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Abstract
Oligodendrocytes and Schwann cells are highly specialized glial cells
that wrap axons with a multilayered myelin membrane for rapid im-
pulse conduction. Investigators have recently identified axonal signals
that recruit myelin-forming Schwann cells from an alternate fate of sim-
ple axonal engulfment. This is the evolutionary oldest form of axon-glia
interaction, and its function is unknown. Recent observations suggest
that oligodendrocytes and Schwann cells not only myelinate axons but
also maintain their long-term functional integrity. Mutations in the
mouse reveal that axonal support by oligodendrocytes is independent
of myelin assembly. The underlying mechanisms are still poorly un-
derstood; we do know that to maintain axonal integrity, mammalian
myelin-forming cells require the expression of some glia-specific pro-
teins, including CNP, PLP, and MAG, as well as intact peroxisomes,
none of which is necessary for myelin assembly. Loss of glial support
causes progressive axon degeneration and possibly local inflammation,
both of which are likely to contribute to a variety of neuronal diseases
in the central and peripheral nervous systems.
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PNS: peripheral
nervous system

CNS: central nervous
system
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INTRODUCTION

In all complex nervous systems (except for those
of the coelenterates) neuronal cells coexist with
glial cells. This finding suggests that neuron-
glia interactions are principal features of neural
function. For example, in the Drosophila nervous
system, glial cells form diffusion barriers, cover
neuronal cell bodies, and align with axons in
the peripheral nervous system (PNS). Indeed,
the glial cells that wrap anterior and posterior
commissural fibers in Drosophila (Figure 1) re-
semble the nonmyelin-forming Schwann cells
of vertebrates because they associate with mul-
tiple axons without myelinating them (Klämbt
et al. 2001). Although the numerical glia-to-
neuron ratio is low in the ganglia and fiber tracts
of invertebrates, this ratio has increased as the
vertebrate nervous system has grown larger. Al-
though glial cell numbers may have been over-
estimated in the past (Herculano-Houzel &
Lent 2005), glia clearly outnumber neurons in
the primate brain (Sherwood et al. 2006).

Researchers generally assume that glial cells,
which lack electrical excitability, support and
modulate neuronal function, but what exactly
is meant by the term support is still poorly
understood. Moreover, experimental in vivo
evidence for the known functions of glia, ex-
cept for myelination (see below), is remark-
ably scarce. Research has identified few clearly
microglia- or astrocyte-specific human dis-
eases. Astrocytes have been implicated in form-
ing the blood-brain barrier (Hawkins & Davis
2005), neurotransmitter reuptake (Hertz &
Zielke 2004), metabolic coupling of synaptic ac-
tivity (Magistretti 2006), and injury response.
Whereas astrocytes are the predominant glial
cell type in the mammalian cortex, the largest
proportion of all central nervous system (CNS)
glia is oligodendrocytes, which are most abun-
dant in (but not restricted to) white-matter
tracts.

In this review, we first compare the develop-
ment and morphology of oligodendrocytes with
Schwann cells in the peripheral nervous system
(PNS). This will lead to a discussion of the first
functional aspect of axon-glia interactions, the
relevant axonal signals that initiate and regulate
glial cell differentiation and myelination, pro-
cesses with clear differences between the PNS
and CNS. Here, key signaling molecules have
recently been identified, including neuregulins
and neurotrophins. Axonal electrical activity is
also a likely regulator of glial ensheathment. In
the second part of this review of axon-glia in-
teractions, we review unexpected findings re-
vealing that long-term axonal function and sur-
vival depend on the association of axons with
ensheathing glial cells, not necessarily on the
myelin sheath. Although it is mechanistically
least understood, the view emerges that glial
cell ability to support axons in the brain white
matter could have a major impact on the course
of human neurological and psychiatric diseases.

MYELINATING GLIAL CELLS

Oligodendrocytes are known for their role
in axon myelination, which enables rapid
saltatory impulse propagation. In fact, the
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Figure 1
Electron micrograph of a peripheral nerve in Drosophila (panel a provided by C. Klämbt), showing glial cell processes that interdigitate
and engulf single axons. The relationship is strikingly similar to that of nonmyelin-forming Schwann cells that engulf small-caliber
C-fiber axons in the mouse sciatic nerve (b). Scale bar, 1 μm.

electrophysiology of myelinated nerves is one
of the best understood concepts of nervous sys-
tem function. Moreover, some human neuro-
logical diseases are caused primarily by myeli-
nating glial cells, such as leukodystrophies, in
the CNS. In the PNS, Schwann cells out-
number the axons that they ensheath be-
cause each cell is associated with a short ax-
onal segment. Schwann cell dysfunctions lead
to demyelinating neuropathies, which include
some frequently inherited neurological disor-
ders. One emerging concept indicates that pri-
mary myelin diseases can affect in many ways
the functional integrity and survival of the ax-
ons ensheathed by defective glial cells. As vi-
sualized in different myelin mutant mice, glia’s
failure to support axon function and survival is
surprisingly not proportional to the more obvi-
ous structural defects of the ensheathment.

Myelin extends from the glial plasma
membrane, which spirally enwraps an axonal
segment and is condensed into a multilamellar-
compacted sheath, typically depicted by elec-
tron microscopy in cross-sections (Figure 1b).

Although cell biologists have understood for
many years the ultrastructure of mature
myelin and the relationship between axons
and Schwann cells or oligodendrocytes, knowl-
edge about the spatiotemporal development of
myelin as an extracellular organelle is still elu-
sive. Although axon-glial contact, axonal en-
gulfment, and the first rounds of spiral en-
sheathment can be documented, all later stages
of myelination are difficult to capture by light
or electron microscopy, including the dynamics
of myelin membrane deposition and membrane
compaction, as well as the formation of nodal
specializations and paranodal junctions.

Whereas glial engulfment of axons is, in evo-
lutionary terms, an early feature of complex
nervous systems, myelination is a late inven-
tion. In fact, spiral membrane ensheathment
of axonal segments with ion channel clustering
at node-like structures has been independently
developed in vertebrates and several inverte-
brate clades (Davis et al. 1999, Schweigreiter
et al. 2006, Hartline & Colman 2007). This
finding suggests that glials have been repeatedly
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recruited from a more ancestral, poorly defined
function within axon bundles into a new role of
providing a multilayered membrane ensheath-
ment for saltatory impulse propagation.

Although the morphological design and
ultrastructure of multilayered glial ensheath-
ments vary between different (invertebrate and
vertebrate) species, some basic features are con-
served. For example, large axons are the first to
recruit glial wrappings, and these receive more
layers than do smaller axons. In vertebrates,
this well-preserved ratio between axonal diam-
eter and myelinated fiber diameter was rec-
ognized many years ago (Donaldson & Hoke
1905, Friede 1972) and is now frequently used
as a measure (termed the g-ratio) to quantify
myelination in development and disease states.
These comparisons across species strongly sug-
gest that axon-derived signals recruit glial
cells to differentiate into myelinating glia and
that this axonal signal is quantitatively related
to axon size. Such a recruitment must have
occurred independently several times during
evolution.

In vertebrates, all myelinating glial cells
share key subcellular and ultrastructural fea-
tures, including the spiral ensheathment of ax-
ons, nodes, and paranodal specializations, and
tight membrane compaction, suggesting a sin-
gle developmental origin of myelin in the ver-
tebrate lineage. Only the most ancestral surviv-
ing species of fish (e.g., cyclostomes, such as
lamprey or hagfish) have unmyelinated nerves
(Bullock et al. 1984), whereas beginning with
cartilaginous fish, all present-day vertebrates
exhibit myelinated central and peripheral ax-
ons. In the CNS, multipolar oligodendrocytes
generally interact with multiple axons. In white-
matter tracts, only larger axons are myelinated,
whereas in the optic nerve or within the cor-
tex, for example, oligodendrocytes can also
ensheath very small axons. In the PNS, myeli-
nation begins when Schwann cells sort out sin-
gle axons from the bundle of multiple axons
that they are engulfing ( Jessen & Mirsky 2005).
Typically, only axons larger than 1 μm in di-
ameter are sorted, and myelination itself in-
creases axonal diameter (de Waegh et al. 1992).

Smaller axons remain engulfed by nonmyeli-
nating Schwann cells and stay grouped together
in Remak bundles, with thin glial processes in-
terdigitating each axon, a process remarkably
similar to the glial engulfment of axons in in-
vertebrates such as Drosophila (Figure 1a).

Vertebrate myelin evolved ∼600 million
years ago and has allowed fish to develop fast
escape reflexes, leading to the genetic selection
of both myelinated prey and myelinated preda-
tors. Thus, myelination must have been an im-
portant driving force in early vertebrate evo-
lution and has become essential for all freely
moving terrestrial vertebrates. Its vital function
becomes obvious in animals that fail to make
myelin and in myelin disease in humans. Natu-
ral mouse mutants with central or peripheral
dysmyelination suffer from severe motor de-
fects, ataxia, and seizures and die prematurely,
often just days or weeks after birth. In humans,
the absence of myelination can be observed in
leukodystrophies and neuropathies, two het-
erogenous groups of neurological disorders. In
the primate nervous system, the integrity of
myelin is subject to clear degenerative changes
with aging (Sandell & Peters 2003).

Novel mouse mutants have recently been
generated that harbor oligodendrocyte-specific
gene defects and are fully myelinated but that
later develop progressive axonal loss and die
prematurely. These models provide in vivo
proof that myelinating glial cells preserve axon
function and survival, independent of myelina-
tion. Moreover, human patients with peripheral
neuropathies have recently been identified who
suffer, by genetic criteria, from a primary
Schwann cell disease, but exhibit mostly clin-
ical features of axonal degeneration in ap-
parently well-myelinated nerves. As detailed
below, novel disease models may help bet-
ter define the supportive function of axon-
ensheathing glia that is independent of myeli-
nation. Nonmyelinating (Remak) Schwann
cells may represent an ancestral type of glia that
has been preserved in the mammalian PNS.
Exploring Remak cell function will lead to a
better understanding of fundamental axon-glia
interactions. The evolutionary steps leading to
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myelination are difficult to study. However, a
related question is how the two alternate fates
of present-day Schwann cells are molecularly
controlled (i.e., the fate of a myelinating ver-
sus nonmyelinating cell). Recent experiments
involving transgenic and mutant mice revealed
that the axonal growth factor neuregulin-1
(NRG1) plays an important role not only in this
developmental decision, but also in the subse-
quent regulation of myelin membrane growth.

Through axonal growth factor expression,
vertebrate neurons recruit immature glial cells
to multiply and to follow and ensheath the
growing axonal process to secure long-term
glial support. This vital function is still required
when the ensheathing cells begin to wrap the
axonal segments with a multilayered myelin
membrane for rapid impulse propagation.

AXONAL SIGNALS THAT
RECRUIT GLIAL CELLS

In the PNS, the developmental program of
glial cells is controlled entirely by axonal sig-
nals, from the proliferation of the neural crest–
derived precursor cells to the differentiation
of mature myelin-forming Schwann cells (for
a detailed review, see Jessen & Mirsky 2005).
The dependency on axonal influences is also
a feature of developing oligodendrocytes but is
much less pronounced compared with Schwann
cells in corresponding in vivo (axonal lesion)
and in vitro (neuron-glia coculture) studies.
This difference and the distinct response of
cultured oligodendrocytes and Schwann cells
to neuronal growth factors (see below) suggest
that CNS glial cells have acquired additional
mechanisms to control myelin. Several obser-
vations support the idea that neurons have re-
cruited ensheathing glial cells to obtain glial
support and myelination (see Colello & Pott
1997).

That axons control myelination, and thus
exert visible control over Schwann cell behav-
ior, was first suggested by nerve-grafting ex-
periments. Classical studies by Aguayo and col-
leagues showed that Schwann cells that cannot
make myelin in unmyelinated nerves can nev-

NRG1: neuregulin-1

ertheless do so in a remyelination experiment
(i.e., when confronted with regenerating axons
from a myelinated nerve as a tissue graft). Thus
axonal signals rather than Schwann cell lin-
eage must be responsible for myelination con-
trol (Aguayo et al. 1976, Weinberg & Spencer
1976).

Peripheral axons more than 1 μm in diame-
ter are typically myelinated (Peters et al. 1991),
whereas smaller C-fiber axons remain unmyeli-
nated and grouped in Remak bundles, suggest-
ing that myelination is a function of axon size
(Murray 1968, Smith et al. 1982). Voyvodic
(1989) experimentally showed a direct correla-
tion between axon size and myelination, which
strongly suggested a causal relationship. When
unmyelinated postganglionic nerves of the sali-
vary gland were surgically hemisected, the sur-
viving axons were left with approximately twice
the normal target size and neurotrophic sup-
port. This resulted in neurotrophin-induced
axon growth, and the increase of axonal diam-
eter was sufficient to recruit resident Remak
Schwann cells for myelination. The most likely
explanation was that the number of signaling
molecules from the enlarged axonal surface in-
creased, reaching a critical threshold level for
myelination, but these studies could not iden-
tify the responsible signals.

Numerous in vitro studies have demon-
strated that cultured Schwann cells respond to
axonal signals, such as contact-dependent mi-
togens (Salzer et al. 1980). Pure glial cultures
that myelinate axons in vitro can be experimen-
tally manipulated and have led to the identifica-
tion of axon-derived regulatory factors (see be-
low) and second messenger pathways ( Jessen &
Mirsky 2005). Oligodendrocytes also respond
to axonal signals (Goto et al. 1990, Kidd et al.
1990, McPhilemy et al. 1991, Scherer et al.
1992), but their differentiation in culture also
proceeds in the absence of neuronal signals
(Dubois-Dalcq et al. 1986, Ueda et al. 1999).
Moreover, myelination by oligodendrocytes is
regulated by a balance of promoting and in-
hibiting factors (Coman et al. 2005, Rosenberg
et al. 2006). For example, axonal ensheathment
by oligodendrocyte processes is inhibited by the
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presence of PSA-NCAM and L1 on the axon
(Charles et al. 2000). The extent to which the
downregulation of these inhibitors is a physio-
logical switch and rate-limiting step of myelina-
tion is not known. Neurons may utilize a bat-
tery of signals to control the mitotic division
and differentiation of associated glial cells that
provide long-term axonal support. Later in de-
velopment, axonal signals specifiy which axons
are myelinated and help match myelin sheath
thickness to axon caliber.

Neuregulins

NRG1 is part of a family of neuronal growth
factors that stimulate myelinating glial cells in
vitro and in vivo. NRG1 is also found outside
the nervous system and is essential for normal
mammary and cardiac development. With dif-
ferent start sites for transcription and alterna-
tive mRNA splicing, the NRG1 gene codes for
at least 15 different proteins. These proteins
share an epidermal growth factor–like signal-
ing domain that is necessary and sufficient for
the activation of ErbB receptor tyrosine kinases,
which are expressed by oligodendrocytes and
Schwann cells (for details, see Adlkofer & Lai
2000, Falls 2003, Esper et al. 2006, Nave &
Salzer 2006).

NRG1 binds to ErbB3, a membrane protein
lacking a kinase domain, or to ErbB4 but not di-
rectly to ErbB2 receptor tyrosin kinase (which
must heterodimerize with either ErbB3 or
ErbB4). Three NRG1 subgroups have been de-
fined on the basis of their amino termini; NRG1
type I (also termed heregulin, neu differentia-
tion factor, or acetylcholine receptor–inducing
activity) and NRG1 type II (glial growth fac-
tor) were either secreted or shed from the axon
following proteolytic processing. These factors
have an immunoglobulin-like domain, bind to
heparan sulfate proteoglycans in the extracel-
lular matrix, and thus act in a paracrine fash-
ion. In contrast, NRG1 type III (also termed
SMDF) is defined by a second transmem-
brane (cysteine-rich) domain, remains associ-
ated with the membrane after proteolytic cleav-
age, and serves as a juxtacrine axonal signal

(Schroering & Carey 1998). NRG1 process-
ing enzymes include the tumor-necrosis factor-
alpha-converting enzyme for NRG1 type I
shedding and the beta-amyloid converting en-
zyme, which likely activates NRG1 type III
(Horiuchi et al. 2005, Hu et al. 2006, Willem
et al. 2006).

Although NRG1 has been implicated in
numerous neural functions (such as neuronal
migration, synaptogenesis, and glutamatergic
neurotransmission), its best understood func-
tion is the neuronal and axonal regulation of
Schwann cell development (reviewed in Garratt
et al. 2000a, Corfas et al. 2004, Britsch 2007).
Beginning with the specification of glial pre-
cursors in the embryonic neural crest (Shah
et al. 1994), the entire Schwann cell lineage
is controlled, at least in part, by NRG1. The
classical finding that axonal membranes stimu-
late Schwann cell proliferation in vitro (Salzer
et al. 1980) can be explained largely by the
activity of membrane-associated NRG1 as a
Schwann cell mitogen. Its expression by ax-
ons secures the necessary number of glial cells
for normal ensheathment (Morrissey et al.
1995, Jessen & Mirsky 2005), provided that
Schwann cells express ErbB2 and ErbB3 re-
ceptors (Riethmacher et al. 1997, Garratt et al.
2000b). NRG1/ErbB signals are amplified by
the PI3 kinase pathway (Maurel & Salzer 2000,
Ogata et al. 2004). Repopulation and remyeli-
nation of a crush-injured nerve by dediffer-
entiated Schwann cells do not require ErbB2
expression, as suggested by inducible gene tar-
geting in adult mice (Atanasoski et al. 2006).

Following expansion of the Schwann cell
pool in the developing peripheral nerve, axon-
bound NRG1 type III is required for the dif-
ferentiation of the myelinating Schwann cell
phenotype (Leimeroth et al. 2002, Taveggia
et al. 2005). This function includes the quanti-
tative control of myelin membrane growth be-
cause myelin sheath thickness (as determined
by g-ratio measurements) is a function of to-
tal axonal NRG1 that is presented to the en-
sheathing Schwann cell. Hence, in mice with
reduced NRG1 gene expression, peripheral
myelin sheaths are thinner than in wild type,
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and in transgenic mice that overexpress NRG1
type III [in dorsal root ganglia (DRG) and mo-
toneurons], peripheral myelin is thicker than
normal (Michailov et al. 2004). The proper
axonal presentation of NRG1 is essential for
myelination control, possibly in the context of
axonal laminin (Colognato et al. 2002), because
it cannot be replaced by paracrine NRG1 sig-
naling (Zanazzi et al. 2001). If the level of ax-
onal NRG1 type III stays below the threshold,
the associated axons are not sorted and myeli-
nated but remain grouped together as a Remak
bundle with a single nonmyelinating Schwann
cell. Experimental NRG1 type III axonal over-
expression is sufficient, however, to trigger ax-
onal sorting and myelination in vitro (Taveggia
et al. 2005). Thus, the expression level of NRG1
in neurons and on the axonal surface is respon-
sible for a lineage decision made by mammalian
Schwann cells. A similar genetic switch in early
vertebrate evolution may have led to the re-
cruitment of ensheathing glia and the invention
of myelin.

Many axons are myelinated first by Schwann
cells and then by oligodendrocytes as they en-
ter the spinal cord and vice versa. Moreover,
Schwann cells can invade the injured spinal cord
and ensheath central axons. These observations
suggest that the axonal signals for myelination
are conserved in the CNS and PNS (Colello &
Pott 1997). Indeed, oligodendrocytes respond
to NRG1 in vitro and ex vivo (Canoll et al. 1996;
Vartanian et al. 1997, 1999; Fernandez et al.
2000; Flores et al. 2000; Calaora et al. 2001;
Sussman et al. 2005), and transgenic expres-
sion of a dominant-negative ErbB4 construct
in oligodendrocytes leads to hypomyelination
(Roy et al. 2007). The analysis of conditional
mouse mutants that completely lack NRG1 in
cortical projection neurons (as early as E11.5)
unexpectedly failed to show any reduction of
myelin assembly in the subcortical white matter
or the spinal cord (B. Brinkmann et al., under
review). Nevertheless, transgenic NRG1 over-
expression in cortical neurons induced a signifi-
cant hypermyelination that was not restricted to
the NRG1 type III isoform (B. Brinkmann et al.,
under review). These observations suggest that

central axons regulate oligodendrocytes using
distinct mechanisms from Schwann cells, no
longer requiring NRG1 as an instructive myeli-
nation signal. Perhaps a simple system of axon-
glia interactions (represented by NRG1 type
III/ErbB signaling to Schwann cells) has been
superseded in CNS evolution by a more com-
plex regulation involving other growth factors
and signaling systems still to be identified. This
hypothesis is consistent with distinct responses
from oligodendrocytes and Schwann cells to
neurotrophins.

Neurotrophins

Neurotrophins compose a family of target-
derived growth factors [nerve growth factor
(NGF), BDNF, NT3, and NT4/5] well-known
for their effect on neuronal survival. They
also play a role in dendritic pruning and
neurotransmitter release and have been impli-
cated in neurodegenerative diseases (reviewed
in Chao et al. 2006). Growth factors that
regulate neuron survival may later stimulate
axon myelination. Voyvodic (1989) suggested
that small-caliber axons with elevated access
to target-derived neurotrophins can grow in
diameter and trigger Schwann cell myelination.
In vitro, specific candidate factors can be tested
by coculturing myelinating glial cells with
DRG axons. Chan et al. (2004) demonstrated
that NGF stimulates the myelination of such
DRG axons by Schwann cells. NGF’s effect
was restricted to TrkA-expressing neurons,
however, which suggests an indirect mecha-
nism mediated by another axonal signal rather
than direct glial stimulation (Rosenberg et al.
2006). This factor could be NRG1 because
(Schwann cell–derived) NGF causes a rapid
release of soluble NRG1 isoforms from the
axon (Esper & Loeb 2004). Myelination in
similar DRG-oligodendrocyte cocultures
was unexpectedly inhibited by NGF, which
suggests that oligodendrocytes and Schwann
cells respond differently to the same axonal
signals (Chan et al. 2004). Unfortunately, it
is difficult to exclude the notion that NGF
perturbs oligodendrocyte differentiation
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MS: multiple sclerosis

CMT: Charcot-
Marie-Tooth disease

SPG2: spastic
paraplegia type 2

in vitro (Casaccia-Bonnefil et al. 1996),
thereby overriding axonal myelination signals
(Rosenberg et al. 2006). In Schwann cells
(but not in oligodendrocytes), the low-affinity
neurotrophin receptor p75NTR is required for
efficient myelination (as shown by blocking
antibodies) and mediates the stimulatory
effects of BDNF. In contrast, the neurotrophin
NT3 is a Schwann cell mitogenic signal, acting
via TrkC receptors, and with proliferation and
differentiation being incompatible, NT3 is an
inhibitor of myelination (Cosgaya et al. 2002).

Electrical Activity

Oligodendrocytes proliferate poorly in the
postnatal optic nerve of rodents injected with
tetrodotoxin to block sodium-dependent ac-
tion potentials (Barres & Raff 1993). Demerens
et al. (1996) showed that tetrodotoxin blocks
myelination in vivo and in vitro. Indeed, axon-
glial signaling includes axonal spiking activ-
ity because ATP release and adenosin gener-
ation are monitored by glial cells (for details,
see Fields & Burnstock 2006). In the PNS,
the axonal release of ATP (Stevens & Fields
2000) inhibits Schwann cell differentiation and
myelination via purinergic P2 receptor signal-
ing. In contrast, oligodendrocytes expressing
purinergic P1 receptors are stimulated by the
axonal release of adenosin (Stevens et al. 2002).
Recent studies demonstrated that the activity-
dependent release of ATP from axons in the
CNS stimulates nearby astrocytes to release
the cytokine leukemia inhibiting factor, which
in turn stimulates oligodendrocyte myelination
(Ishibashi et al. 2006), and defects in this tri-
partite pathway may cause dysmyelination. For
example, in Alexander disease (a rare human
leukodystrophy), the primary defect resides in
astrocytes that lack the expression of the glial
fibrillary acidic protein. Given that myelinated
axons remain myelinated as they enter or exit
the spinal cord, the identification of the many
different mechanisms by which axonal signals
regulate oligodendrocytes and Schwann cells
was quite unexpected.

RECRUITED GLIAL CELLS
PROTECT AXON FUNCTION
AND SURVIVAL
Axon-ensheathing cells have been recruited
throughout evolution specifically for myelina-
tion and rapid impulse propagation, yet ge-
netic evidence suggests the existence of a more
ancestral function of these glia in axonal sup-
port. This hypothesis is strongly supported by
the positive influence of myelinating glial on
axon caliber (Windebank et al. 1985, Colello
et al. 1994, Kirkpatrick et al. 2001) and pro-
gressive axonal degeneration found in human
neurological diseases that affect oligodendro-
cytes, such as multiple sclerosis (MS) (Trapp &
Nave 2008) and leukodystrophies (see below).
Inherited peripheral neuropathies, when caused
by Schwann cell dysfunction [Charcot-Marie-
Tooth (CMT) disease type 1], also present with
progressive axon loss that marks a clinically rel-
evant final common pathway for all CMT dis-
eases (Nave et al. 2007). For oligodendrocytes,
animal models with spontaneous or induced
mutations have provided experimental evidence
supporting an oligodendrocytic role in endoge-
nous neuroprotection, which must be distinct
from myelin’s role.

MYELIN PROTEINS IN
NEURODEGENERATIVE DISEASE

Developmental defects of oligodendrocytes
and CNS myelination cause leukodystrophies.
There has been considerable research on
Pelizaeus-Merzbacher disease (PMD)/spastic
paraplegia type-2 (SPG2), a prototype of
leukodystrophy with early onset dysmyeli-
nation and demyelination (Pelizaeus 1885,
Merzbacher 1909, Johnston & McKusick 1962;
reviewed in Nave & Boespflug-Tanguy 1996,
Garbern 2007). With the discovery of Plp1 mu-
tations in corresponding mouse models (Nave
et al. 1986, Hudson et al. 1987, Schneider et al.
1992) and human PMD and SPG2 patients
(Hudson et al. 1989, Saugier-Veber et al. 1994),
PMD/SPG2 is now defined as a genetic defect
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of the X-linked proteolipid protein (PLP1) gene
(for details, see Inoue 2005).

PLP (30 kDa) and its smaller splice iso-
form (DM20) are abundant tetraspan proteins
found in CNS myelin of higher vertebrates.
One cellular function of PLP/DM20, which is
not essential for myelination itself, is the sta-
bilization of compacted myelin membranes by
serving as molecular struts (Klugmann et al.
1997). However, some subtle developmental
functions of myelin in PLP-deficient mice are
now well understood (Boison et al. 1995, Yool
et al. 2001, Rosenbluth et al. 2006). PLP
is a cholesterol-binding protein in lipid rafts
(Simons et al. 2000), and mice doubly deficient
in PLP and the closely related proteolipid M6B
(also binding to cholesterol) exhibit a severe
CNS dysmyelination with an altered myelin
cholesterol content (H.B. Werner & K.-A.
Nave, manuscript in preparation). Thus, pro-
teolipids may be required to enrich cholesterol
as an essential lipid of myelination (Saher et al.
2005) and to transport other proteins into the
myelin compartment efficiently (Werner et al.
2007).

In mice and humans, most Plp1 point muta-
tions and even duplications of the human PLP1
gene cause severe dysmyelination, triggered
by PLP/DM20 misfolding ( Jung et al. 1996),
abnormal cysteine-cross-links (Dhaunchak &
Nave 2007), endoplasmic reticulum retention
(Gow & Lazzarini 1996), the unfolded protein
response (Southwood et al. 2002), and finally
oligodendrocyte death. The short life span of
mutant mice therefore masks the functions of
oligodendrocytes in adult mice for long-term
axonal function and integrity. For example, Plp1
mutant jimpy mice die at four weeks of age at a
time when most of their axons are intact (Meier
& Bischoff 1975). Moreover, all axonal abnor-
malities seen in jimpy mice (or Plp1 mutant md
rats) were originally thought to result from the
absence of myelin (Rosenfeld & Friedrich 1983,
Barron et al. 1987).

The first insights into oligodendrocytes sup-
porting axonal survival independently of myeli-
nation came with the analysis of genetic null

PLP: proteolipid
protein

DM20: smaller splice
isoform of PLP

mutants in the Plp1 gene. These mice develop
normally and are long-lived, which suggests
that PLP is dispensable for myelination and that
oligodendrocyte death in jimpy mice follows
the expression of truncated PLP (Nave et al.
1986, Klugmann et al. 1997). Plp1 null mice,
however, develop a late-onset (>12 months)
neurodegenerative disease caused by progres-
sive axonal loss throughout the CNS, preferen-
tially small-caliber axons in long spinal tracts,
and eventually premature death (Griffiths et al.
1998). Many months before the onset of clinical
symptoms, this type of Wallerian degeneration
is preceded by axonal swelling. Swellings oc-
cur in fully myelinated axons and are either or-
ganelle rich or filled with nonphosphorylated
neurofilaments. They begin at the paranodal
region, which may possibly be a bottleneck
of axonal transport. Swellings and transection
bulbs can be readily visualized by immunohisto-
chemical staining of the amyloid precursor pro-
tein, when locally trapped, or by electron mi-
croscopy (Figure 2). Abnormal swellings likely
reflect the complete breakdown of the fast ax-
onal transport because they are developmen-
tally preceded by a significant reduction of the
axonal transport rate (initially the retrograde
transport). This has been demonstrated for the
optic nerve of 60-day-old Plp1 null mice that
are clinically and histopathologically still unaf-
fected (Edgar et al. 2004b).

With this late onset of ataxia (but no tremor
or seizures), Plp1 null mice are genetically and
clinically bona fide models for SPG2, a milder
allelic form of PMD ( Johnston & McKusick
1962, Saugier-Veber et al. 1994). Likewise, hu-
man patients with a null mutation of PLP1
(Raskind et al. 1991) have a milder course of dis-
ease, dominated by slowly progressive degener-
ation of long spinal cord axons (Garbern et al.
2002) rather than dysmyelination at infant age.
Reduced N-acetyl aspartate levels in the brains
of PMD patients (Bonavita et al. 2001), how-
ever, suggest that some axonal involvement is
a general feature of PLP-related diseases, pro-
vided there is a long enough survival time (see
below).
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ba

Figure 2
(a) Immunostaining and (b) electron microscopy of axonal swelling in the white matter of adult mice with a disruption of the
oligodendroglial Cnp1 gene. Note the presence of normally myelinated axons. Figure adapted from Lappe-Siefke et al. (2003).

CNP: 2′,3′-cyclic
nucleotide
3′-phosphodiesterase

The exact role of PLP or its alternative
spliced isoform DM20 in axonal preservation
is still unknown. Mice with the rumpshaker
mutation in Plp1 (Schneider et al. 1992) are
long-lived and hypomyelinated and have re-
duced amounts of mutant DM20 and trace
amounts of PLP incorporated into myelin.
These mice also exhibit late-onset axonal de-
generation (Edgar et al. 2004a), suggesting that
rumpshaker DM20 may be sufficiently folded to
reach the myelin compartment but unable to
support axonal integrity fully. One study found
axonal swellings in myelinated mice that lack
selective expression of the PLP isoform (Stecca
et al. 2000), although this phenotype was not as
early as in the absence of both PLP and DM20
(Spörkel et al. 2002).

A second gene specifically expressed in
myelinating glial cells and recently associated
with the oligodendroglial support of axons is
Cnp1. The encoded protein 2′,3′-cyclic nu-
cleotide 3′-phosphodiesterase (CNP or RIP) is
widely used as a marker protein for myelin-
forming glial cells (Vogel & Thompson 1988,
Watanabe et al. 2006). CNP is specifically asso-
ciated with noncompacted myelin regions (i.e.,
inner mesaxon, paranodal loops, and Schmidt-

Lantermann incisures) but is absent from the
compacted sheath (Braun et al. 1988, Trapp
et al. 1988). The enzymatic activity of CNP in
vivo is unclear because 2′,3′-cyclic nucleotides
are not found in the brain and only known
from RNA metabolism. CNP, when experi-
mentally overexpressed, induces process out-
growth in cultured cells (Lee et al. 2005) and
premature abnormal myelination in transgenic
mice (Gravel et al. 1996, Yin et al. 1997). CNP
is expressed outside the nervous system but at
lower levels. A CNP-related protein in fish,
termed RICH (regeneration induced CNP ho-
molog), is expressed by retinal ganglion cells
during axonal outgrowth, which suggests that
CNP/RICH performs certain functions during
active membrane growth. Thus, similar to other
myelin proteins, CNP may have been recruited
in evolution by myelin-forming glia from a
more general cellular function. The Cnp1 gene
encodes two CNP isoforms; the larger one
(CNP2) harbors an amino-terminal mitochon-
drial targeting sequence (Lee et al. 2006). Both
forms are acylated and isoprenylated at their
carboxyl terminus (Gravel et al. 1994), which
explains their efficient association with cellular
membranes. CNP also interacts with the actin
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skeleton and microtubules (DeAngelis & Braun
1996, Bifulco et al. 2002, Lee et al. 2005), as well
as with mitochondria, in which the longer CNP
isoform can be imported, at least in nonglial
cells (McFerran & Burgoyne 1997, Lee et al.
2006). Whether CNP functions by associating
mitochondria and/or RNA with the oligoden-
droglial cytoskeleton, as speculated, requires
experimental support.

Mice with targeted disruption of the Cnp1
gene develop on schedule and are fully myeli-
nated, but they develop widespread and pro-
gressive axonal swellings (Lappe-Siefke et al.
2003). The phenotype is clinically more se-
vere than that of Plp1 null mice, with a
much earlier onset and premature death by
∼12 months of age. Myelin sheaths are nor-
mally compacted in the absence of CNP, which
emphasizes that axonal problems are not caused
by a thin or physically unstable myelin sheath.
Many oligodendroglial paranodes become dis-
organized before the onset of clinical symptoms
(Rasband et al. 2005), which suggests that the
absence of CNP alters the normal communica-
tion between axons and oligodendrocytes. That
the paranodal changes are the major cause of ax-
onal dysfunction and degeneration is unlikely
because the first swellings (as early as postna-
tal day 5 in the optic nerve) and enlargement
of the inner tongue precede the correspond-
ing paranodal changes ( J.M. Edgar et al., sub-
mitted). The axonal swellings also ultimately
indicate an energy-related metabolic problem.
The exact molecular mechanisms remain to be
defined.

PLP and CNP are myelin-associated
proteins expressed by oligodendrocytes and
Schwann cells, but the axonal degeneration
phenotype in null mutant mice is CNS spe-
cific. Yin et al. (1998) reported perturbed ax-
onal integrity in the PNS for the myelin-
associated glycoprotein (MAG). MAG is a
member of the immunoglobulin superfamily
(Lai et al. 1987) and has properties of a cell-
adhesion protein and signaling molecule lo-
calized to the periaxonal membranes of all
myelinating glia, as well as to paranodal loops
and Schmidt-Lantermann incisures in Schwann

MAG: myelin-
associated
glycoprotein

cells (Martini & Schachner 1986, Trapp et al.
1989). MAG is not present on axons. MAG’s
function was expected to involve specific axon-
glia recognition, adhesion, and signaling, but
the phenotype of MAG-deficient mice (Li et al.
1994, Montag et al. 1994) was not informa-
tive, most likely because MAG’s function was
masked by the presence of other adhesion
molecules such as N-CAM and L1 (for de-
tails, see Bartsch 2003) or the recently identi-
fied Necl4 protein (Maurel et al. 2007, Spiegel
et al. 2007). Some minor developmental ab-
normalities were documented, including mul-
tiply ensheathed axons or the delay of optic
nerve myelination (Bartsch et al. 1995, 1997).
Moreover, oligodendrocytes in aged mice ex-
hibited degenerative changes (dying back oligo-
dendrogliopathy), a pathological feature pre-
viously described in some MS lesions (Lass-
mann et al. 1997, Weiss et al. 2000). These
phenotypes, however, fail to identify the nor-
mal function of this protein. Instead, MAG’s
role as one of several myelin-associated and
Nogo receptor-dependent inhibitors of axonal
regeneration has gained much attention (e.g.,
Domeniconi et al. 2002). Studies suggest that
myelin inhibitors prevent inappropriate axonal
sprouting. Resident microglial cells are an-
other likely target of repulsive MAG signaling
(F. Orfaniotou & K.-A. Nave, manuscript in
preparation).

The inhibition of axonal growth cones by
MAG demonstrates that this myelin protein
possesses signaling domains that communi-
cate with neuronal/axonal receptors. An im-
portant finding in this respect is that MAG
modulates the physical caliber of the myeli-
nated axons on Schwann cells. Despite the
morphologically normal myelination of Mag
mutant mice, peripheral axons remain signifi-
cantly smaller in diameter when compared with
wild-type mice (Yin et al. 1998), presumably
because their neurofilaments are hypophos-
phorylated and thus more densely packed.
The reduction in axonal diameter was strik-
ingly more pronounced in paranodal regions
of the myelin internode. Because much of the
paranodal atrophy occurred after myelin was
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formed, and because myelin collapsed on the
shrunken axon, axonal segments were hyper-
myelinated. The occurrence of hypermyeli-
nated focal segments or tomacula, as found
in certain demyelinating neuropathies (e.g.,
CMT4B), suggests that MAG may be one of
the hypothesized glia-to-axon signals that may
explain why normal myelination must main-
tain axonal calibers (de Waegh et al. 1992).
This dependence of axon size on glial ensheath-
ment was originally discovered in the myelin-
deficient Trembler mouse, a natural point muta-
tion of the Pmp22 gene, and was later confirmed
in the CNS of dysmyelinated shiverer mice, a
natural deletion mutant of the Mbp gene (Roach
et al. 1985, Brady et al. 1999).

In humans, inherited demyelinating PNS
neuropathies (CMT disease) can be caused by
a plethora of primary glial defects, comprising
mutations in Schwann cell–specific or ubiqui-
tously expressed genes (for details, see Suter &
Scherer 2003, Berger et al. 2006, Nave et al.
2007). Most detailed clinical studies and nerve
biopsy analyses have been performed using pa-
tients with defects of the myelin-associated pro-
teins PMP22 (in CMT1A), MPZ (in CMT1B),
and connexin-32 (in CMT1X). Transgenic and
mutant animal models of the corresponding
Pmp22, Mpz, and Gjp1 genes provided for-
mal proof of concept for the genetic cause of
each disease and also helped further dissect
disease mechanisms. Demyelinating CMT dis-
eases present with progressive muscle weakness
and sensory loss, in addition to the strong re-
duction of nerve conduction velocity (NCV),
which demonstrates that a length-dependent
loss of motor and sensory axons must be caused
by primary Schwann cell dysfunction. In Mpz
mutant mice, peripheral axon loss is also pre-
ceded by focal swellings (Ey et al. 2007). In
a transgenic model of demyelinating neuropa-
thy, caused by overexpression of the wild-type
Mpz gene in Schwann cells (Yin et al. 2004), the
authors observed synaptic retraction and loss
of the neuromuscular end plate that preceded
the visible axonal degeneration of lower mo-
toneurons. Although the molecular details are
not understood, presynaptic dysfunctions may

constitute an independent mechanism of target
denervation that is clinically relevant to myelin
disease.

By definition, all demyelinating neu-
ropathies exhibit morphological signs of myelin
pathology as the underlying cause of slowed
NCV, which suggests that myelin per se could
be required to maintain axonal integrity. It was
therefore a major advance when specific muta-
tions in the Schwann cell–specific MPZ gene
were identified that caused CMT type 2 with
normal NCV (i.e., the axonal form of CMT dis-
ease) rather than CMT1B (Marrosu et al. 1998,
Senderek et al. 2000, Boerkoel et al. 2002). Al-
though they are mechanistically not well un-
derstood, separate functions of Schwann cells
in myelination (preserved in CMT2) and in
axonal support (lost in all CMT forms) may
have been uncoupled, reminiscent of Cnp1 and
Plp null mutations in myelinating oligodendro-
cytes. Nonmyelinating Schwann cells also sup-
port axonal integrity, as shown for L1-mutant
mice, in which Remak Schwann cells fail to
properly engulf C-fiber axons that degener-
ate (Haney et al. 1999). Transgenic overex-
pression of nonfunctional ErbB receptors in
these Schwann cells also causes dysfunction
and loss of C-fiber axons (Chen et al. 2003),
which supports the hypothesis that axonal sup-
port is an ancestral glial function that precedes
myelination.

Thus, when comparing myelin disorders in
the CNS and PNS, all ensheathing glial cells
are essential to maintain long-term axonal in-
tegrity. However, the consequences of demyeli-
nation and axon loss are regionally different.
The enormous plasticity of the brain may be
able to mask a slowly progressive degeneration
of the subcortical axons for a long time, and
a substantial axonal loss may remain clinically
silent in MS patients (Trapp & Nave 2008).
However, length-dependent axon loss in the
spinal cord (e.g., in patients with SPG2) is more
difficult to mask. Finally, the progressive loss of
peripheral axons (e.g., in patients with CMT
disease) causes invariable muscle denervation
and sensory losses that cannot be hidden by
neural plasticity.
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POSSIBLE MECHANISMS
OF GLIAL SUPPORT

Long-term demyelination is associated with
axon loss (Raine & Cross 1989, Trapp et al.
1998). However, in comparing axon loss in dif-
ferent myelin diseases in mice and humans,
there is no simple correlation between the de-
gree of demyelination and axonal involvement.
This discrepancy suggests that the absence of
myelin alone is not the only cause of neu-
rodegeneration. Nevertheless, demyelination is
likely to increase dramatically the energy con-
sumption of fast spiking axons in white-matter
tracts, which may perturb axon function. One
hypothetical model of how reduced axonal en-
ergy balance can trigger calcium-dependent
proteolysis of a demyelinated axon is discussed
elsewhere in this volume (Trapp & Nave 2008).
Glial support, as discussed here, is a feature of
fully myelinated axons that requires an alterna-
tive model.

Myelin-Associated Toxicity

One must critically discuss whether axonal per-
turbation as observed in myelinated Plp and
Cnp1 null mice results from the loss of support,
or alternatively from a possible gain of toxi-
city of the PLP-deficient and CNP-deficient
myelin wraps. Although no toxic mechanisms
are presently known, this alternate hypothe-
sis is difficult to disprove. In a natural mosaic
situation (e.g., random inactivation of the X
chromosome–linked Plp gene in heterozygous
females), axonal swellings are clearly detectable,
although at reduced frequency (Griffiths et al.
1998). Likewise, after transplantation of Plp
mutant oligodendrocytes into shiverer white-
matter tracts, axonal swellings can be locally in-
duced (Edgar et al. 2004b). Although they are
compatible with some glial toxicity, these ob-
servations are equally well explained by a short
range of oligodendroglial support. Only myeli-
nated axons are dependent on support (Griffiths
et al. 1998). One might thus speculate that
myelination per se could be toxic for axons un-
less the ensheathing glial cells can support the

axonal segment that they have myelinated. In-
deed, compacted myelin membranes may act as
a destructive shield to impair the axon’s other-
wise ready access to outside nutrients, metabo-
lites, oxygen, and other important molecules.
Thus a specific glial transport apparatus might
be required to compensate for these restrictions
and to prevent toxic myelination effects. These
hypothetical functions would collectively qual-
ify as glial support.

Myelin-Independent Mechanisms

The prodromal phenotype of Plp null mice in-
cludes axonal transport defects reminiscent of
mitochondrial disorders in the CNS, and it sug-
gests that in the presence of myelin, an un-
derlying low energy balance leads to axon loss.
We suggest that myelin-independent glial sup-
port requires axonal engulfment and a molec-
ular apparatus that is part of, but not identi-
cal to, the myelin sheath. In addition to the
genes mentioned above, other oligodendrocyte
defects have been associated with a similar loss
of axonal support, for example, in mice lacking
the synthesis of GalC and sulfatide, two myelin-
specific glycosphingolipids that are essential for
paranodes forming axo-glial junctions (Garcia-
Fresco et al. 2006, Marcus et al. 2006). How-
ever, not all myelin defects are associated with
axonal loss. For example, Mbp null (i.e., shiv-
erer) mice lack the expression of myelin basic
protein (MBP), are severely dysmyelinated in
the CNS, and die prematurely. However, they
exhibit no obvious signs of axonal swelling or
degeneration (Rosenbluth 1980, Inoue et al.
1981, Nixon 1982, Griffiths et al. 1998). In shiv-
erer mice, electrophysiological signs of conduc-
tion block are caused by an abnormal distribu-
tion of potassium channels (Sinha et al. 2006)
not by Wallerian degeneration. Increased en-
ergy needs in shiverer cause a twofold-higher
density of mitochondria (Andrews et al. 2006).
Thus, Mbp null mice are dysmyelinated with
functional axons, whereas Plp null mice are fully
myelinated with widespread axonal degenera-
tion. Clearly, PLP must serve a unique func-
tion in axonal support that goes beyond its
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CNTF: ciliary
neurotrophic factor

structural role of stabilizing compacted myelin
membranes (Boison et al. 1995, Klugmann et al.
1997). This notion has been independently
proven in transgenic knockout mice, in which
PLP oligodendroglial expression was swapped
with MPZ expression, the major cell adhesion
molecule from PNS myelin (Yin et al. 2006).
Although MPZ could form an adhesive strut
between adjacent myelin membranes (similar
to PLP), it did not allow oligodendrocytes to
support axonal survival.

PLP is a tetraspan myelin protein and, by
itself, is unlikely to support axonal survival. Re-
cently, the biochemical analysis of myelin pu-
rified from Plp null mice revealed secondary
abnormalities of the myelin proteome, which
suggested that PLP is required for the transport
of other proteins that may contribute to oligo-
dendroglial support into the growing myelin
compartment. One protein that is nearly absent
from PLP-deficient myelin is Sirt2, an NAD+-
dependent deacetylase expressed most strongly
in oligodendrocytes (Werner et al. 2007).

Our understanding of the glial support of
axons is still in its infancy, and the mecha-
nisms involved are likely complex. Compar-
isons at the ultrastructural level of just Plp and
Cnp1 null mice revealed significant differences
in the onset and distribution of prodromal ax-
onal changes ( J.M. Edgar et al., manuscript
in preparation). The observation that Plp∗Cnp1
double mutants exhibit an earlier and much
more severe course of disease than does either
single mutant indicates additive effects that are
compatible with the involvement of different
protective mechanisms (H.A. Werner & K.A.
Nave, unpublished observations).

Neurotrophic Factors

Myelinating glia may provide trophic support
for axons, but the extent to which this sup-
port involves neurotrophins and related forms
of glia-to-neuron growth factor signaling is
not known. The function of neurotrophins has
been reviewed in detail (Huang & Reichardt
2001), also with respect to myelinating glial
cells (Rosenberg et al. 2006). Target-derived

neurotrophins stimulate axon-bearing neurons,
which likely alters the expression of axonal cues
for myelination (Chan et al. 2004). In addi-
tion, ample evidence demonstrates that neu-
rotrophins can stimulate the proliferation and
differentiation of myelinating glial cells di-
rectly (Barres et al. 1994, Kumar et al. 1998,
McTigue et al. 1998, Du et al. 2003), but they
may also have detrimental effects (Casaccia-
Bonnefil et al. 1996). Although all these func-
tions are important for oligodendrocyte devel-
opment and remyelination (and thus indirectly
for axonal support), there is scarce experimental
evidence that myelinating glia provide continu-
ous axonal support by releasing trophic factors.
Neurotrophins are expressed by Schwann cells
(Chan et al. 2001) and in satellite glia of cul-
tured DRG neurons. Here, the expression of
NT3 and NGF can be stimulated by axotomy,
causing the release of nitric oxide, and nitric
oxide–induced neurotrophins are likely neuro-
protective (Thippeswamy et al. 2005). There is
obviously great interest in using neurotrophins
in the prevention of axon loss in CMT disease.
The systemic application of NT3 has even been
tested clinically in a small number of patients
with demyelinating neuropathy CMT1A with
encouraging results (Sahenk et al. 2005).

Two other factors with reported survival
functions in the nervous system and some ex-
pression in myelinating glia must be consid-
ered as candidates for glial trophic support.
The ciliary neurotrophic factor (CNTF) is ex-
pressed by Schwann cells (Sendtner et al. 1994),
but the mechanisms of release are unclear be-
cause this cytoplasmic cytokine is not exocy-
tosed like growth factors are. In mice, CNTF is
required for motoneuron survival and the long-
term integrity of myelinated axons in the PNS
(Gatzinsky et al. 2003). Also, in mice with ex-
perimental allergic encephalomyelitis, an im-
munological model of human MS, the absence
of CNTF causes a more severe disease (Linker
et al. 2002). A small but significant percentage
(2.3%) of the Japanese population is homozy-
gous for a null mutation of this gene (Takahashi
et al. 1994), and this genetic polymorphism is
not obviously linked to a neurological disease
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such as amyotrophic lateral sclerosis or CMT
(Van Vught et al. 2007). This observation raises
the question, at least in humans, of the relevance
of CNTF in endogenous neuroprotection by
myelinating glial cells.

The glia cell line–derived growth fac-
tor (GDNF) is a ligand of the ret receptor
tyrosine kinase (Durbec et al. 1996) and
signals independently by N-CAM and the fyn
serine/threonine kinase (Paratcha et al. 2003).
GDNF, along with several related proteins, is
expressed inside and outside the nervous system
(Suter-Crazzolara & Unsicker 1994), including
Schwann cells (Springer et al. 1995, Trupp et al.
1995) in which GDNF is upregulated upon
axotomy (Hammaberg et al. 1996). Mouse
mutants of this gene model Hirschsprungs
disease (Moore et al. 1996, Pichel et al. 1996,
Sanchez et al. 1996) with the loss of enteric
ganglia, which resembles early glial and neural
crest defects (Inoue et al. 1999, Paratore et al.
2001). GDNF has been intensively studied for
its survival effect on dopaminergic neurons
(Beck et al. 1995), but it is also a survival factor
for embryonic motoneurons (Henderson
et al. 1994). The beneficial role of GDNF in
the treatment of neuropathic pain (Boucher
et al. 2000) could relate to neuroprotective
effects normally exerted by Schwann cells.
However, direct evidence showing that GDNF
would be required to maintain axonal integrity
in myelinated fibers is lacking. Similar to
neurotrophins, promoting the differentiation
of myelinating glia could provide a neuro-
protective effect (Wilkins et al. 2003). When
GDNF was injected into intact peripheral
nerves, it caused Schwann cells to proliferate
and to sort and myelinate small-caliber C-fiber
axons (Hoke et al. 2003). This study also
demonstrates that trophic factors can, in
principle, overcome developmental thresholds
and change the glial phenotype from non-
myelinating Schwann cells to myelin-forming
Schwann cells, similar to axonal NRG1.

An endogenous neuroprotective molecule,
synthesized by oligodendrocytes, may be
prostaglandin D. In the dysmyelinated mouse
mutant twitcher, upregulated expression of

GDNF: glial cell
line–derived factor

the oligodendroglial prostaglandin D syn-
thase correlated with neuronal survival, and
Pgds ∗twitcher double mutants had a more severe
phenotype (Taniike et al. 2002). This enzyme is
also induced in MS lesions (Kagitani-Shimono
et al. 2006), but the mechanisms of action are
not known.

Metabolic Support

Both oligodendrocyte and Schwann cell defects
have been associated with a length-dependent
axon loss. The most plausible, but least un-
derstood, mechanism of axonal preservation
by ensheathing glial cells may be metabolic
support (Spencer et al. 1979). Rapidly con-
ducting white-matter axons consume a large
fraction of the brain’s energy supply, and
oligodendrocytes are vulnerable to hypoxia
and glucose deprivation (Fern et al. 1998). In
dysmyelinated and demyelinated axons, the
number of mitochondria is increased (Mutsaers
& Carrol 1998, Andrews et al. 2006). Most
ATP is required for membrane repolarization
and for fast axonal transport of vesicles and
organelles, occurring at a rate of micrometers
per second (Hollenbeck & Saxton 2006). The
latter includes axonal mitochondria, which
travel with frequent stops and restarts (Misgeld
et al. 2007). Mitochondria often pause at the
node of Ranvier, which is thought to indicate
the site of highest metabolic activity (Fabricius
et al. 1993), an observation more obvious in the
PNS (I. Griffiths, personal communication).
Although the nodal region harbors Na+/K+

channels and is the site of most transmembrane
ionic flow, most ATP is consumed by membrane
repolarization, and Na+/K+ ATPases are dis-
persed along the entire internodal membrane
of myelinated PNS and CNS axons (Alberti
et al. 2007; E. Young, J.H. Fowler, G.J. Kidd,
A. Chang, R. Rudick, E. Fisher & B. Trapp,
submitted). We also note that mitochondria,
when pausing at the nodal region, are in closest
proximity to the glial paranodal loops, which
form a highly specialized axon-glial junction.
In the PNS of Caspr-deficient mice, which lack
the normal paranodal ultrastructure, even more
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PEX5: peroxin-5

mitochondria are abnormally retained at the
intra-axonal membrane surface beneath the
disrupted paranode, and many of these mito-
chondria have a swollen morphology (Einheber
et al. 2006). This finding suggests that axonal
mitochondrial transport is regulated, at least in
part, by glial contact and that myelinating cells
contribute to normal mitochondrial functions
within axons.

In healthy axons, ATP is present in micro-
molar concentrations, but we predict that an
impairment of (ATP-dependent) axonal trans-
port ultimately affects the normal turnover
rate and integrity of mitochondria themselves.
This indicates a potentially vicious cycle for
even minor or highly localized metabolic prob-
lems. Mitochondrial involvement can lead to
local entrapment and axonal swellings as vis-
ible signs of system collapse, which leads to
Wallerian degeneration. This hypothesis is sup-
ported by the axonal pathology of specific
myelin mutants with reduced axonal transport
and axonal swellings that closely resemble those
in mitochondrial disorders (Ferreirinha et al.
2004), constituting the final common path-
way of hereditary spastic paraplegia. More-
over, reduced axonal ATP decreases Na+/K+

ATPase (thus elevating axoplasmic Na+) and
ATP-dependent Na+/Ca2+ exchanger activ-
ity. The latter can operate in reverse and ex-
change axoplasmic Na+ for extracellular Ca2+,
at least under pathological conditions (low ATP,
high Na+). Elevated axoplasmic Ca2+ causes
further damage to axonal and mitochondrial
proteins, which introduces a second vicious
pathological cycle (Stys et al. 1992, Li et al.
2000).

In the CNS, astrocytes provide free lactate
to neurons for ATP generation (hypothesized
as the “lactate shuttle”; for details, see Mag-
istretti 2006). In white-matter tracts, this action
can involve the mobilization of stored glycogen
(Brown et al. 2003). Whether myelinating glial
cells also provide energy-rich metabolites to
the axons they ensheath is not well analyzed in
vivo. In explant systems, non-myelin-forming
Schwann cells take up glucose, which they
transfer to axons, possibly as lactate equivalents

via gap junctions (Vega et al. 2003). The gener-
ation of PEX5-deficient mutants lacking func-
tional peroxisomes selectively in oligodendro-
cytes in vivo recently provided a link between
the loss of specific peroxisomal pathways in
myelinating glia and the progressive degenera-
tion of axonal integrity in adult mice (Kassmann
et al. 2007). We anticipate that a systematic ge-
netic dissection of metabolic pathways in oligo-
dendrocytes and Schwann cells of mutant mice
will identify those pathways required for axonal
support.

Mouse mutants lacking functional peroxi-
somes in glia myelinate normally, but similar
to dysmyelinated mice that overexpress PLP in
oligodendrocytes (Readhead et al. 1994), they
exhibit axon loss, late-onset demyelination, and
neuroinflammation in areas affected by degen-
erative changes. Unlike other myelin mutants,
inflammation includes the infiltration of acti-
vated CD8(+) T cells, and, in peroxisomal mu-
tants, perivascular B-cell infiltrates as well (Ip
et al. 2006, Kassmann et al. 2007). Such ob-
servations demonstrate that specific oligoden-
drocyte defects contribute to, if not trigger,
inflammatory demyelinating diseases, which is
relevant to the unknown etiology of human MS
(Trapp & Nave 2008).

CONCLUSION

Research on glial cells in the long-term sup-
port of axonal function and in endogenous neu-
roprotection has just begun. One conceptual
link between axonal myelination in higher ver-
tebrates and myelin-independent axonal sup-
port is that both mechanisms have evolved to
meet the energy demands of rapidly conducting
long axonal tracts. Loss of these functions can
trigger a vicious cycle of pathological changes,
including reduced axonal transport and reten-
tion of mitochondria, leading to axonal swelling
and calcium-dependent Wallerian degenera-
tion. Genetic data have now provided strong in
vivo evidence that neurodegenerative diseases
of the CNS and PNS can result from primary
defects in oligodendrocytes and Schwann cells,
respectively, although the affected glial cells
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reveal no obvious developmental defects. The
view emerges that, except for clearly dysmyeli-
nating and demyelinating disorders, some glial
diseases may share features of neurodegener-

ative disorders. Because axonal degeneration is
seen in many neurological diseases, dysfunction
of glia and glial cell aging should be considered
disease-modifying factors.
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