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SUMMARY

The mammalian hippocampal formation contains several distinct populations of neurons involved in repre-
senting self-position and orientation. These neurons, which include place, grid, head direction, and boundary
cells, are thought to collectively instantiate cognitive maps supporting flexible navigation. However, to flex-
ibly navigate, it is necessary to also maintain internal representations of goal locations, such that goal-
directed routes can be planned and executed. Although it has remained unclear how the mammalian brain
represents goal locations, multiple neural candidates have recently been uncovered during different phases
of navigation. For example, during planning, sequential activation of spatial cells may enable simulation of
future routes toward the goal. During travel, modulation of spatial cells by the prospective route, or by dis-
tance and direction to the goal, may allow maintenance of route and goal-location information, supporting
navigation on an ongoing basis. As the goal is approached, an increased activation of spatial cellsmay enable
the goal location to become distinctly represented within cognitive maps, aiding goal localization. Lastly, af-
ter arrival at the goal, sequential activation of spatial cells may represent the just-taken route, enabling route
learning and evaluation. Here, we review and synthesize these and other evidence for goal coding inmamma-
lian brains, relate the experimental findings to predictions from computational models, and discuss
outstanding questions and future challenges.
INTRODUCTION

Navigating in the wild and in the laboratory
Thecentral purposeof spatial navigation is to arrive at agoal loca-

tion. For most animals, goal locations contain rewarding re-

sources, such as food, shelter, ormates, and although navigating

between these sites can be challenging, success is crucial for

survival. Animals, including mammals, which we focus on here,

must therefore have evolved to overcome the unique navigation

difficulties posed by their specific habitats. For instance, chim-

panzees, found throughout equatorial Africa, use knowledge of

their surroundings, such as the steepness of slopes and thick-

ness of vegetation, to plan energy-efficient navigation routes

(Green et al., 2019). Rats, found in most cities around the world,

adaptively switch between navigation routes so as to minimize

contact with humans (Byers et al., 2019). Egyptian fruit bats, in-

habiting large swaths of Africa and the Middle East, rely on hills

and other distal landmarks to navigate tens of kilometers in

daylight but switch to echolocation to orient locally in dark

feeding or roosting areas (Harten et al., 2020; Toledo et al., 2020).

Many taxonomies for classifying navigational strategies have

been proposed (e.g., Arleo and Rondi-Reig, 2007; O’Keefe and

Nadel, 1978; Redish, 1999). Here, we describe four commonly

described types, which are in part subserved by separate neural

systems (Figure 1A, also see: "Neural systems underlying naviga-

tion"). If the goal location is immediately visible, animals simply

have to orient their movement toward this site, called ‘‘beacon
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navigation’’ (Gallistel, 1990; O’Keefe and Nadel, 1978). However,

if the goal location is not immediately visible, animals may in

some circumstances execute learned movement responses

leading to this site. Researchers occasionally distinguish be-

tween ‘‘response navigation,’’ for when a single movement

response has been learned (e.g., orienting the body left or right

at a single decision point) (Tolman et al., 1946a) and ‘‘sequen-

tial-egocentric navigation,’’ for when a temporally ordered

sequence of movement responses has been learned (e.g., ori-

enting the body left or right at a set of consecutively encountered

decision points) (Arleo and Rondi-Reig, 2007; Rondi-Reig et al.,

2006). Importantly, each movement response becomes deter-

mined either by a previous movement response or by a specific

stimulus. The three strategies described so far require that the

animal rely on specific viewpoint-dependent (i.e., egocentric) in-

formation, and they are therefore considered inflexible, because

new learning is generally required each time the starting orienta-

tion, location, or guiding stimuli changes. In order for animals to

navigate in non-constrained and flexible manner, they must

instead rely on viewpoint-independent spatial relational (i.e.,

allocentric) knowledge of the environment, from which they

can determine both the current self- and goal location and a

route between these sites, called ‘‘place navigation’’ (Goodman,

2021; Tolman et al., 1946a). Although not the focus of this review,

many animal species also have the ability to integrate internal

self-motion information, as opposed to external perceptual infor-

mation, and use this information to flexibly navigate back to a
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Figure 1. Different types of navigation and examples of spatial goal-related parameters
(A) Examples of different types of navigation. Beacon navigation entails navigating toward a beacon signifying the goal location, response navigation entails
navigating by following a simple learned route (e.g., making a single left-right response), sequential-egocentric navigation entails navigating by following a more
complicated learned route (e.g., making a sequence of left-right responses, such as between many consecutive goal locations, example based on protocol used
in Dupret et al., 2010), and place navigation entails navigating based on a constellation of distal cues that have specific spatial relations to the goal (exampled
based on protocol used in Pfeiffer and Foster, 2013). Beacon, response, and sequential-egocentric navigation rely on specific egocentric spatial information (i.e.,
viewpoint-dependent movement responses are determined either by a previous movement or by a specific stimulus), and in the examples, the same goal-
directed route is repeated across trials. Place navigation instead relies on allocentric spatial information (i.e., viewpoint-independent responses are made based
on internalized spatial-relational knowledge), and in the example, different goal-directed routes need to be determined in each trial, as the hidden random reward
location changes pseudorandomly across trials.
(B) Example of different spatial parameters in relation to the current goal location, referenced to either the current head direction or an allocentric reference
direction (north).
Rat illustrations from scidraw.io.
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recently visited starting position, even if the environment is novel,

called ‘‘path integration’’ (Barlow, 1964; Etienne and Jeff-

ery, 2004).

Notably, different navigation strategies can be learned in par-

allel and can compete for control of behavior (Arleo and Rondi-

Reig, 2007; Iglói et al., 2009; Packard and McGaugh, 1996).

The type of task and experience with the task can also influence

the navigational strategy employed. For example, in appetitively

motivated dual-choice tasks (when food is used as reward at

goal), rats have been found to initially adopt a place navigation

strategy but switch to a response navigation strategy as a func-

tion of experience (Packard and McGaugh, 1996). However, in

similar but aversively motivated dual-choice tasks in water

(where ‘‘reward’’ is a submerged escape platform offering refuge

from swimming), the opposite pattern has been reported (Asem

and Holland, 2013).

Rats can also acquire allocentric knowledge of maze layouts

latently, during non-reinforced exploration, and use this knowl-

edge to guide navigation after explicit goals become introduced
(Blodgett, 1929; Tolman and Honzik, 1930; Tolman et al., 1946b).

This finding prompted Tolman (1948) to propose that mammals

may form internal models of their experienced environments,

so-called ‘‘cognitive maps.’’ For a cognitive map to guide navi-

gation, it has to both represent spatial locations, including the

current self- and goal locations, and the spatial relations be-

tween these sites within a common coordinate framework

(O’Keefe and Nadel, 1978; Poucet, 1993). Such a framework

would enable estimates of the current distance and direction to

the goal. Distance to the goal can be represented in either

Euclidean terms, referring to the straight-line distance between

the current position and the goal, or in path terms, referring to

the actual distance needed to travel to the goal taking into ac-

count detours (Figure 1B). Similarly, direction to the goal can

be represented in either egocentric terms, where the goal direc-

tion is referenced relative to the current head direction, or in allo-

centric terms, where the goal direction is referenced relative to

an allocentric direction (or, alternatively, a stable distal landmark)

(Figure 1B).
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Figure 2. Standard description of connectivity and neural representation of space within the rodent hippocampal formation
Illustration of main hippocampal formation (HF) circuitry in the rodent brain and the subregions where the most well-researched spatially tuned neurons were first
discovered. Although the main HF is often described as a simple unidirectional network, many bidirectional and parallel projection streams exist, only some of
which are shown here. In the classic ‘‘trisynaptic pathway,’’ projections from the medial and lateral entorhinal cortex (mEc and lEC) are sent to the dentate gyrus
(DG), and from there to CA3 (called the ‘‘mossy fiber pathway’’), and on to CA1 (called ‘‘Schaffer collaterals’’). CA3 pyramidal cells also send direct projections to
each other in a recurrent excitatory network. Besides the DG, both mEC and lEC also send direct projections to CA3, CA1 and subiculum (SUB) via the ‘‘perforant
pathway.’’ CA1 in turn projects to mEC/lEC both directly and via SUB, and SUB also projects to mEC/lEC both directly and via presubiculum (PrS) and para-
subiculum (PaS), closing the loop. Of note, some important projections are omitted for illustration clarity, including, but not limited to, commissural projections
between hemispheres and projections to/from structures outside the HF. The circular-shaped neuron in DG illustrates a granule cell, the triangular neurons across
regions illustrate pyramidal cells, and the star-shaped neurons in mEC/lEC illustrate stellate cells. Schematic inspired by Hartley et al. (2014).
For place, border, and grid cells, the leftmost example illustration shows a rodent’s behavioral trajectory, with regions where the spatial cell fired overlaid as
colored dots. The right illustration demonstrates the spiking activity as a heatmap, with warmer colors denoting areas of increased activity. For the head-direction
cell, the left illustration shows allocentric head direction according to the four cardinal directions, and the right illustration shows the tuning of a head-direction cell
according to the cardinal directions.
The color-coded mouse brain was created using Brainrender software (Claudi et al., 2021), and the cartoon mouse head was created by the MRC Laboratory of
Molecular Biology (LMB visual aids; http://www.visaids.net/) and is used with permission.

ll
Review
Regardless of the strategy used to navigate, and despite the

many nuanced dynamics and unexpected challenges that may

occur (e.g., Patai and Spiers, 2021), all forms of navigation

fundamentally consists of three core phases: (1) planning/initi-

ating goal-directed routes, (2) traveling to the goal, and (3)

arriving at the goal (including approaching and post-arrival pe-

riods) (Figure 1A). The empirical sections of this review have

been structured in accordance with these phases.

Spatially tuned neurons in the hippocampal formation
The hippocampal formation (HF) consists of the dentate gyrus

(DG), the hippocampus proper (HPC; containing three subfields:

CA1,CA2, andCA3), the subicular complex (containing three sub-

divisions: subiculum [SUB], presubiculum [PrS], and parasubicu-

lum [PaS]), and the entorhinal cortex (EC; commonly divided into

medial [mEC] and lateral parts) (Figure 2; Cappaert et al., 2015).

SeeTable1 for summaryof acronymsused throughout the review.
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Following the development of techniques allowing recordings

of single neuron activity in freely moving rodents (e.g., Ainsworth

et al., 1969; McNaughton et al., 1983), spatially tuned neurons

were first discovered in the rat CA1 (specifically in dorsal CA1,

which is the subregion referred to throughout this review unless

otherwise specified, O’Keefe and Dostrovsky, 1971). These cells

were given the name ‘‘place cells’’ as they preferentially fired

within localized areas of an environment (i.e., ‘‘place fields’’;

O’Keefe, 1976). As such firing patterns appear to form neural

representations of allocentric locations, O’Keefe and Nadel

(1978) first speculated that CA1 place cells might constitute a

fundamental substrate of cognitive maps. Neurons with similar

place-like properties have since been discovered throughout

the HF, including in the DG (e.g., Leutgeb et al., 2007) and

CA3 (e.g., Olton et al., 1978), throughout the subicular complex

(e.g., Sharp and Green, 1994; Taube, 1995), and in the mEC

(e.g., Fyhn et al., 2004; Quirk et al., 1992). In parallel, other types

http://www.visaids.net/


Table 1. Acronyms used throughout the review

Name Acronym

Blood-oxygen-level-dependent signal BOLD

Dentate gyrus DG

Dorsolateral and dorsomedial striatum DLS, DMS

Entorhinal cortex, medial and lateral EC, mEC, lEC

Functional magnetic resonance imaging fMRI

Hippocampal formation HF

Hippocampus proper HPC

Lateral septum LS

Locus coeruleus LC

Long-term potentiation LTP

Medial prefrontal cortex mPFC

Nucleus reuniens NR

Orbitofrontal cortex OFC

Parasubiculum PaS

Posterior parietal cortex PPC

Presubiculum PrS

Spike-timing dependent plasticity STDP

Subiculum SUB

Successor representation SR

Temporal difference TD

Ventral tegmental area VTA
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of spatially tuned neurons have gradually been discovered

throughout the HF (Figure 2). The most researched of these,

which are now believed to collectively form the backbone of

cognitivemapping, include (1) ‘‘head direction cells,’’ which pref-

erentially fire when an animal’s head faces a specific allocentric

head direction (Figure 1B), originally discovered in the PrS (e.g.,

Taube et al., 1990a, 1990b) and later in the PaS (e.g., Tang et al.,

2016) andmEC (e.g., Sargolini et al., 2006), (2) ‘‘grid cells,’’ which

exhibit multiple firing fields organized in a hexagonal lattice

pattern, originally discovered in the mEC (Fyhn et al., 2004; Haft-

ing et al., 2005) and later in the PrS and PaS (Boccara et al.,

2010), and (3) ‘‘boundary cells,’’ which exhibit firing fields at spe-

cific allocentric distances and directions from environmental

boundaries, originally discovered in the SUB (Barry et al.,

2006; Lever et al., 2009) and later in the mEC (Savelli et al.,

2008; Solstad et al., 2008), PrE and PaS (Boccara et al., 2010).

Despite decades of progress, we are still unearthing the full

extent of spatial processing in mammalian brains, with novel

spatially tuned neurons still being discovered within, as well as

outside, the HF (Grieves and Jeffery, 2017; O’Mara and Aggle-

ton, 2019). However, the spatial tuning properties of neurons

outside the HF seemingly depend on an intact HPC, cementing

this structure as foundational for spatial processing (e.g., Es-

teves et al., 2021; Mao et al., 2018).

For the study of the human brain, in rare cases epileptic pa-

tients may need intracranial depth electrodes implanted to

monitor seizures prior to surgery, and it is possible to record

from such patients during navigation of virtual and real environ-

ments (Ekstrom et al., 2018). In healthy humans, neuroimaging

methods such as functional magnetic resonance imaging (fMRI)
have provided important advances in our understanding of the

neural correlates of navigation (Spiers andBarry, 2015). Although

fMRI lacks the precision of rodent electrophysiology, it makes it

possible to examine whole brain dynamics and probe partici-

pants (including HPC amnesics) about their experience and stra-

tegies (Brunec et al., 2017; Spiers and Maguire, 2006). Such

studies have shown relatively consistent correspondence from

rodent studies when translating tasks to humans (Epstein et al.,

2017). Because fMRI provides an indirect measure of neural ac-

tivity via the blood-oxygen-level-dependent (BOLD) response

summed over several mm3 of tissue, changes in dynamics are

typically best considered as regional demands in processing

(Logothetis et al., 2001) rather thanasimple readout of the activity

of principal cells in a region. Although evidence for goal codes in

non-humanprimates is currently lacking, advances have recently

been made in recording spatial correlates from such species

(Mao et al., 2021; Rueckemann and Buffalo, 2017).

Neural systems underlying navigation
A convergence of brain recording techniques, lesioning, and

molecular/genetic approaches has determined that different

navigation strategies are in part subserved by separate, albeit

parallel, memory systems. Specifically, response navigation is

principally supported by a habitual stimulus-response memory

system dependent on the dorsolateral striatum (DLS), whereas

place navigation is primarily mediated by a cognitive memory

system subserved by the HPC and dorsomedial striatum

(DMS) (Devan et al., 2011; Gahnstrom and Spiers, 2020;

Goodman, 2021). Specifically, inactivation of the DLS in the

dual-solution plus-maze task causes rats to primarily use a place

strategy, whereas inactivation of the HPC or DMS causes rats to

primarily use a response strategy (e.g., Jacobson et al., 2012;

Packard and McGaugh, 1996; Yin and Knowlton, 2004). Simi-

larly, lesions to HPC (e.g., Hollup et al., 2001a; Morris et al.,

1982; O’Keefe et al., 1975), as well as to DMS (e.g., Devan and

White, 1999; Lee et al., 2014), render rats unable to flexibly use

a place strategy to locate a hidden escape platform in the Morris

water maze task. More recently, it was discovered that lesions to

either HPC or DMS also impaired sequential-egocentric naviga-

tion in a starmaze task with multiple sequential decision points

(Fouquet et al., 2013). One interpretation is that HPC is required

for organizing not just spatial but also sequential event informa-

tion, in line with the purported role of this structure in spatiotem-

poral relational memory processes (e.g., Eichenbaum, 2017).

The DMS is in turn purported to have roles in behavioral flexibility

and in learning the specific actions leading to the goal (Devan

et al., 2011; Goodman, 2021). Lastly, rats can still beacon navi-

gate to a visible goal location, such as an escape platform in

the water maze, following lesions to either the DLS, DMS, or

HPC (Devan and White, 1999; McDonald and White, 1994).

This strategy might instead be subserved by regions more

directly involved in transforming egocentric visual information

into action, with the posterior parietal cortex (PPC) proposed

as one essential hub (e.g., Byrne et al., 2007; Wolbers

et al., 2008).

Interestingly, both rats (Winocur et al., 2005, 2010) and hu-

mans (Maguire et al., 2006; Rosenbaum et al., 2005a, 2005b;

for a review, see: Squire and Wixted, 2011) with bilateral HPC
Neuron 110, February 2, 2022 397



ll
Review
lesions occasionally retain an ability to navigate to remembered

goal locations without repeating specifically learned routes but

only when the environment is simple, non-dynamic, and well

learned. Spatial relational knowledge consolidated to regions

outside the HF may therefore, in some situations, enable a rigid

‘‘map-like’’ form of navigation, whereas the HPC remains neces-

sary for truly flexible map-based (i.e., place) navigation (Winocur

and Moscovitch, 2011).

In this review, we present evidence across species for multiple

types of goal-related codes in the HF that may guide navigation

during its different phases (Figure 1A). We begin our examination

by reviewing influential computational models and highlighting

predictionsmade about goal codes, and in subsequent sections,

we explore the extent to which these predictions have been sup-

ported by experimental findings.

THEORETICAL PREDICTIONS OF GOAL CODING

Computational models have played an important role in linking

the known properties of neurons in the HF to a role in navigation,

proposing hypotheses andmaking predictions at both the neural

and behavioral levels. Although a wide range of approaches has

been deployed, the majority can be classified into one of the

three broad groups: ‘‘model-free,’’ ‘‘topological,’’ and "vector-

based". Although both topological and vector-based ap-

proaches are model based (i.e., involving learning a ‘‘model’’ of

the environment, such as transition probabilities between

‘‘states’’), we describe them separately here as they, in some in-

stances, make distinct predictions. For the first group, we

include approaches that use the formalism of model-free rein-

forcement learning (e.g., Dayan, 1991; Foster et al., 2000; Sutton

and Barto, 2018) but also other approaches focusing on learning

the best action to perform at a given location to reach a goal (e.g.,

Brown and Sharp, 1995). In the second group, we include ap-

proaches that emphasize the learned connectivity of an environ-

ment and the routes available within it (e.g., Muller et al., 1996;

Recce and Harris, 1996; Stachenfeld et al., 2017). Finally, in

the last group, we include approaches that make use of a

map-like coordinate system to directly calculate the relative po-

sition of places in space (e.g., Banino et al., 2018; Bush et al.,

2015). Although the focus, style of implementation, and biolog-

ical plausibility of these approaches vary greatly, they invariably

present somemethod to learn, or compute actions based on, the

representations of the current location and goal location. It is

these elements that yield the clearest predictions regarding

goal codes and that we examine below and summarize in Table

2. It should be noted that although model-free approaches are

often linked to egocentric-based navigation and model-based

approaches to allocentric-based navigation (see: "Navigating in

the wild and in the laboratory"; Figure 1), a straightforward map-

ping between these separate conceptual frameworks is not al-

ways possible. Most approaches also do not make specific pre-

dictions for different phases of navigation. Simple model-free

approaches tend not to have a clear planning phase, as the de-

cision about how to move is typically contingent upon the ani-

mal’s current location and so likely occurs sequentially during

navigation. In contrast, topological and vector-based ap-

proaches imply some knowledge about the structure of an envi-
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ronment, meaning route planning prior to travel is possible even

if individual models are often not explicit about this point.

Model-free predictions
Prior to the identification of EC grid cells, models of navigation

primarily focused on HPC place cells. Conceptually, the simplest

of these models proposed a goal-cell implementation (e.g.,

Burgess and O’Keefe, 1996; Burgess et al., 1994, 1997), with

each remembered goal being stored as the snapshot of place

cell activity at that location. Specifically, a goal location was pro-

posed to be memorized via the Hebbian updating of synapses

between place cells active at the goal and dedicated ‘‘goal

cells,’’ assumed to exist either within the HF, such as in HPC

or SUB, or in other brain regions, such as the ventral striatum

or prefrontal cortex. A single goal cell, or more likely a small num-

ber of goal cells, would bemaximally active at each remembered

goal, with activity decreasing as a function of distance from that

location, resembling a large place field. Navigation would be per-

formed by searching over the possible directions for the one that

increases the activity of the goal cell(s). It has also been pro-

posed that re-locating and accumulating place cells at goals

would enable a similar gradient of activity that could be searched

(Bilkey and Clearwater, 2005). A limit of these approaches is that

a gradient of activity would only be maintained up to a diameter

equal to the size of the largest place field, unless navigation

occurs via a set of sub-goals. As an extension to their simple

goal-cell model, Burgess et al. (1994, 1996) also proposed that

multiple goal cells could be offset over different distances and

directions from the goal, and from this population activity the

current egocentric goal-vector could be determined during

both mobility and immobility periods (also see vector-based

predictions).

Although simple, the goal-cell models incorporate a number of

key elements shared with most other model-free treatments of

navigation: place cells or other spatial cells are viewed as

defining states (e.g., locations in the world) on which actions

are learned without needing to know the structure of the environ-

ment. The challenge for any such system, and for navigation in

general, is that reward (e.g., arrival at the goal) is temporally

and spatially separated from the decisions leading to it. As

such, it is not entirely trivial to decide which actions were appro-

priate and should be repeated in the future and which were not

(i.e., the temporal credit assignment problem; Sutton and Barto,

2018).

Dayan (1991) addressed this problem using a reinforcement

learning framework and demonstrated that temporal difference

(TD) learning (Sutton, 1988; Sutton and Barto, 2018) could be

used to approximate the value of each location. Subsequent

work developed this idea further, using place cells (Foster

et al., 2000) and grid cells (Banino et al., 2018; Gustafson and

Daw, 2011) as a spatial basis set (i.e., a way of dividing up space

using tractable functions) on which to conduct learning. In these

approaches, the value of a location (or state) was considered

proportional to its proximity to reward. As such, they predict

the presence of neural representations that track the distance

to goals. Although in contrast to the simple models described

above, this gradient can extend beyond the width of the largest

field. In particular, if the spatial basis sets used are constrained



Table 2. Summary of main goal codes predicted from computational models

Class General model type Specific examples

Non-local

goal

activity

during

planning

Neural

activity

modulated

by distance

to goal

Place

fields

move

toward

goal

Place fields

overrepresent

goal

Navigation

range

exceeds

place field

diameter

Vector

based

navigation

Novel

shortcut

Indirect

routes Notes

Model free Goal cell Burgess et al., 1994;

Burgess and O’Keefe,

1996;

Bilkey and Clearwater,

2005

X U X/U U X X/U X ? Goal cells would be

indistinguishable from place

cells at goal. Revised model

allows vector-based

navigation.

Model-free RL Dayan, 1991; Foster

et al., 2000; Gustafson

and Daw, 2011

X/U U X X/U U X X U Reward prediction signal

would resemble a large place

field centered at goal. Inclusion

of Dyna architecture allows

for non-local resampling of

remote routes.

‘‘Flexible’’ stimulus-

response model

Brown and Sharp, 1995 X X X X U X X U

Topological Resistive grid Muller et al., 1996 U X X X U X X U

Successor

representation

Stachenfeld et al., 2017;

Momennejad and

Howard, 2018; de Cothi

and Barry, 2020;

Geerts et al., 2020

X X ? ? X/U X X U SR can lead to over-

representation of commonly

visited locations, but generally,

fields are anticipatory. Note

in simple formulation place

fields are the successor

features and navigation

range is limited.

Allo - egocentric

attractor

Recce and Harris, 1996 ? ? X X U X X U Search algorithm is not

biologically plausible.

Vector

based

Grid cell - deep

network

Banino et al., 2018 X U X X U U U U Full model tracks value of

current state and is capable

of indirect navigation.

Grid cell - vector

computation

Bush et al., 2015;

Erdem and Hasselmo,

2012, 2014;

Kubie and Fenton, 2012;

Masson and Girard, 2011

X/U X/U X X U U U X/U Some formulations would

exhibit ‘‘replay’’ and/or activity

proportional to goal distance.

Others (e.g., Erdem and

Hasselmo, 2012) can traverse

indirect routes by setting

sub goals.

Hybrid - grid & place

cells allow vector &

topological navigation

Edvardsen et al., 2020 U X X X U U U U Hybrid of vector based and

topological models. Subgoals

used to reach indirect goals.
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by barriers, similarly to place fields, then this representation

would likely follow the path distance to the goal (Gustafson

and Daw, 2011) as opposed to the Euclidean distance (Banino

et al., 2018). A plausible implementation of such a signal would

be neurons that ramp their firing rates as the animal approaches

a reward location. However, less clear is the precise neural sub-

strate of such a value representation. Foster et al. (2000) sug-

gested a structure outside of the HPC, whereas others did not

commit to a specific location (Banino et al., 2018; Dayan,

1991; Gustafson and Daw, 2011). Still, the anatomical con-

straints are likely to be similar to those described for goal-cell

models, with much of the HF and its immediate cortical targets

being plausible loci.

Although a value function alone can be used as a basis on

which to conduct gradient ascent, reinforcement-learning

models typically assume that animals learn a movement policy

to control efficient navigation. For example, Foster et al. (2000)

suggested the ‘‘actor’’ (the component of the algorithm learning

which action to take in a given position) was instantiated in dorsal

striatal networks, a view also supported by more recent models

(Geerts et al., 2020). Albeit not formally a reinforcement-learning

model, Brown and Sharp (1995) described an alternative frame-

work whereby, after encountering a goal, a temporally decaying

learning rule would strengthen recently active synapses between

place and head-direction cells in the HF on the one hand,

and ‘‘motor’’ cells in the ventral striatum on the other hand, rein-

forcing recent behaviors (for a similar implementation, see

McNaughton, 1989). Although the actor would likely be pre-

sumed distinct from any value function and exist outside the

HPC, these points are not made explicit.

Model-free approaches are often criticized as being data inef-

ficient and inflexible, as new navigational rulesmust be relearned

for each goal given that there is no latent learning, which requires

slow trial-and-error exploration (Sutton and Barto, 2018).

Whereas topologic and vector-based approaches explicitly

address this shortcoming, some authors have dealt with the

issue by coupling model-free and other approaches (Geerts

et al., 2020) or by using TD-learning to capture information about

the environmental structure (Foster et al., 2000). For the most

part these advances do not make materially different predictions

about goal representations. However, the Dyna algorithm (Sut-

ton, 1991) stands out, as it provides a facility for animals or

agents to learn by simulation, effectively resampling from previ-

ous experiences. Applied to navigational tasks this resampling

would plausibly resemble activation of sequences of place cells

(Dayan, 1991; Mattar and Daw, 2018; Momennejad, 2020; Mo-

mennejad et al., 2017; similar to ‘‘replay,’’ described in: "Repre-

sentation of prospective goal-directed routes by hippocampal

replay").

Topological predictions
Overlaps between adjacent place fields can convey information

about the connectedness of locations and describe the topology

of environments, which has been exploited by a number of

models. Two components are typically emphasized: (1) a mech-

anism to retain information about the overlap between spatial

cells (usually place cells) and (2) a means to interrogate the

learned connectivity to plan goal-directed routes. For example,
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Muller et al. (1996) identified the recurrent connectivity of place

cells in CA3 (Figure 2) as a plausible substrate for such compu-

tations. Specifically, during exploration of an environment, long-

term potentiation (LTP, Bliss and Lomo, 1973) between place

cells with overlapping fields was proposed to capture informa-

tion about available routes, allowing a ‘‘cognitive graph’’ to be

built where each node consists of a different place cell. These

graphs could then be searched for an optimal path between

any nodes that represent locations in the environment. The

authors speculated that sharp-wave ripples (SWRs, a distinct

oscillatory pattern in the HPC local-field potential, see: "Repre-

sentation of prospective goal-directed routes by hippocampal

replay"), which had yet to be identified with replay, might provide

a mechanism by which that activity could spread along, and

select, potential routes. Thus, the most obvious hallmarks of

this framework would be goal-centered activity during planning

and potentially other phases of navigation, as well as reactiva-

tions moving away from the goal. A shortcoming is that a route

must have been experienced before being considered as an op-

tion, excluding the possibility of novel shortcuts and detours. The

potential for CA3 recurrents to capture topological information

has not been overlooked by other authors. Blum and Abbott

(1996) suggested that as animals repeat trajectories toward a

goal, plasticity between place cells in CA3 would cause their

ensemble activity to shift away from the current location,

providing prospective spatial representations toward the goal,

with comparison between shifted CA3 and non-shifted CA1

place fields guiding navigation behavior. Redish and Touretzky

(1998) formulated a model using spike-timing-dependent plas-

ticity (STDP, Bi and Poo, 1998) between CA3 cells to store

directed graphs, proposing that the replay would favor potenti-

ated routes leading to goals and that SUB would host a goal

proximity code. Similar approaches have been proposed else-

where (e.g., Recce and Harris, 1996).

A convergent line of thinking has developed from the rein-

forcement-learning field. Dayan (1993) proposed the successor

representation (SR) as an approach where the long-run transi-

tions statistics between states might be learned separately

from rewards, yielding some of the flexibility of model-based

learning but with reduced complexity, similar to model-free ap-

proaches (Gershman, 2018; Momennejad and Howard, 2018).

Applied to a spatial setting (de Cothi and Barry, 2020; de Cothi

et al., 2021; Stachenfeld et al., 2017; Whittington et al., 2020),

the SR learns about the transition probabilities between loca-

tions. Although formally distinct, applied in this way to produce

a predictive map (Stachenfeld et al., 2017), the SR shares three

commonalities with topological models such as cognitive

graphs: (1) learn transitions during exploration, (2) resemble

place fields, and (3) can be used as a basis on which to plan

routes between states. Hence, where paths skirt around barriers

or objects, the SR generates plausible place fields that conform

to environmental boundaries.

More generally, this framework posits that HPC activity repre-

sents a prediction of an animal’s future state (Momennejad,

2020; Momennejad and Howard, 2018; Stachenfeld et al.,

2017). Thus, at least during situations when future states can

be reliably predicted, such as in simplified track-based tasks,

place fields are expected to disambiguate intersecting paths,
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become increasingly prospective during runs toward a goal loca-

tion (e.g., activity skewed opposite the direction of travel, with

increased activity as the goal is approached), and cluster around

goal locations or other commonly visited locations. Beyond this,

the SR framework also describes how spatially periodic pat-

terns, resembling grid cells, can be generated through the Eigen

decomposition of the learned transition matrix (Stachenfeld

et al., 2017). Notably, the grid patterns would exhibit distortions

commensuratewith the place fields, and be distorted by environ-

mental features, which in turn would enable predictions about

biases in spatial behaviors (Bellmund et al., 2020). Dyna imple-

mentations (Mattar and Daw, 2018; Momennejad, 2020; Sutton,

1991) have also been applied to a SR framework and, similar to

model-free systems, predict replay-like reactivations that may

potentially favor goal locations (Russek et al., 2017).

Hybrid implementations incorporating distinct elements of

model-free and topology-based approaches have also been

proposed. Although combined approaches can generate more

sophisticated behaviors, their neural characteristics are not

materially different from those of more simplistic systems. For

example, Geerts et al. (2020) described a system in which

model-free TD-based learning occurs in the DLS, enabling

egocentric navigation, whereas SR-based learning occurs in

the HPC with place cells representing transition statistics,

enabling allocentric navigation.

Vector-based predictions
A system enabling truly flexible navigation must incorporate in-

formation beyond the topology of an environment by also

describing the spatial relations between places. A considerable

number of models have proposed that the regular spatially peri-

odic activity of EC grid cells can form a neural correlate for such a

spatial metric (e.g., Banino et al., 2018; Bush et al., 2015; Erdem

and Hasselmo, 2012, 2014; Fiete et al., 2008; Kubie and Fenton,

2012; Masson and Girard, 2011). However, because earlier

models typically looked to HPC place cells as a substrate on

which to conduct vector-based navigation, we turn to these first.

A vector-based navigation system must be able to determine

the heading vector between an animal’s current location and a

remembered goal (Bush et al., 2015). Hence, almost all such

models predict that, following some form of neural computation,

the systemwill come to represent a goal-directed Euclidean vec-

tor that cuts across environmental barriers. The challenge for

models based on place cells is that although their ensemble ac-

tivity can capture information about topology, the irregularity of

their firing fields suggests that they do not explicitly form a coor-

dinate system. To address this issue, O’Keefe (1990, 1991) pro-

posed that place cells, via input elicited from different visual

cues, could enable an allocentric centroid location to be deter-

mined, defined as the average of the egocentric vectors between

the cues and the animal’s current location. Different locations in

the environment would be stored as matrices of centroid-related

place cell firing, and translations between these matrices

computed via vector algebra. However, where and how such

calculations take place are not made explicit.

More recent models have focused on grid cells, which convey

information about the relative positions of points in space. Grid

cells are organized into functional modules that share the
same scale (distance between the fields) and orientation (tilt of

the grid relative to a reference axis) but with different phases

(displacement of the fields in x and y directions relative to a refer-

ence point; Hafting et al., 2005; Stensola et al., 2012). Therefore,

within some range defined by the number of distinct grid mod-

ules and their relative scales, it is theoretically possible to deter-

mine the spatial vector between two locations by comparing

their grid population codes (Banino et al., 2018; Bush et al.,

2015; Fiete et al., 2008; Kubie and Fenton, 2012; Masson and

Girard, 2011; Stemmler et al., 2015).

It has been suggested that grid codes can be multifaceted,

sometimes representing the current location and sometimes

the intended goal location (Bush et al., 2015), or these repre-

sentations might be split between different grid-cell popula-

tions (Banino et al., 2018). However, less clear is how the

grid codes for these locations become compared. Bush et al.

(2015) proposed several implementations, ranging from storing

and using a simple but inefficient ‘‘table’’ of all possible vecto-

rial combinations to more complex methods allowing a vector

between the current self- and goal location to gradually accu-

mulate. Respectively, these would predict the presence of cell

populations that represent specific distances and directions to

a goal, located either within the EC itself or in downstream

structures such as the HPC (Figure 2), or neurons with activity

that ramps when the goal is displaced in a specific direction.

Alternatively, a sequential search process, potentially resem-

bling replay (see: "Representation of prospective goal-directed

routes by hippocampal replay") through grid cells, might pro-

vide an appropriate mechanism to determine goal distance

(Bush et al., 2015).

Notably, the role of grid cells as a substrate for vector-based

navigationwas recently testedusingdeep reinforcement learning

(Banino et al., 2018). An agent endowed with grid-like represen-

tations was shown to exhibit flexible navigation, including taking

novel shortcuts. Analysis of the network revealed activity that

correlated with the Euclidean distance and allocentric direction

to thegoal, intimating that a similar analysismight reveal thepres-

ence of equivalent computations in real grid cells.

Grid-cell networks are widely held to play a role in updating a

representation of self-location based on movement vectors (i.e.,

path integration). Somemodels have adopted a similar approach

to simulate the planning phase of navigation, where the model

searches potential heading vectors for one that leads to a goal

(Erdem and Hasselmo, 2012, 2014; Kubie and Fenton, 2012).

Essentially, activity would be driven out from the animal’s current

location by applying constant high velocity movement vectors to

the grid-cell network, incrementally searching over directions

until the goal is encountered. Furthermore, in this approach,

HPC place cells have been proposed as the likely substrate in

which the comparison between simulated trajectories and the

goal location would be checked (Erdem and Hasselmo, 2012,

2014). Conceivably, the process could also run in the opposite

direction, moving out from the goal until the current location is

encountered. Either way, network activity would likely resemble

replay (see: "Representation of prospective goal-directed routes

by hippocampal replay") or theta sweeps (see: "Route delibera-

tion and maintenance by hippocampal theta sequences during

travel") in both EC and HPC networks.
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Recently, Edvardsen et al. (2020) described a hybrid model

able to use grid-cell-based vector navigation to transit across

open spaces while relying on a topological strategy dependent

on boundary cells and place cells to bypass obstacles. As with

other hybrid models, the neurobiological predictions generated

by the model are not overly distinct from the non-hybrid models.

However, the authors emphasized that this combined strategy

would enable interim goals to be defined, such that a direct vec-

tor could be followed to the edge of an obstruction before

continuing on to the main goal, and similar approaches had

been noted elsewhere (Erdem and Hasselmo, 2012, 2014; Kubie

and Fenton, 2012).

A summary of some of the main predictions of goal codes dis-

cussed here can be found in Table 2. In the next sections, we

present recent experimental evidence for some of these pre-

dictions.

PHASE I: PLANNING/INITIATING ROUTE TO GOAL

In the first phase of navigation, a route toward the goal must be

planned, or a learned movement response retrieved and initi-

ated. Here, we primarily discuss evidence for planning, and in

this and subsequent sections we begin by discussing animal

studies, whichmake up themajority of navigation studies, before

discussing complementary evidence from human studies. As

discussed in the preceding sections, some models have pre-

dicted activation of non-local goal-related information during

planning (Table 2), and we discuss experimental evidence for

such predictions below.

Representation of prospective goal-directed routes by
hippocampal replay
During sleep or awake pauses, place cell ensembles in the rodent

CA1 become active in temporally compressed sequences that

can represent routes through theenvironment (Foster andWilson,

2006;Wilson andMcNaughton, 1994; for reviews, see Ólafsdóttir

et al., 2018; Pfeiffer, 2020). The represented routes can occur

either along previously experienced space, termed "replay"

(e.g., Foster and Wilson, 2006; Louie and Wilson, 2001), or along

yet-to-be experienced space, termed ‘‘preplay’’ (e.g., Dragoi and

Tonegawa, 2011; Grosmark and Buzsáki, 2016; Ólafsdóttir et al.,

2015). In paradigmswhere spatial cells have different field activity

depending on the direction of travel, such as often occurs when

stereotyped trajectories become repeated (Markus et al., 1995),

replay or preplay events can be classified as occurring either in

the same (‘‘forward’’) or opposite (‘‘reverse’’) direction relative to

experience. The term ‘‘reactivations’’ can refer to replay events

but also other events that are not necessarily spatially ordered

(for clarity on definitions, see: Genzel et al., 2020).

Replay typically coincides with SWRs, which can be recorded

along the trisynaptic pathway (Figure 2) and consist of �0.01–

3 Hz ‘‘sharp waves,’’ likely originating from the recurrent connec-

tivity of CA3 (Figure 2) and�110–250 Hz ‘‘ripples,’’ whichmay be

locally generated in CA1 (Buzsáki, 2015; O’Keefe and Nadel,

1978). Although replay events have been primarily defined in

CA1, their informational content fidelity depends on input from

both CA2 (He et al., 2021) and CA3 (Middleton and McHugh,

2016; Nakashiba et al., 2009). Coordinated replay events have
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also been reported between CA1 and the medial prefrontal

cortex (mPFC; Shin et al., 2019; Tang et al., 2017) and visual cor-

tex (Ji and Wilson, 2007), suggesting that replay-related mne-

monic functions are distributed throughout hippocampo-cortical

circuits.

Planning may or may not involve deliberation, whereby

different possible routes toward one or more goals become

considered, and some studies have suggested that this process

may be reflected in replay events. However, current empirical ev-

idence for a role of replay in planning (with orwithout deliberation)

is inconclusive. A classic study with rats running back and forth

ona simple linear trackwith rewardat eachend foundan increase

of forward replay before the initiation of a new lap (Diba and Buz-

sáki, 2007). However, as the linear track required no spatial

choice, the planning demand was low, and the forward replay

may therefore have reflected other anticipatory or mnemonic

functions. Indeed, evidence from more recent studies using

mazeswithmore thanone route option suggests that the relation-

shipbetween replayandupcomingbehavior is not always simple.

For example, one study using a W-maze spatial alternation task

reported that during correct trials, replay at the center decision

point was biased toward the upcoming route after performance

was high (>85% correct performance) (Singer et al., 2013). How-

ever, this was not replicated in a recent study using the same

task, which instead found that replay events at the center deci-

sion point represented both the correct and incorrect choice in

an unbiased manner (Shin et al., 2019). One possibility is that

this pattern reflected route deliberation, a notion supported by

the fact that optogenetically disrupting SWRs (and thus presum-

ably replay) at the center decision point causes performance def-

icits while leaving place-cell activity intact (Jadhav et al., 2012).

Shin et al. (2019) also reported that the coherencebetween replay

events in CA1 and mPFC increased when the correct past and

future routes became replayed and that the strength of the coher-

ence correlated with task performance. One interpretation of this

finding is that mPFC might make the final planning decision,

based on both retrospective and prospective information pro-

vided by the HPC (Patai and Spiers, 2021).

In a clearer example of how replay might be involved in plan-

ning, rats navigating an eight-arm maze task were found to

replay the correct future route in a forward order when at the cen-

tral decision platform (Xu et al., 2019). Interestingly, this only

occurred when the rats had to memorize and move between

the goal arms by avoiding the non-goal arms and not when ac-

cess to the non-goal arms was blocked, which lifted the memory

requirement. In addition, on error trials, replay no longer repre-

sented the future behavior, suggesting that this activity was

related to correct performance. A similar finding has been re-

ported using an open field task, where rats alternated between

goal-directed navigation to a remembered ‘‘home’’ well (which

remained constant within a session but changed across ses-

sions) and random foraging for a random reward well (which

changed location following each visit to the home well)

(Figure 3A; Pfeiffer and Foster, 2013). Replay events at the

random reward wells preferentially represented routes that

ended at the home well, and these routes had a significantly

higher correspondence with the rats’ actual future behavior

(i.e., began close to the rats’ current location and ended close
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Figure 3. Hippocampal replay can reflect both the future and non-future goal route
(A) Left and middle: illustration of the maze and task used by Pfeiffer and Foster (2013). Rats had to continuously switch between flexible navigation to a
remembered and rewarded goal location and random foraging for a randomly rewarded location. Replay events at the randomly rewarded locations, which
occurred just before goal-directed navigation, better predicted the rats future behavior than replay events at the home goal (not shown), which occurred just
before foraging.. Right: replay events at the randomly rewarded locations had a bias to end at the remembered goal location. The behavioral and replay tra-
jectories shown in the left and middle illustrations and the right data plot are modified from original data plots in Pfeiffer and Foster (2013).
(B) Left and middle: illustration of the maze and task used by Carey et al. (2019). Rats were either food or water deprived and could choose to navigate to either a
food or water reward, located at the end of separate arms in a T-maze. Replay at the session-by-session basis, but not trial-by-trial basis , preferentially encoded
the opposite route to the behaviorally preferred route. Right: data plot showing the opposite relationship between preferred replayed route in orange (toward food;
abovemidline, or water; belowmidline) and behaviorally preferred route in black (plotted as proportion of food choices). Data plot modified from original data plot
in Carey et al. (2019).
Rat illustrations from scidraw.io.
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to the home-well location) relative to replay events occurring at

the home well (for more in-depth discussion, see: Pfeiffer,

2020). Collectively, these studies suggest that replay might aid

planning only under specific circumstances, such as when there

is a high mnemonic demand to keep track of the current goal

location. Indeed, especially in the case of Pfeiffer and Foster

(2013), the lack of pre-defined tracks toward the goal meant

that the demand to plan a route toward this site was high. How-

ever, another rarely considered possibility is that, in continuous

navigation tasks, replaymay reflect a latent path-integration pro-

cess with no direct role in planning. Future studies may investi-

gate this by incorporating discontinuous trials into their tasks,

such as by carrying the animal to different random start loca-

tions, thereby disrupting the path-integration process (e.g., de

Cothi et al., 2021). When reward is given at a goal, it is also

possible that replay reflects reactivation of previously rewarded

locations without aiding planning per se (e.g., Gillespie et al.,

2021; see: "Representation of non-preferred routes by hippo-

campal replay"). One way to investigate this is to separate goal

and reward sites (e.g., Hok et al., 2007a).

Task engagement might be one factor influencing whether

replay supports planning. For example, it was discovered that
in a task where rats ran back and forth on a Z-shaped track

and had just arrived at or were about to depart from a reward

location (bend in the track), replay preferentially represented

the rats’ future route in a forward order (Ólafsdóttir et al.,

2017). However, when the rats lingered at these sites and were

presumably less task engaged, replay preferentially represented

routes in other parts of the maze in both forward and reverse or-

ders. Additionally, replay recorded from rats foraging with no reli-

able goal has been found to reflect random walks (i.e., brownian

diffusion) rather than experienced trajectories (Stella et al., 2019).

In any case, other factors likely also influence the content and

directionality of replay. For example, it was recently found that

during learning of a new subgoal location in an open field, rats

would preferentially replay an optimal route toward this location

multiple trials before the route became preferred behaviorally

(Igata et al., 2021). One possibility is that this finding reflected

a competition between a place strategy (supported by CA1 re-

plays of an optimal route) and a response strategy (supported

by neural processes in the DLS, see navigating in the wild and

in the laboratory).

Although a few recent studies have reported replay-like reac-

tivations at different neural scales in humans (Higgins et al.,
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Figure 4. Evidence for goal codes in the human hippocampal formation
(A) Hippocampal (HPC) activity measured with fMRI when planning routes shows higher similarity to activity evoked at the future goal and subgoal locations than
at non-goal locations (Brown et al., 2016).
(B) Evidence for allocentric goal direction coding. Bar graph provides an illustrative summary of the key result from both Chadwick et al. (2015) and Shine et al.
(2019); increased matching in voxel patterns in subicular (SUB) and entorhinal (EC) regions for trials where the goal direction matched. Brain image demonstrates
statistical parametric map of the regions showing allocentric direction coding from Chadwick et al. (2015).
(C) Evidence of single unit activity in the human hippocampal formation showing goal-specific activity during navigation of a virtual environment (Ekstrom
et al., 2003).
(D) Right EC activity decreases with Euclidean proximity to the goal, and right posterior HPC activity decreases with path proximity to the goal when participants
navigate a first-person view movie-based simulation of London’s Soho (Howard et al., 2014).
(E) Right EC/SUB activity decreases with the Euclidean proximity to the goal for London taxi drivers navigating a virtual simulation of London (Spiers and Ma-
guire, 2007).
(F) Right posterior HPC activity decreases with proximity to the goal when navigating to learned goals in two real-world environments presented via Google Street
View navigation during fMRI (Patai et al., 2019). ‘‘Distance’’ refers to the Euclidean proximity to the goal at each time step, but collinear with the path proximity due
to minimal barriers (same in G and H).
(G) Bilateral posterior hippocampal (HPC) activity increases with proximity to a remembered goal when navigating in a featureless plane (Sherrill et al., 2013).
(H) Bilateral HPC activity increases with proximity to the goal when deciding which of two paths is shortest to a visible goal (Viard et al., 2011).
Figures are used with permission, and data plots are not based on original data but are illustrative of main results.
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2021; Liu et al., 2019, 2021; Vaz et al., 2020), there is, to the best

of our knowledge, as of yet no studies investigating human

replay during a pure spatial navigation task. Nonetheless, recall-

ing a distant location has been found to drive the activity of single

neurons in the HF previously active near that location during

virtual reality (VR) navigation (Miller et al., 2013). Similarly,

larger-scale fMRI activation patterns in the HPC for goals and

sub-goals have also been found to become reactivated away

from the goal during VR navigation (Figure 4A; Brown et al.,

2016; also see: Kunz et al., 2019).

Representation of non-preferred routes by hippocampal
replay
Although successful navigation often requires keeping track of

the route(s) leading to a goal, it may under some circumstances

be more informative to keep track of the route(s) to be avoided. If
404 Neuron 110, February 2, 2022
so, it might be expected that this information would also become

represented in the content of replay events. In support of this

notion, one study reported that, when rats were running along

a linear track containing a region triggering a foot shock, they

gradually learned to avoid this region but at the same time began

replaying routes toward it from their location in other parts of the

track (Wu et al., 2017). In another study, rats were either food or

water deprived in different sessions and could in each trial

choose to navigate to a food or water reward, located in either

end of a T-maze (Figure 3B; Carey et al., 2019). Although rats

preferred to navigate to the location containing the reward of

which they had been deprived, replay events during both rest

and pauses preferentially represented the non-preferred route,

on a session-by-session basis (no clear relationship between

replay content and behavior could be established on a trial-by-

trial basis). This discovery might be related to the recent finding
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that, in an eight-arm maze where the goal arm changed multiple

timeswithin a session, replay events prior to choice did not relate

to immediate future behavior but preferentially represented

routes toward previously rewarded locations that had become

infrequently visited (Gillespie et al., 2021; also see Gupta et al.,

2010). From a computational perspective, one reason to replay

less-visited parts of a maze might be related to memory mainte-

nance, such as for maintaining sufficiently flexible (i.e., policy-in-

dependent) SRs (see: "Topological predictions"; Table 2). As

these representations predict future states based on current

and past occupancy, their estimates could risk becoming biased

by a non-homogenous sampling of space (Mattar and Daw,

2018; Momennejad, 2020; Momennejad and Howard, 2018; Sta-

chenfeld et al., 2017).

Role of mEC grid cells in planning?
Althoughsomecomputationalmodels havepredictedgrid cells to

have a role in planning routes toward goals (see: "Theoretical pre-

dictions of goal coding"; Table 2), only a few experimental studies

have so far investigated grid-cell replay (Ólafsdóttir et al., 2016;

O’Neill et al., 2017). Notably, coordination between CA1 place

cell and mEC grid-cell replay events increased when place cells

replayed routes in a forward order (Ólafsdóttir et al., 2016). Addi-

tionally, inhibiting mEC layer II input to CA1 during quiet awake-

ness reduced the spatial coverage of place cell replay events,

suggesting that input from mEC might be needed for properly

simulating routes in CA1 (Yamamoto and Tonegawa, 2017).

mEC grid cells can also replay trajectories independently of

CA1 place cells and without a reliance on HPC-related SWRs

(O’Neill et al., 2017).Whether thismeans that themEChasasepa-

rate role in planning relative to theHPC remains to be determined.

Recent evidence from humans supports the idea that the EC

may play a role in navigational planning. Specifically, during

imagined navigation in virtual environments, fMRI activity consis-

tent with a grid-like structure increased when imagining navi-

gating to goals (Bellmund et al., 2016; Horner et al., 2016).

Furthermore, when a new goal was presented during navigation

of a newly learned city, activity in the EC increased significantly if

the new goal required a large change in the Euclidean distance to

the goal (Figure 1B), but not the path distance (Figure 4D; Ho-

ward et al., 2014). This is consistent with models proposing

that grid-cell activity in the mEC is used to calculate the vector

to the goal, with larger vector updates for new goals potentially

requiring more processing (Bush et al., 2015, see vector-based

predictions; Table 2).

Allocentric goal direction codes in the human entorhinal
and subicular regions during planning and goal setting
Recent fMRI studies have shed light on how allocentric and

egocentric direction to goals might be represented in the human

brain during planning (Chadwick et al., 2015; Shine et al., 2019).

Specifically, these studies explored the possibility the HF might

contain neurons active when a goal is at particular bearing from

the navigator, e.g., ‘‘north goal cells’’ would be active whenever

the goal is located to the north (e.g., Burgess andO’Keefe, 1996).

It is possible for such cells to be nonhomogeneously distributed

in the HF such that any given fMRI voxel might have slightly more

cells coding for some directions than others (Epstein et al., 2017).
This would lead to a consistent set of patterns elicited across

voxels for each goal direction in the brain region coding goal di-

rection. Using multi-voxel decoding, it is possible to search for

these patterns in fMRI activity, and this is exactly what Chadwick

et al., (2015) and Shine et al., (2019) did. Specifically, Chadwick

et al., (2015) had participants make allocentric and egocentric

judgments about the direction of a set of goal locations in a

square environment with distinct landscapes in each direction

(mountains, desert, sea, and forest). For the allocentric question

this was ‘‘is the goal toward the mountains, sea, desert or for-

est?’’ For the egocentric, ‘‘is the goal to your left, right, forward,

or backward?’’ Greater multi-voxel pattern similarity was

observed in the EC/SUB region across pairs of trials with the

same allocentric direction to a goal (e.g., north), consistent

with the proposal neurons coding goal direction might exist in

EC/SUB (Figure 4B). In addition, EC/SUB showed a greater

match across trials where the head direction was the same,

consistent with head-direction modulated cells in the EC/SUB

(Grieves and Jeffery, 2017). Multi-voxel patterns in PPC were

more similar for pairs of trials that matched the same egocentric

direction to a goal, consistent with PPC coding egocentric space

(Byrne et al., 2007). Using higher spatial resolution fMRI and a vir-

tual environment with distant goals and internal barriers, Shine

et al. (2019) asked participants to judge the allocentric direction

to goals and similarly found activity in anterior SUB and anterior

EC that signaled allocentric goal direction, which, interestingly,

was separable from a local boundary direction signal in the pos-

terior SUB and posterior EC (Figure 4B). Thus, it would be condu-

cive for future research with rodents to explore these regions for

allocentric goal-direction signals (Figure 1B).

PHASE II: TRAVELING TO GOAL

After route planning or initiation of a stored response program,

the next broad phase of navigation involves traveling to the

goal. Spatial decision making and route deliberation may occur

during this time, such as for ensuring that the initially planned

route is being followed and/or for evaluating other possible

routes towards the goal. This requires keeping continuous track

of where the goal is located relative to the dynamic self-location.

Activity signaling the distance and/or vector to the goal has been

predicted by various computational models (see: "Theoretical

predictions of goal coding"; Table 2), and below we discuss

experimental evidence for these and similar codes in the HF.

Route deliberation and maintenance by hippocampal
theta sequences during travel
Unlike replay, which is strongly related to quiescent SWRs, theta

sequences in CA1 and CA3 refer to temporally compressed ac-

tivations of place cells within each oscillation cycle in the theta

frequency band (4–12 Hz; Vanderwolf, 1969), which primarily oc-

curs during movement or during brief pauses of locomotion

(albeit typically with active head sweeps) at decision points

(Dragoi and Buzsáki, 2006; Foster and Wilson, 2007; Johnson

and Redish, 2007, for a review, see Drieu and Zugaro, 2019).

Theta sequences represent a trajectory slightly behind to slightly

ahead of the animal and tend to be ‘‘chunked,’’ by preferentially

starting and stopping at maze landmarks such as turns (Gupta
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et al., 2012). Similar to replay, theta sequences have also been

reported in themPFC (Hasz and Redish, 2020; Tang et al., 2021).

There is a strong consensus that during vicarious trial and

errors (VTEs), when rats pause and deliberate over possible

route options (Muenzinger and Gentry, 1931; Redish, 2016;

Tolman, 1939), the look-ahead content of theta sequences

also typically alternate between representing the different routes

(e.g., Amemiya and Redish, 2016; Johnson and Redish, 2007;

Papale et al., 2016; Tang et al., 2021). However, it is important

to note that theta sequences can also cycle between represent-

ing potential routes when no VTEs are present (Kay et al., 2020;

Wang et al., 2020). When VTEs are present relative to when they

are not, theta sequences have been found to extend further

ahead of the animal (Hasz and Redish, 2020), and there may

be increased decoding of goal locations (Papale et al., 2016),

possibly so as to integrate more spatial information into the

deliberation process. However, when the animal has learned

the goal location and the presence of VTEs has diminished or

is absent, theta sequences have in some studies instead been

reported to preferentially represent the correct future route, sug-

gesting a role in route maintenance (Amemiya and Redish, 2016;

Johnson and Redish, 2007; Papale et al., 2016). The look-ahead

projection distance of theta sequences has also been found to

vary according to whether the animal intends to navigate toward

a distal or proximal goal (Wikenheiser and Redish, 2015). Theta

sequences may therefore represent route information in both

qualitative (e.g., informing whether to turn left or right at a

decision point) and quantitative (e.g., varying the look-ahead

projection distance as a function of current distance to the

goal) manners depending on current navigational demands.

It was recently reported that when HPC theta sequences

alternated between representing different route options, mPFC

theta sequences more strongly predicted the upcoming choice

(Tang et al., 2021). Taken together with results on mPFC replay

described previously (see: "Representation of prospective

goal-directed routes by hippocampal replay"), this suggests

that the HPC may supply mPFC with bottom-up goal-related in-

formation, which the mPFC may in turn use in a top-down

manner to influence prospective spatial representations in the

HPC (cf. Hasz and Redish, 2020). However, the full extent and

nature of hippocampo-cortical interactions during HPC

sequence generation remain to be fully determined (cf. Bern-

ers-Lee et al., 2021).

Route deliberation by hippocampal splitter cells during
travel
When rodents repeatedly run through overlapping maze seg-

ments, a large proportion of both CA1 and CA3 place cells (up

to two-thirds) become modulated depending on the animals’

past (retrospective) and/or future (prospective) trajectory (Frank

et al., 2000; Wood et al., 2000, for a review, see Dudchenko and

Wood 2014). However, these so-called ‘‘splitter’’ cells can also

be found in other regions both within the HF, including in the

mEC (Frank et al., 2000; Lipton et al., 2007) and SUB (Kitanishi

et al., 2021), and outside the HF, including in the nucleus re-

uniens (NR; Ito et al., 2015), mPFC (Baeg et al., 2003; Ito et al.,

2015; Shin et al., 2019), and orbitofrontal cortex (OFC, Young

and Shapiro, 2011).
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Although early studies showed splitter activity in simple mazes

with one binary decision point (Frank et al., 2000; Wood et al.,

2000), subsequent studies used more complex mazes that

had, for example, multiple sequential decision points (Ainge

et al., 2007a; Grieves et al., 2016) or one decision point with

more than two options (Xu et al., 2019). Interestingly, splitter cells

seemed to encode not just specific spatial decisions (i.e., a sin-

gle left-right choice) but specific route identities (i.e., the whole

sequence of left-right choices). This was found to be true both

when each route led to a different goal (Ainge et al., 2007a)

and when subsets of routes led to the same goal (Grieves

et al., 2016). In the latter study, only two place cells (making up

0.5% of recorded place cells, or 4.2% of recorded splitter cells)

showed differential firing depending on the intended goal and not

the current route. Although this activity might have occurred by

chance, the existence of a very small population of dedicated

‘‘goal-route’’ cells that fire whenever any route is followed toward

a specific goal cannot be ruled out. Future studies using high-

density recordings or calcium imaging might shed light on

whether such a population of cells indeed exists (cf. Gauthier

and Tank, 2018). The recency by which a goal location has

been learned also impacts splitter activity, with both retrospec-

tive and prospective firing increasing when rats move between

recently learned (same day) goals as opposed to well-learned

(previous day) goals (Xu et al., 2019).

Similar to theta sequences, splitter cells appear as another

candidate for supporting ongoing goal-directed navigation by

keeping track of thecurrent route. In support of this notion, splitter

firing is sometimesdegraded inerror trials orwhenperformance is

low (e.g., Ferbinteanu andShapiro, 2003; Ferbinteanu et al., 2011)

but not always (Levy et al., 2021; Pastalkova et al., 2008). During

switching fromacontinuous-alternation to a continuous task, rate

remapping in splitter cells can also precede behavioral change,

suggestive of a learning mechanism (Ji and Wilson, 2008). How-

ever, other evidence suggests that splitter cells may not have a

functional role in guiding navigation. For example, when rats

repeatedly navigated between a series of goal locations via a

learned sequence in an open field, splitter activity did not emerge,

unless guiding barriers had been introduced during initial training

(Bower et al., 2005). Splitter activity may therefore, in some situa-

tions, depend on how the task had originally been learned. How-

ever, other studies have found that increasing the spatial ormem-

ory processing demands does not significantly affect the

proportion of splitter cells (Ainge et al., 2007b, 2012; Ferbinteanu

et al., 2011). Splitter cells are also active in track-based tasks that

canbe solvedwithout an intact HPC, such as continuous-alterna-

tion tasks (Ainge et al., 2007b; Wood et al., 2000) or when a bea-

con signifies the goal location (Ferbinteanu et al., 2011). Indeed,

HPC lesions (Ainge et al., 2007b) or RE lesions or optogenetic

silencing (Ito et al., 2015) do not impair learning or performance

in continuous-alternation tasks despite abolishing or significantly

diminishing splitter activity in CA1. As the NR is a main relay be-

tween the mPFC and CA1 (Vertes et al., 2007), it is likely that

that top-down control from mPFC participates in driving the

splitter activity in the HPC (Ito et al., 2015). If splitter cells do not

immediately guide navigation, another possibility is that they

signal latent mnemonic representations of learned routes

(Sanders et al., 2020; Smith and Mizumori, 2006).
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Figure 5. Neural representations of route, distance, and direction
to goal
(A) Left and middle: illustration of the maze and task used by Grieves et al.
(2016). Notably, rats could take two routes to the same goal location, and the
activity of splitter cells predominantly reflected the intended route instead of
the intended goal location. Right: the proportion of active place cells increased
with distance from the goal, analyzed by maze compartments (a stem or
choice point). Data plot is modified from original data plot.
(B) Left and middle: illustration of the maze and task used by Spiers et al.
(2018). Rats navigated to the same goal location from four different starting
positions. Right: normalized population activity in CA1 increased as a function
of normalized distance to the goal. AU, arbitrary units. Data plot is modified
from original data plot.
(C) Left andmiddle: illustration of the setup and task used by Sarel et al. (2017).
A food platform was either visible or hidden behind a curtain, and the bats flew
complex trajectories before landing, allowing sampling of all 360� egocentric
goal directions and path distances as far as 10 m toward the goal. Right:
illustrative example of a conjunctive goal distance X direction goal-vector cell
in CA1. Notably, the path-distance tuning peaked close to the goal, and the
egocentric goal-direction tuning peaked when the bats’ head direction was
pointed toward the food platform, which was representative for most cells.
Data plot is modified from original data plot.
Rat illustrations from scidraw.io.
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Although there is limited evidence for splitter activity in the hu-

man HF (Jacobs et al., 2010), there have been reports of splitter-

like goal cells, which show differential activity during travel de-

pending on the identity of the goal (Figure 4C; Ekstrom et al.,

2003). Such goal-related activations appear phase locked to

local oscillations (Kunz et al., 2019; Qasim et al., 2021; Tsitsiklis

et al., 2020; Watrous et al., 2018), but any functional significance

of such coupling remains to be determined. Similarly, Tsitsiklis

et al. (2020) reported ‘‘spatial target’’ cells in the HPC, EC, and

parahippocampal structures whose activity was modulated dur-

ing travel depending on the remembered position of the current

goal. In contrast to Ekstrom et al. (2003), these activity modula-

tions were determined by the goals locations, rather than the

identity of the goals themselves. How these cells relate to other

goal-coding correlates in rodents remains an open question.
Representation of distance toward the goal during travel
Knowing the distance to a goal is important to avoid traveling too

far or searching for the goal at locations too early in the route. In

the last few years, such codes have been reported in the HF of

multiple mammalian species.

In studies using track-based mazes with multiple sequential

decision points, it has been reported that the proportion of active

place cells decreases with proximity to the goal (Figure 5A; Ainge

et al., 2007a; Grieves et al., 2016). Similarly, in a study using an

open field navigation task, population activity in CA1 decreased

with proximity to the goal, and the rate of decrease correlated

with task performance (Figure 5B; Spiers et al., 2018). However,

it is possible that these findings simply reflected an overrepre-

sentation of place cells atmaze segmentsmost commonly expe-

rienced, without providing a goal-distance code per se. More

recently, during navigation to an unmarked goal in a VR task, a

subpopulation of cells encoding distance from the start was re-

ported (Moore et al., 2021). These cells overrepresented very

short distances (e.g., closer to the start), and their activity was

better explained by coding of distance from start rather than

proximity to the goal or time passed. The path and Euclidean dis-

tance to the goal were also similar across these studies, making

it impossible to disentangle these metrics. Only a few studies in

humans (e.g., Brunec et al., 2017; Howard et al., 2014) and one

recent study in Egyptian fruit bats (Sarel et al., 2017) have used

navigation paradigms where these metrics can be dissociated.

In the study by Sarel et al. (2017), principal cells in CA1 were

recorded from bats as they circled either a visible or hidden

food platform in a large room (Figure 5C). The researchers

discovered that, in addition to typical place cells, ‘‘goal-dis-

tance’’ cells (making up �16% of recorded principal cells) ex-

hibited tuning to different path proximities or, more rarely,

Euclidean proximitiestoward the platform. This was only investi-

gated when the goal was visible, presumably because the bats

trajectories were more circuitous, thereby allowing separation

of Euclidean and path metrics. Although most of the goal-dis-

tance cells firedmaximally at 0–2m from the platform, some fired

maximally up to 10 m away, allowing their combined population

activity to represent the complete path distance toward the plat-

form. However, evidence for such cells has not yet been reported

in tasks with hidden goals, wherein a more complex navigation

strategy might be required.

Activity signaling distance to goal during travel has also been

investigated in numerous human studies during VR navigation.

For example, activity in the right SUB/EC has been found to

decrease with Euclidean proximity to the goal (Figures 4D

and 4E; Howard et al., 2014; Spiers and Maguire, 2007). In

the study by Howard et al., (2014), activity in the posterior

HPC (homolog of the rodent dorsal HPC) also decreased with

path proximity to the goal (Figure 4D), with similar results re-

ported elsewhere (Figure 4F; Patai et al., 2019). However, other

studies support the notion that activity in anterior HPC might

also signal goal-distance information. For example, activity in

this region decreased with proximity between remembered

landmarks (Morgan et al., 2011) and with proximity to the

goal/starting position in a path-integration task (Chrastil et al.,

2015). However, on the contrary, other navigation tasks have

found that activity in this region increased with proximity to
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Figure 6. CA1 Place cell fields accumulate around goal locations
(A) Illustration of the experimental protocol and main findings from Dupret et al. (2010). Each experimental day consisted of five sessions: a pre-probe session
(�25min), a sleep/rest session (�25min), a learning session (�40 trials,�25min), another sleep/rest session (�25min), and a final post-probe session (�25min).
The final post-probe session was conducted �2 h after the learning session. Each probe session was unrewarded. In the first type of learning session (top row),
rats had to learn the location of three goal locations, consume the rewards at these sites, and return to a start box to consume another reward and initiate a new
trial. CA1, but not CA3, place fields gradually moved toward the goal locations, and place fields still accumulated at the goals in the post-probe session
demonstrating memory retention. The proportion of place fields at the goal locations at the end of the learning session (last 10 trials) and during the post-probe
session also predicted memory performance (defined as the number of crossings of the goal locations). For rats injected with the NMDA receptor (NMDAR)
antagonist CPP after the pre-probe session (middle row), place fields also gradually moved toward the goals in the learning session. However, place fields no
longer accumulated at the goals in the post-probe session. Lastly, when the goal locations were cued with visible falcon tubes (bottom row), place fields did not
move toward the goal locations despite the rats having intact performance. In addition, the rats demonstrated no memory retention for the goal locations in the
post-probe session. Within each learning session, the rats’ trajectories became increasingly stereotyped over time, indicating that theymight have switched from
using a place strategy to using a sequential-egocentric strategy.
(B) Proportion of place fields at the goal locations (defined in the learning session) in the pre- and post-probe sessions. Note the significantly larger proportion of
CA1, but not CA3, place fields at the goal locations in the post- versus pre-probe session when goal locations were hidden. Data plots modified from original data
plots in Dupret et al. (2010).
Rat illustrations from scidraw.io.
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the goal (Figures 4G and 4H; Sherrill et al., 2013; Viard et al.,

2011; also see Balaguer et al., 2016).

We currently lack sufficient data to determine why activity in

different regions of the HF might be positively or negatively

correlated with the distance to the goal across different tasks.

Current research suggests that when processing the route to a

goal in larger environments, posterior HPC activity decreases

with proximity to the goal (Howard et al., 2014; Patai et al.,

2019), whereas in smaller more constrained environments, ante-

rior HPC activity increases with proximity to the goal (Balaguer

et al., 2016; Sherrill et al., 2013; Viard et al., 2011), but why this

might be the case requires further investigation. Many factors

are likely at play, such as differences in navigation strategies em-

ployed or specific phases of navigation where activity is investi-

gated. For example, in a recent study where students navigated

a virtual simulation of familiar or recently learned college cam-
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puses, posterior HPC activity decreased with proximity to the

goal during travel but increased with proximity to the goal at de-

cision points (Figure 6C; Patai et al., 2019; also see Howard et al.,

2014). Many challenges also exist for investigating goal-distance

estimations. For example, having to circumnavigate a region of

space (Brunec et al., 2017) or having increased familiarity over

months with a space (Jafarpour and Spiers, 2017) can result in

distortions in estimated distances. It is also possible that the

presence of sub-goals can distort estimated distances, but to

the best of our knowledge, this has not yet been tested.

Representation of direction toward the goal during
travel
Although it can be important to gauge the correct distance

to a remembered goal, miscalculating the direction can often

be more deleterious for successful navigation. In rodents,
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head-direction cells provide an allocentric representation of

azimuthal orientation, which has been proposed to function as

an ‘‘internal compass’’ during navigation (Butler et al., 2017).

Although a few studies have investigated head-direction cells

in goal-directed tasks, no modulation by goal locations has as

of yet been reported (e.g., Muir and Taube, 2004; Sanguinetti-

Scheck and Brecht, 2020).

Some older studies have reported the existence of ‘‘goal-

approach cells’’ in CA1 that fired as rats turned to and/or moved

toward visible goals (Eichenbaum et al., 1987; Gothard et al.,

1996; Wiener et al., 1989). A similar finding wasmore recently re-

ported by Aoki et al. (2019), who found increased in-field activity

of place cells as rats moved toward cued goals in an open field.

Additionally, this activity was maintained when the cues were

removed and reward was randomly scattered in the maze—but

only when the rats ran similar ballistic trajectories toward the

remembered cue/goal location as they had done in the cued

task. One possibility is therefore that this activity reflected the

execution of a learned motor sequence and not a goal-direction

tuning per se.

One of the clearest examples of a potential goal-direction code

in the HF comes from Sarel et al. (2017), who, in addition to goal-

distance cells, reported goal-direction cells in the bat CA1

(Figure 5C). These cells represented different egocentric angles

between the bats’ heading direction and the food platform (mak-

ing up �19% of recorded principal cells, Figure 1B). Importantly,

this tuning occurred bothwhen the platformwas visible andwhen

it was hidden behind a curtain, indicating that the tuning was

memory based. The majority of goal-direction cells (81%) were

tuned only to one of the visible or hidden platforms, indicating

goal-specific representations. Although most goal-direction cells

preferentially fired when the bat was turned toward the platform

direction, they could be tuned to any egocentric goal direction

relative to the platform (Figure 1B), and their combined ensemble

activity represented all 360 degrees of goal directions relative to

the platform. Additionally, �5% of cells were found to conjunc-

tively represent information about both the distance and direction

to the goal (Figure 5C). Lastly, a recent preliminary study reported

that place cell ensemble activitymight enable both allocentric and

egocentric goal-vectorial computations by creating ‘‘sinks’’ of

activity leading to the goal location from the current self-location

(Ormond and O’Keefe, 2021). Given these findings, it is possible

that different types of goal-directed signals stably coexist within

the HF.

Although fMRI studies have found evidence of activity

signaling allocentric direction in the human HF during planning

(see: "Allocentric goal direction codes in the human entorhinal

and subicular regions during planning and goal setting"), similar

activity has not been reported during travel. Rather, the PPC

has been implicated in keeping continuous track of the egocen-

tric direction to the goal during travel (Howard et al., 2014; Spiers

andMaguire, 2007), similar to that reported during planning (see:

"Representation of prospective goal-directed routes by hippo-

campal replay"; Chadwick et al., 2015).

Extending goal codes to ‘‘traveling’’ in abstract spaces
It has recently been suggested that common circuit mechanisms

exist for mapping out position in both spatial and non-spatial
domains (Behrens et al., 2018; Bellmund et al., 2018; Epstein

et al., 2017), suggesting that similar goal-related representation

as discussed above might also guide navigation through more

abstract spaces. For example, in rodents, single neurons in

HPC and EC can form place fields along specific frequency

ranges in auditory space, when keeping track of this information

is relevant for receiving reward (Aronov et al., 2017). In humans,

recent studies have shown that activity in the HF can signal dis-

tance and direction information in verbal memories (Solomon

et al., 2019), learned semantic spaces (Viganò and Piazza,

2020), social hierarchies (Park et al., 2020), and narratives (Ta-

vares et al., 2015). For example, when recalling words in a

learned list, the evoked theta power for each word can be pre-

dicted in part by the distance between words in a measure of

semantic similarity (Solomon et al., 2019). Recalling ‘‘dog’’ then

recalling ‘‘fur’’ would likely result in a small change in theta po-

wer, whereas recalling ‘‘cat’’ and then ‘‘lightbulb’’ would be ex-

pected to result in a larger change in theta power because cat

and lightbulb are less semantically similar (Solomon et al.,

2019). It will be useful for future studies to more directly compare

navigation in spatial and non-spatial dimensions to determine

the extent to which generalization across these domains occur

(Spiers, 2020;Whittington et al., 2020). Indeed, such approaches

will inform our understanding of how the mammalian brain en-

ables navigation at basic, clinical, and translational levels. So

far, most human studies in this domain have explored evoked re-

sponses to learned sequences of stimuli (e.g., a sequence of

words recalled) rather than responses to stimuli in a space that

needs to be more explicitly navigated (e.g., navigating a learned

social network of friends to seek, gather, and share information).

PHASE III: ARRIVING AT GOAL

In the final operational stage of navigation, animals approach

and arrive at a goal location, where reward may be obtained

and there is an opportunity to process the recent navigation

epoch. Various computational models have predicted cells that

fire proximal to goals, enabling a gradient of activity that can

guide navigation (see: "Theoretical predictions of goal coding";

Table 2). Multiple experimental studies have also reported that

during goal approach, a significantly higher (typically approxi-

mately two to three times) proportion of place cells in CA1

become active relative to when other equally large areas become

visited, overrepresenting goal locations in HPC maps (for re-

views, see O’Keefe and Krupic, 2021; Poucet and Hok, 2017;

Sosa and Giocomo, 2021). More recently, a similar goal-oriented

reorganization has also been reported in EC grid and non-

grid spatial cells (Boccara et al., 2019; Butler et al., 2019). Do

these phenomena aid goal-directed navigation, or are they a

consequence of other factors such as biased behavior or reward

expectation?

Reorganization of hippocampal activity around goals
The phenomenon of goal overrepresentation by place cells has

been reported in many different types of navigation studies

and found to occur gradually, as a function of experience with

the task (e.g., Dupret et al., 2010; Lee et al., 2006; Zaremba

et al., 2017). Most studies have used tetrode recordings in freely
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moving rats navigating either track-based (e.g., Fyhn et al., 2002;

Hollup et al., 2001b; Mamad et al., 2017; Xu et al., 2019) or open

(e.g., Breese et al., 1989; Dupret et al., 2010; Kobayashi et al.,

1997, 2003; Xiao et al., 2020) mazes, but more recent studies

have also employed calcium imaging in either freely moving

mice navigating an open maze (Jarzebowski et al., 2022) or

head-restrained mice navigating either repeating VR environ-

ments (Gauthier and Tank, 2018; Lee et al., 2020; Robinson

et al., 2020; Sato et al., 2020) or treadmills with tactile cues (Dan-

ielson et al., 2016; Kaufman et al., 2020; Turi et al., 2019; Zar-

emba et al., 2017). Across these studies, goal locations have

become associated with rewards, either appetitively motivated

rewards, such as food andwater (e.g., Danielson et al., 2016; Du-

pret et al., 2010; Kaufman et al., 2020; Lee et al., 2012; Turi et al.,

2019; Xu et al., 2019; Zaremba et al., 2017, 2017), or aversively

motivated rewards, such as when a platform is introduced that

offers an escape from swimming (Fyhn et al., 2002; Hollup

et al., 2001b). However, goal overrepresentation is not a simple

function of reward acquisition, as this activity tends to begin

slightly before the goal is reached and reward has been obtained

(Gauthier and Tank, 2018; Zaremba et al., 2017) and can persist,

at least transiently, when rewards are removed from the goal

(Dupret et al., 2010; Jarzebowski et al., 2022). It is also unlikely

that this phenomenon reflects reactivations of non-local loca-

tions (see: "Representation of prospective goal-directed routes

by hippocampal replay") because such activations typically

occur during immobility periods, which are normally removed

in place-field analyses.

The nature of the goal code provided by an overrepresentation

of place cells has recently been debated (O’Keefe and Krupic,

2021; Sosa and Giocomo, 2021). For example, in most studies

with more than one goal, with either one goal active at a time

(Danielson et al., 2016; Fyhn et al., 2002; Kaufman et al., 2020;

Sato et al., 2020; Turi et al., 2019) or multiple goals active simul-

taneously (Dupret et al., 2010; Duvelle et al., 2019; Jarzebowski

et al., 2022; Lee et al., 2020; Xu et al., 2019), different place cells

have been found to form fields at different goals. Only one study

has reported finding a dedicated population of place cells active

at all possible goals (Gauthier and Tank, 2018). This population

was found in both the CA1 and the SUB and comprised only

0.8% of all recorded cells. However, a more recent and similar

study did not support this finding, reporting that only a single

place cell tracked all goals, and this, as well as other cells with

fields at multiple goals, also formed fields elsewhere, supporting

a goal-by-place code (Lee et al., 2020). This discrepancy might

result from having one (Gauthier and Tank, 2018) versus many

(Lee et al., 2020) simultaneously active goals or having relatively

small (�2–4 m, Gauthier and Tank, 2018) versus relatively large

(�40 m, Lee et al., 2020) environments. However, the contribu-

tions of such factors to goal overrepresentation remain unclear.

We also note that both of these studies used VR tasks in which

HPC correlates might be quite different from real-world tasks

and could more strongly reflect parameters such as distance,

time, or reward rather than allocentric space (e.g., Moore

et al., 2021).

Distinct populations of HPC place cells appear to become

differentially modulated by goal locations, possibly owing to dif-

ferences in afferent and/or efferent projections (Ciocchi et al.,
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2015; Lee et al., 2020). Indeed, differences have been noted

across the principal axes of CA1 (consisting of the dorsal-

ventral ‘‘long’’ axis, the superficial-deep ‘‘radial’’ axis, and the

proximal-distal ‘‘transverse’’ axis, Cappaert et al., 2015). In re-

gard to the long axis, one recent study reported that place cells

in intermediate-to-ventral CA1 (ivCA1) had a higher rate of goal

overrepresentation relative to place cells in the dorsal CA1

(dCA1) and only place cells in the former region incorporated

information about the changing reward value of goals (Jin and

Lee, 2021). However, another recent study reported that only

dCA1 and not ivCA1 place cells overrepresented goals (Jarze-

bowski et al., 2022). Instead, ivCA1 place cells were found to

have a higher propensity to form fields at multiple goals relative

to dCA1 place cells, and population activity of non-place cells

in ivCA1 significantly decreased near goals, suggestive of com-

plementary goal codes in this region. More research is needed

to investigate these discrepant findings, and whether they

might be task-dependent (see below). In regard to the radial

axis, one study reported that superficial CA1 (supCA1) place

cells remained more stable (defined as having high correlations

between firing rate maps) both within and across days relative

to deep CA1 (dpCA1) place cells, but dpCA1 place cells near

a goal became selectively stabilized—albeit with comparable

stability to an average supCA1 place cell (Danielson et al.,

2016). In addition, dpCA1 place cells remained more stable

across sessions of a goal-directed task than across sessions

of a random foraging task, whereas no such task-dependent

difference was found for supCA1 place cells. To the best of

our knowledge, no differences in goal coding have as of yet

been reported in the transverse axis, which requires further

investigation. Differences in goal modulation have also been

reported across HPC subfields (recording in the dorsal subre-

gion), with CA3 place cells not found to overrepresent goals

when this has simultaneously been reported for CA1 place cells

(Dupret et al., 2010). Reward probability-related signals also

appear stronger in CA1 compared with CA3 (Lee et al., 2017).

Whether CA2 place cells overrepresent goals is currently

not known.

Identifying the conditions causing place cells to overrepresent

goals is challenging, with some seemingly conflicting results in

the literature. However, certain patterns can be deduced. For

example, in the vast majority of studies where place cells overre-

present goals, animals have followed very similar goal-directed

trajectories across trials. Indeed, the degree of overlap among

repeated trajectories has been found to correlate with the pro-

portion of place cells moving toward the goal (Mamad et al.,

2017). However, using a specific navigational strategy does

not seem to be a determining factor, as goal overrepresentation

has been noted in tasks where a specific movement response is

learned at a single decision point (i.e., response navigation, e.g.,

Mamad et al., 2017), in tasks where a sequence of movement re-

sponses is learned betweenmultiple goal locations (i.e., sequen-

tial-egocentric navigation; Dupret et al., 2010; Xu et al., 2019),

and in tasks where the goal location has to be determined based

on its relation to a constellation of distal cues from different start-

ing positions (i.e., place navigation; Fyhn et al., 2002; Hollup

et al., 2001b). Although it can be difficult to infer navigation stra-

tegies in head-restrained animals, these tasks often require that
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the goal become memorized relative to non-contiguous (tactile

or visual) cues, which is HPC dependent (Sato et al., 2017; Zar-

emba et al., 2017).

These findings strongly suggest that overlapping goal-

directed trajectories constitute a necessary condition for goal

overrepresentation. However, other studies have suggested

that it does not constitute a sufficient condition. For example,

although place cells overrepresented three recently learned

(same day) and hidden goals that rats sequentially visited in an

open field, this no longer occurred when the goals were made

visible by a cue, despite the rats’ behavior and performance be-

ing comparable (Dupret et al., 2010, for illustration of experi-

mental protocol, see: Figure 6). Only in the former case did the

rats demonstrate subsequent memory for the goal locations,

and the rate of overrepresentation predicted the strength of the

memory performance. Similarly, in an eight-arm maze task pre-

viously described (Xu et al., 2019, see: "Representation of pro-

spective goal-directed routes by hippocampal replay"), place

fields gradually accumulated at goal arms when the rats had to

memorize these arms (when replay also predicted future

behavior), but not when access to the non-goal arms were

blocked, lifting the memory requirement. Interestingly, place

cells only overrepresented the two recently learned (same day)

goal arms, but not the one well-learned (previous day) goal

arm, suggesting that goal overrepresentation might, at least in

some tasks, reflect a transient learning process.

Only two studies have reported that place cells overrepresent

visible goals (Breese et al., 1989; Xiao et al., 2020). In both of

these studies, rats continuously moved between potential goal

sites, where a reward could appear at random. A simple beacon-

ing was therefore not sufficient to obtain reward, as had been the

case in the cued task in Dupret et al. (2010) or when all available

arms were goal arms in Xu et al. (2019). Although the rats’ trajec-

tories were seemingly not as overlapping as has been noted in

the other studies, the rats nonetheless primarily moved between

the visible goals in search of reward. It is therefore possible

that additional mnemonic memory processes became recruited,

which influenced place cells to overrepresent the goals, but this

remains speculative. Collectively, these studies suggest that

there are two necessary and sufficient conditions that need to

be met in order for place cells to overrepresent goals: (1) having

overlapping trajectories across trials and (2) having memorized

these trajectories and/or the goal location(s).

A remaining question is whether goal overrepresentation has

any functional role in guiding navigation. Against this interpreta-

tion is the fact that place fields do not overrepresent goals in

tasks where rats have to continuously plan and execute different

goal-directed routes across trials (i.e., using a place strategy not

just for localizing the goal but also for continuously planning

novel routes toward it, Duvelle et al., 2019; Hok et al., 2007a,

2007b, 2013; Jeffery et al., 2003; Pfeiffer and Foster, 2013;

Spiers et al., 2018). Furthermore, a recent causal study both

induced and inhibited goal overrepresentation and found that

neither manipulation had any effect on task performance (see:

"Role of hippocampal replay in learning goal-directed routes";

Kaufman et al., 2020). Other causal studies further support the

notion that place cells primarily provide a self-localization

code. For example, activating place cells normally active at the
goal before this site was reached induced goal-associated

licking behavior in rats, as if the animalsbelieved they were at

the goal. In the same task, activating place cells normally active

at the start zone at a later location made the rats run past the

goal, as if they believed that they were at the start zone when

the cells were being activated (Robinson et al., 2020). In addition,

pairing rewarding medial-forebrain stimulation with the firing of a

place cell during sleep biases subsequent awake behavior to-

ward the cell’s place-field location (de Lavilléon et al., 2015).

However, this does not necessarily mean that place cells have

no role in signifying the goal location, as they could do so via a

goal-by-place code, as previously described (Lee et al., 2020).

Indeed, even when place fields are not overrepresenting the

goal, place cells normally active at the goal may nonetheless

become preferentially reactivated during both immobile planning

(e.g., Miller et al., 2013; Pfeiffer and Foster, 2013; Xu et al., 2019)

and travel to the goal (e.g., Papale et al., 2016).

Besides goals, place cells have also been found to overrepre-

sent other locations, such as landmarks (Bourboulou et al., 2019;

Sato et al., 2020), compartment entryways (Grieves et al., 2018;

Spiers et al., 2015; but also see Duvelle et al., 2021), turning

points (Grieves et al., 2016, 2018), starting locations (Ainge

et al., 2007a; Grieves et al., 2016; Spiers et al., 2018), and aver-

sive stimuli (an air puff; Okada et al., 2017). Overrepresentation

may therefore serve a broader role in signaling saliency. How-

ever, overrepresentation of goals occurs faster than for land-

marks, and mice lacking a specific glutamatergic scaffold pro-

tein demonstrate increased overrepresentation of goals but

absent overrepresentation of landmarks (Sato et al., 2020).

Whether these results mean that different types of overrepresen-

tations serve different functions requires further investigation.

Lastly, in some tasks where rats have to continuously deter-

mine novel goal-directed routes and goal overrepresentation by

place fields does not occur, extra-field firing of CA1 and CA3

place cells has been reported to occur at the goal, with peak ac-

tivity �1 s after arrival (Duvelle et al., 2019; Hayashi et al., 2016;

Hok et al., 2007a, 2007b, 2013). Importantly, in these tasks,

reward was separated from the goal, suggesting that reward-

associated processes did not cause the increased firing.

Although the extra-field firing was weak at the individual-cell

level, it was prominent at the ensemble level and included spikes

from otherwise ‘‘silent’’ pyramidal cells (Duvelle et al., 2019; Pou-

cet and Hok, 2017). One possibility is that this activity reflected

replay of previous or future routes. However, ripple rate is gener-

ally low while rats wait for a reward but increases during reward

consumption (Hok et al., 2007a; McKenzie et al., 2013; Sosa

et al., 2020). Furthermore, in a specific strain of mutant mice

with disrupted goal-related firing, the rate of SWRs at the goal

was similar to that of control mice with normal goal-related firing

(Hayashi et al., 2016). Another possibility is that the activity re-

flected the anticipation or expectation of reward. However, the

extra-field firing did not change when a goal provided a higher-

than-usual reward (Duvelle et al., 2019). It could also have re-

flected an inhibition signal, to slow down and stop. However,

the signal occurred earlier on a cued version of the task, although

the behavioral profile was similar to the uncued version (Hok

et al., 2007a). Alternatively, it could have reflected a confirma-

tion-of-arrival signal, after matching the external sensory input
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to an internal goal representation instantiated in neural activity

elsewhere. Indeed, having a cue at the goal might mean a confir-

mation signal could be activated sooner relative to when no such

prominent cue was present. In support of the notion that other

brain regions might instead represent the goal, mPFC neurons

have been found to form large fields centered at the goal in the

same task (Hok et al., 2005). It is possible that these cells consti-

tute an experimental verification of ‘‘goal’’ cells (see: "Model-free

predictions"; Table 2) especially as large goal fields were pre-

dicted with PFC hypothesized as possible loci. However, impor-

tantly, a recent studydidnot findanygoal representation inmPFC

in rats performing a similar flexible, albeit track-based, navigation

task (Böhm and Lee, 2020). This discrepancy may result from

varying cognitive demands of the tasks, or strategies adopted,

since the rats in Hok et al. (2005) required �4 weeks of training

to reach criterion, whereas the rats in Böhm and Lee (2020)

required �3.5–6 months. Notably, besides the mPFC, the OFC

has also been implicated in representing goal locations (Basu

et al., 2021; Feierstein et al., 2006), possibly as part of a broader

purported role of this region in representing acognitivemapof the

current task space (Bradfield and Hart, 2020;Wilson et al., 2014).

Reorganization of entorhinal activity around goals
Two recent studies have given insights into how grid and non-

grid spatial cells in mEC reorganize around goal locations during

different navigation tasks (Boccara et al., 2019; Butler et al.,

2019). Boccara et al. (2019) used the same task as in Dupret

et al. (2010) (Figure 6) and found that both CA1 place fields

and mEC grid fields overrepresented the goal locations, which

also positively correlated with memory retention. Although CA1

place fields were faster in shifting toward the goal locations dur-

ing learning relative to mEC grid fields, only mEC grid fields still

overrepresented the goal locations the next day. Goal-oriented

reorganization therefore seems to occur faster but more tran-

siently in CA1 relative to mEC. Butler et al. (2019) instead re-

corded from mEC in two same-sized open arena environments

that were distinguishable by different wall colors and scents. In

the first arena (ENV1), rats freely foraged for randomly scattered

food rewards, whereas in the second (ENV2), they alternated be-

tween freely foraging and navigating to an unmarked but remem-

bered goal (i.e., place navigation) after hearing an auditory cue.

In contrast to Boccara et al. (2019), the researchers found no

accumulation of grid fields close to the goal location in ENV2,

matching the finding that CA1 place fields do not overrepresent

goals in similar flexible navigation tasks (see: "Reorganization of

hippocampal activity around goals"). Instead, subsets of non-

grid spatial cells formed a clear spatial field near the goal in

ENV2 despite having indiscriminate firing in ENV1, and the

peak firing rate of grid fields close to the goal was higher in

ENV2 relative to the same location in ENV1. One possibility is

that these modulations also aid in providing a confirmation-of-

arrival signal, similar to the extra-field firing of CA1 place cells

noted in other studies (see: "Reorganization of hippocampal ac-

tivity around goals," e.g., Hok et al., 2007a; Duvelle et al., 2019),

Notably, mEC grid cells were also found to shift their fields to-

ward the location of a home cage after it was introduced in an

open field where rats foraged (Sanguinetti-Scheck and Brecht,

2020). However, a control experiment demonstrated that this
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was likely a result of the change to the internal geometric struc-

ture of the space and not any cognitive ormotivational processes

related to the home cage itself (e.g., that it had taken on the qual-

ity of a ‘‘goal’’). As the geometry of the maze remained constant

in Boccara et al. (2019) and Butler et al. (2019), it is unlikely that

their results could be explained by such factors.

Role of hippocampal replay in learning goal-directed
routes
While replay events before movement initiation has been pur-

ported to have a role in forward planning (see: "Representation

of prospective goal-directed routes by hippocampal replay"),

replay events after arrival at the goal have been found to represent

the just-taken, or occasionally the future, route but typically played

in a reversed order, which has been linked to learning and/or eval-

uating the goal location and its associated routes (Ambrose et al.,

2016; Bhattarai et al., 2020; Diba and Buzsáki, 2007; Foster and

Wilson, 2006; Igata et al., 2021; Michon et al., 2019; Shin et al.,

2019; Xu et al., 2019). Indeed, this phenomenon may constitute

a neural mechanism for solving the temporal credit assignment

problem (see: "Model-free predictions"), as information about

the goal/reward can be propagated to place cells leading to or

from this site (Sutton and Barto, 2018). It is important to note

that (reverse) replay of the just-taken route after arrival at the

goal has only been found in stereotyped track-based tasks (i.e.,

likely relying on either response or sequential-egocentric naviga-

tion) and not in flexible tasks where novel goal-directed routes

need to be continuously determined (i.e., that emphasize place

navigation, e.g., Pfeiffer and Foster, 2013). Although the need to

learn specific routes is diminished in such tasks, it suggests that

other mechanisms contribute toward learning goal locations.

In line with a role of replay in learning, novelty with a task is

associated with an increased rate (Diba and Buzsáki, 2007; Fos-

ter and Wilson, 2006) and temporal precision (Cheng and Frank,

2008) of replay events, and this precision may contribute to

learning by increasing the rate of STDP (Bi and Poo, 1998). A

STDP-dependent strengthening of adjacent place and grid cells

may in turn influence the movement of their fields toward goals,

underlying the phenomenon of goal overrepresentation. More

specifically, the rate of CA1 SWRs, and thus presumably replay,

is increased at rewarded goal locations relative to other sites in

the environment (Dupret et al., 2010; Singer and Frank, 2009),

especially when goals remain fixed and routes become repeated

(Jackson et al., 2006). Increasing the magnitude of reward at

goals also increases the rate of reverse replays (Ambrose

et al., 2016; Bhattarai et al., 2020; Michon et al., 2019).

Replay during sleep has also been proposed to have a role in

the long-term consolidation of newly formed memories (Ólafs-

dóttir et al., 2018). For example, cell assemblies co-active during

novel spatial experiences become increasingly reactivated dur-

ing subsequent sleep (O’Neill et al., 2008). In addition, disrupting

sleep-related SWRs (Ego-Stengel and Wilson, 2010; Girardeau

et al., 2009) or replay events (Gridchyn et al., 2020) following

spatial learning impairs post-sleep performance.

Role of reward- and value-related processes
Midbrain dopaminergic fibers from the ventral tegmental area

(VTA) have been identified as having a key role in multiple



ll
Review
reward- and motivation-related behaviors and cognitions (for a

review, see Sosa and Giocomo, 2021). For example, in spatial

tasks, activating dopaminergic VTA fibers directly (de Lavilléon

et al., 2015; Stamatakis et al., 2013; Tsai et al., 2009), or indirectly

via medial-forebrain stimulation (Kobayashi et al., 1997, 2003),

can elicit a place preference and shift place fields toward the

activation area (Kobayashi et al., 1997, 2003), whereas suppres-

sion can elicit a place avoidance (Lammel et al., 2012; Mamad

et al., 2017) and a shift of place fields away from the activation

area (Mamad et al., 2017). The HPC and VTA have been pro-

posed to form a functional loop, with novelty and goal/reward-

related information sent from HPC to the VTA to influence dopa-

minergic release, in turn leading to LTP-mediated learning and

memory formation in the HPC (Lisman and Grace, 2005; Otma-

khova et al., 2013). In support of this notion, one study found

that optogenetically stimulating VTA-CA1 fibers during spatial

learning both stabilized performance and increased the rate at

which newly formed cell assemblies became reactivated during

subsequent sleep (McNamara et al., 2014). During quiet wakeful-

ness, reward-responsive neurons from the VTA also become

active when reactivations in CA1 reflect recent learning of goal

locations (Gomperts et al., 2015).

The communication between HPC and VTA likely occurs via

many subcortical relay regions. One such region might be the

lateral septum (LS) as a recent study reported that a higher

proportion of place cells in LS relative to CA1 became active at

goal locations, suggesting that goal-related information became

strengthened in the LS (Wirtshafter and Wilson, 2020). Another

likely relay station is the striatum, with principal cells in especially

ventral striatum showing reward-predictive firing or signal

receipt of reward (for reviews, see Cox and Witten, 2019; Sosa

and Giocomo, 2021).

Besides the VTA, the locus coeruleus (LC) also contains dopa-

minergic neurons, and a recent study found that activating LC-

CA1 fibers at the goal induced place cells to move toward this

site, whereas inhibition suppressed such remapping (Kaufman

et al., 2020). However, as has been noted previously, neither of

these manipulations affected task performance, and LC-CA1

stimulation outside of a learned goal location did not elicit a

similar movement of place fields. These results imply that poten-

tial roles of dopamine in influencing spatial representations in the

HF likely depend on concurrent behavior and task demands,

such as the type and phase of navigation.

Lastly, there have been conflicting reports in regard to

whether or not place cell firing represents the value of rewards

at goal locations. In tasks where rewards of different values

(such as magnitudes or type of reward) were predictably given

at different locations, CA1 place cell firing did not incorporate

value-related information (Duvelle et al., 2019; Jin and Lee,

2021; Tabuchi et al., 2003). However, place cells have been re-

ported to represent such information in tasks where rewards are

given probabilistically (Lee et al., 2012; Tryon et al., 2017). One

possibility is that CA1 place cells incorporate information about

rewards when more complex integration is needed. Alterna-

tively, other subregions of CA1, or subfields of the HPC, may

incorporate this information. Indeed, as has been previously

noted, a recent study found that intermediate-to-ventral CA1

place cells incorporated information about changing reward
value, whereas this was not found for dorsal CA1 place cells

(Jin and Lee, 2021).

CONCLUSION

In this review, we have highlighted specific neural computations

relevant for representing a goal location, or a route toward this

site. We have described different goal-related representations

in relation to the different phases in which they were discovered,

but it is important to note that a specific goal-related representa-

tion may be used in more than one phase (e.g., goal-direction

coding may be used during both planning and travel phases).

Furthermore, although we have mainly focused on regions in

the HF, it is important to recognize that this compound structure

does not operate in isolation but is part of a brain-wide network

that supports behavior and cognition via a complex flow of both

local and interregional efferent and afferent projections. Outside

the HF, we have emphasized a role for mPFC in making final

route decisions and exerting top-down control of spatial pro-

cessing in the HPC, and brainstem dopaminergic structures as

having roles in reward-related processes. It is also important to

note that the specific neural dynamics can be influenced by

many different factors, such as the current state of the system

(e.g., the neuromodulatory tone) and the intrinsic capability of

the brain network (e.g., not all navigators are equally adept).

Ultimately, it is these complex interactions, and not any single

brain process or structure, that enable goal-directed navigation.

Although current theoretical models capture some of these fea-

tures, there is as of yet no exhaustive framework of how such a

brain-wide system operates. We provide a summary and predic-

tive framework of the goal-related neural dynamics most sup-

ported by evidence in Figure 7. Next, we discuss outstanding

conceptual questions and remaining challenges.

Outstanding questions and future challenges
Given that goal codes may differ depending on the type and

phase of navigation, we believe it is important for future studies

to make clear the navigational strategies and demands that

have elicited the goal code claimed to have been discovered.

Additionally, one of the main challenges for future research per-

tains to elucidating how goal-related representations become

communicated and transformed throughout the HF and beyond.

In this review, we have mainly focused on brain regions indepen-

dently, as single-region recordings are still the norm. Although

the EC is typically described as a major input structure to the

HF, supplying HPC with information that is sent to the SUB,

which acts as a major output structure, these regions also

receive and send multitudinous other projections, between re-

gions both within and outside the HF (Figure 2; Cappaert et al.,

2015). This fact complicates simple models of how goal codes

might become transformed and communicated between regions

in the HF. Future studies using multi-site recordings or imaging

techniques (e.g., Gauthier and Tank, 2018; Shin et al., 2019;

Tang et al., 2021) in conjunction with detailed inactivation (e.g.,

Ito et al., 2015) and/or tracing (e.g., Kitanishi et al., 2021)

methods will help shed light on these questions.

Another future challenge pertains to the fact that the

commonly described spatial cells in the HF (highlighted
Neuron 110, February 2, 2022 413
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Figure 7. Goal-related representations
predicted during different phases of
navigation based on current findings
The predicted goal-related representations are
illustrated using a place navigation task (see
Figure 1).
(A) When the spatial-planning demand is high,
replay events in CA1 may aid navigation by rep-
resenting routes toward the current goal (e.g.,
Pfeiffer and Foster, 2013; Xu et al., 2019, but also
see Gillespie et al., 2021), using input from CA3
(Middleton and McHugh, 2016; Nakashiba et al.,
2009). Entorhinal cortex (EC) and subiculum (SUB)
may also shift to represent allocentric goal direc-
tion, aiding goal setting and planning (Chadwick
et al., 2015; Shine et al., 2019).
(B) During goal-directed locomotion, theta se-
quences in both CA1 (Amemiya and Redish, 2016;
Kay et al., 2020; Papale et al., 2016; Tang et al.,
2021; Wang et al., 2020) and CA3 (Johnson and
Redish, 2007) may cycle between representing
possible future routes or heading directions,
especially during deliberation and/or uncertainty
but may also preferentially represent the future
route during periods of low uncertainty (Amemiya
and Redish, 2016; Johnson and Redish, 2007;
Papale et al., 2016). Neural representations of
egocentric distance and direction to goal may be
widespread in the hippocampal formation, having

been reported in the hippocampus (HPC), SUB, and EC (e.g., Aoki et al., 2019; Howard et al., 2014; Ormond and O’Keefe, 2021; Sarel et al., 2017; Spiers and
Maguire, 2007). We predict that these representations become especially important in tasks where memory of the goal location guides navigation. Lastly, if goal-
directed routes become repeated (not shown), trajectory-dependent firing (i.e., ‘‘splitter’’ activity) may emerge in CA1 (Frank et al., 2000; Wood et al., 2000), mEC
(Frank et al., 2000), and SUB (Kitanishi et al., 2021), enabling spatial-memory representations of different routes to become orthogonalized, thereby aiding
egocentric-based navigation.
(C) When novel goal-directed routes need to be continuously determined toward a remembered goal, spatial cells do not overrepresent goal locations (e.g., Hok
et al., 2007a; Pfeiffer and Foster, 2013). This phenomenon has instead been reported in some tasks where goal-directed routes become repeated (not shown), for
both mEC grid cells (Boccara et al., 2019) and CA1 (but not CA3; Dupret et al., 2010; Gauthier and Tank, 2018; Hollup et al., 2001b) and SUB place cells (Gauthier
and Tank, 2018). Increased peak firing rate of grid cells and increased spatial tuning of non-grid spatial cells proximal to the goal (Butler et al., 2019), as well as
extra-field firing of CA1 and CA3 place cells (e.g., Duvelle et al., 2019; Hok et al., 2007a) after arrival at the goal, may instead provide a confirmation-of-arrival
signal. CA1 place cells also do not replay the just-taken route after arrival at the goal, because learning specific routes does not aid future navigation in this type
of task. This phenomenon has instead been noted in tasks where optimal routes can be learned over time, leading to route repetition and behavioral stereotypy
(e.g., Ambrose et al., 2016; Bhattarai et al., 2020; Singer and Frank, 2009).
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in: "Spatially tuned neurons in the hippocampal formation")

may not form as functionally discrete cell classes as is often

described, given their propensity for mixed or dedicated tuning

to various spatial and non-spatial variables (e.g., Hardcastle

et al., 2017; Stefanini et al., 2020). Indeed, although allocentric

spatial location (within a specific context) typically appears as

the main factor governing the activity of HPC place cells and

EC grid cells, we have highlighted that these cells can also

show mixed tuning to goal locations (e.g., goal-direction tuning

in place cells, cf. Aoki et al., 2019). It remains a challenge to

control all potential parameters influencing the tuning of spatial

cells, and there is a risk that non-controlled parameters act as

confounds, leading to wrongful interpretations. Besides mixed

tuning, studies have also claimed to find cells with dedicated

tuning related to goal locations (e.g., dedicated goal-direction

cells, cf. Sarel et al., 2017). Although the same interpretative

difficulties exist for these cells, it remains possible that there

exists a distribution of goal tuning in single cells, ranging from

fully dedicated goal tuning to mixed goal-and-‘‘other’’ tuning

to fully dedicated ‘‘other’’ tuning. Whether the mammalian brain

handles these codes differently, such as projecting to different

targets, is currently not known. Besides excitatory principal

cells, both inhibitory interneurons (Turi et al., 2019) and glial

cells in the HPC (Doron et al., 2021) may also aid in represent-
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ing goal-related spatial information, which requires further

investigation.

Relatedly, althoughmost animal studies infer goal-related rep-

resentations from single-cell tuning properties or other microcir-

cuit mechanisms, most human studies rely on macroscale

hemodynamic activations recorded using fMRI. Indeed, in

humans, many neural computations underlying higher-order

cognitive functions and representations are described at the

ensemble, rather than the single-cell, level (e.g., Yuste, 2015).

This suggests that information about goal locations might be

represented across different neural scales. If so, this begs the

question of whether goal representations present in larger-scale

population or smaller-scale multi-neuron activity patterns might

have been overlooked in studies investigating only single-cell dy-

namics, as has been suggested by recent studies (El-Gaby et al.,

2021; Jarzebowski et al., 2022; Nieh et al., 2021).

A fundamental challenge for investigating goal-related repre-

sentations also pertains to the potential nature of such represen-

tations. For example, there might exist some neural activity that

becomes engaged whenever an animal activates a spatial mem-

ory representation of a goal for guiding navigation. This has

received support in both humans studies, as single cells or pat-

terns of fMRI activity normally active at the goal can become re-

active when thinking about this site (e.g., Brown et al., 2016;
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Miller et al., 2013), and in rodent studies, as re-activating place

cells normally active at the goal elsewhere elicits goal-associ-

ated licking behaviors (Robinson et al., 2020). However, if this

mnemonic goal representation becomes activated at varying

phases and times of navigation, and thus locations in the envi-

ronment, the associated neural activity would likely appear ‘‘un-

tuned’’ in both the spatial and temporal domains. Given this

investigative difficulty, it has been suggested elsewhere that

discovered goal representations may only in an indirect manner,

and not in a direct and ongoing basis, represent information

about goals (Poucet and Hok, 2017). Using clever experimental

designs and analyses methods, which allow estimations of

task engagement and cognitive demands on a moment-by-

moment basis, may help unravel when such potentially elusive

goal representations are likely to be activated.

Lastly, it remains a challenge to separate neural representa-

tions relating to the goal itself, from representations relating to

the reward at the goal (e.g., reward identity, expectation of

reward, receipt of reward, etc.)—particularly as it is currently

not known to what extent the mammalian brain differentially rep-

resents these variables (Sosa and Giocomo, 2021). Only a few

animal studies to date have used tasks where a goal location is

separated from a rewarded location (e.g., Duvelle et al., 2019;

Hayashi et al., 2016; Hok et al., 2007a, 2007b, 2013), and similar

approaches may prove beneficial for future studies interested in

investigating goal representations.

Concluding remarks
There has been a wide variety of discoveries in recent years that

provide insights into how theHFmight support spatial navigation.

Evidence suggests that far frombeing a simplemap tobe readout

for downstream regions performing goal coding, activity in theHF

also becomes modulated in a variety of ways by goal locations,

but this may depend on multiple parameters both internal (e.g.,

task engagement and uncertainty) and external (e.g., type of

task and environmental constraints). There is much we stand to

gain in the coming years with advances in methods and with a

deeper appreciation of the behaviors and cognitive demands

involved in different types and phases of navigation.
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Grosmark, A.D., and Buzsáki, G. (2016). Diversity in neural firing dynamics
supports both rigid and learned hippocampal sequences. Science 351,
1440–1443.

Gupta, A.S., van der Meer, M.A.A., Touretzky, D.S., and Redish, A.D. (2010).
Hippocampal replay is not a simple function of experience. Neuron 65,
695–705.

Gupta, A.S., van der Meer, M.A.A., Touretzky, D.S., and Redish, A.D. (2012).
Segmentation of spatial experience by hippocampal q sequences. Nat. Neuro-
sci. 15, 1032–1039.

Gustafson, N.J., and Daw, N.D. (2011). Grid cells, place cells, and geodesic
generalization for spatial reinforcement learning. PLoS Comput. Biol. 7,
e1002235.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser, E.I. (2005). Micro-
structure of a spatial map in the entorhinal cortex. Nature 436, 801–806.
Neuron 110, February 2, 2022 417

http://refhub.elsevier.com/S0896-6273(21)01029-1/sref71
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref71
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref71
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref71
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref72
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref72
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref73
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref73
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref73
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref74
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref74
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref75
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref75
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref75
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref76
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref76
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref76
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref77
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref77
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref78
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref78
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref78
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref78
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref79
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref79
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref80
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref80
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref80
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref81
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref81
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref82
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref82
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref82
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref82
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref83
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref83
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref84
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref84
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref84
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref85
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref85
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref86
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref86
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref86
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref87
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref87
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref88
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref88
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref88
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref89
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref89
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref89
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref90
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref90
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref91
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref91
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref91
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref91
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref92
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref92
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref93
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref93
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref93
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref94
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref94
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref95
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref95
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref95
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref96
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref97
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref97
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref98
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref98
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref98
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref99
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref99
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref99
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref100
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref100
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref101
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref101
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref101
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref101
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref102
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref102
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref102
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref103
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref103
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref104
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref104
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref105
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref105
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref105
https://doi.org/10.1101/793562
https://doi.org/10.1101/793562
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref107
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref107
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref107
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref108
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref108
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref109
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref109
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref110
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref110
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref111
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref111
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref111
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref112
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref112
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref112
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref113
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref113
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref113
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref114
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref114
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref114
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref115
http://refhub.elsevier.com/S0896-6273(21)01029-1/sref115


ll
Review
Hardcastle, K., Maheswaranathan, N., Ganguli, S., and Giocomo, L.M. (2017).
A multiplexed, heterogeneous, and adaptive code for navigation in medial en-
torhinal cortex. Neuron 94, 375–387.e7.

Harten, L., Katz, A., Goldshtein, A., Handel, M., and Yovel, Y. (2020). The
ontogeny of a mammalian cognitive map in the real world. Science 369,
194–197.

Hartley, T., Lever, C., Burgess, N., and O’Keefe, J. (2014). Space in the brain:
how the hippocampal formation supports spatial cognition. Philos. Trans. R.
Soc. Lond. B Biol. Sci. 369, 20120510.

Hasz, B.M., and Redish, A.D. (2020). Spatial encoding in dorsomedial prefron-
tal cortex and hippocampus is related during deliberation. Hippocampus 30,
1194–1208.

Hayashi, Y., Sawa, A., and Hikida, T. (2016). Impaired hippocampal activity at
the goal zone on the place preference task in a DISC1mousemodel. Neurosci.
Res. 106, 70–73.

He, H., Boehringer, R., Huang, A.J.Y., Overton, E.T.N., Polygalov, D., Oka-
noya, K., and McHugh, T.J. (2021). CA2 inhibition reduces the precision of hip-
pocampal assembly reactivation. Neuron 109, 3674–3687.e7.

Higgins, C., Liu, Y., Vidaurre, D., Kurth-Nelson, Z., Dolan, R., Behrens, T., and
Woolrich, M. (2021). Replay bursts in humans coincide with activation of the
default mode and parietal alpha networks. Neuron 109, 882–893.e7.

Hok, V., Chah, E., Save, E., and Poucet, B. (2013). Prefrontal cortex focally
modulates hippocampal place cell firing patterns. J. Neurosci. 33, 3443–3451.

Hok, V., Lenck-Santini, P.-P., Roux, S., Save, E., Muller, R.U., and Poucet, B.
(2007a). Goal-related activity in hippocampal place cells. J. Neurosci. 27,
472–482.

Hok, V., Lenck-Santini, P.-P., Save, E., Gaussier, P., Banquet, J.-P., and Pou-
cet, B. (2007b). A test of the time estimation hypothesis of place cell goal-
related activity. J. Integr. Neurosci. 6, 367–378.

Hok, V., Save, E., Lenck-Santini, P.P., and Poucet, B. (2005). Coding for spatial
goals in the prelimbic/infralimbic area of the rat frontal cortex. Proc. Natl. Acad.
Sci. USA 102, 4602–4607.

Hollup, S.A., Kjelstrup, K.G., Hoff, J., Moser, M.-B., and Moser, E.I. (2001a).
Impaired recognition of the goal location during spatial navigation in rats
with hippocampal lesions. J. Neurosci. 21, 4505–4513.

Hollup, S.A., Molden, S., Donnett, J.G., Moser, M.-B., and Moser, E.I. (2001b).
Accumulation of hippocampal place fields at the goal location in an annular
Watermaze task. J. Neurosci. 21, 1635–1644.

Horner, A.J., Bisby, J.A., Zotow, E., Bush, D., and Burgess, N. (2016). Grid-like
processing of imagined navigation. Curr. Biol. 26, 842–847.

Howard, L.R., Javadi, A.H., Yu, Y., Mill, R.D., Morrison, L.C., Knight, R., Loftus,
M.M., Staskute, L., and Spiers, H.J. (2014). The hippocampus and entorhinal
cortex encode the path and euclidean distances to goals during navigation.
Curr. Biol. 24, 1331–1340.

Igata, H., Ikegaya, Y., and Sasaki, T. (2021). Prioritized experience replays on a
hippocampal predictive map for learning. Proc. Natl. Acad. Sci. USA 118,
e2011266118.
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