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a  b  s  t  r  a  c  t

Although  the  function  of  adult  neurogenesis  is  still  unclear,  tools for  directly  studying  the behavioral  role
of new  hippocampal  neurons  now  exist  in  rodents.  Since  similar  studies  are  impossible  to  do  in  humans,  it
is  important  to  assess  whether  the  role  of new  neurons  in  rodents  is  likely  to be  similar  to that  in  humans.
One  feature  of adult  neurogenesis  that  varies  tremendously  across  species  is  the  number  of  neurons  that
are generated,  so  a key  question  is  whether  there  are  enough  neurons  generated  in humans  to  impact
eywords:
dult neurogenesis
entate gyrus
A3
ircuits
uman
odent

function.  In  this  review  we examine  neuroanatomy  and  circuit  function  in  the  hippocampus  to  ask  how
many  granule  neurons  are  needed  to  impact  hippocampal  function  and then  discuss  what  is known  about
numbers of new  neurons  produced  in  adult  rats  and  humans.  We  conclude  that  relatively  small  numbers
of neurons  could  affect  hippocampal  circuits  and  that  the  magnitude  of  adult  neurogenesis  in adult  rats
and humans  is  probably  larger  than  generally  believed.

Published by Elsevier B.V.
. Introduction

Despite the growing number of studies demonstrating behav-
oral changes following inhibition of adult neurogenesis, the
unction of new granule neurons in the dentate gyrus is still far
rom clear. Logic suggests that any behavioral function of new
eurons will reflect some subset of the behavioral roles for the spe-
ific regions in which they reside, in this case the hippocampus.
lthough there is still much to learn about the behavioral function
f the hippocampus, it is clear that it plays an important role in spa-
ial and episodic memory [1] and that the ventral hippocampus is
mportant for mediating stress responses [2,3]. Very little is known
bout the specific role of the dentate gyrus, but recent studies in
nimals and humans point to a role in disambiguating related stim-
li [4–8], often during emotional learning [9–11]. Potential roles for
ew granule neurons in emotional or spatial behavior are beginning
o emerge, but the data remain very conflicted (see Snyder [12] for

 comprehensive list, online). Eventually, the specific function or
unctions of adult-born neurons will likely become apparent from
odent studies. However, the ultimate goal is to apply the findings
n adult neurogenesis in animal models to our understanding of
uman brain function. Adult neurogenesis does appear to exist in
Please cite this article in press as: Snyder JS, Cameron HA. Could adult hipp
Res  (2011), doi:10.1016/j.bbr.2011.06.024

umans, but definitive experiments can be done in humans only in
are circumstances [13]. While the key experiments directly test-
ng whether new neurons are behaviorally significant in humans
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E-mail address: snyderjason@mail.nih.gov (J.S. Snyder).

166-4328/$ – see front matter. Published by Elsevier B.V.
oi:10.1016/j.bbr.2011.06.024
may  never be performed, it is important to consider this possibil-
ity since it is the impetus for a great amount of animal research. In
this review, rather than interpreting behavioral data from animal
neurogenesis-ablation models, we instead focus on what is known
about neurogenesis numbers, neuroanatomy, and hippocampal cir-
cuitry to assess the likelihood that functions of neurogenesis in
rodents will be relevant for humans as well.

Before assessing the functional relevance of neurogenesis in
rodents it is worth considering whether new neurons would be
expected to perform a similar function in humans. Given the com-
parable anatomy between rodent and human hippocampus [14], it
seems likely that the computational function is conserved. Whether
this translates into similar behavioral functions is unclear; how-
ever consistent roles for the hippocampus in memory across species
[15,16] suggests this to be the case.

Perhaps the biggest source of skepticism toward a functional
role for adult neurogenesis is the perception that too few new
neurons are added in adulthood to have a significant impact. Inter-
estingly, this concern, while valid, is usually raised informally and
rarely in the scientific literature; very few studies have addressed
this issue [17]. It is difficult to generate even a rough estimate the
number of neurons produced in the adult dentate gyrus without
cumulative labeling, which has only been feasible in rats and mice
and even then is cumbersome and rarely done. More importantly,
there is no way to determine how many neurons might be needed
ocampal neurogenesis be relevant for human behavior? Behav Brain

to comprise a functional population without a sophisticated under-
standing of how the neurons function in the circuit, which is still
lacking. While numbers offer a hint about function, for example
loss of cells may  suggest loss of function, even a small popula-

dx.doi.org/10.1016/j.bbr.2011.06.024
dx.doi.org/10.1016/j.bbr.2011.06.024
http://www.sciencedirect.com/science/journal/01664328
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ion of neurons could exert a significant impact. This possibility is
upported by findings in other neuronal populations, e.g., evoked
timulation of individual CA3 interneurons and cortical pyramidal
eurons have been shown to alter large-scale network dynamics
nd even behavior [18–20].

. How do granule neurons contribute to circuit-level
unction?

Whether or not there are enough new neurons to affect hip-
ocampal function depends on how granule cells function at the
ircuit level and how new neurons function within this popula-
ion. Several studies have linked long-term potentiation of synaptic
nput to the dentate gyrus with learning and memory [11,21–24].
ynaptic plasticity has been studied primarily at the medial per-
orant path input, the primary source of spatial and contextual
nformation to the hippocampus, but other inputs, namely the
ateral perforant path and mossy cell inputs are also likely to con-
ribute to hippocampal encoding processes. The lateral perforant
athway, for example, relays nonspatial sensory information and

ts convergence with the medial perforant path in the hippocampus
s thought to underlie the association of the components of episodic

emory [25,26].
One of the most distinctive components of hippocampal cir-

uitry is the sparse mossy fiber-CA3 pathway. The granule cell
opulation shows very sparse activity, with only 2–5% of gran-
le cells active during exploration of any environment [27–29]. In
ddition, each granule cell contacts only ∼10–15 CA3 pyramidal
eurons [30]. This unique dentate gyrus-CA3 circuitry has led to
peculation that this region of the brain performs a pattern sepa-
ation function, whereby similar inputs arriving via the entorhinal
ortex are given more distinct representations, in order to better
istinguish related events during memory encoding and retrieval
4,31]. Importantly, the specialized contacts between granule cells
nd CA3 pyramidal cells, the giant mossy terminals, are so powerful
hat a single granule cell is able to trigger firing in downstream CA3
argets [32]. Because of this “detonator” action, and the extensive
xcitatory collateral connections between CA3 pyramidal neurons
33,34], a single granule neuron can potentially have a large impact
espite representing only a tiny fraction of the population. Consis-
ent with the disproportionate impact of small numbers of granule
ells, learning deficits have been observed following overexpres-
ion of calbindin in only ∼1% of dentate granule neurons [35]. If
dult-born granule cells are more likely to be activated than mature
ranule cells, they could make up a significant proportion of the
ctive granule cells at any given time, even if their numbers are
mall. Several lines of evidence suggest that adult-born granule
ells are in fact reliably activated [36] and more likely to undergo
ong-term potentiation [37–41] in response to electrophysiological
timulation in vitro. Furthermore, they are up to five times more
ikely to be activated than older granule cells by hippocampus-
ependent behaviors [42–45].

. Do immature granule neurons have a unique function?

In the past several years, it has become clear that adult-
enerated granule neurons form synaptic connections and
ntegrate into the hippocampal circuit. In rodents, adult-born neu-
ons receive synaptic inputs from the perforant path that can
e detected morphologically [46,47] and electrophysiologically
41,48–50]. The new neurons show immediate-early gene (IEG)
Please cite this article in press as: Snyder JS, Cameron HA. Could adult hipp
Res  (2011), doi:10.1016/j.bbr.2011.06.024

xpression, an indirect indication of synaptic responses, in response
o specific aspects of behavioral stimulation [42,51–54] (see also
nyder et al., this issue) and contribute to long-term potentiation at
he population-level [37,38,55,56]. Less is known about the output
 PRESS
rain Research xxx (2011) xxx– xxx

of new neurons, but retrograde tracer studies [57–59] and mor-
phological investigations at the level of the light [47] and electron
microscope [60,61] suggest that new neurons form functional effer-
ent synapses. More directly, driving channel rhodopsin-expressing
new neurons with light generates postsynaptic currents in down-
stream CA3 neurons [60]. Taken together, these studies clearly
demonstrate that individual adult-born granule cells can function
as neurons. But they do not address the potential impact of adult-
born granule neurons on hippocampal circuits. One key issue for
determining whether adult neurogenesis could impact hippocam-
pal circuits is how these late-born granule cells function relative
to the rest of the granule cell population. Do they behave just
like the granule neurons born during development, and serve to
increase the size of the population, or do they have unique proper-
ties that confer a function distinct from that of pre-existing granule
cells?

Findings from several studies point to similar electrophysiolog-
ical properties in granule cells born in adulthood once the new
granule cells have reached maturity [62–64].  This electrophysi-
ological similarity is consistent with the nearly identical marker
expression in mature granule cells, regardless of birth date, as well
as their intermixing within the granule cell layer. Moreover, some
studies of IEG activation suggest equivalent rates of behavioral acti-
vation in granule neurons born in development and adulthood [65]
(but see below), further supporting an equivalent function for these
two populations.

However, an accumulation of recent evidence indicates that
between the time that they acquire synapses and the time they
reach full maturity, young granule neurons in the adult dentate
gyrus have very different electrophysiological properties from the
granule cell population as a whole, suggesting the possibility that
they may  serve a unique role in hippocampal signal processing.
New granule neurons have a lower threshold for undergoing medial
perforant path long-term potentiation [37–41,55].  This enhanced
plasticity at the population level has been consistently observed
– in both mice and rats, and using multiple methods for reduc-
ing neurogenesis – providing strong evidence that new neurons
contribute uniquely to hippocampal circuit function. In addition,
immature granule cells in the adult, like most developing neu-
rons, are depolarized by GABA [66] and are therefore less likely
to be inhibited by the strong GABAergic inhibition in the den-
tate gyrus [67]. Young neurons also appear to be more excitable
than mature neurons [36,39]. This enhanced excitability is coupled
with increased and more variable spike latency [36], suggesting
that young neurons may  differ from mature neurons in their firing
patterns, a feature believed to be critical for encoding of experi-
ence by the dentate gyrus [29]. In addition, since low frequency
firing of mossy fibers typically recruits inhibitory interneurons,
while higher firing rates activate more CA3 pyramidal neurons
[68], differential firing of young neurons could introduce a new
mechanism by which the balance of CA3 excitation and inhibition
is shifted during behavior. A circuit-level role is also supported
by recent in vivo data showing that ablation of new neurons
with either genetic or radiological approaches reduces the den-
tate gyrus synaptic response to perforant path stimulation and
increases the magnitude and synchrony of spontaneous gamma
bursts [69]. Given the role of oscillatory activity in shaping plas-
ticity and behavior-specific neuronal firing [70], these findings
suggest adult-born neurons may  play a significant role in coor-
dinating hippocampal network function. Finally, some evidence
suggests that young granule neurons may be capable of syn-
thesizing and releasing GABA in addition to glutamate [71,72],
ocampal neurogenesis be relevant for human behavior? Behav Brain

suggesting a unique neurotransmitter profile that could provides
yet another mechanism through which young granule cells could
function very differently from the rest of the granule cell popula-
tion.

dx.doi.org/10.1016/j.bbr.2011.06.024
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found ∼50,000 labeled cells in 4-month-old rats that were injected
with a subsaturating dose of BrdU for 12 days, consistent with our
ARTICLEBR-7166; No. of Pages 7
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Studies examining IEG expression at a population level, which
an bridge the gap between properties of adult-born neurons at

 single-cell level and function in a behaving animal, also suggest
istinct activation of young granule cells. IEGs such as Fos, zif268,
nd Arc are expressed by neurons in an activity-dependent fashion
nd show population-level patterns of activity similar to measures
f in vivo spiking [73,74],  suggesting that IEG analysis and elec-
rophysiology are comparable and complementary in their ability
o identify neurons involved in representing or encoding informa-
ion. Adult-born granule neurons in rats undergo a peak in their
if268 expression in response to spatial water maze training at 3
eeks of age [43], suggesting an enhanced contribution of young
eurons to behavior. This peak has not been observed in all studies
65,75], which could reflect differences between IEGs or functional
ifferences between species. Indeed, in mice, peak responsivity of

mmature neurons is revealed only after accounting for the fact
hat not all new neurons are functional at immature stages [43]. In
ddition, emerging data suggests that young granule neurons and
ature granule neurons are maximally activated by different expe-

iences or different aspects of experience. For example, immature
eurons, unlike the general granule cell population, are primarily
ctivated in the ventral dentate gyrus during water maze learning,
onsistent with a specific role in regulating the response to stress
42]. Adult-born neurons are also particularly activated by retrain-
ng at remote time points [52] and by training in multiple contexts
n the spatial water maze (Snyder et al., this issue).

The studies above provide compelling evidence that young,
resumably immature, granule neurons have different properties
han older granule cells, consistent with the possibility that young
ranule cells make a unique contribution to hippocampal circuits.
lternatively, it is possible that the unique physiological proper-

ies of young granule cells simply reflect synaptic activation that
s required for neuronal maturation but does not actually con-
ribute to circuit function. That is, the new granule cells may  only
ruly integrate into hippocampal circuits and contribute to network
ctivity once they are fully mature and identical to existing gran-
le cells. However, a third possibility is that granule cells born in
dulthood never become truly identical to those born in develop-
ent. One intriguing study has reported that even 5-month-old

dult-born neurons, i.e. assumed to be well beyond their immature
lastic stage, are more likely than the general population to express
rc following exploratory behavior [45]. Similarly, granule neu-
ons located in the deepest aspect of the granule cell layer, which
re primarily adult-born though not necessarily immature [76,77],
re preferentially activated during water maze learning [42]. Den-
ritic architecture varies with position in the granule cell layer
78–81], suggesting that granule cells born in adulthood, located
eep in the granule cell layer, have a different morphology from
hose born during development even after they are mature. Since
endritic architecture plays a role in the integration and process-

ng of information [82,83],  these morphological differences could
ead to permanent differences in the way adult-born granule cells
ontribute to behavior.

Future studies will be needed to determine whether adult-born
ranule neurons do in fact have a function distinct from that of
xisting granule neurons and whether this role is played by young
eurons with immature features or by mature adult-born neurons
hat have different properties from granule cells generated during
evelopment. The answers to these questions will influence the
umbers of neurons necessary to impact function. If new granule
ells function like existing cells, and their role is to increase the
opulation, they need to be added in significant numbers relative
o the existing granule cells. If, on the other hand, young granule
eurons function as a distinct population, they could potentially
Please cite this article in press as: Snyder JS, Cameron HA. Could adult hipp
Res  (2011), doi:10.1016/j.bbr.2011.06.024

mpact function even if they are few in number, in the manner of
mall but powerful subtypes of interneurons.
 PRESS
rain Research xxx (2011) xxx– xxx 3

4. How many new neurons are produced in rodents and
humans?

The perception that only small insignificant numbers of new
neurons are added in adulthood likely comes from the idea that
a stable population of neurons is necessary to preserve memories
[84,85]. This idea is reinforced by immunohistochemical images,
which typically show new neurons labeled using a small number
of BrdU injections or transiently expressed endogenous markers
of immaturity. These images therefore provide only a snapshot
of neurogenesis, labeling only those neurons born within a few
hours (with BrdU) or a few weeks (with markers of immature neu-
rons such as doublecortin). Even retroviral and genetic methods for
labeling new neurons, which might be expected to cumulatively
label newly generated neurons, frequently label only a fraction of
the dividing cells and stop labeling additional neurons after a period
of time, perhaps due to lingering uncertainty about the identity and
targeting of true stem cells [86,87]. To directly assess the magni-
tude of adult neurogenesis, we calculated cumulative numbers of
neurons born in the adult rat dentate gyrus. We  started with cell
proliferation rates at different ages based on 2 h post-BrdU survival
data from previous studies in our lab [17,88,89],  then calculated
the number of new cells generated per day based on the number
generated in young adults [17] and evidence that the cell cycle is
unchanged with age [88]. We  then integrated across time to obtain
total numbers of accumulated new neurons, accounting for the
fact that approximately half of all neurons die during the month
after their birth [43,76,90].  Since adult-generated neurons may  play
important functional roles when they are young, and have different
properties from existing granule cells (see above), we generated a
curve that illustrates the number of immature neurons (8 weeks
and younger) present at various times throughout the life of the rat
(Fig. 1a). These calculations reveal that the number of young gran-
ule cells in 3-month-old rats is quite large, i.e., greater than 650,000
cells. The curve also shows the well-established decrease in adult
neurogenesis with age [91,92], suggesting that if young neurons
play a role distinct from that of existing granule neurons, this func-
tion is likely to be inhibited with age. However, it is possible that the
plastic period may  be extended in older animals, offsetting this loss
to some extent [44]. Moreover, even in rats greater than 2-years-
old, well past the life expectancy, there are more than 50,000 young
granule cells in the dentate gyrus. Since there are approximately
500,000 CA3 pyramidal cells [93], and each granule cell contacts
11–15 pyramidal cells [30], this suggests that even in the oldest
animals, each CA3 pyramidal cell could potentially receive a direct
contact from a young granule cell.

If adult neurogenesis exists to increase the size of the granule cell
population, or if adult-born neurons function differently regardless
of their level of maturity, then the key question is how many addi-
tional neurons they add. To address this question, we calculated the
total number of adult-born neurons in rats of different ages (Fig. 1b).
Since adult-born granule neurons more than 4 weeks old rarely die
[76,94], the total number of adult-born cells grows with age. By 6
months, the cumulative number of adult-born neurons is equal in
size to the 359,000 afferent neurons in layer 2/3 of the entorhinal
cortex (using numbers from [95]) and nearly as large as the efferent
population of CA3 pyramidal neurons. The population of adult-born
neurons, despite the diminishing rate of adult neurogenesis, even-
tually grows more than twice as large, reaching nearly 1,000,000
cells, or 40% of the total population by the end of the animal’s life
(Fig. 1b). It is worth noting that, while no studies have cumulatively
labeled new neurons for such extended periods, one study has
ocampal neurogenesis be relevant for human behavior? Behav Brain

predictions [96]. These numbers of adult-born neurons clearly seem
large enough to have a major impact on the circuitry of the den-

dx.doi.org/10.1016/j.bbr.2011.06.024
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Fig. 1. Estimates of adult neurogenesis numbers in the rat hippocampus. (a) The estimated number of young (≤8-week-old) granule neurons, at various times throughout
adulthood. This number decreases significantly due to the reduction in adult neurogenesis with age. Numbers were calculated using bilateral BrdU+ cell counts 2 h after
injection (proliferating population) at 5-weeks-old [17], 9-weeks-old [17,88], 5-months-old [89], 10-months-old [88], and 24-months-old [89]. Counts were converted to
numbers of cells generated per day by assuming that 4912 BrdU+ cells give rise to 9089 cells/day [17] and that this ratio is constant for all ages because the cell cycle time is
constant across age [88]. The number of cells generated each day was  multiplied by 7 to calculate the number generated each week. To account for cell death during maturation
the  number of cells born in one week multiplied by the % surviving for that week [43]. For week 1 it was  assumed that all cells survived, since continued proliferation and
dilution of BrdU beyond the limit of detection make it difficult to estimate cell death during this period [76]. After 4 weeks, it was assumed that death is complete and that
62%  of cells born more than 4 weeks earlier survived [43]. Cells surviving during each of the 8 weeks were summed to estimate the total number of cells ≤8-week-old. (b) The
estimated cumulative number of granule neurons born in adulthood throughout the lifespan. Numbers were calculated by adding the numbers of <4-week-old (still dying)
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ate gyrus. It is worth noting that several studies employing genetic
abeling techniques have estimated that the cumulative contribu-
ion of adult neurogenesis to the granule cell population plateaus
arlier (by 4–6 months of age) and is significantly smaller than our
stimates (1–10%) [86,97,98].  This discrepancy could reflect differ-
nces between mice and rats or the labeling of transit amplifying
opulations that may  not generate new neurons indefinitely. Mod-
ling net neurogenesis based on Ki67+ labeling across the lifespan
n mice has produced intermediate estimates [99].

To extend the rodent data into humans we can assess whether
dult neurogenesis occurs in humans, compare its magnitude
cross species, and determine whether the process is qualita-
ively similar to that of rodents. For many obvious reasons, the
uman data is limited. However, a small number of studies have
merged over the last 10 years to enable us to begin to assess
hether neurogenesis may  contribute to human brain function

s it does in rodents. Endogenous markers of immature neu-
ons such as doublecortin and TUC-4 have been used to identify
ew neurons born in the adult human dentate gyrus and to

ook for changes in neurogenesis in several pathological condi-
ions [100–102]. Although these endogenous markers appear to
abel neuronal populations that are not newly born in some brain
egions [103], in the dentate gyrus they are exclusively expressed
y newborn neurons in the rodent [96,104,105] and show every

ndication of labeling new neurons in humans based on the sim-
larity of the location and morphology of labeled cells to that
n rodents [106] (keeping in mind that morphology can change
epending on the fixation delay in post-mortem tissue [107]).
he number of doublecortin-expressing cells in the human den-
ate gyrus shows a dramatic reduction in new neurons with age
106]; this parallel with the age-related decreases in rodents and
on-human primates [92,108,109] provides evidence that the reg-
lation of adult neurogenesis in humans is similar to that in other
pecies. However, since doublecortin and TUC-4 are lost as cells
ature or die, they provide little information on the numbers

f neurons that survive to maturity. The number of mature neu-
ons produced in the adult human dentate gyrus could be much
Please cite this article in press as: Snyder JS, Cameron HA. Could adult hipp
Res  (2011), doi:10.1016/j.bbr.2011.06.024

arger than expected based on the relatively small doublecortin-
xpressing population if maturation and loss of doublecortin is
elatively rapid and/or the survival rate of young neurons is rel-
tively high.
, assuming a linear decline in cell proliferation between adjacent tested ages.

BrdU and its analogues are the only markers of new neurons
that can be followed for weeks, allowing conclusive identification
of newborn neurons that survive and mature. These markers are
very difficult to use in human studies, however, since they must
be injected into living subjects. There is to date only one study of
BrdU-labeled cells in the adult hippocampus, by Eriksson et al. [13],
who examined brains containing BrdU used for diagnostic purposes
in non-brain cancer patients. This study provides solid evidence
that adult neurogenesis occurs in humans by demonstrating that
BrdU+ cells are located in the subgranular zone of the dentate gyrus,
the same region in which new neurons reside in rodents and non-
human primates, 6 months to 2 years after BrdU administration in
adults. In addition, the quantitative data presented in the study sug-
gest that adult neurogenesis may occur at rates at or above those
in rodents. The human subjects received a very small dose of BrdU
compared to typical rodent studies; each subject was  given 250 mg,
or roughly 3.3 mg/kg (assuming average human body weight of
75 kg). This dose is 15–60 times lower than the 50–200 mg/kg gen-
erally used in rodent studies, but simple conversions adjusting only
for weight differences do not usually provide equivalent doses in
different species. One rule for translating pharmacological doses
across species, based on normalizing body surface area, divides
mouse doses by 12 and rat doses by 6 to give an equivalent human
dose [110]. According to this general rule, the human dose in the
Eriksson study may  be equivalent to 40 mg/kg in mice or 20 mg/kg
in rats – doses that fail to detectably label 40% and 90% of S-
phase cells, respectively, using the immunohistochemical methods
employed in these studies [17,111]. However, the pharmacokinet-
ics of a thymidine analogue that has been extensively studied,
azidothymidine, show that similar plasma levels are achieved at
doses only 50% higher in mice than in humans [112–114], suggest-
ing that the BrdU dose used in the Eriksson study may be equivalent
to vanishingly low doses in rodents. Given this low dose of BrdU it
is remarkable that ∼25–325 BrdU+ cells/mm3 were found in the
in the human subgranular zone and granule cell layer. It should
also be noted that the subjects in this human study were termi-
nally ill, the stress of which may  inhibit adult neurogenesis, and
ocampal neurogenesis be relevant for human behavior? Behav Brain

were advanced in age (mean = 64 years). Densities of labeled cells
in middle-aged rats fall within this same range after adjusting for
multiple BrdU injections [44,92], suggesting that the actual num-
ber of new neurons in humans may  be significantly higher than

dx.doi.org/10.1016/j.bbr.2011.06.024
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n rats. Eriksson et al. also co-immunostained BrdU+ cells for phe-
otypic markers, and found that approximately 25% of BrdU+ cells
xpressed neuronal markers. This is lower than the proportion of
rdU+ cells that label with NeuN in many young adult rodent stud-

es but agrees with findings showing reduced NeuN expression in
lder animals [115–119], perhaps due to prolonged maturation
ith age [47,120,121]. Alternatively, it could reflect conservative

abeling cutoffs [43], low signal to noise in NeuN staining due
o species differences in expression [43] or use of formamide in
taining [122], and/or species-dependent differences in matura-
ion [43]. It is worth noting that other studies have quantified
spects of neurogenesis in non-human primates and humans and,
ollectively, have reported tremendous variation in the magnitude
f neurogenesis (comprehensive lists compiled online, primates:
123], humans: [124]). While comparisons between the rodent and
uman literature provide some hints about the amount of neuro-
enesis in humans, numerous methodological differences between
he studies preclude solid conclusions. Technological advances will
opefully provide better estimates of the rate of neurogenesis in
umans in the near future.

. Are these numbers potentially sufficient to exert a
unctional impact in humans?

We  feel that the answer to this question is an overwhelming
yes”. The number of new neurons added to the adult dentate gyrus
s likely to be large enough to make an impact on hippocampal
unction both in rodents and in humans. While it is not clear what
ehavioral role new neurons play, the unique properties of adult-
orn neurons may  enable them to process information in novel
ays or serve as naïve substrates for information storage across all
ammalian species.
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