26), with a simple choice for
a kernel, reduces to a planar differential equation. Finally, if we include an inhomo-
geneity for the equations, S.�; t/, and write

S.�; t/ D p0.t/C p1.t/ cos � C q1.t/ sin � C � � �

then we replace the three autonomous ordinary differential equations by

c0
0 D �c0 C C0 C p0; (12.27)

c0
1 D �c1 C C1 C p1;

d 0
1 D �d1 CD1 C q1:

In Exercise 21, you explore various aspects of this model using the computer.
As a final example of models using bumps, we consider Zhang’s model [295]

for head direction cells in the hippocampus. Head direction cells signal the head
direction of moving animals regardless of the location of the animal in the envi-
ronment. They have tuning curves very much like those in Fig. 12.6a. That is, they
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show a strong preference for particular angles and are therefore often considered as
exemplars of bump attractors. Thus, the head direction system is often modeled as
a network of recurrently connected neurons and the peaked attractor represents the
current angle of the animal’s head. As the animal moves around in its environment,
its head angle will change relative to its body angle, so we expect the peak of the
neural representation to move as well. As you perhaps explored in the exercises on
(12.27), it is possible to move a bump with external inputs, but the analytic solu-
tion to this problem is not generally possible. An alternative method of shifting the
bump is to vary the connection weights by biasing them in one direction or the other.
Specifically, Zhang supposed the bump satisfies the equation

@u.�; t/

@t
D �u.�; t/C

Z 2�

0

J.� � � 0; t/F .u.� 0; t//d� 0; (12.28)

where the weights, J.�; t/; are not constant in time and, most importantly, not
symmetric. The reader may recall that in the Amari model if the weights are not
symmetric, then it is impossible to find a stationary bump solution and instead there
is a moving solution. In Exercise 19, we created an asymmetric weight matrix by
shifting a symmetric matrix. Zhang found a much easier way to make the weights
time-dependent and asymmetric. He supposed

J.�; t/ D K.�/C �.t/K 0.�/; (12.29)

where K.�/ is a symmetric weight function that leads to stationary bumps and
�.t/ is an external signal which will serve to shift the bump. When �.t/ is nonzero,
the interaction, J , is not symmetric, so we expect movement of the bump. Suppose
U.�/ is a stationary solution to

U.�/ D
Z 2�

0

K.� � � 0/F.U.� 0//d� 0:

Consider the time-dependent problem (12.28) with J.�; t/ as in (12.29). Let

�.t/ D
Z t

0

�.s/ds

be the integrated signal and let u0.�; t/ D U.� C �.t//: Then it is easy to see
(Exercise 22) that u0 exactly satisfies (12.28) with J as in (12.29). �.t/ is the
integrated phase shift of the bump due to the inputs. Thus, a brief negative input
will shift the bump counterclockwise, whereas a brief positive input will shift it
clockwise. No matter how fast the inputs vary, the bump will follow them exactly
(or at least there is a solution which can follow them – stability has not yet been
determined). We remark that models like this are called neural integrators since they
integrate the inputs and maintain them. Integrators are found in a variety of neural
systems ranging from the oculomotor plant in the goldfish [200,244] to the brain of
an ant [206].
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12.5 Spatial Patterns: Hallucinations

Press on your eyeballs with the palms of your hands. After a few seconds, the ran-
dom light flashes that you see will become organized into faint flickering geometric
patterns. Better yet, stare at a diffused strobe light flickering at roughly 20 Hz and
your visual field will break up into similar geometric patterns. Even more intense
patterns arise upon the ingestion of various hallucinogenic drugs such as lyser-
gic acid diethylamide or mescaline. These simple geometric visual patterns (called
phosphenes) are ubiquitous in their appearance and their forms seem to be indepen-
dent of any cultural influences. Kluver [155] noted the relatively few such patterns
that subjects report during the early stages of drug intoxication and classified the
patterns into four types of form constants:

1. Grating, lattice, fretwork, filigree, honeycomb, or chessboard
2. Cobwebs
3. Funnel, tunnel, cone, or vessel
4. Spiral

Typically, during stroboscopic stimulation, human subjects report bull’s-eyes
(tunnel) and starbursts (funnel/cone), which are examples of the third type of form
constant, whereas hallucinogens lead to more varied patterns such as honeycombs
and spirals.

Patterns that appear on the retina are transformed in a direct topographic manner
to patterns on the cortex, but the mapping is not a simple linear transformation.
Think of the retina as having essentially polar coordinates centered at the fovea. If
we let r denote the distance from the center of the fovea (in visual science, this is
called the eccentricity) and � denote the angle around the retina, the transformation
to the cortex is well approximated by the formula [53]

.r; �/ ! �

�
log.1C r=r0/;� r�

r C r0

�
:

The parameter � is called the magnification factor and r0 is an empirically defined
constant. For r � r0, this mapping is just the complex logarithm, z D r exp.i�/ !
.log r; �/, with the angle reversed. Figure 12.7 shows that the form constants are
transformed into even simpler forms under this mapping. Spirals, for example, be-
come diagonal lines away from the fovea.

Ermentrout and Cowan suggested the spatially periodic patterns arose sponta-
neously in the visual cortex owing to an instability of the resting activity. For
example, the hallucinogens are known to enhance cortical excitability by causing the
release of glutamate via activation of specific serotonin receptors [173]. Flickering
light could interact resonantly with intrinsic oscillatory activity in the cortex to in-
crease overall excitability. Thus, we will explore a simple spatial neural network as
some parameter is varied leading to a loss of stability of a uniform state. To simplify
the mathematical analysis, we will regard the visual cortex as a two-dimensional
sheet with periodic boundary conditions (to avoid boundary effects and to make
it possible to compute eigenfunctions as well as to avoid mathematical difficulties
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Retina

Cortex

r

θ

Fig. 12.7 The transformation from retinal to cortical coordinates (left) and its effect on three
of Kluver’s form constants. Most notably, bull’s-eyes (starbursts) are transformed into horizontal
(vertical) stripes

arising in the infinite plane). The general idea is that we will start with a spatially
homogeneous system and study the stability of the spatially uniform state. As we
change some parameters, the uniform state loses stability to certain spatially vary-
ing modes which grow until the nonlinearities cause them to saturate. We will not
go through the complete analysis, but we will touch on the main points, which are
(1) linear stability analysis and (2) pattern selection. For simplicity of exposition,
we will analyze a scalar neural network with lateral inhibitory connections much
like the function shown in Fig. 12.5a in two spatial dimensions and with a smooth
nonlinearity. Let u.x; y; t/ be the activity of a local region of the cortex and suppose
it satisfies

�
@u.x; y; t/

@t
D �u.x; y; t/C J.x; y/ � F.u.x; y; t//; (12.30)

where

J.x; y/ � v.x; y/ D
Z L

0

Z L

0

J..x � x0; y � y0/v.x0; y0/dx0dy0:

Here, we will exploit two assumptions; the connections between cells are (1) rota-
tionally symmetric and (2) translationally invariant. Since our domain is periodic,
we assume J.x ˙ L; y/ D J.x; y ˙ L/ D J.x; y/ for all x; y 2 Œ0; L/: Rota-
tional symmetry means interactions depend only on the distance between neurons.
To construct such a J.x; y/, we start with a function w.x/ which is even and satisfies

Z 1

�1
w.x/dx D C < 1:
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For example, w.x/ could be like the lateral inhibitory kernel used in the Amari
model. Let

J.x; y/ D
1X

nD�1

1X
mD�1

w.
p
.x C nL/2 C .y CmL/2/:

It is clear that J.x; y/ is L-periodic in x; y: Furthermore, J depends only on the
distance from the origin of .x; y/, so it is rotationally invariant. The reader can
verify that J.x; y/ is integrable on the square � D Œ0; L/ 
 Œ0; L/: Henceforth, we
assume L D 2� , since we can always rescale the spatial dimensions so that the
“cortex” is the unit square. The periodicity of J.x; y/, as well as the translation
invariance, implies that

Z 2�

0

Z 2�

0

J.x�x0; y�y0/ expŒi.kx0 Cjy0/	dx0dy0 D OJ .k2 Cj 2/ expŒi.kxCjy/	

for any integers .k; j / and

OJ .l2/ D
Z 1

�1
w.x0/e�ilx0

dx0:

This last equality is due to the rotational invariance of the function w.x/ and the def-
inition of J: With these necessary preliminaries we turn to the analysis of (12.30).
We suppose F.0/ D 0 and F 0.0/ D ˛ > 0 is a parameter. Think of this as the ex-
citability of the network. For larger ˛, the network is more excited. We also assume
F.u/ is at least C 3: Since F.0/ D 0, u.x; y; t/ D 0 is a solution to (12.30) and
represents the background state of the cortex. To determine stability, we linearize
about u D 0 and obtain the linearized equation

�
@v

@t
D �v C ˛J.x; y/ � v.x; y; t/:

Since J preserves sine and cosines, the general solution to the linear problem is

v.x; y; t/ D e�t ei.kxCjy/;

where the eigenvalue � satisfies

� D �1C ˛ OJ .k2 C j 2/:

Note that � depends only on ˛ and l2 D j 2 C k2: If ˛ is small enough, then � < 0
for all .k; j /: If we suppose the interactions are like those in the Amari model (that
is, lateral-inhibitory or “Mexican hat”) such as shown in Fig. 12.8a, the function
OJ .l/ will look like that shown in Fig. 12.8b. In the figure, we have plotted l as a

continuous variable, but in our square domain it takes on discrete values of the form
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Fig. 12.8 (a) The lateral inhibitory kernel, w.x/, and the corresponding Fourier transform (b)

p
k2 C j 2, where .k; j / are integers. The important point is that if the interactions

are like a Mexican hat, then the function OJ has a maximum value at some l D l�
that is bounded away from 0.

Suppose we increase the excitability parameter, ˛: Then as soon as ˛ exceeds,
1= OJ .l�/ � ˛�, the resting state will be unstable and spatial perturbations of the
form exp i.kx C jy/ with k2 C j 2 D .l�/2 will grow at an exponential rate. Since
the actual values of l are discrete, there will generically be a small range of values of
˛ such that only modes exactly equal to l� will grow and all other modes will decay.
This phenomenon when a few spatial modes grow and the remainder decay is the
essence of what is called the Turing instability after Alan Turing’s groundbreaking
paper on pattern formation in 1952 [276]. This simple mechanism underlies the
formation of spatial patterns in hundreds of other biological and physical examples
(see [205] for dozens of applications in biology). Of course, this simple analysis
is only the beginning. It is also necessary for us to analyze what happens to the
full nonlinear problem when ˛ is larger than ˛�: The resulting nonlinear analysis
(called the normal form by mathematicians and mode or amplitude expansion by
physicists) tells us exactly what actual patterns arise. We will sketch this out in the
next few paragraphs.

The complexity of the patterns which arise as ˛ increases beyond ˛� depends on
the value of l� since this determines how many values of .k; j / satisfy k2 C j 2 D
.l�/2: For example, suppose l� D 7: The only pairs are .˙7; 0/ and .0;˙7/; there
are four of them. If l� D 5, then there are many more: .˙5; 0/, .0;˙5/, .˙4;˙3/,
.˙4;�3/, .˙3;˙4/, and .˙3;�4/: If l� D p

2, then ˙.1;�1/ and ˙.1; 1/ are
the only four. For larger values of l� there can be arbitrarily many. For any given
l�, we enumerate all the values of .jn; kn/ such that j 2

n C k2
n D l�2 and write the

corresponding functions of x; y as

ˆn.x; y/ D ei.jnxCkny/:

The idea of normal form methods is that we seek solutions to (12.30) when the
parameter ˛ is close to ˛� and thus the solutions are expected to lie close to the
homogeneous resting state. Hence, we suppose ˛ � ˛� D 
2p, where 
 is a small
positive-amplitude parameter and p is a scaling factor. We seek solutions to (12.30)
of the form
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u.x; y; t/ D
X

n


zn.�/ˆn.x; y/C 
2w2 C � � � ;

where � D 
2t is a slow timescale and w2;w3; : : : are orthogonal to ˆn.x; y/. The
complex functions zn are the so-called amplitude variables and describe the behavior
near the resting state in a subspace spanned by the nullspace of the linearized equa-
tions. There is a straightforward, but somewhat tedious procedure to go through
to get the equations for the zn, and the interested reader should consult [129]. In
general, the resulting equations take the following form:

dzn

d�
D zn

 
bp C

X
m

anmzm Nzm

!
; (12.31)

where anm and b are real coefficients whose values depend strongly on the details
of the model. We remark that in our example system, the loss of stability is at a zero
eigenvalue (which is the only possibility for a scalar model). However, in more
complex models, such as the full Wilson–Cowan equations, it is possible to lose
stability at an imaginary pair of eigenvalues. In this case, the coefficients in the
normal form equation (12.31) are complex. Here, for simplicity, we study only the
emergence of solutions at a zero eigenvalue. We can write zn D rn exp.i�n/ and
then let Rn D r2

n to reduce (12.31) to a Lotka–Volterra model,

R0
n D 2Rn

 
bp C

X
m

anmRm

!
;

and use this to determine the dynamics of the normal form. There is a great deal
of redundancy in (12.31) since the pairs .kn; jn/ and .�kn;�jn/ are complex
conjugates, so the corresponding z’s have the same values of r and R: Thus, the
conversion to r or R has the desirable effect of reducing the dimension by half.
Furthermore, the parameters anm are not independent and are generally related to
each other. In particular, anm D amn: This last condition precludes any complex
dynamics such as oscillations and chaos.

Consider, for example, the case when there are just four elements in the
nullspace, say, .˙7; 0/ and .0;˙7/; which we identify as n D 1; 2; 3; 4: Then
z2 D Nz1 and z4 D Nz3: The amplitude equations are determined solely byR1 andR3:

R0
1 D 2R1.bp � aR1 � cR3/; (12.32)

R0
3 D 2R3.bp � aR3 � cR1/:

Note that in this case, ann D amm: We are only interested in solutions for which
Rn D r2

n � 0: We absorb b into p (so we set b D 1 without loss of generality).
There are four solutions: .0; 0/, .p=a; 0/, .0; p=a/, and .p=.a C c/; p=.a C c//:

Before continuing, we first interpret these solutions within the context of the patterns
for the full model (12.30). Consider, the last solution. Recall that to lowest order
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u.x; y; t/ is a sum of the zn D p
Rnei�n , so for our particular choice of l� we have

u.x; y/ D 2
p
R1 cos.7x C �1/C 2

p
R3 cos.7y C �3/;

where the �’s are arbitrary phase shifts (since we have periodic boundary condi-
tions). The four solutions to the normal form correspond, respectively, to (1) no
pattern, (2) vertical stripes, (3) horizontal stripes, and (4) checkerboards. Thus, in
one simple example, we can explain several of Kluver’s form constants for halluci-
nations: bull’s-eyes, pinwheels, and checkerboards. If instead, we had, for example,
.6; 6/, .6;�6/, .�6; 6/; and .�6;�6/ as our unstable modes, then the three nonzero
patterns for u.x; y/ would be two diagonal striped patterns (corresponding to spiral
form constants) and checkerboards.

We leave the analysis of the stability as an exercise for the reader, but we summa-
rize it here. The solutions .p=a; 0/ and .0; p=a/ are stable if and only if c > a > 0,
whereas the solution .p=.a C c/; p=.a C c// is stable if and only if a > c > 0:

Finally, .0; 0/ is stable if and only if p < 0:

12.6 Exercises

1. Consider the two-cell network:

S1.nC 1/ D sgn.�S2.n//;

S2.nC 1/ D sgn.S1.n//:

Does this ever settle down? This shows that the symmetry of weights is abso-
lutely necessary for convergence.

2. Given the energy function (12.4), derive the derivative (12.5).
3. Consider (12.3) for two neurons. Let Ri D 1, Ci D 1, Ii D 0, fi .v/ D
1=.1C exp.�.v � 3//, and w21 D w12 D 6: Draw the phase plane for this and
compute the energy function, E: Superimpose this on the phase plane.

4. Derive (12.8) from (12.6) and (12.7).
5. Prove the Destexhe et al. [60] shunting model

dxi

dt
D �Aixi C .Bi � xi /ŒIi C fi .xi /	 � .xi C Ci /

2
4Ji C

NX
j D1

Dijgj .xj /

3
5

converges to equilibria under the assumptions thatDij D Dj i � 0, Ai , Bi , and
Ci are nonnegative, and g0

j .xj / � 0: (Hint: Let yi D xi �Ci be a simple change
of variables and use the Cohen–Grossberg theorem.) Suppose, additionally, Ii ,
Ji , fi , and gi are all positive. Prove if xi .0/ 2 .�Ci ; Bi /, then xi .t/ remains
in this interval.
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6. Explore the following three-variable model based on (12.6):

x0
1 D x1.1� x1 � 2x2 � x3=2/;

x0
2 D x2.1� x2 � 2x3 � x1=2/;

x0
3 D x3.1� x3 � 2x1 � x2=2/:

This is of the form of the Cohen–Grossberg model but violates the symmetry
of interactions. Numerically solve this system and describe the behavior.

7. Consider the single memory network

V 0
i D �Vi C �i .1=N /

NX
j D1

�j tanh.bVj /;

where �j is either �1 or 1. Show that if b > 0 is too small, the only solution to
this is that Vi converge to 0. Prove as b increases, there is a pitchfork bifurcation
and that Vi will converge to a fixed point proportional to the vector �. Show that
the “antimemory,” proportional to �� is also a stable fixed point.

8. Let F.V / D tanh.bV /: Create two random memories of length 100 consist-
ing of �1 and 1. Numerically study the bifurcation as the gain, b, increases
for (12.9). In the perfect recall case of memory 1, r2 D 0: For your simulated
example, how small is r2 as b increases? Suppose the two memories are orthog-
onal. Can you prove the recall is perfect in this case? (Exploit the fact that F is
an odd function and that all the � components are ˙1:)

9. Consider the equation

S.x/ D f

�
1

2

Z 1

�1
e�jx�yjS.y/dy

�
:

Suppose g.u/ � u C f .u/ has three zeros, a < b < c, g0.a/ < 0, g0.b/ > 0,
g0.c/ < 0, and that Z c

a

g.u/du D 0:

Prove there is a bounded solution to this equation satisfying

S.�1/ D c; S.C1/ D a:

Hint: Let

z.x/ D .1=2/

Z 1

�1
e�jx�yjS.y/dy:

Show that
z � zxx D S

by either using Fourier transforms or directly differentiating. Thus, transform
the integral equation to

z � zxx D f .z/;
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which is a second-order integrable differential equation which has a solution
z.�1/ D c and z.C1/ D a: Conclude that S also satisfies these conditions.

10. Consider:
���S 0 D �S C ˛HŒJ.�/ � S.�/ � �	.1 � S/;

where H.u/ is the step function. Suppose

0 < � <
˛

2.1C ˛/
:

Find the unique traveling wave solution joining the states S D 0 with
S D ˛=.1C ˛/:

11. Devise a model similar to (12.14) and (12.15) which uses synaptic depression as
the slow recovery instead of adaptation. You should consult Chap. 8 to model
the depression. Note that the degree of depression should depend on the fir-
ing rate of the neuron, act as a multiplicative factor on the synaptic strength,
and have its own dynamics. Draw some representative .s; d / phase planes for
the local (spatially homogeneous) case, where d is the depression variable.
Find conditions in which the local dynamics admits oscillations. Compare your
model and simulations with those in [273]. See also [183].

12. Consider the traveling pulse equations for the analog of (12.17) with step func-
tion nonlinearities and no saturation of the synapse and adaptation variables:

�cS 0 D �S C �;

�c�Z0 D �Z C k�;

� D Heav

�Z 1

�1
J.� � � 0/S.� 0/d� 0 � bZ � �

�
:

Construct a traveling pulse for this equation using J.x/ D exp.�jxj/=2. Here
is how to proceed. Let

U.�/ D
Z 1

�1
J.� � � 0/S.� 0/d� 0 � bZ � �:

Suppose U.�/ > 0 for 0 < � < a, where a is the width of the pulse. Then for
� < 0 or � > a, we have

�cS 0 D �S; �c�Z0 D �Z:

As � ! ˙1, these must be bounded, so the reader should verify that .S;Z/ D
.0; 0/ for � > a: For � < 0, the solutions are exponentials with unknown
constants. For 0 < � < a, U > 0, so the step function is 1 in this region
and

�cS 0 D �S C 1; �c�Z0 D �Z C k:
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Solutions should be continuous, so that at � D a, S.a/ D Z.a/ D 0 since
.S;Z/ vanish for � > a: This gives a unique solution to .S;Z/ in the region
0 < � < a: Furthermore, by continuity, this also provides values for the un-
known constants in the region � < 0: Now, you should have a solution for all �
which contains two unknown constants, the velocity, c, and the width, a. Since
U.�/ > 0 for 0 < � < a and U.�/ < 0 for � < 0 and � > a, it must be the
case (by continuity) that U.0/ D U.a/ D 0: These two equations will yield the
unknown constants, a and c. Unfortunately, you will probably not be able to
solve for a and c explicitly and must resort to a numerical solution. However,
the problem has now been reduced to two algebraic equations!

13. Construct spatially periodic solutions to the Amari model (12.20) satisfying
v.x C b/ D v.x/ and v.x/ > � for 0 < x < a < b: Can you determine their
stability?

14. In this exercise, you will create a numerical model for (12.22) and (12.23)
and compare the bump with the solution you construct analytically. After
this, do the next exercise to determine the stability of your bump solu-
tion. For the simulations, choose Jee.x/ D a exp.�.x=
e/

2/=.
e

p
�/,

Jei .x/ D exp.�.x=
e/
2/=.
e

p
�/, and Jie.x/ D exp.�.x=
i /

2/=.
i

p
�/.

Choose 
e D 8, 
i D 6, a D 1:05, � D 0:05, and �i D 0:1: First, com-
pute the width of the bump by computing the composite interaction function,
J.x/ D Jee.x/ � Jie.x/ � Jei .x/: (Note that � means the convolution.) Next,
simulate the model by choosing a big enough domain and a suitable discretiza-
tion. Show that there is a bump that has the same width as the theory predicts.
Proceed to the next exercise!

15. Determine the stability of the stationary solution

.ue.x/; ui .x// D .U.x/; Jei .x/ �H.U.x/ � �//;

with

U.x/ D J.x/ �H.U.x/ � �/; J.x/ D Jee.x/ � Jei .x/ � Jie.x/

as a function of the time constant of inhibition in (12.22) and (12.23). Linearize
about the steady solution and use the properties of the Dirac delta function to
reduce the stability question to that of a four-dimensional matrix.

16. Suppose J.x/ is a Mexican-hat type interaction. That is:

a. J.�x/ D J.x/.
b. J.x/ > 0 on .�a; a/ with a > 0 and J.˙a/ D 0.
c. J.x/ is decreasing on .0; a	.
d. J.x/ < 0 on .�1;�a/ [ .a;1/.
e. J.x/ is continuous with a finite integral.
f. J.x/ has a unique minimum on .0;1/ at a point, d > a and J.x/ is strictly

increasing on .d;1/.
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Can you construct a double “bump” solution for (12.20)? That is, v.x/ > � in
the union of two intervals, .r1; r2/ [ .r3; r4/? The answer to this may be no –
you have to figure it out. (Hint: Consult [172]).

17. More fun with the Amari model. Consider the linear differential operator

Lu � amdmu=dtm C am�1dm�1u=dtm�1 C � � � C a1du=dt C u

and suppose all the roots of the characteristic polynomial have negative real
parts (that is, p.x/ D amx

m C � � � Ca1xC 1 has roots with negative real parts)
Consider the generalized Amari model

Lu.x; t/ D J.x/ �H.u.x; t/ � �/:

A time-independent solution satisfies

U.x/ D J.x/ �H.U.x/ � �/;

identical to the Amari model. Analyze the stability of the bump. For example, if
m D 1, this is the case we have done. In particular, for m D 2, show that there
is still a stable bump solution for all a1; a2 > 0: What happens when m D 3?
Can there be a loss of stability?

18. There are many variants to the Amari model incorporating adaptation and den-
dritic interactions. Coombes and his collaborators have written many papers on
the analysis of these variants. In the spirit of Serge Lang’s book on homology,
pick any of the papers by Coombes [46, 48] and obtain the same stability cri-
teria without looking at his calculations. A good place to start is the review by
[46].

19. Asymmetric weights. Consider the Amari model:

ut D �u CW.x/ �H.u.x; t/ � �/;

where W.x/ D J.x C ˛/ with J.x/, the usual “Mexican hat” function. When
˛ is nonzero, W.x/ is not symmetric, so there will be no stationary bump.
However, there may be a traveling bump. Let u.x; t/ D U.x � ct/, where c is
the velocity of the moving bump. Try to construct a moving bump where you
try to find c as a function of ˛: (Hint: Let a be the width of the bump. Then you
will have to solve:

�cU 0.y/ D �U.y/C
Z a

0

W.y � y0/dy0;

where y D x � ct is the moving coordinate. This linear equation has two
parameters .c; a/ plus a constant of integration. The condition that U.y/ ! 0

as y ! ˙1 will determine the integration constant. The other two parameters
are determined by the conditions that U.0/ D � and U.a/ D �:)
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20. The bump equation (12.25) contains only even derivatives, so there will be even
solutions to it. Thus, to prove the existence of a homoclinic, we need to find a
solution u.x/ such that u.0/ D ˛; u00.0/ D ˇ, u0.0/ D u000.0/ D 0, and u and
its derivatives vanish as x ! 1: This problem is a two-dimensional shooting
problem since we have to find the two parameters .˛; ˇ/ so that the condi-
tion at 1 holds. Two-dimensional shooting is very much more difficult, both
numerically and analytically, than one-dimensional (one-parameter) shooting.
Thus, the proof would be much simpler if we could somehow reduce it to a
one-dimensional shooting problem. Show that if u.x/ is a solution to (12.25),
then

.u000u0 � .u00/2=2C .b2 � 1/u02 C .1C b2/2Q.u/ D E;

where E is a constant and

Q.u/ D
Z u

0

v � F.v/dv:

Use the boundary conditions at x D 1 to compute E for the homoclinic and
then use this to find an expression for ˇ in terms of ˛, thus effectively reducing
the existence to a one-dimensional shooting problem.

21. Ring model. (a) Suppose q1 D 0 in (12.27). Prove d1 D 0 is invariant so that
if you start with an even initial condition, the solution will continue to be even.
(b) Prove a stable fixed point of (12.27) corresponds to a stable solution to the
full integral equation (12.26) for J.�/ D ACB cos �: (c) Use the computer to
explore (12.27) when

J.�/ D AC B cos �

and F.u/ D p
max.u � k; 0/ choosing A D 2 and B D 6: Vary the threshold

k and assume the solutions are even functions of � so that the model reduces
to a planar system. How many fixed points are there and what is their stability
when k D 1 and k D 0:5? (d) One point of interest in these models is the
contrast dependence of the output relative to the inputs. Consider (12.26) with
S.�; t/ D a0 C a1 cos �: The ratio a1=a0 is called the contrast. The output
contrast is c1=c0, where the cj satisfy (12.27). Explore the bifurcations and
the nature of the fixed points as the contrast of the inputs varies. (e) Follow
the moving bump. Suppose a stimulus runs through feature space in a pe-
riodic manner. That is, in the ring model, we drive (12.26) with a stimulus
S.�; t/ D a1 cos.� � !t/. Derive the appropriate version of (12.27) and then
numerically study the behavior for A D 2, B D 6, k D 1 (with the same non-
linearity as in the other parts of this exercise) a1 D 0:1, and ! 2 Œ0:02; 0:05	:

Use two different initial conditions, c0 D 6 and c0 D 0, with the other variables
set to 0. What is the behavior if you try to drive it too fast.

22. Zhang’s head direction model. Suppose K.�/ is a symmetric weight function
and U.�/ is a stationary bump solution to
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U.�/ D
Z 2�

0

K.� � � 0/F.U.� 0//d� 0:

Show that

u.�; t/ D U

�
� C

Z t

0

�.s/ds

�

is a solution to

@u.�; t/

@t
D �u.�; t/C

Z 2�

0

J.� � � 0; t/F .u.� 0; t//d� 0;

where
J.�/ D K.�/C �.t/K 0.�/:

Simulate the Zhang model using the ring model of Exercise 22 and your choice
of inputs �.t/:

23. Prove the stability results for (12.32).
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