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The phenomena of dissonance and consonance in a simple auditory sensory model composed of three
neurons are considered. Two of them, here so-called sensory neurons, are driven by noise and subthreshold
periodic signals with different ratio of frequencies, and its outputs plus noise are applied synaptically to a third
neuron, so-called interneuron. We present a theoretical analysis with a probabilistic approach to investigate the
interspike intervals statistics of the spike train generated by the interneuron. We find that tones with frequency
ratios that are considered consonant by musicians produce at the third neuron inter-firing intervals statistics
densities that are very distinctive from densities obtained using tones with ratios that are known to be disso-
nant. In other words, at the output of the interneuron, inharmonious signals give rise to blurry spike trains,
while the harmonious signals produce more regular, less noisy, spike trains. Theoretical results are compared
with numerical simulations.
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I. INTRODUCTION

Since 1980-th it has been well known that noise in physi-
cal systems does not always play a negative role. Noise usu-
ally means something that causes unwanted disturbance and
blurs the signal processing. However, noise in many cases
can be a message by itself or a highly desirable part of the
message, important for signal processing. In different
branches of science, indeed, the interplay of nonlinearity,
environmental noise, and periodic forces gives rise to many
noise-induced effects such as stochastic resonance �1,2�, co-
herence resonance �3,4�, noise enhanced stability �5,6�, etc.,
which show the constructive role of the noise. A typical field
of investigation is the wide class of neural systems, which
are naturally noisy. In neurons, in fact, noise arises from
many different sources, such as the quasirandom release of
neurotransmitter by the synapses, the random switching of
ion channels �channel noise�, and most importantly random
synaptic input from other neurons �each neuron receives on
the average 104 inputs from its neighbors �7��. Noise affects
all aspects of nervous-system function. Both the central and
peripheral nervous system are subjected to the noise �8�.

A natural question arises: how does a signal survive in
such a noisy environment? Looking for an approach to this
problem we focused our attention on sensory systems �9,10�.
Typically, in sensory systems there is a set of neurons, re-
ferred to as sensory neurons or sensors, receiving signals
directly from the environment. Sensory neurons are respon-
sible for converting external stimuli from the environment
into internal stimuli. A classical approach to modeling the

auditory system is to consider the periphery as a Fourier
transform followed by a number of bandpass filters and to
view the function of entire lower auditory system as being a
spectrum estimator �11,12�. Therefore, the sensory neurons
attached directly to the basilar membrane receive different
sinusoidal components �depending on the coordinates of con-
nection along the membrane� of the input sound. These pe-
riodical signals, together with noise, act as input signals to
sensory neurons, resulting in trains of very short pulses,
“spikes,” which are transmitted to other neurons �interneu-
rons� along the neural fibers.

The perception and processing of environmental complex
signals resulting from the combination of two or more input
periodical signals are still an open problem for physicists and
physiologists. In particular, the precise neural and physi-
ological bases for our perception of musical consonance and
dissonance are still largely unknown �10,13,14�. Although
there is no single musical definition, consonance is usually
referred to as the pleasant stable sound sensation produced
by certain combinations of two tones played simultaneously.
Conversely, dissonance is the unpleasant unstable sound
heard with other sound combinations �15�. The dominant and
the oldest theory of consonance and dissonance is that of
Pythagoras �around 500 BC�. He observed that the simpler
the frequency ratio between two tones, the more consonant
they will be perceived. For example, the consonant octave is
characterized by a 1/2 frequency ratio between two tones,
while the dissonant semitone is characterized by a 15/16
ratio. In 1877, Helmholtz analyzed the phenomenon of con-
sonance and dissonance in the more general context of com-
plex tones and proposed the “beat theory.” When two com-
plex tones are played together �as an interval�, the harmonics
of each tone are present in the stimulus arriving at the ear of
the listener. For some combinations �simple ratio n /m� the
harmonic frequencies match, for others �complicated ratio
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n /m� they do not. As the frequency ratio n /m becomes more
“complicated,” the two tones share fewer common harmon-
ics and there is an increase in harmonics pair slightly mis-
matched in frequency which give unpleasant beating sensa-
tion. In other words, the dissonance is proportional to the
number of frequency components present in the two complex
tones that produce beats �11�.

Here, after shortly reviewing two recent theoretical ap-
proaches to the perception of complex signals we present our
approach to the statistics of consonant and dissonant musical
accords in the presented sensory model.

A. Pitch perception and ghost stochastic resonance

Pitch is a subjective sensation in which a listener assigns
perceived tones to relative positions on a musical scale based
primarily on the frequency of vibration. In other words, pitch
represents the perceived frequency of a sound. How the brain
estimates the pitch of complex sounds, formed by a combi-
nation of pure tones, remains a controversial issue �16–20�.
For harmonic complex sound signals, whose constituent fre-
quencies are multiple integers of a fundamental frequency,
the perceived pitch is the fundamental, even if that frequency
is not spectrally present in the input signal. This is known as
“missing fundamental illusion.” Recently, a mechanism for
the perception of pitch has been proposed on the basis of the
so-called ghost stochastic resonance �GSR� �21,22�. The pro-
posed mechanism shows that a neuron responds optimally to
the missing fundamental of a harmonic complex signal for an
appropriate level of noise. The main ingredients are: �i� a
linear interference between the individual tones, producing
peaks of constructive interference at the fundamental fre-
quency �missing fundamental or ghost frequency�, whose
amplitude is not suitable to trigger the neuron, and �ii� a
nonlinear threshold that detects those peaks with the help of
a suitable amount of noise. GSR has been observed experi-
mentally in semiconductor lasers �23� and in electronic cir-
cuits �24�. The GSR mechanism was extended later to de-
scribe a higher level of perception processing, which is the
binaural pitch perception �25,26�. Two different neurons,
each one representing detection at a different auditory chan-
nel, receive one single component of the complex signal
each, and their output spike trains drive a third neuron that
processes the information. This processing neuron responds
preferentially at the ghost frequency and the response is op-
timized by synaptic noise.

B. Nonlinear synchronization theory of musical consonance

A synchronization theory of consonance that goes beyond
the linear beating theory of Helmholtz was recently proposed
in Ref. �13�. By using a simple scheme of two mutually
coupled neural oscillators, the authors showed that the mode-
locked states ordering gives precisely the standard ordering
of consonance. They analyzed the dynamics of two coupled
leaky integrate-and-fire neuron models, with mutual excita-
tory coupling, by finding that the mode locking ratios n /m
�with n and m integers� are ordered according to the “Farey
sequence,” which orders all rational fractions n /m in the in-
terval �0,1� according to their increasing denominators m

�27�. By plotting the ratio of actual firing frequencies as a
function of the ratio of natural intrinsic frequencies of the
two coupled oscillators, they reproduce the so-called “Dev-
il’s Staircase,” with flat steps corresponding to different
mode-locked states. This is a universal feature of driven
coupled oscillators �28�. The width of each step, which is of
the mode-locked interval, is an indicator of the structural
stability of the synchronization. It is therefore possible to
order the mode-locked states by their stability index �the
width of the step�, by finding a correspondence with the the-
oretical ordering of musical intervals according to their con-
sonance evaluation. Heffernan and Longtin in Ref. �14� ana-
lyzed in detail the same model of Ref. �13� by considering
different values of coupling between the oscillators. They
found that the ordering of mode-locked states is not universal
but depends on the coupling strength. The authors also ex-
plored generic aspects of a possible synchronization theory
by driving the model neurons with sinusoidal forcing or ran-
dom forcing.

C. Probabilistic approach

In this paper we investigate the phenomena of consonance
and dissonance in a simple perception model system by a
probabilistic approach. The system, shown in Fig. 1, is com-
posed of three neural-like noisy elements. Two of them rep-
resent sensory neurons and are driven by noise and sub-
threshold periodic signals with different ratio of frequencies.
The outputs of these neurons, in the presence of noisy envi-
ronment, are synaptically connected �only spike train trans-
mission� with the third element which represents an inter-
neuron, which is an internal neuron which connects sensory
neuron to other neurons within the same region of the brain.
We analyze the probability distribution of interspike intervals
�ISIDs� of the output signal of the interneuron by assuming
to know the ISIDs of the output signals of the two sensory
neurons �1�t� and �2�t�. In principle, there are many events,
each one characterized by different probability, for which the
third neuron can fire due to the spikes arriving from the two

FIG. 1. The investigated model. Sensory neurons N1 and N2 are
driven by subthreshold sinusoidal signals with different frequencies.
Spike trains of sensors are received by the interneuron N3. All three
neurons are perturbed by independent noise sources �1�t�, �2�t� and
�3�t�.
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sensors. We reduce the number of events for which the in-
terneuron can fire to four main scenarios because all other
events have a very negligible probability to happen in com-
parison with the previous four. In this way we are able to
calculate the first passage time distribution at the output of
the interneuron �3�t�, using conditional probabilities and first
passage time distributions at the output of sensory neurons.
Moreover, for periodical input signal at the sensors with fre-
quency ratio m /n we obtain �m+n−1� different patterns of
input spike trains for the interneuron, with different ISIDs at
its output. The final interspike interval density of the inter-
neuron �out�T� is obtained by averaging the first passage time
density �3�t� over all different states �m+n−1� of the inter-
neuron.

We show how a complex input composed of two har-
monic signals is transformed by the proposed simple sensory
system into different types of spike trains, depending on the
ratio of input frequencies. Looking for the differences in the
statistical sense, we find out that the output ISIDs for some
combinations of frequencies, corresponding to consonant ac-
cords, have more regular pattern, while inharmonious sig-
nals, corresponding to dissonant accords, show less regular
spike trains and blurry ISIDs. This difference indicates that
consonant accords are higher stable, with respect to the noise
environment, in comparison with the dissonant accords in
the processing of information throughout the auditory sys-
tem.

We note that our approach differs from the previous one
�nonlinear synchronization theory� because we use three
neurons in our sensory system model and there is no mutual
connection that gives raise to synchronization between neu-
rons. Moreover, we focus on ISI statistics to analyze conso-
nant and dissonant accords. Concerning the pitch perception
and ghost stochastic resonance, our investigation has close
connections with this phenomenon. In fact, the output ISIDs
of the interneuron comprise peaks which are not present in
the ISIDs of the sensory neurons and peaks corresponding to
ghost frequencies, which are not present in the input com-
plex tone of the sensory system. But our analysis is mainly
focused on finding the analytical expression of the output
ISID of the interneuron, and we do not look for the optimum
noise level. In addition, our fixed noise intensity value is out
of optimum range of the ghost stochastic resonance.

In what follows, after describing the model in Sec. II, we
present the theoretical analysis based on a probabilistic ap-
proach in Sec. III and a flowchart for calculation algorithm in
Sec. IV. The results of numerical simulations on the proposed
model and comparison with the theoretical ones are reported
in Sec. V. A discussion on the qualitative agreement of our
theoretical results with those obtained under the hypotheses
about consonance, and dissonance in music proposed by
Helmholtz �1877� and Boomsliter and Creel �1961� is re-
ported in Sec. VI. In the final section we draw our conclu-
sions.

II. MODEL

As a neuron model for our sensory system �see Fig. 1� we
consider the leaky integrate-and-fire �LIF� model. The LIF

model is one of the most widely used spiking neuron models
�29�. While the LIF model does not provide complete de-
scriptions of real neurons, it has successfully been applied to
explain the high temporal precision achieved in the auditory
�30� and visual systems �31�. The sensory neurons �N1 and
N2� are driven by the external sinusoidal signals, and the
interneuron �N3� receives the weighted spikes of the sensors
through synaptic connections. Therefore, the set of stochastic
differential equations describing our system is

�v̇1 = − �1v1 + A1 cos��1t� + �D1�1�t� ,

v̇2 = − �2v2 + A2 cos��2t� + �D2�2�t� ,

v̇3 = − �3v3 + k1s1�t� + k2s2�t� + �D3�3�t� ,
� �1�

where vi�t� and �i stand for the membrane potential and the
relaxation parameter, respectively, and subscript i labels the
different neurons, with i=1,2 representing the two input sen-
sory neurons �N1 and N2� and i=3 �N3� denoting the process-
ing interneuron. Ai and �i �with i=1,2� are the amplitude
and the frequency of the corresponding harmonic input of the
sensors. We consider that the three neurons have different
synaptic connections, they are not subject to the same back-
ground noise, and the three noise sources �i�t� of Fig. 1 are
independent of each other �7�. Therefore, in Eq. �1�, the three
white Gaussian noise terms �i�t� �i=1,2 ,3� are uncorrelated
and with the usual statistical properties ��i�t�	=0 and
��i�t�� j�t��	=��t− t���ij. Di is the noise intensity in each neu-
ron. In Eq. �1� si�t�=
 j=0

Ni�t���t− tij� , i=1,2 are the spike
trains generated by the sensors and received by the interneu-
ron as input, ki �i=1,2� are the coupling coefficients. Spikes
are modeled by Dirac � functions. The LIF model does not
comprise any mechanism of spike generation. When the
membrane potential vi reaches the threshold value vth, the
neuron is said to fire a spike, and vi is reset to its initial value
vi

0. In particular, the input spikes at the interneuron, coming
from the sensory neurons, can produce spikes or jumps in the
membrane potential of the interneuron, depending on
whether or not they are suitable to fire the interneuron.

The firing times tij are the times in which the membrane
potentials of the sensory neurons cross the threshold vth,
which we consider equal for all the neurons. Ni�t� is the
number of spikes generated by the ith sensor since the initial
time. For the output interneuron the refractory period �Tref�
is introduced explicitly. This neuron does not respond to any
external signal after reset at time, tres, until the membrane
potential v3

0e−�3�t−tres� reaches the level v3=−0.1. Hence, the
refractory period can be written as

Tref =
1

�3
ln�− 10v3

0� . �2�

All simulation and theoretical results presented in the pa-
per are obtained using the following set of values of system
parameters, namely �1=�2=1, �3=0.3665, D1=D2=D3
=1.6�10−3, k1=k2=0.98, v1

0=v2
0=0, v3

0=−1, and vth=1, un-
less stated otherwise. For the chosen parameter values we
have Tref =6.28.
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III. THEORETICAL APPROACH

The first two equations of system �1� describe the
Ornstein-Uhlenbeck processes with harmonic driving forces.
For the Ornstein-Uhlenbeck neuronal model, the ISID was
obtained analytically with different approaches in Refs.
�32,33�. This distribution, which coincides with the first pas-
sage time probability distribution related to the firing event
of sensory neurons, is our starting point to obtain the ISID at
the output of the interneuron.

It is important to note here that the ISIDs at the output of
two sensors are non-Poissonian �see next Fig. 2�b��. Indeed,
non-Poissonian distribution of interspike intervals was very

recently observed in Primate parietal cortical neurons �34�.
These spike trains are the input of the third neuron, and as a
consequence the dynamics of the membrane potential of the
interneuron is non-Markovian �35�. Hence, because we can-
not use the Markovian theoretical apparatus, we are com-
pelled to investigate the ISI statistics of the interneuron using
another analytical approach.

A. Assumptions

The analytical solutions for the membrane potential of the
sensors vi�t� �i=1,2� and for the interneuron v3�t� are �36�

�vi�t� = �vi
0 −

Ai

��i
2 + �i

2
cos��iti

0 − �i��e−�i�t−ti
0� +

Ai

��i
2 + �i

2
cos��it − �i� + �Di�i�t�, �i = 1,2�

v3�t� = v3
0e−�3�t−t3

0� + 

i=1

2

kiSi�t� + �D3�3�t� � . �3�

These equations are valid from the initial time ti
0

�i=1,2 ,3� until the next spike at each neuron occurs. Here
Si�t�=
 j=0

Ni�t�e−�3�t−tij� �i=1,2� is a sum of decaying impulses
evoked by spikes of the ith sensory neuron; �i�t�
=ti

0
t e−�i�t−t���i�t��dt� �i=1,2 ,3� is the Ornstein-Uhlenbeck

process with zero mean, variance

	i
2�t� =

1

2�i
�1 − e−2�i�t−ti

0�� �i = 1,2,3� �4�

and probability distribution

w�i
�s� =

1
�2
	i�t�

exp�−
s2

2	i
2�t��, �i = 1,2,3� . �5�

In Eq. �3�, ti
0 are the reset times �spike generation� of the

sensors �i=1,2� and the interneuron �i=3�; and �i
=arctan��i /�i�, with i=1,2.

The temporal realizations of membrane potentials of neu-
rons allow us to understand the conditions of spike genera-
tion by the interneuron and to establish connections between
these events and the input signals.

In order to perform this analysis we use three main as-
sumptions:

�1� the input harmonic signals are subthreshold for the
sensors, which is the values of the amplitude Ai and the
frequency �i are such that the signal Ai cos��it� is not able
to bring the membrane potential of the ith sensor above the
threshold in the absence of noise �Di=0�. This means ab-
sence of spikes at the output of the sensors. From the first
equation of system �3� we obtain

Ai

��i
2 + �i

2
� vth. �6�

�2� Only one spike can be generated at each period of the
harmonic driving force, and, at the same time, the spiking on
each period is the most probable situation �see Fig. 2�a��.
This means that the relaxation times of sensors are smaller
than the periods of the sinusoidal signals

1

�i
�

2


�i
. �7�

�3� Each of coupling coefficients ki is less than the thresh-
old value of the membrane potential vth. It means that any
separate incoming spike �that is spike coming after the relax-
ation time or the refractory time �see Fig. 2�c��� evokes a
subthreshold impulse of the membrane potential of the inter-
neuron v�t�; i.e., spike generation is impossible without
noise. At the same time, the sum of the two coupling coeffi-
cients is greater than vth,

�k1,2 � vth,

k1 + k2  vth.
� �8�

B. First passage time probability distribution of the
interneuron

1. Probability of spike generation at the interneuron

Initially all three neurons of system �1� are reset, i.e.,
v1�0�=v1

0, v2�0�=v2
0, and v3�0�=v0. Since the starting time is

t=0, we measure the first interspike period of the output
neuron as the first time to cross the threshold vth, that is the
first passage time problem. The first passage time probability
distributions �FPTPDs� are considered to be known for the
input neurons: �1�t� and �2�t�, respectively. We can use their
theoretical expressions �32,33� or we can calculate them nu-
merically from Eq. �1�. All the theoretical results of this pa-
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per are obtained using the FPTPDs �1�t� and �2�t�, numeri-
cally evaluated from the first two equations of system �1�.
Therefore, we know the characteristics of the output spike
sequences from the sensory neurons N1 and N2, which go,
through the synaptic connection, to the interneuron N3. Be-
cause of the harmonic input signals and the noise, the sen-
sory neurons fire with the highest probability at times in
which the harmonic driving forces have their maxima. The
sensors have a narrow probability distribution of spike inter-
vals near each of these maxima, and the probability of skip-
ping one, two, etc. periods decays exponentially �see Figs.
2�a� and 2�b��.

Before to analyze the FPTPD of the interneuron, we de-
scribe its typical output behavior �see Fig. 2�c��. The instant
of time in which the interneuron receives a spike coming

from the sensors, plus the noise signal, the interneuron pro-
duces a jump or a spike, depending on whether the mem-
brane potential is below or above the threshold vth. After
jumping the neuron relaxes exponentially toward the zero
value of the membrane potential �v3=0� with time scale
equal to �3=1 /�3. Within this time the interneuron can fire
because the incoming spike �from the other sensor� adds to
the noisy “background” level of the membrane potential �in-
dicated by the symbol bg in Fig. 2�c��, and the membrane
potential crosses the threshold. In other words, one sensor
causes the jump and the other one the spike. After releasing
a spike, the interneuron is in a refractory state, and the mem-
brane potential relaxes from its reset value v3=−1 toward the
level v3=−0.1 in the time Tref given by Eq. �2�. Now, we
define “separate spike,” a spike coming at the interneuron N3
at the time in which its membrane potential fluctuates around
the zero level, after a relaxation or a refractory period of time
�Fig. 2�c��. Therefore, the dynamics of the interneuron after
spiking or jumping is characterized by refractory time and
relaxation time, respectively.

The next spiking of the interneuron depends on these time
scales, the connectivity coefficients, the frequencies of the
input periodical signals driving the sensors, and the noise
intensity acting on neuron N3, giving rise to different firing
events for the interneuron. Due to the two typical membrane
potential time behavior of the interneuron �Fig. 2�c�� and the
chosen range of variability of system parameters, we have
only four main different scenarios to fire the interneuron.

Therefore, we can evaluate the probability �P3�t�
=�3�t��t that the interneuron N3 fires in the short time inter-
val �t , t+�t� by considering the occurrence of the following
events:

�1� receiving a separate firing spike from the sensory neu-
ron N1;

�2� receiving a separate firing spike from the sensory neu-
ron N2;

�3� receiving a firing spike from the neuron N1 on the
background of the membrane potential relaxing, after the
jump due to the spike from the N2 neuron, toward the zero
value; in other words, sensor N2 causes the jump and then
sensor N1 the spike; and

�4� receiving a firing spike from the neuron N2 on the
background of the membrane potential relaxing, after the
jump due to the spike from the N1 neuron, toward the zero
value; in other words sensor N1 causes the jump and then
sensor N2 the spike.

We neglect the contribution of multiple jump events to
fire the interneuron and the noise-induced spike events oc-
curring during the relaxation of the membrane potential after
a jump because they have very negligible probability of hap-
pening in comparison with the previous four, with the chosen
range of system parameters. In fact, the amplitudes of jumps,
produced in the membrane potential of the interneuron and
due to the incoming spikes from the sensors, are equal to the
connecting coefficients k1 and k2. This means that after a
jump of the neuron N3, the next incoming spike from one of
the two sensors will produce a spike at the output of the
interneuron with very high probability because of relation
�k1+k2�vth of Eq. �8�.

The four described scenarios exclude each other, so they
are mutually exclusive events. As a result, according to the

FIG. 2. �a� Typical behavior of the membrane potential vi�t� of
sensory neurons versus time for a noise realization. �b� ISI distri-
bution of the sensory neurons ��=0.6�. The highest probability of a
spike after t=0 is near one period of external force �t=10.47�. The
probability of firing after two, three, etc. periods decreases expo-
nentially. �c� Typical behavior of the membrane potential v3�t� of
the interneuron versus time for the same noise realization. Here are
well visible the refractory state �ref�, characterized by the refractory
time Tref, and the noisy background �bg� during the relaxation time
Trelax. The values of the system parameters are �1=�2=1, �3

=0.3665 �relaxation parameters�, D1=D2=D3=1.6�10−3 �noise in-
tensities�, k1=k2=0.98 �coupling coefficients�, v1

0=v2
0=0, v3

0=−1,
�reset values of the membrane potentials�, and vth=1 �threshold
value of the membrane potential�; A1=1.084, A2=1.115, �1=0.4,
and �2=0.42 �amplitudes and frequencies of the periodical driving
forces�; and Tmax=105 �maximum output time length of the time
series generated from the system�. From Eqs. �2� and �14�, we have
Tref =6.28 and Trelax=8.73.
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formula of total probability we have to add up all probabili-
ties of the above mentioned events. These depend on the
coupling coefficients k1,2, the noise intensity D3, the mem-
brane threshold vth and the ISIDs �1�t�, �2�t�.

The first probability is the product of the probability to
have a spike from the sensory neuron N1 within the time
interval �t , t+�t� and the conditional probability to fire the
interneuron N3, given the occurrence of the spike generation
at the neuron N1; that is,

�1�t1��t · Prob�k1 + �D3�3�t1� � vth� , �9�

where t1 is the time when spike from neuron N1 appears and
fires the interneuron �t� t1� t+�t�. To obtain the probability
of the second scenario we should replace subscript 1 with 2
in Eq. �9�.

Particular attention should be paid to the evaluation of the
third contribution to the probability of the spike generation
of the neuron N3. Suppose that the spike of the neuron N2,
plus the noise signal, arrive at the neuron N3 within the in-
terval �t� , t�+�t�� and are not able to fire the neuron. In this
case the membrane potential v3�t� produces a “jump” with
height k2, but after this decays in average exponentially to-
ward its zero value. During this relaxation time the interneu-
ron can fire because the incoming spike from the sensor N1
adds to the noisy “background” level of the membrane po-
tential, and the membrane potential crosses the threshold at
time t1 �see the first spike in Fig. 2�c��, with t�� t and
t� t1� t+�t. In other words, the sensor N2 causes the jump
within the time interval �t� , t�+�t�� and the sensor N1 fires
the neuron N3 at time t1. Therefore, the joint probability of
this complicated event is expressed as the product of the
probabilities of these two independent output events at the
interneuron, which is jumping and firing. The probability of
jumping of the interneuron, due to the spike of the neuron
N2, is the product of probability to have a spike from sensory
neuron N2 at time t1� within the interval �t� , t�+�t�� with the
conditional probability of the jump at the interneuron,
namely,

�2�t1���t� · Prob�k2 + �D3�3�t1�� � vth� = �2�t1���t�P2�t1�� .

�10�

The probability to fire the interneuron is the product of prob-
ability to have a spike from the sensory neuron N1 within the
time interval �t , t+�t� and the conditional probability of the
spike generation of neuron N3, given the occurrence of the
jumping within the time interval �t�+�t�� �caused by a spike
from neuron N2� and the firing at time t1 due to the arrival of
a spike from neuron N1 in the interval �t , t+�t�. We have

�1�t1��t · Prob�k1 + k2e−�3�t1−t1�� + �D3�3�t1� � vth�

= �1�t1��tP12�t1 − t1�� . �11�

Now, since the jumping of neuron N3 can occur at any time
t1�, within the relaxation period Trelaxi

�i=1,2�, we have to
integrate all these contributions within a time interval less or
equal to this time, which is

lim
�ti�→0



i

�2�t1i� ��ti�P2�t1i� ��1�t1��tP12�t1 − t1i� �

= �1�t1��t�
t1−Trelax2

t1

�2�t��P2�t��P12�t1 − t��dt�. �12�

When �ti�→0, then t1i
� → ti� and because of integration the

discrete time variable ti� is converted into the continuous one
t�. Before integration, we evaluate the relaxation time Trelaxi
as the time in which the value of the membrane potential
v3�t� because of the relaxation toward the zero value, attains
the value of the mean-square deviation of the noise

kie
−�3Trelaxi = �D3	3 =� D3

2�3
, �i = 1,2� �13�

then

Trelaxi
=

1

�3
ln�ki�2�3

D3
� . �i = 1,2� �14�

In Eq. �14� we report the two relaxation times related to
jumping events due to neuron N1 and neuron N2, respec-
tively. Because of our choice of parameter values k1=k2
=0.98, �3=0.3665, and D=1.6�10−3, we have Trelax1
=Trelax2

=Trelax and Trelax=8.73.
Therefore, the total joint probability of the third scenario

is

�1�t1��t�
t1−Trelax2

t1

Prob�k2 + �D3�3�t�� � vth��2�t��Prob�k1

+ k2e−��t1−t�� + �D3�3�t1� � vth�dt�. �15�

The fourth contribution, due to the fourth scenario, is ob-
tained from the third one by changing the indices 2↔1.
Therefore, dividing by �t and making the limit �t→0
�t1→ t�, we get the ISID at the output of the interneuron

�3�t� = �1�t�Prob�k1 + �D3�3�t� � vth� + �2�t�Prob�k2

+ �D3�3�t� � vth� + �1�t��
t−Trelax2

t

Prob�k2 + �D3�3�t��

� vth� · �2�t��Prob�k1 + k2e−��t−t�� + �D3�3�t� � vth�dt�

+ �2�t��
t−Trelax1

t

Prob�k1 + �D3�3�t��

� vth� · �1�t��Prob�k1e−��t−t�� + k2 + �D3�3�t� � vth�dt�.

�16�

Of course, all the expressions in Eq. �16� are valid only for
tTref; that is, �3�t�=0 for t�Tref. We also note that, be-
cause of the choice of the values of the system parameters,
the scenario of jumping and firing of neuron N3, due to the
consecutive arrival of two spikes from the same neuron sen-
sor within the relaxation period, does not occur. Actually we
will analyze the perception auditory process for periodic sig-
nal such that their periods are greater than the relaxation
time, that is TiTrelax, with Ti=2
 /�i �i=1,2�.

USHAKOV, DUBKOV, AND SPAGNOLO PHYSICAL REVIEW E 81, 041911 �2010�

041911-6



2. Conditional probabilities of spike generation

To obtain an explicit expression of Eq. �16� we need to
evaluate the terms

Prob�v3�t� � vth� , �17�

which are the conditional probabilities of the spike genera-
tion of neuron N3 given the occurrence of different events
related to the four scenarios of the previous paragraph. After
the refractory period and before any incoming spike, the in-
terneuron membrane potential is equal to the Ornstein-
Uhlenbeck process v3�t�=�D3�3�t�=�D3t3

0
t e−�3�t−t���3�t��dt�,

which has a Gaussian distribution and it is asymptotically
stationary. Now because the refractory period Tref is long
enough with respect to the time scale of the Ornstein-
Uhlenbeck process �3=1 /�3, the process v3�t� can be con-
sidered a stationary process. Once an external spike is ar-
rived at the interneuron, for example, from the sensory
neuron N1, the membrane potential v3�t� performs a jump to
the value k1+�D3�3�t�, and the process v3�t� remains station-
ary after the jump. In other words, after the refractory period,
the process v3�t� can be considered a stationary process,
whether or not a jump occurs, until another spike is produced
at the interneuron N3.

Therefore, by setting

�vth − ki − kje
−�3�t−t��� = f�ki,kj� , �18�

we obtain the expression of the conditional probabilities for
all scenarios

Prob��3�t� � � f�ki,kj�
�D3

��
= �

f�ki,kj�/�D3

�

w�3

st �s�ds

=
1

2
erfc���3

D3
�vth − ki − kje

−�3�t−t���� ,

�19�

where i� j, and i , j=1,2. Here

w�3

st �s� =��3



exp�− �3s2� �20�

is the stationary probability distribution of the noise ampli-
tude �36�, and erfc�x� is the complementary error function.
We have

�i� for scenario 1, ki=k1 , kj =k2=0;
�ii� for scenario 2, ki=k2 , kj =k1=0;
�iii� for scenario 3, ki=k1 , kj =k2; and
�iv� for scenario 4, ki=k2 , kj =k1.
We note that

Prob��3�t� � �vth − ki�/�D3�

= 1 − Prob��3�t� � �vth − ki�/�D3� .

�i = 1,2� . �21�

Moreover, because v3�t� becomes a stationary process �see

Eqs. �19� and �20�� we can factorize the probabilities of Eq.
�21� out the integral in Eq. �16�. Therefore, the probability
distribution of spiking of the interneuron �3�t� �Eq. �16��
becomes

�3�t� = �1�t��01�k1� + �2�t��02�k2� + �1�t��1 − �02�k2��

��
t−Trelax2

t

�2�t���1�k1,k2,t − t��dt� + �2�t��1

− �01�k1���
t−Trelax1

t

�1�t���2�k2,k1,t − t��dt�, �22�

where

�0i�ki� = Prob��3�t� � �vth − ki�/�D3�, �i = 1,2� �23�

and

�i�ki,kj,t − t�� = Prob��3�t� �
�vth − ki − kje

−�3�t−t���
�D3

� ,

�24�

with i� j, and i , j=1,2.
The time behavior of the probabilities �i�ki ,kj , t− t�� as a

function of the time difference �t− t�� is shown in Fig. 3, for
weak and strong connectivities. The values of the coupling
coefficients influence the relaxation times of the membrane
potential of the neuron N3 after a jump and at the same time
the height of the jump. For weak connectivity �case a� in Fig.
3, the probabilities relax quite rapidly to the zero value. After
a jump at the neuron N3, due to an incoming spike from one
sensor, there is a very short interval �t− t�� for which a sec-
ond incoming spike can fire the interneuron. Only two in-
coming spikes very close in time should be able to fire the
interneuron. For strong connectivity �case b� in Fig. 3, the
conditional probabilities relax slowly toward the conditional
probabilities of “separate” spikes. Two consecutive incom-
ing spikes from sensors have more time and greater probabil-

FIG. 3. Probabilities �i�ki ,kj , t− t�� as functions of the time dif-
ference �t− t�� for weak and strong connectivity. �a� Weak connec-
tivity. The values of the coupling coefficients are: k1=0.6, k2=0.7.
The probabilities relax quite rapidly to the zero value. Only two
incoming spikes very close in time should be able to fire the inter-
neuron. �b� Strong connectivity. The values of the coupling coeffi-
cients are: k1=0.94, k2=0.98. The time dependent probabilities re-
lax slowly toward the values of conditional probabilities of
“separate” spikes. Two consecutive incoming spikes from sensors
have more time and greater probability to fire the interneuron. The
values of the other parameters are: D=1.6�10−3, �=0.3665, and
vth=1.
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ity to fire the interneuron. Moreover, any separate spike is
able to fire the interneuron.

3. Probability distribution of first passage time

Because we considered only four scenarios to derive the
probability distribution of spike generation �PDSG� at the
interneuron, and we neglect events with low probabilities,
we expect that the probability distribution calculated with the
Eq. �22� is not normalized. We call the normalized PDSG as
�̃3�t�=�3�t� / �0

��3�t��dt��. To obtain the first passage time
probability distribution of the interneuron, we should evalu-
ate the joint probability that the interneuron fires at time t
and no firing occurs in the previous time interval �0, t�. We
then obtain

�̂3�t� = �̃3�t��1 − �
0

t

�̃3�t��dt�� . �25�

Now we should recall that all previous calculations are valid
until the first spike is generated by the third neuron N3. The
question is: what happens after? Every time the interneuron
fires because of the incoming spike from one of two sensors,
the membrane potential v3�t� of the neuron N3 is reset to the
initial value v3

0, and the interneuron “forgets” all previous
history. Suppose that the spike at the neuron N3 is due to a
spike of the neuron N1 exactly at the same moment. Conse-
quently, after reset, the FPTPD �1�t� has the same shape as it
was previously. The other sensor N2 is not reset synchro-
nously with v1�t� and v3�t�. Therefore the FPTPD �2�t� is
shifted, in comparison with the initial pattern, because its
starting time coincides with the reset of the interneuron. As a
consequence from Eq. �22� we obtain a different FPTPD of
the interneuron, which represents some state s of the inter-
neuron and we call it �3

�s��t�. We use the superscript � . ��0� to
denote the initial situation �before the first spike was gener-
ated at the neuron N3�, which is the state 0. Every time the
interneuron fires we have a time reset and one of the FPTPD
of the two sensors is shifted, giving rise to a different FPTPD
�3

�s��t�. In other words, after each reset of the interneuron, one
of the two �i�t� �i=1,2� is similar to its initial form �corre-
sponding to the state 0�, while the other one is shifted to the
left or to the right in time. As a consequence we can obtain
from Eq. �22� all different states of �3

�s��t� corresponding to
different patterns in input to the interneuron. We note that the
areas of the peaks of �3

�s��t� give the probabilities of switch-
ing between states.

For sinusoidal inputs and a finite number of sensors we
have a finite number of these states. Specifically let us con-
sider two sensors with input sinusoidal signals of different
frequencies �1��2, and we suppose that these frequencies
are in a ratio of integer numbers m and n; i.e., �1 /�2
=m /n. Then T2 /T1=m /n, and after time T0=nT2=mT1 we
have coincidence of the mth peak of �1�t� with the nth peak of
�2�t�. This coincidence of peaks is the same as in the initial
time t=0. In other words the first �m−1� peaks of �1�t� do
not coincide with the first �n−1� peaks of �2�t�. The patterns
of �1�t� and �2�t� are repeated periodically in time with pe-
riod T0. Each of these distinct peaks gives a firing probability
of the interneuron and therefore a reset with a shift of one of

the two �i�t�, which is a state of the interneuron. Conse-
quently, the interneuron has M = �m−1�+ �n−1�+1=m+n
−1 different states corresponding to the peaks of �1�t� and
�2�t�. We note that the sequence of the states repeats periodi-
cally in time with the overall period T0, which is the period
of phase coincidence of cos �1t and cos �2t.

Hence, we obtain the interspike intervals distribution at
the output of the interneuron by averaging the FPTPD �̂3�t�
of Eq. �25� over all these different M states

�out�t� = ��̂3�t�	 = a0�̂3
�0��t� + a1�̂3

�1��t� + a2�̂3
�2��t�

+ ¯ + aM−1�̂3
�M−1��t� . �26�

The coefficients as denote the relative frequencies of the s
states. In the case of musical accords and strong connections
between neurons, the system visits all m+n−1 states almost
uniformly; that is, all states give almost equal contributions
into the expression of �out�t�. So, as a first good approxima-
tion we consider all these coefficient equal, so as=1 /M, ∀s
and the Eq. �26� becomes

�out�t� =
1

M


s=0

M−1

�̂3
�s��t� . �27�

Now, as an example, we consider a particular accord,
namely, the “perfect fourth,” which consists of two sinusoids
of frequencies related by the ratio �1 /�2=4 /3. The FPTPDs
�1�t� and �2�t� are obtained from numerical simulations of
the stochastic differential equations of the two sensors of Eq.
�1� and are reported in Fig. 4. Here in Fig. 4�a� we have the
representation of the state 0 of the interneuron, in which the
fourth peak of �1�t� coincides with the third peak of �2�t� at
time T0=4T1=3T2=41.89 �with T1=10.47, �1=0.6 and T2
=13.96, �2=0.45�. All the peaks before T0 do not coincide,
so we have M =4+3−1=6 distinct peaks in both �1�t� and
�2�t� and therefore the same number of different states of the
interneuron. In Fig. 4 these peaks are marked by numbers,
representing the corresponding states of the interneuron. The
area under each peak gives the probability finding an incom-
ing spike at the defined short period of time. If this spike is
able to fire the interneuron then the system is switched into a
new state. In Fig. 4�a� the most probable and close in time
spike comes from the sensor N1. If this spike fires the inter-
neuron, the FPTPD will be shifted, and then the system is
switched from state 0 to the state 1 �see Fig. 4�b��, where the
most probable and close spike comes from the sensor N2.
However, this spike, which will be generated with a certain
probability, arrives during the refractory period of neuron N3,
then the closest spike in state 1 is still by the sensor N1, and
if it is able to fire the neuron N3, then it switches the system
into state 3, and so on.

We note that the peak of �1�t� or �2�t�, which appears
during the refractory period, is one of the main reasons why
�3�t� is not normalized in Eq. �16�.

IV. FLOWCHART OF THE THEORETICAL APPROACH

Summarizing the previous sections, let us present the de-
scribed theoretical approach in the form of a flowchart for
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calculation algorithm. Thus, in order to obtain the interneu-
ron’s ISID curve under chosen parameters of system �1� we
should perform the following steps;

�1� to obtain the sensors’ FPTPDs �1�t� and �2�t� using the
direct numerical simulation of system �1� without the inter-
neuron or the theoretical approaches described in Refs.
�32,33�;

�2� to find all possible states of the interneuron from the
peaks of �1�t� and �2�t� �see Fig. 4, for example�;

�3� to calculate �̂3
�s��t� in each state using Eqs. �22� and

�25�; and
�4� finally, to sum all the calculated �̂3

�s��t� and to normal-
ize according to Eq. �27�.

Despite the relative complexity of the algorithm, its usage
decreases consumption of computer resources necessary to
obtain good interneuron ISIDs and it is faster, in comparison
with direct simulation of system �1�. Moreover, the presented
approach gives a consistent theoretical description of the
noisy nonlinear system �see Fig. 1� modeled by Eq. �1�.

V. NUMERICAL EXPERIMENTS

In this subsection we calculate numerically the interspike
interval distributions of the interneuron for two groups of
consonant and dissonant accords by numerical simulations

of Eq. �1� and compare them with the theoretical results ex-
pressed by Eqs. �22� and �27�.

Particularly we consider the consonant accords: octave
�2/1�, perfect fifth �3/2�, major third �5/4�, and minor third
�6/5�, and the ISIDs are shown in Fig. 5. It is interesting to
note the presence of new peaks in the distribution of �out�T�,
which are no present in the patterns of �1�T� and �2�T�.
Moreover, the ghost frequency fr= f1− f2, characteristic of
the ghost stochastic resonance �GSR� phenomenon, is
present in all the consonant accords considered. Specifically
in the octave and perfect fifth accords, in correspondence
with the peaks at the ghost periods Tr=10.52 and Tr=20.73
�Tr=1 / fr�, we have the ghost frequencies fr=0.095 and fr
=0.048 23, respectively. For the major third and minor third
the ghost periods are Tr=42.105 and Tr=52.63, respectively,
the relative peaks belong to the next time interval �35�T
�70� and are very small. However, we should note that the
noise intensity considered in all our simulations �D=1.6
�10−3� is smaller than the suitable noise intensity to trigger
the interneuron with an input signal coming from the sensory
neuron. In other words we are out of the optimum range of
noise intensities for GSR phenomenon.

Moreover we note the very regular behavior of the pat-
terns of �out�T� in all the consonant accords considered, and
particularly the very rich pattern with many peaks in the
major third �5/4� and minor third �6/5� accords.

In Fig. 6 the ISIDs are shown for the following dissonant
accords: major second �9/8�, minor seventh �16/9�, minor
second �16/15�, and augmented fourth �45/32�. We see that in
all dissonant accords considered, the interspike interval dis-
tribution have many new peaks not present in the patterns of
�1�T� and �2�T�. The ghost frequency is also present here,

FIG. 4. FPTPDs of three neurons in states 0 and 1. This is the
example of the probable transition between two states for the case
of input sinusoids with frequencies related by ratio 4/3 �the perfect
fourth accord�. �2�t� is shifted in state 1 in comparison with �2�t� in
state 0. As a result, �̂3

�0��t� and �̂3
�0��t� are different. All possible

states of the interneuron are: state 0, state 1, …, and state 5. The
peaks of �1�t� and �2�t� are marked by numbers in circles in order to
establish the correspondence between them and the interneuron
states.

FIG. 5. Interspike interval distributions of the consonant ac-
cords: octave �2/1�, perfect fifth �3/2�, major third �5/4�, and minor
third �6/5�. Under each picture there is the ratio of frequencies
�m /n� and the name of the accord used in the common musical
terminology. All curves are obtained through the direct numerical
simulation of the Eq. �1� with �2=0.6, A2=1.165, �1= �m /n��2,
and A1 chosen according to the subthreshold input sinusoidal signal
condition of Eq. �6�. Specifically A1=1.52 for octave �2/1�, A1

=1.325 for perfect fifth �3/2�, A1=1.243 for major third �5/4�, and
A1=1.222 for minor third �6/5�. The other values of parameters are
�1=�2=1, �3=0.3665, D1=D2=D3=1.6�10−3, k1=k2=0.98, v1

0

=v2
0=0, v3

0=−1, and vth=1.
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but the heights of the corresponding peaks are less than those
of the consonant accords of Fig. 5. Specifically the ghost
frequency is visible in the augmented fourth and minor sev-
enth accords with peaks at the ghost periods Tr=25.91 and
Tr=13.53, respectively. For minor second and major second
the ghost periods are out of the time interval considered in
Fig. 6.

The ISIDs of dissonant accords are blurry with respect to
the ISIDs of the consonant accords. This means that we can
consider the ISID as an investigative tool to discriminate
between consonant and dissonant accords. In fact higher are
the integers m ,n less regular and blurry are ISIDs, while
lower are the integers and more regular are the ISIDs.

Finally in Fig. 7 the comparison between the theoretical
ISIDs �out�T� �solid lines� for two consonant and one disso-
nant accords, given by Eqs. �22� and �27�, and the numerical
simulations �dashed lines� of Eq. �1� are shown. Particularly,
we report from bottom to top in the figure, the dissonant
major second �9/8�, the consonants minor third �6/5� and the
perfect fourth �4/3�. The agreement between theoretical and
numerical results is very good.

VI. HYPOTHESES ABOUT CONSONANCE AND
DISSONANCE

There are only a few key assumptions that explain why
humans and animals perceive the harmony or disharmony
while listening to different complex tones.

Helmholtz in 1877 proposed the notion that dissonance
arises due to beating between adjacent harmonics of complex
tones. In effect, dissonance arises due to rapid amplitude
fluctuations and it is proportional to the number of frequency

components present in the two complex tones producing
beats �11�.

Boomsliter and Creel in 1961 suggested the long pattern
hypothesis, which states that a consonance is based on the
length of the overall period of a stimulus T0=nT2=mT1.
They showed that consonant intervals, based on simple inte-
ger ratios of fundamental frequencies, have shorter overall
periods than those of dissonant intervals �37�.

Here we propose that the input signals, which are trans-
formed into spike trains with blurry or regular interspike
interval distributions, are perceived as unpleasant �dissonant,
inharmonious� or pleasant �consonant, harmonious� due to
the analysis, recognition, and permanence in noisy environ-
ment occurring in the auditory system and then in the brain.
This hypothesis is based on the simple auditory model of
Fig. 1 and described by Eq. �1�. A complex subthreshold
input signal is transformed with the addition of environmen-
tal noise by the proposed sensory system into different types
of spike trains, where the minimal distance between peaks in
the probability distributions of spiking of the interneuron
�out�T� is crucial. In fact by considering a complex input
signal composed by two sinusoids with frequency ratio
�1 /�2=m /n, the minimal distance between peaks of �3

�s��t�
is Tmin=T0 / �mn�. See the Appendix for the proof, also peaks
1 and 2 of the �3

�0��t�, and peaks 4 and 5 of the �3
�1��t�� in Fig.

4. This Tmin defines the distance between peaks of the final
ISID �out�t�.

That is why the sufficiently high value of m gives raise to
many peaks in a short distance and as a consequence pro-

FIG. 6. Interspike interval distributions of the dissonant accords:
major second �9/8�, minor seventh �16/9�, minor second �16/15�,
and augmented fourth �45/32�. Under each picture there is the ratio
of frequencies �m /n� and the name of the accord used in the com-
mon musical terminology. All curves are obtained through the direct
numerical simulation of the Eq. �1� with �2=0.6, A2=1.165, �1

= �m /n��2, and A1 chosen according to the subthreshold input sinu-
soidal signal condition Eq. �6�. Specifically A1=1.2 for major sec-
ond �9/8�, A1=1.436 for minor seventh �16/9�, A1=1.17 for minor
second �16/15�, A1=1.305 for augmented fourth �45/32�. The other
values of parameters are the same as in Fig. 5.

FIG. 7. ISI distributions of the output neuron for different ac-
cords. Solid lines are the theoretical results obtained from Eqs. �22�,
�25�, and �27�. Dashed lines are the distribution obtained throughout
the direct numerical simulation of system �1�. The parameters are
�1=�2=1, �=0.3665, k1=k2=0.97, and D1=D2=D=1.6�10−3.
Perfect fourth: A1=1.165, �1=0.6, A2=1.085, and �2=0.45. Mi-
nor third: A1=1.125, �1=0.54, A2=1.085, and �2=0.45. Major
second: A1=1.2, �1=0.675, A2=1.165, and �2=0.6.
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duces blurry ISIDs, typical for dissonant accords. This
means that even for pure input tones, which is without har-
monics, and even if they are not close in frequency, in order
to produce beats, we can perceive dissonance.

Therefore, the Helmholtz’s hypothesis continues to be
correct, if we consider the minimal distance among all peaks
of �1�t� and �2�t� and not only the distance between the first
peaks, which show the difference between frequencies of the
input tones.

Moreover, the hypothesis of Boomsliter and Creel is also
valid. Indeed, as we obtain from our model, the higher the
integers m and n �dissonant accords� are, the higher the num-
ber of states �m+n−1� of the output neuron due to the pat-
terns of �1�t� and �2�t� peaks, and the longer the overall
period T0. Vice versa, for consonant accords we have shorter
overall periods.

We note finally that because the output interneuron goes
into a new state randomly and because of longer overall pe-
riods �dissonance�, we need more longer realizations to ob-
tain quite good, from statistical point of view, ISID �out�T�.
Conversely, in the case of consonant input, we obtain good
statistics in short realizations.

VII. CONCLUSIONS

We have investigated by a probabilistic approach the phe-
nomena of dissonance and consonance in a simple auditory
sensory model, composed by two sensory neurons and one
interneuron. Our theoretical approach is useful to investigate
the interspike interval statistics of the spike train at the out-
put of the interneuron by calculating the probability of spike
generation at this output using conditional probabilities and
the ISIDs at the output of sensory neurons. The proposed
algorithm �see procedure of Sec. IV� allows us to quickly
estimate the output distributions of the interneuron because
of the steplike shape of the conditional probabilities and nar-
row peaks of FPTPDs �1�t� and �2�t�. Moreover, this proce-
dure is clear enough to be implemented in widely used pro-
gramming environments. We find very good agreement
between the theoretical results �Eq. �27�� and direct numeri-
cal simulations of the system of Langevin Eq. �1�, which is
computer time consuming with respect to the procedure of
Sec. IV.

With our simple model of the auditory system, we are
able to discriminate between consonant and dissonant ac-
cords by analyzing the first passage time probability distri-
butions at the output of the interneuron. Blurry ISIDs char-
acterize dissonant accords, while quite regular ISIDs
characterize consonant accords �Figs. 5 and 6�. By consider-
ing an extension of this simple model to a more complex
realistic auditory system, composed of many sensory neu-
rons and different layers �surface and deep layers in the neu-
ral system�, we should be able to know at which extent the
dissonant accords will “survive,” against the consonant ones,
in the noisy neural environment of the brain. The obtained
results may be applied also in the context of such recent
studies on stimulus reconstruction from neural spike trains
�38�, where the information transmission under the noise in-
fluence is investigated. Another suitable context of applica-

tion is the continuous investigation of the neuron’s behavior
under the influence of a constant bombardment of inhibitory
and excitatory postsynaptic potentials �39�. This resembles a
background noise, which is typical for functioning condi-
tions of the neocortical neurons.

In real life, a human being deals with relatively simple
combinations of sinusoidal signals when listening to music.
Musical accords, which are combinations of tones, are clas-
sified as consonant �pleasant, harmonious� or dissonant �un-
pleasant, disharmonious�, depending on the ratio between
frequencies �15�. Thus, use of musical notations appears to
be convenient in the context of our work to classify input
signals. However, we should note that our results are ob-
tained using the so-called “just intonation” musical accords,
which are not appropriate for modern music.

Consonance and dissonance of accords are also recog-
nized by animals, which never deal with music �10�. So, the
underlying mechanism seems to be common and fundamen-
tal for the auditory neural system of mammals. This is a good
reason to use our neural-like model of the auditory system to
investigate the propagation of signals, such as musical ac-
cords, through a noisy nonlinear environment. Investigation
of this process can help to understand which types of input
signals are able to survive in the noisy environment of the
brain, what is the mechanism of this process, and what does
it mean from the perceptional and cognitive point of view.

Finally we note that the noise-induced phenomena such as
coherence resonance, ghost stochastic resonance, aperiodic
stochastic resonance, suprathreshold stochastic resonance,
and noise enhanced stability are appropriate candidates for a
solution of signal propagation and signal “survival” prob-
lems. But they allow revelation of very particular peculiari-
ties of signal propagation through the nonlinear noisy envi-
ronment of neural-like systems and do not provide a full
statistical picture. However, in this paper we present a statis-
tical analytical description of the transformation process for
spike trains propagating from one layer of neurons to another
one under the influence of noise. Our hypothesis is based on
the positive role of environmental noise in the recognition
and possible permanence of information, contained in com-
plex input signals such as consonant or dissonant accords,
occurring in the brain.
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APPENDIX: MINIMAL DISTANCE BETWEEN PEAKS

The question about the minimal distance between peaks
of �3

�i��t� can be considered as follows. Let us take the line
segment of length L �Fig. 8�. White dots divide it into n
equal parts. Black dots divide it also into m equal parts. As a
result, it is divided into m+n−1 different parts by both types
of dots, and our aim is to find the minimal part. In our case
n�m�2n and m /n is the simple ratio, i.e., m=n+k, where
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k is integer number and k�n. Let i� �0,n� is the number of
white dot and j� �0,m� the number of black dot. Then, the
distance between any two black and white dots is

�iL/n − jL/m� = �im − jn�L/�mn� . �A1�

Now, i, j, m, and n are integers, therefore the minimal length
of a segment part cannot be less than L / �mn�. Let us divide
the whole segment into smallest parts L / �mn�, as it is shown
in Fig. 8, and find the number li of such parts between the ith
white dot and a previous black dot. Obviously, l0=0 and l1
=k. By trivial calculations we get the recurrent expression

li+1 = k + li − �k + li

n �n , �A2�

where �x� means the integer part of x. Equation �A2� can be
also written as

li+1 = �k + li�mod n . �A3�

It is obvious �see Fig. 8� that li takes values from 0 to n
−1. On the other hand, Eq. �A3� can be easily reduced to

li = �ik�mod n , �A4�

and this allows to find the period of li repetition by solving
the simple equation li+p= li, where p is the period

��i + p�k�mod n = �ik�mod n . �A5�

This gives �pk�mod n=0, and we find that the period of li is
p=n. Eventually, there are n possible values repeating with
the period n, i.e., some i� is always present, for which li�

=1. Recalling Eq. �A1�, this means that the minimal part of
the L segment between white and black dots is L / �mn�. For
the peaks of �3

�i��t� we substitute L=T0=nT1=mT2.
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