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Abstract A central principle for understanding the cerebral cortex is that macroscale anatomy

reflects a functional hierarchy from primary to transmodal processing. In contrast, the central axis

of motor and nonmotor macroscale organization in the cerebellum remains unknown. Here we

applied diffusion map embedding to resting-state data from the Human Connectome Project

dataset (n = 1003), and show for the first time that cerebellar functional regions follow a gradual

organization which progresses from primary (motor) to transmodal (DMN, task-unfocused) regions.

A secondary axis extends from task-unfocused to task-focused processing. Further, these two

principal gradients revealed novel functional properties of the well-established cerebellar double

motor representation (lobules I-VI and VIII), and its relationship with the recently described triple

nonmotor representation (lobules VI/Crus I, Crus II/VIIB, IX/X). Functional differences exist not only

between the two motor but also between the three nonmotor representations, and second motor

representation might share functional similarities with third nonmotor representation.

DOI: https://doi.org/10.7554/eLife.36652.001

Introduction
Comprehending the relationship between macroscale structure and function is fundamental to

understanding the nervous system. One central principle in the study of the cerebral cortex is that

macroscale anatomy reflects a functional hierarchy from primary to transmodal processing (Mesu-

lam, 1998, 2008). For example, higher-level aspects of movement planning and decision making are

situated predominantly in the anterior aspects of the frontal lobe close to the primary motor cortex,

while spatial attention and spatial awareness processes predominantly engage regions of the poste-

rior parietal lobe that are closer to the primary somatosensory cortex (Andersen and Cui, 2009).

Similarly, higher-level aspects of auditory processing such as language comprehension (e.g. Wer-

nicke’s area) are situated closer to the primary auditory cortex, while higher-level aspects of motor

processing such as language production (e.g. Broca’s area) are situated closer to the primary motor

cortex.

In contrast, and despite its growing importance in basic and clinical neuroscience, the central axis

of motor and nonmotor macroscale organization in the cerebellum remains unknown. The cerebel-

lum has extensive connectivity with motor and nonmotor aspects of the extracerebellar structures. In

addition to anatomy, evidence from clinical, behavioral and neuroimaging studies indicates that the

human cerebellum is engaged not only in motor control but also in cognitive and affective process-

ing (Schmahmann and Pandya, 1991; Schmahmann, 1996; Baillieux et al., 2008; Stoodley and

Schmahmann, 2009; Thompson and Steinmetz, 2009; Tedesco et al., 2011; Stoodley et al.,

2012; E et al., 2014; Koziol et al., 2014; Guell et al., 2015; Hoche et al., 2016,

2018; Schmahmann and Pandya, 1997a, Schmahmann and Pandya, 1997b1997b; Middleton and

Guell et al. eLife 2018;7:e36652. DOI: https://doi.org/10.7554/eLife.36652 1 of 22

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.36652.001
https://doi.org/10.7554/eLife.36652
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Strick, 1994; Schmahmann and Sherman, 1998; Levisohn et al., 2000; Riva and Giorgi, 2000;

Ravizza et al., 2006; Schmahmann et al., 2007). Further, structural and functional analyses have

identified cerebellar abnormalities not only in primary cerebellar injury or degeneration, but also in

many psychiatric and neurological diseases that degrade cognition and affect. Examples include

major depressive disorder, anxiety disorders, bipolar disorder, schizophrenia, attention deficit and

hyperactivity disorder, autism spectrum disorder (Phillips et al., 2015; Arnold Anteraper et al.,

2018), posttraumatic stress disorder (Wang et al., 2016), fibromyalgia (Kim et al., 2015), Alz-

heimer’s disease (Guo et al., 2016), frontotemporal dementia (Guo et al., 2016), vascular dementia

(Bastos Leite et al., 2006), Huntington’s disease (Wolf et al., 2015), multiple sclerosis (Wil-

kins, 2017) and Parkinson’s disease (Wu and Hallett, 2013). Unmasking the basic hierarchical princi-

ples of cerebellar macroscale organization can therefore have large impact in basic and clinical

neuroscience.

The study of connectivity gradients in resting state fMRI data - an aspect of cerebellar functional

neuroanatomy that remains largely unexplored - can provide critical information necessary to

address this knowledge gap. The fact that there are no cerebellar cortical association fibers

(Schmahmann, 1996; Schmahmann and Pandya, 2008) makes it difficult to analyze intra-cerebellar

progressive hierarchical relationships using anatomical techniques. Resting-state functional connec-

tivity from fMRI data becomes, in this case, a useful approach to interrogate functional relationships

between nearby cerebellar structures which are not directly connected. Contrasting with the com-

mon practice of partitioning neural structures into discrete areas with sharp boundaries

(Damoiseaux et al., 2006; Yeo et al., 2011), Margulies and colleagues (Margulies et al., 2016) pro-

vided a simple and powerful description of the ‘principal gradient’ of resting-state functional connec-

tivity in the cerebral cortex using diffusion map embedding. This gradient extended from primary/

unimodal cortices to regions corresponding to the default mode network (DMN), confirming the pri-

mary-unimodal-transmodal hierarchical principle of the cerebral cortex (Mesulam, 1998, 2008). Simi-

larly, Sepulcre and colleagues (Sepulcre et al., 2012) revealed transitions from primary sensory

cortices to higher-order brain systems using stepwise functional connectivity. The present study is

the first to use these analyses in the cerebellum.

Here we set out to describe the principal gradients of intra-cerebellar connectivity by using rest-

ing-state diffusion map embedding. We aim to unmask the central axis of motor and nonmotor mac-

roscale organization of the cerebellum, analogous to the fundamental primary-unimodal-transmodal

hierarchical principle of cerebral cortex (Mesulam, 1998, 2008). To further characterize the func-

tional significance and implications of these continuous gradients, we aimed to analyze their relation-

ship with discrete cerebellar parcellations including task activity maps, resting state maps, and

distinct areas of motor (first = I-VI, second = VIII) and nonmotor representation (first = VI/Crus I,

second = Crus II/VIIB, third = IX/X) (Buckner et al., 2011; Guell et al., 2018a). We took advantage

of the newly available and unparalleled power of the Human Connectome Project (HCP) dataset,

where each participant (n = 1003) provided one full hour of resting-state data. We incorporated task

activity maps (motor, working memory, emotion, social, and language processing) from a previously

analyzed subset of the same group of participants (Guell et al., 2018a) (n = 787). Maps of cerebellar

representation of cerebral cortical resting-state networks were obtained from the study of

Buckner et al. (2011), calculated in a different group of participants (n = 1000). Data-driven cluster-

ing and stability analyses were used to compare our findings with previous discrete cerebellar parcel-

lations, as well as to validate our hypothesis-driven divisions. A supplementary analysis of cerebello-

cerebral connectivity was used to validate our interpretation of asymmetries between the two motor

and three nonmotor regions of cerebellar representation. Analysis of single participants from our

cohort tested the robustness of our findings at the individual level, and a parallel analysis of func-

tional gradients based on connectivity from the cerebellum to the cerebral cortex investigated the

relationship between intra-cerebellar and cerebello-cerebral principles of organization.

Results
Our analyses included data from 1003 participants of the Human Connectome Project (HCP)

(Van Essen et al., 2013). We calculated functional gradients by analyzing the similarity of intra-cere-

bellar resting-state functional connectivity patterns of all cerebellar data points using diffusion map

embedding (Figure 1—figure supplement 1). The principal component resulting from this analysis
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(gradient 1) captures the main axis of macroscale functional organization of the cerebellum, and

additional orthogonal components (gradient 2, 3, etc.) capture additional functional organizational

properties. The resulting gradients were interpreted by analyzing their relationship to task activity

(Guell et al., 2018a) and resting-state network (Buckner et al., 2011) cerebellar maps from previous

studies, explored and compared to previous cerebellar parcellations using clustering analyses, and

also compared to functional gradients calculated in the cerebellum using connectivity data between

the cerebellum and the cerebral cortex (rather than intra-cerebellar connectivity data). We also ana-

lyzed asymmetries between the two motor (I-VI, VIII) and three nonmotor regions of cerebellar

representation (VI/Crus I, Crus II/VIIB, IX/X) (Guell et al., 2018a) by comparing their relative position

along gradients 1 and 2. As a supplementary analysis, we also contrasted cerebello-cerebral connec-

tivity from each of these areas of representation. Analyses using single-subject data rather than

group-averaged data tested whether our findings remained observable at the individual subject

level.

Cerebellum gradients and relationship with discrete task activity and
resting-state maps
Gradient 1 explained the largest part of variability in resting-state connectivity patterns within the

cerebellum (Figure 1A). It extended bilaterally from lobules IV/V/VI and lobule VIII to posterior

aspects of Crus I and Crus II as well as medial regions of lobule IX. Overlap with task activity maps

(Figure 1B) revealed that Gradient 1 is anchored at one end by cerebellar motor regions and at the

other end by regions engaged in the language task of the HCP dataset. Regions situated between

the two extreme ends corresponded to areas involved in working memory and emotion task proc-

essing. Social processing was diffusely distributed across Gradient 1. Overlap with cerebellar repre-

sentations of cerebral cortical resting-state networks (Figure 1B) revealed that Gradient 1 extends

from sensorimotor network to DMN regions of the cerebellum. Ventral/dorsal attention and fronto-

parietal networks were situated between the two extreme ends.

Gradient 2, the component accounting for the second-most variance, included at one end the

anterior portions of Crus I and Crus II bilaterally (Figure 1A). These regions corresponded to areas

engaged in the HCP working-memory task (Figure 1B). The same areas were included in cerebellar

representations of the frontoparietal resting-state network. The other end of Gradient 2 included

both regions involved in motor processing and regions involved in language processing; these areas

correspond, respectively, to sensorimotor network and DMN regions. Additional gradients are

shown in Figure 1—figure supplement 2.

Data from a single participant revealed a similar distribution of gradients 1 and 2 and a similar

relationship with the same single subject motor, language and working-memory task processing

(Figure 1—figure supplement 3). Functional gradients calculated using concatenated and normal-

ized time series of 32 unrelated participants also revealed a similar distribution of gradients 1 and 2

(Figure 1—figure supplement 4). Within this group, individual subjects revealed gradients with a

similar distribution in most cases for gradient 1 (29 out of 32 participants), and in half of the cases

for gradient 2. Future studies aiming to perform group comparison statistics using functional gra-

dients might benefit from alternate alignment strategies (see details in legend of Figure 1—figure

supplement 4).

Functional gradients calculated using functional connectivity values from the cerebellum to the

cerebral cortex (rather than from the cerebellum to the cerebellum) revealed a remarkably similar

distribution (Figure 2). In addition, clustering of connectivity gradients revealed discrete networks

similar to cerebello-cerebral connectivity parcellations from Buckner et al. (2011) (Figure 1—figure

supplement 5).

Investigation of individual areas of motor and nonmotor representation
Resting-state as well as task processing analyses have revealed a cerebellar double motor (lobules

I-VI and VIII) and triple non-motor representation (lobules VI/Crus I, Crus II/VIIB and IX/X)

(Buckner et al., 2011; Guell et al., 2018a), but the functional significance of this distribution remains

unknown. To investigate individual areas of motor and nonmotor representation, we isolated Gradi-

ent 1 highest 5% voxels within each area of nonmotor representation (‘High-G1’), Gradient 2 highest

5% voxels within each area of nonmotor representation (‘High-G2’), and Gradient 1 lowest 5% voxels
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Figure 1. Cerebellum gradients and relationship with discrete task activity maps (from Guell et al., 2018a) and resting-state maps (from Buckner et al.,

2011). Gradient 1 extended from language task/DMN to motor regions. Gradient 2 isolated working memory/frontoparietal network areas. (A)

Cerebellum flatmap atlas and gradients 1 and 2. (B) A scatterplot of the first two gradients. Each dot corresponds to a cerebellar voxel, position of each

dot along x and y axis corresponds to position along Gradient 1 and Gradient 2 for that cerebellar voxel, and color of the dot corresponds to task

activity (top) or resting-state network (bottom) associated with that particular voxel.

DOI: https://doi.org/10.7554/eLife.36652.002

The following figure supplements are available for figure 1:

Figure supplement 1. Schematic representation of diffusion map embedding.

DOI: https://doi.org/10.7554/eLife.36652.003

Figure supplement 2. Additional gradients.

DOI: https://doi.org/10.7554/eLife.36652.004

Figure supplement 3. Cerebellum gradients and relationship with discrete task activity for an individual subject (one resting-state run of 15 min).

DOI: https://doi.org/10.7554/eLife.36652.005

Figure supplement 4. Cerebellum single-subject and group-level functional gradients calculations in a group of 32 participants.

DOI: https://doi.org/10.7554/eLife.36652.006

Figure 1 continued on next page
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Figure 1 continued

Figure supplement 5. Clustering of connectivity gradients revealed discrete networks similar to cerebello-cerebral connectivity parcellations from

Buckner et al. (2011).

DOI: https://doi.org/10.7554/eLife.36652.007

Figure supplement 6. Cerebral cortical resting-state networks from Yeo and colleagues (Yeo et al., 2011) (dark purple, visual; blue, somatomotor;

green, dorsal attention; violet, ventral attention; cream, limbic; orange, frontoparietal; red, default network) revealed an overlap between DMN (red)

and language task activity (grey) also in the cerebral cortex.

DOI: https://doi.org/10.7554/eLife.36652.008

Figure 2. Functional gradients calculated based on functional connectivity between the cerebellum and the cerebral cortex revealed a similar

distribution when compared to intra-cerebellar functional gradients. Left scatterplot represents intra-cerebellar gradient 1 (y axis) vs. cerebellum-to-

cerebral-cortex gradient 1 (x axis). Right scatterplot represents intra-cerebellar gradient 2 (y axis) vs. cerebellum-to-cerebral-cortex gradient 2 (x axis).

Scatterplot colors correspond to cerebellar task activation maps as shown in Figure 1: motor (blue), working memory (task-focused cognitive

processing) (green), and language (task-unfocused cognitive processing) (red). As in the case of intra-cerebellar functional gradient 1 (left y axis),

cerebello-cortical gradient 1 (left x axis) distinguishes motor (blue) vs. task-positive cognitive processing (green) vs. task-negative cognitive processing

(red). Similarly, as in the case of intra-cerebellar functional gradient 2 (right y axis), cerebello-cortical gradient 2 (right x axis) isolates task-positive

cognitive processing (green).

DOI: https://doi.org/10.7554/eLife.36652.009
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within each area of motor representation (‘Low-G1’) (Figure 3A). This parcellation is functionally

meaningful because High-G1/High-G2 correspond to different nonmotor task activity and resting-

Figure 3. Investigation of individual areas of motor and nonmotor representation. Second motor and third nonmotor representations (shown in red)

were consistently located at less extreme positions along Gradient 1 and/or 2. This observation suggests that second motor representation is

functionally distinct from first motor representation, and that third nonmotor representation is functionally distinct from first/second nonmotor

representation. Because second motor and third nonmotor representations (shown in red) were consistently located at less extreme positions along

Gradient 1 and/or 2, differences between second and first motor representation might be similar to the differences between third and first/second

nonmotor representations. Specifically, second motor and third nonmotor representations might both correspond to a less extreme level of information

processing (namely, information processing at a functional space which is distant from Gradient 1 or Gradient 2 extreme values). The same relationship

was observed in task and resting-state network maps (Figure 3—figure supplement 1), as well as when using thresholds other than 5% (from 0.5% to

15%, Figure 3—figure supplement 2).

DOI: https://doi.org/10.7554/eLife.36652.010

The following figure supplements are available for figure 3:

Figure supplement 1. Distribution shown in Figure 3C can also be observed when using task activity maps (from Guell et al., 2018a) or resting-state

network maps (from Buckner et al., 2011).

DOI: https://doi.org/10.7554/eLife.36652.011

Figure supplement 2. Distribution shown in Figure 3C can also be observed when using thresholds other than 5%.

DOI: https://doi.org/10.7554/eLife.36652.012

Figure supplement 3. Clustering analyses validate our hypothesis-driven High-G1/High-G2/Low-G1 division.

DOI: https://doi.org/10.7554/eLife.36652.013

Figure supplement 4. Investigation of individual areas of motor and nonmotor representation using data from one single subject (one resting-state run

of 15 min).

DOI: https://doi.org/10.7554/eLife.36652.014

Figure supplement 5. Contrasts of cerebello-cerebral connectivity from Gradient 1 or 2 peaks at each area of motor or nonmotor representation.

DOI: https://doi.org/10.7554/eLife.36652.015
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state network maps (language and DMN vs. working memory and frontoparietal/ventral-dorsal

attention), and Low-G1 corresponds to areas of motor processing (Figure 1).

Further, we isolated each individual representation in task activity maps from Guell et al. (2018a)

and resting-state network maps from Buckner et al. (2011). Specifically, we isolated first motor (I-VI)

and second motor representation (VIII) of the motor task map and somatomotor network. Language

task and DMN were separated in first and contiguous second nonmotor (VI/Crus I/Crus II/VIIB) and

third nonmotor (IX/X) representations, given the contiguous first and second representations of

these maps in Crus I/Crus II. All other tasks and resting-state maps were divided in first nonmotor

(VI/Crus I), second nonmotor (Crus II/VIIB) and third nonmotor representation (IX/X).

When analyzing the position of each individual representation along Gradient 1 and 2, second

motor and third nonmotor representations were consistently located at less extreme positions along

these two gradients. We observed this consistently across gradient-derived parcellations (High-G1/

Hig-G2/Low-G1, Figure 3) as well as task and resting-state network maps (Figure 3—figure supple-

ment 1). Second motor and third nonmotor representations are shown in red in Figure 3 and Fig-

ure 3—figure supplement 1. Note, for example, that second motor representation in Low-G1,

motor task, and somatomotor network was located at a less extreme position along Gradient 2. Fol-

lowing a similar logic, third representation of High-G1, language task, and DMN was located at a

less extreme position along Gradient 1. Third representation of High-G2 and frontoparietal network

was located at a less extreme position along Gradient 2. Third representation of emotion, social

task, ventral attention, dorsal attention, and limbic networks showed a less clear distribution, but

was nonetheless consistently located at more central (i.e. less extreme) position along Gradient 1

and/or 2. This organization could not be observed in working memory task and visual network given

that these maps were not represented in lobules IX/X.

A data-driven clustering of the first two gradients resulted in a division of gradients 1 and 2 in

three areas encompassing our High-G1/High-G2/Low-G1 parcellation (Figure 3—figure supplement

3), further supporting this hypothesis-driven division. The same relationship between the two motor

and three nonmotor areas of representation was observed in the analysis of a single subject with

only one resting-state run of 15 min (Figure 3—figure supplement 4). A supplementary cerebello-

cerebral connectivity analysis revealed additional differences in cerebral cortical connectivity from

each area of representation (Figure 3—figure supplement 5).

Discussion
This is the first study to investigate the progressive, hierarchical organization of the cerebellum. Con-

trasting with the fundamental and well-established primary-unimodal-transmodal hierarchical organi-

zation in the cerebral cortex (Mesulam, 1998, 2008), the principal axis of cerebellar motor and

nonmotor organization remains unknown. We describe for the first time that cerebellar functional

regions follow a gradual organization which progresses from primary (motor) to transmodal (DMN,

task-unfocused) regions. Further, the relationship between the two principal gradients and the two

motor and three nonmotor areas of representation revealed for the first time that there are func-

tional differences not only between the two motor but also between the three nonmotor areas of

representation. An initial novel hypothesis regarding the nature of these differences is generated by

noting that nonmotor processing in lobules IX/X (third nonmotor representation) might share func-

tional similarities with motor processing in lobule VIII (second motor representation). These interpre-

tations are further supported by data-driven clustering and cerebello-cerebral functional connectivity

analyses. These findings, from an exceptionally large and high-quality dataset, provide new and fun-

damental insights into the functional organization of the human cerebellum, unmask new testable

questions for future studies, and yield an unprecedented tool for the topographical interpretation of

cerebellar findings.

Gradient 1 extends from motor to nonmotor areas: cerebellar
macroscale organization is sensorimotor-fugal
Gradient 1 extended from regions corresponding to motor task activity and sensorimotor network

representation to regions corresponding to language task activity and DMN representation

(Figure 1B). The overlap between language task activity and DMN may be due to the language task

contrast which subtracted listening to stories minus answering arithmetic questions. This subtraction
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may capture processes similar to those that engage DMN regions, such as autobiographical memory

retrieval, daydreaming, and conceiving the perspective of others (Buckner et al., 2008). Consistent

with this hypothesis, HCP language task activity also overlapped with DMN in the cerebral cortex

(Figure 1—figure supplement 6). Working memory task processing was situated at a middle point

along Gradient 1, similar to the distribution of frontoparietal and ventral attention networks

(Figure 1B). It is reasonable to conceptualize working memory as a nonmotor task which is not as

distant from motor function as a story listening task, justifying its middle position along Gradient 1.

Similarly, tasks that activate DMN regions such as daydreaming and mind wandering (Mason et al.,

2007; Christoff et al., 2009; Stawarczyk et al., 2011) can be conceptualized as more distant from

motor processing than goal-directed cognitive control and decision-making processes that activate

frontoparietal network regions (Vincent et al., 2008). Ventral and dorsal attention networks were

located far from DMN along Gradient 1 (Figure 1B), consistent with the view that DMN and ventral/

dorsal attention networks are two opposing brain systems (Fox et al., 2005). The frontoparietal net-

work is conceptualized as a mediator between the two (Vincent et al., 2008), justifying its position

between ventral/dorsal attention networks and DMN along Gradient 1 (Figure 1B). This conceptuali-

zation of Gradient 1 is also coherent with a previous report analyzing cerebellar activity at multiple

time points, from motor planning to motor output (Hülsmann et al., 2003). The authors described a

lateromedial succession ‘from will to action’ which is in accordance with the direction of Gradient 1

from nonmotor to motor regions in our analysis.

This is the first study to report a sensorimotor-fugal macroscale organization in the cerebellum;

that is, a hierarchical organization that progresses away from sensorimotor function. A different

study using diffusion map embedding analysis in the cerebral cortex reported similar results

(Margulies et al., 2016). In that case, the principal gradient extended from primary cortices (visual,

somatosensory/motor, and auditory) to regions corresponding to the DMN. As in the cerebellum,

the frontoparietal network was also located between DMN and ventral/dorsal attention networks,

and working memory task activity was also located at a middle position along the principal gradient.

Of note, the cerebellum does not show functional connectivity with primary visual or auditory corti-

ces (Buckner et al., 2011), but is anatomically and functionally connected with areas of primary sen-

sorimotor processing and consistently engaged in simple motor tasks. It is therefore reasonable to

consider that a gradient from motor to DMN areas in the cerebellum is the equivalent of a gradient

from motor/visual/auditory to DMN areas in the cerebral cortex.

This finding strongly suggests that cerebellum and cerebral cortex share a similar macroscale

principle of organization, namely, that both structures share a hierarchical organization which gradu-

ally progresses away from unimodal streams of information processing. While this organization has

long been defended in the cerebral cortex (Mesulam, 1998; Margulies et al., 2016; Sepulcre et al.,

2012), the present analysis is the first to reveal an analogous principle in the cerebellum. This is a

notable observation for two reasons. First, gradients obtained in our analysis correspond to intrinsic

connectivity profiles of cerebellar voxels with the rest of the cerebellum only, rather than with the

rest of the brain. Therefore, our analysis reflects the organization of the cerebellum without invoking

its connectivity profiles with the cerebral hemispheres. In this way, the fact that we observed a simi-

lar principle of organization between the cerebral cortex and the cerebellum does not constitute an

imposition of cerebro-cerebellar connectivity on our method of analysis (unlike in Buckner et al.,

2011). Second, the notion that there is a hierarchical organization in the cerebral cortex which grad-

ually progresses away from unimodal streams of information (Mesulam, 1998; Margulies et al.,

2016; Sepulcre et al., 2012) is implicitly predicated on the anatomical knowledge that there are syn-

apses linking adjacent cerebral cortical regions (Schmahmann and Pandya, 2009). Unlike the cere-

bral cortex, there are no short or long cerebellar cortical association fibers linking adjacent or distant

cerebellar cortical areas with each other (Schmahmann, 1996; Schmahmann and Pandya, 2008). It

is therefore nontrivial to observe this parallel organization in the cerebellum. Our hypothesis is that

such a functional organization is a consequence of the arrangement of cerebello-cerebral anatomical

connections which in turn affect correlations in resting-state activity between cerebellar regions.

Consistent with this possibility, cerebellar functional gradients calculated from cerebello-cerebral

connectivity revealed a distribution similar to the intra-cerebellar functional gradients (Figure 2). The

same possibility raises further questions regarding the precise distribution of cerebello-cerebral ana-

tomical connections that would be required to achieve such a parallel mapping of functional gra-

dients in the cerebral cortex and cerebellum.
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The finding that a similar distribution of the first two gradients and their relationship with motor,

language and working memory task processing can be observed at an individual level (Figure 1—

figure supplement 3) supports the assertion that this organization is not an artifact generated as a

result of averaging a large number of subjects, and highlights the potential application of this funda-

mental principle in future small group or single subject investigations (see Figure 1—figure supple-

ment 4).

Integrating gradient 1 and gradient 2: task processing in the
cerebellum understood in terms of distance from motor processing and
amount of task-focus
Gradient 1 extended from motor to nonmotor (task-unfocused, DMN) regions. In contrast, Gradient

2 (the component accounting for the second-most variance) was anchored at one end by working

memory task and frontoparietal network regions. The other extreme of Gradient 2 corresponded to

both extremes of Gradient 1, namely, (i) regions corresponding to motor task activity and sensorimo-

tor network and (ii) regions corresponding to language task activity and DMN representation. The

functional significance of this distribution might be analyzed as follows. Working memory HCP task

corresponds to Two back (respond if current stimulus matches the item two back) minus Zero back

(respond if current stimulus matches target cue presented at start of block). HCP language task cor-

respond to Story (listen to stories) minus Math (answer arithmetic questions). HCP motor tasks corre-

sponds to Movement (tap left fingers, or tap right fingers, or squeeze right toes, or squeeze left

toes, or move tongue) minus Average (average of the other four movements). What dimension cor-

responding to the working memory task is equally absent in the language and the motor task con-

trasts? One possible explanation is task focus. Whereas the working memory task contrast isolates a

higher load of working memory (therefore a higher load of task focus), task focus is eliminated from

the language task contrast after subtracting the math condition, and task focus is eliminated from

the motor task contrast after subtracting the average of other movements. Coherently, frontoparie-

tal and ventral attention networks (the extreme of Gradient 2, Figure 1B) are task-positive networks

(Vincent et al., 2008) while DMN and somatosensory network (the other extreme of Gradient 2) are

not.

In this way, Gradient 1 and Gradient 2 classify information processing in the cerebellum along

two dimensions: distance from motor processing (Gradient 1) and amount of task-focus (Gradient 2).

HCP motor task contrast isolates pure motor processing and eliminates task-focus demands. In con-

sequence, HCP motor task is situated at a minimal position in Gradient 1 (i.e. maximally motor) and

at a minimal position in Gradient 2 (i.e. minimally task-focused) (Figure 1B). HCP working memory

task isolates a higher load of working memory by subtracting a two-back minus a zero-back condi-

tion. The isolated cognitive process is closely related to task focus and is therefore situated at a max-

imum position in Gradient 2. At the same time, working memory represents a nonmotor process

and is therefore situated higher than the HCP motor task along Gradient 1. This notwithstanding,

working memory is situated lower than the HCP language task along Gradient 1. This order seems

logical by considering that goal-nondirected processes targeted by the HCP language task contrast

are more distant from pure motor processing than those goal-directed processes isolated by the

working memory task contrast. Similarly, mind-wandering states are, by definition, task-unfocused,

explaining the position of the HCP language task at the lowest extreme of Gradient 2.

Our interpretation of task focus in the cerebellum in terms of distance from motor processing and

amount of task-focus is also coherent with the general distribution of data points when plotting Gra-

dient 1 against Gradient 2 (see plots in Figure 1B). First, there are no cerebellar voxels with simulta-

neous maximum Gradient 1 and Gradient 2 values. Maximum Gradient 1 values correspond to DMN

regions, and DMN processes are task-unfocused by definition. Therefore, Gradient 1 maximum val-

ues must have low Gradient 2 values. Second, there are no cerebellar voxels with simultaneous mini-

mum Gradient 1 and maximum Gradient 2 values. This distribution is consistent with the notion that

increasing attentional demands of a motor task adds nonmotor computational demands. Accord-

ingly, Gradient 1 lowest values cannot increase their position along Gradient 2 without simulta-

neously acquiring a higher position along Gradient 1.

While HCP motor, working memory, and language task activity maps were situated at extreme

regions along Gradient 1 and/or 2 (Figure 1B), social and emotion processing did not adhere to any

extreme along these gradients. One possibility is that functional gradients 1 and 2 fail to capture
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relevant aspects pertaining to the domains of emotion processing and social cognition, making the

distribution of our social and emotion tasks along these gradients uninterpretable. Another possibil-

ity is that distribution of these two tasks along gradients 1 and 2 may indeed provide valid insights

into the organization and nature of social and emotion processing in the cerebellum, as follows.

Social processing task activity map spanned across Gradient 1, perhaps reflecting a multimodal

nature of social processing in the cerebellum in the dimension of motor to nonmotor processing.

The conceptualization of social processing in the cerebellum as an activity that engages multiple lev-

els of information processing along the motor-nonmotor dimension may relate to the concomitant

impairment of social skills, nonmotor tests such as Rey’s figure or Tower test, and some motor abili-

ties (e.g. equilibrium and limb coordination) in autism spectrum disorders (Paquet et al., 2016).

Emotion processing was situated at a central position in both Gradient 1 and 2. We understand this

distribution as an inability to clearly classify emotion processing along the gradients of distance from

motor processing (Gradient 1) and amount of task focus (Gradient 2). Higher working memory load

as isolated by the HCP working memory task corresponds to a level of information processing with

high task-focus demands. At the same time, the subtraction of the HCP language task isolates task-

unfocused processes which are maximally removed from pure motor processing. The results of the

HCP emotion processing task contrast, on the other hand, are not as well defined along these

dimensions. The subtraction of Faces (‘decide which of two angry/fearful faces on the bottom of the

screen match the face at the top of the screen’) minus Shapes (same task performed with shapes

instead of faces) isolates higher emotional content in the information that is processed. It may be

argued that this higher emotional content corresponds to an intermediate position between pure

motor and high-nonmotor level information processing (explaining the intermediate position along

Gradient 1), and that this higher emotional content results in mildly increased task focus (explaining

the intermediate position along Gradient 2).

Confirmation of the double/triple representation hypothesis
Resting-state as well as task processing analyses have revealed a cerebellar double motor (lobules

I-VI and VIII) and triple non-motor representation (lobules VI/Crus I, Crus II/VIIB and IX/X)

(Buckner et al., 2011; Guell et al., 2018a). The distribution of Gradient 1, the component that

explains the greatest variability in resting-state intra-cerebellar connectivity patterns, confirms this

organization. Gradient 1 lowest values correspond to lobules IV/V/VI and VIII (Figure 1A, dark blue

regions in Gradient 1), demarcating the two areas of motor representation. The highest values corre-

spond to lobules Crus I, Crus II, and lobule IX (Figure 1A, dark red regions in Gradient 1) - these

regions correspond to the first, contiguous second, and third nonmotor representation areas,

respectively. Taken together, the double motor/triple nonmotor organization has now been shown

in cerebellar representations of cerebral resting-state networks (Buckner et al., 2011), cerebellar

task activity (Guell et al., 2018a), cerebro-cerebellar functional connectivity from cerebral cortical

task activity peaks (Guell et al., 2018a), and gradients of intra-cerebellar patterns of functional con-

nectivity (the present study). Gradient 2 also revealed a similar distribution, with its maximum values

located in Crus I, Crus II/VIIB, and lobules IX/X.

A very similar organization was also found when calculating functional gradients based on connec-

tivity from the cerebellum to the cerebral cortex (Figure 2). Clustering of connectivity gradients

revealed discrete networks resembling cerebello-cerebral connectivity parcellations in Buckner et al.

(2011), and also replicated their double motor/triple nonmotor representation distribution (Fig-

ure 1—figure supplement 5). These observations support the generalizability of the double motor/

triple nonmotor representation hypothesis to multiple directions of functional connectivity, namely,

cerebello-cerebral and intra-cerebellar.

A ‘network approach to the localization of complex functions’ rather than ‘an exclusive concentra-

tion of function within individual centers in the brain’ (Mesulam, 1981) has long been adopted in the

cerebral cortex (Yeo et al., 2011; Mesulam, 1981, 1986; Goldman-Rakic, 1988), although some

complex functions are indeed organized into focally specific brain regions (Kanwisher et al., 1997;

Saxe and Kanwisher, 2003). Accumulating evidence for a double motor/triple nonmotor organiza-

tion in the cerebellum warrants an analogous shift in the understanding of cerebellar functional neu-

roanatomy. Just as ‘each distributed network consists of association areas spanning frontal, parietal,

temporal and cingulate cortices’ (Mesulam, 1981), the data indicate that each nonmotor cerebellar

network consists of three representations spanning VI/Crus I, Crus II/VIIB and IX/X. There are no
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intrinsic anatomical connections linking these cerebellar areas, but tract tracing studies in monkeys

hint at the possibility of an anatomical correlate of the double motor/triple nonmotor organization.

This conclusion is based on shared cerebello-cerebral cortical loops: lobules I-VI and VIII receive

input from and project to M1, and lobules Crus I/Crus II and IX/X receive input from and project to

area 46 (Kelly and Strick, 2003). Further, as in the cerebral cortex, distributed networks may exist

adjacent to each other within each area of nonmotor representation in the cerebellum. In the same

way that ’adjacent areas in the parietal cortex belonging to separate networks are differentially con-

nected to adjacent areas of corresponding networks in the frontal, temporal and cingulate cortices’

(Yeo et al., 2011; Selemon and Goldman-Rakic, 1988; Cavada and Goldman-Rakic, 1989a,

1989b), adjacent areas in VI/Crus I belonging to separate networks are differentially related to adja-

cent areas of corresponding networks in Crus II/VIIB and IX/X. This is revealed by non-overlapping

nonmotor task activity maps within each area of representation in Guell et al. (2018a), the unmask-

ing of multiple resting-state networks within each area of representation in Buckner et al. (2011),

and the distribution of Gradient 1 in the present analysis. Task contrasts or connectivity analyses

might reveal incomplete engagement of the triple nonmotor cerebellar network - a discussion

regarding this incomplete engagement would be appropriate in these cases. For instance, incom-

plete engagement of the triple nonmotor network might be functionally meaningful, for example,

activity in the areas of first and second representations, but not in the area of third representation.

Similarly, future studies may discuss group contrasts where a given neurological or psychiatric dis-

ease results in functional or structural cerebellar abnormalities within only one area of motor or non-

motor representation. This approach might be critical for the understanding of cerebellar systems

physiology and pathophysiology. Consequently, a critical next step towards a more comprehensive

and nuanced understanding of cerebellar functional neuroanatomy is the investigation of distinct

contributions of each area of motor and nonmotor representation. The following section addresses

this question.

Second motor (VIII) and third nonmotor representation regions (IX/X)
are situated at a less extreme level along Gradient 1 and/or 2:
Cerebellar motor and nonmotor representations are functionally
distinct, and second motor representation might share functional
similarities with third nonmotor representation
A review (Sokolov et al., 2017) frames the question of ‘the functional significance of the two (or

three) cortical representation maps in the cerebellum’ as one of the principal outstanding enigmas in

cerebellar neuroscience. Our present study provides the data to attempt to address this question for

the first time, as follows.

Second motor representation (lobule VIII) and third nonmotor representations (lobule IX/X) were

consistently located at less extreme positions along Gradient 1 and/or 2 when compared to their

first motor and first/second nonmotor representations, respectively. This pattern was observed in all

maps analyzed, including gradient-derived cerebellar parcellations (Figure 3), task activity maps

(from Guell et al., 2018a, Figure 3—figure supplement 1), and resting-state maps (from

Buckner et al., 2011, Figure 3—figure supplement 1). Further, this distribution was also observed

in 15 min of resting-state data in a single subject (Figure 3—figure supplement 4). This observation

indicates that the contribution of the second motor representation (lobule VIII) is different from the

contribution of the first motor representation (lobules I-VI), as expected from previous clinical

(Stoodley et al., 2016; Schmahmann et al., 2009) and functional connectivity (Kipping et al., 2013)

observations. Crucially, it also indicates that the contribution of the third nonmotor representation

(lobules IX/X) is different from the contribution of the first and second nonmotor representations

(lobules VI/Crus I/Crus II/VIIB). These conservative conclusions are, on their own, novel in the field of

cerebellar systems neuroscience. We further speculate that a less extreme position along Gradient 1

and/or 2 in both third nonmotor and second motor representation represents, in both cases, a less

extreme level of information processing. ‘Extreme’ here refers to the poles of the sensorimotor-fugal

organization (Gradient 1) and the task-focus/task-unfocus organization (Gradient 2). Specifically, a

less extreme position along Gradient 1 corresponds to a less extreme level of information processing

along the motor/nonmotor dimension, and a less extreme position along Gradient 2 corresponds to

a less extreme level of information processing along the task-unfocused/task focused dimension.

Because this pattern of a less extreme level of information processing is observed in both second
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motor representation and third nonmotor representation, we argue that nonmotor activity in lobules

IX and X (third nonmotor representation) might emerge from, and follow the logic of, motor process-

ing in lobule VIII (second motor representation). This notion is inspired by the organization of the

cerebral cortex where multimodal or association cortical areas are related to their nearby unimodal

areas. For example, Broca’s area is close to the primary motor cortex, while Wernicke’s area is close

to the primary auditory cortex. The analogy in the cerebellum is that nonmotor activity in lobules IX

and X is adjacent to, and therefore follows the logic of, motor activity in lobule VIII. Restated, the

relationship between first motor and second motor representation resembles the relationship

between first/second nonmotor and third nonmotor representations, just as the relationship

between primary motor and primary auditory cortex reflects the relationship between Broca’s area

and Wernicke’s area.

The data show that the second representation of motor task activity, sensorimotor network, and

‘Low-G1’ (motor) maps were consistently located at a higher position along Gradient 2 when com-

pared to their first representation. This suggests that while the first motor representation is engaged

in pure motor processing as isolated by the Movement (e.g. tap left fingers) minus Average (average

of the other four movements) contrast, second motor representation is engaged in motor processes

that require higher task focus. In this way, second motor representation corresponds to a less

extreme level of task-unfocused motor information processing. Following a similar logic, third repre-

sentation of language task, DMN, and ‘High-G1’ maps were consistently located at a lower position

along Gradient 1 when compared to their first and contiguous second representations. While these

first and contiguous second representations are at an extreme level of information processing (i.e.

maximally nonmotor), third representation is in a less extreme position (i.e. less extreme in the

motor/nonmotor dimension). Also consistent with this logic, the third representation of working

memory, frontoparietal network, and ‘High-G2’ maps were consistently located at a lower position

along Gradient 2 when compared to their first and second representations. These first and second

representations were at an extreme level of information processing – specifically, maximally task-

focused. The third representation was located further from this extreme, that is, less extreme in the

task-unfocused/task-focused dimension. Ventral and dorsal attention networks were not located at

one clear gradient extreme, but their distribution of three representations also followed the logic

that third representation (lobule IX/X) was located at a less extreme position along Gradient 1 and/

or 2.

Of note, the second representation of working memory, frontoparietal network, and ‘High-G2’

was located similar to its first representation. This proximity between the first and second

nonmotor representations indicates that the relationship between second motor and third nonmotor

representation does not apply to the relationship between second motor and second nonmotor

representation. Restated, nonmotor processes in lobules IX/X share hierarchical principles with

motor processing in lobule VIII (an analogous ‘less extreme’ level of information processing) - in con-

trast, this relationship does not apply between nonmotor processing in lobules Crus II/VIIB and

motor processing in lobule VIII.

A cerebello-cerebral connectivity analysis further supports the hypothesis that second motor and

third nonmotor regions of representation correspond to a less extreme level of information process-

ing when compared to their first motor and first/second nonmotor representations, respectively.

These analyses are shown in Figure 3—figure supplement 5: while connectivity from first motor

representation corresponds to cerebral cortical somatomotor network, connectivity from second

motor representation engages areas adjacent to, but not directly at, somatomotor network (as

shown previously by Kipping and colleagues [Kipping et al., 2013]). Similarly, while connectivity

from first/second task-focused nonmotor representation corresponds to cerebral cortical task-posi-

tive networks, connectivity from third task-focused nonmotor representation engages areas adjacent

to, but not directly at, task-positive networks. Following the same logic, while connectivity from first/

second task-unfocused nonmotor representation corresponds to cerebral cortical task-negative net-

works (Default Mode Network), connectivity from third task-focused nonmotor representation

engages areas adjacent to, but not directly at, task-negative networks.

The constellation of symptoms that follow cerebellar strokes of the posterior inferior cerebellar

artery (PICA) may also support our hypothesis. PICA occlusion commonly results in the infarction of

lobule VIII (second motor representation) but not of lobules IV/V/VI (first motor representation).

Notably, these lesions result in little or no motor deficits (Stoodley et al., 2016;
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Schmahmann et al., 2009). Our hypothesis that second motor representation corresponds to a less

extreme level of pure motor information processing might explain the lack of pure cerebellar motor

symptoms (gait ataxia, appendicular dysmetria, dysarthria) after PICA stroke. Whereas the pattern of

deficits arising from lesions of the second motor representation may go undetected with the stan-

dard neurological motor examination, our data predict that fine discriminative testing may reveal

deficits in motor-related tasks that require high task focus. This might include motor performance

abnormalities that only manifest in the presence of distractors. However, PICA strokes also damage

other lobules such as Crus II and VIIB - deficits in motor tasks requiring high task focus may be diffi-

cult to dissociate from nonmotor abnormalities arising from infarction of cerebellar regions other

than lobule VIII. We are not aware of any report of isolated lobule VIII injury in humans - however,

Dow, (1938) performed isolated ablation of lobule VIII in three rhesus monkeys. The author reported

that ’In all three animals in which the pyramis (i.e. lobule VIII) alone was damaged little that was

abnormal could be detected, except that the animal when running down a long corridor apparently

was unable to stop quickly enough to avoid crashing head-on against the end wall. No visual defect

was present. The abnormality was never observed later than the third or fourth day after operation’.

Aberrant motor behavior in the absence of classical cerebellar motor symptoms may be consistent

with our reasoning. fMRI task activity analyses have made claims regarding distinct functional contri-

butions of the cerebellar second motor representation (Habas et al., 2004; Diedrichsen et al.,

2005; Habas and Cabanis, 2006; Bohland and Guenther, 2006; Tourville et al., 2008); however,

none has demonstrated statistically significant lobule VIII activity in the absence of lobule IV/V/VI

activity for any given task contrast. Kipping and colleagues (Kipping et al., 2013) reported lobule

VIII functional connectivity with cerebral cortical regions other than motor and premotor regions, a

pattern of connectivity consistent with our hypothesis that the second motor representation is

located at a less extreme level of motor processing.

We showed that during a working memory task there was activity in the cerebellum in the first

and second nonmotor representations, but not in the third representation (Guell et al., 2018a). In

contrast, functional connectivity was observed in all three areas of representation when seeding

from the cerebral cortical peak of the working memory task. In the light of the present observations,

our interpretation is that functional connectivity revealed the full pattern of triple representation of

task-focused mid-nonmotor processing areas, but when engaged with a working memory task, the

third representation in the network was not recruited due to excessive task-focus demands (i.e. due

to an extreme level of information processing along the task-unfocused/task-focused dimension).

Some anatomical peculiarities of lobules IX/X conform to the notion of a functionally distinct non-

motor contribution of these lobules. Glickstein and colleagues (Glickstein et al., 1994) reported

that the principal target of pontine visual cells in monkeys is lobule IX. A specific type of cell, the Cal-

retinin-positive unipolar brush cell, is preferentially located in lobules IX and X in many species

(Diño et al., 1999; Mugnaini et al., 2011) and receives vestibular afferents (Diño et al., 2001).

Accordingly, lobules IX and X are classically considered to represent the vestibulocerebellum. One

highly speculative proposal is that the incorporation of visual/vestibular streams of information in

lobules IX/X, but not in lobules VI/Crus I/Crus II/VIIB, might be related to the asymmetries we

describe between the third and the first/second nonmotor representations. Indeed, some lines of

study investigate the link between vestibular function and limbic and cognitive functions including

visuospatial reasoning (Hitier et al., 2014; Bigelow and Agrawal, 2015; Rajagopalan et al., 2017).

The notion that asymmetry between nonmotor representations may arise from heterogeneity in cer-

ebellar patterns of connectivity, rather than cytoarchitecture or physiology, is in accord with the

notion of a Universal Cerebellar Transform (Schmahmann, 1996, Schmahmann, 1991; Guell et al.,

2018b).

Concluding remarks and relevance for future investigations
This is the first study to describe the principal gradient of macroscale function in the cerebellum. Pre-

vious studies have segregated the cerebellum into discretely arranged functional regions

(Buckner et al., 2011; Guell et al., 2018a). This leads to the fundamental question: What is the rela-

tionship between the cerebellar regions that subserve these distinct networks? Following a logic sim-

ilar to the fundamental and well-established primary-unimodal-transmodal hierarchical organization

in the cerebral cortex (Mesulam, 1998; Margulies et al., 2016), we report that cerebellar macro-

scale organization is sensorimotor-fugal. Regions further from the central aspect of lobules IV/V/VI
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and VIII are, accordingly, further from cerebellar motor function in a gradient from motor to maxi-

mally non-motor (mind-wandering, non-goal oriented) function. This concept is analogous to the

well-established knowledge in the cerebral cortex that regions progressively further from primary

cortices (motor/somatosensory, auditory, visual) are progressively involved in more abstract, trans-

modal, non-primary processing. This fundamental concept has greatly influenced topographical

investigations in the cerebral cortex, and it is reasonable to consider that the present description

may equally influence cerebellar investigations. The publicly available cerebellum gradient maps

from the present study in multiple file formats and structural spaces (https://github.com/xaviergp/

cerebellum_gradients, folder ‘FINAL_GRADIENTS’) will facilitate the inclusion of the sensorimotor-

fugal principle of cerebellar macroscale organization in future investigations.

The distribution of these principal gradients confirmed the double motor/triple nonmotor organi-

zation in the cerebellum, highlighting the need to refer to this organization when discussing cerebel-

lar functional or structural findings. Close attention to this network organization may become critical

for the understanding of cerebellar structure and function in health and disease. Clusters in lobules

IV/V/VI and VIII are commonly interpreted as first and second representations of motor processing.

The same reasoning should be applied to nonmotor findings, for example, in the interpretation of

degeneration of Crus I and IX in Alzheimer’s disease (Guo et al., 2016).

One important additional implication of the analysis of connectivity gradients in the present study

is the unmasking of functional differences not only between the two motor cerebellar representa-

tions (as expected from previous clinical (Stoodley et al., 2016; Schmahmann et al., 2009) and

functional connectivity (Kipping et al., 2013) observations), but also between the three nonmotor

cerebellar representations (Figure 3, Figure 3—figure supplement 1). An initial hypothesis regard-

ing the nature of these differences is generated by noting hierarchical similarities between second

motor (VIII) and third nonmotor (IX/X) representations in gradient-derived parcellations, task activity,

and resting-state maps. We interpret this relationship as an indication that nonmotor processing in

lobules IX/X emerges from, and follows the logic of, motor processing in lobule VIII – specifically,

processing in both regions corresponds to a less extreme level of information processing when com-

pared to nonmotor processing in VI/Crus I/Crus II and motor processing in I-VI. This hypothesis may

be useful in the interpretation of future cerebellar neuroimaging findings. For example, this hypothe-

sis may help interpret or highlight the potential relevance of isolated abnormalities in lobule VIII and

IX in ADHD (Hove et al., 2015). A virtue of this hypothesis is that it is testable using task fMRI. For

example, future studies may contrast motor task conditions with high versus low task-focus demands

(to isolate second motor representation), task-focused nonmotor task conditions with lower versus

higher task-focus demands (to isolate third task-focused nonmotor representation), and task-unfo-

cused nonmotor task conditions which can be removed from motor processing by, for example,

modulating the amount of mental object manipulation (to isolate the third task-unfocused nonmotor

representation).

In sum, we describe a fundamental sensorimotor-fugal principle of organization in the cerebellum,

confirm the double motor/triple nonmotor representation organization, unmask functional differen-

ces not only between the two motor but also between the three nonmotor areas of representation,

and hint at the possibility that second motor and third nonmotor representations might share func-

tional similarities. Our findings and analyses represent a significant conceptual advance in cerebellar

systems neuroscience, and introduce novel approaches and testable questions to the investigation

of cerebellar topography and function.

Materials and methods
All code used in this study is openly available at https://github.com/xaviergp/cerebellum_gradients

(Guell, 2018; copy archived at https://github.com/elifesciences-publications/cerebellum_gradients).

Human connectome project data
fMRI data were provided by the Human Connectome Project (HCP), WU-Minn Consortium

(Van Essen et al., 2013). We analyzed data from 1003 participants who completed all resting-state

sessions (age mean = 28.71, SD = 3.71, 470 male, 533 female), four 15 min scans per subject),

included in the group average preprocessed dense connectome S1200 HCP release. Of note, many

participants within this group of 1003 participants were related. There were 120 pairs of
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monozygotic twins, and 64 pairs of dizygotic twins (as determined by genetic testing in the data pro-

vided by HCP). Of the 635 remaining individuals, there were 132 pairs of related participants, 37

groups of 3 related participants, 10 groups of 4 related participants, and 3 groups of 5 related par-

ticipants. In total, there were 798 related and 205 unrelated participants. While brain organization is

expected to be more similar between pairs of related subjects than between pairs of unrelated sub-

jects, this feature of our data was not accounted for in our analysis. Analysis of a subset of 32 unre-

lated participants tested whether our findings were also observable in cohorts of unrelated subjects.

EPI data acquired by the WU-Minn HCP used multi-band pulse sequences (Moeller et al., 2010;

Feinberg et al., 2010; Setsompop et al., 2012; Xu et al., 2013). HCP structural scans are defaced

using the algorithm by Milchenko and Marcus (Milchenko and Marcus, 2013). HCP MRI data pre-

processing pipelines are primarily built using tools from FSL and FreeSurfer (Glasser et al., 2013;

Jenkinson et al., 2012; Fischl, 2012). HCP structural pre-processing includes cortical myelin maps

generated by the methods introduced by Glasser and Van Essen (Glasser and Van Essen, 2011).

HCP task-fMRI analyses uses FMRIB’s Expert Analysis Tool (Jenkinson et al., 2012; Woolrich et al.,

2001). All group fMRI data used in the present study included 2 mm spatial smoothing and areal-

feature aligned data alignment (‘MSMAll’) (Robinson et al., 2014). We did not conduct any further

preprocessing beyond what was already implemented by the HCP. Results were visualized in volu-

metric space as provided by HCP as well as on a cerebellar flat map using the SUIT toolbox for SPM

(Diedrichsen, 2006; Diedrichsen et al., 2009; Diedrichsen and Zotow, 2015).

Diffusion map embedding
Diffusion map embedding methodology was introduced by Coifman and colleagues (Coifman et al.,

2005), and its application to the HCP resting-state data as performed in this study is thoroughly

described in Margulies et al. (2016). Instead of analyzing data corresponding to the cerebral cortex

(Margulies et al., 2016), the present study included only voxels corresponding to the cerebellum.

We used data from the S1200 release (n = 1003) instead of the S900 release (n = 820). In brief, cere-

bellar data in the preprocessed HCP ‘dense connectome’ includes correlation values of each cere-

bellar voxel with the rest of cerebellar voxels. In this way, each cerebellar voxel has a spatial

distribution of cerebellar correlations (a ‘connectivity pattern’). Diffusion map embedding is a nonlin-

ear dimensionality reduction technique and can be used to analyze similarities between functional

connectivity based networks. As in Principal Component Analysis (PCA), diffusion map embedding

results in a first component (or ‘principal gradient’) that accounts for as much of the variability in the

data as possible. Each following component (each following gradient) accounts for the highest vari-

ability possible under the constraint that all gradients are orthogonal to each other. The final result

of a dense connectome matrix PCA analysis would take the form of a mosaic; if this method was

applied, each cerebellar voxel would be assigned to a particular network with discrete borders. In

contrast, diffusion embedding extracts overlapping ‘gradients’ of connectivity patterns from the ini-

tial matrix. For example, in Margulies et al. (2016), gradient 1 extended from primary cortices to

DMN areas, gradient 2 extended from motor and auditory cortices to the visual cortex, etc. Each

voxel is then assigned a position within each gradient. In Margulies et al. (2016), a voxel corre-

sponding to a DMN area would be assigned an extreme position in gradient 1 (e.g. a value of 6.7 in

a unitless scale from �5.4 to 6.9) and a middle position in gradient 2 (e.g. a value of 1.8 in a unitless

scale from �3.0 to 5.7). In this way, the result of diffusion embedding is not one single mosaic of dis-

crete networks, but multiple, continuous maps (gradients). Each gradient reflects a given progression

of connectivity patterns (e.g. from DMN to sensorimotor, from motor/auditory cortex to visual cor-

tex, etc.), each gradient accounts for a given percentage of variability in the data, and each voxel

has a position within each gradient. An illustration of this method is provided in Figure 1—figure

supplement 1.

It is important to highlight that our initial dense connectome matrix includes the profile of con-

nectivity of each cerebellar voxel with the rest of the cerebellum only, rather than with the rest of

the brain. In this way, our analysis reflects the intrinsic organization of the cerebellum without invok-

ing its connectivity profiles with the cerebral hemispheres or other brain structures. This approach

allows the possibility of identifying cerebellar properties that might otherwise be obscured in whole-

brain connectivity analyses. The latter approach would emphasize the relationship between cerebel-

lar structures and cerebral resting-state networks, and potentially miss relevant gradients of connec-

tivity patterns within cerebellar resting-state data.
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Diffusion map embedding and task processing analyses were also performed using a 15 min rest-

ing-state run from a single subject. To avoid selection bias, we chose to analyze the HCP participant

corresponding to the ‘single subject’ download package of the HCP database. Resting-state

smoothing of single-subject data was performed on the resulting gradients after diffusion map

embedding calculations to avoid introducing artefactual correlations. Group and single subject eval-

uation of an additional group of 32 participants was performed to explore the applicability of our

method to smaller group investigations. These participants corresponded to the first 32 participants

of the ‘100 unrelated’ download package of the HCP database. Analysis of this subgroup of 32 par-

ticipants was performed using a normalized and concatenated dataseries file of all 32 participants,

including one 15 min resting-state run per subject. Gradients resulting from the 32-participants

group analysis were not smoothed. Individual subject analyses within this subgroup of 32 partici-

pants were performed using one 15 min resting-state run per subject, and smoothing (sigma = 4)

was performed on the resulting gradients after diffusion map embedding calculations.

There are no cerebellar cortical association fibers (Schmahmann, 1996; Schmahmann and Pan-

dya, 2008). Intra-cerebellar functional gradients may be driven by cerebello-cerebral interactions,

and it is therefore reasonable to consider that intra-cerebellar and cerebello-cortical functional gra-

dients may be similar. For this reason, we also calculated functional gradients in the cerebellum

using functional connectivity values from the cerebellum to the cerebral cortex (rather than within

the cerebellum) in the average 1003 participants connectivity matrix.

Task activity and resting-state network maps
Cerebellar task activity data from a subset of 787 HCP participants were analyzed in a previous study

by our group (Guell et al., 2018a). Guell and colleagues (Guell et al., 2018a) provided Cohen’s d

task activity maps thresholded at 0.5 (medium effect size). A sample size of 787 participants ensures

that a Cohen’s d value higher than 0.5 will be statistically significant even after correction for multi-

ple comparisons in the cerebellum. These tasks include the following contrasts: Movement (tap left

fingers, or tap right fingers, or squeeze right toes, or squeeze left toes, or move tongue) minus Aver-

age (average of the other four movements), assessing motor function (Buckner et al., 2011); Two

back (subject responds if current stimulus matches the item two back) minus Zero back (subject

responds if current stimulus matches target cue presented at start of block), assessing working mem-

ory; Story (listen to stories) minus Math (answer arithmetic questions), assessing language processing

(Binder et al., 2011); TOM (view socially interacting geometric objects) minus Random (view ran-

domly moving geometric objects), assessing social cognition (Castelli et al., 2000; Wheatley et al.,

2007); and Faces (decide which of two angry/fearful faces on the bottom of the screen match the

face at the top of the screen) minus Shapes (same task performed with shapes instead of faces),

assessing emotion processing (Hariri et al., 2002).

Cerebellar resting-state network maps were obtained from Buckner et al. (2011). Buckner’s study

applied a winner-takes-all algorithm to determine the strongest functional correlation of each cere-

bellar voxel to one of the 7 or 17 cerebral cortical resting-state networks defined by Yeo and col-

leagues (Yeo et al., 2011). This analysis used data from 1000 participants. Additional

methodological information regarding these task activity and resting-state network data is included

in Supplementary file 1.

Clustering analyses
Clustering analyses on the resulting diffusion map embedding gradients included k-means cluster-

ing, spectral clustering, and silhouette coefficient analysis (Hastie et al., 2009) using the scikit-learn

toolbox (Pedregosa et al., 2011). K-means separates samples in a previously specified number of

clusters, minimizes the sum of the squared differences of each data point from the mean within each

cluster, but makes the assumption that clusters are convex. Spectral clustering does not have a con-

vexity constraint, provides a valuable alternative method of analysis to validate k-means clustering

results, but still requires a specification of a number of clusters. Silhouette coefficient analysis makes

it possible to select the optimal number of clusters by optimizing the separation distance between

clusters. We normalized the gradients prior to clustering when calculations included all 8 gradients;

if normalization is not performed, gradient 1 obscures the contribution of the last gradients given its

much larger range of values.
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Cerebello-cerebral functional connectivity
We aimed to compare asymmetries between the two motor (I-VI, VIII) and three nonmotor regions

of cerebellar representation (VI/Crus I, Crus II/VIIB, IX/X) by comparing their relative position along

diffusion embedding gradients. As a supplementary analysis, we also contrasted cerebello-cerebral

connectivity from these regions using diffusion embedding gradient peaks within each of these areas

of representation (e.g. contrasting cerebral cortical connectivity between first and second motor

regions of representation). Cerebello-cerebral and intra-cerebellar connectivity Fisher’s z trans-

formed values were obtained from the preprocessed HCP ‘dense connectome’ (n = 1003); maps

were contrasted using the method for comparing correlated correlation coefficients described by

Meng and colleagues (Meng et al., 1992); and p maps were corrected for multiple comparisons

within the cerebral cortex using p<0.05 voxel-based false discovery rate calculations.
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