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Abstract. We examine the stability of a class of solitons, obtained from a generalization of the Boussinesq
equation, which have been proposed to be relevant for pulse propagation in biomembranes and nerves.
These solitons are found to be stable with respect to small-amplitude fluctuations. They emerge naturally
from non-solitonic initial excitations and are robust in the presence of dissipation. Solitary waves pass
through each other with only minor dissipation when their amplitude is small. Large-amplitude solitons
fall apart into several pulses and small-amplitude noise upon collision when the maximum density of the
membrane is limited by the density of the solid phase membrane.

1 Introduction

The action potential in nerves is a propagating voltage
pulse across the axonal membrane with an amplitude of
about 100mV. In 1952, A.L. Hodgkin and A.F. Huxley
proposed a model for the nerve pulse which has since be-
come the textbook model [1]. Their picture is based on the
equilibration of ion gradients across the nerve membrane
through specific ion-conducting proteins (called ion chan-
nels) which leads to transient voltage changes. Hodgkin-
Huxley model thus relies on dissipative processes and is
intrinsically not isentropic. It is rather based on Kirchhoff
circuits involving capacitors (the nerve membrane), resis-
tors (the ion channels) and electrical currents introduced
by the ion fluxes.

In a series of recent publications we have proposed an
alternative thermodynamic model in which nerve pulses
are described as a localized density pulse (soliton) in the
axon membrane [2-6]. This model allows us to consider a
number of issues which are not addressed by the Hodgkin-
Huxley model. These include the reversible temperature
and heat changes observed in connection with the nerve
pulse, which suggest that an isentropic process is respon-
sible for the action potential [7-9]. Further, it naturally
predicts the correct pulse propagation velocities in myeli-
nated nerves as these are closely related to the lateral
sound velocities in the nerve membrane. The presence
of empirically known lipid phase transitions slightly be-
low physiological temperatures is central to our model.
The closer the phase transition is to physiological tem-
peratures, the easier it is to excite the nerve pulse. The
model therefore immediately explains another interesting
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feature of nerve excitation, i.e., that the nerve pulse can
be induced by a sudden cooling of the nerve, and that
it can be inhibited by a temperature increase [10]. The
generation of a voltage pulse with compression is merely
a consequence of the piezo-electric nature of the nerve
membrane, which is partially charged and asymmetric.
Our model does not contain ion channel proteins explicitly
but rather assumes that their effects are embodied in em-
pirically known macroscopic thermodynamic observables.
We note, however, that under the conditions necessary for
solitons to propagate, i.e., close to phase transitions in
the membrane, fluctuations in pure lipid membrane lead
to ion-channel-like events that are virtually indistinguish-
able from the quantized current events conventionally as-
cribed to ion channel proteins [11-15]. Their creation is
a consequence of the same thermodynamic laws that dic-
tate the properties of the solitons. We have also argued
that the thermodynamic nature of the soliton model per-
mits a simple and quantitative description of the action
of anesthetics and its dependence on changes in intensive
variables (such as hydrostatic pressure) like their familiar
effects on the phase transition temperature [3,16].

A primary virtue of a thermodynamic description of
pulse propagation in nerves lies in its predictive power.
This is a natural consequence of the fact that thermody-
namics allows us to establish connections between macro-
scopic thermodynamic observables without the need for
detailed consideration of their microscopic origins. For ex-
ample, given measured values of the compression modu-
lus as a function of lateral density and frequency, soliton
properties (including its shape and its energy) can be de-
termined as a function of soliton velocity with no freely
adjustable parameters.

Simple physical arguments lead to an equation appro-
priate for the description of pulse propagation in mem-
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branes. As we shall see, this equation has strong simi-
larities to the Boussinesq equation [17] and leads to ex-
ponentially localized pulses that propagate with a con-
stant shape and a constant velocity. For readers less fa-
miliar with the work of Joseph Boussinesq and solitons
in general, a few historical remarks may be useful. In
1872 Boussinesq offered a theoretical description of the
“les belles expériences” of John Scott Russell and Henry
Emile Bazin which provided quantitative measurements
of the solitary waves first observed by Russell in 1834. In
dimensionless form, Boussinesq’s equation reads

Using elementary mathematical techniques he found sim-
ple solutions to this equation. With the boundary condi-
tion that f should vanish at spatial infinity, these solutions
have the form

F(z,t) = 3(v* — 1) sech? [\/w 1z — vt)/Q} )

with v > 1. The real significance of this and other solitonic
equations was not generally appreciated until the develop-
ment of more powerful mathematical tools by, e.g., Peter
Lax, Martin Kruskal and their co-workers in the 1960s (for
an introduction to the mathematics of solitons, see [18]).
In particular, if multisoliton solutions were constructed
it was recognized that, in spite of the strong interaction
between them, “solitons ‘pass through’ one another with-
out losing their identity” [19] (as we shall see below, the
solitary waves considered here do not have this property.)
Solitons are now recognized as important in virtually all
areas of physics. In addition to their intrinsic mathemat-
ical interest, solitons play an important role in hydrody-
namics (see above), in quantum field theory [20], antifer-
romagnetism [21], Bose-Einstein condensates [22,23], non-
linear optics [24-26] and biological systems (DNA) [27,28].
The vast soliton literature also includes many variants of
Boussinesq’s original equation. (This is due in part to the
fact that the dispersion relation for small-amplitude oscil-
lations of eq. (1), w? = k? — k*, suggests short wavelength
instabilities and has led to its designation as the “bad
Boussinesq equation”.) To the best of our knowledge, the
variant considered here has not been studied previously.
In [2-6] the possibility of soliton propagation was ex-
plored and compared to observations in real nerves. In the
present paper we study some intrinsic properties of these
solitons, in particular the stability of such pulses in the
presence of noise and dissipation. Such investigations are
necessary to demonstrate that these pulses can propagate
under realistic physiological conditions over the length
scales of nerves (as much as several meters) even in the
presence of viscosity and lateral inhomogeneities. In the
following section, we will state the model more precisely
and present the analytic form of its solitonic solutions. We
then turn to a description of the numerical methods used
here. We use these methods to probe i) the stability of
solitons with respect to “infinitesimal” perturbations (i.e.,
lattice noise), ii) the way in which solitons are produced
by localized non-solitonic initial excitations of the system,
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iii) the behavior of solitons in the presence of dissipation,
and iv) head-on collisions of solitons. We will demonstrate
that the solitons of ref. [2] are remarkably robust with re-
spect to all of these perturbations. Our approach to these
issues is based on elementary analytical methods and nu-
merical calculations. This reflects the fact that our interest
here is physical rather than mathematical.

2 Analytic considerations

Thermodynamic measurements of the lipids of biological
membranes reveal a number of interesting features of po-
tential relevance for understanding the nature of pulses
in biomembranes and nerves. In particular, such sys-
tems display an order-disorder transition at temperatures
somewhat below that of biological interest from a low-
temperature “solid-ordered” phase to a high-temperature
“liquid-disordered” phase in which both the lateral order
and chain order of the lipid molecules is lost [29]. The
proximity of this phase transition to temperatures of bi-
ological interest has striking effects on the compression
modulus and, hence, on the sound velocity [30,31]. For
densities some 10% above the equilibrium density (which
is the density of the disordered membrane slightly above
the transition corresponding to the resting state of the
nerve membrane under physiological conditions), the low-
frequency sound velocity is reduced by roughly a factor
of 3 from the velocity of ¢g = 176.6m/s found at equi-
librium. The sound velocity then rises sharply, returning
to the value ¢y at a density roughly 20% above the equi-
librium density. Measurements at high frequencies (i.e.,
5MHz) reveal a much smaller dip in the lateral compres-
sion modulus and a sound velocity that is always materi-
ally larger than that at low frequencies and thus indicate
the presence of significant dispersion [31,32].

In ref. [2], these features were exploited to suggest that
the propagation of sound in these lipid mixtures can be
described by the equation

aiApA _ (5 +pAp™ + q(Ap™)?) 9 pph
or?2 9z |\ 0z
64

Here, Ap? = p? — pf' is the difference between the lat-
eral mass density of the membrane and its empirical equi-
librium value of pé“ = 4.035 x 1073 g/m?, and the low-
frequency sound velocity is ¢g = 176.6m/s. The coeffi-
cients p and g were fitted to measured values of the sound
velocity as a function of density. Although high-frequency
sound velocity measurements indicate that the dispersive
coefficient, h, must be positive, neither the magnitude of h
nor the specific form of this term have been verified experi-
mentally. Note that the sign of the dispersive term is oppo-
site to that familiar from the Boussinesq and Korteweg-de
Vries equations. In practice, the only role of & is to estab-
lish the linear size of solitons, and it can thus be chosen,
e.g., so that the width of the soliton is comparable to that
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known for nerve pulses. Here, we choose to work with the
dimensionless variables u, x and ¢ defined as

APA Co Cg Po Pg
U:7,$:727t27T7 B1:7p732:7
oo NG NG K 5

q.
(4)
With this choice of variables, eq. (3) assumes the form
0%u 0 ou 0*u
2 [ Bw=)_ 2=
o2 Ox < (w) 8x> ozt (5)

with

B(u) = 1+ Byu + Bau®. (6)
The qualitative features of the empirical compression
modulus require that B; < 0 and B > 0. In the numerical
work described below, we will adopt the parameter values
B; = —16.6 and By = 79.5 found in ref. [2]. Equation (5)
can be recognized as a generalization of the Boussinesq
equation, and it is known to have exponentially localized
“solitonic” solutions which propagate without distortion
for a finite range of sub-sonic velocities. We now deter-
mine the analytic form of these solitons.

Since we seek solutions which propagate without dis-
tortion, we regard u as a function of £ = x— [t and rewrite
eq. (5) as

2 4
o =5 (PG ) - 5 @
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With the assumption that u vanishes at spatial infinity,
we can integrate this equation to yield

0u)” (1— B + 2B + 1Bt (8)

— | =1 -0%)u"+ -Biu’ + = Bau".
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The solution will grow from 0 until it reaches a maximum
value at which du/0¢ = 0. Equation (8) then implies that
u is symmetric about its maximum value. It also indicates
that this is possible only if

BQ
1>|ﬂ|>ﬂo=\/1—@. (9)

The minimum velocity [y corresponds to the maximum-
amplitude solitons. Its numerical value is about 100 m/s [2]
and should correspond to the velocity of the nerve pulse
above threshold excitation. For the parameters B; =
—16.6 and By = 79.5 adopted in [2], we find By =
0.649851. We will use these parameter values in the re-
mainder of this paper.

We thus expect localized solutions for 8y < || < 1.
When this condition is met, the right side of eq. (8) will
have two real roots, u = a4, with

B2 — 33
1-82 )

It is readily verified that the desired solitonic solutions of
eq. (5) have the analytic form

u(§) =

(10)

2a+a,

(ar +a-)+ (ay —a_)cosh (f\/ﬁ) .

(11)
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Fig. 1. Soliton profiles for velocities 8 = 8o +4 x 107, 0.65,
0.734761, 0.85, and 0.95. The maximum height diminishes as
a function of B. The width of the soliton diverges for both
B — [o and B — 1 and has a minimum at § = 0.734761,
which corresponds to the dashed curve.

These solutions are shown in fig. 1 for a selection of soliton
velocities.

As expected, eq. (5) can be obtained from a suitable
energy density. We thus seek an energy density, &, such
that eq. (5) will result from variation of the corresponding
Lagrangian density. To this end, it is useful to introduce
the dimensionless displacement, s(z,t), defined as u =
0s/0x. The energy density can then be written as

1/0s\> |1, 1/ou\>
with 1 1
Alw) =1+ gBW + BBQUQ. (13)

The integral of this energy density over all space is con-
served and independent of time. The two terms in eq. (12)
represent the kinetic and potential energy densities, re-
spectively. The corresponding Lagrangian density is ob-
tained by changing the sign of the potential energy term,
and eq. (5) follows by standard variational arguments.
This form of the energy density leads to two important
observations. First, we note that the energy density sim-
plifies considerably if u describes a soliton and is given by
eq. (11). Specifically, use of the equation of motion allows
us to write the energy density as £, = u?A(u). The spe-
cific form of eq. (11) is sufficiently simple that the energy
of a soliton can be calculated analytically and involves
only elementary functions.

It is also useful to consider the total energy associ-
ated with an arbitrary solution, u(x,t), of eq. (5) as given
by the integral over all space of the energy density, &, of
eq. (12). Recognizing perfect differentials when they arise
and making use of the equation of motion, eq. (5), we find
the expected result that the energy is independent of time
for an arbitrary choice of u(z,t). (This result assumes ei-
ther that u(z,t) vanishes as || — oo or that it satisfies
periodic boundary conditions in z.) It is also useful to
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consider the time dependence of the integral of u over all
space,

U= /u(a:,t) dz. (14)
It is clear from the equation of motion that 92U /dt? can
be expressed as an integral of perfect differentials. Hence,
0%U/ot? = 0 if u vanishes at spatial infinity or is periodic.
Thus, the time dependence of U is elementary and can
include only a constant term and a term linear in t. As we
shall see below, U is independent of time when u(x,t) is
periodic.

3 Numerical results

We would like to investigate a number of questions as-
sociated with the stability of the solitons of eq. (11). Al-
though the simplicity of the analytic form of these solitons
suggests that it may be possible to solve the problem of
infinitesimal stability analytically, we have elected to con-
sider this problem numerically. To this end, it is convenient
to re-write eq. (5) as two first-order equations. We obtain

Ou v ov  of
o " or ot ox (15)
with ) ) 5
f=u+=Bu®+ = Bou® — —w, (16)

2 3 ox

where w = du/0x (and incidentally v = ds/0t). The first
of egs. (15) ensures that the spatial integral of u is in-
dependent of time if v is chosen to be periodic. Equa-
tions (15) are well suited to numerical solution using a
variant of the two-step Lax-Wendroff method [33]. This
algorithm is both fast and stable in practice. For periodic
boundary conditions and the choice of spatial step size
Ax = 0.1 and time step At = 0.001, used below, it was
possible to follow 106 time steps without discernible loss
of accuracy. Note that the energy of eq. (12) is not rigor-
ously conserved by this numerical algorithm. In the follow-
ing numerical examples, the energy was found to decrease
at a roughly constant rate proportional to Az2. This fact
was used to make an appropriate choice of Ax = 0.1. The
corresponding value of At = 0.001 was selected to yield
full numerical stability.

3.1 Small-amplitude perturbations

Our primary numerical concern is to study the stabil-
ity of the solitonic solutions of eq. (11) with respect to
“infinitesimal” perturbations. We employ the parameters
B; = —16.6 and By = 79.5 adopted in [2], for which
Bo ~ 0.650. We will show results for an initial soliton
with velocity 8 = (1 ~ 0.735. This soliton has a width
(i.e., full width at half-maximum) of roughly 6.24, which
is the minimum width possible for the values of By and Bs
considered. There is, of course, no reason to believe that
a soliton on a discrete lattice with finite Az will have a
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profile identical to the analytic form of eq. (11). The use
of this analytic form in establishing the initial values of
u and v thus inevitably introduces small-amplitude per-
turbations into the numerical system. Since there is no
other “natural” choice for the initial form of the solitonic
excitation, this disturbance represents the best approxi-
mation to infinitesimal perturbations that can be realized
in a numerical study.

In an analytic approach to the question of infinitesi-
mal stability, one considers the time evolution of the sum
of the soliton under investigation and a small excitation,
du(x,t) = 9p(x,t). The equation of motion (5) is then ex-
panded to first order in v, and expressed in terms of ¢ and

fzx—ﬁt,

>y _
o2

829
otoe

0% _ 0*(B(w)y) 0%
e = e T a
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(17)

It follows that solutions to this (non-Hermitian) equation
can be written as the product of functions ,(§) and
exp(At). If one or more of the resulting values of A\ has
a positive real part, the corresponding 1) (x,t) will grow
exponentially with time, and the initial solitonic solution
will be locally unstable. Since it is our aim to detect pre-
cisely such exponential instabilities (if present), it is of no
consequence that the numerical perturbation introduced
by the finite mesh size is small. Exponential instabilities
will be apparent if they are present. The finite size of Ax
also means that there is a smallest wavelength pertur-
bation which can be studied on the lattice. In practice,
potential instabilities involving such wavelengths will be
invisible to numerical studies only if they are orthogonal
to those wavelengths which can be investigated reliably
with the Az chosen. While this is not impossible, it is
unlikely.

Results were obtained with Az = 0.1 and At = 0.001.
The spatial lattice was chosen to be periodic with length
100. For g = (1 =~ 0.735, the exact energy of the soli-
ton is 0.0377. The energy of this initial state is smaller by
1.5 x 107% when calculated on the lattice. Energy is not
strictly conserved by the numerical algorithm adopted but
rather decreases linearly with time over the time intervals
considered. In the present case, energy is lost at the rate of
7.3 x 1072 per unit time. We have followed this soliton for
times as long as 1000 units, during which the soliton can
propagate more than 100 times its own width. The energy
loss is negligible, and there is absolutely no indication of
instability. (Note that the discrepancy in the initial en-
ergy is proportional to Az?; the rate of energy loss scales
like Az3. This expectation has been verified by numerical
calculations (data not shown).)

We can illustrate soliton stability in the following man-
ner. We first determine the location of the maximum of the
soliton as a function of time. The constancy of its velocity
over large time intervals provides an initial indication of
the stability of the soliton. In the present case, this veloc-
ity is found to be stable and roughly 0.02% less than the
initial velocity of the analytic soliton. (This error scales
with Ax?.) There are, of course, small fluctuations in the
location of both the maximum density and, hence, the
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Fig. 2. The difference d(§) between the time-averaged numer-
ical soliton and the analytic soliton for the minimum width
soliton with # = 1 ~ 0.735. The average has been performed
over 1000 units of time, during which the soliton travels more
than 100 times its own width.

velocity due to the perturbations. For the present exam-
ple, such fluctuations in the location of the maximum are
never greater than 0.004, which is 25 times smaller than
Az. (These fluctuations also scale like Az?.) Having iden-
tified the position of soliton as a function of time, each
time frame is shifted to locate the soliton at a common
point. A time-averaged soliton is then constructed in order
to minimize the effects of the perturbations. The difference
between the time-averaged soliton and the analytic soli-
ton is shown in fig. 2. The peak value of the time-averaged
soliton is slightly (i.e., roughly 0.05%) higher than that of
the analytic soliton, and it is somewhat narrower than its
analytic counterpart. (The size of these differences again
scales with Az2.) This demonstrates the claim that the an-
alytic solitons are not identical to solitons on a finite mesh.

We now consider the effects of this perturbation as a
function of time by subtracting the time-averaged soliton
from the full u(x,t) at each time update and constructing
the root mean square of the resulting difference as a func-
tion of time. If the soliton is stable, the resulting r.m.s.
difference should be bounded as a function of time. If the
soliton were unstable, however, we would expect to find
systematic differences in the vicinity of the soliton max-
imum which grow exponentially with time. The spatial
distribution of the r.m.s. difference at later times shows
no sign of such systematic effects, and its magnitude is
the same both near and far from the location of the soli-
ton. The calculated r.m.s. difference is shown in fig. 3 as a
function of time. Again, there is no sign of such instabili-
ties. Since qualitatively similar results are found for other
values of 3, we conclude that the solitons of eq. (5) are
stable with respect to small perturbations.

It is also possible to study soliton stability in the pres-
ence of larger-amplitude noise. This is most easily done
by choosing a form of w(z,0) which consists of both the
(analytic) soliton of interest and a linear combination
of the lowest k& < K periodic waves on the interval L,
ay sin(2wkx /L + ¢r), with phases chosen at random and
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Fig. 3. Time evolution of r.m.s. noise level ¢ for the minimal
width soliton over 1000 units of time.

amplitudes chosen at random subject to a constraint on
the overall r.m.s. noise level at ¢ = 0. The analysis pro-
ceeds as above. We have considered the case of K = 10
with an initial r.m.s. noise as large as 5% of the maximum
amplitude of the soliton. The results are similar to those
found for small-amplitude noise: There are no indications
of soliton instability.

3.2 Soliton genesis

It is also instructive to consider finite-amplitude distur-
bances and to see how a localized but non-solitonic ini-
tial state evolves with time. To illustrate this, we choose
u(z,0) to be the minimum width soliton of eq. (11). In
this case, however, we distort the second initial condition
and choose v(z,0) = —p fu(x,0), with p = 0.5. Thus, the
initial field is not solitonic. The time evolution shows that
this initial pulse “sheds” matter and changes its shape
through the emission of a smaller soliton, which moves in
the opposite direction, and small-amplitude waves, which
run ahead of the solitons with velocity # ~ 1. The two
solitons are captured in fig. 4 at ¢ = 50. The velocity
of the larger soliton is § = 0.799 and its maximum is at
x = 39.515 whereas the smaller has § = —0.948 and maxi-
mum at x = —47.129. The shape of each of these solitons is
accurately described using eq. (11) with the corresponding
measured velocity. These two solitons account for virtu-
ally all of the initial energy of the system; approximately
0.3% of this energy is associated with the small-amplitude
motion distinct from the solitons. In fig. 5 the two solitons
have been subtracted out, and only the difference is plot-
ted. This confirms that the shapes are indeed solitonic.

Similar results have been obtained for other non-soli-
tonic initial pulse forms (e.g., Gaussian pulses). In short,
for the cases explored, non-solitonic initial excitations
evolve into solitons and small-amplitude non-solitonic dis-
turbances. In infinite space, dispersion ensures that the
solitonic and non-solitonic components will become spa-
tially distinct and that the amplitude of the latter will
decrease with time. This is obviously not the case for the
periodic lattice considered here.
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Fig. 4. A minimal width soliton with an initial velocity, 3, 50%
lower than the corresponding analytic value, shown at ¢ = 50.
It has divided into two solitons of different sizes, propagating
in opposite directions. Small-amplitude waves run ahead of the
solitons with velocity 3 = 1; the region between the solitons is
essentially noise free (see also fig. 5). Note that the length of the
periodic lattice has been increased here to avoid interference
effects between the solitons and the leading small-amplitude
waves.

dx10°3

i~

\/@\/A\/\W% bo *

Fig. 5. The graph in fig. 4 with the two solitons subtracted
out to leave only the small-amplitude waves running ahead of
the solitons.

3.3 Solitons and dissipation

It is also possible to consider the consequences of dissipa-
tion on soliton propagation.

The inclusion of viscosity in the Navier-Stokes velocity
results in an additional term on the right of eq. (5) of the
form k0%u/0x20t (for derivation see appendix A). This
term is readily incorporated in our numerical approach
by the inclusion of the term +x0v/0¢ in eq. (16). We
have performed numerical studies with the value k = 0.05.
With this choice of k, the height of the soliton is reduced
by roughly 70% at ¢ = 990 and has travelled more than 100
times its initial width. As energy is dissipated, the soliton
accelerates, and its profile changes with the expected drop
in its amplitude. Over the entire time range considered, we
find that the soliton profile is consistent with the analytic
soliton profile of eq. (11) appropriate for the corresponding
instantaneous velocity of the pulse. This is illustrated in
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X

20 40
Fig. 6. Decaying soliton (solid curve) with x = 0.05, initially
at x = 0. The dashed curves depict the analytic solitons with
the instantaneous velocity of the numeric solitons. The num-
bers above the peaks indicate the running time, and their par-
ticular values have been chosen for illustrative purposes. The
soliton has in fact wrapped around the periodic lattice more
than 9 times during the time interval of the simulation.

fig. 6, which shows the comparison of analytic solitons
(in infinite space) and these numerical results including
dissipation at several times.

For several reasons, this agreement is necessarily only
approximate. First, some time is required for the soliton
profile to adjust to the exact form corresponding to its
instantaneous velocity. Obviously, only a limited time is
available for this adjustment in the presence of dissipation.
More importantly, the time independence of the spatial
integral of u is not affected by the inclusion of dissipation.
Thus, u(z,t) approaches a constant value for all z as ¢t —
00. On a periodic lattice, as here, this constant is non-zero.
This effect is clearly seen in fig. 6, and it is obviously not
included in the analytic form of eq. (11) valid in infinite
space. Figure 6 shows no indication of the catastrophic
break-up of the soliton into small-amplitude waves which
might be anticipated in the presence of strong dissipation.
The fact that nerve pulses change only little over distances
20 times the pulse width and the small dissipation of heat
in the experiment on nerves [9] imply that the magnitude
of dissipation is small compared to the values considered
here.

4 Collision of pulses

The received wisdom in neuroscience is that action poten-
tials are blocked upon collision [34]. However, compelling
evidence for this is not easily found in the literature.
The FitzHugh-Nagumo model [35,36], which is a simpli-
fied mathematical representation of the Hodgkin-Huxley
model, allows for both the cancellation and penetration of
pulses depending on parameters [37].

In order to study this aspect, we investigated the head-
on collision of two solitary pulses with identical amplitudes
and opposite velocities. Our model is based on adiabatic
and reversible physics with no detailed mechanism for dis-
sipation other than the inclusion of viscous friction as in
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Fig. 7. Collision of two solitons before (a) and after collision
(b) shown for 8 = 0.8. One obtains small-amplitude noise trav-
eling ahead of the post-collision pulses for 8 = 0.8 that carries
a very small fraction of the overall energy. The same was found
for solitons of different velocity and amplitude.

sect. 3.3. Here, we investigate collisions in the absence of
friction. Figure 7 shows the two identical solitons with
£ = 0.8 before and after collision. Small-amplitude noise
travels ahead of the post-collision pulses and amounts to a
very small energy compared to that of the solitary pulses
(< 1%). The same was found for solitons with other ve-
locities and amplitudes.

The functional dependence of the sound velocity on
density is given by eq. (6). It represents a quadratic ap-
proximation to the experimental data and yields a satis-
factory description in the density regime between solid and
liquid membrane state [2]. It is sufficient for the study of
those pulse properties considered so far. However, eq. (6)
allows the density transiently to exceed the density of the
solid phase (u =~ 0.25) when large-amplitude pulses col-
lide. Since we regard this as unphysical, we have intro-
duced a “soft barrier” at the density of the solid phase:

B(u) = (1 + Byu + Byu?)(1 4 e*(#umax)), (18)
This modification of eq. (6) is only relevant at the mo-
ment of collision of two large-amplitude solitons. We used
a = 100 and as maximum density umax = 0.26, which
is close the maximum change of density for the particu-

Fig. 8. Collision of two solitons before (top) and after col-
lision (bottom) for 8 = 0.649850822 (close to maximum am-
plitude) and the additional condition of a maximum density
change of u = 0.25. The pulse falls apart into several solitary
peaks with different amplitude and velocity, and some small-
amplitude noise.

lar membrane discussed here. The result of such a colli-
sion of two solitons with 3 close to the minimum velocity
Bo, given by eq. (9), is shown in fig. 8. The soliton falls
apart into a sequence of solitons and some additional low-
amplitude noise. The closer one is to the minimum veloc-
ity, the more pronounced this effect is. Such a decompo-
sition into several pulses was not seen in the absence of
this soft barrier. We compared the energy of the largest
pulse after the collision with the energy before the colli-
sion (fig. 9). See ref. [2] for the calculation of the energy. It
can be seen that even for the near-limiting case the frac-
tion lost into smaller solitons and small-amplitude noise
is small (e.g., < 4% for the most extreme case studied).
Thus, we see that most of the energy of the major soliton
is conserved in collisions even when a maximum density
is enforced.

5 Conclusions

We have considered here a number of tests of the stabil-
ity of the solitons associated with the modified Boussinesq
equation, eq. (5). After finding the analytic form of these
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Fig. 9. Loss of soliton energy after collision in %. Compared
are the energy content of the largest pulse after collision with
the pulse before the collision. Dissipation becomes significant
only when the pulses reach their maximum amplitude and min-
imum velocity.

solitons, we turned to a numerical investigation (with pe-
riodic boundary conditions) of the their stability with re-
spect to various perturbations. These solitons were found
to be stable with respect to the “smallest possible” pertur-
bations inevitably induced by the finite size of the numer-
ical mesh and to finite but small periodic perturbations.
Solitons are found to be produced by arbitrary localized
but non-solitonic initial excitations. We have shown that
solitons retain their characteristic properties even in the
presence of relatively strong dissipation. It was argued in
ref. [2] that the measured compression moduli of lipids of
biological membranes are suitable for the production of
solitons. Finally, in the context of our model, pulses pass
through each other “almost undisturbed” with the gener-
ation of only small amounts of small-amplitude noise. If a
maximum density is introduced, as seems reasonable for
the crystalline lipid matrix, large-amplitude solitons can
decay into a series of solitons. However, even under these
extreme conditions, the bulk of the energy remains in the
maximum-amplitude soliton. Thus, our model does not of-
fer a description of the cancellation of pulses suggested by
some of the biology literature [34].

These findings may be of immediate relevance for the
propagation of the action potential in nerve axons [2]. The
solitons described above are subject to friction and dissi-
pation. Nerve membranes are not homogeneous, i.e., they
vary both in thickness (e.g., at the site of the soma) and
in the specific composition of lipids and proteins. Elastic
constants may therefore vary locally. In the present paper
we have shown that neither noise nor dissipation affect
the propagation of solitary waves as such but rather lead
only to slight changes in amplitude and velocity. These
pulses are therefore likely to be robust with respect to
the unavoidable variance in shape and composition of bi-
ological membranes and to dissipative hydrodynamic pro-
cesses which accompany the observed thickness changes in
nerves [38]. Thus, the present results suggest that a model

The European Physical Journal E

of nerve pulses as stable solitary waves is viable even in a
realistic physiological environment and that such a model
may provide an immediate and reliable explanation of
associated mechanical [38] and thermodynamic [7-9] ef-
fects that remain unexplained in the presently accepted
Hodgkin-Huxley model [1].

Appendix A. Derivation of the viscous
friction term used for the evaluation of
dissipation in sect. 3.3

In one dimension (z) the Navier-Stokes equations for com-
pressible fluids are
ox '

Qv Ov\_ _9Op
P\t "Y0z) " "oz "
(A.1)

where v(z,t) is the velocity field and p(z,t) the density
field. The pressure field p is assumed to obey a barotropic
constitutive equation, p = p(p), and depends indirectly
on z and t through p. The viscosity n is assumed con-
stant, although it does not change much if it depends on
p. These equations may also be taken to describe longi-
tudinal unidirectional waves in materials of any dimen-
sion n. In that case the viscosity should be taken as a
combination of shear and bulk viscosities for the fluid:
7 = 2Nshear (1 — 1/7) + Nouik. We shall mainly think of two-
dimensional membranes where the density is measured in
units of mass per unit of area and 1 = Nshear + Mbulk-
Using that

Apv)  d(p?)  (Ov v
ot oz’ x )’

20

ox?’

o _
ot

9(pv)

(A.2)

we may rewrite these equations as mass and momentum
balance

dp _ I(pv) d(pv)  OM
o oz’ o oz’ (A-3)
where 5
_ 2 OV
M =p+pv Ut (A4)
Combining the balance equations we get
0%p O0°M
o2 = a2 (4.5

which has the basic form of a standard wave equation (if
M is linear in p).

Assuming that the second term in M is negligible, and
that the last term is small, we get in the leading approxi-

mation o2 5 5
gp_ 9 ([ 29P
o2~ ox <C ax) v

where v = 1/p, and where we have introduced ¢ = dp/dp,
and used the equation of continuity to eliminate v. Finally,
adding the ad hoc dispersive term, we arrive at eq. (3),
now including dissipation.

0% dp

@E 3 (A.6)
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