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The lipids of biological membranes and intact biomembranes
display chain melting transitions close to temperatures of physio-
logical interest. During this transition the heat capacity, volume
and area compressibilities, and relaxation times all reach maxima.
Compressibilities are thus nonlinear functions of temperature and
pressure in the vicinity of the melting transition, and we show that
this feature leads to the possibility of soliton propagation in such
membranes. In particular, if the membrane state is above the
melting transition solitons will involve changes in lipid state. We
discuss solitons in the context of several striking properties of
nerve membranes under the influence of the action potential,
including mechanical dislocations and temperature changes.

sound � action potential � compressibility � Hodgkin–Huxley theory

The lipid membrane is the major building block of biological
membranes, which consist mainly of large numbers of different

lipids and proteins with a composition specific to the particular
membrane under consideration. The isolated lipids of biomem-
branes display order–disorder transitions in the temperature re-
gime of about �20°C to �60°C in which membranes absorb heat
(25–40 kJ�mol), and both the lateral order and chain order of the
lipid molecules are lost. This transition is accompanied by an
increase in volume of �4% and an increase in area of �25%. The
low and high temperature phases are called solid-ordered and
liquid-disordered, respectively, indicating the simultaneous change
in lateral crystalline arrangement and chain order. They are also
known as gel and fluid phase, respectively. Mixed systems display
a wealth of different phase diagrams. The melting profiles of lipid
mixtures are therefore generally more complex than those of single
lipids and cover a wider temperature range. Both peripheral and
integral proteins change lipid melting caused by molecular inter-
actions that influence the cooperative nature of the membrane
fluctuations as a whole (1). Fluctuations in volume and area, and
the related fluctuations in curvature, give rise to pronounced
changes in elastic constants, e.g. compressibilities, bending elastic-
ity, and relaxation times, all of which have maxima in the region of
the chain melting transition. It has been suggested on theoretical
and experimental grounds that these response functions are all
simple functions of the heat capacity (2–4). The sound velocities of
lipid dispersions obtained with ultrasonic measurements and the
bending elasticities of giant vesicles are practically identical to the
profiles calculated from the heat capacity (5–8). Within certain
limits, it is thus possible to calculate the response functions from the
heat capacity without detailed knowledge of the composition of the
lipid mixture. In the transition region, membranes thus become
more compressible and easier to bend. Relaxation times grow and
are found to be in the range of 10�3 s�1�min (4, 9). In unilamellar
vesicles of single lipids, these changes can be pronounced. In
comparison to the fluid lipid phase, the bending modulus of
dipalmitoyl phosphatidylcholine (DPPC) unilamellar vesicles
changes by 1 order of magnitude, as does the lateral compressibility.
For multilamellar vesicles that display a more cooperative transi-
tion, these effects are even more pronounced. In lipid mixtures,
where heat capacity anomalies extend over a broader temperature
range and the magnitude of the heat capacity is smaller, the change
in elastic constants is less pronounced, but it is present whenever a
heat capacity anomaly can be measured.

It is less known that melting transitions can also be found in
biological membranes, e.g., in Escherichia coli and Bacillus subtilis
membranes (this work) and lung surfactant (3), which exists on the
lung surface as a monolayer–bilayer equilibrium. In these systems
the intact membranes, including all proteins, display pronounced
lipid melting peaks slightly below physiological temperature (see
Fig. 1). In the E. coli system the lipid melting peak changes with
growth temperature and pH. It would be of importance to under-
stand how the adaptable lipid composition influences the physical
features of the membranes. Unfortunately, the lipid and protein
composition of biomembranes is so diverse that it is seemingly
impossible to understand the corresponding phase diagrams in
detail. It is clear, however, that even these complex systems are
thermodynamic ensembles with fluctuations in state, volume, area,
and local composition. Their response functions are related to one
another because they all are second-order derivatives of the en-
tropy, e.g., heat capacity anomalies in biological membranes are
simply related to the lateral compressibility. Because sound prop-
agation velocities are related to the compressibility, sound propa-
gation in a membrane is also related to these changes. This relation
has been shown for both single lipid membranes and mixtures for
sound propagation in three dimensions (2, 5, 6).

Various authors have speculated whether mechanical perturba-
tions can travel along nerve axons (10) (note also two monographs
by K. Kaufmann from 1989 available online at http:��membranes.
nbi.dk�Kaufmann). In fact, mechanical forces and dislocations as
well as temperature responses of nerve membranes in-phase with
the action potential have been found experimentally (11–16). They
are accompanied by changes in the fluorescence of membrane
probes and changes in turbidity and birefringence (17). None of
these phenomena play a role in the Hodgkin–Huxley theory (18)
that is the accepted model of nerve pulses. Most interestingly, the
initial temperature increase in the nerve during the action potential
is followed by a cooling, which is in-phase with voltage changes (13).
This seemingly isentropic behavior of the nerve pulse is clearly not
contained in the Hodgkin–Huxley theory.

This article deals with membranes close to a thermal melting
transition and considers an interesting mechanical implication of
these transitions: the possibility of soliton propagation in cylindrical
membranes. Nonlinear and dispersive 1D systems often permit a
continuum of localized density excitations, which propagate with-
out distortion. We will loosely refer to such objects as solitons. After
introducing a suitable dispersion term, we will argue that such
solitons may play a role in pulse propagation in biological mem-
branes, in particular in nerves. We will further suggest that the
general features of the compression moduli for lipid mixtures (i.e.,
the proximity of a thermal melting transition) lead to a variety of
interesting properties for such solitons.

Materials and Methods
Lipids were purchased from Avanti Polar Lipids and used
without further purification. For the preparation of unilamellar
vesicles, the dry lipids were hydrated in the suitable amount of
buffer (2 mM Hepes�1 mM EDTA, pH 7.5) above the phase
transition temperature. Unilamellar vesicles were prepared from

Abbreviation: DPPC, dipalmitoyl phosphatidylcholine.
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the multilamellar lipid dispersion by ultrasonication with 50 W
for several minutes by using a model W185 sonifier from Heat
Systems�Ultrasonics, resulting in small unilamellar vesicles.
After subsequent storage at 4°C, the small vesicles fuse to large
unilamellar vesicles with a diameter of �120 nm. Bovine lung
surfactant was a gift from Fred Possmeyer (University of
Western Ontario, London, Canada). E. coli bacteria (XL1 blue
with tetracycline resistance) and B. subtilis were grown in LB
medium at 37°C. The bacterial membranes were then disrupted
in a French press at 1,200 bar (Gaulin, APV Homogenisers,
Lübeck, Germany) and centrifuged at low speed in a desk
centrifuge to remove solid impurities. The remaining superna-
tant was centrifuged at high speed in an Beckmann ultracentri-
fuge (250,000 � g) in a Ti70 rotor (Beckman Coulter) to separate
the membranes from soluble proteins and nucleic acids. This
membrane fraction was measured in a calorimetrer. Lipid melt-
ing peaks and protein unfolding can be distinguished easily in
pressure calorimetry because of their characteristic pressure
dependences. [The pressure dependence of lipid transitions is
much higher than that of proteins (3).] Details regarding the lung
surfactant and E. coli measurements are given in ref. 19. Heat
capacity profiles were obtained by using a VP-scanning calorim-
eter (MicroCal Software, Northampton, MA) at scan rates of 5
deg�hr (lipid vesicles) and 30 deg�hr for lung surfactant and E.
coli plasma membranes.

Theory and Results
Heat Capacity and Compressibilities. Examples of heat capacity
profiles in artificial and biological membranes are shown in Fig. 1.
We have previously shown that these results can be used to estimate
the temperature dependence of the elastic constants. The heat
capacity (cP), the isothermal volume compressibility (�T

V), and the
lateral compressibility (�T

A) are related to fluctuations in enthalpy,
volume, and area as

cP �
�H2� � �H�2

RT2 �T
V �

�V2� � �V�2

�V��RT
�T

A �
�A2� � �A�2

�A��RT
.

[1]

It was found experimentally that the excess enthalpy, �H, excess
volume change, �V, and excess area change, �A, of the lipid melting
transitions obey the relation �V(T) � �V�H(T) (2, 3) and, more
indirectly, that �A(T) � �A�H(T) (2, 7, 8). The constants �V �
7.8 � 10�4 cm3�J and �A � 8.9 � 103 cm2�J, which are identical
within experimental error for various phosphatidylcholines, lipid
mixtures, lung surfactant, and E. coli membranes (3). These rela-
tions can now be used to calculate the elastic constants from the
heat capacity as

�T
V � �T,0

V � ��T
V � �T,0

V �
�V

2 T
�V�

�cP� T
A

� � T,0
A � ��T

A � � T,0
A �

�A
2 T

�A�
�cP,

[2]

where �T,0
V and �T,0

A are the compressibilities outside of the transi-
tion range. Their values must be taken from the literature. These
relationships show that changes in the elastic constants can be
deduced from the heat capacity.

Sound Propagation. As shown in Fig. 2, elastic constants close to the
chain melting vary significantly with density. The elastic modulus
decreases with increasing lateral pressure for a membrane slightly
above the transition, and the system resembles a spring that
becomes softer when compressed. Here, we consider some of the
consequences of this fact.

Sound propagation velocities in elastic media, c0 � 	��S, are
functions of the isentropic compressibilities, �S

V and �S
A. Using

Maxwell’s relations (20) one can show that

�S
V � �T

V �
T

�V�cP
��dV

dT�P

2

� S
A � � T

A �
T

�A�cP
��dA

dT�P

2

. [3]

These heat capacities, which describe the heat sink, depend on the
time scale of the compression so that cP � cP(�). On time scales
much longer than that of relaxation processes in the membrane, the
entire aqueous environment of the membrane serves as a heat
reservoir. As a result, cP is large, and �S � �T. For experiments faster
than the dominant relaxation process, the isentropic compressibility
approaches zero. If �A 
 �H, all quantities required for the
determination of the isentropic compressibility can be determined
from the heat capacity at constant pressure, e.g., �T

A and (dA�dT)P.
Ultrasonic velocity measurements at a frequency of 5 MHz show
that ultrasound velocities as a function of temperature can be
calculated accurately from the heat capacity if it is assumed that
there is no heat transfer between the membrane and the aqueous
medium. This fact means that cP(�) � cP,lipids, excluding the
aqueous environment at such frequencies. For processes slower
than 2 � 10�7 s, the isentropic compressibility is larger than that
found at 5 MHz but smaller than the isothermal compressibility.

Although we will be concerned with lateral compressibility, we
have chosen to discuss the relations for the 3D compressibility as
well because they have been verified experimentally (3, 5, 6). The
validity of these relations in the 2D case can only be established
indirectly. The bending elasticity of membranes is related to their
lateral compressibility (21). The elasticity changes predicted from
heat capacity profiles are identical to those found in experiments (7,
8). The heat capacity, lateral density, and isothermal and isentropic
lateral compressibilities for unilamellar DPPC vesicles and lung
surfactant are given in Fig. 2 Left. Details of the determination of
these quantities from the heat capacity profiles are given in refs. 2

Fig. 1. Heat capacity profiles of artificial unilamellar DPPC vesicles, bovine
lung surfactant extract, E. coli membranes, and B. subtilis membranes. Tran-
sition peaks associated with protein unfolding are shaded in gray. The dotted
line indicates T � 37°C, which is the bovine body temperature and the growth
temperature of E. coli and B. subtilis.
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and 6. The parameters used are given in ref. 2. It was further
assumed that the total melting enthalpy and elastic parameters of
the lung surfactant are comparable to those of DPPC because
DPPC is the major lipid component of lung surfactant.

Solitons. We now consider 1D sound propagation along a cylindrical
membrane with coordinate x. If the membrane is a long and narrow
cylinder, we can reduce the problem to propagation in one direc-
tion, x. In the absence of dispersion, sound propagation is governed
by the equation

�2

�t2 �� A �
�

�x � 1
� S

A�� A� �

�x
�� A��, [4]

where ��A � �A � �0
A is a function of x and t. If the compressibility

is approximately constant and if ��A �� �0
A, this reduces to

�2

�t2 �� A � c0
2 �2

�x2 ���A, [5]

where c0 � 1�	�0
A �S

A is the velocity of small amplitude sound.
Recall, however, that the lateral compressibility �S

A depends
strongly on ��A if one is close to a transition in the membrane. We
thus expand

c2 �
1

� A� S
A � c0

2 � p�� A � q��� A2 � . . . [6]

where ��A � �A � �0
A with �0

A as the equilibrium lateral density.
Because the compressibility at 5 MHz is always smaller than the
zero frequency compressibility (approaching the isothermal com-
pressibility), we obviously find dispersion in the system, which
renders the sound velocity frequency-dependent. For the data for
unilamellar DPPC vesicles shown in Fig. 2 (low-frequency case), we
obtain c0 � 176.6 m�s, p � �16.6 c0

2��0
A, and q � 79.5 c0

2�(�0
A)2 with

�0
A � 4.035 � 10�3 g�m2, assuming a bulk temperature of T � 45°C.

For the corresponding lung surfactant data we obtain c0 � 171.4
m�s, p � �6.86 c0

2��0
A, and q � 32.32 c0

2�(�0
A)2 with �0

A � 4.107 �
10�3 g�m2, assuming a bulk temperature of T � 37°C.

Higher frequencies result in higher propagation velocities, v,
because the isentropic compressibility is a decreasing function of
frequency as shown in Fig. 2. We will approximate the dispersive

effects discussed above by introducing a dispersive term,
�h�4��A��z4 with h � 0.

The equation governing sound propagation is then

�2

�t2 �� A �
�

�x ��c0
2 � p�� A � q��� A2

�

�x
�� A� � h

�4

�x4 �� A.

[7]

This equation is closely related to the Boussinesq equation (22, 23).
For periodic low-amplitude solutions with ��A � �0

Asin(�t � kx), we
thus obtain the dispersion relation

v2 �
�2

k2 � c0
2 � hk2 � c0

2 �
h�2

c0
2 . [8]

The sound velocity thus increases with increasing frequency as
required by the experimental observation of decreasing compress-
ibility with increasing frequency.

We now consider the possibility of propagating solitons and seek
solitonic solutions of the form ��A(z) with z � x � vt. Eq. 7 can be
rewritten as

v2
�2

�z2 �� A �
�

�z ��c0
2 � p�� A � q��� A2

�

�z
�� A� � h

�4

�z4 ��A.

[9]

Let us further assume that the solitons are localized and vanish for
�z� 3 �. This allows us to perform two integrals immediately to
obtain

h
�2

�z2 �� A � �c0
2 � v2�� A �

1
2

p���A2 �
1
3

q��� A3. [10]

Note that the desire for localized solutions requires that �v� � c0
(otherwise the density pulse does not decay to zero faraway from
the pulse maximum) for which ��A �exp[�	(c0

2 � v2)�h �z�] as
�z� 3 �.

Now multiply both sides of Eq. 10 by �(��A)��z and integrate
once more to yield

h� �

�z
�� A�2

� �c0
2 � v2��� A2 �

p
3

��� A3 �
q
6

��� A4. [11]

Fig. 2. Thermodynamic data for DPPC vesicles and lung surfactant. (Left) Heat capacity of DPPC large unilamellar vesicle (Top), lateral area density, �A (Middle),
and the corresponding lateral compressibility (Bottom) (isothermal area compressibility, solid curve, corresponding to a low-frequency case and adiabatic area
compressibility, dotted line, corresponding to a 5-MHz ultrasonic experiment), as calculated from the heat capacity. (Center) The lateral sound velocity c2 �
1��SA�A [m2�s2] for the low-frequency and the 5-MHz case, as a function of membrane area density, �A [g�m2] at T � 45°C. (Right) c2 profiles for lung surfactant
at T � 37°C calculated from the heat capacity in Fig. 1.
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The message of Eq. 11 is clear. The soliton profile must have a
maximum [at which �(��A)��z � 0], and it must be symmetric about
this maximum. Because both c0

2 � v2 and q are positive, p must be �
0 if we are to have an exponentially localized solution. Fortunately,
this is the case for the experimental examples given in Figs. 1 and
2. Moreover, Eq. 11 shows us that the maximum value of ��A

(��max
A ) is independent of h. At the maximum, the left side of Eq.

11 is 0, and the right side can be solved for ��A. When v is very close
to c0, we see that ��max

A � 3(c0
2 � v2)��p�. In other words, soliton

amplitudes become small as v3 c0. However, if v is too small, �z��A

will not vanish, ��A will not have a maximum, and solitons will not
exist. This occurs when the right side of Eq. 11 has only one solution
for ��A:

vlimit
2 � � c0

2 �
p2

6q� [12]

with an amplitude of

��max,limit
A �

�p �
q

. [13]

In the case of unilamellar DPPC vesicles (Fig. 2), these relations
imply that vlimit � 0.650 c0 � 115 m�s and ��max,limit

A � 0.209 �0
A. In

the case of lung surfactant we obtain vlimit � 0.8702 c0 � 149 m�s,
and ��max,limit

A � 0.212 �0
A. This minimum velocity soliton has the

largest maximum value of ��A. At maximum amplitude the mem-
brane is forced partially through the melting transition.

Given a value of the dispersion parameter h, soliton profiles can
be calculated by solving Eq. 11 numerically. The only effect of h is
to set the linear scale of the soliton, and we have set h � 2 m4�s2

to produce pulses of a few centimeters width as found in some
nerves. Resulting soliton profiles are shown in Fig. 3 for several
velocities. We stress that dispersion is necessary for the existence of
solitons and is clearly present in the data of Fig. 2. Although the
specific form of the dispersive term in Eq. 7 is ad hoc, we have
confirmed that other forms yield soliton profiles strikingly similar
to those of Fig. 3.

Each of the solitons shown in Fig. 3 has an associated energy.
The precise soliton shape depends on the energy of the excitation.
It can be seen from Fig. 3 that the width of the soliton increases
as v approaches vlimit, and the maximum amplitude approaches
��max,limit

A . As a result, a soliton becomes arbitrarily broad as more
energy is provided without changing the shape of its tail, maximum
amplitude, or velocity. For sufficiently large excitation energies,
only maximum amplitude solitons will propagate. They correspond
to 21% area density change at maximum for both DPPC large

unilamellar vesicles and lung surfactant. The total area change in
the transition of DPPC is 24.6% (2), which means that, at the peak
maximum, the soliton forces the membrane �85% through the lipid
melting transition. The energy density of a soliton has both potential
and kinetic energy contributions and can be calculated by using a
Lagrangian formalism (24). The energy density is given by

esol �
c0

2

�0
A ���A2 �

p
3�0

A ���A3 �
q

6�0
A ���A4. [14]

The total soliton energy is the integral over dz. Given the empirical
determination of the compression modulii used, this energy in-
cludes contributions from the electrostatic potential, which is a
consequence of compression if the membrane is asymmetrically
charged. We do not know the charge asymmetry of biological
membranes. However, we can assume a maximum voltage change
at the peak of the soliton, V0, which can in principle be determined
experimentally. We therefore assume that the capacitive energy of
a membrane is a consequence of compression and the accompa-
nying voltage change. In the low potential limit of the Gouy–
Chapman theory (relevant for medium to high ionic strength
conditions and a small fraction of charged lipids), the membrane
potential is proportional to the charge density and hence to the
density change, ��A (25). We assume that the capacitive energy
density is given by

ecap �
1
2

C �� V0��A

��max,limit
A � 2

. [15]

Volume changes in lipid transitions are significantly smaller than
area changes. Because the membrane density changes in the soliton,
the membrane thickness must also change. For lipid membranes,
the area change is proportional to the volume change and the
thickness change. The volume change when going through the
transition is 4.7% for DPPC, the corresponding area change is
24.6%, and the thickness change is �16% (corresponding to �7.4
Å). If the solitons at maximum display an area density change of
21% (corresponding to 85% of the transition), the thickness change
must be of the order �6.4 Å. This distortion results in a change in
the thickness of a membrane cylinder of �12.8 Å. Voltage changes
and thickness changes should be proportional.

Discussion
We have discussed the influence of the melting transition on the
propagation of sound and isentropic waves in the plane of the
membrane. If a membrane is slightly above the melting tempera-
ture, the response to compression is an initial lowering of the elastic

Fig. 3. Soliton profiles. (Left) Soliton pro-
files for the DPPC large unilamellar vesicle
membrane at T � 45°C obtained for veloc-
ities between v � 0.48 and 0.8 c0. Larger
profiles correspond to smaller velocities.
The largest profile is essentially the limiting
soliton. (Right) Soliton profiles for lung sur-
factant at T � 37°C obtained for velocities
between v � 0.83 and 0.95 c0. The maxi-
mum amplitude of the limiting soliton
is very close to that found for the DPPC
membrane.
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modulus, followed by a steep increase. Solitons exist as a conse-
quence of a balance between nonlinear and dispersive effects.
Nonlinearities are clearly present in the empirical compression
modulus (Fig. 2). Dispersion effects, approximated here by
�h�4��A��z4, are related to the experimental frequency depen-
dence of sound velocities. Both the form and magnitude of this term
can be checked experimentally by investigating the velocity of small
amplitude sound. The value of h adopted here and the dispersion
relation �2 � c0

2k2 � hk4 suggest an increase in the sound velocity
of �4% at a frequency of 5 kHz. In 3D experiments (5, 6), the sound
velocity is known to be approximately constant well above and
below the transition. Within the transition, the compression mod-
ulus at 5 MHz is drastically reduced in comparison with the
isothermal (or low frequency) case. The frequency dependence of
lipid membranes close to melting transitions was investigated by
Mitaku and Date (26). Although they confirmed a pronounced
frequency dependence, appropriate data are unavailable in the ms
regime. We emphasize that, given experimental confirmation of the
dispersive term, the soliton profiles can be predicted uniquely as
shown above.

Our calculations have been performed for a quasi-1D cylinder
slightly above the cooperative melting transition. As biological
examples we chose lung surfactant (which exists as a surface film on
lungs in a bilayer�monolayer equilibrium) and E. coli and B. subtilis
membranes (which display similar lipid melting features slightly
below body or growth temperature). Although we have no direct
data on the melting of nerve axon membranes, the biological
implications of such a phenomenon seem to be particularly striking
regarding the propagation of the action potential.

The resting potential of nerve membranes is about �70 mV. It
is the consequence of pronounced differences of ion concentrations
inside and outside of the cell (Nernst potential), e.g., �400 mM K�

inside and only 20 mM K� outside of the squid giant axon. The
nerve pulse or action potential is associated with the propagation
of a voltage pulse along a cylindrical membrane. Hodgkin and
Huxley (18) considered the nerve membrane simultaneously as a
capacitor and a conductor, and they related the pulse to the opening
and closing of specific protein channels (sodium and potassium
channels in squid axons) that alter the membrane potential in a
voltage- and time-dependent manner. This theory was supported by
the discovery of localized ion fluxes by Neher and Sakmann (28) by

using the patch–clamp technique. Their microscopic findings seem
consistent with macroscopic steady-state voltage clamp measure-
ments. In 1998, the K� channel was crystallized by MacKinnon and
coworkers (29), and a mechanism for the selective transport of K�

versus Na� was proposed.
Nevertheless, a number of unanswered questions regarding nerve

propagation remain. Tasaki and coworkers presented data showing
that nerve pulses can also be obtained in the absence of sodium or
other monovalent cations in the external medium (30) and that
tetrodotoxin, believed to block the sodium channel, alters the
excitibility of nerves even in the absence of sodium (31). These
findings speak against the sodium channel as an indispensable
element responsible for nerve activity. Moreover, the Hodgkin–
Huxley theory (18) is based on equivalent circuits (Kirchhoff
circuits). It is not a thermodynamic theory, and its language
contains neither temperature and pressure nor entropy, heat, or
volume. Various authors have noted that the action potential is
accompanied by reversible mechanical dislocations, changes in
volume and temperature (11–16, 27, 32), and changes in fluores-
cence, turbidity, and birefringence (17). In particular, data indicate
that heat release is exactly in phase with the action potential (12,
13), and that there is no net heat release after completion of the
action potential. This finding suggests that the action potential is
isentropic. A. V. Hill’s early work on heat production in nerves is
considered in Hodgkin’s book (33), where it is noted that the heat
release and absorption response during the action potential is
important but is not understood (11). Given the many experimental
features not explained within the Hodgkin–Huxley theory, it is
surprising that it remains as unchallenged dogma. The thermody-
namic data on nerves reveal many similarities to an adiabatic wave.
The Hodgkin–Huxley theory is based on irreversible processes, i.e.,
fluxes of ions along their chemical potential gradient (across the
nerve membrane or along the axon). If one assumes as here that the
nerve pulse is related to the propagation of an isentropic pulse, a
temporal correlation between mechanical dislocations, forces, volt-
age, and heat release would not be surprising but rather an intrinsic
property of the pulse. Further, measured propagation velocities,
which are �100 m�s in myelinated nerves, find a satisfying expla-
nation. In nonmyelinated nerves, propagation velocities are usually
significantly slower.

Fig. 4. Properties of solitons and nerves. (a) Calculated total energy and capacitive energy densities stored in the soliton during the passage. Both functions
display similar time dependence. (b) Experimental heat changes during the action potential of garfish olfactory nerve (solid line) and the energy of charging
the membrane’s capacitor. Both functions display similar time dependence (adapted from ref. 13). (c) Calculated thickness change of a membrane cylinder
(displacement) and corresponding voltage changes. Both functions display identical time dependence. (d) Experimentally determined differential displacement
of the squid axon and the corresponding action potential (adapted from ref. 27). Both functions display identical time dependence. The different shape of the
profiles as compared with b are a consequence of the experimental setup.
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Our description of solitons is based on the assumptions (i) that
membranes are at slightly higher temperatures than the melting
transition of the membrane and (ii) that the system is quasi-1D.†
The first of these assumptions is clearly true for lung surfactant and
E. coli and B. subtilis membranes (Fig. 1), but we have not presented
evidence for such a transition in nerve membranes. However,
indications for such transition events accompanying the nerve pulse
can be found in the literature (e.g., ref. 34 and references therein
and ref. 35). Howarth et al. (12) discussed in detail the initial heat
release and the subsequent reabsorption, which is in phase with the
square of the voltage changes (13) as is the energy of a charging
capacitor (see Fig. 4b). They found typical temperature changes on
the order of 80 	K (pike olfactory nerve) and heat changes at the
maximum of the action potential of 200 	cal�g of nerve (garfish
olfactory nerve). They concluded that neither heats of ion dilution
nor heat dissipation by charging and uncharging the capacitor can
explain the magnitude of the measured heat response. In fact, they
concluded that the most likely explanation for the measured heat
is the reversible change of entropy (and zero net change of entropy)
of the membrane itself during the pulse, a feature that is exactly
shared by the present model of an adiabatically propagating density
pulse.

It is therefore of interest to compare the energy carried by
solitons with the electrostatic energy associated with the conven-
tional description of pulse propagation in nerves. In Fig. 4a we show
the energy density and capacitive energy calculated for a soliton in
slightly asymmetrically charged cylindrical membranes with prop-
erties similar to those of DPPC for v � 0.651 c0 with the corre-
sponding capacitive energy density calculated from Eqs. 11 and 14.
To estimate the latter, we note that the capacitance of the mem-
branes considered here is �C � 1 	F�cm2 and the maximum
voltage is approximately V0 � 100 mV. Using the parameters
introduced above for the isothermal compression modulus, we find
an electrostatic energy density of �0.05 ergs�cm2. This value is �1
order of magnitude smaller than the energy of the corresponding
soliton. If one assumes that the total energy density is the upper
limit for the reversible heat released during the pulse, our finding
is in good agreement with that of Ritchie and Keynes (13). In
another study, Iwasa and Tasaki (27) found a change in nerve
diameter of �10 Å during the pulse, in phase and with the same
shape as the voltage change (Fig. 4d). This value is nearly the same
as the value calculated here for the thickness change of the two
opposing membranes (12.8 Å) of a cylinder. Furthermore, we also
predict that voltage and thickness changes are in phase with a
similar functional form. Because the calculated soliton amplitudes

and the empirical shape of the solitons in DPPC membranes and
those in lung surfactant are nearly the same, we expect similar
energies and displacements in biological membranes as compared
with the model membranes. Our description of the voltage pulse is
based on simplifying assumptions regarding membrane properties.
Possibly important details, including the existence of magnetic field
responses (36) and the existence of free electrons in the membranes
(34, 37), have not been addressed.

The above suggests that the role of solitons in pulse propagation
can be confirmed or denied by experimental determinations of the
total (i.e., mechanical, electrostatic, heat, etc.) energy associated
with a single pulse. If the empirical pulse energy is greater than the
electrostatic energy, the conventional mechanism for pulse prop-
agation is insufficient and must be supplemented. This inequality,
in fact, has been shown by Howarth et al. (12). As mentioned, it had
been proposed earlier that transitions are involved in the nerve
pulse. Whereas Kinnunen and Virtanen (34) favor the view that the
membrane itself undergoes a transition, Tasaki (35) proposed a
sol–gel transition in the cytoskeleton of the nerve axon. It should
be noted that our theory can be applied to all 1D systems that
undergo transitions. While a sol–gel transition would also tend to
produce solitary solutions, the present contribution has focused
exclusively on a lipid membrane mechanism.

Conclusions
It is clear that the Hodgkin–Huxley model fails to explain a
number of features of the propagating nerve pulse, including the
reversible release and reabsorption of heat and the accompa-
nying mechanical, f luorescence, and turbidity changes. The most
striking feature of the isothermal and isentropic compression
modulus is its significant undershoot and striking recovery.
These features lead generically to the conclusions (i) that there
is a minimum velocity of a soliton and (ii) that the soliton profiles
are remarkably stable as a function of the soliton velocity. There
is a maximum amplitude and a minimum velocity of the solitons
that is close to the propagation velocity in myelinated nerves. In
addition, solitons propagate without distortion of their form. It
would be surprising if nature did not exploit these features.
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