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Designing Transcranial Magnetic Stimulation
Systems

Kent Davey, Fellow, IEEE, and Mark Riehl

Abstract—We explain the process of designing optimized tran-
scranial magnetic stimulation systems and outline a method for
identifying optimal system parameters such as the number of
turns, the capacitor size, the working voltage, and the size of
the stimulation coil. The method combines field analysis, linear
and nonlinear circuit analysis, and neural strength–duration
response parameters. The method uses boundary-element analysis
to predict the electric field as a function of depth, frequency,
current, and excitation coil size. It then uses the field analysis to
determine the inductance as a function of size and, in general,
current when a saturable core is used. Circuit analysis allows
these electric field computations to be indexed against system
parameters, and optimized for total system energy and stimula-
tion coil size. System optimizations depend on desired stimulation
depth. A distinguishing feature of the method is that it inherently
treats excitation frequency as an unknown to be determined from
optimization.

Index Terms—Capacitance, core, energy, iron, neural, stimula-
tion.

I. INTRODUCTION

THE usefulness of magnetic field stimulation devices for
the stimulation of neurons is well established, and consid-

erable research has been directed to identifying appropriate coil
shapes and efficiencies to minimize stimulation energy. After
testing over 16 000 coil designs, Durand concludes that a clover
leaf design is optimal for infinitely long fibers, whereas a but-
terfly coil is preferred for bent fibers [1]. Ravazzani gives atten-
tion to the skin and proximity effect losses within air coil sys-
tems, and recommends large diameter small cross-section coils
to mitigate these losses [2]. Onuki performs an optimization to
increase induced using a three-coil setup [3]. A genetic algo-
rithm is employed to change the shape of the coils to maximize
the induced field. The pulsewidth was selected a priori. Many
papers have examined unusual coil designs to enhance focality
[4], [5]. This paper outlines a method for optimizing the stimu-
lator system including the stimulator unit.

Among the principle contributions of this paper is the point
that this frequency is intimately linked to the stimulation effi-
ciency. It must be treated as an unknown.
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Fig. 1. Typical stimulation circuit.

II. ANALYSIS APPROACH

The cortex is characterized by neural bends and terminations,
both of which activate on the electric field, not its gradient. Be-
cause of the small conductivity of the cortex, the induced field
is considerably smaller than the source field. For air core stim-
ulators, the magnetic field is dictated entirely by the source cur-
rent . With time harmonic stimulation at frequency , the
electric field is determined by combining Ampere’s law and
Faraday’s law

(1)

The electric field boundary condition must be im-
posed to ensure no normal component current exists at the skull
interface.

Fig. 1 shows a typical stimulation circuit in which
low-voltage ac is transformed to a higher voltage and then
rectified. This higher voltage dc charges a capacitor which is
fired via a thyristor switch into the stimulator core.

This circuit goes through one complete resonance cycle be-
fore the diode thyristor shuts down and further current flow is
prohibited by the diode. During the firing cycle, the circuit can
be treated as a simple resonance circuit. The current is

where

(2)

This is the equation for a damped sinusoid. A typical trace with
kV, F, H, and is shown

in Fig. 2.
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Fig. 2. Characteristic transcranial magnetic stimulation current.

TABLE I
NEURAL MAGNETIC STIMULATION RESPONSE PARAMETERS

Of particular interest is the time and value of the current peak

(3)

(4)

A. Neural Response

Motor and sensory thresholds for time varying magnetic
fields are related to the rheobase and chronaxie strength through
strength duration curves. For magnetic stimulation, Geddes
reports the rheobase and chronaxie results summarized in
Table I [6].

Duration was defined as “onset to zero,” or one-half cycle. In
terms of the stimulus frequency , and the table parameters
and , the electric field is

(5)

Fig. 3 shows the required induced electric field as a function of
frequency.

III. OPTIMIZATION

Consider the simple air core stimulator shown in Fig. 4. One
quarter of the problem is displayed. The “C” shaped block can
be considered the mandrel for the coil. This shape is chosen be-
cause it will be treated as a shell for the first part of the analysis,

Fig. 3. Neural stimulation threshold as a function of frequency.

Fig. 4. Stimulator core next to the brain in quarter plane perspective.

and then filled with steel using a tape wound core for the second
part. A typical induced electric field pattern is shown in Fig. 5.
The peak field occurs along the center axis of the core.

What constitutes an optimized system? Among the items that
might be optimized are the following:

• capacitor size;
• core stimulator size;
• voltage;
• energy.

Energy involves both the capacitor and the voltage. The
number of turns increases the resistance, and lowers the
peak current in (4).

A. Air Core

An air core optimization is simplest. Many finite-element and
boundary-element programs are suitable for analyzing this type
of problem. Since the air core represents a linear analysis, a
three-dimensional boundary-element analysis [7] is employed
to predict the electric field as a function of depth for various
core sizes.
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Fig. 5. Induced electric field arrow plot.

1) Analytic Optimization: Consider an air core in which en-
ergy is to be minimized, and the core shape is known. If the
shape in Fig. 4 is known, then the problem can be solved using
a numerical solver for the induced field at desired depth, at
current and radian frequency . The actual induced electric
field will scale from this value by the number of turns , the
actual peak current , and the frequency

(6)

The induced electric field is required to satisfy the requirement
dictated in (5); this can be interpreted as a requirement on
voltage

(7)

Let represent the inductance of the core with one turn. The
resistance is actually a bit complicated because it must account
for that lost in the thyristor and the wire. As will be seen shortly,
it must also account for the eddy and hysteresis loss in the core
if it is magnetizable. For the moment consider only the loss from
the wire, and consider the core to be filled with wire so that addi-
tional turns are added at the expense of a smaller cross section.
In this approximation, the inductance and resistance will scale
as

(8)

The energy can be written in terms of the two remaining un-
knowns and as

(9)

Consider the one turn air core stimulator shown in Fig. 4. The
inductance is 0.004 H for an cm,

Fig. 6. Energy required for stimulation at a depth of 1 cm for a spread of
capacitance and turns options.

Fig. 7. Optimized energy as a function of various stimulation depths.

cm, and height cm. The core induces an electric field
of 4.273 mV/m with 1 A of excitation with characteristic fre-
quency 5.208 kHz. Using these parameters in (9) yields the en-
ergy requirement shown in Fig. 6 for a spread of capacitance
values and number of turns. The equations clearly suggest the
use of a small number of turns and a large capacitor. As will be
seen shortly, when more realistic relationships are employed to
relate resistance and inductance to the number of turns by incor-
porating parasitic lead inductance and resistance loss from the
thyristor and core, this trend will change.

2) Numerical Optimization: When the problem is consid-
ered as a four-parameter optimization in the variables
and core size , it can no longer be solved analytically. A nu-
merical approach allows the parameters such as resistance to be
treated more realistically, with the inclusion of proper bounds on
voltage. Assume the core size to be a scale parameter , scaling
all the dimensions equally from the core origin. If represents
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TABLE II
OPTIMIZATION RESULTS FOR AN AIR CORE STIMULATOR

the length of the core winding with one turn, then the length
of the winding with turns, scaled by a value is

(10)

The combined resistance of both the parasitic core resistance
and the diode with one turn is about 20 m . A reasonable
approximation to the resistance to be used in (2) is

(11)

The leads have a parasitic inductance equal to about
3 H. Allow the core to vary through a spread of sizes and com-
pute the inductance as the flux linkage per amperage for each
size . The inductance with turns is

(12)

Compute the induced electric field with a current of
A at radian frequency for a spread of stimulation depths.

Equation (6) dictates the induced electric field as delivered by
the stimulator. If the inductance and induced electric field are
fitted to the core size using a smooth spline, its derivative can
be approximated and a variable metric procedure can be used
to minimize an optimization index. If a combination of energy
and stimulator core size are involved in the design objective, the
optimization problem becomes

Min

Subject to (13)

The peak stimulator current is determined from (4). This
index is one of many options open to the designer. One of the
applications motivating this research was the use of these stim-
ulators in the field for alertness assistance. In such mobile con-
texts, minimizing size and energy consumption is warranted.

a) Optimization Algorithm: A word about the approach
for this constrained optimization procedure is in order. Trust re-
gion algorithms are applicable, and the problem has strong local
convergence. The basic idea is to approximate the problem to
be minimized with a simpler function which reasonably reflects
the behavior of real functional in a neighborhood near the so-
lution sought [8]. This neighborhood is the trust region. Nor-
mally one step is taken to minimize the functional in question.
A piecewise reflective search can be conducted at each iteration

[9]. Sequential quadratic programming techniques have outper-
formed every other nonlinear optimization algorithm in terms
of efficiency, accuracy, and percentage of successful solutions
over a large range of test problems [10]. To quote the documen-
tation from Matlab’s algorithm documentation:

“Based on the work of Biggs [11], Han [12], and Powell
([13], [14]), the method allows you to closely mimic
Newton’s method for constrained optimization just as
is done for unconstrained optimization. At each major
iteration, an approximation is made of the Hessian of
the Lagrangian function using a quasi-Newton updating
method. This is then used to generate a QP subproblem
whose solution is used to form a search direction for a line
search procedure. An overview of SQP is found in Fletcher
[15], Gill et al. [16], Powell [17], and Schittkowski [18].”
3) Results of the Air Core Numerical Optimiza-

tion: Stimulation depth is a key parameter in the optimization.
Fig. 7 shows how the system energy changes with target
stimulation depth. Here, a core shell with cm,

cm, and height cm is scaled in all
dimensions by a scale factor which varied from 1 to 1.75. The
capacitance was allowed to vary from 5 to 75 F, the voltage
from 500 V to 3 kV, and the number of turns from 2 to 18. The
problem has many local minima. A Monte Carlo method is
employed to randomly vary the starting guess to increase the
probability that the global minimum is found.

Table II shows the results of the optimization for each of the
parameters. Among the key lessons are the following.

a) Smaller cores are desired for the lower stimulation depths.
b) Deeper stimulation target depths drive both the capaci-

tance and the voltage up. The voltage comes up slower
since it affects the optimization by its square.

c) When parasitic losses such as the switching and lead re-
sistance are considered, the optimization always favors a
higher number of turns. The neural response depicted in
Fig. 3 is driving the frequency down with depth, and the
inductance up.

B. Steel Core

Tape wound cores substantially reduce the required system
size and energy requirements [19], [20], although their construc-
tion is more difficult [21]. The advantage is introduced with the
price that the problem is nonlinear. The nonlinear element com-
plicates the optimization in two respects. First, (2) no longer de-
scribes the current. The magnitude will be dictated by the degree
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TABLE III
OPTIMIZATION PARAMETERS FOR A LINEAR IRON CORE STIMULATOR USING � = 1000

of saturation. Second, the frequency is no longer a simple index.
A core in saturation is characterized by a higher frequency and
a lower amplitude. A Fourier decomposition must be performed
to determine the fundamental frequency amplitude and at least
the first harmonic.

1) Linear: Much is to be learned by examining what should
be expected from a steel core. The gap is very large. Treating the
core as linear with a relative permeability of 1000 is a reasonable
approximation. Fig. 7 shows how the energy drops with steel
core in this approximation. Since the inductance is so high, the
optimization parameters take a different posture. As shown in
Table III, important trends with iron cores are the following.

a) Deeper stimulation target depths require larger cores as
with air cores.

b) Because of the high inductance, low capacitance is
desirable.

c) As with air cores, voltage must increase with target stim-
ulation depth.

d) Deeper target depths are commensurate with lower stim-
ulation frequencies, and a lower frequency.

e) The required stimulation current increases nearly linearly
with depth .
By contrast, the required air core amp-turn excitation in-
creases by . The iron core field does
not fall off as rapidly with distance.

2) Saturable Cores: The analysis becomes nonlinear with
real magnetizable cores. The inductance of the core is com-
puted using a numerical analysis routine for a spread of exci-
tation current.

The equations governing the current in the circuit are

(14)

where the core flux linkage , and is a function
of current . To determine , the core is excited through a
spread of current, and the flux computed for each excitation.
The governing equation is

(15)

The flux has two components of change, one due to the
changing current, and the second due to the changing in-
ductance. A Runge–Kutta–Fehlberg technique based on the

Fig. 8. B–H curve for the 3% grain-oriented steel used for the steel.

Fig. 9. Current and inductance as a function of time for a nonlinear core.

Dormand Prince pair [22], [23] was employed to integrate this
equation numerically. Assume a scale parameter of 1.25, a
capacitance of 15 F, a 12-turn coil, and a 3% grain-oriented
steel with initial relative permeability of 1500. Fig. 8 shows the
saturation characteristics for this steel.
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TABLE IV
RESULTS FOR A NONLINEAR CORE ANALYSIS

TABLE V
RESULTS FOR THE NONLINEAR CORE ANALYSIS AFTER DOUBLING THE RHEOBASE AND CHRONAXIE VALUES

The current for the nonlinear core is shown in Fig. 9. As
anticipated by (2), the time period has dropped, consistent
with the lower inductance during excitation. Second, and more
important, shoulders appear on the current waveform, and
the current increases dramatically at midpoint. This distorted
waveform with higher current is the earmark of a core in
saturation. The linear core current, shown as a dashed line, has
a larger inductance and a longer time period. The inductance
follows the profile in the lower trace in Fig. 9.

Table IV shows the results of the nonlinear analysis allowing
the capacitance to vary from 5 to 35 F, the number of turns
from 1 to 18, the voltage from 400 V to 1.5 kV, and the core
scale parameter from 1 to 1.75, using a parasitic inductance of
4.5 H.

A least square curve fit routine is used to determine the fun-
damental component of the peak current and the frequency .
Since the electric field is computed a priori for a range of cur-
rent at a fixed frequency , a spline is used correlate the circuit
delivered amp-turn peak with the field theory computed field.
As far as the field analysis program is concerned, the core is ex-
cited at the fundamental amplitude. The numerical field analysis
is solved only at frequency . This field must be scaled by
the ratio of the circuit frequency as dictated by the zero crossing
to the field analysis frequency, .

3) Cortical Stimulation: The results quoted are consistent
with the strength duration information of Table I, and dependent
on the optimization criteria targeted which could in general be
different from (13). Peripheral nerves are mylenated, whereas
cortical nerves are not. The myelin sheath will increase both
and in Table I. Geddes shows some of the variation of in [24].
More reasonable values of and for the cortex are suggested
by this team to be 32 V/m and 406 s, and yield the optimization
results in Table V. Doubling these parameters from their former
values in Table I increases the energy by more than an order
of magnitude. Until data analogous to Table I is available for

the cortex, the higher values of 32 V/m and 406 s for and
appear reasonable, since they are consistent with excitation

levels in the laboratory.

IV. CONCLUSION

A method is presented for optimizing a magnetic stimulation
system. The frequency, system voltage, capacitance, core stim-
ulator size, and the number of turns are treated as unknowns.
Based on the neural magnetic stimulation response parameters,
and the electric field as computed through a boundary element
solver, the ideal parameters for the system can be derived. A
trust region technique is used to solve the four-parameter op-
timization problem. The result is target depth dependent, and
certainly dependent on the shape of the stimulation coil. Deeper
targets are commensurate with lower excitation frequency, and
higher amp-turn products. Rheobase and chronaxie values of
32 V/m and 406 s appear consistent with laboratory data.
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