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PREFACE

This volume consists of Lecture Notes based on lectures deliv-
ered at the Advanced School on “Mechanics and Electrodynamics of
Magneto- and Electro-elastic Materials” held at the International Cen-
tre for Mechanical Sciences (CISM) in Udine, Italy, in the period
June 29 to July 3, 2009. The course was presented by 5 lecturers,
from France, Germany, Italy, the UK and the USA.

The theory of electromagnetic continua has received considerable
stimulus in the last few years because of the rapid development of
elastomeric and polymeric materials that can respond dramatically to
the application of an electric and/or magnetic field. Such materi-
als, often referred to as ‘smart materials’, are being used in a variety
of applications, ranging from high-speed actuators, sensors, and ac-
tive car suspensions and vibration isolators, to artificial muscles, and
other biomedical applications. The key point is that the mechanical
properties of the materials can be changed rapidly and substantially by
externally applied electromagnetic fields. Thus, the coupling between
mechanics and electromagnetism is both strong and highly nonlinear.
Mathematical and computational methods pervade research, develop-
ment, testing, and evaluation problems encountered by researchers in
the field of smart materials, and associated modelling issues have a
fundamental role in the analysis of problems that arise in such com-
plex materials.

Against this background the objective of this volume of lecture
notes is to provide a state-of-the-art overview of the nonlinear contin-
uum theory of both electro- and magneto-sensitive materials, theories
that are applicable, in particular, to elastomers and polymers. This
includes mathematical and computational aspects of the modelling of
these materials from the point of view of material properties and the
‘smart-material’ control of their mechanical properties.

The first chapter includes a historical perspective of the general
development of electromagnetic theory and its application to the me-
chanics of continua, including discussion of the notions of electro-
magnetic forces, internal stresses and configurational forces. This is
followed by two chapters which deal separately with the fundamen-
tals of electrostatics and magnetostatics, through to the coupling with
continuum mechanics to produce general theories of nonlinear elec-



troelasticity and magnetoelasticity. In each case the necessary back-
ground from continuum mechanics is included, and constitutive laws
describing electro-active and magneto-active deformable materials are
developed and representative boundary-value problems are analyzed.

The last three chapters focus on different aspects of the interaction
of mechanics and electric fields. There is a detailed analysis of the
reduction from the three-dimensional equations of nonlinear electroe-
lasticity to a two-dimensional model of an electroelastic membrane
and the illustration of the theory for a particular membrane prob-
lem. Then follows a development of the necessary ingredients for the
computational solution of boundary-value problems in nonlinear elec-
troelasticity using a combination of the finite element method and the
boundary element method, and example results are provided by way
of illustration. The final chapter is concerned with both the static and
dynamic response of a special class of materials, nematic elastomers,
and summarizes recent developments in mathematical, computational
and experimental aspects of their electro-mechanical coupling.

The combination of fundamental theory with application to pre-
cisely formulated, experimentally feasible problems, together with nu-
merical simulation and the exploration of open questions remaining
in the underlying framework of continuum electrodynamics results in
a unique volume of lecture notes that is not available elsewhere.

We have pleasure in thanking our colleagues, Gérard Maugin, Luis
Dorfmann, Paul Steinmann and Antonio DeSimone, for presenting
their lectures and for preparing chapters for this volume. To the
participants, who contributed to lively discussions we offer our grate-
ful thanks. Special thanks are due to the Rector of CISM, Profes-
sor Giulio Maier, for his encouragement, enthusiasm and hospitality,
and to Professor Paolo Serafini, Executive Editor of CISM, for his
encouragement to publish these lecture notes. The assistance of the
office staff at CISM was also much appreciated.

Ray Ogden
David Steigmann
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Electromagnetics in Deformable Solids

Gérard A. Maugin
Institut Jean Le Rond d’Alembert

Université Pierre et Marie Curie, Paris, France

E-mail: gerard.maugin@upmc.fr

Abstract. This series of lectures deals with the basics of electro-
magnetics in matter, first from point particles and then for a general
continuum subjected to finite strains. The emphasis is placed on the
notions of electromagnetic forces, momentum and stresses, on the
general thermomechanical framework, and on applications to elec-
troelasticity and magnetoelasticity at different scales, in particular
with the introduction of the notions of internal stresses, electromag-
netic internal variables of state, homogenization, polycrystals and
configurational forces.

1 Introduction

1.1 Basic Aspects: Maxwell, Heaviside, Lorentz: Physics versus
Electrical Engineering

In a time of rapid evolution of the conception of devices exploiting multi-
physical couplings and of the required solution of problems posed by such de-
vices, we must inevitably deal with the construction and analysis of physico-
mathematical models where electro-magneto-mechanical interactions are at
play. In spite of many works that elaborated on the matter in the past,
there are still vivid discussions on how to couple the mechanics of con-
tinua and electromagnetic fields in a harmonious whole. This is presently
marked by the publishing of papers that often ignore what was previously
accomplished. Indeed, looking back upon previous achievements we must
distinguish between different periods.

The first half of the 19th century is the time of the land-clearers such as
Ampère, Faraday, Gauss, Poisson, and Oersted. The second half of the 19th

is the time of unification in a grand scheme involving electricity and mag-
netism on equal footing, and culminating in the works of Kelvin, Weber,
Helmholtz, and above all, Maxwell (1873) and Heaviside (1892) (to whom
we owe the presently used form of Maxwell’s equations). In parallel, coupled

R. W. Ogden et al. (eds.), Mechanics and Electrodynamics of Magneto- and Electro-elastic

 Materials,   © CISM, Udine 2011



2 G.A. Maugin

effects of the electromechanical, magnetomechanical and galvano-magnetic
types where discovered, among which electric conduction, piezoelectricity
(Curie brothers) and magnetostriction (Joule) are still those that steer at-
tention because of the many received applications. Then there followed a
long period, early and first part of the 20th century, during which many rel-
evant discussions were devoted to the relativistic framework, while electrical
engineering took the front with applications to energy productive or trans-
forming machines and to macroscopic electromechanical devices. It is only
in the second part of the 20th century that we witness an indepth thinking
about the continuum representation of multiphysical couplings with works of
Truesdell and Toupin (1960), Brown (1966), Mindlin (1972), Nelson (1979),
Eringen (1980), Tiersten (1990), to which we associate ourselves (Maugin
and Eringen, 1977; Maugin, 1988; Eringen and Maugin, 1990) as we clearly
agree with many of these developments, in particular with due considera-
tion of interaction forces, and this in a pre fast-computer age. In parallel
one must account for the constructive works of physicists such as Lorentz
(1909) and De Groot and Suttorp (1972). Here we cite essentially books
in which the provided material is rationally re-organised and not the many
research papers which may have preceded these.

Much more recently new formal developments have appeared that often
ignore, or are less physically rooted, than the just mentioned developments.
Among these we note, e.g., the book of Kovetz (2000) and research papers by
Dorfmann and Ogden (2003, 2004, 2005, 2006), Steigmann (2004), Ericksen
(2007, 2008), Kankanala and Triantafyllidis (2008), Otténio et al. (2008),
and probably others that we overlooked.

Here, in the light of above-mentioned references, we revisit the central
notion of interactions between the mechanical system and the Maxwellian
concepts which were a priori separated, the general agreement being that
this cannot be just a linear superimposition.

The thermomechanics of solely deformable material continua and the
electromagnetism of vacuum are two well established bodies of knowledge.
The main question arises when material continua and electromagnetic fields
co-exist spatially. It is then agreed upon that the relevant Maxwellian fields
in matter, magnetic field H and electric displacement D differ from the
characteristic electromagnetic fields of vacuum, the magnetic induction B
and the electric field E, in such a way that with appropriate electromagnetic
units (so-called Lorentz–Heaviside units) we have the equations

H = B − M, D = E + P, (1)

where M and P are the magnetization and electric polarization per unit vol-
ume, fields that differ from zero only in magnetized and electrically polarized
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matter, respectively, i.e. when the celebrated set of Maxwell’s equations in
a fixed laboratory frame reads in full generality, according to Heaviside,

∇× E +
1
c

∂B
∂t

= 0, ∇· B = 0, (2)

and
∇× H − 1

c

∂D
∂t

=
1
c
J, ∇· D = qf , (3)

where c is the velocity of light in vacuum, J is the electric current vector,
and qf is the density of free electric charges, the first set (2) being valid ev-
erywhere and yielding the notion of electromagnetic potentials. In general,
to close the system of field equations (1)–(3), we are to be given electromag-
netic constitutive equations, e.g., to give an idea to the reader, functional
relations of the type

M = M(H, ·), P = P(E, ·), J = J(E, ·), (4)

where the dots stand for some other variables such as temperature or a
strain in a deformable solid. While other possibilities exist, the selection (4)
of dependent variables is not gratuitous. It pertains to the characteristic
electromagnetic fields of matter. Several remarks are in order. First, by
taking the divergence of (3)1 and accounting for (3)2, we obtain the law of
conservation of electric charge:

∂qf

∂t
+ ∇· J = 0, (5)

a strict conservation law. Second, by a usual manipulation, one also deduces
from (2)–(3) an energy identity called the “Poynting-Umov theorem”, such
that

H · ∂B
∂t

+ E · ∂D
∂t

= −J · E −∇· S, S ≡ cE × H, (6)

without any hypothesis concerning the electromagnetic constitutive equa-
tions.

Third, if we are in a vacuum (for which the three quantities in (4)
vanish identically), long before the proof of her “invariance” theorem by
E. Noether, Maxwell proved the existence of the following vectorial strict
conservation law:

∂pem.f

∂t
− div tem.f = 0, (7)

wherein the electromagnetic momentum (in vacuum) and the so-called (sym-
metric) Maxwell stress tensor (stress tensor of free electromagnetic fields)
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are defined by

pem.f =
1
c
E × B, tem.f = E ⊗ E + B ⊗ B − uem.f 1,

uem.f =
1
2

(E2 + B2),
(8)

where the last quantity, uem.f , is the electromagnetic energy of free fields
per unit volume. This is a peculiar expression that holds here because of
the inherent linearity of the electromagnetic constitutive equations (H = B,
D = E, J = 0) in vacuum. The latter serves as a (nonpolarized) medium
of comparison for other electromagnetic media (an idea that will be suc-
cessfully translated into mechanical behavior by J. R. Willis for studying
effective properties of composites and deviations from a standard homoge-
neous electric model). Dealing with energy in a magnetized, electrically
polarized, and conducting material in electromagnetism is a much more
subtle matter as shown by the equation (6). The latter can be integrated
in a usual conservation form for a global volume only if the electromagnetic
constitutive equations are linear and the body is rigid. Indeed, with simple
constitutive equations B = μH, D = εE, for a rigid body occupying vol-
ume V bounded by regular boundary ∂V , of unit outward pointing normal
n, from (6) we would have the global balance of electromagnetic energy

d
dt

∫
V

uem.m dV = −
∫

V

J · E dV −
∫

∂V

n · S dA, (9)

with
uem.m =

1
2

(εE2 + B2/μ) =
1
2

(E · D + B · H). (10)

But this is generally not true as an expression for electromagnetic energy
in an arbitrary deformable solid where (i) the electromagnetic constitutive
equations may be strongly nonlinear and may even be dissipative (e.g., with
relaxation, hysteresis); (ii) electromagnetic fields do not constitute an iso-
lated thermodynamical system and they are in strong interaction with the
deformation field. A consequence of this fact is that, if (6) is always true, it
does not constitute a local statement of energy conservation for the whole
mechanical-plus-electromagnetic system (sorry, the “plus” may be mislead-
ing with a connotation of simple “addition”). Similarly, equation (7) does
not constitute an equation for conservation of so-called canonical momen-
tum for the whole system. Much more work is required to reach this general
result. What is remarkable is that, in spite of these words of caution, many
authors have a natural tendency to think of expression such as (10)2 as a
starting point in any electromagnetic continuum. This is particularly true in
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relativistically invariant theories where the a priori viewpoint of Minkowski
concerning electromagnetic momentum and electromagnetic stress tensor
(there the energy-momentum tensor) has been damaging. But Minkowski’s
reasoning is not based on a sophisticated physical model of field-matter in-
teractions. The same must be said of Abraham’s proposal (see all these in
Maugin and Eringen, 1977; also Eringen and Maugin, 1990, pp. 62–64).
This is where we fully agree with Nelson (1979), Tiersten (1990), and also
Livens (1962). The same remark also applies concerning another energy
quantity such as a Lagrangian density per unit volume. The density

�em.f =
1
2

(E2 − B2) (11)

strictly applies only to electromagnetic fields in a vacuum although it was
proposed by authors such as Voigt, following Thomson and Maxwell, in
analogy with a “mechanical” Lagrangian with kinetic and potential contri-
butions. All this clearly means that part of the electromagnetic energy and
of Lagrangian densities is stored also in the internal/free energy or “matter”
Lagrangian for the combined mechanical-plus-electromagnetic medium that
includes the missing interaction terms that should be expressed in terms of
the essentially material fields (4).

One remark about the electric current. For all practical purposes, we
note that the Joule term J · E can be interpreted as a power expended by
an electric force. Indeed, we can write as an example

J · E = (q v) · E = (q E) · v = f · v, (12)

where f = q E is seen in statics, according to Lorentz, as the elementary
mechanical force acting on a point particle of electric charge q in an electric
field E. For a particle moving at velocity v, we have the Lorentz force

f = q E +
q

c
v × B = q Ẽ, Ẽ = E +

1
c
v × B, (13)

where the electric field Ẽ is called the electromotive intensity.

Relationship with electric engineering

* Faraday’s equation (2)1 relates the circuit voltage that appears when the
flux linkage varies in time, as in electrical generators. Indeed, by use of
Stokes’ theorem applied to a surface element S leaning on a circuit C, one
shows that the difference of potential is given by

e.m.f = − d
dt

∫
S

B · dS, (14)
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or

e =
dλ

dt
(15)

in terms of the flux linkage λ.

* Ampère’s law (3)1 relates the magnetic field that curls around a current
flux, corrected for unsteady values of electric fields (this last correction is
due to Maxwell; cf. the notion of displacement current). By use of Stokes’
theorem to a surface element S leaning on a circuit C, one finds, for a coil
of n turns of length �, the relation∫

S

H · d� = n I or H = n I/�, (16)

where I is the current.

* Gauss–Poisson’s equation (3)2 tallies the field lines emanating (hence the
divergence) from a distribution of charges.

* The last of Maxwell’s equations (2)2 reflects the circumstance that iso-
lated magnetic poles do not exist. As a consequence a line of magnetic
induction closes on itself. It does not “emanate” from a magnetic charge
distribution as the latter does not exist.

Ampère’s and Gauss–Poisson’s equations are not used as such in cir-
cuitry, but the law of conservation of charges (5) yields, by integration, the
circuitry equation

I =
dq

dt
, (17)

where q is the electric charge. Then the system (14)–(17) is closed by the
well known constitutive equations of passive circuit elements:

λ = LI (inductor),
q = C e (capacitor),
e = R I (resistor),

(18)

where L, C and R are an inductance, a capacitance, and a resistance, re-
spectively. The last of these represents the celebrated Ohm law. There
exist nonlinear generalizations of the constitutive equations (18). Added to
Kirchhoff’s laws of currents at nodes, the above set equations (14) through
(18) are all what one needs at the macroscale of electricity. Now we explore
the other extreme, what happens at the microscopic scale.
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2 Continuum Approach from Particle Approach:
Ponderomotive Force, Couple and Energy

2.1 Information from a Microscopic Model

Rich information about the interactions between the mechanical system
and electromagnetic fields in matter may be gained from a particle model
due initially to Lorentz (1909). It was taken over by Dixon and Eringen
(1964), Maugin and Eringen (1977) and Nelson (1979), to who we owe the
present formulation. This analysis consists in evaluating the total force,
couple and power acting on, or developed by, electromagnetic fields on the
elementary electric charges contained in a stable cloud or volume element,
and introducing the approximations of multipoles, a truncation of these at
a certain order, and a volume or phase-space average. Lorentz’s vision is
essentially that of a free space containing point charged particles (Figure 1).
To that purpose, each elementary electric charge δqα, α = 1, 2, . . . contained

���

���

���

������������

�
�

�

Figure 1.

in a volume element ΔV is acted upon by a Lorentz force (compare (13))

δfα = δqα

(
e(rα) +

1
c
ẋα × bα(rα)

)
, (19)
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where e and b are the electric field and magnetic induction at the current
placement rα of the charge δqα. The computation consists then in evaluating
the quantities (here, for the sake of simplicity, we adopt a simple volume
average, while De Groot and Suttorp use a relativistically invariant phase
average): ∑

α∈ΔV

δfα,
∑

α∈ΔV

(rα × δfα),
∑

α∈ΔV

δfα · ẋα, (20)

and then dividing by ΔV . On neglecting quadrupole contributions and
higher order multipoles, lengthy calculations (cf. Maugin and Eringen, 1977;
Eringen and Maugin, 1990) lead to electromagnetic source terms of force,
couple and energy per unit continuum volume:

fem = qf Ẽ +
1
c

(
J̃ + P∗)× B + (P · ∇) Ẽ + (∇B) · M̃, (21)

cem = r × fem + c̃em, (22)
wem = fem · v + c̃em · Ω + ρ hem, (23)

where r refers to the center of charges of the volume element, ρ is the matter
density, and v is the physical velocity, Ω is the vorticity Ω = (∇ × v)/2,
and we have set

qf (x, t) = (ΔV )−1
∑

α∈ΔV

δqα, (24)

P(x, t) = (ΔV )−1
∑

α∈ΔV

δqα ξα(x, t), (25)

M(x, t) = (ΔV )−1
∑

α∈ΔV

1
2 c

δqα ξα × ξ̇α, (26)

where ξα = xα(t)−x are internal coordinates vectors in ΔV . Note the lack
of symmetry between polarization and magnetization effects. We have also
defined the intrinsic electromagnetic sources of couple, energy and stress by
(here tr = trace; subscript s stands for symmetrization)

c̃em = P × Ẽ + M̃ × B, (27)

ρ hem = J̃ · Ẽ + Ẽ · P∗ − M̃ · B∗ + tr
(
t̃em (∇v)S

)
, (28)

and
t̃em = P ⊗ Ẽ − B ⊗ M̃ +

(
M̃ · B)1, (29)

where the following fields are those in a co-moving frame (Galilean approx-
imation; first of these is the conduction current per se):

J̃ = J − qf v, Ẽ = E +
1
c
v × B, M̃ = M +

1
c
v × P (30)
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and E and B are simple volume averages of e and b. The first contribution
in the r-h-s of (21) is none other than a “Lorentz force” (compare (19) and
(13)) since

fL = qf E +
1
c

(qf v) × B = qf Ẽ. (31)

Finally, a right asterisk denotes a so-called convected time derivative such
that

P∗ =
∂P
∂t

+ ∇× (P × v) + v (∇· P) =
dp
dt

− (P · ∇)v + P (∇· v). (32)

In principle, the above obtained source terms, once their origin forgotten,
have to be carried into the classical balance laws of a continuum (with a
possible non symmetric Cauchy stress), leaving however the internal/free
energy of the medium to depend on the electromagnetic fields. A remarkable
fact is that in spite of their farfetched outlook, some may be given a form
that reminds us of some standard expression (such as in (5)). For instance,
Maugin and Eringen (1977) have shown that (23) can also be written as

wem = J · E + E · ∂P
∂t

− M · ∂B
∂t

+ ∇(v (E · P)
)

= −∂uem.f

∂t
−∇· (S − v (E · P)

)
,

(33)

in which we identify some of the terms in (6) or a possible direct combination
with some of them.

Some identities. The electromagnetic volume force defined in (21) is
sometimes called the electromagnetic ponderomotive force, c̃em being then
the ponderomotive couple. In 1974, Collet and Maugin (1974) proved the
following remarkable identity at all regular material point:

∂pem

∂t
− div tem = −fem, (34)

where

pem = pem.f =
1
c
E × B, (35)

tem = tem.f + t̃em. (36)

Since we are dealing with nonsymmetric second-order tensors, we must spec-
ify that their divergence is taken on the first index. Simultaneously, the
ponderomotive couple is the axial vector associated with the skew part of
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t̃em. The latter vanishes together with the source terms in (21)–(23) outside
matter, and (34) reverts to (7) in a vacuum. Because of the source term
in its r-h-s equation (34) is not a conservation law for the whole physical
system. But its allows one to rewrite the balance law of linear momentum
for the whole continuum in a specific form (see Maugin, 1993, for these
developments). We can also rewrite (21) emphasizing the occurrence of an
effective Lorentz force feffL in the form

fem = feff
L

+ div t̃em, (37)

with (compare to (31))

feffL = qeff Ẽ +
1
c
J̃eff × B, (38)

where
qeff = qf −∇· P, J̃eff = J̃ + P∗ + c∇× M̃. (39)

We easily check that there holds the identity

∂pem

∂t
− div tem.f = −feff

L
. (40)

Equations (34) and (40) are compatible, but they may suggest different
ways to combine mechanics and electromagnetism in the balance of linear
momentum as it may be tempting to many researchers to consider feffL as
the primitive interaction force because effective charge and electric current
appear also in Maxwell’s equations (cf. Eringen and Maugin, 1990, p. 54)
as natural perturbations of the vacuum equations, e.g., (3) also read

∇· E = qf −∇· P, ∇× B − 1
c

∂E
∂t

=
1
c

(
J +

∂P
∂t

+ c∇× M
)

. (41)

These can be recast using convected field and time derivatives yielding
source expressions such as in (39).
Note: While the above-given results are obtained, a similar treatment of
Maxwell’s equations in vacuum with source terms due to the individual
electric charges, yield, after space average, the macroscopic equations (2)
and (3) – this was the basic idea of Lorentz.

2.2 Postulate of Equations Accounting for Information from a
Microscopic Model

This is the manner à la Newton–Cauchy. Global balances laws are writ-
ten for linear and angular momenta along with the first and second laws of
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thermodynamics, in which electromagnetic source terms as recalled above
are introduced. This is the viewpoint expanded in Maugin (1988) and Erin-
gen and Maugin (1990), and other authors, in great detail. Of course the
result depends on the microscopic model used to obtain the sources or else,
on an a priori and somewhat arbitrary choice for these sources (not our
viewpoint). The full application of the method in Maugin (1988) and Erin-
gen and Maugin (1990) shows its pertinence, albeit in spite of a complexity
arising in the description of stresses. The latter are not symmetric a priori
since there exists an applied couple (27), something that cannot be denied
as otherwise there would not exist such an evident effect as the compass
alignment with a magnetic field. But in the end the obtained thermome-
chanics proves to be satisfactory with an energy (internal or free-Helmholtz)
containing part of the interactions, a part of constitutive origin. Among the
results obtained in Maugin (1988) and Eringen and Maugin (1990) we note
the formula for the stresses t appearing in the local balance of linear mo-
mentum of a continuum (divergence of tensors taken on the first index; f =
body force such as gravity, ρ = actual matter density; v̇ = acceleration)

ρ v̇ = f + fem + div t, (42)

with a nonsymmetric Cauchy stress

t = tE + (tem.f − tem) = tE − t̃em, (43)

or a total symmetric (Cauchy) stress τ such that

τ = t + tem = tE + tem.f , (44)

where tE is a symmetric “elastic” stress such that, in components (here
symmetric and skewsymmetric parts)

tE

(ij) = t(ji) + t̃ em
(ji), tE

[ji] ≡ 0. (45)

To the same degree of generality as (42), the local forms of the energy
equation and inequality of entropy read (Eringen and Maugin, 1990)

ρ ė = tr
(
t (∇v)T

)− fem · v + wem −∇· q + ρ h, (46)

and
ρ η̇ ≥ ρ h θ−1 −∇· (q θ−1), (47)

where e, η, θ, q and h are the internal energy per unit actual mass, the
entropy per unit actual mass, the thermodynamic temperature, the heat
flux vector, and the external heat supply per unit actual mass, respectively.
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The electromagnetic energy “source” wem is given by (23) with expressions
(27) through (29) valid. Equivalent forms were given in (33). An other
equivalent expression is given by

wem = fem · v + ρ Ẽ · π̇ − M̃ · Ḃ + J̃ · Ẽ, (48)

where π = P/ρ is the electric polarization per unit mass. On introducing
the Helmholtz free energy function per unit mass

ψ = e − η θ, (49)

and substituting from (48), (49) and (46) in (47) we arrive at the so-called
Clausius–Duhem inequality

−ρ (ψ̇ + η θ̇) + tr
(
t (∇v)T

)
+ J̃ · Ẽ + ρ Ẽ · π̇ − M̃ · Ḃ− (q/θ) · ∇θ ≥ 0. (50)

In a now well established tradition, this is conceived as a constraint on
the formulation of constitutive equations for the fields (ψ, η, t, J̃, Ẽ, M̃,q).
The formulation (50) clearly emphasizes for electromagnetic processes the
role of independent variables (causes) played by the pair (Ẽ,∇θ), electric
polarization and magnetic induction for galvanomagnetic couplings, electric
polarization and magnetization effects respectively. Other sets of variables
may be selected for the last two effects (see Maugin, 1988). What is more
important here is that, in deformable solids, one often prefers to reformulate
the theory in terms of so-called material fields. To that effect we set

B̃ = JF F−1 · B, D̃ = JF F−1 · D, Π = JF F−1 · P = ρ0 F−1 · π, (51)

E = E · F, M̃K = JF F−1
Kp M̃p, MK = M̃i FiK, (52)

with
JF = detF, ρ0 = ρ JF , F = {FiK = xi,K} . (53)

We then check that the relations (1) translate in material components to

D̃K = JF C−1
KL EL + ΠK, HK = J−1

F CKL B̃L − ML, (54)

with
C = FT F = {CKL = xi,K xi,L} , C−1 = (C)−1. (55)

First and second Piola–Kirchhoff stresses are defined by

T = JF F−1 · t, S = T · F−T . (56)
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Similar definitions hold for Piola–Kirchhoff stresses associated with the
stresses tE and tem.f . Thus we write

TE = JF F−1 · tE, SE = TE · F−T , TF = JF F−1 · tem.f . (57)

We let the reader prove by way of exercise that eqns. (42) and (50) can be
rewritten as (here no body force)

∂

∂t
pt

R

∣∣∣∣
X

− divR

(
TE + TF

)
= 0, pt

R
≡ ρ0

(
v +

1
ρ c

E × B
)

, (58)

and

−(Ẇ + N θ̇) +
1
2

SE

KL ĊKL + EK Π̇K

−MK ḂK + JF

(
J̃ · Ẽ − (q/θ) · ∇θ

) ≥ 0,

(59)

where we have set
W = ρ0 ψ, N = ρ0 η. (60)

Once we have established constitutive equations for SE
KL, EK and MK, we

can return to the original Eulerian fields, including the Cauchy stress t. We
shall go further in the exploitation of the inequality (59) in the next section.

2.3 The Principle of Virtual Power

The application of the “principle of virtual power” or d’Alembert’s prin-
ciple consists in a weak formulation in mathematical terms, as its allows one
to envisage virtual velocity fields as test functions (in the sense of mathemat-
ical analysis and generalized functions). We have advocated this formulation
as the most powerful one in the construction of complex electromagnetome-
chanical behaviors (Maugin, 1976, 1980), when the set of virtual velocity
fields is enlarged so as to include velocities of characteristic electromagnetic
fields, magnetization and electric polarization, and this to the desired gradi-
ent order for weakly nonlocal theories. The principle essentially replaces (i.e.
is strictly equivalent to) global statements of the balance laws of continuum
mechanics and those additional equations that will govern the magnetiza-
tion and electric polarization fields in addition to Maxwell’s equations. It
provides a sure and safe way to do this by following simple obvious rules
even though in presence of dissipation processes. Let us illustrate this with
the cases already considered in previous paragraphs.

The general principle formally reads

Pinertia
∗ = Pinternal

∗ + Pbulk
∗ + PBoundary

∗, (61)
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where a right asterisk means the value taken in virtual fields, and the four
powers in (61) represent, respectively, the power of inertial forces, the power
of internal forces, the power of data in the bulk of the body V , and the
power of data at the boundary ∂V of the body. “Internal forces” are those
quantities for which one needs to produce a constitutive equation. This
includes stresses but also here additional fields representing the interactions
between the Maxwellian electromagnetic fields and the deformable body.
Principle (61) must hold for any element of volume and surface and any
virtual velocity field. We shall formally introduce factors belonging to the
dual set of the set {v∗, (π̇)∗, (μ̇)∗}, where π and μ are electric polarization
and magnetization per unit mass in the actual configuration at time t, i.e.

π = P/ρ, μ = M̃/ρ. (62)

To have an idea of what should be put in Pbulk we need to recall that up
to the Joule term and a term of the form ρ d(μ · B)/dt that can be left to
be integrated in the time derivative of the internal energy density, it can
be shown that the source term (23) is equivalent to the expression (Maugin
and Eringen, 1977, no electric conduction)

wem = fem · v + ρ Ẽ · π̇ + ρB · μ̇, (63)

where real velocity fields will be replaced by virtual ones. As to Pinternal,
it is endowed with the fundamental property that it should vanish if the
generalized rigid-body motion of V is a rigid body motion per se, i.e. after
Killing’s theorem, sym(∇v∗) = 0, and the local interactions present in
Pinternal

∗ are frozen in (keeping a constant modulus and rotating at the
local rotational velocity of the rigid body motion). A consequence of this
statement is that Pinternal

∗ should a priori be written as a continuous linear
form on a set of objective virtual velocities (Maugin, 1980). Introducing
factors {σji = σij , E

L
i , BL

i }, an example of such a form is given by

Pinternal
∗ = −

∫
V

(
σji (vi

∗),j − ρEL

i (DJ π)i
∗ − ρBL

i (DJ μ)i
∗) dV, (64)

where, e.g.,

(DJ π)i
∗ = (π̇)i

∗ − Ωij
∗ πj , Ωij

∗ =
1
2
(
(vi

∗),j − (vj
∗),i

)
, (65)

relates to a virtual Jaumann time derivative, and to a virtual vorticity
tensor.

The power Pinertial here contains only acceleration forces, i.e.

Pinertia
∗ =

∫
V

(
ρ v̇
) · v∗ dV. (66)
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On applying (61) to any virtual field and any element of volume and surface,
we are led to the following field equations:

ρ v̇ = f + f em + div t, (67)

Ẽ + EL = 0, B + BL = 0, (68)

with

tji = σji + EL

[j Pi] + BL

[j M̃i], σji ≡ t(ji), (69)

at any regular point in V . The set (67)–(69) is equivalent to the set formed
by (42) and (43) although with a different decomposition of the symmetric
part of t. Here,

t(ji) = σji, t[ji] = −(P[j Ei] + M̃[j Bi]

)
(70)

and

σji = tE

ji −
(
P(j Ẽi) + M̃(j Bi)

)
. (71)

We do not pursue further this simple example. However, we note the
rich potentialities offered by equations of balance such as (68) between a
Maxwellian field and an interaction field for which we need a constitutive
equation. In particular, equations such as (68) will contain additional terms
(inertia, divergence of a tensor) when a more complicated interaction scheme
is considered in the expression (64) – i.e. higher order gradients of μ and
π as is the case in ordered dielectrics (ferroelectrics) or ferromagnets. The
inertial contribution (66) will most probably contain additional terms in-
volving the dynamics of π and μ. Note also that the “local” fields EL and
BL are not restricted to thermodynamically recoverable phenomena; they
may present dissipative contributions (relaxation, hysteresis). All this is
documented in great detail in 41;12;39;40 and hereafter. Nonetheless, one
must recognize in equations such as (68), the pioneering proposals of Toupin
(1956) and Tiersten (1964) that inaugurated the rich development period
of the 1960s–1980s.

3 Continuum Thermomechanics of Electromagnetic
Solids: Standard Formulation

Now we examine the consequences of (59) for various simple classes of ma-
terials.
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3.1 Nondissipative Materials

A. For hyperelastic dielectric solids (qf = 0, M̃ = 0, J̃ = 0), (59)
reduces to the equality

−(Ẇ + N θ̇) +
1
2

SE

KL ĊKL + EK Π̇K = 0, (72)

from which there follows the constitutive equations

SE

KL = 2
∂Ŵ

∂CKL

, EK =
∂Ŵ

∂ΠK

, N = −∂Ŵ

∂θ
, (73)

wherein
W = Ŵ (CKL, ΠK, θ). (74)

Accordingly, the following constitutive equations are obtained (Mau-
gin, 1988; Eringen and Maugin, 1990):

tE

ji = 2 J−1
F FjK FiL

∂Ŵ

∂CKL

, EK =
∂Ŵ

∂ΠK

, (75)

Then, after (43),

t = tE − P ⊗ Ẽ = tE − J−1
F F · Π ⊗ Ẽ, (76)

hence in components for the Cauchy stress

tji = J−1
F FjK

(
2

∂Ŵ

∂CKL

− ΠK

∂Ŵ

∂ΠL

)
FiL. (77)

B. For hyperelastic magnetized (insulating) bodies (qf = 0, P = 0,
J̃ = 0), (59) reduces to the equality

−(Ẇ + N θ̇) +
1
2

SE

KL
ĊKL − MK ḂK = 0. (78)

Following along the same path as in the case of dielectrics, we obtain
instead of (75)

tE

ji = 2 J−1
F FjK FiL

∂W

∂CKL

, M̃K = − ∂W

∂BK

= JF F−1
Kp M̃p, (79)

with
W = W (C,B, θ), B =

{
BK = Bi FiK

}
, (80)
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so that after (43)

t = tE + B ⊗ M̃ − (M̃ · B)1, (81)

and thus

tji = J−1
F FjK

(
2

∂W

∂CKL

− BK

∂W

∂BL

+
∂W

∂BQ

BQ C−1
KL

)
FiL. (82)

In these two examples the energy density is per unit reference volume but
we give the mechanical constitutive equation in the Eulerian configuration.
But the following remark is in order. Instead of Ŵ and W above, we could
have considered energies (up to the temperature dependence)

W = Φ̂(F,Π) and W = Φ(F,B). (83)

In the first case we note that (explicit derivative here means at fixed elec-
tromagnetic fields)

∂W

∂F
=
(

∂W

∂F

)
explicit

+
∂W

∂Π
.
∂Π
∂F

, (84)

so that with an explicit dependence on F through C for (75) we immediately
check that (77) is equivalent to

tji = J−1
F FjK

∂Φ̂
∂FiK

− Pj Ẽi, τji = J−1
F FjK

∂Φ̂
∂FiK

+ tem.f
ji . (85)

A similar proof holds for (82) which can be shown to be equivalent to

τji = J−1
F

FjK

∂Φ
∂FiK

+ tem.f
ji , (86)

where in (85) and (55) the corresponding reduced form of tem.f
ji has to be

used.
This play around with derivatives with respect to F was exploited in

(Maugin, 1993, pp. 186–189), and further by Trimarco and Maugin (2001).
Results (57) and (58) coincide with those of Dorfmann and Ogden (2003,
2004, 2005, 2006), who followed Kovetz (2000) in considering a dependency
of W on F. But there is more to this, as the tem.f

ji term in (85) or (86)
can also be derived from a potential. Indeed, in the case of electroelasticity,
it is readily shown that the electric energy of free fields per unit reference
volume can be written as (Nelson, 1979)

1
2

JF E2 =
1
2

JF E · C−1 · E, E = E · F. (87)
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Introducing then the augmented energy density

Ω̂ = Φ̂ − 1
2

JF E · C−1 · E, (88)

we let the reader show that

τji = J−1
F FjK

∂Ω̂
∂FiK

, (89)

while we can introduce a material electric displacement D by

D = JF C−1 E + Π = −∂Ω̂
∂E

. (90)

In the case of magnetoelasticity, the magnetic energy of free fields per unit
reference volume can be written as (Nelson, 1979)

1
2

JF B2 =
1
2

J−1
F

B · C ·B. (91)

The augmented energy density then reads

Ω = Φ − 1
2

J−1
F

B · C ·B, (92)

and we let the reader show that

tji = J−1
F FjK

∂Ω
∂FiK

, H = H · F = J−1
F C · B −M =

∂Ω
∂B

, (93)

equations in agreement with Dorfmann and Ogden (2004) and Otténio et
al. (2008). The general case of electro-magneto-elasticity can be treated in
the same manner, the corresponding energy and Lagrangian density of the
free fields per unit reference volume being such that (compare to (8)3 and
(11))

Uem.f =
1
2
(
JF E · C−1 · E + J−1

F B · C ·B),
Lem.f =

1
2
(
JF E · C−1 · E − J−1

F B · C ·B). (94)

Then all electromagnetic interactions in matter and the effects of free elec-
tromagnetic fields will have been integrated into a single augmented poten-
tial. This naturally leads us to make a digression concerning variational
formulations.



Electromagnetics in Deformable Solids 19

3.2 Variational Formulations

Variational formulations in the Hamiltonian-Lagrangian style are the
most economic formulations as they require only the postulate of a La-
grangian density. A drawback is the required knowledge of the behavior of
the material a priori (to specify the dependency of the density of energy
contained in the Lagrangian) and, contrary to the general method of vir-
tual power, they are limited to nondissipative effects. Still they are very
attractive in that they often provide the root for numerical implementa-
tion. Many of the now currently applied theories of electromagnetomechan-
ical interactions were first proposed under this form. This is the case of
the theory of finitely deformable, materially inhomogeneous, dielectrics in
quasi-electrostatics for which we can consider the Lagrangian density

� = �em.f + �matter =
1
2

J−1
F

E2 +
(

1
2

ρ0(X)v2 − W (C,Π;X)
)

(95)

per unit volume of a reference configuration, while for the theory of finitely
deformable, materially inhomogeneous, magnetized isolators in quasi-mag-
netostatics, we would consider the Lagrangian density

� = �matter + �em.f =
(

1
2

ρ0(X)v2 − W (C,B;X)
)

−1
2

J−1
F B2 + J−1

F M̃ · B,

(96)

where ρ0 = ρ JF is the matter density at the reference configuration. There
is no problem in coupling the two models (95) and (96) into a single one for
the full electrodynamics of nondissipative electro-magneto-deformable solids
except for the bulk of the writing (cf. Nelson, 1979; Maugin, 1993, Chapter
8; Trimarco and Maugin, 2001), in which we took notice of the second of
(10). Of course we avoid here the temptation to use a direct misleading
rewriting of the expression (28). Specific dependencies are given to the po-
tential energy W in both (95) and (96). We could have chosen dependencies
on electromechanical variables (F, E) and magnetomechanical variables (F,
B) respectively. We would then be led to introducing the augmented energy
densities Φ̂ and Φ, respectively. In the case of quasi-statics, this greatly fa-
cilitates the problem of studying electroelastic or magnetoelastic stability
(from the second variation of the potential) – cf. Otténio et al. (2008).

3.3 Internal Strains and Stresses

These notions are of great interest in thermoelasticity, electro- and mag-
neto-elasticity. By way of example, we consider the case of materially ho-
mogeneous isothermal magneto-elasticity (of soft ferromagnets) in which
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the free energy per unit reference volume is given by the simple sufficiently
regular function (in particular allowing for inversion)

W = W (F,M) (97)

where both deformation gradient F and material magnetization per unit
reference volume M are evaluated at material point X. Then we raise
the following question. Can we bring the formula (97) in a form that would
remind us of the response of a pure elastic body for which the energy depends
on a single argument, a deformation gradient. This can be achieved locally
at X by applying a local change of configuration K(X) so that we can write,
accounting for the concomitant change in volume

W = J−1
K Ŵ (F(K(M(X)))). (98)

This is an operation (thought experiment) introduced by 21 to deal with
material inhomogeneities. In the present case, we shall set Fμ = K−1, so
that (98) reads

W = JF μ Ŵ (Fe) = W̃ (F,Fμ), (99)

where we have introduced the “elastic” deformation “gradient”

Fe = F(Fμ)−1, (100)

so that we have the following multiplicative decomposition of F:

F = Fe Fμ, (101)

into two quantities of which none is a true gradient. Only F is integrable in
a displacement, while the elements in the right-hand side of (101) are called
“gradients” by abuse of language. Thus, Fμ is the magnetic “deformation
gradient”. We can also verify the following:

T =
∂W

∂F
=

∂W̃

∂F
, −∂W̃

∂K
KT = W IR − TF = b, (102)

where the last quantity will be later on (Section 6) identified as an Eshelby
material stress.

Internal strains are defined as those strains that exit in the absence of
imposed forces, and internal stresses are those stresses that are associated
with internal strains via the purely elastic response. Accordingly, internal
strains due to magnetization are in principle defined by T = 0, i.e.

∂W

∂F
= 0, ⇒ W (F = Fμ

intern,M) ⇒ Fμ
intern = F(M), (103)
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and thus
Tμ

intern =
∂W

∂Fe
, (104)

computed at Fe = Fμ
intern. But here some caution must be taken because

“deformation gradients” involve rotation contributions (think of the polar
decomposition). Indeed the above reasoning hints at the view that T is
the thermodynamical dual of F, so that one is tempted to choose T as the
natural variable stresswise. This choice would even be additionally sup-
ported by the fact that T is naturally related to the traction. But several
reasons make that this would be an illegitimate choice. First, T being a
two-point tensor field, it is not frame invariant as a tensor. Second, T is not
positive (or negative) definite, so that no polar decomposition applies to it.
As a result, basing on T as the only variable, the complementary energy
Wc could not be made depending on material quantities, as constitutive
laws are requested. Finally, a lack of uniqueness – which is potentially con-
tained in the last of (103) – for the inversion with strains could emerge even
in the presence of fixed tractions at the boundary and unique solution in
stresses. This lack of uniqueness is due to the indeterminacy of the finite
rotation R (see Ogden, 1984). For the appropriate choice of the stress ten-
sor and for a detailed discussion of this problem, the reader is referred to
this author. Thus the present reasoning should be done in terms of true
strains and conjugated stress tensors. The introduction of the complemen-
tary energy density Wc through a Legendre transformation allows one to
shift from strains to stresses as independent variables. We may consider the
second Piola–Kirchhoff stress S in such a way that the relevant Legendre
transformation reads as follows for an elastic material in finite strains:

W (S,E) = tr (S · E) − Wc(S), (105)

where E is not the electric field but the Lagrangian finite strain E = (C −
1R)/2. We have the reciprocal constitutive relations

E =
∂Wc

∂S
, S =

∂W

∂E
. (106)

In the magnetizable case Wc remains a function of the material magnetiza-
tion. Then we can expect that

∂W (E,M)
∂E

= 0 ⇒ Eμ
intern = E(M) =

∂Wc

∂S

∣∣∣∣
S=0

, (107)

and
Sintern =

∂W

∂E
(E = Eμ

intern). (108)
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In the case of small strains, the multiplicative decomposition reduces to an
additive decomposition because of the initial equation F = 1+(∇u)T ; (101)
is replaced by the small-strain version

ε = (∇u)S = εe + εμ, (109)

where only ε is the symmetric part of the displacement gradient.
In homogeneous anisotropic bodies and small strains, the Cauchy stress

is given by the simple expression

σ = L[ε] + λ[M ⊗ M] or σij = Lijkl εkl + λijkl Mk Ml, (110)

where the operators L and λ have the following symmetries

Lijkl = L(ij)(kl) = Lklij, λijkl = λ(ij)(kl). (111)

For isotropic bodies there are only two independent elasticity coefficients,
the Lamé parameters, and only two magnetostriction coefficients. Magne-
tostriction is a magnetoelastic coupling that exists for all material symme-
tries, to a smaller or larger extent of course. Natural piezomagnetism – a
linear magnetoelastic coupling – is a rare event, requiring the right combi-
nation of crystal and magnetic symmetries (cf. Maugin, 1988). Let L−1 the
inverse operator of L in R6 (due to the symmetries exhibited in (111)1, L is
a symmetric linear operator of R6 onto itself). Then the magnetic internal
strain is given by

εμ
ij = −L−1

ijkl λklpq Mp Mq, (112)

and
εij = L−1

ijkl σkl + εμ
ij = εe

ij + εμ
ij . (113)

Thus
W (ε,M) =

1
2

εij Lijkl εkl + εij λijkl Mk Ml, (114)

and
Wc(σ,M) = σij εij − W (ε,M). (115)

We can rewrite (110)2 as

σij = Lijkl

(
εkl + L−1

klpq λpqmn Mm Mn

)
= Lijkl

(
εkl − εμ

kl

)
, (116)

so that we can also consider that

σ =
∂Ŵ

∂ε
, Ŵ =

1
2

(ε − εμ) · L · (ε − εμ), (117)
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and

ε =
∂Ŵc

∂σ
, Ŵc(σ,M) =

1
2

σ : L−1 : σ + σ : εμ, (118)

εe =
∂W̆

∂σ
, W̆ (σ) =

1
2

σ : L−1 : σ. (119)

This is but one example of the inclusion of internal strains in the continuum
formalism. A similar formalism holds for internal strains due to electroe-
lastic couplings (electrostriction, piezoelectricity) and to thermoelasticity.
In the latter case, in the finite-strain-framework one is led to introducing a
“thermal deformation gradient” Fθ and in small strains a thermal strain εθ

such that, including magnetoelastic effects, (101) and (109) are replaced by
the equations

F = Fe Fμ Fθ and ε = εe + εμ + εθ. (120)

In isotropic media, εθ reduces to a dilatation (cf. Maugin, 1988). As to
εμ it is generally considered as isochoric. Hence trace εμ = 0. It must be
noted that εμ in classical magnetostrictive materials such as cubic Fe or
Ni is expressed as a tensor in terms of two nondimensional coefficients λ100

and λ111 – measured along the crystallographic axes [100] and [111] – and
the director cosines of the magnetization (cf. Du Trémolet de Lacheisserie,
1993). The order of magnitude is such as 10−5, hence small. It is only
in newly developed materials exhibiting so-called “giant magnetostriction”
that two orders of magnitude can be gained, becoming then competitive
with electroelastic internal strains.

Interesting as they are from some view point (e.g., in the theory of
material incompatibilities of E. Kröner (1958); remember the elements of
decomposition in (120) are not individually integrable into a displacement),
the couplings epitomized in decompositions (120) are not related to ther-
modynamically irreversible effects.

4 Dissipative Processes: Relaxation, Hysteresis

4.1 Standard Relaxation

As an illustrative example we select the case of the relaxation of electric
polarization. This is a standard approach in the sense that no further
variables and/or microstructure need be introduced. Indeed, the Clausius–
Duhem inequality (59) in a nonmagnetizable insulator (neither heat nor
electric conduction). Thus

−(Ẇ + N θ̇) +
1
2

SE

KL ĊKL + EK Π̇K ≥ 0. (121)



24 G.A. Maugin

On assuming that the dependent thermodynamic variable (W , N , SE
KL, EK)

may depend on the set (
θ, CKL, ΠK; ĊKL, Π̇KL

)
, (122)

and considering a linear dependence for mechanical and electric dissipative
processes we can have the following set of constitutive equations:

N = −∂W

∂θ
, Sν

KL
= SE

KL − 2
∂W

∂CKL

, E r
K

= EK − ∂W

∂ΠK

, (123)

Φ =
1
2

Sν
KL ĊKL + E r

K Π̇K ≥ 0, (124)

Sν
KL

= LKL

[
Ċ
]
, Π̇K = LK

[
Er
]
. (125)

For instance, we may have the following special case for the last of these

Π̇K =
χP

τP

(
EK − χ−1

P
ΠK

)
, (126)

an equation that also reads

τP Π̇K + ΠK = χP EK . (127)

The electric susceptibility χP and relaxation time τP could be function of
temperature. As to the first of (125) it obviously refers to viscosity of the
Kelvin–Voigt type. Another formulation of electric-polarization relaxation
would have followed if we had first performed an electric Legendre transfor-
mation of the free energy, i.e. replaced (121) by

−(Ẇ + N θ̇) +
1
2

SE

KL ĊKL − ΠK ĖK ≥ 0, W = W − ΠK EK. (128)

Then a standard exploitation of this would yield a relaxation of the electric
field rather than one of electric polarization. The precise physical truth may
be mixture of this and of (126) or (127) yielding, in the isotropic case, an
electric response with two relaxation times (cf. Maugin, 1995).

4.2 The Notion of Internal Variable of State

The mechanisms at work at a microscopic scale that are responsible for
the macroscopically observable irreversibilities, are far too complicated to
be accounted for as such. But it has been found expedient, in fact extremely
efficient, to represent these phenomena with the help of a few variables, well
identified by gifted observers and measurable by experimentalists, but not
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directly controlled by direct means. Accordingly, they can be listed, char-
acterized by a certain tensorial order, incorporated in the energy function,
but they produce no direct source term in the work of external forces both
in the bulk and at the boundary. Their only, but essential, virtue, is to dis-
sipate and, therefore, to be governed by the second law of thermodynamics.
From this discursive definition, such variables are called internal variables of
state. The richness and intricacies, but relative simplicity, of the irreversible
thermodynamics of internal variables of state (for short TIV) are exposed
in a book (Maugin, 1999). If α designates the ordered arrow of the com-
ponents of the relevant internal variables of state, then the corresponding
dissipation is given by

Φ = A.α̇, A = −∂W (., α)/∂α, (129)

where A is the thermodynamic force associated with α, and the dot between
A and α̇ stnds for the appropriate inner product between the two spaces of
“forces” and rates placed in duality. Application of the second law yields a
thermodynamically admissible relationship between A and α̇, hence a more
or less regular evolution equation for α. In a purely mechanical framework,
such a thermodynamical formulation, TIV, offers an efficient phenomeno-
logical representation of many irreversible phenomena such as the viscosity
of complex fluids, the plasticity and viscoplasticity of solids, damage, and
phase-transformation phenomena. In the case of electromagnetic continua,
relaxation and hysteresis of various types are obvious candidates for the
exploitation of TIV.

4.3 First Example: Dielectric Relaxation in Ceramics

We consider the Clausius–Duhem inequality (121), but the functional
dependence (122) is replaced by

W = W (C,Π, θ;Πint), (130)

where Πint is a material vector whose components are akin to an electric
polarization. On computing the time derivative of W and exploiting (121)
we obtain the laws of state as

N = −∂W

∂θ
, SE

KL = 2
∂W

∂CKL

, EK =
∂W

∂ΠK

, E int
K

≡ − ∂W

∂Πint
K

, (131)

along with the following residual dissipation inequality (compare (129)1)

Φ = E int
K Π̇ int

K ≥ 0. (132)
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As an example we may consider an energy of the following type (isotropic
body):

W = W1(C,Π, θ) + W2(Π,Πint), (133)

with

W2 =
1
2

a ΠK ΠK +
1
2

b
(
ΠK

− Πint
K

) (
ΠK

− Πint
K

)
. (134)

With proportionality between the two factors in (132), such a model yields
an electric relaxation in the form

τd Π̇int
K

= Π
K
− Πint

K
, (135)

where τd ≥ 0 is the dielectric (polarization) relaxation time. This time
is practically directly accessible to experiments in a study of shock-wave
propagation in dielectrics (see Maugin et al., 1992).

4.4 Second Example: Electromechanical Hysteresis in
Ferroelectrics

This thermodynamically admissible modelling is performed in analogy
with plasticity with work hardening. In this case we introduce two vectorial
internal variables (materials vectors), one of which, ΠR, will essentially
be the irreversible part of the electric polarization (analog of the plastic
deformation in the additive decomposition of strain in small strains), and
the other, Πint, will play a role analogous to that played by the work-
hardening variables in plasticity. Accordingly, they produce a dissipation of
the form

Φ = E
K Π̇R

K + Eint
K Π̇int

K
≥ 0, (136)

where

ΠR = Π − Πr, Eint
K

= − ∂W

∂Πint
K

, (137)

where Πr is the reversible electric polarization (the analog of the elastic de-
formation in small strains). A typical hysteretic behavior is obtained when
the dissipation (136) is assumed to be a non-negative (first-order) homoge-
neous function of the present time rates, the electric fields in (136) remain
in a convex domain in the space of “forces” (E, Eint), and we have satura-
tion in the polarization field ΠR. Such a model was extensively developed
by Bassiouny et al. (1988) and improved by many authors. An analogous
modelling of ferromagnetic hysteresis was developed before by Sabir and
Maugin (1990). A discussion of various forms of magnetic hysteresis may
be found in Maugin (1991, 1992, 1993). A finer modelling accounting for
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the domain structure of ferromagnets was started by Motogi and Maugin
(1993), and further developed by French authors (see Section 5 below).

5 Different Scales: Homogenization, Ferromagnetic
Polycrystalline Bodies

5.1 General Problem

There are about nine orders of magnitude in size between the atomic
structure and the macroscale of tools utilized in industry, e.g., between, the
ordered array of atoms and magnetic spins in a perfect ferromagnetic crystal
and the iron-nickel plates used in building transformers. Easily identifiable
scales in this problem are those of the atomic structure (10−9 meters), of the
magnetic domain, of the grain-monocrystal (10−6 meters), of the represen-
tative volume element (RVE) of a polycrystal (10−3 meters), and the indus-
trial scale of the order of 10−1–100 meters. Basic physical mechanisms are
really at the smallest scale having a quantum-physical justification (without
which magnetism would not exist at all). Macroscopically observed mag-
netoelastic couplings and hysteresis are far from this. Very few researchers
have endeavoured to bridge the gap between these two extreme scales but
this becomes now a legitimate goal. More reasonably, it is conceivable to
build a bridge between the last three higher scales by exploiting the now
available tools of statistical physics and mathematical homogenisation. The
LMT-Cachan (France) group around R. Billardon (L. Hirsinger, N. Buiron,
L. Danied, O. Hubert) has been very active along this line and we shall
borrow from them the essential steps.

5.2 The Magnetic-Domain Scale

A magnetic domain (labelled α) is a material region of supposedly uni-
form magnetization Mα of constant magnitude (saturation) and uniform
director cosines γα. All magnetic quantities being uniform within the do-
main, exchange energy vanishes inside the domain and the only energies left
(cf. Maugin, 1988) in the domain are the elastic energy, the energy due to
the applied magnetic field (itself uniform in the domain) and the magne-
tocrystalline energy (function of the director cosines and here written for
cubic symmetry) easily integrated over the volume of the domain:

Wα =
1
2

σα. L−1
α . σα −Mα ·Hα +K1 (γ2

1 γ2
2 +γ2

2 γ2
3 +γ2

3 γ2
1)+K2 (γ2

1 γ2
2 γ2

3),

(138)
where L−1

α is the tensor of elastic compliances within domain α, and K1 and
K2 are magnetic anisotropy constants (cf. Maugin, 1988). The orientation
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of the domain (i.e. of the uniform magnetization Mα) is defined by two
angles θα and δα in a crystallographic frame.

5.3 The Grain-Monocrystal Scale

A grain or monocrystal presents homogeneous elastic properties. But it
contains a large, finite number of magnetic domains. This is where some
statistical physics may come into the picture. For each family of domains
one can introduce a volume fraction fα that is a function of the potential
energy of the considered family. A Boltzmann function can be introduced
such that the volume fraction fα is given by

fα =
exp(−AS Wα)∑
α exp(−AS Wα)

, (139)

such that

Wα(θα, φα) = min(Wα), θα ∈ [0, π], φα ∈ [0, 2 π]. (140)

In other words, the orientation of domains inside the grain is such as to
minimize the energy (138). Here AS is an adjustable parameter estimated
to be given by AS = 3χ0/M

2
S
, where χ0 is the initial susceptibility of the

material (cf. Daniel, 2003). With εμ
g the magnetostrictive strain in the grain,

the total free energy of the magnetic domain will be given by (compare to
(138))

Wα = −Mα ·Hg−σg : εμ
g +K1 (γ2

1 γ2
2 +γ2

2 γ2
3 +γ2

3 γ2
1)+K2 (γ2

1 γ2
2 γ2

3), (141)

where Hg pertains to the grain. Herein above, averages for a monocrystal
(with Latin subscript label I) are such that

MI = 〈Mα 〉 =
∑
α

fα Mα, εμ
I

= 〈 εμ
α 〉 =

∑
α

fα εμ
α 
= 0, Hg = Hα.

(142)
Of course, this modelling is rather crude as one could have thought that
the energy of the monocrystal would be the total sum of the energies of the
individual domains to which should be added the energy of domain walls.
The evaluation of the latter is rather intricate as none of the fields is uniform
within a wall (in particular, magnetization itself changes its orientation),
and strain incompatibilities are concentrated there in order to allow for the
assembly of various domains. To achieve such a description we should return
to the theory of micromagnetism (cf. Maugin, 1988). All this is avoided here
in the approach due initially to Buiron (2000) – and then Hubert (2008);
Daniel et al. (2008) – with the help of the introduction of the adjustable
scalar parameter AS.
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5.4 The Polycrystal Scale

Passing from the monocrystal to the polycrystal constitutes now a typical
problem of homogenisation, a technique that owes much to Hill, Kröner and
Eshelby in the mechanical case (Sanchez–Palencia and Zaoui, 1987). It has
become somewhat standard in elasticity, but here it must also be applied to
magnetic properties that are already nonhomogeneous at the monocrystal
scale.

First we remind the reader of the main step in the purely mechanical
homogenisation of elastic polycrystals. Assume we know the properties at
the scale of the monocrystal. Let Σ and E the macro stress and strain. We
have

Σ = 〈σI 〉 = Leff : E, σI = BI : Σ, εI = AI : E, (143)

where Leff is the looked for effective tensor of elasticity coefficients, and BI

and AI are fourth-order tensor linear operators on the set of symmetric ten-
sors, called stress-concentration and strain-localization tensors, respectively.
They have for expressions

BI = LI : AI : L−1
eff , AI = (LI + L∗)−1 : (Leff + L∗), (144)

where the influence tensor of Hill, L∗, is given by

L∗ = L0 : (S−1
E

− I). (145)

Here I is the unit in fourth-order tensors and SE is Eshelby’s inclusion
problem tensor, which depends on the elastic moduli of the matrix and the
shape of the inclusion, in the celebrated inclusion problem of J. D. Eshelby
(1957), while L0 is the tensor of elasticities of the matrix, or comparison
elasticities. The self-consistent model consists in taking L0 = Leff (that we
do not know) so that we can obtain

Leff =
〈
LI : (LI + L∗)−1 : (Leff + L∗)

〉
. (146)

But this is an implicit equation that will require an iterative procedure for
its solution. This can be treated analytically in the case of isotropy.

In the magneto-elastic case under study we must also treat the magnetic
problem and the coupled one. The magnetic problem follows along the
line of the mechanical one while dealing with vectors instead of tensors.
Considering the case of a spherical magnetic inclusion (the Eshelby inclusion
problem for magnetostatics), and for an isotropic matrix, we will take

M0 = χ0 Hext (147)



30 G.A. Maugin

as the comparison magnetic behavior and show that the macroscopic mag-
netic constitutive relation reads

M = 〈MI 〉 = χeff · Hext (148)

with an effective electric susceptibility tensor given by (compare to (146))

χeff = 3 (1 + χ0)
〈
χI ((3 + 2 χ0)1 + χI)−1

〉
. (149)

It remains to select χ0. Again, the self-consistent model consists in taking
χ0 = χeff and the resulting equation (149) to be solved iteratively.

Finally the magneto-elastic coupling ia taken care of as follows. We can
write

σI = BI : Σ + LI : (SE − I) : εμ
I
, (150)

and
εI = L−1

I
: (BI : Σ) + SE : εμ

I
. (151)

Then it is directly shown that

M = 〈MI 〉 , E = 〈 εI 〉 , (152)

of which the former yields (148) and the latter provides the relation

E = L−1
eff : Σ + 〈BT

I : εμ
I
〉 . (153)

But the latter has to be solved iteratively since the magnetostrictive strain
state in the monocrystal depends on the mechanical stress. The reader will
find in Daniel (2003) and Daniel et al. (2008) an attempt at determining all
parameters of the macroscopic behavior for polycrystalline ferromagnets.

Note that the present study is conducted for pure reversible behaviors
involving neither plasticity nor magnetic hysteresis. There is still a long
way to justify through a multiscale approach of the present type the phe-
nomenological macroscopic model of elastoplastic materials exhibiting mag-
netic hysteresis as constructed by Sabir and Maugin (1990) with the aid of
mixed magneto-mechanical internal variables of state. Magnetic hysteresis
is related to plasticity in the sense that magnetic-domain walls are anchored
on structural defects.

6 Electromagnetic Configurational Mechanics

6.1 Material Momentum and Eshelby Stress

Before considering the case of full matter, let us consider the case where
the Lagrangian is none other than the one usually considered in vacuum, but
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now written per unit volume of matter, i.e. a simple Lagrangian expressed
on the basis of (11), that we write first as

�em.f (E,B) =
1
2

(E2 − B2), (154)

per unit of actual volume in Kt. Per unit of undeformed volume this yields

�em.f
R (E,B;F) = JF �em.f . (155)

Recalling the “material” fields

E := E · F, B̃ ≡ JF F−1 · B, (156)

this yields

�em.f
R

=
1
2

JF E · C−1 · E − 1
2

J−1
F B̃ · C · B̃, (157)

an expression obtained by Nelson (1979) up to the notation. This expression
tells us how �em.f

R depends on the deformation gradient. Of course this func-
tion cannot depend explicitly on X. In particular, for quasi-electrostatics,
there remains only the first contribution in the right-hand side of (157),
and Maugin and Epstein (1991) have proved that computing the material
gradient of �em.f

R , one obtains the following identity:

∇R�em.f
R

− divR

(
∂�em.f

R

∂F
· F
)

= divR

(
�em.f

R
1R − ∂�em.f

R

∂F
F
)

≡ 0. (158)

This means that the material divergence of the Eshelby stress tensor of free
electromagnetic fields is not balanced by any material force (inhomogeneity
force). This is checked directly by computing the following two quantities,

∂

∂XK

(
1
2

JF E2

)
,

∂

∂XI

(
∂(JF �em.f )

∂F i
I

F i
.K

)
,

and subtracting the second result from the first. The following more general
result can be checked (full dynamic electromagnetic case):

∂

∂t
Pemf

∣∣∣∣
X

− divR bemf ≡ 0, (159)

where

Pemf :=
∂�em.f

R

∂V
, bemf = −(�em.f

R 1R + TF F), TF := −∂�em.f
R

∂F
. (160)
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In plain words, free electromagnetic fields, do not, by themselves, develop
any inhomogeneity force. This property encapsulates the essential differ-
ence of nature between the pervasive pure field contributions and those
which pertain to true material fields (e.g., magnetization and electric po-
larization). Accordingly, the usual Maxwell stress tensor introduced in (8)2
cannot contribute to the balance of material momentum. Along the same
line, the electromagnetic material momentum has to be different from the
pull back of the electromagnetic momentum in vacuum.

Another prerequisite concerns the fact that the first group of Maxwell’s
equations – say (2) – is automatically taken care of by the introduction of the
electromagnetic potentials. Thus a variational formulation will necessarily
involve independent variations of ϕ̂ and Â and either material or Eulerian
variations of the motion. Accordingly, for the whole system consisting of
matter plus electromagnetic fields, we may have to consider Lagrangian
densities such as

� = �em.f
R

(E, B̃,F,V) + �md(v,F,E, B̃;X) (161)

for a Lagrangian per unit volume in KR and a direct-motion description,
and

�̆ = J−1
F � = J−1

F

[
�em.f

R + �mi(V,F−1,E, B̃;X)
]
, V = −F−1 · v, (162)

for a Lagrangian per unit volume of Kt and an inverse-motion description,
where

�md =
1
2

ρ0(X)v2 − W (F,E, B̃;X) (163)

and

�mi =
1
2

ρ0(X)V · C · V − W (F−1,E, B̃;X). (164)

It is understood that the local interactions of matter and electromagnetic
fields which give rise to magnetization and electric polarization, are con-
tained in W or W , from which we shall derive these notions.

The variational principle per se:
The Hamiltonian action considered reads

A {χ;E,B} =
∫

t

dt

∫
BR

(�em.f
R + �md) dV. (165)

Then we have the following fundamental results (Maugin, 1990; Maugin et
al., 1992a,b):



Electromagnetics in Deformable Solids 33

Theorem 6.1. From a material variation accompanied by proper variations
of the electromagnetic potentials of the action (165) there follows the second
group of Maxwell’s equations (3) – in material form – in the absence of
electricity conduction, the equation of motion (58) in the absence of body
force, and the general constitutive equations

TE =
∂W

∂F
, Π = −∂W

∂E
, M = −∂W

∂B̃
, (166)

with the

Corollary 6.2. By applying Noether’s theorem to (165) for material space
translations X, we obtain the balance of material momentum for the system
matter plus field in matter as

∂Ptot

∂t

∣∣∣∣
X

− divR btot = f inh, (167)

where we have defined the following entities

Ptot = Pmech + Pemm, Pmech = ρ0 C · V, Pemm =
1
c
Π × B̃, (168)

btot = −(�md 1R + S · C), (169)

where the second Piola–Kirchhoff stress is given by

S = SE − (C−1 · E) ⊗ Π + (C−1 ·M) ⊗ B̃ − (M · B̃)1R, (170)

and the constitutive equations read

SE = 2
∂W

∂C
, Π = −∂W

∂E
, M = −∂W

∂B̃
, W = W (C,E, B̃;X), (171)

while there exists a material force of inhomogeneity such as

f inh =
∂�md

∂X

∣∣∣∣
expl

. (172)

The last of (171) provides an objective (materially indifferent) form of the
energy W . The material electromagnetic momentum defined by the last of
(168) exists only in electrodynamics, but it in fact exists only if the material
is electrically polarized and placed in a magnetic field. It is not the pull
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back, changed of sign, of the electromagnetic momentum defined by (58).
Concerning the stress involved in the total Eshelby stress, the general form
of the effective second Piola–Kirchhoff stress (170) is of great interest. Its
electromagnetic contribution is essentially a second Piola–Kirchhoff stress
built from the interaction “Cauchy-like” stress t̃em introduced in (29). This
again means, like in a previous remark, that free fields are filtered out by
the material manifold, the latter retaining only those terms which contain
a true material quantity, such as magnetization or electric polarization (of
course in the presence of electromagnetic fields, E and B).

Because of its length and technical aspect, the proof of Theorem 6.1 and
Corollary 6.2 is not reported here. It is to be found elsewhere (Maugin,
1993).

6.2 Global Balance of Material Momentum

Although the general framework is not so relevant from the applicative
viewpoint, some general feeling can be gathered from some results in fore-
going sections. This is the case of the material momentum equation (167).
Integrated over a regular material volume V , this yields

d
dt

P(V ) = BE(V ) + Finh(V ), (173)

with
P(V ) =

∫
V

Ptot dV, BE(V ) =
∫

∂V

N · btot dA,

Finh(V ) =
∫

V

f inh dV.

(174)

Of particular interest here is the surface contribution, which can be rewrit-
ten as

BE(V ) =
∫

∂V

{
P N − T̃E · C + QP Ẽ − M̂ (B̃ · N)

}
dA, (175)

where we have defined a pressure-like term P , a surface traction T̃E, and a
surface electric charge density due to electric polarization, QP , by

P := −�md + M̂ · B̃, T̃E := N · SE, QP := Π · N. (176)

Several important cases are as follows. For a nonmagnetizable material
(vanishing magnetization in a co-moving frame), we obviously have M̂ = 0,
so that (176) reduces to a form relevant to the case of electroelastic materials

BE(V ) =
∫

∂V

{
−LN − T̃E · C + QP Ẽ

}
dA. (177)
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In quasi-statics, but keeping both magnetization and electric polarization,
we obtain an approximation valid for both electroelasticity and magnetoe-
lasticity :

BE(V ) =
∫

∂V

{
W N −T̃E · (1R + 2E)

−QP ∇Rϕ̂ − M̂ (∇R × Â) · N
}

dA,
(178)

where E is the finite strain expressible in terms of the displacement gradient,
and ϕ̂ and Â are the material electromagnetic potentials. The expression
(178) gives in advance an idea of what will be the J-integral generalized
to electroelasticity or magnetoelasticity. This shows an essential difference
between electric and magnetic processes because there is no magnetic equiv-
alent here to the notion of polarization surface charge.

For a homogeneous material and for homogeneous boundary conditions
or vanishing fields at infinity (in the case of an integration over the whole
material space), (173) reduces to a pure conservation of the total material
(canonical) momentum. This is what happens sin certain problems of prop-
agation dealing with solitons. More on the canonical Hamilton formalism
associated with the general electrodynamical case in (Maugin, 1993, pp.
192–193). Instead of dealing with this mundane subject, we prefer to revisit
the problem posed by electroelastic solids in finite strains (and its analog in
magnetoelastic bodies) because of its many applications in electromechani-
cal devices and in the industry of electronic components.

6.3 Electroelastic Bodies

For many applications it is sufficient to consider a quasi-static approx-
imation to the general equations presented in Section 6.2. In particular,
acceleration terms are discarded in the basic equation of motion, magneti-
zation is ignored as well as couplings between electric and magnetic phe-
nomena (although there exist magneto-electric materials of great interest)
and most of the time the material is assumed to be a dielectric, i.e. it does
not conduct electricity and is free of charges. In these conditions the basic
field equations at any regular material point X are reduced to

• Balance of linear (physical) momentum in its equilibrium form:

divR

(
TE + TF

)
= 0; (179)

• Reduced Faraday equation:

∇R × Ê = 0 ⇒ Ê = −∇Rϕ̂; (180)



36 G.A. Maugin

• Reduced Gauss equation:

∇R · D̂ = 0, (181)

where (179) introduces the first Piola–Kirchhoff stresses associated with
elasticity and the “free” electromagnetic fields, while Ê and D̂ are material
electric fields. Because we are in quasi-electrostatics, we have the relations:

Ê = E · F, D̂ = JF F−1 · D,

Π = JF F−1 · P, D̂ = JF C−1 · Ê + Π,
(182)

where E, D, and P are the standard fields in a laboratory frame.
Because of our special interest in fracture and the evaluation of energy-

release rates, the equation of energy associated with equations (179)–(181)
is most relevant. To that purpose we note that

TF = E ⊗ E − 1
2

F−1
(
Ê · E

)
, E := JF F−1 · E. (183)

It is checked that
divR TF = −(∇R · Π)E, (184)

where we recognize in the quantity within parentheses a so-called polariza-
tion charge density.

With an objective energy density for a homogeneous material, per unit
reference volume,

W = W
(
C, Ê

)
,

we have the mechanical and electric constitutive equations

S = 2
∂W

∂C
, Π = −∂W

∂Ê
, (185)

corresponding to the energy equation (no dissipation of any kind)

Ẇ =
1
2

tr (S · Ċ) − Π · ˙̂E. (186)

We can as well consider the so-called electric enthalpy

W̃ = W − 1
2

Ê · E, (187)

so that, on account of the last of (186), instead of (185) we have the following
material constitutive equations

S = 2
∂W̃

∂C
, D̂ = −∂W̃

∂Ê
. (188)
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It is the multiplicity of possible electromechanical energies which causes
some problems in the sequel. Indeed, starting from the field equations
(179) through (181) and the energy equation (186), we can deduce some
identities which will be useful for the evaluation of energy-release rates. All
these are obtained at regular material points. For instance, (186) can first
be rewritten as

Ẇ = tr (TE · Ḟ) − Π · ˙̂E. (189)

But this can be transformed to

d
dt

W̃ + D̂ · ˙̂E = tr
(
TE · (∇Rv)T

)
+

1
2

(
E · ˙̂E − Ė · Ê

)
. (190)

But we can write

tr
(
TE · (∇Rv)T

)
= ∇R ·

((
TE + TF

) · v)− tr
(
TF · (∇Rv)T

)
, (191)

and also prove that

tr
(
TF · (∇Rv)T

)
=

1
2

(
E · ˙̂E − Ė · Ê

)
. (192)

The nontrivial proof of this is given in the appendix to Dascalu and Maugin
(1994). On combining (190) through (192), we obtain that after introduc-
tion of the electric potential and enthalpy,

d
dt

W̃ = ∇R ·
((

TE + TF
) · v + D̂ ˙̂ϕ

)
. (193)

This is a remarkable form of the energy equation because it is written as a
strict conservation law. The dual material contravector to D̂ ˙̂ϕ, −ϕ̂ ∂D̂/∂t,
is the Poynting vector of quasi-electrostatics (see Maugin, 1988, p. 238). In
contrast, we can write another form, also totally admissible, by considering
(190) and noting that

d
dt

(
1
2

Ê · E
)

= ∇R ·
(
TF · v + E ˙̂ϕ

)
+ helec, (194)

where we have set

helec = (divR TF ) · v + (∇R · E) ˙̂ϕ. (195)

Whence (193) takes on the form

d
dt

W = ∇R ·
(
TE · v + Π ˙̂ϕ

)
+ helec, (196)
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which is not in the form of a strict conservation law, but it emphasizes the
consideration of the electric polarization as compared to that of the electric
displacement. These two forms will necessarily have different consequences
in so far as the evaluation of the corresponding energy-release rate of fracture
is concerned.

6.4 Evaluation of the Energy-Release Rate in Electroelastic Frac-
ture

The proofs will follow exactly those of the pure elastic case and, therefore,
details are not repeated, the reader being referred to the original research
papers (here essentially Dascalu and Maugin, 1994). For instance, in the
first case where we start from the local energy equation (193), with a clas-
sical notation, we shall obtain the following global energy balance in the
presence of the straight through crack

d
dt

∫
B

W̃ dA + Gcrack =
∫

S

{
N · (TE + TF

) · v + ˙̂ϕ (D̂ · N)
}

dS, (197)

where S is the boundary of B–C, where C is the crack, and we have defined
the energy-release rate by

Gcrack = lim
∫

Γ

{
W̃ (V · N) + N · (TE + TF

) · v + ˙̂ϕ (D̂ · N)
}

dΓ

as Γ → 0,
(198)

where V is the material velocity of the irreversible progress of the tip of
the crack in the body. Here (197) results from the application of Reynolds’
theorem for the evolving body. Clearly, the expression (198) involves not
only the flux of electric enthalpy, but also the full contributions of coupled
and free electric fields. We can say that this is a “natural” formulation. If
instead we start with the identity (196) we shall obtain the global energy
balance as

d
dt

∫
B

W dA + Gcrack
∗ =

∫
S

{
N · TE · v + ˙̂ϕ (Π · N)

}
dS

+
∫

B

helec dA,

(199)

with an energy release rate given by

Gcrack
∗ = lim

∫
Γ

{
W (V · N) + N · TE · v + ˙̂ϕ (Π · N)

}
dS

as Γ → 0.

(200)
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Notice that the stress contribution related to the free electric field is not
involved in this formula. In order to obtain (200) we assumed that the inte-
grals in this relation are convergent. For some linear piezoelectric materials
(Pak, 1990; Sosa and Pak, 1990; or in the case of linearized electrostriction
as show by Dascalu and Maugin, 1995), the behavior of the solution at the
tip shows that the term helec is of order r−2, so that the last integral in
(199) generally diverges. However, if helec = 0, then the above computation
holds good. If we examine the definition (195) we can show that this is
nothing but

helec = −(∇R · Π)
∂ϕ

∂t
, (201)

where ϕ is the electrostatic potential in the actual configuration. Thus, as
∂ϕ/∂t cannot be forced to vanish, the condition of vanishing helec can be
realized only if we impose the constraint

∇R · Π = 0, (202)

as a sufficient condition. This can be achieved in some concrete electroelastic
problem (cf. Dascalu and Maugin, 1995).

6.5 Electroelastic Path-Independent Integrals

Now we express the above-obtained energy-release rates in terms of con-
tour integrals that do not depend on the integration path, an essential
property for easy computation. These integrals were obtained first by Pak
and Herrmann (1986) and Maugin and Epstein (1991). To do this we need
an estimate of the degree of singularity of electro-mechanical fields in the
neighborhood of the crack tip. Suppose that both the displacement u and
the electric potential ϕ̂ have a regular time behavior as observed from the
crack tip. So, just the same as in pure elasticity (Gurtin, 1979; Nguyen
Quoc Son, 1980), this assumption allows us to write

u̇ = −V · ∇Ru + w, ˙̂ϕ = −V · ∇Rϕ̂ + ψ, (203)

where w and ψ have no singular behavior at the crack tip. Then the terms
in Gcrack containing these fields will vanish for Γ → 0. This allows us to
show that Gcrack takes on the form

Gcrack = limV ·
∫

Γ

{
W̃ N −∇Ru · (TE + TF

)T · N
−∇Rϕ̂

(
D̂ · N

)}
dS as Γ → 0.

(204)
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The same technique applied to Gcrack
∗ yields

Gcrack
∗ = limV ·

∫
Γ

{
W N −∇Ru · (TE)T · N −∇Rϕ (Π · N)

}
dS

as Γ → 0.
(205)

In this relation we can replace ∇Ru by F making the assumption that

lim
∫

Γ

N · TE dS = 0 as Γ → 0, (206)

an assumption that is verified when TE behaves like r−1/2 near the tip, just
like in classical elasticity (cf. Pak, 1990; Sosa and Pak, 1990; Dascalu and
Maugin, 1995). Then (204) reads

Gcrack = limV ·
∫

Γ

{
W̃ N −FT · (TE + TF

)
T · N

−∇Rϕ̂
(
D̂ · N

)}
dS as Γ → 0.

(207)

Now we restrict the analysis to the case of a straight through crack along
the X1-axis and thus

V = �̇(t)E1. (208)

With this we formulate electroelastic J-integrals. For a piecewise smooth
non intersecting path Γ which begins and ends on the crack and surrounds
the tip of the crack, we define

J(Γ) =
∫

Γ

{
W̃ N1 − N · (TE + TF

) · ∂u
∂X1

−
(
D̂ · N

) ∂ϕ̂

∂X1

}
dS. (209)

If J does not depend on Γ, then (207) yields

Gcrack = J �̇, (210)

the familiar dissipation form of the product of a “force” and a “velocity”.
The J-integral (209) was obtained by Pak and Herrmann (1986) using the
Eshelby theory of inhomogeneities. Their argument for the path indepen-
dence stems from the relation

divR b = 0, (211)

with an electromechanical Eshelby stress given by

b = W̃ 1R − (TE + TF
) · (∇Ru)T − D̂ ⊗∇Rϕ̂. (212)
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Here also, the path independence requires that some conditions hold true
along the faces of the crack. These conditions are

N · D̂± = 0, N · (TE + TF
)± = 0, (213)

i.e. neither electric charges nor tractions along the crack. If, however, we
deal with paths which start and end at the same point along the crack, then
only the jumps in (213) are required to vanish.

To deal with Gcrack
∗ , we define another J-integral, J∗, by

J∗ =
∫

Γ

{
W N1 − N · SE · C · E1 − (Π · N)

∂ϕ̂

∂X1

}
dS, (214)

which was obtained by Maugin and Epstein (1991) using the same method
of Eshelby but remarking that an identity verified by the free electric fields
permits us to work with the following electroelastic Eshelby stress tensor
(cf. Section 6.1)

b∗ = W 1R − SE · C − Π ⊗∇Rϕ̂, (215)

for which
divR b∗ = 0, (216)

at all regular material points X. For the path independence of J∗ we must
have

N · (TE)± = 0, N · Π± = 0, (217)

on the faces of the crack. The same conditions, but for the jumps, are valid
when the contour of J∗ starts and ends at the same point.

6.6 Electroelastic Phase-Transition Fronts

Here we consider a more general framework than in the preceding sec-
tion by allowing the presence of thermal effects and of a density of electric
charges. The last ingredient may have some importance in electroelastic
bodies that may contain these charges such as in piezoelectric semiconduc-
tors. Furthermore, they allow for interesting developments in the case of
transition zones such as phase-transition fronts.

A. General equations

Still in the frame work of electrostatics we have at any regular material
point:

• Maxwell’s electrostatic equations:

∇R × Ê = 0, ∇R · D̂ = Q̂f ; (218)
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• Conservation of mass:
∂

∂t
ρ0

∣∣∣∣
X

= 0; (219)

• Balance of linear (physical) momentum:

∂

∂t
p
∣∣∣∣
X

− divR T = fem; (220)

• Balance of energy:

∂

∂t

(
1
2

ρ0 v2 + E − Q̂f ϕ̂

)∣∣∣∣
X

−∇R · (T · v + Se − Q) = he; (221)

• Balance of entropy:

θ
∂S

∂t

∣∣∣∣
X

+ ∇R · Q = 0. (222)

This writing (Maugin, 1988) isolates the electric force fem, incorporates the
action of the free charge in the total energy, and emphasizes the notions of
electric Poynting vector Se and electric energy source he with

fem =
(
Q̂f + Π · ∇R

)
E, Se = −ϕ̂

∂D̂
∂t

∣∣∣∣
X

, he = −Q̂f
∂ϕ̂

∂t

∣∣∣∣
X

, (223)

together with

D̂ = E + Π, Ê = E · F,

E = JF F−1 · E = JF C−1 · Ê, Ê = −∇Rϕ̂.
(224)

The following identities can be proved (Maugin, 1988; Dascalu and Maugin,
1995):

fem = divR Tem, divR TF =
(
Q̂f −∇R · Π

)
E, (225)

Tem = D̂ ⊗ E − 1
2

(
Ê · E

)
F−1, TF = E ⊗ E − 1

2

(
Ê · E

)
F−1, (226)

and

tr
(
TF · (∇Rv)F

)
=

1
2

(
E · ∂Ê

∂t

∣∣∣∣
X

− ∂E
∂t

∣∣∣∣
X

· Ê
)

, (227)

∇R ·E = Q̂f −∇R · Π, (228)
d
dt

(
1
2

Ê · E
)

= −∇R ·
(
TF · v + E

∂ϕ̂

∂t

∣∣∣∣
X

)
+ H, (229)

H = v · divR TF +
(∇R ·E

) ∂ϕ̂

∂t

∣∣∣∣
X

=
(
Q̂f −∇R · Π

) ∂ϕ

∂t

∣∣∣∣
X

. (230)
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Here ϕ = ϕ̂
(
X(x, t), t

)
= ϕ(x, t) is the Eulerian electrostatic potential such

that
∂ϕ

∂t

∣∣∣∣
X

=
∂ϕ̂

∂t

∣∣∣∣
X

+ V · ∇R · ϕ̂. (231)

Equation (220) can also be written as a strict conservation law in the form

∂

∂t
p
∣∣∣∣
X

− divR Ttot = 0, (232)

wherein
Ttot = T + Tem = TE + TF . (233)

Constitutive relations

We recall that SE is the second (material and symmetric) Piola–Kirchhoff
stress associated with TE, and W denotes the free energy per unit reference
volume, W = E − S θ, so that the Clausius–Duhem inequality reads

−
(
Ẇ + S θ̇

)
+

1
2

tr
(
SE · Ċ)+ Ê · Π̇ − θ−1 Q · ∇Rθ ≥ 0, (234)

or
−
(
Ẇ + S θ̇

)
+

1
2

tr
(
SE · Ċ

)
− Π · ˙̂E − θ−1 Q · ∇Rθ ≥ 0, (235)

with
W = W − Ê · Π, SE = SE −

(
Ê · Π

)
C−1. (236)

Still another possibility is provided with (Maugin and Trimarco, 1997)

−
( ˙̂
W + S θ̇

)
+

1
2

tr
(
ŜE · Ċ

)
− D̂ · ˙̂E − θ−1 Q · ∇Rθ ≥ 0, (237)

wherein

Ŵ = W +
1
2

Ê ·E, ŜE = SE +
1
2

(
Ê · E

)
C−1 − J−1

F
E ⊗ E. (238)

With the choice of free energy

Ŵ = Ŵ
(
C, Ê, θ;X

)
, (239)

the usual argument of thermodynamic admissibility yields the constitutive
equations

ŜE = 2
∂Ŵ

∂C
, D̂ = −∂Ŵ

∂Ê
, S = −∂Ŵ

∂θ
, (240)

while there remains the residual dissipation inequality

Q
(
C, Ê, θ,∇Rθ;X

) · ∇Rθ ≤ 0. (241)
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B. Canonical balance laws

These are the balance laws of energy and momentum associated with the
space-time parametrization (X, t). Since there already are several equivalent
forms of the local balance of energy, the most sensible one is that obtained
via the equation of mechanical energy, obtained by inner product of (220)
with v, and then combining with (221) to yield

∂

∂t

(
1
2

ρ0 v2 + E

)∣∣∣∣
X

−∇R ·
{(

TE + TF
) · v + D̂

∂ϕ̂

∂t

∣∣∣∣
X

− Q
}

= −Q̂f
∂ϕ̂

∂t

∣∣∣∣
X

,

(242)

where
E = W + S θ − D̂ · Ê. (243)

Equation (242) has the advantage that, although not in a strict conservative
form, it emphasizes the analogy between the roles played by the “velocities”
v = ∂χ/∂t|X and ∂ϕ̂/∂t|X , hence between the elastic displacement and the
electrostatic potential. It obviously takes the form of a strict conservation
law in the absence of free charges. Equation (221) is immediately recovered
from (242) by noting that

∇R · Se =
∂

∂t

(
Ê · D̂ − Q̂f ϕ̂

)
+ ∇R ·

(
D̂

∂ϕ̂

∂t

∣∣∣∣
X

)
, E = E + Ê · D̂. (244)

The second canonical balance law, that of material momentum, is obtained
in strict parallel with (242) following now a routine procedure. The result
is

∂P
∂t

∣∣∣∣
X

− divR b = f inh + f th + fe, (245)

where we have set

P = −p · F = ρ0 C · V,

b = −
(
�th 1R +

(
TE + TF

) · F − D̂ ⊗ Ê
)
,

(246)

�th =
1
2

ρ0(X)v2 − W
(
C, Ê, θ;X

)
, f inh =

(
∂Lth

∂X

)
expl

, (247)

f th = S ∇Rθ, fe = −Q̂f Ê. (248)

The really new quantity here is the last material force fe, which is none other
than the pull back of the original volume force due to free charges, changed
of sign. It is of interest to evaluate its power in a material motion. That is,
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the quantity fe · V. We have the following remarkable result (Maugin and
Trimarco, 1997):

P e
B := fe · V = Q̂f

(
∂ϕ

∂t

∣∣∣∣
x

− ∂ϕ̂

∂t

∣∣∣∣
X

)
. (249)

This really exemplifies the fictitious nature of some material forces such as
fe, as their power vanishes identically when the distinction between actual
and reference configurations is lost.

C. Jump relations at a front

We consider from the start a homothermal singular surface with no dislo-
cations so that we have the following two conditions of continuity:

[θ] = 0, [V] = 0 at Σ. (250)

Now, without further ado we can apply the thumb rule to replace the partial
differential operators ∇R and ∂/∂t|X applied to functions f(X, t) by the
jump operators N ·[..] and −V N [..] and to introduce unknown surface source
terms for those equations which are not strict conservations laws at regular
material points. Thus we have the following roster of jump equations in the
present case (V is the material velocity of the front)

N ×
[
Ê
]

= 0, N ·
[
D̂
]

= Qe
Σ, (251)

V N [ρ0] = 0, (252)

N ·
[
V ⊗ p + TE + TF

]
= 0, (253)

N ·
[
V
(

1
2

v2 + E

)
+
(
TE + TF

) · v + D̂
∂ϕ̂

∂t

∣∣∣∣
X

− Q
]

= he
Σ, (254)

N ·
[
V ⊗ P + b

]
+ fΣ = 0, (255)

N ·
[
V S θ − Q

]
− qΣ = 0, (256)

and
N ·
[
V S − (Q/θ)

]
= σΣ ≥ 0, (257)

where a set of unknown surface sources is present in (254) through (257).
These must be all consistent in order to respect the second law of thermo-
dynamics expressed by the inequality in (257). Already, the consistency
between (256) and (257) requires that

qΣ ≥ 0 at Σ(t). (258)
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We shall not give the details of the derivation of the results that follows.
On one hand we compute

PΣ := fΣ · V = −V N

[
P ·V

]
−
[
N · b ·V

]
, (259)

from which there follows that

qΣ = −V N Hugo
P T

+Qe
Σ

〈
∂ϕ

∂t

∣∣∣∣
x

− ∂ϕ̂

∂t

∣∣∣∣
X

〉
−
(

he
Σ +
[
N · D̂

] ∂ϕ

∂t

∣∣∣∣
x

)
≥ 0

(260)

or

qΣ = −V N Hugo
P T

−Qe
Σ

〈
∂ϕ̂

∂t

∣∣∣∣
X

〉
−
(

he
Σ +
〈

N · D̂
〉 [∂ϕ

∂t

∣∣∣∣
x

])
≥ 0, (261)

where we have introduced the Hugoniot–Gibbs functional (that depends on
the value of fields on both “sides” of Σ):

HugoP T
:=
[
W − 〈N · (TE + TF

) 〉 · ∂χ

∂N
−
〈

N · D̂
〉 ∂ϕ

∂N

]
, (262)

where ∂/∂N denotes the normal derivative. The expression (261) deserves
the following comments. First, only the normal component of V is involved,
thus emphasizing the local normal growth of one phase with respect to the
other. The other two contributions in (261) are peculiar. We notice that
application of a gauge condition at Σ(t) for quasi-electrostatics processes
requires that [

∂ϕ

∂t

∣∣∣∣
x

]
= 0. (263)

This condition is formally analogous to the coherency condition (250)2.
Therefore, it could be referred to as the electric coherency condition. Then
from (261) there remains

qΣ = −V N HugoP T − Qe
Σ

〈
∂ϕ̂

∂t

∣∣∣∣
X

〉
− he

Σ ≥ 0. (264)

The formally introduced surface heat he
Σ may be viewed as some kind of

latent heat characteristic of the examined electroelastic crystal.
Had we considered a dielectric material to start with, we would have

introduced neither he
Σ nor Qe

Σ, and so (261) would reduce to the “simple”
expression

θΣ σΣ = qΣ = fΣ V N ≥ 0, (265)
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where the scalar driving force fΣ is introduced through the following surface
balance of scalar material forces:

fΣ + HugoP T = 0 at Σ(t). (266)

This emphasizes the different ontological nature of the two scalar material
forces as HugoP T is a (functional) field quantity, while fΣ is a thermody-
namical force determined by the application of the theory of irreversible
thermodynamics to the pair of conjugate variables (fΣ, V N), yielding even-
tually a kinetic relation of the type

V N = Ṽ (fΣ; θΣ) (267)

respecting the inequality (265).
Returning to the more general case (264), we note that the expression

P e
Σ = −Qe

Σ

〈
∂ϕ̂

∂t

∣∣∣∣
X

〉
(268)

has formally the same structure as the bulk power (249) because, if a gauge
condition of the type ∂ϕ/∂t|X holds at all material points, the latter reduces
to

P e
B = −Qf

∂ϕ̂

∂t

∣∣∣∣
X

, (269)

of which the similarity with (249) is obvious. Quantities such as (269)
will naturally appear if, at Σ, we have possible re-combination of charges
as it occurs at junctions in electroelastic semiconductors (classical jump
conditions for these are given in Daher and Maugin, 1986, 1988). Concerning
works in the line of the presentation in this section, we note Jiang (1994),
but this is erroneous.

6.7 Case of Magnetized Materials

Developments devoted to magnetizable deformable solids, and parodying
the electroelastic case have been given by Sabir and Maugin (1996) and
Fomethe and Maugin (1996), in so far as magnetoelastic fracture and the
propagation of magnetoelastic phase-transition fronts and magnetic domain
walls are concerned. We refer the reader to these authors. Here we just
quote a few exemplary results in which the reader can identify the analogies
and differences with the electroelastic case, keeping in mind the general
electro-magnetic expressions given in previous lectures. In particular, we
note the following reduction of Maxwell’s equations in quasi-magnetostatics
in insulators (in the Laboratory frame)

∇· B = 0, ∇× H = 0, H = B − M. (270)
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This translates into the material form as

∇R · B̂ = 0, ∇R × Ĥ = 0, (271)

with

B̂ = JF F−1 ·B, Ĥ = H ·F, M̂ = M ·F, Ĥ = J−1
F C · B̂− M̂. (272)

The coupling between the crystal lattice and the magnetization field is rep-
resented by a local bulk balance equation, comparable to (68) – case of soft
ferromagnets –, i.e.

B + BL = 0, (273)

where B is the Maxwellian field appearing in the first of (270) and BL is
the local magnetic induction for which one needs a constitutive equation in
terms of magneto-mechanical fields. Because of (270), there exists a quasi-
static magnetic potential ϕ in the actual configuration or ϕ̂ in the material
framework, so that

H = −∇ϕ, Ĥ = −∇Rϕ̂. (274)

Then the perspicacious reader has already noticed that we can practically
translate all what we did in the quasi-electrostatic case to this magnetic
case. This was indeed achieved by Sabir and Maugin (1996) who gave
the canonical equations of energy and material momentum for this case
and corresponding J-integrals for magnetoelastic fracture, noting that, just
like in the electric case, there is a plurality of formulations of the energy
conservation, and, therefore, the possibility to construct different J integrals.
This applies in particular to materials with high magnetostrictive coupling
(piezomagnetism being a rare event) such as TERFENOL-D. We refer the
reader to these authors for such developments.

Much more interesting from the conceptual viewpoint is the case of elas-
tic (hard) ferromagnets because such materials exemplify the problem of for-
mulating canonical balance laws in media equipped with a microstructure,
here a magnetic one, which is equivalent to considering additional internal
degrees of freedom in a continuum. Here, this is materialized by the fact
that equation (273) is replaced by a true dynamical equation containing a
flux. In addition, the new internal degree of freedom, represented by the
precession of a spin is peculiar in the sense that it is of gyroscopic nature
having no closed form for its kinetic energy in classical physics (the phe-
nomenon is inherently quantum mechanical). It is a so-called d’Alembertian
inertia couple that does not expend power (see Maugin, 1988, Chapter 6).
This is an interesting challenge for the formulation of canonical balance
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laws in the material framework. This was achieved by Fomethe and Mau-
gin (1996) with applications to the propagation of ferromagnetic phase-
transition fronts and ferromagnetic domain walls (Fomethe and Maugin,
1997; Maugin and Fomethe, 1997).

For the sake of illustration we just report the expression of the driving
force on a phase-transformation front in a soft-ferromagnet. Considering
small strains, instead of (262) we have the reduced form

Hugos.fer
P T

=
[
W − 〈B 〉 · M − 〈N · T 〉 · F · N], (275)

with constitutive equations

B =
∂W

∂M
, T =

∂W

∂F
, S = −∂W

∂θ
, W = W (F,M, θ). (276)

If we set

W (F,H, θ) = W +
1
2

(H2 − B2) = W − M · B +
1
2

M2

= W −
(

1
2

H2 + M · H
)

,
(277)

and introducing the magnetic scalar potential ϕ and the strain ε and the
elastic displacement u we immediately show that (275) takes on the follow-
ing form:

Hugos.fer
P T

=
[
W (ε,H, θ) − 〈M 〉 · ∇ϕ − 〈N · T 〉 · (∇u)T · N

]
, (278)

with the constitutive equations

M =
∂W

∂H
, T =

∂W

∂ε
, S = −∂W

∂θ
. (279)

An equivalent formulation reads

Hugos.fer
P T

=
[
W̃ (ε,H, θ) − 〈B 〉 · ∇ϕ − 〈N · T 〉 · (∇u)T · N

]
, (280)

with

B =
∂W̃

∂H
, T =

∂W̃

∂ε
, S = −∂W̃

∂θ
. (281)

We recognize in the formulas (280) and (278) the structure of the two pos-
sible Eshelby stresses and the two J-integrals introduced previously in the
study of the fracture of elastic paramagnets and soft ferromagnets by Sabir
and Maugin (1996). The transformation (277) was originally introduced in
(Maugin, 1971, p. 85c) – also in Abd-Alla and Maugin (1987).
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7 Comments and Conclusions

In these lectures we have exhibited, contrasted, or shown complementar-
ity between, different approaches to the construction of models of electro-
magneto-mechanical interactions in solids, in a nonrelativistic framework,
but with possible finite strains. Information gathered directly from a mi-
croscopic model (here the Lorentz one, Section 2) keeps us close to physical
reality and avoids too much arbitrariness. The method of virtual power
(accounting for the first point) is certainly the method most pregnant of
generalizations to complex models. This is fully illustrated by the cases of
electroelastic semiconductors and media with interfaces (Daher and Mau-
gin, 1986, 1988) where there are necessarily present dissipative effects. It
would also provide a safe way to build a rational model when the deforma-
tion field itself is specialized to those found in essentially two-dimensional
(plates, shells) or one-dimensional (rods) structures. Variational formu-
lations are most convenient with possible direct application to numerical
schemes and the study of stability (see, e.g., Kankanala and Triantafyllidis,
2008). Furthermore, with direct application of the celebrated Noether’s the-
orem, they allow for the direct production of conservation laws of energy
and canonical momentum (cf. (25) in vacuum), the latter playing an essen-
tial role in the theory of material inhomogeneities and defects (see Maugin,
1993 for some applications to electromagnetic solids). The present chap-
ter concerns solids. The case of fluids can also be considered, especially
when dealing with electro- and magneto-rheology (see, for instance, Erin-
gen and Maugin, 1990, Chapter 5; Rajagopal and Růžička, 2001; Drouot
and Racineux, 2005). The second law of thermodynamics can be used as
a constraint to formulate coupled constitutive equations, especially when
there exist dissipative processes such as electric or magnetic relaxation and
hysteresis (Section 4). But the thermodynamics with internal variables of
states remains, for the time being, the most fruitful method to formulate
such effects. Of course, a bridge between the microscopic phenomena and
those exhibited at the exploitation scale of the relevant materials is desir-
able; an example of such as effort at bridging this gap was presented in
Section 5 but in the linear theory. Finally, Eshelbian mechanics and the
theory of material inhomogeneities as viewed by the author provide an effi-
cient means to formulate the relevant problems of fracture and propagation
of field discontinuities (Section 6).
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K. R. Rajagopal and M. Růžička. Mathematical modelling of electrorheo-
logical materials. Cont. Mech. Thermodyn. 13:59–78, 2001.

M. Sabir and G. A. Maugin. Mechanical and magnetic hardening of ferro-
magnetic bodies: influence of residual stresses and application to nonde-
structive testing. Int. J. Plasticity 6:573–589, 1990.

M. Sabir and G. A. Maugin. On the fracture of paramagnets and soft fer-
romagnets. Int. J. Non-Linear Mech. 31:425–440, 1996.

E. Sanchez–Palencia and A. Zaoui. Homogenization Techniques for Com-
posite Materials. Springer, Berlin, 1987.

H. Sosa H. and Y. E. Pak. Three-dimensional eigenfunction analysis of a
crack in a piezoelectric crystal. Int. J. Solids Structures 26:1–15, 1990.

D. J. Steigmann. Equilibrium theory for magnetoelastomers and magnetoe-
lastic membranes. Int. J. Non-Linear Mech. 39:1193–1216, 2004.

H. F. Tiersten. Coupled magnetomechanical equations for magnetically sat-
urated insulators. J. Math. Phys. 5:1298–1318, 1964.

H. F. Tiersten. A Development of the Equations of Electromagnetism in
Material Continua. Springer, New York, 1990.

R. A. Toupin. The elastic dielectric. J. Rat. Mech. Anal. 5:849–916, 1956.



Electromagnetics in Deformable Solids 55

C. Trimarco and G. A. Maugin. Material mechanics of electromagnetic
solids. In R. Kienzler and G. A. Maugin, editors, Configurational Me-
chanics of Materials, pages 129–171. Springer, Wien, 2001.

C. A. Truesdell and R. A. Toupin. The Classical Field Theories. In S. Flügge,
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Abstract. In this chapter we provide an overview of the basic
equations governing the mechanical behavior of electroelastic ma-
terials capable of finite deformations. To describe the nonlinear
electromechanical interactions in a deformable material, we first re-
view the fundamentals of the theory of electrostatics and then pro-
vide a summary of the required equations of nonlinear continuum
mechanics. Electromagnetic field variables and the corresponding
boundary conditions, which, in general, are defined with respect to
the current configuration, are re-cast in Lagrangian form and the
Lagrangian forms of the field equations are derived. An overview of
different constitutive formulations involving different ‘stress tensors’
and ‘electric body forces’ and the associated equations of mechani-
cal equilibrium in the presence of electromechanical interactions is
included. In particular, we consider an isotropic electroelastic mate-
rial for which the constitutive equations can be expressed in terms of
six invariants involving the deformation and an electric vector field,
which reduce to five for an incompressible material. To illustrate
the theory, we determine the influence of a radial electric field on
the axial shear response of a thick-walled circular cylindrical tube.
The last section focuses on the governing equations describing the
linearized response of electroelastic solids superimposed on a state
of finite deformation in the presence of an electric field.

1 Introduction

The nonlinear theory describing electromechanical coupling has received
considerable attention in the last few years because of the rapid develop-
ment of elastomeric and polymeric materials that in response to the appli-
cation of an electric field undergo large deformations (Bar-Cohen, 2002).
Such materials, often referred to as ‘smart materials’, are being used in a
variety of applications, ranging from high-speed actuators, and sensors to
artificial muscles and other biomedical applications (Pelrine et al., 2000).

R. W. Ogden et al. (eds.), Mechanics and Electrodynamics of Magneto- and Electro-elastic
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The key point is that the mechanical properties of the materials can be
changed rapidly and reversibly by externally applied electric fields. Thus,
the coupling between mechanics and electromagnetism is both strong and
highly nonlinear. The purpose of this chapter is to present an overview
of fundamental concepts of the electromagnetic theory and solid mechanics
and the use of these theories to develop a consistent framework to describe
the behavior of electro-sensitive materials.

The nonlinear theory of electroelasticity was originally developed by
Toupin (1956) for the static situation and extended to include thermal ef-
fects by Tiersten (1971). Relevant background information is provided in
the books by Truesdell and Toupin (1960) and Landau and Lifshitz (1960).
The theory of nonlinear electroelasticity has seen a renewed interest recently
due to the development of highly deformable and polarizable materials that
offer exciting possibilities for many new devices (Bar-Cohen, 2002; Pelrine et
al., 2000). This interest is evidenced by a range of recent books dealing with
the nonlinear interaction between mechanical and electromagnetic fields,
for example, Hutter and van de Ven (1978), Nelson (1979), Maugin (1988),
Eringen and Maugin (1990), Kovetz (2000) and Hutter et al. (2006). More
recent theoretical developments of the nonlinear theory of electromechanical
interactions are included in articles by Rinaldi and Brenner (2002), Erick-
sen (2002, 2007), McMeeking and Landis (2005), McMeeking et al. (2007),
Fosdick and Tang (2007), Suo et al. (2008), Bustamante et al. (2009a,b)
and Dorfmann and Ogden (2005, 2006, 2010a,b).

In this chapter we provide an overview of the basic equations governing
the electromechanical time-independent response of electroelastic materials
capable of finite deformations. It begins in Section 2 with a review of basic
concepts in electrostatics, such as point and distributed charges and asso-
ciated electromagnetic interactions. In particular, this idealization is used
to introduce the Lorentz force, Coulomb’s Law, time-independent electric
fields, charge conservation, electrostatic potential, field of a dipole and the
Gauss’s theorem. We then review some fundamental concepts from the
theory of magnetostatics as a prerequisite to collecting the four Maxwell’s
equations governing the electric and magnetic fields when the charge den-
sity and current density are known. Starting from the connection between
moving charged particles and magnetic induction, we define the magnetic
vector potential and summarize the first and second equations of magneto-
statics. Maxwell’s equations, for time dependent fields, are first defined in
terms of the electric field vector and the magnetic induction and the con-
nection is made to the homogeneous and inhomogeneous wave equations
for electromagnetic fields. For a homogeneous isotropic and nonconducting
source-free region, using the electric permittivity and the magnetic perme-
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ability in free space, we show how the electric field is connected to the
electric displacement and how the magnetic field vector can be expressed in
terms of the magnetic induction. These enable Maxwell’s equations to be
written in alternative forms.

For electromagnetic continua, the electric and magnetic properties of a
material are defined by introducing the notions of electric polarization and
magnetization. We show how the charge density can be divided into free
charges and bound charges and how the latter are related to the electric
polarization. Similarly, we define the free current density, the polarization
current density and the bound current density and establish the connection
between the latter and the magnetization in the material. Very briefly,
constitutive equations for the electric and magnetic fields are shown as they
apply to linear isotropic media. In order to solve boundary-value problems
involving electromagnetic fields, we need to define continuity conditions at
the bounding surfaces of the material. This is achieved by writing Maxwell’s
equations in integral form together with the application of the divergence
and Stokes’ theorems, as appropriate.

In Section 3, the development next takes account of the deformability
of material media. To describe nonlinear electroelastic interactions in a de-
formable material, a review of continuum kinematics is provided. We recall
some important kinematic identities, which are valuable for converting for-
mulas between Eulerian and Lagrangian descriptions. Electromagnetic field
variables, the associated field equations and boundary conditions, which, in
general, are defined with respect to the current configuration, are re-cast
in Lagrangian form. A complete treatment of mechanics of continua and
nonlinear elasticity can be found in the texts by Holzapfel (2000) and Ogden
(1997).

At the beginning of Section 4, for convenience, we summarize the equa-
tions of electrostatics as they are critically important for further develop-
ments in this chapter. The first part of this section focuses on the many dif-
ferent ways in which the equations of mechanical equilibrium can be written
in the presence of electromechanical interactions. We provide an overview
of alternative energy formulations, which differ by the independent electric
variable used, and derive the corresponding equilibrium equations. These
require different definitions of ‘stress tensor’ and associated ‘electric body
force’ terms that are included in tabular form for six different energy func-
tions; see the recent publication by Bustamante et al. (2009a). In the sec-
ond part of this section a simple, but general constitutive law is derived
governing the finite deformation of electroelastic materials in the presence
of an electric field. The formulation is based on a ‘total’ energy function
with either the electric field or the electric displacement as the independent
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electric variable, together with an appropriate measure of deformation. At-
tention is then focused on isotropic unconstrained electroelastic materials
for which the constitutive equation can be expressed in terms of six invari-
ants involving the deformation and the electric field variable, which reduce
to five for an incompressible material. To illustrate the theory, we special-
ize the field equations to problems for which the cylindrical symmetry is
maintained during deformation. Specifically, we determine the influence of
a radial electric field on the axial shear response of a thick-walled circular
cylindrical tube. For the solution of additional boundary-value problems we
refer to Dorfmann and Ogden (2005, 2006).

The last section of this chapter focuses on the governing equations de-
scribing the linearized response of electroelastic solids superimposed on a
state of finite deformation in the presence of an electric field for independent
incremental changes in the electric displacement and the deformation within
the material. We derive the incremental forms of the total stress tensor and
the electric field vector within the material and its surrounding space for
unconstrained and incompressible materials. The incremental equations re-
quire fourth-, third- and second-order electroelastic moduli tensors, which
are derived explicitly for an isotropic material. The incremental boundary
conditions to accompany the governing equations are derived as well. This
theory can be applied to the analysis of stability requirements and wave
propagation problems for electroelastic materials. However, due to space
limitations no examples on the use of the incremental theory are given, but
the interested reader is referred to Dorfmann and Ogden (2010a,b) for more
details.

2 Electrostatics

2.1 Lorentz Force

Historically, electromagnetism has been defined as a macroscopic pheno-
menon, the concepts of distributed charges and corresponding interactions
being idealizations that allow a mathematical description of the experi-
mentally observed phenomena. Following this development, we consider
a time-independent distribution of charges and quantify the correspond-
ing electromagnetic interactions. The charged particles assume positions of
equilibrium and interact with one another by generating electrostatic forces.
By placing a test particle with point charge e at an arbitrary location x we
measure the resultant interaction force f of all particles. The magnitude of
the test charge e must be small enough not to alter the original arrangement
of the particles. As the magnitude of e approaches zero it is obvious that
the measured force goes to zero as well. However, in the limit the ratio of
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force f over charge e remains finite and identifies the electric field vector E
at location x by

E = lim
e→0

f
e
. (1)

For a given electric field E and for time-independent phenomena a par-
ticle carrying charge e which is at rest at location x is subject to a force f
given by

f = eE. (2)

When an electric field E and a magnetic induction B are both present
at x and the particle moves with constant velocity v, it experiences an
additional force perpendicular to its direction of motion and proportional
to the magnitude of v. The total force is then given by

f = e(E + v × B), (3)

which is known as the Lorentz force and which identifies the magnetic in-
duction vector B and the electric field E in terms of the electromagnetic
force on a charged particle e.

2.2 Coulomb’s Law

Coulomb, based on experimental data, showed that the electric field E
due to an isolated and stationary particle is proportional to its charge e
and varies inversely with the square of the distance from the particle. The
electric field at the point x due to a point charge e located at the origin
therefore has the form

E(x) = k e
x
r3

= k e
x̂
r2

, (4)

where r = |x|, x̂ = x/r is a unit vector and k is a constant of proportionality
that depends on the units used. If the particle is located at the fixed point
x′ instead of the origin then equation (4) is replaced by

E(x) = k e
x − x′

|x − x′|3 . (5)

In addition, Coulomb was able to quantify the force of interaction between
two charged particles at rest. If the two particles have charges e1 and e2

and are placed at locations x1 and x2, respectively, the interaction force is
given by Coulomb’s Law

f = k e1e2
x1 − x2

|x1 − x2|3 , (6)
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Figure 1. Repulsive interaction force between two charged particles e1 and
e2.

which is attractive if the charges are of the opposite type, repulsive other-
wise, as depicted in Figure 1. If N particles are interacting, the resultant
net force acting on e1 due to all other charged particles is obtained using
the principle of superposition. It has the form

f =
N∑

i=2

k e1ei
x1 − xi

|x1 − xi|3 . (7)

In a similar way, if we consider a point charge e moving with uniform
velocity v, the resulting magnetic induction B at position x relative to the
point charge is proportional to

B = k′ e
v × x̂

r2
, (8)

where the constant k′ also depends on the system of units used. Unlike
Coulomb’s law this is an approximation in the sense that it is only valid in
the non-relativistic situation (when |v| is much smaller than the speed of
light and the acceleration is negligible). Relativistic effects are not consid-
ered in the present work.

2.3 Units

In the SI system, the unit of electric charge is the Coulomb (C), the
electric current is given in Ampères (A), the force in Newtons (N) and the
length in meters (m). The electric charge of an electron, for example, is
e = −1.602 × 10−19 C, and the unit of the electric field E is Volt per meter
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(Vm−1); the magnetic induction B has units in Tesla (N A−1 m−1). The
constants of proportionality k and k′ introduced in (6) and (8) are chosen
such that the electric field and magnetic induction are given respectively by

E =
e

4πε0

x̂
r2

, B =
μ0e

4π

v × x̂
r2

, (9)

where ε0 ≈ 8.854×10−12 C2 N−1 m−2 is the permittivity of free space and μ0,
which is equal to 4π×10−7 N A−2, is the magnetic permeability of free space.
It turns out that for SI units, the speed c of propagation of electromagnetic
effects (the speed of light) in free space is given by c2 = 1/(μ0ε0).

2.4 Charge Conservation

The definition of the electric field up to this point assumes the existence
of a set of discrete point charges. We now expand this concept to include
a charge distributed over a certain region in space. Consider an infinites-
imal element of volume dV and let ρe dV be the total charge within this
element. Then ρe is the charge density, which may be positive or negative
and depends, in general, on the position x and time t, i.e. ρe = ρe(x, t).

If v is the mean velocity of the individual charges in dV , then

J = ρev, (10)

defines the current density. The Lorentz force for a discrete point charge
subject to electromagnetic fields E and B has been defined in equation (3).
For a distribution with charge density ρe and current density J, the Lorentz
force per unit volume is given by

f = ρeE + J × B. (11)

Consider a fixed volume in space V bounded by a surface S with unit
outward normal n. The charge density per unit volume within V is ρe and
the rate at which charge flows across S is given by J · n per unit area. The
rate of increase of charge within V must arise from the influx. Thus,

d
dt

∫
V

ρe dV = −
∫

S

J · ndS = −
∫

V

divJ dV, (12)

where the divergence theorem has been used to convert the surface integral
to an integral over the volume V . It follows that∫

V

(
∂ρe

∂t
+ divJ

)
dV = 0, (13)



64 A. Dorfmann

which must hold for arbitrary V . Provided the integrand in (13) is con-
tinuous we may deduce the local form of the charge conservation equation
as

∂ρe

∂t
+ divJ = 0, (14)

where the partial derivative indicates that the charge density ρe may also
depend on the location x in V . In a steady state situation (no time depen-
dence) we have ∂ρe/∂t = 0 and equation (14) reduces to

divJ = 0. (15)

The corresponding integral form is∫
S

J · dS = 0 (16)

for arbitrary closed surfaces S.

2.5 The Field of a Static Charge Distribution

As we have seen, the electric field at a location x due to an isolated point
charge e located at the origin is given by equation (9)1. Equivalently, this
can be written as

E(x) =
e

4πε0

x̂
r2

= − e

4πε0
grad

(
1
r

)
. (17)

When the point charge is placed at the position x′, the electric field is given
by equation (5) or, alternatively, by

E(x) =
e

4πε0

R
R3

= − e

4πε0
grad

(
1
R

)
, (18)

where R = |R| and R = x−x′. Note that the grad operator is with respect
to the location x where the electric field E is determined.

If we consider the charge within the volume V to be continuously dis-
tributed, the point charge e can be replaced by the charge ρe dV in the
volume element dV . If ρe = 0 outside the specified volume V , then the
electric field at x is the sum of all contributions ρe dV within the volume
V . It is given by

E(x) =
1

4πε0

∫
V

ρe(x′)
R
R3

dV (x′) = − 1
4πε0

∫
V

ρe(x′) grad
(

1
R

)
dV (x′),

(19)
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where the integration is with respect to the x′ variable. Since the grad
operator is with respect to x, it can be taken outside the integral. Thus,

E(x) = − 1
4πε0

grad
∫

V

ρe(x′)
R

dV (x′). (20)

The gradient operator in the above equation acts on a scalar function. It
is therefore convenient to formalize this process by explicitly introducing a
scalar potential function φ, known as the electrostatic potential. Equation
(20) is then written compactly as

E(x) = −gradφ(x), (21)

where the scalar potential φ depends on the charge density function ρe and
is given by

φ(x) =
1

4πε0

∫
V

ρe(x′)
R

dV (x′). (22)

Since curl(gradφ) ≡ 0 for any scalar function φ, we obtain the first equation
of electrostatics

curlE = 0. (23)

Far from the charge distribution the field is approximately that of a
point charge situated at the origin with a charge equal to the total charge
within the distribution. In this case we have 1/R ≈ 1/r and the electrostatic
potential (22) can be approximated by

φ(x) ≈ e

4πε0r
, (24)

where
e =

∫
V

ρe(x′)dV (x′) (25)

is now the total charge in V .

2.6 The Field of a Dipole

Consider now a distribution of charge with density ρe(x′) confined to
a finite volume V , where x′ is the position vector of a typical point in V
relative to an origin O located within V and ρe = 0 outside V . Let x be
the position vector of a point P far from V at which the electrostatic field
is to be calculated (see Figure 2).

Then |x′| � |x| for all x′ in V , and we may use the Taylor expansion to
obtain the approximation

1
R

≡ 1
|x − x′| ≈

1
r
− x′ · grad

(
1
r

)
, (26)
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O

V

x′

x

R

P

Figure 2. Volume V containing a charge distribution with density ρe(x′)
such that ρe = 0 outside V , showing field point P having position vector x
relative to origin O in V and R = x − x′.

recalling that r = |x|. Hence, from (22), the electrostatic potential at x is
approximated as

φ(x) ≈ e

4πε0r
− 1

4πε0
μ · grad

(
1
r

)
, (27)

where e is the total charge in V given by the formula (25) and μ is defined
by

μ =
∫

V

ρe(x′)x′dV (x′). (28)

If e 
= 0 then the origin can be translated to the center of charge (anal-
ogous to the center of mass in mechanics) so that μ = 0, in which case

φ(x) ≈ e

4πε0r
, (29)

which is the field of a point charge e located at the origin. Thus, the field
of a charge distribution at a large distance is indistinguishable from that of
a point charge. On the other hand, if e = 0 and μ 
= 0 we have

φ(x) ≈ − 1
4πε0

μ · grad
(

1
r

)
=

μ · x
4πε0r3

. (30)

This is the potential due to an electric dipole of strength μ situated at
the origin. This is equivalent to having two charges of magnitude e and of
equal and opposite signs very close together, say at distances ±d/2 from
the origin. Using equation (28) the electric dipole is then given by μ = ed.
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2.7 Gauss’s Theorem

To derive Gauss’s theorem consider first a point charge e contained
within a volume V bounded by a closed surface S. Equation (18) gives
the electric field E at x due to a charge e placed at position x′. The vector
R again denotes the vector x − x′. Now suppose x lies on the surface S
and that n is the unit normal vector pointing outward at that point. Let
dS (= ndS) be an infinitesimal area element on the surface S located at x.
Then, the flux of E across dS is given by

E · dS =
e

4πε0

R · dS
R3

, (31)

and the total flux of E across the closed surface S is∫
S

E · dS =
e

4πε0

∫
S

R · dS
R3

. (32)

The integrand on the right-hand side defines the solid angle, denoted dΩ,
subtended by dS at x′, i.e.

dΩ =
R · dS

R3
, (33)

and equation (32) may therefore be written∫
S

E · dS =
e

4πε0

∫
S

dΩ. (34)

If x′ lies within the volume V , then the solid angle is equal to 4π; see Figure
3. On the other hand, if x′ lies outside the bounding surface, then for every
positive quantity R · dS/R3, there is an equal and opposite quantity which
cancels the first. Thus,∫

S

E · dS =

⎧⎨⎩ e/ε0 if e is within V

0 if e is outside V .
(35)

Now consider a continuous charge distribution ρe within a volume V ′,
so that

E(x) =
1

4πε0

∫
V ′

ρe(x′)R
R3

dV (x′), (36)

and the flux of E across a closed surface S, the boundary of V (not necessary
coinciding with V ′), is∫

S

E(x) · dS(x) =
1

4πε0

∫
V ′

ρe(x′) dV (x′)
∫

S

R · dS(x)
R3

. (37)
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Figure 3. Point charge e at location x′ inside the volume V (top) and
outside the volume (below). The solid angle for x′ subtended by the whole
surface S at x′ is 4π when x′ is inside, zero if x′ is outside V .

Using again the properties of solid angle we have∫
S

R · dS
R3

=

{
4π if x′ is within V

0 if x′ is outside V ,
(38)

and hence ∫
S

E · dS =
1
ε0

∫
V ′(S)

ρe(x′) dV (x′), (39)

where V ′(S) is that part of V ′ contained within V . This leads to Gauss’s
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theorem ∫
S

E · dS =
e

ε0
, (40)

which states that the flux of E across a closed surface S is proportional to
the total charge e contained within S.

To obtain the local form of Gauss’s theorem we first rewrite the integral
form as ∫

S

E · dS =
1
ε0

∫
V

ρedV. (41)

Then, using the divergence theorem, equation (41) becomes∫
V

(
divE − ρe

ε0

)
dV = 0, (42)

which must hold for arbitrary V . Therefore, provided the integrand in (42)
is continuous, we deduce that

divE =
ρe

ε0
, (43)

which is the local form of Gauss’s theorem and the second equation of elec-
trostatics.

The equations
curlE = 0, divE =

ρe

ε0
, (44)

govern the electrostatic field E. Since equation (44)1 is equivalent to E =
−gradφ, we obtain Poisson’s equation

∇2φ = −ρe

ε0
(45)

for the scalar potential φ for a given charge distribution with density ρe.
For regions where ρe = 0, equation (45) reduces to Laplace’s equation

∇2φ = 0. (46)

2.8 Maxwell’s Equations

We begin this subsection by first introducing some fundamental con-
cepts from the theory of magnetostatics. These will be combined with the
equations of electrostatics extended to the time-dependent situation to sum-
marize the four Maxwell equations. Note that a detailed presentation of the
theory of magnetostatics is given in the following chapter.
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Recall that equation (9)1 gives the electric field E at a location x due
to an isolated point charge e at rest at the origin. If the charge is moving
with uniform velocity v then, in addition to an electric field, a magnetic
induction B will be produced; see equation (9)2. This equation can easily
be generalized by replacing the point charge e moving with velocity v by
the current density J = ρev at x′ within a volume V such that the magnetic
induction at location x has the form

B(x) =
μ0

4π

∫
V

J(x′) × R
R3

dV (x′), (47)

which is the magnetic analog to the electric field equation (19). Using
standard vector identities, it can be shown that the above equation can be
written in the alternative form

B(x) = curlA, (48)

where A is the magnetic vector potential given by

A =
μ0

4π

∫
V

J(x′)
R

dV (x′). (49)

Note that the current density J in equation (49) is defined with respect to
the x′ variable, but the curl operator in (48) with respect to x. Since the
divergence of a curl is always zero, if follows from (48) that the magnetic
induction B satisfies the important equation

divB = 0, (50)

which is the first equation of magnetostatics. The second equation of mag-
netostatics (see the following chapter) is

curlB = μ0J. (51)

The two equations (44) describe the electrostatic phenomena and (50)
and (51) are the field equations governing magnetostatic fields. When there
is time dependence, the charge conservation equation divJ = 0, which ap-
peared in (15), is no longer valid and is replaced by

divJ +
∂ρe

∂t
= 0. (52)

Equations (44)2 and (50) remain unchanged, while equation (44)1 is replaced
by

curlE +
∂B
∂t

= 0, (53)
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which shows that a changing magnetic field induces an electric field. This
leaves equation (51), which no longer holds since it implies divJ = 0 and
not (52). To compensate for this difference we write, instead of (51),

curlB = μ0J + G, (54)

where G is unknown and must be determined. On taking the divergence of
this equation and using (44)2 and (52) we obtain

divG = −μ0divJ = μ0
∂ρe

∂t
= μ0ε0div

(
∂E
∂t

)
. (55)

The equations are now self-consistent if we set

G = μ0ε0
∂E
∂t

, (56)

so that
μ−1

0 curlB = J + ε0
∂E
∂t

. (57)

The additional term ε0∂E/∂t in (57) is called the displacement current.
We now collect together the four fundamental differential equations de-

rived above as
divE =

ρe

ε0
, divB = 0, (58)

curlB = μ0J + μ0ε0
∂E
∂t

, curlE = −∂B
∂t

. (59)

These are the four Maxwell’s equations, which govern the fields E and B
everywhere when the charge density ρe and current density J are known.
When coupled with the Lorentz force law they constitute an exact and com-
plete description of classical (non-relativistic) electromagnetic phenomena.

On taking the curl of (59)2 and making use of (59)1 we obtain

curl(curlE) = − ∂

∂t
(curlB) = − ∂

∂t

(
μ0J + μ0ε0

∂E
∂t

)
. (60)

Combining this with the identity curl(curlE) = grad(divE) − ∇2E and
(58)1, we arrive at the equation

∇2E − μ0ε0
∂2E
∂t2

= grad
(

ρe

ε0

)
+ μ0

∂J
∂t

. (61)

This is the inhomogeneous wave equation for E, where c = (μ0ε0)−1/2 is the
wave speed (the speed of electromagnetic effects in free space). The right-
hand side of (61) is the source term. Similarly, taking the curl of equation



72 A. Dorfmann

(59)1 and using (58)2 and (59)2, the corresponding wave equation for the
magnetic induction B is obtained as

∇2B − 1
c2

∂2B
∂t2

= −μ0curlJ. (62)

In free space, where ρe = 0 and J = 0, we obtain the homogeneous wave
equations

∇2E =
1
c2

∂2E
∂t2

, ∇2B =
1
c2

∂2B
∂t2

. (63)

We now define two further electromagnetic field vectors, denoted D and
H, which are designated as the electric displacement vector and the mag-
netic field vector, respectively. In free space these are simply related to E
and B, respectively, by a constant factor in each case. Thus,

D = ε0E, B = μ0H, (64)

where ε0 is the electric permittivity of free space and μ0 the magnetic per-
meability of free space, which appeared in (9). These enable Maxwell’s
equations (58) and (59) to be written in the forms

divD = ρe, divB = 0, (65)

curlH = J +
∂D
∂t

, curlE = −∂B
∂t

. (66)

For a detailed treatment of Maxwell’s equations, see, for example, the
classic text by Jackson (1999) and, for an interesting historical overview,
we refer to the preceding chapter by Maugin.

2.9 Polarization and Magnetization in Materials

In material media the relations (64) do not hold in general and they must
be replaced by constitutive laws, which describe the electric and magnetic
properties of the material in question. When an electromagnetic field is ap-
plied to material media certain kinds of charges and currents are generated.
These are conveniently described by two additional vectors, known as the
electric polarization, denoted P and the magnetization, denoted M, which
are defined in terms of the other field vectors by the standard formulas

P = D − ε0E, M = μ−1
0 B − H. (67)

To be more specific, the charge density ρe may be decomposed in the form
ρe = ρf + ρb, where ρf is the density of free charges and ρb the density
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of bound charges. The polarization arises from the accumulation and re-
arrangement of bound charges when an external electric field is applied to
the material, and it is related to ρb by ρb = −divP. It follows from (65)1
and (67)1 that divD = ρf . The magnetization arises from the response
of the material to an external magnetic field and corresponds to the mag-
netic dipole moment density. The effect of the magnetization is to induce
a bound current density, denote here by Jb, which is given by Jb = curlM.
Moreover, when the polarization changes in time it generates an additional
current, characterized by the polarization current density, which is denoted
Jp and given by Jp = ∂P/∂t. The difference

J − Jb − Jp = J − curlM − ∂P
∂t

(68)

is the free current density, denoted Jf . It follows from (59)1 and (67) that
curlH = Jf + ∂D/∂t.

Notice that the conservation of charge holds separately for free and
bound charges/currents since divJf + ∂ρf/∂t = 0 and divJp + ∂ρb/∂t = 0
follow from the above relations.

To summarize, the four Maxwell’s equations in material matter may be
written as

divD = ρf , divB = 0, (69)

curlH = Jf +
∂D
∂t

, curlE = −∂B
∂t

, (70)

which are equivalent to (65) and (66).
Equation (67)1 gives an explicit expression for P in terms of either D

or E as the independent electric variable when E (respectively D) is given
in terms of D (respectively E) by a constitutive law. Similarly, the magne-
tization M is given in terms of either H or B as the independent variable
when B (respectively H) is given in terms of H (respectively B) by a second
constitutive equation.

Basic examples of constitutive laws include those for linear isotropic
media, for which equations (64) are replaced by

D = εε0E, B = μμ0H, (71)

where ε and μ are the relative dielectric permittivity and relative magnetic
permeability, respectively. From equations (67) and (71), the polarization
and magnetization are given by

P =
ε − 1

ε
D, M =

μ − 1
μ0μ

B, (72)
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so that P and M are parallel to the corresponding field vectors. In vacuo
or in non-polarizable material ε = 1, while in vacuo or in non-magnetizable
media μ = 1. In polarizable materials ε > 1 and P is in the same direction
as D. For most materials μ > 1; however, there are some magnetizable
materials for which μ < 1 and M is therefore opposite in direction to B.

2.10 Boundary Conditions

Maxwell’s equations (65) and (66) are valid for any material medium
provided D and H are given by appropriate constitutive laws. To these
equations we need to append boundary conditions in order to formulate
and solve boundary-value problems. In general the field vectors E,D,B
and H are discontinuous across a surface between different media or across
a surface bounding the material. In this section we derive, using equations
(65) and (66) in integral form together with the divergence and Stokes’
theorems, as appropriate, the equations satisfied by the discontinuities.

2.11 Boundary Conditions for E and D

Let S be a stationary surface which carries free surface charge σf per
unit area. The two sides of S are distinguished as side 1 and side 2 and
field vectors on the two sides of S are identified with subscripts 1 and 2.
Let n be the unit normal to S pointing from side 1 to side 2. The ‘jump’
in a vector on S is the difference between its values on side 2 and side 1,
evaluated on S. Thus E, for example, has jump E2 −E1, which is denoted
[[E]], and similarly for the other vectors. The jump conditions satisfied by
E and D are summarized as

n × [[E]] = 0, n · [[D]] = σf . (73)

We now prove these results.
Consider the Maxwell equation (66)2 integrated over an open surface Σ

with bounding curve Γ. After application of Stokes’ theorem it becomes∮
Γ

E · dx = −
∫

Σ

∂B
∂t

· dS. (74)

Let Σ be an infinitesimal plane rectangular surface with Γ identified by
its corner points ABCD lying in the plane of the unit normal n to a surface
S and a unit tangent vector t to the surface and intersecting S, as shown
in Figure 4. The sides AB and CD of Γ are parallel to t and have lengths
δs. The sides BC and DA are parallel to n and have lengths δh. Then,
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S

n

t Σ

A B

CD

δh

1

2

Figure 4. A small plane area Σ intersecting the surface S in the plane of
the unit normal n to the surface and a unit tangent vector t. The unit
normal points from side 1 to side 2 of the surface. The bounding curve of
Σ is traversed in the direction of the arrows along the path ABCDA.

application of (74) to Σ and Γ yields the approximate result

−
∫

AB

E ·tds+
∫

BC

E ·ndh+
∫

CD

E ·tds−
∫

DA

E ·ndh ≈ −∂B
∂t

·(n×t)δhδs.

(75)
Taking the limit as δh → 0 and then dividing by δs and letting δs → 0

we obtain E2 · t − E1 · t = 0, i.e. t · [[E]] = 0. This holds for an arbitrary t
normal to n, and hence the result (73)1 follows.

Now consider a cylinder (or ‘pill box’) of infinitesimal height δh and
cross-sectional area δS = nδS straddling the surface S, as depicted in Fig-
ure 5. Equation (65)1, integrated over the volume V of the cylinder and
application of the divergence theorem, gives∫

Σ

D · dS =
∫

V

ρe dV, (76)

where Σ is the bounding surface of the cylinder. Since δh is infinitesimal and

S

nδS

1

2
δh

Figure 5. A ‘pill-box’ of height δh and cross-sectional area δS intersecting
the surface S with unit normal n pointing from side 1 to side 2 of S.

the flux of D across the lateral surface of the cylinder becomes negligible
as δh → 0, the only contribution to the surface integral comes from the top
and bottom surfaces of the cylinder. The right-hand side of (76) is the total
free charge in V , which consists of the surface charge σfδS. Equation (76)
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is therefore approximated simply as D2 · n δS − D1 · n δS ≈ σfδS, which,
after dividing by δS and taking the limit δS → 0, yields n · [[D]] = σf , and
hence (73)2 is established. Clearly, if the surface S is free of distributed
charge σf , then the normal component of D is continuous.

2.12 Boundary Conditions for B and H

The counterparts of the boundary conditions (73) for the magnetic vectors
are

n × [[H]] = Kf , n · [[B]] = 0, (77)

where Kf is the free current surface density on the surface S per unit area.
The proof of (77) follows the same pattern as for (73) and we refer to the
following chapter of this volume for a detailed derivation.

3 Deformable Electromagnetic Materials

3.1 Continuum Kinematics

Consider a deformable electromagnetically sensitive body that is ini-
tially in an unstressed configuration. Let the region in three-dimensional
Euclidean space occupied by the body in this configuration be denoted B0,
with boundary ∂B0, and let X be the position vector of a generic mate-
rial particle. Suppose that the body deforms under the combined action of
mechanical loads and an electromagnetic field, so that the point X occu-
pies the new position x = χ(X). The resulting deformed configuration is
denoted by B and its boundary by ∂B. The vector field χ, which is a one-
to-one, orientation-preserving mapping with suitable regularity properties,
describes the motion of the body and is defined for X ∈ B0 ∪ ∂B0.

The deformation gradient tensor F relative to B0 is defined by

F = Gradχ, X ∈ B0, (78)

where Grad denotes the gradient operator with respect to X. We also adopt
the notation

J = detF, (79)

which by standard convention is positive.
Associated with F are the symmetric Cauchy–Green tensors. To avoid a

conflict of standard notations we use here the lower case characters c and b
to represent, respectively, the right and left Cauchy–Green tensors. These
are defined in terms of the deformation gradient by

c = FTF, b = FFT, (80)
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where T denotes the transpose of a second-order tensor. Suggested ref-
erences for additional details of the kinematics of solid continua are, for
example, the texts by Ogden (1997) and Holzapfel (2000).

In what follows, the notations grad, div and curl are used for the standard
differential operators with respect to x, while Grad, Div and Curl are the
corresponding operators with respect to X. We also use the convention that
the divergence operator, when applied to tensors, acts on the first index of
the tensor that follows. For example, divF ≡ ∂Fjα/∂xj and Div(FT) ≡
∂Fjα/∂Xα.

We note the important kinematic identities

Div(JF−1) = 0, div(J−1F) = 0, Curl(FT) = O, curl(F−T) = O,
(81)

where 0 denotes the zero vector and O the zero second-order tensor. Equa-
tions (81) are valuable for converting formulas between Eulerian and La-
grangian descriptions.

Suppose that a = a(x) is an Eulerian vector defined in the deformed
configuration B. Using equations (81)1,3, we have

Div(JF−1a) = Jdiva, Curl(FTa) = JF−1curla. (82)

Similarly, let A = A(X) be a Lagrangian vector defined in the reference
configuration B0. Then, by using (81)2,4, we obtain

div(J−1FA) = J−1DivA, curl(F−TA) = J−1FCurlA. (83)

By using the connection a = J−1FA we see that the divergence identities in
equations (82)1 and (83)1 are equivalent. Equally, the equations involving
the curl operator coincide if, instead, we set a = F−TA.

3.2 Lagrangian Formulation

The electromagnetic field equations in the preceding section are ex-
pressed in Eulerian form involving the operators div and curl . In this
section we re-cast the equations in Lagrangian form using the operators
Div and Curl along with the boundary conditions, with the independent
spatial variable x replaced by X.

Applying the divergence theorem to the integral form of equation (65)1,
with ρe = 0, we obtain∫

B
divDdv =

∫
∂B

D · nda = 0, (84)
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where n is the unit outward normal to ∂B. For time-independent phenom-
ena the integral form of equation (66)2 gives∫

S
curlE · nda =

∮
∂S

E · dx = 0. (85)

where S is an open surface in the deformed configuration and ∂S is a closed
curve bounding S defined in the usual sense relative to the unit normal n
to S.

In equation (84), we now make use of the standard Nanson formula
nda = JF−TN dA connecting referential and current area elements (re-
spectively dA and da), where the unit normal N is the referential counter-
part of n. We also use, in (85), the rule dx = F dX connecting line elements
of material. Equations (84) and (85) can then be written in the referential
forms ∫

∂B0

J(F−1D) · NdA =
∫
B0

Div(JF−1D) dV = 0, (86)∮
∂S0

(FTE) · dX =
∫
S0

Curl(FTE) · NdA = 0, (87)

where S0 is the surface in the reference configuration that deforms into S,
and the closed curve ∂S0 is its boundary.

This leads to the introduction of Lagrangian counterparts of D and E,
denoted Dl and El and defined by

Dl = JF−1D, El = FTE. (88)

Similarly, using equations (65)2 and (66)1 with J = 0, for time-indepen-
dent phenomena, the Lagrangian counterparts of B and H can be derived.
Applying a process identical to the one used for the electric field variables,
gives ∫

B
divB dv =

∫
∂B

B · n da = 0, (89)∫
S

curlH · nda =
∮

∂S
H · dx = 0. (90)

Again, using Nanson’s formula and the rule connecting line elements of
material, the identities in (89) and (90) can be written in the referential
forms ∫

∂B0

J(F−1B) · NdA =
∫
B0

Div(JF−1B) dV = 0, (91)∮
∂S0

(FTH) · dX =
∫
S0

Curl(FTH) · NdA = 0. (92)
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This prompts introduction of the notations

Bl = JF−1B, Hl = FTH, (93)

with J = 1 for an incompressible material, which are the Lagrangian coun-
terparts of B and H respectively.

From (82)1 it follows that

DivDl = JdivD, DivBl = JdivB, (94)

and using (82)2 gives

CurlEl = JF−1curlE, CurlHl = JF−1curlH. (95)

Maxwell’s equations (69) may therefore be written in Lagrangian form
as

DivDl = ρF, DivBl = 0, (96)

where ρF = Jρf is the free charge density per unit reference volume. For
time-independent phenomena, equations (70) become

CurlEl = 0, CurlHl = Jl, (97)

where Jl = JF−1Jf is the Lagrangian counterpart of the free current density.
The Lagrangian forms of the boundary conditions are entirely analogous

to their Eulerian counterparts in (73) and (77). The boundary conditions
associated with equations (96) are

N · [[Dl]] = σF, N · [[Bl]] = 0, (98)

where N is the unit normal to the reference boundary ∂B0 associated with
n through Nanson’s formula nda = JF−TNdA and σF is the surface charge
per unit reference area. Similarly, the boundary conditions associated with
equations (97) are

N × [[El]] = 0, N × [[Hl]] = Kl, (99)

where Kl = F−1Kfda/dA is the Lagrangian free surface current, defined
per unit reference area.

In the remainder of this article we illustrate the use of the equations
summarized above by focusing attention on the electrostatic situation. In
particular, we develop the constitutive theory that describes the nonlinear
interaction between elastic deformation and electric fields.
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4 Nonlinear Electroelastic Materials

4.1 The Equations of Electrostatics

Recall that E, D and P denote, respectively, the electric field, the electric
displacement and the polarization in the deformed configuration B and are
regarded as functions of x.

The fields E and D must satisfy the field equations

curlE = 0, divD = 0, (100)

which are the appropriate specializations of Maxwell’s equations in the ab-
sence of magnetic interactions, distributed charges and time dependence.
The polarization vector P can be considered as a derived quantity and is
defined in terms of E and D by the standard equation

P = D − ε0E, (101)

where we recall that the constant ε0 is the permittivity of free space. Equa-
tion (101) gives an explicit expression for P in terms of either E or D as
the independent variable when D (respectively E) is given in terms of E
(respectively D) by a constitutive law. In vacuum or in non-polarizable
material, P = 0 and (101) reduces to the simple relation

D = ε0E. (102)

Across a surface of discontinuity within the body or across the boundary
∂B, the fields E and D have to satisfy certain continuity conditions. Here
we do not consider internal surfaces, and therefore the continuity conditions
refer only to ∂B. It is a simple matter to allow for internal surfaces as and
when needed. Let open square brackets signify the jump in the enclosed
quantity in passing from the inside to the outside of the body. For example,
[[E]] = Eo − Ei, where o and i designate ‘outside’ and ‘inside’, respectively.
Then, in the absence of surface charges, the continuity conditions satisfied
by the fields are

n × [[E]] = 0, n · [[D]] = 0 on ∂B, (103)

where n is the unit outward normal to ∂B. Then, using (101), it is easy to
show that

ε0[[E]] = (n · P)n, [[D]] = (n · P)n − P on ∂B. (104)

We remark that in some circumstances the surface of a dielectric may re-
tain a surface charge distribution, but we do not include this in our main
discussion.
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Equations (100) can be written in the alternative Lagrangian forms.
These are

CurlEl = 0, DivDl = 0, (105)

where we recall that Curl and Div operate with respect to B0. The boundary
conditions for the electric field and displacement, again in the absence of
magnetic interactions, distributed charges and time dependence, assume the
Lagrangian forms

N × [[El]] = 0, N · [[Dl]] = 0, (106)

which apply on ∂B0.

4.2 Equilibrium, Stress and Constitutive Laws.

There are many different ways in which the equations of mechanical
equilibrium can be written in the presence of electromechanical interactions,
and there are many possible definitions of ‘stress tensor’ that can be included
in the equilibrium equations. Perhaps the simplest structure is provided
by the so-called total stress tensor, here denoted τ , which is symmetric
and is the analogue of the Cauchy stress tensor arising in elasticity theory
(Dorfmann and Ogden, 2005). In terms of τ the equilibrium equation has
the form

divτ + ρf = 0, (107)

where f is the mechanical body force per unit mass and ρ is the mass density
of the material in the configuration B. We emphasize that τ incorporates
terms that may be considered as electric body forces rather than stresses,
the diversity of which is discussed in the following subsections.

If ta is the applied mechanical traction per unit area of ∂B, then the
stress τ calculated inside the material must satisfy

τn = ta + τmn on ∂B, (108)

where τm is the Maxwell stress due to the electric field outside the material.
It is given by

τm = D ⊗ E − 1
2 (D · E)I, (109)

where I is the identity tensor and with D = ε0E the expression (109) is
symmetric. In general, ta may be prescribed on only part of ∂B or not at
all. Here we do not consider alternative mechanical boundary conditions
such as prescription of x on part of ∂B. The formulation can be adapted to
accommodate such boundary conditions when required.

In what follows we summarize some alternative formulations of the equi-
librium equation (107). We assume throughout that the material is not
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subject to any internal mechanical constraint such as incompressibility, al-
though extension of the theory presented here to mechanically internally
constrained materials is straightforward. Furthermore, we consider only
conservative materials and, in particular, we assume that there is no hys-
teresis.

Formulations based on the polarization. We now examine different
forms of the equilibrium equation and the associated stress measures. We
first consider the formulation introduced by Toupin (1956). This is based on
use of P ≡ P/ρ as the independent electric variable and an energy function
per unit mass, here denoted χ(F,P), which does not include the electric
self energy. From this are calculated a Cauchy-like stress, denoted σ, and
E via

σ = ρF
∂χ

∂F
, E =

∂χ

∂P
. (110)

Although this is not immediately apparent, we note that in general σ is not
symmetric.

The equilibrium equation (107) can be expressed in the alternative form

divσ + (gradE)TP + ρf = 0, (111)

the term (gradE)TP having the role of an electric body force relative to
the stress tensor σ. Here we use the convention (in Cartesian components)
that (gradE)ij = ∂Ei/∂xj . The stress σ is easily seen to be related to τ by

τ = σ + D ⊗ E − 1
2ε0(E · E)I, (112)

which reduces to the Maxwell stress (109) outside the material (where P =
0). Note that, since curlE = 0, (gradE)TP = (gradE)P ≡ (P · grad)E. In
general, D ⊗ E is not symmetric, and since τ is symmetric it follows that
σ is not symmetric.

If, instead of F and P, we use F and P as the independent variables and
write χ(F,P) as the energy function then equations (110) are replaced by

σχ ≡ ρF
∂χ

∂F
= σ + (E · P)I, E = ρ

∂χ

∂P
. (113)

This requires use of the formula ∂J/∂F = JF−1 and the connection ρ0 =
ρJ , where ρ0 is the mass density in B0 and ρ the density in the deformed
configuration B.

In terms of σχ the equilibrium equation has the form

divσχ − (gradP)TE + ρf = 0. (114)
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Next, we define χ∗(F,P) by

ρχ∗(F,P) = ρχ(F,P) +
1
2
ε−1
0 P · P, (115)

and the associated derivatives are

σ∗
χ ≡ ρF

∂χ∗

∂F
= σχ +

1
2
ε−1
0 (P · P)I, ε−1

0 D = ρ
∂χ∗

∂P
. (116)

The equilibrium equation can then be written

divσ∗
χ − ε−1

0 (gradP)TD + ρf = 0, (117)

where −ε−1
0 (gradP)TD is the electric body force relative to σ∗

χ. Neither
σχ nor σ∗

χ is symmetric in general. Yet another alternative can be obtained
by using P instead of P in the above, but we omit the details of this case.

Formulations based on the electric field. Formulations of the equa-
tions based on use of E as the independent electric variable are considered
next. First, the energy function ψ(F,E) is obtained by the partial Legendre
transform

ρψ(F,E) = ρχ(F,P) − P · E, (118)

from which we obtain

σψ ≡ ρF
∂ψ

∂F
= σ, P = −ρ

∂ψ

∂E
. (119)

Note, in particular, that this yields the same stress tensor σ as does χ.
If next we define ψ∗(F,E) by

ρψ∗(F,E) = ρψ(F,E) − 1
2
ε0E · E, (120)

then we obtain

σ∗
ψ ≡ ρF

∂ψ∗

∂F
= σψ − 1

2
ε0(E · E)I, D = −ρ

∂ψ∗

∂E
, (121)

and the equilibrium equation can be translated to

divσ∗
ψ + (gradE)TD + ρf = 0, (122)

(gradE)TD being the electric body force associated with the stress σ∗
ψ

(which is not in general symmetric).
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Formulations based on the electric displacement. A third option is
to base the formulation on the electric displacement vector D and to define
an energy function φ(F,D) via the transformation

ρφ(F,D) = ρψ(F,E) − 1
2
ε−1
0 P · P. (123)

This yields a stress tensor, denoted σφ, and the polarization P in the forms

σφ ≡ ρF
∂φ

∂F
= σψ − 1

2ε−1
0 (P · P)I, P = −ε0ρ

∂φ

∂D
, (124)

while the equilibrium equation becomes

divσφ + ε−1
0 (gradD)TP + ρf = 0. (125)

In this case it is the term ε−1
0 (gradD)TP that has the role of an electric

body force (in respect of the stress σφ). In general, σφ is not symmetric.
The final option we consider here is based on the potential φ∗(F,D)

given by
ρφ∗(F,D) = ρφ(F,D) + 1

2ε−1
0 D · D, (126)

or, equivalently, through the partial Legendre transform,

ρφ∗(F,D) = ρψ∗(F,E) + D · E. (127)

The stress tensor associated with φ∗, denoted σ∗
φ, and the electric field E

are given by

σ∗
φ ≡ ρF

∂φ∗

∂F
= σφ + 1

2ε−1
0 (D · D)I, E = ρ

∂φ∗

∂D
, (128)

and the equilibrium equation can then be re-cast as

divσ∗
φ − (gradD)TE + ρf = 0, (129)

now with electric body force −(gradD)TE and (in general unsymmetric)
stress σ∗

φ.
As in the magnetostatic situation discussed by Bustamante et al. (2008),

the formulations listed in the above sections are all equivalent, but they are
not the only possible ones. Generically, the equilibrium equation can be
written in the form

divσ̂ + f̂e + ρf = 0, (130)

where σ̂ is a Cauchy-like stress tensor and f̂e is an electric body force
(defined per unit volume in B). The latter is always expressible in the
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form f̂e = div τ̂m, where τ̂m is a ‘Maxwell stress’ within the material and
σ̂ + τ̂m = τ . Clearly, the concepts of ‘stress’, ‘electric body force’ and
‘Maxwell stress’ inside the material are not uniquely defined, as is well
known, and, in particular, the electric ‘body force’ and ‘Maxwell stress’
terms are different for each choice of ‘stress tensor’. Moreover, the bound-
ary conditions for each stress tensor are different since, from (108), σ̂ must
satisfy

σ̂Tn = ta + (τm − τ̂m)Tn on ∂B, (131)

where, it should be emphasized, τm is the Maxwell stress calculated on the
boundary from the exterior fields, while τ̂m is the Maxwell stress calculated
on the boundary from the fields inside the material.

To be more specific we now consider the stress tensor σ since the associ-
ated body force (P ·grad)E is the direct continuum analogue of the force on
a single electric dipole in an electric field. On reference to equation (112) we
may write this as divτm, where τm is the associated Maxwell stress (inside
the material) defined by

τm = D ⊗ E − 1
2ε0(E · E)I, (132)

which, in general, is not symmetric. We recall that the Maxwell stress
exterior to the body is given by (109) and, since D = ε0E there, this is
symmetric. By using equations (104) we then see that there is a disconti-
nuity across ∂B in the traction associated with the Maxwell stress, namely

(τm − τT
m)n =

1
2
ε−1
0 (P · n)2n. (133)

From (108) and (112) it follows that σ must satisfy the boundary condition

σTn = ta +
1
2
ε−1
0 (P · n)2n on ∂B. (134)

The distinctions between the relative contributions of the many different
body forces or, equivalently, Maxwell stresses are therefore somewhat arti-
ficial. In any case, it is unlikely that experiment will be able to distinguish
between different choices of Maxwell stress by direct measurement, notwith-
standing the fact that for a given body force, the associated Maxwell stress
is undetermined to within an additive divergence-free stress. For a detailed
discussion of different dipole-type models in electromagnetism associated
with different body forces we refer to Hutter and van de Ven (1978); Hutter
et al. (2006).

From the mathematical point of view, the formulation based on the ‘to-
tal stress’ is the cleanest and avoids the need for defining either an electric
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Energy Stress σ̂ Body force fe Electric vector

χ(F,P) σχ = ρF
∂χ

∂F
−(gradP)TE E = ρ

∂χ

∂P

χ∗(F,P) σ∗
χ = ρF

∂χ∗

∂F
−ε−1

0 (gradP)TD ε−1
0 D = ρ

∂χ∗

∂P

ψ(F,E) σψ = ρF
∂ψ

∂F
(gradE)TP P = −ρ

∂ψ

∂E

ψ∗(F,E) σ∗
ψ = ρF

∂ψ∗

∂F
(gradE)TD D = −ρ

∂ψ∗

∂E

φ(F,D) σφ = ρF
∂φ

∂F
ε−1
0 (gradD)TP P = −ε0ρ

∂φ

∂D

φ∗(F,D) σ∗
φ = ρF

∂φ∗

∂F
−(gradD)TE E = ρ

∂φ∗

∂D

Table 1. Listing of energy functions based on P,E or D and the associated
stress σ̂ and electric body force f̂e in equation (130), together with the
derived field vectors.

body force or a Maxwell stress within a polarizable material. Indeed, as
shown by Dorfmann and Ogden (2005), the stress τ has a very simple ex-
pression in terms of a modified form of the energy function. This will be
recalled and highlighted in the following subsection. For ease of reference
the main features of the above formulations are collected together in Table
1. However, for the remainder of this chapter we shall not make use of elec-
tric body forces or Maxwell stresses within the material. The formulations
discussed above are all Eulerian in character. In the following subsection,
we discuss the Lagrangian counterparts of some of these formulations.

Lagrangian variables and governing equations. A suitable trans-
lation of the total stress tensor τ to the Lagrangian context is the total
nominal stress (the counterpart of the nominal stress in elasticity theory),
here denoted T, which is a two-point tensor related to τ by

T = JF−1τ . (135)

Then, the equilibrium equation (107) may be written in the alternative form

DivT + ρ0f = 0, (136)

where we recall that ρ0 = ρJ is the mass density of the material in B0. In
the absence of mechanical body forces, the equilibrium equation simplifies
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to
DivT = 0. (137)

The traction boundary condition associated with (136) and analogous
(108) can be re-cast as

TTN = tA + tE, (138)

where tE = TT
EN and TE = JF−1τm and we have used Nanson’s formula

nda = JF−TNdA relating area elements to define tA by tAdA = tada as
the traction per unit reference area.

4.3 Constitutive Equations

The energy function ψ(F,E) was introduced in the previous subsection.
From the connection (88)2 between E and El we may regard ψ(F,E), equiv-
alently, as a function of F and El, and we write

Ψ(F,El) ≡ ψ(F,F−TEl). (139)

Note that since El is a Lagrangian vector it is indifferent to observer trans-
formations in the deformed configuration, while, as is standard in nonlinear
elasticity, the dependence on F is via the right Cauchy–Green tensor c de-
fined in (80)1, which ensures objectivity of Ψ.

The stress tensor σψ = σ discussed in Section 4.2 is now given by

σ = ρF
∂ψ

∂F
= ρF

∂Ψ
∂F

− P ⊗ E, (140)

the total stress τ by

τ = ρF
∂Ψ
∂F

+ ε0[E ⊗ E − 1
2
(E · E)I], (141)

and the corresponding total nominal stress T by (135). Note that the first
term on the right-hand side of (141) provides yet another example of a stress
tensor, in this case symmetric.

We also have
Pl = −ρ0

∂Ψ
∂El

, P = −ρF
∂Ψ
∂El

, (142)

where we have defined a Lagrangian form Pl of the polarization P by

Pl = JF−1P. (143)

Following Dorfmann and Ogden (2005) we now introduce the ‘total’ en-
ergy (density) function, denoted Ω = Ω(F,El) and defined by

Ω = ρ0Ψ − 1
2
ε0JEl · (c−1El). (144)
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This enables T and τ to be given in the simple forms

T =
∂Ω
∂F

, τ = J−1F
∂Ω
∂F

, (145)

and the Lagrangian and Eulerian forms Dl and D of the electric displace-
ment field simplify to

Dl = − ∂Ω
∂El

, D = −J−1F
∂Ω
∂El

. (146)

Given that El can be written El = −Gradϕ and that F = Gradx, and
given the mechanical body force and the form of Ω, the relevant equations
to be solved for x and ϕ are the coupled nonlinear equations

DivT + ρ0f = 0, DivDl = 0, (147)

in conjunction with the boundary conditions (98)1 , (99)1 and (138).
As an alternative to using El, the Lagrangian displacement vector Dl can

be used as the independent electric variable through the function Ω∗(F,Dl),
which is defined by the partial Legendre transformation

Ω∗(F,Dl) = Ω(F,El) + El · Dl. (148)

We recall that we are considering conservative materials with no hysteresis
so that it is appropriate to assume that Dl is a monotonic function of El.
The transformation (148) is then well defined and it follows that

T =
∂Ω∗

∂F
, El =

∂Ω∗

∂Dl
, (149)

which have Eulerian counterparts

τ = J−1F
∂Ω∗

∂F
, E = F−T ∂Ω∗

∂Dl
. (150)

Incompressible materials. The expressions for the various stress ten-
sors in the foregoing apply for a material that is not subject to any in-
ternal mechanical constraint. For an important class of materials, includ-
ing electro-sensitive elastomers, it is appropriate to adopt the constraint
of incompressibility, in which case the expressions for the stresses require
modification.

For an incompressible material we have the constraint

detF ≡ 1. (151)
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The amended free energy function (144) then simplify to

Ω = ρ0Ψ − 1
2
ε0El · (c−1El), (152)

and total nominal stress T and Cauchy stress τ given by (145) in terms of
Ω are then amended in the forms

τ = F
∂Ω
∂F

− pI, T =
∂Ω
∂F

− pF−1, (153)

respectively, where p is a Lagrange multiplier associated with the constraint
(151). The expressions (146) are unchanged except that (151) is in force.
In terms of Ω∗ we have, instead of (153),

τ = F
∂Ω∗

∂F
− p∗I, T =

∂Ω∗

∂F
− p∗F−1, (154)

where, in general, the p in (153) is not the same as the p∗ in (154).

4.4 Material Symmetry Considerations

Thus far no restrictions have been placed on the forms of the free en-
ergy functions other than those required by objectivity, so that considerable
generality remains. Other restrictions may be physically or mathematically
based. For example, physical restrictions arise from the nature of the ma-
terial itself, such as its inherent symmetry. Electro-sensitive elastomers are
typically isotropic in their response in the absence of an electric field, but
application of an electric field endows the material with a preferred direc-
tion. Thus, the electric field vector E generates a preferred direction in the
deformed configuration B. However, from the point of view of constitutive
law development, it is advantageous to make use of the Lagrangian field El

instead of E, and to consider the free energy functions Ω.
For simplicity we now restrict attention to so-called isotropic magneto-

sensitive materials, for which the material symmetry considerations are sim-
ilar to those that arise for a transversely isotropic elastic material, which
possesses a preferred direction in the reference configuration. This is ap-
propriate for fiber-reinforced materials, for which the preferred direction is
the fiber direction in the reference configuration. The vector field El has an
analogous role in the present context.

The electroelastic material considered here is said to be isotropic if Ω is
an isotropic function of the two tensors c and El ⊗El. Note that the latter
expression is unaffected by reversal of the sign of El. Then, the form of Ω
is reduced to dependence on the principal invariants I1, I2, I3 of c, defined
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by

I1 = trc, I2 =
1
2
[
(trc)2 − tr(c2)

]
, I3 = det c = J2, (155)

together with three invariants that depend on El. A convenient choice of
the latter is

I4 = |El|2, I5 = (cEl) · El, I6 = (c2El) · El. (156)

Note that for a transversely isotropic elastic material the counterpart of the
invariant I4 would be absent since in that case the preferred direction is a
unit vector.

In the following the subscripts 1, 2, . . . , 6 on Ω signify differentiation with
respect to I1, I2, . . . , I6, respectively. A direct calculation based on (145)2
leads to

τ = J−1[2Ω1b + 2Ω2(I1b − b2) + 2I3Ω3I + 2Ω5bE ⊗ bE

+2Ω6(bE ⊗ b2E + b2E ⊗ bE)], (157)

which is symmetric, and (146)2 gives

D = −2J−1(Ω4bE + Ω5b2E + Ω6b3E), (158)

where we recall that b = FFT is the left Cauchy–Green deformation tensor.
The corresponding Lagrangian forms may be obtained from the connections
T = JF−1τ and El = FTE.

For an incompressible material I3 ≡ 1 and (157) is replaced by

τ = 2Ω1b+2Ω2(I1b−b2)−pI+2Ω5bE⊗bE+2Ω6(bE⊗b2E+b2E⊗bE),
(159)

while (158) is unchanged in form, but with J = 1 and I3 absent from Ω.
If we work with Ω∗ instead of Ω then the invariants based on El have to

be changed to invariants based on Dl. These are denoted here by K4,K5,K6

and may be defined, analogously to (156), by

K4 = Dl · Dl, K5 = (cDl) · Dl, K6 = (c2Dl) · Dl. (160)

The associated formulas for τ are similar to those based on Ω. For an
incompressible material, for example, we have

τ = 2Ω∗
1b+2Ω∗

2(I1b−b2)−pI+2Ω∗
5D⊗D+2Ω∗

6(D⊗bD+bD⊗D). (161)

The electric field is given by (150)2 and has the form

E = 2(Ω∗
4b

−1D + Ω∗
5D + Ω∗

6bD), (162)
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and its Lagrangian counterpart is obtained via El = FTE. In the above
equations, for which Ω∗ = Ω∗(I1, I2, K4,K5,K6), Ω∗

i is defined as ∂Ω∗/∂Ii

for i = 1, 2 and ∂Ω∗/∂Ki for i = 4, 5, 6.
There are important differences between the formulations based on Ω and

Ω∗ in respect of their application to particular boundary-value problems. If
Dl is taken as the independent variable then it has to satisfy DivDl = 0.
The resulting El, calculated from (149)2, then has to satisfy the vector
equation CurlEl = 0, which, for some problems, puts severe restrictions
on the class of constitutive laws that admit the deformation in question
for the considered electric displacement field Dl. On the other hand, if
we start with El as the independent variable it has to satisfy CurlEl = 0
and then the resulting Dl, calculated from (146)1, has to satisfy the scalar
equation DivDl = 0. This also may, in some situations, put restrictions
on the admissible class of constitutive laws, but they are different from and
generally less severe than for the other formulation.

4.5 Exterior Fields

In vacuum or in a non-polarizable material the electric displacement is
related to the electric field by

D	 = ε0E	 (163)

where the star is now introduced to denote a quantity exterior to the ma-
terial. The expression of the total stress tensor τ , given by (141), now
simplifies and reduces to the Maxwell stress (109). The latter can be writ-
ten in the equivalent form

τ 	 = ε0

[
E	 ⊗ E	 − 1

2
(E	 · E	)I

]
, (164)

which satisfy the corresponding Maxwell’s equations (100) and the equilib-
rium equation

divτ 	 = 0. (165)

4.6 Representative Example

We now consider a circular cylindrical tube subject to axial shear and
apply the relevant equations derived earlier in this chapter to solve for
the unknown stress components and the corresponding deformation. In
particular, we consider an incompressible electro-sensitive material in the
absence of mechanical body forces subject to an electrostatic field. The
analysis is based on the use of the energy function Ω∗(F,Dl), which for



92 A. Dorfmann

isotropic materials can equivalently be expressed in terms of the five in-
variants I1, I2,K4,K5,K6; see equations (148), (155) and (160). Due to
the incompressibility condition, the third invariant I3 ≡ 1 and is therefore
not included. For the solution of a circular cylindrical tube subject to axial
shear, using the energy function Ω, we refer to Dorfmann and Ogden (2005).

The equations needed for the solution of a typical nonlinear electroelas-
tic boundary-value problem are, for completeness, summarized below. We
begin with the field equations in Eulerian form,

divτ = 0, curlE = 0, divD = 0, (166)

where we assume that the charge density ρe = 0. For the formulation based
on Ω∗(F,Dl), the total stress tensor τ is given by equation (161) and the
electric field vector E, in terms of the electric displacement D, is shown in
equation (162). The Lagrangian counterparts of equations (166) are

DivT = 0, CurlEl = 0, DivDl = 0, (167)

where we used the Lagrangian-Eulerian connections

T = F−1τ , El = FTE, Dl = F−1D. (168)

We also recall the relations between the electric displacement and the
electric field

D = ε0E + P, D	 = ε0E	, (169)

where P is the polarization in the material. The equations are valid, respec-
tively, within the material and in the surrounding space. The Lagrangian
forms of (169) are not needed here; we refer to Dorfmann and Ogden (2005)
for the corresponding transformations.

In order to solve boundary-value problems, we need to add boundary
conditions for the electric fields and mechanical traction forces. The electric
fields E and D are discontinuous across a surface bounding the material. In
Eulerian form, the jump conditions are

n × [[E]] = 0, n · [[D]] = 0, (170)

where we assumed that the bounding surface does not carry any free surface
charge. The boundary conditions in Lagrangian form are, analogously,

N × [[El]] = 0, N · [[Dl]] = 0, (171)

where N is the unit normal to the bounding surface in the reference config-
uration.
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The total stress tensor τ , on the boundary, must satisfy the condition

τn = ta + τmn, (172)

where τm is the Maxwell stress outside the material and ta is the prescribed
mechanical traction force. This equation can be recast in Lagrangian form
as

TTN = tA + tE, (173)

where the connection between tE and the Maxwell stress τm is given fol-
lowing equation (138).

Note that exact solutions are available only for a very limited number
of boundary-value problems, some of which are discussed in detail by Dorf-
mann and Ogden (2005, 2006). The main problem arises, when an electric
field is present as compared to the purely elastic case, in the difficulty of
meeting the boundary conditions for E and D for bodies with finite geom-
etry. In particular, the boundary conditions on the ends of a tube of finite
length are not in general compatible with those of the lateral surfaces; see
Bustamante et al. (2007) for discussion of this in the magnetoelastic con-
text. For this reason, we consider here an infinitely long tube, for which the
boundary conditions on the cylindrical surfaces can be satisfied exactly.

We now specialize the field equations to problems for which the cylindri-
cal symmetry is maintained during deformation. It is convenient to work in
terms of cylindrical polar coordinates, which in the reference configuration
are denoted by (R,Θ, Z) and in the deformed configuration by (r, θ, z). The
components of equations (166)2,3 are

1
R

∂Ez

∂θ
− ∂Eθ

∂z
= 0,

∂Er

∂z
− ∂Ez

∂r
= 0,

1
r

∂(rEθ)
∂r

− 1
r

∂Er

∂θ
= 0, (174)

and
∂Dr

∂r
+

Dr

r
+

1
r

∂Dθ

∂θ
+

∂Dz

∂z
= 0, (175)

where (Er, Eθ, Ez) are the components of the electric field vector E and
similarly (Dr, Dθ, Dz) are those of the electric displacement D. We select
to work in terms of Ω∗(F,Dl) with Dl as the independent electric variable
that satisfies DivDl = 0. It follows that the electric displacement D =
FDl in the deformed configuration automatically satisfies the corresponding
equation divD = 0; see equation (94)1. The electric field, given by the
constitutive formulation (162), must satisfy the field equation curlE = 0,
which may put restriction on the class of constitutive laws; details are given
in Dorfmann and Ogden (2005).
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With reference to a circular cylindrical tube of infinite length, the com-
ponents of the electric field and electric displacement are independent of θ
and z. The above equations simplify and, after integration, become

Ez = constant, rEθ = constant, rDr = constant, (176)

which show that no restrictions are imposed on the components Er, Dθ and
Dz. Similarly, the components of the equilibrium equation (166)1 simplify,
and those not automatically satisfied are

r
dτrr

dr
= τθθ − τrr,

d
dr

(r2τrθ) = 0,
d
dr

(rτrz) = 0. (177)

Axial shear. Consider a circular cylindrical tube whose reference geom-
etry is defined by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, −∞ < Z < ∞, (178)

where A,B are positive constants defining the inner and outer radii, respec-
tively. Let the inner surface of the cylinder be bonded to a rigid cylinder and
apply a uniform axial shear to the outer surface of the tube. The resulting
deformation is described by the equations

r = R, θ = Θ, z = Z + u(R), (179)

where u(R) is a function of R that has to be determined by the solution of
the governing equations and application of the boundary conditions. These
are

u(a) = 0, u(b) = d, (180)

which corresponds to the inner boundary held fixed and the outer displaced
by an amount d. The components of the deformation gradient F, referred
to cylindrical polar coordinate axes and represented by the matrix F, are
given by

F =

⎛⎝ 1 0 0
0 1 0

u′(r) 0 1

⎞⎠ , (181)

where we now regard u as a function of r (= R); correspondingly, we write
a = A, b = B. We also use the notation γ = u′(r) and note that the
deformation is locally a simple shear with amount of shear γ. Note, how-
ever, that γ is not constant but depends on r: γ = γ(r). Then, the left
and right Cauchy–Green tensors b = FFT and c = FTF have the matrix
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representations

b =

⎛⎝ 1 0 γ
0 1 0
γ 0 1 + γ2

⎞⎠ , c =

⎛⎝ 1 + γ2 0 γ
0 1 0
γ 0 1

⎞⎠ . (182)

The forms of the principal invariants I1, I2, I3 associated with c (equiva-
lently b) are defined in (155). For an incompressible material and for the
deformation here considered, these become

I1 = I2 = 3 + γ2, I3 ≡ 1. (183)

Radial electric displacement field. Consider an electric displacement
vector with components in Lagrangian form given by (DlR, 0, 0). The in-
variants K4,K5, K6, shown in (160), become

K4 = D2
lR, K5 = (1 + γ2)K4, K6 = (1 + 3γ2 + γ4)K4. (184)

In the deformed configuration, the components of the electric displacement
vector D are calculated from D = FDl and are

Dr = DlR, Dθ = 0, Dz = γDlR, (185)

and from equation (176)3 we find

Dr = DlR =
Dbb

r
, (186)

where Db is the value of Dr at the boundary r = b. The components of the
electric field E are given by equation (162) as

Er = 2
[
Ω∗

4 + Ω∗
5 + (1 + γ2)Ω∗

6

]
DlR,

Ez = 2
[
γΩ∗

5 + γ(2 + γ2)Ω∗
6

]
DlR, (187)

with Eθ = 0. The polarization P is given by equation (101) and has non-
zero components

Pr =
[
1 − 2ε0

(
Ω∗

4 + Ω∗
5 + (1 + γ2)Ω∗

6

)]
DlR,

Pz =
[
1 − 2ε0

(
Ω∗

5 + (2 + γ2)Ω∗
6

)]
γDlR. (188)

Stress components and equilibrium. In the space surrounding the
material the Maxwell stress is given by (164), and its non-zero components
are

τ	
rr =

1
2
ε0[(E	

r )2 − (E	
z )2], τ	

rz = ε0E
	
r E	

z , τ	
zz = −1

2
ε0[(E	

r )2 − (E	
z )2],

(189)
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where the superscript 	 is again used to indicate that the fields are calcu-
lated outside the material body. The total stress tensor τ inside an incom-
pressible material is given by the constitutive equation (161). The non-zero
components have the form

τrr = −p + 2Ω∗
1 + 4Ω∗

2 + 2K4

[
Ω∗

5 + 2(1 + γ2)Ω∗
6

]
,

τθθ = −p + 2Ω∗
1 + 2(2 + γ2)Ω∗

2,

τzz = −p + 2(1 + γ2)Ω∗
1 + 2(2 + γ2)Ω∗

2 + 2K4

[
γ2Ω∗

5 + 2(2γ2 + γ4)Ω∗
6

]
,

τrz = 2γ (Ω∗
1 + Ω∗

2) + 2γK4

[
Ω∗

5 + (3 + 2γ2)Ω∗
6

]
, (190)

and the remaining two shear components τθz and τrθ vanish. The first
component of the equilibrium equation (177)1, using the expressions for τrr

and τθθ, becomes

r
dτrr

dr
= 2γ2Ω∗

2 − 2K4

[
Ω∗

5 + 2Ω∗
6(1 + γ2)

]
, (191)

and can be used to determine the Lagrange multiplier p for given γ and K4

and specified boundary conditions. The second component of the equilib-
rium equations, involving τrθ, is satisfied automatically.

Equation (183) shows that the invariants I1, I2 depend on γ only, and
from (184) we find that the invariants K5,K6 are given in terms of K4 and
γ. It is therefore convenient to define a reduced energy function, denoted
ω∗, and given by

ω∗(γ,K4) = Ω∗(I1, I2,K4,K5, K6). (192)

The expression for the stress τrz can now be written in the simplified form
as τrz = ω∗

γ , where ω∗
γ = ∂ω∗/∂γ. Integration of the third equilibrium

equation (177)3 and using the simplified expression for τrz gives

τrz =
∂ω∗

∂γ
=

τzb

r
, (193)

where τz denotes the value of τrz on the boundary r = b. This equation, for
a known function ω∗, can be integrated to give γ and used to determine the
unknown displacement function u(r). Recall that the invariant K4 depends
on DlR, which is given by equation (186).

Finally, we recall that equation (176)1 requires Ez to be constant. There-
fore, from (187)2 we have the condition

γ
[
Ω∗

5 + (2 + γ2)Ω∗
6

]
= c r (194)

where c is a constant. This restriction can be satisfied, for example, by
selecting an energy function independent of K5 and K6, in which case c = 0.
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Illustration. To illustrate the effect of an electric field on the response of
an electro-sensitive material, we consider the energy function

Ω∗(I1,K4) =
μ(K4)

k

[
(I1 − 1)k

2k
− 1
]

+ ν(K4), (195)

where μ and ν are functions of K4 and k is a constant such that k ≥ 1/2.
The function ν describes the energy in the material associated with an
electric field when the deformation γ = 0. It must vanish in the absence of
an applied electric field, i.e. ν(0) = 0. The form of (195) is independent
of K5 and K6 and therefore satisfies the restriction imposed by equation
(194).

Using equation (193), we calculate the associate shear stress

μ(K4)γ
(

2 + γ2

2

)k−1

=
τzb

r
, K4 =

D2
bb2

r2
, (196)

where we recall that γ = u′(r). For any suitable choice of the function μ
and for given k this equation can in principle be solved for γ and hence by
integration for the displacement function u(r) by integration of u′(r) = γ.
In order to permit an explicit solution we restrict attention to the case k = 1
here, so that (196) simplifies to

γ =
τzb

rμ(K4)
. (197)

Next we specialize the function μ to be linear and write

μ(K4) = μ(0) + μ1K4, (198)

where μ(0) is the elastic shear modulus (in the absence of the electric field)
and μ1 is a positive material constant.

If we now introduce the dimensionless variables τ̄ = τz/μ(0) and μ̄1 =
μ1/μ(0) then equation (197) may be solved explicitly, on use of the boundary
condition (180)1, to give the displacement function

u(r) =
1
2
τ̄ b log

(
r2 + μ̄1D

2
bb2

a2 + μ̄1D2
bb

2

)
. (199)

Using the displacement boundary condition u(b) = d prescribed on the outer
surface of the tube, see (180)2, we obtain the (shear) stress-displacement
relation

d =
1
2
τ̄ b log

(
b2 + μ̄1D

2
bb2

a2 + μ̄1D2
bb2

)
. (200)
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In the absence of the electric field this reduces to the standard formula

d = τ̄ b log(b/a), (201)

which is a special case of the more general solution derived in the purely
elastic context by Jiang and Ogden (2000). For given values of a, b and μ̄1

equation (200) shows how this relation is changed by the application of an
electric field. In particular, for the chosen form of μ, the stress response
of the material stiffens as the magnitude of the electric displacement |Db|
increases.

5 Incremental Equations

5.1 Increments within the Material

We now examine the effect of an incremental deformation combined with
an increment in the electric displacement superimposed on the configuration
B and the corresponding increment in the latter exterior to the material.
Let increments be signified by superposed dots. Then, for example, Ṫ, Ḋl

and Ėl are increments in T, Dl and El, respectively. The incremental forms
of the equations (137) and (105) are

DivṪ = 0, DivḊl = 0, CurlĖl = 0, (202)

in the first and third of which the (linearized) incremental forms of the
constitutive equations (149) are required. For an unconstrained material
these are given by

Ṫ = AḞ + ΓḊl, Ėl = ΓTḞ + KḊl, (203)

where Ḟ is the increment in F and A, Γ and K are, respectively, fourth-,
third- and second-order tensors, which we refer to as electroelastic moduli
tensors. Their components are defined by

Aαiβj =
∂2Ω∗

∂Fiα∂Fjβ
, Γαiβ =

∂2Ω∗

∂Fiα∂Dlβ
, Kαβ =

∂2Ω∗

∂Dlα∂Dlβ
, (204)

which have the symmetries

Aαiβj = Aβjαi, Kαβ = Kβα. (205)

Note that Γ has no corresponding indicial symmetry, although the order of
the mixed derivatives in (204)2 may be reversed. The products in (203) are
defined, in component form, by

Ṫαi = AαiβjḞjβ + ΓαiβḊlβ, Ėlα = ΓβiαḞiβ + KαβḊlβ. (206)
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For an isotropic electroelastic material with no mechanical constraint,
Ω∗ is a function of the six invariants I1, I2, I3 and K4,K5,K6 that have
been defined in (155) and (160), respectively. For convenience of notation,
we now denote K4,K5,K6 by I4, I5, I6 such that

I4 = Dl · Dl, I5 = (cDl) · Dl, I6 = (c2Dl) · Dl. (207)

The expressions (204) can then be expanded in the forms

Aαiβj =
6∑

m=1,m�=4

6∑
n=1,n �=4

Ω∗
mn

∂Im

∂Fiα

∂In

∂Fjβ
+

6∑
n=1,n �=4

Ω∗
n

∂2In

∂Fiα∂Fjβ
,

Γαiβ =
6∑

m=4

6∑
n=1,n �=4

Ω∗
mn

∂Im

∂Dlβ

∂In

∂Fiα
+

6∑
n=5

Ω∗
n

∂2In

∂Fiα∂Dlβ
,

Kαβ =
6∑

m=4

6∑
n=4

Ω∗
mn

∂Im

∂Dlα

∂In

∂Dlβ
+

6∑
n=4

Ω∗
n

∂2In

∂Dlα∂Dlβ
, (208)

where Ω∗
n = ∂Ω∗/∂In, Ω∗

mn = ∂2Ω∗/∂Im∂In. Expressions, in component
form, for the first and second derivatives of In, n = 1, . . . , 6 with respect to
F and Dl are given in Dorfmann and Ogden (2010a).

For an incompressible material, T is given by (154)2 and its increment
is then

Ṫ = AḞ + ΓḊl − ṗF−1 + pF−1ḞF−1, (209)

which replaces (203)1 in this case, while the expression (203)2 for Ėl remains
in force.

Let Ṫ0, Ḋl0, Ėl0 denote the ‘push forward’ versions of Ṫ, Ḋl, Ėl, respec-
tively. These are given by

Ṫ0 = J−1FṪ, Ḋl0 = J−1FḊl, Ėl0 = F−TĖl. (210)

Then, equations (202) can be transformed into their Eulerian counterparts
as

divṪ0 = 0, divḊl0 = 0, curlĖl0 = 0. (211)

It is convenient now to use the notation u for the incremental displacement
ẋ, with u treated as a function of x, so that Ḟ = (gradu)F. Let d =
gradu, with components defined by dij = ∂ui/∂xj . Then, the incremental
constitutive equations (203) can be re-cast in the forms

Ṫ0 = A0d + Γ0Ḋl0, Ėl0 = ΓT
0 d + K0Ḋl0, (212)
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where, in index notation, the tensors A0, Γ0, and K0 are defined by

A0jisk = J−1FjαFsβAαiβk,

Γ0jik = FjαF−1
βk Γαiβ ,

K0ij = JF−1
αi F−1

βj Kαβ (213)

for an unconstrained material. For an incompressible material J = 1 in
(213), and (212) is replaced by

Ṫ0 = A0d + Γ0Ḋl0 + pd − ṗI, Ėl0 = ΓT
0 d + K0Ḋl0, (214)

and u satisfies the incremental incompressibility condition

divu = 0. (215)

We note that the symmetries of A and K carry over to A0 and K0 in
the form

A0jisk = A0skji, K0ij = K0ji, (216)

while Γ0 has the symmetry

Γ0ijk = Γ0jik, (217)

which can be established by using the incremental form of the symmetry
condition FT = (FT)T, as can the connections

A0jisk −A0ijsk = τjsδik − τisδjk (218)

between the components of the tensors A0 and τ for an unconstrained
material. The corresponding connections for an incompressible material are

A0jisk −A0ijsk = (τjs + pδjs)δik − (τis + pδis)δjk. (219)

The latter two equations generalize to the electroelastic situation results
that hold for a purely elastic material as shown by Chadwick and Ogden
(1971) and Chadwick (1997), and are identical to corresponding formulas
for a magnetoelastic material (Otténio et al., 2008).

We next decompose A0 as the sum

A0 = A(0)
0 + A(5)

0 + A(6)
0 . (220)

None of these terms involves any derivatives of Ω∗ with respect to I4, while
A(0)

0 does not involve derivatives with respect to I5 or I6 and is given in
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component form by

JA(0)
0jisk = 2Ω∗

1δikbjs + 2Ω∗
2(2bijbks + δikNjs − bjkbis − bikbjs)

+ 2J2Ω∗
3(2δijδks − δisδjk) + 4Ω∗

11bijbks + 4Ω∗
22NijNks

+ 4Ω∗
12(bksNij + bijNks) + 4J2Ω∗

13(bksδij + bijδks)

+ 4J2Ω∗
23(Nksδij + Nijδks) + 4J4Ω∗

33δijδks, (221)

where
Nij = bkkbij − bikbkj (222)

and bij are the components of b.
The terms A(5)

0jisk and A(6)
0jisk do involve derivatives with respect to I5

and I6 and have the component forms

A(5)
0jisk = A0(5)

0jiskΩ∗
5 +

6∑
m=1, m �=4

Am(5)
0jiskΩ∗

m5,

A(6)
0αiβj = A0(6)

0jiskΩ∗
6 +

6∑
m=1, m �=4

Am(6)
0jiskΩ∗

m6, (223)

where

A0(5)
0jisk = 2J−1ajasδik, A1(5)

0jisk = 4J−1(aiajbks + akasbij),

A2(5)
0jisk = 4J−1(aiajNks + akasNij), A3(5)

0jisk = 4J(aiajδks + akasδij),

A5(5)
0jisk = 4J−1aiajasak, A6(5)

0jisk = 4J−1(aiajHks + akasHij), (224)

with Hij and ai defined by

Hij = bimamaj + bjmamai, ai = FiαDlα. (225)

Similarly, we have

A0(6)
0jisk = 2J−1(δikHjs + aiakbjs + aiasbjk + ajakbis + ajasbik),

A1(6)
0jisk = 4J−1(bksHij + bijHks), A2(6)

0jisk = 4J−1(HijNks + HksNij),

A3(6)
0jisk = 4J(Hksδij + Hijδks), A5(6)

0jisk = 4J−1(aiajHks + akasHij),

A6(6)
0jisk = 4J−1HijHks. (226)

We decompose Γ0 in the form

Γ0 = Γ(1)
0 + Γ(2)

0 + Γ(3)
0 + Γ(5)

0 + Γ(6)
0 , (227)
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the constituents of which have components

Γ(1)
0jik = 4bijM1k, Γ(2)

0jik = 4NijM2k, Γ(3)
0jik = 4J2δijM3k,

Γ(5)
0jik = 4aiajM5k + 2Ω∗

5(ajδik + aiδjk), (228)

Γ(6)
0jik = 4HijM6k + 2Ω∗

6(δikambjm + aibjk + δjkambim + ajbik),

where
Mik = (Ω∗

i4F
−1
βk Dlβ + Ω∗

i5ak + Ω∗
i6bkmam). (229)

Finally, we decompose K0 as

K0 = K(4)
0 + K(5)

0 + K(6)
0 , (230)

where the components are given by

K(4)
0ij = 2J(2F−1

αi DlαM4j + b−1
ij Ω∗

4), K(5)
0ij = 2J(2aiM5j + δijΩ∗

5),

K(6)
0ij = 2J(2binanM6j + bijΩ∗

6). (231)

For an incompressible material, we have J = 1 in all the above expres-
sions and the terms Ω∗

3 and Ω∗
n3, n = 1, . . . , 6, are dropped.

5.2 Exterior Incremental Fields

The relation D	 = ε0E	, which is valid in vacuum and non-polarizable
materials, has the incremental form

Ḋ	 = ε0Ė	, (232)

where Ḋ	 and Ė	 are the increments of D	 and E	, respectively. The
associated incremental Maxwell equations are

divḊ	 = 0, curlĖ	 = 0, (233)

and the increment of the Maxwell stress (164) has the form

τ̇ 	 = ε0[Ė	 ⊗ E	 + E	 ⊗ Ė	 − (E	 · Ė	)I], (234)

which satisfies the equilibrium equation div τ̇ 	 = 0.

5.3 Incremental Boundary Conditions

On the boundary B of the material, in addition to any applied traction
ta (defined per unit area of ∂B), there will in general be a contribution from
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the electric Maxwell stress; see equation (108). Explicitly, this is a force τ 	n
per unit current area, where τ 	 is given by (164). Recall, that on use of
Nanson’s formula this can be written as tE = Jτ 	F−TN per unit reference
area. Then, the boundary condition (138) has the explicit form

TTN = tA + Jτ 	F−TN (235)

on ∂B0. On taking the increment of this equation, we obtain

ṪTN = ṫA + J τ̇ 	F−TN − Jτ 	F−TḞTF−TN + J̇τ 	F−TN (236)

on ∂B0, or, in Eulerian form,

ṪT
0 n = ṫA + τ̇ 	n − τ 	dTn + (divu)τ 	n (237)

on ∂B, wherein we have used the standard formula J̇ = Jdivu.
Using the notation introduced in this section, we rewrite the boundary

conditions for the electric field variables (106) in the equivalent form

(Dl − JF−1D∗) · N = 0 (El − FTE∗) × N = 0. (238)

On incrementing these conditions, we obtain

[Ḋl0 − Ḋ	 + dD	 − (divu)D	] · n = 0 (239)

and
(Ėl0 − Ė	 − dTE	) × n = 0, (240)

both of which hold on ∂B.
The governing equations describing the linearized response of electroe-

lastic solids superimposed on a state of finite deformation in the presence
of an electric field have been specialized in Dorfmann and Ogden (2010a)
to evaluate the surface stability of an electrostatic half-space. The forms of
the incremental equations and the expressions of the electrostatic moduli
tensors are also applied to the analysis of waves in isotropic electroelastic
materials. In particular, the analysis of plane waves propagating in a ho-
mogeneously deformed material with an underlying uniform electric field
is given in Dorfmann and Ogden (2010b). In addition, the incremental
equations are used to evaluate surface waves in a homogeneously deformed
half-space of incompressible isotropic material in the presence of an electric
field. In particular, the dependence of the wave speed on the deformation,
the electric field and the electromechanical coupling parameters is evalu-
ated numerically for a neo-Hookean electrostatic material. Due to space
limitations a detailed discussion on the use of the incremental equations
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will not be given here. The interested reader is referred to the references
cited above.
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Magnetostatics: from Basic Principles to
Nonlinear Interactions in Deformable Media
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Abstract. In these notes we provide a development of the basic
principles of the classical theory of magnetostatics, from the fun-
damental notions of magnetic dipoles through to distributions of
current in a non-deformable continuum, the equations governing
the magnetic field and magnetic induction vectors in free space and
in a magnetizable material, and then to the modifications of the
theory required to account for the deformability of material media.
A review of the relevant continuum mechanics is included as a pre-
lude to the description of large magnetoelastic deformations. The
constitutive equations for a nonlinear magnetoelastic material are
presented first in Eulerian form and then an alternative formulation
of the equations based on a Lagrangian approach is adopted, which
leads to an elegant and relatively simple structure for the constitu-
tive equations and the governing differential equations. The theory
is specialized further to the case of an isotropic magnetoelastic ma-
terial and representative prototype boundary-value problems are
formulated and then solved using a simple model constitutive law
in order to illustrate the nonlinear magnetoelastic coupling.

1 Introduction

Anyone who has ever played with a permanent magnet has been intrigued by
how metal objects are attracted to it. The force of attraction acts not only
on the object as a whole, but on each bit of material, inducing a change
in shape and/or size of the object commonly known as magnetostriction.
For typical metals this change is very small and the associated variations in
the magnetic and mechanical properties of the material can be neglected.
Only recently, however, have researchers come to appreciate the profound
potential of multi-functional compliant magneto-sensitive materials as new
polymer-based materials have been synthesized. These mechanically soft
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materials possess high magneto-mechanical compliance and, unlike conven-
tional magnetic metals, are capable of large elastic deformations under the
influence of an external magnetic field, much larger than in conventional
magnetostriction. The new materials are highly deformable and magnetiz-
able polymers, typically elastomers composed of a rubber-like base matrix
embedded with micron-sized magneto-active particles. Like a typical rub-
ber, they have low mechanical stiffness and are very compliant, especially
in low-dimensional structures such as membranes and rods, while demon-
strating good magnetic susceptibility. The small particle size ensures that
the materials are effectively homogeneous, and the material processing has
already been advanced to the point where robust material characteristics
can be achieved.

The nonlinearity in the response and the magneto-mechanical coupling
of these materials opens the door for many new devices, offering a range of
applications that could not be addressed with previously available materials.
The nonlinearity is key. In his classic textbook on electrodynamics (Jackson,
1999) J. D. Jackson states that “In substances other than ferromagnets,
for weak enough fields the presence of an applied magnetic field induces a
magnetization proportional to the magnitude of the applied field. We then
say that the response of the medium is linear”. In other words, the linear
theory of magnetoelasticity, applicable to infinitesimal deformations and
weak fields, neglects the magneto-mechanical coupling in the sense that
there is no change in mechanical properties due to the applied magnetic field
and no change in the magnetic properties due to mechanical deformations,
i.e. there no change in the material constants. The availability of materials
that can operate in a highly nonlinear magneto-mechanical regime offers
very exciting possibilities and challenges from the perspectives of device
design, materials science, constitutive modelling and magneto-mechanical
theory.

At present the influence of magnetic fields on the behaviour of magneto-
sensitive materials in the highly nonlinear regime is not well understood
and the development of an appropriate theoretical framework is essential to
further that understanding. While the extension of the theory of the mag-
netism of continuous media to highly deformable systems seems natural from
an academic point of view, it has languished undeveloped because there has
been no practical motivation hitherto. The materials did not exist! Re-
cently, progress has been made in constructing a theoretical framework for
the analysis of these materials, some aspects of which are described in this
chapter. The theory requires further development so that it can describe
accurately the nonlinear magneto-mechanical coupling when large defor-
mations are involved. The theory of large deformations is of fundamental
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interest, both in terms of the unique properties offered by magneto-sensitive
elastomers and in terms of potential applications to, for example, sensors
and controllable devices.

This chapter provides a basic framework for the analysis of large mag-
netoelastic deformations. It begins, in Section 2, with an overview of the
fundamental principles of the classical theory of magnetostatics. For a more
complete account we refer to Jackson (1999), for example. In electrostatics
the fundamental unit from which the theory is built is the charged particle.
There is no counterpart of this in the case of magnetostatics, i.e. magnetic
‘particles’ do not exist (or at least have not as yet been isolated), and the
fundamental unit is the magnetic dipole, which is equivalent to a small cur-
rent carrying circuit. Starting from the basic physics that gives the magnetic
field due to a moving charged particle we construct the magnetostatic field
generated by a continuous distribution of moving charge, which can be iden-
tified as a current density, leading to an explicit formula for the magnetic
induction in terms of the current density known as the Biot-Savart Law, a
variant of which enables a connection to be made between a magnetic dipole
and the aforementioned small circuit of current. These results are then used
to obtain the two differential equations that govern the magnetic induction
vector in continuous media.

The magnetic field vector is introduced and the notion of magnetization
in material media is discussed with particular reference to a linear (non-
deformable) magnetic material. The continuity conditions across a material
boundary for the magnetic field vectors are also derived.

The development next takes account of the deformability of material me-
dia. To describe the nonlinear magnetoelastic interactions in a deformable
material, a review of continuum kinematics is necessary and this is provided
in Section 3. More background on continuum mechanics and elasticity the-
ory can be found in the texts by Ogden (1997) and Holzapfel (2001), for
example. Magnetic field variables and boundary conditions, which, in gen-
eral, are defined with respect to the current configuration, are re-cast in
Lagrangian form and the Lagrangian forms of the governing equations are
derived. The specialization of magnetostatics is then used in order to il-
lustrate the application of the theory. In Section 4, we summarize in a
simple form the equilibrium equations for a highly deformable magnetoelas-
tic material whose mechanical properties can be changed significantly by the
application of a magnetic field. We consider the nonlinear purely magnetoe-
lastic coupling that does not involve dissipation. An overview of different
ways in which the equations of mechanical equilibrium can be written in
the presence of magneto-mechanical interactions is provided. In addition,
we list some of the many possible definitions of ‘stress tensor’ that can be
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included in the equilibrium equations along with the associated magnetic
‘body force’ terms. A valuable source of reference on magnetoelastic inter-
actions is the classic text of Brown (1966).

The general constitutive law for a nonlinear magnetoelastic material is
derived and expressed in a compact form, with either the magnetic field or
the magnetic induction as the independent magnetic variable. Here we con-
sider an isotropic magnetoelastic material for which the constitutive equa-
tions can be expressed in terms of six invariants involving the deformation
and a magnetic vector, which reduce to five for an incompressible material,
as is appropriate for elastomers. These equations are used in Section 5, for
an incompressible material, in the solution of two representative boundary-
value problems involving circular cylindrical geometry, specifically the heli-
cal shear of a circular cylindrical tube with an axial magnetic field and the
extension and inflation of a circular cylindrical tube with a circumferential
magnetic field. For each problem a general formulation is developed without
specialization of the (isotropic) constitutive law, and then specific results are
discussed briefly for a special choice of such a law. It is noted, in particular,
that certain restrictions may be placed on the class of constitutive laws for a
considered combination of deformation and magnetic field to be admitted.
Many problems of this kind are analyzed in the volume by Eringen and
Maugin (1990) and in the papers by Dorfmann and others (Dorfmann and
Ogden, 2004, 2005; Ogden and Dorfmann, 2005; Bustamante et al., 2007),
for example. For some discussion of stability analysis we refer to Eringen
and Maugin (1990) and Otténio et al. (2008).

Necessarily, because of space limitations, only partial coverage of the
vast subject of magnetic effects in deformable media can be provided in this
chapter, and many interesting phenomena are not included. For example,
the analysis developed here is purely static, but there are many applications
that involve dynamic couplings that are not treated herein. For pointers to
the extensive literature and for broader perspectives on both the mathemati-
cal and physical modelling of complex electro-magneto-mechanical couplings
the reader is referred to the monographs by Maugin (1988), Eringen and
Maugin (1990) and Maugin et al. (1992).

The preceding chapter in this volume by Dorfmann deals with the paral-
lel development of nonlinear electroelastostatics and, to avoid repetition, we
refer to that chapter for basic background material relating, in particular,
to electric charges and dipoles and the Lorentz force.
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2 Magnetostatics

In electrostatics the fundamental unit is the point charge e. When situated
at the origin it generates, at a point with position vector x, an electric field
E(x) given by the inverse square law

E =
e

4πε0

x
r3

,

where r = |x| and the constant ε0 is the electric permittivity of free space,
which has the approximate value 8.854×10−12 C2N−1m−2 in SI units, where
C stands for Coulombs, N for Newtons and m for metres. While an electric
field is generated by static charge a magnetic field is generated by the motion
of charges. If a point charge e is instantaneously situated at the origin and
moving with velocity v it produces a magnetic field at the point x, which
may be expressed in terms of the magnetic induction vector B by

B =
μ0e

4π

v × x̂
r2

, (1)

where μ0 is the magnetic permeability of free space, having value 4π ×
10−7 NA−2, A standing for Ampères. The formula (1) is valid only in the
non-relativistic approximation, for which |v| � c, where c is the speed of
light: note the connection μ0ε0 = c−2.

Instead of a single charged particle suppose we now consider an infinites-
imal element of volume dV and let ρe dV be the total charge within this
element. Then ρe is the charge density, which may be positive or negative
and depends, in general, on position and time. If v is the mean velocity of
the individual charges in dV , then

J = ρev, (2)

defines the current density at the point at which dV is located, and in
general J depends on position and time.

A fundamental difference between electrostatics and magnetostatics is
that there is no counterpart of the charged particle in magnetostatics. The
basic building block in this context is the magnetic dipole, which we denote
by m. This idealization enables a relation to be established between the
electric current and the magnetic induction vector B. The flow of an elec-
tric current is associated with moving charges and is conveniently described
by the current density J defined by equation (2). When the current flow
is steady (independent of time) then, according to the charge conservation
equation (see preceding chapter), we have divJ = 0. Hence, by the diver-
gence theorem, for a closed surface S we have

∫
S
J ·ndS = 0, where n is the



112 R.W. Ogden

unit outward normal to S, i.e. the net flux of current into (or out of) the en-
closed volume vanishes. Geometrically, we can think of the lines of current
flow as having tangent in the direction of J at each point. A tube of current
flow is then defined as the surface formed by all such lines that intersect a
given closed curve at any instant (these are analogous to lines and tubes of
flow in fluid dynamics). It follows that the flux of J across a cross-section of
the tube is the same for all cross-sections (by construction, there is no flow
across the lateral surface of the tube). Steady current therefore consists of
closed tubes of current flow. The total current I passing across an open
surface S is just the flux of J across S, and is given by

I =
∫

S

J · dS. (3)

In practice, a thin conducting wire is a tube of flow of small cross-section
dS and current I ≈ J · dS.

In electrostatics the force exerted on a charged particle at rest determines
the magnitude and direction of the electric field. By contrast, the existence
of a magnetic field is demonstrated by placing a small coil of wire carrying
a current in a magnetic field. The coil experiences a force and a couple
that can be used to quantify the magnitude and direction of the magnetic
field. We will show that a small plane coil of area dS carrying a current
I around its perimeter can be regarded as equivalent to a magnetic dipole
with magnetic moment m = IdS.

2.1 The Biot-Savart Law and the Vector Potential

Recall now the formula (1), which gives the magnetic field at x due to a
point charge e at the origin moving with velocity v. We now generalize this
formula by considering a current distribution of density J(x′) at x′ within
a volume V , which gives the magnetic field at x as

B(x) =
μ0

4π

∫
V

J(x′) × R
R3

dV (x′), (4)

where R = x − x′ and R = |R|. This important basic formula is known
as the Biot-Savart Law. There are some subtleties in the theory associated
with singularities when the point x is within V , but we do not discuss them
here (see, for example, Jackson, 1999, for details).

Since

curl
(

J(x′)
R

)
= grad

(
1
R

)
× J(x′) =

J(x′) × R
R3

, (5)
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where the differentiations are with respect to x (not x′), equation (4) can
be rewritten as

B(x) =
μ0

4π

∫
V

curl
(

J(x′)
R

)
dV (x′) =

μ0

4π
curl

[∫
V

J(x′)
R

dV (x′)
]

. (6)

This suggests introducing the magnetostatic vector potential, denoted A
and defined as

A(x) =
μ0

4π

∫
V

J(x′)
R

dV (x′), (7)

leading to the important equation

B = curlA (8)

for the magnetic induction vector, from which it follows that B satisfies the
equation

divB = 0. (9)

This is a fundamental equation of magnetostatics and expresses the fact that
magnetic poles cannot be isolated, i.e. there is no counterpart in magneto-
statics of the electrostatic point charge. In fact, equation (9) is general and
holds even when there is time dependence and electromagnetic coupling,
both in free space and in material media. It is one of the four Maxwell
equations of conventional electromagnetic theory.

2.2 Scalar Magnetic Potential

Suppose that the volume V in (4) is a thin closed wire circuit C carrying
current I. Then J(x′)dV (x′) can be replaced by I dx′, and the volume
integral by a line integral around C, where dx′ is a line element in the
direction of the current, i.e. along C. Thus, (4) becomes

B(x) =
μ0I

4π

∫
C

dx′ × R
R3

=
μ0I

4π

∫
C

grad
(

1
R

)
× dx′, (10)

and since the gradient is with respect to x this may also be written

B(x) =
μ0I

4π
curl

∫
C

dx′

R
. (11)

For points distant from C for which |x′| � |x| for all x′ in V we may
use the Taylor expansion

1
R

≡ 1
|x − x′| ≈

1
r
− x′ · grad

(
1
r

)
,
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recalling that r = |x|, and since C is a closed curve we obtain

B(x) = −μ0

4π
curl

[
M grad

(
1
r

)]
, (12)

where
M = I

∫
C

dx′ ⊗ x′ (13)

is a second-order tensor and ⊗ signifies the tensor product of two vectors,
so that for vectors a and b, for example, we have (a ⊗ b)ij = aibj . Also,
(Ma)i = Mijaj , i, j ∈ {1, 2, 3}, with summation over j. Now,

M + MT = I

∫
C

d(x′ ⊗ x′) = O, (14)

the zero tensor (again because C is closed), where T signifies the transpose
of a second-order tensor. Hence M is a skew-symmetric tensor, which
we refer to as the magnetic moment tensor. Let m denote the associated
axial vector, defined by m = −1

2εM, where ε is the alternating tensor (in
components, mi = − 1

2
εijkMjk, with summation over indices j and k from

1 to 3). Then Ma = m × a, and (12) becomes

B(x) = −μ0

4π
curl

[
m × grad

(
1
r

)]
=

μ0

4π
curlcurl

(m
r

)
. (15)

In view of the standard identity curlcurl = graddiv −∇2 and the fact that
1/r satisfies Laplace’s equation (provided r 
= 0), the above becomes

B(x) =
μ0

4π
graddiv

(m
r

)
= −μ0

4π
grad

(m · x
r3

)
. (16)

Thus, we may write
B(x) = −gradψ, (17)

where ψ is a potential function given by

ψ(x) =
μ0

4π

m · x
r3

. (18)

The potential (18) has the same structure as the potential associated
with an electric dipole (see preceding chapter), and thus (18) is interpreted
as the magnetostatic potential of a magnetic dipole of strength m situated
at the origin. Moreover, since

m = −1
2
εM =

1
2
I

∫
C

x′ × dx′, (19)
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C

m = IdS

Figure 1. Circuit C carrying current I showing a network of curves made
up of small current loops with current I corresponding to magnetic dipoles
with magnetic moment m = IdS, where dS is the directed area element on
the open surface whose edge is C.

the potential due to a magnetic dipole is equivalent to that due to a small
current loop. More particularly, if C is a planar loop then

m = IdS = IndS, (20)

where dS is the plane area enclosed by the loop and n is the unit normal
to the plane of the loop, directed in the positive sense.

For a dipole situated at the point x′, the potential in equation (18) is
replaced by

ψ(x) =
μ0

4π

m · R
R3

. (21)

Now consider a circuit C of finite dimensions, carrying current I, as
depicted in Figure 1. Let S be any regular surface that is bounded by
C. Imagine that a fine network of curves is constructed on S such that
each mesh is infinitesimal, effectively plane and with vector area element
dS. We may regard the current I as flowing in each curve of the mesh
because it cancels out on adjoining meshes. In effect, we have a surface S
consisting of a distribution of magnetic dipoles IdS. The potential at x is
due to contributions from all such dipoles. Inserting m = IdS into (21) and
integrating we obtain the potential

ψ(x) =
μ0I

4π

∫
S

R · dS
R3

, (22)
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and we note that ∫
S

R · dS
R3

= Ω(x) (23)

is a purely geometrical quantity – the solid angle subtended by S at x.
Thus,

ψ(x) =
μ0I

4π
Ω(x). (24)

The solid angle Ω(x) has the property that its value changes by 4π as the
point x crosses the surface S. This means the potential function ψ is multi-
valued and changes in value by μ0I each time x traverses a curve which cuts
S once. Otherwise ψ is continuous.

2.3 Ampère’s Circuital Law

Consider a closed curve Γ which encircles the circuit C just once, and
therefore cuts any open surface S that is bounded by C. The direction of
Γ is related to that of I by the right-hand screw rule (see Figure 2).

C

S

Γ

m = IdS

Figure 2. An open surface S whose bounding edge is the circuit C carrying
current I. The closed curve Γ encircles C once and hence cuts S.

Since B = −gradψ, we obtain∫
Γ

B · dx = −
∫

Γ

gradψ · dx = −[ ψ ]Γ, (25)

where [ ψ ]Γ is the change in ψ as Γ is traversed once. This is non-zero
since ψ is multi-valued, and since Γ cuts S just once in the sense described
above, Ω increases by −4π, and hence ψ by −μ0I, for a single traversal of
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Γ. Therefore, ∫
Γ

B · dx = μ0I. (26)

The same argument can be applied to a thin wire or tube with a steady
flow of current I, where the total current passing across an open surface is
given by (3). Therefore, ∫

Γ

B · dx = μ0

∫
Σ

J · dS, (27)

where Σ is an arbitrary regular open surface whose edge is Γ. Equation
(27) is the mathematical statement of Ampère’s Circuital Law. By applying
Stokes’ theorem to (27) we then obtain∫

Σ

(curlB − μ0J) · dS = 0, (28)

which holds for any open surface Σ. Provided the integrand in (28) is
continuous we obtain the local form of one of the fundamental equations of
magnetostatics as

curlB = μ0J. (29)
We recall that in deriving this equation it has been assumed that J is time
independent.

Returning to equation (8) we note that it is not affected by the addition
of the gradient of an arbitrary scalar function (say ϕ) to the magnetic vector
potential, i.e.

A → A + gradϕ, (30)
which is known as a gauge transformation. This flexibility enables a restric-
tion to be imposed on A, which is usually taken in the form

divA = 0. (31)

Using equations (29) and (8) we have

curl(curlA) = μ0J, (32)

and, by using a standard vector identity, equation (32) can be written in
the equivalent form

grad(divA) −∇2A = μ0J. (33)

Equation (31) is then used to reduce (33) to

∇2A = −μ0J, (34)

which, for given J, is Poisson’s equation for the magnetostatic vector po-
tential. For an unbounded space, the solution of (34) for A is given by
(7).



118 R.W. Ogden

2.4 Force and Couple on a Dipole in a Magnetic Field

The considerations thus far have not involved mechanical interactions
with magnetic fields, but when such interactions are incorporated into the
theory it will be necessary to account for the mechanical force exerted by the
magnetic effects. We now derive expressions for the (mechanical) force and
couple on a magnetic dipole placed in a magnetic field. For this purpose
we recall (see the preceding chapter) that the Lorentz force acting on a
charged particle e moving with velocity v in an electromagnetic field with
electric field E and magnetic induction B is eE + ev × B. In the case of a
continuous distribution of charge with density ρe and current with density
J the Lorentz force density (per unit volume) is ρeE + J × B. Here we are
only concerned with the magnetic contribution J×B to the Lorentz force.

Consider a material volume V in which there is a current distribution
with density J and let B be the magnetic induction field permeating the
material. Then, the magnetic contribution to the Lorentz force acting on
V , which we denote by Fm, is

Fm =
∫

V

J × B dV, (35)

where the subscript m signifies ‘magnetic’. Now suppose that V consists
simply of a single current loop C carrying current I. Then, we may replace
the volume integral by a line integral around C and (35) becomes

Fm = I

∫
C

dx × B = I

∫
S

(dS × grad) × B, (36)

where S is a regular open surface bounded by C and the latter integral has
been obtained by an application of Stokes’ theorem.

Next, we take C and S to be infinitesimal so that the derivatives of B
are approximately uniform over S. Then (36) is approximated as Fm ≈
I(dS × grad) × B, and by setting IdS = m to be the equivalent magnetic
dipole and taking the limit I → ∞ as dS → 0 while keeping m finite
we obtain the exact result Fm = (m × grad) × B, which is evaluated at
the location of the dipole. By standard vector identities and the fact that
divB = 0 this force on a dipole m in a magnetic induction field B may be
written as

Fm = (gradB)Tm. (37)

In (37) and henceforth we adopt the following conventions: for two vector
fields u and v we define the products (gradu)Tv and (gradu)v ≡ (v·grad)u
via their index notation representations uj,ivj and ui,jvj , respectively, where
,j = ∂/∂xj and (gradu)ij = ui,j .
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The (magnetic) couple on V , denoted Gm, about a fixed origin due to
the magnetic Lorentz force is given by

Gm =
∫

V

x × (J × B) dV, (38)

where x is the position vector relative to the chosen origin. When V consists
of just a current loop C this becomes

Gm = I

∫
C

x × (dx × B) = I

∫
C

(dx ⊗ x)B − I

∫
C

(x · dx)B. (39)

Once more we take C to be infinitesimal, but now it suffices as a first
approximation to take B to be uniform over C so that it can be taken
outside the integrals. Then, since C is a closed circuit, the final integral in
(39) vanishes, and on use of (13) Gm can be written compactly as

Gm = MB = m × B, (40)

again with B evaluated at the location of the dipole, and this is exact in
the limit described above. This is the couple on a dipole m in a magnetic
induction field B.

Thus far the development has been based entirely on use of the magnetic
induction vector B, but at this point it is necessary to introduce the so-
called magnetic field vector, which is denoted by H. For the field due to an
isolated dipole placed in a vacuum, for example, B and H are simply related
by B = μ0H, where the constant μ0 is again the permeability of free space.
This relationship applies at any point in free space or in non-magnetizable
materials, whatever the source of the magnetic field, in which case B and
H satisfy the same equations. In particular, curlH = 0, or equivalently
(gradH)T = gradH, and equations (37) and (40) can be written in the
alternative forms

Fm = μ0(m · grad)H, Gm = μ0m × H. (41)

We emphasize that while the two expressions for Fm and those for Gm are
equivalent in the present context, their counterparts are not equivalent in
magnetizable media and the distinction will be recognized as important, in
particular, when dealing with deformable media.

2.5 Magnetization in Material Media

In material media the relation B = μ0H does not hold in general and
it must be replaced by a constitutive law, which describes the magnetic
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properties of the material in question. When a magnetic field is applied to
material media currents are generated. This effect is conveniently described
by an additional vector, known as the magnetization, denoted M, which is
defined in terms of the other field vectors by the standard formula

M = μ−1
0 B − H. (42)

To be more specific, the magnetization arises from the response of the ma-
terial to an external magnetic field and corresponds to the magnetic dipole
density. The effect of the magnetization is to induce a bound current density,
denote here by Jb, which is given by Jb = curlM. The difference

J − Jb = J − curlM (43)

is the free current density, denoted Jf . It follows from (29) and (42) that
curlH = Jf .

The governing equations of magnetostatics in material media may now
be summarized as

divB = 0, curlH = Jf . (44)

Equation (42) gives an expression for the magnetization M in terms of either
H or B as the independent variable when B (respectively H) is given in
terms of H (respectively B) by an appropriate constitutive equation.

A basic example of a constitutive law is that for a linear isotropic mate-
rial, for which the equation B = μ0H is replaced by

B = μμ0H, (45)

where μ is the relative magnetic permeability. From equation (45), the
magnetization is given by

M =
μ − 1
μ0μ

B, (46)

so that M is parallel to B and H. In vacuo or in non-magnetizable media
μ = 1. For most materials μ > 1. However, there are some magnetizable
materials for which μ < 1 and M is therefore opposite in direction to B.

2.6 Boundary Conditions

The equations (44) are valid for any material medium and must be cou-
pled with a constitutive equation for either B or H. To these equations
we need to append boundary conditions in order to formulate and solve
boundary-value problems. In general the field vectors B and H are discon-
tinuous across a surface between different media or across a surface bound-
ing the material. In this section we derive, using equations (44) in integral
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form together with the divergence and Stokes’ theorems, as appropriate, the
equations satisfied by the discontinuities.

Let S be a stationary surface. The two sides of S are distinguished as
side 1 and side 2 and field vectors on the two sides of S are identified by
subscripts 1 and 2. Let n be the unit normal to S pointing from side 1 to
side 2. The ‘jump’ in a vector on S is the difference between its values on
side 2 and side 1, evaluated on S. Thus H, for example, has jump H2−H1,
which is denoted [[H]], and similarly for B. The jump conditions satisfied
by B and H are summarized as

n · [[B]] = 0, n × [[H]] = Kf , (47)

where Kf is the free current surface density on the surface S per unit area.
We now establish these formulas.

Consider a cylinder (or ‘pill box’) of infinitesimal height δh and cross-
sectional area δS = nδS straddling the surface S, as depicted in Figure 3.
Equation (44)1, when integrated over the volume V of the cylinder followed
by an application of the divergence theorem, yields∫

Σ

B · dS = 0, (48)

where Σ is the bounding surface of the cylinder.

S

nδS

1

2
δh

Figure 3. A ‘pill-box’ of height δh and cross-sectional area δS intersecting
the surface S with unit normal n pointing from side 1 to side 2 of S.

Since δh is infinitesimal and the flux of B across the lateral surface of the
cylinder becomes negligible as δh → 0, the only contribution to the surface
integral comes from the top and bottom surfaces of the cylinder. Equation
(48) is therefore approximated simply as B2 · n δS − B1 · n δS ≈ 0, which,
after dividing by δS and taking the limit δS → 0, yields n · [[B]] = 0, and
hence (47)1 is established.

Next, consider equation (44)2 integrated over an open surface Σ with
bounding curve Γ. After application of Stokes’ theorem it becomes∮

Γ

H · dx =
∫

Σ

Jf · dS. (49)
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S

n

t Σ

A B

CD

δh

1

2

Figure 4. A small plane area Σ intersecting the surface S in the plane of
the unit normal n to the surface and a unit tangent vector t. The unit
normal points from side 1 to side 2 of the surface. The bounding curve of
Σ is traversed in the direction of the arrows along the path ABCDA.

Now let Σ be an infinitesimal plane rectangular surface with Γ identified
by its corner points ABCD lying in the plane of the unit normal n to the
surface S and a unit tangent vector t to the surface and intersecting S, as
shown in Figure 4. The sides AB and CD of Γ are parallel to t and have
lengths δs. The sides BC and DA are parallel to n and have lengths δh.
Then, application of (49) to Σ and Γ yields the approximate result

−
∫

AB

H · tds +
∫

BC

H · n dh +
∫

CD

H · tds −
∫

DA

H · n dh

≈
[(∫

BC

Jf dh

)
× n
]
· t δs. (50)

In the limit as δh → 0 the integral on the right-hand side becomes the
surface current density Kf , such that n · Kf = 0, and then dividing by δs
and letting δs → 0 we obtain H2 ·t−H1 ·t = (Kf ×n) ·t. Setting n×t = k
and noting that k× n = t it follows that {n× [[H]]} · k = Kf · k. Since t is
an arbitrary tangent then so is k. This holds for arbitrary k normal to n,
and hence the result (47)2 follows.

3 Deformable Magnetic Materials

3.1 Continuum Kinematics

Consider a deformable magnetically sensitive body that is initially in
an unstressed configuration. Let the region in three-dimensional Euclidean
space occupied by the body in this configuration be denoted B0, with bound-
ary ∂B0, and let X be the position vector of a generic material particle.
Suppose that the body is deformed quasi-statically under the combined ac-
tion of mechanical loads and a magnetic field, so that the point X occupies
the new position x = χ(X) in the resulting deformed configuration. We de-
note the deformed configuration by B and its boundary by ∂B. The vector
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field χ, which is a one-to-one, orientation-preserving mapping with suitable
regularity properties, describes the deformation of the body and is defined
for X ∈ B0 ∪ ∂B0.

The deformation gradient tensor F relative to B0 is defined by

F = Gradχ, X ∈ B0, (51)

where Grad denotes the gradient operator with respect to X. We also adopt
the notation

J = detF, (52)

which by standard convention is positive.
Associated with F are the symmetric Cauchy–Green tensors. To avoid a

conflict of standard notations we use here the lower case characters c and b
to represent, respectively, the right and left Cauchy–Green tensors. These
are defined in terms of the deformation gradient by

c = FTF, b = FFT, (53)

and we recall that T denotes the transpose of a second-order tensor.
In what follows, the notations grad, div and curl are used for the standard

differential operators with respect to x, while Grad, Div and Curl are the
corresponding operators with respect to X. We use the convention that
the divergence and curl operators, when applied to tensors, act on the first
index of the tensor that follows them. For example, divF ≡ ∂Fjα/∂xj and
Div(FT) ≡ ∂Fjα/∂Xα. We also recall that by convention we define the
components of the gradient of a vector according to (gradv)ij = ∂vi/∂xj ,
so that for vectors u and v, (v · grad)u = (gradu)v.

The kinematic identities

Div(JF−1) = 0, div(J−1F) = 0, Curl(FT) = O, curl(F−T) = O,
(54)

where 0 denotes the zero vector and O the zero second-order tensor, are
valuable for converting formulas between Eulerian and Lagrangian descrip-
tions.

Suppose that a = a(x) is an Eulerian vector defined in the deformed
configuration B. Using equations (54)1,3, we have

Div(JF−1a) = Jdiva, Curl(FTa) = JF−1curla. (55)

Similarly, let A = A(X) be a Lagrangian vector defined in the reference
configuration B0. Then, by using (54)2,4, we obtain

div(J−1FA) = J−1DivA, curl(F−TA) = J−1FCurlA. (56)
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By using the connection a = J−1FA we see that the divergence identities in
equations (55)1 and (56)1 are equivalent. Equally, the equations involving
the curl operator coincide if, instead, we set a = F−TA.

3.2 Eulerian and Lagrangian Formulations

For convenience of reference we recall that the field variables B and H
satisfy the equations

divB = 0, curlH = Jf in B, (57)

and the boundary conditions

n · [[B]] = 0, n × [[H]] = Kf on ∂B. (58)

These equations apply for both non-deformable and deformable media.
They are expressed in Eulerian form and, in particular, the differential equa-
tions involve the operators div and curl .

We now re-cast the equations and boundary conditions in Lagrangian
form. For this purpose the operators Div and Curl are used, and the in-
dependent spatial variable is X instead of x. Bearing in mind the formula
(55)2, we introduce the Lagrangian counterpart of H, denoted Hl and de-
fined by

Hl = FTH, (59)

so that
curlH = J−1FCurlHl. (60)

Similarly, we introduce Lagrangian counterpart of B, denoted Bl. This is
defined by

Bl = JF−1B, (61)

and from (55)1 it follows that

DivBl = JdivB. (62)

The equations (57) may therefore be written in Lagrangian form as

DivBl = 0, CurlHl = Jl in B0, (63)

where Jl = JF−1Jf is the Lagrangian counterpart of the free current density
Jf . The Lagrangian form of the charge conservation equation is simply
DivJl = 0.
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The Lagrangian forms of the boundary conditions are entirely analogous
to their Eulerian counterparts in (58). The boundary conditions associated
with (63) are

N · [[Bl]] = 0, N × [[Hl]] = Kl on ∂B0, (64)

where N is the unit normal to the reference boundary ∂B0 corresponding
to n through Nanson’s formula ndS = JF−TNdS0, dS and dS0 are the
area elements on ∂B and ∂B0, respectively, and Kl = F−1KfdS/dS0 is the
Lagrangian free surface current, defined per unit reference area.

In the remainder of this chapter we illustrate the use of the equations
summarized above by focusing attention on the magnetoelastic interactions.
In particular, we develop the constitutive theory that describes the nonlinear
coupling between elastic deformations and magnetic fields.

4 Nonlinear Magnetoelastic Interactions

In this section we consider a highly deformable elastic material in which the
mechanical and magnetic effects are fully coupled. The relevant equations
and boundary conditions are then (57) with (58) or, equivalently, (63) with
(64).

Note that since M = 0 outside the material then by combining the two
boundary conditions in (58) and using the connection B = μ0(H + M) we
obtain

[[H]] = (n ·M)n−n×Kf , [[B]] = μ0n×(n×M)−μ0n×Kf on ∂B. (65)

A corresponding equation can be obtained for the Lagrangian fields, but
is omitted here and left as an exercise for the reader. The above equa-
tions and boundary conditions are conjoined with appropriate forms of the
mechanical equilibrium equation and mechanical boundary conditions. We
now provide an overview of different ways in which the equations of me-
chanical equilibrium and the accompanying traction boundary conditions
can be written in the presence of magneto-mechanical interactions, which
requires consideration of several different stress tensors.

4.1 Equilibrium, Stress and Constitutive Laws

Magnetic forces and couples. We recall that the Lorentz force on a
material volume V containing a distribution of current with density J is
given by (35), which can be expanded in the form

Fm =
∫

V

J × BdV = μ−1
0

∫
V

(curlB) × BdV =
∫

V

divτB dV, (66)
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where J = μ−1
0 curlB = curlH + curlM is the total current density, τB is

defined by
τB = μ−1

0 [B ⊗ B − 1
2(B · B)I], (67)

which is symmetric, and the identity (curlB)×B = (gradB)B−(gradB)TB
has been used. Note that the latter can be written as μ0divτB.

We now suppose that the volume V , with boundary S, corresponds to
the material volume B in the deformed configuration, with boundary ∂B
on which the discontinuity in B given by (65)2 holds. In the following
analysis we use the notation V for the volume and S for the boundary.
The discontinuity in B carries over to a discontinuity in τB, which must be
accounted for in the evaluation of the final integral in (66).

Consider a surface S+ adjacent to S and entirely enclosing S, and let
V + be the volume within S+. Then, by applying the divergence theorem
to V +, we obtain ∫

V +
divτB dV =

∫
S+

τBndS, (68)

where n is the unit outward normal on S+. Note that the integral over V +

is well defined even when divτB is discontinuous across an internal surface
provided its discontinuity is finite, which we assume to be the case. In the
limit V + → V , S+ → S, we then have

Fm =
∫

S

τBndS, (69)

where τB is evaluated on the outside of S. Outside V we have M = 0 and
B = μ0H, and τB may be expressed in terms of either B or H. It turns
out to be convenient to use a combination of B and H, and we adopt the
notation defined by

τm = B ⊗ H − 1
2μ0(H · H)I. (70)

Outside V , τm is symmetric and equal to τB. We shall also use the definition
(70) within V , where τm is not in general symmetric and not equal to τB.
Then, with the help of (65), we obtain the discontinuity

[[τT
m]]n = 1

2μ0(M ·n)2n+Kf ×B+μ0[(n×M) ·Kf ]n− 1
2μ0(Kf ·Kf)n, (71)

where B and M are evaluated on S from the inside. For convenience we
denote the vector on the right-hand side of (71) by t̄m, which represents a
mechanical traction on the boundary S due to magnetic effects. Then, since
τB = τm on the outside of S we may use (71) and the divergence theorem
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on V to re-write (69) as

Fm =
∫

V

divτm dV +
∫

S

t̄m dS. (72)

Now consider the expression for divτm within V . There are various
useful ways to write it in terms of two or all three of B,H and M, starting
from the definition (70) and using divB = 0 and the connection B = μ0(H+
M). However, for simplicity, we assume now and henceforth that there is
no free current and no free surface current, so that curlH = Jf = 0 and
Kf = 0, and the resulting expressions for divτm reduce to the two main
alternatives

divτm = μ0(gradH)M = (gradB)TM − 1
2μ0grad(M · M), (73)

while the expression for t̄m simplifies to

t̄m = 1
2
μ0(M · n)2n. (74)

The magnetic force Fm in (72) can now be written in two alternative
ways, as either

Fm = μ0

∫
V

(M · grad)H dV +
∫

S

t̄m dS, (75)

or

Fm =
∫

V

(gradB)TM dV +
∫

S

¯̄tm dS, (76)

where ¯̄tm is defined by

¯̄tm = − 1
2
μ0[(n × M) · (n × M)]n = t̄m − 1

2
μ0M · M. (77)

Notice that the associated volumetric force densities μ0(M ·grad)H and
(gradB)TM are analogous to the expressions for the force on a single dipole
given by (41)1 and (37), respectively, but, unlike the latter, they are not
the same. In the present context there is a contribution to the force from
the boundary term which does not arise for a single dipole. The expressions
(75) and (76) are entirely equivalent and can be generalized, if required,
to accommodate non-zero current distributions, albeit with some loss of
simplicity.

The analogue of the couple m × B on a single magnetic dipole, given
by (40), is the couple per unit volume M × B, which may also be written
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as μ0M × H or B × H. The total magnetic couple Gm about the origin
corresponding to the representation (75) based on use of H is then

Gm = μ0

∫
V

{x × [(M · grad)H] + M × H}dV +
∫

S

x × t̄m dS, (78)

while that based on use of B is

Gm =
∫

V

{x × [(gradB)TM] + M × B} dV +
∫

S

x × ¯̄tm dS, (79)

where we have assumed that there are no intrinsic mechanical couples.
We emphasize that the above derivations, starting with the Lorentz force

(66), have been applied to the whole body. However, it can be shown
that the formulas (75), (76), (78) and (79) actually apply to an arbitrary
material volume V with boundary S (Brown, 1966). The derivation of (75),
for example, is in this case more delicate and (66) requires modification to
include boundary terms since the identification τB = τm cannot be made
within a magnetized material.

We now embrace these two alternatives by introducing a generic mag-
netic body force density and surface force density, denoted f̂m and t̂m, re-
spectively, and a corresponding intrinsic magnetic couple ĝm. Then,

Fm =
∫

V

f̂m dV +
∫

S

t̂m dS, (80)

and

Gm =
∫

V

(x × f̂m + ĝm) dV +
∫

S

x × t̂m dS. (81)

Thus, we have either f̂m = μ0(M·grad)H with t̂m = t̄m or f̂m = (gradB)TM
with t̂m = ¯̄tm, and in each case ĝm = μ0M×H = B×H = M×B. We also
introduce a generic counterpart of τm, denoted τ̂m, so that f̂m = div τ̂m, and
it follows from (73) that τ̂m = τm and τ̂m = τm+ 1

2μ0(M·M)I, respectively,
for the two specialization above. Moreover, we note that ετm = B×H = ĝm

in each case, where we recall that ε is the alternating tensor defined in
Section 2.2.

The generic definitions above admit the possibility of expressions for the
magnetic body and surface force densities other than the two introduced
here. Such expressions may or may not have direct physical interpretations
but they may be useful from the point of view of the mathematical for-
mulation of the governing equations. In the following we incorporate the
magnetic force and couple into the mechanical balance equations.
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Mechanical equilibrium. In equilibrium the total force and total couple
acting on a body in its deformed configuration B must each vanish. Let f be
the mechanical body force per unit mass, ρ the mass density of the material
and ta the mechanical traction per unit area of the boundary ∂B. Then,
on taking account of the magnetic force and couple given by (80) and (81)
(with V replaced by B), we have∫

B
(ρf + f̂m) dV +

∫
∂B

(ta + t̂m) dS = 0, (82)

and ∫
B
[x × (ρf + f̂m) + ĝm] dV +

∫
∂B

[x × (ta + t̂m)] dS = 0. (83)

These balance equations apply not only to the whole body but also to
any sub-volume of B and its boundary. Then, by a standard tetrahedron
argument from continuum mechanics applied to (82) we deduce that there
exists a second-order (Cauchy-like) stress tensor, which we denote by σ̂,
defined in B, such that

σ̂Tn = ta + t̂m on ∂B (84)

and σ̂ is independent of n. Substitution of this into (82) and application of
the divergence theorem yields∫

B
(ρf + f̂m + divσ̂) dV = 0. (85)

This applies also to an arbitrary sub-volume of B and provided the integrand
is continuous we may then deduce the local form of the equilibrium equation,
namely

divσ̂ + ρf + f̂m = 0 in B. (86)

Substitution of (84) into (83) followed by another application of the diver-
gence theorem then leads to∫

B
(εσ̂ + ĝm) dV = 0, (87)

which has local form
εσ̂ + ĝm = 0 in B. (88)

The latter shows that in general εσ̂ 
= 0, i.e. σ̂ is not symmetric.
Now, for the two examples considered above we have ĝm = ετ̂m, and

hence ε(σ̂ + τ̂m) = 0. Let us introduce the second-order tensor τ defined
by

τ = σ̂ + τ̂m, (89)
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so that ετ = 0, i.e. τ is symmetric. Since f̂m = div τ̂m it follows from (86)
that τ satisfies the equilibrium equation

divτ + ρf = 0. (90)

On application of the divergence theorem to the global form of this equation,
in conjunction with (82), in which f̂m is replaced by div τ̂m, followed by
another application of the divergence theorem, we obtain∫

∂B
τndS = −

∫
B

ρf dV =
∫

∂B
(ta + t̂m + τ̂T

mn) dS. (91)

This suggests that we should identify τn with ta + t̂m + τ̂T
mn on ∂B. But,

by the discontinuity conditions on ∂B, we have t̂m + τ̂T
mn = τmn, with τm

evaluated on the exterior of ∂B. Thus, the boundary condition for τ may
be written in the form

τn = ta + tm on ∂B, (92)

where tm is defined by
tm = τmn. (93)

We refer to τ as the ‘total stress tensor’ since it enables the magnetic
body forces to be treated as stresses. An advantage of the total stress tensor
is that it is symmetric. Moreover, it is interesting to note that the intrinsic
magnetic couple is absorbed by use of this stress tensor, and the rotational
balance equation is satisfied automatically. Its global form is simply∫

B
ρx × f dV +

∫
∂B

x × (ta + tm) dS = 0. (94)

Constitutive equations – Eulerian formulations. At our disposal we
have the three magnetic field vectors B,H,M, with the connection B =
μ0(H + M) from (42). Any one of these can be used as the independent
magnetic variable in the formulation of a constitutive law for a deformable
magnetizable material along with the deformation gradient tensor F. Such
a constitutive law involves a scalar potential function or ‘energy’ function.
We now examine several examples of such potential functions and these will
then be considered within an energy balance framework via a virtual work
formulation.

As a first example we consider a formulation based on use of the magnetic
induction vector B and we introduce the energy density function φ(F,B),
defined per unit mass. Based on standard thermodynamic arguments in-
volving a free energy function (see, for example, the chapter by Maugin in
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this volume for a general discussion), this yields the stress tensor, denoted
σ, and the magnetization M in the forms

σ = ρF
∂φ

∂F
, M = −ρ

∂φ

∂B
, (95)

and it can be shown that the equilibrium equation takes the form

divσ + (gradB)TM + ρf = 0. (96)

Thus, in this case we have

σ̂ = σ, τ̂m = τm + 1
2
μ−1

0 (M · M)I, f̂m = (gradB)TM. (97)

A second example also involves B as the independent magnetic variable.
This makes use of the energy density function φ∗(F,B), which is related to
φ by

ρφ∗(F,B) = ρφ(F,B) + 1
2
μ−1

0 B · B. (98)

This yields a stress tensor, denoted σ∗, and the magnetic field:

σ∗ = ρF
∂φ∗

∂F
, H = ρ

∂φ∗

∂B
. (99)

In this case we have

σ̂ = σ∗, τ̂m = B ⊗ H − (H · B)I, f̂m = −(gradB)TH. (100)

An alternative starting point is to consider the magnetic field H as the
independent magnetic variable and to work in terms of the potential func-
tion ψ(F,H). This yields a stress tensor, which we denote by σ̄, and the
magnetization in the forms

σ̄ = ρF
∂ψ

∂F
, M = −μ−1

0 ρ
∂ψ

∂H
, (101)

and now we have

σ̂ = σ̄, τ̂m = τm, f̂m = μ0(gradH)M. (102)

The final example introduces the potential function ψ∗(F,H), related to
ψ by

ρψ∗(F,H) = ρψ(F,H) − 1
2μ0H · H, (103)

and the associated stress, denoted σ̄∗, and the magnetic induction are de-
rived as

σ̄∗ = ρF
∂ψ∗

∂F
, B = −ρ

∂ψ∗

∂H
. (104)
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In this case we have

σ̂ = σ̄∗, τ̂m = B ⊗ H, f̂m = (gradH)B. (105)

The following connections between the potential functions are also noted
for completeness:

ρψ(F,H) = ρφ(F,B) + 1
2μ0M · M, (106)

ρφ∗(F,B) = ρψ∗(F,H) + B · H. (107)

The latter is a Legendre-type transformation.
The above formulations are just a selection of the possible alternatives.

For convenience the relevant expressions are collected together in Table 1,
together with corresponding expressions for two possibilities for which the
magnetization is the independent variable.

Potential Stress σ̂ Magnetic Vector Body Force f̂m

φ(F,B) ρF
∂φ

∂F
M = −ρ

∂φ

∂B
(gradB)TM

φ∗(F,B) ρF
∂φ∗

∂F
H = ρ

∂φ∗

∂B
−(gradB)TH

ψ(F,H) ρF
∂ψ

∂F
M = −μ−1

0 ρ
∂ψ

∂H
μ0(M · grad)H

ψ∗(F,H) ρF
∂ψ∗

∂F
B = −ρ

∂ψ∗

∂H
(B · grad)H

χ(F,M) ρF
∂χ

∂F
H = μ−1

0 ρ
∂χ

∂M
−μ0(gradM)TH

χ∗(F,M) ρF
∂χ∗

∂F
B = ρ

∂χ∗

∂M
−(gradM)TB

Table 1: Energy (potential) functions based on B, H, M, and in each case
the associated stress σ̂, the derived magnetic field vector, and the magnetic
body force f̂m.

None of these options, however, allows the total stress tensor to be given
directly in the form ρF∂(potential function)/∂F, although the equilibrium
equation has its simplest mathematical statement in terms of the total stress
and it avoids the need to define either a Maxwell stress or a magnetic body
force within the material. We shall return to this point shortly in deriving
a formulation that allows for a potential of the desired kind.



Magnetostatics: from Basic Principles to Nonlinear Interactions… 133

The notions of ‘stress’, ‘Maxwell stress’ and ‘magnetic body force’ in-
side a magnetizable material are clearly not uniquely defined. Outside the
material the situation is clearer. We suppose that the deformable and mag-
netizable material is confined to the domain B0 in the reference configuration
so that the deformation gradient F is defined only for points X within B0.
However, the magnetic field is not so restricted and can permeate the whole
space. Outside the material we have M = 0 and B = μ0H and φ = ψ = 0
and the associated stresses σ and σ̄ vanish, leaving the total stress as

τ = B ⊗ H − 1
2
(B · H)I. (108)

Note that φ∗ and ψ∗ do not vanish, nor do σ∗ and σ̄∗. In fact, we have
ρφ∗ = 1

2B ·H, which represents the magnetostatic energy density (per unit
volume) outside the material (although the factor ρ has no meaning there).

Let us now denote the magnetic and magnetic induction field vectors
outside the material as H(o) and B(o) = μ0H(o), respectively, and the cor-
responding Maxwell stress as τ

(o)
m , which we write as

τ (o)
m = B(o) ⊗ H(o) − 1

2
(B(o) · H(o))I. (109)

This induces a ‘traction’ τ
(o)
m n on the boundary ∂B of the material that is

equivalent to the effect of a body force. If this is combined with an applied
mechanical traction, ta say, per unit area of ∂B then the total traction is
ta + τ

(o)
m n per unit area of the exterior of ∂B. For equilibrium this must

be matched by the corresponding total traction calculated on the interior
of ∂B, i.e. we must have

τn = ta + τ (o)
m n on ∂B, (110)

where τ is the (symmetric) total stress in B.
The boundary condition (110) may also be expressed in terms of other

stress tensors by making use of the connection (89), bearing in mind that in
general σ̂ and τ̂m are not symmetric. This yields the boundary condition
for σ̂ as

σ̂Tn = ta + (τ (o)
m − τ̂T

m)n. (111)

The Maxwell traction jump in (111) can be evaluated by making use of the
jump conditions (65). In the case of σ̄, for example, this gives, after some
manipulations, the standard result

σ̄Tn = ta + t̄m ≡ ta + 1
2μ0(M · n)2n on ∂B. (112)
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It is worth pointing out here that in general there is no stress tensor σ̂
for which the jump term in (111) vanishes and which therefore matches
the mechanical traction alone. This is because the final term in (112) is
not linear in n. However, exceptions to this are when either M · n = 0 or
n × M = 0 everywhere on ∂B.

Virtual work formulation. With reference to the generic formulation
based on the equilibrium equation (86) and the traction boundary condi-
tion (84), we now consider the total virtual work consisting of the virtual
mechanical work of the body and surface forces on a virtual displacement,
denoted ẋ, and the virtual magnetic work, the form of which depends on
the choice of variables. The total virtual work is then written in the form∫

V

(ρf + f̂m) · ẋ dV +
∫

S

(ta + t̂m) · ẋ dS +
∫

V

˙̂wm dV, (113)

where the first two integrals represent the virtual mechanical work due to
all the (mechanical and magnetic) forces, while the third integral is written
in terms of the virtual magnetic work density ˙̂wm (per unit volume), where
the superimposed dot signifies a virtual increment.

By using (84) in the second integral and applying the divergence theorem
and using (86) the expression (113) reduces to∫

V

[tr(σ̂grad ẋ) + ˙̂wm] dV. (114)

In pure hyperelasticity theory, i.e. without the magnetic term, this would
represent the virtual increase in stored elastic energy. By analogy, we can
consider (114) to represent the virtual increase in stored magnetoelastic
energy. This suggests the introduction of an energy density (per unit mass),
which we denote by φ̂, such that

ρ
˙̂
φ = tr(σ̂grad ẋ) + ˙̂wm. (115)

Now suppose that φ̂ depends on the deformation gradient F and some mag-
netic vector, say μ: φ̂(F, μ). Then it follows that

˙̂
φ = tr

( ∂φ̂

∂F
Ḟ
)

+
∂φ̂

∂μ
· μ̇, (116)

where again a superimposed dot signifies a virtual increment, and we note
that Ḟ = (grad ẋ)F.
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Comparison of (116) with (115), which must hold for all virtual incre-
ments, shows that

σ̂ = ρF
∂φ̂

∂F
, ˙̂wm = ρ

∂φ̂

∂μ
· μ̇. (117)

We illustrate this in relation to two of the examples considered above.
First, with μ = B we have φ̂ = φ(F,B), and hence, via (95)

σ̂ = σ = ρF
∂φ

∂F
, M = −ρ

∂φ

∂B
, ˙̂wm = −M · Ḃ. (118)

Second, with μ = H we have φ̂ = ψ(F,H), and hence, from (101),

σ̂ = σ̄ = ρF
∂ψ

∂F
, μ0M = −ρ

∂ψ

∂H
, ˙̂wm = −μ0M · Ḣ. (119)

With reference to the connection (106) between ψ and φ it can be seen that
in moving from the virtual work balance based on φ to that based on ψ
the term μ0M · Ṁ is added to ˙̂wm. Clearly, the different formulations are
equivalent in terms of energy balance, but the choice of magnetic variable
influences the description of magnetic energy within the material.

Constitutive equations – Lagrangian formulations. The equilibrium
equation (90) in terms of the total Cauchy stress tensor τ may be converted
to Lagrangian form by defining, as is done in the context of nonlinear elas-
ticity theory (see, for example, Ogden, 1997), an associated total nominal
stress tensor, which is here denoted T and defined by

T = JF−1τ . (120)

Then, by using (55), equation (90) may be written in the alternative form

DivT + ρ0f = 0, (121)

where ρ0 = ρJ is the mass density of the material in the reference configura-
tion B0. This change to Lagrangian form is now coupled with a correspond-
ing change in the representation of the potential functions, which leads to
an elegant formulation of the constitutive law for a nonlinear magnetoelastic
material with an accompanying simple structure of the governing equations.

We base the following development on the potential function φ∗, which
depends on F and B. Thus, we write φ∗ = φ∗(F,B). In view of the
connection (61) between B and Bl we may regard φ∗(F,B), equivalently,
as a function of F and Bl, and we introduce the notation Φ∗ for this purpose.
This is defined by

Φ∗(F,Bl) ≡ φ∗(F, J−1FBl). (122)
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Note that since Bl is a Lagrangian vector it is indifferent to observer trans-
formations in the deformed configuration, i.e. in the present context it is
unaffected by a superimposed rotation defined by the proper orthogonal
tensor Q in the deformed configuration, while the deformation gradient F
changes to QF. For Φ∗ to be frame indifferent (objective) we must have

Φ∗(QF,Bl) = Φ∗(F,Bl) (123)

for all proper orthogonal Q. This requirement is guaranteed if Φ∗ is regarded
as a function of the right Cauchy–Green tensor c = FTF, which we assume
implicitly to be the case. Thus, Φ∗ is a function of c and Bl.

We have shown above that in the Eulerian formulation we have

σ∗ = ρF
∂φ∗

∂F
, H = ρ

∂φ∗

∂B
. (124)

When re-cast in terms of Φ∗ these equations become

σ∗ = ρF
∂Φ∗

∂F
− B ⊗ H + (B · H)I, H = ρJF−T ∂Φ∗

∂Bl
, (125)

and hence, by (89) and (100)1,2, we obtain the simple formula

τ = ρF
∂Φ∗

∂F
. (126)

By (120) and (59) the corresponding Lagrangian expressions are

T = ρ0
∂Φ∗

∂F
, Hl = ρ0

∂Φ∗

∂Bl
, (127)

wherein we have used the connection ρ0 = ρJ .
For convenience we now define the potential function Ω = Ω(F,Bl), per

unit reference volume, by

Ω(F,Bl) = ρ0Φ∗(F,Bl), (128)

so that the formulas (127) become simply

T =
∂Ω
∂F

, Hl =
∂Ω
∂Bl

. (129)

The corresponding formulas for τ and H are

τ = J−1F
∂Ω
∂F

, H = F−T ∂Ω
∂Bl

. (130)
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When Bl is used as the independent magnetic variable, equations (129)1
and (129)2 are inserted into the equilibrium equation (121) and the equa-
tion (63)2, while Bl itself satisfies (63)1. These coupled equations, when
combined with appropriate boundary conditions, provide the equations gov-
erning the deformation x = χ(X), with F = Gradx, and a vector potential
Al, with Bl = CurlAl.

If, instead of Bl, we wish to use Hl as the independent magnetic variable
then we can adopt the following approach. Let us now define, analogously
to the definition (122), the potential function Ψ∗ by

Ψ∗(F,Hl) = ψ∗(F,F−THl). (131)

Then, by using (107), the connections (59) and (61), and ρ0 = ρJ , we obtain

ρ0Ψ∗ = ρ0Φ∗ − Bl · Hl. (132)

Introduction of the notation Ω∗, defined by

Ω∗(F,Hl) = ρ0Ψ∗(F,Hl), (133)

leads to the Legendre transformation

Ω∗ = Ω − Bl · Hl, (134)

and in terms of Ω∗ we then obtain the counterparts of equations (129) as

T =
∂Ω∗

∂F
, Bl = −∂Ω∗

∂Hl
. (135)

For the validity of the Legendre transform one would require that Bl be a
monotonic function of Hl. However, one could avoid this by starting with
Ω∗ instead of deriving it via (134). In this case equation (63)2, with Jl = 0,
is satisfied by taking the independent variable Hl in the form −Gradϕl for
some scalar function ϕl, and the remaining equations are then coupled as
equations for x = χ(X) and ϕl(X).

In terms of the virtual work energy balance, here we set ρ0φ̂ as Ω, re-
spectively Ω∗. The corresponding virtual magnetic work is then given by
˙̂wm = J−1Hl · Ḃl, respectively ˙̂wm = −J−1Bl · Ḣl. For a review of related
variational approaches to the formulation of the equations of magnetoelas-
ticity, which are not discussed here, we refer to the paper by Bustamante
et al. (2008).
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Incompressible materials. The expressions for the various stress ten-
sors in the foregoing apply for a material that is not subject to any in-
ternal mechanical constraint. For an important class of materials, includ-
ing magneto-sensitive elastomers, it is appropriate to adopt the constraint
of incompressibility, in which case the expressions for the stresses require
modification.

For an incompressible material we have the constraint

detF ≡ 1. (136)

The total nominal and Cauchy stresses given by (129)1 and (130)1 in terms
of Ω are then amended in the forms

τ = F
∂Ω
∂F

− pI, T =
∂Ω
∂F

− pF−1, (137)

respectively, where p is a Lagrange multiplier associated with the constraint
(136). The expressions (129)2 and (130)2 are unchanged except that (136)
is in force. In terms of Ω∗ we have, instead of (137),

τ = F
∂Ω∗

∂F
− pI, T =

∂Ω∗

∂F
− pF−1. (138)

In general the p in (138) need not be the same as in (137).

4.2 Material Symmetry Considerations

Thus far no restrictions have been placed on the forms of the poten-
tial functions other than those required by objectivity, so that considerable
generality remains. Other restrictions may be physically or mathematically
based. For example, physical restrictions arise from the nature of the mate-
rial itself, such as its inherent symmetry. Magneto-sensitive elastomers are
typically isotropic in their response in the absence of a magnetic field, but
application of a magnetic field endows the material with a preferred direc-
tion. Thus, the magnetic induction vector B generates a preferred direction
in the deformed configuration B. However, from the point of view of consti-
tutive law development, it is advantageous to make use of the Lagrangian
field Bl instead of B, and to consider the potential function Ω.

For simplicity we restrict attention to so-called isotropic magnetoelastic
materials, for which the material symmetry considerations are similar to
those that arise for a transversely isotropic elastic material, which possesses
a preferred direction in the reference configuration (see, for example, Mero-
dio and Ogden, 2005). This is appropriate for fiber-reinforced materials, for
which the preferred direction is the fiber direction in the reference configu-
ration. The vector field Bl has an analogous role in the present context.
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The magnetoelastic material considered here is said to be isotropic if Ω is
an isotropic function of the two tensors c and Bl ⊗Bl. Note that the latter
expression is unaffected by reversal of the sign of Bl. Then, the form of Ω
is reduced to dependence on the principal invariants I1, I2, I3 of c, defined
by

I1 = trc, I2 =
1
2
[
(trc)2 − tr(c2)

]
, I3 = det c = J2, (139)

together with three invariants that depend on Bl. A convenient choice of
the latter, but by no means the only option, is

I4 = |Bl|2, I5 = (cBl) · Bl, I6 = (c2Bl) · Bl. (140)

Note that for a transversely isotropic elastic material the counterpart of the
invariant I4 would be absent since in that case the preferred direction is a
unit vector.

In the following the subscripts 1, 2, . . . , 6 on Ω signify differentiation with
respect to I1, I2, . . . , I6, respectively. A direct calculation based on (130)1
leads to

τ = J−1[2Ω1b+2Ω2(I1b−b2)+2I3Ω3I+2Ω5B⊗B+2Ω6(B⊗bB+bB⊗B)],
(141)

which is clearly symmetric, and

H = 2(Ω4b−1B + Ω5B + Ω6bB), (142)

and we recall that b = FFT is the left Cauchy–Green deformation tensor.
The corresponding Lagrangian forms may be obtained from the connections
T = JF−1τ and Hl = FTH.

For an incompressible material I3 ≡ 1 and (141) is replaced by

τ = 2Ω1b+2Ω2(I1b−b2)−pI+2Ω5B⊗B+2Ω6(B⊗bB+bB⊗B), (143)

while (142) is unchanged in form, but with I3 absent from Ω.
If we work with Ω∗ instead of Ω then the invariants based on Bl have to

be changed to invariants based on Hl. These are denoted here by K4,K5,K6

and may be defined, analogously to (140), by

K4 = |Hl|2, K5 = (cHl) · Hl, K6 = (c2Hl) · Hl. (144)

The associated formulas for τ are similar to those based on Ω. For an
incompressible material, for example, we have

τ = 2Ω∗
1b+2Ω∗

2(I1b−b2)−pI+2Ω∗
5bH⊗bH+2Ω∗

6(bH⊗b2H+b2H⊗bH).
(145)
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The magnetic induction is

B = −2(Ω∗
4bH + Ω∗

5b
2H + Ω∗

6b
3H). (146)

The latter may be rearranged, if required, by using the Cayley-Hamilton
theorem in the form

b3 = I1b2 − I2b + I, (147)

for an incompressible material, for which Ω∗ = Ω∗(I1, I2, K4,K5,K6). In
the above equations Ω∗

i is defined as ∂Ω∗/∂Ii for i = 1, 2 and ∂Ω∗/∂Ki for
i = 4, 5, 6.

There are important differences between the formulations based on Ω and
Ω∗ in respect of their application to particular boundary-value problems. If
Bl is taken as the independent variable then it has to satisfy DivBl = 0.
The resulting Hl, calculated from (129)2, then has to satisfy the vector
equation CurlHl = 0, which, for some problems, puts severe restrictions
on the class of constitutive laws that admit the deformation in question
for the considered magnetic induction field Bl. On the other hand, if we
start with Hl as the independent variable it has to satisfy CurlHl = 0
and then the resulting Bl, calculated from (135)2, must satisfy the scalar
equation DivBl = 0. This also may, in some situations, put restrictions on
the admissible class of constitutive laws, but they are different from and
generally less severe than for the other formulation.

A more general model than the isotropic model considered here has been
developed by Bustamante (2010). This is a transversely isotropic model for
which, in addition to the preferred direction due to the applied field, there
is a second preferred direction, defined in the reference configuration, which
is associated with alignment of magnetic particles during the curing process
and is ‘frozen in’ to the material by the cure (see, for example, Bellan and
Bossis, 2002; Varga et al., 2005, 2006). For details of this model, which
involves a total of 10 invariants (9 for an incompressible material), we refer
to Bustamante (2010).

5 Representative Boundary-Value Problems

We now apply the equations described in the preceding sections to two
representative boundary-value problems in order to illustrate the theory.
Consider an incompressible isotropic magnetoelastic body in the absence
of mechanical body forces. The equations to be solved are summarized
conveniently here as

divB = 0, curlH = 0, divτ = 0 in B, (148)
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in Eulerian form, and

DivBl = 0, CurlHl = 0, DivT = 0 in B0, (149)

in Lagrangian form, with the Lagrangian–Eulerian interconnections

Bl = F−1B, Hl = FTH, T = F−1τ . (150)

We also recall the definition of the magnetization. In Eulerian form this is

M = μ−1
0 B − H. (151)

It is possible to define a Lagrangian form of the magnetization, but we shall
not need this here.

The associated Eulerian and Lagrangian boundary conditions are col-
lected here from (58) and (64) as

n · [[B]] = 0, n × [[H]] = 0 on ∂B (152)

and
N · [[Bl]] = 0, N × [[Hl]] = 0 on ∂B0, (153)

respectively.
On any part of the boundary, say ∂Bt ⊂ ∂B, where the mechanical

traction ta is prescribed the traction boundary condition is given by

τn = ta + τ (o)
m n on ∂Bt, (154)

where τ
(o)
m n is the effective traction due to the Maxwell stress calculated

on the exterior of ∂Bt. The boundary condition (154) may be expressed in
Lagrangian form by making use of Nanson’s formula ndS = JF−TNdS0 to
give

TTN = tA + τ (o)
m F−TN on ∂Bt0, (155)

where tA is the applied mechanical traction per unit reference area and ∂Bt0

is the reference counterpart of ∂Bt.

5.1 Application to Circular Cylindrical Geometry

We now specialize to problems with circular cylindrical geometry for
which it is convenient to express the variables and equations in terms of
cylindrical polar coordinates. In the reference configuration these are de-
noted by (R, Θ, Z) and in the deformed configuration by (r, θ, z). The com-
ponent forms of the equations (149)1,2 are

∂BlR

∂R
+

1
R

BlR +
1
R

∂BlΘ

∂Θ
+

∂BlZ

∂Z
= 0, (156)
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and

1
R

∂HlZ

∂Θ
− ∂HlΘ

∂Z
= 0,

∂HlR

∂Z
− ∂HlZ

∂R
= 0,

1
R

∂(RHlΘ)
∂R

− 1
R

∂HlR

∂Θ
= 0,

(157)
where (BlR, BlΘ, BlZ) are the components of Bl and (HlR, HlΘ,HlZ) those
of Hl. Note that if Hl is chosen as the independent variable, the correspond-
ing magnetic induction Bl is given by the constitutive equation (146) with
Bl = F−1B, and its components must satisfy the scalar equation (156).
On the other hand, if the vector Bl is adopted as the independent variable,
the corresponding magnetic field is given by the constitutive law (142) with
Hl = FTH, the components of which must satisfy the equations (157). It
is somewhat easier to work with Hl as the independent variable since this
leaves only a single scalar equation, namely (156), to be satisfied by the
components of Bl.

We apply these equations to a circular cylindrical tube and specialize
by considering the components of Bl and Hl to be independent of Θ and
Z, so that circular cylindrical symmetry is preserved. We consider the
tube to have infinite length in order to avoid difficulties associated with
compatibility of the magnetic boundary conditions on the ends of the tube
and on its lateral surfaces. The above equations can now be integrated to
give

BlR =
C1

R
, HlΘ =

C2

R
, HlZ = C3, (158)

where C1, C2, C3 are constants. Corresponding solutions can be given for
Br,Hθ and Hz. However, since the normal component BlR must be con-
tinuous across the inner boundary of the tube we must take C1 = 0 so that
there is no singularity at R = 0. Thus, we must have BlR = 0.

The corresponding component forms of the equilibrium equation (149)3
may also be written down. However, here we use their Eulerian counter-
parts. When dependence on θ and z is omitted the components of equation
(148)3 are expressed compactly as

dτrr

dr
+

1
r
(τrr − τθθ) = 0,

d
dr

(r2τrθ) = 0,
d
dr

(rτrz) = 0. (159)

5.2 Helical Shear

Let the reference geometry of the tube be defined by the inequalities

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, −∞ < Z < ∞, (160)
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so it has inner and outer radii A and B, respectively. The tube is subject
to the helical shear deformation described by the equations

r = R, θ = Θ + g(R), z = Z + w(R), (161)

where g(R) and w(R) are functions of R to be determined by solving the
governing equations and applying the boundary conditions. The deforma-
tion defined by (161) is a combination of a pure axial shear deformation and
a pure azimuthal shear deformation. Since r = R, we use r as the variable
in the functions g and w, and we also set a = A and b = B. We assume that
the inner boundary of the tube is fixed and let the outer boundary be sub-
ject to an azimuthal rotation through an angle β and an axial displacement
d, so that

g(a) = 0, g(b) = β, w(a) = 0, w(b) = d. (162)

Referred to the two sets of cylindrical polar coordinate axes, the compo-
nents of the deformation gradient F are represented by the matrix F, which
is given by

F =

⎛⎝ 1 0 0
rg′(r) 1 0
w′(r) 0 1

⎞⎠ , (163)

where the prime indicates differentiation with respect to r. For convenience,
we use the notations

γθ = rg′(r), γz = w′(r), γ2 = γ2
θ + γ2

z . (164)

The combined deformation is locally a simple shear with amount of shear
γ (see, for example, Ogden et al., 1973). The corresponding matrices of the
left and right Cauchy–Green tensors b = FFT and c = FTF, written b and
c, respectively, are given by

b =

⎛⎝ 1 γθ γz

γθ 1 + γ2
θ γθγz

γz γθγz 1 + γ2
z

⎞⎠ , c =

⎛⎝ 1 + γ2 γθ γz

γθ 1 0
γz 0 1

⎞⎠ . (165)

The matrix corresponding to b2 is

b2 =

⎛⎝ 1 + γ2 (2 + γ2) γθ (2 + γ2) γz

(2 + γ2) γθ 1 + (3 + γ2) γ2
θ (3 + γ2) γθγz

(2 + γ2) γz (3 + γ2) γθγz 1 + (3 + γ2) γ2
z

⎞⎠ , (166)

and a similar expression for c2 can be written down if required.
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From equation (139), the principal invariants I1, I2 are obtained as

I1 = I2 = 3 + γ2, (167)

while I3 ≡ 1. The invariants K4,K5, K6 in (144) depend on the choice of
magnetic field and will be quantified in what follows.

Axial magnetic field. We work in terms of the energy function Ω∗ and
assume that the Lagrangian field Hl has components (0, 0,HlZ). The in-
variants K4, K5,K6 are then calculated from equation (144), using (165)2,
as

K4 = H2
lZ , K5 = K4, K6 = K4(1 + γ2

z ). (168)

Thus, the only remaining kinematic and magnetic variables are γθ, γz and
K4. One can think of HlZ as being applied in the reference configuration
along with the stresses required to maintain the reference geometry, followed
by application of the helical shear deformation and the necessary additional
accompanying stresses.

In the deformed configuration, the magnetic field vector is given by H =
F−THl and has components

Hr = −γzHlZ , Hθ = 0, Hz = HlZ . (169)

The constitutive equation (146) is then used to determine the corresponding
components of the magnetic induction vector B as

Br = −2[Ω∗
5 + Ω∗

6(2 + γ2)]γzHz, (170)

Bθ = −2[Ω∗
5 + Ω∗

6(3 + γ2)]γθγzHz, (171)

Bz = −2[Ω∗
4 + Ω∗

5 + Ω∗
6 + {Ω∗

5 + Ω∗
6(3 + γ2)}γ2

z ]Hz. (172)

Equation (170) shows that the radial component Br 
= 0. However, be-
cause Br depends only on r the equation divB = 0 reduces to d(rBr)/dr =
0, and hence Br = c/r for some constant c. As already indicated in respect
of BlR the normal component must be continuous across the inner boundary
of the tube and, to avoid a singularity at r = 0, we must have c = 0. Thus,
Br = 0 everywhere. This implies that for a circular cylindrical tube sub-
ject to helical shear with γz 
= 0 and an applied axial field the constitutive
restriction

Ω∗
5 + Ω∗

6(2 + γ2) = 0 (173)

must be satisfied. There are many ways to satisfy this requirement. An
immediate example is by using an energy function that does not depend



Magnetostatics: from Basic Principles to Nonlinear Interactions… 145

on K5 and K6. Another possibility is an energy function depending on the
variables I1,K4 and the combination (I1 − 1)K5 − K6 = K4(1 + γ2

θ ).
Since Br = 0 everywhere, then Hr = 0 outside the material because of

the connection Hr = μ−1
0 Br, while Hr is given by (169)1 inside the material.

Equation (152)2 requires that the tangential component of H be continuous
across the inner and outer cylindrical boundaries of the tube. Thus, the
component Hz of the magnetic field, which is tangential to the boundaries
r = a and r = b of the tube and is constant, must be continuous across
those boundaries.

The magnetization M is obtained from equation (151), which in compo-
nent form and with Br = 0 gives

Mr = −Hr, Mθ = μ−1
0 Bθ, Mz = μ−1

0 Bz − Hz, (174)

where the components Bθ and Bz are given by (171) and (172).
Outside the material the Maxwell stress components are obtained from

(108) as

τrr = −1
2μ−1

0 (B2
θ + B2

z ), τθθ = 1
2μ−1

0 (B2
θ − B2

z ), (175)

τzz = −1
2μ−1

0 (B2
θ − B2

z ), τθz = μ−1
0 BθBz, (176)

with τrθ = 0 and τrz = 0.
The total stress tensor τ inside the material is given by equation (145),

and its components are

τrr = −p + 2(Ω∗
1 + 2Ω∗

2), (177)
τθθ = −p + 2Ω∗

1(1 + γ2
θ ) + 2Ω∗

2(2 + γ2), (178)
τzz = −p + 2Ω∗

1(1 + γ2
z ) + 2Ω∗

2(2 + γ2) + 2K4[Ω∗
5 + 2Ω∗

6(1 + γ2
z )], (179)

τrθ = 2(Ω∗
1 + Ω∗

2)γθ, (180)
τrz = 2(Ω∗

1 + Ω∗
2)γz + 2Ω∗

6K4γz, (181)
τθz = 2Ω∗

1γθγz + 2Ω∗
6K4γθγz. (182)

Clearly, the original five invariants now depend on just three independent
quantities, namely γθ, γz and K4. This allows us, for this problem, to define
a reduced energy function, denoted ω∗ and given by

ω∗(γθ, γz,K4) = Ω∗(I1, I2, K4,K5,K6). (183)

Using the explicit expressions for I1 and I2 in (167) and K6 in (168) and
applying the chain rule then enables equations (180) and (181) to be reduced
to the simple forms

τrθ =
∂ω∗

∂γθ
, τrz =

∂ω∗

∂γz
. (184)
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Equations (159)2,3 may now be integrated and combined with (184) to give

τrθ =
∂ω∗

∂γθ
=

τθb
2

r2
, τrz =

∂ω∗

∂γz
=

τzb

r
, (185)

where τθ is the value of τrθ on the boundary r = b and τz that of τrz.
Since the components of the exterior Maxwell stress corresponding to

τrθ and τrz are zero, τθ and τz should match the externally applied mechan-
ical traction components in the azimuthal and axial directions, respectively.
Thus, we can consider these as appropriate boundary conditions as alterna-
tives to specifying β and d in (162). By definition of the deformation there
is no change in the radius so a radial traction boundary condition is not
required, and equation (159)1 may be used simply to calculate the radial
mechanical traction required to maintain the deformation. We do not need
this calculation here. Given τθ and τz, equations (185) can in principle
be used to determine γθ and γz and then by integration the displacement
functions g(r) and w(r), subject to (162)1,3.

Illustration. We now apply the equations in the above section to a par-
ticular material model, with Ω∗ depending only on the invariants I1 and
K4. Specifically, we set

Ω∗(I1, K4) =
μ(K4)

k

[(
I1 − 1

2

)k

− 1

]
+ ν(K4), (186)

where μ and ν are functions of K4 and k is a constant such that k ≥ 1/2.
In particular, μ is such that μ(0) (> 0) is the shear modulus of the material
in the undeformed configuration in the absence of a magnetic field. The
term ν(K4) represents the magnetic energy in the material in the absence
of deformation and requires that ν(0) = 0. The form (186) of Ω∗ is based
on a strain-energy function introduced by Jiang and Ogden (1998) in the
purely elastic context.

Using (185) and the function (186), we obtain the shear stresses in the
forms

τrθ = μ(K4)γθ

(
2 + γ2

2

)k−1

=
τθb

2

r2
, (187)

τrz = μ(K4)γz

(
2 + γ2

2

)k−1

=
τzb

r
. (188)

The dependence of the shear stresses τθ and τz on the rotation angle β and
the axial displacement d can in principle be determined by integration of
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Figure 5. Representative dependence of the shear modulus μ as a function
of the magnetic field strength, as measured by the invariant K4. The verti-
cal axis corresponds to the dimensionless shear modulus μ(K4)/μ(0). The
horizontal axis is scaled by μ2

0. Note the distinction between μ(0) and μ0.

(187) and (188) via γθ = rg′(r) and γz = w′(r) together with (162). In the
special case k = 1 explicit results can be obtained for g(r) and w(r), which
are

g(r) =
τθb

2

2μ(K4)

(
1
a2

− 1
r2

)
, w(r) =

τθb

μ(K4)
log
( r

a

)
. (189)

Hence

β =
τθb

2

2μ(K4)

(
1
a2

− 1
b2

)
, d =

τθb

μ(K4)
log
(

b

a

)
, (190)

and it can be seen that the stiffness of the mechanical response of the tube
to either azimuthal or axial shearing increases with μ(K4), and hence with
the magnitude of the applied magnetic field if μ is an increasing function
of K4. Data presented by Jolly et al. (1996) for magnetorheological elas-
tomers suggest that the behaviour of the shear modulus μ(K4) is as depicted
schematically in Figure 5. The higher the concentration of particles the
greater the stiffness of the material response up to a limiting value of the
volume fraction, which is about 27%. For lower volume fractions the gen-
eral character of the behaviour of μ(K4) is typically as illustrated in Figure
5, but as the limiting volume fraction is approached there is evidence that
μ(K4) reaches a maximum at a certain value of K4 and then decreases with
further increases in K4.

The components of the magnetization vector are given by equation (174).
In the reference configuration, where γθ = γz = 0, the only non-zero com-
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ponent of the magnetic field is Hz, and, by (172), Bz = −2Ω∗
4Hz in respect

of the model (186). The corresponding component of the magnetization is
then given by (174) with (186) as

Mz = −[1 + 2μ−1
0 ν′(K4)]Hz. (191)

Thus, while the function μ(K4) characterizes the dependence of the shear re-
sponse of the material on the magnetic field, this shows that ν(K4), through
its derivative, characterizes the magnetization in the undeformed configu-
ration. In the deformed configuration, the magnetization depends on both
functions.

5.3 Extension and Inflation of a Tube

We now consider a second problem for the tube with reference geometry
given by (160). The tube is deformed by combining axial extension and
radial expansion according to the equations

r =
[
a2 + λ−1

z (R2 − A2)
]1/2

, θ = Θ, z = λzZ, (192)

where λz is the constant axial stretch. The deformation gradient is diagonal
with respect to the cylindrical coordinate axes, with principal stretches in
the radial, azimuthal and axial directions given by

λ1 = λ−1λ−1
z , λ2 = λ =

r

R
, λ3 = λz, (193)

wherein the notation λ is defined and use has been made of the incom-
pressibility constraint λ1λ2λ3 ≡ 1 to give λ1 in terms of the independent
stretches λ and λz.

Circumferential magnetic field. In this problem, by contrast with that
of helical shear discussed above, we consider a circumferential magnetic
field, with azimuthal component HlΘ in the reference configuration. From
equation (158)2 we then have

HlΘ =
C2

R
, (194)

where C2 is a constant, and, from (150)2,

Hθ = λ−1HlΘ =
C2

r
. (195)

This magnetic field can be generated by a current flowing along the core
of the tube or a surface current along its inner boundary, so there is no
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difficulty associated with a possible singularity on r = 0 in this example.
The boundary conditions require that either Hθ is continuous across the
inner cylindrical surface r = a or that Hθ on r = a (calculated from r > a)
is matched by an axial surface current on r = a via the specialization of
(47)2, for example, and Hθ is also continuous across the outer cylindrical
surface located at r = b.

The invariants K4,K5,K6 defined in (144) assume now the values

K4 = H2
lΘ, K5 = λ2K4, K6 = λ4K4, (196)

while, on use of the incompressibility condition, I1 and I2 can be expressed
in terms of λ and λz:

I1 = λ2 + λ2
z + λ−2λ−2

z , I2 = λ−2 + λ−2
z + λ2λ2

z. (197)

Similarly to (183), this allows a reduced formulation of the energy function
Ω∗ to be defined. Again we use the notation ω∗, this time defined by

ω∗(λ, λz,K4) = Ω(I1, I2, K4,K5,K6), (198)

so that only three independent deformation/magnetic variables are required
in this specialization.

In the deformed configuration both the magnetic induction and the mag-
netization are circumferential, with

Bθ = −2λ2 ∂ω∗

∂K4
Hθ, Mθ = −2μ−1

0 λ2 ∂ω∗

∂K4
Hθ − Hθ. (199)

For this particular field the equation divB = 0 is automatically satisfied and
therefore places no restriction on the form of the constitutive equation. We
note in passing, however, that in the formulation based on Ω with B as the
independent variable restrictions are placed on the class of material models
for the considered deformation and circumferential field to be admissible
(Dorfmann and Ogden, 2005).

In the space surrounding the tube, where B = μ0H, the components of
the Maxwell stress tensor may again be obtained by specializing (108). The
only non-zero components are

τrr = τzz = −1
2
μ0H

2
θ , τθθ =

1
2
μ0H

2
θ , (200)

which depend on the radius r. For later use, we define the notation

τm(r) =
1
2
μ0H

2
θ , (201)
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where Hθ is given by (195) as a function of r.
The components of τ within the material are obtained from the special-

ization of (145). The only non-zero components are τrr, τθθ, τzz and it is
straightforward to show, by using (196) and (198), that

τθθ − τrr = λ
∂ω∗

∂λ
, τzz − τrr = λz

∂ω∗

∂λz
. (202)

For the considered deformation, the equilibrium equations (159)2,3 in the
circumferential and axial directions are satisfied trivially, while the radial
equation

dτrr

dr
+

1
r
(τrr − τθθ) = 0 (203)

remains. On substituting from (202)1 we may integrate this equation in the
form

τrr =
∫ r

a

λ
∂ω∗

∂λ

dr

r
+ τrr(a), (204)

where τrr(a) is the value of τrr on r = a. For the traction boundary condi-
tions we suppose that the inner boundary r = a is subjected to a pressure
P while the outer boundary r = b is free of mechanical load. Thus, we must
have

τrr(a) = −P − τm(a), τrr(b) = −τm(b), (205)

and by using these in (204) we obtain

P =
∫ b

a

λ
∂ω∗

∂λ

dr

r
+ τm(b) − τm(a), (206)

which involves the Maxwell stress τm(r) at the inner and outer surfaces.
Since

τm(b) − τm(a) =
1
2
μ0C

2
2

(
1
b2

− 1
a2

)
(207)

is negative this means that the resultant effect of the magnetic field is similar
to that of the pressure in that it can cause inflation of the tube at fixed
axial extension. In particular, the magnetic field can induce inflation in the
absence of internal pressure.

Although we are considering a tube of infinite length it is interesting
to obtain an expression for the resultant axial force, denoted N , on any
cross-section of the tube. This is

N = 2π

∫ b

a

τzzr dr = 2π

[∫ b

a

(τzz − τrr)r dr +
∫ b

a

τrrr dr

]
. (208)
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By integrating the second integral on the right-hand side by parts, using
(203) and the fact that a2τm(a) = b2τm(b), we obtain the formula

N = π

∫ b

a

(2τzz − τrr − τθθ)r dr + πa2P. (209)

Use of equations (202) allows N to be rewritten in terms of the reduced
energy function ω∗ as

N = π

∫ b

a

(
2λz

∂ω∗

∂λz
− λ

∂ω∗

∂λ

)
r dr + πa2P. (210)

Thus, when Ω∗, and hence ω∗, is given both the pressure and the axial load
can be calculated. The reader is invited to evaluate the expressions for P
and N explicitly for the case of the model energy function (186) with k = 1
by choosing a linear form μ(K4) = μ(0) + μ0ηK4 for the shear modulus,
where η is a dimensionless constant.
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Membranes

John Edmiston and David Steigmann
Department of Mechanical Engineering

University of California at Berkeley, USA

E-Mail: steigman@newton.berkeley.edu

Abstract. We give a concise treatment of the interaction of a
nonlinear elastic membrane with an electrostatic field. The focus is
on the generation of reduced dimension model equations for contin-
uum electrodynamics based on the methodology used by Steigmann
(2007) in the purely mechanical context. We formulate the back-
ground theory for reduced dimension models pertaining to contin-
uum electrostatics and implement the resulting equations numeri-
cally for an example problem of practical interest.

1 Introduction

In this chapter we describe a systematic approach to the generation of re-
duced dimension model equations which govern equilibrium for a nonlinear
elastic membrane acted on by an electrostatic field. The primary purpose of
this work is two-fold – to contribute to the strong foundation laid by Kovetz
(2000) for work in continuum electrodynamics by adopting conventions used
there, and to apply the technique of Steigmann (2007) for generating re-
duced dimension equations pertaining to equilibrium electro-elastostatics
problems.

To implement the theory we present, the system we study in some detail
is that of an elastomeric dielectric membrane with deformable electrodes
fixed to opposing lateral surfaces. The similarly treated magnetostatic case
has been previously considered by Steigmann (2004). For the academic,
the combination of finite deformation and electric field interaction presents
a challenging system to analyze, one for which many fundamental ideas
from continuum mechanics are required. From a practical standpoint, the
combination of an elastomeric dielectric material along with a coexisting
system of charged electrodes is an active area of research and development,

R. W. Ogden et al. (eds.), Mechanics and Electrodynamics of Magneto- and Electro-elastic

 Materials,   © CISM, Udine 2011
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with applications in the field of artificial muscle actuator technologies (Bar-
Cohen, 2000).

The benefit of developing reduced dimension models for problems of
electro-elastostatics is apparent upon examination of the complexity of the
fully coupled mathematical system. We will formulate a two-dimensional
approximate theory for continuum electrostatics problems that is more
tractable than the exact three-dimensional theory. This is also of prac-
tical benefit due to the high aspect ratio geometry commonly employed for
electrostatic actuators (Carpi, 2005, 2007).

There are several contributions of note in this paper. First, generation
of the two-dimensional reduced forms of three-dimensional balance equa-
tions in a method adapted from Steigmann (2007) is applied to Maxwell
equations for electrostatics, which has not been previously presented to our
knowledge. Secondly, we describe the electromechanical coupling in a way
that is consistent with accepted thermodynamic considerations, following
Kovetz (2000). This includes utilizing the general constitutive framework
for elastic materials guided by nonlinear continuum thermodynamics – by
which response functions are expressed in terms of derivatives of a stored en-
ergy function. The result is a proposed stored energy function which reduces
to the Mooney–Rivlin stored energy function for incompressible elastomers
if the effect of the electric field is ignored. This stored energy function
also produces a polarization response which agrees with the familiar linear
dielectric constitutive relation.

We present this topic in four sections. First the general background
of continuum electrostatics will be reviewed, primarily stating the three-
dimensional balance laws and boundary conditions along with consider-
ations of electrostatic-to-mechanical coupling. Secondly, we present the
reduced dimension model equations generated from the governing three-
dimensional mechanical and electromagnetic balance laws using a system-
atic procedure introduced by Steigmann (2007). Third, we discuss constitu-
tive equations for electroelastic materials which are consistent with nonlin-
ear continuum thermodynamic principles and propose a stored energy func-
tion. Finally we numerically implement the proposed reduced dimension
model for a chosen material system and geometry, that of an axisymmetric
membrane. Qualitative aspects of the numerical results are discussed, our
goal being simply to use the posed problem as an illustrative platform in
order to exercise the model we are presenting.

Explicit examples of boundary value problems of the sort we present are
somewhat lacking in the literature, so we feel this work will be a useful
contribution both for those interested in examples of applications of contin-
uum electrodynamics theory and to those interested in reduced dimension
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continuum mechanics models.

2 Theoretical Background

In this section the background theory needed for the study of continuum
electrodynamics is briefly reviewed. A more in-depth discussion of the gen-
eral three-dimensional balance equations can be found in (Steigmann, 2009),
or (Kovetz, 2000). We will only consider the static (equilibrium) case, i.e.
d(·)/dt = 0, where (·) is any quantity of interest. We also will neglect the
effect of magnetic fields.

2.1 Conservation Laws, Maxwell’s Equations

The governing equations which describe the physical behavior of deform-
ing materials in an electromagnetic field come from the balance laws for lin-
ear momentum and Maxwell’s equations. First we consider these two sets of
equations separately, without any coupling between linear momentum and
Maxwell’s equations.

Linear momentum. The conservation of linear momentum can be writ-
ten as

d
dt

∫
Ω

ρv dV =
∫

∂Ω

t(F ;n) +
∫

Ω

ρfmech dV, (1)

where v is the material velocity vector, ρ is the mass density, t(F ; n) is
the traction vector, a material response function depending only on elastic
deformation gradient F ≡ Grady and surface normal n, and fmech is a
force vector term arising from agencies external to the body, e.g., gravity.
By Cauchy’s Theorem, t(F ;n) is a linear transformation on the set of unit
vectors, and there exists a second-order tensor field, the Cauchy stress tensor
T , such that Tn = t (Liu, 2002). For the equilibrium case (v = 0), with no
body forces, the global integral equation for balance of linear momentum,
equation (1), along with use of Stokes’ theorem gives the local form of the
balance of linear momentum as

div T = 0, (2)

where div is the divergence operator. The jump condition on the stress
tensor is

[[T ]]n = 0, (3)

where n is the outward pointing unit normal vector to the surface of inter-
est, and [[·]] ≡ (·)o

− (·)i is the jump in (·) across the same surface. The
superscripts o and i refer to ‘outside’ and ‘inside’, respectively.
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Maxwell’s equations. The governing equations for the electromagnetic
fields are described by Maxwell’s equations

div d = qf , curl e +
∂b

∂t
= 0, (4)

div b = 0, curlh −
∂d

∂t
= j, (5)

where d is the electric displacement vector, b is the magnetic induction, e is
the electric field, h is the magnetic field, qf is the free electric charge density
per unit volume, and j is the free electric current density.

For our study we will only be concerned with the time independent,
electrostatic case, so that the relevant Maxwell equations simplify to

div d = qf , curl e = 0. (6)

We can immediately satisfy equation (6)2 by introducing the electrostatic
potential V related to the electric field by

e = −gradV,

so that curl e ≡ 0.
The electric displacement d is expressed in terms of the electric field and

polarization vector as
d = ε0e + p(F, e), (7)

where it is emphasized here that the polarization field p(F, e) is a material
response function, i.e. it is given by a constitutive equation for the material.
For our purposes the polarization will be assumed to depend predominantly
on the elastic deformation and the electric field, as shown by the indicated
dependence in equation (7).

The jump conditions for the Maxwell equations are

[[d]] · n = σf , n × [[e]] = 0, (8)

where σf is the surface free charge density and × denotes the cross product.

2.2 Continuum Electrodynamics

Linear momentum, Lorentz force. We now consider continuum elec-
trodynamic theory wherein the governing balance equations are fully cou-
pled. The link between linear momentum balance and electrostatics comes
from the addition of the Lorentz force term fL into the linear momentum
balance as a body force term, i.e.

d
dt

∫
Ω

ρv dV =
∫

∂Ω

t(F, e ;n) +
∫

Ω

ρfmech dV +
∫

Ω

fL dV, (9)
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where fL = qe+j×b, q is the total electric charge density, and the material
traction response t(F, e; n) is now, in general, allowed to depend on the
electric field in addition to the deformation gradient and surface normal.

The balance of linear momentum equation with the effect of the electric
field added through the Lorentz force term, equation (9), can be reformu-
lated in a multitude of ways, which has led to some confusion in the subject
due to their apparent non-agreement. However, these different formulations
have been shown to be equivalent by Steigmann (2009). We follow the ap-
proach of Kovetz (2000) to rearrange equation (9) into a more useful form.
After many manipulations of equation (9) using Maxwell’s equations and
Stokes’ theorem, the Lorentz force gives rise to the Maxwell stress tensor,
which for the electrostatic case is

TM = ε0

(
e ⊗ e −

1
2
|e|2I

)
, (10)

where I is the identity tensor and |e| ≡
√

e · e is the magnitude of the electric
field.

As an important aside, in many works on problems of applied contin-
uum electrodynamics, researchers disregard the constitutive dependence of
the traction t on the electromagnetic field and use a version of the Maxwell
stress tensor to incorporate the electromechanical coupling – replacing the
permittivity of free space ε0 in equation (10) with the material permittiv-
ity ε. We will later present a form for the stress tensor which does not
use this approach and is more consistent with accepted ideas of continuum
thermodynamics.

With the effect of the electric field added to the balance of linear mo-
mentum through the Maxwell stress tensor TM the equilibrium equation (2)
becomes (Steigmann, 2009)

div T̂ = 0, (11)

where T̂ ≡ T (F, e)+TM and, as indicated, the Cauchy stress T depends on
the electric field in addition to the deformation gradient.

2.3 Stored Energy Function, Constitutive Relations

Elastic materials, by definition, entail the specification of a stored energy
function which encompasses all constitutive behavior through its derivatives.
Accordingly we assume the existence of a stored energy function for the
material ψ which depends on the deformation and electric field, i.e.

ψ = ψ̂(F, e). (12)
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The constitutive forms for the response functions T, p can be obtained
in terms of this stored energy function using the Clausius–Duhem inequal-
ity (Kovetz, 2000). One obtains the relations for Cauchy stress, T , and
polarization, p, as

T = ρ
∂ψ

∂F
FT + e ⊗ p (13)

and
p = −ρ

∂ψ

∂e
. (14)

By the principle of material frame invariance, we must have a functional
representation for the stored energy function ψ which satisfies the equality

ψ(F, e) = Φ(C, E) (15)

where Φ(C, E) is the stored energy function ψ, expressed in terms of C =
FT F and E = FT e, the right Cauchy-Green stretch and the electric field in
the reference frame respectively. Equating variations in ψ(F, e) and Φ(C, E),
i.e.

∂ψ

∂F
· Ḟ +

∂ψ

∂e
· ė =

∂Φ
∂C

· Ċ +
∂Φ
∂E

· Ė, (16)

allows one to eventually read off the constitutive expressions for T, p in
terms of derivatives of Φ using equations (13) and (14). One obtains

T = 2ρF sym
(

∂Φ
∂C

)
FT , (17)

where sym(·) denotes the symmetrization operation: sym(A) = 1
2 (A+ AT ).

Note that the term e ⊗ p in equation (13) ends up canceling in the course
of obtaining equation (17). The constitutive expression (14) for the polar-
ization, using the energy function Φ(C, E), gives the result

p = −ρF
∂Φ
∂E

. (18)

Reference configuration. The Piola stress tensor P = TF ∗, where
F ∗ ≡ JF−T and J ≡ det F , is convenient to employ in order to perform
calculations in a coordinate system fixed to material points. Use of equation
(17) expressed in terms of P gives

P = 2ρ0F sym
(

∂Φ
∂C

)
, (19)

where ρ0 ≡ ρJ is the mass density in material coordinates.
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The analogous reference quantity for the electric displacement is given
by the transformation law for d (Kovetz, 2000) as

D = JF−1d = JF−1(ε0e + p) = ε0JC−1E + Π (20)

where
Π = JF−1p = −ρ0

∂Φ
∂E

is the polarization response function in the material reference configuration.
The balance equations (4) and (11) can be expressed in the reference

configuration as
Div P̂ = 0, Div D = 0, (21)

where P̂ ≡ T̂F ∗ and Div is the divergence operator in material coordinates.
The PDEs given in equations (21) along with appropriate boundary con-

ditions and constitutive behavior given by specification of the energy poten-
tial function Φ(C, E) enables solution of general three-dimensional problems
in finite deformation continuum electrostatics. In the next section we con-
sider applying these equations to a material body which has a dimension h
of much less extent than any other dimension L, i.e. h/L << 1. This will
lead to a set of two-dimensional approximate versions of the PDEs (21),
and, with additional algebraic equations, will together form the system of
equations to solve for the membrane material.

3 Membrane Approximation

In this section, we apply the systematic procedure adapted from Steigmann
(2007) to derive the leading order membrane approximations to the govern-
ing balance equations (21). The technique integrates the balance equations
(21) over the whole body then expands the integration along the smallest
dimension in a Taylor series expansion. Cutting the expansion off at the
leading order gives the membrane approximation.

3.1 Membrane Kinematics

We begin with a general discussion of our kinematic conventions for
the membrane problem. We use a convected coordinate system, so that a
material point in the current configuration possesses the same coordinate
identification throughout deformation, and this material coordinate system
is the coordinate system to which the differential operations will be referred.

Consider a material coordinate system where the coordinate axes are
aligned with the body Ω, as shown in Figure 1. The body has boundary
∂Ω and outward pointing surface normal N . The coordinate ζ describes
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Figure 1. Reference geometry for material amenable to membrane approxi-
mation. The body Ω has boundary ∂Ω, outward pointing normal N , through
thickness coordinate ζ, and in-plane coordinates θ1,2. The dimension h is
much smaller than any other dimension for the material.

the extent along the thinnest dimension, which has maximum extent h.
The other material coordinates are general curvilinear coordinate functions,
denoted θα, α = 1, 2. The through thickness dimension h is much less than
the other dimensions in the material.

The position vector in the material configuration is described by decom-
position into the sum of a component vector to the midsurface at ζ = 0,
denoted x0 in Figure 2, and a component along the k direction with coor-
dinate ζ, i.e. x = x0 + ζk.

In the physical configuration the position vector is denoted y. The po-
sition of the deformed midsurface, with coordinates ζ = 0, is denoted by
y0. Material point positions of the body are described by a Taylor series
expansion about the deformed midsurface, e.g.,

y(θα, ζ) = y0(θα) + ζy′0(θ
α) +

1
2
ζ2y′′0 (θα) + O(ζ3), (22)

where

(·)′ ≡
∂

∂ζ
, (·)′′ ≡

∂2

∂ζ2
.

The deformation gradient F is found by applying the referential gradient
operator to the material point in the physical configuration (22). Thus,

F = Grad y = ∇y0 + y′0 ⊗ k + ζ∇y′0 + ζy′′0 ⊗ k + O(ζ2), (23)

where ∇ is the two-dimensional gradient operator in the θα coordinates.
We will see later that imposing the membrane approximation to the

balance equations will only use the leading order term in these expansions,
so that for future clarity we use the first order expansion for F ,

F ≈ F0 = ∇y0 + y′0 ⊗ k, (24)
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Figure 2. Reference geometry for the physical configuration.

where y′0 is the director field.
Having established the kinematics, in the next sections we use the ap-

proach of Steigmann (2007) for generating the two-dimensional membrane
approximations to the governing equations (21). We first cast the local
equations in weak form as an integration over the body, then apply the thin
body approximation to the integrals by computing the leading order Taylor
series expansion of the through thickness integration for small h. The result-
ing model gives a two-dimensional system of differential–algebraic equations
which are more easily solved than the fully three-dimensional system.

We consider the reductions for the electrostatic case first, followed by
those for the linear momentum balance.

3.2 Membrane Reduction of Maxwell’s Equations

The weak form for Maxwell’s equation is obtained by multiplying (21) by
the variation V̇ in the electrostatic potential. We then have by the product
rule

0 = Div D · V̇ = Div (DV̇ ) − D · Grad V̇ . (25)
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Integration of equation (25) over the body gives the weak form∫
Ω

D · Grad V̇ dV =
∫

∂Ω

DN · V̇ dA. (26)

We first consider the right-hand side of equation (26). The integration
over the surface, ∂Ω can be decomposed into top and bottom surface in-
tegrations over Γ+ and Γ− along with the product of the boundary of the
midsurface plane with the through thickness coordinate, ∂Γ×{−h/2, h/2},
i.e. ∫

∂Ω

(·) dA =
∫

Γ+
(·)+ dA +

∫
Γ−

(·)− dA +
∫

∂Γ×{−h/2,h/2}

(·) dA; (27)

see Figure 3.

Figure 3. The three-dimensional material body Ω, with boundary ∂Ω and
outward pointing normal N is divided into a two-dimensional area Γ with
boundary ∂Γ and outward pointing normal ν. The top and bottom surfaces
are denoted Γ+ and Γ−, respectively.

Using this, the surface integral term in equation (26) can be rewritten
as ∫

∂Ω

D · NV̇ dA =
∫

∂Γ

(∫ h/2

−h/2

1D · νV̇ dζ

)
ds

+
∫

Γ+
D+

· N+V̇ + dA +
∫

Γ−
D− · N−V̇ − dA, (28)

where 1 = I − k ⊗ k is the projection operator, I is the identity, and ν is
the outward pointing normal from the midsurface, lying in the plane of Γ.
In obtaining equation (28) we have used the decomposition

D = ID = 1D + (k · D)k = 1D + Dkk, (29)

with Dk = D ·k, and it is noted that N |ζ=0 = k. We have also used ν ·k = 0.
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The key point in generating the membrane theory is that since h is small,
a Taylor series expansion about h = 0 is applicable to the ζ integration. For
arbitrary integrand g(s), using the Leibniz rule gives∫ h/2

−h/2

g(ζ) dζ = h
∂

∂h

(∫ h/2

−h/2

g(ζ) dζ

)
h=0

+ o(h) = hg(0) + o(h). (30)

Use of this expansion in the first term on the right-hand side of equation
(28) gives∫

∂Ω

D · NV̇ dA = h

∫
∂Γ

1D0 · νV̇0 ds

+
∫

Γ+
D+

· N+V̇ + dA +
∫

Γ−
D− · N−V̇ − dA. (31)

To progress further, lateral boundary information must be imposed to sim-
plify the terms involving (D, N)±.

For our implementation of the membrane theory, we consider placing
flexible electrodes on the top and bottom lateral surfaces of the membrane.
This is a configuration of practical importance (Pelrine, 1998; Shahinpoor,
1998; Mockensturm and Goulbourne, 2004; Carpi, 2005, 2007) We can con-
sider this electrode system as painting a free surface charge of density σ
on the material in the physical configuration; see Figure 4. This electrode
arrangement also simplifies the electrostatic problem, to the degree of ap-
proximation we are willing to accept. If the membrane were infinite in extent
and non-deforming, the imposition of equal and opposite electric charge on
either side of the membrane would result in the field configuration illus-
trated in Figure 5. In that situation, the field is zero outside the electrodes.
We will use this approximation even when the membrane is highly deformed
in order to avoid complicating the problem solution. This is tantamount to
assuming the flexible electrodes to be perfect conductors.

The boundary condition (8)1 with do = ε0e
o = 0, where (·)o denotes a

quantity evaluated outside the membrane, then gives at the top surface Γ+,∫
Γ+

D+
· N+V̇ + dA =

∫
Γ+

J+(F−1)+d+
· N+V̇ + dA

=
∫

Γ+
−σ+α+V̇ + da, (32)

where we have used the jump condition [[d]] ·n = −di
·n = −d+

·n+ = σ and
the kinematic condition JF−T N = αn, where α ≡ da/ dA is the area ratio
between material and physical coordinates. By equating the total charge in
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Figure 4. Electrostatic boundary conditions. Surface charge densities Σ±

are painted on the top and bottom of the membrane. The projection of
electric displacement D onto the midsurface and normal direction is also
shown.

Figure 5. Illustration of infinite parallel plane electrodes with equal and
opposite charge densities ±σ. The solution to Maxwell’s equations shows
that the field is zero except within the membrane.

both material and physical coordinates, we have∫
∂Ω

σ da =
∫

∂Ω

σα dA ≡

∫
∂Ω

Σ dA,

so that Σ ≡ ασ is the surface charge density in material coordinates.
After similarly handling the bottom surface integral at Γ− we obtain the

intermediate result∫
∂Ω

D · NV̇ dA = h

∫
∂Γ

1D0 · νV̇0 ds −

∫
Γ+

Σ+ ˙V + dA −

∫
Γ−

Σ− ˙V − dA,

where

V̇ ± = V̇0 ±
h

2
V̇ ′o + o(h).
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After applying the expansion for V̇ ± we get∫
∂Ω

D · NV̇ dA = h

∫
∂Γ

1D0 · νV̇0 ds −

∫
Γ

(
Σ+ + Σ−

)
V̇0 dA

−
h

2

∫
Γ

(
Σ+ + Σ−

)
V̇ ′0 dA + o(h). (33)

We now consider imposing equal and opposite charged electrodes, Σ− =
−Σ+, Σ+

≡ Σ. Then∫
∂Ω

D · NV̇ dA = h

(∫
∂Γ

1D0 · νV̇0 ds −

∫
Γ

ΣV̇ ′0 dA

)
+ o(h). (34)

Now consider the left-hand side of equation (26). By decomposing onto the
midsurface plane and the midsurface normal direction k we can write, for
the gradient of the variation in the electrostatic potential

Grad V̇ = I(Grad V̇ ) = 1(Grad V̇ ) + (k · Grad V̇ )k = ∇V̇ + V̇ ′k, (35)

where ∇ is the two-dimensional gradient operator on the reference plane.
For the displacement, we again use the decomposition (29). Thus we obtain
the result

D · Grad V̇ = 1D · ∇V̇ + DkV̇ ′, (36)

where have used the result (1a) · k = 0 for any vector a. Using (36) we
rewrite the left-hand side of equation (26), after using another h-integral
expansion and the Leibniz rule as∫

Ω

D · Grad V̇ dV =
∫

Γ

(∫ h/2

−h/2

1D · ∇V̇ + DkV̇ ′ dζ

)
dA

= h

∫
Γ

(
1D0 · ∇V̇0 + Dk|0V̇

′
0

)
dA + o(h). (37)

Substitution of equations (34), (37) into equation (26), dividing by h and
letting h go to zero gives∫

Γ

1D0 · ∇V̇0 + (Dk|0 + Σ)V̇ ′0 dA =
∫

∂Γ

(1D0 · ν)V̇0 ds. (38)

Use of the divergence theorem expands the boundary integral term over ∂Γ
on the right-hand side of equation (38) as∫

∂Γ

(
1D0 · νV̇0

)
ds =

∫
Γ

∇ · (1D0V̇0) dA

=
∫

Γ

(∇ · (1D0)V̇0 + 1D0 · ∇V̇0) dA. (39)
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Use of equation (39) in equation (38) then gives∫
Γ

(Dk|0 + Σ) V̇ ′0 dA =
∫

Γ

∇ ·

(
1D0V̇0

)
dA. (40)

Since V̇0 and V̇ ′0 are independent, considering V̇0 = 0, V̇ ′0 �= 0, and V̇0 �=
0, V̇ ′0 = 0 in succession gives the local equations

∇ · (1D0) = 0, Dk = −Σ. (41)

These are the membrane approximations for electrostatics, specific to the
lateral boundary condition considered.

Next, we consider the membrane approximation procedure applied to
the linear momentum balance equations.

3.3 Membrane Reduction of Linear Momentum Balance

As before, we first cast the local equation (21)1 into the form

0 = Div P̂ · ẏ = Div (P̂ T ẏ) − P̂ · Grad ẏ. (42)

Integration of equation (42) with the divergence theorem gives the weak
form ∫

Ω

P̂ · Ḟ dV =
∫

∂Ω

P̂N · ẏ dA, (43)

where Ḟ ≡ Grad ẏ and N is the normal vector in the material coordinate
system. Decompositions into the midsurface plane and normal direction are
facilitated by use of the projection 1 ≡ I − k ⊗ k. We can decompose the
Piola stress tensor as

P̂ = P̂ I = P̂1 + P̂ k ⊗ k, (44)

and the variation in the deformation gradient (24) decomposes as

Ḟ = Ḟ0 = Ḟ0I = Ḟ01 + Ḟ0k ⊗ k ≈ ∇ẏ0 + ẏ′0 ⊗ k, (45)

where we have used the membrane approximation for F given in equation
(24). Then

P̂ · Ḟ = P̂1 · ∇ẏ0 + P̂ k · ẏ′0, (46)

and, using the Leibniz rule as before,∫
Ω

P̂ · Ḟ dV = h

∫
Γ

(P̂01 · ∇ẏ0 + P̂0k · ẏ′0) dA + o(h). (47)
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We now have∫
∂Ω

P̂N · ẏ dA = h

∫
∂Γ

P̂0ν · ẏ0 ds

+
∫

Γ+
P̂+N+

· ẏ+ dA +
∫

Γ

P̂−N−
· ẏ− dA + o(h). (48)

As with the electrostatic case, to progress we must consider a specific lateral
boundary loading situation. In our implementation we will consider the
problem of a pressurized membrane, with boundary/jump condition on the
stress given by equation (3), and shown in Figure 6.

Figure 6. Pressure boundary condition. The applied traction ta is given
by t±a = −p±n±.

In terms of the Piola stress this becomes

P̂±N± = α±t±a = −α±p±n±, (49)

where p± is the applied pressure in the physical configuration to the top
and bottom surfaces respectively and n± is the surface normal at the top
and bottom surfaces in the physical configuration. Here we have also used
the fact that the Maxwell stress TM is zero outside the membrane since the
electric field is zero. In obtaining equation (49), we have used the kinematic
result F ∗N = αn along with the identity∫

∂B

Tn da =
∫

∂Ω

PN dA,

where B denotes the material body Ω in the current configuration.
We then use an expansion for the physical position at the top and bottom

surfaces ζ = ±h/2 as

ẏ± = ẏ0 ±
h

2
ẏ′0 + o(h). (50)
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Similar expansions for the surface normal n, and the area ratio α give

n± = ±n|0 ±
h

2
n′0 + o(h), α± = α|0 ±

h

2
α′0 + o(h), (51)

where n|0 is the outward pointing normal at the midsurface plane, in this
convention pointing from ζ = −h/2 to ζ = h/2.

Applying equations (50) and (51) to equation (48) gives∫
∂Ω

P̂N · ẏ dA = h

∫
∂Γ

P̂0ν · ẏ0 ds +
∫

Γ

δp[αn · ẏ0 + O(h)] dA + o(h), (52)

where δp ≡ p−− p+ is the net pressure applied across the membrane. Next
we expand the pressure differential as a function of the membrane thickness,
i.e.

δp = hδp̄ + o(h), (53)

where δp̄ = O(1). Dividing by h and letting h → 0 we obtain the leading
order model:∫

Γ

(P̂01 · ∇ẏ0 + P̂0k · ẏ′0) dA =
∫

∂Γ

(
P̂01
)

ν · ẏ0 ds +
∫

Γ

δp̄αn · ẏ0 dA. (54)

The boundary integral term over ∂Γ can be expanded using Stokes’ theorem
as ∫

∂Γ

(P̂01)ν · ẏ0 ds =
∫

Γ

(∇ · P̂01) · ẏ0 + P̂01 · ∇ẏ0 dA. (55)

Use of equation (55) in equation (54) gives∫
Γ

P̂0k · ẏ′0 dA =
∫

Γ

(
∇ · P̂01 + δp̄αn

)
· ẏ0 dA. (56)

Since the variations ẏ0, ẏ′0 are independent, taking ẏ0 �= 0, ẏ′0 = 0 and ẏ0 =
0, ẏ′0 �= 0 in turn in (56) gives the local form of the membrane equations:

∇ · P̂01 = −δp̄αn, P̂0k = 0. (57)

Note that (57)2 is the familiar plane stress condition from introductory solid
mechanics.

3.4 Summary of Membrane Equations

Altogether, the results for the membrane reduction of the general balance
PDEs becomes

∇ · (P̂01) = −δp̄αn, P̂0k = 0, (58)

∇ · (1D0) = 0, Dk|0 = −Σ. (59)
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An illustration of the lateral boundary conditions we have considered is
depicted in Figure 7. It is important to note that different lateral boundary
conditions would influence the model and change the form of the source
terms Σ and δp̄αn.

Figure 7. The membrane body with pressure loading and applied surface
charge density is illustrated. The equations describing this system are given
in (41), (57).

4 Proposed Constitutive Relation

Constitutive relations are required to obtain a solution to the algebraic-
differential membrane equations, equations (58), (59). We use a constitu-
tive formulation consistent with nonlinear continuum thermodynamics, by
specifying a stored energy function whose derivatives give the appropriate
response function, stress or polarization. In this section we derive an ex-
pression for this stored energy function Φ(C, E) which predicts constitutive
behavior consistent with linear dielectric polarization and the mechanical
response of a Mooney–Rivlin material.

4.1 Dielectric Constitutive Formulation

The constitutive relation used for the linear dielectric material model is
d = εe. The linear dielectric relation can be expressed in terms of polariza-
tion p to obtain

p = d − ε0e = εe − ε0e = (ε − ε0)e. (60)

Recall the thermodynamic constitutive formulation in Section 2.3, which
yields

p = −ρ
∂ψ

∂e
. (61)

In this section we seek to find energy functions ψ that are consistent with
the polarization predicted for linear dielectric behavior given in equation
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(60). To this end, it is convenient to use the expression for polarization in
material coordinates,

Π(C, E) = −ρ0
∂Φ
∂E

(C, E) = JF−1p (62)

= JF−1(ε − ε0)e = (ε − ε0)JC−1E, (63)

where we have used E = FT e. For isotropic materials, we can reformulate
the energy function Φ(C, E) in terms of six invariants, i.e.

Φ(C, E) = U (I1, I2, I3, I4, I5, I6) , (64)

where the invariants Ik, k = 1, ..., 6 are given by

I1 = tr C, I2 = tr C∗, I3 = det C, (65)

I4 = tr (CE ⊗ E), I5 = tr (C2E ⊗ E), I6 = tr (E ⊗ E). (66)

Therefore,

Π = −ρ0
∂Φ
∂E

= −ρ0

6∑
i=1

Ui
∂Ii

∂E
, (67)

where Ui ≡ ∂U/∂Ii are the partial derivatives of the energy with respect
to the invariants. Using equation (67) and computing the appropriate E-
derivatives of the Ik gives the constitutive equation for polarization

Π = −2ρ0(U4C + U5C
2 + U6I)E. (68)

Equating (68) to the result calculated from the linear dielectric relation (63)
along with use of the Cayley–Hamilton theorem in the form

C−1 =
1
I3

(
C2

− I1C + I2I
)

shows that we must have

−2ρ0

(
(U4 + I1U5)C2 + (U6 − U5I2)C + U5I3I

)
E = (ε − ε0)JE. (69)

Matching coefficients of I, C, C2 for incompressible materials, for which
J = I3 = 1, gives

U4 = −I1U5, U5 = −
1
2

ε − ε0
ρ0

, U6 = U5I2. (70)

Additional conditions are obtained from the required commutativity Uij =
Uji, where Uij ≡ ∂2U/∂Ii∂Ij . Using equation (70) gives

U26 = U62 = U5, U14 = U41 = −U5, (71)
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so that U5 = −(ε− ε0)/(2ρ0) ≡ c, and assigning linear dependence on I1, I2

gives U1 ≡ c1, U2 ≡ c2, where c, c1, c2 are constants. We thus obtain the
simplest strain energy function consistent with linear dielectric behavior as

U = cI5 − I1I4c + I2I6c + c1I1 + c2I2 + K, (72)

where K is an arbitrary constant. Setting U = 0 at C = I, E = 0 fixes the
constant K, giving

U = c(I5 − I1I4 + I2I6) + c1(I1 − 3) + c2(I2 − 3). (73)

This is similar to the Mooney–Rivlin material model for incompressible
materials,

U(I1, I2) = c1(I1 − 3) + c2(I2 − 3),

with additional terms owing to the electromagnetic field interaction. It is
common to express the parameters c1, c2 in terms of the shear modulus as
(Liu, 2002) c1 = Gδ/2, c2 = G(1 − δ)/2, where G is the shear modulus
and δ ∈ (0, 1) is a dimensionless material parameter, typically with values
around 0.9 (Liu, 2002).

The Piola–Kirchhoff stress is given by directly implementing equation
(19), which, with equation (73), gives

P = − pF ∗ + 2ρ0F [(U1 + U2I1) I − U2C

+U4E ⊗ E + U5 (E ⊗ CE + CE ⊗ E)] , (74)

where we have added the constraint pressure p to account for incompress-
ibility of the material. After using U1 = c1, U2 = c2, and equations (70),
for Ui, i = 4, 5, 6, we get

P = Pm + Pe,

where Pm is the contribution to the Piola stress unrelated to electromagnetic
interaction and Pe is due to the electric field, given by

Pm ≡ −pF ∗ + 2ρ0F [(c1 + c2I1) I − c2C] , (75)

Pe ≡ 2ρ0cF [(I1I6 − I4) I − I6C − I1E ⊗ E + CE ⊗ E + E ⊗ CE] . (76)

4.2 Comment on the Maxwell Stress Tensor

We previously noted that in many publications on dielectrics in elec-
tric fields, the additional stress due to the electric field is formed like the
Maxwell stress, replacing the permittivity of free space ε0 with the material
permittivity ε. In our formulation, the additional stress Pe due to the elec-
tric field does not appear to be related to the Maxwell stress TM in such a
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relationship. Following that approach, we would have obtained for the field
related stresses

Pe = ε

(
e ⊗ e −

1
2
|e|2I

)
F ∗ = εF

(
C−1E ⊗ C−1E −

1
2

√

E · C−1EC−1

)
,

(77)
which bears little resemblance to equation (76). The difference is that we
allow the traction response to depend on the electric field, i.e. t(F, e;n),
where previous works use the traction as t(F ;n) and associate all electric
field effects in the balance of linear momentum equation to the Maxwell
stress tensor TM . Deciding whether or not to include the electric field terms
at the constitutive level or to regard them as only arising from the Lorentz
force is a decision to be made depending on the nature of the system. The
hope is that the viewpoint presented in this work and by Kovetz (2000)
will be adopted by the community, as we feel that this approach to de-
scribing electromechanical coupling is better supported by thermodynamics
principles and balance equations.

5 Example Problem

In this section an example problem is posed, and solution given, using the
membrane model equations and constitutive formulation derived in the pre-
vious sections. We consider an axisymmetric membrane across which a
pressure differential is applied, in addition to an electric field produced
by fixing charged electrodes to the lateral surfaces of the membrane. We
present the solution to this problem by using a semi-inverse approach; we
assume a functional form for the allowable deformation and seek equilibrium
solutions within this restricted set of deformations. The principal unknowns
are the position of the membrane in the physical configuration, denoted y,
and the electric field in the membrane, denoted e.

5.1 Problem Geometry

We consider the geometry depicted in Figure 8. The membrane of thick-
ness h is fixed along the outer radius at R = R0, and idealized, freely
deformable electrodes are painted on the top and bottom surfaces, with
equal and opposite charge densities ±Σ.

Position vectors in the reference configuration will be assigned in a cylin-
drical polar coordinate system as x = RER(Φ) + ζk, where R,Φ, ζ are the
traditional cylindrical polar coordinates. Position coordinates in the physi-
cal configuration will likewise be assigned in a cylindrical polar coordinate
system as u, φ, z, with material point position given in convected coordinate
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Figure 8. Axisymmetric geometry for the electroelastic membrane defor-
mation problem.

convention by

y(R,Φ, ζ) = u(R, Φ, ζ)er(φ(R,Φ, ζ)) + z(R,Φ, ζ)k.

5.2 Kinematics

Due to the geometric axisymmetry in the present problem (Figure 8)
and the nature of the lateral boundary loading and electrode configuration,
we consider solutions of the deformed membrane that remain axisymmetric.
Therefore, the general functional form for the position vector in the physical
configuration is reduced to

y(R, ζ) = u(R, ζ)er(φ) + z(R, ζ)k, (78)

where er is the radial basis vector for cylindrical polar coordinates and
φ = Φ. This can be expanded about ζ = 0 to give

y(R, ζ) ≈
(

u0(R) + ζ
∂u

∂ζ

)
er(φ) +

(
z0(R) + ζ

∂z

∂ζ

)
k = y0 + ζy′0, (79)

where
y′0 =

∂u

∂ζ
er +

∂z

∂ζ
k.

For completeness, the deformation gradient F can be constructed by explic-
itly differentiating y, giving

dy ≈

(
∂u0

∂R
dR + [y′0]r dζ

)
er(φ) + u0eφdΦ +

(
∂z0

∂R
dR + [y′0]k ζ

)
k, (80)

where [y′0]r ≡ y′0 · er and [y′0]k ≡ y′0 · k.
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Using the kinematic relation dy = Fdx along with the differentials in
the material coordinates

dR = dx · ER, dζ = dx · k, dΦ =
1
R

dx · EΦ (81)

in equation (80) gives the midsurface deformation gradient F0 as

F0 = (
∂u0

∂R
er +

∂z0

∂R
k) ⊗ ER +

u0

R
eφ ⊗ EΦ + ([y′0]r er + [y′0]k k) ⊗ k

= ∇y0 + y′0 ⊗ k, (82)

where

∇y0 ≡

(
∂u0

∂R
er +

∂z0

∂R
k

)
⊗ ER +

u0

R
eφ ⊗ EΦ (83)

is the two-dimensional gradient operator on the midsurface plane of the
membrane.

It will be convenient to introduce a different representation for ∇y0 by
defining orthonormal vectors v1,2 and stretch ratios λ1,2 in terms of u0, z0

as

v1 ≡

∂u0

∂R
er +

∂z0

∂R
k∣∣∣∣∂u0

∂R
er +

∂z0

∂R
k

∣∣∣∣ , v2 ≡ eφ, λ1 ≡

√(
∂u0

∂R

)2

+
(

∂z0

∂R

)2

, λ2 ≡
u0

R
,

(84)

and to assign u1 ≡ ER, u2 ≡ EΦ as the basis vectors in the cylindrical polar
system. Then we can rewrite equation (82) as

F0 = λ1v1 ⊗ u1 + λ2v2 ⊗ u2 + y′0 ⊗ k. (85)

This will be a useful reformulation when it comes to solving the actual
system of equations (21).

Note that F0u1 = λ1v1 and F0u2 = λ2v2, so that v1, v2 are in the
tangent plane to the midsurface of the membrane. The introduction of
a final coordinate to describe the tangent plane of the midsurface of the
membrane will be useful later (shown in Figure 9).

Define θ such that v1 = er cos θ − k sin θ, so that from equation (84) we
obtain

cos θ =
1
λ1

∂u0

∂R
, sin θ = −

1
λ1

∂z0

∂R
. (86)

In addition we now have the relation

∂λ2

∂R
=

1
R

∂u0

∂R
−

u0

R2
=

1
R

(λ1 cos θ − λ2) .
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Figure 9. Coordinate system used to describe the kinematics of the mem-
brane. The tangent plane is spanned by v1, v2. The new coordinate is the
angle θ that the tangent plane makes with er, the radial unit vector in the
cylindrical polar system.

The boundary conditions for position are that the membrane is fixed at the
outer radius, i.e.

y0|R=R0 = R0er,

and that the membrane is symmetric about the center at R = 0, so that(
∂z0

∂R

)
R=0

= 0.

In terms of the coordinate θ, the symmetry condition can be expressed as
θ|R=0 = 0. The electrostatic boundary condition on the electric displace-
ment field occurs at the outer radial edge of the membrane, where we have
1D0 · ν0 = 0. By symmetry, we have that the electric field is acting along
the k direction at R = 0, i.e. e(0) · er = 0.

The unknowns are the four position coordinates u0, z0, y
′
0, the two com-

ponents of the electric field e, and p, the constraint pressure.

5.3 Non-dimensionalization

We non-dimensionalize the governing equations (58), (59) using as length
scale the fixed outer radius R0 of the membrane and using the shear mod-
ulus G as a mechanical scaling, so that ∇̃ ≡ R0∇ is the non-dimensional
divergence operator, P̃ ≡ P̂ /G is the non-dimensional Piola stress tensor
and R̃ = R0/R is the non-dimensional radial position. Introducing ∇̃, P̃ to
(58), and using (53) gives

∇̃ · (P̃01) = −Παn, P̃0k = 0, (87)

where

Π ≡

(
R0

h

)(
δp

G

)



176 J. Edmiston and D.J. Steigmann

is the dimensionless lateral boundary loading parameter.
Resolving the non-dimensional versions of equations (58), (59) onto a

different basis will lead to some simplifications. We use the orthonormal
basis v1, v2, v3 introduced in Section 5.2, where v1 = er cos θ−k sin θ, v2 = eφ

are in the midsurface tangent plane in the physical configuration (see Figure
9), and we define v3 to be v3 ≡ v1 × v2 = n. Projecting onto this basis,
equations (58)1, (59)1 become

∇̃ · P̃01 · v1 =
∂P̃1

∂R̃
+

P̃1 − P̃2

R̃
cos θ = 0, (88)

∇̃ · P̃01 · v3 = −

(
P̃1

∂θ

∂R̃
+

P̃2

R̃
sin θ

)
= −Πα, (89)

∇̃ · 1D0 =
∂Dr

∂R̃
+

Dr

R̃
= 0, (90)

where
P̃1 ≡ P̃ · v1 ⊗ u1, P̃2 ≡ P̃ · v2 ⊗ u2, Dr ≡ D · u1.

5.4 Solution and Numerical Formulation

The algebraic conditions

P̃0k = 0, D0k = −Σ, det F = 1 (91)

were solved symbolically for p, y′0 · v1, y
′
0 · v3 and E · k using Mathematica,

giving

y′0 · v1 =
Σ[e]1

2c1 + 2c2λ2
2

, y′0 · v3 =
1

λ1λ2
, (92)

Ek =
Σ

(2ρ0c − ε0)λ2
1λ

2
2

+
Σ[e]21

2c1 + 2c2λ2
2

, (93)

where [e]1 ≡ e · v1 is the electric field in the current configuration projected
onto the membrane tangent plane and Ek ≡ FT e · k is the through thick-
ness component of the electric field in material coordinates. The symbolic
expression for p is too lengthy to print here.

The differential equations were also simplified, giving the three ODEs
∂λ1

∂R̃
= f1(c1, c2, c, λ1, λ2, p, y′0, e), (94)

∂θ

∂R̃
= f2(c1, c2, c, λ1, λ2, p, y′0, e), (95)

∂[e]1
∂R̃

= f3(c1, c2, c, λ1, λ2, p, y′0, e), (96)



Analysis of Nonlinear Electrostatic Membranes 177

in which the right hand sides are too unwieldy to be recorded here.
The boundary conditions used for the dimensionless problem are

θ(0) = 0, ũ0(1) = 1, [e]1(0) = 0, (97)

with λ1(0) = λ2(0) to be determined.
In our study we used as representative material constants G = 106 MPa,

δ = 0.9, ε = 10 ε0 and ρ0 = 1000kgm−3.

5.5 Results

The shooting method is used for the solution of the coupled ODEs (94)–
(96). The initial conditions for the stretch ratios λ1, λ2 at the center of
the membrane R̃ = 0 are found by using Newton–Raphson iterations and
forward Euler integration from R̃ = 0 to R̃ = 1 until the boundary condition
ũ0(1) = 1 at the fixed outer radius is met.

Equilibrium solutions for the deformed midsurface, ũ0, z̃0, are plotted in
Figures 10 and 11. In Figure 10 the load parameter Π is increased from 1000
to 4000 in linearly spaced increments at a constant electric field of 105 Vm−1.
In Figure 11 the equilibrium midsurface is plotted for values of electric field
Ek from 105 to 107 Vm−1 in linear increments and at a fixed pressure of Π =
3.3×103. Note that in Figure 11 a volume is displaced by the membrane as
the electric field is ramped up or down. It has been proposed (Mockensturm
and Goulbourne, 2004) that the cycling of the imposed electric field be used
as means of actuating a dielectric pump.

The results from these two tests are compiled into the surface plot in
Figure 12, which shows the interdependence between the loading and the
electric field intensity along with the volume encompassed by the membrane.

In all tests the electric field along the membrane e · v1 was found to be
zero, so that the final algebraic relations for the director and electric field
become

y′0 · v1 = 0, y′0 · v3 =
1

λ1λ2
, Ek = −

Σ
ελ2

1λ
2
2

.

These results give that the electric field is acting normal to the membrane,
and the director y′0 is normal to the midsurface, as expected.

6 Conclusion

In this work we have attempted to give an accessible treatment of continuum
electrostatics for material geometries which are amenable to reduced dimen-
sion analysis. This geometry is typically employed for problems of practical
importance, and the membrane equations have immediate applications. We
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Figure 10. Equilibrium configurations for the membrane midsurface with
Ek = 105 Vm−1 and increasing loading parameter Π from 1000 to 4000 in
linear increments.

Figure 11. Equilibrium configurations for the membrane midsurface with
Π = 3300 and increasing electric field intensity from Ek = 105 to 107 Vm−1

in linearly spaced increments.
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Figure 12. Equilibrium volumes of the inflated membrane, dependence
upon both loading factor Π and electric field Ek is shown (plot produced
using MATLAB).

highlighted the discussion on the distinction between the Maxwell stress
tensor and electric field related terms in the constitutive response of the
material, in efforts to unify several conventions present in the field. We
also gave a constitutive formulation of the elastic energy for a Mooney–
Rivlin material model, extended to incorporate electromagnetic behavior.
The proposed model for the stored energy function was derived by match-
ing linear dielectric polarization behavior with appropriate derivatives of
the stored energy. The membrane model and constitutive formulation were
implemented for an axisymmetric geometry and found to exhibit expected
behavior.
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Abstract. The intention of this contribution is to provide the
basic ingredients needed for the formulation and computation of
nonlinear problems in electro-elasticity. Thus, firstly the under-
lying variational setting of nonlinear electro-elasticity is outlined.
Then, secondly the appropriate discretization in terms of the fi-
nite element method combined with the boundary element method
together with the corresponding solution method are discussed in
much detail. Finally the solution of some nonlinear boundary value
problems demonstrates the applicability of the derived methods and
highlights the characteristic features of coupled problems in nonlin-
ear electro-elasticity.

1 Introduction

In the last few years there has been an ever growing interest for smart ma-
terials that exhibit geometrically nonlinear deformations and that change
their mechanical behavior in response to the application of electric (or mag-
netic) fields, see, e.g., the overview in Bar-Cohen (2002) and modelling ap-
proaches in the works by Brigdanov and Dorfmann (2003), Dorfmann and
Brigdanov (2004) and Dorfmann and Ogden (2003, 2004a,b, 2005a,b). Elec-
tronic electro-active polymers (EEAP) are considered to belong to this type
of materials1. For decades, EEAP have been known to have the capability

1EEAP belong to one of the two subclasses of so-called electro-active polymers (EAP)

with the other subclass being called ionic electro-active polymers (IEAP). While EEAP

are driven by electrostatic forces, IEAP are driven by the diffusion of ions inside the

material. The major advantage of IEAP is the requirement for low drive voltages.

However, they have slow response and there is the need to maintain their wetness.

Besides, it is difficult to sustain current induced displacements, see the overview in

Bar-Cohen (2002).

R. W. Ogden et al. (eds.), Mechanics and Electrodynamics of Magneto- and Electro-elastic

 Materials,   © CISM, Udine 2011
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of changing shape and size in response to electric stimulation. However,
applications of EEAP caught attention only recently with the discovery of
new materials capable of inducing very large deformation. As an alternative
to materials that are commonly used for actuators in adaptive structures
like piezoelectric ceramics, piezoelectric composites, shape memory met-
als and alloys, magneto- and electro-rheological fluids, the emerging EEAP
offer the possibility to develop lightweight, inexpensive, resilient, damage
tolerant, noiseless and agile robotic systems. Although EEAP require high
voltages, the advantages such as rapid response, the ability to induce rela-
tively large actuation forces, the ability to operate in room conditions for
a long period of time and, most importantly, the ability to hold the in-
duced displacement under activation of a voltage make them ideally suited
candidates for various types of actuators2.

Potential applications of EEAP include artificial muscles, robotic sys-
tems such as mobile mini- and micro-robots, micro-pumps, micro-valves,
micro-air vehicles, disk drives, prosthetic devices and flat panel loudspeak-
ers, see the non-exhaustive list of examples contained in the works by Heydt
et al. (1998), Eckerle et al. (2001), Kim et al. (2001), Kofod (2001), Kofod et
al. (2001), Pelrine et al. (2002), Sommer-Larsen et al. (2002), Wingert et al.
(2002), Carpi et al. (2003), Goulbourne et al. (2003), Pei et al. (2003), La-
cour et al. (2004), Trujillo et al. (2004), Kofod and Sommer-Larsen (2005),
Zhang et al. (2005), Loverich et al. (2006), Wingert et al. (2006), Zhang et
al. (2006).

When hysteresis can be neglected, the behavior of EEAP can be modelled
by the continuum (field) theory of nonlinear electro-elasticity. In general,
the behavior of electric (and magnetic) fields, as well as their interactions
with matter are governed by Maxwell’s equations, see, e.g., the monographs
by Maugin (1988), Eringen and Maugin (1990), Griffith (1998), Jackson
(1999) and Kovetz (2000). Confining to the quasi-static case of nonlinear
electro-elasticity, the electric field acting on matter is governed by Gauss’
law for electricity, a relationship describing the link between the electric

2 Thereby, the most widespread idea to develop polymer based actuators is to exploit

the deformation of EEAP films under electrostatic activation. Actuators of this type

may be formed by placing an EEAP thin film between two compliant electrodes. Under

activation by a sufficiently high electric voltage applied to the electrodes, the elastic film

compresses in thickness and expands in area due to the electrostatic forces between the

electrodes. Using the same principle, rolled actuators are made by rolling a biaxially

pre-strained double-side coated polymer film around a compressed metal coil spring.

As soon as the polymer film is activated, the spring elongates longitudinally due to the

deformation of the polymer film. When the film is deactivated the spring contracts

back to the normal state.
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field (weighted by the vacuum permittivity) together with the polarization
or collectively the dielectric displacement and the free charge density. Be-
cause of the electric polarization, the electric field exerts a (ponderomotive)
body force on matter that can be considered as a function of the electric
field and the polarization. With this ponderomotive body force included,
the balance equation of linear momentum is the same as that of ordinary
nonlinear elasticity except the fact that the ordinary Cauchy stress tensor
is not anymore symmetric. Besides the non-symmetric property of the ordi-
nary Cauchy stress, it is noted that difficulties also appear in dealing with
the jump conditions for the ordinary Cauchy stress at the boundary of the
considered body or across a surface of discontinuity within the body. This
is due to the fact that on the one hand the jump of the ordinary Cauchy
stress across a surface must balance both mechanical tractions and electri-
cally induced Maxwell tractions. On the other hand, any traction measured
by mechanical means is related to the contribution of both mechanical and
electrical effects, since no available experiment can separate the effects of
the ordinary Cauchy and Maxwell stresses unambiguously, see also the dis-
cussion by McMeeking and Landis (2005). This leads to the definition of
the so-called total stress tensor, which is the combination of the ordinary
Cauchy stress and the Maxwell stress. By assuming the existence of a total
energy density that depends on the deformation gradient and on the electric
field (see, e.g., Brigdanov and Dorfmann, 2003; Dorfmann and Brigdanov,
2004; Dorfmann and Ogden, 2003, 2004a,b, 2005a,b) a variational formula-
tion of the problem can eventually be formulated.

Based on the variational setting this contribution aims in the represen-
tation of a discretization method suited for problems in nonlinear electro-
elasticity as developed in Vu et al. (2007) and Vu and Steinmann (2010).

2 Variational Setting of Nonlinear Electro-Elasticity

The starting point for the variational setting of geometrically nonlinear,
quasi-static electro-elasticity is the definition of an appropriate energy func-
tional I = I(ϕ,ϕ) in terms of the unknown electric potential ϕ = ϕ(X ) and
the deformation map ϕ = ϕ(X ) that are parameterized in terms of the
material coordinates X 3

I =
∫
S0

E0(F , ) dV +
∫
B0

U0(ϕ,F , ϕ, ) dV +
∫

∂B0

u0(ϕ, ϕ) dA. (1)

3Even if there is no matter outside the body and thus there exists no physical deforma-

tion map ϕ in free space that justifies a material setting, we may imagine a fictitious

deformation map ϕ that extends ϕ = ϕ(X ) from the body into its exterior.
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Here we4 consider a material body consisting of matter occupying its
material configuration B0 surrounded by free space that occupies the mate-
rial configuration S0, see Figure 1. It goes without saying that due to the
deformation of the body the matter and the free space will occupy spatial
configurations Bt and St, however with B0 ∪ S0 = Bt ∪ St. The boundary
of the body ∂B0 in the material configuration defines the interface between
free space and matter. For the sake of simplicity of exposition we shall
ignore any energy contributions from the boundary of the free space ∂S∞
at infinity in this contribution.

∂B0

S0

∂S∞

m

m

B0

n

Figure 1. Material body consisting of matter occupying its material config-
uration B0 surrounded by free space that occupies the material configuration
S0. The boundary of the body ∂B0 in the material configuration defines the
interface between free space and matter.

The free space electric energy density E0 per referential unit volume or
rather, in order to explain the sign, the free space electric Lagrange density
is defined as

E0 = −1
2

· ε. (2)

Here denotes the referential electric field in terms of the material gradient
of the electric potential ϕ, i.e. = −∇Xϕ, and ε is the referential
free space dielectric displacement, i.e. ε = ε0JB · , with ε0 = 8.854 ·
10−12 C2/[Nm2] the vacuum permittivity, the jacobian J = detF and the
inverse Cauchy-Green strain B = [F t · F ]−1. Furthermore F denotes the
deformation gradient, i.e. the material gradient of the nonlinear deformation

4That is the reader and the author.
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map F = ∇Xϕ. The referential quantities follow by appropriate pull-back
operations (i.e. either by chain rule or the Piola transformation) from their
spatial counterparts = −∇xϕ and ε = ε0 . Thus the free space electric
Lagrange density Et per spatial unit volume may alternatively be expressed
as a quadratic form in

Et = −1
2

· ε = −1
2
ε0 · . (3)

The energy density U0 related to the matter, per referential unit volume,
consists of internal W0 and external V0 contributions

U0(ϕ,F , ϕ, ) = W0(F , ) + V0(ϕ, ϕ). (4)

The internal contribution W0 to the energy density in turn consists of the
electric energy density E0 and an energy density ψ0 associated with matter
that is sometimes denoted as electric free (Gibbs) enthalpy density5. For
isothermal conditions at a reference temperature θ = θref the internal con-
tribution W0 to the energy density, sometimes denoted as the total energy
density, reads as follows

W0(F , ) = E0(F , ) + ψ0(F , θ, )|θ=θref . (5)

Finally, besides an energy density in the bulk, we allow for an energy
density u0, per referential surface area, at the boundary of the considered
body

u0 = u0(ϕ, ϕ). (6)

The external contribution V0 to the energy density in the bulk and the
energy density at the boundary do exclusively depend on the unknown so-
lution fields, i.e. the deformation map ϕ and the electric potential ϕ. Based
on the above energy densities the total Piola stress P tot and the referential
dielectric displacement are defined as

P tot =
∂U0

∂F
and = −∂U0

∂
. (7)

The referential dielectric displacement in matter is expressed as the sum
of two terms = + ε, i.e. the referential polarization and the
referential free space dielectric displacement ε with

= −∂ψ0

∂
and ε = −∂E0

∂
. (8)

5The electric free enthalpy density ψ0 results from a double Legendre transformation

ψ0(F , θ, ) = ε0(F , σ0, )− θσ0 − · of the internal energy density ε0(F , σ0, )

that exchanges (i) the entropy density σ0 for the absolute temperature θ and (ii) the

referential polarization for the referential electric field .
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Observe that no polarization exists in free space, whereas ε is de-
fined everywhere. Likewise, the total Piola stress in matter follows as the
sum of three terms P tot = [P +Ppol]+Pmax, i.e. the ordinary6 Piola stress
P and the polarization stress Ppol together with the Maxwell stress Pmax,
i.e.

P + Ppol =
∂ψ0

∂F
and Pmax =

∂E0

∂F
. (9)

Observe that the Maxwell stress Pmax also exists in free space with the
same format whereas the ordinary Piola stress P and the polarization stress
Ppol do vanish outside matter. It is sometimes convenient to consider the
re-parametrization φ0 of the electric free enthalpy density ψ0 in terms of
the spatial electric field

φ0 = φ0(F , ) with ψ0(F , ) = φ0(F , · F−1). (10)

Based on φ0 the various quantities introduced so far take the following
enlightening representations

P =
∂φ0

∂F
, Ppol =

∂φ0

∂
· ∂
∂F

= ⊗ , = −∂φ0

∂
· ∂

∂
= ·cofF . (11)

Here we implicitly defined the spatial polarization = −∂φt/∂ with φt =
J−1φ0 the re-parameterized electric free enthalpy density per unit volume
of the spatial configuration of the body. Since the electric energy density
E0 is given without ambiguity, the Maxwell stress Pmax takes the following
explicit format

Pmax = E0F
−t + ⊗ ε. (12)

The corresponding Piola transformation defines the well-known spatial
description (Cauchy-type) version of the Maxwell stress

σmax = Eti + ⊗ ε. (13)

Here, i denotes the second-order spatial unit tensor with coefficients δij .
The partial derivatives of the energy density U0 with respect to the unknown
solution fields, i.e. the deformation map ϕ and the electric potential ϕ
render finally the following quantities

b0 = −∂U0

∂ϕ
, t0 = −∂u0

∂ϕ
, 	f

0 =
∂U0

∂ϕ
, 	̂f

0 =
∂u0

∂ϕ
. (14)

6The ordinary Piola stress P is in equilibrium with the mechanical body forces b0

and the ponderomotive (Lorentz) body force bpon
0 = Div(Ppol + Pmax) in B0, i.e.

DivP = −b0 − bpon
0 , and mechanical surface tractions t0 and ponderomotive surface

tractions tpon
0 = [[Ppol + Pmax]] ·N in ∂B0, i.e. P ·N = t0 + tpon

0 .
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Thereby, b0 and t0 denote the mechanical body force per unit volume in
B0 and the mechanical surface traction per unit area in ∂B0, respectively,
whereas 	f

0 and 	̂f
0 represent the density of free charges per unit volume

in B0 and the density of free charges per unit area in ∂B0, respectively.
Observe that b0 and 	f

0 do not exist in free space. With these preliminaries,
the stationary point of the energy functional I = I(ϕ,ϕ) with respect to
variations δϕ in the deformation map renders∫

S0∪B0

∇Xδϕ : P tot dV −
∫
B0

δϕ · b0 dV −
∫

∂B0

δϕ · t0 dA = 0. (15)

Here we set P tot = Pmax in S0 to abbreviate writing. Assuming sufficient
smoothness and taking into account the arbitrariness of δϕ renders as Euler
equation the mechanical equilibrium conditions7

DivP tot .= −b0 in B0 and DivPmax .= 0 in S0. (16)

Likewise the corresponding Neumann boundary condition follows as

[[P tot]] ·N .= −t0 on ∂B0. (17)

Here N is the referential outward pointing normal to the boundary of the
body, i.e. pointing from matter to free space, and the jump of a quantity (•)
at ∂B0 is defined as [[(•)]] = (•)freespace − (•)matter. Likewise the stationary
point of the energy functional I(ϕ, ϕ) with respect to variations δϕ in the
electric potential renders∫

S0∪B0

∇Xδϕ · dV +
∫
B0

δϕ	f
0 dV +

∫
∂B0

δϕ	̂f
0 dA = 0. (18)

Here we set = ε in S0 to abbreviate writing. Assuming sufficient
smoothness and taking into account the arbitrariness of δϕ renders as Euler
equation the electric charge conservation conditions or rather the Gauss law
of electricity

Div .= 	f
0 in B0 and Div ε .= 0 in S0. (19)

Moreover the corresponding Neumann boundary condition follows as

[[ ]] ·N .= 	̂f
0. (20)

7Note that the condition DivPmax .
= 0 in S0 is consistent with the relation Div ε = 0

and ∇X = [∇X ]t or rather Curl = 0 in S0.
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3 Reformulation of Euler Equations

3.1 Weak Form for the Material Body

For the material body only, the stationary conditions for the energy
functional I(ϕ, ϕ) with respect to variations δϕ, i.e. the mechanical Euler
equations may be recast into weak form by testing with δϕ

Ru =
∫

∂B0

δϕ · [t0 + tmax
0 ] dA+

∫
B0

δϕ · b0 dV −
∫
B0

∇Xδϕ : P tot dV. (21)

Here tmax
0 = Pmax ·N is the Maxwell traction exerted by the electric field

in free space onto the material body.
Note that the integrals in the above residual statement extend over the

material configuration, thus all densities refer to unit volume in B0 or unit
area in ∂B0, respectively. By (i) transforming the integration domain ac-
cording to, e.g., dv = J dV and (ii) by exchanging the material gradient
∇X of δϕ by its spatial gradient with ∇Xδϕ = ∇xδϕ · F we may rewrite
the above residual statement as

Ru =
∫

∂Bt

δϕ · [t t + tmax
t ] da +

∫
Bt

δϕ · bt dv −
∫
Bt

∇xδϕ : σtot dv. (22)

Here we set t0 dA = t t da and b0 dV = bt dv and introduced the total
Cauchy stress σtot with σtot dv = P tot · F t dV .

The Maxwell traction tmax
t = σmax · n follows from the Cauchy-type

Maxwell stress σmax = −ε0 · /2i + ε0 ⊗ as defined in free space.
The spatial electric field may be split into normal and tangential contri-

butions = [ · n ]n + [ · t ]t , whereby t denotes the tangent unit vector
to the surface ∂Bt. Recall that is continuous across ∂Bt in tangent direc-
tion, i.e. [[ ]] · t = 0. Next we express in terms of the electric potential

= −∇xϕ = −∇nϕn −∇tϕt with obvious meaning for the operators ∇n

and ∇t. Incorporating the boundary condition qt = − ε ·n = ε0∇nϕ, with
qt an independent flux variable (see below), we obtain ∇nϕ = qt/ε0. Thus
we may eventually express the Maxwell traction exerted by the electric field
on the boundary of the body by

tmax
t =

q2
t

2ε0
n − ε0

2
[∇tϕ]2n + qt∇tϕt . (23)

Along the same lines, for the material body only, the stationary condi-
tions for the energy functional I(ϕ, ϕ) with respect to variations δϕ, i.e. the
electrical Euler equations may be recast into weak form by testing with δϕ

Rϕ = −
∫

∂B0

δϕ[	̂f
0 + q0] dA −

∫
B0

δϕ	f
0 dV −

∫
B0

∇Xδϕ · dV. (24)
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Recall that q0 = − ε · N denotes the independent flux variable, now ex-
pressed per referential unit area. Again this statement may be re-expressed
by (i) transforming the integration domain and (ii) by exchanging the ma-
terial gradient ∇X of δϕ by its spatial gradient with ∇Xδϕ = ∇xδϕ ·F

Rϕ = −
∫

∂Bt

δϕ[	̂f
t + qt] da −

∫
Bt

δϕ	f
t dv −

∫
Bt

∇xδϕ · dv. (25)

Here we used the obvious relations 	̂f
0 dA = 	̂f

t da, 	f
0 dV = 	f

t dv and dv =
· F t dV . Note that qt = − ε · n is an independent flux variable that we

have to solve for and that denotes the contribution from the free space.

3.2 Linearization of the Weak Form and Tangent Moduli

Suppose next that we want to satisfy the residual statements Ru = 0
and Rϕ = 0. To this end we may conceive a Newton-like procedure with
Ru + ΔRu = 0 and Rϕ + ΔRϕ = 0 whereby ΔRu = −Luu − Luϕ and
ΔRϕ = −Lϕu − Lϕϕ define the linearization of the residuals with respect
to the unknown solution fields ϕ, ϕ. Thus, based on the above residual
statements we obtain the following representations for the linearization of
the internal contributions to the weak form

Luu
int =

∫
B0

∇Xδϕ : E : ∇XΔϕ dV, (26)

Luϕ
int =

∫
B0

∇Xδϕ : PT · ∇XΔϕ dV,

Lϕu
int =

∫
B0

∇Xδϕ · P : ∇XΔϕ dV,

Lϕϕ
int = −

∫
B0

∇Xδϕ · D · ∇XΔϕ dV.

Thereby the fourth-order referential elasticity tensor E follows as the deriva-
tive of the total Piola stress P tot with respect to the deformation gradient F
or, taking into account the constitutive law for P tot, as part of the hessian
of the total energy density W0

E =
∂P tot

∂F
=

∂2W0

∂F ⊗ ∂F
. (27)

Likewise the second-order referential dielectricity tensor D follows as the
derivative of the referential dielectric displacement with respect to the
referential electric field or, taking into account the constitutive law for

, as part of the hessian of the total energy density W0

D =
∂

∂
= − ∂2W0

∂ ⊗ ∂
. (28)
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Finally the third-order referential piezoelectricity tensor P follows either
as the derivative of the referential dielectric displacement with respect
to the deformation gradient F or alternatively as the derivative of the total
Piola stress P tot with respect to the referential electric field

P =
∂

∂F
= − ∂2W0

∂ ⊗ ∂F
, PT = −∂P tot

∂
= − ∂2W0

∂F ⊗ ∂
. (29)

Here the the superscript T refers to a transposition of a third-order ten-
sor [P]IjK = PIjK that exchanges the first and the two last indices into
[PT ]jKI = PIjK . All integrals in the linearizations Luu

int, L
uϕ
int , L

ϕu
int , L

ϕϕ
int ex-

tend over the material configuration and involve exclusively the material
gradient operator ∇X . However, by (i) transforming the integration do-
main according to dv = J dV and (ii) by exchanging the material gradient
operator ∇X with the spatial gradient operator ∇x we may rewrite the lin-
earization of the internal contributions to the residual statements as follows

Luu
int =

∫
Bt

∇xδϕ : e : ∇xΔϕ dv, (30)

Luϕ
int =

∫
Bt

∇xδϕ : pT · ∇xΔϕdv,

Lϕu
int =

∫
Bt

∇xδϕ · p : ∇xΔϕ dv,

Lϕϕ
int = −

∫
Bt

∇xδϕ · d · ∇xΔϕ dv.

In this representation the fourth-order spatial elasticity tensor e follows
from a push-forward of the referential elasticity tensor E with the help of
the deformation gradient F as

Je = [i⊗F ] : E : [i⊗F t], Jeijkl = FjJEiJkLFlL. (31)

Recall the i denotes the second-order spatial unit tensor with coefficients
δij ; the special dyadic product ⊗ orders indices so that, e.g., [i⊗F ]ijkL =
δikFjL. Moreover, in our index notation lower case and upper case indices
refer to the spatial and material base vectors, respectively. Furthermore
the second-order spatial dielectricity tensor d follows from a push-forward
of the referential dielectricity tensor D

Jd = F ·D · F t, Jdij = FiIDIJFjJ . (32)

Finally the third-order spatial piezoelectricity tensor p follows from a
push-forward of the referential piezoelectricity tensor P

Jp = F · P : [i⊗F t], Jpijk = FiIPIjKFkK . (33)
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Material and geometric parts of tangent moduli. It is sometimes
convenient to introduce the symmetric total Piola-Kirchhoff stress S tot from

P tot = F · S tot. (34)

Thus the linearization of the total Piola stress may be decomposed into

ΔP tot = F · ΔS tot + ΔF · S tot. (35)

Here the linearization ΔS tot of the total Piola-Kirchhoff stress may be ex-
pressed in terms of the fourth-order referential elasticity tensor C and the
third-order referential piezoelectricity tensor Π

ΔS tot = C :
1
2
ΔC −ΠT : Δ . (36)

It is easy to show from the chain rule that S tot follows from the derivative
of the total energy density W0 with respect to the Cauchy-Green strain
C = F t · F as

S tot = 2
∂W0

∂C
. (37)

Thus the corresponding fourth-order referential elasticity tensor C and the
third-order referential piezoelectricity tensor Π follow in turn as part of the
hessian of the total energy density W0 as

C = 2
∂S tot

∂C
= 4

∂2W0

∂C ⊗ ∂C
Π = 2

∂

∂C
= −2

∂2W0

∂ ⊗ ∂C
. (38)

With these preliminaries at hand we then identify the typical decompo-
sition of the referential elasticity tensor E into material and geometric parts
Emat and Egeo

ΔP tot = [Emat + Egeo] : ΔF − PT · Δ . (39)

Thereby the material part Emat of the referential elasticity tensor is given
in terms of C

Emat = [F⊗I ] : C : [F t⊗I ], Emat
iJkL = FiICIJKLFkK , (40)

whereas its geometric part Egeo has the flavor of a pre-stress and is repre-
sented in terms of S tot

Egeo = i⊗S tot, Egeo
iJkL = δikStot

JL. (41)
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To complete the picture the third-order piezoelectricity tensors P and Π
are finally related as

P = Π : [F t⊗I ], PIjK = ΠIJKFjJ . (42)

In the above I denotes the second-order referential unit tensor with coeffi-
cients δIJ . Quite in analogy to the previous discussion the decomposition
of the elasticity tensor into material and geometric parts may be recast in
a spatial description

e = emat + egeo. (43)

Here the material part emat of the spatial elasticity tensor e follows from a
push-forward of its referential counterpart Emat with the help of the defor-
mation gradient F as

Jemat = [F⊗F ] : C : [F t⊗F t], Jemat
ijkl = FiIFjJCIJKLFkKFlL. (44)

Moreover, the geometric part egeo of the spatial elasticity tensor e is ex-
pressed in terms of the total Cauchy stress σtot as

egeo = i⊗σtot, egeo
ijkl = δikσtot

jl . (45)

Our discussion of tangent moduli is eventually completed by stating the
push-forward of the third-order piezoelectricity tensor Π

Jp = F · Π : [F t⊗F t], Jpijk = FiIΠIJKFjJFkK . (46)

3.3 Boundary Integral Equation for the Free Space

In the free space solution domain St the only unknown field variable is
the electric potential ϕ = ϕ(x ) that is governed by the following Laplace
equation

Δxϕ = 0 in St, (47)

with Δx the spatial Laplace operator, and with Neumann boundary data

∇mϕ = − qt

ε0
on ∂St. (48)

Here m denotes the spatial outward pointing normal to the boundary ∂St

of the free space, ∇mϕ = ∇xϕ · m and the (unknown) flux qt is related
by the appropriate jump condition [[ ]] ·n = −	̂f

t to the corresponding flux
from the matter and the density of free charges at the surface by −qt =
· n + 	̂f

t = ε · n . Since we identified the interface between free space
and matter by ∂Bt = ∂St \ ∂S∞ the normal to the free space boundary is
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related to the normal to the boundary of the material body by m = −n on
∂Bt ∩ ∂St.

The starting point for the derivation of the boundary integral equation
is the weighted format of the governing Laplace equation∫

St

Gξ(x )Δxϕ(x ) dv = 0. (49)

For reasons that become obvious later we selected for the weight (or test)
function the fundamental solution Gξ to the Laplace equation. Thereby the
fundamental solution Gξ = Gξ(x ) corresponding to the Laplace equation
follows from the related auxiliary problem

ΔxGξ = −δξ in St. (50)

Here δξ = δ(x − ξ) denotes the Dirac distribution at the source point ξ.
Next, by applying partial integration twice (or rather Green’s second iden-
tity) the weighted statement in the above equation is re-expressed as∫

St

Gξ(x )Δxϕ(x ) dv =
∫
St

ϕ(x )ΔxGξ(x ) dv (51)

+
∫

∂St

[Gξ(x )∇mϕ(x ) − ϕ(x )∇mGξ(x )] da.

By exploiting the properties of (i) the fundamental solution, ΔxGξ =
−δξ, where Gξ = Gξ(x ) and (ii) the Dirac distribution δξ = δ(x − ξ) the
volume integral on the right hand side is re-written as∫

St

ϕ(x )ΔxGξ(x ) dv = −
∫
St

ϕ(x )δ(x − ξ) dv = −ϕ(ξ). (52)

As a consequence we obtain a representation for the solution ϕ(ξ) at the
source point ξ located within the (open) solution domain St \∂St expressed
in terms of integrals extending over the total boundary ∂St = ∂Bt ∪ ∂S∞
of the free space

ϕ(ξ) =
∫

∂St

[Gξ(x )∇mϕ(x ) − ϕ(x )∇mGξ(x )] da. (53)

The interest lies, however, in a boundary integral expression for the
solution ϕ(ξ) at the source point ξ ∈ ∂St located on the boundary ∂St to
the solution domain St. This is achieved by (i) positioning the source point ξ
at the boundary, (ii) adding a spherical (circular) surrounding Sε with radius
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ε centered at ξ so that S∗
t = St ∪ Sε with ∂S∗

t = [∂St ∪ ∂Sε] \ [∂St ∩ ∂Sε],
see Figure 2 and (iii) taking the limit for ε → 0

ϕ(ξ) = lim
ε→0

∫
∂S∗

t

[Gξ(x )∇mϕ(x ) − ϕ(x )∇mGξ(x )] da. (54)

ε

S∗
tSt

Sε

∂Sε

ξξ

∂St

∂S∗
t

Figure 2. Addition of a spherical (circular) surrounding Sε with radius ε
centered at ξ so that S∗

t = St ∪Sε with ∂S∗
t = [∂St ∪ ∂Sε] \ [∂St ∩ ∂Sε]. We

consider the limit for ε → 0

Then by decomposing ∂S∗
t into its individual contributions and by care-

fully considering the different types of singularities8 stemming from the
(known) fundamental solution Gξ we obtain eventually

lim
ε→0

∫
∂S∗

t

Gξ(x )∇mϕ(x ) da →
∫

∂St

Gξ(x )∇mϕ(x ) da, (55)

lim
ε→0

∫
∂St\[∂St∩∂Sε]

ϕ(x )∇mGξ(x ) da →
∫

∂St

ϕ(x )∇mGξ(x ) da,

lim
ε→0

∫
∂Sε\[∂St∩∂Sε]

ϕ(x )∇mGξ(x ) da → ϕ(ξ) lim
ε→0

∫
∂Sε\[∂St∩∂Sε]

∇mGξ(x ) da.

8To analyze further the individual terms in the above integral it is helpful to recall the
fundamental solution Gξ for the Laplace equation in two and three dimensions together
with its first two derivatives ∂rGξ and ∂2

rrGξ and the classification of singularities of
integrands:

Gξ ∂rGξ ∂2
rrGξ da Weak Strong Hyper

2d
1

2π
ln r−1 − 1

2π
r−1 1

2π
r−2 O(r ) O(ln r−1) O(r−1) O(r−2)

3d
1

4π
r−1 − 1

4π
r−2 1

2π
r−3 O(r2) O( r−1) O(r−2) O(r−3)

Here r = |r | with r = x − ξ denotes the radial distance of the field point x from the

source point ξ.
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Assuming sufficient smoothness we expanded ϕ(x ) in the last expression
into a Taylor series ϕ(x ) = ϕ(ξ) + ∇ξϕ(ξ) · r + · · · (with r = x − ξ) that
we truncated after the first term. As a consequence the boundary integral
equation for a source point ξ ∈ ∂St located on the boundary ∂St to the
solution domain St reads

c(ξ)ϕ(ξ) =
∫

∂St

[Gξ(x )∇mϕ(x ) − ϕ(x )∇mGξ(x )] da. (56)

Here the term c(ξ) depends on the geometry of the boundary at ξ and is
defined as

c(ξ) = 1 + lim
ε→0

∫
∂Sε\[∂St∩∂Sε]

∇mGξ(x ) da. (57)

The need to compute c(ξ) is cumbersome in our case since the bound-
ary ∂St is constantly changing with the deformation of the material body.
Moreover, the second integral on the right hand side of the boundary inte-
gral equation contains a strongly singular integrand that necessitates special
attention for its evaluation. However, by considering an auxiliary problem
with ϕ(x ) = ϕ(ξ) for ξ ∈ ∂St we obtain the relation

c(ξ)ϕ(ξ) = −
∫

∂St

ϕ(ξ)∇mGξ(x ) da. (58)

Inserting this auxiliary result in the original boundary integral equation
renders the so-called regularized version of the boundary integral equation
that does not necessitate any longer to compute a factor that depends on
the geometry. Moreover the singularity in the integrand of the integral on
the right hand side of the regularized boundary integral equation is reduced
by one order∫

∂St

Gξ(x )∇mϕ(x ) da =
∫

∂St

[ϕ(x ) − ϕ(ξ)]∇mGξ(x ) da. (59)

The boundary to the free space is decomposed into the interface with
the material body and the boundary at infinity ∂St = ∂Bt ∪ ∂S∞. The
solution at infinity is assumed constant along ∂S∞ and is denoted by ϕ∞,
likewise its normal gradient at infinity is assumed to vanish

lim
x→∂S∞

ϕ(x ) = ϕ∞ and lim
x→∂S∞

∇mϕ(x ) = 0. (60)

Moreover it can be shown that the normal gradient of the fundamental
solution at infinity when integrated over ∂S∞ (a circle with da = R dφ and
solid angle φ = 2π in two dimensions and a sphere with da = R2 dφ and
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solid angle φ = 4π in three dimensions, in either case with radius R → ∞)
renders ∫

∂S∞
∇mGξ(x ) da = −1. (61)

As a consequence the boundary integral equation takes finally a format
suited for our application, whereby we recall that the source point ξ ∈ ∂Bt

is located at the interface between free space and the material body∫
∂Bt

Gξ(x )∇mϕ(x ) da = ϕ(ξ)−ϕ∞+
∫

∂Bt

[ϕ(x )−ϕ(ξ)]∇mGξ(x ) da. (62)

Thus in summary, based on the fundamental solution, we may eventu-
ally obtain the boundary integral equation corresponding to the Laplace
equation as

ϕ(ξ)−ϕ∞+
∫

∂Bt

[ϕ(x )−ϕ(ξ)]∇mGξ(x ) da+
∫

∂Bt

Gξ(x )
qt(x )

ε0
da = 0. (63)

If the integrated free charge within the material body is equal to zero
(as for a dielectricum) we have in addition the free charge equation∫

Bt

	f
t dv +

∫
∂Bt

	̂f
t da =

∫
∂Bt

[ · n + 	̂f
t

]
da = −

∫
∂Bt

qt da = 0. (64)

Note that in this formulation the set of unknowns consists of the electric
potential ϕ = ϕ(x ) and the flux qt = qt(x ) at ∂Bt together with the electric
potential ϕ∞ at infinity.

4 Isotropic Hyperelastic Constitutive Modeling

In the preceding sections the total energy density W0 was introduced as
being parameterized in terms of the deformations gradient F and the refer-
ential electric field , i.e. W0 = W0(F , ). The requirement of objectivity
or likewise the requirement of observer frame indifference reduces the de-
pendence on F to a dependence on C , i.e. W0 = W0(C , ). A further
reduction may be obtained in the case of isotropic material behavior. For
a material to behave isotropically the total energy density W0 is required
to be an isotropic (scalar valued) function of its tensor and vector valued
arguments F and . Due to the representation theorem relevant for this
case it eventually turns out that W0 may only depend on six invariants

W0(F , )
obj
= W0(C , ) iso= W0(I1, I2, I3, I4, I5, I6). (65)
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These six invariants resemble the case of a transversely isotropic material
(with the anisotropy axis exchanged by the electric field)

I1 = C : I , I2 = cofC : I , I3 = detC , (66)

I4 = [ ⊗ ] : I , I5 = [ ⊗ ] : C , I6 = [ ⊗ ] : C 2. (67)

The total energy density W0 includes the electric energy density E0.
It is thus interesting to note that, based on the Cayley-Hamilton theorem
I3B = C 2 − I1C + I2I with I the second-order referential unit tensor, e.g.
the electric energy Et per unit volume in Bt may be expressed in terms of
the above invariants

Et = −ε0
2

· =
ε0
2

[I1I5 − I2I4 − I6]/I3. (68)

The total Piola-Kirchhoff stress S tot and the referential dielectric displace-
ment follow then from the chain rule

S tot = 2
6∑

κ=1

∂W0

∂Iκ

∂Iκ

∂C
and = −

6∑
κ=1

∂W0

∂Iκ

∂Iκ

∂
. (69)

Clearly, the first derivatives of the invariants Iκ with respect to C and
can be computed once and for all without specifying the exact format of

the total energy density W0. Thus we may collect the following intermediate
results

∂I1

∂C
= I ,

∂I2

∂C
= I2B + I3B

2,
∂I3

∂C
= cofC ,

∂I4

∂C
= 0 ,

∂I5

∂C
= ⊗ ,

∂I6

∂C
= 2[C · ⊗ ]sym,

∂I1

∂
= 0 ,

∂I2

∂
= 0 ,

∂I3

∂
= 0 ,

∂I4

∂
= 2 ,

∂I5

∂
= 2C · ,

∂I6

∂
= 2C 2 · .

Next, the corresponding fourth-order referential elasticity tensor C takes
the representation

C = 4
6∑

κ=1

6∑
λ=1

∂2W0

∂Iκ∂Iλ

∂Iκ

∂C
⊗ ∂Iλ

∂C
+ 4

6∑
κ=1

∂W0

∂Iκ

∂2Iκ

∂C ⊗ ∂C
. (70)

In analogy the corresponding second-order referential dielectricity tensor
D follows as

D = −
6∑

κ=1

6∑
λ=1

∂2W0

∂Iκ∂Iλ

∂Iκ

∂
⊗ ∂Iλ

∂
−

6∑
κ=1

∂W0

∂Iκ

∂2Iκ

∂ ⊗ ∂
. (71)
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Finally, the corresponding third-order referential piezoelectricity tensor
Π is expressed as

Π = −2
6∑

κ=1

6∑
λ=1

∂2W0

∂Iκ∂Iλ

∂Iκ

∂
⊗ ∂Iλ

∂C
− 2

6∑
κ=1

∂W0

∂Iκ

∂2Iκ

∂ ⊗ ∂C
. (72)

As before, also the second derivatives of the invariants Iκ with respect
to C and can be computed once and for all without specifying the exact
format of the total energy density W0:

∂2I1

∂C ⊗ ∂C
= 0,

∂2I2

∂C ⊗ ∂C
= A2,

∂2I3

∂C ⊗ ∂C
= I3[B ⊗B − Isym

B ],

∂2I4

∂C ⊗ ∂C
= 0,

∂2I5

∂C ⊗ ∂C
= 0,

∂2I6

∂C ⊗ ∂C
= 2[Isym · ⊗ ]sym,

∂2I1

∂ ⊗ ∂
= 0 ,

∂2I2

∂ ⊗ ∂
= 0 ,

∂2I3

∂ ⊗ ∂
= 0 ,

∂2I4

∂ ⊗ ∂
= 2I ,

∂2I5

∂ ⊗ ∂
= 2C ,

∂2I6

∂ ⊗ ∂
= 2C 2.

Here Isym

B denotes a referential symmetric fourth-order tensor with coef-
ficients 2[Isym

B ]IJKL = BIKBJL + BILBJK which we may also write in
symbolic notation as 2Isym

B = B⊗B + B⊗B .
To abbreviate the hessian of the invariant I2 with respect to the Cauchy-

Green strain C we introduced the referential fourth-order tensor A2
9. More-

over the mixed second derivatives of the invariants Iκ with respect to C and
take the format

∂2I1

∂C ⊗ ∂
= 0 ,

∂2I2

∂C ⊗ ∂
= 0 ,

∂2I3

∂C ⊗ ∂
= 0 ,

∂2I4

∂C ⊗ ∂
= 0 ,

∂2I5

∂C ⊗ ∂
= ⊗ I + I⊗ ,

∂2I6

∂C ⊗ ∂
= AT

6 ,

∂2I1

∂ ⊗ ∂C
= 0 ,

∂2I2

∂ ⊗ ∂C
= 0 ,

∂2I3

∂ ⊗ ∂C
= 0 ,

∂2I4

∂ ⊗ ∂C
= 0 ,

∂2I5

∂ ⊗ ∂C
= 2 · Isym,

∂2I6

∂ ⊗ ∂C
= A6.

Here Isym denotes the referential symmetric fourth-order unit tensor with
coefficients 2[Isym]IJKL = δIKδJL + δILδJK which we may also write in

9 A2 = I2[B ⊗B − Isym

B
] + 2[B2 ⊗ cofC ]sym − I3[B2⊗B + B2⊗B + B⊗B2 + B⊗B2]
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symbolic notation as 2Isym = I⊗I + I⊗I . Moreover we abbreviated the
mixed second derivatives of the invariant I6 by the referential third-order
tensor A6 = 2 ·C · Isym + 2[C ⊗ ] : Isym.

Once these material independent derivatives are implemented correctly,
all it needs to consider a new material model is the total energy density W0

along with the collection of its first and second derivatives with respect to
the six invariants:

∂W0

∂Iκ
and

∂2W0

∂Iκ∂Iλ
, with κ, λ = 1, · · · , 6. (73)

5 Coupled FEM–BEM Discretization Method

5.1 Subdivision of Solution Domain into Patches

In our coupled FEM-BEM (hybrid) discretization method the solution
domain B̄0 = B0 ∪ ∂B0 (consisting of the material body and the interface
to the free space) is approximated by a (polygonal) covering in terms of a
subdivision into nel domain and mel external surface patches such that

B0 ≈ Bh
0 =

nel⋃
e=1

Be
0 and ∂B0 ≈ ∂Bh

0 = Ah
0 =

mel⋃
e=1

Ae
0. (74)

Thereby, nel domain patches (finite elements) cover the material body with
configuration B0, whereas mel external surface patches (boundary elements)
cover the interface to the free space with configuration ∂B0. After the sub-
division of the (approximated) open solution domain Bh

0 into nel domain
patches we obtain also the set of ned internal surface patches10 in the dis-
cretization mesh

Eh
0 =

ned⋃
k=1

Ek
0 . (75)

For a representation of the discretized solution domain refer to Figure 3.

Mechanical problem. Based on the above terminology and definitions
the weak form of the mechanical problem, here exemplified in terms of
spatial description quantities, is obtained by weighting and integration of
the appropriate strong equations on each:

10The expression -eder in polyeder (such as tetraeder, hexaeder and so on) derives from

the greek έδρα (surface).
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Be
0

Ae
0

Ek
0

Figure 3. Covering of the discretized (closed) solution domain B̄h
0 by do-

main patches Be
0 and external surface patches Ae

0. Internal surface patches
Ek
0 are arranged between every two domain patches.

i) domain patch

∀e :
∫
Be

t

δϕ · [divσtot + bt] dv = 0 ∀δϕ. (76)

On each domain patch the mechanical principle of virtual work reads∫
Be

t

εδ : σtot dv =
∫

∂Be
t

δϕ · σtot · n da +
∫
Be

t

δϕ · bt dv ∀δϕ. (77)

Here we abbreviated ∇sym
x δϕ as the virtual ‘rate of deformation tensor’

εδ = ∇sym
x δϕ.

Upon summation of all domain patch contributions we obtain, due to
the additivity of integration, for the internal virtual work

nel∑
e=1

∫
Be

t

εδ : σtot dv =
∫
Bh

t

εδ : σtot dv. (78)

Summation of the contributions of the domain patch boundaries ∂Be
t to the

external virtual work by counting each internal surface patch twice, with
either positive or negative sign for the normal n , renders

nel∑
e=1

∫
∂Be

t

δϕ ·σtot ·n da = −
∫
Eh

t

δϕ · [[σtot]] ·n da+
∫
Ah

t

δϕ ·σtot ·n da. (79)

ii) internal surface patch

∀k :
∫
Ek

t

δϕ · [[σtot]] · n da = 0 ∀δϕ. (80)
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Upon summation of all internal surface patch contributions we obtain

ned∑
k=1

∫
Ek

t

δϕ · [[σtot]] · n da =
∫
Eh

t

δϕ · [[σtot]] · n da = 0. (81)

iii) external surface patch

∀e :
∫
Ae

t

δϕ · [[[σtot]] · n + t t

]
da = 0 ∀δϕ. (82)

Upon summation of all external surface patch contributions we obtain

mel∑
k=1

∫
Ae

t

δϕ · [[[σtot]] · n + t t

]
da =

∫
Ah

t

δϕ · [[[σtot]] · n + t t

]
da = 0. (83)

Due to the previous results the expression in i) for the external virtual
work is reduced further to∫

Ah
t

δϕ · σtot · n da =
∫
Ah

t

δϕ · [t t + tmax
t ] da. (84)

As a conclusion, the weak form of the mechanical problem may finally be
expressed by considering integrals over Bh

t and Ah
t∫

Bh
t

εδ : σtot dv =
∫
Ah

t

δϕ · [t t + tmax
t ] da +

∫
Bh

t

δϕ · bt dv ∀δϕ. (85)

Electrical problem (in matter). The weak form of the electrical prob-
lem, again exemplified in terms of spatial description quantities, is obtained
by weighting and integration of the appropriate strong equations on each:

i) domain patch

∀e :
∫
Be

t

δϕ[div − 	f
t] dv = 0 ∀δϕ. (86)

On each domain patch the electrical principle of virtual work reads∫
Be

t

δ · dv = −
∫

∂Be
t

δϕ · n da +
∫
Be

t

δϕ	f
t dv ∀δϕ. (87)

Here we abbreviated the push-forward of the variation of the referential
electric field δ as δ = −∇xδϕ. Upon summation of all domain patch
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contributions we obtain for the internal virtual work
nel∑
e=1

∫
Be

t

δ · dv =
∫
Bh

t

δ · dv. (88)

Summation of the contributions of the domain patch boundaries ∂Be
t to the

external virtual work renders

−
nel∑
e=1

∫
∂Be

t

δϕ · n da =
∫
Eh

t

δϕ[[ ]] · n da −
∫
Ah

t

δϕ · n da. (89)

ii) internal surface patch

∀k :
∫
Ek

t

δϕ[[ ]] · n da = 0 ∀δϕ. (90)

Upon summation of all internal surface patch contributions we obtain

ned∑
k=1

∫
Ek

t

δϕ[[ ]] · n da =
∫
Eh

t

δϕ[[ ]] · n da = 0. (91)

iii) external surface patch

∀e :
∫
Ae

t

δϕ
[
[[ ]] · n − 	̂f

t

]
da = 0 ∀δϕ. (92)

Upon summation of all external surface patch contributions we obtain

mel∑
e=1

∫
Ae

t

δϕ
[
[[ ]] · n − 	̂f

t

]
da =

∫
Ah

t

δϕ
[
[[ ]] · n − 	̂f

t

]
da = 0. (93)

Due to the previous results the expression in i) for the external virtual
work is reduced further to

−
∫
Ah

t

δϕ · n da =
∫
Ah

t

δϕ[	̂f
t + qt] da. (94)

As a conclusion, the weak form of the electrical problem (in matter) may
finally be expressed by considering integrals over Bh

t and Ah
t :∫

Bh
t

δ · dv =
∫
Ah

t

δϕ
[
	̂f

t + qt

]
da +

∫
Bh

t

δϕ	f
t dv ∀δϕ. (95)
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Electrical problem (in free space). The subdivision of the (approx-
imated) solution domain Ah

t into mel external surface patches Ae
t results

simply in a summation over patch-wise integrals. Thus we obtain for the
boundary integrals corresponding to the Laplace equation∫

Ah
t

ϕ(x )∇mGξ(x ) da =
mel∑
e=1

∫
Ae

t

ϕ(x )∇mGξ(x ) da, (96)∫
Ah

t

∇mGξ(x ) da =
mel∑
e=1

∫
Ae

t

∇mGξ(x ) da,∫
Ah

t

Gξ(x )
qt(x )

ε0
da =

mel∑
e=1

∫
Ae

t

Gξ(x )
qt(x )

ε0
da.

Likewise we obtain for the boundary integrals corresponding to the free
charge equation ∫

Ah
t

qt da =
mel∑
e=1

∫
Ae

t

qt da. (97)

Residual error measure for the weak form. Applying a discretiza-
tion method is equivalent to committing errors. Thus it is important to
measure the error in one way or the other. Based on the above discussion
on the appropriate strong equations posed within each domain patch (finite
element) and on its boundary, a patch-wise residual for the mechanical weak
form may be expressed by

[ηmec
e ]2 = h2

B

∫
Be

t

∣∣divσtot + bt

∣∣2 dv + hE
∫

∂Be
t

∣∣[[σtot]] · n + tt

∣∣2 da, (98)

with t t = 0 if ∂Be
t ∈ Eh

t and [[σtot]] = σmax − σtot if ∂Be
t ∈ Ah

t . Here hB
and hE are appropriate scaling factors of dimension length that measure,
e.g., the radius of the largest ball inscribable into the element and its edge
length, respectively.

Likewise a patch-wise residual for the electrical weak form may be mea-
sured by

[ηele
e ]2 = h2

B

∫
Be

t

∣∣div − 	f
t

∣∣2 dv + hE
∫

∂Be
t

∣∣[[ ]] · n − 	̂f
t

∣∣2 da, (99)

with 	̂f
t = 0 if ∂Be

t ∈ Eh
t and [[ ]] = ε− if ∂Be

t ∈ Ah
t . The error measures

ηmec
e and ηele

e may eventually be combined into a single total error measure
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η by the help of appropriate weighting factors wmec and wele, respectively

η2 =
nel∑
e=1

wmec[ηmec
e ]2 + wele[ηele

e ]2. (100)

5.2 Finite Element Shape Functions

On each finite element Be
0 ∈ Bh

0 the referential coordinates X are approx-
imated in terms of shape functions Nu

i = Nu
i (η) defined on isoparametric

coordinates η ∈ [−1,+1]ndm and nu
en nodal values X i

X h(η)|Be
0

=
nu

en∑
i=1

Nu
i (η)X i. (101)

The elementwise jacobian J e of the map X h = X h(η) will be needed
subsequently in order to calculate gradients with respect to the material
coordinates X based on the chain rule

∇X(•) = ∇η(•) ·J−1
e with J e(η) = ∇ηX

h(ξ) =
nu

en∑
i=1

X i⊗∇ηNu
i . (102)

In view of J e being a linear map from the tangent to the isoparametric
domain, say �, to the tangent to Be

0, the corresponding volume elements
transform as dV = detJ e d�. It is sometimes convenient to assemble the
nodal values X i into an element (column) vector of nodal values X e so that

X e =
[
[X 1]t, · · · , [X i]t, · · · , [X nu

en
]t
]t

, X i =
[
X1, · · · , Xndm

]t
. (103)

Accordingly, the shape functions may be arranged into a matrix with

N u
e =

[
N u

1 , · · · ,N u
i , · · · ,N u

nu
en

]
, N u

i = �Nu
i �ndm×ndm

. (104)

Thus the approximation of the referential coordinates X takes the alterna-
tive, more abbreviated matrix-vector representation

X h(η)|Be
0

= N u
e (η)X e. (105)

Next, in the spirit of the isoparametric concept, the trial functions for
the deformation map ϕ are approximated by the same shape functions as
the referential coordinates X , whereby the nodal values du

i = ϕh(X i) =[
X1 + u1, · · · , Xndm

+ undm

]t now denote the nodal degrees of freedom for
the deformation map in terms of the displacement u = ϕ −X

ϕh(η)|Be
0

=
nu

en∑
i=1

Nu
i (η)du

i = N u
e (η)du

e . (106)
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The arrangement of the du
i into an element (column) vector of nodal degrees

of freedom for the deformation map du
e =

[
[du

1 ]t, · · · , [du
i ]t, · · · , [du

nu
en

]t
]t

follows the same pattern as that for the referential coordinates.
In general the number of element nodes nϕ

en for the electric potential does
not have to agree with the number of element nodes nu

en for the deformation
map. Thus the trial functions for the electric potential ϕ are approximated
in terms of nodal values dϕ

i = ϕh(X i) and shape functions Nϕ
i = Nϕ

i (η)

ϕh(η)|Be
0

=
nϕ

en∑
i=1

Nϕ
i (η)dϕ

i = N ϕ
e (η)dϕ

e . (107)

The element (column) vector of nodal degrees of freedom for the electric
potential and the corresponding arrangement of the shape functions into a
(row) vector follows as

dϕ
e =

[
dϕ
1 , · · · , dϕ

i , · · · , dϕ
nϕ

en

]t
, N ϕ

e =
[
Nϕ

1 , · · · , Nϕ
i , · · · , Nϕ

nϕ
en

]
. (108)

Based on the above approximations for the solution fields, the deforma-
tion gradient F and the referential electric field , expressed as gradient
operators, follow eventually as

F (ϕh)|Be
0

=
nu

en∑
i=1

du
i ⊗∇XNu

i and (ϕh)|Be
0

= −
nϕ

en∑
i=1

dϕ
i ∇XNϕ

i . (109)

Finally, it goes without saying that the test functions δϕ and δϕ are
approximated by the same shape functions as the trial functions in the spirit
of the Bubnov-Galerkin method. Thus we obtain for the spatial gradients
of the discretized test functions

∇xδϕh|Be
t

=
nu

en∑
i=1

δdu
i ⊗∇xNu

i and ∇xδϕh|Be
t

=
nϕ

en∑
i=1

δdϕ
i ∇xNϕ

i . (110)

Next we arrange the six independent entries of the virtual ‘rate of de-
formation tensor’ εδ = ∇sym

x δϕ by the help of the Voigt notation into a
vector

εδ
v =

[
δu1,1, δu2,2, δu3,3, [δu1,2 + δu2,1]︸ ︷︷ ︸

2εδ
12

, [δu2,3 + δu3,2]︸ ︷︷ ︸
2εδ

23

, [δu3,1 + δu1,3]︸ ︷︷ ︸
2εδ

31

]t
.

Here and in the following, a comma denotes the partial derivative with
respect to the spatial coordinates if not stated otherwise. We may then
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express the discretized virtual ‘rate of deformation tensor’ in Voigt notation

εδ
v(δϕ

h)|Be
t

=
nu

en∑
i=1

Bu
i δdu

i = Bu
e δdu

e . (111)

Here we introduced the discrete gradient operator matrix for ndm = 3 as

Bu
e =

[
Bu

1 , · · · ,Bu
i , · · · ,Bu

nu
en

]
, Bu

i =

⎡⎢⎢⎢⎢⎢⎢⎣

Nu
i,1 0 0
0 Nu

i,2 0
0 0 Nu

i,3

Nu
i,2 Nu

i,1 0
0 Nu

i,3 Nu
i,2

Nu
i,3 0 Nu

i,1

⎤⎥⎥⎥⎥⎥⎥⎦ . (112)

The three entries of the push-forward of the variation of the referential
electric field δ = −∇xδϕ are arranged into vector notation

δ = −[δϕ,1, δϕ,2, δϕ,3

]t
. (113)

Thus the discretized version of δ follows as

δ(δϕh)|Be
t

= −
nϕ

en∑
i=1

Bϕ
i δdϕ

i = −Bϕ
e δdϕ

e . (114)

Again we introduced a discrete gradient operator matrix as

Bϕ
e =

[
Bϕ

1 , · · · ,Bϕ
i , · · · ,Bϕ

nϕ
en

]
, Bϕ

i =

⎡⎣Nϕ
i,1

Nϕ
i,2

Nϕ
i,3

⎤⎦ . (115)

5.3 Boundary Element Shape Functions

On each boundary element Ae
t ∈ Ah

t the spatial coordinates x are ap-
proximated in terms of shape functions Mu

i = Mu
i (η̂) defined on isopara-

metric coordinates η̂ ∈ [−1, 1]ndm−1 and mu
en nodal values x̂ i situated at

the boundary ∂Bh
t of the material body

xh(η̂)|Ae
t

=
mu

en∑
i=1

Mu
i (η̂)x̂ i = M u

e (η̂)x̂ e. (116)

Here and in the following the matrix-vector representation follows the con-
ventions discussed earlier.
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Clearly, in order for the approximation of the geometry by the finite
element shape functions Nu

i = Nu
i (η) discussed previously and the bound-

ary element shape functions Mu
i = Mu

i (η̂) to be compatible, the boundary
element shape functions have to be the trace of the finite element shape
functions Mu

i = Nu
i |Ah

t
at Ah

t . The tangent vectors to the coordinate lines
η̂α (with α = 1, ndm − 1) or rather the covariant (natural) base vectors to
the boundary surface of the material body follow from

aα(η̂)|Ae
t

=
mu

en∑
i=1

∂η̂αMu
i (η̂)x̂ i = Lu

eα(η̂)x̂ e. (117)

Here Lu
eα is an elementwise matrix of dimensions ndm × ndmmu

en that es-
sentially incorporates the isoparametric derivatives of the shape functions
Mu

i . The surface normal m (pointing from free space to matter) and the
area element da of the boundary to the three dimensional11 material body
are computed from

m(η̂)|Ae
t

=
a1 × a2

|a1 × a2| and da(η̂)|Ae
t

= |a1 × a2|d�̂. (118)

The corresponding area element in the isoparametric domain is denoted
by d�̂ = dη̂1 dη̂2. In order that m is the outward pointing normal to the
free space the sign of tangent vectors aα has to be chosen so that they
span a plane with the material body on its ‘right side’. Next, the trial
functions for the electric potential ϕ are approximated in terms of nodal
values d̂ϕ

i = ϕh(x̂ i) and shape functions Mϕ
i = Mϕ

i (η̂)

ϕh(η̂)|Ae
t

=
mϕ

en∑
i=1

Mϕ
i (η̂)d̂ϕ

i = M ϕ
e (η̂)d̂ϕ

e . (119)

The number of boundary element nodes mϕ
en for the electric potential

does not have to agree with the number of boundary element nodes mu
en for

the geometry description. However, in order for the approximation of the
electric potential by the finite element shape functions Nϕ

i = Nϕ
i (η) dis-

cussed previously and the boundary element shape functions Mϕ
i = Mϕ

i (η̂)
to be compatible, the boundary element shape functions have to be the
trace of the finite element shape functions Mϕ

i = Nϕ
i |Ah

t
at Ah

t . Finally,

11 In two dimensions m = a × e3/|a | (with e3 perpendicular to the plane) and da =

|a |d�̂ holds with d�̂ = dη̂ instead, whereby we omitted the index α. Thereby the

sign convention is that a has a direction with the material body on its ‘right side’ so

that m is the outward pointing normal to the free space.
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the trial functions for the flux qt are approximated in terms of nodal values
d̂q

i = qh(x̂ i) and shape functions M q
i = M q

i (η̂)

qh
t (η̂)|Ae

t
=

mq
en∑

i=1

Mq
i (η̂)d̂q

i = M q
e(η̂)d̂q

e. (120)

Typically the total number of unknowns for the flux variable mq
np has to

correspond to the number of collocation points mcp, see the discussion be-
low.

5.4 Discretized Weak Form for the Material Body

Mechanical problem. After inserting the shape functions, the discretized
version of the weak form of the mechanical problem that has to hold for all
δdu

i reads for each finite element as

nu
en∑

i=1

δdu
i ·
[∫

Be
t

[σtot · ∇xNu
i − btN

u
i ] dv −

∫
∂Be

t

σtot · nNu
i da

]
= 0. (121)

Next, by the help of the Voigt notation, we arrange the total stress tensor
into a vector

σtot → σtot
v =

[
σ11, σ22, σ33, σ12, σ23, σ31

]t
. (122)

Thus the discretized version of the weak form of the mechanical problem
that has to hold for all δdu

e reads in matrix notation

[δdu
e ]t
[∫

Be
t

[
[Bu

e ]tσtot
v − [N u

e ]tbt

]
dv −

∫
∂Be

t

[N u
e ]tσtot · n da

]
= 0. (123)

With the definition of the elementwise internal mechanical load vector

su
e =

∫
Be

t

[Bu
e ]tσtot

v dv (124)

and the definition of the elementwise external mechanical load vector

f u
e =

∫
∂Be

t

[N u
e ]tσtot · n da +

∫
Be

t

[N u
e ]tbt dv (125)

and due to the arbitrariness of δdu
e we may eventually define the elementwise

mechanical residual as
ru

e = f u
e − su

e
.= 0 . (126)
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Next the nu
enndm local (elementwise) degrees of freedom are assigned to

the nnpndm global degrees of freedom (with nnp denoting the global number
of node points) by the help of Boolean matrices that contain the local versus
global numbering of degrees of freedom

du
e = au

ed
u with dimau

e = nu
enndm × nnpndm. (127)

Thus the discretized version of the weak form of the mechanical problem
abbreviates as

nel∑
e=1

[δdu
e ]tru

e = [δdu]t
nel∑
e=1

[au
e ]tru

e = [δdu]tru = 0 ∀δdu. (128)

Here the assembly into the global mechanical residual reads as

ru =
nel∑
e=1

[au
e ]tru

e =
nel

A
e=1

ru
e (129)

whereby we incorporated the following side condition for the tractions

nel

A
e=1

∫
∂Be

t

[N u
e ]tσtot · n da =

mel

A
e=1

∫
Ae

t

[M u
e ]t[t t + tmax

t ] da. (130)

Thus the boundary contribution to the global external mechanical load of
the material body includes in particular the Maxwell traction

mel

A
e=1

∫
Ae

t

[M u
e ]t[t t + tmax

t ] da. (131)

Electrical problem (in matter). Again by the shape functions, the
discretized version of the weak form of the electrical problem that has to
hold for all δdϕ

i reads for each finite element as

nϕ
en∑

i=1

δdϕ
i

[∫
Be

t

[− · ∇xNϕ
i − 	f

tN
ϕ
i ] dv +

∫
∂Be

t

· nNϕ
i da

]
= 0. (132)

Likewise, in matrix notation the discretized version of the weak form of
the electrical problem that has to hold for all δdϕ

e reads

[δdϕ
e ]t
[∫

Be
t

[−[Bϕ
e ]t − [N ϕ

e ]t	f
t

]
dv +

∫
∂Be

t

[N ϕ
e ]t · n da

]
= 0. (133)
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Next we define the elementwise internal electrical load vector

sϕ
e =

∫
Be

t

[Bϕ
e ]t dv (134)

together with the elementwise external electrical load vector

f ϕ
e =

∫
∂Be

t

[N ϕ
e ]t · n da −

∫
Be

t

[N ϕ
e ]t	f

t dv (135)

in order to formulate the elementwise electrical residual based on the arbi-
trariness of δdϕ

e

rϕ
e = f ϕ

e − sϕ
e

.= 0 . (136)

Again the nϕ
en local (elementwise) degrees of freedom are assigned to the

nnp global degrees of freedom by the help of Boolean matrices

dϕ
e = aϕ

e d
ϕ with dimaϕ

e = nϕ
en × nnp. (137)

Consequently the discretized version of the weak form of the electrical prob-
lem is recast as

nel∑
e=1

[δdϕ
e ]trϕ

e = [δdϕ]t
nel∑
e=1

[aϕ
e ]trϕ

e = [δdϕ]trϕ = 0 ∀δdϕ. (138)

As before the assembly into the global electrical residual follows as

rϕ =
nel∑
e=1

[aϕ
e ]trϕ

e =
nel

A
e=1

rϕ
e (139)

with the following side conditions for the electrical flux

nel

A
e=1

∫
∂Be

t

[N ϕ
e ]t · nda = −

mel

A
e=1

∫
Ae

t

[M ϕ
e ]t[	̂f

t + qt] da. (140)

Thus the contribution to the global external electrical load of the material
body includes in particular the flux qt

−
mel

A
e=1

∫
Ae

t

[M ϕ
e ]t[	̂f

t + qt] da. (141)



Computational Nonlinear Electro-Elasticity—Getting Started 211

5.5 Discretized Boundary Integral Equation for the Free Space

Laplace equation. By the help of the shape functions the discretized
version of the boundary integral equation reads for each source point ξ as

ch(ξ)ϕh(ξ) − ϕ∞ +
mel∑
e=1

mϕ
en∑

i=1

d̂ϕ
i

∫
Ae

t

Mϕ
i ∇mGξ da (142)

+
mel∑
e=1

mq
en∑

i=1

d̂q
i

∫
Ae

t

M q
i

Gξ

ε0
da = 0.

Here ch(ξ) is the approximation to the geometry factor c(ξ) and is computed
without involving any shape functions

ch(ξ) = −
∫

∂S∞∪∂Bt

∇mGξ da = 1 −
mel∑
e=1

∫
Ae

t

∇mGξ da. (143)

Likewise, in matrix notation the discretized version of the boundary
integral equation reads for each source point ξ as

ch(ξ)ϕh(ξ) − ϕ∞ +
mel∑
e=1

[d̂ϕ
e ]t
∫
Ae

t

[M ϕ
e ]t∇mGξ da (144)

+
mel∑
e=1

[d̂q
e]

t

∫
Ae

t

[M q
e]

t Gξ

ε0
da = 0.

Next we define the elementwise ‘fundamental’ vectors for each source
point ξ

ĝϕ∗
ξe =

∫
Ae

t

[M ϕ
e ]t∇mGξ da and ĝq

ξe =
∫
Ae

t

[M q
e]

t Gξ

ε0
da (145)

in order to abbreviate the discretized version of the boundary integral equa-
tion as

ch(ξ)ϕh(ξ) − ϕ∞ +
mel∑
e=1

[d̂ϕ
e ]tĝϕ∗

ξe +
mel∑
e=1

[d̂ q
e]

tĝq
ξe = 0. (146)

The mϕ
en local (elementwise) degrees of freedom for the electric potential

and the mq
en local (elementwise) degrees of freedom for the flux, respectively,

are assigned to corresponding mϕ
np and mq

np global degrees of freedom by
the help of Boolean matrices

d̂ϕ
e = âϕ

e d̂ϕ and d̂q
e = âq

ed̂
q. (147)
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Consequently, the discretized version of the boundary integral equation is
recast for each source point ξ as

ch(ξ)ϕh(ξ) − ϕ∞ + [d̂ϕ]tĝϕ∗
ξ + [d̂q]tĝq

ξ = 0. (148)

Here the assembly into the global ‘fundamental’ vectors for each source
point ξ follows as

ĝϕ∗
ξ =

mel∑
e=1

[âϕ
e ]tĝϕ∗

ξe =
mel

A
e=1

ĝϕ∗
ξe and ĝq

ξ =
mel∑
e=1

[âq
e]

tĝq
ξe =

mel

A
e=1

ĝq
ξe. (149)

Next we may further relate the value of ch(ξ)ϕh(ξ) to the global degrees
of freedom d̂ϕ by a vector

ĝϕ∗∗
ξ = ch(ξ)[âϕ

e ]t[M ϕ
e (ξ)]t with ξ ∈ Ae

t (150)

that contains essentially the shape functions Mϕ
i multiplied with ch(ξ), both

evaluated at the source point ξ

ch(ξ)ϕh(ξ) = [d̂ϕ]tĝϕ∗∗
ξ . (151)

Moreover we might define a projection pϕ from the global degrees of freedom
dϕ as used in the finite element setting to the global degrees of freedom d̂ϕ

as used in the boundary element setting

d̂
ϕ

= pϕdϕ. (152)

Thus, the discretized version of the boundary integral equation takes a
format that is finally amenable for an assembly with the finite element
equations

[dϕ]tgϕ
ξ + [d̂q]tĝq

ξ − ϕ∞ = 0. (153)

Here we abbreviated for the generalized global ‘fundamental’ vector as

gϕ
ξ = [pϕ]t[ĝϕ∗

ξ + ĝϕ∗∗
ξ ]. (154)

After assembly with the finite element equations the electric potential
degrees of freedom at the interface between the material body and the free
space d̂ϕ = pϕdϕ are already taken care of. For the determination of the
electric potential ϕ∞ at infinity we will set up a separate equation for the
integrated free charge of the material body. Thus it remains to specify mq

np

equations for the determination of the mq
np unknowns for the flux contained

in d̂ q. This might be achieved by:
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i) evaluating the boundary integral equation at mcp = mq
np collocation

points

or

ii) formulating a Galerkin approach, e.g., by using a test function δqh with
the same shape functions as those for qh.

Here, for simplicity, we shall use the collocation method i). Thus the
boundary integral equation is required to hold at mcp = mq

np discrete source
(collocation) points ξc (with c = 1, mcp)

[dϕ]tgϕ
ξc

+ [d̂q]tĝq
ξc

− ϕ∞ = 0 ∀ξc. (155)

By introducing global ‘fundamental’ matrices gϕ = [gϕ
ξ1

, · · · , gϕ
ξmcp

] and
ĝq = [ĝq

ξ1
, · · · , ĝq

ξmcp
] with columns defined by the global ‘fundamental’

vectors gϕ
ξc

and ĝq
ξc

with c = 1, mcp we arrive eventually at the global
statement formulated as a residual

rq = [dϕ]tgϕ + [d̂q]tĝq − [dϕ
∞]t = 0 . (156)

Here dϕ
∞ denotes a vector with mcp identical entries ϕ∞.

Free charge equation. In analogy, again by the help of the shape func-
tions, the discretized version of the free charge equation reads

mel∑
e=1

mq
en∑

i=1

d̂q
i

∫
Ae

t

M q
i da = 0. (157)

Likewise, in matrix notation the discretized version of the free charge
equation is expressed as

mel∑
e=1

[d̂q
e]

t

∫
Ae

t

[M q
e]

t da = 0. (158)

Next we define the elementwise vectors

m̂q
e =

∫
Ae

t

[M q
e]

t da (159)

in order to abbreviate the discretized version of the free charge equation

mel∑
e=1

[d̂ q
e]

tm̂q
e = 0. (160)
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By the help of the previously introduced elementwise Boolean matrices
âq

e we finally assemble the global vector

m̂q =
mel∑
e=1

[âq
e]

tm̂q
e =

mel

A
e=1

m̂q
e (161)

and write eventually the global statement for the free charge equation as a
residual

rf = [d̂ q]tm̂q = 0. (162)

5.6 Linearization of Discretized Weak Form

Mechanical problem. At the finite element level the linearization of the
discretized version of the internal mechanical virtual work

Δ

⎡⎣nu
en∑

i=1

∫
Be

t

[δdu
i ⊗∇xNu

i ] : σtot dv

⎤⎦ = Luu
inte + Luϕ

inte (163)

renders two contributions Luu
inte and Luϕ

inte. Based on the tangent moduli
introduced earlier these two contributions read

Luu
inte =

nu
en∑

i=1

nu
en∑

j=1

∫
Be

t

[δdu
i ⊗∇xNu

i ] : e : [Δdu
j ⊗∇xNu

j ] dv, (164)

Luϕ
inte =

nu
en∑

i=1

nϕ
en∑

j=1

∫
Be

t

[δdu
i ⊗∇xNu

i ] : pT · [Δdϕ
j ∇xNϕ

j ] dv.

Alternatively the linearization of the discretized version of the internal
mechanical virtual work is recast in matrix representation as

Δ

[
[δdu

e ]t
∫
Be

t

[Bu
e ]tσtot

v dv

]
= Luu

inte + Luϕ
inte. (165)

Before proceeding we also need to assemble the fourth-order spatial elas-
ticity tensor e in Voigt notation

e → ev =

⎡⎢⎢⎢⎢⎢⎢⎣
e1111 e1122 e1133 e11(12) e11(23) e11(31)

e2211 e2222 e2233 e22(12) e22(23) e22(31)

e3311 e3322 e3333 e33(12) e33(23) e33(31)

e(12)11 e(12)22 e(12)33 e(12)(12) e(12)(23) e(12)(31)

e(23)11 e(23)22 e(23)33 e(23)(12) e(23)(23) e(23)(31)

e(31)11 e(31)22 e(31)33 e(31)(12) e(31)(23) e(31)(31)

⎤⎥⎥⎥⎥⎥⎥⎦ . (166)
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Here, the notation e11(12) denotes the symmetric index combination with
2e11(12) = e1112 + e1121.

Likewise we abbreviate the third-order spatial piezoelectricity tensor p
in Voigt notation

p → pv =

⎡⎣p111 p122 p133 p1(12) p1(23) p1(31)

p211 p222 p233 p2(12) p2(23) p2(31)

p311 p322 p333 p3(12) p3(23) p3(31)

⎤⎦ . (167)

Thus the two contributions to the linearization of the discretized version
of the internal mechanical virtual work are eventually expressed in matrix
representation as

Luu
inte = [δdu

e ]t
∫
Be

t

[Bu
e ]tevB

u
e dvΔdu

e = [δdu
e ]tkuu

e Δdu
e , (168)

Luϕ
inte = [δdu

e ]t
∫
Be

t

[Bu
e ]tpt

vB
ϕ
e dvΔdϕ

e = [δdu
e ]tkuϕ

e Δdϕ
e .

Here kuu
e and kuϕ

e denote partitions of the element stiffness matrix. Fi-
nally we may sum the element-wise contributions to the linearized internal
mechanical virtual work over, e.g., all the nel finite elements covering the
material body to obtain

nel∑
e=1

[δdu
e ]tkuu

e Δdu
e = [δdu]tkuuΔdu, (169)

nel∑
e=1

[δdu
e ]tkuϕ

e Δdϕ
e = [δdu]tkuϕΔdϕ.

Here kuu and kuϕ denote partitions of the global stiffness matrix that follow
from an assembly by the help of the previously introduced Boolean matrices

kuu =
nel∑
e=1

[au
e ]tkuu

e au
e =

nel

A
e=1

kuu
e ,

kuϕ =
nel∑
e=1

[au
e ]tkuϕ

e aϕ
e =

nel

A
e=1

kuϕ
e .

Contribution from the Boundary Finally the linearization of the (so-
lution dependent) mechanical external virtual work at the boundary renders
at the global level

Δ

[
mel∑
e=1

[δd̂u
e ]t
∫
Ae

t

[M u
e ]t[t t + tmax

t ] da

]
= Luu

ext + Luϕ
ext + Luq

ext. (170)
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Based on the discussions and abbreviations in the following section (and
skipping the tedious detailed derivations) these terms expand in terms of
boundary contributions to the global stiffness matrix

Luu
ext = [δdu]tk̂uuΔdu, (171)

Luϕ
ext = [δdu]tk̂uϕΔdϕ,

Luq
ext = [δdu]tk̂uqΔd̂ q.

Electrical problem (in matter). In analogy the linearization of the
discretized version of the internal electrical virtual work

Δ

⎡⎣nϕ
en∑

i=1

∫
Be

t

[δdϕ
i ∇xNϕ

i ] · dv

⎤⎦ = Lϕu
inte + Lϕϕ

inte (172)

renders two contributions Lϕu
inte and Lϕϕ

inte at the finite element level. With
the help of the tangent moduli introduced earlier these two contributions
read

Lϕu
inte =

nϕ
en∑

i=1

nu
en∑

j=1

∫
Be

t

[δdϕ
i ∇xNϕ

i ] · p : [Δdu
j ⊗∇xNu

j ] dv, (173)

Lϕϕ
inte = −

nϕ
en∑

i=1

nϕ
en∑

j=1

∫
Be

t

[δdϕ
i ∇xNϕ

i ] · d · [Δdϕ
j ∇xNϕ

j ] dv.

Again in analogy we may represent the linearization of the discretized
version of the internal electrical virtual work alternatively in matrix repre-
sentation

Δ

[
[δdϕ

e ]t
∫
Be

t

[Bϕ
e ]t dv

]
= Lϕu

inte + Lϕϕ
inte. (174)

Recall the arrangement of coefficients for the second-order dielectricity
tensor d

d =

⎡⎣d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤⎦ . (175)

Based on the appropriate Voigt notation the two contributions to the
linearization of the discretized version of the internal electrical virtual work
thus follow in matrix representation as

Lϕu
inte = [δdϕ

e ]t
∫
Be

t

[Bϕ
e ]tpvB

u
e dvΔdu

e = [δdϕ
e ]tkϕu

e Δdu
e , (176)

Lϕϕ
inte = −[δdϕ

e ]t
∫
Be

t

[Bϕ
e ]td Bϕ

e dvΔdϕ
e = [δdϕ

e ]tkϕϕ
e Δdϕ

e .
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Here kϕu
e and kϕϕ

e denote the remaining partitions of the element stiffness
matrix. Summing up the elementwise contributions to the linearized inter-
nal electrical virtual work over, e.g., all the nel finite elements covering the
material body renders

nel∑
e=1

[δdϕ
e ]tkϕu

e Δdu
e = [δdϕ]tkϕuΔdu, (177)

nel∑
e=1

[δdϕ
e ]tkϕϕ

e Δdϕ
e = [δdϕ]tkϕϕΔdϕ.

Here kϕu and kϕϕ denote partitions of the global stiffness matrix that follow
again from an assembly by the help of the previously introduced Boolean
matrices

kϕu =
nel∑
e=1

[aϕ
e ]tkϕu

e au
e =

nel

A
e=1

kϕu
e , (178)

kϕϕ =
nel∑
e=1

[aϕ
e ]tkϕϕ

e aϕ
e =

nel

A
e=1

kϕϕ
e .

Contribution from the Boundary Finally the linearization of the (so-
lution dependent) electrical external virtual work at the boundary renders
at the global level

−Δ

[
mel∑
e=1

[δd̂ϕ
e ]t
∫
Ae

t

[M ϕ
e ]t[	̂f

t + qt] da

]
= Lϕu

ext + Lϕϕ
ext + Lϕq

ext. (179)

Based on the discussions and abbreviations in the following section (and
skipping the tedious detailed derivations) these terms expand in terms of
boundary contributions to the global stiffness matrix

Lϕu
ext = [δdϕ]tk̂ϕuΔdu, Lϕϕ

ext = 0, Lϕq
ext = [δdϕ]tk̂ϕqΔd̂q. (180)

5.7 Linearization of Discretized Boundary Integral Equation

Usually the boundary element method is applied to linear problems
whereby the linearization of the discretized equations is not an issue. Here,
however, even if the equations that we solve are linear, the solution domain,
i.e. the interface ∂Bt between the material body and the free space, is vary-
ing with the deformation of the material body. Thus we have to linearize the
discretized boundary integral equation with respect to its solution domain,
a quite cumbersome endeavor as it will turn out in the sequel.
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Laplace equation. At the global level, i.e. after assembly of all element-
wise contributions the linearization of the discretized version of the bound-
ary integral equation reads

Δr q = [Δdϕ]tgϕ + [Δd̂q]tĝq + [dϕ]tΔgϕ + [d̂q]tΔĝq − [Δdϕ
∞]t. (181)

Anticipating the appropriate linearizations and ordering terms we might
eventually write

Δr q = kqϕΔdϕ + k qqΔd̂q + k quΔdu + k qfΔdf . (182)

Here we set ϕ∞ = df for notational convenience, moreover we abbreviated
for the matrices kqϕ, k qq and kqu of dimensions mcp ×mϕ

np, mcp ×mcp and
mcp × nnpndm, respectively,

k qϕ = [gϕ]t, k qq = [ĝq]t, k qu = [dϕ]thϕu + [d̂q]thqu. (183)

The urgent reader might want to jump over the admittedly tedious de-
tails of the linearizations in the following parts a) to c). Otherwise, in
order to derive the hϕu and hqu terms we have to start from the boundary
element level:

a) We have to provide first the linearization of the spatial covariant base
vectors

Δaα(η̂)|Ae
t

= Lu
eα(η̂)Δd̂u

e . (184)

Here we took into account that the element-wise nodal coordinates x̂ e

change like the corresponding nodal degrees for the deformation map d̂u
e =

pu
ed

u
e , whereby pu

e denotes an element-wise projection from finite element
to boundary element degrees of freedom. Thus the linearized area element
Δ da at the boundary of the three dimensional 12 material body is computed
by

Δ da(η̂)|Ae
t

da
=

a1 × a2

|a1 × a2|2 · [Δa1 × a2 + a1 × Δa2] = Au
e (η̂)Δd̂u

e . (185)

Here Au
e is an element-wise vector of dimension ndmmu

en that incorpo-
rates the isoparametric derivatives of the shape functions Mu

i . Likewise the
linearization of the surface normal m is expressed in terms of the lineariza-
tion of the spatial covariant base vectors

Δm(η̂)|Ae
t

=
i −m ⊗m

|a1 × a2| · [Δa1 × a2 + a1 × Δa2] = Su
e (η̂)Δd̂u

e . (186)

12In two dimensions da = a ·Δa/|a |2 da holds instead; the index α is omitted.
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Here Su
e is an element-wise matrix of dimensions ndm ×ndmmu

en that incor-
porates the isoparametric derivatives of the shape functions Mu

i .
Recall next r = x − ξ to obtain

Δrh(η̂)|Ae
t

= M u
e (η̂)Δd̂u

e − Δξh. (187)

Thus the linearization of r = |r |, i.e. the linearization of the radial distance
of the field point x from the source point ξ is expressed as

Δrh(η̂)|Ae
t

=
rh

rh
· Δrh = Ru

e (η̂)Δd̂u
e − Δξh

r . (188)

Here Ru
e is an element-wise vector of dimension ndmmu

en that incorporates
the shape functions Mu

i and the radial distance vector rh. Note that

Δξh
r =

rh

rh
· Δξh (189)

has a different expansion depending on whether the source point ξh is lo-
cated within or without the boundary element Ae

t . Finally we may relate
Δξh to the global degrees of freedom d̂u by

Δξh = M u
e (ξh)âu

e Δd̂u with ξh ∈ Ae
t . (190)

b.1) With the above preliminaries at hand we may compute the lin-
earization of ĝϕ∗

ξe as
Δĝϕ∗

ξe = ĥϕu∗
ξe Δd̂u

e − ξ̂ϕ
ξe. (191)

Here we introduced appropriate abbreviations

ĥϕu∗
ξe =

∫
Ae

t

[M ϕ
e ]tGu

ξe da, ξ̂ϕ
ξe =

∫
Ae

t

[M ϕ
e ]tΔξh

m da (192)

with Gu
ξe = Gu∗

ξe + Gu∗∗
ξe + Gu∗∗∗

ξe
13.

13Since ∇mGξ = ∇rGξ ·m we have that Δ∇mGξ = m ·Δ∇rGξ +∇rGξ ·Δm . The first
term expands into

m ·Δ∇rGξ = m ·
[[
∂2

rrGξ −
∂rGξ

r

]
r

r
⊗ r

r
+
∂rGξ

r
i

]
·Δr = γ ·Δr .

With the expansion for Δr and Δξh
m = γ · Δξ we may abbreviate the first term

m ·Δ∇rGξ = Gu∗
ξe Δd̂u

e−Δξh
m.With the expansion for Δm the second term abbreviates

as ∇rGξ ·Δm = Gu∗∗
ξe Δd̂u

e . Finally the changing area element da is taken care of by

Gu∗∗∗
ξe = ∇mGξA

u
e .
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By the assembly of all boundary elements and appropriate assignments
following the discussions in the above14 we write further for the linearization
of the global ‘fundamental’ vector ĝϕ∗

ξ at each source point ξ

Δĝϕ∗
ξ =

mel

A
e=1

Δĝϕ
ξe = ĥϕu∗

ξ Δd̂u. (193)

b.2) Next, we linearize Δĝϕ∗∗
ξ by first considering

Δch(ξ) = −
mel∑
e=1

∫
Ae

t

Gu
ξe daΔd̂u

e +
mel∑
e=1

∫
Ae

t

Δξh
m da = ct

ξΔd̂u. (194)

Thus we may express the linearization of ĝϕ∗∗
ξ (with ξ ∈ Ae

t ) as

Δĝϕ∗∗
ξ = [âϕ

e ]t[M ϕ
e (ξ)]tΔch(ξ) = ĥϕu∗∗

ξ Δd̂u. (195)

b.3) Finally we may write for the linearization of the generalized global
‘fundamental’ vector

Δgϕ
ξ = [pϕ]t[Δĝϕ∗

ξ + Δĝϕ∗∗
ξ ] = hϕu

ξ Δdu. (196)

By evaluating the linearization of the global ‘fundamental’ vector Δgϕ
ξc

at each collocation point ξc and arranging everything nicely in a ‘hexaedrix’
(the algebraic equivalent to a third order tensor) of dimension mnp ×mcp ×
ndmmnp we finally obtain

Δgϕ = hϕuΔdu. (197)

c) With the above preliminaries at hand we may further compute the
linearization of ĝ q

ξe as

Δĝq
ξe = ĥqu

ξe Δd̂u
e − ξ̂q

ξe. (198)

Here we introduced appropriate abbreviations

ĥqu
ξe =

1
ε0

∫
Ae

t

[M q
e]

t [∂rGξR
u
e + GξA

u
e ] da, ξ̂q

ξe =
1
ε0

∫
Ae

t

[M q
e]

t∂rGξΔξh
r da.

14After assembly we have that

ĥϕu∗
ξ =

mel

A
e=1

ĥϕu∗
ξe − κ̂ϕu

ξ with ξ̂ϕ
ξ =

mel

A
e=1

ξ̂ϕ
ξe = κ̂ϕu

ξ Δd̂u.
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By the assembly of all boundary elements and appropriate assignments
following the discussions in the above15 we write further for the linearization
of the global ‘fundamental’ vector at each source point ξ

Δĝq
ξ =

mel

A
e=1

Δĝq
ξe = ĥqu

ξ Δd̂u. (199)

By evaluating the linearization of the global ‘fundamental’ vector Δĝq
ξc

at each collocation point ξc and arranging everything nicely in a ‘hexaedrix’
of dimension mcp × mcp × ndmmnp we finally obtain

Δĝq = ĥquΔd̂u = hquΔdu. (200)

Free charge equation. At the global level, i.e. after assembly of all
elementwise contributions the linearization of the discretized version of the
free charge equation reads

Δrf = [Δd̂ q]tm̂q + [d̂q]tΔm̂q. (201)

Anticipating the appropriate linearizations and ordering terms we might
eventually write

Δrf = kfqΔd̂ q + kfuΔdu. (202)

Here we abbreviated for the matrices kfq and kfu of dimensions 1 × mcp

and 1 × nnpndm, respectively

kfq = [m̂q]t, kfu = [d̂q]tnqu. (203)

Again, the urgent reader might want to jump over the following details
of the linearization. Otherwise, in order to derive the nqu term we have
to start from the boundary element level: with the above preliminaries at
hand we may compute the linearization of m̂q

e as

Δm̂q
e = n̂qu

e Δd̂u
e . (204)

Here we introduced the abbreviation

n̂qu
e =

∫
Ae

t

[M q
e]

tAu
e da. (205)

15After assembly we have that

ĥqu
ξ =

mel

A
e=1

ĥqu
ξe − κ̂qu

ξ with ξ̂q
ξ =

mel

A
e=1

ξ̂q
ξe = κ̂qu

ξ Δd̂u.
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By the assembly of all boundary elements we finally write for the lin-
earization of the global vector m̂q

Δm̂q =
mel

A
e=1

Δm̂q
e = n̂quΔd̂u. (206)

Global problem. After assembly and after considering the appropriate
number of Dirichlet boundary conditions the previously derived partitions
of the global residual16 ru, rϕ, rq, rf and the corresponding partitions of the
global stiffness matrix are employed in a typical Newton-Raphson solution
scheme

kΔd = r , (207)

whereby each iteration step proceeds along the following pattern

d ← d + k−1r ,
r = r(d),
|r | ≤ tol?

(208)

If everything is fine, i.e. the residual is correctly implemented and has
been properly linearized, this scheme converges quadratically17 close to the
solution. Thereby the tolerance tol depends of course on the precision for
the computer representation of floating point numbers and the condition
number of the iteration matrix, but the experience from countless compu-
tational experiments indicates that log(tol) = −8 is a quite decent value. In
the above the global mechanical and electrical degrees of freedom and the
related partitions of the global residuals are arranged as follows

d =

⎡⎢⎢⎣
du

dϕ

d̂ q

df

⎤⎥⎥⎦ and r =

⎡⎢⎢⎣
ru

rϕ

r q

rf

⎤⎥⎥⎦ . (209)

Correspondingly, the partitions of the global stiffness matrix follow as

k =

⎡⎢⎢⎣
kuu + k̂uu kuϕ + k̂uϕ kuq + k̂uq 0

kϕu + k̂ϕu kϕϕ kϕq + k̂ϕq 0

kqu k qϕ k qq k qf

kfu 0 k fq 0

⎤⎥⎥⎦ . (210)

16Note that we from now on r denotes the global residual vector!
17In this context quadratic convergence denotes a situation in which the euclidean norm

of the residual r = |r | reduces from iteration i to iteration i+1 so that log ri+1 ≈ 2 log ri
once log ri < 0.
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It goes without saying that various options beyond a monolithic solution
are available for this coupled set of algebraic equations.

6 Computational Examples

The following simulations highlight some prominent features of the coupled
electro-mechanical response of electro-elastic bodies and demonstrate the
applicability and the accuracy of the numerical methods developed in the
above. To this end we consider a square specimen of dimension 60μm ×
60μm×10μm with a circular hole in its center of radius 40μm. The specimen
is subjected to an externally applied electric potential in both its upper and
lower sides. The simulations are performed for two cases:

Case 1: Firstly, we will study an example in which the effect of the sur-
rounding free space can be neglected and the results obtained with both
the FEM (in which only the material body is taken into account) and the
coupled BEM–FEM (in which free space is taken into account additionally)
do not exhibit significant differences.

Case 2: Secondly, we will study an example in which the effect of the
surrounding free space has a significant influence on the electro-mechanical
response of the material and can therefore not be neglected. Thereby, the
effect of the surrounding free space can be taken into account by invoking
the coupled BEM–FEM as developed in the above.

6.1 Case 1: Free Space may be Neglected

In the first case, the electric potential is prescribed at the lower and
upper side of the specimen as: ϕlower = −0.03 V and ϕupper = +0.03 V,
respectively. The plate is assumed to be made of a compressible Neo-Hooke-
type material with total energy density

W0 = 0.5μ[I1 − ln I3 − ndm] + 2λ[ln I3]2 + αI4 + βI5 − 0.5Jε ·
and with material parameters μ = 10 MPa, λ = 5 MPa , α = 10 Pa m2/V2,
β = 6 Pa m2/V2 and ε = ε0 in free space while ε = 5ε0 in matter. Recall
the electrical permittivity of vacuum ε0 = 8.85 · 10−12 Pa m2/V2. The
purely elastic response of the material under consideration depends on the
parameters μ and λ, which are the ordinary two Lamé coefficients. When
the material is subjected to an electric field, the total energy density infers
in particular that the material will exhibit a nonlinear coupling behavior
through the invariant I5. It is important to mention that the material
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constants α and β would have to be determined experimentally. However,
there is still a significant lack of experimental results, and therefore real
material properties are not available at this point. For the purpose of testing
the robustness of our numerical implementation, in this example we will
assume that the material of which the plate is made has the previously
mentioned properties.

The discretization generated for the 2d simulations has 2176 nodes and
2048 quadrilateral finite elements. In the case in which the free space is
additionally considered, the external and internal boundary of the specimen
is discretized into 256 boundary elements with linear electric potential and
constant flux. In the 3d simulation, 2880 nodes corresponding to 2048
hexahedral finite elements were used. In all cases, the mid-line (or mid-plane
in 3d) was constrained in the vertical direction for reasons of symmetry and
the mid-left point had a double constraint to avoid the displacement of
the whole plate in the horizontal direction. In the 3d example an extra
constraint in the out-of-plane direction was applied to the mid-right node
to avoid rotation.

Comparing the results of the simulations in Figures 4 and 5, we note
that they are practically identical.
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Figure 4. Deformation and distribution of electric potential of a square
specimen with a circular hole loaded by a electric potential of ϕlower =
−0.03 V and ϕupper = +0.03 V applied at its lower and its upper sides:
2d result obtained by FEM (in which only the material body is taken into
account).

This, of course, demonstrates that the effect of the surrounding free space
can indeed be neglected in this case. Finally the simulation in Figure 6 is
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Figure 5. Deformation and distribution of electric potential of a square
specimen with a circular hole loaded by a electric potential of ϕlower =
−0.03 V and ϕupper = +0.03 V applied at its lower and its upper sides: 2d
result obtained by coupled FEM-BEM (in which free space is additionally
taken into account).

the 3d version of the previous examples and supports the results obtained
in 2d.
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Figure 6. Deformation and distribution of electric potential of a square
specimen with a circular hole loaded by a electric potential of ϕlower =
−0.03 V and ϕupper = +0.03 V applied at its lower and its upper sides: 3d
result obtained by FEM.
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6.2 Case 2: Free Space can not be Neglected

In the second case, a different set material parameters was chosen with
μ = 0.1 MPa, λ = 0.05 MPa, α = 0.2ε0 = 1.77 · 10−12 Pa m2/V2, β =
2ε0 = 1.77 · 10−11 Pa m2/V2, the values for ε were set as in the above.
The huge difference in the values for α and β, when compared to the values
used for the first example, is the reason why we can not neglect the effect
of the surrounding free space in the present example. The potential applied
on the lower and upper sides of the specimen is ϕlower = −500 V and
ϕupper = +500 V, respectively. The mesh and the boundary conditions are
identical to the one used in the previous examples.

This problem was solved twice: i) FEM simulation ignoring the sur-
rounding free space and ii) coupled FEM–BEM simulation including free
space. As a consequence of the chosen material parameter, the results dis-
played in Figures 7 and 8 exhibit a significant difference. The specimen
suffers a markedly different deformation in both cases, demonstrating that
in the present case we can not neglect the influence of the surrounding free
space. Obviously a coupled BEM–FEM analysis is mandatory in this case
in order to obtain correct results.
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Figure 7. Deformation and distribution of electric potential of a square
specimen with a circular hole loaded by a electric potential of ϕlower =
−500 V and ϕupper = +500 V applied at its lower and its upper sides:
2d result obtained by FEM (in which only the material body is taken into
account).
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Figure 8. Deformation and distribution of electric potential of a square
specimen with a circular hole loaded by a electric potential of ϕlower =
−500 V and ϕupper = +500 V applied at its lower and its upper sides: 2d
result obtained by coupled FEM-BEM (in which free space is additionally
taken into account).

7 Conclusion

This contribution discussed the essential topics needed for the formulation
and computation of nonlinear problems in electro-elasticity. Thereby the
underlying variational setting of nonlinear electro-elasticity is exploited for
an the appropriate discretization in terms of the finite element method
combined with the boundary element method. The corresponding solution
methods have been discussed in much detail. In particular the computa-
tional analysis of nonlinear boundary value problems highlighted some key
features of coupled problems in nonlinear electro-elasticity.

Acknowledgements. The great help and support by Duc Khoi Vu, Her-
nan De Santis and Franziska Vogel in preparing this manuscript and con-
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X. Zhang, C. Löwe, M. Wissler, B. Jähne, and G. Kovacs. Dielectric elas-
tomers in actuator technology. Adv. Eng. Mater. 7:361–367, 2005.



Electro-Mechanical Response of Nematic
Elastomers: an Introduction

Antonio DeSimone
International School for Advanced Studies
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Abstract. We review in these lecture notes some of our recent
work on modeling the response of nematic elastomers to applied
mechanical loads and/or to electric fields, both in the static and
in the dynamic regime. Our aim is to compare theoretical results
based on mathematical analysis and on numerical simulations with
the available experimental evidence, in order to examine critically
the various recent accomplishments, and some challenging problems
that remain open. Nematic elastomers combine the electro-optical
properties and rotational degrees of freedom of nematic liquid crys-
tals with the mechanical properties and translational degrees of free-
dom of entropic rubbery solids. The rich behavior they exhibit, the
interesting applications they seem to make possible, the breadth
and depth of recent breakthroughs at the experimental, theoretical,
and computational level make nematic elastomers an exciting model
system for advanced research in mechanics.

1 Introduction

In these lecture notes we focus on the electro-mechanical behavior of one
specific material: nematic elastomers. It is a new material, so our under-
standing of it is still incomplete. Among its distinguishing features are
large spontaneous deformations, actuation by many different means includ-
ing electric fields, and mechanical compliance. This makes it suitable for
fast soft actuators and, in particular, for new applications such as artificial
muscles, which are currently of great technological interest. The reader is
referred to the monograph by Warner and Terentjev (2003) for a detailed
account of the chemistry and physics of nematic elastomers, and for an
extensive list of references.

The mechanism for electro-mechanical coupling is the anisotropy of di-
electric constants, as it is typical for liquid crystals. Nematic Liquid Crystal

R. W. Ogden et al. (eds.), Mechanics and Electrodynamics of Magneto- and Electro-elastic

 Materials,   © CISM, Udine 2011



232 A. DeSimone

Displays (LCDs), which represent one of the biggest market arenas for tech-
nological devices based on electro-mechanical coupling, exploit precisely this
mechanism. Indeed, a localized applied voltage is able to change the local
orientation of nematic molecules, which in turn results in a change of opti-
cal properties: the material can change from being transparent to opaque
when sandwiched between crossed polarizers, giving rise to a very reliable
optical micro-shutter. Individual pixels of LCDs are realized in this fash-
ion. We notice that the mechanism for electro-mechanical coupling based
on dielectric anisotropy is different from those based on either permanent
or induced polarization, which occur in ferroelectric and piezoelectric mate-
rials, respectively. Indeed, nematic elastomers are neither ferroelectric nor
piezoelectric.

Nematic elastomers provide a counterpart in the world of rubbery solids
to nematic liquid crystals. Thanks to the coupling with nematic degrees of
freedom, their entropic elasticity can be activated by temperature changes
(similarly to what happens in shape-memory alloys, SMAs), electric fields
(like in electro-active polymers, EAPs), or by irradiation with UV light.
The lessons one can learn by studying this fascinating model material may
provide very useful insight on the behavior of many other interesting sys-
tems.

2 Molecular Structure and Macroscopic Response

Nematic elastomers consist of cross-linked networks of polymeric chains con-
taining nematic mesogens. The three main chemical constituents of this
assembly are a polymer backbone, nematic mesogens, and cross-linkers.

The polymer backbone results from the repeat of monomers containing
tetra-valent atoms, such as Carbon (C) or Silicon (Si), that are able to
form long and flexible chains. In these geometries, two bonds are used to
construct a connected chain, while two more bonds are free and available
for attachment of side units (see Figure 1).

Nematic mesogens are rigid rod-like molecules containing benzenic rings.
They are responsible for the establishment of nematic order at sufficiently
low temperatures. The isotropic-to-nematic transition is a phase transfor-
mation determined by the alignment of the nematic mesogens, and accom-
panied by a change of the optical properties of the system (which becomes
anisotropic). At the same time, the material tends to become transparent.
Nematic mesogens can either be part of the backbone (main-chain nematic
elastomer) or be attached sideways (side-chain nematic elastomers). The
possibility of attachment typically comes from the presence of a double car-
bon bond C=C which can open up into -C-C- leaving the unsaturated ends
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Figure 1. Basic chemistry of nematic elastomers. On the top row, some
typical polymer backbones: methil-siloxane, an example of polysiloxane (a),
a (CH2)n chain (b), and polyacrilate (c). On the bottom row, a bi-phenil
side-chain nematic mesogen (d) and a tri-functional cross-linker (e).

free for bonding.
Depending on whether the C=C unit is at one end or in the central part

of the nematic mesogen, this will orient parallel or perpendicular to the
backbone giving rise to prolate or oblate structures. When the isotropic-
to-nematic phase transition takes place, the alignment of nematic mesogens
causes a distortion of the polymer backbone to which they are attached. We
will be mostly concerned with the prolate case, in which the polymer chains
tend to elongate along the direction of alignment of the nematic mesogens.

Cross-linkers are flexible chains containing double C=C bonds at both
ends. Hence they are able to attach to two distinct polymer chains, con-
necting them. This is what turns an ensemble of disjoint polymer chains (a
polymeric liquid) into a percolating network able to transmit static shear
stresses (an elastomer, or rubbery solid). The combination of polymer back-
bone, nematic mesogens, and cross-linkers leads to a system in which the
orientational degrees of freedom and the associated optical-elastic proper-
ties typical of nematic liquid crystals (dielectric anisotropy, Frank curva-
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ture elasticity associated with spatial variations of nematic order) appear in
combination with the mechanical properties and the translational degrees
of freedom exhibited by an elastic solid (deformation gradients, rubber elas-
ticity, shear moduli).

The coupling between nematic orientational order and rubber entropic
elasticity has profound consequences. The alignment of nematic mesogens
in a neighborhood of a point x along an average direction ±n(x), where n is
a unit vector field called nematic director, induces a spontaneous distortion
of the polymer chains described by

Vn = a1/3N + a−1/6(I − N), (1)

where a > 1 (prolate case), I is the identity, and N = n ⊗ n. Here
a ⊗ b denotes the tensor product of the vectors a and b with components
(a⊗ b)ij = aibj . Tensor N is closely related to de Gennes’ order tensor Q.
Here we are using the framework of Frank-type theories, in which order is
constrained to be uniaxial and the degree of order is fixed. Then, one has
Q = s(N− 1

3
I), with s > 0 constant, and the descriptions of nematic order in

terms of either Q or N are equivalent. The material parameter a, which in
the oblate case is smaller than one, gives the amount of spontaneous elonga-
tion along n accompanying the isotropic-to-nematic phase transformation.
It is a combined measure of the degree of order and of the strength of the
nematic-elastic coupling, and it is in principle a function of temperature.
We will ignore this, as we will be working at a fixed, constant temperature,
well below the isotropic-to-nematic transition temperature TIN . Tensor Vn

represents a volume-preserving uniaxial stretch along the current direction
of the director n.

The spontaneous distortion (1) can be very large (up to 300% in some
main-chain elastomers) and it is easily observable when the temperature
of the elastomer is lowered below TIN starting from a temperature above
TIN (at which the material behaves like a standard rubber). Working at
fixed T < TIN , one way of observing (1) is to apply an electric field to
a mechanically unconstrained sample (e.g., a nematic gel surrounded by
silicon oil, inside a capacitor with transparent electrodes). As is well known
from ordinary nematic liquids, due to the anisotropy of the dielectric tensor
(we assume here that the material has positive dielectric anisotropy εa), a
sufficiently strong applied voltage tends to align the director with the electric
field E, i.e. n = ±E/|E|. The quantitative details of this coupling will be
described in Section 7. Suffice it to say here that by rotating the applied field
one may induce rotations of n and observe the macroscopic shape changes
of the sample accompanying this process. Also, simultaneous birefringence
measurements can be used to determine directly the dependence of n on
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the applied electric field. It turns out that the correlation between observed
deformations and measured n follows equation (1) to a remarkable level of
accuracy; see Fukunaga et al. (2008).

A more subtle consequence of (1) emerges in stretching experiments in
the absence of applied electric fields. Again, the temperature is fixed at
a constant value below TIN . The sample is prepared so that the director
is spatially uniform, say n aligned with e3, the third unit vector of the
canonical basis, and its initial state is the natural one corresponding to n =
e3. This means that polymer chains are elongated along the direction of e3,
with stretch a1/3 > 1 along e3 with respect to the reference configuration.
Imagine now that the sample, a thin film with thickness direction parallel
to e1, is stretched along e2, with rigid clamps applied on the two edges
perpendicular to e2. Experiments show that the force–stretch diagram is
unusually soft, with an extended flat plateau following a small region of
initially hard response.

We will refer in what follows to the idealized case in which this initially
hard regime is not present as the ideally soft case. The interpretation of this
unusual softness is that the sample accommodates the externally imposed
deformations by reorienting the director along the direction of maximal
stretch, hence storing less elastic energy. This is confirmed by optical mi-
croscopy under crossed polarizers, which reveals a texture of opaque and
transparent bands parallel to e2. The existence of this optical contrast
shows that the director reorientation process occurs in a spatially nonuni-
form manner (stripe-domain patterns); in view of the coupling implied by
(1), oscillating shears are triggered by the oscillations of the nematic di-
rector. This means that nematic elastomers exhibit material instabilities
(co-operative elastic shear banding, which is fully reversible; see Sections
5 and 6) as a consequence of the spontaneous distortion (1) accompanying
the symmetry breaking transformation from the high temperature isotropic
phase to the low temperature nematic phase.

3 Warm-up in Finite Dimensions

Consider the following model mechanical system, lying in the plane {e1, e2},
with origin O. It is made of two rigid links OQ′, and Q′Q, each of length
1
2
r > 0, and of an extensible spring QP with stiffness k > 0. There are

frictionless joints in O, Q′, and Q, so that O is fixed and only relative
rotations are allowed in Q′ and Q. A force F = F1e1 + F2e2 acts on the
free end P, and all points are constrained to lie in the half-plane x2 ≥ 0.

We are interested in the following problem. Given an arbitrary force F
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Figure 2. A finite-dimensional model system.

with F · e2 ≥ 0, find the configurations of the system minimizing its energy

E(P,Q) =
k

2
|P− Q|2 − F · P. (2)

Once this problem is solved for every F, we can imagine to fix the direction
of F, say F = Fe, and to vary its intensity F . By plotting the component
along e of the solution P − O of the minimization problem against the
value F of the corresponding force we may obtain a force–stretch diagram
summarizing the essentials of the mechanical response of the system to the
prescribed applied loads.

It is interesting to notice that, since OQ′ and Q′Q are inextensible, the
configuration of the whole system is uniquely identified by the position of
points P and Q. Point Q is, however, an internal variable in the sense
that no external force is directly applied to it. Moreover, in view of the
constraints present on the system, the set of admissible positions for point
Q is

A := {Q ∈ R
2 : |Q− O| ≤ r,Q · e2 ≥ 0}. (3)

We may obtain the solution to the problem above in two steps. First we
minimize out the internal variable Q. Indeed

min
P,Q

E(P,Q) = min
P

(
min
Q

k

2
|P −Q|2 − F · P

)
. (4)

We set
Eeff(P) = min

Q

k

2
|P− Q|2 =

k

2
|P− QP|2, (5)
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Figure 3. Level curves of the energy (left) and the force response (right)
of the finite-dimensional model system.

where QP is the orthogonal projection of P onto the closed convex set A.
Notice that QP coincides with P if P ∈ A.

Granted (4) and (5), we can perform the second step in our minimization
problem

min
P,Q

E(P,Q) = min
P

(Eeff(P) −F ·P) . (6)

If we consider a stretching experiment starting from Q = O, an equilib-
rium configuration under zero force, we obtain a zero force response with Q
moving along a segment parallel to e until Q−O = re. The force response
to further extension is linear, given by k(|P − O| − r). In other words, we
can obtain the force response by differentiating Eeff .

In spite of its simplicity, the model finite-dimensional system described in
this section provides some interesting guidance for our future developments.
For example, it shows that in spite of non-uniqueness of the minimal en-
ergy configuration of the two rigid links in the determination of (5) (notice
that Q′ is not uniquely defined by QP in (6) if |P − O| < r), the effec-
tive energy itself, Eeff , and (hence) the force-stretch diagram are unique.
Moreover, the example raises the question of dynamic accessibility of the
energy-minimizing states. Indeed, if after having reached the linear regime
in the extension experiment we reversed the sign of the force, a buckling in-
stability would occur at |Q−O| = r. Following one of the buckling branches
one can return to the initial configuration Q = O. Following the symmet-
ric path we would hit the constraint x2 ≥ 0 preventing us from reaching
Q = O.
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The notion of effective energy will appear in what follows in two different
circumstances, in particular in Section 6. One is the energy density Weff(F)
arising from optimizing over the nematic degrees of freedom the energy
density W (F,n) at fixed deformation gradient F. Another one is the coarse-
graining of the energy Weff over elastic degrees of freedom oscillating at
fine length-scales (microstructures), in order to compute its quasi-convex
envelope W qc

eff .

4 Elastic Energy Densities for Nematic Elastomers

This section is mostly based on DeSimone and Teresi (2009), to which the
reader is referred for further details. We will denote by F = ∇y the gradient
of the deformation with respect to the reference configuration, chosen as the
one the sample would exhibit if stress-free in the high-temperature isotropic
state. Moreover, we denote by J = detF the determinant of the deformation
gradient F. In our discussion we focus on the most basic (and fundamental)
expression for the elastic energy density stored by a nematic elastomer. This
is based on the trace formula of Bladon et al. (1993) which, after a change
of variables first proposed by DeSimone (1999), becomes

W (F,N) = 1
2
μBe · I, detBe = J2 = 1,

Be(F,N) = BL−1 = FFT L−1(N),
(7)

where
L(N) := a2/3N + a−1/3(I − N) = V2

n (8)

and Vn is the spontaneous stretch defined in (1). The second line in (7)
emphasizes that, according to the trace formula, the part of the deformation
responsible for storage of elastic energy (the elastic part in a multiplicative
decomposition, in the same spirit of the Kröner-Lee multiplicative decom-
position in finite plasticity) is Be = BL−1. To the best of our knowledge,
this seemingly obvious observation has not been made before DeSimone and
Teresi (2009) in spite of the fact that it has profound implications.

Proposition 1 in the Appendix shows that, given an arbitrary current
orientation of the nematic director N, (7) is minimized at the energy level
3
2μ, which is independent of N, by any deformation p0 with ∇p0∇pT

0 =
L(N) . By the polar decomposition theorem, ∇p0 is then of the form

∇p0 = L1/2(N)Q, (9)

where Q is an arbitrary rotation. Every pair (∇p0,N) is a natural, stress-
free state for a material described by the energy density W above.

Formula (7) lends itself to easy and useful generalizations. Expressions
for the energy density, which are more suitable to study the regime of high
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stresses, can be obtained by replacing (7) with

W (F,N) = Wiso (Be(F,N)) , J = 1, (10)

where one may choose for Wiso(Be) any of the available functional forms
used to model isotropic incompressible elastic materials, which have a strict
global minimum at Be = I. Formula (7) corresponds to the neo-Hookean
expression; a few other alternative examples are listed in DeSimone and
Teresi (2009). We quote here, in particular, the Ogden form∑N

i=1 ai tr (Be)γi/2 +
∑M

j=1 bj tr (cof Be)δj/2

=
∑N

i=1 ai (vγi

1 + vγi

2 + vγi

3 ) +
∑M

j=1 bj

(
(v2v3)δj + (v3v1)δj + (v1v2)δj

)
,

where vk denotes the k-th principal stretch, i.e. the square root of the k-th
eigenvalue of Be.

Extensions of Formula (7) to the compressible case are also straightfor-
ward, by setting

W̃ (F,N) = Wiso (Be
s(F,N)) + Wvol(J), Be

s = J−2/3Be. (11)

Here Wvol(s) is a non-negative, strictly convex function which is finite only
for s > 0, vanishes only at s = 1, and diverges to +∞ as s tends to either
0 or +∞. This modification leaves the energy-well structure unchanged,
because the minimizers of (11) are clearly the same as for (7). Since in
what follows we will be only interested in the behavior of the energy in a
neighborhood of a natural state, a quadratic expansion of Wvol may suffice,
leading to the following model expression for the compressible isotropic case

W̃ (F,N) = 1
2
μBs · L−1(N) + 1

2
κ(
√

detB − 1)2. (12)

Another important generalization is discussed in detail in DeSimone and
Teresi (2009), and it consists of adding some anisotropic corrections to the
isotropic energies described above. The two most basic ones are given below.
The first one is

W̃β(F,N) = 1
2μβCs · L−1

a + W̃ (F,N), (13)

where Cs := (detC)−2/3C and

La := L(Na) = a2/3Na + a−1/3(I − Na)

with Na := na ⊗na and na a unit vector along the axis of anisotropy in the
reference configuration.
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The second model anisotropic expression is

W̃α(F,N) = 1
2
μα(1 − N · N∗(F)) + W̃ (F,N), (14)

where
N∗ := n∗ ⊗ n∗, n∗ = n∗(F) := Fna/|Fna|, (15)

and n∗ gives the current orientation of the axis of anisotropy na. A some-
what related model, based on the notion of nonlinear relative rotations, has
been proposed in Menzel et al. (2009).

Finally, we consider the analogues of the energy densities described above
in the framework of a geometrically linear theory. These are derived in
DeSimone and Teresi (2009) by Taylor expansion. Assume that a1/3 = 1+γ,
with 0 < γ � 1. We then have

L−1(N) = I − γ(3N − I) + 3γ2N. (16)

Assume moreover that F = I + ∇u, where u(x) = y(x) − x is the displace-
ment, and |∇u| = ε � 1. We then have B = I+ 2E+ o(ε2), where E is the
symmetric part of the displacement gradient (linear strain), and

Bs = (det(I + 2E))−1/3(I + 2E)

= I + 2Ed + 2
3

((
E · E + 1

3 (tr (E))2
)
I − 2tr (E)E

)
+ o(ε2),

(17)

where Ed is the deviatoric part of E; see DeSimone and Teresi (2009). It
follows from (16) and (17) that

Bs · L−1 = 3 + 2(Ed − E0(N)) · (Ed − E0(N)) + o(ε2, γ2, εγ), (18)

where
E0(n) = 3

2
γ
(
n ⊗ n − 1

3
I
)

(19)

represents the small strain counterpart of the spontaneous strain Vn given
in (1). Finally, we have that

(
√

detB − 1)2 = (trE)2 + o(ε2). (20)

The calculations above show that, modulo additive constants, the small
strain counterpart of W̃ is given by the following expression

Φ̃(E,N) = μ|Ed − E0(N)|2 + 1
2κ(trE)2. (21)

The incompressible version is obtained by formally setting κ = +∞, so that

Φ(E,N) = μ|Ed − E0(N)|2, trE = div u = 0. (22)
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It is worth comparing the expressions Be = BL−1(N) and Ee = E −
E0(N), which describe the relative deformation between the current one
and the preferred one associated with N. The first expression does this
through the composition with an inverse, as should be expected in nonlinear
kinematics; the second one through a difference, as is appropriate in linear
kinematics. In both cases, it is only this relative deformation (the elastic
part of the appropriate strain measure) that contributes to storage of elastic
energy. A rigorous proof that (the quasiconvexification of) (22) gives the
correct small-strain limit of (12) (in the sense of Gamma-convergence) is
provided in Agostiniani and DeSimone (2010).

The expansion of Wβ works similarly, and one obtains

Φ̃β(E,N) = Φ̃(E,N) + μβ|Ed − E0(Na)|2 (23)

as the small strain counterpart of W̃β . The small-strain approximation of
W̃α is instead more complicated, and we only report here a simplified ex-
pression valid in the regime where director rotations are large, while strains
are small

Φ̃α(E,N) = Φ̃(E,N) + 1
2μα(1 − N · Na), (24)

where Φ̃ is given in (21). This energy has been used in Fukunaga et al.
(2008) to analyze the response of a free-standing film of a swollen nematic
elastomer, to which an electric field is applied in order to drive the director
away from its initial direction n = na. In the experiments, a finite critical
field needs to be overcome in order trigger director rotation. Measuring the
equilibrium angle between n and na as a function of the applied electric
field provides an experimental validation of (24) and a way of determining
the value of the material parameter μα. It turns out that, when the field
is removed, the director relaxes back to its preferred orientation na. When
μα = 0, the spring-back mechanism is suppressed and the critical field
needed to start director reorientation is zero (Fukunaga et al., 2008, eq.
(24)). Interestingly, if one describes anisotropy using (23) instead of (24)
then the spring-back mechanism is suppressed.

5 Material Instabilities

We choose a reference frame so that na is along the third coordinate axis
and set

n(θ) =

⎡⎣ 0
sin θ
cos θ

⎤⎦ , na =

⎡⎣0
0
1

⎤⎦ , (25)
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where θ is the angle between n and na. The state with θ = 0 and F =
L1/2

a is a global minimizer for all the energies introduced above. We are
interested in the stability with respect to superposed shears of equilibrium
states with θ = 0, both in the initial configuration and in those obtained
by (moderately) stretching the material in a direction perpendicular to na.
For this purpose, we consider the deformations

F(δ;λ) =

⎡⎣ a−1/6 0 0
0 λ δ
0 0 a1/6/λ

⎤⎦ (26)

with λ a fixed stretching parameter varying in a right neighborhood of a−1/6.
More precisely, we will take λ ∈ [a−1/6, a1/12).

By substituting F(δ;λ) and n(θ) in the various expressions of the energy,
equations (12)–(14), we obtain three energies of the form f(δ, θ;λ). In all
cases ∂f/∂δ and ∂f/∂θ vanish at δ = θ = 0. Thus δ = θ = 0 is always
an equilibrium configuration (this is easily seen by symmetry under ±δ and
±θ) and we obtain expansions to second order of the following form

f(δ, θ;λ) = f(0, 0; λ) + 1
2

(
Gδδδ

2 + 2Gδθδθ + Gθθθ
2
)
, (27)

where

Gδδ(λ) =
∂2f

∂δ2
(0, 0;λ), Gδθ(λ) =

∂2f

∂δ∂θ
(0, 0;λ), Gθθ(λ) =

∂2f

∂θ2
(0, 0;λ).

(28)
The equilibrium value θ0 of θ as a function of δ is obtained from

Gδθδ + Gθθθ = 0 ⇒ θ0(δ) = −Gδθ

Gθθ
δ, (29)

and substituting this into (27) we get

f(δ, θ0(δ);λ) − f(0, 0;λ) = 1
2G(λ)δ2, (30)

where we have set

G(λ) =
(

Gδδ − G2
δθ

Gθθ

)
. (31)

Depending on whether G(λ) > 0, G(λ) = 0, or G(λ) < 0, we have that
the equilibrium state (δ = 0, θ = 0) is stable, neutrally stable, or unstable
with respect to superposed shears. The special case λ = a−1/6 reproduces
the analysis in de Gennes (1980): simple shear from the natural state corre-
sponding to N = Nr. Small shears superposed to large stretches have been
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considered also in Ye et al. (2007), and the case of small shears superposed
to large deformations arising in uniaxial extension experiments has been
considered in Biggins et al. (2008).

We now compute G(λ) for the three model energies W̃ , W̃β , W̃α, given
by (12), (13), (14), respectively. In the isotropic case, inserting n(θ) and
F(δ;λ) into (27) (where we replace f by W̃ or by W : since detF(δ;λ) ≡ 1
this makes no difference), we obtain

Gδδ(λ) = μa1/3, Gδθ(λ) = −μa1/3(
a − 1

a
)
a1/6

λ
,

Gθθ(λ) = μa1/3(
a − 1

a
)(

a1/3

λ2
− λ2).

(32)

Thus, by (31), we have

G(λ) = μa1/3 (1 − g(λ)) , (33)

where

g(λ) :=
a − 1

a

a1/3

a1/3 − λ4
. (34)

Since g(λ) = 1 for λ = a−1/6, and g(λ) is strictly increasing in the interval
[a−1/6, a1/12), we conclude that

G(a−1/6) = 0, and G(λ) < 0, for every λ ∈ (a−1/6, a1/12). (35)

Considering energy W̃β we obtain

Gβ
δδ(λ) = μa1/3 +

βμ

a2/3
, Gβ

δθ(λ) = −μa1/3(
a − 1

a
)
a1/6

λ
,

Gβ
θθ(λ) = μa1/3(

a − 1
a

)(
a1/3

λ2
− λ2),

(36)

so that, by (31), we have

Gβ(λ) = μa1/3

(
1 − g(λ) +

β

a

)
. (37)

Since g(λ) is strictly increasing in the interval [a−1/6, a1/12) starting from
the value g(a−1/6) = 1, and it diverges as λ → a1/12, we conclude that there
exists λβ

c ∈ (a−1/6, a1/12) such that

Gβ(λ) > 0, for λ ∈ [a−1/6, λβ
c ), and Gβ(λ) < 0, for λ ∈ (λβ

c , a1/12).
(38)
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The critical stretch λβ
c is obtained by solving g(λβ

c ) = 1 + β/a, yielding

λβ
c = a1/12

(
β + 1
β + a

)1/4

. (39)

As β increases from 0 to ∞, λβ
c increases from a−1/6 to a1/12. Repeating

the same procedure for energy W̃α given by (14) we obtain

Gα(λ) = μa1/3

[
1 − 1

a

a1/3(a − 1) + αa2/3λ2 + αa1/3λ6

a1/3 + αa2/3λ2/(a − 1) − λ4

]
. (40)

Again, it turns out that there exists λα
c ≥ a−1/6 such that

Gα(λ) > 0, for λ < λα
c , and Gα(λ) < 0, for λ > λα

c . (41)

The critical stretch λα
c is an increasing function of α and, as α increases

from 0 to ∞, λα
c increases from a−1/6 to the value

λα
c =

1
(a − 1)1/4

a1/12, α = ∞. (42)

The corresponding values of Gα(λ) are

Gα(λ) = μa1/3

[
1 − a − 1

a

a1/3

a1/3 − λ4

]
, α = 0, (43)

Gα(λ) = μa1/3

[
1 − a − 1

a

a1/3 + λ4

a1/3

]
, α = +∞. (44)

If the anisotropy parameter a is sufficiently large, say, a ≥ 2, then the value
of λα

c for α = +∞ is not larger than a1/12 and we have that λα
c ≤ a1/12 for

all α ≥ 0. Using the values α = 1 and a = 2 we obtain

0.89 = a−1/6 < λα
c = 0.9637 < a1/12 = 1.06, α = 1, a = 2. (45)

The shear moduli calculated above, which become negative for certain
values of the stretching parameter λ, show that the isotropic energy W
leads to material instabilities: uniformly stretched states become unstable to
superposed shears. In other words, the stripe-domain instabilities discussed
in Section 2, and analyzed in detail in the literature on nematic elastomers
(see Verwey et al., 1996, the discussion in Warner and Terentjev, 2003,
Chapter 7, and the analysis in DeSimone and Dolzmann, 2002, Conti et al.,
2002a, and Conti et al., 2002c) represent a form of elastic, reversible, shear
band instability.
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Indeed, consider the case of a sample which is uniformly stretched, start-
ing from the natural state corresponding to N = Na = e3 ⊗ e3, according
to the deformation gradient

F(0;λ) =

⎡⎣ a−1/6 0 0
0 λ 0
0 0 a1/6/λ

⎤⎦ , (46)

with λ ≥ a−1/6. The occurrence of shear-like instabilities can be detected
from the stability condition (35), which shows that the state (F(0;λ),Na)
is unstable for every λ > a−1/6.

The anisotropic corrections impart to the material a positive shear mod-
ulus up to a critical stretch λc. At this critical stretch, the modulus for
shearing in planes containing nr vanishes, and a stripe domain instabil-
ity with alternating shears becomes the mode of response of lowest energy
to further stretching. This scenario is consistent both with the theoreti-
cal analyses in Golubović and Lubensky (1989) and Warner and Terentjev
(2003), and with the experimental results in Rogez et al. (2006): with the
anisotropic corrections, the soft mode of response of the ideally soft limit is
latent in the initial configuration, and it is activated at a sufficiently large
imposed stretch.

It is interesting to observe that this very transparent picture emerges
naturally from a simple analysis of two fully nonlinear anisotropic energies,
and from the geometric structure of the associated energy landscape. Fig-
ures 4 and 5 provide a concrete representation of such energy landscapes
through the level curves of the functions

f(δ, λ) := min
θ

W̃ (F(δ;λ),N(θ)) − 3
2μ, (47)

fβ(δ, λ) := min
θ

W̃β(F(δ;λ),N(θ)) − 3
2
μ(1 + β) (48)

obtained by evaluating energies (12) and (13) on states described by (25)
and (26), and optimizing with respect to θ. The functions G(λ) and Gβ(λ)
used in this Section (and also in Section 8 for the interpretation of the key
experimental evidence available on nematic elastomers) give the curvature
of the graphs of (47) and (48) along the line δ = 0, and they enable us
to identify the material instabilities associated with the non-convexity of
energies (12) and (13).

The results discussed above are fully consistent with Ye et al. (2007) and
Biggins et al. (2008), where the effects of compositional fluctuations or of
the aligning fields arising with the cross-linking process are discussed. We
notice in addition that the analysis of the stability of equilibria with θ = π/2
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Figure 4. Energy landscape for the (ideally soft) isotropic energy (47) with
a = 2 and μ = 1. Equally spaced level curves in a plane (λ, δ) (left); graph
of the section at λ = 1 (right). Energy minimizing states are shown by the
thick red curve (left) and the red dots (right).
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Figure 5. Energy landscape for the anisotropic energy (48) with a = 2,
μ = 1, and β = 1. Equally spaced level curves in a plane (λ, δ) (left); graph
of the section at λ = 1 (right). The unique energy minimizing state is shown
by the red dot; local minimizers at constant λ are shown by the thick purple
curve (left) and the purple dots (right).

in a neighborhood of λ = a1/3 (the stretch defining the upper limit of the
plateau in the ideally soft case – see next section) is completely analogous to
the one we have explicitly performed here, leading to similar instabilities and
to another critical stretch defined by a vanishing shear modulus. Moreover,
while our quantitative analysis is based on some simple concrete energy
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expressions, the qualitative picture that emerges is much more general, and
it will be shared by a much larger class of energies.

The energy landscapes in Figures 4 and 5 enable us also to unfold the
bifurcation occurring at fixed imposed stretch λ, and to anticipate the ensu-
ing post-critical behavior. Indeed, the intersection of a vertical line through
(λ, 0) with the pitchforks in the graphs identifies two co-operative shears
±δ(λ), which are kinematically compatible and average to zero if occurring
in bands of equal width. With these two opposite shears, we can uniquely
associate two symmetric orientations ±θ(λ) of the nematic director, where
θ(λ) is the minimizer in (47) or (47) corresponding to F(δ(λ); λ). These
two orientations of the nematic director give rise to the optical contrast
observed in the stripe-domain instability. A more complete analysis of this
post-bifurcation mode of response, based on co-operative elastic shear band-
ing, will be the object of the next section.

6 Effective Energy: Coarse-graining and
Quasi-convexification

We return now to the basic expression (7) for the elastic energy density
in the incompressible case. For fixed F, we minimize with respect to n to
obtain the effective energy

Weff(F) = min
|n|=1

(
W (F,N) − 3

2μ
)
. (49)

More explicitly,

Weff(F) =

{
1
2μa1/3

(
λ2

1(F) + λ2
2(F) + a−1λ2

3(F) − 3a−1/3
)

if detF = 1
+∞ else,

(50)
where the λi(F) are the ordered principal stretches (in particular, λ3 =
λmax). We remark that, if one evaluates (50) on deformation gradients
F(δ;λ) of the form (26), one obtains precisely the graph of Figure 4. In
other words, Weff(F(δ;λ) = f(δ, λ), where f is given by (47). Moreover,
the n that achieves the minimum in (49) is the eigenvector nopt associated
with the largest eigenvalue of FFT :

FFT nopt = λ2
max(F)nopt. (51)

The shear banding instabilities described in the previous section are
related to the non-convexity of the energy landscape, as Figure 4 illustrates
rather clearly. A useful notion of material stability is the quasiconvexity of
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the governing energy density. This is an infinite-dimensional analogue of the
patch-test for finite elements. It means that an affine state of deformation F
gives the minimal energy state in a sample if one prescribes at its boundary
affine displacement boundary conditions compatible with F. As discussed in
the previous section, (50) cannot be quasiconvex because it can be lowered
by development of shear bands.

The quasiconvex envelope of Weff

W qc
eff (F) = inf

y

{
1
|Ω|
∫

Ω

Weff(∇y(x))dx : y(x) = Fx on ∂Ω, det∇y(x) = 1
}

(52)
coarse-grains the energetics of the system: it gives the minimum energy
needed to produce the macroscopic deformation F, optimized over all pos-
sible admissible microstructures y(x). The infimum in (52) is taken over
all functions y that are Lipschitz-continuous. Note also that the domain Ω,
whose volume we denote by |Ω|, plays here the role of a representative vol-
ume element: it can be verified that W qc

eff does not depend on Ω. The use of
W qc

eff in numerical computations allows one to resolve only the macroscopic
length scale, with the (possibly infinitesimal) microscopic scale already ac-
counted for in W qc

eff . Clearly, this approach gives only average information
on the fine phase mixtures and focuses on the macroscopic response of the
system.

An explicit formula for the quasi–convex envelope of (50) has been de-
rived in DeSimone and Dolzmann (2002). For volume-preserving deforma-
tion gradients it reads

W qc
eff (F) =

⎧⎪⎨⎪⎩
0 (phase L) if λ1 ≥ a−1/6

Weff(F) (phase S) if a−1/2λ2
3λ1 > 1

1
2
μa1/3

(
λ2

1 + 2a−1/2λ−1
1 − 3a−1/3

)
(phase I) else,

(53)
while W qc

eff (F) = +∞ if detF 
= 1. Here the labels L, S, and I refer to the
fact that the resulting material response is liquid–like, solid–like, or of an
intermediate type; see Figure 6 and the discussion below.

The formula above gives a very precise picture of the macroscopic me-
chanical response resulting from our model, and of its microscopic origin.
There are three regimes in (53), arising from the collective behavior of ener-
getically optimal fine phase mixtures. They represent three different modes
of macroscopic mechanical response, corresponding to three different pat-
terns of microscopic decomposition of the macroscopic deformation gradient
F. Phase L describes a liquid-like response (at least within the ideally soft
approximation underlying expression (50) for the microscopic energy den-
sity; a more realistic semi–soft case is discussed in Conti et al., 2002b). All
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Figure 6. Level curves of the energy Weff given by (50) (left) and of its
quasiconvex envelope W qc

eff given by (53) (right).

gradients falling in this region of the phase diagram, which is the zero level
set of Wqc, can be sustained at zero internal stress.

To resolve microscopically the whole of phase L (in particular, to resolve
the deformation gradient F = Id) it is necessary to allow for relatively com-
plex microstructures (layers-within-layers). Phase S describes a solid-like
response in which fine phase mixtures are ruled out. As a consequence,
in this regime the coarse-grained macroscopic energy Wqc reproduces the
microscopic energy Weff with no changes. Finally, gradients in the interme-
diate phase I can transmit stresses (unlike phase L) through microstructure
formation (unlike phase S). The microscopic patterns required to resolve
phase I have a relatively simple geometry (laminates, or simple-layers) Pat-
terns of this kind have been frequently observed experimentally after being
first reported in Kundler and Finkelmann (1995). The first attempt to ex-
plain them through elastic energy minimization is in Verwey et al. (1996).

The expression (53) for the energy density has been used in Conti et
al. (2002a) for the numerical simulation of stretching experiments of sheets
of nematic elastomer held between two rigid clamps. The simulations are
designed to reproduce the classical experimental setting of Kundler and
Finkelmann (1995), where stripe–domain patterns were first observed.

The specimen is a thin sheet of nematic elastomer. We choose a reference
frame with axis x1 parallel to the thickness direction. Moreover, we assume
that the specimen is prepared with the director uniformly aligned along x3,
and is then stretched along x2. By reorienting the director from the x3 to the
x2 direction, the material can accommodate the imposed stretches without
storing elastic energy. As it is well known (see, e.g., Warner and Terentjev,
2003), a uniform rotation of the director would induce large shears, which
are incompatible with the presence of the clamps. Director reorientation
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Figure 7. Numerical simulation of stretching experiments on thin sheets of
nematic elastomers: geometry (left) and force–stretch diagrams for several
aspect ratios AR (right). The panel on the left shows four configurations,
namely, reference, initial, and the two at stretches s=1.31 and s=1.57 for
the geometry with AR=3. On the corresponding force–stretch curve on the
right panel, full dots mark the representative points of configurations shown
in Figure 8 (adapted from Conti et al., 2002a).

occurs instead with the development of spatial modulations shaped as bands
parallel to the x2 axis. This is the origin of the striped texture observed in
the experiments.

The numerical simulations allow us to analyze the stretching experi-
ments in more detail. If the clamps do not allow lateral contraction, the
reorientation of the director towards the direction of the imposed stretch is
severely hindered. This constraint is stronger near the clamps, and it decays
away from them producing two interesting effects. On the one hand, the
induced microstructures are spatially inhomogeneous, with director reorien-
tation occurring more rapidly in the regions far away from the clamps. On
the other hand, the stress–strain response shows a marked dependence on
the geometry of the sample, with the influence of the clamps becoming less
pronounced as the aspect ratio length/width increases. These effects are
documented in Figure 7 and Figure 8, which show good qualitative agree-
ment with both the experimental results from the Cavendish Laboratories
(Warner and Terentjev, 2003), and with the X-ray scattering measurements
(Zubarev et al., 1999).
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Figure 8. Numerical simulation of stretching experiments on thin sheets of
nematic elastomers, based on the coarse–grained energy W qc

eff , at stretches
s=1.31 (a), and s=1.38 (b). Only one–quarter of the sample is shown since
the rest of the solution can be obtained by symmetry. The circular insets dis-
play energetically optimal microstructures at some selected locations within
the sample. The sticks give the local orientation of the principal direction
of maximal stretch, i.e., the orientation of the nematic director (adapted
from Conti et al., 2002a).

The stripe domain patterns appearing in Figure 8 are all simple lami-
nates, either in phase L or in phase I. Focussing on the point at the center
of the sample (the bottom left corner in the plots of the deformed shape),
the material is in phase L as long as no force is transmitted at the clamps.
The computed deformation gradient is

Fλ =

⎛⎝ a−1/6 0 0
0 λ 0
0 0 a1/6/λ

⎞⎠ , (54)

with λ varying from a−1/6 to a1/3. This is resolved by a simple laminate in
which the deformation gradient oscillates between the values

F±
λ =

⎛⎝ a−1/6 0 0
0 λ ±δ

0 0 a1/6/λ

⎞⎠ (55)

in stripes perpendicular to x3. The value of δ = δ(λ) is obtained from
δ2 = (a2/3 − λ2)(1 − a−1/3λ−2), which ensures that F±

λ has the character-
istic principal stretches giving Weff(F±

λ ) = 0. Notice that the kinematic
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compatibility condition F+
λ − F−

λ = a ⊗ n̂, where n̂ is the reference normal
to the stripes and a is a shear vector, is satisfied with a = 2δ(λ)e2 and
n̂ = e3. This guarantees the existence of a continuous map y such that
either ∇y(x) = F+

λ or ∇y(x) = F−
λ , with ∇y constant in layers with nor-

mal e3. The deformation patterns given by (55) characterize the systems
of shear bands resolving the post-critical behavior of the material following
the shear band instability described in the previous sections. Associated
with that one finds a modulated pattern nopt(F±

λ ) for the nematic director,
where nopt is given by (51).

Force starts being transmitted through the sample when the deformation
gradient in the central point moves to the region I of the phase diagram.
The computed deformation gradient is now of the form

F1(λ1) =

⎛⎝ λ1 0 0
0 1/λ1λ3 0
0 0 λ3

⎞⎠ , (56)

where λ3 > a1/3 forces λ1 < a−1/6. This is resolved by simple laminates
similar to the ones above. The deformation gradient oscillates between the
values

F±
1 (λ1) =

⎛⎝ λ1 0 0
0 1/λ1λ3 ±δ
0 0 λ3

⎞⎠ (57)

in stripes perpendicular to x3, and δ = δ(λ1) is computed by requiring
that the principal stretches be those giving the minimal energy at given λ1,
namely (λ1, a

−1/4λ
−1/2
1 , a1/4λ

−1/2
1 ); see Conti et al. (2002a). The associated

nematic texture is again obtained from nopt(F±
1 (λ1)), with nopt given by

(51).
A relaxation result providing the small strain analog of (53) has been

obtained in Cesana (2010). Anisotropic corrections leading to more realistic
force–stretch curves in which the soft plateau occurs at small but finite levels
of force are discussed in Conti et al. (2002b).

7 Dynamics under an Applied Electric Field

In order to move the first steps towards modeling the dynamic response
of nematic elastomers to applied electric fields, we follow DeSimone et al.
(2007) and use a simpler, geometrically linear theory. This small-strain
approximation has been used to study the equilibrium response to applied
electric fields in Cesana and DeSimone (2009). The same approach has been
used quite successfully in Fukunaga et al. (2008) to reproduce the exper-
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imentally measured dynamic response of nematic gels to applied electric
fields.

We consider a sample of a nematic gel occupying a region B inside a
cell Ω. The part Ω \ B of the cell is occupied by an isotropic dielectric
(typically, silicon oil). We denote by u and n the displacement and the
nematic director in B, and by ϕ the electric potential in Ω. As usual, n is
parametrized through a rotation field R such that n = Rnr, where nr is a
(fixed) reference orientation.

The governing equations of our model are Gauss’ law for an anisotropic
dielectric, the standard balance of linear momentum for a viscoelastic solid,
and an evolution equation modeling a viscous-like dynamics for the director
rotation. They read as

div (d) = 0 (58)

in Ω, and
div (S) = 0, (59)

ηn(ṘR
− Wu̇) = [S,E0 ] + 1
2 εo εa [∇ϕ ⊗∇ϕ,n ⊗ n ]

+ skw (div (kF∇n) ⊗ n) (60)

in B. They are supplemented by suitable initial and boundary conditions,
adapted to the specific experimental set-up one is trying to model. Here, in
(58), the electric displacement d is given by

d = −εo D∇ϕ, (61)

with

D∇ϕ =

{
ε⊥∇ϕ + εa (∇ϕ · n)n in B
εc ∇ϕ in Ω \ B,

(62)

where εo > 0 is the free space permittivity, ε‖ and ε⊥ are the relative
permittivities of the gel in the directions parallel and perpendicular to n,
εa = ε‖ − ε⊥ is the dielectric anisotropy, and εc is the relative permittivity
of the isotropic dielectric occupying the region Ω \ B.

Moreover, in (59) and (60), E0 = E0(n) is the spontaneous strain asso-
ciated with the isotropic-to-nematic transformation

E0(n) = 3
2
γ
(
n ⊗ n − 1

3
I
)
, (63)

while the stress S is given by

S = C (Eu − E0) + ηgEu̇, (64)
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where
Eu = 1

2

(∇u + (∇u)

)
, Eu̇ = 1

2

(∇u̇ + (∇u̇)

)
, (65)

C is the (positive definite) tensor of elastic moduli, and ηg > 0 is the
viscosity of the gel. In principle, one would like to assume for C = C(n) the
symmetry of a transversely isotropic solid with distinguished axis n, so that
the Cartesian components of C are all described in terms of five independent
scalars. Since a detailed experimental characterization of these parameters
is not available, whenever quantitative information on them is needed for
our analysis, we make the simplifying assumptions C33 = C11, C12 = C13,
and C66 = C44 = (C11 − C12)/2 (see, e.g., Ikeda, 1990, Ch. 3); here we
are using Voigt’s notation for the components of C, and assuming that n is
directed along the third coordinate axis. In this case, C becomes isotropic,
denoted by Ciso, and the values of the Young modulus Y and the Poisson
ratio ν suffice to fully characterize Ciso.

Finally, in (60), ηn > 0 denotes a parameter describing the rotational
viscosity of the director, Ṙ denotes the time rate of R, Wu̇ is the skew-
symmetric part of the velocity gradient ∇u̇, kF is the Frank constant (giv-
ing the strength of curvature elasticity in the one-constant approximation
adopted here), skw(A) = (A − A
)/2 denotes the skew-symmetric part of
the matrix A, and [A,B] = AB − BA is the commutator of the matrices
A and B.

The model above is derived as follows. We introduce the total energy
functional

E = 1
2

∫
B

(
kF |∇n|2 + C (Eu − E0) · (Eu − E0)

)
− 1

2

∫
Ω

(
εo(D∇ϕ) · ∇ϕ

) − ∫
∂sB

(sext · u) , (66)

where the first integrand contains Frank’s curvature energy and the elastic
energy, the second one is the total electric energy including the energy
needed to maintain the constant voltage difference V across the cell (see de
Gennes, 1993, eq. (3.67), and Stewart, 2004, eq. (2.86)), and the third one
is the potential energy of the loading device exerting an external force per
unit area, denoted by sext, on the loaded part ∂sB of the boundary of B.
When C = Ciso the elastic energy term in (66) reduces to Φ̃ given by (21).

Equations (58) and (59) are standard. The first one arises by assum-
ing instantaneous relaxation to equilibrium of the electric potential and a
viscoelastic dynamics for the elastic displacement

0 =
δE
δϕ

,
δD
δu̇

= −δE
δu

, (67)
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where the operator δ is used to denote the variational derivatives of the
energy functional E with respect to ϕ and u, and the variational derivative
of the viscous dissipation D

D = ηn|ṘR
 − Wu̇|2 + ηg|Eu̇|2 (68)

with respect to u̇. Straightforward manipulations show that (67)2 is equiv-
alent to (59) supplemented by the constitutive assumptions (63)–(64). Sim-
ilarly, (60) follows from

δD
δṅ

= −δE
δn

, (69)

(notice that ṘR
n = ṅ = ω × n, where ω is the director angular velocity)
which states that the dynamics is such that the “viscous” dissipation rate
accompanying the director evolution balances exactly the energy release
rate driving the process.

The structure of equation (60) reveals in a rather transparent way the
conditions such that a spatially uniform director field n be in equilibrium.
In particular, the condition [S,E0] = 0 is satisfied if and only if the stress
S and the spontaneous distortion E0(n) have the same principal directions
(see Gurtin, 1981, p. 12).

The model described above has been used in Fukunaga et al. (2008)
to understand experiments performed on a free-standing film in which an
applied field perpendicular to the initial orientation of the nematic director
is switched on suddenly, maintained until the system reaches equilibrium,
and then switched off. The comparison between the predicted relaxation
times of n and u following switch on and switch off and the experimental
measurements is in Figure 9. In order for this agreement to be possible,
we need to use for the elastic energy the anisotropic expression Φ̃α (24)
instead of either Φ̃(E,N) = Ciso(E − E0) · (E − E0)/2 or Φ̃β(E,N) =
Φ̃(E,N)+μβ |Ed−E0(Na)|2. In spite of the anisotropic correction, this last
expression does not provide a spring-back mechanism pushing the director
back to the initial orientation na when the electric field is switched off.

The dynamic model can be used also in the absence of applied electric
fields to investigate rate effects in the force-stretch curves, and whether the
response curves obtained in Section 6 by global energy minimization are
also dynamically accessible in the limit of vanishingly small loading rates
(DeSimone and Teresi, 2010). Interestingly, one may study in this way the
dynamic pathways originating from an unstable state and leading to a new
stable state. A stretching experiment giving a dynamic analogue of the
one shown in Figure 7 is presented in Figure 10. A snapshot of dynamic
simulations leading to formation of stripe domains is shown in Figure 11.
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Figure 9. Characteristic relaxation times of n (optical) and u (mechanical)
following to switch-on and switch-off of an electric field. Adapted from
Fukunaga et al. (2008).

Figure 10. Dynamic force-strain response under purely mechanical stretch-
ing. The dashed line gives the response curve corresponding to global energy
minimizers. Adapted from DeSimone and Teresi (2010).

8 Comparison with Key Experimental Results

We now compare the predictions of the various models discussed above
with the experimental evidence coming from three benchmark experiments:
purely mechanical stretching and shearing, and electric-field-induced rota-
tion of the nematic director in a free-standing film.
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Figure 11. A snapshot from numerical simulations of dynamic stretching
experiments at slow stretching rates, leading to formation of stripe domains.
Adapted from DeSimone and Teresi (2010).

8.1 Stretch

Consider a stretching experiment starting from the natural state corre-
sponding to N = Nr = e3 ⊗ e3 and described by the deformation gradient

F(0;λ) =

⎡⎣ a−1/6 0 0
0 λ 0
0 0 a1/6/λ

⎤⎦ , (70)

with λ ≥ a−1/6. Here nr denotes an arbitrary reference orientation when
dealing with the isotropic material; it will be chosen as nr = na when dealing
with one of the anisotropic ones. The deformation described by (70) is a
plane-strain extension or, in Treloar’s terminology, a pure shear. As long as
the state (F(0; λ),N = Nr) is a stable equilibrium, the stress response can
be obtained from W (F(0; λ),Nr) by differentiating with respect to λ. This
leads to

σ(λ) = μ

(
a1/3λ − 1

a1/3λ3

)
, (71)

where σ denotes the normal stress difference S22 − S33 measured in terms
of nominal (or first Piola-Kirchhoff) stresses.

As already discussed in the previous sections, the isotropic energy W
leads to a stripe-domain instability: already at λ = a−1/6, the homoge-
neous state (F(0; λ),N = Nr) loses stability in favor of nonhomogeneous
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patterns with alternating shears having the same average deformation as
(70) but lower energies than the uniformly deformed state (70). These al-
ternating shears play a crucial role in the calculation of the coarse-grained
energy (the quasiconvex envelope) performed in Section 6. The analogy be-
tween this mode of response and mechanical twinning in materials exhibiting
martensitic transformations has been first pointed out in DeSimone (1999).
Formula (71) does not apply and, thanks to the development of alternat-
ing shear bands of the form (55), the system can accommodate any stretch
λ ∈ [a−1/6, a1/3] at zero stress σ(λ) ≡ 0, thus exhibiting an ideally soft
response.

Applying a similar argument to energy Wβ we obtain instead

σβ(λ) = μ(1 + β)
(

a1/3λ − 1
a1/3λ3

)
, λ ∈ [a−1/6, λβ

c ). (72)

This implies that the material will show a hard response up to the critical
stretch λβ

c . Then a softer mode of response, accompanied by the emergence
of non-homogeneous deformation patterns relying on alternating shears of
the form F(±δ;λ) given by (26), becomes energetically advantageous and
dynamically accessible. The value λβ

c is clearly an upper bound for the
onset of the instability because, in a real system, imperfections may trigger
the instability well before λβ

c is reached. Applying the same argument to
W̃α we obtain exactly the same scenario of a hard response only up to a
threshold given by

σα(λ) = μ

(
a1/3λ − 1

a1/3λ3

)
, λ ∈ [a−1/6, λα

c ). (73)

Estimates of the critical stretches λβ
c , λα

c for meaningful values of the ma-
terial parameters are given in (39) and (45). For stretches exceeding the
critical value for the stability of a homogeneously stretched state, numerical
simulations are needed in order to resolve the complex, non-homogeneous
response.

8.2 Shear

We move now to simple shear experiments. Starting from the natural
state corresponding to N = Nr = e3 ⊗ e3, we consider simple shears of
magnitude proportional to δ in a plane containing nr (see Figure 12)

F(δ; a−1/6) =

⎡⎣ a−1/6 0 0
0 a−1/6 δ
0 0 a1/3

⎤⎦ , (74)
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N = Nr

e3

e2

N

θ

δ l a−1/3

e3

e2

Figure 12. Shear experiment corresponding to (74) on a sample of initial
size h × l × l.

N

e1

e2

N

e1

e2

ε h a1/6

Figure 13. Shear experiment corresponding to (75) on a sample of initial
size h × l × l.

and simple shears of magnitude proportional to ε in a plane perpendicular
to nr (see Figure 13)

F̃(ε; a−1/6) =

⎡⎣ a−1/6 0 0
ε a−1/6 0
0 0 a1/3

⎤⎦ . (75)

In this second case, it turns out that N = Nr is always an equilibrium and
we obtain energy expressions of the form

f(ε, 0;λ) = f(0, 0;λ) + 1
2 G̃ε2, (76)

where
G̃ = μa1/3, G̃β = μ(1 + β)a1/3, G̃α = μa1/3. (77)

The moduli for shears in a plane containing nr (recall that nr = na in
anisotropic cases) follow from (33), (37), (40), and are given by

G = G(a−1/6) = 0, Gβ = Gβ(a−1/6) =
βμ

a2/3
, (78)
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Gα = Gα(a−1/6) = αμ
1

a2/3(1 + a2 − 2a + aα)
. (79)

From (77)2 and (78)2 it follows that

Gβ =
1
a
(

β

1 + β
)G̃β, (80)

so that, as β increases from 0 to +∞, Gβ increases from 0 to G̃β/a. Using
a typical value a = 2 for a, we obtain that Gβ can be as large as half of G̃β,
provided that β is large enough. From (77)3 and (79) it follows that

Gα =
α

a + a3 − 2a2 + a2α
G̃α, (81)

so that, as α increases from 0 to +∞, Gα increases from 0 to G̃α/a2. For
α = 1 and a = 2 we deduce from (81) that Gα = 1

6 G̃α.
These result show that the relatively large moduli reported in Rogez

et al. (2006) for shears in planes containing na are not incompatible with
the theoretical estimates, provided that the anisotropy parameters α and β
have large enough values.

8.3 Electric Field Applied to a Free-standing Film

The experiments reported in Fukunaga et al. (2008) provide another
important conceptual benchmark. By applying an electric field to a free-
standing film of a swollen nematic elastomer, in such a way that the electric
field drives the director away from its initial orientation nr = na, one ob-
tains a very clean set-up where many features of the mechanics of nematic
elastomers can be addressed unambiguously. The experiments confirm the
power of formula (1) in reading correctly the coupling between mechanical
deformations and nematic order, as shown by the good match between bire-
fringence and strain at steady state as functions of the applied voltage; see
Figure 14.

Moreover, the experiments show that a finite critical field needs to be
overcome in order to trigger director rotation, and that the director springs
back to the initial orientation when the electric field is removed. Both these
phenomena are a direct manifestation of anisotropy. Interestingly, of the
two proposed anisotropic formulas, only (24) seems capable of capturing
spring-back while, with (23), the spring-back mechanism is suppressed.

8.4 Discussion

Our analysis shows that the three experimental findings:
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Figure 14. Birefringence (a) and strain (b) at steady state as functions of
the applied voltage. Birefringence gives a direct measurement of n and the
correlation between the two curves is precisely the one implied by eq. (23).
Adapted from Fukunaga et al. (2008).

– existence of a finite threshold before the emergence of a softer mode
of response to stretching,

– absence of a vanishingly small shear modulus in simple shear exper-
iments starting from the natural state corresponding to the director
orientation at cross-linking,

– existence of a finite threshold in electric-field induced rotation of the
director in free-standing nematic gels,

are all related manifestations of the anisotropy imprinted in the material by
memory of the cross-linking state, where N = na ⊗ na. Simple anisotropic
corrections to the basic trace formula (7), which represents their isotropic, or
ideally soft limit, are able to reproduce (at least qualitatively) the available
experimental evidence, and hence “explain” it.

We close by emphasizing again that the model anisotropic energies dis-
cussed here should not be considered as immediate tools for the faithful
reproduction of the experimentally measured response of any specific sam-
ple. They are conceptual models. But, as a wise man once said, nothing is
more practical than a good theory.

Appendix: Alignment Energies

In this appendix we discuss some examples of alignment energies, namely
energies whose minimization enforces alignment with a given vector n0 or a
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given tensor L. In parametrizing the set of unit vectors it will be useful to
remember that an arbitrary unit vector n can be represented through the
action of a rotation R ∈ Rot acting on a fixed reference unit vector n (for
which one can take, e.g., one of the unit vectors of the canonical basis).

Let n0, with |n0| = 1, be a given unit vector, let n be an arbitrary unit
vector, and consider the energy density

f(n) = − 1
2kn · n0 = − 1

2k cos2 θ, k > 0, (82)

where θ is the smallest angle between ±n and ±n0. Since cos2 θ ≤ 1, we
have that f ≥ − 1

2k with equality achieved only by n = ±n0. An important
example is provided by the electrostatic energy density of an anisotropic
dielectric in the case of positive dielectric anisotropy εa > 0. Indeed, the
electrostatic energy density reads

fele(n) = −1
2εo|E|2 (ε⊥ + εa(n · n0)) , n0 = E/|E|, (83)

where E is the electric field and εo, ε⊥, and εa are dielectric constants. For
εa > 0, fele(n) is minimized by n = ±E/|E|. This shows that energy (83)
enforces a quadrupolar coupling between director n and electric field E.

We now move to energies encoding the alignment effect on the state
of deformation F due to a spontaneous or an externally imposed uniaxial
tensor field L. The typical example is

L = RLrRT , Lr = V2
r = a2/3Nr + a−2/6(I − Nr), (84)

where Nr = nr ⊗ nr and nr is a fixed reference unit vector. We collect the
relevant material in the following proposition.

Proposition 1 Let B and L be in the set of symmetric and positive definite
n×n matrices with determinant equal to d, denoted by Pd, and consider the
scalar function

f(B,L) := B · L−1 = tr (BL−1).

Then, for every B and L in Pd,

f(B,L) ≥ n, with equality only if B = L, (85)

so that

min
B∈Pd

f(B,L) = f(B0(L),L) = n, where B0(L) = L. (86)

Assume further that L is of the form L = L(R) = RLrRT , where R ∈ Rot
is an arbitrary rotation and Lr is (a constant matrix) of the form

Lr = a2/nnr ⊗ nr + a−2/[(n−1)n](I − nr ⊗ nr) (87)
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with a > 1, nr a fixed unit vector, and I the identity. Then

fopt(B) := min
R∈Rot

f(B,RLrRT ) = f(B,R0(B)LrRT
0 (B)) =

= a2/[(n−1)n]
[
tr (B) − (1 − a−2/(n−1))λ2

max(B)
]
, (88)

where the minimizer R0(B) is a rotation that maps nr onto the eigenvector
of B corresponding to its largest eigenvalue λ2

max(B). Finally,

min
B∈P1

fopt(B) = n, (89)

attained by any matrix B ∈ P1 whose largest eigenvalue is λ2
max(B) = a2/n

and whose other eigenvalues are all equal to a−2/[(n−1)n].

Proof. Writing B and L−1 in spectral form we have

B · L−1 =
n∑

i=1

λ2
i (B)bi ⊗ bi ·

n∑
j=1

λ2
j (L

−1)lj ⊗ lj =

=
n∑

i,j=1

λ2
i (B)λ2

j (L
−1)(bi · lj)2 ≥

n∑
i=1

λ2
i (B)λ2

i (L
−1)(bi · li)2

with equality holding only if (bi · lj)2 = 0 for i 
= j, i.e. only if B and
L−1 share their eigenspaces, in which case they commute. Since we want to
minimize B ·L−1, we restrict attention to this case in the rest of the proof.

Let A := BL−1. Since B,L ∈ Pd and BL−1 = L−1B, then A ∈ P1.
Denoting by λ2

i (A) its eigenvalues, and using the well-known inequality
between arithmetic and geometric means, we have

tr (A) =
n∑

i=1

λ2
i (A) ≥ n

(
n∏

i=1

λ2
i (A)

)1/n

= n (detA)1/n = n (90)

where the inequality is always strict unless λ2
i (A) = 1 for all i, or A = I.

This proves (85) and hence (86).
Observe now that

L−1(R) = RL−1
r RT , L−1

r = a2/[(n−1)n]
[
I − (1 − a−2/(n−1))nr ⊗ nr)

]
,

(91)
and therefore

B · L−1(R) = a2/[(n−1)n]
[
tr (B) − (1 − a−2/(n−1))BRnr · Rnr)

]
. (92)
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Since 1 − a−2/(n−1) > 0, this is minimized when BRnr · Rnr is maximal,
i.e. when R maps nr onto the eigenvector corresponding to the maximal
eigenvalue λ2

max(B) of B. This establishes (88).
Finally, (89) follows by exchanging the order of minimization in B and

L, in view of (86). We also give a more direct proof, which is instructive.
To this end, we order the eigenvalues of B so that λ2

n(B) = λ2
max(B). Using

again the inequality between arithmetic and geometric means, we have

tr (B) − (1 − a−2/(n−1))λ2
max(B) = a−2/(n−1)λ2

max(B) +
n−1∑
i=1

λ2
i (B)

≥ n

(
a−2/(n−1)

n∏
i=1

λ2
i (B)

)1/n

= na−2/[(n−1)n],

with equality only if a−2/(n−1)λ2
max(B) = λ2

i (B), i = 1, . . . , n − 1. Since
1 = detB = λ2

max(B)(λ2
i (B))(n−1), this is possible if and only if λ2

max(B) =
a1/n and λ2

i (B) = a−2/[(n−1)n] for i = 1, . . . , n − 1. This establishes (89)
and completes the proof. �
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L. Golubović and T. C. Lubensky. Nonlinear elasticity of amorphous solids.
Phys. Rev. Lett. 63:1082–1085, 1989.

M. E. Gurtin. Introduction to Continuum Mechanics. Academic Press, New
York, 1981.

T. Ikeda, Fundamentals of Piezoelectricity. Oxford University Press, 1990.



266 A. DeSimone

I. Kundler and H. Finkelmann. Strain-induced director reorientation in ne-
matic liquid single crystal elastomers. Macromol. Rapid Comm. 16:679–
686, 1995.

P. Martinoty, P. Stein, H. Finkelmann, H. Pleiner, and H. R. Brand. Me-
chanical properties of monodomain side chain nematic elastomers. Eur.
Phys. J. E 14:311–321, 2004.

A. Menzel, H. Pleiner, and H. R. Brand. Nonlinear relative rotations in
liquid crystalline elastomers. J. Chem. Phys. 126:234901.1–9, 2009.

D. Rogez, G. Francius, H. Finkelmann, and P. Martinoty. Shear mechanical
anisotropy of side chain liquid-crystal elastomers: influence of sample
preparation. Eur. Phys. J. E 20:369–378, 2006.

I. Stewart. The Static and Dynamic Continuum Theory of Liquid Crystals.
Taylor & Francis, London, 2004.

G. C. Verwey, M. Warner, and E. M. Terentjev. Elastic instability and stripe
domains in liquid crystalline elastomers. J. Phys. II France 6:1273–1290,
1996.

M. Warner and E. M. Terentjev. Liquid Crystal Elastomers. Clarendon
Press, Oxford, 2003.

J. Weilepp and H. R. Brand. Director reorientation in nematic–liquid–
single–crystal elastomers by external mechanical stress. Europhys. Lett.
34:495–500, 1996.

F. Ye, R. Mukhopadhyay, O. Stenull, and T. C. Lubensky. Semisoft nematic
elastomers and nematics in crossed electric and magnetic fields. Phys.
Rev. Lett. 98:147801, 2007.

E. R. Zubarev, S. A. Kuptsov, T. I. Yuranova, R. V. Talroze, and H. Finkel-
mann. Monodomain liquid crystalline networks: reorientation mecha-
nism from uniform to stripe domains. Liquid Crystals 26:1531–1540,
1999.


	Cover
	Mechanics and Electrodynamics of Magneto- and Electro-Elastic Materials
	Copyright Page
	PREFACE
	Table of Contents
	Electromagnetics in Deformable Solids
	1 Introduction
	1.1 Basic Aspects: Maxwell, Heaviside, Lorentz: Physics versus Electrical Engineering
	Relationship with electric engineering


	2 Continuum Approach from Particle Approach: Ponderomotive Force, Couple and Energy
	2.1 Information from a Microscopic Model
	2.2 Postulate of Equations Accounting for Information from a Microscopic Model
	2.3 The Principle of Virtual Power

	3 Continuum Thermomechanics of Electromagnetic Solids: Standard Formulation
	3.1 Nondissipative Materials
	3.2 Variational Formulations
	3.3 Internal Strains and Stresses

	4 Dissipative Processes: Relaxation, Hysteresis
	4.1 Standard Relaxation
	4.2 The Notion of Internal Variable of State
	4.3 First Example: Dielectric Relaxation in Ceramics
	4.4 Second Example: Electromechanical Hysteresis in Ferroelectrics

	5 Different Scales: Homogenization, Ferromagnetic Polycrystalline Bodies
	5.1 General Problem
	5.2 The Magnetic-Domain Scale
	5.3 The Grain-Monocrystal Scale
	5.4 The Polycrystal Scale

	6 Electromagnetic Configurational Mechanics
	6.1 Material Momentum and Eshelby Stress
	6.2 Global Balance of Material Momentum
	6.3 Electroelastic Bodies
	6.4 Evaluation of the Energy-Release Rate in Electroelastic Fracture
	6.5 Electroelastic Path-Independent Integrals
	6.6 Electroelastic Phase-Transition Fronts
	A. General equations
	Constitutive relations
	B. Canonical balance laws
	C. Jump relations at a front

	6.7 Case of Magnetized Materials

	7 Comments and Conclusions
	Bibliography

	Modeling Nonlinear Electroelastic Materials
	1 Introduction
	2 Electrostatics
	2.1 Lorentz Force
	2.2 Coulomb’s Law
	2.3 Units
	2.4 Charge Conservation
	2.5 The Field of a Static Charge Distribution
	2.6 The Field of a Dipole
	2.7 Gauss’s Theorem
	2.8 Maxwell’s Equations
	2.9 Polarization and Magnetization in Materials
	2.10 Boundary Conditions
	2.11 Boundary Conditions for E and D
	2.12 Boundary Conditions for B and H

	3 Deformable Electromagnetic Materials
	3.1 Continuum Kinematics
	3.2 Lagrangian Formulation

	4 Nonlinear Electroelastic Materials
	4.1 The Equations of Electrostatics
	4.2 Equilibrium, Stress and Constitutive Laws.
	Formulations based on the polarization.
	Formulations based on the electric field.
	Formulations based on the electric displacement.
	Lagrangian variables and governing equations.

	4.3 Constitutive Equations
	Incompressible materials.

	4.4 Material Symmetry Considerations
	4.5 Exterior Fields
	4.6 Representative Example
	Radial electric displacement field.
	Stress components and equilibrium.
	Illustration.


	5 Incremental Equations
	5.1 Increments within the Material
	5.2 Exterior Incremental Fields
	5.3 Incremental Boundary Conditions

	Bibliography

	Magnetostatics: from Basic Principles to Nonlinear Interactions in Deformable Media
	1 Introduction
	2 Magnetostatics
	2.1 The Biot-Savart Law and the Vector Potential
	2.2 Scalar Magnetic Potential
	2.3 Ampere’s Circuital Law
	2.4 Force and Couple on a Dipole in a Magnetic Field
	2.5 Magnetization in Material Media
	2.6 Boundary Conditions

	3 Deformable Magnetic Materials
	3.1 Continuum Kinematics
	3.2 Eulerian and Lagrangian Formulations

	4 Nonlinear Magnetoelastic Interactions
	4.1 Equilibrium, Stress and Constitutive Laws
	Magnetic forces and couples.
	Mechanical equilibrium.
	Constitutive equations – Eulerian formulations.
	Virtual work formulation.
	Constitutive equations – Lagrangian formulations.
	Incompressible materials.

	4.2 Material Symmetry Considerations

	5 Representative Boundary-Value Problems
	5.1 Application to Circular Cylindrical Geometry
	5.2 Helical Shear
	Axial magnetic field.
	Illustration.
	Circumferential magnetic field.


	Bibliography

	Analysis of Nonlinear Electrostatic Membranes
	1 Introduction
	2 Theoretical Background
	2.1 Conservation Laws, Maxwell’s Equations
	Linear momentum.
	Maxwell’s equations.

	2.2 Continuum Electrodynamics
	Linear momentum, Lorentz force.

	2.3 Stored Energy Function, Constitutive Relations
	Reference configuration.


	3 Membrane Approximation
	3.1 Membrane Kinematics
	3.2 Membrane Reduction of Maxwell’s Equations
	3.3 Membrane Reduction of Linear Momentum Balance
	3.4 Summary of Membrane Equations

	4 Proposed Constitutive Relation
	4.1 Dielectric Constitutive Formulation
	4.2 Comment on the Maxwell Stress Tensor

	5 Example Problem
	5.1 Problem Geometry
	5.2 Kinematics
	5.3 Non-dimensionalization
	5.4 Solution and Numerical Formulation
	5.5 Results

	6 Conclusion
	Bibliography

	Computational Nonlinear Electro-Elasticity – Getting Started –
	1 Introduction
	2 Variational Setting of Nonlinear Electro-Elasticity
	3 Reformulation of Euler Equations
	3.1 Weak Form for the Material Body
	3.2 Linearization of the Weak Form and Tangent Moduli
	Material and geometric parts of tangent moduli.

	3.3 Boundary Integral Equation for the Free Space

	4 Isotropic Hyperelastic Constitutive Modeling
	5 Coupled FEM–BEM Discretization Method
	5.1 Subdivision of Solution Domain into Patches
	Mechanical problem.
	i) domain patch
	ii) internal surface patch
	iii) external surface patch

	Electrical problem (in matter).
	i) domain patch
	ii) internal surface patch
	iii) external surface patch

	Electrical problem (in free space).
	Residual error measure for the weak form.

	5.2 Finite Element Shape Functions
	5.3 Boundary Element Shape Functions
	5.4 Discretized Weak Form for the Material Body
	Mechanical problem.
	Electrical problem (in matter).

	5.5 Discretized Boundary Integral Equation for the Free Space
	Laplace equation.
	Free charge equation.

	5.6 Linearization of Discretized Weak Form
	Mechanical problem.
	Contribution from the Boundary
	Electrical problem (in matter).
	Contribution from the Boundary

	5.7 Linearization of Discretized Boundary Integral Equation
	Laplace equation.
	Free charge equation.
	Global problem.


	6 Computational Examples
	6.1 Case 1: Free Space may be Neglected
	6.2 Case 2: Free Space can not be Neglected

	7 Conclusion
	Bibliography

	Electro-Mechanical Response of Nematic Elastomers: an Introduction
	1 Introduction
	2 Molecular Structure and Macroscopic Response
	3 Warm-up in Finite Dimensions
	4 Elastic Energy Densities for Nematic Elastomers
	5 Material Instabilities
	6 Effective Energy: Coarse-graining and Quasi-convexification
	7 Dynamics under an Applied Electric Field
	8 Comparison with Key Experimental Results
	8.1 Stretch
	8.2 Shear
	8.3 Electric Field Applied to a Free-standing Film
	8.4 Discussion

	Appendix: Alignment Energies
	Bibliography


