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PREFACE

This volume critically examines the functional actions of the kainate-type
glutamate receptors (KARs). Following on from the larger body of work on the
NMDA- and AMPA-type ionotropic glutamate receptors (GluRs), studies with KARs
have consistently thrown up exceptions to general rules about synaptic modulation.
Contributors herein provide an insight to the idiosyncracies that now almost typify
the KAR field.

In the first chapter, Sihra and Rodriguez-Moreno set the scene with the 
introduction of KARs and review of the role of KAR in the modulation of interneuron
GABA release in the hippocampus, highlighting some seminal and provocative 
early studies alluding to the metabotropic function of KARs. Continuing apace with 
adventurous thinking, Cherubini and colleagues consider the consequences of the
inhibitory and metabotropic function of KARs in the immature hippocampus. It is now 
appreciated that in the developing brain, the prototypic inhibitory neurotransmitter 
GABA plays an incongruous excitatory role through GABAA receptors that areA

depolarising because of a Cl- electrochemical equilibrium that is the reverse of 
that found in the adult. Remarkably in this scenario, it is glutamate, the defined 
“excitatory” neurotransmitter that plays the calming role through the operation of 
KARs that suppress the release of GABA presynaptically.

Continuing on this appraisal of the presynaptic effects of KARs, in Chapter 
3, Jin and Smith show that the metabotropic functions of KARs are not restricted 
to hippocampal GABA release. They assess the operation of the KARs in several 
basal ganglia nuclei, argue for the role of direct and indirect G-protein mediation 
of KAR activity and highlight the subtlety of the metabotropic operation of KARs, 
this opening up potential pharmacotherapeutic avenues.

While metabotropic effects of KARs on GABA release provide examples of 
heteroreceptor regulation of neurotransmitter release, the evidence for KARs acting as 
autoreceptors (also in a metabotropic guise), in the regulation of glutamate release, has 
also accumulated. In Chapter 4, Rodriguez-Moreno and Sihra review this work which
has revealed a fascinating characteristic of KARs, which is that, in some instances, 
they can have a bimodal action; inhibiting glutamate release in one context, while 
facilitating it in another, both types of modulation occurring at the same synapse.
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KARs have long been remarked upon by the frank epilepsy produced by the
defining agonist. Together with the aforementioned presynaptic actions of KARs, 
Melyan and Wheal have long suggested a postsynaptic locus of KAR action which
invokes hyperexcitability. In Chapter 5, the authors provide new insights into how
KARs inhibit the slow after-hyperpolarisation current and thereby control the synaptic 
excitability of CA1 pyramidal cells in the hippocampus. Remarkably, this modulation
of postsynaptic activity by KARs is Gi/o and PKC dependent, again alluding to the
metabotropic function of the target KARs. 

The molecular subunit composition of the KARs that support their metabotropic 
modus operandi remains enigmatic. In Chapter 6, Ruiz analyses the involvement of 
KARs in the synaptic transmission between dentate granule cells and CA3 pyramidal
neurons, where, post-synaptically, KARs display integrative properties through a
canonical ionotropic operation, but at the same time also enhance neuronal excitability
through the suppression of the slow Ca2+ activated K+ current IsAHP shown to be
underpinned by metabotropic characteristics. The approach taken by Ruiz and 
colleagues has been to dissect the function of the receptor by the analysis of effect 
in the hippocampus of ablating the high-affinity subunits constituting KARs. The
evidence has opened up new avenues of thought in elucidating how KARs might 
be prone to behave like their de facto mGluRs cousins also involved in increasing
neuronal excitability by suppressing K+ conductance.

Although studies of KARs have largely concentrated on central nervous system 
function, clearly glutamatergic transmission also plays an essential role in peripheral
nervous system and KARs are evident in the spinal cord. Accordingly, in Chapter 
7, Rozas characterizes KARs in dorsal root ganglia which provide glutamatergic
inputs to dorsal horn neurons. The importance of KARs in pain transmission 
is highlighted, not only suggesting their operation through G-protein-linked, 
intracellular Ca-sensitive and PKC-dependent signalling, but also the utility of the 
metabotropic signalling in the control of KAR receptor plasticity.

As indicated earlier, the expanding repertoire of KAR function is not limited 
to the adult nervous system. Indeed, the seemingly omnipotent KAR appears to be
involved in the early modelling of synapses based on activity. Thus in Chapter 8,
Lauri and Taira discuss the postnatal developmental role of KARs in shaping network 
activity. Adding another layer of modulation, the indications are that the patterns of 
KAR-mediated regulation may be developmentally regulated as synapses mature, 
so that the adult picture is very different to that prevalent postnatally. 

In the penultimate Chapter 9, Plested provides a most eloquent rendition of the
view of the glutamate receptor field from the structural viewpoint, but looking to 
use the very 21st century approach developed to elucidate modulatory mechanisms. 
In so doing, Plested and colleagues have opened up new horizons by their didactic
consideration of how the very ions that perpetually bath neurons and are indeed 
conducted by ion channels like KARs play a crucial role in the maintenance and 
modulation of the channel activity. This sort of analysis will no doubt prove an
essential strategy in the future to determine the rather unique bifurcation of the 
observed KAR activity modes reviewed in this volume. 
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Finally, whether developmentally or in the adult situation, the expression, 
maintenance and turnover KARs must necessarily underpin some of the long-term 
modulatory events associated with KAR function. In Chapter 10 Marshall, Blair and 
Singer provide intriguing insights into KAR interaction with intracellular binding 
partners, this not only determining the stability of KARs, but perhaps also forming
the instrument of the physical and functional compartmentalization of the receptors
in the neuron. 

The fascinating insights provided by the contributors to this volume serve to
encourage searching mechanistic questions. The foremost of these, arising from
non-canonical (metabotropic) signalling by KARs is: what is the physical basis of 
KARs, having an ionotropic receptor topology, coupling to G-proteins to mediate
responses independent of ionotropic activity? 

The intracellular domains, present in prototypic heptahelical metabotropic
receptors (G-protein coupled receptors, GPCRs), and that mediate the defining 
interaction with heterotrimeric G-proteins,1 are not found in KAR subunits. 
Notwithstanding, unconventional G-protein interaction cannot be ruled out given
the available evidence. Thus, goldfish KA-binding proteins have been reported to
display PTX-sensitive agonist binding and agonist-dependent ADP ribosylation
of a 40 kDa protein,2-4 and heterologously expressed frog KARs directly bind 
to GTP-binding proteins.5 One might speculate that the subunits forming the 
heterotetrameric KARs may contribute multiple cytoplasmic domains (including the
little characterised intracellular loops of the KAR subunits) to a cryptic secondary/
tertiary structure capable of binding G-proteins. Additionally, alternative splicing 
of Glu5/6/7 KAR subunits to produce different C-termini6 may impart differential 
functional properties to the oligomeric KAR, some of which may relate to the
metabotropic function of KARs.

Even if any direct interaction between KAR and G-proteins is unfeasible,
indirect docking of G-proteins to KARs through intermediary adaptor proteins
remains a tenable proposition.7 Biochemical analyses may not distinguish between
the two possibilities. Nonetheless, interestingly in CA3 neurons, anti-GluR6 antibody 
coimmunoprecipitates GluR6 subunits, KA2 subunits and G��, and thus suggest a
physical association of KAR and G-protein which is contingent on the presence of 
the KA2 subunit.8 Notwithstanding the more recent studies ascribing the presence 
of KA2 subunits to the support of ionotropic rather than metabotropic functions of 
KARs,9 the initial evidence indicating the association of a G-protein with a KAR 
encourages the search for similar interactions of KARs with other G-proteins. In
particular, a number of functional studies showing that KA-mediated modulation
is pertussis-toxin-sensitive, predict some form of Gi/o interaction with KARs, be
this direct or indirect. Over the next few years, intense activity in the KAR field 
anticipates answers to this and many of the questions thrown up by the contributions
herein. We look forward eagerly to this elucidation.

Antonio Rodríguez-Moreno, PhD
Talvinder S. Sihra, PhD
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Metabotropic Actions of Kainate
Receptors in the Control of GABA 
Release
Talvinder S. Sihra* and Antonio Rodríguez-Moreno*

Abstract

Kainate receptors (KARs) are members of the family of ionotropic glutamate receptors 
(iGluRs) which also include NMDA and AMPA receptors. As ionotropic receptors, 
KARs have been characterized, pre and postsynaptically, in several brain regions. In this KK

chapter we review evidence that suggests that KARs mediate some of their effects without invoking 
ion-fluxes. Beginning with seminal experiments described some ten years ago, when the notion
of a metabotropic action of KAR was first posited in the modulation of GABA release from hip-
pocampal interneurons, increasingly, there have been reports indicating that some KAR functions
overtly depend on G-protein activation and involve the participation of intracellular signalling 
cascades. Thus, KAR activation instigates a cascade involving Gi/o, phospholipase C and protein 
kinase C to suppress the release of GABA and therefore underpins disinhibition of pyramidal cells
in the CA1 region of the hippocampus. This type of metabotropic function of KARs in controlling 
GABA release represents an additional level of activity-dependent control of synaptic inhibition
which is independent of any ionotropic activity of KARs.

Introduction
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mamma-

lian central nervous system. Excitatory (glutamatergic) inputs onto the cell bodies of interneurons
instigate stimulation of these neurons, whereupon, GABA release is evoked at nerve terminals.
Released GABA elicits inhibitory postsynaptic potentials (sIPSPs) in the recipient neuron through
ionotropic GABAA receptor activation. The control of GABA release therefore represents a key 
locus for the control of synaptic network activity. In order to investigate factors underpinning the 
modulation of GABA release, synaptic circuits which culminate in the generation of IPSPs are 
particularly useful to give a quantifiable electrophysiological read-out of presynaptic activity in
interneurons. In the hippocampus, interneurons in the stratum oriens project onto CA1 pyramidal
cells (CA1 PC), to produce IPSPs when GABA is released (Fig. 1, inset). Similarly, interneurons
in the stratum radiatum also synapse onto CA1 PCs to produce inhibition (Fig. 1, inset). The
upstream initiation of interneuron activity is logically through the activation of glutamatergic
circuits leading to the glutamate release and stimulation of excitatory glutamate receptors. The
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question arises, is the primary excitatory ionotropic activity of glutamate on interneuron cell bodiesc
the only glutamatergic activity? A number of studies now point to the possibility that, together
with the fast ionotropic activation of interneurons, glutamate release also regulates interneuron 
activity manifest in GABA release, through heteroreceptors with modulatory influences displaying 
slow time-courses of activation and deactivation.

The two major families of glutamate receptors consist of three ionotropic, viz. NMDA-, AMPA-
and Kainate-type, glutamate receptors (iGluRs) and three sub-groups, viz. Types I, II and III,1,2 of 
seven-transmembrane region, G-protein-coupled metabotropic glutamate receptors (mGluRs). 
The iGluRs are hetero- or homo-meric tetramers, composed of multiple, often alternatively spliced
and edited subunits (NMDA receptors—NR1,2A-D: AMPA receptors—GluR1-4: Kainate 
receptors (KARs)—GluR-7, KA1-2). All the iGluRs are found distributed pre and postsynapti-
cally to varying degrees. The ionotropic roles of NMDA and AMPA receptors are well recognized
in supporting synaptic transmission and the control of neuronal excitability. KARs, on the other 
hand, have remained more incongruous, not least because of their low single channel conductance,
counterpointed by a somewhat extended time-course of activity.3,4 Development of pharmacologi-
cal tools over the last 10-12 years, particularly the AMPA receptor antagonists GYKI53655 and 
SYM2206, have aided differentiation of KAR and AMPA receptors, which otherwise display 
cross-activation by their defining agonists, thus confounding definitive analysis. Additionally now, 
transgenic mice with specific KAR subunits ablated have greatly accelerated the elucidation of the 
role of KARs in central nervous system (CNS) physiology.

KARs are ubiquitously distributed in the CNS and classically shown to be expressed postsyn-
aptically in the principal cells and interneurons of the hippocampus, lateral amygdala, dorsal root
ganglia, bipolar cells of the retina, cerebral cortex, globus pallidus and cerebellum.5 An important
outcome of recent studies has been that there is now a definitive case for the presynaptic actions of 
KARs at several synapses. Accumulating data indicate that KARs are significantly expressed at pre-
synaptic terminals and underpin significant modulation of neurotransmitter release therein.4,5

Pre and postsynaptically, while the actions of KARs have classically been attributed to the canonical 
ionotropic activity associated with typical iGluRs, significantly, the effects of KAR activation have
often been found to be temporally inconsistent with ionotropic mechanisms operating within mil-
lisecond time-scales. Indeed frank sensitivity to agents affecting heterotrimeric G-proteins function
invokes overt metabotropic actions of KARs, without the receptors themselves being GPCRs per se 
(i.e., single proteins with seven-transmembrane regions and defined intracellular sites for G-protein
interaction). While this notion may be somewhat unusual, significantly, the precedence already ex-
ists from studies with sister AMPA receptors which also evidently mediate some of their effects by 
metabotropic operation.6-13 We review here the evidence for KARs modulating the release of GABA
in their metabotropic guise, while independently supporting canonical ionotropic functions.

Presynaptic Modulation of GABA Release by Metabotropic
Actions of KARs

Initial evidence of a metabotropic function of KAR in the brain was delineated by studies
looking at hippocampal synapses established between interneurons, with interneuron cell bod-
ies in stratum oriens or stratum radiatum, projecting to CA1 pyramidal cells (CA1 PCs)14-16

(Fig. 1, inset). GABA release at these synapses is assessed by measuring the evoked inhibitory 
postsynaptic currents (eIPSC) in the CA1 PCs consequent from inhibitory GABAA receptor 
activation. Application of kainate (KA) results in a depression of the eIPSC which is reversed 
on the washout of the drug (Fig. 1A). This presynaptic modulation of GABA release by KARs,
displays several interesting properties that allude to a metabotropic mechanism of KAR cou-
pling to the decrease in GABA release. Firstly, the inhibition of synaptic depression by KAR 
activation is abolished by pertussis toxin (PTX), indicating the involvement of a pertussis toxin
(PTX)-senstive G-protein such as Gi or Go (Fig. 1B,C). Secondly, the regulation by KAR activa-
tion is severely attenuated by inhibitors of phospholipase C (PLC) and the protein kinase C
(PKC) inhibitors, staurosporine, calphostin C or bisindolylmaleimide (Fig. 1C).
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Figure 1. Metabotropic Kainate receptor-mediated depression of GABA release in the CA1
region of the hippocampus. Inset: Experimental configuration. A) Evoked IPSC (eIPSC) records
showing KAR activation reversibly depresses GABAergic transmission at the interneuron-CA1 
hippocampal synapse in slices in the presence of AMPA and NMDA receptors antagonists.
KA at 10 �M produces an almost complete reduction of the eIPSCs amplitude. B) The ac-
tion of KA involves the activation of a Gi/o-protein. In slices incubated with pertussis toxin 
(PTX), the depressant action of KA on the eIPSC is not observed (cf. (a)). C) In addition of the
Gi/o-protein dependence, the depression of the eIPSCs amplitude mediated by KAR activation 
involves the activation of PKC. Thus the KAR-mediated depression is significantly reduced in 
the presence of the PKC inhibitors, staurosporine (Stauro, 0.5 �M), calphostin C (Calph C, 0.5 
�M) and bisindolylmaleimide (BIS, 0.1 �M). Panel (A) reproduced from Rodríguez-Moreno 
A et al. Neuron 1997; 19:893-901,14 ©1997 with permission from Elsevier. Panels (B) and (C)
reproduced from Rodríguez-Moreno A et al. Proc Natl Acad Sci USA 2000; 97:1293-1298,21

©2000 with permission from the National Academy of Sciences, USA.
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To obviate the possibility that the observed modulatory activity is a consequence of the 
canonical ionotropic activity predicted of iGluRs, investigators have measured the miniature
IPSC frequency (as readout of spontaneous action potential independent presynaptic activity)
and eIPSC frequency, in the presence of normal or reduced extracellular [Na�]. The rationale of 
the experiment is that, if KARs reduce IPSCs by ionotropic means, reduction of the conduct-
ing Na� ion should mitigate against the reduction of GABA release. Crucially, the lowering of 
extracellular [Na�] is of no consequence on the effect of KA reducing either the miniature or
the evoked IPSC (Fig. 2). This therefore points to a mechanism of KAR action which is inde-
pendent of any ionotropic activity. The model proposed from these data therefore invokes that 
presynaptic KARs located on inhibitory terminals activate Gi/o, which, through its ��-subunits,
couples to phospholipase C (PLC) stimulation. The consequent production of the second mes-
senger diacylglycerol (DAG) causes downstream activation of a pool of PKC that results in a 
decrease of GABA release by phospho-regulation of downstream effectors16 (Fig. 4).

While the pharmacological activation KARs by exogenous KA points to the involvement
of the receptors in the modulation of GABA release, direct support for the presence and 
function of KARs at interneuron-CA1 principal cell synapses warrants demonstration that
the response produced by exogenously applied KA can be recapitulated with synaptically 
released glutamate. Experiments by Min et al17 address this by measuring the eIPSC in CA1
PCs produced monosynaptically by electrically stimulated stratum radiatum interneurons
(Fig. 3, Proximal electrode), before and after the stimulation of glutamate release elicited by 
a distal electrode in the Schaffer collateral axon field projecting to CA1 PCs (Fig. 3, Distal). 
In this experimental configuration, picrotoxin-sensitive test eIPSCs are depressed by synapti-
cally released, endogenous glutamate (evoked by conditioning stimulation of glutamatergic
afferents in CA1 region of the hippocampus; Fig. 3A) and this disinhibition is suppressed by 
KAR antagonism by DNQX (Fig. 3A,B; DNQX is a KAR antagonist in this context, because
AMPA receptors are already blocked). Given that there is no evidence for axo-axonic synapses 
of glutamate terminals onto interneurons, the results with the experimental paradigm used 
suggest that a “spillover” of glutamate from glutamatergic terminals on CA1 PCs might het-
erosynaptically activate KARs on interneuron terminals to modulate GABA release (Fig. 3). 
Interestingly, pertaining to the subcellular mechanism of KAR action, the studies by Min et al

Figure 2. The downregulation of GABA release by KA is independent of ion channel activity. A) 
Records showing the effect of KA in the presence of low extracellular Na� (25% of total) intended
to reduce ionotropic KAR activity. In this low [Na�] condition, the application of KA produces
a similar change in the frequency of miniature IPSCs (B) and in the evoked IPSC amplitude (C), 
as in normal extracellular solution. Panels (A),(B) and (C) reproduced from Rodríguez-Moreno
A, Lerma J. Neuron 1998; 20:1211-1218,16 ©1998 with permission from Elsevier.
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(1999)17 note that the depression of the IPSCs outlasts the conditioning stimulation. This is 
therefore suggestive of a persistent metabotropic action of KARs on interneurons, contrasting 
with an ionotropic action whereby any KAR-mediated currents would typically be expected to
deactivate with rapid (ms) kinetics.

Although, the collective data with applied KA and synaptically released glutamate point
to a reduction of GABA release by presynaptic KARs, under similar stimulation paradigms,18

somatodendritic KARs are also activated. This leaves the question begging: are the KARs which
effect a decrease in eIPSC at interneurons synapses, somatodendritic or nerve terminal-resident? 
Indeed, despite the pharmacological support for the inhibition of GABA release, at stratum
oriens or stratum radiatum interneuron-CA1 PC synapses, being mediated by presynaptic KARs
activating Gi/o coupled to PLC and downstream PKC (Figs. 1, 4), there have been several conten-
tious viewpoints questioning the existence of metabotropic actions of KARs, instead favouring a 
canonical ionotropism-based rationalization of the reported modulation of GABA release. Thus,
based on the observation that ionotropic KARs do indeed occur in the somatodendritic compart-
ment of interneurons, Frerking et al (1999)19 propose that the activation of these KARs causes
an initial increase in GABA release, whereupon there is an activation of inhibitory presynaptic,
metabotropic GABAB receptors which suppresses GABA release—explaining the inhibitory 

Figure 3. Depression of GABA release by endogenous glutamate activating kainate receptors.
Inset: Experimental configuration. Schematic illustration of the hippocampal slice showing the 
positioning of the recording pipette and stimulating electrodes. Schaffer collateral axons are
shown in black and a local inhibitory interneuron is shown in gray. A) Glutamate released by
activating Schaffer collaterals with a train of stimuli reduces the amplitude of eIPSCs evoked 
by a single stimulus at stratum oriens (upper panel, bold trace); thus glutamate mimicks the
effect of the exogenous agonist KA seen in Figure 1A. B) The decrease is present in the pres-
ence of AMPA receptor antagonists, but is sensitive to DNQX (lower panel). Reproduced from
Min MY et al. Proc Natl Acad Sci USA 1999; 96:9932-9937,17 ©1999 with permission from
the National Academy of Sciences, USA.
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effect of KARs on the eIPSC recorded in CA1 PCs. Together with this indirect effect of KARs 
through an initial GABA release stimulating presynaptic GABAB receptors,19 it is also suggested
that activation of postsynaptic GABAA receptors (by the initial release of GABA) and KARs 
may contribute to the observed reduction in the IPSC by a respective change in series resistance
and electrical shunting which then mitigate the eIPSP to produce the observed disinhibition
seen with KA application.20 Although, the foregoing scenario is consistent with the activation 
of KARs producing an increase in the spontaneous inhibitory postsynaptic current (sIPSC) 
frequency on the one hand, while decreasing the eIPSC amplitude on the other hand, there are
several lines of evidence which argue against these contentions.

Firstly, a number studies show that the KAR-mediated inhibition of GABA release persists 
in the presence of a diverse range of GABAB receptors blockers.14,15,17,21,22 This, therefore, obvi-
ates the proposal that the inhibitory effect of KARs on GABA release is indirectly mediated by 
the activation of GABAB autoreceptors by an initial burst of GABA release. An ionotropically 
initiated mechanism does not therefore satisfactorily explain the KA-induced reduction of the
eIPSC amplitude at hippocampal interneuron-CA1 PC synapses. This is at least certainly true 
for the hippocampal interneuron-CA1 PC synapse, though interestingly, at spinal cord inhibi-
tory neurons, the decrease in eIPSC amplitudes produced by KA does indeed involve a GABAB

receptor-mediated feedback inhibition of GABA release.23

A second line of contention against an ionotropism-based mechanism for KARs in inhibit-
ing GABA release comes from studies by Rodríguez-Moreno et al,21 who demonstrate that the
KA-elicited increase of the sIPSC frequency and the decrease of the eIPSC amplitude in stratum

Figure 4. Metabotropic actions of KARs at stratum oriens (or radiatum) interneuron-CA1 
synapses. Presynaptic KARs activation attenuates GABA release from interneneuron terminals
(Pre) onto CA1 pyramidal cell dendrites (Post). Modulation involves a presynaptic pertussis 
toxin-sensitive G protein coupled to phospholipase C (PLC) which generates 2nd messenger
diacylglycerol (DAG) to activate protein kinase C (PKC). PKC phosphorylates an as yet unknown 
target(s), to decrease GABA release. Modified and reproduced from Rodríguez-Moreno, Sihra
TS. Trends Neurosci 2007; 30(12):630-637,37 ©2007 with permission from Elsevier.
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oriens interneurons, are independent phenomena which can be dissociated by the differential 
use of agonists. Thus application of 3-10 �M of the endogenous agonist glutamate causes a clear
decrease of eIPSC amplitude, but has no effect on the sIPSC frequency. On the other hand, 
0.3 �M ATPA (a GluR5 selective agonist) produces an unambiguous increase in the sIPSC
frequency, but without effect on the eIPSC amplitude. This strongly suggests that the two effects 
of KAR activation on the sIPSC (somatodendritic) and eIPSC (nerve terminal) are independent 
events. Tellingly, when KA is applied in the presence of PTX, the agonist increases the sIPSC,
despite the modulatory (metabotropic) effect on the eIPSC being abolished by PTX inhibition
of Gi/o. This is clear verification that the ionotropic activation of KARs produces an increase in
sIPSCs which is separable from the activation of terminal resident KARs. Thus in conclusion,
while somatodendritic KAR can clearly operate to increase interneuron excitability, inhibition
of GABA release is achieved by a different population of KARs located at the interneuron
terminals, these receptors displaying a metabotropic modus operandi.

Supporting evidence for nerve terminal-resident KARs producing G-protein dependent
inhibition of GABA release, as postulated by Rodríguez-Moreno and Lerma,16 has come from 
biochemical studies with isolated nerve terminals (synaptosomes). Synaptosomes, by defini-
tion, are devoid of a somatodendritic compartment and can thus only reflect nerve terminal 
resident receptor activity. Using the synaptosomal preparation,23-25 or interneuron microcultures 
where the presynaptic cell could be monitored,14 KA application produces a robust decrease
of endogenous GABA release. These experiments firstly demonstrate that the absence of so-
matodendritic KARs does not affect the inhibitory effect of KAR activation and therefore 
ionotropic activity is not a prerequisite for the modulation. Moreover, having demonstrated 
a coupling of KARs to Gi/o activity in hippocampal membranes,26 Cunha et al27 further show 
that the KAR-mediated depression of GABA release, from hippocampal synaptosomes is PTX- 
and PLC inhibitor-sensitive. These data together, underline the postulate that the inhibition
of GABA release at interneuron-CA1 PC synapses is likely mediated by a novel metabotropic 
action of KARs present in nerve endings per se, without the need for prior ionotropic activity 
consequent from somatodendritic KAR activation.

The separation of somatodendritic and nerve terminal KAR activities observed in the adult
hippocampus,21 had been recapitulated in the developing hippocampus. Thus with GABAergic
transmission at neonatal CA1 pyramidal neurons, KAR activation elicits a very large increase in
the sIPSCs frequency, but at the same time robustly depresses the eIPSC.28 The question remains
as to the developmental relevance of contrasting and opposing effects of KAR activation. One 
possibility is that differential activity may arise due to two types of KARs responding to differ-
ent patterns of neuronal activity. For example synchronous activation of numerous CA3 inputs
might induce large-scale activity/glutamate release onto CA1 neurons and thereby activate 
somatodendritic/axonal KARs to increase GABA release. Nerve terminal KARs on the other
hand would possibly sense the local spill-over of glutamate from neighbouring glutamatergic 
afferents to provide a spatially restricted suppression of GABA. In this dual capacity, KARs
may therefore play a crucial role in the development and maturation of hippocampal circuits, 
given that the actions of GABA are critical to normal network establishment and function.28

In the adult hippocampus, this and alternative interpretations can be posited for the opposing 
effects of KARs on interneurons in the physiological context.21 Notwithstanding, the phar-
macological observations are in keeping with the role of KARs in the control of excitability in 
the adult brain.

At the molecular level, the activation of two KAR populations with opposing actions, located
in separate subcellular compartments of the same interneurons, is likely underpinned by properties
imparted by different subunit compositions of the receptors and/or intra/extracellular interac-
tions that affect receptor function. Pertinent to this functional compartmentalization of KARs
are the concentrations of glutamate that physiologically activate the receptors following synaptic 
glutamate release and subsequent “spillover” of neurotransmitter to nonsynaptic locations. From
transgenic mice studies, it would appear that both GluR5- and GluR6-subunits are required to
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invoke interneuron-CA1 synaptic sensitivity to KA. Coassembly with one or other of these
subunits with KA2 would be predicted to produce higher affinity KARs, perhaps those in the 
nerve terminals, which possibly respond to spillover glutamate and thus mediate a decrease of 
GABA release following intense glutamatergic stimulation. Unfortunately, compensatory changes 
in transgenic mice with GluR5 or GluR6 KAR subunits ablated confound the interpretation of 
data that might otherwise allow the elucidation of the subunit composition of native KARs.29

Consequently, despite providing some novel insights, knockout studies and current knowledge of 
KAR localization/trafficking, cannot yet predict any contingency of the distinct agonist affinities
of somatodendritic and terminal KARs, with specific subunits compositions.29,30

Together with the now compelling evidence for metabotropic disinhibition produced by a 
presynaptic KAR, there is also some evidence of KARs increasing GABA release from interneu-g
rons. Thus, low KA concentrations produce a consistent increase in spontaneous GABA release 
at CA1 interneuron-interneuron synapses.31 Interestingly, paired recordings of interneuron-CA1
PC synapses indicate that, while the low concentrations of KA mediate facilitation of release in
pairs exhibiting low initial release probability, those with high release probability are actually 
inhibited by KAR antagonism,32 as well as being susceptible to inhibition at higher KA con-
centrations. The former effect of KAR antagonism may be a “defacilitation” resultant from the
tonic activity of somatodendritic KARs in interneurons with high release probability, perhaps 
invoked by glutamate spillover from nearby synaptic terminals or from nonsynaptic sources such
as astrocytes.33 The facilitatory effects of KARs are generally consistent with ionotropic effects of 
extrasynaptic somatodendritic KAR. Notwithstanding, there are two important points of note
arising from these studies. First, the facilitation of interneuron-interneuron synapses by KAR 
activation is not sensitive to Ca2� channel block by Cd2� (ref. 31). This is somewhat surprising 
if the KARs are operating ionotropically in the observed facilitation of GABA release. Second,
in experiments looking at connected pairs of interneurons and CA1 PCs, the facilitatory effect 
of KA is relatively long-lasting.32 Thus, even the enhancement GABA release by KARs displays 
features of metabotropic function. It remains to be seen in future studies whether this case devel-
ops as compellingly as the one for metabotropic KAR-mediated inhibition of GABA release.

Here, we have largely discussed specific examples of GABA release being modulated by KARs 
in the hippocampus, where KARs appear to function by a metabotropic modus operandi at in-
terneuron-CA1 PC synapses and possibly, at interneuron-interneuron synapses. Other instances 
of KAR-mediated regulation of GABA release in the cortex34 (inhibitory effect), amygdala35

(bidirectional effect), striatum36 (indirect inhibitory effect), spinal cord23 (indirect inhibitory 
effect) and hypothalamus33 (facilitatory effect), appear to reflect exclusively canonical ionotropic 
operation of KARs, or evince mechanisms where an ionotropic action underpins downstream
metabotropic signalling. Examples of the latter include KARs mediating indirect metabotropic 
influences through, for instance, adenosine receptors in striatal cells36 and GABAB-receptors
in spinal interneurons.23 Altogether, the accumulated data point to multimodal operation of 
KARs by ionotropic, metabotropic and indirect-metabotropic mechanisms operating in parallel
to mediate the activity-dependent tuning of synaptic inhibition by bidirectional modulation 
of GABA release.

Conclusion
In conclusion, KARs appear to provide a much richer spectrum of regulatory influence at

GABAergic synapses than might have been predicted from their structural design. While nerve
terminal resident KARs in the hippocampus evidently invoke a metabotropic influence to effect
a suppression of GABA release at interneuron-CA1 PC synapses and thereby produce disinhibi-
tion,37,38 this regulation can occur independently in the same neurons expressing somatoden-
dritic KARs which are stimulatory. The functional expression of this opposing heterosynaptic 
regulation of GABA release may subserved by the activity-dependent regulation of glutamate 
release from terminals projecting to CA1 PCs. At CA1 interneuron-interneuron synapses in the 
hippocampus, the observed KAR-mediated presynaptic enhancement of GABAergic transmission
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would also be disinhibitory in terms of net output, but this type of modulation by KARs awaits 
further mechanistic elucidation.
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In the Developing Hippocampus
Kainate Receptors Control the Release 
of GABA from Mossy Fiber Terminals
via a Metabotropic Type of Action
Enrico Cherubini,* Maddalena D. Caiati and Sudhir Sivakumaran

Abstract

Kainate receptors (KARs) are glutamate-gated ion channels assembled from various
combinations of GluK1-GluK5 subunits with different physiological and pharmacological
properties. In the hippocampus, KARs expressed at postsynaptic sites mediate a small com-K

ponent of excitatory postsynaptic currents while at presynaptic sites they exert a powerful control 
on transmitter release at both excitatory and inhibitory connections. KARs are developmentally 
regulated and play a key role in several developmental processes including neuronal migration, 
differentiation and synapse formation. Interestingly, they can signal through a canonical ionotropic 
pathway but also through a noncanonical modality involving pertussis toxin-sensitive G proteins
and downstream signaling molecules.

In this Chapter some of our recent data concerning the functional role of presynaptic 
KARs in regulation of transmitter release from immature mossy fiber terminals and in synaptic
plasticity processes will be reviewed. Early in postnatal development, MFs release into their 
targeted neurons mainly GABA which is depolarizing and excitatory. Endogenous activation
of GluK1 KARs localized on MF terminals by glutamate present in the extracellular space
down regulates GABA release, leading sometimes to synapse silencing. The depressant effect
of GluK1 on MF responses is mediated by a metabotropic process, sensitive to pertussis toxin
and phospholipase C (PLC) along the transduction pathway downstream to G protein activa-
tion. Blocking PLC with the selective antagonist U73122, unmasks the potentiating effect of 
GluK1 on MF-evoked GABAergic currents, which probably depend on the ionotropic type
of action of these receptors.

In addition, GluK1 KARs dynamically regulate the direction of spike-time dependent 
plasticity, a particular form of Hebbian type of learning which consists in bidirectional
modifications in synaptic strength according to the temporal order of pre and postsynaptic
spiking. At immature MF-CA3 synapses pairing MF stimulation with postsynaptic spiking 
and vice versa induces long term depression of MF-evoked GABAergic currents. In the case of 
positive pairing synaptic depression can be switched into spike-time dependent potentiation 
by blocking GluK1 KARs with UBP 302. The depressant action exerted by GluK1 KARs on
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MF responses would prevent the excessive activation of the CA3 associative network by the 
excitatory action of GABA early in postnatal development.

Introduction
Glutamate receptors, which belong to the ligand-gated ion channels family, are integral 

membrane proteins mediating fast excitatory transmission in the brain. On the basis of their
molecular, pharmacological and biophysical properties, three distinct receptor classes have
been identified. They have been named after their respective agonists: N-methyl NN D-aspartate 
(NMDA), �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate recep-
tors. Among these, kainate receptors (KARs) have received particular attention only in recent 
years, due to the relatively late development of selective pharmacological tools which have al-
lowed their specific functions to be distinguished from those of AMPA receptors.1 Moreover,
the generation of transgenic mice lacking specific KAR subunits has provided additional clues
for understanding their respective role in synaptic transmission.2

Molecular cloning has identified five different KAR subunits, each of molecular mass of �100 
kDa, referred in accord to the new nomenclature as GluK1-GluK5,3 which can co-assemble in 
various combinations to form functional receptor channels permeable to cations. In addition, 
RNA editing and alternative splicing further increase the likelihood of pharmacological and
physiological heterogeneity in KAR family. While GluK1-GluK3 (formerly GluR5-7), when
expressed in heterologous systems can form homomeric kainate-gated ion channels,4-6 GluK4 and
GluK5 (former KA1 and KA2) do not form channels on their own but only when co-expressed
with other subunits.7,8 These subunits are often termed the “high affinity” subunits because of 
their low nanomolar affinity for the seaweed toxin kainic acid.

KAR subunits are expressed throughout the CNS where they are distributed not only on 
dendrites and postsynaptic membranes but also predominantly on nerve fibers and synaptic 
terminals.9 At postsynaptic site these receptors carry at least in part current charges of synaptic
responses, while at presynaptic sites they exert a powerful control on transmitter release.9

In this Chapter we will focus mainly on KARs expressed in the hippocampus. Here, activa-
tion of KARs localized on CA3 pyramidal cells by glutamate released from mossy fiber termi-
nals (MFs) induces slow excitatory postsynaptic currents (EPSCs) whose amplitude has been
found to be strictly dependent on the pattern of stimulation.10,11 MF-evoked synaptic currents 
involve GluK2 receptor subunits as demonstrated by the loss of slow kainate-mediated EPSCs
in hippocampal slices from GluK2 KO mice.12,13 In contrast, GluK2 KO mice still exhibit slow 
kainate-mediated EPSCs on GABAergic interneurons, suggesting the involvement of other 
KAR subtypes. The loss of kainate-mediated synaptic responses in GluK1 or GluK1/GluK2 
KO mice suggests the involvement of GluK1 subunits.14 The slower deactivation kinetics of 
kainate-mediated synaptic currents with respect to the AMPA ones, would allow integrating 
excitatory inputs on the targeted neuron over a larger time window.

Presynaptic Kainate Receptors Control the Release of Glutamate
and GABA

In addition to their postsynaptic role, KARs play a crucial role in regulating transmitter release 
at both excitatory at inhibitory synapses. In particular, at excitatory synapses, kainate-induced
increase in glutamate release contributes to short- and long-term synaptic plasticity processes.
While in the case of excitatory synapses, KARs are activated by glutamate released from glu-
tamatergic nerve endings in the case of inhibitory synapses KARs are stimulated by glutamate 
present in the extracellular medium or spilled over from adjacent excitatory synapses. At 
excitatory synapses, KARs have been shown to facilitate glutamate release, particularly during 
frequency-dependent facilitation, a form of short-term plasticity characteristic of MF-CA3 
synapses15-17 (but see Kwon and Castillo).18 Synaptic facilitation can be mimicked by low concen-
trations of kainate while high concentrations of the agonist produce synaptic depression.19 The
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facilitatory effect of kainate has been attributed to kainate-induced depolarization of presynaptic
boutons or axon terminals16,20,21 and the release of calcium from local stores.22 Similarly, KARs
bi-directionally modify synaptic efficacy at inhibitory connections.14,23-27 Here, the depressant
effect of kainate on GABA release has been shown to be mediated by a different, noncanonical
signaling modality, involving a  metabotropic instead of a ionotropic type of action.25 This may 
occur directly through a G-protein coupled KAR or indirectly through the participation of an 
intermediate or a “linker” protein. Whatever the case, this kind of response is usually sensitive
to inhibitors of the putative metabotropic signaling pathway(s) thought to be involved. Thus,
kainate-induced depression of IPSCs evoked in CA1 principal cells by stimulation of stratum
oriens or stratum radiatum interneurons was found to be dependent on the activation of a 
pertussis toxin (PTX)-sensitive G protein and was suppressed by inhibitors of phospholipase
C (PLC) and protein kinase C (PKC) but independent of presynaptic ion channel activity.25

Furthermore, biochemical studies clearly demonstrated the involvement of Gi/o proteins, PLC 
and PKC in kainate-induced depression of GABA release from hippocampal synaptosomes, 
which by definition are devoid of somato-dendritic compartments.28,29 Altogether these data 
give direct support to the assumption that inhibition of GABA release by hetero-synaptically 
activated KARs localized on presynaptic GABAergic terminals occurs via a novel noncanonical
metabotropic type of mechanism.

Similarly, at excitatory CA3-CA1, the depressant effect of kainate on glutamate release was
demonstrated to be mediated by G-protein coupled KARs possibly through a direct interaction 
of �� subunits of G proteins with presynaptic voltage-dependent calcium channels.30 Unlike
Schaffer collaterals, at mossy fibers (MF)-CA3 connections, the mechanisms involved in the
depressant effect of high concentrations of kainate on glutamate release are still under debate. 
While early reports have attributed this effect to the ionotropic action of kainate which would
induce a depolarization of presynaptic terminals with consequent inactivation of sodium, calcium 
channels and/or electrical shunting,20,31,32 a more recent study has suggested a metabotropic type 
of mechanism.33 In support of this hypothesis is the observation that the reduction of glutamate
release by kainate was prevented by PTX, a Gi/o inhibitor. In addition, the depressant effect of 
kainate on glutamate release from MF terminals was found to be dependent on the activity of 
adenylyl cyclase, cAMP/PKA signaling cascade.33 Interestingly, KARs via a metabotropic type 
of action have been shown to contribute together with Type II mGluRs to LTD induced at
MF-CA3 synapses by low frequency stimulation of afferent inputs.34,35

Kainate Receptors Modulate Cell Excitability via a Metabotropic 
Type of Action

Kainate, at nanomolar concentrations, is known to increase cell excitability by inhibiting at 
postsynaptic level the calcium-activated potassium current (IsAHP),36,37-39 which contributes to
spike frequency adaptation. This effect has been attributed to the metabotropic action of KARs 
since it involves a PTX-sensitive G-protein and downstream signaling pathways including PKC 
and PKA.37-39 The concentrations of kainate needed to block IsAHP (IC50 values 15 and 5 nM in
CA1 and CA3 pyramidal cells, respectively) are within the range of high affinity KARs binding 
sites and within the range of GluK4 and GluK5 KAR subunits, suggesting the involvement of 
these subunits in regulating cell excitability. As expected the inhibition of IsAHP by KA was lost 
in GluK5 knock out mice.39 However, KA-induced inhibition of IsAHP was lost also in GluK2
knock out mice,38,39 probably due to the indirect loss of GluK5 because in the absence of GluK2
subunits, GluK5 are likely to undergo degradation.40 In other words, GluK5 subunits assembled
in heteromeric complexes with GluK2 subunits, would be critical for triggering the activation
of G proteins. In contrast with this view, a recent study has shown that in double GluK4 and
GluK5 KO mice low concentrations of kainate are still able to inhibit IsAHP suggesting that high
affinity GluK4 and GluK5 receptors, thought to be essential for the metabotropic type of action 
of KARs are not obligatory.13
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The way in which these two different modalities (ionotropic and metabotropic) interact is
intriguing and not fully understood. In particular, the molecular mechanisms by which KARs
operate in a metabotropic modality are still unclear given that the receptors do not exhibit the
classical topology of metabotropic G-protein-coupled receptors. A recent study has outlined the
possibility that the dual modes of signaling interact to dynamically auto-regulate the number of 
KAR expressed on the cell surface.41 It has been demonstrated that the repetitive activation of 
KARs, expressed in a recombinant system, is able to trigger their internalization via a G-protein 
dependent PKC phosphorylation mechanism, thus limiting their over-activation.41

Kainate Receptors in the Immature Hippocampus
Ionotropic glutamate receptors play key roles in multiple developmental mechanisms, 

including regulation of neuronal migration, differentiation and synapses formation. KARs are 
developmentally regulated, given their temporal and spatial expression is transient in some brain
regions, compatible with their crucial role in controlling the maturation of neuronal networks.42

The developmental profile of KARs gene expression is well preserved during evolution: it can 
be detected also in Drosophila during a major period of neurogenesis.43 In an early study on the 
developing mouse brain, Bettler et al44 found that gene transcripts for the GluK1 subunits are
expressed in the entire CNS already between E10 and E14, a period of intense cellular differentia-
tion. GluK1 transcript levels which are particularly pronounced in areas where synaptogenesis
is in progress later in development become more spatially restricted and downregulated. In the 
hippocampus, high affinity kainate binding sites can be detected already at E14. GluK1-5 genes
expression undergoes a peak in the late embryonic/early postnatal period (in coincidence with
periods of intense synaptogenesis) and starts declining at P14.45,46 In particular, the perinatal 
peak of GluK1 gene expression observed in the barrel cortex, septum, thalamus and CA1 in-
terneurons is compatible with a role of this subunit in developmental plasticity. The disruption
of barrel cortex formation after chronic blockade of ionotropic glutamate receptors (during the 
first 24 hours after birth) further supports this hypothesis.47 The decline in KAR subunits expres-
sion observed at late developmental stages could be related to cell elimination, due to network 
remodeling. The permeability of some edited forms of GluK1 and GluK2 KAR subunits to 
calcium may contribute to limit neuronal number via their excitotoxic action which leads to cell
death. Altogether, these observations indicate that KARs are essential for neuronal development.

In the hippocampus, mossy fibers, the axons of dentate gyrus granule cells, which are endowed
with presynaptic KARs,48 develop postnatally producing three types of connections with their
targets: (i) mossy terminals which synapse with thorny excrescences of CA3 principal cells; (ii)
small en passant terminals; (iii) filopodial extensions which specifically contact GABAergic
interneurons.49 In a study aimed at elucidating the motility of axonal filopodia and dendritic
spines during postnatal development, a process thought to be involved in synapse formation and 
rearrangement, it was demonstrated that synaptic activation of KARs enhances motility at mossy 
fiber axons in younger hippocampal slice culture but inhibits it in more mature slices,50 suggesting 
a key role for KARs for establishing synaptic contacts and for stabilizing newly formed ones.

More extensive studies relate to the functional role that KARs exert on network activity in
the immature hippocampus. It is worth noting that correlated neuronal activity constitutes a 
hallmark of developmental networks, well preserved during evolution that has been observed not
only in the hippocampus but in almost every brain structure examined, including the retina,51 the 
neocortex,52-55 the hypothalamus,56 the cerebellum57 and the spinal cord.58,59 In the hippocampus, 
the so-called giant depolarizing potentials or GDPs are generated by the synergistic action of 
synaptically released glutamate and GABA, both of which are depolarizing and excitatory.60,61

GDPs which have been proposed to be the in vitro counterpart of “sharp waves” recorded in 
rat pups during immobility periods, sleep and feeding62 can be considered a primordial form
of synchrony between neurons, which precedes more organized forms of activity such as the
theta and the gamma rhythms crucial for information processing.63 GDPs disappear spontane-
ously towards the end of the second postnatal week in concomitance with the shift of GABA 
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from the depolarizing to the hyperpolarizing direction. The strong developmental correlation
between GDPs and KARs expression suggests that the latter are crucial for regulating early 
network activity which in turn contributes to sculpt neuronal circuits. In particular, signaling 
via presynaptic GluK1 containing KARs has been shown to be critical for regulating the number
of functional glutamatergic synapses64 and the balance between GABAergic and glutamatergic 
transmission which control GDPs.27,65,66

The hippocampal network comprises a large variety of distinct locally connected GABAergic
interneurons which by pacing, timing and synchronizing principal cells give rise to coherent oscil-
lations in both the adult67 as well as in the immature brain.68 Network synchronization is tightly 
controlled by the intrinsic properties of GABAergic interneurons69 and by their electrical coupling 
via gap junctions.70-72 Recent evidence indicates that tonic activation of GluK1 subunit-containing 
KARs by “ambient” glutamate can enhance, via a metabotropic action, the firing of neonatal 
interneurons by interfering with the calcium-dependent after hyperpolarization of medium
duration (mAHP), generated by an apamin-sensitive K� current mediated by SK channels.73

This effect is age-dependent since it disappears towards the end of the second postnatal week 
in concomitance with the uncoupling between KARs activation and mAHP. This mechanism
together with the developmental shift of GABA from the depolarizing to the hyperpolarizing 
direction may contribute to the age-dependent disappearance of GDPs in the hippocampus.

Interestingly, at MF-CA3 connections presynaptic KARs are functional at early developmen-
tal stages,27,66,67,74 while postsynaptic ones become operative only towards the end/beginning of 
the second postnatal week.75 Thus, while in adulthood, stimulation of MF terminals evokes in
CA3 principal cells excitatory postsynaptic currents (EPSCs) which carry at least in part current 
charges via KARs,9,10,12,76 in neonates MFs terminals release mainly GABA (see below). A postsyn-
aptic KAR-mediated component of the EPSC starts appearing during the second postnatal week 
when MFs acquire the classical glutamatergic phenotype in concomitance with the shift of GABA 
from the depolarizing to the hyperpolarizing direction.75 The appearance of KAR-dependent 
EPSCs tightly coincides with the development of large amplitude AMPA-mediated EPSCs and 
with frequency-dependent facilitation. The lack of KARs-mediated postsynaptic components 
with summation properties which facilitate the temporal integration of synaptic inputs might 
change the way of synaptic signaling early in postnatal development. The lack of GluK1 and
GluK2 KAR containing subunits would perturb the maturation of AMPA-mediated compo-
nents of MF-EPSCs through pre and postsynaptic actions as assessed using mutant GluK1 and
GluK2	/	 mice.75 Interestingly, GluK2 subunits of KARs interact with cell-adhesion molecules 
of the cadherin-catenin complex,77 known to be involved in synapse formation together with the
nectin-afadin system.78 Therefore, the possibility that maturation of MF-CA3 synapses occurs 
via the mutual interaction of KARs with adhesion molecules represents an intriguing hypothesis.

GABAergic Phenotype of Immature MF Terminals
In adulthood, the primary excitatory neurotransmitter released from MF terminals is

glutamate. However, in particular conditions, in addition to glutamate, MFs can release GABA. 
Thus, Gutiérrez and Heinemann79 have convincingly demonstrated that in kindled rats mono-
synaptic bicuculline-sensitive GABAergic inhibitory postsynaptic potentials (IPSPs) occur in
CA3 principal cells in response to stimulation of granule cells in the dentate gyrus. Interestingly, 
a high frequency input to pyramidal cells leads to IPSPs summation and consequent reduction in 
the probability of generating action potentials. It seems therefore likely that the release of GABA
from MF terminals during seizures may act as a compensatory mechanism to counterbalance 
the enhanced excitability induced by the epileptic activity.80 Interestingly, seizures have been 
shown to be associated with a transient up-regulation of presynaptic GABA ergic markers such 
as GAD67, GAD 65 and VGAT.81-83 Moreover, hippocampal pyramidal neurons are able to express 
not only glutamate but also “mistargeted” GABAA receptors which, in particular conditions 
may become functional.84 This suggests that MF can use GABA as a neurotransmitter since they 
posses all the machinery for synthesizing, storing, releasing and sensing it. Indeed, in juvenile
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animals, stimulation of granule cells in the dentate gyrus induces monosynaptic GABAergic 
and glutamatergic responses in CA3 principal cells85,86 and immunogold experiments have
demonstrated that AMPA and GABAA receptors are colocalized on the same synapse in close
apposition to MF terminals.87

In contrast, immediately after birth, GABA is the main neurotransmitter released from MF termi-
nals. At this early developmental stage, MFs constitutively express GAD67 and its product GABA81,82

as well as the mRNA for the vesicular GABA transporter VGAT.88 Post embedding immunogold 
double labeling has revealed the coexistence in MF terminals of VGAT and VGLUT (the vesicular
transporter for glutamate) further suggesting that GABA can be coreleased with glutamate.89

Thus, minimal stimulation of granule cells in the dentate gyrus evokes in CA3 principal cells 
monosynaptic currents that completely fulfill the criteria for MF identification. These currents
which are insensitive to AMPA receptor antagonists74 but sensitive to the selective group III 
metabotropic glutamate receptor agonist L-(�)-2-Amino-4-phosphonobutyric acid (L-AP4),
are readily blocked by picrotoxin, bicuculline or gabazine, suggesting that they are mediated by 
GABA acting on GABAA receptors (Fig. 1).

Figure 1. GABAergic origin of mossy fibers-evoked unitary postsynaptic currents in immature 
CA3 pyramidal cells. A) Unitary synaptic currents evoked in a CA3 pyramidal cell by minimal
stimulation of granule cells in the dentate gyrus at P3 in control conditions, during applica-
tion of GYKI 52466 (30 �M), GYKI plus L-AP4 (10 �M) and after addition of picrotoxin (PTX,
100 �M). Each trace is the average of 15-20 responses (including failures). Note that GYKI
failed to modify synaptic currents. Synaptic currents were reduced in amplitude by L-AP4
and abolished by PTX. In the inset above the traces, MF-evoked GPSCs showing paired-pulse
facilitation. B) Each column represents the mean peak amplitude current obtained in the 
experimental conditions shown in A and normalized to controls (dashed line; n 
 6). In this 
and in the following figures, vertical bars refer to SEM. C) Example of GPSCs probably origi-
nated from a GABAergic interneuron impinging into a pyramidal cell exhibiting paired pulse
depression. In this case, GPSCs were insensitive to L-AP4, but were blocked by PTX. D) As
in B but for L-AP4 insensitive GABAergic interneurons (n 
 7). **p � 0.01.
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As expected for GABAA-mediated postsynaptic currents (GPSCs), synaptic responses can 
be potentiated by flurazepam, an allosteric modulator of GABAA receptors or by 1-(2-(((di-
phenylmethylene)amino)oxy)ethyl)-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid (NO-711)
a selective blocker of the GABA transporter GAT-1.90 Additional evidence in favor of GABA 
as a neurotransmitter at MF-CA3 synapses is provided by the experiments in which, chemical
stimulation of granule cell dendrites in stratum moleculare with glutamate (in the presence of 
the AMPA/kainate receptor antagonists to prevent the recruitment of GABAergic interneu-
rons), depolarizes granule cells via activation of NMDA receptors and induces in CA3 principal
cells barrages of GABAergic currents sensitive to L-AP4. Moving the pressure pipette few 
�m away towards the hilus to activate hilar interneurons causes barrage of GABAA-mediated
events insensitive to L-AP4, implying that they are mediated by the release of GABA from 
GABAergic interneurons.90

Perforated patch experiments, to preserve the anionic conditions of the recorded cells, 
have revealed that GABA released from MF terminals, exert a depolarizing action on targeted 
cells.91 Accumulation of chloride inside the cell via the cation-chloride cotransporter NKCC1
is responsible for the depolarizing action of GABA since the positive driving force for chloride 
(� 9 mV) observed in control conditions shifts towards negative value (-7 mV) when slices are 
exposed to the selective inhibitor of NKCC1, bumetanide,92,93 thus confirming the general rule
that GABA depolarizes immature neurons because of a reversed chloride gradient.94

In view of the GABAergic phenotype of immature MFs, what could the functional role 
of presynaptic KARs abundantly expressed on MF terminals? How could they be activated? 
How could they be involved in shaping neuronal networks? Some of these questions have been
recently addressed.74

GluK1 KARs Down Regulate GABA Release by from Immature 
MF Terminals

In the immature hippocampus, activation of GluK1 KARs subunits by tonic glutamate
present in the extracellular space has been shown to downregulate the release of GABA from
MF terminals via a metabotropic type of action.74 Thus, blocking GluK1 receptors with
(S)-1-(2-Amino-2-carboxyethyl)-3-(2-carboxybenzyl)pyrimidine-2,4-dione (UBP 302), a 
specific GluK1 antagonist, in the presence of AMPA receptor blockers, enhances the amplitude
of GPSCs (Fig. 2). As expected for a presynaptic type of action this effect is associated with an 
increase in successes rate, in CV	2 and a decrease in PPR (Fig. 2).

In addition, in “presynaptically” silent neurons, UBP 302 induces the appearance of synaptic 
responses to the first stimulus suggesting that endogenous activation of GluK1 contributes to
synapses silencing (Fig. 3). Silent synapses represent a common feature of the developing brain.95

They have been observed in a variety of different structures including the hippocampus where
their number decreases significantly with age.96

The depressant action of GluK1 KARs on GPSCs is not indirectly mediated via other signal-
ing molecules known to inhibit GABA release since KARs antagonists are still able to enhance 
the amplitude of GPSCs when applied in the presence of various receptor blockers including 
those for GABAB, nicotinic, muscarinic, purinergic P2Y and mGlu.74

It is known that presynaptic receptors are usually activated by spillover of the neurotrans-
mitter from axon terminals. One fundamental question to be addressed is how presynaptic
GluK1 receptors can be activated if the main neurotransmitter released from MFs is GABA. 
One possibility is that these receptors are constitutively activated by ambient glutamate pres-
ent in the extracellular medium which in neonates would be maintained at high levels by a less
efficient glutamate transport mechanism and a poorly developed diffusional barrier.97 Indeed,
by enhancing the clearance of glutamate from the extracellular space, using an enzymatic glu-
tamate scavenger system prevents the activation of presynaptic kainate receptors by glutamate 
and similarly to UBP 302 induces an increase in amplitude of GPSCs.74
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Since the depressant action of kainate on transmitter release seems to occur via G 
protein-coupled receptors,19 to elucidate whether GluK1-induced depression of GPSCs oper-
ates through this particular modality, hippocampal slices were treated overnight with pertussis 
toxin (PTx) which blocks Gi/o protein coupled receptors. In these conditions, UBP 302 fails 
to modify the amplitude of GPSCs. Similarly, the amplitude of GPSCs is unaltered when the
glutamate scavenger is applied to slices incubated with PTx. The GluK1-induced-depression of 
MF-GPSCs involves G-coupled receptors localized on the presynaptic site, since blocking G 

Figure 2. Endogenous activation of presynaptic kainate receptors down regulates MF-GPSCs. 
A) Superimposed individual traces of MF-GPSCs evoked in the presence of GYKI 52466 
(30 �M, Control) and GYKI 52466 plus UBP 302 (10 �M). Below: averaged traces (successes 
plus failures). Note that UBP 302 enhanced the amplitude of the first response and reduced 
the number of synaptic failures. B) Summary plot showing the mean amplitude of GPSCs in
the presence of GYKI and GYKI 52466 plus UBP 302 (n 
 19). The horizontal dashed line
refers to the mean amplitude value measured before UBP. C-F. Amplitude (C), Successes (D), 
PPR (E) and inversed square of CV (F) of MF-GPSCs measured in individual cells before and 
after application of UBP. Larger symbols represent averaged values. **p � 0.01; ***p � 0.001.
(Modified with permission from ref. 74.)
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proteins localized on the postsynaptic membrane using GDP�S into the patch pipette does not 
alter the action of UBP 302 on MF-mediated GABAergic currents, further indicating that the
depression of MF-GPSCs is mediated by Gi/o protein-coupled kainate receptors localized on
MF terminals. Since the signaling pathway stimulated by G protein likely involves the release 
of calcium from intracellular stores by the activation of phospholipase C (PLC) and PKC 
stimulation, with consequent inhibition of voltage-dependent calcium channels,25,98,99 disrupting 
the intracellular cascade downstream of G-protein activation with 1-[6-[[(17b)-3-Methoxyes-
tra-1,3,5(10)-trien-17-yl]amino ]hexyl]-1H-pyrrole-2,5-dione (U73122), a selective PLC 
blocker, should prevent the depressant action of GluK1 antagonist on GPSCs.

Interestingly, blocking PLC with U73122, downstream to G protein activation, unmasks the
potentiating effect of GluK1 on MF GPSCs, which probably depends on the ionotropic type of 
action of this receptor. In keeping with this, the GluK1 antagonist UBP 302 significantly reduces 
the probability of evoking antidromic spikes in single granule cells by stimulation of MFs in
stratum lucidum (Fig. 4).

A similar effect is produced by philanthotoxin which blocks calcium permeable AMPA/
kainate receptors,100 indicating that GluK1 increases MF excitability through the activation of 

Figure 3. Blocking GluK1 receptors with UBP 302 enhances the probability of GABA release 
and converts “presynaptically” silent synapses into active ones. A) averaged traces of a
“presynaptically” silent neuron recorded in the presence of GYKI and GYKI plus UPB 302. 
Note the appearance in the presence of UBP 302 of a synaptic current in response to the first 
stimulus. B) Time course of the peak amplitude of the first (left) and second (right) response 
shown in A, in control and during bath application of UBP (bars). C) Summary data (amplitude
and successes rate) for 6 “presynaptically” silent cells.
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calcium-permeable cationic channels and depolarization of MF terminals (Fig. 4). Consistent 
with a ionotropic type of action, application of UBP 302 in the presence of philanthotoxin fails 
to modify MFs excitability (Fig. 4). In juvenile animals, activation of presynaptic kainate recep-
tors has been found to directly depolarize via cation channels glutamatergic MF terminals31 or
GABAergic terminals,101 thus lowering the threshold for antidromic action potential generation.

Figure 4. GluK1 receptors sensitive to philantotoxin control MF excitability. A) Consecutive 
traces showing antidromic spikes recorded in granule cells upon stimulation of MF in stratum
lucidum before and during application of UBP 302 (note that the stimulus strength was set
to obtain � than 50 % of successes. B) Summary plot of UBP 302 effects on successes rate
(n 
 7). C-D) In cells with � than 50% of successes, the selective GluK1 agonist ATPA enhanced 
MF excitability and the successes rate (n 
 7). E-F) Philantotoxin (PhTx, 3 �M) mimicked the 
effects of UBP 302 (n 
 7). G-H) In the presence of philantotoxin, UBP was not effective
(n 
 7). ***p � 0.001. (Modified with permission from ref. 74.)
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How can an increased MF excitability be reconciled with a depression of GABA release?
According to Kamiya and Ozawa,31 a down regulation of transmitter release may occur via 
inactivation of Na�/Ca2� channels or electrical shunting. However, this is unlikely in view of 
the recent finding that KA-induced facilitation of action potential evoked calcium entry in MF 
boutons involves a calcium store-dependent mechanism.22 In addition, it should be stressed 
that unlike adults, immature MF terminate in very small spherical expansions102 and do not
exhibit use-dependent synaptic facilitation until the second week of postnatal life.75 It is still 
unclear whether the dual signaling pathways (ionotropic and metabotropic), which depend 
on the common ionotropic GluK1 subunit, are independent or functionally coupled. In a 
previous study from dorsal root ganglion cells, it has been demonstrated that GluK1 KARs
induces a G protein-dependent rise in [Ca2�] i, favoring its release from the internal stores.98 It
is tempting to speculate that calcium entering through calcium-permeable KARs may directly or 
indirectly interfere with G protein-mediated signaling leading to a dominant depressant effect
on MF-GPSCs. The interplay between these two different pathways has been recently shown 
to account for the PKC-dependent autoregulation of membrane KARs.41

Modulation of Spike-Time Dependent Plasticity by GluK1 KARs
Activity-dependent changes in synaptic strength such as long-term-potentiation (LTP) 

or long-term depression (LTD) are critical for information storage in the brain and for the
development of neuronal circuits. One interesting question is whether, early in postnatal 
development, MF-GPSCs can undergo activity-dependent modifications in synaptic efficacy. 
As already mentioned, immature neurons are characterized by an elevated number of silent
synapses which can be converted into active ones by activity-dependent processes and this
represents the most common mechanism for LTP induction, not only during development,
but also in the mature brain.95

A form of synaptic plasticity extensively studied at glutamatergic synapses is spike-time
dependent plasticity (STDP). This is a particular form of Hebbian type of learning which 
consists in bi-directional modifications of synaptic strength according to the temporal order of 
pre and postsynaptic spiking.103 Thus, positively correlated pre and postsynaptic spiking (pre
before post) within a critical time window leads to LTP whereas a negative correlation (post 
before pre) to LTD.

We used the STDP protocol to verify whether activity can modify the strength of GABAergic 
MF-CA3 connections.91 Unlike conventional STDP, pairing (in current clamp mode) ten 
postsynaptic spikes (at 0.1 Hz) with unitary MF-GPSPs, persistently downregulates synaptic
efficacy in a way that is independent of the temporal order of pre and postsynaptic stimulation 
(Fig. 5). The decrease in amplitude of GPSCs, which persists without decrement for periods
of time variable from 40 to 60 min, reaches its maximum when in the case of positive pairing 
antidromic spikes follow MF stimulation with a delay of 15 ms (coincident with the peak of the 
synaptic potentials) or when, in the case of negative pairing, it precedes MF activation by 50 ms.

These effects, which require for their induction a rise of calcium in the postsynaptic cell via 
voltage-dependent calcium channels, are associated with a significant decrease in successes rate,
in the inverse squared value of the coefficient of variation of responses amplitude and a significant 
increase in paired pulse ratio, suggesting a presynaptic site of expression.

Interestingly, GluK1 KARs control the direction of STDP at immature MF-CA3 synapses.
Thus, when positive pairing (15 ms delay) is delivered in the presence of the selective GluK1 
antagonist UBP 302 a shift from STD-LTD to STD-LTP occurs91 (Fig. 5). In addition, this
activity-dependent form of synaptic plasticity involves the activation of a G-protein and PLC
since it can be prevented by the selective PLC blocker U73122.74 However, in the presence of 
KAR antagonists, negative pairing (postsynaptic spiking preceding MF stimulation with a delay 
of 50 ms) still induces LTD similar in all respects to that obtained in the presence of a high
concentration of DNQX which blocks both AMPA and kainate receptors,91 suggesting that 
KAR are not involved in this form of synaptic plasticity (Fig. 5).
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In summary, it is clear that tonic activation of presynaptic KAR by endogenous glutamate
accounts for the persistent depression of MF-GPSCs observed after pairing presynaptic MF stimula-
tion with postsynaptic spiking as demonstrated by the possibility to switch spike-time dependent 
depression into potentiation with UBP 302. Although the precise mechanisms underlying this
phenomenon are still unclear, we cannot exclude the possibility that, with respect to LTD induced 
by negative pairing, KA-induced synaptic depression relies on a distinct calcium signal which in 
turn may activate a different molecular pathway, as suggested by the calcium hypothesis.104

Conclusion
Although much remains to be learned about the means by which KARs control GABA release at

immature MF-CA3 connections and particularly the dual signaling pathways involved (ionotropic
and metabotropic), it is conceivable that the depression of GABAergic transmission following 
tonic activation of GluK1 KARs by ambient glutamate represents a homeostatic mechanism which 
would limit the excessive activation of the auto-associative CA3 network by the excitatory action

Figure 5. Presynaptic kainate receptors control the direction of spike-time dependent plasticity 
(STDP). A) Schematic representation of the experimental design. B) The stimulation of granule 
cells in the dentate gyrus (pre) preceded the postsynaptic spike (post) by 15 ms (t). C) the
stimulation of granule cells in the dentate gyrus followed the postsynaptic spike by 50 ms. 
D) Summary plot of the mean peak amplitude of GPSCs recorded before and after positive
pairing (arrow at time 0) in the absence (control, white symbols, n 
 11) or in the presence 
of UBP 302 (grey symbols, n 
 9). E) As in D but for negative pairing (post before pre; n 
 7). 
Note the shift from spike-time dependent depression into spike-time dependent potentiation 
in the presence of UBP only in the case of positive pairing.
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of GABA, thus preventing the occurrence of seizures. These properties are likely to be critical
for information processing and for the proper development of the adult hippocampal circuitry.
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Abstract

Kainate receptors (KARs) are one of the three subtypes of ionotropic glutamate receptors in
the CNS. These receptors are widely expressed pre- and postsynaptically throughout the 
brain. Thus, kainate receptor activation mediates a large variety of pre- and postsynapticKK

effects on either glutamatergic or GABAergic synaptic transmission. Although ionotropic func-
tions for KAR have been described in multiple brain regions, there is considerable evidence from
various CNS regions that KARs activation modulates GABA release through either G-protein
dependent metabotropic pathway or secondary activation of G-protein coupled receptors. In the 
present chapter, we provide further evidence supporting that these two pathways are also involved 
in the modulation of GABA release in specific basal ganglia nuclei. Because of their more subtle 
effects on neurotransmisison regulation than other ionotropic glutamate receptors, KARs repre-
sent interesting targets for the future development of pharmacotherapy for basal ganglia diseases.

Introduction
Kainate receptors (KARs) are one of the three subtypes of ionotropic glutamate receptors

in the CNS, made up of a combination of GluR5, GluR6, GluR7, KA1 and KA2 subunits.1,2

These receptors are widely expressed pre- and postsynaptically throughout the brain.3-9 Cloning 
technology and recent development of drugs that could discriminate between kainate and 
AMPA receptors have led to further characterization of the pharmacological and physiological
properties of KARs during the past decade.7,8 Kainate receptors have direct actions on intrinsic 
cell excitability in the hippocampus10 and modulate both glutamatergic and GABAergic synaptic
transmission in a number of brain regions.7,8 In the hippocampus and amygdala, synaptically 
released glutamate from nearby excitatory synapses, can activate KARs in GABAergic terminals, 
thereby providing an endogeneous, physiologically relevant, mechanism mimicking the effect of 
exogenous KA application on inhibitory synaptic transmission.11,12 Although the hippocampal 
KARs surely deserved most attention, data from our laboratory and others have provided further 
evidence for a widespread pre and postsynaptic localization of KARs and their functions in many 
other CNS structures, including the cerebral cortex, hypothalamus, cerebellun, spinal cord and
basal ganglia.5,7,9,13 In this chapter, we will provide an overview of our current understanding of 
the localization and function of KARs in the basal ganglia and discuss their potential relevance
as novel targets for movement disorders therapy. Each basal ganglia nucleus will be discussed in
turn, followed by concluding remarks related to the potential impact KARs may have in regulating 
basal ganglia function under normal and pathological conditions. Additional information about
the basal ganglia KARs localization can also be found in a previous review.14
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Striatum
The mRNA for GluR6, GluR7 and KA2, but not GluR5 and KA1, are expressed in rat and mice

striatum.15,16 Double in situ hybridization studies dermonstrated that most striatal projection neurons 
labeled for either enkephalin or substance P mRNAs co-express GluR6 mRNA.17 The expression
of KARs subunits in striatal interneurons remains to be determined. Consistent with these results,
strong cellular and neuropil GluR6/7 immunoreactivity was found in the monkey striatum.3,5 At 
the ultrastructural level, both GluR6/7 and KA2 are expressed in subsets of glutamatergic terminals, 
some of which in the sensorimotor putamen, originate from the motor cortex or the centromedian
thalamic nucleus5 (Fig. 1). Presynaptic KARs are either extrasynaptic, away from the main release sites 

Figure 1. Pre and postsynaptic expression of GluR6/7 and KA2 immunoreactivity in the monkey 
striatum. A) GluR6/7-immunoreactive elements in the body of the caudate nucleus. Note the
presence of labeled terminals (Te) forming asymmetric synapses (arrowheads) and immunoreac-
tive dendrites (Den). The asterisks indicate unlabeled boutons. B) Presynaptic and postsynaptic
GluR6/7 labeling at an asymmetric axospinous synapse as reviewed with the postembedding
immunogold method. C) Dense KA2 labeling (arrows) in the presynaptic gird of an asymmetric
axospinous synapse. Scale bars: A: 0.3 �m; B: 0.2 �m (valid for C). (See ref. 5 for more details). 
From: Kieval JZ et al. J Neurosci 2001; 21:8746-8757;5 © 2001 with permission from the Society
for Neuroscience.
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of neurotransmitter or associated with the presynaptic active zones of glutamatergic synapses (Fig.
1).5 At the postsynaptic level, the majority of GluR6/7 and KA2 labeling is found extrasynaptically 
along the plasma membrane of spines and dendrites contacted by glutamatergic inputs, though some
labeling can occasionally be found in the postsynaptic density of glutamatergic synapses (Fig. 1).5

Agonist-induced activation of KARs in slices of rat striatum modulates GABAergic trans-
mission.17,18 Domoate (200 nM-500 nM), an AMPA/KAR agonist, increases the frequency of 
spontaneous GABAergic IPSCs (SIPSCs) with low amplitude, which are likely generated by 
intrinsic axon collaterals of GABAergic projection neurons,20,21 but does not have any effect on the 
frequency of large amplitude IPSCs most likely mediated by GABAergic afferents from fast spiking 
striatal interneurons19-21 or projections from the globus pallidus.22-25 Domoate also decreases the 
IPSCs amplitude evoked by intrastriatal stimulation.17 These effects are mediated by activation of 
GluR6-containing KARs because they are lost in GluR6-deficient mice.17 Thus, these differential 
effects of KARs agonist on sIPSC of different amplitude suggest a variable degree of expression and 
function of presynaptic KARs on intrinsic GABAergic projections from striatal output neurons or 
interneurons. The lack effect of domoate on large amplitude sIPSCs suggests that low concentra-
tions of domoate do not trigger spike discharge in GABAergic interneurons.

As described in hippocampus and spinal cord,26,27 the KAR-induced depression of GABAergic
transmission in the striatum involves activation of secondary G-protein coupled receptors.17

Domoate-induced inhibition of evoked IPSCs (eIPSCs) is, indeed, significantly reduced by A2A

receptor antagonists (Fig. 2). These observations, combined with electron microscopic evidence
for the localization of A2A receptor immunoreactivity in intrastriatal GABAergic axon collater-
als of striatopallidal neurons,28,29 provide a substrate whereby KARs could regulate GABAergic 
transmission via indirect activation of presynaptic A2A receptors. However, KARs activation does 
not affect the frequency of miniature IPSCs (mIPSCs), while increasing that of evoked and spon-
taneous IPSCs, in the rat nucleus accumbens, suggesting the involvement of postsynaptic KARs.18

Together, these studies provide solid evidence that KARs are clearly involved in the regulation of 
inhibitory transmission in both the dorsal and ventral striatum, but significant work remains to be 
done to elucidate the exact mechanisms underlying these effects. The role of KARs on GABAergic 
interneurons must also be examined carefully.

Globus Pallidus
Globus pallidus neurons express strong mRNA for GluR6 and KA2 in rodents.16 Consistent 

with these findings, neurons in the external (GPe) and internal (GPi) pallidal segments in monkeys
display moderate to strong GluR6/7 and KA2 immunoreactivity.30 At the electron microscopic
level, GluR6/7 labeling is expressed both postsynaptically in dendrites of pallidal neurons and 
presynaptically in GABAergic striatal terminals and putative glutamatergic terminals.9,30 In addi-
tion, significant GluR6/7 immunoreactivity is expressed in unmyelinated axons throughout both
pallidal segments suggesting a presynaptic role for KARs in this brain region.9,30 The pattern of 
KARs immunoreactivity in the monkey pallidum is very similar to that found in both adult and
young rats GP (Fig. 3).

In line with these immunocytochemical data, KA application inhibits GABAergic synaptic
transmission through presynaptic mechanisms in slices of rat GP (Fig. 4). On the other hand, KA 
(1 �M) does not have a signifficant effect on whole cell resistance of rat GP neurons9 suggesting 
that the KAR-induced depression of eIPSCs is not due to postsynaptic changes of the passive 
membrane properties of GP cells.

As discussed in other chapters, since the pioneer publication of Rodriguez-Moreno and Lerma 
in 1998,31 various complex mechanisms involving G-proteins have been demonstrated by which 
KARs modulate GABAergic synaptic transmission in the hippocampus and other brain regions 
(reviewed in refs. 7,8,32-34). We recently studied the effect of another G-protein inhibitor
N-ethylmaleimide (NEM) on KA-induced inhibition of GABAergic transmission in slices of ratNN
GP and found that this G-protein antagonist is capable of blocking presynaptic KAR-induced 
inhibition of glutamatergic transmission in this brain region.9 We also demonstrated that the 
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KAR-mediated presynaptic modulation of GABAergic synaptic transmission in GP is abolished 
by NEM (Fig. 5A,B), likely though a presynaptic site of action because the KAR-mediated decrease
in mIPSCs frequency is also significantly reduced by this drug (Fig. 5C-E). Although the exact
mechanisms by which G-proteins contribute to the KAR-mediated presynaptic effects in GP 
remain to be determined, the fact that these effects are not abolished after blockade of various G 

Figure 2. A2A receptor antagonists block the action of domoate on evoked IPSCs. A) IPSCs
were evoked by intrastriatal stimulation (at a rate of 0.2 Hz) in the presence of NBQX (1 �M). 
Top traces, Domoate (500 nM for 2 min) reversibly decreased evoked IPSC amplitude. Bottom
traces, In the same cell, perfusion of the slice with the selective A2A antagonist ZM 241385
(1 �M) prevents the action of domoate on evoked IPSC amplitude. The dotted line represents
the level of the control inward current. B) For the same experiment, plot of the amplitude of 
evoked IPSCs as a function of the time. Domoate is applied at the time indicated by the open
horizontal bars. As indicated by the bottom horizontal bar, ZM 241385 (1 �M) is perfused
several minutes before the second application of domoate. C) Histogram of the average (� SEM)
inhibition by domoate (500 nM for 2 min) of evoked IPSC amplitude in control condition 
(n 
 18), in the presence of ZM 241385 (1 �M) (n 
 7) and in the presence of SCH-58261 (1 �M)
(n 
 6). For both antagonists, the difference in inhibition versus domoate was significant with
P � 0.001. Reprinted from Chergui K et al. J Neurosci 2000; 20(6):2175-2182;17 © 2000 with
permission from the Society for Neuroscience.
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protein-coupled receptors, including GABAB and A2A which are involved in mediated presynaptic 
effects of KARs in hippocampus and striatum,17,26,27,35 is strongly indicative of a specific mechanism
different from that seen at other synapses.13

Several studies have indicated that PKC activation downstream of G-protein activity is
essential for KAR-mediated pre and postsynaptic effects (reviewed by refs. 33,34). For instance, 
KA-induced presynaptic inhibition of GABAergic or glutamatergic transmission and KA-mediated

Figure 3. Pre and postsynaptic expression of GluR6/7 immunoreactivity in rat and monkey
GP. GluR6/7-labeled terminals (Te) forming symmetric (A,C) or asymmetric (B) axon-dendritic
synapse in rat and monkey pallidum. C) shows a GluR6/7-Postive axon terminals (Te) enriched 
in GABA immunoreactivity forming a symmetric axon-dendritic synapse on a labeled den-
drite. Note the low density of gold particles associated with a putative glutamatergic terminal 
(u.Te) that forms an asymmetric synapse (arrow) on the same dendrite. Scale bars: A: 0.5 �m; 
B: 0.3 �m; C: 0.3 �m. (See references 9 and 30 for more details.) Reprinted from: Kane-Jackson
R, Smith Y. Neuroscience 2003; 120:285-289;30 with permission from Elsevier; and from Jin X-T 
et al. Eur J Neurosci 2006; 23:374-386;9 © 2006 with permission from Wiley-Blackwell.



32 Kainate Receptors

postsynaptic inhibition of slow afterhyperpolarization currents (IsAHP) in hippocampal neurons
are blocked by PKC inhibitor (Calphostin C), but not by PKA inhibitor (H-89).9,31,36-40 In the rat
GP, presynaptic KAR-mediated effects on evoked and mIPSCs are also blocked by Calphostin, 
but not by H-89 (Fig. 6), providing further evidence that KAR-induced depression of GABAergic
synaptic transmission in the rat GP requires G-protein and PKC activation, but does not rely on 

Figure 4. KAR activation increases paired pulse facilitation ratio (PPFR) and reduces the
frequency, but not the amplitude, of mIPSCs at GABAergic synapses in the GP. A) Paired 
IPSCs were recorded before (left trace) and during (middle) 1 �M KA application. The right
trace shows the KA-induced effect after scaling to the peak of the first IPSC. B) The same
neuron presented in (A) shows the time course of increased paired-pulse facilitation ratio
(PPFR) of IPSCs in response to 1 �M KA application (left graph) and the effect of KA on PPFR
expressed as a ratio of P2/P1 (mean � S.E.M.) (right graph). C) A summary bar graph shows
that KA (0.1-0.3 �M) significantly reduces the frequency of mIPSCs, which is blocked in the 
presence of 50 �M CNQX. D) A summary bar graph shows that neither KA nor KA together
with CNQX affects the amplitude of mIPSCs. Asterisks indicate a significant difference from 
control (* � 0.01), NS indicates nonsignificant differences; and n indicates the number of 
cells tested under each condition. (See ref. 13 for more details.) From X-T Jin, Smith Y et al.
Neuroscience 2007; 149:338-34913 © 2007 with permission from Elsevier.
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the secondary activation of G protein-coupled receptors. Thus, together with our recent study 
showing KAR-mediated regulation of glutamatergic transmission,9 these findings demonstrate
that KARs mediate their presynaptic effects on both GABAergic and glutamatergic transmission
in the GP through a metabotropic mode of action.

Substantia Nigra Pars Compacta
Dopaminergic neurons in the substantia nigra pars compacta (SNc) express the highest level

of mRNA for GluR5 and GluR7 subunits within the basal ganglia.16 In contrast, only low level
of GluR6 and KA2 is found in SNc neurons, while no detectable mRNA for KA1 is observed in
these cells.16 Although the expression of GluR6, GluR7 and KA2 subunits in SNc was confirmed 
by light microscopic immunocytochemistry,41 much remains to be known about the exact cellular 
and subcellular localization of these subunits in the SNc.

Kainate application increases the frequency of mIPSCs, without changing their amplitude, in
SNc neurons.35 This presynaptic facilitatory effect of KA on the frequency of mIPSCs is suppressed
in either Na�-free or Ca2-free external solution and in presence of voltage-dependent Ca2� channel

Figure 5. Application of G-protein inhibitor (NEM) blocks the KAR activation-induced inhibition 
of GABAergic synaptic transmission in rat GP. A) Evoked IPSCs recorded in presence of NEM
(left trace) and NEM together with KA (right trace). B) A summary bar graph shows that the
inhibitory effect of KA on IPSC amplitude is blocked in the presence of NEM. C) Sample traces 
show mIPSCs in presence of NEM (left trace) and together with KA (right trace). D, E) A sum-
mary bar graph shows that KA has no effect on either mIPSCs frequency or amplitude in the
presence of NEM. (See reference 13 for more details.) From X-T Jin, Smith Y et al. Neuroscience 
2007; 149:338-34913 © 2007 with permission from Elsevier.
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blockers supporting a direct presynaptic ionotropic mode of action.35 On the other hand, KAR 
activation inhibits eIPSCs and this inhibitory effect is reduced in the presence of GABAB receptor
antagonist, but not other G-protein coupled-receptor antagonists (Fig. 7). Several hypotheses have 
been proposed to explain the possible mechanisms (s) underlying the presynaptic KAR-induced
modulation of GABAergic transmission in various brain regions (reviewed by references 7 and 8). 
These include direct inhibition of GABA release from terminals,13,31,37,42,43 a modulation of axonal

Figure 6. Pretreatment with PKC inhibitor (calphostin), but not PKA inhibitor (H-89), prevents 
KAR activation-induced inhibition of IPSCs in rat GP. A) The time course of 1 �M KA on IPSC 
amplitude in the presence of 1 �M calphostin C. Three IPSCs are averaged in each trace at
the time indicated by corresponding letters in the graph. B) A bar graph shows that the KAR
activation-induced inhibition of IPSCs is blocked by 0.5 �M staurosporine, a broad-spectrum
inhibitor of protein kinase and calphostin C, but not by H-89. There is a significant difference
from control, * � 0.01. C) mIPSCs were recorded in the presence of 1 �M calphostin C and
calphostin C together with 1 �M KA. D) mIPSCs were recorded in the presence of 0.5 �M
H-89 together with 1 �M KA. E) Summary bar graph shows that KA has no effect on mIPSCs
frequency in the presence of 0.5 �M staurosporine and calphostin C, but not in the presence
of H-89. F) Summary bar graph shows that KA has no effect on mIPSCs amplitude in the pres-
ence of staurosporine, calphostin C and H-89. *P � 0.05. The y axis of all graphs respresents 
percent of control. (See ref. 13 for more details.) From X-T Jin, Smith Y et al. Neuroscience 2007; 
149:338-34913 © 2007 with permission from Elsevier.
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excitability,44,45 or an indirect GABAB receptor-mediated effect.26,27 Data shown in Figure 7 argue 
that KA-induced inhibition of eIPSCs in the SNc involve the secondary activation of GABAB

autoreceptors. Thus, presynaptic KARs regulate the SNc circuitry through two functionally dis-
tinct opposing mechanisms: a direct presynaptic ionotropic mode of action that facilitates GABA
release and a secondary inhibitory mechanism that involves presynaptic GABAB autoreceptors.

In contrast to SNc, neurons in the substantia nigra pars reticulata (SNr) express the highest level 
of mRNA for GluR5 and GluR6 subunits within the basal ganglia, while no detectable mRNA
for the other kainate receptor subunits is found in these neurons.16 However, immunocytochemi-
cal study showed that protein expression of both GluR6/7 and KA2 in the rat SNr.41 The role of 
KARs in the SNr remains to be established.

Figure 7. Involvement of GABAB receptors in the KA-induced inhibition of eIPSCs in
dopaminergic neurons on the SNc. A) Typical traces of GABAergic eIPSCs observed during 
application of KA at various concentrations in the presence of 10 �M CGP55845. Dotted line 
represents control eIPSCs amplitude. B) Concentration-response relationship of KA action
on eIPSC amplitude. Each point is normalized to respective control and represents the mean
of 6 neurons. C) Typical traces of GABAergic eIPSCs observed during application of KA at 
various concentration in presence of CGP55845 (10 �M), AM-251 (10 �M), DPCPX (100 nM)
and MCPG (1 mM). Reprinted from with permission from Nakamura M et al. J Neurophysiol 
2003; 90:1662-1670.35
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Subthalamic Nucleus
Neurons in subthalamic nucleus (STN) express a high level of mRNA for the GluR6 subunit

while they display very low level of GluR7 mRNA, or are almost completely devoid of GluR5, KA1 
and KA2 subunits mRNA expression in rats.16 The high expression level of the GluR6 subunit was 
confirmed by immunocytochemistry in the rat STN.41 In contrast to mRNA data, a significant 
level of KA2 subunit immunoreactivity is also found in the rat STN.41 The physiology of KARs 
in STN remains unknown.

Conclusion
The past decade has witnessed significant development in our understanding of KARs-mediated 

regulation of GABAergic synaptic transmission in the CNS.7,8,32,43 In the hippocampus, there is sig-
nificant evidence that converges towards two principal mechanisms of action; a G-protein-coupled,
PKC-dependent, metabotropic mechanism or the secondary activation of G-protein coupled recep-
tors.26,31,36,37 Data reviewed in this chapter provide further evidence for these two pathways in the
modulation of GABA release in some basal ganglia nuclei. However, the findings presented in this
chapter also highlight a significant degree of heterogeneity by which KARs mediate their effects 
across basal ganglia nuclei. Future studies aimed at characterizing the localization and function of 
KARs in the basal ganglia of animal models of Parkinson’s disease or other movement disorders
may provide some insight about the potential role these receptors may play in the pathophysiol-
ogy of movement disorders. Knowing that overactive glutamatergic transmission is a cardinal 
feature of basal ganglia pathophysiology in PD, a deeper understanding of KARs combined with
the development of novel compounds that could selectively modulate activity of these receptors
may pave the way for new pharmacotherapeutic approaches in PD and other movement disorders.
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Metabotropic Actions of Kainate
Receptors in the Control of Glutamate
Release in the Hippocampus
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Abstract

Kainate-type glutamate receptors (KARs) structurally present the credentials of the other
ionotropic glutamate receptor (iGluR) faKK mily members (NMDA and AMPA receptors),
but functionally often purport examples of a metabotropic mode of operation. In theKK

present chapter, we describe these metabotropic roles of KARs in the modulation of glutamate 
release in the hippocampus at CA3 Schaffer Collateral (SC)-CA1 Pyramidal Cell (PC) synapses
and dentate gyrus granule cell Mossy Fiber (MF)-CA3 PC synapses. As autoreceptors on SC 
terminals, KARs inhibit the release of glutamate at SC-CA1 PC synapses through a mechanism
dependent on a pertussis toxin-sensitive Gi/o protein thought to couple via its G�� subunit to a 
decrease in Ca2� channel function. At MF-CA3 PC synapses, autoreceptors on MF terminals
respond diametrically depending on the agonist concentration. At low KA concentrations (�100 
nM), a G-protein-independent process invokes the activation of proteins kinase A (PKA) to effect 
a facilitation of glutamate release. This facilitation possibly involves the Ca2�-dependent (rather
than GPCR-dependent) activation of adenylate cyclase (AC). At high KA concentrations (�100 
nM), a mechanism involving a pertussis toxin-sensitive Gi/o protein is invoked to inhibit AC
activity and thereby suppress PKA activity. Taken together with the heterosynaptic regulation of 
GABA release by KARs working with a metabotropic modus operandi, there is therefore compelling 
evidence that these ionotropic glutamate receptors are involved in a noncanonical modulation of 
glutamate release that does not rely on their typical ionotropic activity.

Introduction
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system 

and as such participates in normal synaptic transmission, as well as processes thought to underlie 
learning and memory, including long-term potentiation (LTP) and long-term depression (LTD).1

Developmentally, glutamate plays essential roles during neuronal maturation and synaptogenesis. 
Alterations in the glutamate system may contribute to the aetiology of a number of neuropa-
thologies, including neuronal degeneration arising following brain ischaemia and hypoglycaemia, 
Alzheimer’s, Parkinson’s, Huntington chorea, lateral amyotrophic sclerosis and some forms of 
epilepsy.1-6 Clearly, the modulation of glutamate release is an essential requisite to maintain the
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high fidelity of synaptic transmission. Presynaptic metabotropic glutamate receptors (mGluRs) 
offer one layer of the autoreceptor control of glutamate release, but, as with the control of GABA,
ionotropic glutamate receptors (iGluRs) also afford regulatory control presynaptically. Of the 
three iGluR subtypes, viz NMDA, AMPA and Kainate receptors, the kainate receptor (KAR) 
has long been thought to be active presynaptically based on studies showing glutamatergic lesions 
consequent from the neurotoxic consequences of kainate (KA) administration.7

In order to address the regulatory influences of KARs, the hippocampus, with its well defined
synaptic fields, represents an excellent model. In the hippocampus, the major projecting pathways
are glutamatergic. The glutamatergic output from dentate gyrus granule cells forms mossy fibre 
(MF)-CA3 pyramidal cell (PC) synapses, while axons from the CA3 PCs project to the CA1 field 
to form Schaffer Collateral (SC)-CA1 pyramidal cell (PC) synapses, as well providing input to
interneurons for disynaptic inhibition of CA1 PCs.

KARs on Schaffer Collateral (SC) Terminals Suppress Glutamate 
Release at Schaffer Collateral (SC)-CA1 Pyramidal Cell (PC)

At the CA3 Schaffer Collateral (SC)-CA1 pyramidal cell (PC) synapse, KAR activation
by KA, or the low affinity KAR agonist domoic acid (DA), effects a suppression of the evoked
excitatory postsynaptic potential eEPSP measured in CA1 PCs, suggesting that KAR activation
inhibits glutamate release8-13 (Fig. 1b1). This effect is pharmacological consistent with the exclusive 
involvement of KARs.11 Moreover, the presynaptic localization of these KARs is confirmed based
on observations that KA invokes an increase in paired pulse facilitation and causes a decrease in 1/
CV2VV that correlates with a decrease in the mean EPSC amplitude, both parameter being diagnostics 
of a presynaptic locus of receptor action.11

A priori, mechanistically, the KA-induced modulation of glutamate release could be attributed to
an ionotropic action of presynaptic KARs, whereby depolarization leads to the voltage-dependent
inactivation of the Ca2� channels supporting glutamate release.8,9 However, Frerking et al11 argue 
that presynaptic KAR activation produces a decrease of glutamate release through a metabotro-
pic mechanism of action. This contention is based on experiments showing that the reduction
in the eEPSP produced by KAR activation by DA, is abrogated by the G-protein inhibitors, 
N-ethylmaleimide (NEM) and pertussis toxin (PTX) (Fig. 1a1 and b1). This demonstrates the
overt involvement of Gi/o in the inhibition of glutamate release by KARs. Intriguingly though,
the modulation is not affected by the broad spectrum protein kinase inhibitor H-7 (Fig. 1a2aa and
b2), indicating that 2nd messenger-mediated stimulation of protein kinases does not play a role.11

Rather, the regulation may be intrinsic to plasma membrane, whereby membrane-delimited ��
subunits of Gi/o directly bind to and inhibit presynaptic Ca2� channels to thus suppress glutamate 
release,11 similarly to the action of several inhibitory presynaptic GPCRs14 (Fig. 1c).

Consistent with a KAR-mediated reduction of presynaptic Ca2� channel activity in SC termi-
nals, Kamiya and Ozawa9 have shown that the activation of KARs produces a decrease in intracel-
lular Ca2� concentration that correlates with the inhibition of glutamate release. The decrease in 
Ca2� channel activity produced by KAR is not a consequence from some reduced excitability of 
the nerve terminal as there is no change in the presynaptic (afferent) fiber volley upon application 
of KA. This accentuates the lack of involvement of any ionotropic, depolarizing influences of KAR 
activation in the modulation observed. Although KA application does produce an inward current
while decreasing glutamate release in slices,8 the inward current recovers rapidly and completely, 
this being in marked contrast to long-lasting effect of KA on the eEPSC. Altogether, these ob-
servations point to Schaffer collateral nerve terminals expressing autoregulatory KARs which 
depress glutamate release through a metabotropic mode of operation, likely involving a reduction 
in voltage-dependent Ca2� channel activity.

Support for the metabotropic operation of KARs in suppressing glutamate release has come 
from studies looking at the CA3-CA1 PC synapses during development.13 Additionally, apart 
from the CA3 Schaffer collateral input to CA1 PCs, CA3 PCs also project association/commis-
sural (A/C) fibres which have terminals synapsing onto the apical dendrites of CA3 PC in the
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Figure 1. Metabotropic actions of KARs in the regulation of glutamate release at SC-CA1
synapses in hippocampal slices. Inset, experimental setup. a1,2) Domoate (DA), a low affinity 
KAR-agonist mediates a depression of fEPSP amplitudes at SC-CA1 synapses which is abol-
ished in slices treated with pertussis-toxin (PTX). b1,2) The depression of the fEPSP amplitude is
evidently not dependent on any protein kinase cascades as a broad spectrum protein kinase 
inhibitor H7 does not prevent the DA action. c) Schematic of signalling at the SC-CA1 syn-
apse. Metabotropic actions of KARs at Schaffer collaterals (SC)-CA1 pyramidal cell synapses.
Activation of presynaptic KARs on glutamatergic SC terminals (PRE) projecting from CA3 
pyramidal neurons decreases glutamate release onto CA1 neuron dendrites in the stratum 
radiatum (POST). This modulation involves presynaptic G-protein activation and regulation
of voltage-dependent Ca2� entry. Panel c modified and reproduced from Rodríguez-Moreno, 
Sihra TS. Trends Neurosci 2007; 30:630-637,44 ©2007 with permission from Elsevier.
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stratum radiatum. Glutamate released from these terminals can heterosynaptically modulate the 
major MF-CA3 PC synapse in the adjacent stratum lucidum. Notably, the A/C terminals also
express KARs that inhibit glutamate release. Given the common origin of SC and A/C terminals 
projecting from CA3 PCs, it is plausible that these terminals might share a common metabotro-
pic mechanism of KAR-mediated inhibition of glutamate release, although this remains to be 
established experimentally.

KARs on Granule Cells (Dentate Gyrus) Mossy Fibre (MF) Terminals 
Effect Bimodal Modulation of Glutamate Release at Mossy Fibre 
(MF)-CA3 Pyramidal Cell (PC) Synapses

Mossy fibre (MF)-CA3 pyramidal cell (PC) synapses have long been known to display fre-
quency facilitation.15 One possibly means of achieving this type of synaptic plasticity would be 
iGluRs on MF terminals operating as facilitatory autoreceptors. Consistent with the operation
of facilitatory KARs, KA application causes a potentiation of secretagogue, 4-aminopyridine
(4-AP)-evoked release of glutamate release from hippocampal synaptosomes (Fig. 2a,b). In slice
experiments measuring glutamate release at the intact MF-CA3 PC synapse, low concentrations 
of KA (30 nM) increase the evoked excitatory postsynaptic current (eEPSC) recorded in CA3 PC 
following electrical stimulation of MFs (Fig. 2c,d,e). This suggests that synaptically released gluta-
mate could well be activating KARs located at the MF terminals, homo- and hetero-synaptically 
and thereby instigates the frequency-facilitation seen at the MF-CA3 PC synapse.

The mechanism of KA-mediated facilitation of glutamate release in general clearly remains 
contentious. A parsimonious explanation for the facilitation could attribute the modulation to
a classical ionotropic or depolarizing effect of KAR activation. However, in a study by Perkinton
and Sihra16 using synaptosomes, although KA enhanced 4-AP-induced glutamate release, secre-
tagogue-induced changes in ionotropic parameters such as membrane potential or intracellular
[Ca2�], were not affected by the addition of KA. Although it is possible that the averaging effect 
of measurements from a synaptosomal population might mask a small local effect on a subset of 
nerve terminals expressing KARs, the data do not generally support an ionotropic mechanism
for the facilitation of glutamate observed. Actually, given the strong stimulation that might be
expected at the KA concentrations used,17,18 an ionotropic effect of KARs might well inactivate 
voltage-dependent Na�- and/or Ca2�-channels and thereby inhibit 4-AP-mediated stimulus-release
coupling. This is not observed for glutamate release in this preparation, though at the same time,
GABA release is seen to be inhibited by KA treatment (see previous chapter herein).

Notwithstanding the data from isolated nerve terminals, in electrophysiological studies using 
hippocampal slices, given that low concentrations of KA cause an after-depolarization of MF 
terminals, there is the possibility that this underpins an increase in nerve terminal Ca2� levels. As
such, this would thereby provide for an ionotropic mechanism for the enhancement of glutamate
release leading to frequency facilitation seen at the MF-CA3 PC synapse. Although these data 
are in line with an ionotropic mechanism for the KAR modulation, curiously the aforementioned 
after-depolarization of MF terminals is somewhat long-lasting, begging the question: is there is 
metabotropic influence of KAR at MF-CA3 PC synapses too?

Consistent with this notion, potentiation of glutamate release from hippocampal synapto-
somes is inhibited by H-89, a catalytic inhibitor of cAMP-dependent protein kinase (PKA) (Fig. 
2a,b). Moreover, application of forskolin � IBMX, a treatment known to elevate synaptosomal 
cAMP levels and thereby PKA activity, occludes the facilitatory effect of KA (Fig. 2a,b). In the 
hippocampal slice preparation, the KA-mediated enhancement of the eEPSC is suppressed by 
H-89, as well as Rp-Br-cAMP, which is inhibits the activation of PKA by endogenous cAMP
(Fig. 2c,e). Elevation of cAMP in slices using the adenylate cyclase (AC) activator, forskolin, in
combination with the phosphodiesterase inhibitor, IBMX, causes synaptic potentiation of the
MF-CA3 PC synapse, but under these conditions, the facilitatory effect of KA is occluded (Fig.
2c,e). Evidently, the facilitation of glutamate release seen with low concentrations of KA involves 
an adenylate cyclase/cAMP/protein kinase A (AC/cAMP/PKA) signalling cascade, such that 
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Figure 2. KARs activation by low agonist concentration produces an increase of glutamate 
release that involves the activation of PKA at MF-CA3 synapses. Inset, experimental setup. a)
Activation of adenylyl cyclase and downstream protein kinase A underlies KAR-mediated facili-
tation of 4-aminopyridine (4-AP)-evoked glutamate release from hippocampal synaptosomes.
Glutamate release under control conditions (i) and in the presence of (ii) KA, (iii) forskolin/IBMX 
(iv) H-89 � KA (iv) and (v) forskolin � IBMX � KA. b) Quantification of KA effects described in
(a). c) Low concentrations of KA (30 nM) increase the eEPSC amplitude in hippocampal slices 
in the presence of AP-5 and bicuculline. d) The KA-induced increase in glutamate release
was unaltered by treating the slices with the CaMKII inhibitor, KN62, or with the G-protein
inhibitor pertussis toxin (PTX), but is prevented in the presence of H-89 and Rp-BrcAMP and 
occluded by previous addition of forskolin (e). Adapted from Rodríguez-Moreno A, Sihra TS.
J Physiol 2004; 557:733-745,19 ©2004 with permission from Wiley-Balckwell.
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prior activation of the signalling pathway mitigates the facilitatory effects of KARs at MF-CA3 
synapses.19 Perhaps unsurprisingly, the facilitatory presynaptic effects of KA on MF-CA3 synapses
(Fig. 2c) are not however prevented by the inhibition of Gi/o by PTX, confirming that KAR receptor
activity impinges at, or downstream of, AC in the AC/cAMP/PKA signalling cascade.

How does the ionotropic and metabotropic evidence for the facilitatory function of KARs on
glutamate release mutually consolidate? One possible sequence of events that might produce a facili-
tation of glutamate release, may first be contingent on an increase in intraterminal [Ca2�] produced 
by KAR activation. Given this, a Ca2�-dependent activation of the AC/cAMP/PKA pathway is 
plausible if small local increases in intracellular Ca2� stimulate Ca2�/CAM-dependent ACs. This
hypothesis was first postulated in relation to the synaptic plasticity observed at the MF-CA3 synapse,20

although the involvement of Ca2�/CAM kinase II invoked therein, does not apply to KAR activity 
as the Ca2�/CAM kinase II inhibitor, KN-62 had no effect on the increase in eEPSCs induced by 
KA. Interestingly however, recent work indicates that KARs can gate extracellular Ca2�-influx to
produce a Ca2�-induced intracellular Ca2� release which supports facilitation and LTP (long-term
potentiation) at MF-CA3 PC synapses.21 Whether this type of intracellular Ca2� release subserves 
the activation of an AC/cAMP/PKA pathway to effect the potentiation, remains to be seen.

An intriguing aspect of KAR function at the MF-CA3 PC synapse is that, unlike the monotonic 
inhibitory regulation by KARs at SC-CA1 PC synapses, this synapse exhibits bidirectional control 
of glutamate release. Thus while, nanomolar concentrations of KA (�50 nM) facilitate glutamate
release (Fig. 2),19,21-26 higher concentrations agonist (�100 nM) inhibit glutamate release (Fig. 3a,
right).27-32 The inhibitory KARs are certainly presynaptic given that KA application alters paired
pulse facilitation, increases the number of failures of eEPSC and effects a change in the coefficient 
of variation (1/CV2VV ) that correlates with the change in synaptic response.31 The question is: how 
does KAR activity enhance or reduce glutamate release from the same synapses, or indeed the same
terminals, depending on agonist concentration? Again the ionotropic argument could follow: low 
concentrations of KA cause depolarisation and thereby inactivate K�-channels and/or increase
Ca2� influx to enhance release. Higher concentrations of KA effect stronger depolarisation and
thus cause inactivation of Na� and/or Ca2� channels and/or electrical shunting, to thereby reduce
terminal excitability and hence decrease glutamate release.27,29,33 Like the KAR-mediated facilitation
of glutamate release discussed above, notwithstanding the potential ionotropic consequences of 
KAR activation of MF-CA3 PC synapses by high KA concentrations, closer examination of the
KAR/glutamate release suppression profile reveals key metabotropic features (Fig. 3).31

Firstly, alluding to a metabotropic coupling of inhibitory KAR/glutamate release coupling,
the effect of high [KA] application at MF-CA3 PC synapses is found to be long-lasting and with
a slow recovery. This is at variance with the proposed ionotropic mechanism of KAR-mediated 
modulation at MF-CA3 synapses, which invokes that the change and recovery of the KA-evoked 
holding current is fast.27 Notwithstanding the temporal arguments, pharmacological data fur-
ther support the metabotropic nature of the KAR-mediated depression of glutamate release at
MF-CA3 PC synapses. Crucially in this regard, treatment of the slices with the Gi/o inhibitor PTX 
prevents the depression of glutamate release (Fig. 3a, left). Together with this implication of Gi/o

involvement in the KAR-mediated modulation, inhibition of PKA with the catalytic PKA inhibi-
tor, H-89, or the cAMP competitor Rp-Br-cAMP, occludes the inhibitory effect of KA on the
EPSC, the inhibitors themselves having already suppressed the EPSC (Fig. 3c, d). The indication 
from this is that high [KA] evoked KAR activation elicits a Gi/o-mediated reduction in the AC/
cAMP/PKA signalling cascade to effect a suppression of glutamate release. Consistent with this,
when cAMP and thus PKA activity, is “clamped” high by using an exogenous cAMP analogue,
Sp-8-CPT-cAMPs, KA is unable to suppress the ESPC.31 Interestingly, although the inhibition of 
glutamate release seen here at the MF-CA3 PC synapse resembles the inhibition of GABA release 
at the interneuron-CA1 PC synapse in being dependent on Gi/o, they differ in the downstream 
signalling. Thus while PKA inhibition underpins the KAR-mediated suppression of the EPSC 
decrease, PKC activation (calphostin C-sensitive) supports the KAR-mediated suppression of the 
eIPSC. Note that calphostin C, has no effect on KAR function at MF-CA3 PC synapses (Fig. 3d, 
cf KAR-function at interneuron-CA1 PC synapses; see previous chapter herein).
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At MF-CA3 PC synapses, the general working hypothesis arising is that increased presynaptic 
AC/cAMP/PKA signalling facilitates glutamate release while decreased AC/cAMP/PKA signal-
ling suppresses release. Low KA concentrations instigate the former while high KA concentrations
invoke the latter. Intriguingly, the decreased AC/cAMP/PKA signalling linked to the decrease of 
glutamate release at MF-CA3 PC synapses concords with the signalling underpinning the induction 
of KAR-mediated synaptic depression and low-frequency stimulation (LFS)-mediated long-term
depression (LTD).32 LTD at MF-CA3 synapses has classically been shown to be mediated by type 
II mGluRs which also decrease the activity of the AC/cAMP/PKA cascade through Gi/o activa-
tion.34,35 Thus, two types of glutamate receptors, viz. KAR (in a metabotropic guise) and Type II 
mGluRs, appear to collude in this form of plasticity and indeed mutually occlude each other when
applied consecutively. Neatly, this mirrors the observations with long-term potentiation (LTP) at
MF-CA3 PC synapses, where KAR-mediated facilitation and excitatory (Type I), mGluR activa-
tion both lead to an increase in glutamate release.23

Figure 3. Metabotropic action of KARs depressing glutamate release at MF-CA3 synapse. a) KA 
depresses glutamate release at MF-CA3 synapses, an effect that is prevented in the presence of 
pertussis toxin (a,b) and PKA inhibition (Rp-Br-cAMP and H-89), but not by PKC inhibition (cal-
phostin C, Calph. C) (c,d). The effect of KA is occluded by the cAMP analogue, Sp-8-CPT-cAMPs 
(d). Panels (a-d), adapted from Negrete-Díaz JV et al. J Neurophysiol 2006; 96:1829-1837.31
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Overall, KARs evidently participate intimately in all the key forms of synaptic plasticity 
displayed at the MF-CA3 synapse.32,36 Interestingly, in the developing hippocampus, KARs exhibit 
metabotropic actions that mediate the regulation of glutamate release and network activity in 
response to synaptic activation.37 During the first postnatal week of hippocampal development, 
endogenous glutamate appears to regulate release in an action potential-independent manner, by 
tonically activating KARs at CA3 glutamatergic synapses.

Here we have largely concentrated on discussing metabotropic regulation of glutamate release
by KARs which is currently matter of active debate. There are indeed instances of KAR-mediated 
regulation of glutamate release where the modulation is patently ionotropic, or mechanistic details
are still under investigation. These include examples in the developing cortex38 (inhibitory effect),
amygdala39 (facilitatory effect), nucleus accumbens40,41 (inhibitory effect), dorsal root ganglion 
cells42 (inhibitory effect) and cerebellum43 (facilitatory and inhibitory effect). Presynaptic KARs 
evidently operate through a combination of ionotropic and metabotropic mechanisms to modulate 
excitatory glutamatergic transmission.

Conclusion
In summary,44,45 (Fig. 4) at SC-CA1 synapses, KARs inhibit glutamate release via a metabo-

tropic, G-protein dependent mechanism but protein kinase-independent mechanism. At MF-CA3 
synapses there is a biphasic effect, with low concentrations of KA inducing a facilitation of glutamate 
release mediated by an AC/cAMP/PKA pathway with, no necessity of G-protein and higher KA 
concentrations producing a depression of glutamate release mediated by an AC/cAMP/PKA 
pathway and with the necessary participation of a G protein.

Figure 4. Metabotropic actions of KARs at mossy fiber (MF)-CA3 pyramidal cell synapses.
KARs produce a bimodal effect on release from MFs depending on the agonist concentration
(PRE): [KA] � 100 nM decrease glutamate release following activation of a G protein and the 
modulation of adenylate cyclase (AC) and PKA activity. [KA] � 100 nM facilitates glutamate
release following activation of AC and PKA. Reproduced from Rodríguez-Moreno, Sihra TS. 
Trends Neurosci 2007; 30:630-637,44 ©2007 with permission from Elsevier.
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and Excitability in CA1 Pyramidal Cells
Zara Melyan* and Howard V. Wheal

Abstract

Kainate receptors (KARs) mediate postsynaptic responses in CA3 pyramidal cells and CA1
interneurones in the hippocampus. In CA1 pyramidal cells knockout studies have inidcatedKKthe presence of functional GluR6-containing KARs, however in this region they made

no ionotropic contribution to the synaptic responses. In the meantime, a metabotropic function 
was reported for presynaptic KARs modulating transmitter release in CA1. We examined the
possibility that KARs in CA1 pyramidal cells have a metabotropic function. Kainate is known 
to inhibit a slow afterhyperpolarization current that regulates excitability in hippocampus and
can be modulated by a number of G protein coupled receptors. We showed that KARs activation 
reduces slow afterhyperpolarization current in CA1 pyramidal cells via metabotropic action and 
elucidated the transduction mechanism(s) underlying this action.

Introduction
Significant progress in our understanding of kainate receptor functions has followed from the 

development of the selective AMPA receptor antagonists (GYKI52466 and GYKI53655) that
enabled discrimination between AMPA and kainate subtypes of glutamate receptors.

The glutamatergic excitatory postsynaptic currents (EPSCs) were first shown to contain
a kainate receptor component in pyramidal cells of the hippocampal CA3 region.1-2 Synaptic 
activation of KARs has now been described for several synapses throughout the brain and spinal 
cord, including CA1 hippocampal interneurons.3-4 In CA1 pyramidal neurons knockout studies
have demonstrated the presence of functional GluR6-containing kainate receptors that produce 
inward currents,5 however they made no detectable ionotropic contribution to synaptic responses 
in these cells. In the meantime, KARs classically described as ionotropic were reported to have 
a metabotropic function in CA1 interneurons.6 The latter finding inspired us to investigate the
possibility that the kainate receptors that failed to contribute to synaptic responses in CA1, instead, 
have a metabotropic function.

One of the most prominent postsynaptic targets of metabotropic transmitter action in the 
hippocampus is the slow afterhyperpolarization (sAHP) which regulates action potential firing 
frequency and is responsible for the spike-frequency adaptation. It has a slow rising phase, lasts
several seconds and is generated by a voltage-independent, Ca2�-dependent K� current.7 In CA1 
pyramidal neurones the sAHP current (IsAHP) is activated proportionally to the number and 
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frequency of action potentials within a burst and provides a negative feedback mechanism to 
repetitive spiking and hyperexcitability.8-9 A number of neurotransmitters like acetylcholine,
noradrenaline or glutamate inhibit sAHP via G-protein-coupled receptors.10 The transduction
mechanism for acetylcholine induced inhibition involves the Ca2�-calmodulin dependent
protein kinase II,11 whereas noradrenaline action has been shown to be mediated by cAMP
and protein kinase A.12-13

The first observation of the effect of kainic acid on the sAHP was reported in 1986.14

Intracerebroventricular or intraperitoneal kainate infusions resulted in long-lasting seizures and 
hyperexcitability making kainate a perfect model for studying temporal lobe epileptiform activity. 
This action of kainate is accompanied by neuronal loss and glial proliferation in the hippocampal 
tissue. It has been shown that in the kainic acid-lesioned hippocampus, the sAHP is reduced
compared to control. The resulting increase in excitability may contribute to the seizure-like
activity that is caused by kainate, although the cellular mechanism of this effect of kainate is not
fully understood. Here we describe some key experiments that show that acute application of kainic 
acid as well as endogenous glutamate release reduce IsAHP in CA1 pyramidal cells via metabotropic
actions of kainate receptors and provide a basis for understanding of transduction mechanisms 
behind this action.

Direct Postsynaptic Activation of KAR Inhibits IsAHP on CA1
Pyramidal Cell

Experiments were performed on 14- to 19-day-old rat hippocampal slices. Whole-cell
patch-clamp recordings were made from stratum pyramidale using KMeSO4-containing pipettes.
IsAHP was recorded in CA1 pyramidal neurons voltage clamped at holding potentials from 	50
to 	65 mV following 80 ms voltage steps to 	10 mV applied every 20 s. The effect of synaptically 
released glutamate was assessed by comparing sAHP currents induced before and after a train of 
stimuli delivered via a stimulating electrode.15-16

Bath application of 200 nM kainate caused a long-lasting inhibition of IsAHP of 34% �6% (n 
 7;
Fig. 1A).15 The dose-response curve shows that the effect of kainate was concentration-dependent 
reaching a plateau of 34% at the concentration of 100 nM with an IC50 
 15 nM (Fig. 1B). In
order to test whether the effect of kainate was exclusively mediated by KARs, we used a cocktail of 
antagonists: for the NMDA receptor (100 �M DL-AP5), AMPA receptor (100 �M GYKI52466), 
metabotropic glutamate recepotors (1 mM MCPG and 250 �M MSOP), GABAA receptor
(100 �M picrotoxin), GABAB receptor (200 �M 2-OH-saclofen), muscarinic actetylcholine 
receptor (1 �M atropine sulfate), opioid receptor (10 �M naloxone), cannabinoid CB1 receptor 
(2 �M AM 251) and adenosine receptor (0.1 �M DPCPX). In the presence of these receptor
blockers the effect of kainate was indistinguishable from the control values (n 
 5; Fig. 1C). To 
test if IsAHP inhibition was an indirect effect, caused by action potential-dependent transmitter 
release, we applied kainate after blocking the action potentials with 1 �M tetrodotoxin (TTX).
Under these conditions the activation of kainate receptors was still able to produce an inhibition 
of IsAHP of 35% � 3% (n 
 8; Fig. 1D).

Kainate-induced IsAHP inhibition was completely abolished by prior application of 20 �M
CNQX indicating a requirement for AMPA/kainate receptors (n 
  6; Fig. 2A). In contrast, 
application of 20�M CNQX after kainate (n 
 3; Fig. 2B) did not block IsAHP inhibition, showing 
that the long-lasting effect is unlikely to be due to persistent receptor activation or slow washout 
of the kainate but may, instead, reflect the action of a second messenger. A summary histogram 
for different agonists and antagonists of AMPA and kainate receptors is shown on Figure 2C.
Both agonists of KAR, kainate and domoate (200 nM),17 caused IsAHP inhibition, while the potent 
AMPA receptor agonist (S)-5-fluorowillardiine (300 nM)18-19 showed no effect. The nonselective
AMPA/kainate receptor antagonist CNQX (20 �M) blocked the effect of kainate, yet the selective
AMPA receptor blocker GYKI52466 (100 �M)20 was ineffective at 5-10 times the reported IC50

values.21 At concentrations known to be effective against GluR5 subunits,22 ATPA (2�M) did not
produce any changes in IsAHP amplitude. These data are consistent with a direct action of kainate
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on CA1 pyramidal cells, acting via GluR6-containing kainate receptors to modulate IsAHP. This 
was confirmed recently by knockout studies which have shown that GluR6	/	 or KA2	/	, but 
not GluR5	/	mice, lack kainate-induced inhibition of the slow AHP.23-24

We investigated whether synaptic activation of KARs can produce inhibition of IsAHP

similar to that evoked by exogenously applied kainate.16 In order to isolate KAR activity all 
the experiments were carried out in the presence of the cocktail of antagonists (see above),
which abolished the mixture of EPSCs and IPSCs that could be evoked in CA1 pyramidal 
cell by single-pulse stimulation of Schaffer/commissural afferents in control conditions. Trains
of synaptic stimuli (5-pulse 100-Hz) previously shown to activate KAR25 produced 37 � 1%
inhibition of IsAHP amplitude (n 
 8; Fig. 3). The IsAHP inhibition was not reversible and had a 
time course similar to that recorded after 200 nM kainate application. The glutamate uptake

Figure 1. Kainate inhibits IsAHP by a direct action on CA1 pyramidal cells. A) Summary time course 
of IsAHP inhibition caused by 200 nM kainate application from 7 experiments (mean � SEM). The 
traces illustrate data from one neuron (averages of 15 trials) before and after 200 nM kainate
application. B) Dose-response curve for kainate-induced inhibition of IsAHP. Each symbol 
represents average of at least 4 cells. The data were fitted with a logistic curve which gives an 
IC50 
 15 nM. C) Summary time course of IsAHP inhibition from 5 experiments (mean � SEM) 
recorded in the presence of the cocktail of antagonists. D) Comparison of the 200 nM kainate 
evoked inhibition with and without 1 �M TTX � 5 mM TEA. The data presented are the average
percentage inhibition of IsAHP (mean � SEM). Reproduced from: Melyan Z et al. Neuron 2002; 
34:107-114;15 ©2002 with permission from Elsevier.
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Figure 2. IsAHP inhibition is mediated by GLuR6- containing KAR activation. A) Prior application of 
20 �M CNQX blocked the effect of kainate. Summary time course of IsAHP inhibition (n 
 6). The
traces (averages of 15 trials) were recorded in the presence of 20 �M CNQX before and after 200 nM
kainate was added to the solution. B) 20 �M CNQX applied after 200 nM kainate did not relieve 
IsAHP inhibition (n 
 6). C) Summary histogram of the effects of AMPA and kainate receptor agonists 
and antagonists on IsAHP: FW, (S)-5-fluorowillardiine (AMPA agonist); GYKI (AMPA antagonist); ATPA 
(GluR5 containing KAR agonist). The bars are the average percentage inhibition of IsAHP (mean � SEM).
Reproduced from: Melyan Z et al. Neuron 2002; 34:107-114;15 ©2002 with permission from Elsevier.
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blocker TBOA (50�M) potentiated the effect of synaptic stimulation on IsAHP (n 
 8; Fig. 4A),
consistent with a prolongation of the transient synaptically-released glutamate. Increasing the 
number of stimuli in the pulse to 10 or 20 also increased IsAHP inhibition (Fig. 4B). The IsAHP

inhibition recorded in the presence of TBOA and the cocktail of blockers was effectively blocked 
by prior application of 20 �M CNQX (n 
 7; Fig. 4C), confirming that it was mediated by 
kainate receptor activation. Previous activation of KARs by bath-applied kainate occluded the 
action of the released glutamate showing that the synaptic stimulation and exogenous kainate
act on the same population of KARs (n 
 6; Fig. 4D).

KARs Responsible for IsAHP Inhibition Involve Metabotropic Action
The modulation of IsAHP by either application of kainate or synaptically released glutamate 

was not accompanied by any changes in membrane conductance. This implies that the ionotropic 
properties of KAR are unlikely to account for these effects of IsAHP. To test for metabotropic 
functions we used an inhibitor of pertussis toxin-sensitive G proteins, N-ethylmaleimide (NEM)26-27

and protein kinase C inhibitor (PKC), calphostin C.
Bath applied NEM (50 �M) abolished kainate-induced IsAHP inhibition (n
 7). PKC has long 

been known to inhibit the sAHP,28 although the transmitter linked to this action was not identified.
In 1998 Rodriguez-Moreno and Lerma reported that the metabotropic action of presynaptic KARs
involved a PKC activation.6 This prompted us to perform similar tests which demonstrated that 
preincubation of the slices with 1 �M calphostin C for 2-4 hours blocked the action of kainate
to inhibit IsAHP (n 
 10), while subsequent application of 10 �M noradrenaline, known to reduce 
IsAHP via PKA,29 still blocked IsAHP ruling out a broad spectrum kinase inhibition and indicating,
instead, a specific requirement for PKC in the action of kainate (Fig. 5A). Similarly, preincubation 
of the slices with 1 �M calphostin C for 2-4 hours prior recording prevented IsAHP inhibition by 
glutamate released after 5 pulse 100 Hz stimulation of excitatory afferents (n 
 8; Fig. 5B).

Taken together, these data show that exogenous kainate application as well as synaptically released
glutamate inhibit IsAHP acting through metabotropic kainate receptors on CA1 pyramidal cells.

Figure 3. Synaptically released glutamate mimics kainate induced IsAHP inhibition in CA1 pyramidal
cells. A) Schematic illustration of the hippocampal slice showing the positioning of the electrodes.
B) Single-pulse stimulation of Schaffer/commissural afferents evoked an EPSC in a CA1 pyramidal
cell that was blocked by the antagonist mixture. A 5 pulse, 100 Hz stimulation did not produce
any synaptic response in the presence of the cocktail. C) A 5 pulse, 100 Hz stimulation reduced
the amplitude of IsAHP. Summary time course of IsAHP inhibition from 8 experiments (mean � SEM). 
Reproduced from: Melyan Z et al. J Neurosci 2004; 24(19):4530-4534;16 ©2004 with permission 
from the Society for Neuroscience.
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Signal Transduction Mechanisms for Metabotropic KAR-Induced
Inhibition of IsAHP in CA1 Pyramidal Cells

The involvement of G proteins in the KAR-induced inhibition of IsAHP was originally 
demonstrated using bath applied NEM. The follow-up experiments30 using intracellular exposure 
to pertussis toxin (2.5 �g ml	1, �10 min)31 or the G�i/o blocker, NF023 (10 �M),32 confirmed
that the metabotropic KARs acted through G�i/o proteins, as these compounds preferentially 
depressed kainate action leaving �-adrenergic inhibition of the sAHP unaffected.

Figure 4. IsAHP inhibition is mediated by glutamate acting on kainate receptors. A) Block of 
glutamate uptake increased the effect of tetanic stimulation. Sample traces were obtained before 
and after a tetanus in the same neuron in the presence of the glutamate uptake inhibitor TBOA 
(50 �M; averages of 15 trials). Summary time course of IsAHP inhibition recorded in the presence 
of TBOA from 8 experiments (mean � SEM) is shown in the graph. B) Previous application of 
the AMPA/kainate receptor antagonist CNQX completely abolished the effect of synaptically 
released glutamate in the presence of TBOA. Sample traces were obtained in the presence of 
20 �M CNQX and TBOA before and after a tetanic stimulation in the same neuron (averages
of 15 trials). Summary time course of IsAHP amplitude recorded in the presence of 20 �M CNQX 
from seven experiments (mean � SEM) is plotted in the graph. C) Summary histogram showing
the relation between the number of synaptic stimuli and the inhibition of IsAHP. D) Summary
time course of IsAHP inhibition recorded during 200 nm kainate application, followed by 5 pulse, 
100  Hz stimulation (n 
 6). Kainate application occluded the inhibitory action of synaptic 
glutamate release. Reproduced from: Melyan Z et al. J Neurosci 2004; 24:4530-4534;16 ©2004 
with permission from the Society for Neuroscience.
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Figure 5. KAR-induced inhibition of IsAHP requires PKC. A) Sample traces (averages of 15 trials)
were recorded in calphostin C-treated slices before and after kainate application and after the
following application of noradrenaline. The histogram shows the average percentage inhibition
of IsAHP (mean � SEM). 200 nM kainate inhibited IsAHP in control slices (white bar). In calphostin C 
(1 �M) treated slices (black bars) kainate-induced inhibition was significantly reduced (p � 0.002, 
unpaired t-test), subsequent application of 10 �M noradrenaline blocked IsAHP. Part A is reproduced 
from: Melyan Z et al. Neuron 2002; 34:107-114;15 © 2002 with permission from Elsevier. B) Sample 
traces (averages of 15 trials) were recorded in calphostin C-treated slices before and after tetanic
stimulation. The histogram shows the average percentage inhibition (mean � SEM) of IsAHP. A train 
of five stimuli inhibited IsAHP in control slices (white bar). In calphostin C-treated slices (1 �M; black
bar) kainate-induced inhibition was reduced significantly. Part B reproduced from: Melyan Z et al. 
J Neurosci 2004; 24(19):4530-4534;16 ©2004 with permission from the Society for Neuroscience.



56 Kainate Receptors

Noradrenaline is known to block sAHP via protein kinase A and cAMP. The fact, that the 
PKC inhibitor calphostin C, as well as the pertussis toxin and NF023, prevented IsAHP inhibition 
in CA1 pyramidal cells without affecting the subsequent IsAHP inhibition caused by activation
of noradrenergic � receptors, suggested an independence of the two transduction pathways.
However, surprisingly two distinct PKA inhibitors, Rp-cAMPs (50 �M) and H89 (10 �M)
applied intracellularly,33-34 have been found to prevent the action of kainate on IsAHP.30 The adenylyl 
cyclase inhibitor DDA (10�M)35 attenuated both KAR and �-adrenergic receptor IsAHP inhibition
in CA1 showing that there was also a corresponding requirement for cAMP production. Taken
together, these data indicate that activation of adenylyl cyclase/PKA is a common requirement 
for metabotropic actions of KARs and�-adrenergic receptors; however, the involvement of G�i/o

and PKC is specific to KARs. The subsequent experiments30 showed that the action of PKC on the 
sAHP was unaffected by inhibition of PKA, implying that PKC can act either downstream of (Fig. 
6, pathway A) or independently from PKA (Fig. 6, pathway B) in this transduction cascade.

In CA1 cells, both PKC and �-adrenergic receptors, acting via PKA, have been shown to 
couple to MAP kinase.36 MAP kinases were known to be involved in late stage of long-term
potentiation,37-39 therefore, MAP kinase cascade represented a possible effector mechanism for
the KAR induced long-lasting inhibition of IsAHP. Recent results30 showed that the ability of bath 
applied kainate to inhibit the sAHP was blocked by either of two structurally distinct MEK 
inhibitors U0126 (10�M) and PD098059 (10�M)40 included in the pipette. Interestingly, when 
a MEK inhibitor U0126 (10 �m) was bath applied after a stable control period, the amplitude
of IsAHP gradually increased, while the inclusion of activated MAP kinase within the recording 
pipette caused a gradual loss of the current, indicating a bidirectional mechanism of regulation of 
neuronal excitability by metabotropic KARs through MAP kinase activation.

Figure 6. A model for the action of postsynaptic metabotropic kainate receptors on IsAHP in 
CA1 pyramidal cell. A) shows a hypothetic transduction cascade where PKC acts downstream
of PKA. B) shows another hypothetic pathway where PKC acts independently of PKA. 
�NAR, �-adrenergic receptor; mKAR GluR6, GluR6 containing metabotropic KAR; MAPK, 
mitogen-activated protein kinase; PLC, phospholipase C; PKA, cAMP-depenent protein kinase;
PKC, protein kinase.
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Conclusion

glutamate inhibit IsAHP in CA1 pyramidal cells

receptor

signalling cascade
sAHP inhibition in CA1 shows a requirement for PKA and cAMP

of IsAHP
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Abstract

Most of our knowledge of the synaptic function of kainate receptors stems from a detailed 
analysis of synaptic transmission between dentate granule cells and CA3 pyramidal
neurons, where kainate receptors mediate a slow excitatory current with integrative 

properties ideally suited for repetitive neuronal firing. Besides this well characterized ionotropic
effect of kainate receptors, they can also enhance neuronal excitability by inhibiting the slow Ca2�

activated K� current IsAHP via a G-protein coupled mechanism. This phenomenon is associated
with Ca2� mobilization and protein-kinase activation and ultimately leads to modulation of ion
channels responsible for intrinsic electrical properties such as firing adaptation. The significance for 
CNS function of these newly emerging metabotropic kainate receptors is poorly understood and 
as yet proteomic analysis of kainate receptors has yielded little information on signaling molecules
associated with the kainate receptor ionophore. This chapter covers the key findings that have led
to the proposal that high-affinity postsynaptic kainate receptors trigger a form of metabotropic 
signaling regulating IsAHP and neuronal firing in CA3 hippocampal neurons.

Introduction
Kainate receptors (KARs) are ionotropic glutamate receptors composed of a distinct family of 

subunits with strong sequence homology to�-amino-3-hydroxy-5-methyl-4-isoxazole propionate
receptors (AMPARs). Although recent advances in molecular cloning have shown that AMPARs 
and KARs form separate entities, the function of KARs at central excitatory synapses has remained 
elusive. Evidence for separate KARs and AMPARs came from the differential sensitivity of spinal 
cord C-fibres to kainate and quisqualate.1 Pharmacological manipulation of kainate receptors in
the presence of 2, 3-benzodiazepines acting as AMPA receptor antagonists,2-4 combined with the
use of genetically-engineered mice strains where specific kainate receptor genes have been inac-
tivated, has eased the tedious process of identifying the function of individual KAR subunits. In
general, KARs generate excitatory postsynaptic currents (EPSCs) albeit with much slower kinetics
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and smaller amplitudes than those mediated by AMPARs.5-11 The slow KAR-mediated EPSC at
hippocampal mossy fiber synapses provides unique additive properties of synaptic inputs arising 
from dentate granule cells projecting to CA3 pyramidal neurons.12-14 However, a more widespread 
finding in the hippocampus has been that KAR activation by exogenous agonist application or by 
endogenous release of glutamate can lead to neuromodulation of neuronal function, both through
complex effects on neurotransmitter release,15-23 or by means of persistent changes of neuronal
excitability. In keeping with this view, several reports have now demonstrated that KARs can af-
fect neuronal excitability by modulating the size of the slow after-hyperpolarization generated by 
a voltage-independent, Ca2� dependent K� current (IsAHP). This inhibition of IsAHP was prevented
by inhibitors of G-protein dependent cascades and was mimicked by a high frequency train of 
electrical stimuli designed to activate synaptically CA1 or CA3 pyramidal neurons.24-28 Thus, 
overwhelming evidence has accumulated whereby KARs can exert two distinct functions, namely 
a well characterized ionotropic action through a cationic conductance,29 or an indirect regulation 
of ion channels mediated by G-protein activation and intracellular signaling pathways.30

This chapter reviews the evidence that synaptically-released glutamate can enhance pyramidal
neuron excitability via a pathway involving KARs and G-protein activation at hippocampal excit-
atory synapses. An important question derived from this observation is to ask which KAR subunit(s) 
mediate these effects and what are the interacting partners linking KARs to other ion channels that 
have known actions on neuronal excitability. We will begin by examining current ideas about KAR 
subunit expression in the hippocampus as well as data derived from functional expression studies 
because they provide useful information on receptor distribution and trafficking or subunit assembly 
in native receptors, which, altogether, are critical determinants of the processes underlying changes 
of cellular excitability. Subsequent sections will cover the pharmacological paradigms aiming at
describing the effect of KAR activation on IsAHP in pyramidal neurons in different KAR knockout 
mice, with the common idea that synaptically-released glutamate can mimic the effect of exogenous 
agonists on IsAHP. Finally, different signaling pathways linking KARs and the putative ion channel(s)
underlying IsAHP will be brought together and speculation will be made on the modus operandum30 by 
which KARs could account both for ionotropic and metabotropic actions in CA3 pyramidal neurons.

High-Affinity Postsynaptic KAR Subunits in the Hippocampus
At present, the role of high-affinity KAR subunits on synaptic transmission remains controversial.

The main KAR subunits GluK1, GluK2 and GluK3 (previously termed GluR5, GluR6 and GluR7) 
form functional KARs when expressed in recombinant expression systems.13,14,31-37 GluK3 is thought 
to localize presynaptically at mossy fiber synapses where it mediates an autoreceptor function.38

GluK4 and GluK5 subunits, formerly known as KA1 and KA2, do not form functional homomeric
receptor channels but rather co-assemble with GluK1-3 to modulate pharmacological and biophysi-
cal properties of recombinant KARs.13,39,40 Co-assembly of GluK5 with GluK2 does not affect the 
efficacy by which KARs bind glutamate.32 However, currents mediated by recombinant GluK2/
GluK5 receptors, but not GluK2 receptors, decay with a time course similar to KAR-EPSCs in
response to brief glutamate pulses. These gating features could contribute to the slow KAR-EPSC
decay kinetics observed at mossy fiber—CA3 pyramidal neuron synapses.12-14 The GluK5 subunit is 4

expressed ubiquitously in nearly all native receptor populations, suggesting that it is a constituent of 
most heteromeric neuronal KAR complexes.41 Moreover, GluK5 is not sufficient for the functional 
expression of postsynaptic KARs in CA3 pyramidal cells since KAR-EPSCs are absent in GluK2l –/–

mice.28,42,43 Indeed, no change in KAR-EPSCs amplitude has been reported in GluK5–/– mice,12,44

suggesting that GluK5 is not required for ionotropic signaling mediated by postsynaptic KARs at
hippocampal mossy fiber synapses. The recent introduction of a double knock-out mice GluK4–/–/
GluK5–/– where mossy fiber EPSCs cannot be detected in CA3 pyramidal neurons has challenged
this view.45 The authors argue that GluK5 is necessary for ionotropic signaling but not metabotropic
signaling at mossy fiber synapses, thus contradicting previous results showing that GluK5 is indeed 
important for the metabotropic function of KARs.28 At electron microscopy level, the sub-cellular
distribution of KARs is altered in GluK4–/–/GluK5–/– mice, where fewer immunogold particles for
GluK2, 3 can be detected in postsynaptic densities despite that the overall level of expression of the
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protein remains similar.45 Finally, functional studies in KAR subunit mutant mice have demonstrated
that CA3 pyramidal neurons express GluK2, GluK4 and GluK5 subunits, consistent with specific
immunohistochemical labelling in stratum lucidum where mossy fibers terminate.28,43,45-49

Action of KAR Agonists on the Slow After-Hyperpolarization 
in Hippocampal Pyramidal Neurons

The slow after-hyperpolarization following the action potential is a significant determinant of 
the firing pattern of peripheral and central neurons. Neurons accommodate their firing rate by 
means of different conductances activated upon depolarization and Ca2� entry through L- and
P/Q-type Ca2� channels. Among channels participating in membrane hyperpolarization and
burst termination, the family of Ca2�-dependent K� channels plays a pivotal role in modulation 
of neuronal excitability (reviewed by refs. 50, 51). These channels mediate currents with distinct
biophysical properties and sensitivity to pharmacological inhibitors, are coupled to 2nd messenger 
cascades and exhibit profound modulation by a spectrum of transmitters.51 For instance, Type 1
metabotropic glutamate receptors (mGluRs) as well as cholinergic, monoaminergic, corticosteroid 
and VIP receptors, decrease IsAHP in the cortex or sub-cortical areas of the brain.52-59 The original
finding that KARs modulate IsAHP in central neurons is attributable to Melyan et al26 in a report 
showing that exogenous kainate application persistently decreases IsAHP in CA1 pyramidal neurons.
This phenomenon was later reported in different cell types and in other hippocampal areas24,28,45

indicating that kainate-induced modulation of IsAHP might have wider adaptative significance. The 
GluK1 subunit does not seem to be involved in this effect in view of the poor pharmacological action 
of the GluK1-selective agonist ATPA as compared to kainate or domoate.26 We found that bath
application of kainate (50 nM) irreversibly decreased IsAHP in CA3 pyramidal neurons (Fig. 1).28

The effect of kainate on IsAHP was dose dependent, with an EC50 of 6 nM. At this concentration,

Figure 1. High-affinity KARs modulate IsAHP in CA3 pyramidal neurons. A) Sample traces (average
of 5 consecutive trials) showing the reduction of IsAHP by bath application of kainate (50 nM). B) 
Plot of IsAHP amplitude against time illustrating the reduction caused by kainate (filled circles) and 
the steady run-down observed when no treatment is given (open circles). Modified from: Ruiz A,
Sachidhanandam S, Utvik JK et al. J Neurosci. 2005; 25:11710-11718.
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kainate inhibited IsAHP without significant variation in somatic holding current and input resistance 
of CA3 pyramidal neurons, consistent with a nonionotropic action. To identify the KAR subunits 
involved in IsAHP modulation, we analyzed the effect of kainate in GluK2–/– and GluK5–/– mice. We 
observed no significant difference in IsAHP characteristics obtained from both knock-out mice and
wild-type littermate. Furthermore, kainate had no effect on IsAHP amplitude in both GluK2–/– and
GluK5–/– mice at a concentration up to 25 nM (Fig. 2). These results imply that in addition to
GluK2, GluK5 subunits are required for the depression of IsAHP observed with exogenous application 
of low nanomolar kainate concentration. This is in disagreement with the finding that inhibition
of IsAHP by low a concentration of kainate is intact in both GluK4–/– and GluK5–/– mice as well as 
in the double knockout GluK4–/–/GluK5–/–.45 The reasons for this discrepancy are unclear but the
latter report provides no information on IsAHP characteristics in the different high-affinity KAR 
knockout mice, nor does it show the time course of the effect of kainate on IsAHP corrected for
experimentally occurring run-down of this current measured with the whole-cell configuration 
of the patch-clamp technique.

Synaptically Released Glutamate Modulates IsAHP in Hippocampal
Pyramidal Neurons

Whether endogenous glutamate alters cellular excitability by indirect regulation of ion chan-
nel function is central to this chapter. If progress has been made on the list of neurotransmitters 
and second messengers that can alter cellular excitability as a result of changes in IsAHP, it is 
unclear how it occurs, notwithstanding the difficulty in linking pharmacological, biochemical 
and electrophysiological observations with the actions mediated by endogenous release from 
synaptic terminals. As stressed above, kainate irreversibly decreases IsAHP elicited in CA1 and
CA3 pyramidal neurons via G-proteins and subsequent PKC or PKA activation, suggesting 
that KARs may indeed signal through a metabotropic route that enhances cortical excitabil-
ity. Furthermore, activity-dependent recruitment of metabotropic KARs by trains of stimuli
applied to Schaffer collaterals mimicked the effect of kainate bath application, implying that
metabotropic-like actions mediated by KARs can be triggered by synaptically released gluta-
mate in CA1.25-27 Because glutamatergic transmission at this pathway lacks a KAR-mediated 
component, KARs modulating IsAHP might be different from those mediating KAR-EPSCs.
This depression can also be elicited by Type 1 mGluRs and G-protein activation58 and it has 
now become apparent that synaptically released glutamate can also modulate IsAHP by acting 
on KARs in the CA3 area. We recently demonstrated that trains of stimuli designed to release 
glutamate at mossy fiber synapses depress IsAHP in CA3 pyramidal neurons and that this depres-
sion is abolished in GluK5 knockout mice (Fig. 3). Synaptic modulation of IsAHP was specific to
the mossy fiber pathway, because no significant depression of IsAHP amplitude was observed by 
activating perforant path synapses, or the associational/commissural pathway. Surprisingly, IsAHP

recorded in GluK2–/– mice was also insensitive to stimuli delivered to mossy fibers Similarly, 
the effect of stimulus trains on CA3 pyramidal cell firing recorded in current-clamp mode was
absent in GluK5–/– mice indicating that GluK5 plays a critical role in the synaptic regulation 
of IsAHP independently of the gating mechanisms responsible for KAR-EPSCs. These data were
substantiated by immunohistochemical experiments in which we found that antibodies against
GluK5 do not label stratum lucidum in GluK2–/– mice implying that GluK5 membrane expres-
sion is critically dependent on GluK2 (Fig. 4). Furthermore, using an anti-GluK2 antibody, a 
G-protein labeled by anti-G�q/11 antibody was co-immunoprecipitated with GluK2 and GluK5
subunits in wild-type and GluK1–/– but not GluK5–/– mice. These data argue that the lack of 
IsAHP inhibition in GluK2–/– mice might be a consequence of the loss of GluK5 protein in CA3 
pyramidal cells and is consistent with results showing that intracellular trafficking of GluK5 is 
regulated by endoplasmic reticulum retention signals which prevent the subunit expression at
the plasma membrane in absence of one of the GluK1-GluK3 subunits.60
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Candidate Mechanisms Linking KAR Activation and Enhanced 
Cellular Excitability

The findings presented above highlight that high-affinity KARs containing GluK5 subunits 
are good candidates for the expression of a metabotropic function in pyramidal neurons. 
Inhibition of IsAHP by KARs shows a requirement for adenylate cyclase and PKA in CA1 pyra-
midal neurons. However, whilst KAR action is sensitive to PKA inhibitors, activation of PKC
is sufficient to mimic the metabotropic function of KARs. The downstream effector seems to
be the MAP kinase cascade which provides a bidirectional modulation of IsAHP.27 Furthermore, 
the requirement of G�i/i o//  proteins for metabotropic KAR-mediated actions is a consistent find-
ing,21,26-28,61,62 whereas the KAR itself represents an obvious candidate site for phosphorylation,
most likely on GluK2.63-65 KAR subunit deletion studies have shown that GluK2–/– or GluK5–/–,
but not GluK1–/– mice, lack kainate-induced inhibition of IsAHP.24,28 What is not yet understood
is whether KARs couple to G-proteins directly, or if there is some involvement of ancillary 
proteins. In this regard, GluK2-containing receptors may be similar to AMPA, NMDA and
nicotinic acetylcholine receptors, which also appear capable of activating second messenger 
systems.53,66-68 The predicted sequence topology of GluK2-containing receptors is different
from that of G protein-coupled receptors which normally have 7-transmembrane domains.
We postulated the heretical idea that conformational changes caused by glutamate binding to
GluK2 would allow the interaction with adaptor proteins (Fig. 5). This scenario might then be
followed by G�i/i o// protein activity which, in turn, would initiate a cascade of events involving 
protein-kinase activation and finally the modulation of channels responsible for IsAHP in CA3
pyramidal neurons. Whether a single KAR complex can initiate both forms of signaling via 
distinct subunits however remains to be demonstrated.

Conclusion
The slow Ca2� activated K� current IsAHP which follows a train of action potentials is a 

privileged target for modulation of cellular excitability by transmitter receptors.69 Several

Figure 2. Kainate-induced modulation of IsAHP is impaired in GluK2–/– and GluK5–/– mice. 
A) Traces (average of 5 consecutive trials) obtained in different KAR knockout mice showing 
that kainate (50 nM) had no effect on IsAHP in GluK2–/– and GluK5–/– mice (B) Dose-response
relationship for KA-induced reduction of IsAHP in the different knockout. The curve obtained 
in the wild-type is represented by the dashed line for comparison. (A given KA concentration
was tested in at least 3 cells; n 
 21). Modified from: Ruiz A, Sachidhanandam S, Utvik JK et 
al. J Neurosci 2005; 25:11710-11718.
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reports including our own have shown that exogenous application of KAR agonists inhibit
IsAHP in CA3 pyramidal neurons and that endogenous glutamate mimics this depression. 
However, the identity of the KAR subunits involved in this effect, as well as the fine details of 
the molecular steps leading to IsAHP modulation, are still under extensive scrutiny. Interestingly, 
a parallel can be drawn between KARs and mGluRs whereby high-affinity glutamate receptors 
increase neuronal firing by modulating a subclass of K� channels. During development, other
K� channels sensitive to the bee neurotoxin apamin which are responsible for the medium
AHP are linked to KAR activation and modulate the firing of hippocampal interneurons.70

The functional ramifications of these findings emphasize the diversity and the complexity of 
KAR-mediated actions—a ‘boulevard’ for future investigations on the fundamental basis of 
cortical network excitability.

Figure 3. Synaptically-released glutamate inhibits IsAHP via high-affinity KARs. A) Left, time
course of IsAHP amplitude showing a reversible decrease after 20 Hz tetanic stimulation in the
dentate granule cell layer (train d.g.) at the time indicated by the arrows. Right, A nonsignifi-
cant decrease was observed after lateral perforant pathway (p. path) stimulation. Top sample
traces show IsAHP taken before (average of 3 traces), 350 ms after the first series of trains (single
trace) and the recovery. Bottom traces show 5 consecutive KAR-EPSCs evoked by the train of 
stimuli. B) Top, sample traces showing IsAHP recorded from GluK2–/– and GluK5–/– mice. IsAHP

was unaffected by induction of the stimulus protocol in GluK2–/– or GluK5–/– mice. Bottom,
Trains of EPSCs displayed facilitation and disappeared during application of GYKI 53655 in 
GluK2–/– mice. In GluK5–/– mice, the trains of stimuli elicited KAR-EPSCs with marked sum-
mation typical of mossy fiber responses. Modified from: Ruiz A, Sachidhanandam S, Utvik 
JK et al. J Neurosci 2005; 25:11710-11718.
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Figure 4. The GluK5 subunit as putative candidate for the modulation of IsAHP in CA3 pyramidal 
neurons. A) Immunostaining of hippocampal sections from wild-type, GluK2–/– and GluK5–/–

mice with anti- GluK2/3 and anti-GluK5 antibodies. Both antibodies labeled stratum lucidum
but not stratum radiatum. GluK5 immunoreactivity was lost in the CA3 region of GluK2–/–

mice. B) Western blots showing that anti-GluK2 antibodies co-immunoprecipitate both GluK5
and GluK2 subunits in wild-type and GluK1–/– mice but not in GluK5–/– mice. G�q/11 was also
immunoprecipitated under the same conditions. Modified from: Ruiz A, Sachidhanandam S,
Utvik JK et al. J Neurosci 2005; 25:11710-11718.

Figure 5. A speculative model for KARs with a bi-modal function in CA3 pyramidal neurons. 
A single heteromeric receptor operates with simultaneous double signaling through binding 
of glutamate to two categories of sites, leading to the opening of an ion channel by glutamate
binding to the GluK2 subunit (Top) and a metabotropic effect causing IsAHP inhibition via
G-protein activation upon glutamate binding on the GluK5 subunit (Bottom). Modified from: 
Ruiz A, Sachidhanandam S, Utvik JK et al. J Neurosci 2005; 25:11710-11718.
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Abstract

Kainate receptors are widely distributed in the CNS, but also in the PNS. Dorsal root ganglia 
are enriched in this subtype of glutamate ionotropic receptors. In addition to their activity 
as ligand-gated ion channels, kainate receptors exhibit other properties already character-

ized in other systems, such as hippocampus, i.e., their ability to induce a metabotropic cascade signal-
ling, through G-protein and PKC activation. With a very similar actuation mechanism as formerly 
described in the CNS, kainate receptors in the DRG also present other differentiated features, such
as the Ca2� channel blockade and a self-regulation property. The peculiarity of these neurons has 
served to progress the study of kainate receptors. Nevertheless, many other physiological functions 
of these receptors remain unclear, as does the related molecular nature of the metabotropic cascade 
and the involvement of this signalling pathway with sensory transmission of pain.

Introduction
Dorsal root ganglia (DRGs) contain the cell bodies of primary sensory neurons. These neurons

carry somatosensorial information from the body to the central nervous system (CNS) and have 
a bipolar morphology with an undifferentiated terminal at the periphery and synaptic terminal
entering the dorsal horn of the spinal cord. Their synapses are glutamatergic although they can
also release neuropeptides, such as substance P.

In this chapter, we focused on a specific type of DRG sensory neuron, i.e., neurons carrying 
nociceptive information. Nociceptive fibers that penetrate into the spinal cord come from DRGs 
belonging to two classes: A� and C fibers. The first type are myelinated fibers (“fast” conducting 
fibers) carrying mechanosensitive and thermal information. The second are “slow” fibers which are 
unmyelinated and carry information elicited by pain stimuli and temperature changes. Despite of 
the number of receptors expressed by these neurons (for several typical examples, see refs. 1-4), they 
operate as primary afferents and do not receive synapses from any other neuron. In cocultures of 
DRG and spinal cord neurons, DRG neurons make synaptic contacts with dorsal horn neurons.
This property is advantageous to clearly separate presynaptic from postsynaptic effects.

DRG neurons express glutamate receptors, including those of the kainate type. Kainate recep-
tors are broadly distributed in both the CNS and the PNS. Agrawal and Evans5 demonstrated that 
kainate application induced depolarization at the DRG of immature rats, as well as a reversible 
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depression of the afferent volley. Others ionotropic glutamate receptor agonists, like domoate or
5-Br-willardiine (5-IW) caused similar effects. These actions were located on C fibers, something 
that was later corroborated by immunocytochemical methods.6

Native kainate receptors were initially identified in DRG cultured neurons in patch clamp
experiments.7 Electrophysiological responses were evoked by agonists like domoate or quisqualate,
but not by NMDA. This type of responses showed long-lasting desensitization to kainate and
glutamate which was unusual compared to any other central glutamate receptor previously ana-
lyzed. Responses induced by glutamate or quisqualate suffered complete desensitization, while the
desensitization mediated by kainate or domoate caused an initial peak followed by a slow decay 
before reaching a steady-state.

Finally, the development of pharmacological tools and cloning of kainate receptor subunits,8-12

greatly advanced the characterization of both peripheral and CNS receptors. The initial availability 
of 2-3 benzodiazepines like GYKI 53655 allowed definitive discrimination of AMPA and kain-
ate receptors.13,14 Other antagonists have allowed more recent discrimination of receptors with
different subunit composition.15,16 The generation of knockout mice lacking kainate receptors has
significantly contributed to the understanding of the biology of the kainate receptors,17-20 although
the rising vision is not exempt of new and exciting questions.

Expression and Subunit Composition
The study of the composition of native kainate receptors has turned out to be less controversial

at the DRG neurons than at the CNS, where, particularly at the hippocampus, there is a mosaic
of receptors expressed depending on the neuronal type.21-24 Apparently, this complexity does not 
occur in DRG neurons, where GluR5 is the most abundantly expressed. Although mRNA for
GluR6 and GluR7 have also detected, it is unlikely that they contribute to form functional recep-
tors since the kainate-induced current are completely lacking in GluR5 deficient animals.25 DRG 
neurons also express KA1 and KA2, the subunits of high affinity for kainate, that may contribute 
to assemble functional heteromeric receptors together with GluR5.

The development of genetic and molecular tools has helped vastly to figure out the composi-
tion of kainate receptors in DRG neurons. The characterization of mice lacking GluR5 subunits
clearly showed the complete absence of currents in DRG dissociated neurons in response to kain-
ate.26 This also excludes the possibility that kainate induces responses through AMPA receptors,
although some studies have indicated the existence of a subpopulation of DRG where functional 
AMPA receptor could be expressed.27,28 On the other hand, the required association of KA1 or 
KA2 subunits with the other three low-affinity subunits (GluR5-7) to assemble functional recep-
tors, due to the impossibility of KA1 and KA2 for making functional receptors,12,29 makes it dif-
ficult to determine their specific roles. However, the functional analysis in heterologous systems, 
such as HEK cells, expressing specific subunits indicates that native DRG responses are mostly 
reproduced by GluR5/KA2 since the GluR5/KA2 desensitization mimics responses obtained in
DRG neurons and they do not present the fast desensitization typically observed from GluR6/
KA1 or GluR6/KA2 combinations.25,29 In rat trigeminal ganglia, GluR5/KA2 is the preferential
composition of kainate receptors30 and it is possible that this combination is the most widely 
extended in DRGs.

The avalaibility of new pharmacological compounds has contributed notably to the knowledge
of receptor composition in DRG neurons (for a detailed review on the agonists and antagonists 
of kainate receptors in DRG neurons and other systems, see Lerma et al 2001; Lerma, 2006 and
Pinheiro and Mulle, 200631-33).The sensitivity to ATPA, the specific agonist for GluR5-containing 
kainate receptors, corroborates, once again, that this subunit is a fundamental part of the kainate
receptor in DRGs (EC50 
 0.6-1.3 �M34).Domoate and 5-IW, are also more potent agonists for 
GluR5, exhibiting a low EC50 in DRG neurons. A low IC50 for the specific antagonist of the
subunit GluR5, LY382884 (around 1 �M) shows that this subunit is the principal one in DRG
neurons. In contrast, the same drug fails to inhibit homomeric GluR6 receptors, but not hetero-
meric GluR5/GluR6, recombinantly expressed in heterologous systems.16 Therefore, it seems clearly 
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established that GluR5 is a mandatory subunit to get functional kainate receptors assembled in
DRG neurons. Importantly though, the effectiveness of these agonists is higher for native DRG
receptors than for GluR5 homomeric recombinant receptors, indicating that there are additional 
subunits composing the receptor. Alternatively, the existence of unknown interacting proteins 
affecting GluR5 properties cannot be refuted at this stage.35,36

Specific antibodies against kainate receptors, particularly against the GluR5 subunit, have been
difficult to raise, since the only avalaible antibody against this subunit was unable to differentiate
between GluR5, 6 and 7 subunits.37 Later, however, the use of some new antibodies have confirmed
the predominance of GluR5 in native kainate receptors in DRG neurons.38 Immunofluorescence 
labelling has demonstrated the presence of GluR5, KA1 and KA2 at the synaptic terminals of 
DRG in the dorsal horn. Presynaptic staining of GluR5 is restricted to laminae I-III of the dorsal 
horn. However, GluR5 is also located at the postsynaptic sites forming receptors with KA1-KA2
or even with GluR6 subunits.6

Postranscriptional Processing
In this chapter, I focus on GluR5 variants, since GluR6 and GluR7 subunits are almost, if not 

completely absent in DRG neurons. Four splice variants of the GluR5 have been reported, named 
GluR5a-d. The GluR5a variant possesses the shortest cytoplasmic C-terminal domain, extending 
only 16 amino-acid downstream from the third transmembrane segment (from position 854).
GluR5b possesses, besides those 16 residues, a tail of 49 additional amino-acids.8 GluR5c presents
29 amino-acids insert before the 49 residues tail of GluR5b.10 The GluR5d variant shows a com-
pletely different 49 amino-acid tail at 854 position.11 At the dorsal horn of the spinal cord, the
subunit preferentially expressed is GluR5a. However, for DRG neurons, the specific splice variant
is currently unknown and it is not clear if there is a predominant splice variant. Recent studies have
identified an important role for specific sequences (retention signals) of splice variants of kain-
ate receptors. Besides controlling the subunit retention at the endoplasmic reticulum,39 specific
sequences can play a key role in the signalling mediated by the receptors and in phosphorylation
mediated regulation if the spliced inserts bearing phosphorylation sites.40 Details on regulation
will be discussed below in the “Kainate receptors plasticity” section.

The mRNA editing could be considered as a biological strategy to change biophysical properties 
of the edited receptor and its influence on neuronal physiology. Q to R editing (Q/R) occurs during 
mRNA maturation as a codon modification resulting from the change of a glutamine (Q636) to 
an arginine (R636).41,42 This modification causes substantial changes in the biophysics of the ion 
channel: it reduces the unitary conductance, Ca2�-permeability and the I/V curve changes from
inward-rectifier to outward rectification (rectification index � 1).43,44

The editing process seems to be regulated during development and maturation. During the 
embryonic period, the level of edited GluR5 mRNA is hardly detectable. Nevertheless, a few days
later it reaches 50% of total GluR5 mRNA45 in brain tissue. DRG are not an exception. In DRG
neurons cultured from E18, only around 20% of mRNA is edited, consistent with the remarkable 
permeability to Ca2� of kainate receptors at this stage. In contrast, in cultured neurons extracted
from P7 mice, the edition level reach 97%, leading to a reduced conductance and almost null
capacity to permeate Ca2�.46

The biological significance of the kainate receptors editing, particularly of the GluR5, subunit 
has not been fully clarified yet. The temporary pattern of editing of kainate receptors coincides
with the maturation timing of synaptic contacts of C fibers at the dorsal horn. Thus, it has been
suggested that Ca2�-permeable kainate receptors are important in the development and matura-
tion of those synapses.46 However, in generated transgenic mice whose receptors are permanently 
edited and present a six-fold reduction in kainate receptors dependent currents at DRG neurons,47

development and maturation of synapses in the spinal cord is normal. In addition, these mice do
not show any alteration in the response to chemical or thermal painful stimuli. It is therefore 
probable that kainate receptor edition plays a fine regulatory role in fiber physiology rather than 
as an essential general mechanism in synaptic development/maturation.
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Kainate Receptors Physiology and Plasticity at Dorsal Root 
Ganglion Neurons

Synaptic transmission between DRG and dorsal horn neurons of the spinal cord depends on all 
three types of well-known ionotropic glutamate receptors: NMDA, AMPA and kainate. Kainate 
receptors mediate sensory synaptic transmission at the spinal cord, where they accomplish a double 
task: when being expressed by the neurons of the dorsal horn, they regulate the excitability of the
postsynaptic membrane and given their localization at the presynaptic terminal of DRG fibers 
they modulate glutamate release.48,49

Activation of kainate receptors at the presynaptic terminal tends to decrease the amplitude of 
EPSC recorded in the dorsal horn. Using cocultures of dorsal horn and DRG neurons, Kerchner 
and collaborators26 found that GluR5 subunits are essential for assembling ionotropic kainate recep-
tors in DRG in that the modulation of the synaptic transmission is sensitive to ATPA. Indeed, in 
cocultured cells from GluR5 knock-out mice, this modulation by kainate is totally abolished. At
the dorsal horn, however, both GluR5 and GluR6 contribute to assemble functional receptors,a

as demonstrated by the fact that ionotropic responses are still present in dorsal horn from GluR5 
or GluR6 knock-out mice.

Previously, Kerchner and collaborators also showed a modulation of GABA and glycine release 
from dorsal horn interneurons mediated by kainate receptors.50,51 In this case, the modulation 
was bidirectional, since facilitation or inhibition of GABA release depended on the degree of 
kainate receptor activation. The proposed mechanism for this phenomenon is compatible with
their ionotropic pathway. In principle, the activation of kainate receptors located at the interneu-
ron presynaptic terminal would be able to depolarize the terminal favouring the Ca2� influx and
therefore the release of GABA/glycine. An excess of GABA would activate receptors located in
the same terminal and would then inhibit its own release (see Fig. 1).

Is this mechanism of presynaptic modulation induced by kainate receptors similar to that found
at the DRG terminals? In principle, it has not been possible to corroborate the facilitation induced
by kainate receptors at DRG neurons, as would be expected for the ionotropic depolarization and
subsequent regulation of glutamate release. Surprisingly, this mechanism of modulation in DRG
terminals seems to be more in line with the mechanism described at hippocampal inhibitory 
synapses,52,53 where a second messenger mediated signalling cascade plays a part.

Metabotropic Activity of Kainate Receptors
Kainate receptors present in DRG neurons activate a signalling cascade. This signalling path-

way is not expected for ionotropic receptors. Rather, on the contrary, it is in keeping with and has rr
similarities with the pathways activated by conventional metabotropic glutamate receptors. The
use of Ca2� imaging techniques was crucial to reveal some aspects of this particular behaviour of 
kainate receptors.54

This signalling pathway includes the activation of a Pertussis toxin sensitive G-protein and 
subsequently two differentiated steps: the release of Ca2� from intracellular stores, presumably 
due to the production of IP3 and the activation of a PKC that leads to the inhibition of voltage 
dependent Ca2� channels (VGCC) (see Fig. 2). This signal cascade activated by kainate receptors 
was previously described in hippocampal inhibitory terminals,53,55 which express GluR5 subunit,
but also in excitatory terminals56 and in postsynaptic sites.57

The Ca2� release from intracellular stores is a well-known and widely studied phenomenon58,59

(for detailed review see Berridge et al, 2003; Clapham 200760,61).The implications of Ca2� as a 
secondary messenger in intracellular signalling as well as the influence that it could have on the 
exocytosis of neurotransmitter process have also been intensely studied.62,63 Although these data 
provided direct evidence of the metabotropic activity of kainate receptors, at the moment, many 
details on the mechanisms of kainate-induced Ca2� release are still poorly understood. For example,

a DRG neurons from GluR7 KO mice have not been analyzed. It is possible that this subunit 
contributes, along with others low-affinity subunits, to form kainate receptors at the post-
synaptic site.
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we do not know which reservoir, pathway or intracellular receptors are involved in Ca2� release 
or if there is IP3 production or another similar messenger. Nevertheless, the activation of the
kainate receptor is able to induce the increase of intracellular Ca2� even in the absence of extracel-
lular Ca2� and it is sensitive to the previous emptying of these deposits. Interestingly, the release
of Ca2� is confined to discrete membrane patches in DRG cells neurites (where kainate receptors 
are located). To date, this activity triggered by kainate receptor activation has not been studied in 
central neurons, although kainate receptors have been associated with Ca2� induced-Ca2� release (a 
process that is not initiated by a metabotropic cascade) in the mossy fibers of the hippocampus.64

The function of the cytosolic Ca2� increase in DRG needs further investigation.
The activation of PKC, in some of its multiple isoforms, by diacylglycerol (DAG) or phorbol 

esters, has been considered as a positive regulator of neurotransmitter release in central neurons.65

Nevertheless, recent studies revealed that Munc13, also activated by DAG, can be directly re-
sponsible for this phenomenon66; this field is currently matter of intensive discussion.67 However,
in sensory neurons, PKC activation exerts the opposite effect, since phosphorylation of N-type 
calcium channels by PKC results in a decrease of their conductance,68-70 especially in a subset 
of neurons which express syntaxin 1A.71 This inhibition is of different nature to the inhibition 
produced by direct interaction of Ca2� channels with the G-protein �� subunits.72 The channel 
phosphorylation produces its voltage-independent inhibition, whereas �� interaction could be 
removed by strong depolarizing prepulses. As a consequence, the inhibition of VGCC induced by 
kainate results in a lower [Ca2�] in the presynaptic terminal after the arrival of the action potential
and the subsequent decrease in glutamate release.

It is necessary to point out two significant aspects about this phenomenon: (1) the inhibitory 
action of kainate receptors activation on the Ca2� influx is independent of the ionic activity of 
the receptor channel. The opening of the receptor causes the influx of Na� and Ca2� ions through 
the channel to the cytosol. This Ca2� can inhibit VGCC,73 while the increase in Na� conductance

Figure 1. Kainate receptor regulates the glutamate and GABA/glycine release at the dorsal
horn. At the DRG nerve terminal, GluR5 heteromers negatively regulates the glutamate release. 
The neurotransmitter activates AMPA, NMDA and kainate receptors (GluR6-containing). If the 
amount of glutamate is high, neurotransmitter spillover could activates presynaptic kainate 
receptors at medullar interneurons terminals (GluR5 composed). The depolarization induced
by receptor activation produce the release of GABA/glycine, but these neurotransmitter could 
finally activate presynaptic GABA receptors, leading to the inhibition of release. (Adapted 
from Kerchner et al Neuron 2001; 32:477-88.)
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translates into a general decrease of plasma membrane resistance causing a “membrane shunting”. 
However, in some DRG neurons with low, or even absent kainate ionotropic responses and in the
absence of extracellular Na�, the inhibition of Ca2� influx induced by kainate remains unaffected. 
The independence of both functions has also been demonstrated by the fact that in cultured DRG
neurons, kainate receptors segregate to the neurites and produce inhibition of Ca2� influx at sites 
different from those points where ionotropic responses (measured in terms of [Ca2�]) take place. 
(2) This noncanonical signalling pathway depends on the GluR5 subunit, because it is absent in 
DRG neurons from GluR5 KO mice but not from GluR6 KO mice. However, this does not mean
that GluR5 is the “bona fide” signal transducer. This ability could resides in the KA1 and/or KA2
subunit, but their delivery to the cell surface could be impaired if either GluR5 or GluR6, necessary 
to assemble functional receptors, were absent.

As mentioned above, we still do not understand many aspects of the metabotropic cascade. One 
of the most important questions is how a G-protein could be activated by a ionotropic receptor, 
which lacks the necessary intracellular molecular motifs. And, of course, it is still necessary to 
elucidate whether the signal transduction depends on any of the other subunits (KA1 and KA2)
as it has been described in other systems (ref. 74, but see also ref. 24).

Kainate Receptors Plasticity
As well as being involved in the modulation of the glutamate release in the dorsal horn, the 

noncanonical signaling pathway activated by kainate receptors in DRG neurons seems to play a 
role in its own regulation.

Figure 2. Kainate receptor activates a metabotropic signaling cascade. Kainate receptor induces 
PKC activation through a pertussis toxin sensitive G-protein and PLC. Besides the release of 
Ca2� from intracellular stores, the metabotropic cascade leads to the VGCC inhibition. PKC 
activity also induces kainate receptor internalization when it is overactivated. Calcineurin
(PP2B) counteracts this pathway through receptor dephosphorylation.
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In a similar way as observed in hippocampal cultured neurons where GluR6 subunits undergo 
a process of insertion into and retrieval from the plasma membrane,75 in DRG neurons there is
a similar system of this regulation. In cultured DRG neurons and heterologous systems, such as
SHSY-5Y neuroblastoma cells, it has been shown that the kainate receptor activation of this me-
tabotropic cascade is able to produce the downregulation of the kainate-induced currents.40

The decrease of the kainate induced currents is not produced by reducing the receptor conduc-
tance, but by the retrieval of receptors from the plasma membrane. Stronger stimulations (repetitive 
exposure to the agonist with short time for recovery), lead to a 50% decrease in kainate-induced
currents. The activation of the receptor entails the activation of a PKC, capable of receptor phos-
phorylation on its C-terminal, where there are two targets: S879 and S885. This phosphoryla-
tion accelerates, ultimately, the receptor internalization. On the other hand, the activation of the 
phosphatase 2B (PP2B, calcineurin) that presumably dephosphorylates the receptor, prevents
current loss. Intracellular [Ca2�] seems to have a key role in this balance of insertion/retrieval.
High intracellular [Ca2�] concentrations linked to an activation of the receptor would promote 
the internalization, whereas low [Ca2�] concentrations would cause an increase of receptors at-
tached to the cell surface. This bidirectional effect could be caused by different affinities for Ca2�

exhibited by PKC and by calcineurin; PKC needs higher intracellular [Ca2�] to translocate itself 
to the membrane, but calcineurin could be activated at much lower [Ca2�]76-78 (see Fig. 2).

In the phenomenon of autoregulation there is special relevance of the alternative splice vari-
ants of the GluR5 subunit. GluR5a, the shortest version, lacks the C-terminal segment where the
target serines by PKC are located. On the contrary, GluR5b and GluR5c variants posses the insert 
of 49 aa where the serines are located. Target sequences are located close to the GluR5 retention 
signal (LTCHQRRTQ) which regulates the retention of GluR5 in the ER. This sequence is also 
absent in GluR5a variant.39

What is the biological significance of this regulatory mechanism? Kainate receptors are
able to sense their own overactivation, so high concentrations of glutamate can cause their
auto-internalization and thereby attenuation of the response. This situation has already been de-
scribed for AMPA receptors and for kainate receptors in other systems (fundamentally in central
neurons), such as the hippocampus (during LTP and LTD),79,80 but in this case, the particular
relevance of receptor self-regulation is that it helps to maintain the balance of the system.

Kainate Receptors and Pain
Kainate receptors are present at several levels in nociceptive neurotransmission (see reviews in 

refs. 81 and 82). They are expressed in DRG neurons and in the dorsal horn neurons of the spinal
cord. They are also present at the inhibitory synaptic terminals of dorsal horn inhibitory interneu-
rons. Therefore, although kainate receptors influence in pain transmission has been demonstrated,
some surprising findings have raised doubts about their specific role in nociception.

Inside DRGs, kainate receptors are located specifically in the small size neurons, identified as the 
somata of the C fibers (nonmyelinated fibers). They are positive cells for IB4 (isolectin B4) marker 
and negatives for substance P.46 The sensory information carried by these fibers is nociceptive and 
thermoceptive: 60% of these neurons also show expression of VR1 receptors, mediators of noxious
heat sensation.46 One of the main difficulties in the analysis of kainate receptors function in pain
is the differentiation between postsynaptic effects (mediated by GluR6 and/or heteromers of this
subunit) and presynaptic effects (fundamentally mediated by GluR5 or GluR5/KA2),26 specially 
when many tests should be performed in vivo.

The results obtained by using agonists and antagonist of kainate receptors are, in some cases,
surprising. In general, kainate receptors antagonists show antinociceptive actions, for example, 
with SYM 2081 in models of hot plate and mechanical pain.83 However, SYM 2081, which is a 
weak antagonist of kainate receptors including GluR6 subunits, is probably inducing a mix pre and
postsynaptic blockade. On the other hand, LY382884, the specific antagonist of GluR5, does not
cause any change in the hot-plate test,84 but it has antinociceptive effects in the formalin test (used 



76 Kainate Receptors

as model of inflammatory pain).85 Surprisingly, ATPA, an agonist of GluR5 containing receptors,
is also able to reduce nociceptive reflexes in vitro.84

Although the tests in knockout mice are still insufficient, they have partially confirmed the 
results obtained using antagonists. The response to formalin injections and capsaicin is almost 
abolished in GluR5, but not in GluR6 knock-out mice,86 showing that sensory transmission of 
that stimulus is mediated via DRG neurons and with the participation of the presynaptic kainate 
receptors.

As already mentioned, in genetically modified mice with GluR5 subunit permanently edited in 
R form, mice do not show any alteration in the sensorial painful transmission, either in hot plate 
test or in the formalin test,47 despite a remarkable decrease of the kainate-induced current. This
could indicate that it is the presence of the receptor and not its ionotropic activity or Ca2� influx 
through the channel, that is the necessary condition to support the sensory transmission. Another 
possibility to consider is the substitution of the subunit by another one, as occurs in hippocampal 
slices,24 but not in DRGs cultures.

In summary, antagonists of kainate receptors-containing GluR5 subunit have antinociceptive
potential. However an excessive stimulation of the receptor could induce its own inhibition, 
presumably due receptor internalization. A more extensive study of some of these surprising 
aspects is necessary. For example, the importance of the editing process or the implication of the
noncanonical signalling pathway in pain transmission remains to be determined.

Conclusion
Important progress has been achieved over the last decade on the knowledge of the biology of 

the kainate receptors and also on their role in synaptic transmission at DRG neurons. However, 
there are still many intriguing questions to answer. One of those is related to how it is possible 
that an ionotropic receptor can activates a metabotropic cascade and which are the proteins that
mediate this interaction (reviewed in refs. 87-89). This is probably the most attractive aspect and 
the one which has raised the biggest controversy, mainly in the CNS, but also at peripheral neurons.
Nevertheless, concrete steps have already been taken to answer this question: high affinity kainate 
subunits such as KA2 may be responsible of this interaction.74 We do not know much about the 
other components of the signaling pathway either (which isoform of PKC is involved downstream
the receptor activation?) or about the function of Ca2� released from the intracellular stores.

The study of targeting and plasticity of synaptic receptors has aroused an increasing interest, 
being currently a very active field of research and this aspect of kainate receptors physiology is not 
an exception.40,90 Understanding how the number of receptors is regulated at the plasma membrane
will allow us to know their effective influence in the synaptic transmission and in this particular
case, in the transmission of sensorial painful information. In this regard, to elucidate the machinery 
(and the components of this machinery) that is involved in receptor internalization and delivery 
would be of critical importance.

Finally, it is necessary to highlight that, although kainate receptors has been demonstrated to 
be implicated in pain transmission and antagonist of this receptors has mostly antinociceptive
effects, further investigations are necessary. It has been suggested that their modulatory actions 
are exerted for long lasting pain,81,86 but mechanisms such as compensation by other receptors in
KO mice need to be investigated. From another point of view, kainate receptors could be lost, in
adulthood, along with some functions related to their function during development or matura-
tion,91 such as during axon guidance.92 These functions would be progressively reduced during 
the establishment of mature synapses. However, these hypotheses will need confirmations over 
the coming years.
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Abstract

Distinct populations of kainate-type ionotropic glutamate receptors (KARs), located at 
various cell types and subcellular compartments and utilizing diverse downstream signal-
ing mechanisms, represent an intricate system with large capacity for modulatory effects 

ranging from synapse-specific changes to alterations in the excitability of large neuronal ensembles.
However, the way the diverse functions ascribed for KARs are utilized under different physiologi-
cal and pathological conditions to regulate activity at the level of neuronal networks is still largely 
unclear. Here, we address the data regarding functions of KARs in the regulation of network activ-
ity in the hippocampus, with a main focus on their roles during early postnatal development. We 
further discuss the evidence suggesting that KAR mediated signaling during the immature type
network activity is involved in the formation and maturation of glutamatergic synapses. 

Introduction
During early development, immature neuronal networks typically display spontaneous,

rhythmic activity which is characterized by short (tens to hundreds of milliseconds) bursts of 
synchronous activity occurring at intervals of tens of seconds (e.g., hippocampus) to few min-
utes (e.g., retina, spinal cord).1,2 During the bursts, ensembles of neurons fire together at a high
frequency, thus enabling temporally and spatially correlated electrical signaling in the immature
circuitry. Accumulating evidence suggests that the immature network activity is instrumental 
for the development of the synaptic connectivity.2,3 Electrical activity is not essential for synapse
formation per se; both the pre and postsynaptic specializations form constitutively in the absence 
of activity even in vivo (e.g., ref. 4). However, it is evident that activity modulates stabilization 
and elimination of synapses and neuronal branches to guide refinement and remodeling of the
neuronal connectivity.5-7

The mechanisms generating rhythmic activity in the immature brain differ depending on the
brain area and on the developmental stage. In the rat hippocampus, the early synchronous activity 
around the time of birth is mainly dependent on gap junctions.8 These early oscillations are rap-
idly replaced by synaptically driven network bursts, which critically depend on both GABAergic
and glutamatergic transmission9-11 and govern the activity in the immature hippocampus until 
postnatal day 10-12.12

Recent findings from several groups have indicated that kainate-type of glutamate receptors
(KARs) have concentration, cell type and cell compartment specific effects on the function of both
glutamatergic and GABAergic neurons (for reviews see refs. 13-15). Thus, postsynaptic KARs 
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typically mediate a slow, small amplitude postsynaptic current (EPSC), while presynaptic KARs 
act as auto- or heteroreceptors regulating transmitter release (e.g., references 16-20). Synaptic 
activation of KARs typically shows remarkable dependency on stimulation frequency, which to-
gether with the kinetic properties of the receptor provides means for integrating and transmitting 
information of the afferent firing rate at the central synapses.13-15 Apart from its synaptic functions,
KAR activation has profound effects on neuronal excitability by regulating the afterhyperpolarizing 
potassium currents in certain neurons.21,22 These effects combined to the modulatory functions
at both GABA- and glutamatergic synapses enable KARs to efficiently regulate transmission and
excitability at the level of neuronal networks.19,23,24

Kainate Receptors and Network Activity in the Mature Hippocampus
Kainate (KA) application is potent way to induce maintained pathological synchrony and has 

been widely studied as animal model for epileptogenesis in vivo.25,26 Unfortunately, only a minor-
ity of the published data concerning the mechanisms of KA induced network activity address
selectively the role of KARs, due to overlap in the pharmacological properties of AMPA-Rs and 
KARs. Thus, kainate at relatively low concentrations activates not only KARs but also produces 
a nondesensitizing response at AMPA receptors,27-30 which may efficiently increase excitability in
the recurrent circuits in area CA3.

Strong evidence for contribution of KARs in the generation of pathological synchrony 
in vivo originates from GluR6-deficient mice, which are less susceptible to epileptogenesis in 
response to systemic administration of kainate than the wild-type animals.31 Further, GluR5 
antagonism has been shown to prevent pilocarpine-induced limbic seizures32 while infusion of 
GluR5 agonist induces limbic seizures, probably due to its actions in the amygdala.33,34 Recently, 
GluR5 antagonist was shown to reduce the frequency of hippocampal theta-oscillations (5-12
Hz) in freely moving animals.35

Results supporting involvement of KARs in hippocampal network oscillations have also been
obtained in vitro. Kainate application in the hippocampal slices generates rhythmic oscillations in 
the gamma frequency range (30-100 Hz), similar to those observed in the brain under physiologi-
cal conditions.36 These oscillations are strongly reduced or absent in area CA3 of hippocampal
slices from GluR6	/	mice, while genetic ablation of GluR5 leads to a higher susceptibility of the
network to the oscillogenic effects of kainate.23 In slices from GluR7	�	 mice, kainate-induced
gamma oscillations were indistinguishable from wild-type.23 These phenotypes suggest opposite 
roles for the KAR subunits GluR5 and GluR6 in kainate induced gamma-oscillations. However,
other studies have shown that GluR5 antagonists reduce the power of pre-established KA induced 
gamma oscillations in rat hippocampal slices, although activation of these receptors is not sufficient
for generating this type of rhythmic activity.37 One explanation for the discrepancy is functional
compensation and alterations in subcellular trafficking of kainate receptor subunits in the knockout 
mice.38 In particular, heteromeric GluR5/GluR6 receptors may be blocked by GluR5 antagonists 
but also functionally deficient in the GluR6	�	 mice, due to impaired surface expression of GluR5
alone.39 Thus, GluR5 containing receptors, possibly expressed as heteromeric combinations with x
GluR6, may play a role in maintaining kainate-driven gamma frequency oscillations and in regula-
tion of the oscillation power.37 Activation of the GluR6 subunit containing KARs, on the other 
hand, appears critical for generation of the oscillatory activity.23

Synaptic and Cellular Mechanisms
Although the existing data strongly supports a role for KARs in regulation of pathological and 

physiological network activity in the hippocampus, the synaptic mechanisms underlying these
effects are less clear. In general, rhythmic activity and synchronization in neuronal networks can 
be generated by recurrent excitatory connections, which are found between pyramidal neurons in 
the area CA3. However, it is well established that pacing of physiological cortical rhythms criti-
cally depends upon inhibition originating from interneurons to balance excitation and control 
the precision of spike timing.40-42



83Role of Kainate Receptors in Network Activity during Development

Most of the existing data on the mechanisms by which KAR influence gamma oscillations are 
focused on regulation of interneuronal function. Activation of somatodendritic KARs depolarizes 
interneurons in both area CA1 and CA3 and leads to strong increase in spontaneous GABAergic
activity (sIPSCs).23,38,43-46 In addition, KARs increase excitability of interneuron axons in area 
CA1, which might contribute to regulation of sIPSCs.47 The lack of KA induced neuronal de-
polarization and regulation of sIPSCs in area CA3 of GluR6	�	 mice was proposed to explain 
the impaired gamma frequency oscillations.23 Unfortunately, pharmacological data on the role 
of GluR5 in kainate-induced sIPSCs in area CA3 is unavailable, leaving it unclear whether the
observed effects of GluR5 antagonists on the maintenance of gamma oscillations37 are associated
with reduced spontaneous GABAergic activity.

Modulation of the oscillatory activity in the theta frequency range by GluR5 containing KARs 
was proposed to be due to reduced excitatory input to one or more classes of interneurons in the 
hippocampus.35 In line with this idea, synaptic kainate currents in oriens-lacunosum moleculare
(O-LM) interneurons in area CA1 may reset their firing phase and have been implicated in genera-
tion of theta activity in vitro.48,49 Further, GluR5 is highly expressed in these neurons.50

In addition to its effects on interneuronal excitability, KAR activation strongly modulates gluta-
matergic transmission at the mossy fibres.13-15 High frequency activity of the mossy fibres effectively 
discharges both the pyramidal neurons and interneurons in area CA3 and thereby profoundly 
influences the activity of the CA3 network.51 Kainate-receptors promote frequency-dependent
facilitation of mossy fibre input to pyramidal neurons during high-frequency transmission,18,20

which is an important mechanisms to overcome the strong feed-forward inhibition in the circuitry.52

In parallel, activation of postsynaptic KARs enhance the excitability of pyramidal neurons by me-
diating slow EPSCs16,17 and by suppressing the afterhyperpolarizing potassium current (IAHP).21,22

Together, these mechanisms promote the excitation of CA3 pyramidal neurons in response to
high-frequency mossy fiber input, which may critically contribute to the excitation necessary to 
drive the associative network in area CA3.

Kainate Receptors in the Developing Brain
KARs subunits are highly expressed in the brain during early postnatal development and pat-

terned changes in their cellular and subcellular expression profile take place during maturation.53,54

In addition, electrophysiological analysis has revealed developmental changes in kainate receptor
function in several areas of the brain. For example, at the thalamocortical synapses in the developing 
rodent barrel cortex, the contribution of KARs to synaptic transmission decreases with a develop-
mental profile that correlates with the critical period for experience-dependent plasticity.55-56 At
the spinal cord, GluR5 containing KARs rapidly switch from high to low calcium permeability,
due to RNA editing in the dorsal root ganglion cells, in parallel to synapse formation.57 In the 
neonate hippocampus, the tonic activation of presynaptic kainate receptors regulating glutamate 
release is lost during early postnatal development in parallel with activity -dependent maturation 
of the circuitry.19,58

The developmental switch in KAR function in the hippocampus is associated with a loss of 
high-affinity receptors58 as well as a change in their downstream signaling mechanisms.59 For
example, at the immature CA3-CA1 synapses (i.e., postnatal day (P)3-6), activation of presyn-
aptic KARs by a GluR5 selective agonist ATPA leads to depression of both evoked and action 
potential-independent glutamatergic transmission (mEPSCs) in a G-protein and PKC dependent 
manner. At P14, the effect of ATPA on mEPSCs is completely lost59 (Fig. 1), although a strong 
G-protein dependent but PKC independent depression of evoked glutamatergic transmission is 
still seen.60-62 Whether the switch in the signalling mechanisms reflects developmental alterations in 
the subunit composition, cellular localization or C-terminal coupling of the KARs or independent
developmental alterations in the release machinery is not known.

Evidence for developmental downregulation of the presynaptic effects of KARs has also 
been obtained at GABAergic synapses in the area CA1.63 In the neonatal CA1, kainate recep-
tor agonists strongly decrease mIPSC frequency,63 an effect that is larger and much more robust 
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than that reported in older animals.43,64 In other studies, no effect of KAR agonists on mIPSCs 
in the hippocampus from two to six week old animals was observed,44,45,65 implying that similar 
to glutamatergic synapses,59 the presynaptic regulation of action-potential independent release at 
GABAergic synapses in area CA1 might be lost during maturation of the circuitry.

Thus, the mechanisms described for KARs in the mature circuits cannot be directly applied
to immature networks, where the expression pattern but also the synaptic and cellular signaling 
of KARs can be profoundly different as compared to the adult. On the other hand, the observed
developmental changes in function raise the intriquing possibility that certain KAR functions 
might be primarily related to the development and maturation of the synaptic connectivity.

KAR Mediated Regulation of Network Activity in the Immature
Hippocampus

In contrast to older animals, synchronous network activity is spontaneously generated in the 
immature hippocampal slices, which allows investigation of its mechanisms without a need for

Figure 1. Developmental loss of KAR mediated regulation of mEPSCs in CA1 pyramidal neurons. 
A) Example traces showing the effect of LY382884 (10 �M) on mEPSCs at CA1 pyramidal
neurons at P4. B) Averaged data on the effect of GluR5 selective agonist ATPA (1 �M) and 
antagonist LY382884 (10 �M) on mEPSC frequency and amplitude at P3-P6 and P14-P16. **
p � 0.01; *** p � 0.005. Adapted from Lauri SE et al. Neuron 2006; 50:415-42958 and Sallert 
M, Malkki H, Segerstråle M et  al. Neuropharmacology 2007; 52:1354-1365,59 ©2006 and 
©2007 with permission from Elsevier.
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additional pharmacological interventions. Although initially thought to be mainly GABAergic, 
accumulating evidence indicates that glutamatergic transmission is critical in generating and
regulating the activity and excitability of the immature hippocampal network.9,10,66,67 Early studies 
indicate that application of kainate can induce epileptiform activity in the area CA3 already around 
the time of birth both in vivo and in vitro.67,68 However, the exact roles of KARs in generation and 
synchronization of the immature network activity are only beginning to emerge (e.g., reference 19).

Effects of KAR Agonists on Spontaneous Activity in the Immature
Hippocampus In Vitro

Kainate application at concentrations (25-50 nM) selective for high-affinity kainate receptors
can efficiently increase the frequency of spontaneous network bursts in the immature hippocampus
without generation of epileptiform hypersynchrony ( Juuri, Lauri and Taira, unpublished data).
At higher nanomolar concentrations (250-300 nM), kainate induces epileptiform activity already 
at P2.67 Intriquingly, these effects are completely different from what is observed by selectively 
activating GluR5 subunit containing KARs by the agonist ATPA.19,69 ATPA application at P3-P6
leads to substantial inhibition of the spontaneous network bursts, associated with a large increase 
in the frequency of sIPSCs and depolarization of interneurons (Fig 2).19 The effect of ATPA is 
thus dominated by a shift in a balance towards asynchronous GABAergic transmission, which
efficiently inhibits the synchronous network activity. Interestingly, kainate (250 nM-1 �M) ap-
plication leads to similar effects on GABAergic transmission (e.g., references 43,63), but is also
associated with a large increase in glutamatergic drive producing a robust increase in the network 

Figure 2. Spontaneous network activity in the immature hippocampus is regulated by GluR5
subunit containing KARs. A) A typical pattern of spontaneous activity recorded from CA3 
pyramidal neuron (P4), using a low chloride solution in the patch electrode (i). sIPSCs are seen
as outward currents and sEPSCs as inward currents, as is shown in expanded time scale (ii, 
left and iii). The network bursts consist of a slow GABAergic current and a barrage of EPSCs
(ii, right). X marks the place of the expanded time scale trace. Effect of GluR5 subunit selec-
tive agonist ATPA (B) and antagonist LY382884 (C) on the frequency of spontaneous bursts, 
sEPSCs and sIPSCs in CA3 pyramidal neurons (P3-P6). ** p � 0.01; *** p � 0.005. Adapted 
from Lauri SE et al. J. Neurosci 2005; 25(18):4473-4484.19



86 Kainate Receptors

excitability.67 Thus, at immature networks, increase in the GABAergic transmission alone appears
not sufficient for burst generation. In contrast, the spontaneous network activity in the immature
circuitry evidently depends on the balance between GABAergic and glutamatergic drive as well as
on the overall level of synaptic activity. From this perspective, KARs represent an ideal mechanism 
for modulation of network activity because of its specific effects on GABAergic and glutamatergic 
synapse populations.

Endogenous Activity of KARs at Immature Networks
Recent evidence suggests that tonically active KARs at immature synapses might play a critical 

role in generation and maintenance of the spontaneous network activity. Thus, blocking the GluR5
subunit containing KARs by the selective antagonist LY382884 results in a decrease in the oc-
currence of the network bursts, suggesting that endogenous activation of KARs is involved in the
burst initiation or network synchronization (Fig 2).19

The endogenous activation of GluR5 subunit containing KARs appears to preferentially 
regulate transmission at glutamatergic synapses, since the effect of LY382884 was associated
with changes in spontaneous glutamatergic transmission (sEPSCs) at both pyramidal neurons 
and interneurons in the neonate CA3, while no significant effects on transmission at GABAergic
synapses were observed.19 Interestingly, GluR5 subunit containing KARs regulate transmission
differentially depending on the cell type. Thus, glutamatergic input to pyramidal cells were 
tonically inhibited by endogenously active KARs, while tonic facilitatory effect on input to
stratum lucidum interneurons was observed. Moreover, these receptor populations are further
distinguished based on the downstream signalling mechanisms, the inhibitory effect on release 
in pyramidal neurons being G-protein dependent, while the facilitatory effect in interneurons 
being G-protein independent.19

The predominant synaptic mechanism by which the endogenous GluR5 activation alters the
early network activity is the enhancement of glutamatergic input to interneurons. This is because 
glutamatergic drive to pyramidal neurons in area CA3 is much weaker as compared to interneu-
rons during early postnatal development, due to the developmentally earlier synaptogenesis at 
interneurons.70 In addition to the synaptic effects, we recently found that endogenously active
GluR5 subunit containing receptors tonically enhance the excitability of interneurons in the im-
mature but not two week old mouse CA3 (Segerstrale, Lauri, Mulle and Taira, unpublished data).
Together, these actions increase the probability for synchronization of the interneuronal network, 
which manifest as generation of spontaneous bursts at the immature network.

In conclusion, the present data suggests that at the immature hippocampus, endogenous activity 
of kainate receptors controls the network by tonically regulating the glutamatergic drive as well 
as cellular excitability. Given the dramatic effects of KAR activation or inhibition on network 
activity, it appears that the activation level of KARs in the neonatal hippocampus is finely tuned
by ambient glutamate to permit the typical rhythmic activity in the immature circuitry.

Role of KARs in Developmental Maturation of Synaptic Connectivity
The finding that certain functions of KARs are restricted to early postnatal stages and correlate

with the developmental pattern of synaptogenesis implies a role for these receptors in maturation
of the connectivity. Furthermore, the switch from immature to mature type KAR function appears 
to be controlled by similar and/or parallel activity-dependent mechanisms that have been proposed 
to guide fine-tuning of the neuronal connectivity during development. For example, induction of 
LTP at the developing thalamocortical synapses55 as well as in the immature CA1 synapses58 leads
to rapid decrease in the physiological activation of KARs.

By acting as direct sensors of glutamatergic activity, kainate receptors would be well suited
for coupling patterned electrical activity with morphogenesis with high spatial and temporal 
resolution. Direct evidence for such mechanism comes from a study by Tashiro et al71 where it 
was shown that at the hippocampal mossy fibre synapse, KARs mediate the effects of synaptic
stimulation on the motility of axonal filopodia, a process which is thought to be involved in 
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the early steps of synapse formation and rearrangement. At the same synapse, lack of KAR 
subunits GluR5 and GluR6 during development perturbs establishment of mature of pre and 
postsynaptic functions.72

There is also evidence for a role for the immature-type tonic KAR activity in formation and
maturation of glutamatergic circuitry in the area CA1. Mimicking the tonic KAR activity by 

Figure 3. Long-term activation of KARs leads to increase in density of functional synapses in
area CA1 of hippocampal slice cultures. A) Western blots (i) and quantified data (ii) showing
higher expression level of various synaptic marker proteins in hippocampal slices cultures
treated with ATPA (1 �M) for 20 hours as compared to control slices. B) Confocal images (i) 
and quantified data (ii) of synaptophysin immunofluorescence in the dendritic area of CA1 in
ATPA treated vs control slices. *p � 0.05. C) Example traces (i) and analysed data (ii) show-
ing increased frequency but no change in the amplitude or kinetics of AMPA-R-mediated 
mEPSC in CA1 pyramidal neurons in ATPA treated vs control slices. ***p � 0.005. Adapted 
with permission from reference 73.
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pharmacological activation of GluR5-containing KARs in slice cultures specifically increases 
density of functional glutamatergic synapses (Fig. 3).73 Further, a critical role of endogenous
KARs was revealed by long-term treatment of hippocampal cultures with GluR5 antagonist 
LY382884, which caused a significant impairment of glutamatergic transmission to CA1
pyramidal neurons. The effect of GluR5 activation on synaptic density is dependent on the de-
velopmental stage (Vesikansa, Taira and Lauri, unpublished) and is mediated by PKC-coupled 
signalling of KARs that is only detected at immature CA3-CA1 synapses.73

Apart from mediating signals that directly influence the molecular assembly/disassembly of 
synaptic machinery, KARs may regulate maturation of the circuitry indirectly via its effects on the 
spontaneous network activity. Inhibition of the synchronous network activity in the immature hip-
pocampus leads to robust increase in the density of functional glutamatergic synapses and parallel
decrease in GABAergic synapses.5,7 These changes in the synaptic connectivity occur in a clearly 
shorter time scale as compared to homeostatic scaling in mature circuits,74 thus highlighting the 
importance of activity in the formation and rearrangement of immature synaptic connectivity.

Conclusion
The recent advances in understanding the functions of KARs demonstrate a critical role for

these receptors not only in the epileptiform network activity but also in the physiological oscilla-
tions both in the developing and adult hippocampus. Evidently, the effects of KARs at network 
level are complex and involve multiple mechanisms, reflecting the variability in their synaptic and
cellular functions. Further, KAR mediated effects depend on developmental stage and on the
prior activity of the network. For example, at the developing hippocampus, physiologically active 
kainate receptors appear to promote synchronized network activity via regulation of glutamatergic
inputs to interneurons and by enhancing interneuron excitability (ref. 19, Segerstrale, Lauri, Mulle
Taira, unpublished). These mechanisms, however, are developmentally downregulated and no
longer functional at the mature hippocampal network. At older animals, kainate-receptor medi-
ated regulation of gamma frequency oscillations have been mainly attributed to somatodendritic
KARs at CA3 interneurons23,24 while KARs mediating and modulating glutamatergic input at 
O-LM interneurons have been implicated in the regulation of theta oscillations.48,35 However, the 
picture is still far from being complete. For example we know very little on the functions of KARs 
at different types of interneurons, which might have specific roles in the regulation of network 
excitability and sychronization under both physiological and pathological conditions.

A key issue in future studies is to understand not only the cellular mechanisms by which KARs 
modulate synaptic transmission and neuronal function, but also how various KAR populations are
activated and regulated under different physiological and pathological conditions. This will require 
selective genetic or pharmacological manipulation of KARs located in specific neuron types and
subcellular compartments in intact neuronal networks, where the physiological balance between 
excitation and inhibition is not perturbed. Ideally, understanding the network level effects of KARs 
in detail will provide basis for therapeutic applications to control pathological synchronization 
and hyperexcitability of neuronal networks.
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Abstract

The kainate-type glutamate receptor displays strong modulation by monovalent anions and 
cations. This modulation is independent of permeation of the ion channel. Instead, structural, 
computational and biophysical evidence shows that receptor activity is controlled by bind-

ing of sodium and chloride ions at sites that stabilize active dimers of glutamate binding domains. 
Modulation by monovalent ions is a surprisingly general property across ion channel families. 
However, evidence of a physiological role for ion-dependent effects on glutamate receptors is lack-
ing, perhaps reflecting the adventitious use of ions as structural components of the kainate receptor.

“ergo, Hercules, vita humanior sine sale non quit degree […]”
“Heaven known, a civilized life is impossible without salt”
—Pliny the Elder, Natural History XXXI 88

Introduction
The essential nature of salt in biology, over and above it’s role in civilized human life, cannot be 

understated. As biologists, our appreciation of sodium and chloride dates to the investigations of 
Sydney Ringer (for a stimulating discussion of Ringer’s work, see ref. 1). Serum salt concentration
is remarkably invariant, because peripheral reflexes are employed to keep it so.2 We might then
expect sodium and chloride ions to be inert, having no modulatory roles in protein function and aa
think it odd that any protein would bind these ions in a key functional region. But sodium and
chloride modulate many proteins, including Thrombin and Hemoglobin,3,4 acting at well-defined 
sites. In the same way, some ion channels, in addition to passing sodium and chloride across the 
cell membrane, are also subject to modulation by these ions.

Physical Characteristics of Sodium and Chloride
An excellent survey of the physical properties of ions is available.5 Water molecules (55 M) vastly 

outnumber sodium and chloride ions (each �140 mM) in the cerebral-spinal fluid. Thus, water can 
cluster around each ion and shield it, because the electric field of the ion polarizes the dipoles of the
bound waters. For this reason, dehydrating the ion requires energy and the coordinating groups of 
any proteinaceous binding site must provide this energy. Energies of hydration are high, but the
sphere of water molecules and the stoichiometry of coordination, are not fixed, but instead vary on 
the nanosecond timescale. How can such loose behaviour be consistent with selective binding of 
ions to protein sites? Exquisite selection can be achieved by providing a coordination environment
that differs, serially according to ion chemistry, from that given by bulk water.6
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Sodium and chloride ions are both singly charged, but have quite different personalities. 
Asymmetry immediately arises from the electron. Chloride ions harbor an extra electron, but 
its negative charge is thinly spread over the surface. This renders chloride ions rather sticky and
prone to bind indiscriminately to protein surfaces. Crystallographers exploit this propensity to 
bind in the form of halide cryosoaking.7 In this method, bound chloride ions produce anomalous
diffraction signals, which can be used to obtain phase information essential for protein structure
solution. This kind of anomalous signal is also useful in fingerprinting bound halides in crystal
structures (see below). Sodium, by contrast, is much more compact. By losing an electron, it gains 
a charge but becomes smaller and this adds up to a fairly high surface charge density. Oxygen
ligands are thus drawn closer, with characteristic metal-ligand distances that are significantly 
shorter than hydrogen bonds (on average 2.4Å).

g
8 The rapid exchange of ligands in bulk water is

mirrored in proteinaceous binding sites, where sodium ions might be comfortably coordinated
by between 3 and 7 ligands8,9 and have similar thermal motion to the surrounding protein.10

A technical problem with the detection of sodium ions in crystallographic experiments is that
they have the same number of electrons as water. Thus, valence screening, which relies on bond 
distances, rather than any specific coordination number or scattering measurements, is the best
method for de novo identification, at least in high-resolution structures where coordinate er-
rors are small.11

When we consider ion binding to proteins, the chemistry of amino acids gives a second layer 
of asymmetry. Chloride ion binding sites regularly include a basic side chain, either Arg or Lys.
These moieties are comparatively long and hence can sweep out large swathes of space if not re-
strained. By contrast, cation binding sites can include negatively-charged carboxyl groups of Asp
and Glu, to counterbalance positive charge on the cation. Simple turn-loop motifs are common
in divalent cation binding sites,12 possibly because these donors are compact. The kainate receptor
monovalent cation binding sites follow such a pattern of utilizing groups from adjacent amino
acids in a turn region.

Structural View of Glutamate Receptor Activation
Before discussing the ion binding sites of kainate receptors in detail, it is instructive to

consider the overall structure and gating of glutamate receptors. Reviews on this broader topic are
available.13,14 Our current view of the glutamate receptor is defined by the structure of the GluA2 
tetramer (Fig. 1).15 This crystal structure is probably also an excellent model of the tertiary structure
of kainate receptors.16 The overall structure of GluA2 is also consistent with the long held idea 
that the four ligand binding domains each close on the agonist to open the channel. Generally,
the more ligand binding domains that are occupied,17 or the more profound the closure of each 
clamshell domain,18 the stronger the activation of the channel will be.

The channel pore of glutamate receptors conducts cations and is similar in architecture to 
other tetraspanning channels. A reentrant membrane loop forms a narrow constriction that selects
permeant ions. At the tip of this loop, the genomically-encoded Glutamine can be RNA-edited 
to Arginine and this editing exerts strong control over ions transiting the pore.19 In AMPA and
kainate receptors, if all subunits harbour glutamines, the pore is equally well permeated by all 
monovalent cations up to Cs and also passes Ca2�.20,21 This information is important in the context 
of allosteric modulation by other ions than sodium—in kainate receptors, monovalent ions have
effects on permeation that are minimal. When Arg residues are present, as in the majority of native 
AMPA receptors that contain the edited GluA2 subunit and in kainate receptors that contain
edited GluK1 or GluK2 subunits,22 the single channel conductance is decimated and anions such
as F– are permeant.21

Each subunit has a modular structure, but the protein sequence is convoluted, because the 
channel domain is interdigitated with the ancient bilobed ligand binding domain.23 A similar 
clamshell domain sits N-terminal to the glutamate binding core (amino terminal domain, ATD) 
and determines subtype-specific assembly.24 In neurons, these domains distal to the pore are also
likely to bind proteins of the extracellular matrix and so influence synaptic activity by controlling 
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receptor mobility.25,26 Local dimers, like those previously determined from the crystal packing of 
isolated ligand binding domains (LBDs) and ATDs of kainate receptors,27,28 are well preserved 
in the full-length GluA2 structure (see Fig. 1). The conservation of dimeric interactions between
the extracellular domains is particularly important when considering the binding sites of allosteric
monovalent ions, because these sites are integral structural components of the exquisitely-tuned 
dimer interaction between the ligand binding cores. The dimers form two “layers”. The upper ATD 
layer arranged as an extended N-shaped tetramer15,16,29 and the LBDs are more compactly packed
in a four-square arrangement immediately extracellular to the membrane. Disulfide crosslinks 
based on the GluA2 receptor antagonist-bound structure also form in GluK2 kainate receptors 
and between GluN2 NMDA subunits.15,16 Therefore, to a first approximation, the arrangement 
of the extracellular domains and their relation to the pore domain is the same in AMPA, NMDA 
and kainate receptors.

The iGluR ion channel has a tetrameric symmetry and the membrane probably has a stabilizing 
role at interfaces between subunits at this level. The intersubunit interactions between extracel-
lular domains have a spectrum of stabilities, ranging from the undetectably weak (the dimer-dimer 
interfaces), to the tight (the dimer interfaces between the ATDs of GluK2; dissociation constant 
about 15 �M; ref. 27). The affinity of the ligand binding core dimers that accumulated evidence
shows are also present in the active state, have intermediate dissociation constants (�5 mM). This 
association is strong enough to influence crystal packing in the right conditions but generally too
weak to detect between isolated binding sites in solution. This balance can be shifted towards
dimerization by targeted modifications and also by the binding of exogenous compounds. For 
the ATDs, the dimer dissociation constants are much lower and so these domains (when  dimerized) 

Figure 1. Glutamate receptor structure. A) The resting state crystal structure of the GluA2
tetramer (PDB code: 3KG2)15 is likely to be a good model for AMPA, kainate and NMDA-type 
glutamate receptors. The four subunits are coloured red, green, blue and yellow. The ex-
tracellular clamshell domains are loosely coupled by flexible linkers and form dimers with 
alternating partner subunits. B) A simplified cartoon schematic of the domain organization
in glutamate receptor, with colouring as in panel A. Multiple intersubunit contacts in the
extracellular doman control receptor function. When glutamate binds to the open clamshell
Ligand Binding Domains (LBDs) the clamshells close and drive opening of the membrane 
spanning ion channel pore. The dimer pairs of the LBDs form the binding sites for allosteric
ions in kainate receptors (Blue/Yellow and Red/Green subunits). A color version of this figure
is available at www.landesbioscience.com/curie.
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are thought to be much less dynamic than the ligand binding dimers. Deletion of the ATD is shown 
to leave AMPA and kainate activation unaffected,30,31 suggesting a nonessential role in channel 
gating. However, disulfide mutants in the ATD layer perturb gating upon oxidation,16 although 
the functional effect of restraint is more modest than that of crosslinking the ligand binding 
cores. In NMDA receptors, control of channel open probability by signaling from the ATDs is 
well-established.32,33 In both cases the ATD probably exerts control over the gating of the pore by 
altering the tetrameric packing of the LBD layer.

Ion Binding Sites in the Dimer Interface of Kainate Receptors
In the absence of structural data, insight to the nature of ligand binding sites can be obtained 

from site-directed mutagenesis (for example see ref. 34). Unfortunately, mutagenesis is a blunt 
tool when investigating the small, highly-charged cavities where ions bind. Protein side chains 
sample limited chemical space and backbone carbonyls (that are inaccessible to mutagenesis)
participate in coordination. To identify the location of the ion binding sites in kainate receptors 
and investigate their chemistry, structural information was essential. High-resolution structures of 
the GluK1 ligand binding core dimer revealed bound chloride ions on the two-fold dimer axis.31

This was unequivocally confirmed in bromide-soaked crystals of GluK1 (PDB code: 2OJT). In
these crystals, anomalous diffraction from a bound bromide ion (a functional surrogate of chlo-
ride) was observed at the anion site. The dimerization interface where chloride binds is formed 
between the backs of the upper lobes (D1) of the ligand binding domains. In AMPA receptors, 
this dimer interface was already well understood to harbor binding sites for exogenous positive
modulators of desensitization.35,36 Thus, it was logical to suspect that chloride bound at this site 
could modulate kainate receptor desensitization.

Sodium or chloride ions are not resolved at or near to the D1 sites in any of the monomeric 
crystal structures of GluK1 or GluK2 (e.g., PDB code 1S50).37 However, packing of different
crystal forms mandates that such observations are interpreted with extreme caution. Although
head-to-tail dimers of kainate receptors can be generated from some structures, this arrangement
is completely nonphysiological with relation to the full-length receptor. Furthermore, in some 
dimer structures, the cation sites are unexpectedly plugged by Lys side chains, again from LBDs
apposed in a nonphysiological contact, driven purely by crystal packing. This is the case in the 
GluK1-UBP302 complex (PDB 2F35).38 Crystallization experiments using kainic acid, in order
to sample a larger conformational space for crystal packing, succeeded in freeing the cation sites 
from blockade by Lysine and allowed occupancy of the cation site by a range of monovalent ions.39

These kainate-bound structures retained chloride ions bound in the same dimer site flanked by a 
pair of cations, at least in the presence of Li� and Na� ions (see below).

Anion sites were originally described in dimers of the GluK1 receptor ligand binding cores that 
were stabilized by antagonist molecules (Fig. 2). The domain 1 (D1) dimer interface was intact,
but this structure most closely represented a resting state. For Na and Cl ions to slow desensitiza-
tion, one would expect them to stabilize agonist-bound dimers in the same active conformation. 
Satisfyingly, the arrangement of chloride and sodium ions is well preserved in dimers of GluK1
to which the partial agonist kainate is bound39 and is likewise similar in a set of crystal structures
of wild-type and mutant GluK2 LBDs in the active dimer arrangement with glutamate bound40,41

(Fig. 3). Structural information about the ligand binding cores in the absence of agonist or antago-
nist molecules and the desensitized arrangement of the dimer interface, is not currently available 
for kainate receptors. Thus, the status of the ion binding sites in these states remains an open
question. The interactions that underlie chloride and sodium binding in the wild-type GluK2
dimer are shown in Figures 4 and 5.

Structural models of the ligand binding cores with ions bound made sense of some of the existing 
site-directed mutagenesis, insofar as disruption of residues that coordinate chloride generally sped 
desensitization42 presumably by increasing the chloride dissociation constant and thus allowing 
balancing charge to escape more quickly from the interface. The importance of the ions as structural 
components of the active interface underlines the common dimer arrangement of ligand binding 
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cores in all members of the superfamily. AMPA receptors are insensitive to the binding of ions, 
because they lack dimer interfacial sites to coordinate chloride and because typically Lys residues
plug the cation sites (discussed in ref. 39).

Additional ion sites on the extracellular side, outside the electric field, cannot currently be ruled
out but must be considerably weaker in influence than those in the D1 dimer interface. Removal 
of the ATD has no effect on ion modulation,31,39 suggesting that this region has no functionally 
significant binding sites for monovalent ions. Point mutants in the cation sites can completely 
remove sensitivity. This is not the case for chloride binding site mutants, which might be taken 
to imply additional chloride sites. But these results could also easily be due to coupling between
the cation and anion binding sites and the bluntness of site directed mutagenesis, rather than

Figure 2. Cartoon representations of state-dependent ion binding to kainate receptor
ligand-binding domain dimers. Monovalent ions are resolved in high-resolution crystal 
structures for antagonist, partial agonist and full agonist complexes (GluK1-UBP302, PDB:
2F35; GluK1-Kainate, PDB: 3C32 and GluK2-Glutamate, PDB: 3G3F). The ions are found
at the interface between the upper lobes, with chloride sandwiched between sodium ions
on the two-fold axis. No apo or desensitized structures are available for kainate receptors. 
Published candidate structures for AMPA receptors (GluA2 apo, PDB: 1FTO and GluA2
S729C desensitized dimer, PDB: 2I3W) suggest the D1 dimer interface is intact in the apo 
state and ruptured in the desensitized state. Here, the probable occupancy of the ion sites is
indicated accordingly (see text). Boxed inset shows a simplified scheme of kainate receptor
activation. Glutamate binding drives a conformational change that opens the channel. This is
quickly followed by dissociation of the active dimer, which relaxes in to the nonconducting
desensitized state. Thus ions that fail to stabilize the dimer interface speed desensitization. A
color version of this figure is available at www.landesbioscience.com/curie.
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Figure 3. Sodium and chloride ions stabilize the active LBD dimer. High-resolution crystal 
structures of the isolated ligand binding core of GluK2 in complex with glutamate (PDB code 
3G3F) reveal ion binding sites in the dimer interface. Chloride is bound in the same site in
antagonist and partial agonist complexes. One of the two dimers in the full-length tetrameric 
receptor is shown, from the side. Glutamate molecules bind in the jaws of the clamshells. 
Each subunit has a Na� binding site and these flank the single Cl– ion. The Na� and Cl– ions are
bound in the upper reaches of the interface between domains 1, stabilizing the active dimer 
conformation. A color version of this figure is available at www.landesbioscience.com/curie.

Figure 4. Coupling between ions in the dimer interface. Plan view of the active D1 dimer
interface, illustrating coupling between the sodium (gold spheres) and chloride ions (green
sphere). Twin salt bridges across the GluK2 D1 dimer interface between Arg 744 and Asp745 
form the roof of the anion site. A highly-ordered chain of 3 water molecules (red spheres
linked by black lines) links each sodium ion to the chloride ion bound at the two-fold axis. 
A parallel connection is formed by the carboxyl groups of Glu 493, which coordinate each
sodium ion and form salt-bridges across the dimer interface to Lys 500, whose �-amino groups
balance negative charge at the base of the anion site. A color version of this figure is available
at www.landesbioscience.com/curie.
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additional chloride sites. Negatively-charged side chains in the cation site can be exchanged for
isosteric polar side chains (Asp to Asn, for example), but the positively charged groups that form
the anion site have no polar analogues of similar size.

The Role of Ions in Kainate Receptor Gating
Before cloning of the separate glutamate receptor subtypes, experiments in native neurons

with nonselective agonists demonstrated that kainate-activated currents were reduced by chloride 
substitution.43 When the GluK2 subunit was initially cloned, electrophysiological experiments
to determine ion permeability revealed a similar inhibition of the current when Chloride was
replaced by methanesulfonate.44

Both these findings were consistent with the allosteric inhibition found later, but the conscious
identification of ion-sensitive activation of kainate receptors arose serendipitously from experi-
ments to measure recovery from desensitization of AMPA and kainate receptors.45 These experi-
ments were done with fast perfusion on cloned receptors and so had the twin advantages that the
molecular nature of the target was known and receptors were activated by glutamate with kinetics
similar to synaptic currents. To boost the small agonist-activated currents during the early phase
of recovery, experiments were performed with hypertonic saline. This manipulation revealed a 
kinetic  distinction between GluA1 and GluK2 receptors. The rate of recovery from desensitization 
was affected by the sodium chloride concentration, but only for GluK2. Subsequent experiments
revealed large differences in the size and kinetics of kainate receptor responses to glutamate in
the presence of different ionic species.46 Strikingly, both cations and anions are able to exert very 
strong effects on the desensitization rate for GluK2, but AMPA receptors are largely spared. This 
phenomenon is illustrated in Figure 6 for glutamate-activated currents.

These pioneering experiments on GluA1 and GluK2 immediately excluded several mechanisms 
of modulation. Firstly, no effect was observed from intracellular ion substitutions and the inhibition
from ions other than sodium and chloride was voltage-insensitive. So, even though all monova-
lent cations up to Cs� can permeate the pore, permeating ions are not responsible for changes in 
gating. These studies pointed to binding sites for ions in the extracellular domains, or the linkers
between the channel and the binding sites, where for example noncompetitive antagonists can 
bind.47 Another important observation was that the slowing of the decay in high-ionic strength
solutions was broadly in opposition to competitive antagonism by ions at the ligand binding site.

Chimeras formed from GluA3 and GluK2 receptors were employed to identify an amino 
acid in the kainate receptor ligand binding core (Met 739 in GluK2) where Cs� inhibition could 
be effectively nullified by substitution with the Lysine residue found in this position in AMPA 
receptors.48 It is now clear, that at least in GluA2, this Lysine can plug the cation site. A second 
residue, Asp 497, invariant between kainate receptors and the relatively-insensitive AMPA receptors
could also be truncated to Ala in order to remove Cs� inhibition. Further interpretation was also 
hampered by the failure of the converse mutation at the Met site to induce cation sensitivity in 
GluA3. This mutant was only functional in cyclothiazide, well-characterized as a blocker of AMPA
receptor desensitization. Given what is now known about the mechanism of ion  modulation,
even if this mutant were ion-sensitive, it is probable that cyclothiazide would have obscured ion 
modulation, by preventing dimer dissociation.

Bound Ions Control the Biophysical Properties of Kainate Receptors
How do ions alter kainate receptor function? Ion substitutions that inhibit maximum currents 

also speed desensitization. Measurements of glutamate activated currents in a range of sodium and
chloride concentrations and at different ion strengths reveal coupled modulation, with reciprocal 
control of affinity. Sodium binding makes chloride binding tighter, but in physiological salt, the re-
ceptor is probably not fully bound by either ion. The affinity for sodium is weaker than 100 mM and 
the site is half bound by Cl– at a concentration of 90 mM.39 How does receptor activity then increase 
or decrease in different ionic conditions? Naively, one might expect that the conductance of the ion yy
channel, with its own cation binding sites, will be strongly perturbed. But manipulations that both
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increase and decrease receptor activity have remarkably little effect on the weighted single channel 
conductance31,39 and chloride is barely permeant. Noise analysis of macroscopic currents instead
shows that the main effects of allosteric ions are to alter peak open probability and the number of 
active receptors. A reduction in the number of active receptors when chloride is replaced by fluoride 
might reflect a greater proportion of receptors with the D1 interface disrupted at rest and therefore 
not competent for activation by glutamate. Spectroscopic measurements and state-dependent cross-
linking of AMPA channels suggest that the D1 dimer interface can dissociate at rest, consistent with 
this idea.49,50 In line with the nonsaturation of the ion binding sites in physiological conditions, the
number of active receptors can also be increased, by raising NaCl concentration. In the context of 
the full-length receptor, ion-dependent changes in open probability might arise from rigid body 
rearrangements of the ligand binding cores. The ion binding sites are located at the very top of the 
D1 interface (see Fig. 3) and this might cause the bound LBDs to act on the ion channel as 50 Å-long 

g g g g

levers. For example, in the case of strong inhibition by fluoride,46 the braced dimer arrangement might 
relax, in order to accommodate the extreme electrostatic requirements of fluoride ions. If domains 
1 move marginally apart, domains 2 would tend to close together; that is, they would approach the
resting state configuration, but without a change in agonist-induced domain closure. Thus the kainate 
receptor ion channel would be activated less. In support of this model, crystal structures with cations 
bound in the presence of chloride had tighter dimer arrangement than antagonist-bound chloride 
complexes.39 However, in the same study, the dimer arrangement with less efficacious cations bound
was shown to be the same as that in sodium. Instead of a change in tilt angles between LBDs, bound 

Figure 6. Kainate receptor currents are strongly sensitive to ions. A) Outside-out patches
containing glutamate receptors expressed in HEK 293 cells were subjected to fast solution
exchange. Wild-type kainate receptors activated by a brief pulse of 10 mM Glutamate are
strongly inhibited when chloride is replaced by either fluoride or methanesulfonate on a 
sodium background. When chloride is substituted, the desensitization rate is accelerated
nearly 10-fold. Salt concentration was 150 mM in each case. B) The same ion exchanges have 
no effect on wild-type AMPA receptors. C) Strong inhibition of kainate receptor currents and
speeding of desensitization also occurs when sodium is substituted by Cesium or Rubidium
on a chloride background. D) Cation exchanges have minimal effects on wild-type AMPA 
receptor currents, even though the permeant ion is swapped. Modified from reference 39.
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chloride became progressively disordered in Rb� and Cs� complexes. However, in these cation
soaking experiments, it is possible that crystal contacts overcame weak changes in the dimer tilt angles
accompanying binding of less efficacious cations, which would otherwise be translated into reduced
activation in the full length channel.

Ions and Desensitization
Upon binding of glutamate and the subsequent complex transition to the open state, the D1 

dimer interface is likely to experience both perpendicular strain and torsion. It is this force that is 
thought to break the D1 dimer interface, leading to desensitization. To date, no desensitized state 
structure has been determined for the kainate receptor. We rely on analogy with the Cys-linked 
 dimer of GluA2 ligand binding cores, which has structural and pharmacological properties 
 suggesting a glutamate-bound, inactive state.50,51 In this structure, the lower lobes (D2) of the ligand 
binding cores have moved together, consistent with a closed channel, and the upper lobes have 
dissociated. If the conformational changes are similar in the kainate receptor, ion binding sites in 
the interface between the upper lobes of the LBD are presumably disrupted upon desensitization
(Fig. 2). Whilst such a structure for kainate receptors might give insight to the disruption of the
ion binding sites when the D1 interface is broken, several pieces of evidence suggest that these
ideas apply to the desensitized kainate receptor. Most importantly, entry to desensitization is a 
within-dimer phenomenon.52 Although the final, very stable, kainate receptor desensitized state 
may involve tetramer rearrangements, this state cannot be accessed by crosslinked dimers and 
these covalent dimers exhibit no ion sensitivity.31,39 These dimers can be activated normally in 
nominally ‘ion-free’ solutions that contain only sucrose and buffer molecules, titrated to pH 7.4. 
Mutations in the D1 interface and ion exchanges also have very little impact on recovery from 
desensitization—at most an order of magnitude less than the effects on entry to desensitization.31,39

The dimer interface of AMPA receptors harbors a site for a very potent mutation that effectively 
blocks dimer dissociation (L-Y mutation).53 Insertion of a Tyrosine at position 483 in GluA2 (or
at equivalent positions in other AMPA receptors) increases dimer affinity �105-fold.36 This mu-
tation was found from chimeras of AMPA and kainate receptors, although in kainate receptors, 
the presence of Tyrosine does not block desensitization.53 The reason, at least in part, is that the
mutation stabilizes the dimer because Tyrosine docks into a slot in the opposing AMPA receptor 
subunit and this slot is absent in kainate receptors. Some considerable effort has focused upon 
engineering the dimer interface to gain a nondesensitizing kainate receptor.40,52,54 Results in this 
respect have in general been disappointing, because the very stable desensitized state of GluK245

acts as a sink. In the best case, stabilizing the active dimer through the HERLK quintuple mutant 
slows entry to desensitization nearly 200-fold, but the very slow recovery of wild-type GluK2
means that steady-state desensitization remains substantial (81%).

Surprising insight into the charge balance of the anion binding sites is given by a recent report
of an entirely nondesensitizing kainate receptor, where 4 net positive charges were added to the lid 
of the anion binding site.55 Aspartate residues that participate in intersubunit salt bridges31 were
swapped for Arginines. In this case, the dimer interface has a low dissociation constant (about 1�M
from AUC measurements), although dimerization of the LBDs is not as tight as for the L483Y 
mutation in GluA2 (dissociation constant 30 nM).36 Unfortunately, the D745K mutant could 
not be crystallized and so the direct influence of chloride on dimerization cannot be taken for 
granted. If chloride is bound as an essential part of the D1 dimer interface in the D745K mutant,
this binding should be much tighter than in wild-type GluK2 (90 mM in physiological salt;).31

In the full-length D745K mutant, anion and cation sensitivity remains; however, the possibility 
of very tightly bound contaminant anions cannot be discounted. Certainly, a divalent anion 
might be expected, from first principles, to provide the appropriate charge balance. However, 
MD simulations of the D1 dimer interface indicate that a strong electrostatic barrier opposes
anion binding when the interface is intact.56 Additional positive charge in the lid of the anion site 
would tend to remove this barrier, allowing chloride to bind easily. This situation is reminiscent 
of the adventitious divalent ion binding site in the GluK2 M739D mutant. Almost all mutants
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that alter ion sensitivity also speed kainate receptor desensitization. The M739D mutant removes 
cation sensitivity but slows desensitization.57 Here, contaminant divalent ions appear to bind to
the cation site with much higher affinity than sodium and other monovalent ions. Micromolar 
concentrations of calcium and magnesium slow desensitization effectively, even in the complete 
absence of small monovalent cations.58 Unfortunately, the GluR5 I739D ligand binding core is 
not expressed as soluble protein and so cannot be subjected to biophysical or structural studies to
confirm the presence of bound divalent ions.

The mechanisms of increased dimer interface stabilization by the I739D-Ca and D745K  mutants
are perhaps related. In both cases, extra charged groups are available to in ion coordination, exceed-
ing the typical count of charged residues in monovalent ion sites.9 In the case of the pair of basic 
side chains (Arg744 in GluK2) in the lid of the anion site, crystal structures and molecular dynamic 
simulations suggest mobility of these side chains, or entropy. Additional positive charge here may 
permit the chloride ion to lock the side chains in place more securely, thus restraining the dimer ef-
fectively by reducing the overall mobility of the interface. Replacing Met 739 with the charged Asp 
or Glu side chains might equally make the cap of the cation site less mobile when divalent cations
are bound, reducing the off-rate compared with sodium and hence producing a higher affinity site.

Physical Basis of Ion Modulation
Despite the setbacks in rational engineering of the kainate receptor dimer interface, mutants

with increased dimer stability have been put to good service. The HERLK sites are distant enough
from the ion binding sites not to disrupt them and thus ion modulation is identical in the HERLK 
mutant over the entire range of desensitization rates. This mutant forms a dimer in solution that
is stable enough to permit accurate physical determination of the dimer dissociation constant by 
analytical ultracentrifugation (AUC). Upon this background, the stabilization of the interface by 
ion binding was measured for the first time.41 Saturating the ion binding sites was demonstrated to 
have a similarly strong effect on dimer stability as the five mutations in the interface. The influence 
of sodium and chloride ions was apparently similar and dimer affinity could also be substantially 
reduced by replacing sodium and chloride with ions that are negligibly active in functional experi-
ments on wild-type channels (CsMeSO3). The same approach of engineering a more stable interface 
was extended to the dimer of �2 ligand binding domains, which is stabilized by calcium.59,60 In 
this case, physiologically relevant calcium concentrations were able to increase the dimer stabil-
ity, consistent with functional measurements. Thus a common mechanism of allosteric control 
of glutamate receptors by biological ions, through stabilization of the dimer form, was revealed.

Physical measurements of ion dependent dimer stability and others in this line of study, are 
clouded by the impossibility of working in the presence of only sodium (in the absence of anions) or 
chloride (in the absence of cations). The ion binding sites are exposed to the surface of the protein 
and hence have inherent flexibility, reducing their selectivity by allowing different coordination
geometries. Thus, almost all ions retain some activity. The similarity of the functional effects of 
cation and anion substitutions relates to their common site of action, which gives rise to inevitable
coupling between the sites. The close proximity of the sites and the highly-charged surfaces of the 
binding cavities suggests that a true separation of ion dependent effects between the cation and
anion sites may not be achievable.

The Dynamics of Ions in the Dimer Interface
How best can we relate the promotion of association into dimer forms by ions and static 

high-resolution structural models, to the dynamics of receptor function? Although electrostatic
principles may be satisfied in these models, crystal structures cannot yield even simple information
about the order or mechanism of ion binding. How do ions enter their sites? The sites are closely 
apposed and functional measurements clearly indicate coupling. The systems of salt bridges and
ordered water molecules that connect the anion and cation sites (Fig. 4) are unlikely to be stable in 
the absence of one or other of the bound ionic species. Paradoxically, one species might facilitate 
the binding of the other, although the dimer interface might not form properly without both 
sodium and chloride ions bound. Therefore, it is a simplification to ignore partly bound states. 
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Even though such states are undetectable in experiments, they must exist. For a complete picture, 
one should include ‘encounter complexes’ involving half-sites and subsequent ‘induced fit’.61 What 
insights are available from simulations? Unfortunately, one cannot yet resolve the large motions 
of dimer dissociation and recovery computationally, not least because a structure of the necessary 
target desensitized dimer state is not yet available for kainate receptors.

For residues that form the cation binding site, molecular dynamics simulations reveal that
spatial fluctuations of side chains are quite small when the ion binding sites are fully occupied.39

These motions increase when either Na or Cl ions are absent from the dimer binding sites. When
all binding sites in the dimer assembly are vacant, the random side chain movements are larger
still. The dimer is stabilized by intermolecular salt bridges that line the base of the anion site, so the 
consequences of ion-dependent perturbations are obvious for dimer stability. The consequence of 
greater disorder is faster dissociation of the LBD dimer, a process that accompanies desensitization. 
The lid of the anion site undergoes pronounced geometric perturbations, even in the presence of 
bound chloride. The two salt bridges (between Arg 744 and Asp 745) that can form here only pres-
ent in some crystal structures. Instead, one or both of the Arg 744 side chains can rotate upwards 
and open an entry route for Chloride. In the highest resolution dimer structures (such as PDB
3G3F, the GluK2-Glutamate complex),40 two conformations were detected for these side chains.
Dynamic motions of these Arginine residues are also observed in simulations.

Further information about selectivity of the cation site comes from free-energy calculations.56

The core of the cation site is highly charged and this is responsible for the selection of sodium over 
larger ions. Lithium, which in electrophysiological experiments strongly resembles sodium, is pre-
dicted to bind tightest of all. However, block of desensitization is necessarily a more complex process f
than the free energy of ion binding, involving conformational changes that are beyond the scope 
of these computational experiments. These experiments also tentatively suggested a mechanism for 
cation facilitation of chloride binding. In this model, bound cations partially neutralize the nega-
tive electric field at the top of the anion site. In the absence of cations this barrier is high enough 
to render chloride binding to the intact D1 interface quite unlikely. However, how ions might 
approach their sites in partly or fully dissociated D1 interface may differ considerably, not least 
because of the dramatic changes in solvation that must occur when the interface becomes exposed.

Allosteric Modulation of Other Ion Channel Receptors  
by Monovalent Ions
AMPA-Type Glutamate Receptors

Some reports describe sensitivity of AMPA receptor currents to monovalent ions46 but no
kinetic effects are seen. GluA2 channels seem to be broadly insensitive39 and GluA1 channels 
activate almost normally in the absence of all ions,62 consistent with quite minor ion-dependent
changes in activity compared to kainate receptors.

NMDA-Type Glutamate Receptors
Several studies point towards complex allosteric effects mediated by permeant cations in 

NMDA  receptors. External potassium reduced the frequency and the apparent duration of 
NMDA receptor openings, whilst causing a profound inhibition of the macroscopic current.63

A separate study suggests that permeant sodium ions reduce the lifetime of the glutamate bound
NMDA receptor complex.64 These studies appear inconsistent, but the methods involved were
quite different and so the results cannot be directly compared. Further unusual behaviour was
noted in a pore mutant of the NR1 subunit, wherein coupling of permeant ions to channel gating 
was detected in bi-ionic conditions.65 The amplitude of the first opening in a group of openings
tended to be biased by the internal permeant ion. This suggests that permeant ions can influence
gating conformational changes and, perhaps secondarily, ligand affinity. Bound sodium ions were
detected in the crystal structure of the ATD of NMDA NR2B. Mutagenesis at these sites, however,
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failed to demonstrate compelling effects on NMDA receptor currents,66 possibly because the sites
are too low in affinity to be occupied in physiological salt.

GABA and Glycine Receptors
High internal chloride slows the deactivation decay of both native and recombinant glycine 

receptors.67 The effect is also clearly detected in single channel currents and can be entirely ascribed
to a slowing of the channel shutting rate. Elevating internal chloride above normal baseline levels 
can also slow GABAergic synaptic currents.68 Such effects may partly underlie the speeding of 
inhibitory currents during early postnatal development, as intracellular chloride is reduced by 
increased expression of cotransporters.69 Understanding the molecular mechanisms of this ki-
netic effect is complicated by the voltage sensitivity of synaptic currents, because chloride is the 
major permeant ion.70 The quantitative analysis of glycine receptors exceeds what is possible with
glutamate receptors, mainly because the single channel currents of glycine receptors are much 
better characterized.71 Despite this advantage, the molecular details of chloride modulation are 
uncertain. The location of the binding site or sites is a completely open question. In the absence 
of structural information, localizing ion binding sites might be difficult. The voltage-dependence 
of chloride modulation suggests that, to some extent, either chloride ions within the electric field
can stabilize the open state, or ions that are coupled electrostatically or sterically to ions within 
the field can do so. Eliminating putative chloride binding sites proximal to the electric field is a 
possible route to localizing the sites, but will by definition hamper functional measurements.

Nicotinic Receptors
Monovalent cations may bind competitively at the acetylcholine binding site in muscle-type nico-

tinic receptors.72,73 Larger ions (Cs�) bind more tightly than Na�, but half-maximal concentrations for 
inhibition (�100 mM) are similar to those estimated for the kainate receptor. Of a set of tested muta-
tions, potassium competition was only affected by mutants at position 184 of the epsilon subunit,74

which either neutralized negative charge (E184Q) or replaced it with a positive charge (E184K). 
Mutations that altered potassium competition had only very limited effects on ACh dissociation 
constants. Thus, bound cations may be coupled electrostatically to the charged groups of the ACh 
molecule, hindering agonist binding at the epsilon-alpha subunit interface via electrostatic repulsion..

Trimeric Ion Channel Receptors (ASIC, P2X)
Recombinant P2X7 channels show strong modulation by cations and when Na� is replaced, 

open probability increases, probably because the single channel open time is extended.75 A definite 
physiological role for this modulation is seen in the airway cilia, which express P2X receptors.76

According to these studies, the presence of sodium should curtail channel activation. The  structure 
of the P2X4 receptor did not reveal any sites for monovalent cation binding.77 However, these
crystallization experiments were not designed to detect bound monovalent ions and the resolution 
of the structure might have been too low to identify sodium ions reliably. Recently, a structural-
ly-related trimeric ligand-gated channel, the acid-sensitive ion channel (ASIC) was shown to bind 
chloride ions at three symmetrically related sites in the extracellular domain. As in kainate receptors, 
positively charged residues that coordinate bound chlorides project into subunit interfaces and 
these residues are conserved across evolution.78 Positive charges are not conserved in degenerin
or ENaC sodium channels, suggesting a specific role for chloride in ASIC function or assembly.

Voltage-Gated Channels
L-type calcium channels are inhibited by reductions in extracellular chloride. Counter-intuitively, 

this sensitivity appears to arise from molecular features at the intracellular side of the channel.79

Potassium channels may also be inhibited by intracellular chloride, but only upon disruption of 
the cytoskeleton.80 Because intracellular chloride is more likely to vary in normal and disease states 
than extracellular chloride, these mechanisms offer the opportunity for regulation of channel 
activity, in addition to crosstalk or coupling to chloride channel activity.
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Physiological Situation with Regard to Ions
The question of the physiological role of ion modulation of kainate receptors remains entirely 

unexplored. There is every possibility that kainate receptors exploit the solemn homeostasis of 
extracellular sodium and chloride and use these ions as structural features. Certainly, the sodium 
and chloride binding sites have the right affinity to be modulated by even small changes in the ex-
ternal salt concentration. At least one possibility can be immediately ruled out. Changes in osmotic
strength alone do not alter kainate receptor kinetics,39 so kainate receptors are not osmosensors.

Native Kainate Receptors
Regrettably, there are precious few examples where the kinetics of native kainate receptors 

have been carefully measured. Cultured hippocampal cells81 and retinal cells82,83 are two cases. 
The  desensitization kinetics of receptors in these two cases is similar to that of recombinant recep-
tors composed of the GluK2 subunit. These native channels desensitize profoundly and rapidly and 
recover very slowly, in contrast to the rapid recovery of AMPA receptors. The kainate receptors 
expressed by hippocampal cells in culture exhibit similar cation sensitivity to recombinant chan-
nels.48 Thus, it seems highly likely that native channels are also ion-sensitive.

A complication is that the ion sensitivity of recombinant channels has almost exclusively 
been tested in homomeric receptors. Heteromeric channels incorporating the GluK5 subunit 
are selectively activated by S-AMPA and these channels demonstrate anion sensitivity similar
to homomeric channels in recombinant expression.31 This is somewhat surprising, because the 
GluK5 ligand binding core harbors a nonconservative substitution in the anion binding site
(Thr748 is instead Asp in GluK5). This variation introduces a negative charge and in a mixed
dimer, one might expect that the requirement for chloride might be reduced. However, charge
from neighbouring amino acids may compensate in an unforeseen fashion. Such subtleties may 
be elucidated by heterodimer crystal structures of the kainate receptor ligand binding cores, if 
they can be obtained.

Since the majority of experiments to assess ion-dependent gating were undertaken, the kain-
ate receptor family has adopted an auxiliary subunit called NETO2.84 Coexpression of NETO2
with GluK2 slows desensitization and deactivation kinetics and speeds recovery. Are kainate
receptors in complex with accessory subunits still as sensitive to ions? This question is completely 
open, but the recently published GluA2 crystal structure and studies of AMPA receptor-TARP 
complexes provide some insight to the relative positioning of auxiliary subunits in native com-
plexes. The comparatively late assembly (in the biosynthetic pathway) and rapid dissociation of 
AMPA-TARP complexes and the substoichiometric ratio of auxiliary proteins to GluR subunits
in native complexes85,86 are consistent with transient associations between GluRs and accessory 
proteins that occur at the periphery of the channel. In this case, the dimer arrangement of ligand
binding domains (and thus the ion binding sites) would be expected to remain largely intact in
receptors that complex with NETO2.

Kainate Receptor Trafficking
Have kainate receptors evolved the use of ions as a charge and steric balance in their LBD dimer 

interfaces, simply because they are so reliably supplied in all brain regions? Such a contention applies 
only to mature kainate receptors in the cell membrane. During their biosynthesis, the extracellular
domains of glutamate receptors are exposed to the ER lumen, which contains high calcium and
presumably reduced sodium and chloride levels compared to the extracellular space. Mutations in 
glutamate receptors that disrupt desensitization, or that weaken ligand binding, have deleterious
effects on receptor trafficking both for AMPA receptors87,88 and kainate receptors.42,89,90 It is conceiv-
able that dimer dissociation, under the action of ambient glutamate in the ER lumen, is important
for receptor export. In this way, low NaCl in the ER would facilitate LBD dimer dissociation for 
receptor assembly. The desensitization of kainate receptors is fairly profound, independent of the
ionic conditions that the receptor is exposed to. Therefore, such a process can only be significant 
if complete inactivity of kainate receptors is essential or advantageous for ER export.
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Coupling of Repetitive Activity to Kainate Receptor Availability
Following repetitive stimulation, sodium influx depletes sodium in the extracellular space. This

effect might be particularly pronounced in tight spaces such as the synaptic cleft where diffusion 
of charged molecules is influenced by electrostatics.91 This effect is transient but occurs because the 
NaK-ATPase pumps out sodium quite slowly compared to the rate of channel-mediated  influx. 
The lag of the ATPase creates a window, during which potassium, which has a lower potency 
for stabilizing the kainate receptor dimer interface, replaces a proportion of the sodium usually 
found at rest in the extracellular space. Chloride is essentially unchanged. Paternain and colleagues
 suggested external sodium reductions during repetitive neuronal activity as a physiological role
for ion dependent gating of kainate receptors.48

In reduced sodium (and increased potassium) the allosteric cation sites of a given kainate 
receptor have an increased likelihood to become vacant (Fig. 7). In this case, we would expect
that chloride site could also become vacant due to the coupled reduction in affinity.39 Because
the dimer interface would be destabilized, binding of glutamate during this window would 
cause immediate desensitization, rather than activation. Because the recovery of recombinant 
and  native kainate receptors from desensitization is very slow (recovery time constants between 
1 and 5 s),45,81,83 this ion-dependent increase in desensitization might persist and far outlast 
the recovery of the Na level. Thus a kind of coincidence detection could operate, generating 
a comparatively long lasting record of repetitive activity through the damping of kainate

Figure 7. Hypothetical sensing of small fluctuations in external cation concentrations by
Kainate receptors. Repetitive presynaptic spiking drives release of glutamate and is accom-
panied by small shifts in external ion concentrations. These shifts could be accentuated by
compact geometry in synaptic and perisynaptic regions. Reduction of external sodium ([Na]o)
and increase of external potassium ([K]o) preferentially desensitizes kainate receptors. Slow
recovery of kainate receptors from dimer dissociated desensitized states damps subsequent
activity. Thus, the kainate receptor EPSC could encode a long-lasting record of strong activity, 
which could far outlast the rapid re-equilibration of the external ions. Concentrations and
timescale are purely illustrative.
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receptor activity. Only at a fraction of receptors would be subject to prolonged ion-dependent
desensitization, but such tuning could be especially important in downstream modulation of 
neurotransmitter release, a clear role for kainate receptors.92,93 Kainate receptors at the Mossy 
Fiber terminal modulate spike timing precision94 and this is another role where small changes
in charge transfer driven by ion sensitive desensitization could contribute to information
processing on a longer temporal scale. But it remains to be demonstrated that such an idea 
occurs in practice.

GluRs and Salt Concentration Signaling
Although sodium and chloride levels in the cerebral spinal fluid are under tight temporal

control in the CNS, sensing of salt concentrations in plasma does occur in the brain. The cir-
cumventricular organs are exposed to serum and metabolites because in this part of the brain, the 
blood-brain barrier is perforated. Thus kainate receptors in the hypothalamus and subfornical 
organ could be exposed to larger fluctuations in salt concentrations than those in the rest of 
the brain. A number of ion channels and transporters expressed here participate in salt sensing 
and control of blood pressure through hormone release.95,96 NaX channels are expressed in the
subfornical organ and are activated by sodium,97,98 but are found exclusively in glia and not in 
neurons.99 Interestingly, NaX deficient mice retain the ability to release vasopressin upon dehy-
dration.100 In explants from the hypothalamo-neurohypophyseal system, the action of selective 
antagonists implicates NMDA receptors in this vasopressin release.101 AMPA and kainate recep-
tors might also be involved,102 although effects on hormone release are more pronounced with 
an AMPA selective positive modulator (cyclothiazide) than for a blocker of kainate receptor
desensitization (Concanavalin A).

Pharmacological studies also provide evidence that non NMDA receptors are activated in
neurons of the subfornical organ leading to release of hormones that control sodium appetite.103

Kainate receptors expressed in these brain regions have been implicated in hormone secretion
which could relate to hypertension,104 but stimulation with SYM 2081, a selective agonist, 
did not lead to hormone secretion in explants from hypothalamus and neighbouring brain
regions.105 As in other parts of the brain, glutamate is a major neurotransmitter in this region
and thus it is hard to discriminate pharmacological effects on cell-to-cell communication from
more specialized signaling roles. The recent advent of selective kainate receptor antagonists 
may enable a re-evaluation of any possible role for kainate receptors in the central sensing or 
control of circulatory sodium.

GluRs and Taste Transduction
Glutamate is one of a group of molecules that are sensed as ‘Umami’. Although early experi-

ments suggested that metabotropic glutamate receptors are the main transducers of this taste 
modality,106 the functional repertoire of Umami sensors is probably far wider.107 Functional
kainate receptors are expressed in taste buds, as revealed by cobalt staining that is stimulated by 
the selective kainate receptor agonist SYM 2081.108 Immunostaining shows expression of both 
GluK2 and GluK4 subunits, but not AMPA receptors. Some taste buds also express NMDA
receptors109 and other data suggests expression of the GluK1 subunit is selectively expressed in
Type II and Type II taste cells. The GluK5 subunit is also detected in lingual tissue,106 suggesting 
a specific and targeted use of a repertoire of kainate receptors in the tongue.

The cellular localization of kainate receptors in taste buds does not suggest a direct sensing 
role for dietary glutamate. An intriguing prospect, currently unexplored, is that kainate recep-
tors in taste buds might also be exposed to transients of high dietary salt. Sodium and chloride
can penetrate the taste bud through cell-cell apical junctions and this would enable both ions 
to approach kainate receptors at basally-located signaling sites. The threshold for detection of 
salt taste is in the range 5 mM, which is consistent with the threshold for NaCl binding and 
modulation of kainate receptors. Kainate receptors mediating cell-to-cell communication may 
be involved, if not in detection of salt, then perhaps in modulation of other taste modalities by 
salt.110 Several channels have been proposed to sense salt but all have fallen short (reviewed by 
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Roper, ref. 111). TRPV1 knockout mice retain the ability to taste salt and amiloride, which 
inhibits the ENaC channel, is ineffective in modulating human salt taste, despite altering salt 
perception in mice.112

Conclusion
A battery of biophysical and biochemical data show that the unusual sensitivity of kainate

receptors to monovalent ions derives from specific binding sites which are closely apposed in
a key functional intersubunit interface. These sites are exposed to the extracellular space, well
away from the membrane pore and are selective for sodium and chloride. The absence of these 
ions, either because the sites are not saturated by physiological salt, or because ions have been 
removed, renders kainate receptors nonfunctional. The physiological implications of this strong 
control of channel activity by ions, which are themselves under strong homeostatic regulation, 
remain unclear and may be limited to a purely physicochemical adaptation of intersubunit 
interactions. Given the apparent critical importance of glutamate receptor desensitization in 
vivo,113 the strong desensitization of kainate receptors, facilitated by the weak binding of ions
in this critical interface, might be more important than previously anticipated.
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Abstract

Kainate receptors (KAR) form a class of glutamate receptors that have been implicated
in epilepsy, stroke, Alzheimer’s and neuropathic pain.1 KAR subtypes are known to be 
segregated to specific locations within neurons and play significant roles in synaptic

transmission and plasticity.2 Increasing evidence suggests a the role for ubiqutination in regu-
lating the number of synaptic neurotransmitter receptors.3-5 The ubiquitin pathway consists of 
activation (E1), conjugation (E2) and ligation (E3). Cullins form the largest family of E3 ligase
complexes. We have recently shown that the BTB/Kelch domain proteins, actinfilin and mayven, 
bind both Cul3 and specific KAR subtypes (GluR6 and GluR5-2b) to target these KARs for
ubiquitination and degradation.5 In this chapter we will review how these interactions occur, 
what they mean for the stability of KARs and their associated proteins and how, in turn, they 
may affect synaptic functions in the central nervous system.

Introduction
KARs are found pre and postsynaptically and have been implicated in the etiology of 

epilepsy, as well as stroke-induced neurodegeneration and Huntington’s disease.6,7 Epilepsy 
occurs when inhibitory adaptation is unable to prevent excess neural activity. The developing 
cortex is particularly vulnerable and a number of syndromes are associated with epilepsy at an
early age.8 Postsynaptic injection of kainic acid causes epileptiform discharges and the death of 
hippocampal CA3 pyramidal neurons.9,10 Moreover, KARs are subject to developmental and
activity-dependent regulation at thalamocortical synapses and are likely to play an important
role in the development of hippocampal synaptic circuits.11-13 KARs act as excitatory gluta-
mate-gated ion channels: KAR-mediated excitatory postsynaptic currents were first described 
at mossy fiber-CA3 pyramidal cell synapses,14,15 while presynaptically, activation of KARs on 
inhibitory interneurons decreases GABA release which acts to enhance electrical activity, sug-
gesting that presynaptic KARs may be epileptigeneic.16 Notably, the GluR6 subtype of KARs
can also increase neuronal excitability via metabotropic regulation of potassium channels.17 To
treat pathological conditions it will be crucial to understand the molecular mechanisms that
determine localization of specific KARs to specific membrane domains.

Within KARs, there is a considerable diversity of properties, including unitary channel 
conductance, Ca2� permeability and rectification, which arise from differences in receptor 
subunit composition and RNA editing of GluR5 and GluR6.18-20 KARs are tetramers that can 
be assembled from any one of five receptor subunits encoded by two separate gene families. 



116 Kainate Receptors

The first of these includes receptor subunits GluR5, -6 and -7. Each of these subunits can form 
functional homomeric ion channels or heteromeric mixtures that appear to assemble promiscu-
ously with any available subunit GluR5, -6 or -7.21-23 Alternative splicing of GluR5 yields two
isoforms:21 GluR5-1 and GluR5-2, which has three additional splice variants possessing distinct 
C-terminal sequences. The shortest variant is designated GluR5-2a, while additional exons
located in the C-terminal region give rise to GluR5-2b and GluR5-2c; these variants share a 
C-terminal type 1 PDZ-binding domain that is absent in GluR5-2a.18 The second gene family 
consists of KA1 and KA2 subunits that are functional only when expressed as heteromeric as-
semblies with GluR5, -6 or -7.23,24

Alternative splicing and RNA editing of ionotropic glutamate receptors play important roles 
in receptor assembly and trafficking.25-27 Regulatory steps in the assembly of KA2-containing 
KARs are governed by at least two trafficking signals located in the cytoplasmic terminal (C-tail) 
of the KA2 subunit. The first is an arginine-rich motif which operates as an endoplasmic re-
ticulum (ER) retention signal preventing the insertion of homomeric KA2 receptors into the 
plasma membrane.28 The second is a di-leucine motif which mediates the internalization and 
subsequent relocalization of surface-expressed KA2 subunits.28 Similarly, GluR5-2b carries
a positively charged amino acid motif that acts as a novel ER retention signal.29 In contrast, 
GluR6, which is highly expressed at the plasma membrane, has a forward trafficking signal in
its C-terminal domain critical for ER exit.30,31

These differences in targeting appear to convey specific roles to specific KAR subtypes: In
GluR6 knockout mice, mossy fiber long-term potentiation (LTP) was reduced, whereas GluR5
knockout mice exhibited normal LTP.32 The activation of KARs also modulates neurotrans-
mitter release from a number of hippocampal synapses, including GABA release at inhibitory 
terminals that synapse onto CA1 pyramidal cells.16,33-35 In hippocampal slices, kainate depresses 
GABA-mediated synaptic inhibition and increases the firing rate of interneurons. These effects 
are explained by two populations of KARs in CA1 interneurons: GluR6/KA2 located in the 
somatodendritic compartment and GluR5-GluR6 or GluR5-KA2 at presynaptic terminals.35

It is anticipated that this segregation of KARs will allow us to design drugs that specifically 
target each function.

Recent evidence suggests that the ubiquitin-proteasome pathway and synaptic activity affects
the composition of postsynaptic proteins.36-38 The addition of ubiquitin to proteins leads to a variety 
of fates for the tagged proteins, one of which is degradation by the 26S proteasome.39 A family of 
proteins called E3 ligases determines the specificity of ubiquitin addition. E3 ligases frequently 
consist of a complex of proteins that act together for specific substrate binding and ubiquitin
ligation activity. Two major families of E3 ligases have been described: the HECT-domain fam-
ily that is defined by its homology to the C-terminus of E6-associated protein (E6AP) and the 
RING family that contains either an intrinsic RING-finger domain or an associated RING-finger
protein subunit essential for ubiquitin ligase activity.40 One of the best-characterized subset of the
RING E3 ligases is the Skp1/Cul1/F-box protein complex (SCF), in which Cul1 binds an adaptor
molecule, Skp1.41,42 Skp1 associates with an F-box protein that in turn binds a phosphorylated
substrate. The Cul1 component of the SCF E3 ligase belongs to an evolutionarily conserved family 
of proteins known as cullins, of which there are six closely related members (Cul1, 2, 3, 4A, 4B
and 5) and three distant relatives (Cul7, Parc and APC2).

A major class of Kelch proteins, defined as containing a 6-fold tandem “kelch” element,43

contains an N-terminal BTB/POZ domain and C-terminal kelch repeats and targets differ-
ent substrates to the Cul3-Roc1 catalytic core.44 For example, the BTB-Kelch protein Keap1, 
a negative regulator of the transcription factor Nrf2, binds Cul3 and Nrf2 via its BTB and
kelch domains, respectively, targeting Nrf2 for ubiquitination and subsequent degradation by 
the proteasome.45 The BTB-Kelch family also includes the closely related protein mayven, an
actin-binding protein and gigaxonin, which is mutated in a human autosomal recessive neuro-
degenerative disorder named giant axonal neuropathy.46 Mutations in E3 ubiquitin ligases have 
also been associated with Parkinson’s disease and breast cancer.47
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KAR Regulation by the Ubiquitin-Proteasome Pathway
To search for proteins involved in the regulation of KARs, we performed a yeast two-hybrid

screen of an adult rat brain cDNA library using the C-terminus of GluR6 as bait. Strong interac-
tions were detected between GluR6 and actinfilin. Actinfilin (AF) is a novel BTB/Kelch protein 
that was identified as a brain-specific actin-binding protein in postsynaptic densities (PSDs).48

Co-immunoprecipitation studies performed using HEK293 cell and rat brain extracts show that 
actinfilin binds GluR6 and GluR5-2b, but not with other glutamate receptors and ion channels.5

Because actinfilin is highly similar to another brain BTB/Kelch protein member, mayven49 (55%
amino acid identity), we cloned this cDNA and, upon expression, found that it also co-immuno-
precipitated with GluR6.

Actinfilin was found to interact with Cul3 to promote proteasomal degradation of GluR6 in
vitro and in vivo.5 Expression of GluR6 with an HA-tagged ubiquitin (Ub-HA) in HEK293 cells
showed a characteristic ladder indicating that GluR6 was ubiquitinated. Conversely, treatment with 
the 26S proteasomal inhibitor, MG132, greatly enhanced ubiquitination and stabilized GluR6
expression, demonstrating that GluR6 protein is fairly short-lived. Furthermore, co-immunopre-
cipitation studies verified that actinfilin interacts with Cul3, but not Cul1, in brain. The interac-
tions of cullins with their adaptors often cause mutual degradation. Importantly, Cul3 appears to
specifically regulate KAR levels in vivo (Fig. 1): In synaptosomes prepared from heterozygous Cul3
knockout mice, GluR6 levels are substantially increased, a small effect is observed on KA2 levels, 
but significantly, no effect on AMPA or NMDA receptors can be detected. These data suggest 
that Cul3 promotes degradation of KARs.

We also found that actinfilin was localized synaptically in hippocampal and cortical neurons
and that it negatively regulates KAR expression (Fig. 2). A high degree of colocalization of AF and
GluR6 was observed in dendritic spines. To establish tools to determine the role of actinifilin in 
the trafficking and/or synaptic localization of GluR6, we have developed a short hairpin inhibitory 
RNA (RNAi) to actinfilin that eliminates actinifilin expression (Fig. 2D). Specifically, we found that
decreasing actinfilin levels via RNAi and overexpressing an inactive Cul3 both induced increased

Figure 1. Synaptic GluR6 levels are much higher in synaptosomes (syn) from ��	 Cul3 mice 
than in wild-type (Wt) mice and KA2 show a small increase. Significantly, neither GluR2,
NR1 nor NR2B detectably changed. WCE, whole-cell extract.
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surface GluR6 expression at synapses, suggesting that actinfilin-Cul3-mediated degradation may 
provide an important mechanism for regulating neuronal GluR6.

A model of how actinfilin may link GluR6 to Cul3 and the E3 ubiquitin ligase complex is 
presented in Figure 3. It should be noted that Cul3 is a component of an E3 ubiquitin ligase
complex, also composed of the proteins Nedd8 (N8), Rbx1 and a ubiquitin conjugating enzyme or
E2. Actinfilin or mayven would then act as adaptors to link GluR6 or GluR5-2b to this complex,
binding the receptors through their kelch domains and Cul3 through their BTB domains and 
enabling ubiquitination of the receptor.

Figure 2. Actinfilin (AF) and Cul3 negatively regulate surface expression of GluR6. A-B)
Hippocampal neurons were transfected with GluR6 tagged extracellularly with GFP (GFP-G6)
and, to identify cellular morphology, DS-Red. Neurons (A) with normal AF levels exhibit relatively 
low GluR6 levels, while reducing AF levels with RNAi-AF strongly increases the amount of GluR6 
found in dendritic spines (B). C-D) Actinfilin largely colocalizes with synaptic markers (here, 
synaptophysin), but the RNAi-AF strongly reduces AF levels (see also F). E) Overexpressing a
dominant negative Cul3 mutant results in high surface levels of endogenous GluR6. F) Reducing
AF increases GluR6 colocalization with synaptic markers: The % colocalization of GluR6 with 
synaptic markers (PSD-95 or synaptophysin) was determined (means ± SEMs).
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AF Regulation of Shank, a Parallel Path to Regulate Surface GluR 
Expression

AF appears to negatively regulate the formation of dendritic spines in cortical neurons (Fig. 4).
Potentially, this effect is not directly via regulating glutamate receptors, but could involve ubiquit-
ination of scaffolding proteins.50 Shank proteins (Shanks1-3, also known as ProSAPs) constitute a 
group of postsynaptic, multidomain proteins that link glutamate receptors to intracellular calcium 
stores51 and are involved in the enlargement and maturation of dendritic spines.52 Importantly,
Shank is known to be ubiquitinated.38 Specifically, we found that in synaptosomes prepared from
heterozygous Cul3 knockout mice or by decreasing actinfilin levels via RNAi, Shank levels are
substantially increased (Fig. 4). Elevating Shank levels by overexpressing Shank3 in cortical neurons 
increases not only the number of spines, but the likelihood of detecting surface GluR6 in a spine
(Fig. 4). These results suggest that actinfilin-Cul3-mediated Shank regulation may provide an 
important mechanism for regulating spine development and synaptic KAR localization.

Development of Novel Peptidomimetic Drugs for the Treatment 
of Neurological Disorders

In neurons, actinfilin is preferentially localized to the dendritic spine, a structure rich in actin
and critical for synapse formation.48 Moreover, synaptic activity is known to promote the redis-
tribution of proteasomes from dendritic shafts to spines via an association with actin filaments.53

Actinfilin and other BTB-Kelch proteins, such as Keap1, have been shown to associate with the 
actin cytoskeleton and interactions with actin are necessary for Keap1 to regulate Nrf2 levels.54

Similarly, the actin cytoskeleton and/or other scaffolding proteins may regulate actinfilin func-
tion, suggesting possible roles for these proteins in regulating KAR-actinfilin binding or the traf-
ficking of actinfilin-bound GluR6 to the degradation machinery. We find that down-regulating 
actinfilin in cortical neurons increases both the synaptic localization and the size of synaptic 

Figure 3. Proposed regulation of KARs by AF and Cul3. The Cul3-based E3 ligase consists
of Cul3, which acts as a scaffold to bring several essential proteins in close proximity. These 
proteins include Nedd 8 (Nd8), Rbx1 and a ubiquitin conjugating enzyme (E2). Substrate speci-
ficity is mediated by proteins containing a BTB domain that bind Cul3 in its amino-terminal
end. Other domains on the BTB domain-containing proteins are involved in recognition of 
substrates; in the cases of actinfilin and mayven, these are kelch domains.
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GluR6-containing KAR clusters (Fig. 4). Because GluR6 has been implicated in excitotoxic
neuronal death, in particular with damage associated with cerebral ischemia, stroke and epileptic 
seizures, our data imply that actinfilin may provide an important means for ensuring the correct 
regulation of GluR6 surface expression.

Recently, using NMR to determine the structure of the binding sites regulating GluR inter-
actions with scaffolding and regulatory proteins, we have begun developing compounds that
specifically target individual pathways that modulate synaptic GluR levels. One such reagent,
CN2180, is a cyclized peptidomimetic compound that targets PSD-95 to inhibit GluR6 cluster-
ing.55 This compound and related analogues, were designed to be membrane permeable, highly 
selective and resistant to protease digestion. In an in vivo retinal toxicity model,56 they are taken
up rapidly by retinal neurons and attenuate the KA-induced PARP-1 hyperactivation associated
with retinal neuron death (Marshall and Goebel, unpublished data). Based on our studies, we 

Figure 4. Shank/ProSAP promotes surface GluR6 in dendritic spines and is down-regulated
by actinfilin (AF) and Cul3, both of which decrease GluR6. A) AF keeps Shank levels low, but
RNAi to AF strongly promotes expression of Shank in hippocampal neurons. B) Reduction
of Cul3 (Cul3��	 mice) results in increased GluR6 and Shank in postsynaptic densities (PSD). 
WCE, whole cell extract. Also shown is the % change in each synaptic protein in Cul3��	 mice. 
C) Elevating Shank levels by overexpressing Shank3 in cortical neurons increases not only 
the number of dendritic spines, but the likelihood of detecting surface GluR6 in a spine (C1). 
For comparison, control neurons with lower Shank levels are also shown (C2). The % values
indicate the % of spines that have detectable surface GluR6.
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conclude that these compounds target the ‘main circuit breaker’ of the KAR-mediated cell death 
pathway. The newly developed compounds are expected to improve the tolerance for treatment
because they do not affect the ability of glutamate receptors to perform normal neuronal signal-
ing, but they do prevent the disease-related damage.

The effects of these compounds on motor cortical slices are also being examined. ATPA, a 
GluR5—GluR6/KA2 agonist, causes seizure-like activity, inducing a large, transient increase 
and widening in field potentials (Fig. 5A). However, we find that CN2180 largely prevents 
the seizure-like effect (Fig. 5B), without affecting either AMPAR or NMDAR activities.
Overall, these studies indicate the applicability of this approach to design drugs specific for 
KAR-regulation and suggest that actinfilin may also prove a useful therapeutic target to control 
endogenous synaptic GluR6.

Conclusion
How general is this degradation mechanism for the regulation of kainate receptors? As is 

shown in Figure 6, there are 61 proteins predicted in the human protein database that contain
both a BTB domain and kelch domains. Many of these have been shown to be adaptors for the
Cul3-based E3 ligase (red, underlined) in mammals. In addition, KLHL8 which is similar to
Kel-8 from C. elegans is involved in regulation of the GluR-1 receptor.57 There are a number of 
proteins that are very closely related to both mayven and actinfilin which are good candidates for 
Cul3 substrate adaptors for other related receptors. We think it is very likely that these proteins 
will serve such a role.

Almost all the other mammalian BTB/Kelch proteins shown to be Cul3 adaptors appear to 
regulate either receptors or the cytoskeleton. These include KLHL9/KLHL13 which regulate 
Aurora B kinase,58 KLHL12 regulates the dopamine D4 receptor59 and KLHDC5 which regulates 

Figure 5. CN2180, a reagent that reduces GluR6 surface expression, strongly reduces seizure-like 
activity in the motor cortex. A) ATPA, a KAR agonist, induces seizure-like in cortical slices. 
Time course of field potential amplitudes showing that APTA induces a large, transient increase
in field potentials (1,2) followed by loss of evokable potentials (2,3). B) CN2180 pretreatment 
almost completely blocks the ATPA effects.
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KATNA1, a katanin that is involved in microtubule remodeling.60 Other BTB/Kelch proteins,
such as gigaxonin which is involved in peripheral axon development61 and sarcosin which is
involved in cell motility,62 may also regulate neuronal function through protein ubiquitination.
Taken together, Cul3 and its associated BTB/Kelch domain containing substrate adaptors play a 
critical role in both the development and maintanance of mammalian neurons.

Figure 6. Dendogram showing the 61 human proteins predicted to have both a BTB domain and 
kelch repeats. The red (underlined) proteins have been shown to act as substrate adaptors for the
Cul3-based E3 ligase. The length of the lines connecting the proteins is related to the degree of 
homology, with shorter distances meaning more closely related (higher percentage of homology).
A color version of this figure is available online at www.landesbioscience.com/curie.
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Concluding Remarks 

Kainate Receptors: Novel Signaling Insights, edited by Antonio Rodríguez-Moreno  
and Talvinder S. Sihra. ©2011 Landes Bioscience and Springer Science+Business Media.

KARs function with dual identity. As ligand-gated ion channels they contribute to the post-KKsynaptic component of the glutamatergic EPSC by depolarizing neurons. In an alternative
context, KARs evince a metabotropic mode of action which does not appear to depend 

on their ionotropic activity per se. The bi-modality is a feature also seen in another iGluRs, viz. 
the AMPA receptor. The metabotropic operation of KARs manifests in several different ways: (i)
the activation of Gi/o protein leading to PKC stimulation; (ii) activation of a G-protein leading to 
stimulation of AC/cAMP/PKA signalling; (iii) activation of a G-protein leading to membrane 
delimited regulation (no protein kinase involvement) and (iv) G-protein-independent activation of 
PKA. The role of PKC and PKA in the metabotropic activity of KARs is evident in the facilitatory 
and inhibitory actions of KARs at central synapses with the presynaptic modulation of glutamate 
or GABA release and, at the same time, control of general neuronal excitability by presynaptic or
postsynaptic mechanisms. Notwithstanding, the burgeoning literature on metabotropic effectors 
being activated by KARs working in a non-ionotropic mode, the actual mechanism of metabo-
tropic coupling between KAR and G-protein (directly or indirectly) remaining elusive. Together 
with this intriguing conundrum, other key issues arising from the debate are: What are the physi-
ological scenarios which warrant fast (ionotropic) versus slow (metabotropic) KAR action. Are 
there KAR subunit composition rules which determine the mode of KAR operation and receptor
affinity given the differential “functional compartmentalization” of these intriguing receptors?

Antonio Rodríguez-Moreno, PhD
Talvinder S. Sihra, PhD
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