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CT Computed tomography
EEG Electroencephalography
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FEM Finite element method
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MEG Magnetoencephalography
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MT Motor threshold
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PNS Peripheral nervous system
rTMS Repetitive transcranial magnetic stimulation
SPECT Single photon emission computed tomography
TCES Transcranial electrical stimulation
TMS Transcranial magnetic stimulation
3D Three-dimensional
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1  I n t r o d u c t i o n

The use of non-invasive neuroimaging has increased explosively in re-
cent years. Details of the functioning of the human brain are revealed by
measuring electromagnetic fields outside the head or metabolic and
hemodynamic changes using electroencephalography (EEG), magnetoen-
cephalography (MEG), positron emission tomography (PET), near-
infrared spectroscopy (NIRS) or functional magnetic resonance imaging
(fMRI). This thesis deals with transcranial magnetic brain stimulation
(TMS), which is a direct way of manipulating and interfering with the
function of the cortex, thus complementing conventional neuroimaging.

Brain stimulation with TMS is achieved from the outside of the head
using pulses of electromagnetic field that induce an electric field in the
brain. TMS has numerous applications in the study, diagnosis and therapy
of the brain. TMS can either excite the cortex or disturb its function. The
observed excitatory effects are normally muscle twitches or phosphenes,
whereas in the “lesion” mode TMS can transiently suppress perception or
interfere with task performance.

The aim of this thesis was to develop physical understanding of mag-
netic stimulation and to build models that could provide new insights for
utili sing the technique. For this purpose, two principal issues had to be
addressed: 1) macroscopic electromagnetic fields in the tissue, for which
models are developed in Publications I−III , and 2) understanding of the
neuronal responses, considered in Publications IV and V. Then, the mod-
els developed were used as a basis for engineering modifications that
would increase the utilit y of TMS, the emphasis being on the optimisation
of the stimulating coils (Publication VI) and on the use of multiple coils in
a whole-scalp array (Publication VII). Publication VIII presents the con-
current use of TMS and high-resolution EEG, showing that the combina-
tion is effective for mapping the functional connections in the brain.

The models and procedures were developed in parallel with the design
and construction of TMS instrumentation for computer-assisted stimula-
tion.
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2  B a s i c  p r i n c i p l e s  a n d  h i s t o r y

2 .1 B asi c  p r i nc i p l es
Neurones can be excited by externally applied time-varying electromag-
netic fields. In TMS, excitation is achieved by driving intense pulses of
current I(t) through a coil l ocated above the head. The source of activation
is the electric field E induced in the tissue, obtained from Faraday’s law:

∇ × E = − 
∂B
∂t

 , (1)

where B is the magnetic field produced by the coil , given by the Biot−
Savart law:

B(r, t) = 
µ0

4π I(t)  
�

  ⌡
⌠

C
 dl(r′) × ( r − r′)

| r − r′|3   . (2)

The integration is performed with the vector dl along the coil windings C
and µ0 = 4π×10−7 H/m is the permeability of free space.

The pulses of current are generated with a circuit containing a dis-
charge capacitor connected with the coil i n series by a thyristor. With the
capacitor first charged to 2−3 kV, the gating of the thyristor into the con-
ducting state will cause the discharging of the capacitor through the coil .
The resulting current waveform is typically a damped sinusoidal pulse
that lasts about 300 µs and has a peak value of 5−10 kA. The electrical
principles have been outlined, e.g., by Jalinous [72,73].

Figure 1 summarises the chain of events in TMS. The induced E is
strongest near the coil and typically stimulates a cortical area of a few
centimetres in diameter. TMS pulses cause coherent firing of neurones in
the stimulated area as well as changed firing due to synaptic input. At mi-
croscopic level, E affects the neurones’ transmembrane voltage and
thereby the voltage-sensitive ion channels. Brain imaging tools can be
used to detect the associated electrical currents and changes in blood flow
of metabolism. In motor-cortex stimulation, peripheral effects can be ob-
served as muscle activity with surface electromyography (EMG). Moreo-
ver, there may be behavioural changes, for instance, impaired task per-
formance.
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FIGURE 1. Principles of TMS. Current I(t) in the coil generates a magnetic field B that
induces an electric field E. The lines of B go through the coil; the lines of E form closed
circles. The upper-right drawing ill ustrates schematically a lateral view of the precentral
gyrus in the right hemisphere. Two pyramidal axons are shown, together with a typical
orientation of the intracranial E. The electric field affects the transmembrane potential,
which may lead to local membrane depolarisation and firing of the neurone. Pyramidal
axons are likely stimulated near bends, as ill ustrated here, but also other mechanisms
exist (see, section 3.2) and other neurones may be stimulated. Macroscopic responses can
be detected with functional imaging tools (EEG, PET, fMRI, NIRS and SPECT = single
photon emission computed tomography), with surface EMG, or as behavioural changes.
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2 .2 H i st o r y  o f  n o n- i n vasi v e  b r ai n  st i mu l at i o n
Stimulation of the exposed human cerebral cortex with electrical cur-

rents was first described by Bartholow in 1874 [11]; the currents elicited
movements of the opposite side of the body. Electrical brain stimulation is
today possible non-invasively using scalp electrodes [96]. However, tran-
scranial electrical stimulation (TCES) is very painful and hence of limited
value.

The first experiments with magnetic stimulation were conducted by
d’Arsonval in 1896 [36]. He reported "phosphenes and vertigo, and in
some persons, syncope," when the subject's head was placed inside an in-
duction coil . Later, many scientists reported the phenomenon of magneto-
phosphenes, that is, visual sensations caused by the stimulation of the
retina due to changing magnetic fields [10,15,41,92,155,159].

Magnetic nerve stimulation was accomplished only several decades
later, first in the frog by Kolin et al. [79] in 1959 and then in the human
peripheral nerve by Bickford and Fremming [17] in 1965. The latter
authors used an oscill atory magnetic field that lasted 40 ms. The resulting
long-lasting activation interval made it impossible to record nerve or
muscle action potentials, and the work was not pursued further. In the
following years, the technique was investigated only occasionally
[68,87,118].

In 1982, Polson, Barker and Freeston [128] described a prototype mag-
netic stimulator for peripheral nerve stimulation. They used 2-ms-duration
pulses and recorded, for the first time, motor-evoked potentials (MEPs)
obtained by median nerve magnetic stimulation. In present-day devices,
the pulse duration is typically shorter.

In 1985, the Sheff ield group achieved successful transcranial magnetic
stimulation [9] and made the first clinical examinations [6]. TMS proved
valuable for probing the motor pathways: in healthy subjects, stimulation
over the motor cortex causes twitches in hand muscles in about 25 ms,
while many neurological conditions manifest slower conduction. Another
important characteristic of TMS is that it is painless, the subject usually
feeling only a not uncomfortable sensation of scalp being pinched. The
encouraging results led into commercialisation of TMS by Novametrix
Ltd. (predecessor of Magstim Company).
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Since 1985, magnetic stimulator technology has remained mostly un-
changed. Whereas early research used circular coils, today devices are
usually equipped also with an 8-shaped, or figure-of-eight coil proposed
by Ueno [157]. The 8-shaped coil i nduces a more concentrated electric
field than the circular coil , resulting in better control of the spatial extent
of the excitation. Another important development is repetiti ve TMS
(rTMS) capable of delivering trains of stimuli at 1−50 Hz. rTMS was first
produced by Cadwell Laboratories in 1988 and is today one of the most
quickly growing areas of TMS research.

The reader may get a detailed overview of the history and principles of
magnetic stimulation, for instance, from Refs. [5,49].

3  M o d e l l i n g  o f  m a g n e t i c  s t i m u l a t i o n

Models of magnetic stimulation are of great importance in the investi-
gation of the locus, extent and mechanisms of stimulation, in the inter-
pretation of experiments and in the design of effective instrumentation.
Modelli ng can be divided into two important separate parts: 1) the com-
putation of the macroscopic electromagnetic fields due to current in the
coil , and 2) the response of neurones as a result of electrical charges that
the macroscopic field builds up on their membranes.

This section also outlines experimental results about the locus of acti-
vation and about the dominant cellular mechanisms.

3 .1 T he  i n d uc ed  el e ct r i c  f i el d
Generally, the shape of the electric field induced in the tissue depends

on 1) the shape of the induction coil , 2) the location and orientation of the
coil with respect to the tissue, and 3) the electrical conductivity structure
of the tissue.

The total electric field in the tissue is the sum of primary and secon-
dary electric fields, the primary field E1 being induced by the changing
magnetic field B(t) from the coil , as stated by Eqs. 1 and 2. In conductors,
E1 causes a flow of current J = σ E1, σ being the conductivity. Any con-
ductivity changes along the path of the current cause nonuniformity of
electric charges, giving rise to an electrostatic potential V, the negative
gradient of which is the secondary field E2 = –∇V. Expressing B in terms
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of the vector potential A, i.e., B = ∇×A, the total E is [70]:

E = E1 + E2 = − 
∂A
∂t

 −− ∇V . (3)

The potential V obeys Laplace’s equation, ∇2
V = 0. Equation 3 has been

solved for the unbounded space [54] and for simple conductor shapes
such as the semi-infinite space [42], spheres [43], and infinite-length cyl-
inders [44,45]. Other shapes and inhomogeneities have been modelled
numerically [23,37,106,139,149,157].

3.1 .1 The  rel at i onshi p  between  TM S and  M EG
TMS is the converse of MEG, which uses a number of sensor coils to

measure the magnetic field generated by electrical currents associated
with neural activation. Because of the converse relationship, several re-
sults obtained in connection with MEG have relevance to TMS, and vice
versa. The E induced in the brain by TMS can be obtained using the same
formulas that in MEG give the sensor coil signal due to known intracra-
nial currents [Publications I−III ]. The theoretical li nk is constituted by the
reciprocity theorem [29,61,80]:

⌡
⌠

V
  JP(r) ·E(r) dv  = − 

dI(t)
dt  

⌡
⌠

C
 BJ(r′) ·da(r′) , (4)

where BJ is the external magnetic field at r′ produced by a primary current
distribution JP inside the volume conductor V approximating the head.
Vector da is a vector normal to an arbitrary surface spanned by the wind-
ings of the induction coil C and the current in the coil i s I(t). Both calcu-
lations are to be conducted for the same geometry. The reciprocity holds
for linear and inhomogeneous space and for anisotropic space with sym-
metric permittivity and permeabilit y tensors [80]. Moreover, it is required
that I(t) be of low frequency, i.e., quasi-static. These conditions can be
considered to exist in magnetic stimulation.

On the other hand, the flux Φ through an MEG sensor coil due to an
intracranial current JP can be written in terms of a sensitivity function L,
called lead field for the coil [60]:

Φ = 
⌡
⌠

C
 BJ·da = 

⌡
⌠

V
  L ·JPdv . (5)
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From Eqs. 4 and 5, the solution for E in TMS is obtained by assuming
that the MEG coil i s used for stimulation instead of f lux measurement.
Driving the coil with current I(t), the induced field is:

E(r) = − 
dI(t)
dt  L(r) . (6)

The lead field at r can be computed by calculating the flux coupled
into the coil by the magnetic field due to an arbitrary current dipole (a
short element of current) immersed in the tissue at r [60]. This is the for-
ward problem, which has been solved explicitl y for simple conductor
shapes such as spheres [65,148] and spheroids [35].

Primary currents perpendicular to the lead field do not couple flux into
the sensor coil , which prevents localisation of such sources in the brain
with MEG. The converse is true in TMS: no field is induced in directions
perpendicular to the lead field.

3.1 .2 Fi el d  shapi ng  w i t h  mul t i pl e  coi l s
With multiple coils, i.e., channels, the TMS excitation field can be

electronically shaped by changing currents in the coils individually (see,
chapter 5.2). Field shaping aims at finding the optimal currents in n coils
to realise a field that is as close as possible to a desired field configuration
P. Publication VII formulates the TMS field-shaping problem as the
minimisation of the norm ∫ ( E − P )2dv between P and the actual field E.
The resulting optimal coil currents are then obtained from the column
vector J = ( dI1 / dt, ..., dIn / dt )T [Publication VII]:

J = − L†P , (7)

where P = ( ∫ P ·L1dv, ..., ∫ P ·Ln dv )T and L is a square matrix with ele-
ments Li j = ∫ Li ·Lj  dv ( i , j = 1, � , n ). The pseudoinverse of L is L†. The
resulting E is then

E = − ∑
i = 1

n

(L†P )i Li , (8)

where (L†P )i is the ith element of vector L†P. Eq. 8 is analogous with the
MEG minimum-norm estimate (MNE) of the intracranial current density
that best explains the measured data [60]. Eq. 8 holds also for TCES, pro-
vided that electrical lead fields are used and the coils’ rates of change of
current in vector J are replaced by electrode currents.
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The field-shaping problem is not generally exactly solvable, there be-
ing infinitely many P that cannot be realized. Therefore, different target
field configurations P can lead to the same solution. MNE is one possible
solution, but not necessarily the best. These conclusions do not change
with the number of coils. When the goal is to minimise the extent of the
stimulating field, search algorithms give better results [Publication VII],
since the mathematical formulation of the MNE procedure implies a ten-
dency to diffuse solution fields. The great advantage of MNE-based field
shaping is that once L† is computed for the given coil array, the optimal
coil currents for any P are obtained by simple matrix multiplication.

3.1 .3 No  3D f ocusi ng
Many interesting studies would emerge if it were possible to focus the

induced E in depth, that is, to obtain a field that is strong in deep brain
structures and weak in the structures above. Unfortunately, focusing in
depth is not possible with any combination of TMS and/or TCES. Heller
and van Hulsteyn [61] have proved mathematically that at quasi-static
frequencies the field is always stronger on the boundary than in the inte-
rior of any volume-conductor compartment with constant conductivity.
For spherically symmetric conductors, the maximum field within the con-
ductor is always on the outer surface. Coil designs capable of 3D TMS
focusing are occasionally suggested, but doomed to failure.

In non-spherical conductors with varying conductivity, it is possible
that E is maximal in a deep low-conductivity region. Since such regions
can pin the locus of the field maximum, smooth changing of the site of
neuronal excitation is not possible. This means that focusing in depth can
not be realised.

3.1 .4 Spher i cal  head  model
In MEG, a widely used approximation of the conductivity geometry of

the head is the spherical model. It has been shown that the spherical
model is appropriate for superficial parts of the head [59]. Since TMS can
not effectively reach deep structures and can not be focused in depth, it
follows from the reciprocity that the spherical model must be applicable
also to TMS. The spherical model must be used so that the sphere fits the
local radius of curvature of the inner surface of the skull near the area of
interest. The mathematical formulation is found in Refs. [61,65,148].
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Publication III examined the effects of spherical boundaries. Fig. 2 dis-
plays the magnitude of the induced E in the unbounded and sphere models
for circular and 8-shaped TMS coils. The spherical model is seen to de-
crease the strength of E, but the distribution of the field is similar in the
two models. When the circular coil i s tilted erect above the head (Fig. 2b,
coil axis tangential to the sphere surface), the electric field induced in the
sphere is much smaller than in the unbounded model. In the absence of
the boundary the maximum field value is the same for the tangential and
erect coils (Figs. 2a and 2b, top). The boundary effects disappear for any
coil whose axis passes through the sphere centre [29,61]. This is the main
reason why motor responses are more easily elicited with a circular coil
flat on the vertex than with other orientations.

FIGURE 2. Contour maps of the strength of E on an 8-cm-radius spherical surface
for the unbounded (top) and spherical medium (bottom). (a) Tangential, laterally
shifted circular coil; (b) erect circular coil; and (c) 8-shaped coil . Projections of the
coils are depicted with thick continuous lines. The diameter of the coils was 40 mm
and dI/dt = 108 A/s. The coils had 10 turns. The peak value of E is given below
each plot. The depth of the spherical surface below the coil was 15 mm.
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The Ampère−Laplace law, which is the continuous counterpart of the
Biot−Savart law in Eq. 2, implies that in all axially symmetric conductor
shapes the induced E along any rotational axis vanishes on that axis
[Publication I]. This means that E is never oriented towards the centre of
the sphere.

3.1 .5 M odel s  of  t he  l im bs  and  the  spi ne
Cylinder-shaped volume conductors can be used to model limbs. Pub-

lications I and II derived analytical solutions to E and its gradient ∂Ex/∂x
in a prolate spheroid as well as in unbounded and semi-infinite conduc-
tors. An analytical solution is available also in the infinite-length circular
cylinder [44,45]. Finite-length cylinders have been analysed numerically
[37,115,139].

FIGURE 3. The induced ∂Ex/∂x in unbounded (top) and prolate spheroidal
(bottom) models due to circular and 8-shaped coils. The field plane was 10 mm
below the coil plane. Contour step is 0.5 kV/m2. The zero contours are dotted and
the negative contours dashed. Projections of the coils are depicted with thick
continuous arcs. Both wings of the 8-shaped coil comprised 5 turns of 50 mm in
radius; the edge-tangential coil had 10 turns. The spheroid’s radius was 40 mm
and its length 1 m and dI/dt = 108 A/s. The inserts show the geometry, coil ori-
entations and field plane (dark rectangle). Adapted from Publication II.

In peripheral stimulation, an important activating feature of E is
thought to be its gradient along the axon, ∂Ex/∂x (chapter 3.2). Fig. 3 dis-
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plays the ∂Ex/∂x induced in the spheroid and unbounded medium for a
circular and an 8-shaped coil . The pattern of ∂Ex/∂x is similar in the mod-
els, but its strength is less in the spheroid. It was calculated in Publication
II that with typically used coil orientations the field in a cylinder-shaped
conductor is 70–80% of the field in the unbounded volume. This agrees
with simulations made by others [45] as well as with in vivo measure-
ments [93]. The usefulness of the simpli fied cylinder-shaped models is
limited because the computation is time-demanding and the inaccuracy of
the unbounded model is small when estimating the shape of E.

As to the modelli ng of the spine, finite element method (FEM) model-
ling has revealed that bones and inhomogeneities in the spinal neurogeo-
metry affect greatly the induced E [106]. The well -conducting cerebrospi-
nal fluid reduces notably the field in the less conducting spinal cord
[91,150]. This explains the inadequacy of stimulating the spinal cord
magnetically.

3.1 .6 Real i st i c  model s
At least in principle, the shape of the conductivity boundaries of the

head, spine and limbs can be obtained from MR images. This information
can be used to reconstruct realistic models of the conductivity geometry,
although MRI does not give the value of the conductivity or information
about possible conductance anisotropy.

A few studies have investigated using FEM modelli ng how ani-
sotropies and inhomogeneities affect the TMS-induced electric field [23,
37,106,162]. The main result has been that the induced E is maximal in
the regions of low conductivity. The preferential direction of E in ani-
sotropies has been found to be along the direction of lower conductivity.
The peak value of E in heterogeneous tissue models was 50−100% of the
value in the homogeneous unbounded model. These results indicate that
regions of low conductivity can channel the direction of E in the brain or
spine and pin the location of its maximum value.

To conclude, simpli fied models such as the sphere are satisfactory for
explaining gross features of the induced electric field, especially if the
area of interest is superficial and the model geometry agrees reasonably
well with the local curvature of the body.
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3 .2 E l e ct r o p hy si o l o gy  o f  ex c i t at i o n
The electric field E sets free charges into coherent motion both in the

intra- and extracellular spaces. Basically, any part of the cell membrane
interrupting this motion of the charges becomes depolarised or hyperpo-
larised. In practice, however, the basic cellular mechanisms are unclear,
although the macroscopic electromagnetic fields are well understood.
Modelli ng of TMS at cellular level is very qualitative because of complex
cell shapes and, e.g., the effects of background neuronal activity.

This chapter overviews the present status of modelli ng the cellular re-
sponse to magnetic stimulation.

3.2 .1 Cabl e  model
The subthreshold behaviour of the transmembrane potential V, meas-

ured from the resting potential, is described by the cable equation [12,95,
133,153]:

λ2 
∂2V
∂x2 − τ 

∂V
∂t

 – V = f(x,t) , (9)

where λ and τ are the fibre’s length and time constants, respectively; the
coordinate x measures the distance along the axon. The activating func-
tion, f, describes the sources of excitation; its computation requires infor-
mation about the coil and its location as well as about the tissue sur-
rounding the fibre. From Eq. 9, the axon is depolarised where f is negative
and hyperpolarised where it is positive.

Equation 9 holds as such for bent axons and in its compartmental form
also for myelinated and finite-length axons [111]. The axon dynamics,
described by the Hodgkin−Huxley model, can be included in the cable
equation [12,138], but the mathematical treatment becomes non-linear
and complicated. Provided that the electric field inside the axon can be
assumed to be axial, the resulting activating function f in magnetic stimu-
lation is [138]:

f = λ2 ∂Ex/∂x , (10)

where ∂Ex/∂x is the gradient of the component of E along the axon; f is
also known as Rattay’s activating function [131]. Fig. 4a ill ustrates that
no activation occurs with a uniform field along the axon, whereas Figs. 4b
and 4c depict the gradient activation mechanism for straight and bent ax-
ons.
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Publications II and IV provide evidence that Eq. 10 is incomplete,
since also the field component transverse to the axon, ET, affects V. The
potential difference across the axon is of the order of 2RET, where R is the
axon radius [81,137]. Thus, Eq. 10 must be changed accordingly, giving
the modified activating function:

f = λ2 ∂Ex/∂x − 2RET . (11)

The ratio of the transverse and gradient field mechanisms is independent
of the axon size. A schematic ill ustration of the axon membrane polarisa-
tion in a transverse field is shown in Fig 4d.

FIGURE 4. A schematic ill ustration of the activation mechanisms. The axon mem-
brane polarisation is sketched for different externally applied electric field pat-
terns (arrows): (a) uniform E along the axon, no change from the resting state; (b)
gradient activation, with ∂Ex/∂x ≠ 0; (c) bent axon in uniform E, depicting only
the gradient activation; (d) transverse activation, with E locally across the axon;
(e) axon terminating in uniform E. D and H denote depolarisation and hyperpo-
larisation, respectively. Although not ill ustrated, it is assumed that E is equal out-
side and inside the cells.

3.2 .2 Geomet r i cal  f actors  af f ect i ng  the  ex ci t abi l i t y
Neuronal excitabilit y changes because of various geometrical factors,

e.g., axon terminals, bending, branching, nonuniformity and tapering and
volume-conductor nonuniformities [137]. Especially, bends and termina-
tions are thought to play a key role in TMS [90]. High effective ∂Ex/∂x
values are achieved at bends even in homogeneous E [1,63] (see, Fig. 4c).
In thin curved axons, the relative contribution from the transverse field ET

(Eq. 11) is small as compared to ∂Ex/∂x.
Computer simulations [111] and in vitro experiments [110] suggest
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that if the coil i s placed close to the end of axon, or the axon is short (< 6–
8 cm), the axon membrane is preferentially depolarised at the end by the
field component parallel to the axon. This is ill ustrated in Fig. 4e for an
axon terminating in a uniform field.

The cable equation (Eq. 9) applies for isolated axons, but in fibre bun-
dles the nearby axons may change the extracellular potential significantly.
Both the excitabilit y and the locus of activation vary with the position of
the fibre in the bundle [108,109].

3.2 .3 St rength−durat i on  rel at i onshi p
The cell membrane behaves as a leaky integrator with a time constant

of about 150 µs, and hence the shorter the pulse, the less energy is re-
quired for excitation [8,111,119]. On the other hand, the minimum pulse
intensity is achieved when the effective pulse duration is greater than the
chronaxie time of the neurone. Fig. 5 depicts the energy−duration and
strength−duration curves for TMS while holding the coil i nductance and
circuit resistance constant and changing the capacitance. The eff iciency is
at maximum with brief intense pulses, but this solution requires a low ca-
pacitance and a high capacitor voltage. The maximal useful voltage is
limited by the availability and price of power electronics components.
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FIGURE. 5. Calculated normalised threshold capacitor energy and peak value of E
as function of zero-to-peak rise time. Values are normalised to rise time of 100
µs. Circuit inductance L = 20 µH and resistance R = 50 mΩ. The capacitance C
ranged from 20 to 600 µF. Current shape was biphasic and membrane time con-
stant τ = 150 µs. Although not shown, the energy−duration curve levels off at a
constant value for very short pulses.
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3 .3 L ocus  o f  ex c i t at i o n
The locus and mechanisms of activation are of great consequence when

looking for the optimal shape of E to activate specific cortical patches or
when interpreting measurements. This section presents some relevant ex-
perimental results separately for distal, spinal root and brain stimulation.

3.3 .1 D i stal  nerve  st imul at i on
Recalli ng the theory presented in chapter 3.2.1, there are two expected

mechanisms of activation in distal nerve stimulation: the gradient and
transverse field mechanisms. Experimentally, the site of activation has
been argued to be at the negative peak of ∂Ex/∂x [13,110,111,115,132,
133,138], but some reports display strong activation with coil orientations
that induce no ∂Ex/∂x along the nerve [34,57,78,89,117]. Publication IV
was aimed at addressing this discrepancy. For this purpose, the locus of
activation, determined from the latency of surface EMG responses, was
mapped with different coil placements. The modified activating function
(Eq. 11), which includes the contribution from both gradient and trans-
verse fields, was found to predict well the locus of activation. Thus, these
results suggest that there is no discrepancy, but that two separate mecha-
nisms are responsible for the membrane depolarisation.

Bones change notably the induced field distribution as well as the elic-
ited neuronal activation. For instance, Maccabee et al. [91] stimulated
sheep phrenic nerve in a saline container. Insertion of solid plastic cylin-
ders near the nerve caused preferential activation from points of the nerve
near the plastic. Something similar has been observed in facial nerve
stimulation, where the greatest excitabilit y was at the exit from the tempo-
ral bone [135].

3.3 .2 St imul at i on  of  t he  spi ne  and  spi nal  roots
The present magnetic stimulators are not powerful enough to stimulate

directly the descending spinal tracts [26,27], since the spinal bones at-
tenuate greatly the induced E (chapter 3.1.3). On the other hand, spinal
roots can be stimulated magnetically, but the response latency does not
change smoothly with coil position [26]. This is thought to be because the
roots are bent near the neural foramen, which serves as a high-excitabilit y
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point. Another source of changed excitabilit y is the complicated bone ge-
ometry.

3.3 .3 Brai n  st imul at i on
Characteristic dimensions of the shapes of cortical neurones are small

compared with the distances over which the induced electric field varies.
Hence, cortical neurones are likely to be activated at terminations (Fig.
4e) or at axonal bends (Fig. 4c), where the effective gradient of E along
the axon can be great. Consequently, TMS activation most probably takes
place at the maximum of the externally applied E. The contribution of the
transverse activation mechanism is small since the axons are thin. On the
other hand, E can be maximal in low-conductivity regions, which could
help to determine the site of stimulation, but also complicates the study of
the activating mechanisms.

Comparative results from localisation of the somatosensory cortex with
TMS and other methods support that the activation occurs at the maxi-
mum of E. Recently, Krings et al. [82,83] compared TMS maps with di-
rect cortical stimulation results, finding agreement to within less than 5−
10 mm. The site of maximal E in TMS has been found to agree with the
localisation results from MEG [103,104,146,Publication V] and PET
[167] to within 10−20 mm. Similarly, fMRI, PET and TMS have localised
the frontal eye field to the precentral gyrus [22,127]. Despite the agree-
ment between results from TMS and functional imaging, different neu-
ronal structures may be involved.

Not only the strength, but also the direction of the induced E in the
brain affects the locus and strength of activation. The motor activation is
strongest when the cortical E in the contralateral precentral gyrus is in the
posterior-to-anterior direction. This possibly means that TMS of the pri-
mary motor cortex preferentially activates elements in the posterior bank
of the precentral sulcus that are parallel to the induced field [121], or at
bends [90]. This is different from MEG, which reflects postsynaptic ac-
tivity [60]. Hence, although there is a reciprocity between the macroscopic
field theory for MEG and TMS, different cellular-level phenomena are
involved.

TMS is thought to affect neurones in the cortex, rather than deep parts
of the corticospinal tract [101]. Corticospinal neurones are presumably
activated transsynaptically at low TMS intensities, since the response la-
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tency to TMS is often 2 ms longer than to TCES [38,144], which stimu-
lates the corticospinal neurones directly. On the other hand, intense TMS
pulses often yield latencies similar to TCES, suggesting direct activation
of the corticospinal axons.

At cellular level, TMS is thought to excite axons rather than the cell
body or other parts of the neurones [88] since the measured chronaxie [8]
and intervals for facilit ation [145] in peripheral motor axonal and brain
excitation are similar.

The mechanisms of repetiti ve TMS (rTMS) have not been examined so
far. The electromagnetic theory and the cable theory for single-pulse TMS
remain unchanged for rTMS. However, it is possible that at high repeti-
tion rates the cellular-level effects of rTMS differ from those of single-
pulse TMS.

4  I n s t r u m e n t a t i o n

4 .1 A v ai l ab l e  t y pes  o f  st i mu l at o r s  an d  co i l s
There are two stimulator types: single-pulse devices and repetiti ve

TMS (rTMS) devices that generate trains of stimuli at 1−60 Hz. Commer-
cial equipment are provided by three main manufacturers: Cadwell Labo-
ratories, Inc. (Kennewick, USA), Magstim Company, Ltd. (Whitland,
UK) and Medtronic Dantec NeuroMuscular (Skovlunde, Denmark).

Dantec and Magstim have add-on modules to their single-pulse devices
that can be used to drive one coil with two to four pulses separated by 1
ms to 1 s. These devices are called paired-pulse or quadruple-pulse
stimulators. Two stimulator units can be used together to drive separate
coils to stimulate different regions at the same time or in quick succes-
sion. This TMS mode is called double-pulse TMS.

The rTMS devices operate at 10−60 Hz at 40–100% of the maximum
intensity of single pulses. The duration of sustained operation is limited
by coil heating to 100–1,000 pulses at maximum power. With proper coil
cooling, the duration of the stimulus train can be made unlimited. Cadwell
makes coils with continuous water cooling, whereas Magstim makes air-
cooled coils.

The current pulse properties vary among manufacturers. Three pulse
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waveforms are available: i) monophasic, i.e., rapid rise from zero to peak
and slower decrease to zero; ii) biphasic, i.e., one damped sine pulse; and
iii ) multiple-cycle damped sine pulse. The Dantec MagPro model is
equipped with a switch that allows selection between monophasic and
biphasic pulse shapes. Most of the Magstim devices use a monophasic
pulse. Cadwell devices generate a biphasic pulse, although earlier
MES-10 units had a multiple-cycle sine pulse. Rapid charging of the ca-
pacitors requires that the rTMS devices use biphasic currents. The initial
direction of the current in the coil can be switched in some Dantec stimu-
lators.

The current pulse duration is typically 200−300 µs for biphasic and
about 600 µs for monophasic pulses. The peak current generated by the
commercial devices is 2−8 kA. Operating voltage of TMS devices is typi-
cally 2−3 kV and the power consumption 2–3 kW at maximum stimulus
intensity.

The standard stimulating coils are either circular or 8-shaped. Some
Cadwell coils are drop-shaped with one rectangular edge (Focalpoint™);
the benefit from the shape is questionable. Magstim sells 8-shaped cone
coils with angled wings that fit the head and Dantec has a similar circular
cone coil . The cone coils are somewhat more effective than planar ones,
but at the cost of focality. The diameter of the coils ranges from 50 to 150
mm. The coils are usually wound of 10–30 concentric turns of rectangular
copper wire (gauge, e.g., 1×5 mm2), resulting in an inductance of 15−30
µH.

Prototype four-leaf coils have been presented with four coplanar wings
[140] suitable for peripheral stimulation. Another new idea is the so-
called half-toroid (“slinky”) coil , which is wound with the turns in differ-
ent angles while maintaining the tangency along one edge [134,171].

The TMS equipment developed and used at the BioMag Laboratory
has two independent stimulator channels that are controlled by a com-
puter. The maximum stimulus repetition rate is 1 Hz at full i ntensity and
the system operates at 3 kV. The coils are 8-shaped and water-cooled and
their outer diameter ranges from 30 to 50 mm. The current pulse shape is
biphasic with rise time ranging between 70 and 100 µs depending on the
coil.
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4 .2 A b o ut  o pt i m i sat i o n  of  t he  st i mu l at o r
Publication VI addresses the optimisation of the TMS coil and the se-

lection of the power electronics components. The optimal design depends
on the application and how different qualiti es are weighted. Optimisation
should hence begin by selecting the quality criteria and the weighting
rules for computing the costs. The key task is to identify the members of
three variable categories:

• constraints, e.g., safety regulations
• quantity/quantities to be minimised, e.g., fabrication costs
• adjustable parameters, e.g., coil dimensions.

The most important physical quantities that determine the quality of
magnetic stimulators are listed in Table 1; Publication VI gives the for-
mulas to calculate their values. Unfortunately, the quantities are compet-
ing, e.g., focal coils have a lower efficacy than otherwise similar coils.

As a rule, the coil i s the main item to be optimised. Publication VI fo-
cused on minimising the stimulator’s power consumption by changing the
coil ’s winding structure and wire gauge. The procedure could improve
especially the eff icacy of small coils by winding them into solenoids in-
stead of f lat spirals. This procedure has been applied to design small wa-
ter-cooled coils for the TMS equipment at the BioMag Laboratory. In the
literature, the results of coil optimisation have remained of littl e use since

TABLE 1.
Definition and importance of main figures of merit for the optimisation and the

evaluation of magnetic stimulators.

 Figure of merit  Quantity to be minimised  Importance

 Stimulator’s efficacy  Input power  Stimulus repetition rate

 Coil’s efficacy  Peak magnetic energy  Price, weight and size of

 components

 Coil heating  Temperature rise / pulse  Duration of pulse trains and

 of sustained operation

 Focality  Area bound by the half-

 maximum of E
 Spatial resolution
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the definition of the “optimum” has been omitted [86,105,116]. In one
study, a mathematical method was used to maximise the focality by
changing the coil shape [141]. The resulting most focal coil shape was
found to be roughly 8-shaped.

4 .3 C o i l  co nst r uc t i o n  an d  f ab r i c at i o n
Coil design must always be taken into account when constructing TMS

equipment. Effective design is hindered by the high amount of energy that
must be driven through the coil i n a very brief time. In brain stimulation
this energy is about 500 J, which would suff ice to li ft a weight of 1 kg to a
height of 50 m.

The intense submilli second current pulses cause strong expanding and
compressing forces in the coil . The forces are even tens of kilonewtons
and thus the cross-sectional wire size must be large and the potting mate-
rial resistant. The forces are proportional to the peak energy in the coil .
Optimally, the coils are wound so that the forces are compressing in the
direction where the coil touches the head.

In rTMS, an additional trouble is that tens of W/Hz of power is dissi-
pated in the coil . The coil being usually placed against the head, according
to the safety standards its surface temperature must not exceed 41ºC. One
should also avoid high wire temperatures (100−120ºC), since these dete-
riorate insulation, decreasing safety and the coil ’s li fe time. Built -in tem-
perature sensors and effective cooling can be used to guard against exces-
sive temperatures.

Problems with power consumption and coil heating can be alleviated
by reducing the coil ’s resistance, determined by the wire gauge and coil
geometry [Publication VI]. When the cross-sectional dimensions of the
wire exceed 1 to 2 mm, the skin and proximity effects change the current
distribution in the wire [154], and may increase the direct current resis-
tance significantly. Striped, foil or litz wire can be used to reduce the skin
and proximity effects. The skin effect causes the current to flow mainly on
the surface of thick wire; hence, tubular wire can be used without affect-
ing the resistance. Liquid coolant can then flow inside the wire, as it is
done in the BioMag Laboratory’s TMS coils.

The voltage over the coil ’s connectors may be 3 kV and depending on
how the coil i s wound the voltage across adjacent turns can be from 200
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to 1,000 V. The wire insulation (varnish, film, mylar paper) must have the
necessary dielectric strength and resist chemical solvents of the potting
material (epoxy resin, polyurethane foam). The electrical and liquid cool-
ant contacts must be tightly fastened and well insulated.

The intense current gives rise to a clicking sound from the coil , cables
and capacitor, exceeding 100 dB near the coil . To reduce the noise from
the coil , researchers at the BioMag Laboratory are investigating the possi-
bilit y to encapsulate the coil i n vacuum or place a vacuum shield between
the coil and the subject [67].

4 .4 F oc al i t y  o f  st i mu l at i o n
The capabilit y to concentrate, or focus, the induced E to small cortical

patches deserves special attention since it limit s the spatial resolution of
TMS. Focusing is possible in two dimensions only [61] (see chapter
3.1.3).

A convenient measure of focality in TMS is the area of the spherical
surface bound by the half-maximum of E, li sted in Table 2 for some pres-
ently available commercial coils. Table 2 lists also the peak E values ob-
tained while driving the coils with dI/dt = 108 A/s; in practice, the dI/dt
values vary among manufacturers. For comparison, the same values are
given for a hexagonal array of 19 circular coils, partially realised at the
BioMag Laboratory (chapter 5.2). The focality of the multichannel array is
superior due to the use of many coils that are smaller than normal
[Publication VII].

The 8-shaped coil i s much more focal than the circular coil . In practice,
however, the circular coil i s sometimes preferred over the 8-shaped coil
because motor responses can be promptly evoked without need for precise
coil positioning. The 8-shaped coil i s chosen for better control of excita-
tion. The focality and the strength of stimulation depend on the coil size
and on the distance from the coil , both degrading quickly with increasing
depth. For very small radius the focality levels off at a constant value.
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5  N e w  a d v a n c e d  t e c h n i q u e s

5 .1 C omp ut er - as si st ed  T M S
In currently available commercial TMS systems the coil i s positioned

manually above the head, the location of the coil being determined on the
basis of skull l andmarks. Although TMS is used enthusiastically, users
strongly criti cise the diff iculties of focusing the activation in desired tar-
gets. Because of the large coils and manual placement, the reproducibilit y
and repeatability are often poor.

TABLE 2.
Characteristics of some coils. Circular coils were placed edge-tangentially and 8-

shaped coils tangential to the scalp. The array coils pointed to the centre of the head.
The computation was done on a 80-mm-radius spherical surface 20 mm below the

coils. The spherical model was used and dI / dt = 108 A/s.

Manufacturer ID / OD
[mm]

N
[turns]

Focality
[cm2]

Peak E
[V/m]

Circular coils

 Cadwell 
a

72 / 85 14 96 170

 Dantec 
b

74 / 94 11 103 130

 Magstim (type 9762) 
c

40 / 94 15 96 130

8-shaped coils

 Cadwell 
a

42 / 54 14 (×2) 18 210

 Dantec (type B55) 
b

34 / 54 11 (×2) 18 150

 Magstim (type 9790) 
c

56 / 87 9 (×2) 33 180

BioMag 19-coil arrays

 BioMag 19 array OD 30 30 7 55 d

 BioMag 19 array OD 40 30 12 105 d

ID = inner diameter; OD = outer diameter.
a 

Approximate geometry from [143]; 
b 

from [115]; and 
c 

from [73].
d Value when the sum of the absolute dI/dt values in all coils is 108 A/s.
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Computer-assisted stereotactic TMS is under development at the
HUCH BioMag Laboratory. The essence of computer-assisted TMS is an
intelli gent user-interface, by aid of which the operator may plan, perform,
monitor and document the experiments in a controlled and reproducible
manner. An important part of the software is the calculation of the electric
field induced in the brain. Stereotactic stimulus targeting is made possible
by 3D localisation of the coil/ coils with respect to the head and by dis-
playing the MR images on the computer screen. The BioMag system is
realised using a motorised coil holder and frameless stereotaxy based on a
3D electromagnetic pointer. The concept of computer-assisted TMS is
illustrated in Fig. 6.

FIGURE 6. Computer-assisted TMS. System comprises gantry, patient chair, com-
puter, control and power electronics circuits and power source. One or a few
coils may be used, or an array of many coils.

Computer-assisted TMS enables new useful concepts for brain re-
search. Stereotactic targeting allows stimulation of a given location in the
cortex or a given anatomical structure. For instance, the functional organi-
sation of the brain can be studied with a greatly improved spatio-temporal
resolution. The stimulus may be modified both spatially and temporally
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during tasks in order to identify the cortical areas that are necessary for the
task and the order in which they process the data.

In computer-assisted TMS, information from brain imaging techniques
can be used in planning the stimulation parameters as well as in the dis-
play and interpretation of the results. In particular, digitisation of the coil
position on the MRI provides anatomical information of the stimulated
location [83,102], which enables stereotactic TMS, that is, precise stimu-
lation of selected anatomical locations. Stereotaxy allows selection of the
stimulation intensity level on the basis of calculating the actually induced
electric field in the target area instead of defining it as a percentage of the
maximum stimulator output or motor threshold. Frameless stereotaxy
system and stimulus targeting software have been realised in the BioMag
Laboratory.

The merging of TMS with functional neuroimaging tools provides ad-
ditional benefits. The concurrent use of TMS with PET, fMRI and EEG
has already been demonstrated for the study of connectivity maps and the
reactivity of the stimulated cortex [18,127,Publication VIII ]. Likewise,
MEG can give the location of specific cortical functional units in advance.

5 .2 M u l t i chan nel  T M S
Multichannel TMS [64], theoretically examined in Publication VII, re-

fers to the use of multiple independently controlled stimulating coils. It
has a number of advantages over stimulation with one coil , offering an
alternative solution for stereotactic TMS. One can stimulate multiple loci
in one shot, or with short delay between the pulses. The operator can also
alleviate the nuisance caused by the activation of undesired structures by
suppressing the field at selected locations. Moreover, it is possible to
quickly scan brain regions since the coils need not to be moved during
scanning. The use of multiple coils improves the mapping resolution since
the stimulating field can be made more concentrated. The shaping of the
field can be effectively solved using the MNE procedure described in
Publication VII and chapter 3.1.2.

Publication VII analysed the properties of multichannel TMS; Fig. 7
shows some of the results. Coil size is an important factor that determines
the focality and the power required to obtain a given stimulation intensity;
the number of coils is less important, yet significant. The focality depends
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on the location of the target point with respect to the coils, being the best
below points where the coils touch each other. Multichannel TMS can
clearly improve the focality; with the present commercial single-coil de-
vices the focality is 10−15 cm2, while levels of a few cm2 are attainable
with multiple small coils. The focality is improved at the cost of increased
power consumption.
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FIGURE 7. Left: Focality of cap-shaped array as function of number of coils n.
Coil diameter is between 15 and 40 mm. Right: Normalised power required to
induce a given peak value of E. Adapted from Publication VII.

Multichannel TMS can also be used to produce sham stimulation by
selecting the coil currents so that the electric field induced in the brain is
small , but the subjective sensations due to scalp stimulation and coil click
can be predicted to be similar to real TMS [147].

The main drawback of multichannel TMS is that it is much more ex-
pensive than computer-assisted stereotactic TMS with one coil . This is
because the power electronics design as well as the power source and me-
chanical construction are more complicated.

5 .3 T M S- compat i b l e  E EG
The brain’s electrical activity related with the TMS pulse can be de-

tected with EEG [2,32,84,97,151]. The EEG ampli fiers are, however,
prone to external disturbance and in the studies cited the recording of the
EEG to TMS has been possible only using 2 to 3 electrodes located so that
the disturbance from the TMS pulse is little.

Publication VIII presents a TMS-compatible EEG system. The BioMag
high-resolution EEG system allows free positioning of all it s 60 electrodes
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[66]. The EEG is artefact-free in just a few ms after the stimulus pulse;
problems with the artefacts are dealt with sample-and-hold circuits that
pin the ampli fier outputs at a constant level during the TMS pulse [158].
Scalp burns resulting from the eddy current in the electrodes can be
avoided using low-conductivity materials. The electrodes are optimally
small and have a cut that interrupts the path of the eddy current [142].

Concurrent use of TMS and EEG has three basic uses. 1) EEG can be
used to locate the neuronal activity elicited by TMS, and its spread to
other regions, so as to determine reactivity and connectivity patterns. 2)
One can study how the brain processes information from the periphery by
determining temporo-spatially the effects of TMS on evoked and event-
related potentials (EPs and ERPs). 3) EEG can be used when TMS is ap-
plied as a treatment to monitor for any abnormality, or to control on-line
the eff icacy of the treatment. Many more applications will become feasi-
ble with better understanding of the interaction of the TMS fields and the
neurones, and of the head as a volume conductor.

FIGURE 8. Contour maps of scalp potentials recorded with 60-channel EEG after
left motor cortex TMS. Activity is drawn at selected latencies between 9 and 29
ms post-stimulus time. The contour spacing is 0.4 µV; negative potentials are
shaded. The inter-stimulus interval was 2 s and 150 EEG responses to TMS at an
intensity slightly below motor threshold (90% MT) were averaged. In the draw-
ings, the head is seen from above, the nose pointing up.

Publication VIII displayed the distribution and spread of the TMS-
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evoked EEG activity when the parietal or occipital lobe was stimulated.
Figure 8 shows the scalp potential distribution elicited by TMS over the
left hand-motor area from one healthy subject. As in Publication VIII , the
early activity is dominantly near the stimulated regions. After that, also
the opposite hemisphere becomes activated, indicating transcallosal signal
transmission. At later time points, not shown in Fig. 8, interpretation of
the activation patterns becomes complicated since many cortical regions
are active simultaneously and there will be also evoked potentials due to
the activation of the scalp and of the auditory pathways.

6  S a f e t y

TMS has been used since 1985; today, thousands of stimulators are in
use. The present understanding is that single-pulse TMS is safe, if general
guidelines are respected. However, high-frequency rTMS may have unde-
sired effects (seizures, pain from muscle contraction, arm jerking, crying,
transient hemianopia). New guidelines for TMS and rTMS are needed
since in the last few years the number of pulses has risen from hundreds to
thousands in one examination [19].

6 .1 K n ow n  ad ver se  ef f e ct s
Some immediate side effects to TMS are known. Seizure induction is

the most serious of them. Single-pulse TMS has produced seizures in pa-
tients [28,47,62,75], but never in healthy subjects. In epileptic patients,
there is to date only one report of seizure definitely triggered by single-
pulse TMS [28]. Instead, rTMS at rates of several Hz has caused seizures
even in volunteers with no neurological problems or history of epilepsy
[24,99,123,165].

A frequent harmless, but uncomfortable, effect is a mild headache,
which is probably caused by the activation of scalp and neck muscles. The
headache may persist after the end of stimulation session and responds
well to mild analgesics.

TMS is accompanied by loud clicking sound from the coil that can ex-
ceed 100 dB near the coil [152]. Most sound energy is in the frequency
range 2–7 kHz. The noise may exceed criteria limits for sensorineural



31

hearing loss [31].
It is assumed that harmful effects of TMS are related to the induced

electric field, since the body tissue is transparent to low-frequency mag-
netic fields. Heating of the brain is of the order of 10−6 °C/pulse and un-
likely to cause deleterious effects [5]. Theoretical maximum power dissi-
pation from rTMS in the whole brain is about 3 mW/Hz [39]. Mild burns
from scalp electrodes [123] can be avoided using special-designed elec-
trodes [142].

Many tests, including blood pressure, pulse rate, balance, gait and se-
rum prolactin and cortisol levels [71,123,166], have revealed no statisti-
cally significant changes after TMS. The same is true for cognitive tests;
naturally, naming and verbal fluency tasks can be transiently disturbed by
TMS. Documented consistent changes include at least a lateralised effect
on immune functions (T-lymphocytes) [4] and changes in thyroid-
stimulating hormone levels after prefrontal stimulation [53].

Spontaneous EEG following TMS has been found to be normal. Izumi
et al. [69] reported slowing of the EEG at 150 ms post-TMS and other
changes lasting 400−600 ms, but these findings are not necessarily rele-
vant for the safety of TMS since similar changes are caused by sensory
stimuli . Generally, EEG is not a good test of safety since it is not sensitive
to mild or additive cellular dysfunction. However, monitoring of the EEG
during rTMS may be useful in order to stop the experiment if abnormali-
ties appear.

The few existing histopathological studies have not found any definite
TMS-related changes. In one study, rTMS (2,000 pulses at 20 Hz) was
performed in two patients who were assigned to temporal lobectomies be-
cause of medically intractable epilepsy [48]. Histologic study of the surgi-
cal specimen did not show any lesions attributable to TMS. Most animal
models have failed to find negative effects from TMS [169]. One study in
rats reported microvacuolar changes when using very high stimulus inten-
sities [94]; these findings have been criti cised by other authors [163]. A
study in the cat did not reveal any acute adverse changes following TMS,
assessed by cortical blood flow, blood pressure and heart rate measure-
ments [46].
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6 .2 Gu i del i nes
Guidelines for safe TMS and rTMS have not been conclusively estab-

lished. The following text lists some general recommendations. For re-
views, see Refs. [136,163].

In the USA, clinical investigations for the FDA (Food and Drug Ad-
ministration) approval of TMS are underway, but prompt FDA approval is
unlike. According to the FDA, TMS at frequencies of ≥ 1 Hz always car-
ries significant risk, whereas certain studies using lower frequencies may
not [163].

Protocols should exclude individuals with intracranial metalli c or mag-
netic objects. The magnetic field of the TMS coil will attract ferromag-
netic objects and repel nonmagnetic conductors. This force increases
quickly with size and conductivity of the object. TMS should never be
administered in the vicinity of any implanted electronic devices, since it
may disturb their function.

The experimenter should take into account possible seizures when
working with single-pulse TMS in patients and always with rTMS. Al-
ready when designing experiments, one should keep in mind the great
medical and social impact that a seizure may have on the subject’s well -
being. Generally, spread of excitation in the brain can lead to tonic-clonic
seizures. For safe rTMS, there is a tradeoff between the maximum stimu-
lus intensity and the pulse rate: it has been recommended that the excit-
abilit y spread is avoided if at 100% of motor threshold (MT) the pulse
rate is below 10 Hz and at 150% MT below 1 Hz [123,163,166]. The du-
ration of the inter-train interval and the number of trains changes the safe
limits, at least when the inter-train interval is less than 5 s [24].

When stimulating non-motor areas, it is important to note that strong
brain activation can occur without subjective sensations or other observ-
able effects. It is more adequate to limit TMS on the basis of the calcu-
lated electric field intensity and distribution. There is no experience of the
seizure threshold with widespread activation such as might be available
with a whole-scalp TMS array.

Hearing protection aids are recommended for both the examiner and
the patient, although safety regulations would allow 1,000–10,000 pulses
daily [152]. The new devices by Magstim Company are reasonably quiet,
so that hearing protection is normally unnecessary.
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Since voltages of up to 4 kV can be present in the TMS equipment, the
coil must never be connected or disconnected before the capacitor is fully
discharged. The coils and cables should be regularly checked for visible
failures. The stimulator case must be opened by authorised persons only.

It is extremely important for the future of TMS/rTMS that the experi-
menters document all harmful effects and the stimulation parameters that
produced them. If possible, rTMS experiments should be videotaped and
the EEG recorded. Good documentation is crucial for the updating of
guidelines for safe use.

7  A p p l i c a t i o n s

Recording of motor-evoked potentials (MEPs) has made TMS a rou-
tine tool to probe the conduction of the brain’s descending motor path-
ways. Interest in TMS is now rapidly increasing also in the basic research:
TMS has already been used, e.g., to transiently suppress visual detection,
halt speech, induce verbal memory errors, impair learning, localise cere-
bral functions and explore cortical excitabilit y and intracortical connec-
tivity.

This section briefly outlines selected clinical and therapeutic applica-
tions as well as uses in basic brain research [25,40,114,160]. Magnetic
stimulation of the PNS is not considered here.

7 .1 C l i n i c al  use
Since the first TMS studies the clinical focus has been on measuring

the excitabilit y thresholds and motor conduction in patients with motor
deficits. TMS has revealed altered excitabilit y thresholds and response
latencies in several clinical circumstances, including multiple sclerosis
[7], motor neurone disease [16] and cervical spondylosis [20]. TMS has
provided new significant information about many diseases, but, at least
presently, the diagnostic value of TMS is limited because it lacks sensi-
tivity [56].

Since motor deficits are common in stroke and head and spinal inju-
ries, TMS may be used to acquire objective evidence as to the severity of
pyramidal tract damage [85,112]; this complements the anatomical evi-
dence derived from CT and MRI, and the clinical evidence based on the
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acute impairment. It has been suggested that TMS responses would reflect
the prognosis of recovery from stroke, at an early stage [130].

TMS may provide a quick and inexpensive way of locating function-
ally important cortical areas in patients assigned to brain surgery
[82,103,104,168]. Likewise, rTMS can be used to lateralise speech
[74,164], although the reliability has been called into question [99].

TMS shows promise in pharmaceutical research because TMS-related
indices can give additional evidence of the functional eff icacy of medica-
tion, the indices being, for instance, spatio-temporal changes in the corti-
cal reactivity and excitatory and inhibitory responses. In their pioneering
study, Ziemann et al. [170] observed consistent changes in specific TMS
responses when the type of epileptic medication was changed
(GABAergic vs. sodium channel−blocking drugs). Similarly, Puri et al.
[129] found accelerated TMS responses in untreated schizophrenia,
pointing up the potential additional value of TMS in psychiatric disorders.

7 .2 B asi c  b r ai n  r ese ar ch
In cognitive and behavioural sciences, TMS is used to turn off non-

invasively the function of specific cortical regions to produce temporarily
artificial lesions. This allows functional identification of areas of the brain
that are important for the given task. Earlier, such studies were limited to
animals or human individuals with pathology. In studies of how the brain
processes external input, TMS may be used to impair performance by
disturbing relevant signals, but also to improve performance by disturbing
irrelevant and competing signals [161].

Pioneering studies have used TMS to study, for instance, the encoding
of objects and space in memory [107], visual pathways [3,14,100], speech
[33,156], and callosal connections [32,98]. Plasticity of the cortical topog-
raphy has been studied with TMS in patients suffering from stroke [21,58]
or amputations [76] as well as in normal volunteers. Using rTMS, it was
recently shown that the visual cortex in the blind processes functionally
relevant information [30]. Also, rTMS has been used to show plasticity of
the finger representation area during learning of a finger tapping task
[122].
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7 .3 T her apeu t i c  use
A recent revolutionary finding is that rTMS may have therapeutic po-

tential in patients with medication-resistant depression. George et al. [52]
reported robust benefit in 2 and slight benefit in 2 of 6 patients; Pascual-
Leone et al. [124] found remarkable benefit in 11 of 17 patients lasting at
least some weeks. Other studies have reproduced the effects [51,77]. In
the depression therapy trials some 1,000 pulses of 10-Hz rTMS have been
administered daily to the left dorsolateral prefrontal cortex for several
consecutive days. Interestingly, in healthy subjects rTMS to left prefrontal
areas appears to have an opposite effect, triggering crying [99,120].

Despite promising results, the eff icacy of rTMS in depression treat-
ment has so far not been clinically proven. The debate on how to aff irma-
tively assess its eff icacy is underway. However, rTMS may challenge
electro-convulsive therapy (ECT) [77].

Treatment with TMS has been studied also in several psychiatric dis-
orders, including schizophrenia [50] and obsessive-compulsive disorder
[55]. Therapeutic applications may evolve also in the neurological field.
Repetitive TMS may speed up movements [125] and reset tremor [126] in
Parkinson’s disease and reduce spasticity in multiple sclerosis [113].
Moreover, it has been speculated that rTMS at 1 Hz could have a normal-
ising effect on excitability threshold in epileptogenic regions [166].

8  S u m m a r y

Transcranial magnetic stimulation (TMS) refers to excitation of the
human brain by means of electromagnetic induction, allowing one to in-
terfere non-invasively with the function of the cerebral cortex. TMS is
well -established in the investigation of many neurological conditions that
affect the motor pathways. In addition, TMS shows great promise in basic
brain research, creating transient functional lesions in healthy volunteers.
Moreover, various therapeutic applications are presently evolving that
employ trains of TMS pulses.

In this thesis, models of the central physical and engineering aspects
underlying TMS were developed. Two principal realms were studied.
First, the calculation of the macroscopic electromagnetic fields due to
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TMS was explored. Publications I and II derived a model that describes
the macroscopic fields in cylinder-shaped volume conductors, whereas
Publication III investigated the spherical head model. Second, the neu-
ronal responses resulting from the macroscopic field were considered.
Publication IV compared the theory with experimental results from pe-
ripheral nerve stimulation, providing new direct evidence of how and
where the neurones are activated. Publication V compared the locating of
the sensorimotor cortex with TMS and MEG, finding a fairly good
agreement, which information provides invaluable evidence of the locus
of TMS activation and suggests that TMS can be used in locating the
motor cortex.

As a second major effort of the thesis, models were used as a starting
point towards more effective TMS instrumentation. Publication VI pre-
sented a procedure to optimise stimulator coils, the results indicating that
the presently available coils are far from being optimal. Publication VII
derived the mathematical theory for the effective use of multiple TMS
coils, advantage of which is improved targeting and focusing of stimula-
tion. Publication VIII demonstrated the feasibilit y of concurrent use of
TMS and EEG, one of the applications being the mapping of functional
connections in the brain.

In conclusion, sound physical theories are the cornerstone of any sig-
nificant progress in TMS instrumentation. For instance, while frameless
stereotaxy is gradually becoming the standard way of locating the TMS
coil with respect to anatomical structures, precise targeting of the stimu-
lation to predefined cortical loci is not possible without modelli ng the
actually realised electromagnetic fields. Important advances also come
along with the merging of TMS with other neuroimaging tools. In fact,
combined use of different methods is a shared trend in brain imaging and
in clinical neuroscience.
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S u m m a r y  o f  p u b l i c a t i o n s

The author has done the main work that led to the presented mathe-
matical models and has done all simulations and data analysis for Publi-
cations I−II and IV−VII and all work concerning peripheral nerve stimu-
lation in Publication III . The author participated in all stages of the work
described in Publication VIII . In all publications the first author was re-
sponsible for the experimental paradigm and writing the manuscript.

Publications I−V are the result of a collaboration with researchers at
CNR (Milan) and Fondazione Maugeri (Castel Goffredo) and San Raf-
faele Hospital (Milan). Publications VI−VIII are the result of team work at
the BioMag Laboratory (Helsinki).

Publ i cat i on  I
The reciprocity theory is used to derive an analytical solution to calcu-

late the induced field in homogeneous cylinder-like structures. A prolate
spheroid is stretched to approximate circular cylinders. The problem is
reduced to the calculation of the magnetic flux coupled into the stimulat-
ing coil due to a current dipole inside the spheroid. The induced field is
given as an infinite series of associated Legendre functions.

Publ i cat i on  I I
The reciprocity theory is used to derive the formulas for the electric

field and its spatial gradient in the unbounded, semi-infinite and spheroi-
dal volume-conductor models. The models are compared in geometrically
different situations by changing the size and shape of the spheroid and the
size and position of the stimulating coil . The spheroidal boundary influ-
ences the induced field distribution only littl e, but causes a significant
drop in the field strength.

Publ i cat i on  I I I
This paper assesses the boundary effects in the sphere, spheroid and

semi-infinite models. The spherical boundary reduces the field to 30–
100% of the field in the unbounded model, depending on the coil orienta-
tion. Computation of the induced electric field involves the discretisation
of the flux integral. A method adopted from biomagnetism studies is ap-
plied for selecting optimally 12 integration points. The focality of various
coils is assessed with the length of a line on which the field falls to 50%.
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Publ i cat i on  I V
An experimental setup is described for checking the validity of the ca-

ble theory to predict cellular response to magnetic stimulation. One result
is that peripheral nerve stimulation is predominantly caused by the gradi-
ent of the electric field along the nerve, but that also the component of the
field transverse to the nerve contributes to the excitation.

Publ i cat i on  V
This paper presents a comparison of locating the cortical hand motor

representation area using MEG and TMS. The results from the localisa-
tion are projected on to MRI slices. The results agree to within 10 mm,
suggesting that TMS can be used in locating the motor cortex.

Publ i cat i on  V I
The coil ’s internal structure was optimised by selecting where and how

the copper windings should be placed to minimise a given parameter, li ke
the power consumption of the stimulator. It is shown that the power levels
of today’s repetiti ve stimulators can be significantly reduced using the de-
scribed procedure. An example of a realistic case is analysed.

Publ i cat i on  V I I
This study addresses the theory of shaping the TMS excitation field

with arrays of coils. Methodologies familiar from MEG are used to solve
the TMS field-shaping problem, i.e., the selection of the coils’ driving
currents so that the induced electric field is similar to a desired field con-
figuration. A few examples are given and benefits to brain research are
briefly discussed.

Errata: page 298, 1st line: Q = ekδ(r), where δ(r) is the delta function; page 298, Eq. 6:

Pi = ∫w(r)P•Lidv, p2 = ∫w(r)P•Pdv. Symbols P, J and L denote vectors in Eq. 5 and matri-

ces in Eq. 6.

Publ i cat i on  V I I I
This publication presents the mapping of the brain’s electrical re-

sponses to TMS with high-resolution EEG. The method allows the deter-
mination of corticocortical and callosal connectivity. Pilot experiments
were done that demonstrate the detection of the spread of activity from
one hemisphere to the other.


