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             Preface 

 This book was conceived at Watershed Restaurant in Decatur, GA, after a sympo-
sium on the topic organized by myself and Pete Wenner for the 2006 Society for 
Neuroscience meeting in Atlanta (Pallas et al. 2006   ). Our compliments to Chef 
Scott Peacock! We put together the symposium because of our own interest in this 
under-studied topic, relevant findings in our laboratories, and the fact that several 
mechanistic explanations for plasticity at inhibitory synapses had been uncovered 
by the invitees. Due in large part to the work of the contributors to the symposium 
and to this book, inhibitory plasticity is finally becoming widely recognized as a 
critical area for investigation. Increasing evidence supports an important role for 
inhibition in disease states, including epilepsy, schizophrenia, and autism spectrum 
disorders, and one of our aims in this book has been to bring together data from the 
synaptic and circuit levels of analysis with some of the clinical data in one volume. 
Some of the authors we invited were ultimately unavailable to contribute chapters, 
but we had the great good fortune to be able to add several others. As in any col-
lection, however, there are many more investigators and studies that we would like 
to have included but could not due to lack of space. It has been our goal to provide 
the reader with a broad overview of mechanisms underlying inhibitory plasticity 
and of the systems in which it operates. We hope that this book will encourage 
further study of inhibitory plasticity by other investigators, and that further elucida-
tion of the underlying mechanisms will lead to translational applications. 

 Atlanta, GA   Sarah L. Pallas  
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1.1  Hemifield Neglect?

Neuroscience has long been focused on understanding neural plasticity and its 
regulation during development and in adulthood. Oddly, despite the known impor-
tance of inhibition in shaping neural responses, and the rich variety in subtypes of 
inhibitory neurons (see Chap. 2), experimental work in this area has focused almost 
entirely on plasticity at excitatory synapses. Now, that has changed and the gap in 
knowledge of inhibitory plasticity is rapidly being filled. A growing body of evi-
dence suggests that plasticity at GABAergic and glycinergic synapses is of critical 
importance during both development and aging, and several mechanisms have been 
uncovered. The appearance of several excellent reviews on the topic (e.g. Akerman 
and Cline 2007; Maffei and Turrigiano 2008; Spolidoro et al. 2009) is a further 
indication that there is an increasing recognition of the importance of inhibitory 
plasticity. In this, and the chapters that follow, we provide a glimpse into some of 
the most salient findings in this long-neglected area of research.

Research on synaptic plasticity has been concentrated, in particular, on NMDA 
receptor-dependent, long-term potentiation (LTP) and depression (LTD) at excitatory 
synapses (see Bliss and Collingridge 1993; Malenka and Bear 2004; Massey and 
Bashir 2007; Yashiro and Philpot 2008, for review). The notion of use-dependent 
plasticity, as popularized by Donald Hebb, may explain the bias of the field toward 
excitatory synapses, and the neglect of the inhibitory side of plasticity. Hebb theo-
rized that connections between neurons could get stronger if the postsynaptic 
neuron was successfully activated by the presynaptic terminal (Hebb 1949). 
Certainly, it was easy to envision how inhibitory connections could be turned 
down in strength by repeated use, simply because of their suppressive style, but it 
was not at all clear from this perspective how to get activation-based increases in 
synaptic efficacy at inhibitory synapses, whose usual function is to silence their 
targets. This is especially true because LTP/LTD involves calcium-dependent acti-
vation of signaling cascades, and the GABA

A
 receptor is a Cl− channel that does 

not pass calcium.

Chapter 1
Introduction
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1.2  “Inhibition” is Excitatory Early in Development

A possible solution to the mystery became clear when it was discovered that 
GABA, the major inhibitory neurotransmitter in adult vertebrates, is actually 
excitatory at perinatal stages of development (Cherubini, 1991 #2074, see Ben-Ari 
2002, for review). This paradoxical situation is due to immature levels of the 
KCC2 K+-Cl− transporter, resulting in a negative reversal potential for GABA 
channels, and thus chloride efflux on channel opening. Thus, plastic changes of 
many “inhibitory” connections between neurons could be limited to this period of 
time, and could work in the same way as connections that are excitatory through-
out life. Evidence for this comes from reports that inhibitory GABAergic synapses 
could undergo LTP (called LTP-GABA

A
) showed that calcium channel blockers 

could prevent it, pointing to a GABA
A
 receptor-induced activation of voltage-

dependent calcium channels (Caillard et al. 1999a). The plasticity was expressed 
by presynaptic changes in probablility of GABA release. These results then raised 
the question of how LTD of GABAergic synapses could occur. As a consequence, 
LTD of immature GABAergic synapses (called LTD-GABA

A
) can occur by tradi-

tional means of depolarization-induced removal of the Mg++ block of NMDA 
receptors (Caillard et al. 1999b), which in turn, perhaps through a similar signal 
transduction pathway as LTD at excitatory synapses, can lead to reductions in 
presynaptic GABA release.

The work of the Wenner lab (Chap. 3) shows the importance of the excitatory 
action of immature GABA receptors, but on the other hand points out the need 
for homeostatic regulation of excitation to prevent epileptiform activity. GABARs 
that contribute to bouts of spontaneous network activity (SNA) in chick spinal 
cord in ovo that are critical for normal maturation of neural networks (see also 
Cancedda et al. 2007), and are tightly regulated through homeostatic mechanisms 
(see below) that seem to involve activity-dependent regulation of intracellular 
chloride levels.

1.3  Mechanisms of Inhibitory Plasticity are Highly Diverse

As the central nervous system matures, chloride transporters change their expression 
patterns such that NKCC1, which accumulates Cl−, is down-regulated and KCC2, 
which exports Cl−, is up-regulated, making the reversal potential for Cl− more nega-
tive. As a result of this change in chloride balance, opening of the GABAR chloride 
channels becomes hyperpolarizing (Rivera et al. 1999; Lee et al. 2005). Through 
what mechanisms can inhibitory synaptic plasticity occur after this point? Several 
chapters illustrate the rich variety of ways in which this can occur.

Some of the earliest reports of changes in the strength of inhibitory synapses 
came from studies of brain regions in which inhibition was known to be an impor-
tant contributor to behavioral output, such as the brainstem auditory areas involved 
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in sound localization (e.g. Sanes and Rubel 1988; Sanes et al. 1992; Sanes and 
Takács 1993; Werthat et al. 2008, Chap. 4 in this volume). During development, 
along with the pruning of excitatory connections, GABAergic and glycinergic 
inhibitory synapses are pruned as well, helping to bring about an appropriate 
balance between inhibition and excitation in neural networks. After cochlear damage, 
inhibition is reduced, leading to increased excitability but a broadening of sound 
frequency tuning. A similar loss of inhibition occurs in age-related hearing loss 
(Caspary et al. 2008). The underlying mechanisms are diverse, and include both 
presynaptic and postsynaptic processes.

1.3.1  Co-Transmitters

Some inhibitory neurons, in addition to the release of their inhibitory neurotransmitter 
substances, also release excitatory neurotransmitters when they are activated, pro-
viding a sort of end run around the problem of facilitating inhibitory connections. In 
the MNTB, a form of LTD (LTDi) occurs at inhibitory synapses onto MSO neurons 
that involves postsynaptic GABA

B
 receptors. Interestingly, these synapses contain 

glycine rather than GABA in adulthood. Even more surprising is the fact that in addi-
tion to GABA, immature MNTB neurons contain glutamate (Gillespie et al. 2005).

1.3.2  Changes in Receptor Subunit Composition

Another mechanism of inhibitory plasticity seen in the auditory pathway and else-
where (Fagiolini et al. 2004) is an activity-dependent change in GABA receptor 
subunit composition. As with NMDA receptors (Stocca and Vicini 1998), there is 
a developmental progression in expression and incorporation of different GABA 
receptor subunits, providing an additional avenue for regulation (Golshani et al. 
1997, see Chap. 6 for review).

1.3.3  DSI

In Chap. 8, Alger reviews how endocannabinoids can induce inhibitory plasticity 
(LTDi) in the hippocampus and cerebellum by presynaptic alteration of the strength 
of inhibitory synapses, in a process called depolarization-induced suppression of 
inhibition (DSI). Endocannabinoids (ecs) likely function as retrograde messengers 
(Chevaleyre et al. 2006, for review), and ec-LTD is triggered through mGluR-
dependent release of ecs onto CB1 receptors at GABA terminals, depressing GABA 
release. In keeping with the depolarizing effect of GABA in neonates, ecs depress 
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activity. Alger makes the important observation that cannabis use in pregnancy could 
have unintended consequences on brain development. A somewhat opposite process 
occurs via presynaptic NMDAR activation of GABAergic terminals that leads to 
LTPi of GABAergic synapses in Xenopus tectum (Lien et al. 2006).

1.3.4  Inhibitory STDP

Spike timing-dependent plasticity refers to the fact that some forms of Hebbian 
plasticity require that presynaptic activity evokes a spike in the postsynaptic neuron 
within a short time window of about 20 ms (Zhang et al. 1998). That this can also 
occur at inhibitory synapses was reported by Poo and colleagues (Woodin et al. 
2003; Lu, 2007 #8849, reviewed in Caporale and Dan 2008). The underlying 
mechanism is activation of voltage-dependent Ca++ channels and a decrease in 
KCC2, reducing inhibition.

1.3.5  Receptor Trafficking

Activity-dependent regulation of receptor trafficking is a well-accepted explana-
tion of LTP and LTD of glutamatergic synapses, but also occurs at inhibitory 
synapses (Marsden et al. 2007; Bannai et al. 2009). Excitatory activity can affect 
diffusion kinetics and receptor cluster size negatively, thus increasing suscepti-
bility to LTP.

1.4  Homeostatic Plasticity

In retrospect, it may seem obvious that what goes up must come down, i.e. strength-
ening of excitatory synapses cannot go on indefinitely without reaching an inflex-
ible maximum. A stable baseline is necessary for change to be recognized. Once 
the concept of homeostatic plasticity was introduced, the emphasis was on explain-
ing how the strength of excitatory connections could be decreased after LTP. 
Homeostatic plasticity does involve inhibitory as well as excitatory plasticity, how-
ever, and can occur on several different levels. It was first described as a regulation 
of the basal activity setpoint of individual neurons in culture (Turrigiano et al. 1994; 
Turrigiano, 1995 #4671, see Davis 2006; Turrigiano 2007, for review). At synapses, 
the process is called synaptic scaling, and refers to a setpoint of synaptic strength 
that allows potentiation or depression to occur. Homeostasis can also occur at the 
network level, and functions to maintain flexibility in the face of input perturba-
tions, including those resulting from loss of input. That homeostatic plasticity also 
occurs at inhibitory synapses has been demonstrated in our lab and others’ (Razak 
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and Pallas 2006; Razak and Pallas 2007; Carrasco, submitted #9364, reviewed in 
Chaps. 3, 5, 6, Nelson and Turrigiano 2008).

1.5  Critical Periods

Ocular dominance plasticity in visual cortex is perhaps the second most popular 
model behind hippocampus for studying mechanisms of neural plasticity, and the 
mechanism (NMDAR-dependent LTP/LTD) is much the same except that the extent 
to which excitatory plasticity can be evoked is dependent on age in cortex (reviewed 
in Malenka and Bear 2004; Smith et al. 2009). The additional involvement of inhibi-
tion in ocular dominance plasticity began to draw more attention after reports from 
Hensch and colleagues that mice with knockout of GAD65 (an isoform of glutamic 
acid decarboxylase, the synthetic enzyme for GABA) fail to exhibit LTD of connec-
tions from the closed eye (Hensch et al. 1998, see also Gandhi, 2008 #9156). Chap. 
6 discusses how GAD can be regulated by experience, and thus promote maturation 
of inhibitory circuits in sensory cortex (see also Sun 2007).

1.6  Old Dogs and New Tricks: Adult Plasticity and Aging

In neuroscience in general, there is increasing recognition that, in some sense, criti-
cal periods never close but only fade away, with synaptic plasticity requiring more 
vigorous or prolonged stimulation with age (e.g. Linkenhoker and Knudsen 2002; 
Hofer et al. 2006; He et al. 2007; Zhou and Merzenich 2007; Spolidoro et al. 2009). 
One wonders why it has taken so long to realize that we old folks can still learn! 
The rescue of plasticity by benzodiazepines in GAD −/− mice suggests that it may 
be possible to reopen critical periods in adulthood through activity-dependent 
inhibitory plasticity (reviewed in Morishita and Hensch 2008). Indeed, there is 
accumulating evidence that inhibitory plasticity is especially important and com-
mon in adulthood. The impression that plasticity occurs mainly in juveniles may 
come primarily from an overgeneralization based on ocular dominance plasticity 
research. In visual cortex, sensory deprivation by monocular lid suture or dark-
rearing was reported to have negative effects in juveniles but not adults, and these 
effects are long-lasting to the point of irreversibility (reviewed in Daw 1994), but 
this hard line view is softening. Research in my lab shows that superior  colliculus 
can remain sensitive to dark-rearing long past critical period “closure” in cortex 
(Carrasco et al. 2005; Carrasco and Pallas 2006) as a result of inhibitory plasticity 
(Carrasco et al., submitted).

In addition to modifying existing synapses, in some parts of the adult brain 
including olfactory pathways, hippocampus, and cerebellum, entirely new neu-
rons are produced and then integrated into existing circuits. This is also true of 
transplanted stem cells (Snyder et al. 1997). It would seem that these neurons face 
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formidable obstacles by trying to differentiate into a circuit that has passed its 
malleable period. Fairly recently, however, it has come to light that GABA in 
adult hippocampal neurogenesis is depolarizing. Newborn granule cells in adult 
cerebellum go through the same change in Cl− transporter expression pattern as 
in immature cerebellum. Their integration into a circuit is GABA-dependent, and 
once integrated they exhibit adult transporter expression patterns (Ge et al. 2007, 
2008). In fact, GABA excitation normally occurs in adult brain in both transient 
and sustained modes (Marty and Llano 2005), and tetanic stimulation of 
GABAergic synapses in hippocampus can change Cl− balance in a short or long-
term way. Whether this is a physiologically relevant situation under normal con-
ditions is an important question to address, but is likely to be relevant to 
generation of epileptic foci.

Inhibitory plasticity may even be more prevalent than excitatory plasticity in 
adult brain under some circumstances. Nedivi and colleagues find that in adult 
cerebral cortex inhibitory neurons are more likely to undergo structural modifica-
tions than are excitatory pyramidal neurons (Lee et al. 2006). This is not always a 
good thing, however. Inhibitory plasticity is a significant contributor to perceptual 
problems associated with aging. Baby boomers experiencing hearing loss en 
masse may not realize that much of the problem comes from a loss of inhibition, 
and that their detection thresholds may actually be improving (Caspary et al. 
2008). A similar situation occurs in the visual system (Hua et al. 2006). These 
results suggest that treatment with GABA agonists may be more helpful than turn-
ing up the volume!

In the final chapter of the book, Levitt and colleagues present some clinical 
disorders thought to be related to problems in development and maintenance of 
inhibitory circuitry in cerebral cortex, including epilepsy, schizophrenia, autism 
spectrum disorders, and Fragile X syndrome. Here, although considerable progress 
has been made, much is still to be learned from studies of inhibitory plasticity that 
might be helpful in understanding and treating these diseases. For example, Kaila 
(Chap. 7, this volume, Vanhatalo and Kaila, submitted) points out that more thinking 
around the issue of neonatal seizures needs to be done, given that early GABAergic 
activity is important for maturation and that traditional GABA agonists are not 
likely to suppress seizures when GABARs are immature and excitatory.

1.7  Conclusions and Future Directions

Some common themes throughout the book are that inhibitory plasticity occurs in 
many different neuronal subtypes, at a diversity of CNS areas and through a plethora 
of distinct mechanisms. It is not possible or productive to consider only excitatory 
connections when trying to understand plasticity because circuits that produce 
behavior involve both excitatory and inhibitory elements. It is clear that one cannot 
assume that the action of GABA or glycine is inhibitory, and that either LTP or LTD 
can result from activation of GABAergic synapses.
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So what is left to be done? Lessons have been learned from debates such as those 
that plagued the field of hippocampal LTP (Malenka and Bear 2004). Hopefully, 
they can be put to good use in dispassionately teasing out the separate and syner-
gistic roles of each different type of inhibitory plasticity.

In the case of endocannabinoid-mediated plasticity, several details need to be 
worked out. What is the identity of the natural ligand of CB1Rs at specific synapses 
throughout the brain; is it the same everywhere under all circumstances? How does 
the endocannabinoid release process work, and is it a regulated step or does release 
occur inevitably as soon as endocannabinoids are synthesized? What are the natural 
physiological stimuli for endocannabinoid actions? Can variations in endocannabi-
noid regulation during the course of development alter neuronal wiring diagrams? 
Can cannabinoid receptor-dependent long-term synaptic depression be reversed? 
How can the endocannabinoid system best be exploited therapeutically for its 
anticonvulsant effects?

Further characterization of the structure and function of inhibitory neurons in 
situ is also needed, as well as studies of their role in producing behavior. There is 
surely a link between subtype of neuron and type of plasticity it can undergo or 
produce, independent of brain area. Likewise, there will be similarities and differ-
ences in mechanisms across brain regions. Most research has concentrated on 
GABA

A
 receptors, with a fair amount of work on glycine receptors, but examining 

contributions of other receptor types to inhibitory plasticity would be valuable.
Some interesting remaining questions are, whether for any given time and place, 

inhibitory plasticity plays more of a role than excitatory plasticity, under what con-
ditions each type of plasticity is evoked, and whether they can operate simultane-
ously or are in conflict. Sanes suggests that deprivation induced loss of inhibition 
preserves an early immature state. But this is likely not the case when plasticity is 
initiated in adulthood. Thus, an important question touched on by several of the 
authors is if and how inhibitory plasticity in adults differs from that during develop-
ment. The availability of tools for labeling subpopulations of inhibitory neurons 
and specifically manipulating them (e.g. Lechner et al. 2002; Sugino et al. 2006; 
Wang et al. 2007; Zhang et al. 2007) will be a boon to future research in this area. 
Computational approaches may also help to point the way to testable hypotheses.

This book brings together the work of researchers investigating inhibitory 
plasticity at many levels of analysis and in several different preparations. This topic 
is of wide relevance across a number of different areas of research in neuroscience 
and neurology. Understanding mechanisms of adult plasticity has profound impli-
cations for clinical populations suffering from brain disorders (Ehninger et al. 
2008). Medical problems such as epilepsy, mental illness, and movement disorders 
can result from malfunctioning inhibitory circuits. Further, the maturation of inhibitory 
circuits may trigger the onset of critical periods of increased neural circuit plasticity, 
raising the possibility that such plastic periods could be reactivated for medical 
benefit by manipulating inhibitory circuitry. It is therefore essential to understand 
how inhibitory connections can be altered. The time is ripe to review and synergize 
the present knowledge in this topic, in order to reconcile conflicting data and to 
promote further progress.
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2.1  Introduction

The cerebral cortex is composed of neural networks that function through an intri-
cate balance of excitation and inhibition. At the cellular level, these cortical net-
works consist of projection neurons and interneurons that primarily use the 
neurotransmitters glutamate and GABA, respectively. GABAergic interneurons 
make up 25–30% of the cortical neuronal milieu, and they play a vital role in modu-
lating cortical output and plasticity (Whittington and Traub 2003; Wang et al. 
2004). Cortical interneurons also play a role in regulating developmental processes 
in the forebrain, including neuronal proliferation and migration during the estab-
lishment of cortical circuitry (Owens and Kriegstein 2002; Hensch 2005).

Despite their prominent role in the function of the cortex, studies determining how 
interneuronal progenitors establish their specific fates have been relatively sparse. 
Cortical interneurons accomplish specific functions through a remarkable diversity of 
subtypes that vary in morphology, physiology, and neurochemical constituents 
(Monyer and Markram 2004). Because this diversity and the context-dependent 
maturation of interneuron-defining features appear after weeks of postnatal matura-
tion, progress connecting the embryonic development of cortical interneurons to their 
differentiated fate has been slow. Consequently, little was known about the origin and 
molecular determination of cortical interneuron diversity until improved fate-map-
ping approaches and transgenic mice became available.

2.2  Origins of Cortical Interneurons

While cortical projection neurons derive from the dorsal (pallial) telencephalon and 
migrate along radial glia to their final laminar position in the cortical mantle zone, 
immunolabeling for GABA (DeDiego et al. 1994) and Dlx2 (Porteus et al. 1994) 
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reveals streams of progenitors migrating tangentially from the subpallium into limbic 
and cortical structures in the telencephalon. Analyses of Dlx1/Dlx2 mouse mutants, 
together with in vivo ablation experiments and co-labeling of migrating cells in 
slice culture experiments, suggested that this tangential migration consisted of 
interneuronal progeny (de Carlos et al. 1996; Tamamaki et al. 1997; Anderson 
et al., 1997; Parnavelas 2000; Marin and Rubenstein 2001). Tangential migrations 
of putative interneurons have been identified in several mammalian species, including 
mice (Anderson et al., 1997; Wichterle et al. 1999), rats (de Carlos et al. 1996; 
Lavdas et al. 1999), ferrets (Anderson et al. 2002b), and humans (Letinic et al. 
2002; Wonders and Anderson 2006). In rodents and ferrets, the subpallium appears 
to be the primary source of cortical interneurons, whereas one study reported that 
in human embryos, most cortical interneurons undergo their terminal mitosis in the 
cortical subventricular zone (Letinic et al. 2002). We will address distinct regions 
within the telencephalon that have been implicated as potential origins for cortical 
interneurons, with particular emphasis on the neurochemically defined interneuron 
subgroups that those regions generate.

2.2.1  Medial Ganglionic Eminence

Although initial studies of interneuron tangential migration labeled cells within the 
lateral ganglionic eminence (LGE) (de Carlos et al. 1996; Tamamaki et al. 1997; 
Anderson et al., 1997), these studies did not establish whether these cells originated 
within the LGE itself or migrated to the LGE via other progenitor domains. Indeed, 
fluorescent dye labeling of the more ventrally located medial ganglionic eminence 
(MGE) revealed large streams of cells, most of which express GABA, migrating 
into the cortex (Lavdas et al. 1999). Mice lacking the homeobox transcription factor 
Nkx2.1 exhibit a complete loss of this migratory behavior and have a roughly 50% 
reduction of GABA+ cells in the neocortex just before birth (Sussel et al. 1999). 
Comparison of LGE and MGE-derived cells in vitro and in vivo showed that MGE 
cells retain a far greater propensity to migrate into the cortex (Wichterle et al. 1999; 
Anderson et al. 2001; Wichterle et al. 2001).

Due to the extensive timeframe for cortical interneurons to mature into distinct 
subgroups, taking several weeks in rodents, slice culture experiments proved to be 
inadequate for fate mapping studies. Subsequent experiments that involved trans-
planting genetically-labeled MGE progenitors in utero into the embryonic MGE 
(Wichterle et al. 2001; Butt et al. 2005), the lateral ventricle (Valcanis and Tan 
2003), or in vitro onto a neonatal, cortical feeder layer (Xu et al. 2004), demonstrated 
that the majority of MGE-derived interneuronal progenitors went on to express 
either parvalbumin (PV) or somatostatin (SST). This expression defines two distinct 
neurochemical subgroups, along with their associated physiological characteristics 
and synaptic contacts, that together comprise roughly 60% of the cortical interneu-
rons in mice and rats (Gonchar and Burkhalter 1997; Kawaguchi and Kubota 1997). 
Of particular interest, these studies rarely found MGE-derived interneurons that 
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express calretinin (CR), a calcium binding protein that is largely non-overlapping 
with the SST or PV subgroups and primarily labels cells with a vertically oriented, 
bipolar or bitufted morphology (Rogers 1992; DeFelipe 1997), which suggests 
that most CR+ interneurons originate from a spatially or temporally distinct 
progenitor domain than those that express PV or SST. Taken together, these three 
neurochemically-defined subgroups make up approximately 80% of all interneurons 
within the cortex.

An MGE origin for most PV- or SST-expressing interneurons in mice has been 
further confirmed by genetic fate mapping studies (Fogarty et al. 2007; Xu et al. 
2008). In addition, transplantation studies have begun to identify molecular sub-
regions of the MGE that appear to be biased toward the generation of distinct 
interneuron groups. The Nkx6.2-expressing region of the most dorsal MGE 
appears biased toward the generation of SST-expressing cells, whereas the ventral 
two thirds of the MGE appears biased towards generating PV-expressing 
interneurons (Flames et al. 2007; Wonders et al. 2008). However, it is important 
to note that despite the tendencies for PV- or SST-expressing subgroups to have 
distinct physiological properties and patterns of axonal targeting, distinct MGE 
domains giving rise to distinct interneuron “types” (defined by combinations of 
neurochemical, physiological, and morphological characteristics) remain to be 
identified.

2.2.2  Caudal Ganglionic Eminence

In addition to the MGE, the caudal ganglionic eminence (CGE) is the other 
subpallial structure most strongly implicated in the generation of cortical interneu-
rons (Anderson et al. 2001; Nery et al. 2002; Nery et al. 2003). Morphologically, 
the CGE exists as a fusion of the MGE and LGE beginning at the coronal level of 
the mid to caudal thalamus. The ventral CGE, like the MGE, expresses Nkx2.1, 
while the dorsal CGE strongly expresses Gsh2 and ER81, two transcription factors 
that are required for the proper patterning of the LGE and olfactory bulb (Corbin 
et al. 2003).

Initial fate mapping experiments of the CGE at E13.5 in the mouse found that 
the CGE gives rise to deep-layer cortical interneurons, many of which express PV 
or SST, but not CR (Nery et al. 2002). This lack of CR+ cells may be due to the age 
of the telencephalic tissue, since nearly all CR+ interneurons undergo their final 
S-phase of the cell cycle after E14.5 (Xu et al. 2004). Indeed, selective dissection 
of the dorsal CGE at E14.5 gave rise to many CR+, bipolar cells after plating on a 
cortical feeder layer (Xu et al. 2004). In addition, in utero isochronic, homotopic 
transplants of E15.5 dorsal CGE primarily generated CR+ interneurons that exhibited 
distinct spiking characteristics indicative of that interneuron subgroup (Butt et al. 
2005). Finally, explant cultures from GAD65-GFP transgenic mice also suggested 
that many cells migrating from the CGE to the cortex become vertically-oriented, 
CR-expressing interneurons (Lopez-Bendito et al. 2004).
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Taken together, these experiments suggest that bipolar, vertically oriented 
CR-expressing interneurons are primarily generated within the Nkx2.1-negative 
region of the dorsal CGE. The ventral CGE, on the other hand, may generate PV- or 
SST-expressing interneurons, although the caudal migration of MGE-born progenitors 
through the CGE en route to the cortex is an equally plausible scenario (Butt et al. 
2005; Yozu et al. 2005). A distinct subgroup of CR-expressing interneurons, that 
display multipolar morphologies and co-express SST (Xu et al. 2006), appear to 
originate from an Nkx2.1+ progenitor in the dorsal MGE or Nkx2.1+ domain of the 
ventral CGE (Xu et al. 2008).

2.2.3  Lateral Ganglionic Eminence

Although several studies have indicated that any LGE contribution to cortical 
interneurons is far smaller than that of the MGE (Wichterle et al. 1999; Anderson 
et al. 2001; Wichterle et al. 2001), evidence in support of the LGE as a source of 
interneurons bears mention. Although Nkx2.1 mutants lack a normal MGE domain, 
the cortex at E18.5 has only a 50% reduction of GABA-expressing cells (Sussel 
et al. 1999). While this could be attributable to an enhanced generation of CR+ cells 
from the dorsal CGE, the LGE-like region shows robust migration to the cortex at 
E15.5 in these mutants (Anderson et al. 2001; Nery et al. 2003). In addition, slice 
culture experiments where progenitors were labeled with the S-phase marker BrdU 
indicate that a small number of LGE-derived cells, some of which co-label for 
GABA, do migrate from the LGE to cortex (Anderson et al. 2001). Finally, explants 
taken from rat embryos, in which the MGE has been removed, continue to show 
robust migration from the LGE to the cortex, implying that the observed migration 
is not due simply to MGE cells migrating through the LGE (Jimenez et al. 2002). 
One possible explanation for these mixed results is the pleiotropic nature of the 
LGE, which consists of distinct progenitor domains along the dorsal-ventral axis that 
give rise to olfactory bulb interneurons and medium spiny striatal projection neurons 
(Stenman et al. 2003a). In addition, migration from the LGE to cortex has been 
shown to include oligodendrocytes after E14.5 (Kessaris et al. 2006). In sum, the 
current data support a minor contribution from the LGE to the cortical interneuron 
population, which does not seem to include the SST- or PV-expressing subgroups 
(Xu et al. 2004).

2.2.4  Rostral Migratory Stream

In contrast to cells from the LGE, cells taken from the rostral migratory stream 
(RMS) at birth can express CR when cultured on a cortical feeder (Xu et al. 
2004). The relevance of this finding is difficult to assess because nearly all CR+ 
interneurons in P25 somatosensory cortex are born before E16.5 (Xu et al. 
2004). Two potential scenarios to explain these findings are that cells may leave 
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the RMS prior to reaching the olfactory bulb and instead migrate into the cortex, 
or simply that CR+ interneurons of the olfactory bulb exhibit the capacity to 
differentiate in an in vitro cortical environment. In support of the former model, 
immunohistochemical labeling for Dlx1, which labels migrating interneuron 
precursors within the RMS, also appears to label cells migrating from the RMS 
into the cortex (Anderson et al. 1999). Earlier migration from the rostral neu-
roepithelium of the lateral ventricle into layer I of the cortex has also been 
described for cells expressing CR, calbindin (CB), and GABA (Meyer et al. 
1998; Zecevic and Rakic 2001; Ang et al. 2003). Taken together, these results 
suggest the possible involvement of the RMS in the generation of cortical 
interneurons expressing CR.

2.2.5  Septal Region

Another subpallial region that may contribute interneurons to the cerebral cortex 
is the septal area. Initial speculation that migrations from the septal region to the 
cortex may exist was made based on immunohistochemical labeling for Dlx1 
(Anderson et al. 1999). More convincing evidence comes from the recent analysis 
of mouse mutants lacking the homeodomain-containing transcription factor Vax1, 
which is expressed in a pattern similar to Dlx1 and Dlx2 within the subcortical 
telencephalon (Taglialatela et al. 2004). At birth, Vax1 mutants have a 30–44% 
reduction in GABA-expressing cortical neurons, with the greatest loss occurring 
within the rostral-most cortex. While the MGE is reduced in size, the septal 
region is almost completely absent in these mutants. Experiments conducted 
using slice cultures show cells migrating from the ventro-lateral septum into layer 
I of the rostral cortex, and this migration is lost in the Vax1 mutants. These data, 
therefore, provide evidence for a septal contribution to the cortical interneuron 
population, although further experimentation is needed to definitively show this 
migration. These results may help explain the large-scale migration of later-born 
interneurons from layer I into the cortical plate (Ang et al. 2003; Hevner et al. 
2004). Whether this migration represents distinct subtypes of interneurons, 
remains to be explored.

2.2.6  Cortex

Although several reports have shown that cultures of dorsal telencephalic progenitors 
have the capacity to generate GABAergic cells (Götz et al. 1995; He et al. 2001; 
Bellion et al. 2003; Gulacsi and Lillien 2003), very little evidence supports a cortical 
origin for interneurons in rodents (Xu et al. 2004). One study using mice expressing 
Cre under the Emx1 and Dbx1 promoters, two homeobox transcription factors 
exclusively expressed in pallial progenitors, found no colocalization of interneuron 
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markers with Cre in adult cortical sections (Fogarty et al. 2007). This study 
indicated that the pallium does not give rise to interneurons in rodents. However, 
retroviral labeling of slice cultures from the human embryonic forebrain suggest 
that the majority of GABA+ interneurons in the human cortex originate from 
cycling progenitors in the cortical subventricular zone (Letinic et al. 2002). 
Although this intriguing finding has yet to be replicated in nonhuman primates, the 
observation that Nkx2.1, a gene required for the specification of the MGE-derived 
interneuron subgroups in mice, is strongly expressed in the cortical proliferative 
zone in humans but not in rodents (Rakic and Zecevic 2003). Interestingly, based 
on an apparent increase in the numbers of “neurons with short axons” in Golgi-
stained sections from humans compared to nonprimate species, Cajal proposed that 
the enhanced cognitive abilities of humans has resulted from increased representation 
of these cells (DeFelipe and Jones 1988).

2.3  Birthdating of Cortical Interneurons

Through various morphogens that induce cell divisions along the apical surface of 
the ventricular zone, cortical progenitors are born from radial glia and undergo a 
series of symmetric and asymmetric cell divisions to give rise to the cellular diversity 
throughout the cortex (Dehay and Kennedy 2007). Unlike progenitors of the olfactory 
bulb that continue to proliferate as they migrate from the dorsal LGE through the 
rostral migratory stream (Altman and Das 1965; Menezes et al. 1995), interneu-
ronal progenitors born in the MGE appear to complete the last S-phase of their cell 
cycle prior to beginning their migration into cortical and limbic regions (Polleux 
et al. 2002; Xu et al. 2003; Xu et al. 2005). Generally speaking, birthdating of 
GABAergic interneuronal progenitors in rodent and ferret cortex reveals a similar 
“inside-out” pattern to that established by projection neurons of the same layer. 
Deeper layer interneurons tend to leave the cell cycle prior to those destined for the 
superficial layers (Miller 1985; Fairén et al. 1986; Peduzzi 1988). However, this 
scenario does not appear to hold for the vertically oriented, calretinin-expressing 
population (Rymar and Sadikot 2007). In addition, when fate is characterized by 
physiological parameters, there appears to be a time of birthdate-fate dependence 
within a given layer (Miyoshi et al. 2007).

2.4  Specification of Cortical Interneurons

As similar results are found from MGE transplants directly onto cortical feeder 
cells, or directly into the cortical plate of neonates in vivo, or homotopic trans-
plants into the MGE in utero, transplantation studies suggest that interneuron 
subgroup fate is specified based on signaling encountered during their develop-
mental origins (Xu et al. 2004; Butt et al. 2005; Xu et al. 2005). Given the inter-
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est in using cortical interneuron transplantations to repress medication intractable 
seizures (Lindvall and Bjorklund 1992), or even as a drug delivery system 
(Wichterle et al. 1999), these results are highly encouraging in that subcortical 
to cortical migration does not appear to be required for most aspects of interneu-
ron fate specification.

Both overlapping and distinct gene expression patterns have been identified 
between the interneuron-generating regions of the LGE/dCGE and the MGE 
(Corbin et al. 2003). Nkx2.1, a homeodomain-containing transcription factor, is 
expressed within the proliferative zone of the MGE and in the more ventrally 
located preoptic region (Kimura et al. 1996). Nkx2.1 is downregulated in cortical 
interneuronal progenitors prior to their entry into the cerebral cortex, but is main-
tained in subsets of striatal interneurons (Marin et al. 2000). Nkx2.1 null mice fail 
to form a normal MGE, although there is a ventral expansion of the LGE-like tissue 
(Sussel et al. 1999). At E18.5, Nkx2.1 mutants lack SST and NPY expression in the 
cortex (Anderson et al. 2001). To determine the requirement of Nkx2.1 for specifying 
other interneuron subgroups in these perinatal lethal mutants, cortices from E18.5 
embryos were dissociated and maintained 2-4 weeks in vitro (Xu et al. 2004). 
Consistent with studies on the interneuron fate potential of progenitors from the 
MGE, PV, SST, and NPY were present in cultures of wild-type cortex but absent in 
those from Nkx2.1 nulls. Transplantation of the MGE-like region of Nkx2.1 nulls 
onto cortical feeder cultures from normal mice, also failed to give rise to the PV-, 
SST-, or NPY-expressing subgroups, suggesting that Nkx2.1 is required for the 
initial specification of these cell types. Interestingly, bipolar CR+ interneurons were 
plentiful in cortical cultures from Nkx2.1 nulls, consistent with their origin from an 
Nkx2.1 negative domain.

The requirement of Nkx2.1 for the specification of MGE-derived interneuron 
subgroups provides a focal point in the search for interneuron fate-specifying 
factors that act upstream, downstream, and in conjunction with this transcription factor. 
Initial patterning of Nkx2.1 expression in the ventral telencephalon involves the 
coordinate actions of the signaling molecules Fgf8 and Sonic Hedgehog (Shh) 
(Lupo et al. 2006; Storm et al. 2006). Six3 may confer competence of the 
telencephalic tissue to respond to Shh by inducing Nkx2.1 (Kobayashi et al. 2002), 
and repression of bone morphogenic protein (BMP) signaling is also required for 
normal patterning of the Nkx2.1 domain (Anderson et al. 2002a).

Although the patterning role of Shh is largely complete by E11.5 (Kohtz et al. 
1998; Fuccillo et al. 2004), some targets of Shh signaling, including Nkx2.1, 
remain dependent on Shh for their maintenance in MGE progenitors well into the 
age range of cortical interneuronogenesis (in mouse, roughly E12.5-E16.5). 
Reductions of Shh signaling in MGE progenitors, essentially all of which normally 
express Nkx2.1, result in both a large reduction in Nkx2.1 protein detectability 
despite continued progenitor cycling, and a reduction in the ability of these progenitors 
to generate PV- or SST-expressing interneurons (Xu et al. 2005). Remarkably, both 
the Nkx2.1 protein levels, and the generation of SST-expressing interneurons is 
rescued in telencephalic slices of NestinCre:Shh flox/flox mutants by the restoration 
of Shh signaling (Xu et al. 2005). This result suggests that interneuron specification 
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remains plastic during the age range of neurogenesis, so that interneuron generation 
could be altered by a variety of environmental conditions that effect signaling 
of Shh, FGFs, BMPs in addition to other factors (Yung et al. 2002; Gulacsi and 
Lillien 2003).

2.4.1  Generation of Interneuron Diversity Within the MGE

While the expression of Nkx2.1 distinguishes the origins of most PV- and SST-
expressing interneuron subgroups from that of the vertically oriented CR+ subgroup, 
less is known about the differential specification of PV- and SST-expressing subgroups 
within the Nkx2.1 lineage. One possibility, that would be analogous to the neuronal 
fate determination in the spinal cord (Jessell 2000), is that MGE-derived interneuron 
subgroups originate from distinct lineages that are separated on the dorso-ventral 
axis. In fact, Nkx6.2, a transcription factor that contributes to oligodendrocyte 
generation in the ventral spinal cord (Vallstedt et al. 2005), is selectively expressed 
in the dorsal-most region of the MGE (Stenman et al. 2003b), and is downregulated in 
CNS-specific Shh mutant mice that also have a large reduction of PV- and 
SST-expressing cortical interneurons (Xu et al. 2005). Another study using fate 
mapping of transgenic mice expressing Cre under both the Nkx2.1 and Nkx6.2 
promoters found that approximately 90% of the CB-, SST-, and PV-expressing 
interneuronal subgroups were labeled (Fogarty et al. 2007). This study also found 
that the dorsal MGE gives rise to most of the SST+/CR+ colabeled Martinotti 
interneurons. In support of these findings, transplantation studies found that PV- 
and SST-expressing interneuron subgroups arise primarily from the ventral and 
dorsal MGE, respectively (Flames et al. 2007; Wonders et al. 2008). As the expression 
of Shh signaling effectors Gli1 and Gli2 are enhanced in the dorsal MGE, these 
results suggest that higher levels of Shh signaling regulate the specification of dorsal 
MGE cells into SST-expressing subgroups (Wonders et al. 2008). However, as the 
mRNA expression of Shh would predict a ventral high, dorsal low gradient, and if 
the above prediction were in fact “true,” a mechanism for the enhanced Shh signaling 
would need to be established.

Like the differential specification of MGE-derived interneuron subgroups, 
transcriptional regulators that effect interneuron development downstream of 
Nkx2.1 are beginning to be appreciated. Chief among these genes is Lhx6, a member 
of the lim-homeodomain family of transcription factors that is strongly expressed 
in the postmitotic mantle zone of the MGE (Grigoriou et al. 1998). In the spinal 
cord, lim-homeodomain genes regulate the specification of subgroups of motor 
neurons (Sharma et al. 1998). Lhx6 expression is undetectable in the telencephalon 
of Nkx2.1 null mice (Sussel et al. 1999). Lhx6 is expressed in the MGE-derived 
interneuronal progenitors upon their migration to the cortex (Lavdas et al. 1999; 
Gong et al. 2003), and its expression is maintained in most PV-expressing and SST-
expressing cortical interneurons in adult mice (Fogarty et al. 2007; Liodis et al. 
2007). Although there is no difference in the number of GAD67+ cells in the cortex 
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of Lhx6 null mice, these animals exhibit differences in the local, cortical distribution 
of GAD67+ cells and are completely devoid of PV and SST expression despite the 
maintained presence of CR+ interneurons (Liodis et al. 2007). Transfection of 
MGE cells in slice culture with an RNAi construct targeting Lhx6 resulted in a 
reduction of interneuron migration into the cortex, but no alteration in GABA 
expression (Alifragis et al. 2004). Although Lhx6 may be dispensable for the 
expression of GABA in MGE-derived progenitors, it is sufficient for the rescue of 
PV and SST expression in transplanted, Nkx2.1−/− cells (Du and Anderson unpub-
lished), suggesting that Lhx6 promotes both cortical migration and later aspects of 
MGE-derived interneuron specification into distinct neurochemical subgroups.

Although the role for continued Lhx6 expression remains unclear, the postnatal 
expression of the transcription factor Dlx1 is critical for since Dlx1 mutants show 
a selective loss of some CR-, NPY-, and SST-expressing interneurons beginning 
around the fourth postnatal week. The transplantation of GFP-expressing MGE 
progenitors from Dlx1 mutants into wildtype neonatal cortex further showed that 
this cell loss is due to a cell autonomous requirement for Dlx1 and is preceded by 
decreased dendritic length and branching. To date, these findings are, may be, the 
first to describe a transcription factor mutation that cell autonomously alters postnatal 
development of cortical interneurons (Cobos et al. 2005).

In addition to the issue of interneuron fate determination, slice culture, transgenic 
mouse, and transplantation experiments have been examining the regulation of 
interneuron migration from the MGE into the neocortex. First, Slit (ligand) Robo 
(receptor) interactions appear to drive the cells away from the proliferative zone (Zhu 
et al. 1999). Second, a combination of chemorepulsion (semaphorin – neuropilin) 
(Marin et al. 2001), permissive substrate (membrane-bound neuregulin – Erb4), and 
chemoattractive (diffusible neuregulin – Erb4) signals guide the interneurons into the 
cortex (Flames et al. 2004). As interneurons reach the cortex, they tend to parse into 
three streams that run above and below the cortical plate and in the deep intermediate 
zone. They then turn from their predominantly tangential orientations to migrate radi-
ally into the cortical plate (Metin et al. 2006). It remains to be determined whether a 
cellular substrate such as radial glia, or the axonal or dendritic processes of pyramidal 
neurons, are mediating this migration. Recent evidence suggests that chemokine sig-
naling via Cxcl12/Cxcr4 signaling initially prevents the interneuron invasion into the 
cortical plate (Lopez-Bendito et al. in press; Li et al. in press). However, it remains 
unclear whether interneuron subtypes are following subtype-specific cues to determine 
the precise location of their terminal differentiation. Alternatively, the migrating 
interneurons may use maturational/timing-dependent cues that allow competency to 
enter the cortical plate, then like-subtype chemorepulsion to distribute themselves 
evenly across a given cortical region and layer.

So where do we stand in the process of understanding the molecular regulation 
of cortical interneuron fate determination? The temporal and spatial origins of cortical 
interneurons and their migratory pathways are fairly well described, particularly in 
rodents. The differential spatial origins within the subpallium correlate with differ-
ences in the expression of a few fate-altering proteins that result in the specifica-
tion of neurochemically and physiologically distinct interneuron subgroups. 
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Moving forward, these findings are being extended by methods that permit the 
systematic study of interneuron fate determination. For example, neurochemical 
aspects of interneuron subgroup fate determination are maintained in vitro when 
interneuron progenitors are plated over a feeder layer of cortical cells. This tech-
nique provides a relatively high throughput way to study the molecular regulation 
of subgroup fate determination and cortical influences on interneuron differentiation 
(Xu et al. 2004; Xu et al. 2005). Of particular interest is whether aspects of 
interneuron subgroup physiology and connectivity can be meaningfully studied 
using the interneuron progenitor-cortical culture method.

More importantly, techniques have been developed to study interneuron fate 
determination in vivo. The most elegant method presently available is that of 
transplanting genetically labeled interneuron progenitors homotopically by in utero 
transplantation (Wichterle et al. 2001; Butt et al. 2005). This methodology can also 
be performed with genetically altered progenitors which, in addition to interneuron 
transplants directly into the cortical plate (Cobos et al. 2005; Wonders et al. 2008), 
will provide critical data on the cell autonomous regulation of interneuron development. 
In utero electroporation of marker genes (Borrell et al. 2005), a technique likely to 
be extended to gain and loss of function studies, provides yet another tool for the 
in vivo examination of embryonic manipulations on fate determination. Meanwhile, 
genetic differences within mature cortical interneuron populations are beginning to 
be elucidated (Sugino et al. 2006), enhancing the ability to perform specific labeling 
of subgroups of cortical interneurons in the adult (Oliva et al. 2000; Meyer et al. 
2002; Ma et al. 2006). In addition, with the advent of directed differentiation of 
embryonic stem cells toward neural progenitors, it will be possible to study the 
transcriptional alterations and epigenetic modifications that occur as a cell goes 
from a pluripotent state to a specific interneuron with distinct neurochemistry, 
morphology, and electrophysiological properties. In sum, the field is poised to 
bridge the gap between the molecular control of interneuron fate determination and 
the molecular basis of interneuron connectivity and physiology.
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It has become increasingly evident that neural activity is indispensable for synapse 
and network formation in many parts of the central nervous system. During 
development, GABAergic neurotransmission contributes greatly to the embryonic 
neural hyper-excitability due to its depolarizing nature at this stage. However, the 
precise way in which embryonic neural activity shapes GABAergic transmission is 
just beginning to be unveiled.

Gamma-aminobutyric acid (GABA) is the main inhibitory transmitter in the 
adult brain; however in early development, it is actually depolarizing and excit-
atory. Therefore, glutamatergic and GABAergic ionotropic transmission excites 
postsynaptic cells, making these recurrently connected networks very excitable. 
This transient developmental condition leads to an almost epileptic-like activity 
known as spontaneous network activity (SNA) that is experienced in most, if not 
all, developing circuits. In this chapter, we will discuss the depolarizing nature of 
GABA, how it is critical to the generation of SNA in the spinal cord, and how 
GABA and SNA interact and influence each other. Finally, we will discuss how 
SNA may drive the maturation of GABAergic synaptic strength through a process 
known as homeostatic synaptic plasticity. This process is also important in the 
maturation of glutamatergic synaptic strength in a manner that coordinates the 
development of excitatory and soon to be inhibitory systems. This process is likely 
to be important in establishing a balance between the two systems that will be critical 
for the appropriate behavior of mature networks.

Fast GABAergic action in the mature CNS is hyperpolarizing and inhibitory in 
most cases; it can be considered as a necessary break for networks driven primarily 
by the excitatory action of glutamate. However, the excitatory actions of GABAergic 
transmission during the establishment and early maturation of the neuronal circuits 
are critical for the many roles of this transmitter in development (Singer and Berger 
2000; Ben-Ari et al. 2007; Akerman and Cline 2007). It is now appreciated that 
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GABA signaling, likely due to its early depolarizing nature, is involved in directing 
multiple developmental processes, including cell proliferation, migration, and dif-
ferentiation; establishment of synaptic connections and their refinement; and pos-
sibly in the depolarizing to hyperpolarizing conversion of the GABA

A
 response 

itself (Ben-Ari et al. 2007; Owens and Kriegstein 2002; Ge et al. 2006; Akerman 
and Cline 2007; Kandler and Gillespie 2005).

Many of the specialized tasks, executed by GABAergic transmission in the 
course of embryonic development, are due to its ability to depolarize the membrane 
potential in embryonic cells. These fast GABAergic inward currents are mediated 
by the activation of GABA

A
 receptors (GABA

A
-Rs). GABA released from presynaptic 

vesicles activates GABA
A
-Rs, thereby opening conductances to chloride (and to a 

lesser extent bicarbonate ions – HCO
3
−). In adults, intracellular chloride concentra-

tion is low; thus, GABAergic transmission allows chloride to rush into the cell, 
thereby hyperpolarizing it. In early development, however, intracellular chloride 
concentration is higher than in the adult, making the reversal potential for chloride 
more depolarized than the resting membrane potential, resulting in chloride efflux 
and depolarization (Payne et al. 2003; Ben-Ari et al. 2007). Intracellular chloride 
accumulations in the young cells are thought to occur due to the stronger expression 
of an Na+-K+-Cl− cotransporter (NKCC1) in early development. NKCC1 uses the 
energy stored in concentration gradients across the cell membrane to transport the 
various ions. Later in development, intracellular chloride concentrations drop as a 
result of the reduced function of NKCC1 and the concurrent increase in function of 
the K+–Cl− cotransporter (KCC2), the main chloride carrier in mature cells. KCC2, 
in contrast to NKCC1, extrudes chloride using energy from the potassium ion 
concentration gradient, and thereby reduces intracellular chloride concentration. 
Owing to the transient capacity of chloride currents to depolarize neurons during a 
limited developmental window, GABA is in a strong position to regulate activity-
dependent processes during the crucial period when neural differentiation and 
circuit formation are occurring in the CNS.

As neuronal networks are recurrently connected, and because glutamate and 
GABA are both largely excitatory during early development, when one set of neurons 
becomes active this tends to spread and recruit the rest of the network. These devel-
oping circuits are therefore highly excitable and produce spontaneous bursts of 
network activity present in most if not all developing networks, including the spinal 
cord, hippocampus, and retina (O’Donovan 1999; Feller 1999; Ben-Ari et al. 2007). 
In the embryonic spinal cord, this spontaneous network activity (SNA) acts to 
recruit the majority of spinal neurons into bouts or episodes of activity (Fig. 3.1). 
Because motoneurons innervating limb muscles are also recruited during the episodes, 
SNA drives spontaneous limb movements such as those observed in the human 
embryo and fetus. Embryonic movements can be found in virtually all vertebrate 
species, demonstrating the importance of such activity. SNA and the movements 
generated by it are important for the development of limb muscle and joints (Hall 
and Herring 1990; Jarvis et al. 1996; Persson 1983; Roufa and Martonosi 1981) and 
are involved in motoneuron axon guidance (Hanson and Landmesser 2004; Hanson 
et al. 2008). Although early studies blocking SNA did not show clear effects on 
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circuit behavior, we have recently shown that this activity is important in setting the 
strength of the synaptic connections for both excitatory and inhibitory inputs in 
the developing spinal cord (Gonzalez-Islas and Wenner 2006).

Embryonic limb movements in different species are restricted to a particular 
interval during development and are organized in short episodes of motility 
followed by periods of relative calm (Hamburger 1977; Bekoff et al. 1975). Similar 
activity patterns can be observed in isolated spinal cord preparations, in which 
many spinal neurons become active during episodes that last approximately 60 s 
(Fig. 3.1, O’Donovan et al. 1998). These episodes are followed by longer periods of 
quiescence called inter-episode intervals (IEI, minutes), in which the spinal neurons 
are relatively silent. Episodes of SNA can first be detected in the chick embryo 
at about embryonic day 4 or 5 (E4-5) as very simple spontaneous episodic events, 
consisting of single recurring depolarizing events, evolving progressively into 
more recurrent multicycle episodes as the network matures (Milner and Landmesser 
1999; O’Donovan 1987). In general, spontaneous neuronal activity is a 
characteristic feature of developing neuronal systems; however, the type of activity 
manifested depends on the level of differentiation of the individual neurons 
and on the degree to which these neurons constitute themselves into networks. 

Fig. 3.1 Schematic of muscle nerve recordings from an isolated chick embryo spinal cord trace 
showing regularly occurring episodes of SNA separated by inter-episode intervals (IEI)
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For example, before the establishment of chemical synaptic connections, spontaneous 
spiking can be seen in isolated neurons, and coordinated calcium transients can be 
recorded in groups of electrically coupled neurons (Yuste et al. 1995; Gu and 
Spitzer 1997). Later in development, as soon as chemical synapses are established, 
a different kind of activity appears, now driven by the network (SNA), which 
mainly depends on chemical synaptic transmission, but not on detailed or specific 
connectivity, nor on pacemaker cells (O’Donovan 1999).

Immediately following an episode of SNA, the network is depressed, but it 
slowly recovers in the IEI (Fig. 3.2). Several observations by the O’Donovan lab 
are consistent with this idea. If reflexes are stimulated early in the IEI, they are 
weak, but then they strengthen later in the interval, once the network recovers from 
the network-induced depression (Fedirchuk et al. 1999; Chub and O’Donovan 
2001; Gonzalez-Islas and Wenner 2006) (Fig. 3.2a). Correspondingly, these stimu-
lations are more capable of evoking episodes later in the interval. Similarly, it is 
known that quantal amplitude is depressed immediately after an episode and 
progressively recovers through the course of the IEI (Ritter et al. 1999; Chub and 
O’Donovan 2001; Gonzalez-Islas and Wenner 2006). Furthermore, at the beginning 
of the IEI, spinal neurons are hyperpolarized by ~10 mV and progressively repolarize 
following a depolarizing ramp of 0.5–1 mV/min (Fig. 3.2b, Chub and O’Donovan 
2001). All of these observations can be explained as the progressive increase in the 

Fig. 3.2 Modulation of excitability in the inter-episode interval. (a) Response from ventral root 
recording (motoneuron population) following stimulation of the ventrolateral funiculus every 30 s. 
Strong responses are observed just before episodes (a, c), but depressed responses occur right after 
an episode (b) (Fedirchuk et al. 1999). (b) Whole cell recording from a spinal neuron showing a 
depolarizing ramp potential developing in the IEI and leading to spikes at the end of the IEI (Chub 
and O’Donovan 2001). (c) High-pass filtered ventral root (VR) recording showing the progressive 
development of motoneuron spiking activity in the IEI (Wenner and O’Donovan 2001)
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functional connectivity and in the excitability of the spinal network. After an episode 
in which spinal neurons are relatively hyperpolarized and synaptic strength is at its 
weakest, there is virtually no spiking activity. As the IEI progresses and neurons 
become more depolarized, some spinal neurons begin to reach threshold and fire 
action potentials (Fig. 3.2c), (Wenner and O’Donovan 2001). As neurons become 
more depolarized and synaptic strength increases, the motoneuron discharge 
becomes more vigorous, and a specific class of interneurons that receive direct 
input from the recurrent collaterals of motoneurons are recruited, which then trig-
ger full-blown episodes (Wenner and O’Donovan 2001).

What produces the modulation of excitability in the IEI? GABAergic synaptic 
transmission occupies a central role in this modulation of network excitability. The 
source of the ramp depolarization described above involves a GABAergic current 
that strengthens progressively in the IEI (Chub and O’Donovan 1998). Further, 
strong modulations of both GABAergic-evoked potentials and GABAergic miniature 
postsynaptic currents (mPSCs) are observed in the IEI (Tabak et al. 2001; Gonzalez-Islas 
and Wenner 2006). The modulation of GABAergic currents therefore significantly 
contributes to the progressive depolarization and increased synaptic strength that 
occurs in the intervals between episodes of SNA. The modulation of GABAergic 
currents comes about, at least in part, as a result of the activity of the developmentally 
regulated chloride transporter NKCC1 (Fig. 3.3). Intracellular chloride undergoes 
significant changes during SNA and the IEI. During SNA, GABA

A
 receptors are 

Fig. 3.3 Episode and NKCC1 cotransporter modulation of intracellular chloride concentration. 
Trace of motoneuron whole cell voltage clamp recording showing mPSCs getting larger in the IEI 
with schematics of chloride efflux during episodes and chloride re-accumulation by NKCC1 
during the IEIs
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activated, opening significant chloride conductances. These episodes can last over 
a minute, and allow significant efflux of chloride ions, so much so that intracellular 
chloride concentration is reduced during the episode by about 15 mM (Chub and 
O’Donovan 2001). This translates to a less depolarized chloride equilibrium potential 
and therefore to a reduction in the driving force for chloride efflux. This then 
accounts for the reduction in GABAergic currents observed right after an episode. 
In fact, the reduction in driving force that occurs during the episode may contribute 
to the episode’s termination. Following an episode of SNA, intracellular chloride 
concentration starts to rise because of an influx of chloride, driven by the activity 
of NKCC1 (Chub et al. 2006; Marchetti et al. 2005). As intracellular chloride 
concentration rises, the driving force for this ion also increases, resulting in an 
increase in GABAergic current strength. As these currents get stronger, enough 
motoneurons reach threshold to recruit GABAergic R-interneurons and generate an 
episode through a stochastic process (Tabak et al. 2000; Marchetti et al. 2005). The 
importance of GABA

A
 transmission for SNA can be observed by blocking 

GABAergic currents at E10; the frequency of the episodes becomes slower and 
highly variable (Chub and O’Donovan 1998). Alternatively, blockade of glutamatergic 
and cholinergic antagonists at this stage initially slows SNA frequency, but then 
SNA recovers to near the predrug level of activity and shows little variability. We assert 
that GABAergic circuits sustain a consistent periodicity because the progressive 
increase in GABAergic currents strengthens GABAergic synapses and depolarizes 
the spinal neurons, which progressively increases the likelihood of triggering the 
next episode.

As described above, GABAergic currents influence the periodicity of the 
episodes of SNA through changes in intracellular chloride. Turned around, one 
could say that SNA regulates GABAergic synaptic strength, weakening it after an 
episode and allowing it to recover in the minutes between episodes. Is it possible 
that SNA regulates GABAergic synaptic strength over a longer period of time; in 
other words, could the network assess SNA levels over days and adjust GABAergic 
synaptic strength to compensate for any perturbations from a set level of activity? 
It has long been known that activity is an important factor in the process of formation 
and modification of neuronal circuits (Bliss and Lømo 1973; see Katz and Shatz 
1996; Malenka and Nicoll 1999, for review). Currently, a number of studies have 
focused on how such activity modifies synaptic strength and what the participating 
mechanisms are. The role of activity as a building block of the CNS has been a 
central focus of neuroscience. Does activity have a permissive role, refining 
structures built by a predetermined plan, or does activity do more? In other words, 
how much experience is important in the formation of the nervous system? The first 
breakthrough in this debate came from the discovery of long-lasting synaptic modi-
fications, such as long-term potentiation or long-term depression, that are usually 
synapse-specific and depend on correlation between pre- and postsynaptic firing 
(Abbott and Nelson, 2000). Correlation-based [Hebbian] rules for the use-dependent 
modification of synaptic strength have been very enlightening; they constitute 
the best model of how information is stored in the nervous system (Stent 1973; 
Hawkins et al. 1993; Malenka and Nicoll, 1993; Linden and Connor 1995) and underlie 



333 Role of Spontaneous Activity in the Maturation of GABAergic Synapses 

the refinement of neural connections during development (Shatz 1990; Miller 1994; 
Cline 1991; Yao and Dan 2005). The problem with this kind of rule lies in its 
positive feedback nature, as effective synapses are strengthened and less effective 
ones weakened, the former should continually become more effective and the latter 
tend to disappear. This is likely to destabilize postsynaptic firing rates since it 
increases them excessively.

One way to overcome this problem would be the presence of a mechanism that 
ensures that the cell or network remains within a range of activity that is physiologi-
cally appropriate, homeostatically maintaining this activity level. The process of 
maintaining activity within a certain range has been termed “homeostatic plastic-
ity” and the underlying mechanisms include compensatory regulation of neuronal 
excitability (LeMasson et al. 1993; Turrigiano et al. 1994; Marder and Goaillard 
2006), and synaptic strength (Burrone and Murthy 2003; Rich and Wenner 2006; 
Turrigiano 2007; Davis 2006). Many studies have focused on compensatory 
changes in synaptic strength. In cultured neuronal networks, when activity levels 
were either reduced or increased for two days, compensatory changes were 
observed in the strength of both AMPAergic and GABAergic synapses (Turrigiano 
and Nelson 2004). Consequently, when activity levels were reduced, AMPAergic 
synaptic strength increased and GABAergic synaptic strength decreased (Kilman 
et al. 2002; O’Brien et al. 1998; Turrigiano et al. 1998). On the contrary, when 
activity levels were increased, AMPA synaptic strength decreased (Lissin et al 
1998; O’Brien et al. 1998; Turrigiano et al. 1998). In each case, the change in syn-
aptic strength acted in a direction that tended to restore the original activity levels. 
In this way, the network activity could be regulating itself homeostatically through 
changes in the synaptic strength of the inputs onto the cells in the network. Further, 
in many cases, all of the excitatory inputs onto a neuron appeared to be increased 
after activity reduction. Such enhancement of synaptic strength was observed 
across the entire distribution of mPSCs and was therefore designated as synaptic 
scaling (Turrigiano et al. 1998).

During development, neurons grow in size, synaptic connections are added or 
removed, and synaptic strengths change. Any of these transformations could perturb 
network activity levels in the circuits in which the cells reside. Therefore, we 
hypothesized that in the formation of neural circuits, homeostatic mechanisms will 
be at play, and they will maintain the existing activity of these developing networks, 
i.e., spontaneous network activity. We consequently tested the possibility that 
embryonic SNA regulated synaptic strength in a homeostatic manner (Gonzalez-
Islas and Wenner 2006). We reduced SNA by injecting the sodium channel blocker 
lidocaine in ovo (chick embryo). After chronically reducing SNA for two days (E8-10), 
we found that the synaptic strength of AMPAergic inputs was increased in a 
compensatory manner; however, no changes in passive membrane properties were 
observed. AMPAergic mPSC amplitude and frequency increased following the 
two-day reduction of SNA. In addition, GABAergic mPSC amplitude increased, 
and synaptic scaling was observed (Fig. 3.4). Although opposite to the finding in 
culture, in which IPSCs are hyperpolarizing, in the developing system, this is a 
compensatory change because GABA is depolarizing and excitatory in embryonic 
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spinal neurons. Therefore, if the function of the process is to recover activity levels 
through changes in synaptic strength, then the network should strengthen both types 
of excitatory input (GABA and glutamate). These findings suggest that a reduction 
in network activity can regulate the synaptic strength of mPSCs in a compensa-
tory direction.

What are the mechanisms that underlie the increases in AMPA and GABA quantal 
amplitude following activity perturbations? In cultured cells, changes have been 
described for both postsynaptic receptors and transmitter filling of presynaptic 
vesicles (Rich and Wenner 2007; Turrigiano 2007). AMPA receptors increase and 
GABA receptors decrease in number, and correspondingly more glutamate per 
vesicle has been reported. It is not clear whether these mechanisms will be at play 
in the lidocaine-treated chick embryos.

Fig. 3.4 GABAergic mPSC amplitude increase following activity reductions in ovo. (a) Average 
GABA

A
 mPSC in control and lidocaine-treated embryos. The mPSC kinetics are unchanged, but 

the amplitude increases in treated embryos. (b) Bar chart shows the increase in GABAergic mPSC 
amplitude. (c) Cumulative distribution of GABAergic mPSC amplitudes in control and treated 
embryos can be scaled to match each other using a multiplicative function. Adapted from 
Gonzalez-Islas and Wenner 2006
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Interestingly, we have evidence that supports a completely novel mechanism 
underlying the increase in GABA quantal amplitude. As mentioned above, it is known 
that in embryonic spinal neurons, the reversal potential for chloride is modulated by 
an episode of SNA and over minutes in the interval between episodes (Chub and 
O’Donovan 2001). Is it possible that the transporters that set intracellular chloride 
concentration are more numerous or more active in the lidocaine-treated preparations, 
leading to a higher intracellular chloride concentration and consequently increasing 
the driving force for chloride?

We demonstrated that GABA mPSCs are depressed following an episode of 
SNA and progressively recover during the following IEI. In the lidocaine-treated 
preparations, GABA-mPSC amplitude was similarly depressed by the episode, but 
completely recovered in the shorter inter-episode intervals that are characteristic of 
the lidocaine-treated embryos. This led us to test the possibility that the modulation 
was influenced because the effectiveness of the chloride cotransporters had 
increased in the activity-reduced embryos. Because the modulation of GABAergic 
currents is likely determined by chloride cotransporters, we are now focusing on the 
possibility that an increase in chloride accumulation could underlie the increased 
rate of recovery of GABA mPSC amplitude in lidocaine preparations. We have 
therefore tested whether the reversal potential for GABA has become more depolarizing 
in the lidocaine embryos, increasing the driving force for these currents, and there-
fore GABAergic quantal amplitude.

Using perforated patch recordings, we have measured the GABA reversal potential 
by puffing on a GABA

A
 agonist and blocking voltage-gated channels. In these 

experiments, we have indeed found that E
GABA

 is shifted from ~ −40 mV in control 
motoneurons to between −10 and −20 mV in motoneurons from lidocaine-treated 
embryos (Fig. 3.5). Thus, at least part of the increase in GABA quantal amplitude 
can be explained by the increase in driving force originating from the shift in E

Gaba
. 

No such change has been described in activity-blocked, cultured neurons, although 
whole cell recordings were used and this may have obscured a contribution from 
changes in GABA reversal potential (Kilman et al. 2002). We have also begun to 
identify the cotransporters that are likely to mediate the chloride accumulation. We 
have made extracellular recordings of muscle nerves while puffing the GABA

A
 

agonist and measuring the potential generated. As expected, the response is reduced 
in both control and lidocaine-treated embryos when the NKCC1 cotransporter is 
blocked; however, it is only reduced to about 50%. This suggests that there are 
other means of chloride accumulation in addition to NKCC1. The findings suggest 
that one of the ways in which the homeostatic change in GABA quantal amplitude 
is achieved is through a change in the driving force for chloride. We have also 
identified that this change is likely mediated through changes in the function of 
chloride accumulators.

GABA in early embryos clearly has a profound influence on the development of 
these networks. We have shown that GABA transmission is modulated by SNA, and 
SNA is modulated by GABA transmission, and that GABAergic quantal amplitude 
increases in a homeostatic direction following reductions in SNA. It also appears 
that GABA signaling through its GABA

A
 receptor is likely important in sensing 
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the activity levels that trigger homeostatic increases in quantal amplitude (Wilhelm 
and Wenner 2008). We have recently blocked GABA

A
 transmission in ovo from 

E8-10, while leaving SNA largely intact. When this is done even, larger changes in 
quantal amplitude are observed, suggesting the importance of GABAergic trans-
mission in the homeostatic process. The findings suggest that the compensatory 
changes are triggered when the network senses lowered GABA levels, as a proxy 
for activity.

These results suggest that spontaneous network activity can regulate the synaptic 
strength of motoneuron inputs during development, and that GABA plays a funda-
mentally important role in this process. Chronic reduction of activity or GABA 
signaling produces compensatory increases in both glutamatergic and depolarizing 
GABAergic mPSCs. Therefore, SNA appears to regulate the strength of network 
connections in a manner that could maintain levels of activity appropriate for 
proper limb development. By coordinately adjusting the strength of GABAergic 
and glutamatergic synaptic inputs as they face similar challenges (e.g., changes in 
cell size), this process could drive a balanced maturation of excitatory and 
inhibitory systems. Because of their shared depolarizing nature, certain features of 
excitatory and inhibitory synapses could be regulated in a mechanistically similar 
way, producing an initially coordinated development of the two systems. In this 
way, spontaneous network activity is likely to be important for the maturation of 
synaptic strength. SNA is particularly well suited to drive the maturation of synaptic 
inputs, because the great majority of spinal neurons, and their synapses, are 
recruited during episodes of SNA and this could allow the cells to measure 

Fig. 3.5 E
GABA

 is shifted to a more depolarized level in activity-reduced embryos. Schematic 
shows the recording configuration for establishing the GABAergic reversal potential. Perforated 
patch recordings were made from motoneurons following GABA

A
 agonist (isoguvacine) puffs,  

in the presence of voltage-gated channel blockers. Voltage ramps were made before and  
during GABA

A
 agonist puffs to construct I–V plots in control and lidocaine-treated embryos. 

Approximate I-V plot is shown for control and treated embryos.
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the efficacy of their inputs. Future studies increasing SNA will be necessary to 
more completely determine the homeostatic nature of this synaptic regulation. 
Also, the spiking activity levels in spinal interneurons appear to be lower than 
that of motoneurons during episodes of SNA and the IEI (Chub and O’Donovan 
2001; Ritter et al. 1999; Wenner and O’Donovan 2001). If synaptic strength is 
regulated in a similar way for interneurons, then we might expect compensatory 
responses to be triggered at different activity levels for different neurons. Because 
spontaneous network activity appears to occur in virtually every developing circuit, 
it is likely that this activity is important for synaptic maturation throughout the 
nervous system.
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The regulation of inhibitory synaptic strength begins during the period of synaptogenesis 
when the specificity of inhibitory and excitatory terminals becomes established. 
The mechanisms that underlie this process are just beginning to be understood. 
At the molecular level, the neuroligin family of cell adhesion molecules may selec-
tively increase the formation of new inhibitory synapses (Chih et al. 2005; Levinson 
et al. 2005). However, experimental evidence from the auditory system suggests 
that establishing a balance between excitation and inhibition also depends on the 
selective elimination of inhibitory connections (Sanes and Siverls 1991; Sanes 
1993; Gabriele et al. 2000a; Kapfer et al. 2002; Kim and Kandler 2003; Werthat 
et al. 2008; Franklin et al. 2008; Kandler et al. 2009) while similar pruning of 
excitatory terminals must also coexist.

The stabilization or elimination of a synapse can be influenced by neurotrans-
mission itself, often referred to as activity-dependent plasticity. Although the 
activity-dependent modification of excitatory synapses has been the focus of 
intense study for many decades (see Sanes et al. 2006), there is a growing recogni-
tion that inhibitory synapses employ similar mechanisms. In fact, the strongest 
evidence for this view comes from experiments performed on the central auditory 
system (Sanes and Takács 1993; Gabriele et al. 2000b; Kapfer et al. 2002; Kim and 
Kandler 2003; Werthat et al. 2008; Franklin et al. 2008). Furthermore, the strength 
of inhibitory synapses is remarkably dynamic during development, even after the 
period when developing connections are eliminated. In this chapter, we explore how 
inhibitory synaptic gain is adjusted in the auditory CNS, especially during the 
period of postnatal maturation.
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4.1  Spontaneous and Sound-Evoked Activity During 
Development

Many experiments demonstrating an influence of activity on inhibitory gain have 
been based on in vivo manipulations of the developing cochlea, often before the 
animal would hear airborne sound. Therefore, it is crucial to know the characteristics 
of neural activity in the developing auditory system at this time point, and whether 
manipulations of this sort can alter the normal amount or the pattern of synaptic 
transmission and action potentials. In this section, we review what is known about 
neural activity in the developing auditory CNS. However, there is an important 
caveat: there is not a single in vivo study that has measured spontaneous inhibitory 
synaptic activity during development, either in control animals or following a 
manipulation. This is important for studies that explored the effect of decreasing 
synaptic inhibition during development (Sanes et al. 1992; Sanes and Chokshi 
1992; Moore 1992; Aponte et al. 1996; Kotak and Sanes 1996). Therefore, the precise 
functional impact of manipulations that “decrease” activity are yet to be determined.

Spontaneous action potentials have been recorded in central auditory regions 
before the onset of hearing, including in the gerbil cochlear nucleus and inferior 
colliculus (Woolf and Ryan 1985; Kotak and Sanes 1995). Much of this spontaneous 
activity arises in the periphery (Beutner and Moser 2001; Brandt et al. 2003; Tritsch 
et al. 2007; Jones et al. 2007), and it has been reported that cochlea removal or the 
blockade of action potentials with tetrodotoxin (TTX) leads to a complete cessation 
of spontaneous bursting activity in the embryonic chick cochlear nucleus (Lippe 
1994). There is evidence for spontaneous activity in the auditory cortex that is 
independent of the cochlea, however. Oscillatory discharge has been observed in 
isolated thalamorecipient auditory cortex of gerbils during the first postnatal week 
(Kotak et al. 2007). Furthermore, calcium waves in isolated cortex are observed to 
sweep from caudal to rostral at rates of up to five waves per min, similar to those 
reported in other developing cortices (Garaschuk et al. 2000; Adelsberger et al. 
2005). Importantly, such oscillations and calcium waves involve inhibitory trans-
mission: focal delivery of GABA dampens bursting activity by hyperpolarizing the 
membrane potential as early as P3, while a GABA

A
 receptor antagonist disrupts the 

synchronized cortical rhythms, leading to tonic discharge (Kotak et al. 2007).
As the auditory system matures, the effective sound level to elicit a response 

declines. Thus, high thresholds will initially limit the amount of sound-evoked 
activity, due largely to an immature auditory periphery (for review, see Fitzgerald 
and Sanes 2001). In gerbils, airborne sound can first elicit a response from the 
cochlea at about postnatal (P) day 12, and thresholds gradually decline to adult 
values by P30 (Woolf and Ryan 1984; McFadden et al. 1996). A similar developmental 
trajectory has been described for other rodent species (Romand 1992).

A second constraint on sound-driven neural activity is that dynamic range and 
maximum output are limited, both at the cochlea and within the CNS. In adult animals, 
central auditory neurons typically modulate their discharge rate over a 20–50 dB range 
of intensities, whereas animals perceive increments over approximately a 100 dB 
range. However, the dynamic range is quite limited at hearing onset. In gerbils, the 
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cochlea encodes less than half of the adult sound level range at P12, and this input-output 
function has not fully matured at P30 (Woolf and Ryan 1984). Central auditory 
neurons appear to reflect this limitation in that maximum discharge rates display 
the same prolonged time course to reach adult values (Woolf and Ryan 1985; 
Sanes and Rubel 1988; Thornton et al. 1999).

The first studies to demonstrate a strong causal relationship between environ-
mental stimulation and the development of connections were performed in the cat 
visual system. In these studies, decreasing visual stimulation during development 
led to a dramatic loss in the ability of the eyes to activate cortical neurons (Wiesel 
and Hubel 1965). More recently, spontaneous retinal activity has been shown to 
influence the refinement of retinal ganglion cell arbors within the superior colliculus 
during the first week after birth (Chandrasekaran et al. 2005). Experimental manip-
ulations that injure or interfere with the cochlea generally reduce spontaneous and 
sound-driven electrical activity in the central auditory system (Bock and Webster 
1974; Shepherd et al. 1999; Koerber et al. 1966; Tucci et al. 2001; Tucci et al. 1999; 
Lee et al. 2001; Cook et al. 2002), and thus can be used to study the effect of 
decreasing activity on the development of inhibitory synapse function.

4.2  Perturbation of Auditory System Activity Alters Inhibition

In the auditory cortex (ACx), inhibitory connections are outweighed by their 
excitatory counterparts by about 4:1, yet small deficiencies in inhibition can pro-
foundly impact network properties (Chagnac-Amitai and Connors 1989; for review, 
see Fritschy and Brünig 2003). In the ACx activation of GABAergic circuits 
contributes to many response properties, including onset latencies, excitatory 
receptive fields, and motion processing (Müller and Scheich 1988; Horikawa et al. 
1996; Chen and Jen 2000; Foeller et al. 2001; Firzlaff and Schuller 2001; Wang 
et al. 2002b). In the inferior colliculus, in vivo blockade of inhibitory synapses 
demonstrates that they contribute to a broad range of auditory coding properties 
(for reviews, see Pollak et al. 2002; Pollak et al. 2003).

Hearing impairments alter the coding properties within the central auditory system, 
and these changes may be explained, in part, by the alterations of inhibitory synap-
tic function described in this chapter. In particular, in vivo studies of deafened 
animals and of age-related hearing loss have suggested that adjustments of the 
strength of inhibitory afferents occur. For example, when animals are unilaterally 
deafened as neonates, acoustically-evoked activity in the ipsilateral inferior collicu-
lus is increased in adults (Kitzes and Semple 1985; Szczepaniak and Moller 1995). 
Similar effects are observed following acute unilateral ablation in adult animals 
(McAlpine et al. 1997). Weakened sideband inhibition following noise and drug-
induced hearing loss can also contribute to enhanced IC neuron discharge and 
expansion of frequency tuning curves (Wang et al. 2002a).

Because the effects of cochlear damage emerge rapidly, it has been suggested that 
excitatory inputs are “unmasked” by decreasing inhibitory drive from the deafened ear 
(Calford et al. 1993; Kimura and Eggermont 1999; Salvi et al. 2000; Norena et al. 2003). 
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For example, when a small section of the cochlea is damaged, the frequency tuning 
of cortical neurons expands due to the loss of surround inhibition (Rajan 1998). 
However, inhibitory inputs that are driven by the same frequencies as the excitatory 
inputs do not appear to decrease in strength (Rajan 2001). Thus, in vivo experiments 
suggest that inhibitory synaptic strength is altered after cochlear damage, but they 
cannot assess inhibitory synapses selectively. Many factors must be considered, includ-
ing alterations to excitatory synapses and membrane properties within the many brain 
stem auditory nuclei. Nonetheless, direct assays of inhibitory markers or function can 
establish reduced or enhanced synaptic inhibition. As discussed below, there is now 
direct cellular and molecular evidence in support of this idea.

From a chronological perspective, the first indication that inhibitory synaptic 
properties were use-dependent came from studies on the CNS following hearing loss 
that is commonly observed during aging (Caspary et al. 2008). This work demon-
strated a profound alteration of GABAergic properties in the inferior colliculus 
(Banay-Schwartz et al. 1989; Caspary et al. 1990). The research findings described in 
the following section establish that inhibitory gain is adjusted simultaneously at each 
level of the auditory CNS, although the first nuclei in the pathway tend to display 
non-homeostatic alterations. The cellular mechanisms by which inhibitory synaptic 
strength is set are quite diverse, and include both pre- and postsynaptic sites. In most 
cases, excitatory synaptic gain and membrane excitability are adjusted concurrently. 
In the following sections, we consider the evidence demonstrating how inhibitory 
synapses from ventral brainstem and midbrain to cortex are altered by experience.

4.3  Developmental Regulation of Inhibitory Synapses in the 
Lateral Superior Olive

We initially studied a group of inhibitory neurons that participate in a simple brain 
stem circuit that computes interaural level differences (ILD), a sound cue that is 
used to locate a sound along the horizontal axis. Lateral superior olivary (LSO) 
neurons each respond selectively to particular values of ILD by integrating excitatory 
inputs driven by the ipsilateral ear with inhibitory inputs driven by the contralateral 
ear (for review, see Tollin 2003). As shown in Fig. 4.1a, the inhibitory projection 

Use-dependent long term depression of inhibitory synapses in the LSO was observed following 
low frequency stimulation (LFS) of the MNTB. MNTB-evoked maximum IPSPs were recorded 
in the absence and presence of the GABA

B
 receptor antagonist, SCH-50911. In control neurons, 

synaptic depression was robust (43%) at 50–60 min following LFS (filled circles). Age-matched 
neurons treated with SCH-50911 (open circles) displayed an insignificant change in IPSP 
amplitude following LFS (mean ± SEM). (c) Following functional deafferentation of the MNTB 
by contralateral cochlear ablation (SNHL), evoked IPSPs were smaller (top traces and bar graph. 
In contrast, the unmanipulated ipsilateral excitatory pathway became stronger. Evoked EPSPs 
were longer in duration in SNHL neurons, and this was attributable to up-regulation of NMDA 
receptor function, as assessed with the NMDA receptor antagonist, AP-5 (bottom traces and 
bar graph). N values in bars
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Fig. 4.1 Inhibitory synaptic plasticity in the developing LSO. (a) Schematic shows the position 
of the brain slice (dashed box) and location of LSO (black circle). The brain slice (right panel) 
contains the LSO, and the excitatory projection from the ipsilateral cochlear nucleus (left stimulating 
electrode) and the inhibitory projection from the MNTB (right stimulating electrode). (b) 
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originates from the medial nucleus of the trapezoid body (MNTB), and the excitatory 
projection from the cochlear nucleus (CN).

Projections from both the excitatory CN and the inhibitory MNTB form tonotopic 
maps in the LSO. As with other areas of the nervous system, these projections 
result from accurate outgrowth and innervation mechanisms, but there is also 
evidence that these projections undergo postnatal refinement through synapse 
elimination. In vivo recordings indicate that there is a significant improvement in 
the matching of excitatory and inhibitory sound frequencies between P13–14, when 
gerbils first respond to airborne sound, and adulthood (Sanes and Rubel 1988). 
Functional estimates of the number of excitatory and inhibitory terminals per LSO 
neuron suggest that convergence declines during development (Sanes 1993). 
Furthermore, single MNTB terminal arborizations in the LSO become physically 
restricted during development. During an early period of refinement, prior to the 
onset of hearing, the MNTB projection to the LSO undergoes a dramatic reduc-
tion in area (Kim and Kandler 2003; Kandler et al. 2009). During a subsequent 
period, after the onset of hearing, individual arbors are reduced by about 30%. The 
refinement of inhibitory MNTB arbors within LSO depends, in part, on their activity. 
When the contralateral cochlea is ablated at P7, single MNTB terminal arbors that 
were deafferented by the ablation fail to attain the normal level of anatomical speci-
ficity (Sanes and Takács 1993). A complementary phenomenon has also been 
described in a second target nucleus of the MNTB, the medial superior olivary 
nucleus (MSO). Terminals from the MNTB are eliminated from MSO dendrites 
during early development, and this process is prevented by unilateral cochlear ablation 
and diminished by rearing gerbils in white noise (Kapfer et al. 2002; Werthat et al. 
2008). Finally, the projection from a GABAergic nucleus to the inferior colliculus 
also displays an anatomical refinement during development, and this can be 
reversed by cochlear albation (Gabriele et al. 2000a, 200b; Franklin et al. 2008).

There is a strong literature supporting a role for activity in the developmental 
elimination of excitatory synapses (for review, see Sanes et al. 2006). At the devel-
oping neuromuscular junction, activity-dependent excitatory synaptic depression is 
closely associated with the elimination of polyneuronal innervation (for review, see 
Wyatt and Balice-Gordon 2003). Therefore, an important question arising from 
these studies is whether the physical elimination of inhibitory synapses is associated 
with a weakening of inhibitory transmission. In fact, MNTB synapses do display a 
form of use-dependent long-term depression (LTD), and this form of inhibitory 
plasticity declines with age. Synapse depression is hypothesized to be an initial step 
in the elimination of excitatory synapses, possibly through the reduction of 
postsynaptic receptors (Li et al. 2001; Heynen et al. 2003). Therefore, inhibitory 
LTD could support synaptic remodeling in the developing LSO, and contribute to 
excitatory-inhibitory balance (Kotak and Sanes 2000).

Our studies of inhibitory LTD began with a rather unexpected observation. 
Inhibitory transmission within the LSO was thought of as exclusively glycinergic 
in adult animals (Moore and Caspary 1983; Sanes et al. 1987; Wenthold et al. 1987, 
1990,), and we assumed that this held true for neonates. To our surprise, we found 
that inhibitory MNTB terminals are primarily GABAergic during the first postnatal 
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week, before sound-evoked responses are present (Kotak et al. 1998; Korada and 
Schwartz 1999). This finding suggested that GABA release is necessary for the 
induction of inhibitory LTD, acting via G-protein coupled GABA

B
 receptors. 

As shown in Fig. 4.1b (left), when whole-cell recordings were made from LSO 
neurons in the presence of a GABA

B
 receptor antagonist (SCH-50911), we found 

that inhibitory LTD was almost completely eliminated (Kotak et al. 2001).
We next designed a specific test of whether postsynaptic GABA

B
 receptor 

activation alone could induce depression. A micropipette, containing either GABA 
or glycine, was positioned in close proximity to the recorded LSO neuron. We found 
that focal delivery of GABA, but not glycine, was sufficient to trigger depression of the 
evoked hyperpolarizations (Chang et al. 2003). Furthermore, the GABA-induced 
depression could be blocked by the GABA

B
 receptor antagonist (Fig. 4.1b). Together, 

these observations lend credibility to the notion that GABA plays a pivotal role in 
the induction and maintenance of inhibitory LTD (Kotak et al. 2001; Chang et al. 
2003). The postsynaptic theory is consistent with our previous data that inhibitory 
LTD can be blocked by various kinds of intracellular manipulations exclusively in 
the recorded postsynaptic neuron (Kotak and Sanes 2000; Kotak and Sanes 2002). 
It should be noted that MNTB synapses in the LSO can also display long-term 
potentiation under specific stimulus conditions (Kotak and Sanes, unpublished observa-
tions). This property may provide an explanation for the enhanced conductance of the 
inhibitory synapses that become stabilized during the period of elimination in 
the developing rat LSO (Kim and Kandler 2003).

A second line of evidence for developmental homeostasis of inhibitory gain comes 
from studies in which the net inhibitory activity to LSO was experimentally decreased. 
In one set of experiments, one cochlea was surgically removed before the onset of 
hearing, which leads to the functional deafferentation of MNTB neurons. A second 
set of experiments used strychnine-containing continuous release pellets to attenuate 
the level of glycinergic transmission in vivo. As shown in Fig. 4.1c, manipulations of 
this sort influenced the maturation of synaptic properties. Whole-cell recordings showed 
that fewer LSO neurons received MNTB-evoked inhibition. In those neurons that did 
display MNTB-evoked IPSPs, the amplitude was significantly reduced, and this was 
accompanied by a depolarization in the IPSP reversal potential. More surprisingly, the 
unmanipulated ipsilateral pathway was altered dramatically: Ipsilaterally-evoked 
EPSPs were of much longer duration in experimental animals, and they were shortened 
significantly by an NMDA receptor antagonist, AP-5 (Kotak and Sanes 1996).

The effects of reducing inhibition during development may appear to support 
an anti-homeostatic mechanism: A down-regulation of inhibitory strength and an 
up-regulation of excitatory strength would not compensate for the manipulation. 
However, several observations suggest caution in drawing firm conclusions. For 
example, LSO neurons receive afferent projections from ipsilateral inhibitory and 
contralateral excitatory pathways (Wu and Kelly 1994; Kil et al. 1995). Furthermore, 
deafferentation elicits afferent sprouting, leading to novel innervation of MNTB 
and LSO (Kitzes et al. 1995; Russell and Moore 1995). Certain functional proper-
ties of the inhibitory MNTB projection must also be considered. For example, the 
MNTB projection releases both GABA and glycine during early development, and 
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several reports demonstrate that the excitatory transmitter, glutamate, is also 
released (Kotak et al. 1998; Nabekura et al. 2004; Gillespie et al. 2005). Thus, the 
activation of metabotropic GABA

B
 and glutamate receptors could play a primary 

role in regulating synaptic strength (Ene et al. 2003; Kotak and Sanes 1995; Kotak 
et al. 2001; Ene et al. 2007; Nishimaki et al. 2007).

4.4  Developmental Regulation of Inhibitory Synapse Gain  
in the Inferior Colliculus

Inhibitory projections to the inferior colliculus (IC) arise from many brain stem 
nuclei, and include both glycinergic and GABAergic afferents (for review, see 
Pollak et al. 2003). In a transverse brain slice preparation, much of the ascending 
inhibitory pathway can be activated with a stimulating electrode placed just ventral 
to the IC (Fig. 4.2a). We have used this approach to examine the effect of cochlear 
activity on the development of inhibitory synaptic transmission.

When gerbils are bilaterally deafened before the onset of hearing, evoked inhibi-
tory postsynaptic potentials become much weaker than in control animals. We 
tested the ability of evoked IPSPs to block current-evoked action potentials, and 
found they were much less effective in deafened animals (Fig. 4.2b). In control 
neurons, the IPSPs block 97% of action potentials and the duration of inhibition 
lasted for 81 ms, but in deafened neurons only 43% of action potentials were 
blocked and the duration of inhibition was only 27 ms (Vale et al. 2003). Therefore, 
measures of synaptic strength indicate that inhibitory connections are less able to 
suppress suprathreshold events following deafness.

There are several changes that account for decreased inhibitory strength. The 
conductance of maximum evoked IPSCs is reduced by about 50% for all evoked 
IPSCs. This could be due to the loss of inhibitory afferents, a reduction in GABA 
or glycine release, a reduction of postsynaptic GABA or glycine receptors, or an 
alteration in the functional status of these receptors. There is also an alteration in 
release probability. When paired-pulses were delivered to the inhibitory pathway in 
control neurons, the evoked IPSCs exhibited facilitation. In contrast, paired-pulse 
facilitation is nearly eliminated in deafened animals (Vale and Sanes 2000).

The most dramatic change to inhibitory transmission involves the chloride (Cl−) 
battery. Synaptic inhibition elicited by GABA

A
 or glycine receptor activation is 

mediated by a Cl− conductance (Bormann et al. 1987). In most adult neurons, intrac-
ellular chloride [Cl−]

i
 is regulated by cation-chloride cotransporter family members: a 

Na–K–2Cl cotransporter (NKCC1) leads to cytoplasmic accumulation of chloride, and 
a K–Cl cotransporter (KCC2) extrudes chloride (Delpire et al. 1994; Payne et al. 1996; 

neurons from control and SNHL animals. For control neurons, the mean E
IPSC

 was significantly 
more depolarized when the internal pipette solution contained Cs+. However, for SNHL neurons, 
there was no significant difference between K +- and Cs+-containing pipettes. n values are in bars 
(*p 0.0001 vs K+). Error bars indicate SEM
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Fig. 4.2 Inhibitory synaptic plasticity in the developing IC. (a) Schematic shows the position of 
the brain slice (dashed box) and location of IC (black circle). The brain slice (right) contains the 
IC, and the ascending projection through the DNLL which includes both glycinergic and 
GABAergic afferents (stimulating electrode). (b) Traces show examples of evoked IPSPs, current-
evoked action potentials, and the simultaneous presentation of IPSPs with action potentials (from 
left to right) in control and SNHL animals. The number of times that the evoked IPSP inhibited 
the AP in ten consecutive trials was counted and used to calculate the percentage of inhibition. 
Mean IPSP ability to inhibit APs is significantly lower in SNHL neurons compared with controls 
(*p < 0.0001). Duration of inhibition was significantly shorter in BCA neurons compared with 
controls (**p < 0.005). (c) IPSC reversal potential in gramicidin-perforated patch recordings with 
KCl in the internal pipette solution. SNHL caused a 24 mV depolarization in the mean E

IPSC
 

(***p<0.0001 vs control), and the distribution of E
IPSC

 is plotted for neurons from control (black 
circles) and bilaterally deafened (gray squares) animals, along with regression lines (left). The 
effect of deafferentation on E

IPSC
 was apparent within 1 day of the surgical manipulation (at P7) 

and persisted during the age range studied (up to P14). The E
IPSC

 of control neurons at P7 is shown 
at the left. Bar graphs (right) show the effect of K+ or Cs+ in the recording pipette on E

IPSC
 in 
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Payne 1997; Payne et al. 2003). During early development [Cl−]
i
 is relatively high 

due to NKCC1 activity (Plotkin et al. 1997; Clayton et al. 1998; Kanaka et al. 2001). 
As KCC2 expression increases, [Cl−]

i
 drops below the electrochemical equilibrium (Lu 

et al. 1999; DeFazio et al., 2000; Hübner et al. 2001), leading to a transition from 
inhibitory synapse-evoked depolarizations to hyperpolarizations (Wang et al. 1994; 
Owens et al. 1996; Ehrlich et al. 1999; Kakazu et al. 1999; Rivera et al. 1999).

Using perforated patch recordings (which preserve the neurons’ intracellular 
chloride concentration), we found that the mean IPSC reversal potential (E

IPSC
) 

depolarized by 24 mV following hearing loss. As shown in Fig. 4.2c, this effect was 
present within one day of the in vivo manipulation and persisted at the longest 
interval examined, one week after deafening (Vale and Sanes 2000). The mechanisms 
responsible for E

IPSC
 depolarization are not yet fully understood, but many studies 

have shown that the expression of chloride transporter proteins account for the 
depolarizing inhibitory-evoked responses in immature neurons (Payne et al. 1996; 
Backus et al. 1998; Kazaku et al., 1999; Rivera et al. 1999; Williams et al. 1999; 
Balakrishnan et al. 2003; Vale et al. 2005; Blaesse et al. 2006). To examine the 
molecular basis of weakened inhibitory synapses in deaf animals, we measured 
the effect of three chloride transport blockers in control and deafened neurons. The 
results from one such experiment are shown in Fig. 4.2c. Control neurons displayed 
loss of chloride transport when challenged with intracellular cesium, whereas deaf 
neurons were relatively unaffected. Moreover, RT PCR and immunohistochemical 
analyses showed that KCC2 was expressed at normal levels in deaf neurons (Vale 
et al. 2003). Together, these results suggest that deafness disrupts the function of 
the chloride transporter without changing its expression.

It is estimated that over 90% of gerbil IC neurons are synaptically excited to spike 
threshold by contralateral sound stimulation, whereas only about 25% are so activated 
by the ipsilateral ear (Semple and Kitzes 1985; Brückner and Rübsamen 1995). These 
in vivo recordings suggest that the IC lobe contralateral to a deafened ear should be 
more deprived of excitatory input. If decreased postsynaptic activity leads to a down-
regulation of inhibitory synaptic function, as suggested by the in vitro experiments 
cited above, then we would expect to observe a greater decrease of inhibitory strength 
contralateral to the deafened ear. This prediction is largely supported by our findings 
(Vale et al. 2004). Unilateral cochlear ablation led to a 23 mV depolarizing shift in 
the E

IPSC
 for IC neurons contralateral to the deafened ear, but only a 10 mV depolar-

ization in the ipsilateral IC. Furthermore, commissural-evoked inhibitory synaptic 
conductance declined only contralateral to the ablated cochlea.

Our findings from developmentally deafened animals are consistent with findings 
from those deafened as adults. For example, there is a marked decrease in GABA 
release from within the IC following bilateral deafness in adult guinea pigs (Bledsoe 
et al. 1995). Furthermore, there is a profound loss of presynaptic GABA in the 
inferior colliculus, and a compensatory change in GABA

A
 and GABA

B
 receptor 

expression in very old animals, presumably due to age-related hearing loss (Caspary 
et al., 1995; Milbrandt et al. 1994, 1997). Although inhibition appears to be down-
regulated in both young and old animals, the precise changes that occur may reflect 
the age of hearing loss, as well as the magnitude and duration of the loss (Suneja 
et al. 1998; Argence et al. 2006; Holt et al. 2005).
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4.5  Developmental Regulation of Inhibitory Synapse Gain  
in the Auditory Cortex

Our understanding of auditory cortex (ACx) synaptic connectivity has improved 
somewhat during the past 5 years (for review, see Oswald et al. 2006). Thalamic 
stimulation in a brain slice preparation (schematized in Fig. 4.3a) typically evokes 

Fig. 4.3 Inhibitory synaptic plasticity in the developing ACx. (a) Schematic shows the position of 
the brain slice (dashed box) and location of ACx (black circle). The brain slice (right) contains the 
thalamorecipient ACx, the ascending projection from the thalamus (MG), and intracortical inhibitory 
projections (bottom stimulating electrode). (b) The maximum monosynaptic IPSP evoked by stimu-
lating layer 2/3 is shown for control and SNHL neurons (left). These recordings were obtained in the 
presence of blockers of the ionotropic glutamate receptors DNQX and AP-5. The plot of putative 
monosynaptic IPSP amplitudes (right) shows a significant reduction for SNHL neurons. (c) 
Intracortical minimum evoked-IPSCs were recorded at −60 mV in the presence of ionotropic gluta-
mate receptor blockers. The intensity at which minimum IPSCs (left) were discernible from failed 
responses (right) was then chosen for successive recordings. The amplitude of mean minimum 
evoked-IPSCs is smaller in SNHL neurons, while their mean duration is longer in SNHL neurons
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a mixed excitatory-inhibitory response in layers 2–5, indicating the recruitment of 
feed forward GABAergic inhibition (Cruikshank et al. 2002). GABAergic neurons 
are distributed in all layers of ACx, and account for 15% of the ACx cells in gerbils 
(Foeller et al. 2001). Excitatory and inhibitory synaptic drive appear to be “bal-
anced” insofar as their conductances are equivalent in magnitude (Wehr and Zador 
2003; Tan et al. 2004).

Given the dramatic effects of disuse on the auditory brain stem, we were curious 
to explore the impact of deafness on inhibitory synapse function in the thalamore-
cipient ACx. Hearing loss was induced in gerbils just before the onset of hearing 
(P10), and synaptic function was subsequently assessed in a brain slice preparation 
(Fig. 4.3a). The maximum amplitude of intracortically-evoked GABAergic IPSPs 
was significantly smaller in deafened animals (Kotak et al. 2005) (Fig. 4.3b). As 
discussed for the IC (above), there could be many reasons for such a reduced 
response, including the death of inhibitory neurons. To determine whether indi-
vidual inhibitory synapses produced smaller responses, we recorded spontaneous 
IPSCs and intracortically-evoked minimum amplitude IPSCs. The amplitudes of 
minimum-evoked IPSCs were significantly smaller while their durations were longer 
(Fig. 4.3c). A similar observation was made for spontaneous IPSCs, indicating the 
individual inhibitory terminals were weaker following hearing loss (Kotak et al. 
2008). The longer duration of spontaneous and minimum-evoked IPSCs in ACx of 
deafened gerbils suggested that GABA

A
 receptor subunit composition may have 

changed (Farrant and Kaila 2007). Therefore, we measured the pharmacosensitivity 
of two agonists, one specific for the a-1 subunit (zolpidem), and the other specific 
for the b-2/3 subunit (loreclezole) of the GABA

A
 receptor. In control ACx neurons, 

each of these agonists enhanced the duration of spontaneous IPSCs, but this effect 
was absent following hearing loss (Fig. 4.4a). It is conceivable that the long IPSCs 

prehearing neurons. Cumulative bar graphs show sIPSC duration before and after the application 
of agonist. Note that the agonist fails to prolong sIPSCs after hearing loss or before hearing onset. 
Number of neurons tested inside bars. The subunit agonist increased IPSC duration significantly 
only in control post-hearing animals (X2 = 6.8; p = 0.009). (b) Electron micrographs show b2/3 
subunit immunolabeling on the plasma membrane and at intracellular sites of layer 2/3 ACx pyra-
midal neurons, using the DAB procedure. In a control section (left panel), plasmalemmal labeling 
is apparent at a symmetric synapse (arrowhead) that extends intracellularly (arrow) within a distal 
segment of a dendrite from a control animal’s auditory cortex. Such continuous labeling was tal-
lied as labeled under both ‘intracellular’ and “plasmalemmal” categories. Nearby plasmalemmal 
labeling (arrowhead in the lower right corner) is less distinct and is associated with an axon ter-
minal containing fewer vesicles. In a SNHL section (right panel), patches of intracellular labeling 
(arrow) within a dendrite of an SNHL animal’s ACx. The patches are near a clearly unlabeled 
symmetric (presumably inhibitory) synapse. Arrowheads point to plasmalemmal immunolabeling. 
The bar graph (bottom) quantifies b2/3-DAB immunoreactivity from three controls and three 
SNHL animals. There was a significantly higher proportion of b2/3 immunolabeling on plasma 
membranes in controls (white bars), whereas intracellular b2/3 immunolabeling was greater in 
SNHL tissue (black bars). Asterisks indicate significance at p<0.002, determined by two tailed 
Student’s t-test. At axon terminal, D Dendrite. Scale bars = 500 nm
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Fig. 4.4 Effects of hearing loss on GABA
A
 receptors. (a) The top traces show representative 

IPSCs from those analyzed in control (top left), sensorineural hearing loss (SNHL, top middle), 
and pre-hearing neurons (top right). The gray trace is before the application of a ®-2/3 subunit 
agonist, loreclezole, and the black trace is after application of the drug (traces normalized to control 
pre-drug amplitude). The agonist prolonged sIPSC duration in control, but not in SNHL or in 
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observed after hearing loss represent an immature phenotype and that hearing loss 
may delay the maturation of GABAergic transmission. To test this idea, the effect 
of each subunit agonist was determined for spontaneous IPSCs recorded at P10. 
Not only did the “pre-hearing” spontaneous IPSCs resemble those observed in 
much older deaf animals, but the GABA

A
 receptor agonists did not prolong their 

duration, as seen in age-matched control neurons (Kotak et al. 2008).
We turned to quantitative EM-immunocytochemistry to explore whether these 

functional results could be explained, in part, by the localization of GABA
A
R 

subunits. As shown in Fig. 4.4b, the proportion b2/3 subunits declined significantly 
at the postsynaptic membrane in deaf neurons, and increased in the intracellular 
compartment just beneath the synapse (Sarro et al., 2006). This reduction was 
observed along pyramidal neuron somata, but not GABAergic interneurons. 
Thus, it appears that insertion and/or removal of GABA

A
 receptors from the 

postsynaptic membrane was disrupted by hearing loss and this correlated with the 
reduced IPSC amplitude.

There are also clear signs that hearing loss alters release probability at inhibitory 
terminals. As shown in Fig. 4.5a, the frequency of spontaneous GABAergic IPSCs 
recorded in deaf neurons was over twice the rate recorded in controls. To better 
assess release probability, inhibitory short-term plasticity was examined using paired 
stimuli delivered intracortically in the presence of glutamate receptor antagonists. 
As shown in Fig. 4.5b, the IPSCs recorded in control neurons generally displayed 
paired-pulse facilitation (PPF), but this was significantly reduced in SNHL neurons 
(Takesian et al. 2007). This result is consistent with the elimination of inhibitory 
paired-pulse facilitation in the IC following hearing loss (Vale and Sanes 2000). We 
have recently found that a presynaptic GABAergic marker (GAD

65/67
) increased by 

47% in inhibitory terminals following hearing loss (Sarro et al. 2008); this may 
correlate with the sIPSC frequency increase observed in SNHL.

4.6  Summary

Our studies on the developing auditory CNS demonstrate that activity-dependent 
processes regulate inhibitory synaptic strength, a concept that has emerged 
from the work of several laboratories over the past 20 years. A broad set of 
analyses from normally developing animals and those with induced hearing 
loss reveal that inhibitory synapse function is adjusted at both pre- and postsynaptic 
loci. Following hearing loss, the net effect of these alterations leads to 
decreased inhibitory strength, as assessed by the ability of IPSPs to block action 
potentials (Fig. 4.2b).

Some key principles become apparent from these and related studies on inhibitory 
plasticity in the auditory CNS. First, it is clear that inhibitory gain is adjusted at 
each location of the ascending auditory system following hearing loss. Second, a 
decrease in inhibitory gain is often accompanied by a parallel increase in excitatory 
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synaptic gain, and a rise in intrinsic firing. Together, these properties enhance 
neuronal excitability. Third, it is clear that activity-dependent regulation of inhibitory 
synaptic strength may depend on the age at which activity is disrupted, as well as the 
age when neuronal properties are examined. In the following ssection, we discuss 
how these adjustments emerge at each processing center in the ascending pathway, 
review some mechanisms that underlie inhibitory rescaling, and infer how decreased 
inhibitory gain could impact auditory processing.

Fig. 4.5 Effect of hearing loss on GABA release. (a, left) Frequency of spontaneous (s) IPSCs is 
increased in SNHL neurons. sIPSCs recorded in the presence of ionotropic glutamate blockers 
(DNQX, AP-5) for 30s each in a P17 control neuron and an age-matched SNHL neuron are shown 
(left panel). Addition of 1 mM of GABAzine eliminates sIPSCs, showing that they are mediated 
by the activation of GABA

A
 receptors. (a, right) Bar graph summarizing the mean frequencies of 

sIPSCs recorded from 11 control and 12 SNHL neurons. Note that the sIPSC frequency in SNHL 
neurons is significantly higher. (b) Paired pulse facilitation (PPF) of IPSCs is prevalent in control 
neurons, whereas SNHL neurons display paired pulse depression (PPD) (P17-21). Average of ten 
IPSCs evoked by paired extracellular stimuli recorded in the presence of ionotropic glutamate 
blockers (DNQX, AP-5) from control and SNHL neurons (left). Histogram of average PPR 
recorded from 21 control and 28 SNHL neurons (log scale) (right). Control neurons have a 
significantly greater PPR as compared with SNHL neurons (Chi square; p<0.0001). ISI = 120 ms, 
20% above minimum stimulation
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4.6.1  Heirarchical Modification of Inhibitory Function

Following hearing loss, inhibitory gain has been shown to rescale at each relay 
station of the auditory CNS. In the cochlear nucleus (CN) of congenitally deaf 
mice, disrupted electrical activity reduces the amplitudes of miniature inhibitory 
currents (mIPSCs), increases single channel conductance carried by glycine recep-
tors, and increases inhibitory postsynaptic sites assayed by gephyrin immunoreac-
tivity (Leao et al. 2004a; 2004b). Similarly, in neomycin-deafened adult rats, there 
is a significant reduction of glycinergic presynaptic terminals in the cochlear nuclei 
and superior olivary complex (Asako et al. 2005; Buras et al. 2006). Furthermore, 
there is a concomitant increase in the amplitude of EPSCs due to increased proba-
bility of glutamate release (Oleskevich and Walmsley 2002). Thus, some level of 
activity-dependent homeostatic response is evident at the earliest stages of auditory 
processing (Burrone and Murthy 2003).

Although we do not yet know the rate of change following hearing loss in dif-
ferent regions of the auditory CNS, synaptic gain adjustments materialize rapidly, 
as early as 1 day following deafferentation. In the developing LSO, contralateral 
cochlear ablation (which leads to deafferentation of the inhibitory projection) pro-
duces a decline in inhibitory synaptic strength and an associated increase in excit-
atory strength (Fig. 4.1c). Thus, these gain adjustments occur in opposing directions 
to favor excitation.

Research on homeostatic control following perturbed activity in invertebrate and 
vertebrate systems led us to propose that hearing loss produces an imbalance in the 
currents that inhibit and excite auditory neurons (Marder et al., 2003; Marder and 
Goaillard 2006; Turrigiano 2007). In both the IC as well as the ACx, complete hearing 
loss triggered consistent transformations. First, maximum- and minimum-evoked 
IPSPs and IPSCs were reduced, supporting diminished inhibitory gain. Second, the 
kinetic properties of inhibitory currents in ACx failed to mature. Third, short-term 
inhibitory plasticity displayed depression, not facilitation, suggesting disrupted 
temporal processing. In concert, excitatory synaptic gain was scaled up. For exam-
ple, larger amplitudes and durations of maximum and minimum-evoked, and spon-
taneous and miniature EPSCs imply heightened postsynaptic function (Vale and 
Sanes 2002; Kotak et al. 2005).

These findings agree with observations in other activity-deprived preparations. 
For example, a two-day visual deprivation period in early life elevates excitability 
within layer 4 by 25-fold, and this is associated with decreased inhibitory drive. 
Specifically, dual recordings show decreased strength of feedback inhibitory 
interneurons and increased strength of excitatory connections (Maffei et al. 2004).

Although we did not explore the effect of hearing loss on long-term inhibitory 
plasticity, one recent study showed compromised excitatory LTP and persistent 
LTD following hearing loss, suggesting plasticity may not develop properly in the 
absence of auditory experience (Kotak et al. 2007). Thus, activity-dependent inhibi-
tory LTD and LTP observed in the normal LSO may exist at other auditory relays 
including the ACx.
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In the following section, we consider several mechanisms that account for the 
regulation of inhibitory synaptic strength, especially following hearing loss.

4.6.2  Cellular Mechanisms that Regulate Inhibitory Gain

The activity-dependent mechanisms that operate at developing excitatory synapses 
have received much attention, particularly at motor neuron and retinal projections. 
Relatively less is known about the maturation of inhibitory synaptic function, 
particularly its regulation by activity-dependent mechanisms.

A broad range of cellular adjustments are initiated when inhibitory synapses 
are activated by a specific pattern, or when they are deafferented during normal 
development and aging (Morishita and Sastry 1991; Oda et al. 1995; 1998; 
Komatsu 1994; Caspary et al. 2005; Maffei et al. 2006). These studies highlight 
the fact that activity-dependent inhibitory scaling involves adjustment at both 
pre- and postsynaptic loci.

In normal developing gerbil LSO, our evidence shows that an activity-dependent 
reduction in inhibitory synaptic gain (LTD) is mediated by a rise in postsynaptic 
calcium and activation of specific kinases such as CaMKII, PKA and PKC. When 
each of these key intracellular factors was disrupted with specific postsynaptic 
antagonists, LTD was reduced or eliminated (Kotak and Sanes 2000; Kotak et al., 
2002). This implies that inhibitory strength is adjusted by kinase-dependent 
phosphorylation of postsynaptic receptors. The LTD mechanism is engaged by 
GABA transmission (Fig. 4.1b). Specifically, postsynaptic GABA

B
 receptor activation 

is necessary for LTD induction (Kotak et al. 2001; Chang et al. 2003).
A second postsynaptic mechanism that participates in inhibitory gain involves 

the regulation of intracellular chloride. Several lines of investigation showed that 
the chloride equilibrium potential becomes more negative during development 
(McCarthy et al. 2002). This is due to increased expression of KCC2 and reduced 
expression of NKCC1. Following hearing loss however, the IPSC reversal potential 
is depolarized. This is due to decreased KCC2 function, as assessed with perforated 
patch recordings, selective intracellular manipulations, and RT-PCR and immuno-
cytochemistry of KCC2 (Vale et al. 2003).

Our third set of data supporting a postsynaptic mechanism was obtained from 
layer 2/3 pyramidal neurons of the developing ACx. Hearing loss results in a reduction 
of spontaneous and evoked IPSC amplitude, and this correlates with altered GABA

A
 

receptor subunit trafficking (Kotak et al. 2008; Sarro et al., 2006). Previous studies 
have shown that the number of GABA

A
 receptors and their trafficking is activity-

dependent (Tehrani and Barnes 1991; Barnes 1996; Paysan et al., 1997; Nusser 
et al. 1997, 1998; Kilman et al. 2002). In our preparations, greater intracellular 
distribution and lesser postsynaptic membrane localization of the b2/3 subunit at 
symmetric synapses strongly supports the claim that hearing is vital for the proper 
mobilization and insertion of key GABA

A
 receptor subunits. Further, the duration 

of IPSCs are determined, in part, by the specific GABA
A
 receptor subunits 
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expressed during development. For example, the two subunits we examined 
(a-1, b-2/3) play an obligatory role in agonist sensitivity and IPSC kinetics 
(Connolly et al. 1996; Baumann et al. 2002; Wisden et al. 1992; Amin and Weiss 
1993; McKernan and Whiting 1996; for review, Möhler, 2006). When these subunits 
are upregulated during development, IPSC kinetics become faster; however, hearing 
loss prevented this transition, because IPSCs were not only long but the subunit-
specific agonists failed to prolong them (Fig. 4.5a; Kotak et al. 2008).

Finally, presynaptic mechanisms may additionally regulate inhibitory strength. 
First, the increased mIPSC and sIPSC frequencies following hearing loss indicate 
augmented GABA release (Kotak et al. 2008). Second, an EM- immunocytochemical 
assay revealed an increase in the presynaptic GABAergic marker (GAD

65/67
) (Sarro 

et al., 2006). Third, the diminution of paired-pulse facilitation following hearing 
loss, both in the midbrain and cortex, implies presynaptic change (Vale and Sanes 
2000; Takesian et al. 2007; Fig. 4.5b). This result is consistent with results from 
similar studies on the visual cortex, in which visual deprivation leads to increased 
steady-state depression of IPSCs during trains of extracellular stimuli (Tang et al 
2007) and during trains evoked by regular-spiking interneurons (Maffei et al 2004). 
Together, these findings suggest that GABA synthesis may be upregulated after 
developmental manipulations that decrease activity. However, age-related hearing 
loss is associated with a different set of alterations in the IC or ACx: there is a 
decrease in GABA-positive neurons, a decrease in GABA release, and an increase 
in GABA-mediated chloride influx (Caspary et a., 1990; Caspary et al. 1999; Ling 
et al. 2005). Thus, the inhibitory synaptic alterations that result from manipulations 
of activity are age-dependent.

If decreased cochlear activity leads to loss of inhibitory strength, then one would 
predict that increased activity would lead to up-regulation of inhibitory synapses. 
In fact, experimental induction of tinnitus (e.g., ringing in the ear) in rats leads to 
elevated GAD levels and increased GABA

A
 receptor affinity in the IC (Bauer et al. 

2000). It is possible that presynaptic GABA release is adjusted in response to the 
altered postsynaptic gain. Alternatively, postsynaptic gain may be a homeostatic 
response to presynaptic transmitter release. Further studies are needed to determine 
whether pre and postsynaptic gain adjustments are co-dependent.

In the following section, we consider the functional consequences of these 
cellular mechanisms and how they may influence auditory processing.

4.6.3  Effect of Inhibitory Gain on Auditory Processing

The cellular deficits we describe above may account for imbalanced acoustically-evoked 
discharge following hearing loss. In vivo recordings reveal robust modifications in 
auditory processing and reorganized tonotopy in the ACx following hair cell 
damage by ototoxic drugs, noise, or aging (Salvi et al. 2000; Syka, 2002; Caspary, 
2005). Processing following hearing loss has been examined in cats using electrical 
stimulation with cochlear prosthetic devices, and the results are in broad agreement 
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with our brain slice results. While some findings suggest that auditory deprivation 
leads to decreased synaptic drive, particularly to layer 5 (Klinke et al. 1999; Kral 
et al. 2000; 2009), there are also signs of increased excitability. Specifically, 
electrode-evoked thresholds are lower, spatial tuning curves are broader, and coch-
leotopy appears imprecise (Raggio and Schreiner 1999, 2003). These researchers 
suggest that diminished cortical inhibition could explain some of these characteris-
tics. Their in vivo recordings do not distinguish between changes in the brainstem 
(Snyder et al. 2000; Moore et al. 2002) and those that have occurred locally in the 
cortex. Extracellular potentials also cannot tell us which cortical synapses or intrin-
sic properties have been altered, and in what manner.

Even unilateral deafferentation induces an increase in sound-evoked activity in 
the ipsilateral IC and ACx, and such properties may reflect an imbalanced interac-
tion between inhibition and excitation (Kitzes and Semple 1985; McAlpine et al. 
1997; Mossop et al. 2000). Following unilateral deafness, the ipsilateral IC exhibits 
far more excitatory responses than normal, suggesting that inhibition has been 
weakened (Kitzes and Semple 1985 ; McAlpine et al. 1997). In fact, there is a 
marked decrease in GABA release from the Central nucleus of the IC (CIC) follow-
ing bilateral deafness (Bledsoe et al. 1995; but see Suneja et al. 1998). Our experi-
ment on unilaterally deafened animals suggests that decreased inhibition following 
hearing loss may explain such an imbalance (Vale et al. 2004).

Inhibitory short-term plasticity shifts significantly from a facilitating to a 
depressing mode following hearing loss (Fig. 4.5b), and this is in agreement with a 
previously reported shift of inhibitory short-term plasticity in the IC (Vale and 
Sanes 2000). In the visual cortex, deprivation leads to increased steady-state 
depression of IPSCs during trains of extracellular stimuli (Tang et al 2007) and 
during trains evoked by regular-spiking interneurons (Maffei et al 2004).

During age-related hearing loss (i.e., presbycusis), there is a profound loss of 
presynaptic GABA in the inferior colliculus, and an associated change in GABA

A
 

and GABA
B
 receptor expression (Caspary et al., 1995; Milbrandt et al. 1994, 1997). 

Each of these changes may contribute to age-related deficits in performance on 
auditory tasks. For example, in the dorsal cochlear nucleus, aging fusiform neurons 
respond with a greater maximum discharge to tones than those recorded from 
young adults; this finding is consistent with an age-related loss of glycinergic 
inhibition. Therefore,- clinically observed age-related central sensory processing 
deficits may be attributable to compromised function of inhibitory synapses 
(Caspary et al. 2005).

Following cochlear trauma, there are also signs from in vivo recordings that 
decreased inhibition may contribute to processing deficits. For example, spontane-
ous action potentials in ACx increase following cochlear trauma (Salvi et al. 2000; 
Wang et al. 2002a; Norena and Eggermont 2003; Seki and Eggermont 2003). The 
decreased inhibition discussed above could account, in part, for these in vivo 
changes (Kotak et al. 2005, 2008).

Using in vivo manipulations and whole-cell recordings in auditory brain slices 
in combination, we have directly assessed the mechanisms that govern inhibitory 
synaptic strength. Together, these findings suggest that the perceptual deficits that 
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attend hearing loss are not solely attributable to peripheral factors, as is often 
assumed. Hearing loss-induced alterations to CNS inhibitory synapses must now be 
considered as a principal basis for diminished behavioral performance. Furthermore, 
these cellular findings could offer clues to the design of strategies for ameliorating 
the effects of early hearing loss. It may be possible to restore compromised auditory 
deficits in the hearing impaired by drugs that potentiate GABA

A
 receptor function. 

For example, gap detection thresholds are elevated in aging gerbils, but normal 
performance can be rescued with a drug that elevates GABA levels (Gleich et al. 
2003). Similarly, orientation and direction sensitivity of neurons in the visual cortex 
of aging primates can be reinstated by the administration of GABA agonists 
(Leventhal et al., 2000). We propose that processing deficits following hearing loss 
are, in part, due to diminished inhibitory strength along the entire ascending auditory 
pathway. Therefore, synaptic inhibition is a plausible candidate mechanism for 
clinical interventions to enhance perceptual skills.
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5.1  Introduction

Following the pioneering work of Hubel and Wiesel on developmental plasticity in 
the visual cortex, a considerable progress has been made in determining the relative 
contributions of experience-dependent and -independent mechanisms to the devel-
opment of neural response properties (Katz and Shatz 1996, for review). During 
postnatal development in particular, neural activity driven by sensory inputs is criti-
cal for the refinement of response properties. Studies on the mechanisms, through 
which experience influences response selectivity, have focused on excitatory prop-
erties and connectivity. Only recently has the focus shifted toward inhibitory 
mechanisms (see Pallas et al, 2006; Huang et al. 2007; for recent reviews).

The appropriate balance between excitatory and inhibitory neural activity is criti-
cal for normal brain function. It is now well established that a number of response 
properties depend on the interactions between the inhibitory and excitatory portions 
of receptive fields (iRF and eRF). It is also known that inhibitory synapses show 
activity-dependent changes during development (Chattopadhyaya et al. 2004; Chen 
et al. 2001; Hensch and Fagiolini 2005; Kim and Kandler 2003; Morales et al. 2002; 
Turrigiano 1999; Vale et al. 2003). Whether such plasticity is adaptive or not 
depends on how changes in the inhibitory circuitry affect the response properties. 
However, few studies have addressed how activity-dependent plasticity of inhibitory 
synapses influences response selectivity (see e.g., Zheng and Knudsen 1999; 
Shoykhet et al., 2005; Razak and Pallas 2006 for supporting examples). This chapter 
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summarizes our work on the role of inhibition in shaping selectivity for dynamic 
stimuli in the superior colliculus (SC) of hamsters and the auditory cortex (A1) of 
pallid bats, under normal and altered developmental conditions. The main conclusion 
is that the strength and timing of surround inhibition can be an important substrate 
upon which sensory experience acts to modify behaviorally relevant response 
selectivity.

5.1.1  Inhibitory Plasticity in the Hamster Superior Colliculus

The retinotectal/retinocollicular pathway of vertebrates has long been a model 
of choice for the studies of developmental plasticity (Sperry 1963; reviewed in 
Udin and Fawcett 1988; Constantine-Paton et al. 1990; Debski and Cline 2002). 
The superior colliculus (SC) is a midbrain structure involved in motion processing, 
and, as such, its retinorecipient neurons are selective for stimulus velocity (Rhoades 
and Chalupa 1978a; Stein and Dixon 1979; Razak et al. 2003). It is particularly rich 
in GABAergic terminals (Mize 1992, for review). The retinocollicular projection 
exhibits both activity-dependent and -independent forms of plasticity during devel-
opment. We have shown that inhibition is important in velocity tuning in hamsters 
(Razak and Pallas 2005). Velocity-tuned neurons in the retinorecipient layers of 
hamster SC thus provide a suitable model for studying inhibitory plasticity of visual 
response properties. Here, we review findings on the role of inhibition in the 
development and plasticity of velocity tuning in the SC.

5.1.2  Surround Inhibition Shapes Velocity Tuning in the SC

Velocity tuning is a major characteristic of superficial SC (sSC) neurons, as 
expected in a structure involved in orienting attention to visual targets. Velocity 
tuning is remarkably resistant to developmental manipulations of activity and 
changes in afferent/target convergence ratio (Pallas and Finlay 1989; Huang and Pallas 
2001; see below). Previous models of velocity tuning incorporated a directional com-
ponent (Barlow et al. 1964). Because most sSC neurons are not directional except 
through cortical feedback (Rhoades and Chalupa 1978b), we undertook a study to 
uncover the circuitry underlying their velocity tuning.

An inhibitory region encircling the excitatory receptive field area is a common 
feature of visual system neurons. The majority of retinorecipient SC neurons exhibit 
such surround inhibition (Razak and Pallas 2005), meaning that the response to a 
stimulus in the RF is suppressed by a stimulus presented in the surround (Fig. 5.1a). 
Surround inhibition can be asymmetric (e.g., Fig. 5.1b) or symmetric (e.g., Fig. 5.1d) 
around the RF center. We found that the symmetry of the inhibitory surround and 
the type of velocity tuning in hamster SC are correlated, suggesting that there may 
be distinct classes of neurons as observed in cat SC (Waleszczyk, et al. 1999). 
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Fig. 5.1 Surround inhibition shapes velocity tuning in the SC. (a) Schematic of methodology used 
to determine surround inhibition and mechanisms of velocity tuning. The gray square represents the 
excitatory RF. The white square represents the surround. The surround was mapped using a two-spot 
stimulus. One spot was swept vertically through the center of the RF, as a second, simultaneous 
spot was swept at progressively greater distances from the first at 2.6° increments. TS temporal 
surround, NS nasal surround. Velocity tuning was determined using a stimulus moving in a temporal to 
nasal direction at velocities between 5 and 45°. The contribution of surround inhibition to velocity 
tuning was determined by masking different parts of the inhibitory surround. (b) A typical neuron 
with asymmetric surround. The black rectangle denotes the extent of the eRF. This neuron exhibited 
inhibition on the NS, but not on the TS. (c) The NS contributes to velocity tuning in this LP neuron 
because masking the nasal NS reduces velocity selectivity. In most LP neurons blocking the NS, but 
not the TS reduces velocity tuning. (d) A typical neuron with symmetric surround inhibition. (e) In 
this HP neuron, masking the TS virtually eliminates selectivity. In most HP neurons, blocking the TS, 
but not the NS reduces velocity tuning. * p<0.05. Figure adapted from Razak and Pallas (2005)

All neurons with asymmetric surround inhibition were selective for slowly moving 
stimuli (low-pass-LP neurons, e.g., Fig. 5.1c). LP tuning can be accounted for, at 
least in part, by a form of temporal asymmetry called backward masking, i.e. inhibition 
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arising from the surround traversed after the stimulus leaves the RF and suppresses 
responses to rapidly moving stimuli (Fig. 5.1c). On the other hand, most SC neurons 
with symmetric surrounds (Fig. 5.1d) prefer rapidly moving stimuli (high-pass-HP 
neurons). Despite the symmetry, only the surround location traversed before the 
stimulus enters the RF (forward masking) contributes to HP tuning, by reducing 
responses to slowly moving stimuli before they enter the eRF (Fig. 5.1e)

The masking data, while supporting the importance of inhibition in creating 
velocity tuning, did not reveal where that inhibition is located. To address this issue, 
we applied GABA-A receptor antagonists iontophoretically on SC neurons during 
electrophysiological recordings and found that velocity tuning is shaped by intra-SC 
GABA in nearly half the population (Khoryevin, Razak and Pallas, in preparation). 
These data suggest that the surround inhibition shaping velocity tuning arises, at 
least partly, from neurons intrinsic to the SC.

Taken together, these data suggest that the spatiotemporal interactions between 
the inhibitory surround and the eRF shape the velocity tuning in the SC. The amount 
of time a moving stimulus spends in the different spatial components of the visual 
field (NS, RF, TS, see Fig. 5.1) depends on both the size of the components and the 
velocity of the movement. For a given stimulus velocity, it can be predicted that 
the timing of excitatory and inhibitory inputs triggered by a moving stimulus will 
depend on the spatial extent of the RF components. Thus, we expected that velocity 
tuning would be altered by changes in the RF size.

5.1.3  Effects of Modifying Retinocollicular Convergence on 
Surround Inhibition During Development

Retinocollicular convergence ratios decrease during normal development in 
hamsters (Schneider 1973; Huang and Pallas 2001). Hamsters open their eyes at 
approximately P12, and at this age, RFs are large and diffuse. Between P25 and 
P50, the average eRF diameter of SC neurons becomes smaller, revealing a postnatal 
refinement process (Carrasco et al. 2005). This refinement is NMDA receptor 
(NMDAR)-activity dependent in rodents (Simon et al., 1992; Huang and Pallas 
2001; Colonnese and Constantine-Paton 2006), although visual experience is not 
necessary (Carrasco et al. 2005), suggesting that spontaneous glutamatergic activity 
is the critical factor. Chronic postnatal blockade of NMDAR using the selective 
antagonist D-APV results in increased RF diameters of 50%, on average (Huang 
and Pallas 2001). Thus, a light spot moving through the RF will spend more time 
in the RF in D-APV-exposed neurons than in normal neurons. Contrary to our 
prediction that this alteration in the time course over which the inhibitory and excit-
atory inputs interact would result in altered velocity tuning, however, the velocity 
tuning showed no difference between the normal and the D-APV groups (Razak 
et al. 2003). How can this be explained?

We hypothesized that the spatiotemporal relationships underlying velocity 
 tuning were maintained through concomitant changes in surround inhibition, 



755 Developmental Plasticity of Inhibitory Receptive Field Properties in the Auditory

 following an increase in the RF size (Razak and Pallas 2007). This predicts first that 
the surround inhibition increases in spatial extent, and secondly, that it makes a 
larger contribution to velocity tuning in the D-APV group than in the normal group. 
We tested the first prediction by comparing the surround inhibition between normal 
and D-APV groups. We tested the second prediction by comparing the percentage 
reduction in velocity tuning following masking of surround inhibition between 
the two groups. We found that chronic postnatal NMDAR blockade increased 
the strength of surround inhibition in SC neurons (schematized in Fig. 5.2a, b). The 
size of the RF of individual neurons was correlated with the size of the inhibitory 
surround in the D-APV group, suggesting a matching change in both excitatory and 
inhibitory RF regions, following NMDAR blockade.
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Fig. 5.2 Chronic NMDAR blockade increases the spatial extent and strength of surround 
inhibition in the SC. (a, b) Schematic illustration showing that both excitatory RF and surround 
increase in size following chronic NMDAR blockade. The strength of inhibition also 
increases in the D-APV group (indicated by the darker shade of gray). (c, d) There was a 
larger increase in response to non-optimal velocities following masking of the surround in the 
D-APV group compared to normal. (e, f) Possible mechanism underlying increased strength 
and spatial extent of surround inhibition. See text for details. Figure adapted from Razak et al. 
(2003) and Razak and Pallas (2007)
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5.1.4  Surround Inhibition Plays a Larger Role in Velocity 
Tuning After Chronic NMDAR Blockade

Similar to normal SC neurons, in the D-APV group backward masking shapes LP 
and forward masking shapes HP velocity tuning. However, masking the surround 
resulted in a greater reduction of velocity tuning in the D-APV group compared to 
the normal group in both LP and HP neurons (Fig. 5.2c, d). These results suggest 
that the increased strength and extent of surround inhibition in the D-APV group 
contributes to the maintenance of LP/HP velocity tuning following experimental 
increases in eRF diameter. Thus, it appears that NMDAR activity plays an indirect 
role in shaping the velocity tuning in the SC by refining the spatial extents of the 
interacting excitatory and inhibitory RF components (Fig. 5.2e, f). This counterbal-
ancing change results in the maintenance of velocity tuning despite variation in the 
extent of inputs resulting from manipulations of activity. Thus, we see that when 
the spatial extent of excitation is increased, inhibitory plasticity preserves the function 
of the circuit, presumably allowing the animal to continue making appropriate 
visual discriminations of the moving targets. Not only is this process in operation 
after experimental manipulations, but is, likely, also important in the normal 
refinement of receptive fields during development.

5.1.5  Plasticity of Inhibition Underlying Vocalization Selectivity 
in the Auditory Cortex

Frequency-modulated (FM) sweeps are analogous to moving visual stimuli in that 
both classes of stimuli contain movements across the sensory epithelium, allowing 
a comparison of how different sensory modalities solve analogous problems. FM 
sweeps are common in species-specific vocalizations, including human speech. 
Abnormalities in FM sweep processing may underlie the deficits in speech processing 
(Merzenich et al. 1996). Neurons selective for FM sweep direction and rate have 
been found in every species examined (Suga 1969; Heil et al. 1992; Mendelson 
et al. 1993; Nelken and Versnel 2000; Tian and Rauschecker 2004), but the role 
of experience in the development of FM sweep selectivity has not been examined. 
An understanding of how FM sweeps are represented and how such representation 
develops will provide important insights into the development of vocalization 
representation in general.

The pallid bat is suited to address this issue due to the relatively simple FM 
sweep (downward sweep, 60–30 kHz, 2-5 ms duration) it uses to echolocate, and 
the strong selectivity in the auditory system for the downward direction and a 
narrow range of FM sweep rates (See Fig. 5.3a, for an example). We studied the 
role of inhibition in shaping the selectivity for FM sweeps and how such inhibitory 
mechanisms are modified by developmental experience. Relevant to this section are 
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the findings that FM sweep selectivity is shaped by inhibitory RF properties, and 
these inhibitory properties are strongly influenced by developmental experience. 
An important finding is that experience is required for the maintenance of innately 
specified response properties.
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Fig. 5.3 Mechanisms and development of FM rate and direction-selectivity in the pallid bat 
auditory cortex. (a) A typical FM rate and direction selective neuron. A neuron was classified as 
rate selective if the response fell to less than 50% of the maximum response for decreasing FM 
rates. Direction selectivity was determined by comparing responses to FM sweeps of the same 
bandwidth, but sweeping in opposite directions. A neuron was considered to be direction selective 
if the maximum response to one-sweep direction was lower than 25% of the maximum response 
to the opposite-sweep direction. The neuron shown here clearly responded better to the 60–30 kHz 
downward sweep, than to the 30–60 kHz upward sweep. (b) A two-tone inhibition over time (TTI) 
plot. The arrival time of inhibition was determined by presenting two tones with various delays 
between them. One tone was excitatory, while the other tone was inhibitory. The delay of the 
excitatory tone relative to the inhibitory tone is shown on the y-axis, with positive (negative) 
delays indicating that the excitatory tone was delayed (advanced). In the sample TTI plot shown, 
low-frequency inhibition (LFI) arrives early. High-frequency inhibition (HFI) is delayed. (c) In the 
pallid bat auditory cortex, LFI arrived early and HFI was delayed in the majority of neurons. (d) 
During normal development, the percentage of rate-selective neurons is adult-like from P14 
onwards. Direction selectivity is slow to mature, with only 25% of neurons exhibiting direction 
selectivity at P14. An adult-like percentage of direction-selective neurons is observed after P90. 
(e) Development of arrival times of inhibition. HFI is adult-like from P14, and underlies adult-like 
rate selectivity from P14. LFI arrival time is delayed in pups. On average, LFI arrives progressively 
earlier with age, matching the development of adult-like direction selectivity. Figure adapted from 
Razak and Fuzessery (2006) and Razak and Fuzessery (2007)
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5.1.6  Asymmetries in Sideband Inhibition Shape FM Rate  
and Direction Selectivity in Adults

Auditory cortical neurons are similar to other sensory cortical neurons in that they 
have a center-surround excitatory–inhibitory RF organization. Suga (1969) first 
proposed that asymmetries in surround (sideband) inhibition underlie FM sweep 
selectivity. In addition to the presence or absence of a sideband inhibition, a key 
determinant of sweep selectivity is the relative arrival time of inhibition (Razak and 
Fuzessery 2006). If excitatory and inhibitory tones are presented simultaneously, the 
ipsp may occur before, together with, or after the epsp, depending on the effective 
arrival time of each input. The arrival time of inhibition can be inferred by presenting 
tone frequencies that evoke inhibition or excitation at different delays with respect 
to each other. If a response suppression occurs even if the inhibitory tone is delayed 
relative to the excitatory tone (backward masking), then it can be inferred that the 
inhibition arrived early. If it occurs only when the inhibitory tone is presented before 
the excitatory tone (forward masking), then the inhibition is delayed.

Consider the hypothetical RF structure shown in Fig. 5.3b. In this neuron, 
low-frequency inhibition (LFI) arrives earlier than excitation by 1 ms (shown as 
starting at negative delays), whereas high-frequency inhibition (HFI) arrives 3 ms later 
than excitation (shown as arriving only at positive delays). During an upward FM 
sweep that includes the frequencies evoking LFI, inhibition will be generated first, 
suppressing excitation. For a downward FM sweep that includes frequencies evoking 
the HFI, the delayed HFI allows the neuron to respond to downward sweeps, if the 
sweep is fast enough and reaches the eRF before inhibition can catch up. If the sweep 
is slow, the HFI will arrive first and will suppress responses. The result is selectivity 
for the rate of downward FM sweeps. Thus, early LFI and late HFI can theoretically 
generate direction and rate selectivity, respectively, for downward sweeps.

In adult pallid bat auditory cortex, where neurons tuned in the echolocation range of 
frequencies, LFI arrives early, whereas HFI is delayed (Fig. 5.3c, Razak and Fuzessery 
2006). This gives rise to direction and rate selectivity according to the model presented 
in Fig. 5.3b. Direction selectivity in these neurons was reduced when the LFI was 
excluded from the upward sweep by starting the sweep inside the RF (analgous to visual 
RF masking experiments). Rate-selectivity for downward sweeps is eliminated when 
the downward FM sweep excludes the HFI. Neurons without HFI were not rate selective 
for downward sweeps. Taken together, these data show that FM rate and direction 
selectivity are shaped by temporal asymmetries in the sideband inhibition. Thus, the 
question of how direction and rate selectivity mature during normal development can 
be reformulated as how the timing of LFI and HFI change during a development.

5.1.7  Developmental Plasticity of Inhibition Underlying FM 
Rate and Direction Selectivity

Pallid bats begin to develop hearing sensitivity to frequencies used in echolocation 
after P11 (Brown 1976). We found that FM rate selectivity (Fig. 5.3d) and the 
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underlying HFI arrival time (Fig. 5.3e) were similar between P14 pups and adults 
(Razak and Fuzessery 2007). Because rate selectivity is adult-like at the time when 
the bat’s audiogram is first adult-like (~P14), we conclude that rate selectivity 
develops in an experience-independent manner. Direction selectivity, however, was 
present only in ~25% of neurons at P14 (Fig. 5.3d). Direction selectivity and the 
underlying mechanism (LFI arrival time) become adult-like after 12 weeks 
(Fig. 5.3d, e). These data show that the adult-like complement of direction-selective 
neurons develops well after the onset of hearing in the echolocation range and 
arises through a developmental advancement of LFI arrival time. Thus, it appears 
that the pallid bat is born with an innate selectivity for the rate of change of 
frequencies present in the adult echolocation call. A part of this template is the 
delayed HFI. Direction selectivity and the underlying LFI arrival time develop 
slowly, and may be shaped by experience.

5.1.8  Experience-Dependent Plasticity of Inhibition Shaping 
Rate and Direction Selectivity

To test the role of experience in the development of FM rate and direction selectivity, 
we eliminated normal experience with echolocation calls during development 
(Razak et al. 2008). Pups were muted before P13 either by lesioning the laryngeal 
muscles with heat or by injecting botulinum toxin A (Botox) into the laryngeal 
muscles. The muted pups were acoustically and physically isolated from other bats. 
We compared rate and direction selectivity and the underlying inhibitory mecha-
nisms between the normal and muted pups at P30 and P90. To control for the isolation 
in the muted group, we also included a group of pups that were isolated, but not 
muted. These control pups also served to determine if self-vocalizations were 
sufficient to generate normal calls and response properties.

Laryngeal manipulations altered, but did not eliminate, the production of 
echolocation calls. During development, normal and control pups produced 
adult-like calls from P20 onward. However, the muted pups produced calls with 
significantly lower frequencies and rate of change of frequencies, at all ages up 
to P90. Thus, muted pups were deprived of normal experience with echolocation 
calls, until the day of electrophysiological recordings, allowing us to ask how 
altered experience influenced response selectivity for echolocation calls and 
timing of inhibition.

5.1.9  Normal Experience is Required for the Maintenance  
of FM Rate Selectivity and HFI

The muted pups showed a significantly lower percentage of FM rate selective 
neurons compared to age-matched control and normal pups (Fig. 5.4a). Because 
rate selectivity is adult-like in P14 normal pups, the muted group data suggest that 
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normal experience is required not for the initial development of FM rate selectivity, 
but for its maintenance. A higher percentage of neurons in the muted group lack 
HFI compared to neurons in the normal and control groups (shown as HFI absent 
in Fig. 5.5). Thus, normal experience is required for the maintenance of HFI underlying 
FM rate selectivity.

5.1.10  Experience is Required for Development and 
Maintenance of Direction Selectivity and LFI

At P30, the percentage of direction-selective neurons in the muted pups was similar 
to that observed in the normal and control pups (Fig. 5.4b). However, a dramatic 
decrease in the percentage of direction-selective neurons was observed in the muted 
group at P90 (Fig. 5.4c), resulting from both a failure of complete development and 
a loss of direction selectivity compared to initial levels. These data show that both 
development and maintenance of direction selectivity requires normal experience 
with echolocation calls.

The reduction in direction selectivity in muted pups was either due to a loss of 
LFI (shown as absent LFI in Fig. 5.5) or a delay in its arrival time (Fig. 5.4c and 
Fig. 5.5). A significantly higher percentage of neurons in the P90-muted pups 
exhibited either delayed LFI or lacked LFI, altogether when compared to control 
and normal pups. Because an early-arriving LFI is critical for direction selectivity, 
these data show that experience-dependent changes of timing of inhibition in the 
millisecond range can have a significant impact on refinement and maintenance of 
response selectivity.
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Fig. 5.4 Experience-dependent plasticity of inhibitory mechanisms underlying FM sweep 
selectivity. (a) The percentage of rate-selective neurons was significantly reduced in the muted 
pups compared with normal and control pups at P30 and P90. The percentage was also lower 
compared to P14 normal pups (dashed horizontal line) and adults (solid horizontal line). (b) 
Direction selectivity was similar across the three groups at P30. A dramatic decrease in the percentage 
of direction-selective neurons was observed in the P90-muted group. (c) In the normal and control 
groups, LFI arrives significantly earlier at P90 compared to P30. However, in the mute group, LFI 
arrival time is delayed at P90 compared to P30. Figure adapted from Razak et al. (2008)
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Fig. 5.5 Normal echolocation experience is required for the development of inhibitory mecha-
nisms underlying FM sweep selectivity. Electrophysiological recordings from normal P14–P90 
pups show that the timing of HFI is adult-like from p14 resulting in adult-like FM-rate selectivity 
from the time the pups first hear echolocation frequencies. LFI, however, is on average delayed at 
P14 and P30 compared to adults. This results in a lower incidence of direction-selective neurons. 
Only at P90 does LFI timing and direction selectivity become adult-like. In pups developing 
without normal echolocation experience, LFI timing and direction selectivity are similar to the 
normal pups at P30. HFI and rate selectivity are absent in a larger percentage of neurons in P30 
mutes. At P90, LFI is either absent or delayed in a greater percentage of neurons in the muted 
pups. These data show that rate and direction selectivity are shaped by echolocation experience 
through modification of sideband inhibition

5.2  Discussion

5.2.1  The Contribution of Surround Inhibition to RF Properties 
Across Sensory Systems

Surround (or sideband) inhibition is important for direction and velocity (rate) 
selectivity in the visual and auditory systems. Both systems exhibit asymmetries in 
surround inhibition, indicating similar solutions to the construction of spatio/
spectro-temporal filters (Razak and Fuzessery 2008). In the SC, nearly a third of 
the neurons exhibited spatial asymmetries in the surround, with stronger inhibition 
on the nasal than the temporal side of the RF. Temporal asymmetries can also be 
inferred based on the backward/forward masking data. In the auditory cortex, there 
was an asymmetry in timing, with LFI arriving earlier than HFI, relative to excitation. 
Spectral bandwidth (the cochlear analogue to retinal space) was also asymmetric 
with LFI being broader than HFI (data not shown, but see Razak and Fuzessery 2006). 
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The presence of spatially asymmetric surround inhibition has also been reported in 
the visual cortex of cats (Walker et al. 1999), although the role of this asymmetry 
remains unclear. In the auditory cortex and SC, asymmetries in surround inhibition 
shape direction and velocity (rate) selectivity, as evidenced by the reduction or 
loss of selectivity if the influence from specific surround locations/frequencies 
is removed.

In both SC and auditory cortex, surround inhibition is plastic during development. 
In the auditory cortex, the data taken between P14 and adulthood show that 
the temporal asymmetries in the arrival time of HFI and LFI become more pronounced 
with age and experience, particularly due to changes in the arrival time of LFI. 
LFI starts out delayed and advances systematically throughout development. Bats 
without exposure to normal echolocation calls show either a loss of or a delay in 
the arrival time of sideband inhibition. In the SC, surround inhibition is altered 
in its strength and spatial extent by activity-dependent changes in the size of the 
eRF, presumably through increased retinocollicular convergence ratios. It is 
unknown if there is a change in the timing of inhibition from the surround as 
well. In both the auditory and the visual systems, the change in surround inhibition 
leads to measurable effects on neural selectivity to dynamic properties of stimuli. 
Thus, the changes in surround inhibition may be a common substrate for 
experience-dependent plasticity.

5.2.2  Previous Studies on the Role of Inhibitory Plasticity  
in the Development of Response Selectivity

A role for inhibition in adaptive plasticity during development was first shown by 
Zheng and Knudsen (1999) based on their work in prism-reared barn owls. Auditory 
space-tuned neurons in the external nucleus of the inferior colliculus project to the 
optic tectum, where maps of auditory and visual space are arranged in spatial 
register. Space-tuned neurons depend, in part, on sensitivity to interaural time 
differences (ITD) for azimuth tuning. The layout of the auditory space map in 
the tectum is under the direction of the visual map (reviewed in Kundsen 2002). 
Altering the visual map during development by raising owls with prisms over their 
eyes causes an adaptive shift in the auditory map to follow the movement of the 
visual map. Zheng and Knudsen (1999) showed that the ITD sensitivity of auditory 
neurons in the ICx of owls shifts in an adaptive direction dictated by prism-induced 
changes in visual locations. Application of GABA-A receptor antagonists unmasks 
ITD sensitivity corresponding to pre-prism spatial locations, suggesting that the 
original ITD sensitivity was masked by the plasticity of inhibitory synapses. Thus, 
inhibitory plasticity underlies the adaptive change.

The role of experience in shaping RF structure through inhibitory plasticity has 
been tested in the somatosensory, visual, and auditory systems. In rat somatosensory 
cortex, whisker trimming during early stages of development causes a  reduction  
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in suppressive interactions in adults after whisker regrowth, suggesting that early 
experience shapes the inhibitory–excitatory balance necessary for RF refinement 
(Shoyket et al., 2005; Sun, this volume). In the hamster SC, dark-rearing reduces 
surround inhibition, leading to an increase in the RF size (Carrasco et al. 2005, 
2009). There is also a reduction of inhibition inside the RF, leading to a broadening 
of stimulus size tuning (Razak and Pallas 2006). In the auditory cortex of rats, rear-
ing in a continuous, moderately noisy environment caused a disruption in the matu-
ration of both spectral and temporal properties of the inhibitory surround (Chang 
et al. 2005). Taken together with our results, these data suggest that inhibitory plas-
ticity underlies activity-dependent plasticity, resulting in both adaptive and abnor-
mal changes in RF properties.

5.2.3  Homeostatic Plasticity of Inhibition: Beyond Response 
Magnitude Stability

Based on the studies of the visual system, it has been proposed that the development 
of response properties progresses in two stages (reviewed in Constantine-Paton et al. 
1990) The initial establishment of underlying circuits is experience-independent. The 
second stage involves experience-dependent refinement of these circuits. Plasticity of 
inhibition during the period of refinement has primarily been discussed in terms of 
homeostatic balance of response magnitude (Turrigiano and Nelson 2004; Akerman 
and Cline 2007). Based on this view, inhibitory synaptic strength is altered to match 
activity-dependent changes in excitatory inputs or intrinsic excitability (Karmarkar 
and Buonomano 2006). For example, visual deprivation causes a decrease in the 
excitatory synaptic drive from the retina, resulting in a decrease in the inhibitory drive 
and thus maintaining stable levels of activity in the developing visual cortex 
(Turrigiano 1999; Maffei et al. 2004, 2006). A similar homeostatic shift to maintain 
the balance between excitation and inhibition occurs in the developing auditory cor-
tex, following hearing loss (Kotak et al. 2005; this volume) and in the neuromuscular 
system of activity-deprived chick embryos (Gonzalez-Islas and Wenner 2006; this 
volume).

Our results extend these findings by showing that factors in addition to stability 
of response magnitude drive the plasticity of inhibition. In the auditory cortex, 
development involves appropriate matching of arrival times of inhibition and exci-
tation. In the SC, the size of the inhibitory surround changes with the excitatory RF 
size. Thus, inhibitory plasticity may also function in balancing the timing and 
spatial/spectral extents of excitatory and inhibitory inputs. These results further 
suggest that the response magnitude is not always the conserved commodity, 
when homeostatic plasticity occurs following developmental manipulation of 
activity. In hamster SC, light-evoked activity is primarily due to AMPA receptor 
currents, and chronic NMDAR blockade does not significantly alter the levels of 
glutamate-evoked or light-evoked activity (Huang and Pallas 2001). Therefore, the 
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animals reared with chronic NMDAR blockade may not experience reductions in 
excitatory SC activity during development; yet, we observed an increase in the 
strength of surround inhibition. The comparison of results from the SC of NMDAR-
blocked (Razak and Pallas 2007) and dark-reared (Carrasco et al. 2005, 2006, and 
submitted) hamsters shows different directions of plasticity of surround inhibition. 
The former shows an increase in surround inhibition, while the latter shows a 
decrease, illustrating the complexity of factors shaping the development of the bal-
ance between inhibition and excitation.

5.2.4  Possible Synaptic Mechanisms of Plasticity in Strength  
and Timing of Inhibition

In the SC, although it is possible that NMDAR blockade directly increases the 
effectiveness of GABAergic synapses (Shi et al. 1997), an alternative explanation 
for our results may be that the increase in the strength and spatial extent of the inhibi-
tory surround is an indirect effect of chronic NMDAR blockade. In rodent SC, 
GABAergic interneurons are themselves likely to have a larger eRF as a result of the 
D-APV-induced increase in the retinal convergence. A visual stimulus would, thus, 
excite more inhibitory neurons in the D-APV group than normal, and could result in 
the observed increase in the strength and extent of the inhibitory surround (Fig. 5.2e, 
f). This compensation mechanism could function during development or evolution, 
or as a mechanism for recovery from abnormal experience or trauma in sensory 
circuits, in general.

The reduction in the strength of sideband inhibition in the auditory cortex of bats 
raised with abnormal echolocation experience may result from reducing the 
strength of synaptic inhibition, possibly through a loss of GABA

A
 receptors from 

the synapse (Kilman et al. 2002), modulation of chloride transporter function (Vale 
et al. 2003), phosphorylation of GABA

A
 receptors (reviewed in Mody 2005), 

changes in subunit composition of GABA
A
 receptors (Ortinski et al. 2004), changes 

in the number of synaptic vesicles (Murthy et al. 2001), or other forms of presyn-
aptic modulation of GABA release (Morales et al. 2002; Misgeld et al. 2007). 
Future studies will attempt to determine the cellular mechanisms underlying altered 
strength of surround inhibition.

Abnormal echolocation experience also results in the delay in the arrival time of 
LFI. How the timing of inhibition is altered by experience remains unclear. One 
possibility is that the strength and timing of inhibitory inputs are related. That is, a 
delay in arrival time may be caused by a reduction in the strength of the inhibitory 
input. Wu et al., (2006) showed that in the rat auditory cortex, the timing of inhibi-
tory currents varied monotonically with the intensity of tones. Preliminary data from 
the Razak lab show that increasing the intensity of the inhibitory tones, with respect 
to the excitatory tones in the two-tone inhibition protocol, can cause significant 
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changes in the arrival times. Thus, a critical developmental event across sensory 
systems may be the matching of amplitudes of inhibitory and excitatory inputs.

Another possible mechanism for changes in the timing of inhibition and its 
effect on FM direction selectivity is spike-timing dependent plasticity (STDP). 
During the development of the pallid bat auditory system, the dominant-patterned 
input to neurons involved in echolocation, is likely to be downward FM sweeps. 
Consistent exposure to downward sweeps, with a small range of FM rates (rate of 
change of frequencies in the sweep), may cause neurons to favor inputs that are 
coactivated with the spectrotemporal relationships of inhibition and excitation natu-
rally present in those sweeps (Engert et al. 2002). The slower FM sweep rates and 
the reduced high frequencies that the muted pups experience have a different spec-
trotemporal sequence compared to normal echolocation calls, and the coincident 
pre-synaptic events may not be driven by the same combination of inputs that drive 
neurons in the normal group. This would result in weakening of synapses estab-
lished in an experience-independent manner and/or prevention of experience-
dependent refinement (for detail, see Razak and Fuzessery 2007).

5.2.5  Role of Experience During Development: Maintenance 
Versus Refinement

Experience is typically thought to play an important role in the refinement of neural 
response selectivity in sensory systems. Our data suggest that experience can also 
be important for maintaining response selectivity that was originally created in an 
experience-independent manner. Few other studies have looked at the role of expe-
rience in the maintenance of response properties. In ferrets, blocking retinal activity 
after eye-specific segregation has occurred in the lateral geniculate nucleus causes 
desegregation (Chapman 2000), suggesting that activity is required for the mainte-
nance of connectivity. We have shown that in the SC of hamsters, receptive fields 
refine in the absence of light during development (Carrasco et al. 2005). However, 
continued maintenance of the animals in the dark causes RF diameters to broaden, 
suggesting that light input is required for the maintenance of RF size. The reduction 
in surround inhibition in hamsters maintained in the dark is suggestive of a role for 
inhibitory mechanisms; and indeed, the blunted response to GABA agonist and 
antagonists in the dark-reared animals supports this interpretation (Carrasco and 
Pallas 2007, submitted).

Therefore, data from the visual and auditory systems together suggest that 
experience plays a key role in maintaining response properties in sensory systems, 
and often acts through modifications of inhibitory properties. One implication of 
these findings is that previous studies on the effects of sensory deprivation during 
early development on response properties in adults may have confused effects on 
refinement with effects on maintenance.
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5.2.6  Future Directions

The hamster SC and pallid bat auditory cortex are suitable models to study the plasticity 
of inhibitory RF properties within a behaviorally relevant context. The findings 
reported here raise several key questions that need to be addressed in the future:
1. Although the presence of surround inhibition is common in visual system neu-

rons, the development of spatiotemporal properties of surround inhibition and 
the role of corticofugal connections have not been widely studied.

2. To determine if the timing of inhibition is related to inhibitory synaptic strength, 
and why LFI is specifically delayed by altered echolocation experience, in vivo 
intracellular recordings are needed to elucidate the inhibitory and excitatory 
inputs at various sound frequencies in normal and muted pallid bats. These stud-
ies will provide clues about the synaptic mechanisms of response selectivity and 
plasticity in the auditory cortex.

3. The origin of plasticity observed in the auditory cortex is unclear. FM sweep 
selectivity is similar in the auditory cortex and inferior colliculus (IC) of the 
pallid bat. Whether changes in the cortex are inherited from the IC, or whether 
cortical changes influence the IC is not known.

4. An issue of considerable interest is the role of inhibition in establishing the criti-
cal period for experience-dependent circuit refinement. A certain threshold of 
tonic inhibition is required to trigger the onset of critical periods, and the onset 
can be advanced or postponed by manipulations of inhibition (Huang et al. 1999; 
Iwai et al. 2003). It must be noted that we have studied the development of phasic 
(stimulus driven) inhibition. It remains unclear how tonic and phasic inhibition 
interact during development to establish multiple critical-period windows.

5. Whether critical periods for plasticity of excitatory and inhibitory mechanisms 
are similar remains unclear.

6. Perhaps the most fundamental question about inhibitory plasticity is the underly-
ing mechanism. While Hebbian and STDP-based mechanisms predict plasticity 
at excitatory synapses, it remains unclear whether they can explain plasticity at 
inhibitory synapses (but see Woodin et al. 2003 and Nugent et al. 2007). The 
synaptic mechanisms of inhibitory plasticity need to be addressed.
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Sensory experience drives the refinement of sensory maps in developing adult sensory 
cortices (Wiesel and Hubel 1974; Stryker 1978; Crair et al. 1998; Feldman and Brecht 
2005). Tremendous progress has been made toward understanding the process of 
maturation of excitatory networks. Cortical inhibition has also been shown to play a 
vital role in the regulation of critical periods for sensory plasticity (Hensch 2005). 
However, it is unclear whether neocortical inhibitory networks exhibit experience-
dependent postnatal maturation. In my laboratory, we employ the so-called “barrel 
cortex” (Woolsey and Van der 1970) that, represents the individual whiskers on the 
snout of rodents. The map exhibits plasticity throughout life, in that under- or over-
stimulation of a whisker is reflected by contraction or expansion, respectively, of the 
barrel representing it in the primary somatosensory cortex (Simons and Land 1987). 
This review focuses on the mechanisms underlying activity-dependent regulation of 
neocortical inhibitory circuits and the roles of inhibition in somatosensory cortical map 
plasticity during postnatal development. The focus will be placed on the following 
questions related to experience-dependent plasticity of neocortical inhibitory networks. 
(1) How do intrinsic and synaptic properties of inhibitory circuits in barrel cortex 
change during postnatal maturation? (2) How does sensory stimulation or deprivation 
affect the maturation of inhibitory circuits? (3) Does the maturation of neocortical 
inhibitory circuits proceed in an activity-dependent manner or do they develop inde-
pendently of sensory inputs? (4) What are the molecular and cellular mechanisms that 
underlie the activity-dependent or -independent maturation of inhibitory networks?

To understand how barrel cortex plasticity happens at a synaptic level, a linkage 
has to be made between previous sensory experiences in vivo and intracortical 
synaptic plasticity recorded in vitro (Jiao et al. 2006). Changes in synaptic strength 
underlying cortical plasticity can be measured from interneurons in the GAD67-GFP 
mice, after they have been subjected to alterations in whisker experience during 
their early postnatal development (e.g. Figs. 6.1–6.3, see Simons and Land 1987). 
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In order to facilitate this approach, we have recently developed a method to obtain 
dual recordings between excitatory and GAD-GFP-labeled inhibitory neurons in 
rodent barrel cortex (Jiao et al. 2006; Sun et al. 2006). Individual barrels representing 
deprived and non-deprived whiskers can be identified in a cortical brain slice 
preparation, permitting an analysis of the development of excitatory and inhibitory 
synaptic connections and the underlying synaptic mechanisms that control 
communication between specific neuronal pairs in vitro (Figs. 6.1 and 6.2). 
Furthermore, the cortical changes attributable to the selective stimulation of individual 
whiskers can be investigated.

6.1  Postnatal Maturation and Plasticity of Electrical 
Properties of Interneurons in the Barrel Cortex

6.1.1  Postnatal Maturation of Electrical Properties  
in Neocortical Interneurons

Based on electrical properties, interneurons can be separated into three broadly defined 
groups termed regular spiking (RS), bursting (BS) and fast-spiking (FS) (Connors 
et al. 1982; McCormick et al. 1985); (Wang et al. 2002; Wang et al. 2004). BS cells 

Fig. 6.1 Whole cell recording from interneuron expressing eGFP in barrel cortex of GAD67-GFP 
mouse. (a1) Barrels are visible in a TC slice. White arrowheads: barrel walls. (a2) EGFP expressing 
neurons are abundant in layers 4 barrels. (b1) IR-DIC image of a FS neuron. (b2) The same 
neurons visualized under fluorescent microscopy. *: a FS cell
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have also been named low-threshold spiking cells (LTS) (Kawaguchi et al. 1995; 
Xiang et al. 1998). In addition, there is a subset of FS interneurons that has been 
characterized as ‘irregular spiking, or stuttering’ (Ma et al. 2006). Interneurons that are 
involved in experience-dependent plasticity are likely to be a key component of 
sensory processing circuits because they modulate temporal and spatial properties 
of sensory-mediated cortical activities. Agmon and colleagues have shown that diverse 
groups of interneurons, including both FS and RS inhibitory cells, fired on thalamo-
cortical (TC) stimulation (Porter et al. 2001). They also reported that the characteristic 
firing patterns of cortical interneurons seen in adults are absent in neonates. In earlier 
years, David Prince and colleagues documented the electrical properties of immature 
neocortical neurons of rats. They found that immature cells (including interneurons) 
have more positive resting potentials, lower spike amplitude and longer spike duration, 
higher input resistance, and longer membrane time constants (McCormick and Prince 
1987; Kriegstein et al. 1987; Luhmann and Prince 1991). Recent studies have focused 
on developmental changes in specific interneuronal subtypes, as described next.

6.1.1.1  Maturation of FS and RS-Type Firing Phenotypes

Massengill et al. (1997) reported that RS and FS cells are derived from immature 
multiple-spiking (IMS) neurons. They found that increased expression of the Kv3.1 

Fig. 6.2 Experimental paradigms for experience dependent plasticities in the barrel cortex. (a) 
Experimental procedure for studying experience-dependent plasticity in barrel cortex. (b) Image 
showing tangential section of layer IV of a flattened barrel cortex. WT was performed for row-D. 
Sites of intracellular recording and extra cellular stimulation in a thalamocortical brain slice across 
the barrel field. WT: Whisker trimmig
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gene contributes to the maturation of electrical phenotypes of FS cells. Other 
important genes in the maturation of FS firing phenotypes are the Kv3.2 group (Lau 
et al. 2000). In Kv3.2 knock-out mice, the ability to fire spikes at high frequencies 
was impaired (Lau et al. 2000). These two studies demonstrated that changes in the 

Fig. 6.3 Developmental maturation of GABAergic transmission in barrel cortex layer IV. (a) 
Schematic graph showing paired recordings from SS–FS pair, note that the inhibitory synaptic 
boutons (from a single basket cell) on a spiny neuron outnumber the glutamatergic boutons from 
a single spiny neuron on the basket cell (see Sun et al. 2006). (b) Paired recording from a SS–FS 
pair at P10 (b1) and P20 (b2), uIPSCs elicited by a trin of spikes in the FS neuron show short-term 
plasticity (b1: paired-pulse facilitation [PPF] at P10; b2; paired pulse depression [PPD] at P21), 
APs: action potentials. (c1) Relationship between prired pulse ration (PPR) and the inter-spike 
interval in young (P10, open circles) and older (P21, filled circles) animals, (c2) uIPSC conductance 
recorded from spiny neurons showed developmental maturation
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expression level of distinct Kv3 channels contribute to postnatal maturation of 
the electrical properties of FS cells.

6.1.1.2  Maturation of BS or LTS Firing Phenotypes

Interneurons with BS or LTS firing patterns were not recorded in barrel cortex of 
juvenile animals (Ali et al. 2007), indicating a late maturation of these cells. In a 
recent study, Connors and colleagues (Long et al. 2005) reported that the synchronous 
firing among LTS cells was absent at postnatal day 12 (P12) but appeared abruptly 
shortly after P12. Because developmental transformation of LTS cells into a 
synchronous, oscillatory network overlaps with the onset of active whisker exploration, 
Connors and colleagues suggested that there is a potential role for this synchronizing 
system in development of sensory processing (Long et al. 2005).

6.1.2  Increases in Dendritic Gap Junction (GJ) Coupling During 
Postnatal Maturation

FS cells form GJ coupled networks (Galarreta and Hestrin 2002; Gibson et al. 
2005). Recently, anatomical studies have shown that the GJs are located discretely 
in the dendrites (Liu and Jones 2003; Fukuda et al. 2006). Connors and colleagues 
proposed that due to their low pass filtering electrical properties of the GJ, the main 
functional role for GJs is to effectively propagate small, slow signals, such as after-
hyperpolarizations, burst envelopes, or subthreshold oscillations (Mancilla et al. 
2007). In barrel cortex, as well as in other neocortical regions, different connexin 
(Cx) isoforms show distinct maturation patterns. Between postnatal days 0–28, 
Cx43 and Cx32 expression increases exponentially, whereas Cx26 expression 
peaks at around P14 (Nadarajah et al. 1996; Nadarajah and Parnavelas 1999; 
Montoro and Yuste 2004). Overall, the increased expression level of Cx during the 
second postnatal week of highly enhanced excitatory activity and critical develop-
mental events is consistent with the need for recruitment of interneuronal networks 
by TC activity and the promotion of spike synchronization in spiny stellate neurons 
(Sun et al. 2006).

6.1.3  Experience-Dependent Maturation of Electrophysiological 
Properties of Inhibitory Interneurons

Simons and Land first showed that sensory experiences are crucial for forming normal 
response properties of single neurons in the adult barrel cortex (Simons and Land 1987). 
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Simons and colleagues later reported that the firing rates of FS cells are also modified 
by sensory experiences in vivo. FS inhibitory cells fire less robustly when by whisker-
trimming is performed early in life and the re-grown whiskers are stimulated (Lee et al. 
2007). They pointed out that it is unknown whether the reduction in sensory-induced 
layer IV FS interneuron firing is due to changes in intrinsic firing properties, such as 
increased firing threshold (Barth et al. 2004; Lee et al. 2007), or to synaptic changes, 
such as reduced intracortical inhibition (Jiao et al. 2006). So far, it remains unclear 
whether maturation of intrinsic properties of specific interneuron classes undergoes 
experience-dependent or independent (or both) change. Recently, the term ‘intrinsic 
plasticity’ has been used to describe changes in intrinsic firing properties. We have 
recently been conducting research in this area and our preliminary data indicate that the 
intrinsic plasticity is cell-type specific, i.e. while FS exhibited intrinsic plasticity in 
response to whisker trimming, intrinsic properties of RSNP cells does not (Sun QQ, 
unpublished observations).

6.2  Postnatal Maturation of Intracortical Inhibitory Synaptic 
Transmission in the Barrel Cortex

In addition to being the major inhibitory neurotransmitter, GABA is thought to play 
a morphogenetic role in embryonic development. The role of GABA as a trophic 
factor during neurogenesis at early embryonic stages has already been reviewed in 
a number of excellent articles (Varju et al. 2001), and thus I only focus on the role 
of GABA in circuit formation in barrel cortex.

6.2.1  Early Postnatal Development of the GABA System  
and its Role in Circuit Formation in the Barrel Cortex

6.2.1.1  Synthetic Enzymes for GABA Exhibit Different Expression Patterns

Distinct genes encode two isoforms of the GABA-synthesizing enzyme glutamic 
acid decarboxylase (GAD: GAD65 and 67). In the barrel cortex, the distribution 
of GAD65 and GAD67 in the early circuit formation period and the late experi-
ence-dependent circuit refinement stage shows a different pattern. Jones and col-
leagues reported that GAD67 mRNA was highest in layer I at birth and 
developmentally upregulated in other layers shortly after birth (Golshani et al. 
1997). Kiser et al. (1998) showed that between P3 and P6 GAD67-IR coincide 
with the barrel pattern in layer IV, this pattern are maintained throughout the 
postnatal period to adulthood. Similar results have also been reported in another 
study showing that the appearance of GAD67 slightly precedes the onset of barrel 
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formation (Rice and Van der 1977). Thus the enhanced expression of GAD67 
from P3-P6 through P9 coincides with the formation of barrels and early critical 
periods of structural plasticity. In contrast, development of GAD65-IR was 
delayed relative to GAD67. GAD65-IR, which was scarcely evident before P6, 
increased markedly in density within cell bodies over the next several weeks. 
During this prolonged developmental process, GAD65-IR first formed a negative 
image of the barrels. Later, GAD65-IR was distributed uniformly across layer IV 
(Kiser et al. 1998a). Based on the above results, Mower and colleagues suggested 
that the developmental maturation of the barrel cortex involves the following 
steps: the disappearance of an early GAD67 pattern, mature GAD67 system take 
over in an inside-outside fashion, and a delayed and prolonged expansion of the 
GAD65 system (Kiser et al. 1998). Overall, the spatiotemporal differences in 
postnatal expression of the two GAD isoforms in the barrel cortex indicate different 
roles of GAD isoforms in early circuit formation and late circuit maturation. It is 
unclear whether the roles of GAD65 and GAD67 in barrel circuit formation are 
related to their distinctive contribution to cellular and synaptic GABA levels, 
respectively.

6.2.1.2  GABA-Mediated Synaptic Transmission in the Early Postnatal Period

I present studies focused on the spatiotemporal relationships between GABA, 
GAD, GABAR and barrel formation. I will also use this approach to answer 
questions raised in Sects. 2.2 and 2.3. In barrel cortical neurons from neonatal 
mice, GABA-mediated IPSPs are recorded as early as postnatal days 0–2. 
However, the immature postsynaptic potentials (PSPs) are very different from 
mature IPSPs in reversal potential and latency (Agmon et al. 1996). During 
postnatal brain development, the reversal potential for GABA

A
-mediated responses 

is shifted from −46 mV (postnatal day 0) to −82 mV (>postnatal day 12) (Owens 
et al. 1999). The upregulation of a K+-Cl− coupled co-transporter (KCC

2
) is primar-

ily responsible for this shift (Rivera et al. 1999). The patterns of gene expression 
for the a1, a2, a4, a5, b1, b2, and g2 subunits of mRNAs of GABA

A
 receptors 

have also been studied. The a1, b2, and g2 subunit mRNAs were highly expressed 
in the dense cortical plate at birth and increased substantially with age, especially 
in deep layers (Golshani et al. 1997). Together with the electrophysiology studies, 
these results suggest that the GABA synthesizing enzymes, specific GABA

A
 

receptors, and GABA-mediated synaptic potentials coexist prior to the formation 
of visible barrels. Furthermore, the expression of GAD67 and GABA

A
 receptors 

showed barrel-like patterns and co-regulated with the barrel formation during 
development in a similar manner. Therefore, GABA and its GABA

A
-mediated 

depolarizing signals may play a role in the early formation of barrel circuits, 
however, a causal relationship between GABA and barrel formation is yet to 
be established.
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6.2.2  Late Postnatal and Experience-Dependent Maturation  
of Inhibitory Circuits in the Barrel Cortex

6.2.2.1  Presynaptic Maturation

Experience-dependent synaptic plasticity requires precise timing between pre and 
postsynaptic excitatory cortical neurons (Feldman and Brecht 2005). Intracortical 
inhibition promotes the temporal precision of information relay by shunting recur-
rent cortical excitation. This idea is supported by recordings in vivo in the soma-
tosensory and other sensory cortices (Moore and Nelson 1998; Kelly et al. 1999; 
Bruno and Simons 2002). To serve a role in experience-dependent plasticity of 
neural circuits, the weight of inhibitory synapses must be regulated during postnatal 
period. Indeed this is the case, for example, enhancing whisker activity increases 
the number of GABAergic synapses formed on dendritic spines (Knott et al. 2002). 
On the other hand, regulation of NMDA receptor subtype composition has no effect 
on the critical period for barrel formation (Lu et al. 2001a). In the barrel cortex, 
GAD65 expression increases late in the critical period (Kiser et al. 1998b). 
Together, these evidences support GABA’s role in the refinement of barrel struc-
ture. Additional experiments that thoroughly examine the roles of GABA in barrel 
plasticity are necessary for a more complete understanding of the roles of inhibition 
in cortical development.

6.2.2.2  Postsynaptic maturation

In an in situ hybridization study, GABA
A
 receptor subunits (a1, b2, b1 and g2) 

increased substantially with age in the barrel circuits (Golshani et al. 1997). A patch 
clamp study by Agmon and colleagues also noted an increase in conductance of 
evoked GABA

A
 PSPs in the first postnatal week (Agmon et al. 1996). We (Jiao 

et al. 2006) have recently found similar results, in addition, we showed that the 
presynaptic properties (e.g. quantal content and paired-pulse properties) of IPSCs 
of immature (P7) neurons are different from mature cells (P30, cf. Fig. 6.3).

6.2.2.3  Experience-Dependent Postnatal Maturation

Simons and Land first reported that functional plasticity is a fundamental aspect of 
cortical development in barrel cortex (Simons and Land 1987). In a subsequent 
study, Woolsey, McCasland and colleagues reported important role of afferent sen-
sory activities in the structural maturation of cortical circuits (McCasland et al. 
1992). They found that local cortical axons (excitatory and inhibitory) do not 
mature after early deafferentation. Recent studies focused specifically on GABAergic 
transmission. Sun et al. (Sun et al. 2006) studied intracortical inhibitory transmis-
sion onto spiny stellate cells in rat TC slices. We reported that unitary conductances 
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of IPSCs produced by a single FS cell are about 10 times larger than unitary con-
ductances of excitatory neurons and are 10 nS in P20-P35 animals (Sun et al. 2006). 
Interestingly, in sensory-deprived mature barrel cortex, the properties of evoked and 
miniature IPSCs in mature brain are similar to those recorded in immature brain 
(e.g. Fig. 6.3) (Jiao et al. 2006; Sun et al. 2006). In summary, these results suggest 
that GABAergic synaptic transmission undergoes rapid developmental maturation 
and that this process is fine tuned by sensory experience.

6.2.3  Interneurons involved in sensory feed-forward inhibition  
in the barrel cortex and the consequences of their 
functional maturation to network processing

Strong and reliable unitary feed-forward inhibition onto excitatory neurons in 
layer IV serves to effectively “shunt” recurrent excitation and preserve discrete 
signaling in cortical networks (Castro-Alamancos 2000; Wilent and Contreras 
2005; Cruikshank et al. 2007). Swadlow and colleagues were the first to propose 
that FS interneurons are major candidates for providing feed-forward inhibition 
(Swadlow 2002, 2003). Using paired recording techniques in thalamocortical (TC) 
slices, we (Sun et al. 2006) tested Swadlow’s proposition by examining interac-
tions between synaptically connected excitatory and inhibitory neurons in layer IV 
of barrel cortex. We demonstrated that small clusters of FS cells can be reliably 
and precisely activated by TC inputs and provide feed-forward inhibition onto 
excitatory neurons (Sun et al. 2006). Connors and colleagues elucidated the 
synaptic mechanisms underlying selective activation of layer IV FS interneurons 
(Cruikshank et al. 2007). They found that synaptic mechanisms are responsible for 
the greater responsiveness in interneurons vs. excitatory cells. As a result, response 
properties of excitatory neurons correlate well with sensory inputs and thus allow 
spike-timing dependent plasticity. In the neonate, GABA is depolarizing and 
believed to have a different role than in adults. How does the transformation of the 
functional role of inhibitory GABAergic transmission occur in barrel cortex? Issac 
and colleagues (Daw et al. 2007) showed that the GABA

A
 receptor conductance is 

depolarizing in neonates (postnatal days 3–5), but GABAergic transmission at this 
age is not elicited by TC input and has no detectable circuit function. However, 
recruitment of GABA synapses occurs at the end of first postnatal period as a 
result of coordinated increases in TC drive to FS cells. Thus, GABAergic circuits 
are not engaged by TC input in the neonate, but are abruptly involved in the feed-
forward inhibitory circuit at the end of the first postnatal week (Daw et al. 2007). 
Surprisingly, this transformation occurs apparently coincidentally within the time 
window of the disappearance of silent synapses (i.e. synapses only exhibiting 
NMDA receptor-mediated responses) and the critical period for TC dependent 
long-term glutamatergic synaptic plasticity (Feldman et al. 1999). A logic step 
toward future investigation is to understand how such an abrupt maturation occur 
at specific GABAergic cells.
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6.3  Does the Maturation of Neocortical Inhibitory Networks 
Proceed in an Activity-Dependent Manner or 
Independently of Sensory Inputs (or Both)?

As in visual cortex, early postnatal sensory experiences are crucial for forming 
mature functional cortical circuits in the barrel cortex (McCasland et al. 1992). 
In the visual cortex, deletion of synaptic GAD (i.e. GAD65) can abolish critical 
periods (Hensch and Stryker 2004; reviewed by Hensch 2005). How does inhibition 
contribute to the initiation and closure of the neocortical critical periods? A very 
compelling hypothesis about the role of inhibition in the initiation and closure of 
critical periods is that it can modulate Hebbian-type plasticity (Hebb 1955) by 
enhancing correlative neuronal firing among adjacent cells and anti-correlative fir-
ing in distal cells (Hensch and Stryker 2004). To serve this role, i.e. modulating the 
spike-timing and lateral spread of excitation, the strength of inhibitory synapses 
needs to be developmentally regulated as well. Prior to the closure of neocortical 
critical periods, TC and intracortical glutamatergic synapses undergo drastic mor-
phological, molecular and functional changes (Feldman et al. 1998). Disturbances 
in the balance of excitation and inhibition in the neocortex induce cortical epileptic 
seizure (Prince 1999). Therefore, a key requirement for the maturation of sensory 
cortices, based on a Hebbian-rule, is that excitation and inhibition must be deli-
cately balanced to achieve appropriate functioning at the level of local cortical 
microcircuit.

6.3.1  Experience-Dependent Plasticity of GABAergic Circuits  
in the Barrel Cortex

In the barrel cortex, there is considerable evidence suggesting that the amount of 
inhibitory neurotransmitter (GABA), GABA receptors, and the number of GABAergic 
synapses are correlated with levels of neuronal activity (Micheva and Beaulieu 1997; 
Jiao et al. 2006; Knott et al. 2006). Here, I review studies focused on the effects of 
whisker trimming or stimulation on inhibitory circuits of the barrel cortex.

6.3.1.1  Sensory Deprivation (Whisker-Trimming)

In vivo electrophysiological studies: In an earlier study, it was shown that whisker 
removal produces immediate disinhibition in the neighboring whisker barrels (Kelly 
et al. 1999b). In more recent studies, Simons and colleagues examined how this 
process is regulated in cortices representing the trimmed whiskers. They reported 
that excitatory neurons in deprived barrels displayed higher spontaneous firing rates, 
more robust responses to whisker stimulation, and weaker inhibitory interactions 
between neurons representing neighboring whiskers (Simons and Land 1987; 



1016 Postnatal Maturation and Experience-Dependent Plasticity of Inhibitory Circuits 

Silberberg et al. 2004). In contrast, recordings from FS neurons indicate that these 
cells fire less robustly under the same conditions (Shoykhet et al. 2005; Lee et al. 2007). 
More intriguingly, the deprivation effects persist even after months of whisker re-growth, 
(Shoykhet et al. 2005). These result suggests that whisker-dependent structural 
alterations may have occurred in cortical circuits during postnatal developmental 
period. Similar effects (i.e. disinhibition) are seen in deafferented developing visual 
and auditory centers (Pallas et al. 2006; Razak and Pallas 2006). Simons and col-
leagues proposed that the contrasting effects in excitatory and inhibitory neurons 
may reflect altered patterns of TC input to excitatory versus inhibitory cells or 
changes in the strength of intracortical connections.

In vitro electrophysiological and neuroanatomical studies: In an earlier study 
on barrel cortex in rats, Micheva and Beaulieu showed that unilateral whisker 
trimming induces highly selective changes in cortical GABA circuitry of both 
hemispheres (Micheva and Beaulieu 1995). As indicated earlier in this chapter 
(Figs. 6.1–6.3), brain slice preparations allow a linkage to be made between 
synaptic properties recorded in vitro and previous sensory experiences in vivo. 
Using this approach, we (Jiao et al. 2006) showed that row D whisker trimming 
begun at P7, but not after P15, induced a reduction in the number of inhibitory 
perisomatic varicosities, and reduced synaptic GAD65/67 immunoreactivity 
in spiny neurons of the deprived barrels (Fig. 6.4). Patch-clamp recording from 

Fig. 6.4 Perisomatic GABAergic innervation of excitatory neurons by basket cells is modified by 
sensory experience in vivo. A reconstructed basket cell (FS type) recorded from barrel cortex layer 
IV (Q.Q., Sun). The location of the FS cells in the barrel (cylinder) is shown. Note that the axons 
(gray) of the basket cell are predominantly confined within the barrel. Perisomatic GABergic synaptic 
contacts (white circles and digitally enhanced micrograph in the lower right corner) were formed 
in the some area of the principal neuron (a star pyramidal neuron, black triangly). Whisker trimming 
induced reduction of the number of perisomatic boutons (two micrographs on the right)
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spiny cells showed a 1.5-fold reduction of intracortical evoked IPSCs (eIPSCs) in 
deprived versus spared cortices (Fig. 6.5). The reduction in eIPSCs occurred via 
changes in presynaptic properties (i.e. quantal content, paired pulse ratio and 
synaptic numbers) and unitary IPSC amplitudes (Fig. 6.5). Miniature IPSCs 
showed subtle but significant differences in the quantal amplitudes between the 
two experimental conditions. In addition, properties of the IPSCs in deprived 
barrels of adults resembled those of IPSCs recorded in immature brains (P7). We 
concluded that the perisomatic inhibition mediated by PV-positive basket cells is 
pruned by sensory deprivation (Jiao et al. 2006). In addition, the dendritic 
GABAergic synapses were reduced in number with sensory deprivation (Micheva 
and Beaulieu 1995). Together, these results strongly suggest that the properties of 
local intracortical inhibitory networks are modified by sensory experience.

Fig. 6.5 Effects of sensory deprivation on inhibitory synaptic transmission on spiny neurons. (a1) 
IPSCs were recorded in a spiny newron located in the ‘deprived’ row. the IPSCs were evoked by 
an adjacent extracellular stimulating electrode. (a2) The amplitudes of the second evoked IPSCs 
were plotted against the amplitudes of the first IPSCs. Solid line: linear regression fit. (b1) IPSCs were 
evoked in a spiny neuron located in a ‘spared’ row. (b2) Scatter plot of the amplitudes of IPSC1 vs. 
IPSC2. Solid line: linear regression fit. CV: Coefficient of Vairance for the evoked IPSCs (first 
evoked IPSCs, second evoked IPSCs). This figure was modified from Jiao et al. 2006
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6.3.1.2  Whisker Stimulation

Combining high-resolution 2-deoxyglucose (2DG) and immunohistochemical 
staining for GABA specific antibodies, McCasland and Hibbard (1997), McCasland 
et al. (1997) reported that putative inhibitory neurons in barrel cortex of behaving 
animals are much more heavily labeled than presumed excitatory cells. This meta-
bolic activation is dependent specifically on sensory inputs from the whiskers, 
because acute trimming of most whiskers greatly reduces 2DG labeling in both cell 
classes in columns corresponding to trimmed whiskers (McCasland and Hibbard 
1997; McCasland et al. 1997). In addition, the same group has reported that PV 
cells were metabolically more active than other interneurons (Maier and McCasland 
1997). In a histological study, Knott et al. (2006) reported that chronic stimulation 
of a mystacial whisker follicle induces structural and functional changes in layer IV 
of the corresponding barrel. The changes include insertion of new inhibitory 
synapses onto spines in an excitatory cell and a depression of neuronal firing rate 
to the stimulated whisker. In another anatomical study, active whisking was found 
to accelerate the appearance of mature inhibition (Kiser et al. 1998a). Welker and 
colleagues (Quairiaux et al. 2007) analyzed how sensory responses of single units 
are affected in different layers of the stimulated and adjacent barrel columns. They 
reported that an increased inhibition within the stimulated barrel, a reduction of 
flow of excitation toward superficial layers and reduction of subsequent spread of 
excitation toward adjacent columns (Quairiaux et al. 2007). The opposing effects 
of whisker stimulation (Knott et al. 2006; Quairiaux et al. 2007) compared to 
whisker trimming (Shoykhet et al. 2005; Jiao et al. 2006) on strength of intracortical 
inhibitory networks suggest that the strength of intracortical inhibition is fine 
tuned to balance the amount of intracortical excitation during the critical periods 
of postnatal development. Disturbances in the activity pattern shift the balance 
of inhibition and excitation to facilitate the functional and structural lateral 
intracortical re-organization.

6.3.2  Activity-Independent Maturation and Plasticity  
of GABAergic Circuits

Activity-independent mechanisms regulate mainly postsynaptic aspects of network 
maturation. In addition to clearly defined activity-dependent processes that underlie 
GABAergic maturation described above, activity-independent plasticity has been 
reported in sensory cortices by determining what aspects of maturation occur 
despite deafferentation. In the barrel cortex, the density of GABA

A
 receptors is 

reduced in layer IV following complete loss of peripheral afferent input. However, 
less severe tactile deprivation had little or no effect on GABA

A
 receptor distribution 

(Land et al. 1995). In a similar study, Fuchs and Salazar (1998) reported that intact 
whisker input is not required for the developmental increase in GABA(A) receptors. 
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These results are similar to a result obtained in the visual cortex, where a lack of 
extrinsic input to the visual cortex does not affect the overall developmental regulation 
of synaptic functioning of GABA

A
 receptors (Heinen et al. 2004). In a few studies, 

both activity-dependent and -independent mechanisms were shown to contribute 
to GABAergic maturation. Itami et al. (2007) reported that the characteristic 
electrophysiological properties of FS cells were underdeveloped or did not appear 
at all in BDNF(−/−) mice. Similar results have been reported in the visual cortex, 
where over-expression of BDNF promotes the maturation of GABA transmission 
in the absence of activity (via dark rearing) in the visual cortex (Gianfranceschi 
et al. 2003) and other cortical regions (see reviews by Lu et al. 2005; Woo and Lu 2006). 
Thus, neurotrophic factors such as BDNF appear to regulate the maturation of the 
GABAergic system in an activity-independent manner. However, the transcription of 
BDNF gene is controlled by four promoters, which drive the expression of four 
transcripts coding for the same protein. Promoter-IV mediates activity-dependent 
BDNF transcription. It remains unclear how these different transcriptional compo-
nents contribute to the total effects of BDNF during postnatal cortical maturation. 
Future studies, using refined molecular approaches to selectively silent a specific 
BDNF transcriptional pathway (e.g. Promoter-IV) will help to determine whether 
BDNF acts in parallel with or mediates the activity-dependent regulation of cortical 
circuits in vivo (Lu B and Sun QQ, unpublished observations. Review by Lu 2003). 
In summary, a thorough understanding of postnatal maturation process requires not 
only knowledge of how these different components (pre- vs. postsynaptic) of the 
GABAergic system change during maturation, but also how they interact with a 
variety of environmental factors and neurotrophic factors.

6.4  Molecular Mechanisms Underlying Experience-Dependent 
Plasticity of Inhibitory Circuits in the Barrel Cortex

6.4.1  The Roles of Metabotropic and Ionotropic Glutamate 
Receptors

6.4.1.1  N-Methyl-D-Aspartate Receptors (NMDARs)

Like experience-dependent plasticity in excitatory networks, NMDARs appear to 
play an important role in the plasticity of GABAergic synapses. However, direct evi-
dence linking sensory-specific activation of NMDARs with maturation of specific 
GABAergic circuits is lacking. The cellular mechanisms by which NMDARs regulate 
GABAergic synapses also appear to differ from those observed in excitatory syn-
apses, in that their actions may take place in presynaptic terminals (Fiszman et al. 
2005). In the developing Xenopus retinotectal system, repetitive stimulation of the 
optic nerve induces LTP of excitatory inputs, but LTD of inhibitory inputs (Lien et al. 
2006). The LTD is due to a reduction in presynaptic GABA release and requires 
activation of presynaptic NMDARs and simultaneous high-level GABAergic activity. 
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Thus, the presynaptic NMDAR may function as a coincidence detector for adjacent 
glutamatergic and GABAergic activities, leading to coordinated synaptic modifica-
tion by sensory experience. In the barrel cortex, in a few studies in which NMDA 
receptor subunits were knocked out NR1, (Iwasato et al. 1997; Iwasato et al. 2000); 
NR2A, (Lu et al. 2001), it was shown that intact cortical NMDARs are essential for 
the aggregation of layer IV cells into barrels and for the development of the full 
complement of TC patterning, however, there was no effect of a loss of NR2A on the 
critical periods in barrel cortex (Lu et al. 2001). It remains to be determined whether 
there is any contribution of specific NMDA receptors to the experience-dependent 
plasticity of inhibitory cortical networks. To achieve this goal, the next step involves 
characterization of NMDARs in developing interneurons, for example, developmental 
switch of NMDAR subunits (e.g. NR2A, NR2B) has been documented in excitatory 
neurons, whether a similar switch exists in specific cortical interneurons remains to 
be determined.

6.4.1.2  Metabotropic Glutamate Receptors (mGluRs)

In a recent study (Liu et al. 1998), mGluR
1a

, mGluR
5
, and mGluR

2/3
 were found to be 

concentrated in layer IV of barrel cortex, particularly in the barrel hollows. This pattern 
peaks between P4 and P9, a time when intense NMDAR

1
-IR was also present 

(cf. (Rema and Ebner 1996)). This finding supports the involvement of mGluRs in 
the developmental plasticity of TC synapses during the establishment of the somato-
topic whisker maps in SI. In addition, an interaction between mGluRs and NMDARs 
has been demonstrated (Liu et al. 1998). A key component of this interaction may 
result from synergistic changes in intracellular calcium signaling. For example, 
mGluRs, via the phospholipase C-b1 (PLC-b1) signaling pathway, regulate intracellular 
calcium signaling. Indeed, in both PLC-b1 and mGluR

5
 knockout mice, barrel 

formation was disrupted (Spires et al. 2005). Expression of several mGluR isoforms 
has been reported in GABA releasing interneurons in neocortex (Baude et al. 1993; 
Lujan et al. 1997; Dalezios et al. 2002). However, the exact role of specific mGluRs 
in regulation of sensory-dependent plasticity of inhibitory circuits remains to be 
determined. In a recent study (Sun et al. 2009), our group investigated cell specific 
expression and modulation by mGluRs. We found that whereas activation of group I, 
II and III mGluRs inhibited glutmatergic transmission in RSNP interneurons, group 
I mGluR activation depolarizes FS cells only. Thus, there are cell-type and circuit 
specific roles for mGluR in modulation and plasticity of inhibitory circuits.

6.4.2  Transcriptional Factors and Maturation of Inhibitory 
Circuits

Activity-dependent signaling pathways induce neuronal gene transcription by modu-
lating transcriptional activators and repressors that are important for neuronal sur-
vival and differentiation, synaptogenesis, and plasticity (West et al. 2002). It is 
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now generally agreed upon that activity – transcription coupling is an important step 
leading to permanent plastic changes in neuronal structure and function. Recent 
work has shown that sensory information processing is accompanied by the induc-
tion of several transcription factors in the barrel cortex. Using in situ hybridization, 
several groups investigated the effects of whisker stimulation in freely moving rats 
on the expression of immediate-early genes in the barrel cortex. These studies have 
consistently reported enhanced zif 268 and c-fos expression that was largely 
restricted to radial columns across the barrels representing the stimulated whiskers, 
especially in layer IV. They reported that the majority of activated cells are excit-
atory, however, GABAergic interneurons were also activated (Filipkowski et al. 
2000, 2001; Staiger et al. 2002). A number of studies also indirectly addressed the 
issue of activation of transcriptional factors and maturation of inhibitory circuits. 
For example, BDNF has been reported to be critical for the development of cortical 
inhibitory neurons. In a recent gene expression profiling study using oligonucleotide 
microarrays performed in cortical tissue from mice with inducible deletions of 
BDNF, Glorioso et al. (Glorioso et al. 2006) studied the role of BDNF in the expres-
sion of transcripts whose protein products are involved in GABA transmission. In 
this study, loss of BDNF in both embryonic and adult stages gave rise to many 
shared transcriptome changes. BDNF appeared to be required to maintain gene 
expression in the SST-NPY-TAC1 subclass of GABA neurons. They have observed 
BDNF-dependent alterations in genes encoding early-immediate genes (ARC, 
EGR1, EGR2, FOS, DUSP1, DUSP6) and critical cellular signaling systems 
(CDKN1c, CCND2, CAMK1g, RGS4) (Glorioso et al. 2006). However, it is unclear 
which component of these BDNF-dependent gene expression changes is involved in 
the activity-dependent transcriptome changes underlying experience-dependent 
plasticity of barrel inhibitory circuits.

6.4.3  The Roles of GABA and GAD

GABA
A
 agonist infusion in visual cortex in vivo restores critical period formation 

in GAD65 knockout mice (Fagiolini et al. 2003; Hensch et al. 1998). Suppressing 
GABA reuptake or applying GABA

A
 agonist in cultured cortical neurons can 

rescue cell autonomous deficits in axon branching and synapse formation 
(Chattopadhyaya et al. 2007). These studies indicate that GAD-mediated GABA 
synthesis regulates the formation of inhibitory synapses in pyramidal neurons. 
In the barrel cortex, GAD expression decreases during deprivation (Akhtar and 
Land 1991) and increases following sensory stimulation (Welker et al. 1989), 
consistent with the idea that GABA and its enzyme GAD is actively involved 
in activity-dependent maturation of inhibitory circuits. Because the whisker 
trimming-induced plasticity occurs in the second to fourth postnatal weeks, 
the GABA

A
-mediated currents during this period are already hyperpolarizing. 

How GABA contributes to the activation of transcriptional regulation remains to 
be determined.
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6.5  Concluding Remarks

Studies carried out in the barrel cortex complement the progress made in the 
auditory and visual systems. They have provided additional new insights into the 
role of inhibition in remodeling neural circuits in neocortical layer IV and II/III and 
the role of sensory experience in the maturation of GABAergic networks. The fol-
lowing paragraph is a biased summary of major progress made in this regard and 
the remaining issues that need to be addressed in future studies. (1) Inhibition plays 
a critical role in the experience-dependent refinement of cortical circuits. However, 
the mechanisms underlying the maturation of inhibitory networks and plasticity at 
GABAergic synapses have remained elusive. Current evidence indicates that, like 
the maturation of excitatory circuits, synaptic reorganization by elimination and 
strengthening also occurs at GABAergic synapses. However, it is largely unknown 
how this process is regulated (other chapters address this issue). For example, in the 
barrel cortex, it is unknown whether there is a critical period for experience-depen-
dent regulation of inhibitory synapses. Information on the role of experience in the 
maturation of inhibitory networks in the supragranular layers (II/III) and layer V is 
not available. (2) While inhibition is known to be critical for visual cortex reorga-
nization, much less is known about how sensory experience modifies the structure 
and function of inhibitory networks themselves. Recent studies (Micheva and 
Beaulieu 1997; Jiao et al. 2006; Knott et al. 2006) using the barrel sensory system 
and examining the effects of sensory deprivation or enhancement suggest that the 
strength of intracortical inhibition is fine tuned to balance the amount of intracortical 
excitation during the critical periods of postnatal development. Disturbances in the 
activity pattern shift the balance of inhibition and excitation to facilitate the 
functional and structural intracortical re-organization. However, information about 
mechanisms underlying the experience-dependent plasticity of inhibitory circuits is 
still sketchy at this point. Although several key players has been identified (e.g. 
BDNF, NMDA receptors, mGluRs, and GABA), how these different players act in 
concert to modulate the experience-dependent plasticity that occurrs in vivo is 
unknown. (3) At the network level, the consequences of reduced intracortical inhibi-
tory synaptic transmission upon sensory deprivation to the columnar propagation of 
sensory-mediated activities have not been completely understood. Implementation 
of computational simulations, which can incorporate results obtained in electrophysi-
ological studies, can lead to a better understanding about network mechanisms. (4) 
Finally, a more direct way to assess the roles of GABA in promoting the maturation 
of barrel circuits would be to manipulate the level of GABA within circuits. 
This could be done using a combination of pharmacological means and genetic 
manipulation of GAD. Such experiments would yield important insights into the 
role of GABA in the formation and plasticity of barrel circuits.
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Most of work dealing with the properties of excitatory neurons and excitatory synapses in the 
barrel cortex could not be cited here due to the focus of this book on the GABAergic system. I 
apologize to my colleagues for such necessary omissions.
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   7.1   Introduction 

 Until the middle of the last century, serious doubts were frequently expressed 
 concerning the capability of the central nervous system (CNS) to produce endoge-
nously generated patterns of activity, such as those postulated by the early Darwinian 
student of animal physiology and behavior, Thomas Henry Huxley. In his delightful 
book on the crayfish as a model organism in biology, Huxley  (1891)  writes

  If the nervous system were a mere bundle of nerve fibres extending between sensory organs 
and muscles, every muscular contraction would require the stimulation of that special point 
of the surface on which the appropriate sensory nerve ended. The contraction of several 
muscles at the same time, that is, the combination of movements towards one end, would 
be possible only if the appropriate nerves would be stimulated in the proper order, and 
every movement would be the direct result of external changes. The organism would be like 
a piano, which may be made to give out the most complicated harmonies, but is dependent 
on the depression of a separate key for every note that is sounded. But it is obvious that the 
crayfish needs no such separate impulses for the performance of highly complicated 
actions. … To carry the analogy of the musical instrument further, striking a single key 
gives rise, not to a single note, but to a more or less elaborate tune; as if the hammer struck 
not a single string, but pressed down the stop of a musical box   

 Huxley’s musical box obviously produces “motor tunes” (or “motor melodies”), 
which in current terminology would be synonymous to central pattern generators 
that produce motor programs. However, endogenous (“self-organized”) activity 
with a core structure that is shaped without a role for momentary sensory input was 
viewed as something mysterious, and the mainstream behaviorist Zeitgeist sought 
to explain all kinds of CNS activity (not only movement related) as “chain reflexes” 
(Clower  1998) , which corresponds to Huxley’s piano. However, subsequent empirical 
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work carried out on the motor systems of invertebrates and vertebrates provided 
unequivocal evidence to support the conclusion that central pattern generators do 
exist (Hinde 1970; von Holst 1935, 1954; Wiersma and Ikeda 1964; Grillner 2006; 
Grillner and Zangger 1975). Later on, the concept of endogenous or spontaneous 
activity has conquered a much wider scope, and so-called “self-organized” patterns 
of activity have been extensively described in both the developing and adult CNS 
(Grillner 2006; Buzsaki 2006; Vanhatalo and Kaila 2006). Here, the term self-
organized includes complex events generated and shaped by a neuronal network in 
the absence of any input, or in response to some information-poor stimulus (e.g., a 
brief phasic “trigger” input; to a tonic temporally non-patterned input; or to a tran-
sient relief from inhibition).

Much of the experimental work on endogenous pattern generation relied on 
experiments where incoming sensory input was blocked by deafferentation 
(Hamburger 1963; von Holst 1935, 1954). In this respect, demonstrating the pres-
ence of endogenous activity is more straightforward in the immature than in the 
mature CNS, especially if conclusive experiments are to be done in vivo. This is 
because complex patterns of activity are seen in immature neuronal networks at a 
stage of development where no sensory input is available. For example, mammalian 
ganglion cells fire periodic bursts of action potentials several weeks before eye 
opening and before maturation of the photoreceptors (Galli and Maffei 1988; 
Meister et al. 1991). Recent work based on full-band EEG has demonstrated the 
presence of endogenous intermittent activity in the immature human cortex that is 
particularly salient in preterm babies, and which largely disappears by the time of 
full-term birth (Vanhatalo and Kaila 2006; Vanhatalo et al. 2002).

Characteristically, early network activity is highly discontinuous, consisting of 
discrete events (e.g., retinal waves) rather than the ongoing oscillatory activity that 
is typical for the adult brain (Feller 1999; Ben-Ari 2001). At the cellular level, the 
network events are based on spatially and temporally correlated bursts of activity, 
and hence they have been postulated to play a key role in the formation of neuronal 
circuits by reinforcing connections among coactive cells (Galli and Maffei 1988; 
Katz and Shatz 1996). The development of GABAergic transmission is generally 
thought to have a crucial influence on these Hebbian mechanisms (Hensch 2005; 
Kanold and Shatz 2006; Katz and Crowley 2002; Zhou and Poo 2004). Notably, a 
tight cross-talk between GABAergic transmission and activity-dependent release of 
trophic factors, such as brain-derived neurotrophic factor (BDNF; see below), is 
likely to take place in developing hippocampal circuits (Mohajerani et al. 2007; 
Mohajerani and Cherubini 2006; Marty et al. 2000; Rivera et al. 2005). Early net-
work events may also trigger endocannabinoid synthesis via elevation of intracel-
lular Ca2+ (Bernard et al. 2005; Freund et al. 2003; Leinekugel et al. 1997), thereby 
providing a feedback mechanism to control the gross excitability of immature corti-
cal structures (cf. Bernard et al. 2005).

In the immature hippocampus, spontaneous network events are seen in in vitro 
slice preparations and termed Giant Depolarizing Potentials (GDPs) (Ben-Ari 
et al. 1989). However, endogenous, correlated bursts of activity are not restricted 
to the immature hippocampus. A major class of discrete events, the Sharp Positive 
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Waves (SPWs), are seen throughout life in rodents, and a similar situation may 
hold for other mammals, including humans (Staba et al. 2004; Skaggs et al. 2007; 
Ulanovsky and Moss 2007; Buzsaki 1986; Buzsaki et al. 2003; Freemon and 
Walter 1970; Freemon et al. 1969). In the adult, these events may have several 
roles, including functions related to learning and memory as well as to the main-
tenance of neuronal circuitry. We will devote most of the present chapter to a 
discussion of the cellular, synaptic, and network mechanisms that generate SPWs 
in vivo (Leinekugel et al. 2002) as well as their putative in vitro counterparts, the 
GDPs, during the development of the hippocampus. The question of whether 
developing networks play mechanistically similar Huxleyan tunes will be briefly 
addressed (cf. Ben-Ari 2001).

7.2  GABAergic Transmission in the Immature Hippocampus

In light of the available information, it is clear that GABAergic mechanisms play a 
key role in the ontogeny of hippocampal network functions. However, the cause–
effect relationships here are highly bidirectional, because various properties of 
GABAergic signaling themselves undergo dramatic, qualitative changes during 
development. A specific point that has received a large amount of attention is the 
“ontogenetic shift” in GABA

A
 receptor (GABA

A
R)-mediated transmission; in 

immature neurons, GABA
A
R-mediated responses are depolarizing and sometimes 

even excitatory, and a shift in the reversal potential of GABA
A
R responses (E

GABA
) 

toward more negative values takes place during neuronal maturation. The time 
window of this developmental shift is both neuron-type and species-specific (Kaila 
et al. 2008; Rivera et al. 1999; Blaesse et al. 2009), and the underlying ion-regula-
tory mechanisms will be reviewed below. First, however, we will describe some of 
the basic mechanisms and consequences of GABA

A
R actions in immature hip-

pocampal and neocortical neurons.

7.2.1  Tonic Actions of GABA

Prior to the formation of functional GABAergic synapses, a tonic GABA
A
R con-

ductance is present in cortical neurons (Serafini et al. 1995; LoTurco et al. 1995; 
Owens et al. 1999; Demarque et al. 2002). The cellular sources of the interstitial 
GABA that activates the tonic conductance under physiological conditions appear 
to be heterogenous, and include axonal growth cones that release GABA in a 
vesicular manner (Gao and van den Pol 2000). GABA released by astrocytes has 
also been shown to activate GABA

A
 receptors at least in cultures of embryonic rat 

hippocampal neurons (Liu et al. 2000). Another potential source of GABA is non-
vesicular release via reversal of the GABA transporters, GATs (Richerson and Wu 
2003; Wu et al. 2007).
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Much of the present review deals with network events that take place during the 
early postnatal period in rats. During this developmental stage, a pronounced tonic 
GABA

A
 current persists in immature cortical pyramidal neurons, even under condi-

tions where neuronal vesicular release is strongly suppressed (Demarque et al. 
2002; Sipilä et al. 2007; Valeyev et al. 1993). Notably, pharmacological inhibition 
of GAT-1 leads to an increase in the magnitude of the tonic GABA

A
 conductance. 

It also prolongs the decay of the slow GABAergic current component associated 
with the GDPs (see above) in rat hippocampal neurons (Sipilä et al. 2004, 2007). 
These findings indicate that GABA transport is functional and already operates in 
net uptake mode by birth.

7.2.2  Trophic Actions of GABA

In immature neurons, depolarizing GABAergic signaling promotes action potential 
activity, opening of voltage-gated Ca2+ channels, and activation of NMDA receptors 
(Ben-Ari 2002; Yuste and Katz 1991; Fukuda et al. 1998). The consequent transient 
elevations of the intracellular Ca2+ level lead to activation of a wide spectrum of 
signaling cascades that control various aspects of neuronal maturation and differen-
tiation including DNA synthesis, migration, morphological maturation of individual 
neurons, and synaptogenesis (Wang and Kriegstein 2009). BDNF has been ascribed 
a key role in the trophic actions of GABA (Marty et al. 2000). However, much of 
the available data has been obtained in vitro, and their significance for normal neu-
ronal development in vivo has remained somewhat unclear. Rather surprisingly, 
synaptogenesis and early brain development are hardly affected in knockout (KO) 
mice where GABA synthesis, vesicular transport, or vesicular release are elimi-
nated (Ji et al. 1999; Wojcik et al. 2006; Verhage et al. 2000; Varoqueaux et al. 
2002). Clearly, more in vivo work is needed in order to solve these discrepancies, 
and to elucidate the specific effects of early network events on the maturation of 
hippocampal neurons and networks.

7.2.3  Ion Transport and the Control of E
GABA

 in Hippocampal 
Neurons

Neuronal plasma membranes are equipped with a variety of ion transporters, and 
several of them are involved in the translocation of anions, thereby affecting 
E

GABA
. These transporters have been described in recent reviews (Farrant and 

Kaila 2007; Blaesse et al. 2009) and hence, we will restrict the present discus-
sion to two cation-chloride transporters, NKCC1 and KCC2, which are the 
major players in the developmental shift of the action of GABA in cortical 
neurons.
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7.2.3.1  Uptake of Chloride: NKCC1

Immature neurons typically have a high internal Cl− concentration maintained by 
specific uptake mechanisms. This leads to a rather positive value of E

GABA
 and to 

the depolarizing and sometimes even excitatory actions of GABA, some of which 
are described above. While the identity of these transporters is not clear in a wide 
range of neurons including the auditory brainstem and the retina (Balakrishnan  
et al. 2003; Vardi et al. 2000; Zhang et al. 2007), there is substantial evidence that 
in immature hippocampal and neocortical neurons, Cl− uptake is mediated by the 
NKCC1 isoform of Na–K–2Cl cotransporters (Blaesse et al. 2009). Both NKCC1 
and the Cl− extruding K–Cl cotransporter KCC2 (see below) are secondary active 
transporters; they do not directly consume ATP, but take the energy for Cl− uptake 
and extrusion from the Na+ and K+ gradients, respectively, generated and main-
tained by the ubiquitous Na–K ATPase.

Depolarizing GABA actions in hippocampal neurons are blocked by bumetanide 
(Sipilä et al. 2006b), a drug that at low concentrations (1–10 mM) selectively blocks 
NKCCs (Isenring et al. 1998; Payne et al. 2003). Interestingly, NKCC1 knockout 
mice are viable (Delpire et al. 1999; Flagella et al. 1999; Pace et al. 2000) and they 
do not have a conspicuous brain phenotype. Their major problems at the level of 
behavior seem to arise from the non-functional inner ear.

7.2.3.2  Extrusion of Chloride: KCC2

In adult CA3 and CA1 pyramidal neurons, GABA
A
-mediated transmission is 

hyperpolarizing, and the extrusion of Cl− needed to achieve an E
GABA

 that is more 
negative than the resting membrane potential (V

m
) is attributable to Cl− extrusion by 

the K–Cl cotransporter KCC2. KCC2 has not been detected in any other cells apart 
from central neurons, and even among mature CNS neurons some do not express 
this transporter (Blaesse et al. 2009).

Recent work has shown that KCC2 is expressed as two splice variants, KCC2a 
and KCC2b (Uvarov et al. 2007). Disruption of the KCC2-coding gene, Slc12A5, 
inhibits KCC2 expression completely and results in mice that die immediately 
after birth due to severe motor defects, including respiratory failure (Hubner et al. 
2001). In another transgenic mouse, exon 1 of the known Slc12A5 sequence was 
targeted, which was originally thought to produce a full knockout (Woo et al. 
2002). For reasons that were initially unclear, 5–8% of KCC2 expression was 
retained. In contrast to the full knockout by Hubner et al (2001), these mice are 
viable after birth, but they show pronounced generalized seizures and die at an 
age of about 2 weeks (Woo et al. 2002). It has now become apparent that the 
residual KCC2 expression represents the KCC2a isoform which contains, com-
pared to the previously described KCC2b, an alternative exon 1 (Uvarov et al. 
2007). KCC2a is expressed in the neonatal brainstem and spinal cord at a level 
similar to KCC2b and appears to be important for some of the basic functions  
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of these structures. In cortical neurons, KCC2b is the dominant isoform (Uvarov 
et al. 2007). Notably, KCC2b is responsible for the “developmental shift,” as can 
be concluded from previous data on auditory brainstem and cortical neurons 
(Balakrishnan et al. 2003; Zhu et al. 2005) from mice that are now known to be 
KCC2b KOs (Uvarov et al. 2007).

In the present chapter, we will use “KCC2” as the term that refers to the main 
K–Cl cotransporter in cortical neurons, because there are no data available that 
would enable one to dissect the actions of the two isoforms. In addition to this, yet 
another neuronal K–Cl cotransporter (KCC3) has been identified in the hippocam-
pus (Boettger et al. 2003). However, there is little information on the roles of KCC3 
in the development and function of cortical neurons.

7.2.3.3  Bicarbonate and EGABA

In addition to Cl−, HCO
3
− ions are physiologically relevant carriers of current across 

GABA
A
 receptors (Kaila and Voipio 1987; Kaila 1994). The quantitative influence 

of HCO
3
− on E

GABA
 can be readily estimated using the Goldman–Hodgkin–Katz 

voltage equation (Kaila 1994; Farrant and Kaila 2007). As a rule of thumb, the 
intracellular concentration of HCO

3
− in neurons (about 15 mM at a pH of 7.1–7.2) 

has an influence on E
GABA

 that is equal to about 3–5 mM Cl−. Hence, the depolar-
izing influence of HCO

3
− on E

GABA
 is significant in neurons with a low internal 

Cl− concentration such as adult cortical neurons (Kaila et al. 1993), but it can be 
largely ignored in immature neurons because of their relatively high intracellular 
chloride levels.

7.3  Ontogeny of Hippocampal Network Events

Distinct types of network rhythms are seen in extracellular field potential record-
ings in the adult rodent hippocampus depending on the behavioral state of the ani-
mal. During exploratory behavior and REM sleep, the most prominent network 
rhythm is the theta oscillation (see Buzsaki 2006) that exerts a modulatory action 
on the faster gamma rhythm (Soltesz and Deschênes 1993). On the other hand, during 
immobile wakefulness, consummatory behaviors (such as feeding and drinking), 
and slow-wave sleep, a more irregular pattern is observed (Buzsaki et al. 1983). 
This irregular pattern contains SPWs that are associated with “ripples” (~140–
200 Hz) (O’Keefe and Nadel 1978). SPWs are thought to be generated endoge-
nously within the hippocampus by the interconnected network of CA3 pyramidal 
neurons (Buzsaki 1986). The SPW seems to have similar characteristics across dif-
ferent (perhaps all) mammalian species (Staba et al. 2004; Skaggs et al. 2007; 
Ulanovsky and Moss 2007; Buzsaki 1986; Buzsaki et al. 2003; Freemon and Walter 
1970; Freemon et al. 1969). This is intriguing, given the fact that SPWs can be 
detected in both neonatal and adult rodent hippocampus (Buhl and Buzsaki 2005; 
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Karlsson and Blumberg 2003; Leinekugel et al. 2002; Mohns et al. 2007; Sipilä 
et al. 2006b), which implies a cortical time span that in the human would corre-
spond to one which covers the last trimester of gestation and lasts for the entire life 
(Avishai-Eliner et al. 2002; Clancy et al. 2001). As already noted above, the pres-
ence of SPWs during such a wide time window suggests that they have several 
functions. In addition to their likely role in the development of neuronal circuits, 
SPWs are generally thought to be involved in learning and memory in the adult, 
especially in the transfer of hippocampally acquired information to the neocortex 
(Buzsaki 1989).

SPWs are the first large-scale network pattern that is seen during hippocampal 
development in vivo as studied in rats (Leinekugel et al. 2002; Buhl and Buzsaki 
2005; Karlsson and Blumberg 2003; Mohns et al. 2007; Sipilä et al. 2006b; Leblanc 
and Bland 1979). Thereafter, within the first three postnatal weeks, adult-like theta 
and gamma oscillations emerge (Leblanc and Bland 1979; Karlsson and Blumberg 
2003; Mohns et al. 2007; Lahtinen et al. 2002). SPWs are often associated with a 
“tail” event consisting of multi-unit bursts (Leinekugel et al. 2002), and during 
development, they become associated with ripples (see above).

The cellular and synaptic mechanisms generating early network rhythms have 
been extensively studied under in vitro conditions, mainly using hippocampal slice 
preparations (Ben-Ari 2001). During cortical ontogeny, large-scale population 
activity is preceded by local events detected as intracellular Ca2+ transients that 
involve only a few neurons as shown in embryonic and neonatal mice (Dupont et al. 
2006; Crepel et al. 2007; Yuste et al. 1992). In the hippocampus, these events have 
been termed synchronous plateau assemblies (SPAs), that take place in the absence 
of chemical synaptic transmission pointing to a role of gap junctions and intrinsic 
membrane currents (Crepel et al. 2007). SPAs were reported to disappear at the 
time when GDPs emerge, and it was proposed that a transient, oxytocin-mediated 
shift from depolarizing to hyperpolarizing action of GABA occurring at birth pro-
motes the emergence of SPA activity in mice. However, this is unlikely to be a 
common characteristic across different mammalian species, as GDPs are already 
seen in fetal monkey hippocampal slices (Khazipov et al. 2001).

GDPs were first described by Ben-Ari et al. (1989) at the cellular level in work 
on hippocampal slices from neonatal rats, where GDPs disappear by the end of the 
second postnatal week (Khazipov et al. 2004a; Ben-Ari et al. 1989). The temporal 
correlation of the disappearance of GDPs in rat slices with the development of 
hyperpolarizing inhibition (the ontogenetic shift in GABA action) has been one of 
the cornerstones of the widespread hypothesis that depolarizing GABAergic activ-
ity “sets the tune” not only for GDPs, but also for other endogenous events in the 
immature central nervous system (Ben-Ari et al. 2004; Ben-Ari et al. 2007). More 
recently, however, other groups have seen network events (termed in vitro sharp 
waves; Maier et al. 2003; Kubota et al. 2003; Wu et al. 2005; Foffani et al. 2007) 
in the mature hippocampus that share many characteristics with GDPs. Hence, it 
has become clear that spontaneous intermittent network events are present in post-
natal slices of all ages including those from adult rats and mice, and that they are 
particularly prominent in the latter species. A conclusion that requires the least 
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number of ad hoc assumptions is that GDPs are the in vitro counterparts of in vivo 
SPWs. The evidence for this conclusion is reviewed below.

7.4  Characteristics of “Giant Depolarizing Potentials”  
in the Rat Hippocampus In Vitro

“Giant Depolarizing Potentials” are named so because these spontaneous events 
were originally detected in intracellular recordings in the neonatal rat hippocampal 
CA3 pyramidal neurons in slice preparations (Ben-Ari et al. 1989, 2007). A major 
component of the intracellular voltage signal had a rather positive reversal poten-
tial, which resulted in a large depolarization – hence the attribute “giant.” In this 
pioneering work, lots of attention was paid to the fact that the reversal potential of 
the slow depolarizing phase of the intracellular GDP was similar to that of voltage 
responses elicited by exogenous GABA

A
 agonists. Furthermore, the visually domi-

nant depolarizing component of intracellularly recorded GDPs was blocked by 
GABA

A
 receptor antagonists. As already mentioned above, GDPs were found to 

disappear gradually during ontogeny in parallel with the maturation of hyperpolar-
izing GABAergic transmission that takes place during the first two postnatal weeks 
in the rat. On the basis of these observations, it was straightforward to conclude that 
GDPs are GABAergic events, i.e., network events paced by a phasic, excitatory 
action of GABA. In other words, the generation of GDPs and hence, their rhythmic-
ity, was thought to be set by a synchronous excitatory action of the GABAergic 
interneuronal network.

As is evident from above, the acronym GDP is ambiguous; it refers both to a 
single-cell response that can be recorded during a network event, and also to the 
network event itself. This problem has been discussed elsewhere (Sipilä et al. 
2005), and the context where the term GDP is used below should make it clear 
whether we refer to these events at the single-cell or network level.

In slices, the CA3 is considered the GDP “pacemaker region” (Ben-Ari 2001), 
but various other subregions of the hippocampus (CA1 and the dentate gyrus) can 
generate GDP-like network events in isolation (Khazipov et al. 1997; Garaschuk 
et al. 1998; Menendez de la Prida et al. 1998; Bolea et al. 2006). In intracellular 
voltage-clamp recordings in CA3 pyramidal neurons, a burst of ionotropic 
GABAergic and glutamatergic currents is seen during GDPs (Lamsa et al. 2000; 
Leinekugel et al. 1998, 2002), which are readily detected in parallel field potential 
recordings as a slow negative shift that is often associated with a burst of spikes. 
The majority of CA3 pyramidal cell spikes are confined to a 500-ms time window 
around the peak field potential deflection, whereas the GABAergic burst has a 
somewhat longer time course (Sipilä et al. 2005). Typically, GDPs occur at irregular 
intervals lasting from seconds to minutes. They are each followed by a refractory 
period of ~2–3 s, during which very little unit spike activity is seen (Sipilä et al. 
2005, 2006a). GDPs are also generated by the whole-hippocampus preparation 
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(Leinekugel et al. 1998), where the septal pole has the highest propensity for 
triggering the events and acts as the pacemaker region along the longitudinal axis 
of the hippocampus.

7.5  Synaptic and Cellular Mechanisms Underlying GDP 
Generation

In the analysis of the roles of glutamatergic and GABAergic mechanisms in the 
generation of GDPs, we will first focus on GABA.

7.5.1  GDPs and the Developmental Shift in GABA Action in Rat 
Hippocampal Slices

The developmental expression of KCC2 in the rat hippocampus starts around birth, 
and an adult-like expression pattern is seen by the end of the second postnatal week. 
However, the temporal link between the expression of KCC2 protein and functional 
K–Cl extrusion that is evident in native cortical neurons (Rivera et al. 1999; Lu 
et al. 1999; Yamada et al. 2004) cannot be generalized to other types of neurons. 
For example, cultured cortical neurons show abundant KCC2 protein expression 
levels well in advance of the functional activation of the transporter (Khirug et al. 
2005) and, interestingly, a similar situation holds for native auditory brainstem 
neurons (Blaesse et al. 2006). At the moment, there is only limited information 
available on the steps (e.g., trafficking and kinetic activation of the membrane-
bound transporter) that are required for functional activation of KCC2 (Blaesse 
et al. 2009).

Quite unexpectedly, recent work has uncovered a role for KCC2 in synaptic 
transmission that is unrelated to its K–Cl cotransport activity (Li et al. 2007). 
A high level of KCC2 was detected in the spines of cortical neurons (Gulyas et al. 
2001). In view of the role of KCC2 in GABAergic transmission, this was a rather 
surprising observation. However, subsequent experiments on primary cultures 
showed that KCC2 has a structural role in spine formation (Li et al. 2007). These 
results suggest that the expression of KCC2 synchronizes the development of 
GABAergic and glutamatergic transmission in cortical networks.

The latter part of the second postnatal week appears to be the key time point 
when qualitative changes in postsynaptic GABAergic responses occur in the devel-
oping rat hippocampus (Ben-Ari et al. 1989; Khazipov et al. 2004a; Tyzio et al. 
2007; Rivera et al. 1999), although it should be kept in mind that there is marked 
heterogeneity in the actions of GABA at the level of individual neurons (Duebel 
et al. 2006; Szabadics et al. 2006; Khirug et al. 2008). The changes in the postsyn-
aptic actions of GABA have been studied with various methods to examine E

GABA
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and the driving force of GABAergic currents, or GABA’s effect on the probability 
of spike generation (i.e., whether GABA is inhibitory or excitatory). In the current 
literature on the developmental shift of E

GABA
 and its consequences, however, it is 

often erroneously stated that depolarizing GABA actions imply excitation, and that 
a necessary condition for a genuinely inhibitory GABA action is an E

GABA
 that is 

more negative than resting V
m
, i.e., hyperpolarizing. This topic has recently been 

discussed elsewhere (Kaila et al. 2008; Blaesse et al. 2009), but a summary is pro-
vided here:

1. Regardless of the value of E
GABA

, the opening of the anion channels of GABA
A
Rs 

will have a shunting action. Hence, moderately depolarizing GABA actions can 
be functionally inhibitory, and even more effective as hyperpolarizing responses, 
because the intrinsic I–V relationship of GABA

A
 currents shows outward rectifi-

cation. In addition, even a small depolarization can lead to substantial inactiva-
tion of Na+ channels and activation of K+ channels. For example, adult dentate 
granule cells have depolarizing and strongly inhibitory GABA responses (Staley 
et al. 1992).

2. GABAergic transmission is not necessarily excitatory even if E
GABA

 would be 
more positive than what is observed as the threshold of spiking in standard 
somatic intracellular recordings. This is because the spike voltage threshold is 
not a fixed parameter, but depends on the rate of change of the membrane poten-
tial, and also on the background conductance.

The gramicidin-perforated patch clamp technique (Kyrozis and Reichling 1995) 
is often thought to be an ideal technique to study neuronal Cl− extrusion, because 
in these measurements, intracellular Cl− concentration is not affected by the pipette 
filling solution. However, measuring E

GABA
 with this (or any other) technique (Tyzio 

et al. 2006) in resting neurons can, at best, verify the presence of Cl− extrusion. 
Notably, even a very inefficient Cl− extrusion mechanism can be sufficient to main-
tain a hyperpolarizing E

GABA
 in a resting slice preparation. In the intact brain in 

which neurons are involved in ongoing activity and varying chloride loads, it is the 
capacity of neuronal Cl− extrusion rather than the steady-state E

GABA
 that has a 

direct impact on the efficacy of inhibition. When assessing the capacity of a neuron 
to maintain [Cl−]

i
 in a range that provides a basis for inhibitory GABA action (i.e., 

reduces excitability), a defined Cl− load is imposed on a cell. From such data it is 
possible to obtain a physiologically valid estimate of the efficacy of chloride regula-
tion (Khirug et al. 2005; Rivera et al. 2004; Jarolimek et al. 1999). A technical point 
worth to emphasize here is that in experiments on E

GABA
 or on Cl− extrusion, record-

ing electrodes filled with Cs+ must be avoided, because Cs+ is a very poor substrate 
for KCC2 (Williams and Payne 2004) and blocks K–Cl cotransport in mammalian 
neurons (Thompson and Gahwiler 1989).

As emphasized elsewhere, the actions of GABA are context-dependent (Farrant and 
Kaila 2007; Buzsaki et al. 2007) and, notably, GABA can have “dual” actions (both 
excitatory and inhibitory) in an individual neuron. In a modeling study on the effects 
of depolarizing IPSPs (dIPSPs), Jean-Xavier et al. (2007) showed that dIPSPs were 
able to facilitate spike triggering by subthreshold excitatory events in their late phase. 
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This is because the depolarization outlasts the local, shunting conductance increase 
which is associated with a dIPSP. Furthermore, the time window for the enhancement 
of excitability by dIPSPs became wider as E

Cl
 was more depolarized, and the pro-

excitatory effects started earlier when the site of dIPSP generation was further away 
from the excitatory input. It is obvious from these and many other observations that a 
dichotomous depolarizing-to-hyperpolarizing “switch” that would control the excit-
atory vs. inhibitory postsynaptic actions during the development of GABAergic trans-
mission (see below) is a profound oversimplification.

7.5.2  Glutamatergic Transmission and GDPs

As stated above, the pacemaker region for GDPs in rat hippocampal slice prepara-
tions is area CA3. One of the most characteristic properties of the CA3 area is its 
network of glutamatergic pyramidal neurons which shows an unusually high level 
of interconnectivity via excitatory collaterals (Lebovitz et al. 1971; MacVicar and 
Dudek 1980). This structural property is likely to be a key feature for the propensity 
of the CA3 area to generate various types of network events, ranging from GDPs to 
SPWs and to interictal events. Notably, all of them show a high sensitivity to 
AMPA antagonists (Cohen et al. 2002; Bolea et al. 1999; Wu et al. 2005).

During the perinatal period in the rat hippocampus, development of functional 
GABAergic synapses occurs prior to that of glutamatergic synapses. Indeed, a vast 
majority of hippocampal neurons express no functional glutamatergic synapses 
around birth (Danglot et al. 2006; Hennou et al. 2002; Tyzio et al. 1999). This has 
often been taken as indirect evidence for the view that network events in early hip-
pocampal development are driven by interneurons. However, at the network level, 
competitive AMPA-receptor antagonists (CNQX, NBQX, DNQX, etc) strongly 
inhibit GDP occurrence (Ben-Ari et al. 1989; Lamsa et al. 2000; Hollrigel et al. 
1998; Bolea et al. 1999). When these drugs are combined with NMDA receptor 
inhibitors, GDPs are abolished (Hollrigel et al. 1998; Sipilä et al. 2005; Bolea et al. 
1999; Khazipov et al. 2001). Notably, the selective AMPA blocker, GYKI 53655, 
completely blocks spontaneous and evoked GDPs, demonstrating a crucial role for 
AMPA receptor-mediated transmission in GDP generation (Bolea et al. 1999). The 
periodic, rhythmic activation of interneurons during GDPs is blurred into an irregu-
lar pattern by glutamatergic antagonists (Fig. 7.1), indicating that the GDP-
associated interneuronal activity is a consequence and not a cause of pyramidal cell 
firing (Sipilä et al. 2005).

7.5.3  Intrinsic Bursting of CA3 Pyramidal Neurons

The belief that immature CA3 pyramidal neurons are not bursters is prevalent in the 
earlier literature on GDPs (e.g., Ben-Ari et al. 1989; see also Ben-Ari et al. 2007). 
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To the contrary, more recently it has been shown that immature CA3 pyramidal 
neurons are able to generate intrinsic bursts (Menendez de la Prida and Sanchez-
Andres 2000), and that this voltage-dependent bursting takes place in the absence of 
synaptic transmission (Sipilä et al. 2005; Safiulina et al. 2008). The neurons are 
silent at negative membrane potentials, whereas a depolarization above ~ −60 mV 
activates a persistent Na+ current that generates a slow regenerative depolarization 
leading to a burst of action potentials (Sipilä et al. 2006a). During a burst, Ca2+ enters 
the cell and activates a K+ current that generates a slow afterhyperpolarization 
(sAHP), and the sAHP accounts for burst termination (Sipilä et al. 2006a). The neu-
ron is in a relative refractory state during the sAHP (see below). Notably, while the 
membrane voltage is within the activation range of the hyperpolarization-activated 
cation current I

h
 during the post-burst sAHP, blocking I

h
 has little effect on the intrin-

sic pyramidal bursts (Sipilä et al. 2006a). At threshold level, the burst frequency is 
around 0.2 Hz and can increase up to ~1.5 Hz in response to a tonic depolarization 
(Sipilä et al. 2005; Menendez de la Prida and Sanchez-Andres 2000). Each burst 
consists of 2–8 spikes that occur at a rate of 10–50 Hz. Mature CA3 pyramidal cells 
also generate voltage-dependent intrinsic bursts that occur at a similar frequency 
range as the bursts seen in the immature neurons (Hablitz and Johnston 1981; 
Kandel and Spencer 1961; Kandel et al. 1961; Wong and Prince 1981). However, a 
notable difference between the mature vs. the immature CA3 pyramidal neurons is 

Fig. 7.1 Ionotropic glutamate-receptor mediated transmission drives patterned interneuronal 
activity during GDPs. (a) Simultaneous field potential (upper two traces; top trace: 100–600 Hz, 
middle trace: 0.05–5 Hz) and intracellular voltage-clamp recordings (lower trace: 0 mV, low-
chloride filling solution) show that field GDPs (fGDPs) and the associated GABAergic bursts 
reflecting network activity of interneurons are blocked by a combined application of the glutamate 
receptor blockers NBQX and AP-5. Spontaneous bursting activity (unit bursts) persists in the 
absence of glutamatergic transmission and GDPs. (b) Autocorrelation histograms of spontaneous 
post-synaptic GABA

A
 receptor-mediated current (GABA-PSC) intervals show that the rhythmic 

GABAergic activity (left) (at ~0.3 Hz) is abolished by the glutamate receptor antagonists (right). 
The figure is modified from Sipilä et al. (2005).
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that the former can fire at a much higher frequency (50–400 Hz) during a burst 
(Kandel and Spencer 1961; Kandel et al. 1961; Ranck 1973).

7.5.4  CA3 Pyramidal Neurons as Conditional Pacemakers  
in GDP Generation

There is a striking similarity between the temporal patterns of single-unit CA3 
pyramidal cell bursts and GDPs; both have a preferred (modal) frequency at ~0.2–
0.5 Hz, and a tonic depolarization increases the frequency of both the single-cell 
and network events within a similar (~0.2–1.5 Hz) frequency range (Sipilä et al. 
2005). These observations are consistent with the idea that the temporal pattern of 
GDP activity has its roots in the intrinsic properties of the CA3 pyramidal neurons. 
The data reviewed below provide further evidence for this view.

The actions of ionotropic GABA and glutamate receptor antagonists on the burst 
activity of immature CA3 pyramidal neurons are qualitatively different. A blockade 
of glutamate receptors desynchronizes pyramidal bursts but does not abolish them. 
On the other hand, GABA

A
 receptor antagonists reduce the frequency of the syn-

chronous events and sometimes completely block them (Sipilä et al. 2005). 
Whereas the frequency of field GDPs is reduced, their amplitude is typically 
enhanced (Lamsa et al. 2000). The inhibitory effect of GABA

A
 receptor antagonists 

on the network events is readily explained by the finding that these drugs inhibit the 
burst activity of the pyramidal neurons. This effect takes place also in the absence 
of glutamatergic transmission (i.e., in the absence of GDPs), because (as explained 
above) the immature CA3 pyramidal neurons are subject to an endogenous, strongly 
depolarizing input mediated by synaptic and tonic GABA

A
 receptors, which is 

blocked by GABA
A
 receptor antagonists. It should be re-emphasized that because 

the interneuronal network activity in itself is temporally non-patterned, the above 
suppressing actions of GABA

A
 antagonists are caused by a hyperpolarization and a 

consequent decrease in the overall excitability of the CA3 neurons.
The threshold for the activation of the persistent Na+ current is ~10 mV negative 

compared to the threshold of action potential generation, and any depolarization 
that activates the persistent Na+ current is able to promote the cellular bursts (Sipilä 
et al. 2005, 2006a). Taking advantage of this fact, more evidence for the conclusion 
that the “cellular GDP pacemakers” reside within the CA3 pyramidal neuron net-
work was based on the observation that GDP occurrence is triggered by a pharma-
cologically induced tonic GABAergic depolarization in the complete absence of 
synaptic GABA

A
 receptor transmission. Even more strikingly, we observed that 

GDPs were also promoted by a tonic depolarization imposed by elevation of extra-
cellular K+ concentration in the complete absence of both synaptic and tonic 
GABA

A
 receptor-mediated signaling (Sipilä et al. 2005).

The relative refractory period of GDPs, defined as the minimum inter-GDP 
interval under standard experimental conditions, is similar to that of the intrinsic 
bursts of immature CA3 pyramidal neurons (Sipilä et al. 2005, 2006a; see also 
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Agmon and Wells 2003). In light of the present mechanistic scheme of GDP 
generation, this similarity is to be expected, since a large number of pyramidal 
neurons that are co-activated during a GDP will become simultaneously refractory 
due to the sAHP during the post-GDP period. Hence, they cannot contribute to a 
network event during this period. The refractory period is not absolute, however, 
because a strong enough depolarizing input can trigger both the cellular and net-
work events. Furthermore, various blockers of the Ca2+-activated K+ current abolish 
the refractory period seen at the level of individual neurons and the network (Sipilä 
et al. 2006a). GDP inter-event intervals are often longer than the relative refractory 
period, which means that other, as yet unidentified mechanisms in addition to the 
Ca2+-activated K+ current determine the duration of the inter-GDP interval.

7.6  Conclusions

In the present chapter, our focus has been on hippocampal GDPs, because they offer 
an excellent opportunity to examine the validity and scope of “general rules” that are 
proposed to underlie the functional development of neuronal networks (Ben-Ari 
2006; Ben-Ari et al. 2007). Two major properties that have been attributed to GDPs 
are that (1) they are present during a restricted window of development correspond-
ing to the period when GABA has a depolarizing action and (2) interneurons are 
crucial in setting the pace of the events (Ben-Ari et al. 2007). In light of the available 
evidence reviewed above, neither of these properties is a defining characteristic for 
GDPs. Paradoxically, in contrast to e.g., retinal waves, it now seems that hippocam-
pal GDPs, which were originally considered a prototype of early network events, are 
an exceptional type of early event in that their in vivo counterparts – the SPWs – are 
retained throughout life (Leinekugel et al. 2002; Sipilä et al. 2006b; Mohns et al. 
2007; Buzsaki 1986). Consistent with this observation, work carried out on rodent 
slices shows that bursting activity of the pyramidal cell population drives hippocam-
pal network events throughout life (Sipilä et al. 2005; Miles and Wong 1983; Traub 
et al. 1989). SPWs have been recorded invasively in early neonatal rats (postnatal 
day 2), and while the SPWs become associated with high-frequency ripples during 
development (Buhl and Buzsaki 2005; Mohns et al. 2007), their basic appearance 
remains largely unchanged throughout the postnatal life of rodents. Undoubtedly, 
depolarizing GABA plays a facilitatory or permissive role in the generation of both 
GDPs and neonatal SPWs. It would be difficult to envisage a scenario, however, 
where these events would initially be paced by the interneuronal network and there-
after, at some time point that has never been specified, the pacing role would be 
taken over by the pyramidal neuronal network.

In light of the above discussion, it is evident that depolarizing GABA actions do 
not set the “melody” played by the developing hippocampus. Here, a comparison 
between the immature hippocampus and neocortex is interesting. The dominant 
pattern of neocortical spontaneous activity in vitro, a sharp potential that is remi-
niscent of hippocampal GDP/SPWs, is sensitive to GABA

A
 receptor antagonists 
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(Rheims et al. 2008) in a manner similar to hippocampal GDPs (see above). In 
contrast to this, the dominant pattern in vivo, the “spindle-bursts” (Khazipov et al. 
2004b; Khazipov and Luhmann 2006), are not markedly affected by complete 
block of GABA

A
R transmission by a receptor antagonist or by blocking the depo-

larizing action of GABA with bumetanide (Minlebaev et al. 2007). The block of 
GABAergic transmission produces a slight increase in the occurrence of both 
evoked and spontaneous spindle-bursts. However, their spatial extent is increased, 
suggesting that GABA

A
R transmission exerts “surround inhibition” and thereby 

plays a role in the spatial compartmentalization of these events. Although 
GABAergic transmission contributes minimally to the pacing of the spindle-bursts, 
it is notable that the AMPA/kainate receptor antagonist CNQX completely elimi-
nates the events (Minlebaev et al. 2007).

To summarize, the neonatal pyramidal CA3 neurons are cellular pacemakers, 
and when a sufficient number of them fire within a confined time window, a critical 
level of network excitation is attained and a GDP is generated in its well-known 
all-or-none manner. Unlike the glutamatergic network, the interneuronal network is 
not capable of producing robustly patterned activity by itself. Hence, it can be con-
cluded that glutamatergic transmission plays an instructive role in hippocampal 
GDP generation, while GABA has a facilitatory or permissive mode of action. At 
a more general level, it seems that some of the broad generalizations and “rules” 
regarding the role of depolarizing GABA actions in the generation of endogenous 
activity in the developing brain need to be re-evaluated.
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   8.1   Introduction 

 Endogenous cannabinoids (eCBs) are the natural ligands for the cannabinoid 
receptors in the brain. ECBs influence inhibitory synaptic plasticity through 
their receptors by shaping the formation of neuronal circuits, regulating the 
expression of synaptic plasticity, and influencing postsynaptic excitability. 
This chapter focuses on the cellular neurophysiology of eCB actions in inhibi-
tory synaptic plasticity, although their effects at excitatory synapses will be 
touched upon. 

   8.1.1   Introduction to eCBs: History and Pharmacology 

 The story of the discoveries of eCBs, their receptors, and their functional roles, has 
been reviewed (see e.g., Howlett et al.  2002 ; Pertwee  2005 ; Di Marzo et al.  1998 ; 
Alger  2002 ; Freund et al.  2003 ; Piomelli  2003 ; Chevaleyre et al.  2006 ). Critical 
milestones included the isolation of delta-9 tetrahydrocannabinol (THC) as the 
major psychoactive component of the plant  Cannabis sativa  (Gaoni and Mechoulam 
 1964) . Pharmacological agonist binding properties implied the existence of a spe-
cific cannabinoid receptor. The first cloned cannabinoid receptor, CB1R (Matsuda 
et al. 1990), proved to be the major CB receptor in the brain (CB2R is mainly present 
in certain glia (van Sickle et al. 2005) and is associated with the immune system). 
A new CB receptor, GPR55 (Ryberg et al. 2007), has been characterized pharma-
cologically, but not yet physiologically. CB1R is the most abundant heterotrimeric 
G 

i/o
 -protein coupled receptor (GPCR) in the brain. The major intercellular 
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endogenous ligands for CB1R are N-arachidonyl ethanolamine (anandamide or 
AEA; Devane et al. 1992) and 2-arachidonyl glycerol (2-AG; Mechoulam et al. 
1995; Sugiura et al. 1995), although other candidates exist. It is not known why 
there are two endogenous ligands for CB1R. AEA has high affinity for CB1R but 
is a partial agonist; 2-AG is a full agonist with lower affinity. AEA is also a TRPV1 
agonist that can directly affect 2-AG metabolism (Maccarrone et al. 2008). CB1R 
and its endogenous ligands constitute the cannabinoid system. Specific pharmaco-
logical tools, especially the receptor “antagonists” (actually inverse agonists) 
SR141617A (also called “rimonabant”) and AM251, and agonists WIN55212-2 
and CP55940, were vital to the discovery and elucidation of the numerous neuro-
physiological roles of the eCB system. Nevertheless, the one-time gold standard, 
rimonabant, is a TRPV1 antagonist as well (Gibson et al. 2008), and AM251 may 
be an agonist at GPR55 (Ryberg et al. 2007). Several lines of CB1R−/− mice have 
been developed, and suspected CB1R-mediated effects must be checked in a 
mutant mouse.

Compared with the elaborate vesicular secretory machinery for conven-
tional neurotransmitters, the proposed signaling process employed by eCBs is 
simple. AEA and 2-AG are produced by enzymatic cleavage of lipid precur-
sors in the outer membrane lipid bilayer of nerve cells. AEA is formed from 
N-arachidonyl phosphatidyl ethanolamine by the action of a phospholipase D, 
whereas 2-AG is derived from diacylglyercol by the action of diacylglycerol 
lipase (DGL). Controversy exists as to whether or not phospholipase C (PLC) 
activation is mandatory for the formation of 2-AG. PLC activity appears to be 
important when 2-AG levels are assayed neurochemically and in physiologi-
cally assays of eCBs produced via the activation of muscarinic cholinergic and 
metabotropic glutamatergic receptors (Hashimotodani et al. 2005). Neither 
AEA nor 2-AG are pre-packaged in membrane-bound structures, or stored in 
identified depots, and are said to be produced “on-demand.” The analogy with 
modern manufacturing methods is widely used, but there are questions about 
how literally it should be interpreted. The process of eCB release is not 
understood.

AEA actions are terminated by the enzyme fatty-acid amide hydrolase (FAAH), 
and those of 2-AG are terminated by monoglyceride lipase (MGL). Both eCBs are 
taken up into cells by an as yet uncloned eCB-transporter. The uptake and degrada-
tion systems are very effective, and the natural agonists have only weak effects 
when bath-applied to brain slices. Synthetic agonists that are immune to transport 
and degradation are widely used instead.

The ubiquity of eCBs and their receptors, and the rapid ascent of the eCB 
system to a prominent place in modern neurophysiological research may 
obscure some fundamental, unresolved issues. A central problem is identifying 
the particular eCB that is active at a given synapse. Present technologies have 
limited spatial and temporal resolution. A general solution will probably have 
to await the development of new methods that permit real-time, in situ analyses 
of lipid signals.
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8.2  Basic Neurophysiology of eCBs

8.2.1  Retrograde Signaling

The first suggestion that eCBs could be retrograde signals seems to have been based 
on theoretical rather than experimental grounds in prescient reports by Elphick and 
colleagues (Egertova et al. 1998; Elphick and Egertova 2001). Retrograde signals 
are produced in and released from a postsynaptic cell and then travel backwards 
across synaptic junctions where they activate receptors on presynaptic nerve termi-
nals and alter synaptic transmitter release. Elphick and Ergetova noted that two 
major components of the eCB system, CB1Rs and the degradative enzyme for 
anandamide, FAAH, were expressed independently, with FAAH present in postsyn-
aptic cells receiving inputs from pre-synaptic terminals bearing CB1R. They recog-
nized that this organization was ideal for a retrograde signal system. Only the 
absence of an efficient means for testing this remarkable insight can explain the fact 
that it was not more widely recognized at first. In fact, the neurophysiological 
complement for their idea was being developed in parallel, but the physiological 
link was also unrecognized.

8.2.2  Depolarization-Induced Suppression of Inhibition

In the early 1990s an unusual mode of synaptic communication was discovered in 
in vitro cerebellar and hippocampal slices (Llano et al. 1991; Pitler and Alger 
1992). It was found that increases in intracellular calcium ion concentration ([Ca2+]

i
 ) 

in the principal projection neurons cause a transient (tens of seconds at experimen-
tal temperatures) decrease in the amplitude of incoming, GABA-mediated inhibi-
tory postsynaptic potentials or currents (IPSP/Cs). Repetitive action potential firing 
of the postsynaptic cell, or a brief postsynaptic depolarization, readily suppress the 
IPSP/Cs. This phenomenon became known as depolarization-induced suppression 
of inhibition, or DSI (Alger and Pitler 1995). DSI could not be accounted for by 
down-regulation or other modification of post-synaptic GABA

A
 receptors. Instead, 

many studies suggested that the decreased IPSP/Cs reflect a decrease in GABA 
release, and that a presynaptic, pertussis toxin-sensitive G-protein coupled receptor 
(GPCR) is involved (Pitler and Alger 1994). The combination of postsynaptic 
induction and presynaptic expression imply that there must be a retrograde mes-
senger from the principal cells to the interneurons.

The DSI messenger remained unknown until 2001 when several groups showed 
that it is an eCB (Wilson and Nicoll 2001; Ohno-Shosaku et al. 2001; Diana et al. 
2002). Agonists of CB1R mimic and occlude DSI, and CB1R antagonists prevent it. 
A blocker of the eCB transporter suppresses IPSCs in a CB1R-dependent manner 
(Wilson and Nicoll 2001), suggesting that a low tonic level of CB1R activation is 
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present. CB1R-dependent IPSC suppression is triggered by photo-uncaging of calcium 
in the postsynaptic cell. There is a tight correlation between the susceptibility of 
IPSC depression to DSI and suppression by the CB1R agonist WIN55212-2 in tissue 
cultured cells (Ohno-Shosaku et al. 2001). ECBs inhibit presynaptic release from 
GABAergic boutons measured by the FM1-43 destaining method (Brager et al. 
2003). DSI is absent in two strains of CB1R−/− mice (Wilson et al. 2001; Varma et al. 
2001), providing firm evidence for the involvement of eCBs in DSI.

The proposal that eCBs are the retrograde messengers in DSI fits well with the 
morphological localization of CB1Rs, which are expressed on the axon terminals 
of GABAergic interneurons in both cerebellum and hippocampus (Freund et al. 
2003). In the hippocampus, the highest density of CB1Rs is on a subclass of 
GABAergic interneuron that also expresses the neuropeptide cholecystokinin 
(CCK) (Marsicano and Lutz 1999; Katona et al. 1999). The CCK cells comprise 
both basket cells and dendrite-targeting cells, and have distinctive properties, 
including an exclusive dependence on the conotoxin-sensitive, N-type voltage-
gated calcium channels (VGCCs) for release of GABA. Coupled cell pair record-
ings revealed that conotoxin blocks all IPSCs that are susceptible to DSI or eCBs 
(Wilson et al. 2001). Presynaptic CB1Rs regulate release mainly by blocking 
VGCCs and reducing calcium influx into nerve terminals (Kreitzer and Regehr 
2001b; Diana et al. 2002), although K channel activation and direct interference 
with the release processes can also contribute (Varma et al. 2002; Diana and Marty 
2004). In cerebellum, inhibition of interneuron firing (Kreitzer et al. 2002), proba-
bly by increasing activity of a K channel, partly accounts for DSI.

ECB signaling is usually studied under non-physiological conditions, and it has 
been suggested that normal action potential firing patterns of CA1 cells are insuf-
ficient to cause eCB release (Hampson et al. 2003), although convergent, synchro-
nous synaptic inputs from multiple sources are effective (Zhuang et al. 2005). Other 
physiologically relevant factors are considered below.

8.2.3  GPCR-Dependent eCB Mobilization

The evidence that DSI is initiated by a post-synaptic rise in [Ca2+]
i
 is persuasive: 

DSI is blocked by high concentrations of Ca2+ chelators, and is induced by stimula-
tion that increases [Ca2+]

i
 in post-synaptic cells (Glitsch et al. 2000; Brenowitz and 

Regehr 2003; Wang and Zucker 2001), including photolytic uncaging of Ca2+ in 
these cells (Wilson and Nicoll 2001; Wang and Zucker 2001). NMDAR activation 
can also trigger Ca2+-dependent eCB mobilization (Ohno-Shosaku et al. 2007). 
Early evidence had pointed to a close relationship between DSI and activation of 
certain G-protein coupled receptors (Pitler and Alger, 1994; Morishita et al. 1997; 
Martin and Alger 1999). After the discovery that DSI is mediated by eCBs, it was 
found that high concentrations of mGluR or mAChR agonists directly stimulate 
eCB mobilization (Maejima et al. 2001; Varma et al. 2001; Kim et al. 2002; Galante 
and Diana 2004). In addition, concentrations of GPCR agonists that are too low to 
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stimulate detectable eCB effects directly, can enhance DSI (Varma et al. 2001, Kim 
et al. 2002; Brenowitz and Regehr 2005). The various forms of eCB mobilization 
are mediated by different intracellular biochemical cascades. Ca2+-dependent eCB 
processes (DSI or depolarization-induced suppression of excitation (DSE), see 
below) are referred to as eCB

Ca
 , and mGluR- or mAChR-dependent forms are 

designated eCB
mGluR

 and eCB
mAChR

 (generally, eCB
GPCR

).
It is not known if DSI enhancement by GPCRs is Ca2+-dependent, because DSI 

itself requires Ca2+. eCB
GPCR

 is relatively independent of [Ca2+]
i
 and can be initiated 

even when principal cells are loaded with Ca2+ chelators (Maejima et al. 2001; Kim 
et al. 2002). eCB

GPCR
 is not completely Ca2+ independent, however, and two models 

have been put forward to account for the role of Ca2+ in eCB
GPCR

. The coincidence-
detection model proposes that hippocampal PLC

B1
 (or PLC

B4
 in cerebellum, 

Maejima et al. 2005) integrates Ca2+ with a GPCR-induced intracellular messenger 
to generate eCBs (Hashimotodani et al. 2005). PLCb

−/− mice lose eCB
GPCR

 but not 
eCB

Ca
. PLCb isoforms are Ca2+-dependent, and in this model [Ca2+]

i
 at levels ³10−7 M 

is required to mobilize eCBs. A narrow window of time, set by the duration of [Ca2+]
i
 

elevation, determines when eCBs are mobilized. The coincidence-detection model 
posits a single final common biochemical pathway for all eCB

GPCR
. In the other 

model, the priming model, a transient rise in [Ca2+]
i
 is required to “prime” the initia-

tion of eCB
mGluR

, however, once the pathway is primed, a sustained elevation of 
[Ca2+]

i
 is not required, and eCB

mGluR
 can be generated at very low [Ca2+]

i
 (Edwards 

et al. 2008). In the priming model, PLC is upstream of the eCB
GPCR

 signaling step. 
Blockers of eCB mobilization, such as DGL inhibitors, prevent eCB

mAChR
 without 

reducing DSI enhancement by either mAChR or mGluR agonists, suggesting that 
the DSI enhancement and direct mobilization pathways do not share the same intra-
cellular biochemical pathways. eCB

mAChR
 and eCB

mGluR
 can be distinguished in other 

ways as well (Edwards et al. 2006). In both models, Ca2+ and the products of GPCR 
activation interact non-linearly to mobilize eCBs (see also Brenowitz and Regehr 
2005). Differences between mAChRs and mGluRs argue against the concept of a 
final common pathway for eCB mobilization (Edwards et al. 2008; see summary 
diagram in Fig. 8.1).

Regardless of the details, the synergistic interactions between [Ca2+]
i
 and GPCR 

products considerably broaden the scope and impact of eCBs in the brain. Although 
vigorous bursts of action potentials or depolarizations lasting hundreds of millisec-
onds and producing large increases in [Ca2+]

i
 undoubtedly occur, these are probably 

rare, whereas it is likely that moderate increases in [Ca2+]
i
 often overlap in time with 

GPCR activation. Hence, the integration of Ca2+ and GPCR products may be the 
most common mode of eCB mobilization.

8.2.4  Are eCBs Really Retrograde Messengers?

The answer to this question is almost certainly yes, nevertheless, the definitive 
evidence is not yet in. Unlike many conventional neurotransmitters which are 
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small, generally water-soluble molecules (glutamate, GABA, ACh, etc.), eCBs are 
hydrophobic lipids. They stick to membranes (and plastic tubing, glassware, and 
experimental chambers). They are effective in miniscule quantities, do not diffuse 
great distances in brain tissue (because of their hydrophobicity, as well as the 
aggressive uptake and degradation systems), and generally cannot be collected in 
the superfusate of stimulated physiological tissue. Direct methods of assaying 
eCBs rely on disruptive bulk treatment methods: e.g., lipid extraction followed by 
tandem mass spectroscopy. Relatively large quantities of brain tissue are required, 
and so temporal resolution and cellular specificity are lost. Furthermore, eCBs can 
be by-products of reactions that are unrelated to intercellular signaling. Indeed, a 
large proportion of the 2-AG detected by bulk assay methods probably serves 
functions other than signaling. Tissue stimulation increases the quantity of 2-AG 
that is detected neurochemically, but the signaling fraction cannot be separated 
from other fractions. The increases in 2-AG could reflect topping-up of the cel-
lular reservoirs, and the on-demand production of eCBs might not be directly 
linked to signaling.

At the single cell level, the problems in assaying the eCB system are acute. Does 
cellular stimulation truly induce the de novo synthesis of eCBs, or does it only help 
to make eCBs available in some other way, e.g., by facilitating their exit from the 
cell of origin? Although appropriate stimulation of a postsynaptic cell clearly leads 
to a retrograde signaling process, which in turn leads to the activation of presynap-

mGluRmAChR

????   

Ca2 Ca2

PIP2

PLCb

DAG

2-AG

DGL

Fig. 8.1 Distinctions among DSI and eCB
mAChr

 and eCB
mGluR

 in hippocampus. Arrows denote 
known steps in signaling pathways for eCBs; unknown steps may be included within the arrows. 
DSI (eCB

Ca
) and Ca2+ enhancement of eCB

GPCR
 (dotted arrows) are independent of PLC. 

Intracellular injection of a PLC inhibitor does not affect any response. DSI is normal in PLCb1
−/− 

mice, but eCB
mAChR

 and eCB
mGluR

 are absent, suggesting PLCb1
 is upstream of eCB signaling. 

Intracellular DGL inhibitors have little effect on DSI or eCB
mGluR

 but strongly reduce eCB
mAChR

. 
Extracellular PLC or DGL inhibition prevents eCB-iLTD induction. Evidently different pathways 
are used for eCB mobilization under different conditions. Summary of data from several sources; 
see text
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tic CB1Rs, direct evidence of de novo postsynaptic synthesis of an eCB followed 
by its transit across the synapse is not yet available.

8.2.5  ECB Mobilization

The uncertainties alluded to above argue for caution. In particular, the implication 
that single cell stimulation “produces” or “releases” eCBs should probably be 
avoided until these processes can be directly measured. When stimulation of a 
postsynaptic cell initiates retrograde signaling that involves presynaptic CB1R 
receptors, the term “mobilization” can be used. This is descriptive of what is going 
on (the analogy is to antigenic mobilization of the immune response), but neutral 
as to the specific mechanisms (synthesis, release, transport, etc.) that are being trig-
gered. As the details emerge, more specific terms will replace this general one.

8.2.6  Pre-endocannabinoid DSI and eCBs

Much was known about DSI before it was found to be mediated by eCBs (Alger 
2002). Yet, to date, all of the discoveries made regarding DSI in the pre-eCB period 
have been verified by subsequent work. It is likely that all of the physiological 
evidence that DSI is expressed presynaptically applies also to demonstrated eCB-
mediated processes, although not all of the experiments done on DSI have been 
repeated on the eCB actions. This chapter will not distinguish between pre-eCB 
DSI and eCB-mediated DSI when it is clear that pre-eCB phenomena translate 
readily to the eCB-mediated events.

8.2.7  Timing of eCB Mobilization

Timing of neuronal interactions is critical to the proper operation of the brain. 
Understanding the roles of any signaling system, including eCBs, requires under-
standing its temporal parameters. The physiological eCB action that is expressed as 
DSI does not peak until hundreds of milliseconds after a voltage step that causes 
Ca2+-influx (Pitler and Alger 1994; Wilson and Nicoll; 2001). This is orders of 
magnitude longer than needed for conventional neurotransmission. DSI comprises 
all of the steps of eCB mobilization, and the activation of CB1Rs, which like all 
GPCRs, have comparatively slow actions. CB1Rs primarily target the downstream 
modulation of neurotransmitter release. To estimate the actual eCB mobilization 
time itself, Heinbockel et al. (2005) created a “caged” form of AEA. Caged AEA 
is biologically inactive until it is exposed to a brief flash of laser light that instantly 
(ms) disrupts the bond joining the chemical caging group with AEA, liberating bona 
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fide AEA. Caged AEA can be applied to slices where, prior to laser flash, it equilibrates 
throughout the tissue immediately adjacent to CB1Rs. The diffusion time between 
photolytic AEA generation and CB1Rs is negligible, and therefore, the interval 
between the laser flash and the onset of IPSC suppression represents the time for 
binding of AEA to CB1R and downstream steps. This turns out to constitute a 
major fraction of the delay in IPSC depression that is seen in DSI or eCB

GPCR
. The 

remaining steps normally leading to AEA synthesis and release must be relatively 
fast. It was concluded that eCBs are mobilized experimentally within 100 ms (at 
physiological temperatures ~50 ms) after the start of cellular stimulation. The brev-
ity of this interval will influence the physiological roles played by eCBs, and con-
strain hypotheses about the underlying mobilization mechanisms.

8.2.8  2-AG is Probably the Main eCB in Hippocampus  
and Cerebellum

Determining whether or not eCBs are involved in a particular process is straightfor-
ward. Identifying which eCB is involved is more complicated. In the hippocampus, 
the first evidence that the signaling eCB was likely to be 2-AG came from chemical 
analyses of stimulated hippocampal slices showing selectively increased 2-AG 
levels (Stella et al. 1997). Kim and Alger (2004) found that in hippocampal slices 
an inhibitor of the AEA degradative enzyme, FAAH, did not affect DSI. 
Cyclooxygenase-2 (COX-2) (Kozak et al. 2000), a key inducible enzyme in prosta-
glandin synthesis, also degrades 2-AG. Inhibitors of COX-2 enhance DSI (Kim and 
Alger 2004; Sang et al. 2006; Hashimotodani et al. 2007) as expected if the enzyme 
helps to keep the 2-AG levels low. Increasing COX-2 levels decreases DSI (Sang 
et al. 2006). The effects of bath-applied 2-AG are not enhanced by COX-2 inhibi-
tion (Kim and Alger 2004; Hashimotodani et al. 2007), implying that COX-2 acts 
within the pyramidal cells, probably regulating the actual production of 2-AG, 
rather than serving as an elimination step for released 2-AG. The ineffectiveness of 
FAAH inhibition compared with the efficacy of the COX-2 inhibitors suggests that 
2-AG mediates DSI.

Monoglyceride lipase (MGL) is a major degradative enzyme for 2-AG (Dinh 
et al. 2002), but not AEA, and its inhibition, therefore, should increase 2-AG medi-
ated phenomena. MGL inhibitors enhance DSI (Makara et al. 2005; Hashimotodani 
et al. 2007). Bath-application of an inhibitor of DGL (the final enzyme in 2-AG 
synthesis), tetrahydrolipstatin, THL, also inhibits DSI (Hashimotodani et al. 2007), 
without affecting actions of applied 2-AG.

DGL is often localized at post-synaptic sites where eCBs may be liberated 
(Uchigashima et al. 2007; Yoshida et al. 2006). The main DGL isoform, DGLa, is 
found in proximity to mGluRs in dendritic spines onto which CB1R-expressing 
excitatory terminals synapse in striatum (Uchigashima et al. 2007), cerebellum 
(Yoshida et al. 2006) and hippocampus (Yoshida et al. 2006; Katona et al. 2006). 
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PLCb4
 (implicated in cerebellar eCB mobilization, Maejima et al. 2005) is also 

present in Purkinje cells (Yoshida et al. 2006). The pharmacological data, together 
with evidence of clustering of the major players in the eCB pathway, fulfill major 
criteria for identification of 2-AG as the eCB. DGLa is apposed to inhibitory termi-
nals in Purkinje cells, and in ventral tegmental area cells (Matyas et al. 2008). 
Caveats persist however. The arrangement just described does not always exist at 
inhibitory synapses. Yet, in the hippocampus and striatum, inhibitory synapses are 
much more sensitive to eCB actions than are the excitatory synapses. Activation of 
CB1Rs on glutamatergic terminals is proposed to be homosynaptic, whereas activa-
tion of CB1R on inhibitory terminals (i.e., by eCB

mGluR
) would be heterosynaptic. 

Thus, the morphological arrangement raises key questions concerning eCB signal-
ing at hippocampal inhibitory synapses, and suggests that different mechanisms 
underlie eCB mobilization in different parts of the brain (Fig. 8.2).

8.2.9  CB1R on Glutamatergic Terminals:  
Depolarization-Induced Suppression of Excitation

Although this chapter focuses on eCBs in inhibitory synaptic plasticity, eCBs also 
powerfully modulate glutamate transmission in many brain regions. Kreitzer and 
Regehr (2001b) reported that the retrograde suppression of glutamatergic synapses 
in the cerebellum, DSE, is mediated by an eCB. Both parallel and climbing fiber 
synapses are affected by DSE, and [Ca2+]

i
 -imaging experiments show that the  

Fig. 8.2 Arrangements of the molecular components eCB
mGluR

 in cerebellum (a) and hippocampal 
pyramidal cell dendrites (b) modified from Yoshida et al. (2006). In both regions interneuron 
terminals are more heavily invested with CB1Rs than excitatory terminals. Phospholipase Cs (b4 
in cerebellum and b1 in hippocampus) are present in dendritic spines and shafts. In cerebellum, 
the 2-AG synthetic enzyme, DAGLa, is at the base of the spine and along the shaft. The metabotro-
pic mGluR1 receptor is at the excitatory, PF, synapse, but is not near the inhibitory synapse. In the 
hippocampal pyramidal cell dendrite (PyD) DAGLa, is present throughout the spine, but not the 
dendritic shaft. mGluR5 is in hippocampus but not cerebellum, and both mGluR1 and mGluR5 
are near the PyD excitatory synapses. The hippocampal CCK-In terminal bears CB1Rs, although 
the parvalbumin (PV-In) terminal does not. In both structures eCBs act homosynaptically on 
excitatory synapses and heterosynaptically on inhibitory synapses
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eCBs depress glutamate release by depressing calcium influx into the synaptic ter-
minals. DSE is induced by the same kinds of stimulation that induce DSI, and 
therefore, can participate in normal cerebellar network activity.

In the hippocampus, DSE is not produced by the same stimuli that induce DSI 
(Wagner and Alger 1996), except in autaptic culture (Straiker and Mackie 2005). 
Instead, much stronger postsynaptic stimulation (depolarization lasting ~10 s) is 
required to bring about a weak DSE (~15% EPSC reduction (Ohno-Shosaku et al. 
2002; Chen et al. 2007). There is a much lower density of CB1Rs on excitatory 
terminals (Kawamura et al. 2006) than on inhibitory ones, although the greater 
number of excitatory terminals means that a significant fraction of the CB1Rs in 
the hippocampus could be on them. The diffuse but massive distribution of CB1Rs 
on glutamate terminals in hippocampus and neocortex may be primarily related to 
neuroprotection, as discussed below.

8.2.10  eCBs and Brain Development

8.2.10.1  eCBs Affect Interneuronal Connectivity

CB1Rs are heavily expressed in axonal growth cones of GABAergic interneurons 
in the rodent cortex during late gestation, where they help establish accurate con-
nections between the interneurons and other cells. Interneuronal circuits are mis-
wired in the CB1R−/− mouse (Berghuis et al. 2007), and AEA application inhibits 
interneuron neurite extension and opposes BDNF-induced neurite outgrowth 
(Berghuis et al. 2005). AEA also triggers CB1R internalization and elimination 
from filopodia of tissue-cultured GABAergic neurons (Berghuis et al. 2007). In 
tissue culture, AEA or WIN55212-2 induces chemorepulsion and collapse of the 
axonal growth cones of these GABAergic interneurons. Rho kinase inhibition pre-
vents the effects caused by CB1R agonists. Interestingly, however, when a CB1R 
agonist is applied in the presence of the CB1R antagonist AM251, not only is 
axonal repulsion prevented, but the agonist becomes an attractant for axonal turn-
ing. Similarly, the Rho K antagonist converts AEA from chemo-repulsant to 
chemo-attractant. Neither effect has been explained. Nevertheless, eCBs can regu-
late synaptogenesis and target selection in vivo.

8.2.10.2  In Early Development eCBs Decrease Network Excitability

The high CB1R density on inhibitory nerve terminals, and the general rule that 
CB1R activation depresses transmitter release, strongly implies that eCBs will 
disinhibit network properties. (CB1R on excitatory terminals will have an oppo-
site effect, but in hippocampus and neocortex these receptors are not easily 
 activated by physiological stimuli.) However, at early postnatal developmental 
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stages, up to about PN10 in rodents, postsynaptic GABA
A
 receptors cause membrane 

depolarization (see Kaila et al. this volume), and have different roles than they do 
in adult tissue. Preventing the release of GABA would therefore decrease network 
excitability at these stages. Indeed, during early development, eCB-mediated 
retrograde signaling depresses network excitability by suppressing the excitatory 
GABA responses (Bernard et al. 2005). Conversely, CB1R antagonists cause 
epileptic discharges in the immature hippocampus. eCBs have, therefore, been 
proposed as mechanisms of homeostatic control of synaptic transmission in this 
tissue, capable of reducing or increasing network activity depending on the extent 
to which CB1Rs are activated. Since network activity is a crucial factor for the 
correct wiring of the brain, simple imbalances in the eCB system could adversely 
affect proper neuronal development.

These results raise concerns that activation of the eCB system by cannabis use 
during development could disturb synaptic development. Similar concerns would 
accompany the use of the CB1R antagonist (marketed as Acomplia in Europe) for 
weight loss. On the other hand, many centuries of experience with cannabis use by 
millions of people have evidently not lead to widespread major abnormalities attrib-
utable to brain mis-wiring (Iversen 2003). Cannabis consumption even during 
pregnancy was not associated with increased perinatal mortality or morbidity in a 
recent trial, although it was associated with a small, statistically detectable decrease 
in birthweight (Fergusson et al. 2002). The possibility of subtle effects cannot be 
dismissed, and such issues demand continued monitoring.

8.2.11  Interneurons Release eCBs

8.2.11.1  Interneuronal DSE and DSI

GABAergic interneurons also regulate their inputs by releasing eCBs. Cerebellar 
stellate and basket cells receive excitatory inputs from parallel fibers that express 
CB1Rs near their synaptic zones. Stimulation of the interneurons mobilizes eCBs 
and produces DSE (Beierlein and Regehr 2006). The phenomena in interneurons 
were essentially the same as in Purkinje cells, except that the stellate cell eCB-
response is also triggered by NMDARs. Stellate cells inhibit Purkinje cells, hence 
stellate cell DSE influences feedforward inhibition onto the Purkinje cells. 
Decreasing the stellate cell inhibition in this way causes a much more widespread 
disinhibition than would be accomplished by DSI. In the hippocampus, the den-
drite-targeting, Schaffer-Collateral Associated, CCK-expressing interneurons are 
electrically and chemically coupled. Their synapses express CB1Rs, and the SCA 
interneurons can induce DSI on each other’s inputs (Ali 2007). Reducing inhibition 
of an inhibitory cell should result in a net stimulation of the principal cells, i.e., an 
influence opposite to that seen in cerebellum. Because a given interneuron typically 
activates hundreds of principal cells, eCB actions that alter interneuronal firing may 
be more globally dispersed than those that affect only principal cell firing.
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8.2.11.2  eCB Mediated Self-Inhibition of Interneurons

Cortical low-threshold spiking (LTS) interneurons can release eCBs when vigorously 
stimulated (Bacci et al. 2004). Evidently, the eCBs act on CB1Rs on the LTS 
somata and increase a very long-lasting (>20 min) Ca2+-dependent K+-channel con-
ductance, thus hyperpolarizing and inhibiting the cells. The implications of this 
effect for regulation of cortical networks are not understood, and the phenomenon 
has not been seen in other regions (e.g., Beierlein and Regehr 2006).

8.3  Basic Neurophysiology of eCBs and Synaptic Plasticity

8.3.1  Use-Dependent Regulation of eCB Effects on Inhibition

8.3.1.1  Increases in Probability of GABA Release Decrease Presynaptic eCB 
Effects

eCBs do not invariably and uniformly switch off GABA release. Their efficacy is a 
function of the activity in the interneuron, specifically in the synaptic terminal 
[Ca2+]

i,
. Inhibition of voltage-gated N-type VGCCs, and the consequent decrease in 

[Ca2+]
i
 in the terminal, is the primary mechanism by which eCBs inhibit transmitter 

release in the short term. Increases in terminal [Ca2+]
i
, resulting from decreased K+ 

conductance caused, e.g., by 4-aminopyridine (4-AP) (Alger et al. 1996; Morishita 
et al. 1998; Morishita and Alger 1999; Varma et al. 2002), can overcome DSI or 
eCB-induced IPSC suppression. 4-AP prolongs the terminal action potential, keeps 
presynaptic VGCCs open longer, and increases terminal [Ca2+]

i
 . At low concentra-

tions, £100 mM, 4-AP blocks only a few types of K+ channels, which are often situ-
ated near nerve terminals. Extracellular application of other K+ channel antagonists, 
i.e., TEA, Cs+ or selective K+-channel toxins, do not abolish DSI, suggesting that 
4-AP sensitive channels have a privileged position in the CB1R-expressing inhibi-
tory nerve terminals. As predicted, if Ca2+ influx via VGCCs is decreased, then 
4-AP no longer abolishes DSI (Varma et al. 2002). Inhibition of GABA release 
caused by WIN55212-2 can also be overcome by 4-AP or barium in a [Ca2+]

o
-

dependent way (Hoffman and Lupica 2000). Diana and Marty (2003) directly 
loaded the K+ pore blocker Cs+ into presynaptic interneurons, and observed a Ca2+-
sensitive reduction in cerebellar DSI. These data show that increasing the probabil-
ity of GABA release can overcome the inhibitory effects of CB1R activation.

8.3.1.2  Tonic CB1R Activation

Physiological evidence of use-dependence of eCB effects comes from studies of 
inhibitory transmission between CCK-expressing mossy fiber associated 
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 interneurons and CA3 pyramidal cells (Losonczy and Nusser 2004). If stimulated 
at frequencies <25 Hz, the interneurons are essentially “mute,” i.e., they produce 
almost no postsynaptic responses, but stimulation from 50 to 100 Hz elicits pro-
gressively more robust responses. Generally, the probability (Pr) of transmitter 
release is a function of presynaptic action potential firing frequency, and Pr 
increases with higher frequencies that cause higher [Ca2+]

i
. The muted interneuron 

synapses in CA3 have a low Pr at low stimulus frequencies. In this case, low Pr is 
not an intrinsic property of the synapses, rather it is caused by tonic activation of 
the CB1Rs on the presynaptic terminals. Inhibiting CB1Rs enables the cells to 
release GABA with a high Pr even at low stimulation frequencies. Either constitu-
tive activation of the CB1R on the interneurons, or tonic release of eCBs in their 
vicinity, prevents them from releasing GABA. The output of nearby CCK-basket 
cells in CA3 is not similarly muted, implying that the eCB effects are somehow 
directed at the mossy fiber associated interneurons. In CA1, the output of CCK-
basket cells in CA1 is also suppressed by tonic eCB actions (Neu et al. 2007). In 
CA1, increasing the presynaptic action potential firing to >20 Hz entirely reverses 
the DSI or inhibition of GABA release caused by a CB1R agonist. Apparently this 
frequency dependence, like the block of DSI produced by 4-AP, is attributable to 
increases in terminal [Ca2+]

i
 that accompany repetitive firing. Use-dependence of 

tonic eCB effects adds a new dimension to their ability to regulate the plasticity of 
inhibitory transmission.

8.3.1.3  Activity-Dependent Increases in eCB Responses

A different form of eCB use-dependence can be induced by low-frequency repeti-
tive stimulation given for 5 min to afferent fibers in CA1 (Zhu and Lovinger 
2007). Under this protocol, a slight degree of DSI is markedly and persistently 
enhanced by the activation of mGluRs during the stimulation. Edwards et al. 
(2008) found that a single DSI trial, causing a brief increase in pyramidal cell 
[Ca2+], enhances subsequent mGluR-mediated eCB-mobilization. Transient 
 activation of mGluRs persistently enhances DSI, although prior activation of 
mAChRs does not. Therefore, the eCB system itself is plastic and subject to 
higher levels of regulation.

8.3.2  DSI in LTP

To appreciate the physiological roles of eCBs, it is necessary to consider their 
hydrophobic nature, and the powerful uptake and degradation systems that rapidly 
terminate their actions. Both factors retard their diffusion in the aqueous extracel-
lular milieu, and severely limit the spread of eCBs from their source. Indeed, 
whether or not eCB released from one cell affects synaptic inputs to other cells near 
the source cell, is controversial (cf. Pitler and Alger 1994; Wilson and Nicoll 2001). 
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In general, eCBs act locally. This enables a single pyramidal cell to influence its 
own behavior without affecting other cells. Synaptic inhibition affects neuronal 
networks in many ways. For example, local disinhibition caused by DSI enables 
cells sourcing eCBs to opt out of communal activities and do things not being done 
by their neighbors. Reich et al. (2005) recorded from two pyramidal cells simulta-
neously, and observed that rhythmic IPSPs in one cell are not inhibited when the 
DSI is induced in the other cell (and vice versa) (Fig. 8.3a).

By hyperpolarizing cells, IPSPs help maintain the electrostatic Mg2+ ion plug 
of the NMDAR pore, keeping it in a non-conducting state. Disinhibition allows 
a given excitatory synaptic input to elicit greater than normal membrane depo-
larization, relief of the Mg2+ block, and expression of NMDAR-mediated 
responses. By restricting inhibition, eCBs should act as gating agents, and by 
acting locally in a time-limited way, contribute dimensions of temporal and spa-
tial selectivity not provided by global modulation of GABA transmission. This 
model was tested by Carlson et al. (2002), who showed that DSI can facilitate 
LTP induction in CA1 pyramidal cells with simultaneous single whole-cell and 
field potential recordings. If timed to occur during a DSI period (disinhibition) 
in the single cell, a weak stimulus train of extracellular stimuli induces LTP only 
in the single cell, but not in the field potential. This shows that the disinhibition 
caused by DSI allows unblocking of NMDA receptors and LTP induction in a 
single cell, without affecting the population. In this way, DSI can target LTP to 
specific cells.

8.3.3  Inhibitory Long-Term Depression

Regulation of LTP by DSI (above) shows that eCBs can cause long-term effects 
indirectly, but does not rule out the possibility that eCBs might cause long-term 
synaptic modifications through a direct action. In the nucleus accumbens (Robbe 
et al. 2002) and striatum (Gerdeman et al. 2002), a form of long-term depression 
(LTD) is mediated by an eCB acting as a retrograde messenger at glutamatergic 
terminals. Both phenomena require activation of mGluRs and increases in [Ca2+]

i
 in 

the postsynaptic cells. An inhibitory LTD (iLTD) could be induced via a similar 
mechanism at GABAergic synapses in CA1 (Chevaleyre and Castillo 2003; 
Edwards et al. 2006). In the experiments, brief repetitive trains of afferent pathway 
stimulation release glutamate that activates mGluRs (ionotropic glutamate recep-
tors were pharmacologically blocked; see Fig. 8.3b and c). Application of the group 
I mGluR-selective agonist DHPG for 10 min fully substitutes for afferent stimula-
tion, and induces a chemical eCB-iLTD. iLTD induction is blocked by either 
mGluR or CB1R antagonists, but iLTD expression tested ~10 min post-induction is 
independent of both receptors. High concentrations of intracellular BAPTA in the 
pyramidal cells or extracellular (not intracellular, Edwards et al. 2006) application 
of either a PLC or a DGL inhibitor prevents iLTD induction. Importantly, LTP of 
EPSP-spike (E-S) coupling, i.e., of the ability of a given EPSP to trigger spikes, is 
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enhanced during iLTD (Chevaleyre and Castillo 2003). Thus, as with DSI-induced 
LTD, iLTD promotes LTP by suppressing IPSPs.

In order to investigate the spread of iLTD induction, Chevaleyre and Castillo 
(2004) focally stimulated in the CA1 dendritic region. Relatively weak stimulus trains 
delivered near a dendrite induced iLTD of DSI-sensitive IPSCs. If two stimulating 
electrodes were used, one to elicit the test IPSC, and the other to deliver the stimulus 
trains, the spread of the iLTD effect could be estimated by the distance along the 
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Fig. 8.3 eCBs depress inhibition and facilitate LTP induction. (a) A weak (0.4 s/50 Hz) stimulus 
train given to excitatory axons in s. radiatum of the hippocampal CA1 region does not induce LTP 
in the population field potential EPSP (fEPSP, triangles in graph). The EPSC recorded under 
voltage-clamp from a single cell in the same CA1 population undergoes LTP if the weak train is 
timed to coincide with the peak suppression of IPSCs produced by DSI in the cell (open circles in 
graph). Carlson et al. (2002). (b) (1) Initiation of iLTD in CA1 pyramidal cell by two strong 
1-s/100 Hz stimulus trains in s. rad.; pairs of stimuli given througought. (b) (2) group data show-
ing iLTD of first response of stimulus pair. (b) (3) Paired-pulse facilitation of the pair of IPSCs 
before and after iLTD induction. (c) A CB1R antagonist given before an iLTD protocol prevents 
iLTD induction (c) (1), but has no effect if given 10 min after induction (c) (2). (b) and (c) modi-
fied from Chevaleyre and Castillo (2003). (d) Diagram from Chevaleyre et al. (2007) illustrating 
the molecular sequelae of activating CB1R on the presynaptic interneuron terminal during DSI 
(a), and iLTD (b and c)
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dendrites between the two electrodes. iLTD induction affected inhibitory synapses 
only within ~10 mm of the stimulation site. By varying the stimulation protocol, the 
authors discovered conditions that produce iLTD, but not LTP of EPSCs. The data 
revealed that LTP of E-S coupling can be induced in the absence of EPSC LTP; i.e., 
iLTD is the most important factor in E-S coupling LTP (Fig. 8.4).

The iLTD induction process itself raises interesting questions. Bursts of synaptic 
stimulation lasting only seconds suffice for induction, but if bath-application of 
DHPG is used, it must be given for ~10 min before iLTD is established (Chevaleyre 
and Castillo 2003; Edwards et al. 2006). A similar prolonged activation of CB1R 
following synaptic stimulation probably takes place, because application of a CB1R 
antagonist beginning 3 min after stimulus trains lasting only seconds can com-
pletely prevent iLTD induction. Even 7 min afterwards, an antagonist partially 
reduces the iLTD magnitude (Chevaleyre and Castillo 2003; cf Ronesi et al. 2004), 
demonstrating that the CB1Rs must be activated for many minutes.

Fig. 8.4 Long-lasting and CB1R-dependent facilitatory effect on surrounding synapses. (a) Two 
stimulating electrodes were placed 10 mm apart in the middle third of s. radiatum along the apical 
dendrite of CA1 pyramidal cells and synaptic responses were recorded extracellularly. Stimulus 
strength was set to evoke identical synaptic responses in both pathways. Theta-burst stimulation 
(TBS) was first applied to one pathway (S1) and then to the other pathway (S2) 35 min later. (b) 
Group data (n = 5) from experiments performed as described in (a). The first tetanus was delivered 
either to the proximal (n = 2) or distal (n = 3) stimulating pipettes. (c) Group data showing that LTP 
facilitation was abolished when TBS to S1 was delivered in the presence of 2 mM AM251 (n = 5 
slices). (d) Model that summarizes the local facilitatory effects of iLTD on LTP induction at 
Sch-CA1 synapses. Excitatory (e, white) and inhibitory (i, black) inputs impinge on the apical 
dendrite of a pyramidal cell. Local activation of excitatory inputs triggers LTP in a highly 
restricted area (10 mm from the stimulating site) and at the same time, it triggers iLTD in a slightly 
larger area. The spread of iLTD facilitates induction of LTP at neighboring excitatory inputs. 
Modified from Chevaleyre and Castillo (2004)
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How does brief train stimulation give rise to prolonged eCB mobilization? In 
principle, a reduction in MGL activity could cause prolonged eCB effects 
(Hashimotodani et al. 2007). Alternatively perhaps, reversal of the eCB transporter 
(that normally mediates eCB uptake from the extracellular space) could result in 
secretion of eCBs into the extracellular space for an extended period of time. 
Ronesi et al. (2004) found that eCBs experimentally loaded into medium spiny 
neurons in the striatum are released in a transporter-dependent way. Indeed, the 
pattern of afferent stimulation determines the extent to which transporter-aided 
eCB secretion occurs (Adermark and Lovinger 2007). Double-pulse stimulation is 
much more effective than single-pulse stimulation in causing the transporter-depen-
dent responses. How increasing the stimulation of the presynaptic cell would 
improve release of eCBs from the postsynaptic cell, or even if that happens, is 
unclear. Nevertheless, once transporter-dependent release is triggered, continued 
afferent stimulation is no longer required, suggesting that a long-lasting facilitation 
of eCB release is set into motion. Somewhat surprisingly, this protocol does not 
induce LTD or iLTD.

Is minutes-long stimulation of CB1R per se sufficient for iLTD induction? This 
is a controversial topic. Bath-application of WIN55212-2 alone reportedly induces 
iLTD, suggesting the CB1R activation alone is sufficient (Chevaleyre and Castillo 
2003), but WIN55212-2 washes out only very slowly from tissue. On the other 
hand, the steady release of eCBs and minutes-long IPSC suppression resulting from 
injection of the G-protein activator GTPgS into cells does not cause iLTD; as soon 
as AM251 is applied, the IPSCs return to control levels (Kim et al. 2002; Ronesi 
et al. 2004). Moreover, while an mGluR agonist induces eCB-iLTD, application of 
an mAChR agonist for ~20 min causes only a reversible, eCB-dependent IPSC sup-
pression (Edwards et al. (2006). Finally, persistent activation of CB1Rs by a series 
of DSI trials that lasts for 10 min also fails to induce iLTD (Edwards et al. 2006). 
A similar controversy in the striatum regarding induction of eCB-LTD of glutamate 
synapses (cf. Ronesi et al. 2004 and Kreitzer and Malenka 2005), has been resolved 
by the report (Singla et al. 2007) that stimulation of the presynaptic neuron during 
the CB1R activation is mandatory for eCB-LTD induction. Hippocampal iLTD 
induction by repetitive DSI trials also requires simultaneous interneuron stimula-
tion (Chevaleyre et al. 2007). Hence, a consensus seems to be emerging that activa-
tion of CB1R alone is insufficient to cause long-term synaptic plasticity, and that 
co-factors, perhaps in the nerve terminals, are required (cf. Edwards et al. 2006).

iLTD, but not DSI, requires presynaptic cAMP/PKA signaling, because it is 
inhibited by global inhibition of PKA, but not by injection of PKA inhibitors into 
the post-synaptic cells (Chevaleyre et al. 2007). iLTD, as well as the chemical eCB-
iLTD induced by DHPG application, is absent in mutant mice lacking the active 
zone protein RIM1a. WIN55212-2 cannot induce iLTD in RIM1a−/− mice, however, 
RIM1a is not required for basal synaptic transmission or DSI. Similar results are 
obtained in amygdala and hippocampus. Although appealingly simple, the model 
summarized in Fig. 8.3d already requires updating. In a mouse in which RIM1a 
cannot be phosphorylated by PKA, iLTD is not blocked Kaeser et al (2008). Hence, 
the roles that RIM1a and PKA play in iLTD remain undetermined. The presynaptic 
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activity of the serine/threonine phosphatase calcineurin (CaN) could be involved 
(Heifets et al. 2008). CaN activity is essential for iLTD expression, but whether or 
how it coordinates with the PKA/RIM1a scenario is also a mystery.

8.3.4  Relationship of the eCB System to Exogenous 
Cannabinoids

LTP is probably the neurophysiological underpinning for behavioral learning, and 
therefore agents that facilitate LTP should enhance learning. By inducing DSI and 
iLTD, eCBs facilitate LTP, yet cannabis use commonly impedes or disrupts learning, 
and exogenous cannabinoids can suppress LTP, e.g., (Sullivan 2000). Learning and 
LTP are highly complex phenomenoa, so resolution of these paradoxical findings 
will be multifaceted. Nevertheless, part of the explanation probably lies in the very 
different ways in which endogenous and exogenous cannabinoids affect the brain. 
The precisely localized, temporally and spatially constrained actions of the eCBs can 
be contrasted with cannabis use, in which CB1Rs are activated globally without 
regard to temporal or spatial limitations. Processes like LTP could even be facilitated 
at the cellular or synaptic level during cannabis use, but disruption of normal cellular 
and network patterning would alter normal storage and retrieval processes.

8.3.5  Spike-Timing Dependent Plasticity

The induction of many forms of synaptic plasticity depends on correlated spiking 
activity in presynaptic and postsynaptic cells. Whether spike-timing dependent plas-
ticity (STDP) causes increases or decreases in synaptic strength depends critically 
on the temporal relationship between presynaptic and postsynaptic activation. 
Generally, if postsynaptic spikes repeatedly precede presynaptic transmitter release, 
then LTD is produced, and if transmitter release precedes the postsynaptic spikes, 
LTP occurs. Mobilization of eCBs is a major factor in STDP control at single den-
dritic spines from layer 2/3 pyramidal cells (Nevian and Sakmann 2006). A spike-
timing dependent form of LTD (tLTD) at glutamate synapses in layer 5 pyramidal 
cells in the neocortex requires coincident postsynaptic and presynaptic activity as 
well as activation of presynaptic NMDARs (Sjostrom et al. 2003). Timing-dependent 
LTD induction depends on CB1R activation, but only within a narrow range of 
stimulation frequencies. The combined actions of presynaptic CB1Rs and NMDARs 
set the temporal window for tLTD induction.

eCBs also have a critical role in establishing STDP in cartwheel interneurons of 
the dorsal cochlear nucleus (Tzounopoulous et al. 2007). These cells follow an 
“antiHebbian” rule, whereby a presynaptic input that reliably induces spike firing 
induces LTD, rather than the expected LTP. The timing requirements for this LTD 
induction are extremely precise: an interval of only 5 ms between a presynaptic and 



1558 Endocannabinoids and Inhibitory Synaptic Plasticity in Hippocampus and Cerebellum

a  postsynaptic spike is required. The CB1R antagonist, AM251, prevents LTD 
 induction and unmasks a conventional Hebbian form of LTP in the interneurons. 
Without the LTP process, LTD continues to be induced by EPSP-spike intervals of 
20 ms. This suggests that the very narrow window for eCB-LTD depends on factors 
intrinsic to the LTD induction process, as well as on the increasing influence of an 
opposing LTP process. Predominance of either LTD or LTP is a function of afferent 
stimulation frequency, with lower frequencies favoring eCB-mediated LTD. The 
same afferent fibers making contacts onto fusiform cells in the nucleus are not 
subject to STDP LTD, apparently because CB1Rs are present in much lower den-
sity and in a different morphological arrangement at those sites. Evidently, mutual 
interactions between pre- and postsynaptic elements must occur during develop-
ment in order to establish correct wiring of the eCB system.

Although eCBs regulate STDP, a puzzling and unresolved issue is how the 
actions of the eCBs are so tightly constrained in the temporal domain. The eCB 
system, while comparable in its speed of action to other GPCR-dependent signal 
systems, includes several steps, each of which is slower than the temporal require-
ments of STDP. It will be important to discover how this relatively slow system 
serves the much faster timing requirements of STDP.

8.3.6  eCBs and Seizures

Although the cerebellum does not undergo the abnormal hyperexcitability that 
characterizes epilepsy, the hippocampus is seizure-prone. In many epilepsy models, 
regulation of inhibition plays a key role in seizure initiation and propagation. 
Because they can inhibit GABA release, it might seem that cannabinoids would 
foster hyperexcitability, but generally this does this not happen. One reason is that 
not all interneurons express CB1Rs (Freund et al. 2003). CB1R-negative interneu-
rons, a majority in most brain regions, continue to provide synaptic inhibition and 
thereby help prevent development of runaway excitability. Another major factor is 
that CB1Rs on excitatory nerve terminals suppress excitability by decreasing glu-
tamate release (Marsicano et al. 2003).

Febrile seizures are fairly common in young children. Experimentally-induced 
febrile seizures persistently enhance DSI recorded in CA1 pyramidal cells (Chen 
et al. 2003), and seizures increase the tonic, i.e., unstimulated, activation of CB1Rs. 
Yet, the increase in eCB-mediated responses in post-seizure tissue is not attribut-
able to increased eCB mobilization. Instead, febrile seizures up-regulate CB1Rs, as 
assessed by Western blots and a greater sensitivity to WIN55212-2. The number of 
CB1R-expressing nerve terminals does not increase, implying that CB1R density 
per terminal does. Tetanic stimulation mimicking seizure level activity in normal 
slices also up-regulates CB1Rs, via activation of AMPA/kainate receptors and 
mGluRs (Chen et al. 2007). The long-term increase in CB1R is prevented if a 
CB1R antagonist is present during the tetanus, implying that CB1Rs participate in 
their own up-regulation. The results have complex therapeutic implications:  activation 
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of CB1Rs, though usually anticonvulsant, could up-regulate CB1Rs on GABAergic 
terminals and have a pro-convulsant action in the long term because of eCB-silenc-
ing of the inhibitory synapses. Conversely, antagonism of CB1R during a seizure 
might cause a transient increase in excitability at that time, but prevent the long-
term up regulation of CB1R, and thus be beneficial.

Under seizure conditions, vast numbers of principal neurons undergo strong 
stimulation and are at risk of excitotoxic damage in neocortex and hippocampus. 
The damage caused by kainic acid-induced seizures is intensified in CB1R−/− mice, 
implying that the eCB system is normally neuroprotective (Marsicano et al. 2003). 
eCBs that are profusely released during seizure activity have ready access to all 
CB1Rs. Do CB1Rs on GABAergic or on glutamatergic terminals mediate the neu-
roprotection? Studies on mutant mice with targeted deletions of CB1R on either 
GABAergic or glutamatergic neurons reveal that CB1Rs on glutamatergic neurons 
are fully responsible for eCB-mediated neuroprotection (Monory et al. 2006). 
Spread of excitotoxic damage is as extensive if the CB1R deletion is confined to 
the glutamatergic cells as it is in the global CB1R−/− animals. Selective deletion of 
CB1R from the GABAergic cells does not alter neuronal damage. Restriction of 
CB1R deletion to hippocampal dentate gyrus by injecting CRE-expressing virus 
into this region in CB1R-floxed mice leads to the same conclusion (Monory et al. 
2005). Evidently CB1R activation on glutamatergic terminals limits further release 
of glutamate and, thereby, limits the extent of cell loss.

Status epilepticus (SE) is the extreme form of epileptiform hyperexcitability. 
Whereas normal seizures last from seconds to minutes, SE is a state of seizure activ-
ity that can last for ³30 min, a major medical emergency that can lead to death. In a 
low-Mg2+ seizure model in hippocampal culture, CB1R receptor antagonists cause 
the development of continuous epileptiform activity that resembles SE (Deshpande 
et al. 2007a). The SE-like activity can be overcome by high concentrations of CB1R 
agonists. Control neurons treated with CB1R receptor antagonists do not undergo SE 
or hyperexcitability. Moreover, application of CB1R agonists can stop experimental 
SE in the same tissue culture model (Deshpande et al. 2007b). These findings sug-
gest that endogenous eCBs can modulate seizure frequency and duration, and pre-
vent the development of SE-like activity in epileptic neurons.

8.4  Development and eCBs

Does the eCB system remain the same across the developmental spectrum? The 
reduction in parallel and climbing fiber synaptic transmission caused by Purkinje 
cell activation is evidently exclusively mediated by an eCB (Kreitzer and Regehr 
2001a). Yet, initial reports suggested that the primary retrograde messenger  
at the cerebellar Purkinje cell-parallel fiber synapses is glutamate, released from 
the Purkinje cell dendrites (Levenes et al. 2001). The discrepancy could reflect a 
 developmental shift: in young animals the retrograde EPSC suppression could be 
entirely mediated by eCBs, but in older animals a mix of CB1R and mGluR could 
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mediate retrograde signaling (Crepel 2007). There does not appear to be  comparable 
information on a similar shift in the regulation of cerebellar GABAergic synapses, 
or on the regulation of synapses in other brain regions.

8.5  Synergy with Nitric Oxide System

Nitric oxide (NO) is a gaseous molecule produced by the Ca2+-dependent activation 
of nitric oxide synthase (NOS). In hippocampus and cerebellum the possibility of 
synergistic interactions between eCB- and NO-mediated signaling exists, although 
the particulars differ. LTD of excitatory synapses in the cerebellar cortex is a post-
synaptic phenomenon, mediated by down-regulation of AMPA receptors at the 
parallel fiber-Purkinje cell synapse. NO appears to be a key component of the LTD 
mechanism (e.g., Lev-Ram et al. 1997). Presynaptic CB1Rs on the excitatory syn-
apses suppress glutamate release when activated by eCBs from the Purkinje cells. 
eCBs mediate LTD induction at parallel fiber synapses, but this is prevented by the 
NOS inhibitor, L-NAME (Safo and Regehr 2005), suggesting that NO is down-
stream of CB1R activation in cerebellum.

In hippocampus NO has been put forward as a parallel retrograde signaling mes-
senger between the CA1 pyramidal cells and interneurons (Makara et al. 2007). NO 
produced in the pyramidal cells reportedly inhibits GABA release during mAChR 
activation. Neuronal nNOS is found in pyramidal cells at sites opposite to 
GABAergic synapses (Szabadits et al. 2007). The molecular receptor for NO, nitric 
oxide (soluble) guanylate cylase (NOsGC), is localized to nNOS-expressing 
GABAergic nerve terminals. Moreover, the a1 isoform of NOsGC is found exclu-
sively in interneurons. Inhibition of either NO or eCB signaling almost entirely 
abolishes DSI (Makara et al. 2007). nNOS inhibitors, or scavenging NO with chela-
tors such as CPTIO, significantly reduce DSI recorded in the presence of mAChR 
agonists. Although the data are intriguing, questions remain. A close association of 
a1b1 subunits of NOsGC with interneuron terminals is not obviously consistent 
with the eCB mechanism. Whereas most CCK- and PV-positive interneurons are 
NOsGC a1 positive, the CB1R receptor is uniquely localized on CCK interneurons, 
and specifically excludes the PV cells. NO has not been shown to affect the PV 
cells, hence its presence there is enigmatic.

Both NO and eCBs could affect DSI by acting in parallel or in series. They could 
target the same cells and their effects would summate. Alternatively, NO and eCBs 
might interact non-linearly; one could be upstream of the other, and their pathways 
could merge. In CA1, the latter situation appears to hold: blocking NOS, for 
example, almost entirely abolishes DSI (Makara et al. 2007). Yet, DSI is absent in 
CB1R−/− mice (Varma et al. 2001; Wilson et al 2001), implying that CB1R is the 
final common pathway for DSI, and that the NO and eCB pathways merge. But NO 
is not required for CB1R activation and has not been reported to stimulate eCB 
mobilization. Finally, in the absence of mAChR activation, DSI is not affected by 
the NO pathway (Makara et al. 2007). Apparently, mAChRs bring about a switch 
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from a DSI mechanism that is NO-independent and CB1R-dependent to one in 
which NO and eCBs act interdependently. Despite complexities, the prospect of 
NO-CB1R interactions is interesting and will stimulate further investigation.

8.6  Conclusions

Inhibition shapes and regulates neuronal activity, and plasticity of inhibitory synapses 
is, therefore, an issue of broad significance. eCBs are important intercellular signaling 
molecules that operate differently in different brain areas. There is diffuse but exten-
sive expression of CB1Rs on excitatory terminals in hippocampus, however, the 
major physiological targets of eCBs in hippocampus are the inhibitory interneurons 
that express the highest densities of CB1R. In hippocampus CB1Rs on excitatory 
terminals serve mainly as a fail-safe backup system, suppressing hyperexcitability 
during abnormal activity that liberates large quantities of glutamate. In cerebellum 
and other regions, physiologically released eCBs powerfully regulate both excitatory 
and inhibitory systems. mGluR-dependent eCB mobilization can induce LTD at 
many synapses. Short and long-term forms of eCB-dependent synaptic plasticity are 
ubiquitous. The existence of eCB systems throughout the brain indicates that there is 
much to be learned about how eCBs regulate inhibitory synaptic plasticity.
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   9.1   Introduction 

 The mature mammalian cerebral cortex is characterized by its organization in to 
 discrete areas that sub-serve higher sensory, motor and cognitive functions. 
Although pyramidal neurons provide the principal information outflow from a 
given cortical region, GABAergic interneurons have an essential role in providing 
inhibitory tone to local circuits, thereby regulating the firing rates and coordinating 
the final output of multiple pyramidal cells. More specifically, interneurons are able 
to modulate sensory gating and enhance discriminative information processing, for 
example, fine tuning sensory maps (Calford  2002 ; Hensch and Stryker  2004 ; Kaur 
et al.  2004)  and optimizing executive functioning such as working memory (Rao 
et al.  2000 ; Constantinidis et al.  2002) . As detailed in previous chapters, sub-classes 
of cortical interneurons have been identified based on electrophysiological, mor-
phological and biochemical properties. While the relative ratio of excitatory to 
inhibitory neurons is constant across species and across most areas of the mature 
neocortex, the laminar distribution and relative number of different sub-populations 
of interneurons vary across discrete architectonic areas (Hendry et al.  1987 ; Hogan 
et al.  1992 ; Szabat et al.  1992 ; Alcántara and Ferrer  1994 ; DeFelipe et al.  1999 ; 
Gao et al.  1999,   2000 ; Hof et al.  1999 ; Cruikshank et al.  2001 ; Elston and 
Gonzalez-Albo  2003) . This variation is thought to reflect regional differences in 
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the organization and the function of local circuits. In addition, species differences 
in regional cytoarchitecture offer support for the specialization of function of local 
circuitry. Although developmental differences may exist between primate and non-
primate species (Letinic et al. 2002), large numbers of interneurons relocate from 
their origin in the ganglionic eminence of the ventral telencephalon to their appro-
priate location in dorsal cerebral cortex (de Carlos et al. 1996; Anderson et al. 1997; 
Tamamaki et al. 1997; Lavdas et al. 1999; Letinic et al. 2002). Once in their final 
position in the cortex, interneurons undergo a prolonged maturation process that 
lasts long into the postnatal period and includes the neurochemical differentiation 
of these cells and the formation of GABAergic synapses (Blue and Parnavelas 
1983; Miller 1986; Alcantara et al. 1993; Alcántara et al. 1993; Huang et al. 1999). 
This experience-dependent maturation process is critical for generating the appro-
priate GABAergic modulation of pyramidal cell function required for sensory 
processing, learning and memory, emotion regulation and cognitive function.

Given the importance of GABAergic circuitry for cortical function, one would 
predict that disruptions in the generation, migration and differentiation of cortical 
interneurons could have a profound effect on the level of excitability and the quality 
of information processing within the cortex, leading to significant functional deficits. 
Such deficits are the hallmark of many brain-based disorders. While some of these 
deficits are easy to discern, for example an increased incidence of spontaneous sei-
zures potentially leading to epilepsy, other deficits associated with altered interneu-
ron functioning may at first glance be less obvious. For example, there is evidence 
that abnormalities in cortical interneurons disrupt the organization of the minicol-
umn, the basic modular unit of physiological processing in the cortex (Mountcastle 
1997), thus altering the quality of information integration that occurs. Reduced qual-
ity in turn affects multi-modal processing within the cortex that is critical for adap-
tive responses to unexpected stimuli and optimal functional performance, including 
motor output, attention, and emotional regulation. Although in this chapter we focus 
mainly on cortical interneurons, it should be noted that sub-cortical inhibitory cir-
cuits also are likely to be affected following alterations in interneuron development, 
given that GABAergic neurons generated in the ganglionic eminence populate struc-
tures throughout the forebrain. For example, sleep disturbances occur in many 
neurodevelopmental disorders (Malow 2004), and the circuits involved in sleep 
regulation may be disrupted leading to disturbances in the pattern of the sleep/wake 
cycle; pharmacological studies indicate that appropriate levels of inhibition are criti-
cal to the functioning of these circuits, as they can be modulated by GABA

A
 receptor 

signaling [for review, see (Mohler 2007)].
Observations in mutant mice, which provide an opportunity to manipulate 

genetically specific histogenic events more readily than can be achieved through 
pharmacological treatments, have validated many of the predictions regarding 
interneuron pathophysiology and disrupted function. For example, mice lacking the 
Dlx1 gene exhibit a reduction in the calretinin and somatostatin sub-populations of 
cortical and hippocampal interneurons by 1 month of age. This loss of interneurons 
is associated with reliable induction of seizures by mild stressors from the second 
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post-natal month (Cobos et al. 2005). In uPAR null mice, a selective loss of parvalbumin-
expressing interneurons from more anterior regions of the cortex and the soma-
tostatin sub-population of interneurons from the hippocampus leads to increased 
sensitivity to convulsants, heightened anxiety, and a disruption of social interac-
tions (Powell et al. 2003; Eagleson et al. 2005; Levitt 2005). In both examples, gene 
loss results in fewer cortical interneurons, which is then associated with heightened 
seizure susceptibility and alterations in emotional regulation.

9.2  Brain-Based Disorders

Based on the predictions outlined above, the clinical profiles of many brain-based 
developmental disorders, which often include deficits in information processing, 
increased incidence of spontaneous seizures and perturbations in the sleep–wake 
cycle, have led to the hypothesis that abnormal functioning of GABAergic 
interneurons is a key component in the underlying pathophysiology (Levitt et al. 
2004; Lewis et al. 2005). However, direct evidence for interneuron dysfunction for 
most of these disorders is limited, and principally comes from postmortem studies 
demonstrating alterations in specific components of the GABAergic system or 
from the behavior-modulating effects of drugs that target the GABAergic system. 
It should be noted that the recent advances in imaging technology have begun to 
provide additional support for atypical interneuron functioning. In this section, we 
discuss the evidence that currently exists to support a role of interneuron pathology 
in three relatively common disorders, epilepsy, schizophrenia and autism spectrum 
disorder, as well as in some rarer syndromes and in generalized intellectual 
disability (Table 9.1).

9.2.1  Epilepsy

Epilepsy is one of the most common neurological disorders, affecting just under 1% 
of the population. Given that epilepsy reflects an upset in the balance between 
excitation and inhibition, it is not surprising that dysfunction of GABAergic 
interneurons has been strongly implicated in epilepsy. Many of the drugs currently 
used to treat epilepsy, including the benzodiazepines, target GABA

A
 receptors, 

while antagonists of the GABA
A
 receptor induce seizures. As noted above, mouse 

lines in which there is a disruption in interneuron development often display an 
increased susceptibility to seizures. Consistent with this, reductions in the number 
of interneurons and the expression of GABA

A
 receptor sub-units are reliable find-

ings in tissue resections from patients with epilepsy [for example, (de Lanerolle 
et al. 1989; DeFelipe 1999; Loup et al. 2006)]. As discussed in more detail in the 
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following sections there is an increased incidence of epilepsy in many brain-based 
disorders, supporting a role for interneuron dysfunction as a common mechanism 
across many disorders.

9.2.2  Schizophrenia

Schizophrenia affects approximately 1% of the population, with males and females 
affected equally. Among the clinical features of this disorder are positive symptoms 
(including hallucinations and delusions), negative symptoms (including flat affect and 
anhedonia), and cognitive deficits (for example, poor executive function, including 
impaired attention and working memory). Marked functional impairment resulting 
from these symptoms typically presents for the first time during the late adolescent/
early adult period, which corresponds to the final stages of experience-dependent 
synapse pruning and a slowing of myelination of frontal and temporal fiber pathways.

A role for GABAergic neurons in the pathophysiology of schizophrenia was 
hypothesized over 30 years ago (Roberts 1972). Thus, multiple postmortem studies 
focused on this system, providing clear evidence for dysfunction within the 
GABAergic system in this disorder. In particular, the known deficits in working 
memory of patients with schizophrenia suggested that the prefrontal cortex would 
be an appropriate region on which to focus. As a consequence, a number of studies 
have now reported alterations in markers of GABAergic function in the prefrontal 
cortex of people with schizophrenia (Lewis and Hashimoto 2007), including 
decreases in GAD67 and parvalbumin mRNA expression (Akbarian et al. 1995; 
Volk et al. 2000; Reynolds and Beasley 2001; Hashimoto et al. 2003, 2008), 
increases and decreases in the expression of specific sub-units of the GABA

A
 recep-

tor (Huntsman et al. 1998; Ohnuma et al. 1999; Volk et al. 2002; Hashimoto et al. 
2008), an increase in GABA

A
 receptor binding activity (Benes et al. 1996b; Dean 

et al. 1999), a reduction in the expression of the GABA transporter (Ohnuma et al. 
1999; Volk et al. 2001) and a reduction in the number of arrays of axon terminals 
of chandelier neurons (chandelier cartridges) (Woo et al. 1998; Pierri et al. 1999). 
In addition to alterations in several direct markers of GABA signaling, the levels of 
the TrkB receptor and its ligand, BDNF, which play a critical role in the differentia-
tion of cortical interneurons (Marty et al. 1997; Rutherford et al. 1997), are reduced 
at both the protein and transcript level in the brains of patients with schizophrenia 
(Hashimoto et al. 2005). It should be noted that there is similar though less exten-
sive evidence for GABAergic dysfunction in other brain regions in patients with 
this disorder, including the hippocampus (Benes et al. 1996a), temporal cortex 
(Reynolds et al. 2002; Deng and Huang 2006) and cerebellum (Fatemi et al. 2005). 
Taken together, these pathophysiological findings indicate that specific sub-populations 
of cortical interneurons are affected preferentially in schizophrenia, perhaps most 
interestingly, the chandelier cells that project to the axon initial segment of pyrami-
dal cells. The chandelier interneurons are positioned to exert a powerful influence 
on the excitatory output of long projection neurons.
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9.2.3  Autism Spectrum Disorder

Autism spectrum disorder (ASD) is characterized by deficits in social interactions, 
impairments in verbal and non-verbal communication, and restricted, repetitive, 
stereotyped patterns of behavior. Atypical sensory processing, including deficits in 
all five senses as well as vestibular and proprioceptive inputs, also has been reported 
in ASD, and some authors suggest that this should be considered a core feature of 
the disorder (Tecchio et al. 2003; Kern et al. 2006, 2007; Baker et al. 2008; 
Tomchek and Dunn 2007; Tommerdahl et al. 2007). In addition, there are several 
co-morbid conditions associated with sub-groups of individuals diagnosed with 
ASD, including an increased incidence of seizures (Tuchman and Rapin 2002; 
Canitano 2007), intellectual disability, and sleep disorders (Malow 2004). The most 
recent estimate of the prevalence of this disorder indicated that it could be as high 
as 1 in 155 children affected (CDC 2007), with the risk three to four times higher 
in males than in females.

Many aspects of the clinical profile of ASD indicate that atypical interneuron 
functioning may be involved (Hussman 2001; Dhossche et al. 2002; Rubenstein and 
Merzenich 2003; Levitt et al. 2004). In addition, Minshew and colleagues have pro-
posed an alternative model based on the disordered complex information processing 
as a key component of ASD (Minshew et al. 2002; Williams et al. 2006). Both the 
interneuron hypothesis and the Minshew model are consistent with the reports of 
disruption in minicolumn organization in the cortex of patients with ASD, particu-
larly as this anatomical feature is thought to be modulated by interneuron function 
(Casanova et al. 2002a, b; Buxhoeveden et al. 2006). Human genetic and postmor-
tem findings show an association of ASD with the gene encoding the MET tyrosine 
kinase receptor (Campbell et al. 2006, 2007), which is implicated in interneuron 
development by studies in the mouse (Powell et al. 2001, 2003; Eagleson et al. 
2005). Moreover, allelic variants in the gene encoding the b3 sub-unit of the GABA

A
 

receptor have been associated with ASD (McCauley et al. 2004). Additional studies 
implicate genetic variants and chromosomal inversions in genes encoding other 
GABA

A
 receptor sub-units (Ma et al. 2005; Ashley-Koch et al. 2006; Vincent et al. 

2006). Unlike schizophrenia and epilepsy, however, there is little direct neuroana-
tomical evidence for an involvement of cortical interneurons in the pathology of 
ASD and, thus far, the sample sizes in many postmortem studies are small and the 
studies generally have not been replicated. Nonetheless, some intriguing observa-
tions have been reported. Within the hippocampus, there is a specific reduction in 
GABA

A
 receptors in ASD, with serotonergic, cholinergic and glutamatergic recep-

tors largely intact (Blatt et al. 2001), although it should be noted that a more recent 
study demonstrated alterations in discrete sub-units of the cholinergic receptor in the 
cerebral cortex and cerebellum (Martin-Ruiz et al. 2004). A reduction in the levels 
of both GAD65 and GAD67 has been reported in the parietal cortex and cerebellum 
in ASD (Fatemi et al. 2002), as well as reduced frontal cortex expression of the b3 
sub-unit of the GABA

A
 receptor (Samaco et al. 2005). Finally, reduced levels of 

GABA in peripheral platelets (Rolf et al. 1993) as well as elevated GABA levels in 
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plasma (Dhossche et al. 2002), have been reported; however, the functional significance 
of these findings with respect to the brain is unclear. Interestingly, several neurode-
velopmental disorders are associated with an increased incidence of ASD [for 
review, (Zafeiriou et al. 2007)], including tuberous sclerosis, Fragile X syndrome, 
Rett syndrome, and both Angelman and Prader–Willi syndromes. Disruptions in 
GABAergic interneurons have also been implicated in these syndromes (see below 
for details), suggesting potential overlapping pathophysiologies across multiple 
brain-based disorders of developmental etiology.

9.2.4  Other Developmental Disorders

9.2.4.1  Tuberous Sclerosis

Tuberous sclerosis (TSC) is a rare genetic disorder, occurring in approximately 
1:10,000 people with males and females affected equally, that causes benign tumors 
in the brain, as well as in other organs. This disorder results from mutations in one 
of two tumor suppressor genes, TSC1 or TSC2 (ECTS 1993; van Slegtenhorst et al. 
1997). Epilepsy occurs in approximately 80% of patients with TSC (Joinson et al. 
2003) and often presents within the first year of life, with other behavioral and 
cognitive deficits becoming apparent with development. These include attentional 
and executive memory deficits, as well as depression, anxiety, aggression, and dis-
turbances in sleep patterns (de Vries et al. 2005). Approximately 50% of individu-
als with TSC have an intellectual disability (IQ < 70) (Joinson et al. 2003) and the 
prevalence of ASD is higher than in the typical population, although estimates vary 
widely from around 16% to over 65%, depending on the study (Smalley 1998; 
Wong 2006).

Almost all aspects of the clinical profile of TSC are indicative of a disturbance 
in GABAergic functioning. One of the characteristics of TSC pathology is the 
presence of tubers within the cerebral cortex [for review (Curatolo et al. 2002)]. 
These structures, in which lamination is disorganized and many cells have abnormal 
morphologies, are the sites of seizure initiation. As many patients with TSC are 
refractory to pharmacological therapy, surgical resection of cortical tubers may be 
required to enable seizure control (Shields 2004), providing a source of tissue for 
analysis. Thus far, however, only two published studies, both involving small 
sample sizes, have focused directly on the GABAergic system in TSC, and 
alterations in the expression of interneuron markers and GABA

A
 receptor sub-units 

were noted within the dysplastic cortex (White et al. 2001; Valencia et al. 2006).

9.2.4.2  Fragile X

Fragile X is the most common single-gene inherited form of intellectual disability 
and is estimated to occur in approximately 1:4,000 births, with about 1.5 times as 
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many males affected. The syndrome arises due to disruption of the Fragile X mental 
retardation (FMR1) gene, located on the X chromosome, by a trinucleotide repeat 
expansion (Verkerk et al. 1991), which results in the absence of the FMR protein. 
Individuals with this syndrome display mild to severe cognitive impairment and 
typically demonstrate a neurobehavioral profile that includes hyper-responsiveness 
to sensory stimuli, hyperactivity and impulsivity. In addition, over 20% of people 
with Fragile X have overt seizures (Musumeci et al. 1999) and, as with many neu-
rodevelopmental disorders, disruptions in sleep patterns are common. Finally, about 
25% of those with Fragile X display traits that are also used to diagnose ASD 
(Bailey et al. 1998).

Among the clinical features associated with this disorder, hyper-responsiveness 
to sensory stimuli together with the increased incidence of seizures and ASD are 
particularly suggestive of an interneuron dysfunction. Thus far, however, compo-
nents of the GABAergic system have not been examined in human postmortem 
material. It is interesting to note, however, that in species as diverse as mouse and 
fly, mutations in FMR1 lead to a reduction in the expression of various GABA

A
 

receptor sub-units (D’Hulst et al. 2006; Gantois et al. 2006). Given the highly con-
served nature of FMR1 protein structure and function, these data suggest a potential 
evolutionarily-conserved relationship between a functional FMR1 protein and 
GABAergic function. Similarly, electrophysiological studies in the subiculum of 
FMR1 knockout mice suggest that there is a disruption of GABA

A
 receptor-medi-

ated function in this structure (D’Antuono et al. 2003).

9.2.4.3  15q11–q13 and Gene Regulatory Disorders: Prader–Willi, 
Angelman, and Rett Syndromes

Prader–Willi syndrome (PWS) and Angelman syndrome (AS) result from abnor-
malities, including deletions, associated with the chromosomal region 15q11–q13 
that lead to disruption in the expression of genes from this region. The overall 
prevalence of each syndrome is approximately 1:12,000–1:15,000, with males and 
females affected equally. The genetic distinction between the two disorders is that 
PWS involves gene abnormalities on the paternally donated chromosome whereas 
gene abnormalities on the maternally inherited chromosome gives rise to AS. There 
is now evidence that deficiency of the maternally inherited E6-AP ubitquitin pro-
tein ligase (UBE3A) gene is both necessary and sufficient to cause AS (Kishino 
et al. 1997; Matsuura et al. 1997). Also of note with respect to interneuron dysfunc-
tion, there is a cluster of three GABA

A
 receptor sub-units (a5, b3 and g3) in this 

chromosomal region that are deleted or hypomorphic in most people with PWS or 
AS (Saitoh et al. 1994). Although the same chromosomal region is affected, PWS 
and AS display distinct, yet partially overlapping, clinical profiles, highlighting the 
role of maternal imprinting on phenotypic outcome. PWS is characterized by intel-
lectual disability, infantile hypotonia and poor suck reflex, and delayed sexual 
development, with high co-morbidity for depression, obsessions and compulsions, 
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self-injurious behavior (usually in the form of self-inflicted skin picking) and sleep 
disorders (Holm et al. 1993). Perhaps the most striking feature of PWS is an intense 
preoccupation with food, following an early failure-to-thrive period, manifesting as 
incessant food-seeking and a lack of satiation that often results in obesity. In con-
trast, AS is characterized by hyperactivity, stereotypies and sleep disorders, as well 
as severe intellectual disability and the absence of speech, although receptive 
language and non-verbal communication can be relatively preserved. Distinctive 
EEG abnormalities are seen in over 90% of patients with AS, with more than 80% 
exhibiting overt seizures (Valente et al. 2006; Pelc et al. 2008).

Rett Syndrome (RTT) is a rare (1:15,000) X-linked dominant disorder expressed 
almost exclusively in females. In most individuals, RTT results from mutations in 
the gene encoding methyl-CpG-binding protein 2 (MeCP2), which serves as a tran-
scriptional repressor of imprinted regions of Chromosome 15 and select target 
genes throughout the genome (Amir et al. 1999; Caballero and Hendrich 2005; 
Horike et al. 2005; Samaco et al. 2005). Among others, MeCP2 regulates expres-
sion of UBE3A, which is the gene disrupted in AS, DLX5, which has been impli-
cated in GABAergic differentiation, and bdnf, whose gene product regulates 
interneuron and synaptic development. Children with RTT regress after achieving 
typical motor and speech milestones between 6 and 18 months. By 4–7 years of 
age, gross motor and cognitive impairments, loss of speech, and reduced growth 
trajectories of body and brain are evident. Like AS and PWS, a large proportion of 
children with RTT exhibits seizures and co-occurring ASD. The overlap in clinical 
symptoms between the three disorders, in particular between AS and RTT, suggests 
that there may be some shared pathophysiology.

In particular, the extremely high co-morbidity of seizures with RTT and AS 
is indicative of altered interneuron function. Indeed, specific hypotheses have 
been proposed regarding GABAergic dysfunction, including altered cortical 
inhibitory circuits, in the underlying pathophysiology of AS (Dan and Boyd 
2003). Consistent with this, there is reduced expression of the b3 sub-unit of the 
GABA

A
 receptor in frontal cortex of subjects with AS and RTT (Samaco et al. 

2005). The GABAergic system also has been implicated in PWS, although direct 
evidence is limited and includes studies with a small sample size. Moreover, 
although many of the clinical features of PWS suggest a primary hypothalamic 
dysfunction, regions of the frontal and temporal cortices are also involved in the 
emotional responses to satiety and hunger (Tataranni et al. 1999). A recent study 
using positron emission tomography (PET) demonstrated a reduction in the 
binding of [11C]flumazenil in frontal and temporal cortical regions in PWS 
patients, reflecting an alteration in the sub-unit composition or number of 
GABA

A
 receptors (Lucignani et al. 2004). It has been reported that topiramate, 

a drug that influences GABAergic signaling, is able to modulate the stereotypic 
and compulsive behaviors observed in PWS (Shapira et al. 2002; Smathers et al. 
2003). Finally, there is an increase in the levels of GABA found in the plasma of 
patients with both PWS and AS (Ebert et al. 1997) , although, as for ASD, the 
functional relevance to the brain remains unclear.
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9.2.4.4  Intellectual Disability

Intellectual disability (ID), currently defined as an IQ below 70, impairment in 
adaptive functioning, and an age of onset prior to 18 years, can result from a variety 
of genetic and environmental insults, although the cause is never identified in 
approximately half of this population. It is estimated that between 1 and 3% of the 
population has an ID, including those that are co-morbid for the disorders outlined 
earlier. The prevalence of epilepsy in the population of people with ID is significantly 
increased above the general population, although estimates of overall prevalence 
vary depending on the study (Goulden et al. 1991; Bowley and Kerr 2000; Morgan 
et al. 2003). The specific form of epilepsy, as well as the frequency of seizures, 
varies across the population and likely reflects the underlying etiology of the intel-
lectual impairment (Beavis et al. 2007). The increased incidence of epilepsy in ID 
indicates that interneuron dysfunction may be a common pathophysiology contrib-
uting to ID, regardless of the specific cause. Here, we highlight two known etiolo-
gies of ID that are related directly to interneuron function. The first involves the 
Aristaless-related homeobox gene (Arx), which is involved in GABAergic neuron 
development in species as diverse as worm and mouse (Kitamura et al. 2002; 
Melkman and Sengupta 2005). For example, in the mouse, this gene is important in 
the migration of cortical interneurons to the cerebral cortex (Kitamura et al. 2002). 
In humans, mutations in ARX, which can lead to a loss-of-function or a hypomorphic 
state of expression, have a variety of clinical manifestations, including ID and epilepsy 
[reviewed in (Sherr 2003)]. The second involves disorders of GABA metabolism, 
the most common of which is a succinic semialdehyde dehydrogenase (SSADH) 
deficiency that affects GABA degradation in the central nervous system. This is a 
very rare disorder that results in an increase in GABA and gamma-hydroxybutyric 
acid (GHB) levels in the brain. About half the people with this disorder display 
mild to moderate intellectual disability, particularly involving language deficits, in 
addition to seizures, motor delay and hallucinations (Pearl et al. 2003). The increase 
in brain GABA content in this rare disorder is in contrast with the other disorders 
outlined earlier that show decreases in GABA function and signaling. While the 
mechanism is not specifically known, this example serves to underscore the impor-
tance of homeostatic balance in maintaining functional integrity of the two major 
neurotransmitters in the brain, namely GABA and glutamate.

9.3  Conclusions

Disorders of neurodevelopmental etiology are diverse in their onset and manifestation, 
yet they appear to have in common fundamental disturbances in cortical GABAergic 
function. GABA neurotransmission is essential for the experience-dependent matu-
ration of sensory representations in the brain, and in the processing of complex 
information through the role of interneurons as coincidence detectors and regulators 
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of output synchrony. Genetic disruptions of fundamental developmental events that 
regulate interneuron development are, therefore, likely to establish vulnerabilities 
that are further exacerbated by atypical experience-dependent maturation. It should 
be emphasized that although the onset of many of these neurodevelopmental disor-
ders is defined clinically as the first manifestation of a disruption in discrete behav-
ioral and/or cognitive abilities, with many disorders being diagnosed within the first 
2–3 years of life, suggestions of atypical development may be observed earlier. 
Thus, the age of onset often reflects the developmental emergence of the specific 
behaviors/abilities, as well as the maturational state of the underlying circuitry. This 
occurs even for disorders with a later onset, such as schizophrenia, where the first 
overt signs of the disorder correlate with the final stages of maturation of prefrontal 
cortical circuitry. Future emphasis on understanding gene-environment relation-
ships in mediating interneuron development will better inform disease etiologies.

Acknowledgments This work is supported by NICHD P30 grant HD15052, the Marino Autism 
Research Institute and NIMH grant MH067842.

References

Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney WE Jr, Jones EG (1995) 
GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizo-
phrenics and controls. Cereb Cortex 5:550–560

Alcántara S, Ferrer I (1994) Postnatal development of parvalbumin immunoreactivity in the cere-
bral cortex of the cat. J Comp Neurol 348:133–149

Alcantara S, Ferrer I, Soriano E (1993) Postnatal development of parvalbumin and calbindin 
D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl) 188:63–73

Alcántara S, Ferrer I, Soriano E (1993) Postnatal development of parvalbumin and calbindin 
D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl) 188:63–73

Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is 
caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 
23:185–188

Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal fore-
brain to neocortex: dependence on Dlx genes. Science 278:474–476

Ashley-Koch AE, Mei H, Jaworski J, Ma DQ, Ritchie MD, Menold MM, Delong GR, Abramson 
RK, Wright HH, Hussman JP, Cuccaro ML, Gilbert JR, Martin ER, Pericak-Vance MA (2006) 
An analysis paradigm for investigating multi-locus effects in complex disease: examination of 
three GABA receptor subunit genes on 15q11–q13 as risk factors for autistic disorder. Ann 
Hum Genet 70:281–292

Bailey DB Jr, Mesibov GB, Hatton DD, Clark RD, Roberts JE, Mayhew L (1998) Autistic behav-
ior in young boys with fragile X syndrome. J Autism Dev Disord 28:499–508

Baker AE, Lane A, Angley MT, Young RL (2008) The relationship between sensory processing 
patterns and behavioural responsiveness in autistic disorder: a pilot study. J Autism Dev Disord 
38(5):867–875

Beavis J, Kerr M, Marson AG (2007) Pharmacological interventions for epilepsy in people with 
intellectual disabilities. Cochrane Database Syst Rev CD005399

Benes FM, Khan Y, Vincent SL, Wickramasinghe R (1996a) Differences in the subregional and 
cellular distribution of GABAA receptor binding in the hippocampal formation of schizo-
phrenic brain. Synapse 22:338–349



1799 Interneuron Pathophysiologies: Paths to Neurodevelopmental Disorders

Benes FM, Vincent SL, Marie A, Khan Y (1996b) Up-regulation of GABAA receptor binding on 
neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75:1021–1031

Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML (2001) Density and 
distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. 
J Autism Dev Disord 31:537–543

Blue ME, Parnavelas JG (1983) The formation and maturation of synapses in the visual cortex of 
the rat. II. Quantitative analysis. J Neurocytol 12:697–712

Bowley C, Kerr M (2000) Epilepsy and intellectual disability. J Intellect Disabil Res 44(Pt 
5):529–543

Buxhoeveden DP, Semendeferi K, Buckwalter J, Schenker N, Switzer R, Courchesne E (2006) 
Reduced minicolumns in the frontal cortex of patients with autism. Neuropathol Appl 
Neurobiol 32:483–491

Caballero IM, Hendrich B (2005) MeCP2 in neurons: closing in on the causes of Rett syndrome. 
Hum Mol Genet 14 Spec No 1:R19–R26

Calford MB (2002) Dynamic representational plasticity in sensory cortex. Neuroscience 
111:709–738

Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, Elia M, Schneider C, 
Melmed R, Sacco R, Persico AM, Levitt P (2006) A genetic variant that disrupts MET tran-
scription is associated with autism. Proc Natl Acad Sci USA 103:16834–16839

Campbell DB, D’Oronzio R, Garbett K, Ebert PJ, Mirnics K, Levitt P, Persico AM (2007) Disruption 
of cerebral cortex MET signaling in autism spectrum disorder. Ann Neurol 62:243–250

Canitano R (2007) Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry 
16:61–66

Casanova MF, Buxhoeveden DP, Brown C (2002a) Clinical and macroscopic correlates of mini-
columnar pathology in autism. J Child Neurol 17:692–695

Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002b) Minicolumnar pathology in autism. 
Neurology 58:428–432

CDC (2007) Prevalence of autism spectrum disorders – Autism and Developmental Disabilities 
Monitoring Network. MMWR 56 (SS-1)

Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubenstein JL 
(2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and 
epilespy. Nat Neurosci 8:1059–1068

Constantinidis C, Williams GV, Goldman-Rakic PS (2002) A role for inhibition in shaping the 
temporal flow of information in prefrontal cortex. Nat Neurosci 5:175–180

Cruikshank SJ, Killackey HP, Metherate R (2001) Parvalbumin and calbindin are differentially 
distributed within primary and secondary subregions of the mouse auditory forebrain. 
Neuroscience 105:553–569

Curatolo P, Verdecchia M, Bombardieri R (2002) Tuberous sclerosis complex: a review of neuro-
logical aspects. Eur J Paediatr Neurol 6:15–23

Dan B, Boyd SG (2003) Angelman syndrome reviewed from a neurophysiological perspective. 
The UBE3A-GABRB3 hypothesis. Neuropediatrics 34:169–176

D’Antuono M, Merlo D, Avoli M (2003) Involvement of cholinergic and gabaergic systems in the 
fragile X knockout mice. Neuroscience 119:9–13

de Carlos JA, Lopez-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral 
ganglionic eminence in the rat. J Neurosci 16:6146–6156

de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989) Hippocampal interneuron loss and 
plasticity in human temporal lobe epilepsy. Brain Res 495:387–395

de Vries P, Humphrey A, McCartney D, Prather P, Bolton P, Hunt A (2005) Consensus clinical 
guidelines for the assessment of cognitive and behavioural problems in Tuberous Sclerosis. 
Eur Child Adolesc Psychiatry 14:183–190

Dean B, Hussain T, Hayes W, Scarr E, Kitsoulis S, Hill C, Opeskin K, Copolov DL (1999) 
Changes in serotonin2A and GABA(A) receptors in schizophrenia: studies on the human dor-
solateral prefrontal cortex. J Neurochem 72:1593–1599

DeFelipe J (1999) Chandelier cells and epilepsy. Brain 122(Pt 10):1807–1822



180 K.L. Eagleson et al.

DeFelipe J, Gonzalez-Albo MC, Del Rio MR, Elston GN (1999) Distribution and patterns of 
connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas 
of the occipital and temporal lobes of the macaque monkey. J Comp Neurol 412:515–526

Deng C, Huang XF (2006) Increased density of GABAA receptors in the superior temporal gyrus 
in schizophrenia. Exp Brain Res 168:587–590

Dhossche D, Applegate H, Abraham A, Maertens P, Bland L, Bencsath A, Martinez J (2002) 
Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: stimulus for 
a GABA hypothesis of autism. Med Sci Monit 8:PR1–PR6

D’Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA, Kooy RF (2006) 
Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res 
1121:238–245

Eagleson KL, Bonnin A, Levitt P (2005) Region- and age-specific deficits in gamma-aminobu-
tyric acidergic neuron development in the telencephalon of the uPAR(-/-) mouse. J Comp 
Neurol 489:449–466

Ebert MH, Schmidt DE, Thompson T, Butler MG (1997) Elevated plasma gamma-aminobutyric 
acid (GABA) levels in individuals with either Prader-Willi syndrome or Angelman syndrome. 
J Neuropsychiatry Clin Neurosci 9:75–80

ECTS C (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 
16. Cell 75:1305–1315

Elston GN, Gonzalez-Albo MC (2003) Parvalbumin-, calbindin-, and calretinin-immunoreactive 
neurons in the prefrontal cortex of the owl monkey (Aotus trivirgatus): a standardized quantita-
tive comparison with sensory and motor areas. Brain Behav Evol 62:19–30

Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR (2002) Glutamic acid decar-
boxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol 
Psychiatry 52:805–810

Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E (2005) GABAergic dysfunction in 
schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxy-
lase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res 72:109–122

Gantois I, Vandesompele J, Speleman F, Reyniers E, D’Hooge R, Severijnen LA, Willemsen 
R, Tassone F, Kooy RF (2006) Expression profiling suggests underexpression of the 
GABA(A) receptor subunit delta in the fragile X knockout mouse model. Neurobiol Dis 
21:346–357

Gao WJ, Newman DE, Wormington AB, Pallas SL (1999) Development of inhibitory circuitry in 
visual and auditory cortex of postnatal ferrets: immunocytochemical localization of GABAergic 
neurons. J Comp Neurol 409:261–273

Gao WJ, Wormington AB, Newman DE, Pallas SL (2000) Development of inhibitory circuitry in 
visual and auditory cortex of postnatal ferrets: immunocytochemical localization of calbindin- 
and parvalbumin-containing neurons. J Comp Neurol 422:140–157

Goulden KJ, Shinnar S, Koller H, Katz M, Richardson SA (1991) Epilepsy in children with mental 
retardation: a cohort study. Epilepsia 32:690–697

Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, Sampson AR, Lewis DA (2003) 
Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects 
with schizophrenia. J Neurosci 23:6315–6326

Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM, Pierri JN, Sun Z, Sampson AR, 
Lewis DA (2005) Relationship of brain-derived neurotrophic factor and its receptor TrkB to 
altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 25:372–383

Hashimoto T, Arion D, Unger T, Maldonado-Aviles JG, Morris HM, Volk DW, Mirnics K, Lewis 
DA (2008) Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of 
subjects with schizophrenia. Mol Psychiatry 13(2):147–161

Hendry SH, Schwark HD, Jones EG, Yan J (1987) Numbers and proportions of GABA-
immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7:1503–1519

Hensch TK, Stryker MP (2004) Columnar architecture sculpted by GABA circuits in developing 
cat visual cortex. Science 303:1678–1681



1819 Interneuron Pathophysiologies: Paths to Neurodevelopmental Disorders

Hof PR, Glezer II, Conde F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999) 
Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in 
the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 
16:77–116

Hogan D, Terwilleger ER, Berman NE (1992) Development of subpopulations of GABAergic 
neurons in cat visual cortical areas. Neuroreport 3:1069–1072

Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, Greenberg F 
(1993) Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics 91:398–402

Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin 
looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31–40

Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S 
(1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in 
mouse visual cortex. Cell 98:739–755

Huntsman MM, Tran BV, Potkin SG, Bunney WE Jr, Jones EG (1998) Altered ratios of alterna-
tively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A 
receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci USA 95:15066–15071

Hussman JP (2001) Suppressed GABAergic inhibition as a common factor in suspected etiologies 
of autism. J Autism Dev Disord 31:247–248

Joinson C, O’Callaghan FJ, Osborne JP, Martyn C, Harris T, Bolton PF (2003) Learning disability 
and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. 
Psychol Med 33:335–344

Kaur S, Lazar R, Metherate R (2004) Intracortical pathways determine breadth of subthreshold 
frequency receptive fields in primary auditory cortex. J Neurophysiol 91:2551–2567

Kern JK, Trivedi MH, Garver CR, Grannemann BD, Andrews AA, Savla JS, Johnson DG, Mehta 
JA, Schroeder JL (2006) The pattern of sensory processing abnormalities in autism. Autism 
10:480–494

Kern JK, Trivedi MH, Grannemann BD, Garver CR, Johnson DG, Andrews AA, Savla JS, Mehta 
JA, Schroeder JL (2007) Sensory correlations in autism. Autism 11:123–134

Kishino T, Lalande M, Wagstaff J (1997) UBE3A/E6-AP mutations cause Angelman syndrome. 
Nat Genet 15:70–73

Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki 
R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, 
Fukuda T, Kondo I, Kato M, Dobyns WB, Yokoyama M, Morohashi K (2002) Mutation of 
ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly 
with abnormal genitalia in humans. Nat Genet 32:359–369

Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives 
rise to a population of early neurons in the developing cerebral cortex. J Neurosci 
19:7881–7888

Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. 
Nature 417:645–649

Levitt P (2005) Disruption of interneuron development. Epilepsia 46(Suppl 7):22–28
Levitt P, Eagleson KL, Powell EM (2004) Regulation of neocortical interneuron development and 

the implications for neurodevelopmental disorders. Trends Neurosci 27:400–406
Lewis DA, Hashimoto T (2007) Deciphering the disease process of schizophrenia: the contribu-

tion of cortical gaba neurons. Int Rev Neurobiol 78:109–131
Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev 

Neurosci 6:312–324
Loup F, Picard F, Andre VM, Kehrli P, Yonekawa Y, Wieser HG, Fritschy JM (2006) Altered 

expression of alpha3-containing GABAA receptors in the neocortex of patients with focal 
epilepsy. Brain 129:3277–3289

Lucignani G, Panzacchi A, Bosio L, Moresco RM, Ravasi L, Coppa I, Chiumello G, Frey K, 
Koeppe R, Fazio F (2004) GABA A receptor abnormalities in Prader-Willi syndrome assessed 
with positron emission tomography and [11C]flumazenil. Neuroimage 22:22–28



182 K.L. Eagleson et al.

Ma DQ, Whitehead PL, Menold MM, Martin ER, Ashley-Koch AE, Mei H, Ritchie MD, Delong 
GR, Abramson RK, Wright HH, Cuccaro ML, Hussman JP, Gilbert JR, Pericak-Vance MA 
(2005) Identification of significant association and gene-gene interaction of GABA receptor 
subunit genes in autism. Am J Hum Genet 77:377–388

Malow BA (2004) Sleep disorders, epilepsy, and autism. Ment Retard Dev Disabil Res Rev 
10:122–125

Martin-Ruiz CM, Lee M, Perry RH, Baumann M, Court JA, Perry EK (2004) Molecular analysis 
of nicotinic receptor expression in autism. Brain Res Mol Brain Res 123:81–90

Marty S, Berzaghi Mda P, Berninger B (1997) Neurotrophins and activity-dependent plasticity of 
cortical interneurons. Trends Neurosci 20:198–202

Matsuura T, Sutcliffe JS, Fang P, Galjaard RJ, Jiang YH, Benton CS, Rommens JM, Beaudet AL 
(1997) De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in 
Angelman syndrome. Nat Genet 15:74–77

McCauley JL, Olson LM, Delahanty R, Amin T, Nurmi EL, Organ EL, Jacobs MM, Folstein SE, 
Haines JL, Sutcliffe JS (2004) A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) 
receptor subunit cluster and association to autism. Am J Med Genet B Neuropsychiatr Genet 
131:51–59

Melkman T, Sengupta P (2005) Regulation of chemosensory and GABAergic motor neuron devel-
opment by the C. elegans Aristaless/Arx homolog alr-1. Development 132:1935–1949

Miller MW (1986) Maturation of rat visual cortex. III. Postnatal morphogenesis and synaptogen-
esis of local circuit neurons. Brain Res 390:271–285

Minshew NJ, Sweeney J, Luna B (2002) Autism as a selective disorder of complex information 
processing and underdevelopment of neocortical systems. Mol Psychiatry 7(Suppl 2):S14–S15

Mohler H (2007) Molecular regulation of cognitive functions and developmental plasticity: impact 
of GABAA receptors. J Neurochem 102:1–12

Morgan CL, Baxter H, Kerr MP (2003) Prevalence of epilepsy and associated health service uti-
lization and mortality among patients with intellectual disability. Am J Ment Retard 
108:293–300

Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(Pt 4):701–722
Musumeci SA, Hagerman RJ, Ferri R, Bosco P, Dalla Bernardina B, Tassinari CA, De Sarro GB, 

Elia M (1999) Epilepsy and EEG findings in males with fragile X syndrome. Epilepsia 
40:1092–1099

Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC (1999) Measurement of GABAergic 
parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) 
receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messen-
ger RNA expression. Neuroscience 93:441–448

Pearl PL, Novotny EJ, Acosta MT, Jakobs C, Gibson KM (2003) Succinic semialdehyde dehydro-
genase deficiency in children and adults. Ann Neurol 54(Suppl 6):S73–S80

Pelc K, Boyd SG, Cheron G, Dan B (2008) Epilepsy in Angelman syndrome. Seizure 17(3):211–217
Pierri JN, Chaudry AS, Woo TU, Lewis DA (1999) Alterations in chandelier neuron axon termi-

nals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry 156:1709–1719
Powell EM, Mars WM, Levitt P (2001) Hepatocyte growth factor/scatter factor is a motogen for 

interneurons migrating from the ventral to dorsal telencephalon. Neuron 30:79–89
Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P (2003) Genetic disrup-

tion of cortical interneuron development causes region- and GABA cell type-specific deficits, 
epilepsy, and behavioral dysfunction. J Neurosci 23:622–631

Rao SG, Williams GV, Goldman-Rakic PS (2000) Destruction and creation of spatial tuning by 
disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. 
J Neurosci 20:485–494

Reynolds GP, Beasley CL (2001) GABAergic neuronal subtypes in the human frontal cortex – 
development and deficits in schizophrenia. J Chem Neuroanat 22:95–100

Reynolds GP, Beasley CL, Zhang ZJ (2002) Understanding the neurotransmitter pathology of 
schizophrenia: selective deficits of subtypes of cortical GABAergic neurons. J Neural Transm 
109:881–889



1839 Interneuron Pathophysiologies: Paths to Neurodevelopmental Disorders

Roberts E (1972) Prospects for research on schizophrenia. An hypotheses suggesting that there is 
a defect in the GABA system in schizophrenia. Neurosci Res Program Bull 10:468–482

Rolf LH, Haarmann FY, Grotemeyer KH, Kehrer H (1993) Serotonin and amino acid content in 
platelets of autistic children. Acta Psychiatr Scand 87:312–316

Rubenstein JL, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in 
key neural systems. Genes Brain Behav 2:255–267

Rutherford LC, DeWan A, Lauer HM, Turrigiano GG (1997) Brain-derived neurotrophic factor 
mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci 
17:4527–4535

Saitoh S, Harada N, Jinno Y, Hashimoto K, Imaizumi K, Kuroki Y, Fukushima Y, Sugimoto T, 
Renedo M, Wagstaff J et al (1994) Molecular and clinical study of 61 Angelman syndrome 
patients. Am J Med Genet 52:158–163

Samaco RC, Hogart A, LaSalle JM (2005) Epigenetic overlap in autism-spectrum neurodevelop-
mental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. 
Hum Mol Genet 14:483–492

Shapira NA, Lessig MC, Murphy TK, Driscoll DJ, Goodman WK (2002) Topiramate attenuates 
self-injurious behaviour in Prader-Willi Syndrome. Int J Neuropsychopharmacol 5:141–145

Sherr EH (2003) The ARX story (epilepsy, mental retardation, autism, and cerebral malforma-
tions): one gene leads to many phenotypes. Curr Opin Pediatr 15:567–571

Shields WD (2004) Surgical treatment of refractory epilepsy. Curr Treat Options Neurol 6:349–356
Smalley SL (1998) Autism and tuberous sclerosis. J Autism Dev Disord 28:407–414
Smathers SA, Wilson JG, Nigro MA (2003) Topiramate effectiveness in Prader-Willi syndrome. 

Pediatr Neurol 28:130–133
Szabat E, Soinila S, Happola O, Linnala A, Virtanen I (1992) A new monoclonal antibody against 

the GABA-protein conjugate shows immunoreactivity in sensory neurons of the rat. 
Neuroscience 47:409–420

Tamamaki N, Fujimori KE, Takauji R (1997) Origin and route of tangentially migrating neurons 
in the developing neocortical intermediate zone. J Neurosci 17:8313–8323

Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, Pratley RE, Lawson M, Reiman 
EM, Ravussin E (1999) Neuroanatomical correlates of hunger and satiation in humans using 
positron emission tomography. Proc Natl Acad Sci USA 96:4569–4574

Tecchio F, Benassi F, Zappasodi F, Gialloreti LE, Palermo M, Seri S, Rossini PM (2003) Auditory 
sensory processing in autism: a magnetoencephalographic study. Biol Psychiatry 54:647–654

Tomchek SD, Dunn W (2007) Sensory processing in children with and without autism: a com-
parative study using the short sensory profile. Am J Occup Ther 61:190–200

Tommerdahl M, Tannan V, Cascio CJ, Baranek GT, Whitsel BL (2007) Vibrotactile adaptation 
fails to enhance spatial localization in adults with autism. Brain Res 1154:116–123

Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1:352–358
Valencia I, Legido A, Yelin K, Khurana D, Kothare SV, Katsetos CD (2006) Anomalous inhibitory 

circuits in cortical tubers of human tuberous sclerosis complex associated with refractory 
epilepsy: aberrant expression of parvalbumin and calbindin-D28k in dysplastic cortex. J Child 
Neurol 21:1058–1063

Valente KD, Koiffmann CP, Fridman C, Varella M, Kok F, Andrade JQ, Grossmann RM, 
Marques-Dias MJ (2006) Epilepsy in patients with angelman syndrome caused by deletion of 
the chromosome 15q11–13. Arch Neurol 63:122–128

van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van 
den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, 
Ekong R, Osborne J, Wolfe J, Povey S, Snell RG, Cheadle JP, Jones AC, Tachataki M, Ravine 
D, Sampson JR, Reeve MP, Richardson P, Wilmer F, Munro C, Hawkins TL, Sepp T, Ali JB, 
Ward S, Green AJ, Yates JR, Kwiatkowska J, Henske EP, Short MP, Haines JH, Jozwiak S, 
Kwiatkowski DJ (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 
9q34. Science 277:805–808

Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria 
MF, Zhang FP et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident 



184 K.L. Eagleson et al.

with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 
65:905–914

Vincent JB, Horike SI, Choufani S, Paterson AD, Roberts W, Szatmari P, Weksberg R, Fernandez 
B, Scherer SW (2006) An inversion inv(4)(p12–p15.3) in autistic siblings implicates the 4p 
GABA receptor gene cluster. J Med Genet 43:429–434

Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid 
decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric 
acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57:237–245

Volk D, Austin M, Pierri J, Sampson A, Lewis D (2001) GABA transporter-1 mRNA in the 
prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am J Psychiatry 
158:256–265

Volk DW, Pierri JN, Fritschy JM, Auh S, Sampson AR, Lewis DA (2002) Reciprocal alterations 
in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in 
schizophrenia. Cereb Cortex 12:1063–1070

White R, Hua Y, Scheithauer B, Lynch DR, Henske EP, Crino PB (2001) Selective alterations in 
glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells 
of cortical tubers. Ann Neurol 49:67–78

Williams DL, Goldstein G, Minshew NJ (2006) Neuropsychologic functioning in children with 
autism: further evidence for disordered complex information-processing. Child Neuropsychol 
12:279–298

Wong V (2006) Study of the relationship between tuberous sclerosis complex and autistic disorder. 
J Child Neurol 21:199–204

Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gamma-
aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci 
USA 95:5341–5346

Zafeiriou DI, Ververi A, Vargiami E (2007) Childhood autism and associated comorbidities. Brain 
Dev 29:257–272



185

A
Adult plasticity and aging, 7–8
Agmon, A., 93, 98
Alger, B.E., 137, 144
Angelman syndrome (AS), 175–176
Aoki, C., 43
2-Arachidonyl glycerol (2-AG), 138
Auditory and visual system

experience-dependent plasticity, 79
experience requirement

high-frequency inhibition  
(HFI), 79–80

low-frequency inhibition  
(LFI), 80–81

maintenance vs. refinement, 85
FM rate and direction selectivity, 78–79
inhibitory plasticity

homeostatic balance, 83–84
superior colliculus (SC), hamster, 72
synaptic mechanisms, inhibition 

strength and timing, 84–85
vocalization selectivity, 76–77

retinocollicular convergence modifying 
effect

chronic postnatal NMDAR blockade, 75
NMDA receptor (NMDAR)-activity, 74
velocity tuning, 74–75

sideband inhibition and direction 
selectivity, adults, 78

surround inhibition
chronic NMDAR blockade, 76
receptive field (RF) properties across 

sensory systems, 81–82
velocity tuning process, 72–74

Auditory cortex (ACx)
chronological perspective, 46
cochlear damage effect, 45–46
deafness, impact, 54
EM-immunocytochemistry, 56

GABA
A
 receptors, hearing loss effects, 55

hearing impairments, 45
inhibitory synaptic plasticity, 53
thalamic stimulation, 53

Autism spectrum disorder (ASD), 173–174

B
Barrel cortex, postnatal maturation and 

plasticity
experience-dependent plasticity

GABA and GAD role, 106
metabotropic and ionotropic glutamate 

receptors, 104–105
transcriptional factors and maturation, 

105–106
GABAergic circuits

activity-independent maturation and 
plasticity, 103–104

experience-dependent plasticity, 
100–103

interneuron electrical property
dendritic gap junction (GJ) coupling 

process, 95
experience-dependent maturation, 

inhibitory interneurons, 95–96
FS and RS-type firing phenotypes, 

93–95
LTS firing phenotypes, 95
neocortical interneurons, 92–93

intracortical inhibitory synaptic 
transmission

GABA system, 96–97
late postnatal and experience-dependent 

maturation, 98–99
sensory feed-forward inhibition, 

interneurons, 99
Beaulieu, C., 101
Ben-Ari, Y., 121

Index



186 Index

Brain-based disorders
autism spectrum disorder (ASD), 173–174
epilepsy, 169–172
schizophrenia, 172

C
Calretinin (CR)

caudal ganglionic eminence (CGE), 15–16
lateral ganglionic eminence (LGE), 16
medial ganglionic eminence (MGE), 14–15
rostral migratory stream (RMS), 16–17

Carlson, G.C., 150
Castillo, P.E., 151
Caudal ganglionic eminence (CGE), 15–16
Cerebral cortex

septal region, 17
autism spectrum disorder (ASD), 173–174
tuberous sclerosis (TSC), 174
intellectual disability, 177

Chevaleyre, V., 151
Connors, B.W., 95, 99
Cortical interneurons

calretinin (CR), 15
GABAergic interneuronal progenitors, 18
Nkx2.1, 19
origin

caudal ganglionic eminence (CGE), 
15–16

cortex, 17–18
lateral ganglionic eminence (LGE), 16
medial ganglionic eminence (MGE), 

14–15
rostral migratory stream (RMS), 16–17
septal region, 17

sonic hedgehog (Shh) signaling, 19
Co-transmitters, 5
Critical period

ocular dominance plasticity, 7
GAD65 expression, 98, 100
whisker stimulation, 103

D
Dark rearing

surround inhibition, 83
maturation, GABA transmission, 104

Deafferentation
MNTB neurons, 49–50
sound-evoked activity, 61

Depolarization-induced suppression of 
inhibition (DSI), 5–6

endogenous cannabinoids (eCBs), 139–140
glutamatergic terminals, 145–146

Diana, M.A., 148
Direction selectivity

experience requirement, 80–81
frequency-modulation (FM) rate, 78–79
sideband inhibition, 78

E
Eagleson, K.L., 167
Edwards, D.A., 149
Elphick, M.R., 139
Endocannabinoids. See Endogenous 

cannabinoids (eCBs)
Endogenous cannabinoids (eCBs)

and development, 156–157
history and pharmacology

AEA and 2-AG, 138
CB1R, 137–138
delta-9 tetrahydrocannabinol (THC), 137
ubiquity, 138

neurophysiology
2-AG, 144–145
assaying methods, 142
de novo postsynaptic synthesis, 

142–143
depolarization-induced suppression of 

inhibition (DSI), 139–140
eCBs and brain development, 146–147
glutamatergic terminals, 145–146
GPCR-dependent eCB mobilization, 

140–141
interneurons release eCBs, 147–148
mobilization, 143
pre-endocannabinoid, 143
retrograde signaling, 139
timing, eCB mobilization, 143–144

nitric oxide system, synergy, 157–158
and synaptic plasticity neurophysiology

DSI and long-term potentiation (LTP), 
149–150

exogenous cannabinoids relationship, 154
inhibitory long-term depression (iLTD), 

150–154
seizures, 155–156
spike-timing dependent plasticity 

(STDP), 154–155
use-dependent regulation of, 148–149

Epilepsy, 169–172
Ergetova, M., 139
Experience-dependent maturation

inhibitory interneurons, 
electrophysiological property, 
95–96

postnatal maturation, 98–99



187Index

postsynaptic maturation, 98
presynaptic maturation, 98

Experience-dependent plasticity
GABA and GAD role, 106
metabotropic and ionotropic glutamate 

receptors, 104–105
transcriptional factors and maturation, 

105–106

F
Fragile X, 174–175
Fuchs, J.L., 103
Fuzessery, Z.M., 71

G
GABAergic system

hippocampal development
ion transport and E

GABA
 control, 

119–120
tonic actions, 117–118
trophic actions, 118

interneuron dysfunction, 170–171
synapses maturation

AMPAergic synapses, 33
correlation-based [Hebbian] rules, 

32–33
early embryos, 35–36
embryonic limb movements, 29–30
episode and NKCC1 cotransporter 

modulation, 31
function, 27
GABA

A
 agonist and voltage-gated 

channel blockage, 35
homeostatic plasticity, 33
inter-episode intervals (IEI), 31–32
intracellular chloride concentration, 32
lidocaine-treated embryo, 35
membrane depolarization, 28
miniature postsynaptic current (mPSC) 

amplitude, 33–34
network-induced depression, 30–31
neural circuits formation, 33–34
neuronal activity, 28
spontaneous network activity (SNA), 

28–29
synaptic strength regulation, 32–33

Ganglionic eminence
caudal, 15–16
lateral, 16
medial, 14–15

Gene regulatory disorders
Angelman syndrome (AS), 175–176

intellectual disability (ID), 177
Prader–Willi syndrome (PWS), 175–176

Giant depolarizing potentials (GDPs)
acronym, 122
pacemaker region (CA3), 122–123
synaptic and cellular mechanisms, 

generation
CA3 pyramidal neurons intrinsic 

bursting, 125–127
conditional pacemakers, CA3,  

127–128
GABA action developmental shift, 

123–125
glutamatergic transmission, 125

Glorioso, C., 106
Glutamatergic transmission, 125
Gonzalez-Islas, C.E., 27

H
Hammock, E.A.D., 167
Hebb, D.O., 3
Heinbockel, T., 143
Hensch, T., 7
Hibbard, L.S., 103
Hippocampal development

GABAergic transmission
ion transport and E

GABA
 control, 

118–120
tonic actions, 117–118
trophic actions, 118

giant depolarizing potentials (GDPs)
acronym, 122
pacemaker region (CA3), 122–123
synaptic and cellular mechanisms, 

generation, 123–128
ontogeny, 120–122

Homeostatic plasticity, 6–7, 83–84
Hubel, D.H., 71
Hubner, C.A., 119
Huxley, T.H., 115

I
Inferior colliculus (IC)

chloride (Cl-), 50–52
GABA, 52
inhibitory postsynaptic potentials, 50
synaptic plasticity, inhibitory, 51

Inhibitory gain
regulatory mechanisms

IPSC amplitude, 59–60
kinase-dependent phosphorylation, 59

auditory processing, 60–62



188 Index

Inhibitory plasticity
adult plasticity and aging, 7–8
co-transmitters, 5
depolarization-induced suppression  

of inhibition (DSI), 5–6
homeostatic, 6–7
ocular dominance, 7
receptor subunit composition, 5
receptor trafficking, 6
spike timing-dependent plasticity  

(STDP), 6
Inhibitory synapse regulation, auditory CNS 

development
activity-dependent plasticity, 43
auditory cortex (ACx)

chronological perspective, 46
cochlear damage effect, 45–46
deafness, impact, 54
EM-immunocytochemistry, 56
GABA

A
 receptors, hearing loss  

effects, 55
hearing impairments, 45
inhibitory synaptic plasticity, 53
thalamic stimulation, 53

cell adhesion molecules, 43
cellular mechanisms, 59–60
GABA, hearing loss effect, 57
heirarchical modification, 58–59
inferior colliculus (IC)

chloride (Cl-), 50–52
GABA, 52
inhibitory postsynaptic potentials, 50
synaptic plasticity, inhibitory, 51

in vivo manipulations, 61–62
lateral superior olivary (LSO) neurons

anti-homeostatic mechanism,  
49–50

excitatory synapses, 48
GABA

B
 receptor, 49

inhibitory synaptic plasticity, 47
interaural level differences  

(ILD), 46
LTD, inhibitory, 48
medial nucleus of the trapezoid body 

(MNTB), 48
presbycusis, 61
spontaneous and sound-evoked activity

action potential, 44
neural activity, 44
retinal activity, 45

unilateral deafferentation, 61
Intellectual disability (ID), 177
Inter-episode intervals (IEI), 29, 31–32

Issac, J.T., 99
Itami, C., 104

J
Jean-Xavier, C., 124
Jones, E.G., 96

K
Kaeser, P.S., 153
Kaila, K., 115
Kathie, L.E., 167
KCC2. See K+-Cl- cotransporter
K+-Cl- cotransporter (KCC2), 50,  

119–120
Kim, J., 144
Knott, G.W., 103
Knudsen, E.I., 82
Kotak, V.C., 43
Kreitzer, A.C., 145

L
Land, P.W., 95, 98
Lateral ganglionic eminence (LGE), 16
Lateral superior olivary (LSO) neurons

anti-homeostatic mechanism, 49–50
excitatory synapses, 48
GABA

B
 receptor, 49

inhibitory synaptic plasticity, 47
interaural level differences (ILD), 46
LTD, inhibitory, 48
medial nucleus of the trapezoid body 

(MNTB), 48
Levitt, P., 8, 167
Long-term depression (LTD)

endocannabinoids (ecs), 5–6
inhibitory plasticity (LTDi)

DSI-induced LTD, 150–151
long-lasting and CB1R-dependent 

facilitatory effect, 152
eCB effects, 153
cAMP/PKA signaling, 153–154

inhibitory gain, 59–60
spike-timing dependent plasticity,  

154–155
Long-term potentiation (LTP)

DSI, 149–150
inhibitory plasticity (LTPi), 5–6
receptor trafficking, 6
spike-timing dependent plasticity (STDP), 

154–155



189Index

Low-threshold spiking (LTS)
eCB release, 148
electrical properties, 92–93

M
Marty, A., 148
Masking

backward and forward, 73–74
surround inhibition, 75–76
sideband inhibition, 78

Massengill, J.L., 93
McCasland, J.S., 98, 103
Medial ganglionic eminence (MGE)

interneuron migration, 21
Lhx6, 20
Nkx2.1 and Nkx6.2, 20
in utero transplantation, 22

Metabotropic glutamate receptors  
(mGluRs), 105

Micheva, K.D., 101
Minshew, N.J., 173
Mower, G.D., 97

N
Na+-K+-Cl- cotransporter (NKCC1)

GABAergic transmission, 28
hippocampal neuron regulation, 119
inferior colliculus (IC), 50

N-arachidonyl ethanolamine (AEA), 138
Nedivi, E., 8
Nitric oxide system, 157–158
NKCC1. See Na+-K+-Cl- cotransporter
NMDA receptor (NMDARs), 104–105

P
Pallas, S.L., 71
Pathophysiology, interneuron

brain-based disorders
autism spectrum disorder (ASD), 

173–174
epilepsy, 169–172
schizophrenia, 172

fragile X, 174–175
gene regulatory disorders

Angelman syndrome (AS), 175–176
intellectual disability (ID), 177
Prader–Willi syndrome (PWS), 175–176

tuberous sclerosis (TSC), 174
Plasticity. See Developmental plasticity, 

auditory system

Poo, M.M., 6
Prader–Willi syndrome (PWS), 175–176
Prince, D., 93

R
Razak, K.A., 71
Receptive field properties. See Auditory and 

visual Systems
Receptor trafficking, 6
Regehr, W.G., 145
Reich, C.G., 150
Response selectivity, inhibitory plasticity, 

82–83
Retinocollicular

inhibitory plasticity, 72
surround inhibition, 74–75

Retinotectal
inhibitory plasticity, 72
N-methyl-D-aspartate receptors 

(NMDARs), 104–105
Rostral migratory stream (RMS), 16–17

S
Salazar, E., 103
Sanes, D.H., 9, 43
Sarro, E.C., 43
Schizophrenia, 172
Sensory deprivation

in vitro electrophysiological and 
neuroanatomical studies, 101–102

in vivo electrophysiological studies, 
100–101

Sideband inhibition, 78
Simons, D.J., 95, 96, 98, 100, 101
Sipilä, S.T., 115
Somatosensory cortex

rostral migratory stream (RMS), 16–17
response selectivity development,  

82–83
Sonic hedgehog (Shh) signaling, 19
Spike-timing dependent plasticity (STDP)

endogenous cannabinoids (eCBs),  
154–155

FM direction selectivity, 85
inhibitory plasticity, 6

Spontaneous network activity (SNA), 27
Suga, N., 78
Sun, Q.-Q., 91, 98
Superior colliculus (SC)

inhibitory plasticity, 72
sound-evoked activity, 44–45



190 Index

Surround inhibition
chronic NMDAR blockade, 76
retinocollicular convergence effect,  

74–75
velocity tuning, SC, 72–74

Swadlow, H.A., 99

T
Tuberous sclerosis (TSC), 174
Takesian, A.E.

V
Velocity tuning, SC, 72–74, 76
Vocalization selectivity, auditory system, 

76–77

Visual system. See also Auditory and visual 
Systems

surround inhibition, 72–74
homeostatic plasticity of inhibition,  

83–84

W
Welker, E., 103
Wenner, P., 27
Wiesel, T.N., 71
Woolsey, T.A., 98
Wu, G.K., 84

Z
Zheng, W., 82


	cover-large
	front-matter
	fulltext
	Chapter 1
	Introduction
	1.1 Hemifield Neglect?
	1.2 “Inhibition” is Excitatory Early in Development
	1.3 Mechanisms of Inhibitory Plasticity are Highly Diverse
	1.3.1 Co-Transmitters
	1.3.2 Changes in Receptor Subunit Composition
	1.3.3 DSI
	1.3.4 Inhibitory STDP
	1.3.5 Receptor Trafficking

	1.4 Homeostatic Plasticity
	1.5 Critical Periods
	1.6 Old Dogs and New Tricks: Adult Plasticity and Aging
	1.7 Conclusions and Future Directions

	References


	fulltext_001
	Chapter 2
	The Origins and Specification of Cortical Interneurons
	2.1 Introduction
	2.2 Origins of Cortical Interneurons
	2.2.1 Medial Ganglionic Eminence
	2.2.2 Caudal Ganglionic Eminence
	2.2.3 Lateral Ganglionic Eminence
	2.2.4 Rostral Migratory Stream
	2.2.5 Septal Region
	2.2.6 Cortex

	2.3 Birthdating of Cortical Interneurons
	2.4 Specification of Cortical Interneurons
	2.4.1 Generation of Interneuron Diversity Within the MGE


	References


	fulltext_002
	Chapter 3
	Role of Spontaneous Activity in the Maturation of GABAergic Synapses in Embryonic Spinal Circuits
	References


	fulltext_003
	Chapter 4
	Regulation of Inhibitory Synapse Function in the Developing Auditory CNS
	4.1 Spontaneous and Sound-Evoked Activity During Development
	4.2 Perturbation of Auditory System Activity Alters Inhibition
	4.3 Developmental Regulation of Inhibitory Synapses in the Lateral Superior Olive
	4.4 Developmental Regulation of Inhibitory Synapse Gain in the Inferior Colliculus
	4.5 Developmental Regulation of Inhibitory Synapse Gain in the Auditory Cortex
	4.6 Summary
	4.6.1 Heirarchical Modification of Inhibitory Function
	4.6.2 Cellular Mechanisms that Regulate Inhibitory Gain
	4.6.3 Effect of Inhibitory Gain on Auditory Processing


	References


	fulltext_004
	Chapter 5
	Developmental Plasticity of Inhibitory Receptive Field Properties in the Auditory and Visual Systems
	5.1 Introduction
	5.1.1 Inhibitory Plasticity in the Hamster Superior Colliculus
	5.1.2 Surround Inhibition Shapes Velocity Tuning in the SC
	5.1.3 Effects of Modifying Retinocollicular Convergence on Surround Inhibition During Development
	5.1.4 Surround Inhibition Plays a Larger Role in Velocity Tuning After Chronic NMDAR Blockade
	5.1.5 Plasticity of Inhibition Underlying Vocalization Selectivity in the Auditory Cortex
	5.1.6 Asymmetries in Sideband Inhibition Shape FM Rate and Direction Selectivity in Adults
	5.1.7 Developmental Plasticity of Inhibition Underlying FM Rate and Direction Selectivity
	5.1.8 Experience-Dependent Plasticity of Inhibition Shaping Rate and Direction Selectivity
	5.1.9 Normal Experience is Required for the Maintenance of FM Rate Selectivity and HFI
	5.1.10 Experience is Required for Development and Maintenance of Direction Selectivity and LFI

	5.2 Discussion
	5.2.1 The Contribution of Surround Inhibition to RF Properties Across Sensory Systems
	5.2.2 Previous Studies on the Role of Inhibitory Plasticity in the Development of Response Selectivity
	5.2.3 Homeostatic Plasticity of Inhibition: Beyond Response Magnitude Stability
	5.2.4 Possible Synaptic Mechanisms of Plasticity in Strength and Timing of Inhibition
	5.2.5 Role of Experience During Development: Maintenance Versus Refinement
	5.2.6 Future Directions


	References


	fulltext_005
	Chapter 6
	Postnatal Maturation and Experience-Dependent Plasticity of Inhibitory Circuits in Barrel Cortex
	6.1 Postnatal Maturation and Plasticity of Electrical Properties of Interneurons in the Barrel Cortex
	6.1.1 Postnatal Maturation of Electrical Properties in Neocortical Interneurons
	6.1.1.1 Maturation of FS and RS-Type Firing Phenotypes
	6.1.1.2 Maturation of BS or LTS Firing Phenotypes

	6.1.2 Increases in Dendritic Gap Junction (GJ) Coupling During Postnatal Maturation
	6.1.3 Experience-Dependent Maturation of Electrophysiological Properties of Inhibitory Interneurons

	6.2 Postnatal Maturation of Intracortical Inhibitory Synaptic Transmission in the Barrel Cortex
	6.2.1 Early Postnatal Development of the GABA System and its Role in Circuit Formation in the Barrel Cortex
	6.2.1.1 Synthetic Enzymes for GABA Exhibit Different Expression Patterns
	6.2.1.2 GABA-Mediated Synaptic Transmission in the Early Postnatal Period

	6.2.2 Late Postnatal and Experience-Dependent Maturation of Inhibitory Circuits in the Barrel Cortex
	6.2.2.1 Presynaptic Maturation
	6.2.2.2 Postsynaptic maturation
	6.2.2.3 Experience-Dependent Postnatal Maturation

	6.2.3 Interneurons involved in sensory feed-forward inhibition in the barrel cortex and the consequences of their functional

	6.3 Does the Maturation of Neocortical Inhibitory Networks Proceed in an Activity-Dependent Manner or Independently of Sensor
	6.3.1 Experience-Dependent Plasticity of GABAergic Circuits in the Barrel Cortex
	6.3.1.1 Sensory Deprivation (Whisker-Trimming)
	6.3.1.2 Whisker Stimulation

	6.3.2 Activity-Independent Maturation and Plasticity of GABAergic Circuits

	6.4 Molecular Mechanisms Underlying Experience-Dependent Plasticity of Inhibitory Circuits in the Barrel Cortex
	6.4.1 The Roles of Metabotropic and Ionotropic Glutamate Receptors
	6.4.1.1 N-Methyl-D-Aspartate Receptors (NMDARs)
	6.4.1.2 Metabotropic Glutamate Receptors (mGluRs)

	6.4.2 Transcriptional Factors and Maturation of Inhibitory Circuits
	6.4.3 The Roles of GABA and GAD

	6.5 Concluding Remarks

	References


	fulltext_006
	Chapter 7
	GABAergic Transmission and Neuronal Network Events During Hippocampal Development
	7.1 Introduction
	7.2 GABAergic Transmission in the Immature Hippocampus
	7.2.1 Tonic Actions of GABA
	7.2.2 Trophic Actions of GABA
	7.2.3 Ion Transport and the Control of EGABA in Hippocampal Neurons
	7.2.3.1 Uptake of Chloride: NKCC1
	7.2.3.2 Extrusion of Chloride: KCC2
	7.2.3.3 Bicarbonate and EGABA


	7.3 Ontogeny of Hippocampal Network Events
	7.4 Characteristics of “Giant Depolarizing Potentials” in the Rat Hippocampus In Vitro
	7.5 Synaptic and Cellular Mechanisms Underlying GDP Generation
	7.5.1 GDPs and the Developmental Shift in GABA Action in Rat Hippocampal Slices
	7.5.2 Glutamatergic Transmission and GDPs
	7.5.3 Intrinsic Bursting of CA3 Pyramidal Neurons
	7.5.4 CA3 Pyramidal Neurons as Conditional Pacemakers in GDP Generation

	7.6 Conclusions

	References


	fulltext_007
	Chapter 8
	Endocannabinoids and Inhibitory Synaptic Plasticity in Hippocampus and Cerebellum
	8.1 Introduction
	8.1.1 Introduction to eCBs: History and Pharmacology

	8.2 Basic Neurophysiology of eCBs
	8.2.1 Retrograde Signaling
	8.2.2 Depolarization-Induced Suppression of Inhibition
	8.2.3 GPCR-Dependent eCB Mobilization
	8.2.4 Are eCBs Really Retrograde Messengers?
	8.2.5 ECB Mobilization
	8.2.6 Pre-endocannabinoid DSI and eCBs
	8.2.7 Timing of eCB Mobilization
	8.2.8 2-AG is Probably the Main eCB in Hippocampus and Cerebellum
	8.2.9 CB1R on Glutamatergic Terminals: Depolarization-Induced Suppression of Excitation
	8.2.10 eCBs and Brain Development
	8.2.10.1 eCBs Affect Interneuronal Connectivity
	8.2.10.2 In Early Development eCBs Decrease Network Excitability

	8.2.11 Interneurons Release eCBs
	8.2.11.1 Interneuronal DSE and DSI
	8.2.11.2 eCB Mediated Self-Inhibition of Interneurons


	8.3 Basic Neurophysiology of eCBs and Synaptic Plasticity
	8.3.1 Use-Dependent Regulation of eCB Effects on Inhibition
	8.3.1.1 Increases in Probability of GABA Release Decrease Presynaptic eCB Effects
	8.3.1.2 Tonic CB1R Activation
	8.3.1.3 Activity-Dependent Increases in eCB Responses

	8.3.2 DSI in LTP
	8.3.3 Inhibitory Long-Term Depression
	8.3.4 Relationship of the eCB System to Exogenous Cannabinoids
	8.3.5 Spike-Timing Dependent Plasticity
	8.3.6 eCBs and Seizures

	8.4 Development and eCBs
	8.5 Synergy with Nitric Oxide System
	8.6 Conclusions

	References


	fulltext_008
	Chapter 9
	Interneuron Pathophysiologies: Paths to Neurodevelopmental Disorders
	9.1 Introduction
	9.2 Brain-Based Disorders
	9.2.1 Epilepsy
	9.2.2 Schizophrenia
	9.2.3 Autism Spectrum Disorder
	9.2.4 Other Developmental Disorders
	9.2.4.1 Tuberous Sclerosis
	9.2.4.2 Fragile X
	9.2.4.3 15q11–q13 and Gene Regulatory Disorders: Prader–Willi, Angelman, and Rett Syndromes
	9.2.4.4 Intellectual Disability


	9.3 Conclusions

	References


	back-matter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




