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Preface

The event-related potential (ERP) technique has been around

for decades, but it still seems to be growing in popularity. In

the 1960s and 1970s, most ERP researchers were trained in

neuroscience-oriented laboratories with a long history of human

and animal electrophysiological research. With the rise of cogni-

tive neuroscience and the decline of computer prices in the 1980s,

however, many people with no previous experience in electro-

physiology began setting up their own ERP labs. This was an im-

portant trend, because these researchers brought considerable

expertise from other areas of science and began applying ERPs to a

broader range of issues. However, they did not benefit from the

decades of experience that had accumulated in the long-standing

electrophysiology laboratories. In addition, many standard ERP

techniques are often taken for granted because they were worked

out in the 1960s and 1970s, so new ERP researchers often do not

learn the reasons why a given method is used (e.g., why we use tin

or silver/silver-chloride electrodes).

I was fortunate to be trained in Steve Hillyard’s lab at University

of California, San Diego, which has a tradition of human electro-

physiological research that goes back to some of the first human

ERP recordings. My goal in writing this book was to summarize

the accumulated body of ERP theory and practice that permeated

the Hillyard lab, along with a few ideas of my own, so that this

information would be widely accessible to beginning and interme-

diate ERP researchers.

The book provides detailed, practical advice about how to

design, conduct, and interpret ERP experiments, along with the

reasons why things should be done in a particular way. I did not



attempt to provide comprehensive coverage of every possible way

of recording and analyzing ERPs, because that would be too much

for a beginning or intermediate researcher to digest. Instead, I’ve

tried to provide a detailed treatment of the most basic techniques.

I also tried to make the book useful for researchers who do not

plan to conduct their own ERP studies, but who want to be able to

understand and evaluate published or submitted ERP experiments.

The book is aimed at cognitive neuroscientists, but it should also

be useful for researchers in related fields, such as affective neuro-

science and experimental psychopathology.
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1 An Introduction to Event-Related Potentials and Their Neural

Origins

This chapter introduces the event-related potential (ERP) tech-

nique. The first section describes the goals of this book and dis-

cusses the perspective from which I’ve written it. The second

section provides a brief history of the ERP technique. The third

section describes two simple ERP experiments as examples that

introduce some of the basic concepts of ERP experimentation. The

fourth section describes the advantages and disadvantages of the

ERP technique in relation to other techniques. The fifth section

describes the neural and biophysical origins of ERPs and the asso-

ciated event-related magnetic fields. The final section contains a

brief description of the most commonly observed ERP components

in cognitive neuroscience experiments.

Goals and Perspective

This book is intended as a guidebook for people who wish to use

ERPs to answer questions of broad interest in cognitive neuro-

science and related fields. This includes cognitive scientists who

plan to use ERPs to address questions that are essentially about

cognition rather than questions that are essentially about neuro-

science. The book should also be very useful for researchers in

the growing area of affective neuroscience, as well as those in the

area of psychopathology. It also provides a good background for

researchers and students who encounter ERP studies in the litera-

ture and want to be able to understand and evaluate them.

The book was written for people who are just starting to do ERP

research and for people who have been doing it for a few years

and would like to understand more about why things are done in



a particular way. ERP experts may find it useful as a reference (and

they would probably learn something new by reading chapter 5,

which provides a fairly detailed account of filtering that is ap-

proachable for people who don’t happen to have an advanced

degree in electrical engineering).

The book provides practical descriptions of straightforward

methods for recording and analyzing ERPs, along with the theo-

retical background to explain why these are particularly good

methods. The book also provides some advice about how to design

ERP experiments so that they will be truly useful in answering

broadly significant questions (i.e., questions that are important to

people who don’t themselves conduct ERP experiments). Because

the goal of this book is to provide an introduction to ERPs for

people who are not already experts, I have focused on the most

basic techniques and neglected many of the more sophisticated

approaches (although I have tried to at least mention the most

important of them). For a broader treatment, aimed at experts, see

David Regan’s massive treatise (Regan, 1989).

To keep things simple, this book focuses primarily on the techni-

ques used in my own laboratory (and in many of the world’s lead-

ing ERP labs). In most cases, these are techniques that I learned as

a graduate student in Steve Hillyard’s laboratory at University of

California, San Diego, and they reflect a long history of electrophy-

siological recordings dating back to Hallowell Davis’s lab in the

1930s (Davis was the mentor of Bob Galambos, who was the men-

tor of Steve Hillyard; Galambos was actually a subject in the first

sensory ERP experiments, described in the next section). Other

approaches to ERP experimentation may be just as good or even

better, but the techniques described here have stood the test of

time and provide an excellent foundation for more advanced

approaches.

This book reflects my own somewhat idiosyncratic perspective

on the use of ERP recordings in cognitive neuroscience, and there

are two aspects of this perspective that deserve some comment.

First, although much of my own research uses ERP recordings, I
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believe that the ERP technique is well suited to answering only a

small subset of the questions that are important to cognitive neuro-

scientists. The key, of course, is figuring out which issues this tech-

nique best addresses. Second, I take a relatively low-tech approach

to ERPs. In the vast majority of cases, I believe that it is better to

use a modest number of electrodes and fairly simple data analysis

techniques instead of a large array of electrodes and complicated

data analysis techniques. This is heresy to many ERP researchers,

but the plain fact is that ERPs are not a functional neuroimaging

technique and cannot be used to definitively localize brain activity

(except under a very narrow set of conditions). I also believe that

too much has been made of brain localization, with many re-

searchers seeming to assume that knowing where a cognitive pro-

cess happens is the same as knowing how it happens. In other

words, there is much more to cognitive neuroscience than func-

tional neuroanatomy, and ERPs can be very useful in elucidating

cognitive mechanisms and their neural substrates even when we

don’t know where the ERPs are generated.

A Bit of History

In 1929, Hans Berger reported a remarkable and controversial set of

experiments in which he showed that one could measure the elec-

trical activity of the human brain by placing an electrode on the

scalp, amplifying the signal, and plotting the changes in voltage

over time (Berger, 1929). This electrical activity is called the elec-

troencephalogram, or EEG. The neurophysiologists of the day were

preoccupied with action potentials, and many of them initially

believed that the relatively slow and rhythmic brain waves Berger

observed were some sort of artifact. After a few years, however,

the respected physiologist Adrian (Adrian & Matthews, 1934) also

observed human EEG activity, and Jasper and Carmichael (1935)

and Gibbs, Davis, and Lennox (1935) confirmed the details of

Berger’s observations. These findings led to the acceptance of the

EEG as a real phenomenon.
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Over the ensuing decades, the EEG proved to be very useful in

both scientific and clinical applications. In its raw form, however,

the EEG is a very coarse measure of brain activity, and it is very

difficult to use it to assess the highly specific neural processes that

are the focus of cognitive neuroscience. The drawback of the EEG

is that it represents a mixed up conglomeration of hundreds of

different neural sources of activity, making it difficult to isolate in-

dividual neuro-cognitive processes. However, embedded within

the EEG are the neural responses associated with specific sen-

sory, cognitive, and motor events, and it is possible to extract

these responses from the overall EEG by means of a simple averag-

ing technique (and more sophisticated techniques, as well). These

specific responses are called event-related potentials to denote the

fact that they are electrical potentials associated with specific

events.

As far as I can tell, the first unambiguous sensory ERP recordings

from awake humans were performed in 1935–1936 by Pauline and

Hallowell Davis, and published a few years later (Davis et al., 1939;

Davis, 1939). This was long before computers were available for

recording the EEG, but the researchers were able to see clear ERPs

on single trials during periods in which the EEG was quiescent (the

first published computer-averaged ERP waveform were apparently

published by Galambos and Sheatz in 1962). Not much ERP work

was done in the 1940s due to World War II, but research picked

up again in the 1950s. Most of this research focused on sensory

issues, but some of it addressed the effects of top-down factors on

sensory responses.

The modern era of ERP research began in 1964, when Grey Wal-

ter and his colleagues reported the first cognitive ERP component,

which they called the contingent negative variation or CNV (Wal-

ter et al., 1964). On each trial of this study, subjects were presented

with a warning signal (e.g., a click) followed 500 or 1,000 ms later

by a target stimulus (e.g., a series of flashes). In the absence of a

task, each of these two stimuli elicited the sort of sensory ERP re-

sponse that one would expect for these stimuli. However, if sub-
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jects were required to press a button upon detecting the target, a

large negative voltage was observed at frontal electrode sites dur-

ing the period that separated the warning signal and the target.

This negative voltage—the CNV—was clearly not just a sensory

response. Instead, it appeared to reflect the subject’s preparation

for the upcoming target. This exciting new finding led many

researchers to begin exploring cognitive ERP components.

The next major advance was the discovery of the P3 component

by Sutton, Braren, Zubin, and John (1965). They found that when

subjects could not predict whether the next stimulus would be

auditory or visual, the stimulus elicited a large positive P3 compo-

nent that peaked around 300 ms poststimulus; this component was

much smaller when the modality of the stimulus was perfectly pre-

dictable. They described this result in terms of information theory,

which was then a very hot topic in cognitive psychology, and their

paper generated a huge amount of interest. To get a sense of the im-

pact of this study, I ran a quick Medline search and found about

sixteen hundred journal articles that refer to the P300 (or P3) com-

ponent in the title or abstract. This search probably missed at least

half of the articles that talk about the P300 component, so this is

an impressive amount of research. In addition, the Sutton et al.

(1965) paper has been cited almost eight hundred times. There is

no doubt that many millions of dollars have been spent on P300

studies (not to mention the many marks, pounds, yen, etc.).

Over the ensuing fifteen years, a great deal of research focused

on identifying various cognitive ERP components and developing

methods for recording and analyzing ERPs in cognitive experi-

ments. Because people were so excited about being able to record

human brain activity related to cognition, ERP papers in this pe-

riod were regularly published in Science and Nature (much like

the early days of PET and fMRI research). Most of this research

was focused on discovering and understanding ERP components

rather than using them to address questions of broad scientific in-

terest. I like to call this sort of experimentation ERPology, because

it is simply the study of ERPs.
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ERPology plays an important role in cognitive neuroscience,

because it is necessary to know quite a bit about specific ERP com-

ponents before one can use them to study issues of broader impor-

tance. Indeed, a great deal of ERPology continues today, resulting

in a refinement of our understanding of the components dis-

covered in previous decades and the discovery of additional

components. However, so much of ERP research in the 1970s was

focused on ERPology that the ERP technique began to have a bad

reputation among many cognitive psychologists and neuroscien-

tists in the late 1970s and early 1980s. As time progressed, how-

ever, an increasing proportion of ERP research was focused on

answering questions of broad scientific interest, and the reputation

of the ERP technique began to improve. ERP research started be-

coming even more popular in the mid 1980s, due in part to the

introduction of inexpensive computers and in part to the general

explosion of research in cognitive neuroscience. When PET and

the fMRI were developed, many ERP researchers thought that ERP

research might die away, but exactly the opposite happened: be-

cause ERPs have a high temporal resolution that hemodynamic

measures lack, most cognitive neuroscientists view the ERP tech-

nique as an important complement to PET and fMRI, and ERP re-

search has flourished rather than withered.

Now that I’ve provided a brief history of the ERP technique,

I’d like to clarify some terminology. ERPs were originally called

evoked potentials (EPs) because they were electrical potentials

that were evoked by stimuli (as opposed to the spontaneous EEG

rhythms). The earliest published use of the term ‘‘event-related po-

tential’’ that I could find was by Herb Vaughan, who in a 1969

chapter wrote,

Since cerebral processes may be related to voluntary movement

and to relatively stimulus-independent psychological processes

(e.g. Sutton et al., 1967; Ritter et al., 1968), the term ‘‘evoked

potentials’’ is no longer sufficiently general to apply to all EEG

phenomena related to sensorymotor processes. Moreover, suffi-
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ciently prominent or distinctive psychological events may serve as

time references for averaging, in addition to stimuli and motor

responses. The term ‘‘event related potentials’’ (ERP) is proposed

to designate the general class of potentials that display stable time

relationships to a definable reference event. (Vaughan, 1969, p. 46)

Most research in cognitive neuroscience now uses the term

event-related potential, but you might occasionally encounter

other terms, especially in other fields. Here are a few common

ones:

Evoked response. This means the same thing as evoked potential.

Brainstem evoked response (BER). These are small ERPs elicited

within the first 10 ms of stimulus onset by auditory stimuli such

as clicks. They are frequently used in clinical audiology. They are

also called auditory brainstem responses (ABRs) or brainstem au-

ditory evoked responses (BAERs).

Visual evoked potential (VEP). This term is commonly used

in clinical contexts to describe ERPs elicited by visual stimuli that

are used to assess pathology in the visual system, such as demyeli-

nation caused by multiple sclerosis. A variant on this term is visual

evoked response (VER).

Evoked response potential (ERP). This is apparently an accidental

miscombination of evoked response and event-related potential

(analogous to combining irrespective and regardless into irregard-

less).

A Simple Example Experiment

This section introduces the basics of the ERP technique. Rather

than beginning with an abstract description, I will start by describ-

ing a simple ERP experiment that my lab conducted several years

ago. This experiment was a variant on the classic oddball paradigm

(which is really the same thing as the continuous performance task

that is widely used in psychopathology research). Subjects viewed

sequences consisting of 80 percent Xs and 20 percent Os, and they
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pressed one button for the Xs and another button for the Os. Each

letter was presented on a video monitor for 100 ms, followed by a

1,400-ms blank interstimulus interval. While the subject performed

this task, we recorded the EEG from several electrodes embedded

in an electrode cap. The EEG was amplified by a factor of 20,000

and then converted into digital form for storage on a hard drive.

Whenever a stimulus was presented, the stimulation computer

sent marker codes to the EEG digitization computer, which stored

them along with the EEG data (see figure 1.1A).

During a recording session, we viewed the EEG on the digitiza-

tion computer, but the stimulus-elicited ERP responses were too

small to discern within the much larger EEG. Figure 1.1B shows

the EEG that was recorded at one electrode site (Pz, on the midline

over the parietal lobes) from one of the subjects over a period of

nine seconds. If you look closely, you can see that there is some

consistency in the response to each stimulus, but it is difficult

to see exactly what the responses look like. Note that negative is

plotted upward in this figure (see box 1.1 for a discussion of this

odd convention).

At the end of each session, we performed a simple signal-

averaging procedure to extract the ERPs elicited by the Xs and the

Os (see figure 1.1C). Specifically, we extracted the segment of EEG

surrounding each X and each O and lined up these EEG segments

with respect to the marker codes (which occurred at the onset of

each stimulus). We then simply averaged together the single-trial

waveforms, creating averaged ERP waveforms for the X and the O

at each electrode site. For example, we computed the voltage at 24

ms poststimulus in the averaged X waveform by taking the voltage

H Figure 1.1 Example ERP experiment. The subject views frequent Xs and infrequent Os pre-
sented on a computer monitor while the EEG is recorded from a midline parietal
electrode site. This signal is filtered and amplified, making it possible to observe
the EEG. The rectangles show an 800-ms time epoch following each stimulus in the
EEG. There is a great deal of trial-to-trial variability in the EEG, but a clear P3 wave
can be seen following the infrequent O stimuli. The bottom of the figure shows aver-
aged ERPs for the Xs and Os. Note that negative is plotted upward in this figure.
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measured 24 ms after each X stimulus and averaging all of these

voltages together. By doing this averaging at each time point fol-

lowing the stimulus, we end up with a highly replicable waveform

for each stimulus type.

The resulting averaged ERP waveforms consist of a sequence of

positive and negative voltage deflections, which are called peaks,

waves, or components. In figure 1.1C, the peaks are labeled P1,

N1, P2, N2, and P3. P and N are traditionally used to indicate

positive-going and negative-going peaks, respectively, and the

number simply indicates a peak’s position within the waveform (it

Box 1.1 Which Way Is Up?

It is a common, although not universal, convention to plot ERP waveforms
with negative voltages upward and positive voltages downward. The sole rea-
son that I plot negative upward is that this was how things were done when I
joined Steve Hillyard’s lab at UCSD. I once asked Steve Hillyard’s mentor, Bob
Galambos, how this convention came about. His answer was that that was
simply that this was how things were done when he joined Hal Davis’s lab at
Harvard in the 1930s (see, e.g., Davis et al., 1939; Davis, 1939). Apparently,
this was a common convention for the early physiologists. Manny Donchin
told me that the early neurophysiologists plotted negative upward, possibly
because this allows an action potential to be plotted as an upward-going
spike, and this influenced manufacturers of early EEG equipment, such as
Grass. Bob Galambos also mentioned that an attempt to get everyone to agree
to a uniform positive-up convention was made in the late 1960s or early
1970s, but one prominent researcher (who will remain nameless) refused to
switch from negative-up to positive-up, and the whole attempt failed.
At present, some investigators plot negative upward and others plot posi-

tive upward. This is sometimes a source of confusion, especially for people
who do not regularly view ERP waveforms, and it would probably be a good
idea for everyone to use the same convention (and we should probably use
the same positive-up convention as the rest of the scientific world). Until this
happens, plots of ERP waveforms should always make it clear which way is
up.
ERP researchers should not feel too bad about this mixed up polarity prob-

lem. After all, fMRI researchers often reverse left and right when presenting
brain images (due to a convention in neurology).
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is also common to give a precise latency, such as P225 for a posi-

tive peak at 225 ms). Box 1.2 further discusses the labeling conven-

tions for ERP components. The sequence of ERP peaks reflects the

flow of information through the brain.

The initial peak (P1) is an obligatory sensory response that is

elicited by visual stimuli no matter what task the subject is

doing (task variations may influence P1 amplitude, but no particu-

lar task is necessary to elicit a P1 wave). In contrast, the P1 wave

is strongly influenced by stimulus parameters, such as luminance.

The early sensory responses are called exogenous components to

indicate their dependence on external rather than internal factors.

The P3 wave, in contrast, depends entirely on the task performed

by the subject and is not directly influenced by the physical prop-

erties of the eliciting stimulus. The P3 wave is therefore termed an

endogenous component to indicate its dependence on internal

rather than external factors.

In the experiment shown in figure 1.1, the infrequent O stimuli

elicited a much larger P3 wave than the frequent X stimuli. This is

exactly what thousands of previous oddball experiments have

Box 1.2 Component Naming Conventions

I much prefer to use names such as N1 and P3 rather than N100 and P300,
because a component’s latency may vary considerably across experiments,
across conditions within an experiment, or even across electrode sites within
a condition. This is particularly true of the P3 wave, which almost always
peaks well after 300 ms (the P3 wave had a peak latency of around 300 ms
in the very first P3 experiment, and the name P300 has persisted despite
the wide range of latencies). Moreover, in language experiments, the P3
wave generally follows the N400 wave, making the term P300 especially prob-
lematic. Consequently, I prefer to use a component’s ordinal position in the
waveform rather than its latency when naming it. Fortunately, the latency in
milliseconds is often approximately 100 times the ordinal position, so that
P1 ¼ P100, N2 ¼ N200, and P3 ¼ P300. The one obvious exception to this
is the N400 component, which is often the second major negative component.
For this reason, I can’t seem to avoid using the time-based name N400.
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found. If you’re just beginning to get involved in ERP research, I

would recommend running an oddball experiment like this as

your first experiment. It’s simple to do, and you can compare your

results with a huge number of published experiments.

We conducted the averaging process separately for each elec-

trode site, yielding a separate averaged ERP waveform for each

combination of stimulus type and electrode site. The P3 wave

shown in figure 1.1C was largest at a midline parietal electrode

site but could be seen all over the scalp. The P1 wave, in contrast,

was largest at lateral occipital electrode sites, and was absent over

prefrontal cortex. Each ERP component has a distinctive scalp dis-

tribution that reflects the location of the patch of cortex in which it

was originally generated. As I will discuss later in this chapter and

in chapter 7, it is difficult to determine the location of the neural

generator source simply by examining the distribution of voltage

over the scalp.

Conducting an experiment like this has several steps. First, it is

necessary to attach some sort of electrodes to the subject’s scalp to

pick up the EEG. The EEG must be filtered and amplified so that it

can be stored as a set of discrete voltage measurements on a com-

puter. Various artifacts (e.g., eyeblinks) may contaminate the EEG,

and this problem can be addressed by identifying and removing

trials with artifacts or by subtracting an estimate of the artifactual

activity from the EEG. Once artifacts have been eliminated, averag-

ing of some sort is usually necessary to extract the ERPs from the

overall EEG. Various signal processing techniques (e.g., digital fil-

ters) are then applied to the data to remove noise1 and isolate spe-

cific ERP components. The size and timing of the ERP components

are then measured, and these measures are subjected to statistical

analyses. The following chapters will cover these technical issues

in detail. First, however, I’d like to provide an example of an ex-

periment that was designed to answer a question of broad interest

that could, in principle, be addressed by other methods but which

was well suited for ERPs.
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A Real Experiment

Figure 1.2 illustrates an experiment that Massimo Girelli con-

ducted in my laboratory as a part of his dissertation (for details,

see Girelli & Luck, 1997). The goal of this experiment was to deter-

mine whether the same attention systems are used to detect visual

search targets defined by color and by motion. As is widely known,

color and motion are processed largely independently at a variety

of stages within the visual system, and it therefore seemed plausi-

ble that the detection of a color-defined target would involve differ-

ent attention systems than the detection of a motion-defined target.

However, there is also evidence that the same cortical areas may

process both the color and the motion of a discrete object, at least

under some conditions, so it also seemed plausible that the same

A

B
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0 100
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Figure 1.2 Example stimuli and data from Girelli and Luck’s (1997) study. Three types of fea-
ture pop-outs were used: color, orientation, and motion. The waveforms show the
averages from lateral occipital electrodes contralateral versus ipsilateral to the loca-
tion of the pop-out. An N2pc component (indicated by the shaded region) can be
seen as a more negative-going response between approximately 175 and 275 ms
poststimulus. Negative is plotted upward. (Reprinted with permission from Luck
and Girelli, 1998. > 1998 MIT Press.)
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attention systems would be used to detect discrete visual search

targets defined by color or by motion.

Figure 1.2A shows the stimuli that we used to address this issue.

On each trial, an array was presented consisting of eight moving

objects, most of which were green vertical ‘‘distractor’’ bars that

moved downward. On 25 percent of the trials, all of the bars were

distractors; on the remaining trials, one of the bars differed from

the distractors in color (red), orientation (vertical), or direction of

motion (upward). We called these different bars pop-out stimuli,

because they appeared to ‘‘pop out’’ from the otherwise homoge-

neous stimulus arrays. At the beginning of each trial block, the

subjects were instructed that one of the three pop-out stimuli

would be the target for that run, and they were told to press one

button when an array contained the target and to press a different

button for nontarget arrays. For example, when the horizontal bar

was the target, the subjects would press one button when the array

contained a horizontal pop-out and a different button when the ar-

ray contained a color pop-out, a motion pop-out, or no pop-out.

The main question was whether subjects would use the same atten-

tion systems to detect each of the three types of pop-outs.

To answer this question, we needed a way to determine whether

a given attention system was used for a particular type of trial.

To accomplish this, we focused on an attention-related ERP com-

ponent called the N2pc wave, which is typically observed for vi-

sual search arrays containing targets. The N2pc component is a

negative-going deflection in the N2 latency range (200–300 ms

poststimulus) that is primarily observed at posterior scalp sites

contralateral to the position of the target item (N2pc is an abbre-

viation of N2-posterior-contralateral ). Previous experiments had

shown that this component reflects the focusing of attention onto

a potential target item (Luck & Hillyard, 1994a, 1994b), and we

sought to determine whether the attention system reflected by this

component would be present for motion-defined targets as well as

color- and orientation-defined targets (which had been studied pre-

viously). Thus, we assumed that if the same attention-related ERP
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component was present for all three types of pop-outs, then the

same attention system must be present in all three cases.

One of the most vexing issues in ERP experiments is the problem

of assessing which ERP component is influenced by a given exper-

imental manipulation. That is, the voltage recorded at any given

time point reflects the sum of many underlying ERP components

that overlap in time (see chapter 2 for an extended discussion of

this issue). If we simply examined the ERP waveforms elicited by

the color, orientation, and motion targets in this experiment, they

might all have an N2 peak, but this peak might not reflect the

N2pc component and might instead reflect some other neural

activity that is unrelated to the focusing of attention. Fortunately,

it is possible to use a trick to isolate the N2pc component (which

is why we focused on this particular component). Specifically, the

N2pc component is larger at electrode sites contralateral to the lo-

cation of the target compared to ipsilateral sites, whereas the vast

majority of ERP components would be equally large at contrala-

teral and ipsilateral sites for these stimuli (because the overall

stimulus array is bilateral). Thus, we can isolate the N2pc compo-

nent by examining the difference in amplitude between the wave-

forms recorded from contralateral and ipsilateral electrode sites.

Figure 1.2B shows the waveforms we recorded at lateral occipital

electrode sites for the three types of pop-out targets, with separate

waveforms for contralateral and ipsilateral recordings. Specifically,

the contralateral waveform is the average of the left hemisphere

electrode site for right visual field targets and the right hemisphere

site for left visual field targets, and the ipsilateral waveform is the

average of the left hemisphere electrode site for left visual field tar-

gets and the right hemisphere site for right visual field targets. The

difference between the contralateral and ipsilateral waveforms is

the N2pc wave (indicated by the shaded area).

The main finding of this experiment was that an N2pc compo-

nent was present for all three types of pop-out targets. The N2pc

was larger for motion pop-outs than for color or orientation pop-

outs, which was consistent with our impression that the motion
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pop-outs seemed to attract attention more automatically than

the color and orientation pop-outs. To further demonstrate that the

N2pc recorded for the three types of pop-outs was actually the

same ERP component in all three cases, we examined the scalp dis-

tribution of the N2pc effect (i.e., the variations in N2pc amplitude

across the different electrode sites). The scalp distribution was

highly similar for the three pop-out types, and we therefore con-

cluded that subjects used the same attention system across pop-

out dimensions.

This experiment illustrates three main points. First, the N2pc

effects shown in figure 1.2B are only about 2–3 mV (microvolts,

millionths of a volt) in size. These are tiny effects. But if we use ap-

propriate methods to optimize the signal-to-noise ratio, we can see

these tiny effects very clearly. One of the main goals of this book is

to describe procedures for obtaining the best possible signal-to-

noise ratio (see especially chapters 2–4).

A second important point is that this experiment uses ERP

recordings as tool to address a question that is fundamentally

methodology independent (i.e., it is not an ERPology experiment).

Although the central question of this experiment was not ERP-

specific, it was a question for which ERPs were particularly well

suited. For example, it is not clear how one could use purely be-

havioral methods to determine whether the same attention systems

are used for these different stimuli, because different systems could

have similar effects on behavioral output. Similarly, functional

neuroimaging techniques such as PET and fMRI could be used to

address this issue, but they would not be as revealing as the ERP

data because of their limited temporal resolution. For example, if

a given brain area were found to be active for all three pop-out

types, it would not be clear whether this reflected a relatively early

attention effect (such as the N2pc wave) or some higher level deci-

sion process (analogous to the P3 wave that was observed for all

three pop-out types). Although the ERP data from this experiment

cannot indicate which cortical region was responsible for the

N2pc wave, the fact that nearly identical scalp distributions were
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obtained for all three pop-out types indicates that the same cortical

regions were involved, and the additional timing information pro-

vided by the ERP recordings provides further evidence that the

same attention effect was present for all three pop-out types. Note

also that, although it would be useful to know where the N2pc is

generated, this information was not necessary for answering the

main question of the experiment.

A third point this experiment illustrates is that the use of ERPs

to answer cognitive neuroscience questions usually depends on

previous ERPology experiments. If we did not already know that

the N2pc wave is associated with the focusing of attention in visual

search, we would not have been able to conclude that the same at-

tention system was used for all three pop-out types. Consequently,

the conclusions from this experiment are only as strong as the pre-

vious studies showing that the N2pc reflects the focusing of atten-

tion. Moreover, our conclusions are valid only if we have indeed

isolated the same functional ERP component that was observed in

previous N2pc experiments (which is likely in this experiment,

given the N2pc’s distinctive contralateral scalp distribution). The

majority of ERP experiments face these limitations, but it is some-

times possible to design an experiment in a manner that does not

require the identification of a specific ERP component. These

are often the most conclusive ERP experiments, and chapter 2

describes several examples in detail.

Reliability of ERP Waveforms

Figure 1.2 shows what are called grand average ERP waveforms,

which is the term ERP researchers use to refer to waveforms

created by averaging together the averaged waveforms of the indi-

vidual subjects. Almost all published ERP studies show grand

averages, and individual-subject waveforms are presented only

rarely (grand averages were less common in the early days of ERP

research due to a lack of powerful computers). The use of grand

averages masks the variability across subjects, which can be both a
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good thing (because the variability makes it difficult to see the sim-

ilarities) and a bad thing (because the grand average may not accu-

rately reflect the pattern of individual results). In either case, it is

worth considering what single-subject ERP waveforms look like.

Figure 1.3 shows an example of single-subject waveforms from

an N2pc experiment. The left column shows waveforms from a lat-

eral occipital electrode site in five individual subjects (from a total

set of nine subjects). As you can see, there is a tremendous amount

of variability in these waveforms. Every subject has a P1 peak and

an N1 peak, but the relative and absolute amplitudes of these peaks

are quite different from subject to subject (compare, e.g., subjects 2

and 3). Moreover, not all of the subjects have a distinct P2 peak,

and the overall voltage from 200–300 ms is positive for three sub-

jects, near zero for one subject, and negative for one subject. This is

quite typical of the variability that one sees in an ERP experiment

(note that I didn’t fish around for unusual examples—this is a ran-

dom selection).

What are the causes of this variability? To illustrate one part of

the answer to this question, the first three rows of the right side of

figure 1.3 show the waveforms from a single subject who partici-

pated in three sessions of the same experiment. There is some vari-

ability from session to session, but this variability is very small

compared to the variability from subject to subject. I don’t know of

any formal studies of the variability of the ERP waveform, but the

pattern shown in figure 1.3—low within-subject variability and

high between-subject variability—is consistent with my experi-

ence. A variety of factors may cause the within-subject variability,

ranging from global state factors (e.g., number of hours of sleep the

previous night) to shifts in task strategy. John Polich has published

an interesting series of studies showing that the P3 wave is sensi-

tive to a variety of global factors, such as time since the last meal,

body temperature, and even the time of year (see review by Polich

& Kok, 1995).

There are several potential causes of between-subject variability.

One factor that probably plays a large role is the idiosyncratic fold-
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ing pattern of the cortex. As I will discuss later in this chapter, the

location and orientation of the cortical generator source of an ERP

component has a huge influence on the size of that component at a

given scalp electrode site. Every individual has a unique pattern of

cortical folding, and the relationship between functional areas and

specific locations on a gyrus or in a sulcus may also vary. Although

I’ve never seen a formal study of the relationship between cortical

folding patterns and individual differences in ERP waveforms, I’ve

always assumed that this is the most significant cause of waveform

variation in healthy young adults (especially in the first 250 ms).

There are certainly other factors that can influence the shape of

the waveforms, including drugs, age, psychopathology, and even

personality. But in experiments that focus on healthy young adults,

these factors probably play a relative small role.

The waveforms in the bottom right portion of figure 1.3 represent

the grand average of the nine subjects in this experiment. A strik-

ing attribute of the grand average waveforms is that the peaks are

smaller than those in most of the single-subject waveforms. This

might seem odd, but it is perfectly understandable. The time point

at which the voltage reaches its peak values for one subject are not

the same as for other subjects, and the peaks in the grand averages

are not at the same time as the peaks for the individual subjects.

Moreover, there are many time points at which the voltage is posi-

tive for some subjects and negative for others. Thus, the grand

average is smaller overall than most of the individual-subject

waveforms. This is a good example of how even simple data pro-

cessing procedures can influence ERP waveforms in ways that

may be unexpected.

There are studies showing that if you average together the pic-

tures of a hundred randomly selected faces, the resulting average

face is quite attractive and looks the same as any other average of

a hundred randomly selected faces from the same population. In

my experience, the same is true for ERP waveforms: Whenever I

run an experiment with a given set of stimuli, the grand average of

ten to fifteen subjects is quite attractive and looks a lot like the
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grand average of ten to fifteen different subjects in a similar experi-

ment. Of course the waveform will look different if the stimuli

or task differ substantially between experiments, and occasionally

you will get several subjects with odd-looking waveforms that

make the grand average look a little odd. But usually you will

see a lot of similarity in the grand averages from experiment to

experiment.

Advantages and Disadvantages of the ERP Technique

Comparison with Behavioral Measures

When ERPs were first used to study issues in the domain of cogni-

tive neuroscience, they were primarily used as an alternative to

measurements of the speed and accuracy of motor responses in

paradigms with discrete stimuli and responses. In this context,

ERPs have two distinct advantages. First, an overt response reflects

the output of a large number of individual cognitive processes, and

variations in reaction time (RT) and accuracy are difficult to attri-

bute to variations in a specific cognitive process. ERPs, in contrast,

provide a continuous measure of processing between a stimulus

and a response, making it possible to determine which stage or

stages of processing are affected by a specific experimental manip-

ulation. As an example, consider the Stroop paradigm, in which

subjects must name the color of the ink in which a word is drawn.

Subjects are slower when the word is incompatible with the ink

color than when the ink color and word are the same (e.g., subjects

are slower to say ‘‘green’’ when presented with the word ‘‘red’’

drawn in green ink than when they are presented with the word

‘‘green’’ drawn in green ink). Do these slowed responses reflect

a slowing of perceptual processes or a slowing of response pro-

cesses? It is difficult to answer this question simply by looking

at the behavioral responses, but studies of the P3 wave have

been very useful in addressing this issue. Specifically, it is well
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documented that the latency of the P3 wave becomes longer when

perceptual processes are delayed, but several studies have shown

that P3 latency is not delayed on incompatible trials in the Stroop

paradigm, indicating that the delays in RT reflect delays in some

postperceptual stage (see, e.g., Duncan-Johnson & Kopell, 1981).

Thus, ERPs are very useful for determining which stage or stages

of processing are influenced by a given experimental manipulation

(for a detailed set of examples, see Luck, Woodman, & Vogel, 2000).

A second advantage of ERPs over behavioral measures is that

they can provide an online measure of the processing of stimuli

even when there is no behavioral response. For example, much of

my own research involves comparing the processing of attended

versus ignored stimuli, and ERP recordings make it possible to

monitor ‘‘covertly’’ the processing of the ignored stimuli without

requiring subjects to respond to them. Similarly, ERP studies of

language comprehension can assess the processing of a word

embedded in the middle of a sentence at the time the word is pre-

sented rather than relying on a response made at the end of the

sentence. Thus, the ability to covertly monitor the online process-

ing of information is one of the greatest advantages of the ERP tech-

nique. For these reasons, I like to refer to the ERP technique as

‘‘reaction time for the twenty-first century.’’

ERP recordings also have some disadvantages compared to be-

havioral measures. The most obvious disadvantage is that the func-

tional significance of an ERP component is virtually never as clear

as the functional significance of a behavioral response. In most

cases, we do not know the specific biophysical events that underlie

the production of a given ERP response or the consequences of

those events for information processing. In contrast, when a com-

puter records a button-press response, we have a much clearer

understanding of what that signal means. For example, when the

reaction time (RT) in condition A is 30 ms longer than the RT in

condition B, we know that the amount of time required to encode,

process, and act on the stimuli was 30 ms longer in condition A

than in condition B. In contrast, when the peak latency of an ERP
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component is 30 ms later in condition A than in condition B,

we can draw no conclusions without relying on a long chain of

assumptions and inferences (see chapter 2 for a discussion of some

problems associated with measuring ERP latencies). Some amount

of inference is always necessary when interpreting physiological

measures of cognition, but some measures are easier to interpret

than others. For example, when we record an action potential, we

have an excellent understanding of the biophysical events that pro-

duced the action potential and the role that action potentials play

in information processing. Thus, the basic signal is more difficult

to interpret in ERP experiments than in behavioral experiments or

in single-unit recordings (but probably no more difficult to inter-

pret than the BOLD [blood oxygen level-dependent] signal in fMRI

experiments).

A second disadvantage of the ERP technique is that ERPs are so

small that it usually requires a large number of trials to measure

them accurately. In most behavioral experiments, a reaction time

difference can be observed with only about twenty to thirty trials

per subject in each condition, whereas ERP effects often require

fifty, a hundred, or even a thousand trials per subject in each con-

dition. I have frequently started designing an ERP experiment and

then given up when I realized that the experiment would require

ten hours of data collection from each subject. Moreover, I rarely

conduct an experiment that requires less than three hours of data

collection from each subject. This places significant limitations on

the types of questions that ERP recordings can realistically answer.

For example, there are some behavioral experiments in which a

given subject can receive only one trial in each condition (e.g., the

inattentional blindness paradigm); experiments of this nature are

not practical with ERP recordings.

Comparison with Other Physiological Measures

Table 1.1 compares the ERP technique (along with its magnetic

counterpart, the event-related magnetic field, or ERMF, technique)
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with several other physiological recording techniques along four

major dimensions: invasiveness, spatial resolution, temporal reso-

lution, and cost. The other classes of techniques considered are

microelectrode measures (single-unit, multi-unit, and local field

potential recordings) and hemodynamic measures (PET and fMRI).

Invasiveness Microelectrode measures require inserting an elec-

trode into the brain and are therefore limited to nonhuman species

(or, in rare cases, human neurosurgery patients). The obvious dis-

advantage of primate recordings is that human brains are different

from primate brains. The less obvious disadvantage is that a mon-

key typically requires months of training to be able to perform a

task that a human can learn in five minutes, and once a monkey

is trained, it usually spends months performing the tasks while

recordings are made. Thus, monkeys are often highly overtrained

and probably perform tasks in a manner that is different from the

prototypical naı̈ve college sophomore. This can make it difficult

Table 1.1 Comparison of invasiveness, spatial resolution, temporal resolution, and cost for
microelectrode measures (single-unit and local field-potential recordings), hemody-
namic measures (PET and fMRI), and electromagnetic measures (ERPs and ERMFs)

MICROELECTRODE

MEASURES

HEMODYNAMIC

MEASURES

ELECTROMAGNETIC

MEASURES

Invasiveness Poor Good (PET)
Excellent (fMRI)

Excellent

Spatial resolution Excellent Good Undefined/poor
(ERPs)
Undefined/better
(ERMFs)

Temporal resolution Excellent Poor Excellent

Cost Fairly
expensive

Expensive (PET)
Expensive (fMRI)

Inexpensive (ERPs)
Expensive (ERMFs)
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to relate monkey results to the large corpus of human cognitive

experiments. PET experiments are also somewhat problematic

in terms of invasiveness. To avoid exposing subjects to excessive

levels of radiation, each subject can be tested in only a small num-

ber of conditions. In contrast, there is no fundamental restriction

on the amount of ERP or fMRI data that can be collected from a sin-

gle subject.

Spatial and Temporal Resolution Many authors have noted that elec-

tromagnetic measures and hemodynamic measures have comple-

mentary patterns of spatial and temporal resolution, with high

temporal resolution and poor spatial resolution for electromagnetic

measures and poor temporal resolution and high spatial resolution

for hemodynamic measures. ERPs have a temporal resolution of

1 ms or better under optimal conditions, whereas hemodynamic

measures are limited to a resolution of several seconds by the slug-

gish nature of the hemodynamic response. This is over a thousand-

fold difference, and it means that ERPs can easily address some

questions that PET and fMRI cannot hope to address. However,

hemodynamic measures have a spatial resolution in the millimeter

range, which electromagnetic measures cannot match (except, per-

haps, under certain unusual conditions). In fact, as I will discuss in

greater detail later in this chapter and in chapter 7, the spatial res-

olution of the ERP technique is fundamentally undefined, because

there are infinitely many internal ERP generator configurations that

can explain a given pattern of ERP data. Unlike PET and fMRI, it is

not currently possible to specify a margin of error for an ERP local-

ization claim (for the typical case, in which several sources are

simultaneously active). That is, with current techniques, it is im-

possible to know whether a given localization estimate is within

some specific number of millimeters from the actual generator

source. It may someday be possible to definitively localize ERPs,

but at present the spatial resolution of the ERP technique is simply

undefined.
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The fact that ERPs are not easily localized has a consequence

that is not often noted. Specifically, the voltage recorded at any

given moment from a single electrode reflects the summed contri-

butions from many different ERP generator sources, each of which

reflects a different neurocognitive process. This makes it extremely

difficult to isolate a single ERP component from the overall ERP

waveform. This is probably the single greatest shortcoming of the

ERP technique, because if you can’t isolate an ERP component

with confidence, it is usually difficult to draw strong conclusions.

Chapter 2 will discuss this issue in greater detail.

Cost ERPs are much less expensive than the other techniques

listed in table 1.1. It is possible to equip a good ERP lab for less

than US $50,000, and the disposable supplies required to test a

single subject are very inexpensive (US $1–3). A graduate student

or an advanced undergraduate can easily carry out the actual

recordings, and the costs related to storing and analyzing the data

are minimal. These costs have dropped a great deal over the past

twenty years, largely due to the decreased cost of computing

equipment. FMRI is fairly expensive, the major costs being person-

nel and amortization of the machine. One session typically costs

US $300–800. PET is exorbitantly expensive, primarily due to the

need for radioactive isotopes with short half-lives and medical

personnel. Single-unit recordings are also fairly expensive due to

the per diem costs of maintaining the monkeys, the cost of the sur-

gical and animal care facilities, and the high level of expertise

required to record electrophysiological data from awake, behaving

monkeys.

Choosing the Right Questions

Given that the ERP technique has both significant advantages and

significant disadvantages, it is extremely important to focus ERP

experiments on questions for which ERPs are well suited. For ex-

ample, ERPs are particularly useful for addressing questions about

Chapter 1 26



which neurocognitive process is influenced by a given manipula-

tion. Conversely, ERPs are poorly suited for asking questions that

require neuroanatomical specificity (except under certain special

conditions; see chapter 7). In addition, it is very helpful to ask

questions that can be addressed with a component that is relatively

easy to isolate (such as the N2pc component and the lateralized

readiness potential) or questions that avoid the problem of identi-

fying a specific ERP component altogether. Unfortunately, there

are no simple rules for determining whether a given question can

be easily answered with ERPs, but chapter 2 discusses a number

of general principles.

The Neural Origins of ERPs

Basic Electrical Concepts

Before reading this section, I would encourage you to read the

appendix, which reviews a few key principles of electricity and

magnetism. You probably learned this material in a physics class

several years ago, but it’s worthwhile to review it again in the con-

text of ERP recordings. You should definitely read it if (a) you’re

not quite sure what the difference between current and voltage is;

or (b) you don’t know Ohm’s law off the top of your head. The

appendix is, I admit, a bit boring. But it’s short and not terribly

complicated.

Electrical Activity in Neurons

To understand the nature of the voltages that can be recorded at the

scalp, it is necessary to understand the voltages that are generated

inside the brain. There are two main types of electrical activity

associated with neurons, action potentials and postsynaptic poten-

tials. Action potentials are discrete voltage spikes that travel from

the beginning of the axon at the cell body to the axon terminals,
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where neurotransmitters are released. Postsynaptic potentials are

the voltages that arise when the neurotransmitters bind to recep-

tors on the membrane of the postsynaptic cell, causing ion chan-

nels to open or close and leading to a graded change in the

potential across the cell membrane. If an electrode is lowered into

the intercellular space in a living brain, both types of potentials

can be recorded. It is fairly easy to isolate the action potentials

arising from a single neuron by inserting a microelectrode into

the brain, but it is virtually impossible to completely isolate a sin-

gle neuron’s postsynaptic potentials in an in vivo extracellular

recording. Consequently, in vivo recordings of individual neurons

(‘‘single-unit’’ recordings) measure action potentials rather than

postsynaptic potentials. When recording many neurons simultane-

ously, it is possible to measure either their summed postsynaptic

potentials or their action potentials. Recordings of action potentials

from large populations of neurons are called multi-unit recordings,

and recordings of postsynaptic potentials from large groups of neu-

rons are called local field potential recordings.

In the vast majority of cases, surface electrodes cannot detect

action potentials due to the timing of the action potentials and the

physical arrangement of axons. When an action potential is gener-

ated, current flows rapidly into and then out of the axon at one

point along the axon, and then this same inflow and outflow occur

at the next point along the axon, and so on until the action poten-

tial reaches a terminal. If two neurons send their action potentials

down axons that run parallel to each other, and the action poten-

tials occur at exactly the same time, then the voltages from the two

neurons will summate and the voltage recorded from a nearby

electrode will be approximately twice as large as the voltage

recorded from a single action potential. However, if one neuron

fires slightly after the other, then current at a given spatial location

will be flowing into one axon at the same time that it is flowing out

of the other axon, so they cancel each other and produce a much

smaller signal at the nearby electrode. Because neurons rarely

fire at precisely the same time (i.e., within microseconds of each
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other), action potentials in different axons will typically cancel,

and the only way to record the action potentials from a large

number of neurons is to place the electrode near the cell bodies

and to use a very high impedance electrode that is sensitive

only to nearby neurons. As a result, ERPs reflect postsynaptic

potentials rather than action potentials (except under extremely

rare circumstances).

Summation of Postsynaptic Potentials

Whereas the duration of an action potential is only about a

millisecond, postsynaptic potentials typically last tens or even

hundreds of milliseconds. In addition, postsynaptic potentials are

largely confined to the dendrites and cell body and occur essen-

tially instantaneously rather than traveling down the axon at a

fixed rate. Under certain conditions, these factors allow postsynap-

tic potentials to summate rather than cancel, making it possible to

record them at a great distance (i.e., at the scalp).

Very little research has examined the biophysical events that

give rise to scalp ERPs, but figure 1.4 shows the current best guess.

If an excitatory neurotransmitter is released at the apical dendrites

of a cortical pyramidal cell, as shown in figure 1.4A, current will

flow from the extracellular space into the cell, yielding a net nega-

tivity on the outside of the cell in the region of the apical den-

drites. To complete the circuit, current will also flow out of the

cell body and basal dendrites, yielding a net positivity in this area.

Together, the negativity at the apical dendrites and the positivity at

the cell body create a tiny dipole (a dipole is simply a pair of posi-

tive and negative electrical charges separated by a small distance).

The dipole from a single neuron is so small that it would be

impossible to record it from a distant scalp electrode, but under

certain conditions the dipoles from many neurons will summate,

making it possible to measure the resulting voltage at the scalp.

For the summated voltages to be recordable at the scalp, they must

occur at approximately the same time across thousands or millions
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Figure 1.4 Principles of ERP generation. (A) Schematic pyramidal cell during neurotransmis-
sion. An excitatory neurotransmitter is released from the presynaptic terminals,
causing positive ions to flow into the postsynaptic neuron. This creates a net nega-
tive extracellular voltage (represented by the ‘‘�’’ symbols) in the area of other parts
of the neuron, yielding a small dipole. (B) Folded sheet of cortex containing many
pyramidal cells. When a region of this sheet is stimulated, the dipoles from the indi-
vidual neurons summate. (C) The summated dipoles from the individual neurons
can be approximated by a single equivalent current dipole, shown here as an arrow.
The position and orientation of this dipole determine the distribution of positive and
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of neurons, and the dipoles from the individual neurons must be

spatially aligned. If the neurons are at random orientations with

respect to each other, then the positivity from one neuron may be

adjacent to the negativity from the next neuron, leading to cancel-

lation. Similarly, if one neuron receives an excitatory neurotrans-

mitter and another receives an inhibitory neurotransmitter, the

dipoles of the neurons will be in opposite directions and will can-

cel. However, if the neurons all have a similar orientation and all

receive the same type of input, their dipoles will summate and

may be measurable at the scalp. This is most likely to occur in cor-

tical pyramidal cells, which are aligned perpendicular to the sur-

face of the cortex, as shown in figure 1.4B.

The summation of the individual dipoles is complicated by the

fact that the cortex is not flat, but instead has many folds. Fortu-

nately, however, physicists have demonstrated that the summation

of many dipoles is essentially equivalent to a single dipole formed

by averaging the orientations of the individual dipoles.2 This aver-

aged dipole is called an equivalent current dipole (ECD). It is im-

portant to note, however, that whenever the individual dipoles are

more than 90 degrees from each other, they will cancel each other

to some extent, with complete cancellation at 180 degrees. For ex-

ample, the Purkinje cells in the cerebellar cortex are beautifully

aligned with each other and oriented perpendicular to the cortical

surface, but the cortical surface is so highly folded that the dipoles

in one small patch of cerebellar cortex will almost always be can-

celled by dipoles in a nearby but oppositely oriented patch, mak-

ing it difficult or impossible to record cerebellar activity from the

scalp.

Figure 1.4 (continued)
negative voltages recorded at the surface of the head. (D) Example of a current
dipole with a magnetic field traveling around it. (E) Example of the magnetic field
generated by a dipole that lies just inside the surface of the skull. If the dipole is
roughly parallel to the surface, the magnetic field can be recorded as it leaves and
enters the head; no field can be recorded if the dipole is oriented radially. Reprinted
with permission from Luck and Girelli 1998. (> 1998 MIT Press.)
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Volume Conduction

When a dipole is present in a conductive medium such as

the brain, current is conducted throughout that medium until it

reaches the surface. This is called volume conduction and is illus-

trated in figure 1.4C. The voltage that will be present at any given

point on the surface of the scalp will depend on the position and

orientation of the generator dipole and also on the resistance and

shape of the various components of the head (most notably the

brain, the skull, and the scalp; the eye holes also have an influence,

especially for ERP activity generated in prefrontal cortex).

Electricity does not just run directly between the two poles of

a dipole in a conductive medium, but instead spreads out through

the conductor. Consequently, ERPs spread out as they travel

through the brain. In addition, because electricity tends to follow

the path of least resistance, ERPs tend to spread laterally when

they encounter the high resistance of the skull. Together, these

two factors greatly blur the surface distribution of voltage, and an

ERP generated in one part of the brain can lead to substantial vol-

tages at quite distant parts of the scalp. There are algorithms that

can reduce this blurring, either by estimating the flow of current

or by deblurring the voltage distribution to estimate the voltage

distribution that is present on the brain’s surface (Gevins et al.,

1999; Pernier, Perrin, & Bertrand, 1988). These algorithms can be

very useful, although you should remember that they only elimi-

nate one source of blurring (the skull) and do not indicate the

actual generator location of the ERPs.

Another important point is that electricity travels at nearly the

speed of light. For all practical purposes, the voltages recorded at

the scalp reflect what is happening in the brain at the same mo-

ment in time.

Magnetic Fields

The blurring of voltage caused by the high resistance of the skull

can be largely circumvented by recording magnetic fields instead
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of electrical potentials. As figure 1.4D illustrates, an electrical

dipole is always surrounded by a magnetic field, and these fields

summate in the same manner as voltages. Thus, whenever an ERP

is generated, a magnetic field is also generated, running around the

ERP dipole. Moreover, the skull is transparent to magnetism,3 and

the magnetic fields are not blurred by the skull, leading to much

greater spatial resolution than is possible with electrical potentials.

The magnetic equivalent of the EEG is called the magnetoencepha-

logram (MEG), and the magnetic equivalent of an ERP is an event-

related magnetic field (ERMF ).

As figure 1.4E illustrates, a dipole that is perpendicular to the

surface of the scalp will be accompanied by a magnetic field that

leaves the head on one side of the dipole and enters back again on

the other side. If you place a highly sensitive probe called a SQUID

(super-conducting quantum interference device) next to the head,

it is possible to measure the magnetic field as it leaves and reenters

the head. Because magnetic fields are not as smeared out as electri-

cal potentials, they can provide more precise localization. How-

ever, as chapter 7 will discuss, the combination of ERP and ERMF

recordings provides even better localization than ERMF recordings

alone. Unfortunately, magnetic recordings are very expensive be-

cause supercooling is expensive and because an expensive mag-

netically shielded recording chamber is necessary to attenuate the

Earth’s relatively large magnetic field.

ERP Localization

If I tell you the locations and orientations of a set of dipoles in a

volume with a known distribution of conductances, then it would

be possible for you to use a set of equations to compute the distri-

bution of voltage that would be observed for those dipoles. This is

called the forward problem, and it is relatively easy to solve. How-

ever, if I provide you with an observed voltage distribution and ask

you to tell me the locations and orientations of the dipoles, you

will not be able to provide an answer. This is called the inverse
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problem, and it is what mathematicians call an ‘‘ill-posed’’ or

‘‘underdetermined’’ problem. This simply means that there is not

just one set of dipoles that can explain a given voltage distribution.

In fact, researchers have known for over 150 years that an infinite

number of different dipole configurations can produce any given

voltage distribution (Helmholtz, 1853) (see also Nunez, 1981; Plon-

sey, 1963). Thus, it is impossible to know with certainty which one

of these configurations is the one that is actually responsible for

producing the observed voltage distribution.

It is possible to use additional constraints to overcome the ill-

posed nature of the inverse problem. However, there is currently

no mathematical technique that is widely accepted as providing a

foolproof means of localizing ERP generator sources. By foolproof,

I mean a technique that can provide a reasonably small and well-

justified margin of error, making it possible to provide a p-value or

likelihood ratio for a statement about the anatomical location of

an ERP effect. For example, I would like to be able to say that the

N2pc component in a particular experiment was generated within

12 mm of the fusiform gyrus and that the probability that this local-

ization is incorrect is less than .05. I am aware of no mathematical

localization technique that allows one to make such statements.

As discussed earlier in this chapter, the main advantages of the

ERP technique are its high temporal resolution, its relatively low

cost, its noninvasiveness, and its ability to provide a covert and

continuous measure of processing. Spatial resolution is simply not

one of the strengths of the ERP technique, and it seems appropriate

to use this technique primarily to address issues that take advan-

tage of its strengths and are not limited by its weaknesses.

Chapter 7 provides more details about ERP localization.

A Summary of Major ERP Components

This section provides a brief description of the ERP components

commonly encountered in cognitive neuroscience research. Some
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of these components could justify an entire chapter, but I will

cover just the basics. For more extensive descriptions, see reviews

by Coles and Rugg (1995), Hillyard and Picton (1987), Picton and

Stuss (1980), Näätänen and Picton (1986), and Regan (1989).

Before I start describing the components, however, I’d like to

clarify something that is often confusing to ERP newcomers. Spe-

cifically, ERP components are usually given labels such as P1 and

N1 that refer to their polarity and position within the waveform,

and one must be careful not to assume that these labels are linked

somehow to the nature of the underlying brain activity. Most nota-

bly, sensory components from different modalities that are given

the same label are not usually related in any functional manner:

They just happen to have the same polarity and ordinal position

in the waveform. For example, the auditory P1 and N1 components

bear no particular relationship to the visual P1 and N1 compo-

nents. Some late components such as the P3 wave are largely

modality-independent, but even the P3 wave may have modality-

specific subcomponents (see, e.g., Luck & Hillyard, 1994a). Even

within a single modality, a component labeled N2 in one experi-

ment may not be the same as a component labeled N2 in another

experiment. Some researchers use a bar over the latency of a com-

ponent (e.g., P300) when they are referring to a theoretical entity

rather than simply labeling the observed polarity and latency of a

peak from a particular experiment.

Visual Sensory Responses

C1 The first major visual ERP component is usually called the C1

wave, and it is largest at posterior midline electrode sites. Unlike

most other components, it is not labeled with a P or an N because

its polarity can vary. The C1 wave appears to be generated in area

V1 (primary visual cortex), which in humans is folded into the cal-

carine fissure. The part of area V1 that codes the lower visual field
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is on the upper bank of the fissure and the part that codes the

upper visual field is on the lower bank. As a result, the voltage

recorded on the scalp above the calcarine fissure is positive for

stimuli in the lower visual field and negative for stimuli in the up-

per visual field (Clark, Fan, & Hillyard, 1995; Jeffreys & Axford,

1972). The C1 wave is small or positive for stimuli on the horizon-

tal midline, causing it to summate with the P1 wave into a single

wave. Consequently, a distinct C1 wave is usually not observed

unless upper-field stimuli are used to generate a negative C1 wave

(which can be easily distinguished from the positive P1 wave). The

C1 wave typically onsets 40–60 ms poststimulus and peaks 80–100

ms poststimulus, and it is highly sensitive to stimulus parameters,

such as contrast and spatial frequency.

P1 The C1 wave is followed by the P1 wave, which is largest at

lateral occipital electrode sites and typically onsets 60–90 ms post-

stimulus with a peak between 100–130 ms. Note, however, that P1

onset time is difficult to assess accurately due to overlap with the

C1 wave. In addition, P1 latency will vary substantially depending

on stimulus contrast. A few studies have attempted to localize the

P1 wave by means of mathematical modeling procedures, some-

times combined with co-localization with fMRI effects, and these

studies suggest that the early portion of the P1 wave arises from

dorsal extrastriate cortex (in the middle occipital gyrus), whereas a

later portion arises more ventrally from the fusiform gyrus (see Di

Russo et al., 2002). Note, however, that at least thirty distinct vi-

sual areas are activated within the first 100 ms after the onset of a

visual stimulus, and many of these areas presumably contribute to

the voltages recorded in the C1 and P1 latency range. Like the C1

wave, the P1 wave is sensitive to a variations in stimulus parame-

ters, as would be expected given its likely origins in extrastriate vi-

sual cortex. The P1 wave is also sensitive to the direction of spatial

attention (see review by Hillyard, Vogel, & Luck, 1998) and to the

subject’s state of arousal (Vogel & Luck, 2000). Other top-down

variables do not appear to reliably influence the P1 wave.
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N1 The P1 wave is followed by the N1 wave. There are several vi-

sual N1 subcomponents. The earliest subcomponent peaks 100–

150 ms poststimulus at anterior electrode sites, and there appear

to be at least two posterior N1 components that typically peak

150–200 ms poststimulus, one arising from parietal cortex and

another arising from lateral occipital cortex. Many studies have

shown that spatial attention influences these components (see

reviews by Hillyard et al., 1998; Mangun, 1995). In addition, the

lateral occipital N1 subcomponent appears to be larger when sub-

jects are performing discrimination tasks than when they are per-

forming detection tasks, which has led to the proposal that this

subcomponent reflects discriminative processing of some sort

(Hopf et al., 2002; Ritter et al., 1979; Vogel & Luck, 2000).

P2 A distinct P2 wave follows the N1 wave at anterior and central

scalp sites. This component is larger for stimuli containing target

features, and this effect is enhanced when the targets are relatively

infrequent (see Luck & Hillyard, 1994a). In this sense, the anterior

P2 wave is similar to the P3 wave. However, the anterior P2 effects

occur only when the target is defined by fairly simple stimulus fea-

tures, whereas P3 effects can occur for arbitrarily complex target

categories. At posterior sites, the P2 wave is often difficult to dis-

tinguish from the overlapping N1, N2, and P3 waves. Conse-

quently, not much is known about the posterior P2 wave.

N170 and Vertex Positive Potential Jeffreys (1989) compared the re-

sponses to faces and non-face stimuli, and he found a difference

between 150 and 200 ms at central midline sites that he named

the vertex positive potential (the electrode site at the very top of

the head is sometimes called the vertex site). Jeffreys noted that

this effect inverted in polarity at more lateral sites, but he did not

have any recordings from electrode sites over inferotemporal cor-

tex. More recent studies from other laboratories that used a broader

range of electrode sites have found that faces elicit a more negative

potential than non-face stimuli at lateral occipital electrode sites,
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especially over the right hemisphere, with a peak at approximately

170 ms (Bentin et al., 1996; Rossion et al., 1999). This effect is typ-

ically called the N170 wave. It is likely that the N170 and the ver-

tex positive potential are just the opposite sides of the same dipole

(although this is not a hundred percent certain—see George et al.,

1996; Rossion et al., 1999).

The N170 is later and/or larger for inverted faces than for

upright faces, a hallmark of face specialization. However, an inver-

sion effect is also observed for non-face stimuli when the subjects

have extensive experience viewing these stimuli in an upright

orientations (Rossion et al., 2002). Moreover, other studies have

shown that the vertex positive potential (and presumably the

N170) also occurs for other highly familiar stimuli, such as words

(Schendan, Ganis, & Kutas, 1998). But the face specificity of the

N170 is still a topic of considerable debate (Bentin & Carmel,

2002; Carmel & Bentin, 2002; Rossion, Curran, & Gauthier, 2002).

Auditory Sensory Responses

Very Early Components Under appropriate conditions, it is possible

to observe a sequence of ERP peaks within the first 10 ms of the on-

set of an auditory stimulus. Various sources of evidence indicate

that these peaks arise from various stages along the brainstem audi-

tory pathways, and these peaks are therefore called the brainstem

evoked responses (BERs) or auditory brainstem responses (ABRs).

BERs are extremely useful for assessing auditory pathology, espe-

cially in infants. When my children were born, they were both

given BER screening tests, and it was gratifying to see that a variant

of my main research technique is used for such an important clini-

cal application. The BERs are followed by the midlatency com-

ponents (defined as responses between 10 and 50 ms), which

probably arise at least in part from the medial geniculate nucleus

and the primary auditory cortex. Attention has its first reliable

effects in the midlatency range, but I don’t know of any other top-
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down variables that influence auditory activity in this time range.

The midlatency components are followed by the auditory P1 wave

(ca. 50 ms), which is typically largest at frontocentral electrode

sites.

N1 Like the visual N1 wave, the auditory N1 wave has several dis-

tinct subcomponents (see review by Näätänen & Picton, 1987).

These include (1) a frontocentral component that peaks around 75

ms and appears to be generated in the auditory cortex on the dorsal

surface of the temporal lobes, (2) a vertex-maximum potential of

unknown origin that peaks around 100 ms, and (3) a more laterally

distributed component that peaks around 150 ms and appears to be

generated in the superior temporal gyrus. Further fractionation of

the auditory N1 wave is possible (see, e.g., Alcaini et al., 1994).

The N1 wave is sensitive to attention. Although some attention

effects in the N1 latency range reflect the addition of an endoge-

nous component, attention can influence the N1 wave itself (or at

least some N1 subcomponents) (Woldorff et al., 1993).

Mismatch Negativity The mismatch negativity (MMN) is observed

when subjects are exposed to a repetitive train of identical stimuli

with occasional mismatching stimuli (e.g., a sequence with many

800-Hz tones and occasional 1200-Hz tones). The mismatch-

ing stimuli elicit a negative-going wave that is largest at cen-

tral midline scalp sites and typically peaks between 160 and

220 ms. Several other components are sensitive to mismatches

if they are task-relevant, but the MMN is observed even if sub-

jects are not using the stimulus stream for a task (e.g., if they

are reading a book while the stimuli are being presented). How-

ever, the MMN can be eliminated for stimuli presented in one ear

if the subjects focus attention very strongly on a competing se-

quence of stimuli in the other ear (Woldorff, Hackley, & Hillyard,

1991). The MMN is thought to reflect a fairly automatic process

that compares incoming stimuli to a sensory memory trace of pre-

ceding stimuli.
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Somatosensory, Olfactory, and Gustatory Responses

The vast majority of cognitive ERP experiments use auditory or vi-

sual stimuli, so I will provide only a brief mention of components

from other modalities. The response to a somatosensory stimulus

begins with one of the rare ERP components (sometimes called

N10) that reflects action potentials rather than postsynaptic poten-

tials, arising from the peripheral nerves. This is followed by a set

of subcortical components (ca. 10–20 ms) and a set of short- and

medium-latency cortical components (ca. 20–100 ms). An N1

wave is then observed at approximately 150 ms, followed by a P2

wave at approximately 200 ms (together, these two peaks are some-

times called the vertex potential ).

It is difficult to record olfactory and gustatory ERP responses,

largely because it is difficult to deliver precisely timed, sudden-

onset stimuli in these modalities (which is necessary when com-

puting averaged ERP waveforms). However, recent studies have

shown that these potentials can be recorded when using appropri-

ate stimulation devices (see, e.g., Ikui, 2002; Wada, 1999).

The N2 Family

The N2 time range has been well studied, and researchers have

identified many clearly different components in this time range

(see extensive discussions in Luck & Hillyard, 1994a; Näätänen &

Picton, 1986). As Näätänen and Picton (1986) describe, a repeti-

tive, nontarget stimulus will elicit an N2 deflection that can be

thought of as the basic N2 (although it doubtless contains several

subcomponents). If other stimuli (often called deviants) are occa-

sionally presented within a repetitive train, a larger amplitude

is observed in the N2 latency range. If these deviants are task-

irrelevant tones, this effect will consist of a mismatch negativity

(visual mismatches do not seem to elicit exactly this sort of auto-

matic mismatch response). If the deviants are task-relevant, then a

somewhat later N2 effect is also observed, called N2b (the mis-
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match negativity is sometimes called N2a). This component is

larger for less frequent targets, and it is thought to be a sign of the

stimulus categorization process. Both auditory and visual deviants

will, if task-relevant, elicit an N2b component, but this effect is

largest over central sites for auditory stimuli and over posterior

sites for visual stimuli (Simson, Vaughan, & Ritter, 1977). We do

not really know if the auditory and visual N2b components repre-

sent homologous neural processing functions.

In the visual domain, deviance is often studied spatially rather

than temporally. That is, rather than examining the response to a

deviant item presented within a temporal sequence of homoge-

neous items, one can compare the ERP waveform elicited by a si-

multaneous array of homogeneous items to the ERP waveform

elicited by a simultaneous array that contains several identical

items plus one deviant item. When this is done, one can distin-

guish three N2 components (Luck & Hillyard, 1994a). The first is a

bilateral, anterior response that is present even when the deviant

item is not a target (but it is not as automatic as the MMN because

it is not present unless subjects are looking for deviant targets of

some sort). This is followed by two posterior N2 subcomponents

that are present only if the deviant item is a target (or resembles

the target at first glance). One of these subcomponents is the stan-

dard N2b wave, which is bilateral and probability sensitive. The

second is called N2pc, where the pc is an abbreviation of posterior

contralateral, denoting the fact that this component is observed at

posterior electrode sites contralateral to the location of the target.

The N2pc component is not probability sensitive, and it reflects

the focusing of spatial attention onto the target location (and possi-

bly the suppression of the surrounding nontarget items—see Eimer,

1996; Luck et al., 1997; Luck & Hillyard, 1994b). A contralateral

negativity is also observed during visual working memory tasks,

but it has a more parietally focused scalp distribution and appears

to reflect some aspect of working memory maintenance (Vogel &

Machizawa, 2004).
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The P3 Family

There are several distinguishable ERP components in the time

range of the P3 wave. Squires, Squires, and Hillyard (1975) made

the first major distinction, identifying a frontally maximal P3a

component and a parietally maximal P3b component. Both were

elicited by unpredictable, infrequent shifts in tone pitch or in-

tensity, but the P3b component was present only when these

shifts were task-relevant. When ERP researchers (including myself)

refer to the P3 component or the P300 component, they almost al-

ways mean the P3b component (in fact, I will simply use the term

P3 to refer to the P3b component for the rest of this book). Other

studies have shown that an unexpected, unusual, or surprising

task-irrelevant stimulus within an attended stimulus train will elic-

it a frontal P3-like response (e.g., Courchesne, Hillyard, & Galam-

bos, 1975; Polich & Comerchero, 2003; Soltani & Knight, 2000),

but it is not clear whether this response is related to the P3a com-

ponent as Squires, Squires and Hillyard originally described (1975).

For example, Verleger, Jaskowski, and Wauschkuhn (1994) pro-

vided evidence that the P3b component is observed for targets that

are infrequent but are in some sense expected (or ‘‘awaited’’ in the

terms of this paper), whereas the frontal P3 wave is elicited by

stimuli that are truly unexpected or surprising. However, it is not

clear that this frontal P3 is as automatic as the P3a Squires and col-

leagues (1975) observed.

Given the thousands of published P3 experiments, you might

think that we would have a very thorough understanding of the P3

wave. But you’d be wrong! We know a great deal about the effects

of various manipulations on P3 amplitude and latency, but there is

no clear consensus about what neural or cognitive process the P3

wave reflects.4 Donchin (1981) proposed that the P3 wave is some-

how related to a process he called ‘‘context updating’’ (updating

one’s representation of the current environment), but this propo-

sal was not followed by a convincing set of experiments provid-

ing direct support for it. This is probably due to the fact that

we don’t have a good theory of context updating that specifies

Chapter 1 42



how it varies according to multiple experimental manipulations.

If you are interested in the P3 wave, you should probably read

Donchin’s original proposal (Donchin, 1981), Verleger’s exten-

sive critique of the proposal (Verleger, 1988), and the response

of Donchin and Coles to this critique (Donchin & Coles, 1988). In

my own laboratory’s research on attention, we have frequently

assumed that the context-updating proposal is at least approxi-

mately correct, and this has led to a variety of very sensible results

(e.g., Luck, 1998b; Vogel & Luck, 2002; Vogel, Luck, & Shapiro,

1998). But this assumption certainly carries some risk, so you

should be careful in making assumptions about the meaning of the

P3 wave.

Although we do not know exactly what the P3 wave means, we

do know what factors influence its amplitude and latency (for ex-

tensive reviews of the early P3 literature, see Johnson, 1986; Pritch-

ard, 1981; for more recent reviews, see Picton, 1992; Polich, 2004;

Polich & Kok, 1995). The hallmark of the P3 wave is its sensitivity

to target probability: As Duncan-Johnson and Donchin (1977)

described in excruciating detail, P3 amplitude gets larger as target

probability gets smaller. However, it is not just the overall proba-

bility that matters; local probability also matters, because the P3

wave elicited by a target becomes larger when it has been preceded

by more and more nontargets. Moreover, it is the probability of the

task-defined stimulus class that matters, not the probability of the

physical stimulus. For example, if subjects are asked to press a but-

ton when detecting male names embedded in a sequence contain-

ing male and female names, with each individual name occurring

only once, the amplitude of the P3 wave will depend on the rela-

tive proportions of male and female names in the sequence (see

Kutas, McCarthy, & Donchin, 1977). Similarly, if the target is the

letter E, occurring on 10 percent of trials, and the nontargets are

selected at random from the other letters of the alphabet, the target

will elicit a very large P3 wave even though the target letter is

approximately four times more probable than any individual non-

target letter (see Vogel, Luck, & Shapiro, 1998).
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P3 amplitude is larger when subjects devote more effort to a task,

leading to the proposal that P3 amplitude can be used as a measure

of resource allocation (see, e.g., Isreal et al., 1980). However, P3

amplitude is smaller when the subject is uncertain of whether a

given stimulus was a target or nontarget. Thus, if a task is made

more difficult, this might increase P3 amplitude by encouraging

subjects to devote more effort to the task, but it might decrease P3

amplitude by making subjects less certain of the category of a given

stimulus. Johnson (1984, 1986) proposed that the variables of

probability (P), uncertainty (U), and resource allocation (R) com-

bine to influence P3 amplitude in the following manner: P3

amplitude ¼ U� ðPþ RÞ.
Because the P3 wave depends on the probability of the task-

defined category of a stimulus, it is logically necessary that the P3

wave must be generated after the stimulus has been categorized

according to the rules of the task. Consequently, any manipulation

that postpones stimulus categorization (including increasing the

time required for low-level sensory processing or higher-level cate-

gorization) must increase P3 latency. This is logical, and countless

studies have confirmed this prediction. Although P3 latency must

logically depend on the time required to categorize the stimulus, it

is not logically dependent on post-categorization processes; several

studies have shown that P3 latency is not sensitive to the amount

of time required to select and execute a response once a stimulus

has been categorized (see, e.g., Kutas, McCarthy, & Donchin, 1977;

Magliero et al., 1984). For example, if subjects press a left-hand

button when they see the stimulus LEFT and right-hand button

when they see the stimulus RIGHT, P3 latency is no faster or

slower than when they are asked to make a left-hand response for

RIGHT and a right-hand response for LEFT (which is known to in-

crease the time required to perform stimulus-response mapping).

In contrast, if the stimuli are perceptually degraded, then P3 la-

tency is delayed for these stimuli. Thus, one can use P3 latency to

determine if a given experimental manipulation influences the pro-

cesses leading up to stimulus categorization or processes related to
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response selection and execution (for an example, see Luck, 1998b;

for contrasting viewpoints, see Leuthold & Sommer, 1998; Ver-

leger, 1997).

Language-Related ERP Components

The best studied language-related component is the N400, first

reported by Kutas and Hillyard (1980) (see also the more recent re-

view by Kutas, 1997). The N400 is negative-going wave that is usu-

ally largest over central and parietal electrode sites, with a slightly

larger amplitude over the right hemisphere than over the left hemi-

sphere. The N400 is typically seen in response to violations of se-

mantic expectancies. For example, if sentences are presented one

word at a time on a video monitor, a large N400 will be elicited by

the last word of the sentence, ‘‘While I was visiting my home town,

I had lunch with several old shirts.’’ Little N400 activity would be

observed if the sentence had ended with ‘‘friends’’ rather than

‘‘shirts.’’ An N400 can also be observed to the second word in a

pair of words, with a large N400 elicited by ‘‘tire . . . sugar’’ and a

small N400 elicited by ‘‘flour . . . sugar.’’ Some N400 activity is pre-

sumably elicited by any content word you read or hear, and rela-

tively infrequent words such as ‘‘monocle’’ elicit larger N400s

than relatively frequent words such as ‘‘milk.’’

Nonlinguistic stimuli can also elicit an N400 (or N400-like activ-

ity), as long as they are meaningful. For example, a line drawing

will elicit an N400 if it is inconsistent with the semantic context

created by a preceding sequence of words or line drawings (Ganis,

Kutas, & Sereno, 1996; Holcomb & McPherson, 1994). However, it

is possible that subjects named the stimuli subvocally, so it is pos-

sible that the N400 component reflects language-specific brain

activity.

Although typically larger at right-hemisphere electrodes than

left-hemisphere electrodes, the N400 appears to be generated pri-

marily in the left temporal lobe. One can explain this apparent dis-

crepancy by assuming that the generator dipole near the base of the
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left hemisphere does not point straight upward, but instead points

somewhat medially. Studies of split-brain patients and lesion

patients have shown that the N400 depends on left-hemisphere

activity (Hagoort, Brown, & Swaab, 1996; Kutas, Hillyard, & Gazza-

niga, 1988), and recordings from the cortical surface in neuro-

surgery patients have found clear evidence of N400-like activity in

the left anterior medial temporal lobe (e.g., McCarthy et al., 1995).

Syntactic violations also elicit distinctive ERP components. One

of these is called P600 (see Osterhout & Holcomb, 1992, 1995). For

example, the word ‘‘to’’ elicits a larger P600 in the sentence ‘‘The

broker persuaded to sell the stock’’ than in the sentence ‘‘The bro-

ker hoped to sell the stock.’’ Syntactic violations can also elicit a

left frontal negativity from approximately 300–500 ms, which may

be the same effect observed when wh-questions (e.g., ‘‘What is the

. . .’’) are compared to yes-no questions (e.g., ‘‘Is the . . .’’). Given the

important distinction between syntax and semantics, it should not

be surprising that words that are primarily syntactic in nature elicit

different ERP activity than words with rich semantics. In particu-

lar, function words (e.g., to, with) elicit a component called N280

at left anterior electrode sites, and this component is absent for

content words (e.g., nouns and verbs). In contrast, content words

elicit an N400 that is absent for function words.

Error Detection

In most ERP studies, researchers simply throw out trials with

incorrect behavioral responses. However, by comparing the ERP

waveform elicited on error trials with the ERP waveform elicited

on correct trials, it is possible to learn something about the cause

of the error and the brain’s response following detection of the er-

ror. For example, Gehring et al. (1993) had subjects perform a

speeded response task in which they responded so fast that they

occasionally made errors that were obvious right away (‘‘Oops!

I meant to press the left button!’’). When they compared the

ERPs on correct trials to the ERPs on error trials, they observed a
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negative-going deflection at frontal and central electrode sites

beginning just after the time of the response. Gehring et al. called

this deflection the error-related negativity (ERN); it was independ-

ently discovered by Falkenstein et al., (1990), who called it the Ne.

This component is often followed by a positive deflection called

Pe. More recent studies have demonstrated that the ERN can be

elicited by negative feedback following an incorrect response

(Gehring & Willoughby, 2002) or by observing someone else mak-

ing an incorrect response (van Schie et al., 2004).

Most investigators believe that the ERN reflects the activity of

a system that either monitors responses or is sensitive to conflict

between intended and actual responses. Evidence from fMRI and

single-unit recordings suggests that these functions occur in the an-

terior cingulate cortex (Holroyd et al., 2004; Ito et al., 2003), and a

dipole source modeling study showed that the scalp distribution of

the ERN is consistent with a generator source in the anterior cingu-

late (Dehaene, Posner, & Tucker, 1994). However, it is difficult to

localize a broadly distributed component such as the ERN with

much precision on the basis of the observed distribution of voltage.

An intracranial recording study found evidence of an ERN-like re-

sponse in the anterior cingulate, which is more convincing, but

ERN-like responses were also observed at many other cortical sites

in this study. The generator of the ERN is therefore not yet known

with certainty.

Response-Related ERP Components

If subjects are instructed to make a series of occasional manual

responses, with no eliciting stimulus, the responses are preceded

by a slow negative shift at frontal and central electrode sites that

begins up to one second before the actual response. This is called

the bereitschaftspotential (BP) or readiness potential (RP), and it

was independently discovered by Kornhuber and Deecke (1965)

and Vaughn, Costa, and Ritter (1968). The scalp topography of the

readiness potential depends on which effectors will be used to
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make the response, with differences between the two sides of the

body and differences within a given side.

The lateralized portion of the readiness potential is called the

lateralized readiness potential (LRP), and it has been widely used

in cognitive studies. As discussed in chapter 2, the LRP is particu-

larly useful because it can be easily isolated from other ERP com-

ponents. That is, because it is lateralized with respect to the hand

making the response, whereas other components are not lateral-

ized, it is easy to tell when a given experimental manipulation has

affected the time or amplitude of the LRP. In contrast, it is difficult

to be certain that a given experimental manipulation has influ-

enced the P3 component rather than some other overlapping com-

ponent, and this is one of the main reasons why it has been so

difficult to determine what cognitive process the P3 component

reflects.

The LRP is generated, at least in part, in motor cortex (Coles,

1989; Miller, Riehle, & Requin, 1992). The most interesting conse-

quence of this is that the LRP preceding a foot movement is oppo-

site in polarity to the LRP preceding a hand movement, reflecting

the fact that the motor cortex representation of the hand is on the

lateral surface of the brain, whereas the representation of the foot

is on the opposed mesial surface. The LRP appears to reflect some

key aspect of response preparation: responses are faster when the

LRP is larger at the moment of stimulus onset, and there is a

threshold level of LRP amplitude beyond which a response will in-

exorably be triggered (Gratton et al., 1988).

The RP and LRP may be present for hundreds of milliseconds

before the response, but other components are more tightly

synchronized to the response. The early view was that a positive-

going deflection is superimposed on the RP beginning 80–90 ms

before the response, followed by a negative-going deflection during

the response and another positive-going deflection after the re-

sponse. However, more recent research has identified many more

movement-related components and subcomponents (see, e.g.,

Nagamine et al., 1994; Shibasaki, 1982).
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The contingent negative variation (CNV), described in the brief

history at the beginning of this chapter, should be mentioned again

here because it is partly related to motor preparation. As you will

recall, the CNV is a broad negative deflection between a warning

stimulus and a target stimulus (Walter et al., 1964). When the pe-

riod between the warning and target stimuli is lengthened to sev-

eral seconds, it is possible to see that the CNV actually consists of

a negativity following the warning stimulus, a return to baseline,

and then a negativity preceding the target stimulus (Loveless &

Sanford, 1975; Rohrbaugh, Syndulko, & Lindsley, 1976). The first

negative phase is usually regarded as reflecting processing of

the warning stimulus, and the second negative phase is usually

regarded as reflecting the readiness potential that occurs as the

subject prepares to respond to the target.

Suggestions for Further Reading

The following is a list of journal articles, books, and book chapters

that provide broad and insightful discussions of general ERP

issues.

Coles, M. G. H. (1989). Modern mind-brain reading: Psychophysi-

ology, physiology and cognition. Psychophysiology, 26, 251–

269.

Coles, M. G. H., Smid, H., Scheffers, M. K., & Otten, L. J. (1995).
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physiology of Mind: Event-Related Brain Potentials and Cogni-

tion. (pp. 86–131). Oxford: Oxford University Press.

Donchin, E. (1979). Event-related brain potentials: A tool in the

study of human information processing. In H. Begleiter (Ed.),
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Plenum Press.
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2 The Design and Interpretation of ERP Experiments

This chapter discusses some of the central issues in the design and

interpretation of ERP experiments. Many such issues are unique to

a given research topic (e.g., equating word frequencies in language

experiments), but this chapter will focus on a set of principles that

are common to most cognitive ERP studies.1 Throughout the chap-

ter, I will distill the most significant points into a set of rules and

strategies for designing and analyzing ERP experiments.

It may seem odd to place a chapter on experimental design and

interpretation before the chapters that cover basic issues such as

electrodes and averaging. However, the experimental design is the

most important element of an ERP experiment, and the principles

of experimental design have implications for the more technical

aspects of ERP research.

Waveform Peaks versus Latent ERP Components

The term ERP component refers to one of the most important and

yet most nebulous concepts in ERP research. An ERP waveform

unambiguously consists of a series of peaks and troughs, but these

voltage deflections reflect the sum of several relatively indepen-

dent underlying or latent components. It is extremely difficult to

isolate the latent components so that they can be measured inde-

pendently, and this is the single biggest roadblock to designing

and interpreting ERP experiments. Consequently, one of the keys

to successful ERP research is to distinguish between the observable

peaks of the waveform and the unobservable latent components.

This section describes several of the factors that make it difficult

to assess the latent components, along with a set of ‘‘rules’’ for



avoiding misinterpreting the relationship between the observable

peaks and the underlying components.

Voltage Peaks Are not Special

Panels A–C in figure 2.1 illustrate the relationship between the vis-

ible ERP peaks and the latent ERP components. Panel A shows an

ERP waveform, and panel B shows a set of three latent ERP compo-

nents that, when summed together, equal the ERP waveform in

panel A. When several voltages are present simultaneously in a

conductor such as the brain, the combined effect of the individual

voltages is exactly equal to their sum, so it is quite reasonable to

think about ERP waveforms as an expression of several summed

latent components. In most ERP experiments, the researchers want

to know how an experimental manipulation influences a specific

latent component, but we don’t have direct access to the latent

components and must therefore make inferences about them from

the observed ERP waveforms. This is more difficult than it might

seem, and the first step is to realize that the maximum and mini-

mum voltages (i.e., the peaks) in an observed ERP waveform are

not necessarily a good reflection of the latent components. For ex-

ample, the peak latency of peak 1 in the ERP waveform in panel

A is much earlier than the peak latency of component C1 in

panel B. This leads to our first rule of ERP experimental design

and interpretation:

Rule 1. Peaks and components are not the same thing. There is

nothing special about the point at which the voltage reaches a local

maximum.

In light of this fundamental rule, I am always amazed at how

often researchers use peak amplitude and peak latency to measure

the magnitude and timing of ERP components. These measures

often provide a highly distorted view of the amplitude and timing

of the latent components, and better techniques are available for

quantifying ERP data (see chapter 5).

Chapter 2 52



C1

C2

Peak1

Peak1

Peak1

Peak2

Peak2

Peak2

Peak3

Peak3

Peak3

C3

C1'

C2'

C3'

A D

B E

C F

G

H

Peak1

Peak2

Peak3

Decrease in
amplitude of C2'

Observed ERP
Waveform

One possibe set
of latent components

Another possibe set
of latent components

P3 wave on
3 different trials

Average of the
3 trials

Decrease in
amplitude of C3

Increase in
amplitude of C1

Figure 2.1 Examples of the latent components that may sum together to form an observed ERP
waveform. Panels B and C show two different sets of latent components that could
underlie the waveform shown in panel A. Panel D shows the effect of decreasing the
amplitude of component C2 0 by 50 percent (broken line) compared to the original
waveform (solid line). Panel E shows how an increase in the amplitude of compo-
nent C1 (broken line) relative to the original waveform (solid line) can create an
apparent shift in the latencies of both peak 1 and peak 2. Panel F shows how an in-
crease in the amplitude of component C3 (broken line) relative to the original wave-
form (solid line) can influence both the amplitude and the latency of peak 2. Panel G
shows a component at three different latencies, representing trial-by-trial variations
in timing; panel H shows the average of these three waveforms, which is broader
and has a smaller peak amplitude (but the same area amplitude) compared to each
of the single-trial waveforms.
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Peak Shapes Are not the Same as Component Shapes

Panel C of figure 2.1 shows another set of latent components that

also sum together to equal the ERP waveform shown in panel A. In

this case, the relatively short duration and hill-like shape of peak 2

in panel A bears little resemblance to the long duration, boxcar-

like component C2 0 in panel C. This leads to our second rule:

Rule 2. It is impossible to estimate the time course or peak

latency of a latent ERP component by looking at a single ERP

waveform—there may be no obvious relationship between the

shape of a local part of the waveform and the underlying

components.

Violations of this rule are especially problematic when compar-

ing two or more ERP waveforms. For example, consider the ERP

waveforms in panel D of figure 2.1. The solid waveform represents

the sum of the three latent components in panel C (which is the

same as the ERP waveform in panel A), and the dashed waveform

shows the effects of decreasing component C2 0 by 50 percent. To

make this a bit more concrete, you can think of these waveforms

as the response to an attended stimulus and an unattended stimu-

lus, respectively, such that ignoring the stimulus leads to a 50 per-

cent decline in the amplitude of component C2 0. Without knowing

the underlying component structure, it would be tempting to con-

clude from the ERP waveforms shown in panel D that the un-

attended stimulus elicits not only a decrease in the amplitude of

component C2 0 but also an increase in the amplitude of component

C1 0 and a decrease in the latency and an increase in the amplitude

of component C3 0. In other words, researchers often interpret an ef-

fect that overlaps with multiple peaks in the ERP waveform as

reflecting changes in multiple underlying components, but this in-

terpretation is often incorrect. Alternatively, you might conclude

from the waveforms in panel D that the attentional manipulation

adds an additional, long-duration component that would not other-

wise be present at all. This would also be an incorrect conclusion,

which leads us to:
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Rule 3. It is dangerous to compare an experimental effect (i.e.,

the difference between two ERP waveforms) with the raw ERP

waveforms.

Rule 3 applies to comparisons of scalp distribution as well as

comparisons of timing. That is, it is not usually appropriate to

compare the scalp distribution of an experimental effect with the

scalp distribution of the raw ERP waveform. For example, imagine

you found that words elicited a more negative response in the N1

latency range than nonwords. To determine whether this effect

reflects a change in the amplitude of the exogenous N1 or the addi-

tion of a word-specific neural process, it would be tempting to cal-

culate a word-minus-nonword difference wave and compare the

scalp distribution of this difference wave (in the N1 latency range)

to the scalp distribution of the N1 elicited by nonwords. If the

scalp distributions were found to be different, one might conclude

that the effect represents the addition of endogenous, word-specific

brain activity. But this conclusion would be unwarranted. The

nonword-elicited N1 scalp distribution certainly represents over-

lapping activity from multiple latent components, and a different

scalp distribution would be expected for the word-minus-nonword

difference wave if a subset of these latent components were larger

(or smaller) for words than for nonwords. Moreover, a change in

the latency of one of the latent components would also lead to dif-

ferences in scalp distribution. Thus, if the scalp distribution differs

between two conditions, the only certain conclusion is that the ex-

perimental manipulation does not simply change the amplitude of

all components proportionately.

This raises an important point about the relationship between

amplitude and latency. Although the amplitude and latency of a

latent component are conceptually independent, amplitude and la-

tency often become confounded when measuring ERP waveforms.

This occurs because the latent components overlap in time. Con-

sider, for example, the relatively straightforward correspondence be-

tween the peaks in panel A of figure 2.1 and the latent components
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in panel B of the figure. Panel E of the figure shows the effects of

increasing the amplitude of the first latent component on the

summed ERP activity. When the amplitude of component A

is increased by 50 percent, this creates an increase in the latency

of both peak 1 and peak 2 in the summed waveform, and it also

causes a decrease in the peak amplitude of peak 2. Panel F illus-

trates the effect of doubling the amplitude of the component C3,

which causes a decrease in the amplitude and the latency of the

second peak. Once again, this shows how the peak voltage in a

given time range is a poor measure of the underlying ERP compo-

nents in that latency range. This leads to our next rule:

Rule 4. Differences in peak amplitude do not necessarily corre-

spond with differences in component size, and differences in peak

latency do not necessarily correspond with changes in component

timing.

Distortions Caused by Averaging

In the vast majority of ERP experiments, the ERP waveforms are

isolated from the EEG by means of signal-averaging procedures. It

is tempting to think of signal-averaging as a process that simply

attenuates the nonspecific EEG, allowing us to see what the single-

trial ERP waveforms look like. However, to the extent that the

single-trial waveform varies from trial to trial, the averaged ERP

may provide a distorted view of the single-trial waveforms, partic-

ularly when component latencies vary from trial to trial. Panels G

and H of figure 2.1 illustrate this distortion. Panel G illustrates

three single-trial ERP waveforms (without any EEG noise), with

significant latency differences across trials, and panel H shows the

average of those three single-trial waveforms. The averaged wave-

form differs from the single-trial waveforms in two significant

ways. First, it is smaller in peak amplitude. Second, it is more

spread out in time. In addition, even though the waveform in panel

H is the average of the waveforms in panel G, the onset time of the
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averaged waveform in panel H reflects the onset time of the earliest

single-trial waveform and not the average onset time. This leads to

our next rule:

Rule 5. Never assume that an averaged ERP waveform accurately

represents the individual waveforms that were averaged together.

In particular, the onset and offset times in the averaged waveform

will represent the earliest onsets and latest offsets from the individ-

ual trials or individual subjects that contribute to the average.

Fortunately, it is often possible to measure ERPs in a way

that avoids the distortions created by the signal-averaging process.

For example, the area under the curve in the averaged waveform

shown in panel H is equal to the average of the area under the

single-trial curves in panel G. In most cases, measurements of area

amplitude (or mean amplitude) are superior to measurements of

peak amplitude. Similarly, it is possible to find the time point that

divides the area into two equal halves, and this can be a better

measure of latency than peak measures (for more details, see chap-

ter 6).

It is worth mentioning that a very large number of published ERP

experiments have violated the five rules presented so far. There is

no point in cataloging the cases (especially given that the list would

include some of my own papers). However, violations of these

rules significantly undermine the strength of the conclusions that

one can draw from these experiments. For new students of the

ERP technique, it would be worth reading a large set of ERP papers

and trying to identify both violations of these rules and methods

for avoiding the pitfalls that the rules address.

What Is an ERP Component?

So how can we accurately assess changes in latent components

on the basis of the observed ERP waveforms? Ideally, we would

like to be able to take an averaged ERP waveform and use some

simple mathematical procedure to recover the actual waveforms
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corresponding to the components that sum together to create the

recorded ERP waveform. We could then measure the amplitude

and the latency of the isolated components, and changes in one

component would not influence our measurement of the other

components. Unfortunately, just as there are infinitely many gener-

ator configurations that could give rise to a given ERP scalp distri-

bution, there are infinitely many possible sets of latent components

that could be summed together to give rise to a given ERP wave-

form. In fact, this is the basis of Fourier analysis: any waveform

can be decomposed into the sum of a set of sine waves. Similarly,

techniques such as principal components analysis (PCA) and inde-

pendent components analysis (ICA) use the correlational structure

of a data set to derive a set of basis components that can be added

together to create the observed waveforms (for more information,

see Donchin & Heffley, 1978; Makeig et al., 1997). Localization

techniques can also be used to compute component waveforms at

the site of each ERP generator source. Unfortunately, none of these

techniques has yet been perfected, as discussed in this section.

All techniques for estimating the latent components are based on

assumptions about what a component is. In the early days of ERP

research, a component was defined primarily on the basis of its po-

larity, latency, and general scalp distribution. For example, the P3a

and P3b components were differentiated on the basis of the earlier

peak latency and more frontal distribution of the P3a component

relative to the P3b component. However, polarity, latency, and

scalp distribution are superficial features that don’t really capture

the essence of a component. For example, the peak latency of the

P3b component may vary by hundreds of milliseconds depending

on the difficulty of the target-nontarget discrimination (Johnson,

1986), and the scalp distribution of the auditory N1 wave depends

on the pitch of the eliciting stimulus in a manner that corresponds

with the tonotopic map of auditory cortex (Bertrand, Perrin, & Per-

nier, 1991). Even polarity may vary: the C1 wave, which is gener-

ated in primary visual cortex, is negative for upper-field stimuli

and positive for lower-field stimuli due to the folding pattern
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of this cortical area (Clark, Fan, & Hillyard, 1995). Consequently,

many investigators now define components in terms of a combina-

tion of computational function and neuroanatomical generator site

(see, e.g., Näätänen & Picton, 1987). Consistent with this approach,

my own definition of the term ERP component is:

Scalp-recorded neural activity that is generated in a given

neuroanatomical module when a specific computational operation

is performed.

By this definition, a component may occur at different times

under different conditions, as long as it arises from the same

module and represents the same cognitive function (e.g., the

encoding of an item into working memory in a given brain area

may occur at different delays following the onset of a stimulus be-

cause of differences in the amount of time required to identify the

stimulus and decide that it is worth storing in working memory).

The scalp distribution and polarity of a component may also vary

according to this definition, because the same cognitive function

may occur in different parts of a cortical module under different

conditions (e.g., when a visual stimulus occurs at different loca-

tions and therefore stimulates different portions of a topographi-

cally mapped area of visual cortex). It is logically possible for two

different cortical areas to accomplish exactly the same cognitive

process, but this probably occurs only rarely and would lead to a

very different pattern of voltages, and so this would not usually be

considered a single ERP component.2

Techniques such as PCA and ICA use the correlational struc-

ture of an ERP data set to define a set of components, and these

techniques therefore derive components that are based on func-

tional relationships. Specifically, different time points are grouped

together as part of a single component to the extent they tend to

vary in a correlated manner, as would be expected for time points

that reflect a common cognitive process. The PCA technique, in

particular, is problematic because it does not yield a single, unique

set of underlying components without additional assumptions (see,
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e.g., Rosler & Manzey, 1981). That is, PCA really just provides a

means of determining the possible set of latent component wave-

shapes, but additional assumptions are necessary to decide on one

set of component waveshapes (and there is typically no way to ver-

ify that the assumptions are correct). The ICA technique appears

to be a much better approach, because it uses both linear and non-

linear relationships to define the components. However, because

ICA is a new technique, it remains to be seen whether it will turn

out to be a generally useful means of identifying latent compo-

nents. In particular, any technique based on identifying correlated

versus independent time points will be limited by that fact that

when two separate cognitive processes covary, they may be cap-

tured as part of a single component even if they occur in very dif-

ferent brain areas and represent different cognitive functions. For

example, if all of the target stimuli in a given experimental para-

digm are transferred into working memory, an ERP component

associated with target detection may always be accompanied by a

component associated with working memory encoding, and this

may lead ICA to group them together as a single component. More-

over, both PCA and ICA fail when latencies vary across conditions.

Thus, correlation-sensitive techniques may sometimes be useful

for identifying latent ERP components, but it remains to be seen

whether these techniques are generally effective under typical ex-

perimental conditions.

Techniques for localizing ERPs can potentially provide measures

of the time course of activity within anatomically defined regions.

In fact, this aspect of ERP localization techniques might turn out

to be just as important as the ability to determine the neuroanatom-

ical locus of an ERP effect. However, as discussed in chapters 1

and 7, there are no general-purpose and foolproof techniques for

definitively localizing ERPs at present, and we may never have

techniques that allow direct and accurate ERP localization. Thus,

this approach to identifying latent ERP components is not gener-

ally practical at the present time.
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In addition to mathematical techniques for determining the la-

tent components in an ERP waveform, it is also possible to use the

world’s most powerful pattern analyzer, the human brain. As you

gain expertise with specific components and with ERPs in general,

you will be able to look at a set of ERP data and make a reasonably

good inference about the underlying component structure. This

involves considering how the peaks interact with each other across

time and across electrode locations and coming up with an inter-

pretation that is consistent with the observed waveforms. Kramer

(1985) studied this formally, creating a set of simulated ERP wave-

forms and asking a set of graduate students and research assistants

to make judgments about them. He found that these individuals

did a good job of recovering the underlying component structure

from the waveforms, but that this depended on the observer’s level

of experience. Thus, you should become skilled at determining

the component structure of ERP waveforms over time. This is

an important skill, because you will use your assessment of the la-

tent components to guide your measurement and analysis of the

waveforms.

Avoiding Ambiguities in Interpreting ERP Components

The preceding sections of this chapter are rather depressing, be-

cause it seems like there is no perfectly general means for measur-

ing latent components from observed ERP waveforms. This is a

major problem, because many ERP experiments make predictions

about the effects of some experimental manipulation on a given

component, and the conclusions of these experiments are valid

only if the observed effects really reflect changes in that compo-

nent. For example, the N400 component is widely regarded as a

sensitive index of the degree of mismatch between a word and a

previously established semantic context, and it would be nice to

use this component to determine which of two sets of words sub-

jects perceive as being more incongruous. If two sets of words elicit
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different ERP waveforms, it is necessary to know whether this ef-

fect reflects a larger N400 for one set or a larger P3 for the other

set; otherwise, it is impossible to determine whether the two sets

of words differ in terms of semantic mismatch or some other vari-

able (i.e., a variable to which the P3 wave is sensitive). Here I will

describe six strategies for minimizing factors that lead to ambigu-

ous relationships between the observed ERP waveforms and the la-

tent components.

Strategy 1. Focus on a Specific Component

The first strategy is to focus a given experiment on only one or

perhaps two ERP components, trying to keep as many other com-

ponents as possible from varying across conditions. If fifteen dif-

ferent components vary, you will have a mess, but variations in a

single component are usually tractable. Of course, sometimes a

‘‘fishing expedition’’ is necessary when using a new paradigm,

but don’t count on obtaining easily interpretable results in such

cases.

Strategy 2. Use Well-Studied Experimental Manipulations

It is usually helpful to examine a well-characterized ERP compo-

nent under conditions that are as similar as possible to conditions

in which that component has previously been studied. For exam-

ple, when Marta Kutas first started recording ERPs in language

paradigms, she focused on the P3 wave and varied factors such as

‘‘surprise value’’ that had previously been shown to influence the

P3 wave in predictable ways. Of course, when she used semantic

mismatch to elicit surprise, she didn’t observe the expected P3

wave but instead discovered the N400 component. However, the

fact that her experiments were so closely related to previous P3

experiments made it easy to determine that the effect she observed

was a new negative-going component and not a reduction in the

amplitude of the P3 wave.
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Strategy 3. Focus on Large Components

When possible, it is helpful to study large components such as P3

and N400. When the component of interest is very large compared

to the other components, it will dominate the observed ERP wave-

form, and measurements of the corresponding peak in the ERP

waveform will be relatively insensitive to distortions from the

other components.

Strategy 4. Isolate Components with Difference Waves

It is often possible to isolate the component of interest by creating

difference waves. For example, imagine that you are interested

in assessing the N400 for two different noun types, count nouns

(e.g., cup) and mass nouns (e.g., water). The simple approach to

this might be to present one word per second, with count nouns

and mass nouns randomly intermixed. This would yield two ERP

waveforms, one for count nouns and one for mass nouns, but

it would be difficult to know if any differences observed between

the count noun and mass noun waveforms were due to differ-

ence in N400 amplitude or due to differences in some other ERP

component.

To isolate the N400, you could redesign the experiment so that

each trial contained a sequence of two words, a context word and

a target word, with count noun target word on some trials and a

mass noun target word on others. In addition, the context and tar-

get words would sometimes be semantically related and sometimes

be semantically unrelated. You would then have four types of trial

types:

Count noun, related to context word (e.g., ‘‘plate . . . cup’’)

Mass noun, related to context word (e.g., ‘‘rain . . . water’’)

Count noun, unrelated to context word (e.g., ‘‘sock . . . cup’’)

Mass noun, unrelated to context word (e.g., ‘‘garbage . . . water’’)

You could then isolate the N400 by constructing difference

waves in which the ERP waveform elicited by a given word when
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it was preceded by a semantically related context word is sub-

tracted from the ERP waveform elicited by that same word when

preceded by a semantically unrelated context word. Separate dif-

ference waves would be constructed for count nouns and mass

nouns (unrelated minus related count nouns and unrelated minus

related mass nouns). Each of these difference waves should be

dominated by a large N400 component, with little or no contri-

bution from other components (because most other components

aren’t sensitive to semantic mismatch). You could then see if the

N400 was larger in the count noun difference wave or in the mass

noun difference wave (I describe a real application of this general

approach at the very end of this chapter—see Vogel, Luck, &

Shapiro, 1998 for details).

Although this approach is quite powerful, it has some limita-

tions. First, difference waves constructed in this manner may con-

tain more than one ERP component. For example, there may be

more than one ERP component that is sensitive to the degree of

semantic mismatch, so an unrelated-minus-related difference wave

might consist of two or three components rather than just one.

However, this is still a vast improvement over the raw ERP wave-

forms, which probably contain at least ten different components.

The second limitation of this approach is that it is sensitive to

interactions between the variable of interest (e.g., count nouns

versus mass nouns) and the factor that is varied to create the dif-

ference waves (e.g., semantically related versus unrelated word

pairs). If, for example, the N400 amplitude is 1 mV larger for count

nouns than for mass nouns, regardless of the degree of semantic

mismatch, then count noun difference waves will be identical

to the mass noun difference waves. Fortunately, when two factors

influence the same ERP component, they are likely to interact mul-

tiplicatively. For example, N400 amplitude might be 20 percent

greater for count nouns than for mass nouns, leading to a larger ab-

solute difference in N400 amplitude when the words are unrelated

to the context word than when they are related. Of course, the

interactions could take a more complex form that would lead to
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unexpected results. For example, count nouns could elicit a larger

N400 than mass nouns when the words are unrelated to the con-

text word, but they might elicit a smaller N400 when the words

are related to the context word. Thus, although difference waves

can be very helpful in isolating specific ERP components, care is

necessary when interpreting the results.

I should also mention that the signal-to-noise ratio of a differ-

ence wave will be lower than those of the original ERP wave-

forms. Specifically, if the original waveforms have similar noise

levels, then the noise in the difference wave will be larger by a

factor of the square root of two (i.e., approximately 40 percent

larger).

Strategy 5. Focus on Components That Are Easily Isolated

The previous strategy advocated using difference waves to isolate

ERP components, and one can refine this by focusing on certain

ERP components that are relatively easy to isolate. The best ex-

ample of this is the lateralized readiness potential (LRP), which

reflects movement preparation and is distinguished by its con-

tralateral scalp distribution. Specifically, the LRP in a given hemi-

sphere is more negative when a movement of the contralateral

hand is being prepared than when a movement of the ipsilateral

hand is being prepared, even if the movements are not executed.

In an appropriately designed experiment, only the motor prepara-

tion will lead to lateralized ERP components, making it possible to

form difference waves in which all ERPs are subtracted away ex-

cept for those related to lateralized motor preparation (see Coles,

1989; Coles et al., 1995). Similarly, the N2pc component for a

given hemisphere is more negative when attention is directed to

the contralateral visual field than when it is directed to the ipsi-

lateral field, even when the evoking stimulus is bilateral. Because

most of the sensory and cognitive components are not lateralized

in this manner, the N2pc can be readily isolated (see, e.g., Luck et

al., 1997; Woodman & Luck, 2003).
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Strategy 6. Component-Independent Experimental Designs

The best strategy is to design experiments in such a manner that it

does not matter which latent ERP component is responsible for the

observed changes in the ERP waveforms. For example, Thorpe and

colleagues (1996) conducted an experiment in which they asked

how quickly the visual system can differentiate between different

classes of objects. To answer this question, they presented subjects

with two classes of photographs, pictures that contained animals

and pictures that did not. They found that the ERPs elicited by

these two classes of pictures were identical until approximately

150 ms, at which point the waveforms diverged. From this experi-

ment, it is possible to infer that the brain can detect the presence of

an animal in a picture by 150 ms, at least for a subset of pictures

(note that the onset latency represents the trials and subjects with

the earliest onsets and not necessarily the average onset time).

This experimental effect occurred in the time range of the N1 com-

ponent, but it may or may not have been a modulation of that com-

ponent. Importantly, the conclusions of this study do not depend

at all on which latent component the experimental manipulation

influenced. Unfortunately, it is rather unusual to be able to answer

a significant question in cognitive neuroscience using ERPs in a

component-independent manner, but one should use this approach

whenever possible. I will provide additional examples later in this

chapter.

Avoiding Confounds and Misinterpretations

The problem of assessing latent components on the basis of

observed ERP waveforms is usually the most difficult aspect of

the design and interpretation of ERP experiments, and this prob-

lem is particularly significant in ERP experiments. There are other

significant experimental design issues that are applicable to a wide

spectrum of techniques, but are particularly salient in ERP experi-

ments; these will be the focus of this section.
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The most fundamental principle of experimentation is to make

sure that a given experimental effect has only a single possible

cause. One part of this principle is to avoid confounds, but a

subtler part is to make sure that the experimental manipulation

doesn’t have secondary effects that are ultimately responsible for

the effect of interest. For example, imagine that you observe that

the mass of a beaker of hot water is less than the mass of a beaker

of cold water. This might lead to the erroneous conclusion that hot

water has a lower mass than cool water, even though the actual ex-

planation is that some of the heated water turned to steam, which

escaped through the top of the beaker. To reach the correct con-

clusion, it is necessary to seal the beakers so that water does not

escape. Similarly, it is important to ensure that experimental

manipulations in ERP experiments do not have unintended side

effects that lead to an incorrect conclusion.

To explore the most common problems that occur in ERP experi-

ments, let’s consider a thought experiment that examines the effects

of stimulus discriminability on P3 amplitude. In this experiment,

letters of the alphabet are presented foveally at a rate of one per

second and the subject is required to press a button whenever the

letter Q is presented. A Q is presented on 10 percent of trials and

a randomly selected non-Q letter is presented on the other 90 per-

cent. In addition, the letter Q never occurs twice in succession. In

one set of trial blocks, the stimuli are bright and therefore easy

to discriminate (the bright condition), and in another set of trial

blocks the stimuli are very dim and therefore difficult to discrimi-

nate (the dim condition).

There are several potential problems with this seemingly

straightforward experimental design, mainly due to the fact that

the target letter (Q) differs from the nontarget letters in several

ways. First, the target category occurs on 10 percent of trials

whereas the nontarget category occurs on 90 percent of trials. This

is one of the two intended experimental manipulations (the other

being target discriminability). Second, the target and nontarget
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letters are different from each other. Not only is the target letter a

different shape from the nontarget letters—and might therefore

elicit a somewhat different ERP waveform—the target letter also

occurs more frequently than any of the individual nontarget letters.

To the extent that the visual system exhibits long-lasting and

shape-specific adaptation to repeated stimuli, it is possible that

the response to the letter Q will become smaller than the response

to the other letters. These physical stimulus differences probably

won’t have a significant effect on the P3 component, but they could

potentially have a substantial effect on earlier components (for a

detailed example, see experiment 4 of Luck & Hillyard, 1994a).

An important principle of ERP experimental design that I

learned from Steve Hillyard is that you should be very careful to

avoid confounding differences in psychological factors with subtle

differences in stimulus factors. In this example experiment, for ex-

ample, the probability difference between the target and nontarget

letters—which is intended to be a psychological manipulation—

is confounded with shape differences and differences in sensory

adaptation. Although such confounds primarily influence sensory

responses, these sensory responses can last for hundreds of milli-

seconds, and you will always have the nagging suspicion that your

P3 or N400 effects reflect a sensory confound rather than your in-

tended psychological manipulation. The solution to this confound

is to make sure that your manipulations of psychological variables

are not accompanied by any changes in the stimuli (including the

sequential context of the stimulus of interest). This is typically ac-

complished by using the same stimulus sequences in two or more

conditions and using verbal or written instructions to manipulate

the subject’s task. A statement that is prominently displayed on a

wall in my laboratory summarizes this:

The Hillyard Principle—Always compare ERPs elicited by the

same physical stimuli, varying only the psychological conditions.

Of course, implementing the Hillyard Principle is not always

possible. For example, you may want to examine the ERPs elicited
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by closed-class words (articles, prepositions, etc.) and open-class

words (nouns, verbs, etc.); these are by definition different stimuli.

But you should be very careful that any ERP differences reflect the

psychological differences between the stimuli and not low-level

physical differences (e.g., word length). I can tell you from experi-

ence that every time I have violated the Hillyard Principle, I have

later regretted it and ended up running a new experiment. Box 2.1

provides two examples of confounds that somehow crept into my

own experiments.

A third difference between the target and nontarget letters is that

subjects make a response to the targets and not to the nontargets.

Consequently, any ERP differences between the targets and non-

targets could be contaminated by motor-related ERP activity. A

fourth difference between the targets and the nontargets is that

because the target letter never occurred twice in succession, the

target letter was always preceded by a nontarget letter, whereas

nontarget letters could be preceded by either targets or nontargets.

This is a common practice, because the P3 to the second of two

targets tends to be reduced in amplitude. This is usually a bad

idea, however, because the response to a target is commonly very

long-lasting and extends past the next stimulus and therefore influ-

ences the waveform recorded for the next stimulus. Thus, there

may appear to be differences between the target and nontarget

waveforms in the N1 or P2 latency ranges that actually reflect the

offset of the P3 from the previous trial, which is present only in

the nontarget waveforms under these conditions. This type of

differential overlap occurs in many ERP experiments, and it can

be rather subtle. (For an extensive discussion of this issue, see

Woldorff, 1988.)

A fifth difference between the targets and the nontargets arises

when the data are averaged and a peak amplitude measure is used

to assess the size of the P3 wave. Specifically, because there are

many more nontarget trials than target trials, the signal-to-noise

ratio is much better for the nontarget waveforms. The maximum

amplitude of a noisy waveform will tend to be greater than the
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Box 2.1 Examples of Subtle Confounds

It may seem simple to avoid physical stimulus confounds, but these con-
founds are often subtle. Let me give two examples where I made mistakes of
this nature. Many years ago, I conducted a series of experiments in which I
examined the ERPs elicited by visual search arrays consisting of seven ran-
domly positioned ‘‘distractor’’ bars of one orientation and one randomly posi-
tioned ‘‘pop-out’’ bar of a different orientation. In several experiments, I
noticed that the P1 wave tended to be slightly larger over the hemisphere
contralateral to the pop-out item relative to the ipsilateral hemisphere. I
thought this might reflect an automatic capture of attention by the pop-out
item, although this didn’t fit very well with what we knew about the time
course of attention. Fortunately, Marty Woldorff suggested that this effect
might actually reflect a physical stimulus confound. Specifically, the location
of the pop-out bar on one trial typically contained an opposite-orientation dis-
tractor bar on the previous trial, whereas the location of a distractor bar on
one trial typically contained a same-orientation distractor bar on the previous
trial. Thus, the response to the pop-out bar might have been larger than the
response to the distractor bars because the neurons coding the pop-out bar
wouldn’t have just responded to a stimulus of the same orientation, and this
led to a larger response contralateral to the pop-out bar because these
responses are usually larger at contralateral than at ipsilateral sites. At first,
this seemed unlikely because the screen was blank for an average of 750 ms
between trials. However, when I tested Marty’s hypothesis with an additional
experiment, it turned out that he was correct (see experiment 4 of Luck &
Hillyard, 1994a).
I encountered another subtle physical stimulus confound several years later

when Massimo Girelli and I were examining whether the N2pc component in
a visual search task differed for pop-out stimuli in the upper visual field
compared to the lower visual field. Because this question directly involves a
physical stimulus manipulation, we knew we had to use a trick to avoid direct
physical stimulus confounds. The trick was to use two differently colored
pop-out items on each trial, one in the left visual field and one in the right
visual field, and to ask the subjects to attend to one color (e.g., the red pop-
out) on some trial blocks and to attend to the other color (e.g., the green pop-
out) on others. Because the N2pc component is lateralized with respect to the
direction of attention, we could then make a difference wave in which the
physical stimulus was held constant (e.g., red pop-out on the left and green
pop-out on the right) and attention was varied (e.g., attend-red versus
attend-green). We expected that all of the purely sensory responses would be
subtracted away in this difference wave because the physical stimulus was
identical and only attention was varied. This is a useful trick that we have
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maximum amplitude of a clean waveform due purely to probabil-

ity, and a larger peak amplitude for the target waveform could

therefore be caused solely by its poorer signal-to-noise ratio even

if the targets and nontargets elicited equally large responses.

The manipulation of stimulus brightness is also problematic,

because this will influence several factors in addition to stimulus

discriminability. First, the brighter stimuli are, well, brighter than

the dim stimuli, and this may create differences in the early com-

ponents that are not directly related to stimulus discriminability.

Second, the task will be more difficult with the dim stimuli than

with the bright stimuli. This may induce a greater state of arousal

during the dim blocks than during the bright blocks, and it may

also induce strategy differences that lead to a completely different

set of ERP components in the two conditions. A third and related

problem is that reaction times will be longer in the dim condition

than in the bright condition, and any differences in the ERP wave-

forms between these two conditions could be due to differences in

the time course of motor-related ERP activity (which overlaps with

the P3 wave).

Box 2.1 (continued)

used several times, but in this case we failed to implement it correctly. Spe-
cifically, the goal of our experiment was to compare the responses to upper
versus lower field stimuli, and we therefore subdivided our trials as a function
of the vertical position of the target item. Unfortunately, when the target was
in the upper field, the nontarget pop-out item could be either in the upper
field or the lower field. We had coded the vertical position of the attended
pop-out item but not the vertical position of the unattended pop-out item,
and it was therefore impossible to perform subtractions on exactly the same
physical stimuli (e.g., red in upper-left and green in upper-right when red was
attended versus when green was attended). When we performed subtractions
that were not properly controlled, we obtained a pattern of results that
was simply weird, and we had to run the experiment a second time with the
appropriate codes.
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There are two main ways to overcome problems such as these.

First, you can avoid many of these problems by designing the ex-

periment differently. Second, it is often possible to demonstrate

that a potential confound is not actually responsible for the experi-

mental effect; this may involve additional analyses of the data or

additional experiments. As an illustration, let us consider several

steps that you could take to address the potential problems in P3

experiment described above:

1. You could use a different letter as the target for each trial block,

so that across the entire set of subjects, all letters are approxi-

mately equally likely to occur as targets or nontargets. This solves

the problem of having different target and nontarget shapes.

2. To avoid differential visual adaptation to the target and nontarget

letters, you could use a set of ten equiprobable letters, with one

serving as the target and the other nine serving as nontargets. Each

letter would therefore appear on 10 percent of trials. If it is abso-

lutely necessary that one physical stimulus occurs more frequently

than another, it is possible to conduct a sequential analysis of the

data to demonstrate that differential adaptation was not present.

Specifically, trials on which a nontarget was preceded by a target

can be compared with trials on which a nontarget was preceded

by a nontarget. If no difference is obtained—or if any observed dif-

ferences are unlike the main experimental effect—then the effects

of stimulus probability are probably negligible.

3. Rather than asking the subjects to respond only to the targets, in-

struct them to make one response for targets and another for non-

targets. Target and nontarget RTs are likely to be different, so some

differential motor activity may still be present for targets versus

nontargets, but this is still far better than having subjects respond

to the targets and not to the nontargets.

4. It would be a simple matter to eliminate the restriction that two tar-

gets cannot occur in immediate succession, thus avoiding the pos-

sibility of differential overlap from the preceding trial. However, if

it is necessary to avoid repeating the targets, it is possible to con-

Chapter 2 72



struct an average of the nontargets that excludes trials preceded

by a target. If this is done, then both the target and the nontarget

waveforms will contain only trials on which the preceding trial

was a nontarget (as in step 2).

5. There are two good ways to avoid the problem that peak ampli-

tudes tend to be larger when the signal-to-noise ratio is lower.

First, as discussed above, the peak of an ERP waveform bears no

special relationship to the corresponding latent component, so this

problem can be solved by measuring the mean amplitude over a

predefined latency range rather than the peak amplitude. As dis-

cussed in chapter 4, mean amplitude has several advantages over

peak amplitude, and one of them is that the measured amplitude

is not biased by the number of trials. Of course, mean amplitude

measures exhibit increased variance as the signal-to-noise ratio

decreases, but the expected value does not vary. If, for some rea-

son, it is necessary to measure peak amplitude rather than mean

amplitude, it is possible to avoid biased amplitude measures by

creating the nontarget average from a randomly selected subset of

the nontarget trials such that the target and nontarget waveforms

reflect the same number of trials.

6. There is no simple way to compare the P3 elicited by bright stimuli

versus dim stimuli without contributions from simple sensory dif-

ferences. However, simple contributions can be ruled out by a con-

trol experiment in which the same stimuli are used but are viewed

during a task that is unlikely to elicit a P3 wave (e.g., counting the

total number of stimuli, regardless of the target-nontarget category).

If the ERP waveforms for the bright and dim stimuli in this condi-

tion differ only in the 50–250 ms latency range, then the P3 differ-

ences observed from 300–600 ms in the main experiment cannot

easily be explained by simple sensory effects and must instead

reflect an interaction between sensory factors (e.g., perceptibility)

and cognitive factors (e.g., whatever is responsible for determining

P3 amplitude).

7. The experiment should also be changed so that the bright and dim

stimuli are randomly intermixed within trial blocks. In this way,
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the subject’s state at stimulus onset will be exactly the same for the

easy and difficult stimuli. This also tends to reduce the use of dif-

ferent strategies.

8. It is possible to use additional data analyses to test whether the dif-

ferent waveforms observed for the dim and bright conditions are due

to differences in the timing of the concomitant motor potentials

(which is plausible whenever RTs differ between two conditions).

Specifically, if the trials are subdivided into those with fast RTs

and those with slow RTs, it is possible to assess the size and scalp

distribution of the motor potentials. If the difference between trials

with fast and slow RTs is small compared to the main experimental

effect, or if the scalp distribution of the difference is different from

the scalp distribution of the main experimental effect, then this ef-

fect probably cannot be explained by differential motor potentials.

Most of these strategies are applicable in many experimental

contexts, and they reflect a set of general principles that are very

widely applicable. I will summarize these general principles in

some additional rules:

Rule 6. Whenever possible, avoid physical stimulus confounds

by using the same physical stimuli across different psychological

conditions (the Hillyard Principle). This includes ‘‘context’’ con-

founds, such as differences in sequential order.

Rule 7. When physical stimulus confounds cannot be avoided,

conduct control experiments to assess their plausibility. Never as-

sume that a small physical stimulus difference cannot explain an

ERP effect.

Rule 8. Be cautious when comparing averaged ERPs that are

based on different numbers of trials.

Rule 9. Be cautious when the presence or timing of motor

responses differs between conditions.

Rule 10. Whenever possible, experimental conditions should be

varied within trial blocks rather than between trial blocks.
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Examples from the Literature

In this section, I will discuss three experiments that used ERPs

to answer a significant question in cognitive neuroscience. In each

case, the experiments were designed in such a manner that the

conclusions did not depend on identifying specific ERP compo-

nents, making the results much stronger than is otherwise possible.

Example 1: Auditory Selective Attention

Background Given that I did my graduate work with Steve Hill-

yard, I was imprinted at an early age on the experimental design

that he and his colleagues developed in 1973 to address the classic

‘‘locus-of-selection’’ question. This question asks whether attention

operates at an early stage of processing, allowing only selected

inputs to be perceived and recognized (the early selection position

of investigators such as Broadbent, 1958; Treisman, 1969), or

whether attention instead operates at a late stage such that all

incoming sensory events receive equal perceptual processing but

only selected stimuli reach decision processes, memory, and be-

havioral output systems (the late selection position of investigators

such as Deutsch & Deutsch, 1963; Norman, 1968).

Two factors have made this a difficult question to address with

traditional behavioral measures. First, it is difficult to assess the

processing of an ignored stimulus without asking the subjects to

respond to it, in which case the stimulus may become attended

rather than ignored. Second, if responses to ignored stimuli are

slower or less accurate than responses to attended stimuli, it is dif-

ficult to determine whether this reflects an impairment in sensory

processes or an impairment of higher level decision, memory, or

response processes. ERPs, in contrast, are particularly well suited

for solving both of these problems. First, ERPs are easily recorded

in the absence of an overt response, making them ideal for moni-

toring the processing of an ignored stimulus. Second, ERPs provide

precise information about the time course of processing, making
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them ideal for answering questions about the stage of processing at

which an experimental effect occurs. In the case of attention, for

example, it is possible to determine whether the early sensory-

evoked ERP components are suppressed for ignored stimuli rela-

tive to attended stimuli, which would be consistent with the early

selection hypothesis, or whether the early ERP components are

identical for attended and ignored stimuli and only the later ERP

components are sensitive to attention.

Experimental Design Several studies in the 1960s and early 1970s

used this logic to address the locus-of-selection question, but these

experiments had various methodological shortcomings that made

them difficult to interpret. Hillyard, Hink, Schwent, and Picton

(1973) reported an experiment that solved these problems and pro-

vided unambiguous evidence for early selection. Figure 2.2A illus-

trates this experiment. Subjects were instructed to attend to the left

ear in some trial blocks and the right ear in others. A rapid se-

quence of tone pips was then presented, with half of the stimuli

presented in each ear. To make the discrimination between the two

ears very easy, the tones were presented at a different pitch in each

ear. Subjects were instructed to monitor the attended ear and press

a button whenever a slightly higher pitched ‘‘deviant’’ target tone

was detected in that ear, which occurred infrequently and un-

predictably. Higher pitched tones were also presented occasionally

in the ignored ear, but subjects were instructed not to respond to

these ‘‘ignored deviants.’’

In some prior ERP experiments, subjects were required to re-

spond to or count all attended stimuli and withhold responses

to all ignored stimuli (including internal responses such as count-

ing). As a result, any differences in the ERPs evoked by attended

and ignored stimuli could have been due to response-related activ-

ity that was present for the attended ERPs but absent for ignored

ERPs (see rule 9). Hillyard et al. (1973) avoided this problem by

presenting both target and nontarget stimuli in both the attended

and ignored ears and asking the subjects to count the targets in
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Figure 2.2 Experimental paradigm (A) and results (B) from the study of Hillyard et al. (1973).
Subjects listened to streams of tone pips in the left ear and right ear. Most of the
tones were a standard frequency (800 Hz in the left ear and 1500 Hz in the right
ear), but occasional deviant tones were presented at a slightly higher frequency
(840 Hz left; 1560 Hz right). Subjects were instructed to attend to the left ear for
some trial blocks and to the right ear for others, and counted the number of deviant
tones in the attended ear. The average N1 amplitude was measured for the standard
tones and used as an index of sensory processing. Left ear tones elicited a larger N1
wave when attention was directed to the left ear than when attention was directed to
the right ear; conversely, right ear tones elicited a larger N1 wave when attention
was directed to the right ear than when attention was directed to the left ear. (Repro-
duced by permission from Luck, 1998a. > 1998 Psychology Press.)
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the attended ear. The analyses were focused on the nontargets,

to which subjects made neither an external response such as a

button press nor an internal response such as counting. To ensure

that subjects attended to the nontargets in the attended ear, even

though no response was required for them, targets and nontargets

within an ear were difficult to discriminate from each other (but

easy to discriminate from the stimuli in the other ear). Thus, sub-

jects were motivated to focus attention onto all of the stimuli pre-

sented in one ear and ignore all stimuli within the other ear. The

main experimental question was whether the early sensory ERP

components evoked by a nontarget stimulus presented in the

attended ear would be larger than those evoked by a nontarget

stimulus presented in the ignored ear.

The sensory ERP components are highly sensitive to the physical

characteristics of the evoking stimulus. As a result, one cannot le-

gitimately compare the ERP evoked by an attended tone in the left

ear with an ignored tone in the right ear: any differences between

these ERPs could be due to differences between the two ears that

have nothing to do with attention (see rule 6). The design Hillyard

et al. (1973) employed circumvents this problem by allowing the

ERP elicited by the same physical stimulus to be compared under

different psychological conditions. For example, one can compare

the ERP evoked by a left nontarget during attend-left blocks with

the ERP evoked by the same left nontarget during attend-right

blocks. Because both cases use the same stimulus, any differences

in the ERPs between the attend-left and attend-right conditions

must be due to differences in attentional processing.

In some attention experiments, the investigators compare an

‘‘active’’ condition, in which the subject responds to the stimuli,

with a ‘‘passive’’ condition, in which the subject makes no re-

sponse to the stimuli and perhaps engages in a distracting activity

such as reading a book. Frequently, however, the task in the active

condition is much more demanding than the distraction task in

the passive condition, leading to greater overall arousal during the

active condition. If we compare the ERPs in the two conditions,
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any differences might be due to these global arousal differences

rather than selective changes in stimulus processing. This is a vio-

lation of rule 10. To ensure that differences in global arousal would

not interfere with their study, Hillyard et al. (1973) compared ERPs

evoked during equally difficult attend-left and attend-right condi-

tions rather than active and passive conditions.

Results Now that we have discussed the logic behind this study,

let us consider the results. As figure 2.2B shows, the N1 compo-

nent was found to be larger for attended stimuli than for ignored

stimuli.3 Specifically, the N1 elicited by left ear tones was larger

when the left ear was attended than when the right ear was

attended, and the N1 elicited by right ear tones was larger when

the right ear was attended than when the left ear was attended.

These effects began approximately 60–70 ms after stimulus onset

and peaked at approximately 100 ms poststimulus. In this manner,

Hillyard et al. (1973) were able to demonstrate that, at least under

certain conditions, attention can influence the processing of a stim-

ulus within the first 100 milliseconds after stimulus onset, which

is consistent with the early selection hypothesis.

Larger Issues I would like to emphasize three aspects of this study.

First, it was specifically designed to address an existing and signif-

icant question that had previously eluded investigators. This con-

trasts with many ERP experiments in which it seems as if the

authors simply took an interesting cognitive paradigm and ran it

while recording ERPs to ‘‘see what happens.’’ This approach, al-

though sometimes a useful first step, rarely leads to important con-

clusions about cognitive or neural issues. Second, this study does

not rely on identifying specific ERP components (see strategy 6).

The ERPs elicited by the attended and ignored stimuli diverged

around 60 to 70 ms poststimulus, and it is this timing information

that is the crucial result of the study, and not the fact that the effect

occurred in the latency range of the N1 component. In fact, there

has been much controversy about whether attention influences the
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N1 component per se, but the finding of an effect within 100 ms of

stimulus onset will continue to be important regardless of the out-

come of this dispute.

A third important aspect of this study is that it used ERPs to as-

sess the processing of stimuli for which subjects made no overt

response. This is one of the main advantages of the ERP technique

over behavioral measures, and many of the most significant ERP

experiments have exploited this ability of ERPs to be used for the

‘‘covert monitoring’’ of cognitive processes.

Example 2: Partial Information Transmission

Background Most early models of cognition assumed that simple

cognitive tasks were accomplished by means of a sequence of

relatively independent processing stages. These models were chal-

lenged in the late 1970s by models in which different processes

could occur in parallel, such as McClelland’s (1979) cascade model

and Eriksen and Schultz’s (1979) continuous flow model. At the

most fundamental level, these new models differed from the tradi-

tional models in that they postulated that partial results from one

process could be transmitted to another process, such that the

second process could begin working before the first process was

complete. Traditional discrete-stage models, in contrast, assumed

that a process worked until it achieved its result, which was then

passed on to the next stage. This is a crucial distinction, but it is

very difficult to test without a direct means of observing the pro-

cesses that are thought to overlap. This is exactly the sort of issue

that ERPs can easily address.

By coincidence, two different laboratories conducted similar

ERP studies of this issue at about the same time, and both used

the lateralized readiness potential (LRP) as a means of assessing

whether response systems can become activated before stimulus

identification is complete (Miller & Hackley, 1992; Osman et al.,

1992). Both were excellent studies, but here I will focus on the
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one conducted by Miller and Hackley. These investigators tested

the specific hypothesis that subjects will begin to prepare a re-

sponse to a stimulus based on the most salient aspects of the

stimulus, even if they later withheld that response because of addi-

tional information extracted from the stimulus. In other words,

they predicted that motor processing may sometimes begin before

perceptual processing is complete, which would be incompatible

with traditional discrete-stage models of cognition.

Experimental Design To test this hypothesis, they presented subjects

with one of four stimuli on each trial: a large S; a small S; a large T;

or a small T. Subjects responded with one hand for S and with the

other hand for T, but they responded only to one of the two sizes;

they gave no response for the other size (half of the subjects

responded to large stimuli and half to small). Thus, this paradigm

was a hybrid of a go/no-go design (go for one size and no-go for

the other) and a two-alternative forced choice design (one response

for S, a different response for T). The shape difference was very sa-

lient, but the size difference was relatively difficult to discriminate.

Consequently, subjects could begin to prepare a given hand to re-

spond as soon as they discriminated the shape of the letter, and

they could later choose to emit or withhold this response when

they eventually discriminated the size of the letter.

To determine if the subjects prepared a specific hand for re-

sponse on the basis of letter shape, even on trials when they made

no response because the letter was the wrong size, Miller and

Hackley used the LRP component. The LRP component, which

reflects response preparation, is particularly useful for this purpose

because it is lateralized with respect to the responding hand.

Miller and Hackley’s (1992) paper provides a wonderful review of

the LRP literature, and I highly recommend reading it. Here I will

mention two essential aspects of the LRP that were essential for

testing their hypothesis. First, the LRP begins before muscle con-

tractions begin and can occur in the absence of an overt response,

indicating that it reflects response preparation. Second, the LRP is
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larger over the hemisphere contralateral to the movement being

prepared. Consequently, the presence of an LRP is virtually abso-

lute proof that the brain has begun to differentially prepare one

hand for responding. In other words, there is no way to get a con-

sistently larger response over the hemisphere contralateral to a

given hand unless the brain has begun to prepare a response for

that hand. Thus, Miller and Hackley predicted that an LRP would

be observed contralateral to the hand indicated by the shape of the

letter, even if the size of the letter indicated that no response

should be made (note that EMG recordings were used to ensure

that absolutely no response was made on these trials). When the

size of the letter was finally perceived, the LRP would then be ter-

minated if it indicated that no response should be made.

Before I describe the results, I want to mention a technique to

isolate the LRP component and to ensure that it purely reflects con-

tralateral hand preparation. Imagine that we compare the ERPs

recorded at left and right premotor electrode sites just prior to a

left-hand response. If the voltage were more negative over the right

hemisphere than the left hemisphere, we might conclude that the

brain was preparing the left-hand response, leading to a greater

negativity over the right hemisphere. This conclusion would be

unwarranted, however, because the same result would be obtained

if the right hemisphere yielded a more negative response regard-

less of which hand was being prepared. Similarly, imagine that

we compare the response to left-hand and right-hand responses at

a left premotor electrode site. If the voltage were more negative

prior to left-hand responses than prior to right-hand responses, we

might again conclude the brain was preparing the left-hand re-

sponse. This would again be unwarranted, because the same result

would be obtained if left-hand responses yielded more negative

voltages than right-hand responses over both hemispheres.

To isolate activity that purely reflects lateralized response prepa-

ration, it is necessary to record waveforms corresponding to the

different combinations of left and right hemisphere electrode (Eleft

and Eright) and left and right hand response (Rleft and Rright). There
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are four combinations: left hemisphere electrode with left hand

response (EleftRleft), left hemisphere electrode with right hand re-

sponse (EleftRright), right hemisphere electrode with left hand re-

sponse (ErightRleft), and right hemisphere electrode with right hand

response (ErightRright). As discussed by Coles (1989), the LRP can

then be isolated by creating a difference wave according to this

formula:

LRP ¼ ½ðErightRleft � EleftRleftÞ þ ðEleftRright � ErightRrightÞ�o 2 ð2:1Þ

This formula computes the average of the contralateral-

minus-ipsilateral difference for left-hand and right-hand responses,

eliminating any overall differences between the left and right

hemispheres (independent of hand) and any overall differences be-

tween the left and right hands (independent of hemisphere). All

that remains is the extent to which the response is generally larger

over the hemisphere contralateral to the hand being prepared, re-

gardless of which hand is being prepared or which hemisphere is

being recorded. This procedure effectively isolates the LRP from

the vast majority of ERP components, which do not show this intri-

cate interaction between hemisphere and hand (see strategy 5).

Results Figure 2.3 shows the results of this study. Panel A shows

the averaged ERP waveforms from the left- and right-hemisphere

electrodes sites for left- and right-hand responses when the stimu-

lus was the appropriate size for a response (‘‘Go Trials’’). The elec-

trode sites used here are labeled C3 0 and C4 0 to indicate premotor

sites just lateral to the standard C3 and C4 sites in the left and

right hemispheres, respectively. The ERP waveform at the left-

hemisphere site was more negative on trials with a right-hand

response than on trials with a left-hand response, and the comple-

mentary pattern was observed at the right-hemisphere site. This ef-

fect began approximately 200 ms poststimulus and continued for at

least 800 ms, which is typical for the LRP component.

Panel B of figure 2.3 shows the responses observed when the size

of the stimulus indicated that no response should be made (‘‘No-Go
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Trials’’). From approximately 200–400 ms poststimulus, the ERPs

were more negative over the left hemisphere when the shape of

the stimulus was consistent with the right-hand response than

with the left-hand response, and the complementary pattern was

observed at the right-hemisphere site. After 400 ms, however, the

ERP waveform was slightly more negative in both hemispheres for

right-hand responses relative to left-hand responses.

Panel C shows the waveforms for the Go and No-Go trials after

the LRP was isolated by means of equation 2.1. For both Go and

No-Go trials, the LRP began to deviate from baseline at approxi-
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Figure 2.3 Grand-average ERP waveforms from the study of Miller and Hackley (1992). The
waveforms in panels A and B reflect trials on which the size of the letter indicated
that a response should be made (‘‘Go Trials,’’ panel A) or should not be made
(‘‘No-Go Trials,’’ panel B). These waveforms were recorded from left central (C3 0)
and right central (C4 0) electrode sites. Broken lines reflect trials on which the shape
of the letter indicated a left-hand response, and solid lines reflect trials on which the
shape of the letter indicated a right-hand response. Panel C shows LRP difference
waves for the go and no-go trials. Note that a brief LRP deflection was present on
no-go trials, even though no response (or EMG activity) was present on these trials.
Negative is plotted upward. (Adapted with permission from Miller and Hackley,
1992. > 1992 American Psychological Association.)

Chapter 2 84



mately 200 ms. On Go trials, the LRP continued until the end of the

recording epoch. On No-Go trials, in contrast, the LRP returned to

baseline at approximately 400 ms. Thus, the brain began to prepare

the response indicated by the shape of the letter on both Go and

No-Go trials, even though no response was executed on No-Go tri-

als. This provides what I believe to be ironclad evidence that,

at least under some conditions, response systems receive partial

information about a stimulus before the stimulus has been fully

identified.

Larger Issues There are many unjustified conclusions that you

might be tempted to draw from the waveforms shown in figure 2.3.

First, you might suppose that subjects typically began preparing

the response at approximately 200 ms poststimulus, the time point

at which the LRP began to deviate from baseline. However, as dis-

cussed previously in this chapter, the onset of a response in an

averaged ERP waveform reflects the earliest onset times, not the av-

erage onset times (see rule 5). Thus, the 200-ms onset latency of the

LRP in figure 2.3C reflects the fastest trials from the fastest subjects.

Similarly, you might be tempted to assume that the LRP was only

about half as large on No-Go trials as on Go trials. However, it is

possible that the single-trial LRPs were just as large on No-Go trials

as on Go trials, but were present on only 50 percent of trials.

Fortunately, the main conclusions from this experiment do not

depend on any unjustifiable conclusions. In fact, it doesn’t even

matter whether or not the waveforms shown in figure 2.3C reflect

the same LRP component that was observed in previous experi-

ments. The simple fact that the hemispheric distribution of the

voltage was different when the stimulus signaled a contralateral

response rather than an ipsilateral response is sufficient to provide

solid evidence that the brain had begun to determine which re-

sponse was associated with the shape of the letter. So it doesn’t

matter if the effect reflects an ipsilaterally larger P3 component,

a contralaterally larger N400 component, or some new, never-

before-observed component (see strategy 6).
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I would like to make one additional observation about this ex-

periment: the data in figure 2.3 are extremely clean. In the raw

ERP waveforms (panels A and B), the waveforms are almost com-

pletely noise-free during the prestimulus interval (the noise level

in the prestimulus interval is very useful for assessing the quality

of an ERP waveform). Even in the difference waves (panel C),

which are plotted at a higher magnification, the prestimulus noise

level is very small compared to the size of the LRP effects. Clean

data lead to much greater confidence and much stronger conclu-

sions; even if the p-value of an experimental effect passes the mag-

ical .05 criterion, noisy looking waveforms make a poor impression

and make it difficult to have confidence in the details of the results

(e.g., the onset time of an effect).

The following chapters will provide many hints for recording

clean data, but I want to emphasize one factor here: clean ERP

waveforms require a very large number of trials. For example, I

usually try to have ten to twenty subjects in an experiment, and

for each type of trial in the experiment I collect approximately

sixty trials per subject when I’m examining a large component

(e.g., P3 or N400), about 150 trials per subject for a medium-sized

component (e.g., N2), and about 400 trials per subject for a small

Box 2.2 My Favorite ERP Component

Although I have never conducted an LRP experiment, I think the LRP may be
the single most useful ERP component for addressing a broad spectrum of
cognitive issues at this time. First, the LRP is very easy to isolate from other
ERP components by means of difference waves. Second, it has been very well
characterized, including its neural generator sources (for a review, see Coles,
1989). Third, it is relatively easy to design an experiment in such a way that
you can isolate the LRP component (all you really need is to have some stim-
uli indicate left-hand responses and others indicate right-hand responses,
with the assignment of stimuli to hands counterbalanced across trial blocks).
Finally, the LRP has been used to provide solid answers to a variety of inter-
esting questions (e.g., de Jong et al., 1990; Dehaene et al., 1998; Miller &
Hackley, 1992; Osman & Moore, 1993) (see also review by Coles et al., 1995).
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component (e.g., P1). This usually requires a session of three to

four hours (including the time required to apply the electrodes

and train the subject to perform the task). The need for large num-

bers of trials in ERP experiments is unfortunate, because it limits

the questions that this technique can realistically answer. How-

ever, there isn’t much point in conducting an experiment that

would be very interesting except that the results are so noisy that

they are difficult to interpret.

Example 3: Dual-Task Performance

Background It is often difficult for a person to perform two tasks at

the same time. For example, it is difficult to discuss the principles

of ERP experimental design while driving a BMW 325xi at high

speeds on a winding road in a snowstorm. Dual-task interference

can also be seen in much simpler tasks, and many researchers

have recently studied dual-task interference in the attentional

blink paradigm (see Shapiro, Arnell, & Raymond, 1997 for a re-

view). In this paradigm, a very rapid stream of approximately

twenty stimuli is presented at fixation on each trial, and the subject

is required to detect two targets (called T1 and T2) from among the

nontarget stimuli. Figure 2.4A illustrates a typical experiment. In

this experiment, T1 and T2 are digits and the nontarget stimuli are

letters. At the end of each trial, subjects report the identities of the

two digits. While subjects are processing T1, they may be unable

to effectively process T2, leading to errors in identifying T2. This

would be expected to occur primarily when T2 is presented shortly

after T1, and to assess the time course of the interference between

T1 and T2, the lag between T1 and T2 is varied.

Figure 2.4B shows the pattern of results that is typically observed

in this paradigm. T2 accuracy is typically severely impaired when

T2 occurs two to four items after T1, but T2 accuracy is quite high

at a lag of one item or at lags of five or more items. In contrast, T1

accuracy is typically quite good at all lags. This pattern of results is
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called the attentional blink because it is analogous to the impair-

ment in accuracy that would result from a T1-triggered eyeblink.

This is an interesting example of dual-task interference, and it has

generated a great deal of research in recent years. One of the most

significant questions is whether the attentional blink reflects a fail-

ure to perceive T2 (Raymond, Shapiro, & Arnell, 1992) or whether

T2 is perceived but is not stored in a durable form in working

memory (Chun & Potter, 1995; Shapiro, Raymond, & Arnell, 1994).

Potter (1976) demonstrated that stimuli can be identified more

rapidly than they can be stored in working memory, and so it

seemed plausible that both T1 and T2 could be identified even

though only T1 could be stored in memory when T2 occurred

shortly after T1.
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Figure 2.4 Experimental paradigm (A) and idealized results (B) from a typical attentional blink
paradigm (based on the experiments of Chun & Potter, 1995). The stimuli are pre-
sented at fixation at a rate of ten per second. T1 and T2 are digits, and the other
stimuli are letters; subjects are required to report the identities of T1 and T2 at the
end of the trial. The lag between T1 and T2 is varied, and although T1 accuracy is
generally found to be independent of lag, T2 accuracy typically drops significantly
at lags 2–4.
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To test this hypothesis, Ed Vogel, Kim Shapiro, and I conducted

several experiments in which we examined the P1, N1, P3, and

N400 components in variations on the attentional blink paradigm

(Luck, Vogel, & Shapiro, 1996; Vogel, Luck, & Shapiro, 1998).

Here, I will discuss only the most definitive experiment, in which

we focused on the N400 component. The N400 component is typi-

cally elicited by words that mismatch a previously established se-

mantic context. For example, a large N400 would be elicited by

the last word of the sentence, ‘‘I opened the dishwasher and pulled

out a clean eyebrow,’’ but a small N400 would be elicited if this

same sentence ended with the word ‘‘plate.’’ The N400 can also be

elicited with simple word pairs, such that the second word in PIG-

HAT will elicit a large N400 whereas the second word in COAT-

HAT will elicit a small N400. The N400 component is well suited

for determining whether a word has been identified, because a

semantically mismatching word cannot elicit a larger response un-

less that word has been identified to the point of semantic (or at

least lexical) access. Thus, if a given word elicits a larger N400

when it mismatches the semantic context than when it matches

the semantic context, this can be taken as strong evidence that the

word was identified to a fairly high level. We therefore designed an

experiment to determine whether the N400 component would be

suppressed for words presented during the attentional blink pe-

riod. Many previous experiments have examined the effects of se-

mantic mismatch, so we were confident that we could adapt this

approach to the attentional blink context (see strategy 2).

Experimental Design Figure 2.5A illustrates the stimuli and task

for this experiment. Each trial began with the presentation of a

1,000-ms ‘‘context word’’ that established a semantic context for

that trial. After a 1,000-ms delay, a rapid stream of stimuli was pre-

sented at fixation. Each stimulus was seven characters wide. Dis-

tractor stimuli were seven-letter sequences of randomly-selected

consonants. T1 was a digit that was repeated seven times to form a

seven-character stimulus. T2 was a word, presented in red, that
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Figure 2.5 Paradigm and results from the study of Vogel, Luck, & Shapiro (1998). (A) Example
stimuli. (B) Subtraction method used to overcome the overlap problem. (C) Mean
discrimination accuracy for T2 as a function of lag. (D) Grand average ERP differ-
ence waveforms from the Cz electrode site, formed by subtracting related-T2 trials
from unrelated-T2 trials. Negative is plotted upward.
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was either semantically related or semantically unrelated to the

context word that had been presented at the beginning of the trial.

The T2 word was flanked by Xs, if necessary, to ensure that it was

seven characters long. At the end of each trial, the subjects made

two responses, one to indicate whether T1 was an odd digit or an

even digit, and another to indicate whether T2 was semantically

related or unrelated to the context word. Related and unrelated T2

words occurred equally often (as did odd and even T1 digits), and

related words were very highly related to the context word (e.g.,

CAT-DOG). Each T2 word was presented twice for each subject (in

widely separated trial blocks), appearing once as a related word

and once as an unrelated word. This made it possible to be certain

that any differences in the ERPs elicited by related and unrelated

words were due to their semantic relationship with the context

word rather than any peculiarity of the words themselves (see rule

6 and the Hillyard Principle). The lag between T1 and T2 was ei-

ther 1, 3, or 7; this restricted set of lags was necessary so that a suf-

ficient number of trials could be obtained at each lag.

As figure 2.5B illustrates the rapid presentation of stimuli in

the attentional blink paradigm leads to an overlap problem when

recording ERPs. Specifically, the response to a given stimulus lasts

for hundreds of milliseconds, overlapping the responses to several

of the subsequent stimuli. This makes it difficult to isolate the ERP

elicited by T2 from the ERPs elicited by the preceding and subse-

quent stimuli. To overcome this problem, we computed difference

waves (see strategy 4) in which we subtracted the response elicited

by T2 when it was semantically related to the context word from

the response elicited by T2 when it was an unrelated word (see fig-

ure 2.5B). The responses to the other items in the stimulus stream

should be essentially identical on related-T2 and unrelated-T2 tri-

als, and this difference wave therefore provides a relatively pure

measure of the brain’s differential response as a function of the se-

mantic relatedness of T2 relative to the context word. A large dif-

ference between related-T2 and unrelated-T2 trials can therefore
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be used as evidence that the T2 word was identified sufficiently to

determine its semantic relationship to the context word.

Results Panels C and D of figure 2.5 show the results of this exper-

iment. Accuracy for reporting whether T2 was semantically related

or unrelated to the context word was highly impaired at lag 3 rela-

tive to lags 1 and 7; this is the usual attentional blink pattern. In

contrast, the N400 component elicited by T2 was equally large at

all three lags. Thus, although the subjects could not accurately re-

port whether T2 was related or unrelated to the context word at lag

3, the N400 wave differentiated between related and unrelated tri-

als, indicating that the brain made this discrimination quite accu-

rately. This result indicates that stimuli are fully identified during

the attentional blink, but are not reported accurately because they

are not stored in a durable form in working memory.

This conclusion relies on a hidden assumption, namely that the

N400 component would be significantly smaller if the perceptual

processing of T2 had been impaired at lag 3. This is a problematic

assumption, because it is difficult to know what the relationship is

between the amplitude of an ERP component and the speed or ac-

curacy of a cognitive process. This brings us to another rule:

Rule 11. Never assume that the amplitude and latency of an

ERP component are linearly or even monotonically related to the

quality and timing of a cognitive process. This can be tested, but it

should not be assumed.

To avoid violating this rule, we conducted a control experiment

to determine whether a decrease in the perceptibility of a word

would cause a significant decrease in N400 amplitude. In this ex-

periment, we simply added random visual noise of varying inten-

sity to the words. As the intensity of the noise increased, both

behavioral accuracy and N400 amplitude declined in a roughly lin-

ear manner. Moreover, a change in accuracy that was comparable

to the impaired accuracy observed at lag 3 in the main experiment

led to a large and statistically significant decline in N400 ampli-
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tude. Thus, the absence of a decline in N400 amplitude at lag 3 in

the main experiment provides strong evidence that the behavioral

errors at lag 3 reflected an impairment that followed word

identification.

These results also suggest that a great deal of processing can

occur in the absence of awareness, because the brain apparently

identified the T2 word at lag 3 even though subjects could not re-

port the word (although it is possible that subjects were briefly

aware of the T2 word even though they could not report its seman-

tic relationship moments later).

Larger Issues I would like to draw attention to three aspects of

this attentional blink experiment. First, this experiment used ERPs

to monitor a psychological process—word identification—that we

suspected was present but could not be observed in the subjects’

overt behavior. Many ERP experiments are designed to show corre-

spondences between behavioral results and ERPs, but it is often

more interesting to demonstrate an interesting pattern of both sim-

ilarities and differences. I should note that we ran an additional

attentional blink experiment that focused on the P3 wave, and we

found that the P3 wave was completely suppressed at lag 3, consis-

tent with the proposal that the attentional blink reflects an impair-

ment in working memory. In this manner, we were able to show

a theoretically sensible pattern of similarities and differences be-

tween overt behavior and ERPs.

A second notable aspect of this experiment is that we used

the N400 component as an index of word identification even

though the neural/psychological process that generates the N400

component is probably not directly related to word identification.

Because word identification was a necessary antecedent to the

presence of an N400 in this experiment, however, we could use

the N400 as an indirect index of word identification. Similarly, the

P3 wave can be used as an index of ‘‘stimulus evaluation time’’

even though the neural/psychological process that generates the

P3 component is probably unrelated to perception. For example,
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because improbable stimuli elicit a larger P3 than probable stimuli,

it is possible to isolate the P3 wave by constructing improbable-

minus-probable difference waves. Because the brain cannot pro-

duce a larger P3 for an improbable stimulus until that stimulus has

been identified and categorized, the timing of the P3 wave in an

improbable-minus-probable difference wave can be used as an

indirect index of identification and categorization (see Donchin,

1981; Kutas, McCarthy, & Donchin, 1977; McCarthy & Donchin,

1981; Vogel & Luck, 2002).

If you look at ERP experiments that have had a broad impact

in cognitive psychology or cognitive neuroscience, you will find

that many of them use a given ERP component that is not obvi-

ously related to the topic of the experiment. For example, our

attentional blink experiment used the language-related N400 com-

ponent to examine the role of attention in perceptual versus post-

perceptual processing. Similarly, Dehaene et al. (1998) used the

motor-related LRP component to address the possibility of percep-

tion without awareness. One of my graduate students, Adam Niese,

refers to this as hijacking an ERP component, and it leads to an ad-

ditional strategy of ERP experimental design.

Strategy 7. Hijack Useful Components from Other Domains

It is useful to pay attention to ERP findings from other subareas

of cognitive neuroscience. A component that arises ‘‘downstream’’

from the process of interest may be used to reveal the occurrence

of the process of interest.

A third notable aspect of this experiment is that difference waves

were used to isolate both the activity elicited by a single stimulus

and a specific ERP component elicited by that stimulus (see strat-

egy 4). It is often necessary to present stimuli in such close tempo-

ral proximity that the ERPs elicited by each stimulus will overlap

each other in time, and difference waves can often be used to cir-

cumvent this problem (for additional examples of this approach,
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see Luck, 1998b; Luck, Fan, & Hillyard, 1993; Luck & Hillyard,

1995). You must use care, however, because you cannot simply as-

sume that the difference wave provides a pure estimate of the size

of the component of interest. In the attentional blink experiment,

for example, the overall N400 may have been smaller at lag 3 than

at lags 1 and 7, even though the difference in N400 amplitude be-

tween related and unrelated T2 words was the same at all three

lags. In this experiment, the key question was whether the brain

could differentiate between related and unrelated T2 words, and

the size of the overall N400 was immaterial. In fact, it didn’t even

matter whether the activity in the unrelated-minus-related differ-

ence waves was the N400, the P3, or some other component; no

matter what component it was, it demonstrated that the brain

could distinguish between related and unrelated words (see strat-

egy 6). Thus, difference waves can be very useful, but they must

be interpreted carefully.

Suggestions for Further Reading

There are many examples of clever and thoughtful ERP experimen-

tal designs in the literature. The following is a list of a few of my

favorites. I would definitely recommend that new ERP researchers

study these experiments carefully.

Dehaene, S., Naccache, L., Le Clec’H, G., Koechlin, E., Mueller, M.,

Dehaene-Lambertz, G., van de Moortele, P. F., & Le Bihan, D.

(1998). Imaging unconscious semantic priming. Nature, 395,

597–600.

Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin,

E. (1993). A neural system for error-detection and compensa-

tion. Psychological Science, 4, 385–390.

Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W., & Don-

chin, E. (1988). Pre- and post-stimulus activation of response

channels: A psychophysiological analysis. Journal of Experi-

mental Psychology: Human Perception and Performance, 14,

331–344.
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Handy, T. C., Solotani, M., & Mangun, G. R. (2001). Perceptual load

and visuocortical processing: Event-related potentials reveal

sensory-level selection. Psychological Science, 12, 213–218.

Magliero, A., Bashore, T. R., Coles, M. G. H., & Donchin, E. (1984).

On the dependence of P300 latency on stimulus evaluation

processes. Psychophysiology, 21, 171–186.

Paller, K. A. (1990). Recall and stem-completion priming have

different electrophysiological correlates and are modified dif-

ferentially by directed forgetting. Journal of Experimental Psy-

chology: Learning, Memory and Cognition, 16, 1021–1032.

Van Petten, C., & Kutas, M. (1987). Ambiguous words in con-

text: An event-related potential analysis of the time course of

meaning activation. Journal of Memory & Language, 26, 188–

208.

van Turennout, M., Hagoort, P., & Brown, C. M. (1998). Brain activ-

ity during speaking: From syntax to phonology in 40 millisec-

onds. Science, 280, 572–574.

Winkler, I., Kishnerenko, E., Horvath, J., Ceponiene, R., Fellman,

V., Huotilainen, M., Naatanen, R., & Sussman, E. (2003). New-

born infants can organize the auditory world. Proceedings of

the National Academy of Sciences, 100, 11812–11815.

Woldorff, M., & Hillyard, S. A. (1991). Modulation of early auditory

processing during selective listening to rapidly presented

tones. Electroencephalography and Clinical Neurophysiology,

79, 170–191.

Summary of Rules, Principles, and Strategies

Rule 1. Peaks and components are not the same thing. There is

nothing special about the point at which the voltage reaches a local

maximum.

Rule 2. It is impossible to estimate the time course or peak

latency of a latent ERP component by looking at a single ERP

waveform—there may be no obvious relationship between the
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shape of a local part of the waveform and the underlying

components.

Rule 3. It is dangerous to compare an experimental effect (i.e.,

the difference between two ERP waveforms) with the raw ERP

waveforms.

Rule 4. Differences in peak amplitude do not necessarily corre-

spond with differences in component size, and differences in peak

latency do not necessarily correspond with changes in component

timing.

Rule 5. Never assume that an averaged ERP waveform accurately

represents the individual waveforms that were averaged together.

In particular, the onset and offset times in the averaged waveform

will represent the earliest onsets and latest offsets from the individ-

ual trials or individual subjects that contribute to the average.

Rule 6. Whenever possible, avoid physical stimulus confounds

by using the same physical stimuli across different psychological

conditions (the Hillyard Principle). This includes ‘‘context’’ con-

founds, such as differences in sequential order.

Rule 7. When physical stimulus confounds cannot be avoided,

conduct control experiments to assess their plausibility. Never as-

sume that a small physical stimulus difference cannot explain an

ERP effect.

Rule 8. Be cautious when comparing averaged ERPs that are

based on different numbers of trials.

Rule 9. Be cautious when the presence or timing of motor

responses differs between conditions.

Rule 10. Whenever possible, experimental conditions should be

varied within trial blocks rather than between trial blocks.

Rule 11. Never assume that the amplitude and latency of an ERP

component are linearly or even monotonically related to the qual-

ity and timing of a cognitive process. This can be tested, but it

should not be assumed.

The Hillyard Principle: Always compare ERPs elicited by the

same physical stimuli, varying only the psychological conditions.
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Strategy 1. Focus on a specific component.

Strategy 2. Use well-studied experimental manipulations.

Strategy 3. Focus on large components.

Strategy 4. Isolate components with difference waves.

Strategy 5. Focus on components that are easily isolated.

Strategy 6. Use component-independent experimental designs.

Strategy 7. Hijack useful components from other domains.
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3 Basic Principles of ERP Recording

This chapter describes how to record clean, artifact-free data. As

the ERP technique has matured, there has been a decrease in the

amount of discussion in the literature of basic issues such as

recording clean data. This is only natural, because a number of lab-

oratories have developed excellent techniques over the years, and

these techniques have become a part of the laboratory culture and

are passed along as new researchers are trained. However, as time

passes, the reasons behind the techniques are often lost, and many

new laboratories are using the ERP technique, making it important

to revisit the basic technical issues from time to time.

The Importance of Clean Data

Before I begin discussing these issues, I want to discuss why it is

important for you to spend considerable time and effort making

sure that you are recording the cleanest possible data. The bottom

line is that you want to obtain experimental effects that are replica-

ble and statistically significant, and you are unlikely to obtain sta-

tistically significant results unless you have low levels of noise in

your ERP waveforms. As discussed in chapter 1, the background

EEG obscures the ERPs on individual trials, but the ERPs can be

isolated from the EEG noise by signal averaging. As you average

together more and more trials, the amount of residual EEG noise

in the averages will become progressively smaller, so it is crucial

to include a sufficient number of trials in your ERP averages.

However, increasing the number of trials only works well up to a

point, because the effect of averaging on noise is not a direct, linear

function of the number of trials; instead, the noise decreases as a



function of the square root of the number of trials in the average.

As a result, you can’t cut the noise in half by doubling the number

of trials. In fact, doubling the number of trials decreases the noise

only about 30 percent, and you have to include four times as

many trials to reduce the noise by 50 percent. Chapter 4 will cover

this in more detail.

It should be obvious that you can quadruple the number of trials

only so many times before your experiments become absurdly

long, so increasing the number of trials is only one part of the solu-

tion. The other part is to reduce the noise before it is picked up by

the electrodes. Much of the noise in an ERP recording arises not

from the EEG, but from non-EEG biological signals such as skin

potentials and from electrical noise sources in the environment ac-

cidentally picked up during the EEG recording, and it is possible to

reduce these sources of noise directly. In fact, if you spend a few

days tracking down and eliminating these sources of noise, the

resulting improvement in your averaged ERPs could be equivalent

to the effects of doubling the number of trials for each subject or

the number of subjects in each experiment. This initial effort will

be well rewarded in every experiment you conduct.

In addition to tracking down noise sources and eliminating them

directly, it is possible to reduce noise by using data processing

techniques such as filtering. As chapter 5 will discuss, these tech-

niques are essential in ERP recordings. However, it is important

not to depend too much on post-processing techniques to ‘‘clean

up’’ a set of ERP data, because these techniques are effective only

under limited conditions and because they almost always distort

the data in significant ways. This leads us to an important princi-

ple that I call Hansen’s Axiom:

Hansen’s Axiom: There is no substitute for good data.

The name of this principle derives from Jon Hansen, who was

a scientist and technical guru in Steve Hillyard’s lab at UCSD.

As he put it in the documentation for a set of artifact rejection

procedures:
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There is no substitute for good data. It is folly to believe that arti-

fact rejection is going to transform bad data into good data; it can

reject occasional artifactual trials allowing good data to be better.

There is no way that artifact rejection can compensate for a subject

who consistently blinks in response to particular events of interest

or who emits continuous high-amplitude alpha activity. In other

words, data that are consistently noisy or have systematic artifacts

are not likely to be much improved by artifact rejection. (J. C. Han-

sen, unpublished software documentation)

Hansen made this point in the context of artifact rejection, but it

applies broadly to all post-processing procedures that are designed

to clean up the data, ranging from averaging to filtering to indepen-

dent components analysis. Some post-processing procedures are

essential, but they cannot turn bad data into good data. You will

always save time in the long run by eliminating electrical noise

at the source, by encouraging subjects to minimize bioelectric arti-

facts, and by designing experiments to produce large effects.

Active and Reference Electrodes

Voltage as a Potential Between Two Sites

Voltage can be thought of as the potential for current to move from

one place to another, and as a result there is really no such thing as

a voltage at a single point (if this fact is not obvious to you, you

should read appendix 1 before continuing). Consider, for example,

a typical twelve-volt automobile battery that has a positive termi-

nal and a negative terminal. The voltage measurement of twelve

volts represents the potential for current to move from the positive

terminal to the negative terminal, and it doesn’t make sense to talk

about the voltage at one terminal in isolation. For example, you

could touch one terminal without being shocked (assuming you

weren’t touching any other conductors), but if you touch both
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terminals you will definitely receive a shock. Similarly, you can

never record the voltage at a single scalp electrode. Rather, the

EEG is always recorded as a potential for current to pass between

two electrodes.

In household electrical systems, a metal stake driven deep into

the ground beneath the house serves as an important reference

point for electrical devices. The ground literally provides the refer-

ence point, and the term ground is now used metaphorically in

electrical engineering to refer to a common reference point for all

voltages in a system. I will therefore use the term ground in this

general sense, and I will use the term earth to mean a stake driven

into the ground.

If we measured the electrical potential between an electrode on

a subject’s scalp and a stake driven into the ground, the voltage

would reflect any surplus of electrical charges that had built up in

the subject (assuming the subject was not touching a conductor

that was connected to earth), and this static electricity would ob-

scure any neural signals. We could put an electrode somewhere

on the subject’s body that was connected to earth, and this would

cause any static electricity in the subject to discharge into the

earth, eliminating static differences and making it easier to mea-

sure changes in neural signals over time. However, it is dangerous

to directly connect a subject to earth, because the subject might

receive a dangerous shock if touched by an improperly grounded

electrical device (such as a button box used for recording

responses).

It is possible to create a virtual ground in the amplifier’s circuitry

that is isolated from earth and connect this ground to a ground

electrode somewhere on the subject. You could then record the

voltage between a scalp electrode and this ground electrode. How-

ever, voltages recorded in this way would still reflect electrical

activity at both the scalp electrode and the ground electrode, so it

would not provide some sort of absolute measure of electrical

activity at the scalp electrode. Moreover, any environmental elec-

trical noise that the amplifier’s ground circuit picks up would in-
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fluence the measured voltage, leading to a great deal of noise in the

recording.

To solve the problem of the ground circuit picking up noise,

EEG amplification systems use differential amplifiers. A differen-

tial amplifier uses three electrodes to record activity: an active

electrode (A) placed at the desired site, a reference electrode (R)

placed elsewhere on the scalp, and a ground electrode (G) placed

at some convenient location on the subject’s head or body. The dif-

ferential amplifier then amplifies the difference between the AG

voltage and the RG voltage (AG minus RG). Ambient electrical

activity picked up by the amplifier’s ground circuit will be the

same for the AG and RG voltages and will therefore be eliminated

by the subtraction.

It should now be clear that an ERP waveform does not just reflect

the electrical properties at the active electrode but instead reflects

the difference between the active and reference sites. There is sim-

ply no such thing as ‘‘the voltage at one electrode site’’ (because

voltage is a potential for charges to move from one place to another).

However, there is one way in which it would be meaningful (if

slightly imprecise) to talk about voltages at individual sites. Specif-

ically, if one could measure the potential for charges to move from

a given point on the scalp to the average of the rest of the surface of

the body, then this would be a reasonable way to talk about the

voltage at a single electrode site. As I will discuss later in this

chapter, points along the body beneath the neck do not matter

very much in terms of electrical activity generated by the brain, so

we could simplify this by referring to the voltage between one site

and the average of the rest of the head. When I later speak of the

absolute voltage at a site, I am referring to the potential between

that site and the average of the entire head. It is important to keep

in mind, however, that absolute voltages are just an idealization;

in practice, one begins by recording the potential between two dis-

crete electrode locations.

Originally, researchers assumed that the active electrode was near

the active tissue, and the reference electrode was at some distant,
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electrically neutral site. As the activity near the active electrode

changed, researchers assumed that this would influence the volt-

age at the active site but not at the reference site. When obtaining

recordings from several active sites, the same reference electrode

is typically used for all of them. For example, you might place

electrodes at active locations over frontal, parietal, and occipital

cortex and use an earlobe electrode as the reference for all of them.

Figure 3.1 illustrates this, showing the distribution of voltage

over the scalp for a single generator dipole (relative to the average

of the entire head). The problem with this terminology is that there

are no electrically neutral sites on the head (i.e., no sites that

are equivalent to the average of the entire scalp), and the voltage

recorded between an active site and a so-called reference site will

reflect activity at both of the sites. In fact, one of the most impor-

tant principles that I hope to convey in this chapter is that an ERP

waveform reflects the difference in activity between two sites, not

the activity at a single site. There are some exceptions, of course,

which I will describe later in the chapter.

Choosing a Reference Site

Many researchers have tried to minimize activity from the refer-

ence electrode by using the most neutral possible reference site,

such as the tip of the nose, the chin, the earlobes, the neck, or

even the big toe. However, although some of these are useful refer-

ence sites, they do not really solve the problem of activity at the

reference site. Consider, for example, the tip of the nose. This

seems like it ought to be a fairly neutral site because it is fairly far

away from the brain. To make the example more extreme, imagine

a head with an extremely long nose, like that of Pinocchio. Pinoc-

chio’s nose is like a long wire attached to his head, and the voltage

will therefore be approximately the same anywhere along this

wirelike nose (see figure 3.1B). It doesn’t really matter, therefore,

whether you place the reference electrode at the tip of the nose or

where the nose joins the head—the voltage is equal at both sites,
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Figure 3.1 Active and reference electrodes. (A) Example of an equivalent current dipole (arrow)
inside a spherical head, with the resulting surface voltages (þ and � for positive
and negative) on the surface. The recorded voltage will be the difference between
the voltage at the active and reference electrodes. (B) Example of the use of a distant
reference source. If the active electrode is at point A, it will not matter whether point
B or point C is used as the reference, because the voltage at point C will be the same
as at point B.
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and so the difference between an active site and the reference site

will be the same no matter where along the nose the reference elec-

trode is. Because there is no reason to believe that the place where

the nose joins the head is more neutral than any other part of the

head, the tip of the nose also isn’t more neutral than any other

part of the head. This is not to say that the tip of the nose is an in-

appropriate site for a reference electrode. Rather, my point here is

that there is no such thing as an electrically neutral reference site,

so you must always keep in mind that an ERP waveform reflects

contributions from both the active site and the reference site.

What, then, is the best site to use as a reference? There are three

main factors involved in choosing a reference. First, given that no

site is truly neutral, you might as well choose a site that is conve-

nient and comfortable. The tip of the nose, for example, is a some-

what distracting place for an electrode. Second, you will want to

avoid a reference site that is biased toward one hemisphere. For

example, if you use the left earlobe as the reference, then the volt-

age recorded at left hemisphere electrodes will likely be different

from the voltage recorded at the right hemisphere. You should

avoid this sort of bias. Third, because an ERP waveform for a given

active site will look different depending on the choice of the refer-

ence site, it is usually a good idea to use the same site for all of

your experiments and to use a site that other investigators com-

monly use. This makes it easier to compare ERP waveforms across

experiments and across laboratories.

The most common reference sites in cognitive neuroscience are

the earlobes and the mastoid process (the bony protrusion behind

each ear). They are close enough to each other that the resulting

ERP waveforms should look about the same no matter which you

use. The fact that they are commonly used is actually a good

reason to continue using them, because this facilitates comparing

data across experiments and laboratories. Thus, these sites satisfy

the last of the three criteria described in the preceding paragraph.

They are also convenient to apply and are not distracting, satisfy-
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ing the first of the three criteria. In my lab, we use the mastoid

rather than the earlobe because we find that an earclip electrode

becomes uncomfortable after about an hour and because we find

it easier to obtain a good electrical connection from the mastoid

(because the skin is not so tough). However, I have heard that one

gets a better connection from the earlobe in subjects with question-

able personal hygiene. Thus, you should use whichever of these is

most convenient for you.

Both the mastoid and the earlobe fail to satisfy the second crite-

rion, because you must pick one side, leading to an imbalance

between active electrodes over the left and right hemispheres.

The simplest way to avoid this bias is to place electrodes at both

the left mastoid (Lm) and the right mastoid (Rm) and then physi-

cally connect the wires from the Lm and Rm. This is called a

linked mastoids reference, and it is not biased toward either

hemisphere (you can do the same thing with earlobe electrodes).

However, physically linking the wires from Lm and Rm creates a

zero-resistance electrical bridge between the hemispheres, which

distorts the distribution of voltage over the scalp and reduces any

hemispheric asymmetries in the ERPs. To avoid these problems, it

is possible to mathematically combine Lm with Rm by using an av-

erage mastoids reference derivation, which references the active

site to the average of Lm and Rm (Nunez, 1981).

There are several ways to do this, and here I’ll describe how we

do it in my lab. When we record the EEG, we reference all of the

scalp sites to Lm, and we also place an electrode on Rm, refer-

enced again to Lm. After recording and averaging the data, we

then compute the average mastoids derivation for a given site

using the formula a 0 ¼ a� ðr=2Þ, where a 0 is the desired averaged

mastoids waveform for site A, a is the original waveform for site A

(with an Lm reference), and r is the original waveform for the Rm

site (with an Lm reference).

Let me explain how this formula works. Remember that the volt-

age at a given electrode site is really the absolute voltage at the
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active site minus the absolute voltage at the reference site. In the

case of an active electrode at site A and an Lm reference, this is

A� Lm. Similarly, the voltage recorded at Rm is really Rm� Lm.

The average mastoids reference that we want to compute for site

A is the voltage at site A minus the average of the Lm and Rm

voltages, or A� ððLmþ RmÞ=2Þ. To compute this from the data

recorded at A and Rm, we just use some simple algebra:

a ¼ A� Lm Voltage recorded at site A is

the absolute voltage at A minus

the absolute voltage at Lm.

r ¼ Rm� Lm Voltage recorded at Rm is the

absolute voltage at Rm minus

the absolute voltage at Lm.

a 0 ¼ A� ðLmþ RmÞ=2 Average reference derivation at

site A is the absolute voltage at

site A minus the average of the

absolute voltages at Lm and Rm.

a 0 ¼ A� Lm=2� Rm=2 This is just an algebraic re-

organization of the preceding

equation.

a 0 ¼ A� ðLm� ðLm=2ÞÞ � ðRm=2Þ This works because Lm=2 ¼
Lm� Lm=2.

a 0 ¼ ðA� LmÞ � ððRm� LmÞ=2Þ This is just an algebraic re-

organization of the preceding

equation.

a 0 ¼ a� ðr=2Þ Here we’ve substituted a for

ðA� LmÞ and r for ðRm� LmÞ.

In other words, you can compute the voltage corresponding to an

average mastoids reference for a given site simply by subtracting

half of the voltage recorded from the other mastoid (the same thing

can be done with earlobe reference electrodes). All things consid-

ered, this is the best reference scheme for the majority of ERP

experiments in the area of cognitive neuroscience.
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Alternatives to Traditional Reference Sites

There are two additional methods that researchers commonly use

to deal with the problem of the reference site. First, imagine that

you placed electrodes across the entire surface of the head. By us-

ing the average voltage across all of the electrodes as the reference,

you could obtain the absolute voltage at each electrode site, and

you wouldn’t have to worry about the whole reference electrode is-

sue. The mathematics of this would be trivial: the absolute voltage

at a given site can be obtained by simply subtracting the average of

all of the sites from each individual site, assuming that all sites

were recorded with the same reference electrode. Although this

would be ideal, it isn’t practical for the simple reason that the

neck and face get in the way of putting electrodes over about 40

percent of the head.

Some investigators use the average across all of the electrodes as

the reference even though they don’t have electrodes covering the

entire head, and this can lead to some serious misinterpretations

(see Desmedt, Chalklin, & Tomberg, 1990). Figure 3.2 illustrates

this, showing illustrative waveforms recorded at the Fz, Cz, and Pz

electrode sites. The left panel displays the absolute voltage at each

site, and a positive-going wave can be seen in condition A relative

to condition B at the Fz site. The middle panel shows the voltages

that would be obtained using the average of the three electrodes as

the reference. When the average of all sites is used as a reference,

the average voltage across sites at any given time point is necessar-

ily zero microvolts, so an increase in voltage at one site artificially

induces a decrease in voltage at the other sites (the voltages across

the entire head also sum to zero, but this is due to physics and not

an artificial referencing procedure). As the figure shows, this refer-

encing procedure seriously distorts the waveforms. For example,

the short-duration, positive-going peak at around 400 ms at the Fz

electrode site becomes a long-duration, negative-going peak when

one uses the average reference. This occurs because of the large

P3 wave at Pz in the absolute voltage waveforms; to achieve an
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Figure 3.2 Effects of using the average of all sites as the reference. The left column shows the
absolute voltage recorded at each of three sites (Fz, Cz, and Pz), and the middle col-
umn shows the waveforms that are obtained when using the average of these three
sites as the reference. The waveforms are highly distorted when using the average
reference. The right column shows the results of using a somewhat larger set of
electrodes, covering occipital and temporal electrodes as well as frontal, central,
and parietal electrodes. Note that this is not a significant problem when sampling a
large proportion of the head’s surface (> 60 percent) with a dense set of electrodes
(see Dien, 1998). Negative is plotted upward.
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average voltage of zero, a large negative voltage has to be added

onto the Fz site in the average reference waveforms.

The use of an average reference can lead to serious errors in

interpreting ERP data. For example, I have reviewed several manu-

scripts in which an average-electrodes reference was used and the

authors made a great deal out of the finding that an experimental

effect was reversed in polarity at some sites relative to others. But

this is necessarily the case when using the average across sites as

the reference. Thus, it is very dangerous to use the average of all

the electrodes as the reference. However, there may be conditions

under which the average-electrodes reference might be appropri-

ate. Specifically, Dien (1998) has argued that it is possible to obtain

a close approximation of the true average of the entire head by us-

ing a large array of electrodes that covers most of the accessible

part of the head, and the averaged-electrode reference may there-

fore be the best approach when enough electrodes are used (assum-

ing that a consensus can be reached about exactly what set of

electrodes is necessary to reach an adequate approximation of the

true average voltage).

Another approach to this problem is not to rely on voltage mea-

surements, but instead to examine the current flowing out of the

head at each point, which does not depend on measuring a differ-

ence between an active site and a reference site (unlike voltage,

current flow can be legitimately measured at a single point). Spe-

cifically, it is possible to convert the voltages measured in standard

ERP recordings into current density (sometimes called scalp cur-

rent density, SCD, or current source density, CSD). Current density

is computed for a given electrode site on the basis of the distri-

bution of voltage across the scalp. Technically speaking, one cal-

culates the current density at the scalp by taking the second

derivative of the distribution of voltage over the scalp (for a

detailed description, see Pernier, Perrin, & Bertrand, 1988). Be-

cause ERPs are recorded at a finite set of discrete electrodes, the

current density can only be estimated, but given a reasonably
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dense set of electrodes, the estimate can be quite accurate. More-

over, it is not necessary to cover the entire head or even most of

the head. If the electrodes are confined to a circumscribed region

(e.g., the posterior 50 percent of the head), you can compute accu-

rate estimates of current density within that region, although you

shouldn’t place much faith in the estimates at the outermost elec-

trodes. Although current density has several advantages, it has one

important disadvantage: it is insensitive to dipoles that are deep in

the brain and preferentially emphasizes superficial dipoles (this is

because the current from a deep source dissipates widely over the

entire scalp). Consequently, current density provides a less com-

plete picture of brain activity than traditional voltage measures. In

addition, current density is an estimated quantity that is one step

removed from the actual data, and it is therefore usually a good

idea to examine both the voltage waveforms and the current den-

sity waveforms.

Electrical Noise in the Environment

The voltage fluctuations of the scalp EEG are tiny (typically less

than 1/100,000th of a volt), and the EEG must be amplified by a fac-

tor of 10,000–50,000 before it can be accurately measured. There

are many sources of electrical activity in a typical laboratory that

are much larger than the EEG, and these large electrical sources

can produce small voltage fluctuations in the subject, in the elec-

trodes, and in the wires leading from the subject to the amplifier.

These induced voltage changes can be quite considerable when

they are amplified along with the EEG (although once the EEG has

been amplified, the effects of additional induced voltages are usu-

ally insignificant). Although some of the induced electrical noise

can be eliminated by filters and other postprocessing techniques,

it is always best to eliminate noise at the source (this is a corollary

of Hansen’s axiom). In this section, I will describe the major

sources of electrical noise and discuss strategies for minimizing

noise in ERP recordings.
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An oscillating voltage in a conductor will induce a small oscil-

lating voltage in nearby conductors, and this is how electrical

noise in the environment shows up in the EEG. There are two

major sources of oscillating voltages in a typical ERP lab, namely

AC line current and video monitors. AC line current consists of

sinusoidal oscillations at either 50 Hz or 60 Hz, depending on

what part of the world you live in, and this can induce 50- or 60-

Hz line noise oscillations in your EEG recordings. Video monitors

may operate at a refresh rate of anywhere between 50 and 120 Hz

(60–75 Hz is typical), but the resulting noise is often spiky rather

than sinusoidal. Noise from the video monitor is especially prob-

lematic because the stimuli are time-locked to the video refresh,

so the noise waveform is the same on every trial and is not reduced

by the averaging process.

There are several things that you can do to decrease these

sources of noise. The most common approach is to use the

amplifier’s filters to attenuate the noise. In most cognitive experi-

ments, the ERPs of interest are composed mostly of frequencies

under about 30 Hz, so you can filter out everything above 30 Hz

(including line noise and video noise) without attenuating the

ERPs very much. In addition, many amplifiers have a line filter

that specifically filters out 50-Hz or 60-Hz noise. However, as chap-

ter 5 will discuss, filters are a form of controlled distortion and

their use should be minimized (line filters are especially bad), so

filtering alone is not the best way to control noise.

In many laboratories, the subject is placed in an electrically

shielded chamber to minimize noise. This can be very effective,

but only if there are no noise sources inside the chamber. For ex-

ample, putting the video monitor inside the chamber creates so

much electrical noise that it is hardly worth having a shielded

chamber (except in environments with other very large sources of

noise). Two approaches are commonly used for solving this prob-

lem. First, you can place the video monitor just outside a window

in the chamber (but the window must be made of specially

treated shielded glass). Second, you can place the monitor inside a
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Faraday cage inside of the recording chamber. Figure 3.3A shows a

design for a Faraday cage that can be built very easily for a rela-

tively small amount of money (US$200–400). This cage consists of

copper screen shielding surrounded by a wooden exterior (with

ventilation holes). A shielded piece of glass is placed at the front

so that the subject can see the front of the monitor. Shielded glass

is available from computer accessory suppliers. There are several

different types, and you should get one that has a ground wire

coming out of it that you can attach to the copper shielding. You

should also get a shielded AC power cord, available at electronics

supply companies. A well-shielded Faraday cage can dramatically

reduce electrical noise in the EEG, and it is well worth the modest

expense.

There may also be other sources of electrical noise inside the

chamber. For example, AC lights can be a problem, so you can re-

place them with DC lights of the type found inside an automobile

or recreational vehicle. Basically, you want to make sure there is

nothing inside the chamber that might create electrical noise, es-

pecially devices powered by AC line voltage. Some of these are ob-

vious, such as lights, but others are not. For example, when I was

putting together my current laboratory, I was surprised to find that

the cables leading from a stereo amplifier outside the chamber to

speakers inside the chamber created significant electrical noise in

the EEG—encasing these wires inside shielded conduits elimi-

nated the noise.

Fortunately, there is a fairly easy way to track down sources of

electrical noise such as this. As figure 3.3B illustrates, you can cre-

ate a simulated head out of three resistors, and by connecting this

to your amplifier and digitization system, you can see how much

noise is present at different locations inside the recording chamber

or room. First, place the simulated head where the subject sits and

connect the fake head to your amplifier and digitization system us-

ing a very high gain (50,000 or 100,000), a fairly high sampling rate

(e.g., 1000 Hz), and wide open filter settings (e.g., 0.01–300 Hz).

You should see clear signs of electrical noise (including a sinusoi-
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Figure 3.3 (A) Faraday cage that can be used to reduce electrical noise from a video monitor. It
consists of a plywood box with ventilation holes, completely lined with copper
screen (copper sheets may be used on surfaces without ventilation holes). The front
of the cage has a glare filter that is covered with a conductive film, which is con-
nected to the copper shielding. A power strip is placed inside the cage (not shown);
this is connected to a shielded AC power cord. (B) Simple simulated head for use in
finding noise sources. It consists of three 4.7 KOhm resistors (or similar values),
connected to form a triangle. Each corner of the triangle is connected to wires lead-
ing to the active, reference, and ground inputs of the EEG amplifier. The set of resis-
tors should be enclosed in a nonconductive substance (such as cardboard) for ease
of handling.



dal line-frequency oscillation) on your EEG display. Then, turn off

every electrical device in or near the recording chamber, including

any AC power entering the chamber, such as the power for the fan

and lights. This should yield a much cleaner signal on your EEG

display (i.e., a nearly flat line). If it doesn’t, then you may be pick-

ing up noise outside of the chamber, in which case you should

shield the cables that bring the EEG from the chamber to your digi-

tization system. Once you have obtained a clean signal, you can

turn the electrical devices back on one at a time, noting which

ones create noticeable noise. You may also find it useful to place

the simulated head near wires and devices that are potential

noise sources, which will make it easier to see any noise that they

generate.

To identify and eliminate sources of noise in this manner, it is

helpful to use software that computes an on-line frequency spec-

trum of the data from the simulated head. The frequency spectrum

will show you the amount of activity in various frequency bands,

allowing you to differentiate more easily between line-frequency

noise and other sources of noise. This may also allow you to quan-

tify the noise in your data. Once you have minimized the noise

level, I would recommend making a printout of the frequency spec-

trum and posting it in the lab. You can then check the noise level

every few months and compare it with this printout to see if the

noise level has started to increase (e.g., because the video monitor

has been replaced with one that generates more noise).

Electrodes and Impedance

Now that we have discussed the nature of the voltages that are

present at the scalp, let’s discuss the electrodes that pick up the

voltages and deliver them to an amplifier. Basically, a scalp elec-

trode is just a conductive material attached to a wire. In most

cases, an electrode is a metal disk that forms an electrical connec-

tion with the scalp via a conductive gel. The choice of metal is

fairly important, because some metals corrode quickly and loose
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their conductance. In addition, the circuit formed by the skin, the

electrode gel, and the electrode can function as a capacitor that

attenuates the transmission of low frequencies (i.e., slow voltage

changes).

Until the 1980s, most researchers used silver electrodes covered

with a thin coating of silver-chloride (these are typically called Ag/

AgCl electrodes). These electrodes have many nice properties, but

they can be somewhat difficult to maintain. In the 1980s, many

investigators started using electrode caps made by Electro-Cap In-

ternational, which feature tin electrodes that are very easy to main-

tain. In theory, tin electrodes will tend to attenuate low frequencies

more than Ag/AgCl electrodes (Picton, Lins, & Scherg, 1995), but

Polich and Lawson found essentially no difference between these

two electrode types when common ERP paradigms were tested,

even for slow potentials such as the CNV and sustained changes

in eye position (Polich & Lawson, 1985). This may reflect the fact

that the filtering caused by the electrodes is no more severe than

the typical filter settings of an EEG amplifier (Picton, Lins, &

Scherg, 1995). Moreover, using high-impedance amplifiers reduces

the filtering properties of an electrode. On the other hand, the tech-

nology for Ag/AgCl electrodes has improved over the past decade,

and now many investigators have switched back to Ag/AgCl. Ei-

ther tin or Ag/AgCl should be adequate for most purposes, unless

you are recording DC potentials.

Because electricity tends to follow the path of least resistance, it

is important to ensure that the resistance between the electrode

and the scalp is low. Technically speaking, the term resistance

applies only to an impediment to direct current (DC), in which the

voltage does not change over time. When the voltage varies over

time (i.e., alternating current or AC), the current can be impeded

by inductance and capacitance as well as resistance; the overall

impediment to current flow is called impedance (see the appendix

for more details). Thus, it is more proper to use the term imped-

ance rather than resistance in the context of ERP recordings, in

which the voltage fluctuates over time. Impedance is frequently
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Box 3.1 Electrode Naming and Placement Conventions

This section will describe the most common system for placing and naming
electrode sites, which was developed in the late 1950s by the International
Federation of Clinical Neurophysiology (Jasper, 1958). This system is called
the 10/20 system, because it places electrodes at 10 percent and 20 percent
points along lines of latitude and longitude, as illustrated in the figure. The
first step in this system is to define an equator, which passes through the
nasion (the depression between the eyes at the top of the nose, labeled Nz),
the inion (the bump at the back of the head, labeled Iz), and the left and right
pre-auricular points (depressions just anterior to the middle of the pinnae, la-
beled A1 and A2). A longitude line is then drawn between Iz and Nz, and this

Nz

Fpz

Oz

Iz

CzT3A1 A2T4C3

Fp1

O1

C4

Cz

O2

Fz

F7 F8
F3 F4

Pz

T6T5
P3 P4
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denoted by the letter Z and measured in units of Ohms (W) or thou-

sands of Ohms (KW) (e.g., ‘‘the Z for each electrode was less than 5

KW’’).

It is common practice in ERP research to reduce the impedance

of the skin to below 5 KW before attaching the electrodes; in fact,

this practice is so common that I usually neglect to mention it

when I write journal articles (although it is definitely worth men-

tioning). To reduce the impedance, it is necessary to remove the

outer layer of dead skin cells that are primarily responsible for the

naturally high impedance of the skin. There are two main classes

of methods for accomplishing this, and the choice of method

depends on the type of electrode being used. If the electrodes are

Box 3.1 (continued)

line is then divided into equal sections that are each 10 percent of the length
of the line. Additional latitude lines, concentric with the equator, are then
placed at these 10 percent points. Most of the electrode sites can then be
defined as points that are some multiple of 10 percent or 20 percent along
these latitude lines. For example, the F7 electrode is on the left side of the lat-
itude line that is 10 percent from the equator, 30 percent of the distance
around the latitude line from the middle. The exceptions to this 10/20 rule
are F3 and F4 (halfway between Fz and F7 or F8) and P3 and P4 (halfway be-
tween Pz and T5 or T6).
Each electrode name begins with one or two letters to indicate the gen-

eral region of the electrode (Fp ¼ frontal pole; F ¼ frontal; C ¼ central; P ¼
parietal; O ¼ occipital; and T ¼ temporal). Each electrode name ends with
a number or letter indicating distance from the midline, with odd numbers
in the left hemisphere and even numbers in the right hemisphere. Larger
numbers indicate greater distances from the midline, with locations on the
midline labeled with a ‘‘z’’ for zero (because the number 0 looks too much
like the letter O).
This scheme has been extended to include many more additional electrode

sites (American Encephalographic Society, 1994; Klem et al., 1999), and many
individual investigators have developed their own naming schemes. You can
use any system you like, as long as it accommodates differences in head sizes
and is described in a manner that can be related to the 10/20 system.
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attached to the head individually using some sort of adhesive, you

can first clean the skin at each site with an alcohol pad and then

rub it with an abrasive paste (it is also possible to do this in one

step with alcohol pads that include an abrasive, which I recom-

mend). If you are using an electrode cap, it is not usually possible

to abrade the electrode sites before applying the electrodes.

Instead, you must insert an abrading implement through the hole

in each electrode to abrade the underlying skin. Most laboratories

use a blunt needle or the wooden end of a cotton-tipped swab for

this. In my lab, we use a sharp, sterile needle. This sounds painful,

but it is actually the least painful technique when done properly.

You should not stick the needle into the skin, but instead rub it

gently along the surface of the skin to displace the top layer of

dead skin cells. When done properly, the subject can barely feel

the needle. Of course, it is important to thoroughly disinfect the

electrodes after each subject, but this is true no matter how one

abrades the skin.

Although most investigators know that reducing the impedance

is important for obtaining a clean signal, many do not know the

precise nature of the problems that high impedance can create.

There are really two main types of problems that high impedance

can create: (1) decreased common-mode rejection, and (2) in-

creased skin potentials.

First, let’s consider common mode rejection. As we discussed

near the beginning of this chapter, EEG amplification is accom-

plished by means of differential amplifiers that amplify the differ-

ence between the active-ground voltage and the reference-ground

voltage. This subtracts away any electrical noise that is present in

the ground (as well as any noise that is equal in the active and ref-

erence electrodes) and is essential for obtaining clean EEG record-

ings. Unfortunately, it is not trivial to produce an amplifier that

performs this subtraction perfectly. If one of the two signals in the

subtraction is attenuated slightly, then the subtraction does not

work and the noise will not be completely subtracted away. The

ability of an amplifier to subtract away environmental noise accu-

Chapter 3 120



rately is called common mode rejection, and it is usually measured

in decibels (dB; an exponential scale in which a doubling of power

equals an increase of 3 dB). A good EEG amplifier will have a com-

mon mode rejection of at least 70 dB, and preferably over 100 dB.

For reasons too complex to explain here, common mode rejection

becomes less effective when the impedance is higher, and it can

become extremely bad when the impedance is generally high and

differs considerably among the active, reference, and ground elec-

trodes. Thus, low electrode impedance helps you avoid picking up

environmental noise.

Common mode rejection depends not only on the impedance of

the electrodes, but also on the input impedance of the amplifier.

An amplifier with a very high input impedance can tolerate higher

impedance electrodes while maintaining a good level of common

mode rejection. However, high amplifier impedance cannot solve

the second problem associated with high electrode impedance,

namely skin potentials. There is a tonic electrical potential be-

tween the surface of the skin and the deep layers of the skin, and

this voltage changes whenever the skin’s impedance changes. For

example, when a subject sweats, the skin’s impedance changes

and the voltage at the surface changes. Similarly, if the subject

moves, shifting the electrode to a slightly different position with

a slightly different impedance, the voltage will change. These

changes in voltage are called skin potentials, and because they are

often very large, they can be a major source of low-frequency noise

in ERP recordings. Picton and Hillyard (1972) showed that decreas-

ing the impedance of the skin dramatically reduces skin potentials,

and this provides a second compelling reason for decreasing the

impedance before recording ERPs.

As computers and electronics have become cheaper and more

powerful, ERP researchers have used more and more electrodes in

their recordings. In the 1970s, most laboratories used one to three

active scalp electrodes, but most laboratories now have the capa-

bility to record from at least thirty-two electrodes and many can

record from 128 or even 256 electrodes.
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Some special problems arise when using dense arrays of elec-

trodes, and I will describe the most important ones here. The big-

gest drawback to large arrays of electrodes is the time required to

decrease the impedance at each site. If it takes an average of one

minute to decrease the impedance of each electrode, then a 64-

channel electrode cap will require over an hour. A second problem

is that the electrode gel inside a given electrode may leak out and

cause an electrical bridgewith nearby electrodes, distorting the scalp

distribution of the electrical potentials. Because the whole point of

recording from a dense electrode array is to measure the scalp dis-

tribution more accurately, this is a significant problem. The third

problem is simply that as the number of electrodes increases,

the probability of a bad connection increases and the probability

of the experimenter noticing a bad connection decreases.

The geodesic sensor net Tucker and his colleagues developed

provides a means of recording from many sites while minimizing

some of these problems (Tucker, 1993). The electrodes in this de-

vice are basically just sponge-tipped tubes filled with saline, and

the electrodes are connected to special high-impedance amplifiers

so that no abrasion of the skin is necessary to obtain a reasonable

level of common-mode rejection. Consequently, it is possible to at-

tach 128 electrodes in a matter of minutes. Fast application, high-

impedance recording systems of various types are now available

from several companies. It might appear that these systems solve

the problem of the long amount of time required to abrade a large

number of sites (and they clearly reduce the risk of disease trans-

mission through the electrodes). However, as discussed above,

skin potentials are much larger in high-impedance recordings, and

this can be a very considerable source of noise. Moreover, these

systems do not solve the problem of a greater likelihood of a bad

connection with a larger number of electrodes and the problem of

bridging across electrode sites (although some systems can auto-

matically detect bridging).

These high-impedance systems trade speed of application for a

degradation in signal quality. Is this a worthwhile tradeoff? The
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answer to this question depends on how much the signal is

degraded and how important it is to record from a large number of

electrodes (and to apply them quickly). The issue of signal degra-

dation in these systems has not, to my knowledge, been system-

atically explored in papers published by independent sources,

although there are some publications by people associated with

the companies that sell these systems. For example, Tucker’s group

performed a study of the effects of electrode impedance on noise

levels (Ferree et al., 2001), and they found only a modest and

statistically insignificant increase in line-frequency (60-Hz) noise

as impedance increased. However, they are not unbiased, so they

may not have sought out the conditions most likely to produce

high noise levels. Moreover, they eliminated skin potentials by fil-

tering out the low frequencies in the signal, making it impossible to

assess the effects of high impedance on this very significant source

of noise. They argued that 60-Hz noise and skin potentials are not a

problem given modern methods, but that has certainly not been my

experience!

When making decisions about EEG recording systems, you

should keep in mind two important factors. First, as I will discuss

in chapter 4, you can offset a decrease in the signal-to-noise ratio

by including more trials in your averages, but a very large number

of additional trials will be necessary to offset even a modest de-

crease in the signal-to-noise ratio. For example, you would need to

double the number of trials to offset a 30 percent decrease in the

signal-to-noise ratio. Thus, you might be able to save an hour by

using an easy-to-apply electrode system, but you might need to

spend an additional two or three hours collecting data to offset the

resulting reduction in signal-to-noise ratio. Before using a fast pro-

cedure for applying electrodes, you must be very careful to evalu-

ate the hidden costs that these procedures may entail.

A second key factor is that large numbers of electrodes (> 40)

are only occasionally useful in ERP experiments. As discussed in

chapters 1 and 7, it is extremely difficult to localize the neural gen-

erators of an ERP component solely on the basis of the distribution
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of voltage over the head, so large numbers of electrodes are useful

primarily when you will be obtaining some form of converging

evidence (e.g., MEG recordings or fMRI scans). Moreover, in the

few situations in which large numbers of electrodes are useful, it is

also imperative to obtain extremely clean data, which means that

common mode rejection should be maximized and skin potentials

should be minimized. Thus, there are large costs associated with

large electrode arrays, and one should use them only when the

benefits clearly outweigh the costs.

Amplifying, Filtering, and Digitizing the Signal

Once the electrodes have picked up the EEG, it must be amplified

and then converted from a continuous, analog voltage into a dis-

crete, digital form that a computer can store. Fortunately, these

processes are relatively straightforward, although there are a few

important issues to consider, such as selecting an amplifier gain

and choosing a digitization rate. Although the EEG is amplified

before it is digitized, I will discuss the digitization process first be-

cause the settings you will use for your amplifier will make more

sense once we have discussed the digitization process.

Box 3.2 My Personal Perspective on Large Electrode Arrays

I have seen many papers in the last few years in which ERPs were recorded
from sixty-four or more electrodes even though the main conclusions of the
paper did not necessitate large numbers of electrodes. And in most cases,
the data were not very clean. Worse yet, the authors frequently included plots
of the waveforms from each site, but given the large number of sites, each
waveform was tiny and it was difficult to discern the details of the experimen-
tal effects. Because ERPs cannot typically be localized, recording from a large
number of channels is usually more of a hindrance than a help. Personally, I
would rather have clean data from ten electrodes than noisy data from a thou-
sand electrodes. This brings us again to Hansen’s axiom: There is no substi-
tute for good data (and noisy data aren’t improved by having lots of
channels).
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Analog-to-Digital Conversion and High-Pass Filters

A device called an analog-to-digital converter (ADC) converts EEG

voltage fluctuations into numerical representations. In most EEG

digitization systems, the ADC has a resolution of twelve bits. This

means that the ADC can code 212 or 4096 different voltage values

(intermediate values are simply rounded to the nearest whole

number). For example, if the ADC has a range ofG5 V, a voltage of

�5 V would be coded as 0, a voltage of þ5 V would be coded as

4096, and the intermediate voltages would be coded as 4096 X

ððV þ 5Þ=10Þ, where V is the voltage level being digitized. Typi-

cally, voltages that fall outside the range of the ADC will be coded

as 0 for negative values and 4096 for positive values, and you’ll

obviously want to avoid exceeding this range. Generally, you will

want to set the gain on your amplifier so that the range of the ADC

is rarely or never exceeded (and, as described in chapter 4, you

will want to discard trials that exceed the ADC range). The fact

that the EEG is digitized with only twelve bits of resolution does

not mean that your data will ultimately be limited to twelve bits of

resolution. When you average together many trials, the resolution

increases greatly, so twelve bits is sufficient for most cases.

There are two settings on a typical EEG amplifier that will affect

whether or not you will exceed the range of the ADC (or the range

of the amplifier itself). The first factor is the gain: as you increase

the gain, you increase the chance that the EEG will exceed the

ADC’s range (you don’t want to set the gain too low, however, be-

cause this will cause a loss of resolution). The second factor is the

setting of the high-pass filter. A high-pass filter is a device that

attenuates low frequencies and passes high frequencies. High-pass

filters are important, because they attenuate the effects of large

gradual shifts in voltage due to skin potentials. Even if you use

low-impedance recordings, some skin potentials will occur, and

these potentials can cause the EEG to drift out of the range of the

ADC and amplifier, causing a ‘‘flat-line’’ signal. The higher you set

the frequency of the high-pass filter, the less drift will occur. How-

ever, as I will discuss further in chapter 5, filters always lead to
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distortion of the ERPs, and the distortion produced by a high-pass

filter almost always becomes worse as you increase the cutoff fre-

quency of the filter. In the 1960s and early 1970s, for example,

most ERP experiments used a cutoff frequency of 0.1 Hz, but

researchers eventually realized that this cutoff frequency led to a

significant reduction in the apparent amplitude of the P3 wave

(Duncan-Johnson & Donchin, 1979). As a result, most investigators

now use a cutoff of 0.01 Hz, and this is what I would recommend

for most experiments. There are, however, some cases in which a

higher cutoff frequency would be appropriate. For example, when

using children or psychiatric/neurological patients as subjects,

voltage drifts are very common, and eliminating these artifacts

may be worth some distortion of the ERP waveforms.

In some cases, it is also desirable to record the EEG without

using a high-pass filter (these are called direct coupled or DC

recordings). Some digitization systems use sixteen-bit ADCs to

avoid the problems associated with the lack of a high-pass filter.

By using a sixteen-bit ADC, it is possible to decrease the gain by a

factor of sixteen, which decreases the likelihood that the EEG will

drift out of the range of the ADC. This reduction in gain is equiva-

lent to losing four ADC bits, but this is compensated for by the ad-

ditional four bits of resolution in the sixteen-bit ADC, yielding the

equivalent of twelve bits of resolution. It is also possible to apply a

digital high-pass filter to the data at the end of the experiment,

which would give you access to both the original unfiltered data

and filtered data. However, although this sounds like it would be

the best of both worlds, it is difficult in practice to limit a digital

filter to very low frequencies. Consequently, it is almost always

best to use an amplifier with analog filters that can filter the very

low frequencies, reserving DC recordings for the relatively rare

cases in which DC data are important for reaching a specific scien-

tific conclusion. I would definitely be wary of buying an amplifica-

tion system that does not include analog high-pass filters; I have

heard several ERP researchers express regret after purchasing DC-

only amplifiers.
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Discrete EEG Sampling and Low-Pass Filters

The EEG is converted into a voltage at a sequence of discrete time

points called samples. The sampling period is the amount of time

between consecutive samples (e.g., 5 ms) and the sampling rate

is the number of samples taken per second (e.g., 200 Hz). When

many channels are sampled, they are scanned sequentially rather

than simultaneously, but the digitization process is so fast that

you can think of the channels as being sampled at the same time

(unless you are examining extremely high-frequency components,

such as brainstem evoked responses). How do you decide what

sampling rate to use? To decide, you need to use the Nyquist theo-

rem, which states that all of the information in an analog signal

such as the EEG can be captured digitally as long as the sampling

rate is at least twice as great as the highest frequency in the signal.

This theorem also states that you will not only lose information at

lower sampling rates, but you will also induce artifactual low fre-

quencies in the digitized data (this is called aliasing).

To use the Nyquist theorem, you need to know the frequency

content of the signal that you are recording so that you can set

your sampling rate to be at least twice as great as the highest fre-

quency in the signal. However, the raw EEG signal may contain

noise at arbitrarily high frequencies, so you cannot digitize the

raw EEG without risking aliasing. EEG amplifiers therefore contain

low-pass filters that attenuate high frequencies and pass low fre-

quencies, and your sampling rate will depend primarily on the cut-

off frequency that you select for your low-pass filters. For example,

many investigators set the cutoff frequency at 100 Hz and digitize

at 200 Hz or faster. As I will discuss in chapter 5, a cutoff fre-

quency of 100 Hz does not completely suppress everything above

100 Hz, so you should use a digitization rate of at least three times

the cutoff frequency of the filter. In my laboratory, for example, we

usually filter at 80 Hz and digitize at 250 Hz.

The Nyquist theorem gives us a precise means of determining

the sampling rate given the filter’s cutoff frequency, but how do

you decide on the cutoff frequency? Unfortunately, the answer
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to this question is not so straightforward because, as mentioned

above, filters are guaranteed to distort ERP waveforms. In general,

the higher the frequency of a low-pass filter, the less distortion it

will create. Consequently, you will want to choose a fairly high

cutoff frequency for your low-pass filter. However, you don’t want

your filter frequency to be too high, because this will require a very

high digitization rate, leading to huge data files. The best compro-

mise for most cognitive neuroscience experiments is a low-pass

cutoff frequency between 30 and 100 Hz and a sampling rate be-

tween 100 and 300 Hz. If you are looking at the early sensory

responses, you’ll want to be at the high end of this range (and

even higher if you wish to look at very high-frequency compo-

nents, such as the brainstem evoked responses). If you are looking

only at lower frequency, longer latency components, such as P3

and N400, you can set your cutoff frequency and sampling rate at

the low end of this range. Keep in mind, however, that the lower

your filter frequency and sampling rate, the less temporal precision

you will have.

Amplifier Gain and Calibration

The signal from each electrode is amplified by a separate EEG

channel. The gain (amplification factor) that you will use depends

on the input range of your analog-to-digital converter. If, for exam-

ple, your analog-to-digital converter allows an input range of �5 V

to þ5 V, you will want to set the gain of your amplifier so that its

output is near �5 V or þ5 V when it has the most extreme possible

input values. That is, you will want to use the entire range of the

analog-to-digital converter, or else you will not be taking advantage

of its full resolution. Most systems work best with a gain some-

where between 1,000 and 50,000 (my lab uses 20,000).

Even if you select the same gain setting for all of the channels of

your amplifier, the gains will probably not be exactly the same. It

is therefore necessary to calibrate your system. The best way to do

this is to pass a voltage of a known size through the system and
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measure the system’s output. For example, if you create a series of

10 mV voltage pulses and run them into your recording system, it

may tell you that you have a signal of 9.8 mV on one channel and

10.1 mV on another channel. You can then generate a scaling factor

for each channel (computed by dividing the actual value by the

measured value), and multiply all of your data by this scaling fac-

tor. You can do this multiplication on the EEG data or on the aver-

aged ERP waveforms; the result will be the same.
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4 Averaging, Artifact Rejection, and Artifact Correction

Because ERPs are embedded in a larger EEG signal, almost all ERP

studies rely on some sort of averaging procedure to minimize the

EEG noise, and the averaging procedure is typically accompanied

by a process that eliminates trials containing artifacts or followed

by some procedure to correct for artifacts. These procedures ap-

pear to be relatively simple, but there are many important and

complex issues lurking below the surface that one must under-

stand before applying them. This chapter will discuss the underly-

ing issues and provide several practical suggestions for averaging

and for dealing with artifacts.

The Averaging Process

Basics of Signal Averaging

Figure 4.1 illustrates the traditional approach to signal averaging.

First, EEG epochs following a given type of event (usually a stimu-

lus) are extracted from the ongoing EEG. These epochs are aligned

with respect to the time-locking event and then simply averaged

together in a point-by-point manner. The logic behind this pro-

cedure is as follows. The EEG data collected on a single trial is

assumed to consist of an ERP waveform plus random noise. The

ERP waveform is assumed to be identical on each trial, whereas

the noise is assumed to be completely unrelated to the time-

locking event. If you could somehow extract just the ERP wave-

form from the single-trial EEG data, it would look exactly the same

on every trial, and averaging together several trials would yield the
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same waveform that was present on the individual trials. In con-

trast, if you could somehow extract just the noise from the EEG

data, it would be random from trial to trial, and the average of a

large number of trials would be a flat line at zero microvolts. Thus,

when you average together many trials containing both a consis-

tent ERP waveform and random noise, the noise is reduced but the

ERP waveform remains.

As you average together more and more trials, the noise remain-

ing in the averaged waveform gets smaller and smaller. Mathemat-

ically speaking, if R is the amount of noise on a single trial and N

is the number of trials, the size of the noise in an average of the N

trials is equal to ð1=
ffiffiffiffiffi

N
p

Þ � R. In other words, the remaining noise

in an average decreases as a function of the square root of the

number of trials. Moreover, because the signal is assumed to be

unaffected by the averaging process, the signal-to-noise (S/N) ratio

increases as a function of the square root of the number of trials.

As an example, imagine an experiment in which you are measur-

ing the amplitude of the P3 wave, and the actual amplitude of the

P3 wave is 20 mV (if you could measure it without any EEG noise).

If the actual noise in the EEG averages 50 mV on a single trial, then

the S/N ratio on a single trial will be 20:50, or 0.4 (which is not

very good). If you average two trials together, then the S/N ratio

will increase by a factor of 1.4 (because
ffiffiffi

2
p

¼ 1:4). To double the

S/N ratio from .4 to .8, it is necessary to average together four trials

(because
ffiffiffi

4
p

¼ 2). To quadruple the S/N ratio from .4 to 1.6, it

is necessary to average together sixteen trials (because
ffiffiffiffiffiffi

16
p

¼ 4).

Thus, doubling the S/N ratio requires four times as many trials

and quadrupling the S/N ratio requires sixteen times as many tri-

als. This relationship between the number of trials and the S/N

H Figure 4.1 Example of the application of signal-averaging. The top waveform shows the raw
EEG over a period of about 2 seconds, during which time two stimuli were
presented. The left column shows segments of EEG for each of several trials, time-
locked to stimulus onset. The right column shows the effects of averaging one, two,
three, four, five, six, seven, or eight of these EEG segments. Negative is plotted
upward.
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ratio is rather sobering, because it means that achieving a substan-

tial increase in S/N ratio requires a very large increase in the num-

ber of trials. This leads to a very important principle: It is usually

much easier to improve the quality of your data by decreasing

sources of noise than by increasing the number of trials.

To exemplify these principles, figure 4.1 shows the application

of signal averaging to a P3 oddball experiment. The top portion of

the figure shows the continuous EEG signal, from which the single-

trial EEG segments are taken. The left column shows the EEG seg-

ments for eight different trials in which an infrequent target was

presented. The P3 wave for this subject was quite large, and it can

be seen in every trial as a broad positivity in the 300–700 ms la-

tency range. However, there is also quite a bit of variability in the

exact shape of the P3 wave, and this is at least partly due to ran-

dom EEG fluctuations (the P3 itself may also vary from trial to

trial). The right column in figure 4.1 shows how averaging together

more and more trials minimizes the effects of the random EEG fluc-

tuations. The difference between trial 1 alone and the average of

trials 1 and 2 is quite substantial, whereas the difference between

the average of trials 1–7 and the average of trials 1–8 is small

(even though trial 8 is quite different from the other trials). Note

also that the S/N ratio in the average of trials 1–8 is 2.8 times

greater than the S/N ratio on the individual trials (because
ffiffiffi

8
p

¼ 2:8).

The signal-averaging approach is based on several assumptions,

the most obvious of which are that (a) the neural activity related to

the time-locking event is the same on every trial, and (b) only the

EEG noise varies from trial to trial. These assumptions are clearly

unrealistic, but violations are not problematic in most cases. For

example, if the amplitude of the P2 wave varies from trial to trial,

then the P2 wave in the averaged ERP waveform will simply reflect

the average amplitude of the P2 wave. Similarly, one could imag-

ine that a P1 wave is present on some trials, a P2 wave is present

on other trials, and that both components are never present to-

gether on a given single trial. The averaged ERP waveform, how-
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ever, would contain both a P1 wave and a P2 wave, which would

incorrectly imply that the two components are part of the same

waveform. However, the conclusions of most ERP experiments do

not depend on the assumption that the different parts of the aver-

aged waveform are actually present together on individual trials,

so this sort of variability is not usually problematic as long as you

always remember that the average is only one possible measure of

central tendency.

The Problem of Latency Variability

Although trial-to-trial variability in ERP amplitude is not usually

problematic, trial-to-trial variability in latency is sometimes a sig-

nificant problem. Figure 4.2A illustrates this, showing four indi-

vidual trials in which a P3-like ERP component occurs at different

latencies. The peak amplitude of the average of these trials is much

smaller than the peak amplitude on the individual trials. This is

particularly problematic when the amount of latency variability

differs across experimental conditions. As figure 4.2B shows, a re-

duction in latency variability causes the peak amplitude of the av-

erage to be larger. Thus, if two experimental conditions or groups

of subjects differ in the amount of latency variability for some ERP

component, they may appear to differ in the amplitude of that com-

ponent even if the single-trial amplitudes are identical, and this

could lead an investigator to incorrectly conclude that there was a

difference in amplitude. Worse yet, latency variability can some-

times make it completely impossible to see a given neural response

in an averaged waveform (see figure 4.2C). For example, imagine a

sinusoidal oscillation that is triggered by a stimulus but varies ran-

domly in phase from trial to trial (which is not just a hypothetical

problem—see Gray et al., 1989). Such a response will average to

zero and will be essentially invisible in an averaged response.

Figure 4.3 shows a real-world example of latency jitter (from

Luck & Hillyard, 1990). In this experiment, we examined the P3

wave during two types of visual search tasks. In one condition
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(parallel search), subjects searched for a target with a distinctive

visual feature that ‘‘popped out’’ from the display and could be

detected immediately no matter how many distractor items were

present in the stimulus array. In the other condition (serial search),

the target was defined by the absence of a feature, and we expected

that in this condition the subjects would search one item at a

time until they found the target. In this condition, therefore, we

expected reaction time to increase as the number of items in the

array (the set size) was increased, whereas we expected no effect

of set size in the parallel search condition. This was the pattern of

results that we obtained.

We also predicted that both P3 latency and P3 amplitude would

increase at the larger set sizes in the serial search condition, but

not in the parallel search condition. However, because the order

in which the subjects search the arrays is essentially random, we

also predicted that there would be more trial-to-trial variability in

P3 latency at the larger set sizes in the serial search condition,

which made it difficult to measure P3 amplitude and latency. At

set size 4, for example, the target could be the first, second, third,

or fourth item searched, but at set size 12, the target might be

found anywhere between first item and the twelfth item. Conse-

quently, we predicted that P3 latency would be more variable at

the larger set sizes in the serial search condition (but not in the

parallel search condition, in which the target was detected imme-

diately regardless of the set size).

Figure 4.3B shows the averaged ERP waveforms from this exper-

iment. In the parallel search condition, the P3 wave was relatively

large in amplitude and short in duration, and it did not vary much

H Figure 4.2 Example of the problem of latency variation. Each panel shows four single-trial
waveforms, along with the average waveform. The same waveforms are present in
panels A and B, but there is greater latency variability in panel A than in panel B,
leading to a smaller peak amplitude and broader temporal extent for the average
waveform in panel A. Panel C shows that when the single-trial waveforms are not
monophasic, but instead have both positive and negative subcomponents, latency
variability may lead to cancellation in the averaged waveform.

Averaging, Artifact Rejection, and Artifact Correction 137



500
ms

-3 µV 

+3 µV 

Stimulus

Target = Target =

Stimulus

Response Response

Parallel Search

Stimulus
Locked

Averages

Stimuli

Serial Search

Response
Locked

Averages

Set Size = 4
Set Size = 8
Set Size = 12

A

B

C

Figure 4.3 Example of an experiment in which significant latency variability was expected for
the P3 wave (Luck & Hillyard, 1990). (A) Sample stimuli from the two conditions of
the experiment. (B) Stimulus-locked averages. (C) Response-locked averages. Nega-
tive is plotted upward.

Chapter 4 138



as a function of set size. In the serial search condition, the P3 had a

smaller peak amplitude but was very broad. If you were to measure

the amplitude and latency at the peak of the P3 wave in the serial

search condition, you might conclude that set size didn’t have

much of an effect on the P3 in either the serial or parallel search

conditions. However, both the amplitude and the latency of the

P3 wave were significantly influenced by set size in the serial

search condition, although these effects were masked by the la-

tency variability.

I will now describe some techniques that you can use to mini-

mize the effects of latency variability.

Area Measures In most cases, you can mitigate the reduction in am-

plitude caused by latency variability simply by using an area am-

plitude measure rather than a peak amplitude measure. The area

under the curve in an average of several trials is always equal to

the average of the areas under the curves in each of the individual

trials, and an area measure will therefore be completely unaffected

by latency variability. In the experiment illustrated in figure 4.3,

for example, the area amplitude was significantly greater at larger

set sizes, even though peak amplitude was slightly smaller at the

larger set sizes. It is also possible to use an area-based measure of

latency rather than a peak-based measure. To do this, you simply

measure the area under the curve and find the time point that

divides this area into equal halves (this is called a 50 percent area

latency measure). When this measure was applied to the data

shown in figure 4.3B, the effects of set size on P3 latency were

found to be almost identical to the effects on reaction time. Chapter

6 will discuss these area-based measures in greater detail.

Area-based measures are almost always superior to peak-based

measures, and insensitivity to latency variability is just one of

several reasons why I prefer area-based measures. There are two

caveats, however. First, the equivalence between the area in the

individual trials and the area in the average is true only when the
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latency range used to measure the area spans the entire latency

range of the component. When there are multiple overlapping ERP

components that vary across conditions, it is sometimes necessary

to use a relatively restricted measurement window, in which case

the area measure is no longer completely insensitive to latency

variability (although it’s still usually better than a peak amplitude

measure). The second caveat is that area measures can misrepre-

sent components that are multiphasic (i.e., components with both

positive and negative portions). As figure 4.2C shows, the negative

and positive portions of a multiphasic waveform may cancel each

other when latency variability is present, and once the data have

been averaged there is no way to recover the information that is

lost due to this cancellation. Thus, area-based measures are useful

for mitigating the effects of latency variability under most condi-

tions, but they are not adequate when there is variability in a mul-

tiphasic waveform or when overlapping components preclude the

use of a wide measurement window.

Response-Locked Averages In some cases, variations in the latency

of an ERP component are correlated with changes in reaction time,

and in these cases latency variability can be corrected by using

response-locked averages rather than stimulus-locked averages. In

a response-locked average, the response rather than the stimulus

is used to align the single-trial EEG segments during the averaging

process. Consider, for example, the visual search experiment illus-

trated in figure 4.3. In the serial search condition, the P3 wave was

‘‘smeared out’’ by latency variability in the stimulus-locked aver-

ages, leading to a low peak amplitude and a broad waveform.

When response-locked averages were computed, however, the P3

wave in this condition was larger and much more narrowly peaked

(see figure 4.3C). In addition, the response-locked averages show

that the P3 wave was actually larger at set size 12 than at set size

4, even though the peak amplitude was larger for set size 4 in the

stimulus-locked averages. Many studies have used response-locked

averages in this manner.
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The Woody Filter Technique A third technique for mitigating the

effects of latency variability is the Woody filter technique (Woody,

1967). The basic approach of this technique is to estimate the la-

tency of the component of interest on individual trials and to use

this latency as the time-locking point for averaging. The compo-

nent is identified on single trials by finding the portion of the

single-trial waveform that most closely matches a template of the

ERP component. Of course, the success of this technique depends

on how well the component of interest can be identified on indi-

vidual trials, which in turn depends on the S/N ratio of the indi-

vidual trials and the similarity between the waveshape of the

component and the waveshape of the noise.

The Woody filter technique begins with a best-guess template of

the component of interest (such as a half cycle of a sine wave) and

uses cross-correlations to find the segment of the EEG waveform on

each trial that most closely matches the waveshape of the tem-

plate.1 The EEG epochs are then aligned with respect to the esti-

mated peak of the component and averaged together. The resulting

averaged ERP can then be used as the template for a second itera-

tion of the technique, and additional iterations are performed until

little change is observed from one iteration to the next.

The shortcoming of this technique is that the part of the wave-

form that most closely matches the template on a given trial may

not always be the actual component of interest, resulting in an

averaged waveform that does not accurately reflect the ampli-

tude and latency of the component of interest (see Wastell, 1977).

Moreover, this does not simply add random noise to the averages;

instead, it tends to make the averages from each different experi-

mental condition more similar to the template and therefore more

similar to each other (this is basically just regression toward the

mean). Thus, this technique is useful only when the component of

interest is relatively large and dissimilar to the EEG noise. For ex-

ample, the P1 wave is small and is similar in shape to spontaneous

alpha waves in the EEG, and the template would be more closely

matched by the noise than by the actual single-trial P1 wave on
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many trials. The P3 component, in contrast, is relatively large

and differs in waveshape from common EEG patterns, and the

template-matching procedure is therefore more likely to find the

actual P3 wave on single trials.

However, even when one is examining a large component such

as the P3 wave, Woody filtering works best when the latency vari-

ability is only moderate; when the variability is great, a very wide

window must be searched on the individual trials, leading to more

opportunities for a noise deflection to match the template better

than the component of interest. For example, I tried to apply the

Woody filter technique to the visual search experiment shown in

figure 4.3, but it didn’t work very well. The P3 wave in this experi-

ment could peak anywhere between 400 and 1,400 milliseconds

poststimulus, and given this broad search window, the algorithm

frequently located a portion of the waveform that matched the

search template fairly well but did not correspond to the actual P3

peak. As a result, the averages looked very much like the search

template and were highly similar across conditions.

One should note that the major difficulty with the Woody filter

technique lies in identifying the component of interest on single

trials, and any factors that improve this process will lead to a

more accurate adjustment of the averages. For example, the scalp

distribution of the component could be specified in addition to the

component’s waveshape, which would make it possible to reject

spurious EEG deflections that may have the correct waveshape but

have an incorrect scalp distribution (see Brandeis et al., 1992).

Time-Locked Spectral Averaging The final technique considered here

is a means of extracting oscillatory responses that have random

phase (onset time) with respect to the time-locking event. As dis-

cussed at the beginning of this section, oscillations that vary in

phase will be lost in a conventional average, but one can see these

oscillations using techniques that measure the amplitudes of the

oscillations on single trials and then average these amplitude

measures across trials. The techniques for measuring single-trial
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oscillation amplitudes rely on variants of a mathematical proce-

dure called the Fourier transform. As I will discuss more fully in

chapter 5, the Fourier transform converts a waveform into a set of

sine waves of different frequencies, phases, and amplitudes. For

example, if you were to apply the Fourier transform to a 1-second

EEG epoch, you would be able to determine the amount of activity

at 10 Hz, at 15 Hz, at 20 Hz, or almost any frequency. In this man-

ner, you could compute the amplitude at each frequency for a

single trial, and you could then average these amplitude measures

across trials. Moreover, because the amplitude is measured inde-

pendently of the phase, it wouldn’t matter if the phase (i.e., the la-

tency) of the oscillations varied across trials.

Although this is a useful approach, it completely discards the

temporal information of the ERP technique, because the amplitude

measured on a given trial is the amplitude for the entire time

period. Temporal information can be retained, however, by using

moving window techniques, such as those developed by Makeig

(1993) and by Tallon-Baudry and colleagues (1996). These techni-

ques extract a brief window of EEG from the beginning of the trial

(e.g., the first 100 ms of EEG). The Fourier transform is then ap-

plied to this window to provide a quantification of the amplitude

at each frequency during that relatively brief time range. The

window is then moved over slightly (e.g., by 10 ms), and another

Fourier transform is applied. In this manner, it is possible to com-

pute Fourier transforms for every point in the EEG, although the

values at a given time point actually represent the frequencies

over a period of time (e.g., a 100-ms period). The Fourier trans-

forms at a given time point are then averaged across trials just

as the EEG amplitude would be averaged across trials in a con-

ventional average. This is called time-locked spectral averaging

because time-locked averages are computed for spectral (i.e., fre-

quency) information.

Figure 4.4A2 shows an example of this technique, presenting

time-locked spectral averages from the study of Tallon-Baudry et

al. (1996), who were interested in the 40-Hz oscillations elicited
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by visual stimuli. The X-axis in this plot is time, just as in a tradi-

tional ERP average. The Y-axis, however, is frequency, and the

gray-scale level indicates the power that was present at each fre-

quency at each time point. A band of activity between 40 and 50

Hz can be seen at approximately 100 ms poststimulus, and a some-

what weaker band of activity between 30 and 60 Hz can be seen at

approximately 300 ms poststimulus. Activity can also be seen in

the 20-Hz range from about 100 to 200 ms poststimulus.

The crucial aspect of this approach is that these bands of activity

can be seen whether or not the oscillations vary in phase from trial

to trial, whereas random-phase activity is completely lost in a tra-

ditional average. Time-locked spectral averaging thus provides a

very useful technique for examining random-phase oscillations.

However, it is very easy to draw an incorrect conclusion from data

such as those shown in figure 4.4A, namely that the activity really

consists of oscillations. As I will discuss fully in chapter 5, a brief
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Figure 4.4 Example of time-locked spectral averaging. In panel A, the frequency transformation
was applied to the individual trials and the transformed data were then averaged.
This plot therefore includes activity that was not phase-locked to stimulus onset as
well as phase-locked activity. In panel B, the transformation was applied after the
waveforms had been averaged together. This plot therefore includes only activity
that was phase-locked to the stimulus, because random-phase activity is eliminated
by the ERP averaging process. (Adapted with permission from Tallon-Baudry et al.,
1996. > 1996 Society for Neuroscience.)
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monophasic ERP deflection contains activity at a variety of fre-

quencies, and the presence of activity in a given frequency band

does not entail the existence of a true oscillation (i.e., an oscilla-

tion with multiple positive and negative deflections). For example,

figure 4.4B shows the time � frequency transformation of the tradi-

tional ERP averages from the study of Tallon-Baudry et al. (1996),

and the 40–50 Hz activity at 100 ms poststimulus can be seen in

this plot just as in the single-trial data. In other words, this activity

was a part of the traditional ERP and was not a random-phase os-

cillation. Thus, to draw conclusions about random-phase oscilla-

tions, it is necessary to apply the time � frequency transformation

to the averaged ERPs as well as to the single-trial EEG data.

Overlap from Preceding and Subsequent Stimuli

Overlapping ERPs from previous and subsequent stimuli will dis-

tort averaged ERP waveforms in ways that are sometimes subtle

and sometimes obvious, and it is important to understand how

this arises and when it might lead you to misinterpret your data

(for a detailed treatment of this issue, see Woldorff, 1988). Overlap

arises when the response to the previous stimulus has not ended

before the baseline period prior to the current stimulus or when

the subsequent stimulus is presented before the ERP response to

the current stimulus has terminated. This problem is particularly

acute when stimuli are presented rapidly (e.g., 1 second or less

between stimulus onsets). However, ERP waveforms can last for

several seconds, and overlap can significantly distort your data

even at long interstimulus intervals.

Figure 4.5 illustrates the overlap problem for a thought experi-

ment in which a stimulus is presented every 300–500 ms. Panel A

shows the actual waveform elicited by a given stimulus without

any overlap. Note that the prestimulus period is flat and that the

waveform falls to zero at 1000 ms poststimulus. Panel B shows

the waveforms that the same stimulus would have produced if
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Figure 4.5 Example of the problem of overlapping waveforms. (A) An example ERP waveform.
(B) Waveforms produced by the previous stimulus when it appears 300, 400, or 500
ms prior to the current stimulus. (C) Average waveform produced by the previous
stimulus when it appears at random times between 300 and 500 ms prior to the cur-
rent stimulus. (D) Waveforms produced by the subsequent stimulus when it appears
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it appeared 300, 400, or 500 ms prior to the current stimulus;

these are just the original waveform shifted to the left by various

amounts. Panel C shows the average of a large number of previous

waveforms, elicited by stimuli happening randomly and equiprob-

ably between 300 and 500 ms prior to the current stimulus. This is

the average overlap from the preceding stimuli. Panel D shows the

responses elicited by the subsequent stimulus at 300, 400, or 500

ms, and panel E shows the overlap that would occur with stimuli

occurring randomly 300–500 ms after the current stimulus.

Note that the jittered timing in this thought experiment leads to a

‘‘smearing’’ of the averaged waveform for the overlapping stimuli.

That is, the relatively sharp positive and negative peaks at the be-

ginning of the original waveform are mostly (but not entirely) elim-

inated in the overlapping waveform. The effect of temporal jitter

between stimuli is equivalent to filtering out the high frequencies

from the original waveform. As the range of time delays between

the stimuli becomes wider and wider, the jitter reduces lower and

lower frequencies from the overlap. However, even with a broad

jitter, some low-frequency overlap will still occur (chapter 5 will

describe a set of mathematical formalizations that you can use to

understand in detail the filtering properties of temporal jitter).

Panel F shows the sum of the original waveform and the overlap-

ping waveforms. This sum is exactly what you would obtain if you

simply averaged together all of the stimuli in this thought experi-

ment. The distortion due to overlap is quite severe. First, the pres-

timulus baseline is completely distorted, and this leads the initial

positive component to seem much larger than it really is (compare

the first positive component in panel G to the original waveform

H Figure 4.5 (continued)
300, 400, or 500 ms after the current stimulus. (E) Average waveform produced by
the subsequent stimulus when it appears at random times between 300 and 500 ms
after the current stimulus. (F) Sum of the original waveform and the overlapping
waveforms from (C) and (E). (G) Sum of the original waveform and the overlapping
waveforms that would be produced if the interval between stimuli was increased to
300–1000 ms. Negative is plotted upward.
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in panel A). Second, the first positive component appears to start

before time zero (which is always a good indication that something

is amiss). Third, there is a late positive peak that is completely

artifactual.

Overlap is particularly problematic when it differs between ex-

perimental conditions. Imagine, for example, that the same target

stimulus is presented in condition A and in condition B, and the

preceding stimulus elicits a large P3 wave in condition A and a

small P3 wave in condition B. This difference in the preceding

stimuli may influence the prestimulus baseline period, and this in

turn will influence the apparent amplitude of the P3 elicited by the

target stimuli on the current trial. Note that this can happen even

if the ERP response to the preceding stimulus has returned to

baseline before the P3 wave on the current trial: if the baseline is

affected, then the whole waveform will be affected. This can also

have a big impact on attempts to localize the generator of an

ERP component, because the scalp distribution of the overlapping

activity in the prestimulus period will be subtracted away from

the scalp distribution of the component that you are trying to local-

ize, distorting the apparent scalp distribution of the component.

There are some steps that you can take to minimize the effects

of overlap. The first and most important step is to think carefully

about exactly what pattern the overlap will take and how it might

differ across conditions (for an example, see Woldorff & Hillyard,

1991). The key is to think about how the task instructions may

change the response to the preceding stimulus across conditions,

even if it is the same physical stimulus. You may even want to sim-

ulate the overlap, which isn’t conceptually difficult (for details, see

Woldorff, 1988). It’s computationally trivial to do this in a pro-

gramming environment such as MATLAB, and it can even be done

fairly easily in Excel.

A second approach is to use the broadest possible range of time

delays between stimuli. Panel G of figure 4.5 shows what happens

if the jitter in our thought experiment is expanded to 300–1000 ms.

There is still some overlap, but it is much smaller.
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A third approach is to use high-pass filters to filter out any

remaining overlap. As mentioned earlier in this section, jittering

the interstimulus interval is equivalent to filtering out the high fre-

quencies from the overlap, and the remaining low frequencies can

be filtered offline with a high-pass filter. High-pass filtering can dis-

tort your waveforms in other ways, however, so you must do this

cautiously (see chapter 5 for details).

A fourth approach is to design the experiment in a way that

allows you to directly measure and subtract away the overlap. In

our thought experiment, for example, we could include occasional

trials on which no stimulus was presented and create averaged

waveforms time-locked to the time at which the stimulus would

ordinarily have occurred. These waveforms will contain only the

overlap, and these overlap waveforms can be subtracted from the

averaged waveforms that contained the response to an actual stim-

ulus along with the overlap. This requires some careful thought,

however, because the subject might notice the omission of a stim-

ulus triggering an ERP (see, e.g., Picton, Hillyard, & Galambos,

1974). I have frequently used this approach in my own research

(see, in particular, Luck, 1998b; Vogel, Luck, & Shapiro, 1998).

A fifth approach is to estimate the overlap from the data you

have collected and subtract the estimated overlap from the aver-

aged ERP waveforms. Woldorff (1988) has developed a technique

called the ADJAR (adjacent response) filter that has been used

for this purpose in a number of experiments (e.g., Hopfinger &

Mangun, 1998; Luck et al., 1994; Woldorff & Hillyard, 1991).

Transient and Steady-State ERPs

If stimuli are presented at a constant rate rather than a variable

rate, the overlap from the preceding and subsequent stimuli is fully

present in the averaged ERP waveforms. In fact, the preceding and

subsequent stimuli are perfectly time-locked to the current stimu-

lus, so it makes sense that they would appear in the averaged ERP

waveforms. Most cognitive ERP experiments therefore use some
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jitter in the interstimulus interval unless the interstimulus interval

is fairly long.

It is sometimes possible to make overlap into a virtue. Specifi-

cally, if a series of identical stimuli are presented at a fast, regular

rate (e.g., eight stimuli per second), the system will stop producing

complex transient responses and enter into a steady state, in which

the system resonates at the stimulus rate (and multiples thereof).

Typically, steady state responses will look like two summed sine

waves, one at the stimulation frequency and one at twice the stim-

ulation frequency.

Figure 4.6 shows an example of a steady state response. The up-

per left portion of the figure shows the transient response obtained

when the on-off cycle of a visual stimulus repeats twice per sec-

ond. When the stimulation rate is increased to 6 cycles per second,

it is still possible to see some distinct peaks, but the overall wave-

form now appears to repeat continuously, with no clear beginning

or end. As the stimulation rate is increased to 12 and then 20
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Figure 4.6 Transient response to a stimulus presented at a rate of two on-off cycles per second
and steady-state response to a stimulus presented at 6, 12, or 20 Hz. Positive is
plotted upward. (Adapted with permission from Di Russo, Teder-Sälejärvi, & Hill-
yard, 2003. > 2003 Academic Press.) Thanks to Francesco Di Russo for providing
an electronic version of this figure.
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cycles per second, the response is predominantly a sine wave at

the stimulation frequency (with a small, hard-to-see component at

twice the stimulation frequency).

This steady-state response can be summarized by four numbers,

the amplitude (size) and phase (temporal shift) of each of the two

sine waves. This is a lot simpler than a complex transient response

with a separate amplitude value at each point in time. As a result,

steady-state ERPs are widely used in the study of sensory systems

and in the diagnosis of sensory disorders.

Steady-state ERPs have a significant shortcoming, however,

which is that they do not provide very precise temporal informa-

tion. For example, if stimuli are presented every 150 ms, the volt-

age measured at 130 ms after the onset of one stimulus consists

of the sum of the response to the current stimulus at 130 ms, the

response to the previous stimulus at 280 ms, the response to the

stimulus before that at 430 ms, and so on. Because steady-state

ERPs lack the high temporal resolution of transient ERPs, they are

used only rarely in cognitive studies (for a review of some recent

cognitive steady-state studies, see Hopfinger, Luck, & Hillyard,

2004).

Artifact Rejection and Correction

Now that we have considered the averaging process, we will move

on to the artifact rejection procedures that typically accompany it.

There are several types of artifacts that can contaminate EEG

recordings, including blinks, eye movements, muscle activity, and

skin potentials. These artifacts can be problematic in two ways.

First, they are typically very large compared to the ERP signals

and may greatly decrease the S/N ratio of the averaged ERP wave-

form. Second, some types of artifacts may be systematic rather than

random, occurring in some conditions more than others and being

at least loosely time-locked to the stimulus so that the averaging

process does not eliminate them. Such artifacts may lead to errone-

ous conclusions about the effects of an experimental manipulation.
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For example, some stimuli may be more likely to elicit blinks than

others, which could lead to differences in amplitude in the aver-

aged ERP waveforms.

There are two main classes of techniques for eliminating the

deleterious effects of artifacts. First, it is possible to detect large

artifacts in the single-trial EEG epochs and simply exclude conta-

minated trials from the averaged ERP waveforms (this is called ar-

tifact rejection). Alternatively, it is sometimes possible to estimate

the influence of the artifacts on the ERPs and use correction proce-

dures to subtract away the estimated contribution of the artifacts

(this is called artifact correction). In this section, I will discuss

both approaches. However, I would first like to make a point that

should be obvious but is often overlooked. Specifically, it is always

better to minimize the occurrence of artifacts rather than to rely

heavily on rejection or correction procedures. This is really just a

special case of Hansen’s Axiom: there is no substitute for good

data. In other words, time spent eliminating artifacts at the source

will be well rewarded. This section will therefore also include

hints for reducing the occurrence of artifacts.

The General Artifact Rejection Process

Before I get into the details of how to detect specific types of arti-

facts, I would like to provide a general framework for conceptualiz-

ing the artifact rejection process.3 Detecting artifacts is, in essence,

a signal detection problem, in which the artifact is treated as the

to-be-detected signal. As an example, imagine that you have lost a

valuable ring on a beach, and you have rented a metal detector to

help you find it. The metal detector has a continuously variable

output that tells you the extent to which there is evidence of

nearby metal, but this output is quite variable due to random fluc-

tuations in the mineral content of the sand. If you started digging

in the sand any time there was a hint of nearby metal, you would

make very slow progress because you would start digging every

few feet. However, if you only started digging when the metal

Chapter 4 152



detector’s output was very high, you might miss the ring altogether

because it is small and doesn’t create a large change in the detec-

tor’s output. Thus, if you dig only when the detector’s output

reaches a very high level, you will probably pass right over the top

of the ring, but if you dig whenever the output exceeds some small

level, you will frequently be digging in vain.

The key aspects of this example are as follows. You are trying to

detect something that is either there or not (the ring) based on a

noisy, continuously variable signal (the metal detector’s output).

You select a threshold value, and if the signal exceeds that value,

you make a response (digging). In this context, we can define four

outcomes for each patch of sand: (1) a hit occurs when the sought-

after object is present, the signal exceeds the threshold, and you re-

spond (i.e., the metal detector’s output exceeds a certain value, you

dig, and you find the ring); (2) a miss occurs when the object is

present, the signal fails to exceed the threshold, and you don’t re-

spond; (3) a false alarm occurs when the object is absent, the signal

exceeds the threshold due to random variation, and you respond;

(4) a correct rejection occurs when the object is absent, the signal

doesn’t exceed the threshold, and you don’t respond. Hits and cor-

rect rejections are both correct responses, and misses and false

alarms are both errors. Importantly, you can increase the number

of hits by choosing a lower threshold (i.e., digging when the metal

detector’s output is fairly low), but this will also lead to an increase

in the number of false alarms. The only way to increase the hit rate

without increasing the false alarm rate is to get a better metal de-

tector with an output that better differentiates between the pres-

ence or absence of small metal objects.

Now imagine that you are trying to detect blinks in a noisy EEG

signal. When a subject blinks, the movement of the eyelids across

the eyeball creates a voltage deflection, and it is possible to assess

the presence or absence of a blink by measuring the size of the

largest voltage deflection within a given segment of EEG (just like

assessing the presence or absence of the ring by examining the

output of the metal detector). If the voltage deflection exceeds a
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certain threshold level, you conclude that the subject blinked and

you discard that trial; if the threshold is not exceeded, you con-

clude that the subject did not blink and you include that trial in

the averaged ERP waveform. If you set a low threshold and reject

any trials that have even a small voltage deflection, you will elimi-

nate all of the trials with blinks, but you will also discard many

blink-free trials, reducing the signal-to-noise ratio of the averaged

ERP waveform. If you set a high threshold and reject only trials

with very large voltage deflections, you will have more trials in

your averages, but some of those trials may contain blinks that

failed to exceed your threshold. Thus, simply changing the thresh-

old cannot increase the rejection of true artifacts without also

increasing the rejection of artifact-free trials. However, just as you

can do a better job of finding a ring in the sand by using a better

metal detector, you can do a better job of rejecting artifacts by us-

ing a better procedure for measuring artifacts.

Choosing an Artifact Measure

Many software systems assess blinks by measuring the maximal

voltage in the EOG signal on a given trial and rejecting trials in

which this maximal voltage exceeds a threshold, such as G75 mV.

However, the peak amplitude in the EOG channel is a very poor

measure of blink artifacts, because variations in the baseline volt-

age can bring the EOG signal far enough away from zero that small

noise deflections will sometimes cause the voltage to exceed the

threshold voltage, causing false alarms. Variations in baseline volt-

age can also bring the EOG signal away from the threshold voltage

so that a true blink no longer exceeds the threshold, leading to

misses.

Figure 4.7 illustrates these problems. Panel A of the figure

shows an EOG recording with a blink that exceeds the 75 mV

threshold and would be correctly rejected. Panel B shows an epoch

in which a blink is clearly present, but because the baseline has

shifted, the 75 mV threshold is not exceeded (a miss). Panel C
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shows an epoch in which no blink was present, but a shift in base-

line causes the 75 mV threshold to be exceeded by simple noise (a

false alarm).

An alternative approach is to measure the difference between the

minimum and maximum voltages within an EOG epoch and to

compare this peak-to-peak voltage with some threshold voltage.

This peak-to-peak measure is less distorted by slow changes in

baseline voltage, reducing the impact of this possible source of

misses and false alarms, and increasing the sensitivity of the arti-

fact rejection process. Thus, it is possible to increase the rejec-

tion of trials with artifacts without increasing the rejection of
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Figure 4.7 Example of the use of an absolute voltage threshold for artifact rejection. Each
waveform shows single-trial activity recorded from an EOG electrode under the left
eye, with a right-mastoid reference. In panel A, a blink is present and exceeds the
threshold. In panel B, a blink is again present, but because the voltage had drifted
downward, the threshold is not exceeded. In panel C, no blink is present, but
because of a downward drift in the signal, the threshold is exceeded. Negative is
plotted upward.
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artifact-free trials by choosing a measure that can accurately distin-

guish between trials with and without artifacts. Later in this chap-

ter I’ll offer some suggestions for good measures.

The choice of the most sensitive measure will depend on what

type of artifact you are measuring. For example, although peak-to-

peak amplitude is a sensitive measure of blinks, it is not a very

sensitive measure of the presence of alpha waves, which are fre-

quently no larger than the background EEG activity. A more sensi-

tive measure of alpha waves would be, for example, the amount of

power in the 10-Hz frequency range, which would be high on trials

contaminated by alpha waves and low for uncontaminated trials.

Thus, a good artifact rejection system should allow the use of dif-

ferent measures for different types of artifacts.

It is important to note that a measure such as peak-to-peak am-

plitude is not really a measure of blinking, but is simply a numeric

value that you can calculate from the data and use to differentiate

probabilistically between trials with and without blinks. The arti-

fact rejection process can thus be conceptualized in the general

case as a two-step process, in which a ‘‘function’’ is applied to the

data to compute a specific value and then this value is compared to

the threshold. You can use different functions and different criteria

in different cases, depending on the nature of the artifact that you

are trying to detect.

Some investigators visually inspect the EEG on each trial to de-

termine which trials contain artifacts, but this process is concep-

tually identical to the procedure that I just outlined. The only

difference is that it uses the experimenter’s visual system instead

of a computer algorithm to determine the extent to which an arti-

fact appears to be present and uses an informal, internal threshold

to determine which trials to reject. The advantage of this approach

is that the human visual system can be trained to do an excellent

job of differentiating between real artifacts and normal EEG noise.

However, a well-designed computer algorithm may be just as sen-

sitive, if not more so. And computer algorithms have the advan-

tages of being fast and not being prone to bias. Thus, it is usually
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best to use a good automated artifact rejection system rather than

spending hours trying to identify artifacts by eye.

Choosing a Rejection Threshold

Once you have chosen an appropriate measure of an artifact, you

must choose the threshold that will be used to determine whether

to reject an individual trial. One possibility is to pick a threshold

on the basis of experience and use this value for all subjects. For

example, you may decide to reject all trials with a peak-to-peak

EOG amplitude of 50 mV or higher. However, there is often signifi-

cant variability across subjects in the size and shape of the voltage

deflections a given type of artifact produces and in the characteris-

tics of the EEG in which these voltage deflections are embedded, so

a one-size-fits-all approach is therefore not optimal. Instead, it is

usually best to tailor the artifact rejection process for each individ-

ual subject.

There is at least one exception to this rule, however: experiments

that use different subject groups and in which the artifact rejection

process could lead to some sort of bias. For example, it might not

be appropriate to use different artifact rejection criteria for different

subjects in a study that compared schizophrenia patients with nor-

mal controls, because any differences in the resulting averaged ERP

waveforms could reflect a difference in artifact rejection rather

than a real difference in the ERPs. However, using the same criteria

for all subjects could also be problematic in such a study if, for

example, one group had smaller blink amplitudes than another,

resulting in more contamination from artifacts that escaped rejec-

tion. The best compromise in between-subject studies is probably

to set the criteria individually for each subject, but to be blind to

the subject’s condition when the criteria are set. In addition, it

would be worthwhile to determine whether the results are any dif-

ferent when using the same threshold for all subjects compared to

when tailoring the threshold for each subject—if the results are the

same, then the threshold is not causing any bias in the results.
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If the threshold is set individually for each subject, the settings

are usually based on visual inspection of a portion of the raw EEG.

This can be accomplished by the following sequence of steps. First,

select an initial threshold for a given subject as a starting point

(usually on the basis of experience with prior subjects). Then

apply this threshold to a set of individual trials and visually assess

whether trials with real artifacts are not being rejected or if trials

without real artifacts are being rejected. Of course, this requires

that you are able to determine the presence or absence of artifacts

by visual inspection. In most cases, this is fairly straightforward,

and the next section provides some hints. After the initial thresh-

old has been tested on some data, it can be adjusted and retested

until it rejects all of the trials that clearly have artifacts without

rejecting too many artifact-free trials (as assessed visually). Some

types of artifacts also leave a distinctive ‘‘signature’’ in the aver-

aged waveforms, so it is also possible to evaluate whether the

threshold adequately rejected trials with artifacts after you have

averaged the data.

It can also be useful to ask the subject to make some blinks and

eye movements at the beginning of the session so that you can eas-

ily see what that subject’s artifacts look like.

Detecting and Rejecting Specific Types of Artifacts

In this section, I will discuss several common types of artifacts and

provide suggestions for reducing their occurrence and for detecting

and rejecting them when they do occur.

Blinks Within each eye, there is an electrical gradient with posi-

tive at the front of the eye and negative at the back of the eye, and

the voltage deflections recorded near the eye are primarily caused

by the movement of the eyelids across the eyes, which modulates

the conduction of the electrical potentials of the eyes to the sur-

rounding regions. Figure 4.8 shows the typical waveshape of the

eyeblink response at a location below the eyes (labeled VEOG) and
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at several locations on the scalp (all are referenced to a mastoid

electrode). The eyeblink response consists primarily of a monopha-

sic deflection of 50–100 mV with a typical duration of 200–400 ms.

Perhaps the most important characteristic of the eyeblink response,

however, is that it is opposite in polarity for sites above versus be-

low the eye (compare, for example, the VEOG and Fz recordings in

figure 4.8). This makes it possible to distinguish between a blink,

which would produce opposite-polarity voltage shifts above versus

below the eye, and a true EEG deflection, which would typically

produce same-polarity voltage shifts above and below the eye. The
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Figure 4.8 Recordings from a vertical EOG (VEOG) electrode located under the left eye and EEG
electrodes located at Fz, Cz, and Pz, with a right mastoid reference for all record-
ings. A blink can be seen at approximately 400 ms, and it appears as a negative de-
flection at the VEOG electrode and as a positive deflection at the scalp electrodes.
Note that the deflection is quite large at Fz and then becomes smaller at Cz and
even smaller at Pz. The area labeled ‘‘Not a Blink’’ contains moderately large voltage
deflections in all of these channels, but these deflections do not reflect a blink
because the polarity is not inverted at the VEOG electrode relative to the scalp elec-
trodes. Negative is plotted upward.
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right side of figure 4.8 shows an example of a true EEG deflection,

where similar-polarity deflections appear at the VEOG and Fz sites.

Because of the polarity reversal exhibited by blinks, you should

always be suspicious of an experimental effect that is opposite in

polarity at electrode sites above versus below the eyes. Although

such a pattern is possible for a true ERP effect, it should serve as a

warning signal indicating that the averaged ERP waveforms may be

more contaminated by blinks in one condition than in the other.

Reducing the occurrence of an artifact is always better than

rejecting trials with artifacts, and there are several ways to reduce

the number of blinks. The first is to ask subjects who normally

wear contact lenses—which cause a great deal of blinking—to

wear their glasses instead of their contact lenses. These individuals

tend to blink more than average even when wearing glasses, and it

is therefore useful to keep a supply of eyedrops handy (although

you should offer them only to individuals who normally use eye-

drops, and you should use single-use bottles to avoid infection

risks). Another method for reducing the occurrence of blinks is to

use short trial blocks of 1–2 minutes, thus providing the subjects

with frequent rest breaks for blinking (this also helps to keep the

subjects more alert and focused on the task). The use of such

short trial blocks tends to slow down the progress of a record-

ing session, but I have found that this slowing can be mitigated

by using trial blocks of 5–6 minutes that are subdivided into

‘‘miniblocks’’ of 1–2 minutes, with automatic breaks of 20–30 sec-

onds interposed between the miniblocks and somewhat longer,

experimenter-controlled breaks between the full blocks.

If you see a lot of blinks (or eye movements), it is important to let

the subject know. Don’t be shy about telling subjects that they need

to do a better job of controlling these artifacts. My students tell me

that it took them a long time to become comfortable doing this, but

you really need to do it, even if it makes you uncomfortable at first.

Blinks are relatively easy to detect on single trials, and a peak-to-

peak amplitude measure is usually an adequate artifact rejection

function (a simple voltage threshold, however, is clearly inade-
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quate, because a threshold that is sufficiently low to reject all

blinks often leads to a large number of false alarms). The peak-

to-peak amplitude function can sometimes be ‘‘fooled’’ by slow

voltage shifts that cause one end of the epoch to be substantially

different in voltage from the other end, and high-frequency noise

(e.g., muscle activity) can exacerbate this. Both of these problems

can be minimized by a measure that I call a ‘‘step’’ function, which

basically looks for step-like changes in voltage. This function is

similar to performing a cross-correlation between the EEG/EOG

epoch and a function that looks like a step (i.e., a flat low interval

followed by a flat high interval). One first defines the width of the

step, with a typical value of 100 ms. For each point in the epoch,

the mean value of the preceding 100 ms is then subtracted from

the mean value of the subsequent 100 ms (or whatever the desired

step width is). After this has been computed for each point in the

epoch, the largest value is compared with the threshold to deter-

mine whether the trial should be rejected. This computationally

simple procedure is effective for two reasons. First, averaging to-

gether the voltage of a 100-ms interval essentially filters out any

high-frequency activity. Second, computing the difference between

successive 100-ms intervals minimizes the effects of any gradual

changes in voltage, which corresponds with the fact that a blink

produces a relatively sudden voltage change.

Whenever possible, one should obtain recordings from an elec-

trode below the eye and an electrode above the eye, with both elec-

trodes referenced to a common, distant site (e.g., an EOG electrode

located below one of the two eyes and a frontal EEG site, both

referenced to a mastoid electrode). This makes it possible to take

advantage of the inversion of polarity exhibited by blinks for

sites above and below the eyes, which is especially useful when

inspecting the single-trial data during the assessment of the ade-

quacy of the artifact rejection function and the threshold. As dis-

cussed above, this also makes it possible to determine whether the

ERP averages are contaminated by blinks, which leads to an inver-

sion in polarity for sites above versus below the eyes. In addition,
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this montage makes it possible to implement an even more power-

ful artifact rejection function, which I call the ‘‘differential step’’

function. This function is just like the step function, except that

one computes values at each time point for a location below and a

location above the eyes and then subtracts these two values from

each other. The maximum value of this difference is then com-

pared with a threshold to determine whether a given trial should

be rejected. The subtraction process ensures that a large value is

obtained only when the voltage is changing in opposite directions

for the electrodes above and below the eyes. A simpler but nearly

equivalent alternative is to apply the standard step function to a

bipolar recording in which the electrode beneath the eye is the

active site and the electrode above the eye is the reference.

Eye Movements Like blinks, eye movements are a result of the in-

trinsic voltage gradient of the eye, which can be thought of as a

dipole with its positive end pointing toward the front of the eye.

When the eyes are stationary, this dipole creates a constant DC

voltage gradient across the scalp, which the high-pass filter of the

amplifier eliminates. When the eyes move, the voltage gradient

across the scalp changes, becoming more positive at sites that the

eyes have moved toward. For example, a leftward eye movement

causes a positive-going voltage deflection on the left side of the

scalp and a negative-going voltage on the right side of the scalp. It

is easiest to observe these deflections with bipolar recordings, in

which an electrode lateral to one eye is the active site and an elec-

trode lateral to the other eye is the reference site.

Hillyard and Galambos (1970) and Lins et al. (1993a) have sys-

tematically measured the average size of the saccade-produced

deflection. These studies yielded the following findings: (a) the

voltage deflection at a given electrode site is a linear function of

the size of the eye movement, at least over a 15-degree range of

eye movements; (b) a bipolar recording of the voltage between elec-

trodes at locations immediately adjacent to the two eyes will yield

a deflection of approximately 16 mV for each degree of eye move-
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ment; and (c) the voltage falls off in a predictable manner as the

distance between the electrode site and the eyes increases (see

tables V and VI of Lins et al., 1993, for a list of the propagation fac-

tors for a variety of standard electrode sites).

Note also that eye movements cause the visual input to shift

across the retina, which creates a visual ERP response (saccadic

suppression mechanisms make us unaware of this motion, but

it does create substantial activity within the visual system). This

saccade-induced ERP depends on the nature of the stimuli that are

visible when the eyes move, just as the ERP elicited by a moving

stimulus varies as a function of the nature of the stimulus. Proce-

dures that attempt to correct for the EOG voltages produced by eye

movements—discussed at the end of this chapter—cannot correct

for these saccade-induced ERP responses.

Unless the subject is viewing moving objects or exhibiting grad-

ual head movements, the vast majority of eye movements will be

saccades, sudden ballistic shifts in eye position. The top three

waveforms of figure 4.9 show examples of eye movement record-

ings. In the absence of noise, a saccade would consist of a sudden

transition from the zero voltage level to a nonzero voltage level,

followed by a gradual return toward zero caused by the amplifier’s

high-pass filter (unless using DC recordings). In most cases, sub-

jects make a saccade in one direction and then another to return to

the fixation point, which would lead to a boxcar-shaped function

in a DC recording and a sloped boxcar-shaped function when using

a high-pass filter. This characteristic shape can be used to distin-

guish small eye movements from normal EEG deflections when

visually inspecting the individual trials.

Because of the approximately linear relationship between the

size of an eye movement and the magnitude of the corresponding

EOG deflection, large eye movements are relatively easy to detect

on single trials, but small eye movements are difficult to detect. If

one uses a simple voltage threshold to detect and reject eye move-

ment artifacts, with a typical threshold of 100 mV, eye movements

as large as 10 degrees can escape detection (e.g., if the voltage
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Figure 4.9 EOG and EEG recordings showing several types of artifacts. The saccades were
recorded from a horizontal EOG configuration, with the active electrode adjacent to
the right eye and the reference electrode adjacent to the left eye. The EMG, blocking,
and skin potential artifacts were recorded at Cz with a right mastoid reference. The
EKG artifacts were recorded at the left mastoid with a right mastoid reference. The
alpha waves were recorded at O2 with a right mastoid reference. Negative is plotted
upward.
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starts at �80 mV, a 10-degree eye movement in the appropriate di-

rection will cause a transition to þ80 mV, which would be entirely

within the allowable window of G100 mV). Of course, a 10-degree

eye movement greatly changes the position of the stimulus on the

retina, which can be an important confound, and the resulting volt-

age deflection is quite large relative to the size of a typical ERP

component, even at scalp sites fairly far from the eyes. However,

using a lower threshold will lead to a large number of false alarms,

and a simple threshold function is therefore an inadequate means

of rejecting trials with eye movements. Peak-to-peak amplitude is

somewhat superior to a threshold, but can be fooled by slow shifts

in voltage. The step function described above for detecting blinks

is better yet, because it is sensitive to temporally circumscribed

shifts in voltage. Perhaps the best approach, however, would be to

adapt the algorithms developed by vision researchers in models of

edge detection, which is a conceptually similar problem. To my

knowledge, however, no one has yet applied these algorithms to

the problem of saccade detection.

Using a step function, it is possible to detect eye movements as

small as 1 to 2 degrees on individual trials, but the S/N ratio of

the EOG signal makes it impossible to detect smaller eye move-

ments without an unacceptably large number of false alarms.

However, it is sometimes possible to use averaged EOG waveforms

to demonstrate that a given set of ERPs are uncontaminated by

very small systematic eye movements. Specifically, if different trial

types would be expected to elicit eye movements in different direc-

tions, you can obtain virtually unlimited resolution by averaging

together multiple trials on which the eye movements would be

expected to be similar. For example, if an experiment contains

some targets in the LVF and other targets in the RVF, one can com-

pute separate averaged EOG waveforms for the LVF and RVF tar-

gets and compare these waveforms. Any consistent differential eye

movements will lead to differences in the averaged EOG wave-

forms, and even very small eye movements can be observed due to

the improvement in S/N ratio produced by the averaging process.
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This procedure will not allow individual trials to be rejected, nor

will it be useful for detecting eye movements that are infrequent

or in the same direction for both LVF and RVF targets. However, it

can be useful when combined with the rejection of individual trials

with large eye movements in a two-tiered procedure. The first tier

consists of the rejection of individual trials with large saccades

(> 1 degree) by means of the step function. You can then examine

residual EOG activity in the averaged EOG waveforms, and ex-

clude any subjects with differential EOG activity exceeding some

criterion (e.g., 1.6 mV, corresponding to 0.1 degree) from the final

data set.

Note that the techniques described above are useful for detecting

saccades, but are not usually appropriate for detecting slow shifts

in eye position or for assessing absolute eye position. To assess

these, it is usually necessary to record the EOG using a DC ampli-

fier, although you can use high-pass filtered EOG recordings for

this purpose under some circumstances (Joyce et al., 2002).

Slow Voltage Shifts Slow voltage shifts are usually caused by a

change in the impedance of the skin or the impedance of the elec-

trodes (see skin potentials in figure 4.9). There is a small voltage

between the superficial and deep layers of skin, and this voltage

changes as the impedance changes in accordance with Ohm’s

Law, which states that voltage is proportional to the product of

current and resistance (E ¼ IR; see the appendix). If you increase

the resistance of an electrical current without changing the current

flow, the voltage must necessarily increase; thus, increasing the

resistance actually increases the voltage. Impedance is simply the

AC analog of resistance, so increases in impedance also lead to

increases in resistance. When subjects sweat (even slightly), this

causes a decrease in impedance, and the resulting slow voltage

shifts are called skin potentials. The best way to reduce skin poten-

tials is to reduce the impedance of the skin before applying the

electrodes. Because electricity preferentially follows the path of

least resistance, a change in impedance at one spot on the skin
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won’t influence the overall impedance much if there is also a

nearby spot with very low impedance. In general, the greater the

initial impedance, the greater will be the changes in impedance

due to sweating (see Picton & Hillyard, 1972). It is also helpful to

maintain the recording chamber at a cool temperature and low

humidity level. On hot and humid summer days, my lab runs a

fan in the recording chamber between trial blocks.

Voltage shifts can also be caused by slight changes in electrode

position, which are usually the result of movements by the subject.

A change in electrode position will often lead to a change in im-

pedance, thus causing a sustained shift in voltage. You can reduce

this type of artifact by making sure that the subject is comfortable

and does not move very much (a chin rest is helpful for this). If

electrodes are placed at occipital sites, the subject should not place

the back of his or her head against the back of the chair. You can

also greatly reduce slow voltage shifts by using a high-pass filter

during data acquisition, which will cause the voltage to return

gradually toward 0 mV whenever a shift in voltage occurs (see

chapter 5 for details).

It is not usually necessary to reject trials with slow voltage shifts,

as long as they are rare. If the voltage shifts are slow and random,

they shouldn’t distort the averaged ERPs very much. However, a

movement in the electrodes will sometimes cause the voltage to

change suddenly to a new level, and you can detect this by means

of a peak-to-peak amplitude function or a step function applied to

each of the EEG channels (you’ll want to keep the threshold fairly

high to avoid rejecting trials with large ERP deflections, however).

In some cases (e.g., when using very long epochs), you may wish to

reject trials with gradual shifts in voltage, and you can accomplish

this by computing the slope of the EEG across the trial and reject-

ing trials with slopes above some threshold.

Amplifier Saturation Slow voltage shifts may sometimes cause the

amplifier or ADC to saturate, which causes the EEG to be flat for

some period of time (this is also called blocking). If this happens
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frequently, you should simply use a lower gain on the amplifier; if

it never happens, you may wish to use a higher gain. As figure 4.9

illustrates, amplifier blocking is relatively easy to spot visually, be-

cause the EEG literally becomes a flat line. You could reject trials

with amplifier saturation by finding trials in which the voltage

exceeds some value that is just below the amplifier’s saturation

point, but in practice this would be difficult, because the saturation

point may vary from channel to channel and may even vary over

time. Another possibility would be to determine if there are a large

number of points with identical voltages within each trial, but this

isn’t quite optimal because the voltages might not be exactly the

same from moment to moment. A better procedure is to use a func-

tion that I call the X-within-Y-of-peak function, which Jon Hansen

developed at UCSD. This function first finds the maximum EEG

value within a trial (the peak), and then counts the number of

points that are at or near that maximum. X is the number of points,

and Y defines how close a value must be to the peak to be counted.

For example, you might want to reject any trial in which thirty or

more points are within 0.1 mV of the peak (i.e., X ¼ 30 and Y ¼ 0:1

mV). Of course, you must apply the same function to both the posi-

tive peak voltage and the negative peak voltage, and you should

apply it to every channel.

Alpha Waves Alpha waves are oscillatory EEG deflections around

10 Hz that are largest at posterior electrode sites and occur most

frequently when subjects are tired (see figure 4.9). The best way to

reduce alpha waves is to use well-rested subjects, but some indi-

viduals have substantial alpha waves even when they are fully

alert. Alpha waves can be particularly problematic when using a

constant stimulus rate, because the alpha rhythm can become

entrained to the stimulation rate such that the alpha waves are

not reduced by the averaging process. Thus, it is useful to include

a jitter of at leastG50 ms in the intertrial interval.

It is not usually worthwhile to reject trials with alpha waves: be-

cause ERPs can contain voltage deflections in the 10-Hz range, it is

possible that trials with large ERPs will be rejected along with tri-
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als containing alpha artifacts. If it is necessary to reject trials with

alpha, the best procedure is to compute the amplitude at 10 Hz on

each trial and reject trials on which the amplitude exceeds some

threshold value.

Muscle and Heart Activity The voltages created during the contrac-

tion of a muscle are called the electromyogram or EMG (see figure

4.9). These voltages are very high in frequency, and much of the

EMG is usually eliminated by the amplifier’s low-pass filter. You

can also minimize the EMG by asking the subject to relax the

muscles of the neck, jaw, and forehead and by providing a chinrest

or some other device that reduces the load on the neck muscles.4

As discussed above, it is also possible for the subject to recline in

a comfortable chair, but this can cause movements of the posterior

electrodes, resulting in large artifactual voltage shifts. Relaxation of

the muscles below the neck is usually not important, because the

EMG tends not to propagate very far.

It is not usually necessary to reject trials with EMG, assuming

that you have taken appropriate precautions to minimize the EMG.

However, if it is necessary to reject trials with EMG activity, you

can detect EMG in several ways. The best method is to perform a

Fourier transform on each trial and calculate the amount of high-

frequency power (e.g., power above 100 Hz). A simpler method

is to calculate the difference in voltage between every consecutive

pair of points in a given trial and reject the trial if the largest of

these differences exceeds a particular value.

Note that some stimuli will elicit reflexive muscle twitches.

These are particularly problematic because they are time-locked

to the stimulus and are therefore not attenuated by the averaging

process. These also tend to be sudden, high-frequency voltage

changes, but they are usually limited to a very short time period

and are therefore difficult to detect by examining the high-frequency

power across the entire trial. To reject these artifacts, it is best

to look for sudden shifts in voltage during the brief time period

during which they are likely to occur (usually within 100 ms of

stimulus onset).
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The beating of the heart (the EKG) can also be observed in EEG

recordings in some subjects; figure 4.9 shows its distinctive shape.

The EKG is usually picked up by mastoid electrodes, and if a

mastoid is used as a reference, the EKG is seen in inverted form in

all of the electrode sites. The EKG can sometimes be reduced by

slightly shifting the position of the mastoid electrode, but usually

there is nothing that can be done about it. In addition, this artifact

usually occurs approximately once per second during the entire

recording session, so rejecting trials with EKG deflections will usu-

ally lead to the rejection of an unacceptably large proportion of

trials. Fortunately, this artifact is almost never systematic, and it

will simply decrease the overall S/N ratio. In other words, there

isn’t much you can do, and it’s not usually a significant problem,

so don’t worry about it.

The previous paragraph raises an important point. If you see an

artifact or some type of noise equally in all of your EEG channels,

it is probably being picked up by the reference electrode. Most arti-

facts and noise sources will be more prominent at some electrodes

than at others, but any signals picked up by the reference electrode

will appear in inverted form in all electrodes that use that refer-

ence. However, if you are using bipolar recordings for some of

your channels (e.g., for EOG recordings), these recordings will not

have artifacts or noise arising from the main reference electrode.

This can help you identify and eliminate the sources of noise and

artifacts.

Artifact Correction

Artifact rejection is a relatively crude process, because it com-

pletely eliminates a subset of trials from the ERP averages. As Grat-

ton, Coles, and Donchin (1983) discussed, there are three potential

problems associated with rejecting trials with ocular artifacts. First,

in some cases, discarding trials with eye blinks and eye move-

ments might lead to an unrepresentative sample of trials. Second,

there are some groups of subjects (e.g., children and psychiatric

patients) who cannot easily control their blinking and eye move-
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ments, making it difficult to obtain a sufficient number of artifact-

free trials. Third, there are some experimental paradigms in which

blinks and eye movements are integral to the tasks, and rejecting

trials with these artifacts would be counterproductive. Under these

conditions, it would be useful to be able to subtract away the vol-

tages due to eye blinks and eye movements rather than rejecting

trials with these artifacts.

Researchers have developed several artifact correction proce-

dures for this purpose (e.g., Berg & Scherg, 1991a, 1994; Gratton,

Coles, & Donchin, 1983; Lins et al., 1993b; Verleger, Gasser, &

Moecks, 1982). When the eyes blink or move, voltages are created

around the eyes that propagate to the scalp electrodes, and the

voltage recorded at a given site will be equal to the value at the

eyes multiplied by a propagation factor, plus any EEG activity

present at that site. The simplest way to correct for eye artifacts is

to calculate the propagation factor between the eyes and each of

the scalp electrodes and subtract a corresponding proportion of

the recorded EOG activity from the ERP waveform at each scalp

site. For example, Lins and colleagues (1993a) found that 47 per-

cent of the voltage present in an EOG recording propagated to the

Fpz electrode, 18 percent to the Fz electrode, and 8 percent to the

Cz electrode. To subtract away the EOG contribution to the aver-

aged ERP waveforms at these electrode sites, it would be possible

to subtract 47 percent of the EOG waveform from the Fpz elec-

trode, 18 percent from the Fz electrode, and 8 percent from the Cz

electrode.

There is a very significant problem with this approach, however.

Specifically, the EOG recording contains brain activity in addi-

tion to true ocular activity and, as a result, the subtraction proce-

dure ends up subtracting away part of the brain’s response as well

as the ocular artifacts. There are additional problems with this

simple-minded subtraction, such as the assumption that the propa-

gation factors will be the same for eye blinks and eye movements (a

problem first addressed by Gratton, Coles, & Donchin, 1983). More

sophisticated versions of this approach address these additional

problems, and can work fairly effectively. For example, one can
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use dipole modeling procedures to isolate the ocular activity (Berg

& Scherg, 1991b), which works fairly well because the approximate

locations of the dipoles are known in advance.

Although these artifact correction techniques can be useful or

even indispensable for certain tasks and certain types of subjects,

they have some significant drawbacks. First, some of these tech-

niques can significantly distort the ERP waveforms and scalp dis-

tributions, making the data difficult to interpret. On the basis of a

detailed comparison of several techniques, Lins et al. (1993b) con-

cluded that source analysis procedures provided the least distor-

tion, and other techniques (such as those of Gratton, Coles, &

Donchin, 1983; Verleger, Gasser, & Moecks, 1982) can yield signifi-

cant distortion. However, even the source analysis procedures may

yield some distortion, especially when non-optimal parameters are

used.

A newer and promising approach is to use independent compo-

nents analysis (ICA). This approach is well justified mathemati-

cally, and recent studies demonstrated that this technique works

very well at removing blinks, eye movements, and even electrical

noise (Jung, Makeig, Humphries et al., 2000; Jung, Makeig, Wester-

field et al., 2000) (see also the similar technique developed by

Joyce, Gorodnitsky, & Kutas, 2004). However, these studies were

conducted by the group who originally developed ICA, so they

may not have been motivated to find conditions under which ICA

performs poorly. In particular, this approach assumes that the

time course of the artifacts is independent of the time course of

the ERP activity, which may not always (or even usually) be a

correct assumption. For example, if detecting a target leads to

both a P3 wave and a blink, the blink and the P3 wave will have

correlated time courses, and this could lead to inaccurate artifact

correction. Until an independent laboratory rigorously tests this

technique, it will be difficult to know whether this sort of situation

leads to significant distortions.

A second problem with artifact correct techniques is that these

techniques may require significant additional effort. For example,
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Lins et al. (1993b) recommended that recordings should be ob-

tained from at least seven electrodes near the eyes. In addition,

one must conduct a set of calibration runs for each subject and

carry out extensive signal processing on the data. Thus, it is im-

portant to weigh the time saved by using artifact correction pro-

cedures against the time required to satisfactorily implement these

procedures.

A third problem with these techniques is that they cannot ac-

count for the changes in sensory input caused by blinks and eye

movements. For example, if a subject blinks at the time of a visual

stimulus, then this stimulus may not be seen properly, and this

obviously cannot be accounted for by artifact correction tech-

niques. In addition, as the eyes move, the visual world slides across

the retina, generating a sensory ERP response. Similarly, eye blinks

and eye movements are accompanied by motor ERPs. Artifact cor-

rection procedures do not typically address these factors, which

are especially problematic when task-relevant stimuli trigger the

blinks or eye movements.

Because of these limitations, I would recommend against using

artifact correction procedures unless the nature of the experiment

or subjects makes artifact rejection impossible. When artifact cor-

rection is necessary, I would recommend using one of the newer

and less error-prone techniques, such as ICA or the source localiza-

tion techniques Lins et al. (1993b) discuss. Moreover, I would

strongly recommend against using the simpler techniques that are

often available in commercial ERP analysis packages (such as the

procedure of Gratton et al., 1983). When you use these techniques,

it is difficult to know the extent to which the artifact correction

procedures distort the results.

Suggestions for Further Reading

The following is a list of journal articles and book chapters that

provide useful information about averaging, artifact rejection, and

artifact correction.
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5 Filtering

This chapter discusses the application of filters to the EEG during

data acquisition and to ERP waveforms before and after the averag-

ing process. It is absolutely necessary to use filters during data ac-

quisition, and it is very useful to apply filters offline as well, but

filtering can severely distort ERPs in ways that ERP researchers

frequently do not appreciate. For example, filters may change the

onset and duration of an ERP component, may make monophasic

waveforms appear multiphasic, may induce artificial oscillations,

and may interfere with the localization of generator sources. This

chapter will explain how these distortions arise and how they can

be prevented. To avoid complex mathematics, I will simplify the

treatment of filtering somewhat in this chapter, but there are sev-

eral books on filtering that the mathematically inclined reader may

wish to read (e.g., Glaser & Ruchkin, 1976). Note also that the term

filter can refer to any of a large number of data manipulations, but

this chapter will be limited to discussing the class of filters that

ERP researchers typically use to attenuate specific ranges of fre-

quencies, which are known as finite impulse response filters.

ERP waveforms are generally conceptualized and plotted as

time-domain waveforms, with time on the X axis and amplitude

on the Y axis. In contrast, filters are typically described in the

frequency-domain, with frequency on the X axis and amplitude or

power on the Y axis.1 Because ERP researchers are typically more

interested in temporal information rather than frequency informa-

tion and because temporal information may be seriously distorted

by filtering, it is important to understand filtering as a time-domain

operation as well as a frequency-domain operation.2 This chap-

ter therefore describes how filters operate in both the time and



frequency domains, as well as the relationship between these

domains. I will focus primarily on the digital filters that are used

for offline filtering, but the principles discussed here also apply to

the analog filters that are found in amplifiers. My goal in this chap-

ter is to provide an intuitive understanding of how filters work,

and I have therefore minimized the use of equations as much as

possible and limited the equations to simple algebra. If you under-

stand how summations work (i.e., the S symbol), then you know

enough math to understand this chapter.

Even though an advanced math background is not necessary to

understand this chapter, some of the concepts are pretty compli-

cated. As a result, you may not want to spend the time required to

understand exactly how filters work and exactly why they distort

ERP waveforms in particular ways, especially on your first pass

through the book. If so, you can just read the next two sections

(‘‘Why Are Filters Necessary’’ and ‘‘What Everyone Should Know

About Filtering’’). These sections will provide enough information

to keep you from getting into too much trouble with filters, and you

can read the rest of the chapter later.

Why Are Filters Necessary?

The most important message of this chapter is that filters can sub-

stantially distort ERP data. Given that this is true, it is useful to ask

why filters are necessary in the first place. There are two answers

to this question, the first of which is related to the Nyquist Theo-

rem, discussed previously in chapter 3. This theorem states that it

is possible to convert a continuous analog signal (such as the EEG)

into a set of discrete samples without losing any information, as

long as the rate of digitization is at least twice as high as the

highest frequency in the signal being digitized. This is fundamen-

tally important for the data acquisition process, because it means

that we can legitimately store the EEG signal as a set of discrete

samples on a computer. However, this theorem also states that if

the original signal contains frequencies that are more than twice

as high as the digitization rate, these very high frequencies will
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appear as artifactual low frequencies in the digitized data (this is

called aliasing). Consequently, EEG amplifiers have filters that one

can use to suppress high frequencies; these filters are generally set

to attenuate frequencies that are higher than a half of the sampling

rate. For example, in a typical cognitive ERP experiment, the digi-

tization rate might be 250 Hz, and it would therefore be necessary

to make sure that everything above 125 Hz is filtered. It would be

tempting to choose a filter cutoff frequency of 125 Hz, but a cutoff

frequency of 125 Hz just means that the power (or amplitude) has

been reduced by 50 percent at 125 Hz, and there will be consider-

able remaining activity above 125 Hz. It is therefore necessary to

select a substantially lower value such as 80 Hz (in practice, the

digitization rate should be at least three times as high as the cutoff

value of the filter).

The second main goal of filtering is the reduction of noise, and

this is considerably more complicated. The basic idea is that the

EEG consists of a signal plus some noise, and some of the noise is

sufficiently different in frequency content from the signal that it

can be suppressed simply by attenuating certain frequencies. For

example, most of the relevant portion of the ERP waveform in a

typical cognitive neuroscience experiment consists of frequencies

between 0.01 Hz and 30 Hz, and contraction of the muscles leads

to an EMG artifact that primarily consists of frequencies above 100

Hz; consequently, the EMG activity can be eliminated by suppress-

ing frequencies above 100 Hz and this will cause very little change

to the ERP waveform. However, as the frequency content of the sig-

nal and the noise become more and more similar, it becomes more

and more difficult to suppress the noise without significantly

distorting the signal. For example, alpha waves can provide a sig-

nificant source of noise, but because they are around 10 Hz, it is

difficult to filter them without significantly distorting the ERP

waveform. Moreover, even when the frequency content of the

noise is very different from that of the signal, the inappropriate

application of a filter can still create significant distortions.

In addition to suppressing high frequencies, filters are also used

in most experiments to attenuate very low frequencies. The most
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common use of such filters is to remove very slow voltage changes

of non-neural origin during the data acquisition process. Specifi-

cally, factors such as sweating (which creates skin potentials) and

drifts in electrode impedance can lead to slow, sustained changes

in the baseline voltage of the EEG signal, and it is usually a good

idea to remove these slow voltage shifts by filtering frequencies

lower than approximately 0.01 Hz. This is especially important

when obtaining recordings from patients or from children, because

head and body movements are one common cause of these sus-

tained shifts in voltage. If these shifts are not eliminated, they may

cause the amplifier to saturate and data to be lost. Even if they do

not cause amplifier saturation, they are very large voltages and

may cause large distortions in the average ERP waveforms. Thus,

it is almost always a good idea to filter the very low frequencies

(< 0.01 Hz).

What Everyone Should Know about Filtering

Any waveform can be decomposed into a set of sine waves of

various frequencies and phases, and the waveform can be recon-

structed by simply summing these sine waves together. Filters are

usually described in terms of their ability to suppress or pass

various different frequencies. The most common types of filters

are: (1) low-pass filters, which attenuate high frequencies and pass

low frequencies; (2) high-pass filters, which attenuate low frequen-

cies and pass high frequencies; (3) bandpass filters, which attenu-

ate both high and low frequencies, passing only an intermediate

range of frequencies; and (4) notch filters, which attenuate some

narrow band of frequencies and pass everything else.

Filters and Amplitude Attenuation

The properties of a filter are usually expressed by its transfer func-

tion, the function that determines how the input of the filter is

‘‘transferred’’ to the output of filter. The transfer function can be
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broken down into two components, a frequency response function

that specifies how the filter changes the amplitude of each fre-

quency, and a phase response function that specifies how the filter

changes the phase of each frequency. Figure 5.1A shows an exam-

ple of the frequency response function of a low-pass filter with a

half-amplitude cutoff at 30 Hz, and it also shows how this filter

suppresses 60-Hz noise in an actual ERP waveform. In ERP re-

search, a filter is often described only in terms of its half-amplitude

cutoff, which is the frequency at which the amplitude is cut by 50

percent (sometimes the cutoff frequency is specified in terms of

power rather than amplitude; amplitude reaches 71 percent when

power reaches 50 percent). As figure 5.1A illustrates, however,

there is quite a bit of attenuation at frequencies below the half-

amplitude cutoff, and the attenuation is far from complete for

frequencies quite a bit higher than the half-amplitude cutoff. None-

theless, this filter effectively suppresses the 60-Hz noise in the

waveform while retaining the waveform’s basic shape.

Figure 5.1B shows the frequency response function of a high-

pass filter with a half-amplitude cutoff at approximately 2.5 Hz

and the effect of this filter on an ERP waveform. As you can see,

the large, broad upward deflection (similar to a P3 wave) is greatly

reduced in amplitude by this filter, whereas the initial, higher

frequency deflections (similar to P1 and N1 waves) are not reduced

as much. However, the amplitudes of the earlier components are

influenced somewhat, and small artifactual peaks have been cre-

ated at the beginning and end of the waveform. This leads to the

most important point of this section: filters can significantly distort

ERP waveforms, changing the amplitude and timing of the ERP

components and adding artifactual peaks.

High-pass filters are often described in terms of their time

constants rather than their half-amplitude cutoffs. As figure 5.1C

shows, if the input to a high-pass filter is a constant voltage, the

output of the filter will start at this voltage and then gradually

return toward zero, and the filter’s time constant is a measure of

the rate at which this occurs. The decline in output voltage over
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time is exponential, so the value never quite reaches zero. Conse-

quently, the time constant is expressed as the time required for the

filter’s output to reach 1=e (37 percent) of the starting value. As the

half-amplitude cutoff becomes higher, the time constant becomes

shorter. If you know the half-power cutoff frequency of a high-pass

filter ( fc, the frequency at which the filter’s output is reduced by 3

dB), the time constant can be computed as 1=ð2pfcÞ.

Filters and Latency Shift

So far, we have focused on the effects of filters on the amplitude at

each frequency, but it also important to keep in mind that filters

usually influence the phase (time shift) at each frequency as well.

In particular, all analog filters (such as those in EEG amplifiers)

shift the latency of the signal, and most analog filters shift the

latency by different amounts for different frequencies. These shifts

become more pronounced as the cutoff frequency of a low-pass

filter is made lower and the cutoff frequency of a high-pass filter is

made higher. In contrast, most digital filters (filters that are applied

offline) do not cause a phase shift. Thus, it is usually best to do as

little filtering as possible prior to digitizing the data and to do most

of the filtering offline.

How Filters Are Used

Some filtering is essential in amplifying and digitizing the EEG

signal. First, it is necessary to filter out high frequencies with

a low-pass filter before digitizing the data to ensure that the

H Figure 5.1 Basics of filtering. (A) Frequency response function of a low-pass filter with a half-
amplitude cutoff at 30 Hz, and application of this filter to an ERP waveform. (B) Fre-
quency response function of a high-pass filter with a half-amplitude cutoff at 2.5 Hz,
and application of this filter to an ERP waveform. (C) Example of the time constant
of a high-pass filter. A constant input to the filter is shown on the left, and the
decaying output of the filter is shown on the right. (D) Noisy ERP waveform low-
pass filtered with various half-amplitude cutoffs.
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sampling rate is at least twice as high as the highest frequency in

the signal. Second, it is almost always necessary to filter out very

low frequencies (e.g., <0.01 Hz) so that slow, non-neural electrical

potentials (e.g., skin potentials) do not bring the signal outside of

the operating range of the amplifier and analog-to-digital converter.

ERP researchers also frequently use a line frequency filter, a notch

filter that filters out noise generated by AC electrical devices (usu-

ally 50 Hz or 60 Hz). As I will discuss later in this chapter, how-

ever, notch filters significantly distort the data and should be

avoided if possible. Chapter 3 described some strategies for elimi-

nating electrical noise at the source, but if it is impossible to

reduce line-frequency noise sufficiently, a low-pass filter with a

half-amplitude cutoff at 30 Hz can effectively filter out the noise

without distorting the data as much as a notch filter.

ERP researchers sometimes use low-pass and high-pass filters to

‘‘clean up’’ noisy data. For example, figure 5.1D shows an ERP

waveform that was mildly filtered (.01–80 Hz) prior to amplifica-

tion and the same waveform after it was low-pass filtered offline

with progressively lower cutoff frequencies. As the cutoff fre-

quency decreases, the waveform becomes smoother and generally

nicer looking. From this example, you might think that filtering is

a good thing. However, the most important thing that I would like

to communicate in this chapter is that filtering always distorts the

ERP waveform, and the more heavily the data are filtered, the

worse the distortion will be.

How Filters Can Distort Your Data

The distortions caused by filtering can be summarized by a key

principle that you should commit to memory now and recall every

time the topic of filtering comes up: precision in the time domain is

inversely related to precision in the frequency domain. In other

words, the more tightly you constrain the frequencies in an ERP

waveform (i.e., by filtering out a broad range of frequencies), the

more the ERP waveform will become spread out in time. Figure
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5.2A illustrates one type of spreading, showing how low-pass fil-

tering an ERP waveform causes the filtered waveform to start ear-

lier and end later than the unfiltered waveform. Low-pass filters

almost always have this effect of ‘‘smearing out’’ the waveform

and distorting the onset and offset times of the ERP components

and experimental effects. Thus, if you see that an experimental

effect starts at 120 ms in low-pass filtered waveforms, the effect

may have actually started at 150 ms.

B
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Figure 5.2 Examples of distortions caused by filtering. (A) Effects of low-pass filtering on onset
and offset times of an ERP waveform. (B) Artifactual oscillations caused by a high-
pass filter. (C) Frequency response function of the filter used in (B).
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As figure 5.2B illustrates, high-pass filters also cause the ERP

waveform to become spread out in time, but the distortion in

this case consists of a series of up and down sinusoidal deflec-

tions. Thus, not only did this particular filter cause artifactual

activity to begin well before the actual onset of activity, it created

the appearance of oscillations in the waveform. This sort of effect

could also cause an experimental effect in a component of one

polarity to appear as an effect in an earlier component of opposite

polarity (e.g., an increase in N1 amplitude in the original wave-

form might appear as an increase in P1 amplitude in the filtered

waveform). As you can imagine, using this sort of filter might

cause someone to completely misinterpret the results of an ERP

experiment.

High-pass filters do not always create artifactual oscillations.

For example, the high-pass filter shown in figure 5.1B produces a

single opposite-polarity artifactual deflection at each end of the

ERP waveform rather than a multi-peaked oscillation. The long-

lasting and oscillating pattern of distortion the filter shown in

figure 5.2B creates is a consequence of the filter’s frequency re-

sponse function, which is shown in figure 5.1C. Whereas the filter

in figure 5.1B has a relatively gradual transition between suppress-

ing the lowest frequencies and passing higher frequencies, the filter

in figure 5.2B completely blocks a fairly broad set of low frequen-

cies and then suddenly starts passing higher frequencies. That is,

the filter in figure 5.2B has more precision in terms of its frequency

properties than the filter in figure 5.1B, and this brings us back to

the principle that precision in the time and frequency domains are

inversely related. That is, more sudden changes in a filter’s fre-

quency response function lead to broader temporal distortions in

the ERP waveform. Thus, a filter with a really sharp cutoff in its

frequency response function might seem to be ideal, but a sharp

cutoff usually means that the filter will cause more severe distor-

tion of the ERP waveform than a filter with a gentler cutoff. Makers

of commercial ERP systems often tout the sharp cutoffs of their

filters, but such filters are usually a bad idea.
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If you want to see how a filter might be distorting your ERP

waveforms, the easiest thing to do is to pass some sort of known,

artificial waveform through the filter and compare the original and

filtered waveforms. For example, many amplifiers contain calibra-

tors that produce a single pulse of a square wave, and you can

record this and filter it with various types of filters.

Recommendations

Now that I’ve discussed why filters are used and how they can dis-

tort your data, I will make some specific recommendations. These

recommendations might not be appropriate for every experiment,

but they should be appropriate for the vast majority of ERP experi-

ments in cognitive neuroscience.

First, keep Hansen’s Axiom in mind: There is no substitute for

clean data (see chapter 3). Some minor filtering is necessary when

first collecting the data, and a modest amount of additional filter-

ing can be helpful under some conditions. However, filters cannot

help you if your data are noisy because of variability across sub-

jects, variability across trials, a small number of trials in your aver-

ages, and so on. Filters may make the data look better under these

conditions, but this will be an illusion that may lead you to draw

incorrect conclusions.

Second, during the amplification and digitization process, you

should do as little filtering as possible. It’s always possible to filter

the data more offline, but you can never really ‘‘unfilter’’ data that

have already been filtered. The low-pass filter should be set at be-

tween one third and one fourth of the sampling rate (and I would

recommend a sampling rate of between 200 and 500 Hz for most

experiments). For experiments with highly cooperative subjects

(e.g., college students), I would recommend using a high-pass filter

of 0.01 Hz. Some amplifiers allow you to do no high-pass filtering

at all (these are called DC recordings), but unless you are looking

at very slow voltage shifts, this will lead to an unacceptable level

of noise due to skin potentials and other slow artifacts.
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If you are recording from less cooperative subjects (e.g., patients

or children), you may need to use a higher high-pass cutoff, such

as 0.05 Hz or even 0.1 Hz. The main problem with such subjects

is that they may move around a lot, which causes changes in the

baseline electrical potential that will slowly resolve over time.

This creates a lot of noise in the data that averaging may not suffi-

ciently attenuate, and it can also lead the amplifiers to saturate. But

if you use a higher high-pass cutoff, be aware that this is distort-

ing your data somewhat and reducing the amplitude of the lower-

frequency components, such as the P3 and N400 waves. Indeed,

Duncan-Johnson and Donchin (1979) showed many years ago that

relatively high cutoff frequencies lead to a substantial reduction in

apparent P3 amplitude.

During amplification, you should avoid using a notch filter (also

called a line-frequency filter) to reduce line-frequency noise. These

filters can cause substantial distortion of the ERP waveform. As

chapter 3 described, there are various precautions you can take to

eliminate line-frequency noise before it enters the EEG, and this is

the best approach. However, you may sometimes be faced with

such a huge level of line-frequency noise that the incoming EEG is

completely obscured, and on such occasions you may need to use a

notch filter to eliminate this noise.

My third recommendation is to keep offline filtering to a mini-

mum. If the averaged ERP waveforms are a little fuzzy looking,

making it difficult to see the experimental effects, it can be helpful

to apply a low-pass filter with a half-amplitude cutoff somewhere

between 20 and 40 Hz. This can dramatically improve the appear-

ance of the ERP waveforms when you plot them, and the temporal

distortion should be minimal (especially if you use a filter with a

relatively gentle cutoff). This sort of filtering will also be helpful if

you are using peak amplitude or peak latency measures, but it is

unnecessary if you are using mean amplitude or fractional area

latency measures (see chapter 6 for more details). In fact, because

filters spread out an ERP waveform, measuring the mean ampli-

tude in a particular latency range from filtered waveforms (e.g.,
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200–250 ms poststimulus) is equivalent to measuring the mean

amplitude from a broader range in the original unfiltered wave-

forms (e.g., 175–275 ms). My laboratory typically uses a low-pass

filter with a half-amplitude cutoff at 30 Hz for plotting the data,

but no offline filtering for measuring component amplitudes.

My fourth recommendation is to avoid using high-pass filters

altogether (except during data acquisition, as described above).

High-pass filters are much more likely than low-pass filters to

cause major distortions of your ERP waveforms that might lead

you to draw incorrect conclusions about your data. There are occa-

sions when high-pass filters can be useful, such as when dealing

with overlapping activity from preceding and subsequent stimuli.

However, high-pass filters are sufficiently dangerous that you

should use them only if you really understand exactly what they

are doing. The remainder of this chapter will help provide you

with this understanding.

Filtering as a Frequency-Domain Procedure

The key to understanding filters is to understand the relation-

ship between the time domain and the frequency domain. A time-

domain representation of an ERP is simply a plot of the voltage at

each time point, as figure 5.3A illustrates. A frequency-domain

representation of an ERP is a plot of the amplitude (and phase)

at each frequency, as figure 5.3B illustrates. Time-domain and

frequency-domain representations contain exactly the same infor-

mation, viewed from different perspectives, and it is possible to

transform one type of representation into the other via Fourier

analysis, a technique developed in the 1800s by the mathematician

Joseph Fourier.

The basic principle of Fourier analysis is that any time-domain

waveform can be exactly represented by the sum of a set of sine

waves of different frequencies and phases. In other words, it is pos-

sible to create any waveform (even a momentary spike or a square

wave) by adding together a set of sine waves of varying frequencies
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and phases. The Fourier transform is a mathematical procedure

that takes a time-domain signal (such as an ERP waveform) as an

input and computes the amplitudes and phases of the sine waves

that would need to be added together to recreate the input wave-

form. As figure 5.3B illustrates, the output of the Fourier transform

is usually shown as a plot of amplitude and phase3 as a function of

frequency. It is also possible to use the inverse Fourier transform to

convert a frequency-domain representation back into the original

time-domain representation, thus obtaining the original voltage�
time ERP waveform.

In the context of Fourier analysis, one can conceptualize filtering

as a series of three steps:

1. The time-domain ERP waveform is converted into a frequency-

domain representation.

2. The to-be-filtered frequency range is set to zero in the frequency-

domain representation.

3. The modified frequency-domain representation is converted back

into the time domain.

This completely eliminates one set of frequencies from the ERP

waveform without influencing the other frequencies. As I will dis-

cuss in detail below, a sudden drop-off in the frequency domain

leads to some undesirable consequences, so it is necessary to add

a slight complication to this three-step procedure. Specifically,

H Figure 5.3 Example of the frequency-domain conceptualization of filtering. (A) Unfiltered ERP
waveform, contaminated by substantial noise at 60 Hz. (B) Transformation of (A)
into the frequency domain, with a clear peak at 60 Hz. (C) Frequency response func-
tion of a filter that can be used to remove the 60-Hz noise from (B) while retaining
most of the signal, which is primarily confined to frequencies below 20 Hz. (D)
Product of (B) and (C); for each frequency point, the magnitude in (B) is multiplied
by the magnitude in (C). Note that (D) is nearly identical to (B) in the low frequency
range, but falls to zero at high frequencies. (E) Transformation of (D) back into the
time domain, where it closely resembles the original ERP waveform in (A), except
for the absence of the 60-Hz noise. Note that the phase portion of the frequency-
domain plots has been omitted here for the sake of simplicity, although the phase
information is crucial for transforming between the time and frequency domains.
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rather than setting some range of frequencies to zero and leaving

the other frequencies untouched, it is useful to shift gradually

from no attenuation to complete attenuation. The function that

defines this gradual shift in attenuation as a function of frequency

is called the frequency response function of a filter. More specifi-

cally, the frequency response function contains a scaling factor for

each frequency that represents the extent to which that frequency

will be passed by the filter, with a value of 1 for frequencies that

will be unaffected by the filter, a value of zero for frequencies that

will be completely suppressed, and an intermediate value for fre-

quencies that will be partially attenuated. This function is used in

step two of the filtering process: rather than setting some frequen-

cies to zero, the frequency response function is multiplied by the

frequency-domain representation of the ERP waveform to attenuate

each frequency by a specific amount (i.e., each frequency in the

ERP is multiplied by the corresponding scaling factor in the fre-

quency response function).

Figure 5.3 illustrates this approach to filtering. Panel A shows a

time-domain representation of an unfiltered ERP waveform, which

contains an obvious 60-Hz noise oscillation. Panel B shows the

Fourier transform of this waveform. Note that most of the power is

at low frequencies (< 20 Hz), with a spike at 60 Hz corresponding

to the noise oscillation in the time-domain waveform. Panel C

shows the frequency response function of a filter that passes the

very lowest frequencies and then gradually falls off at higher fre-

quencies. Panel D shows the result of multiplying the frequency-

domain representation of the ERP waveform (i.e., panel B) by the

frequency response function of the filter (i.e., panel C). Note that

the result is very similar to the waveform in panel B, but the spike

at 60 Hz is missing. Panel E shows the result of applying the

inverse Fourier transform to the waveform in panel D, which

converts the frequency-domain representation back into the time

domain. The result is an ERP waveform that is very similar to

the original waveform in panel A, but without the 60-Hz noise

oscillation.
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Note that it is possible to use any set of scaling factors for the

frequency response function shown in figure 5.3C. For example,

you could set all of the odd-numbered frequencies to 1 and all of

the even-numbered frequencies to zero, or you could use the

profile of the Rocky Mountains near Banff to determine the scaling

factors. In practice, however, frequency response functions are

usually smoothly descending (low-pass filters), smoothly ascend-

ing (high-pass filters), flat at 1.0 except for a notch (notch filters),

or flat at 0.0 for the lowest and highest frequencies with a single

peak at intermediate frequencies (band-pass filters).

The above discussion has concentrated on the amplitude of each

frequency and has neglected phase. A frequency-domain represen-

tation actually has two parts, one representing the amplitude at

each frequency and the other representing the phase at each fre-

quency. Filters may shift the phases of the frequencies as well as

modulating their amplitudes, and to fully characterize a filter in

the frequency domain, it is necessary to specify its transfer func-

tion, which specifies both the frequency gain and the phase shift

at each frequency. It is usually desirable for the phase portion of

the transfer function to be zero for all frequencies, thereby leaving

the phases from the ERP waveform unchanged. This is usually

possible when digital filters are applied offline, but is impossible

when analog filters are applied online (e.g., when low and high

frequencies are removed from the EEG during data acquisition).

However, certain analog filters have transfer functions in which

the phase portion increases linearly as a function of frequency

(e.g., Bessel filters), which means that all frequencies are shifted

by the same amount of time; the output of such filters can be

shifted back by this amount during the averaging process, thus

eliminating the phase shift produced by the filter.

A Problem with Frequency-Domain Representations

Although it is mathematically convenient to conceptualize filtering

as a frequency-domain procedure, this approach has an important
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shortcoming when applied to transient ERP waveforms. The diffi-

culty stems from the fact that time-domain waveforms are repre-

sented in Fourier analysis as the sum of a set of infinite-duration

sine waves, whereas transient ERP waveforms are finite in dura-

tion. Although the Fourier representation is accurate in the sense

that ERPs can be transformed between the time and frequency

domains with no loss of information, it is inaccurate in the sense

that ERPs actually consist of finite-duration voltage deflections

rather than sets of infinite-duration sine waves. The biologically

unrealistic nature of the frequency-domain representation leads to

a number of problems that I will discuss in this chapter.

At this point, let’s consider a particularly extreme case in which

activity at precisely 5 Hz is filtered from an ERP waveform. Com-

pletely suppressing the 5-Hz component of an ERP waveform

would be equivalent to computing the amplitude and phase in the

5-Hz frequency band and then subtracting a sine wave with this

amplitude and phase from the time-domain ERP waveform. After

subtraction of this infinite-duration sine wave, the resulting wave-

form would contain a 5-Hz oscillation during intervals where the

unfiltered ERP waveform was flat, such as the prestimulus interval.

This is counterintuitive, because filtering out the activity at 5 Hz

actually creates a 5-Hz oscillation in the prestimulus interval.

Moreover, because the response to a stimulus obviously cannot

precede the stimulus in time, this prestimulus oscillation reflects

an impossible state of affairs. Thus, because Fourier analysis repre-

sents transient ERP waveforms as the sum of infinite-duration sine

waves, which is a biologically incorrect representation, the use of

analytical techniques based on frequency-domain representations

may lead to serious distortions.

As discussed earlier in this chapter, an important rule for under-

standing the distortion that filters may produce is that there is an

inverse relationship between the spread of a signal in the time

domain and the spread of the same signal in the frequency domain;

a signal that is tightly localized in time will be broadly localized in
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frequency, and vice versa. For example, a signal with a single

sharp spike in the frequency domain will translate into an infinite-

duration sine wave in the time domain, and a single sharp spike

in the time domain will translate into an even spread across all

frequencies in the frequency domain. Because of this inverse rela-

tionship between the time and frequency domains, using filters to

restrict the range of frequencies in a signal necessarily broadens

the temporal extent of the signal. The more narrowly a filter is

specified in the frequency domain, the greater the temporal spread.

As a result, filtering out a single frequency, as in the 5-Hz filter

example described above, leads to an infinite spread of the filtered

waveform in time.

Filtering as a Time-Domain Procedure

We will begin our description of time-domain filtering by consider-

ing a common-sense approach to suppressing high-frequency

noise, such as that present in the ERP waveform shown in figure

5.4A. To attenuate this noise, one could simply average the voltage

at each time point with the voltages present at adjacent time

points. In other words, the filtered voltage at time point n would

be computed as the average of the unfiltered voltages at time points

n� 1, n, and nþ 1. Figure 5.4B shows the results of applying such

a filter to the ERP waveform in figure 5.4A; this simple filter has

clearly eliminated much of the high frequency noise from the

waveform. To filter a broader range of frequencies, one can extend

this filtering technique by simply averaging together a greater

number of points. Figure 5.4C shows the results of averaging seven

adjacent points together instead of the three averaged together for

figure 5.4B, and this can be seen to further reduce the high fre-

quency content of the waveform. The following simple formula

formalizes this method of filtering:

fERPi ¼
Xn

j¼�n

wERPiþj ð5:1Þ
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Figure 5.4 Example of filtering an ERP waveform by averaging together the voltages surround-
ing each time point. (A) Unfiltered ERP waveform, contaminated by substantial high-
frequency noise. (B) Result of filtering the waveform in (A) by averaging the voltage
at each time point with the voltages at the immediately adjacent time points. (C) Re-
sult of filtering the waveform in (A) by averaging the voltage at each time point with
the voltages at the three time points on either side. (D) High-pass-filtered waveform,
constructed by subtracting the filtered waveform in (C) from the unfiltered waveform
(A).
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where: fERPi is the filtered ERP waveform at time i; ERPi is the

unfiltered ERP waveform at time i; n is the number of points to be

averaged together on each side of the current time point; and

w ¼ 1=ð2nþ 1Þ (which is the weighting value).

This equation states that the filtered voltage at a given time point

is computed by multiplying each of the n voltages on either side of

the current time point and the value at the current time point by

the weighting value w and then adding together these weighted

values. This is equivalent to averaging these 2nþ 1 points (n points

before the current point þ n points after the current point þ the

current point ¼ 2nþ 1).

It is worth spending some time to make sure that you understand

equation 5.1. Once you understand it, you will have understood

the essence of digital filtering.

One can extend this filtering technique in a straightforward

manner to attenuate low frequencies instead high frequencies. The

unfiltered waveform is equal to the sum of its high frequency

components and its low frequency components; as a result, one

can filter out the low frequencies by simply subtracting the low-

pass-filtered waveform from the unfiltered waveform. Figure 5.4D

shows the result of this form of high-pass filtering, which is equal

to the waveform in figure 5.4A minus the waveform in figure 5.4C.

When filtering is accomplished by simply averaging together the

2nþ 1 points surrounding each time point, all of the time points

being averaged together contribute equally to the filtered value at

the current time point, and this reduces the temporal precision of

the filtered waveform. To mitigate this problem, one can use a

weighted average that emphasizes nearby time points more than

distant time points. For example, a three-point filter might use

weights of 0.25 for the two adjacent points and a weight of 0.50 for

the current point (note that our original filter used equal weights of

0.33 for all three time points). In the general case, we can define an

array W that contains 2nþ 1 weights, and recast our filtering for-

mula as:
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fERPi ¼
Xn

j¼�n

WjERPiþj ð5:2Þ

Our three-point weighting function would then be defined as:

W�1 ¼ :25; W0 ¼ :50; Wþ1 ¼ :25

For an equal weighting over 2nþ 1 time points, as in our original

formulation, the weighting function would be:

Wj ¼
1

2nþ 1

You can use virtually any conceivable weighting function for

filtering, and the shape of this function will determine the proper-

ties of the filter. As I will describe below, there is a straightforward

relationship between the shape of the weighting function and the

frequency response function of the filter.

In addition to computing the filtered value at a given time point,

it is sometimes useful to consider how the unfiltered value at a

given time point influences the filtered values at surrounding time

points. If we reverse the weighting function in time, the resulting

function represents the effect of the current point on the output of

the filter. This reversed weighting function is equivalent to the

waveform that the filter would produce in response to a momen-

tary voltage spike or impulse; it is therefore known as the impulse

response function of the filter.

Figure 5.5 illustrates the relationship between the weighting

function and the impulse response function. Panel A shows a

weighting function, and panel B shows the corresponding impulse

response function. In addition, panel C shows the output of the

filter if the input is a momentary impulse. Note that the output of

the filter becomes non-zero before the impulse, which is possible

only with an off-line, digital filter. Analog filters that operate in

real time have impulse response functions that are zero before the

time of the impulse.
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Although it may seem more natural to think of filtering in terms

of the original weighting function, most mathematical descriptions

of filtering rely instead on the impulse response function. One

reason for this is that it is possible to measure the impulse

response function of an analog filter empirically by providing an

impulse for an input and simply measuring the output of the filter.

Of course, the impulse response function is identical to the weight-

ing function if the function is symmetrical about time zero, which

is usually the case with digital filters, making the two conceptuali-

zations of filtering identical.

To use the impulse response function instead of the original

weighting function for computing the filtered value at each time

point in the waveform, it is necessary to make a small change to

the formula presented in equation 5.2:

fERPi ¼
Xn

j¼�n

IRFjERPi�j ð5:3Þ

where IRFj is the value of the impulse response function at time

j, which is the same as the original weighting function at time

�j. This equation essentially reverses the coefficients of the

impulse response function—thus creating our original weight-

ing function—and then performs the same filtering operation

described in equation 5.2.

When expressed in this manner, the combination of the impulse

response function and the ERP waveform is termed a convolution,

which is typically symbolized in mathematical equations by the �
operator. We can therefore write equation 5.3 as:

fERP ¼ IRF � ERP ð5:4Þ

This equation states that the filtered ERP waveform is equal to

the convolution of the impulse response function and the unfil-

tered ERP waveform (note that the � symbol is often used to denote

multiplication, especially in computer languages; we will use � to

denote multiplication and � to denote convolution).
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The filtering equations listed above are written in a manner that

makes it easy to see how the filtered value at a given time point is

computed from the unfiltered values at surrounding time points. It

is also possible to take a complementary approach and compute

the contribution of a given unfiltered time point to the filtered

waveform. Although less useful computationally, this approach

more readily allows one to visualize the relationship between a

filter’s impulse response function and the filtered ERP waveform.

In this approach, each point in the unfiltered waveform is replaced

by a scaled copy of the impulse response function (scaled by the

amplitude of the unfiltered waveform at the current time point).

These scaled copies of the impulse response function are then

simply added together to compute the filtered ERP waveform.

Figure 5.5 illustrates this approach to filtering. This figure shows

an arbitrary weighting function (panel A), which was designed

solely for the purposes of illustration. The impulse response func-

tion of the filter (panel B) is equal to the weighting function

reflected around time zero. If the input to the filter is a brief im-

pulse, as shown in panel C, then the output of the filter is simply a

copy of the impulse response function scaled by the size of the

impulse (by definition). Panel D shows an unfiltered ERP wave-

form that was sampled at each of the points indicated by open

circles (the lines connecting the circles are interpolations). This

H Figure 5.5 Filtering by convolving an ERP waveform with the filter’s impulse response function.
The weighting function of the filter (A) is reversed in time to produce the filter’s im-
pulse response function (B). As shown in (C), the impulse response function is the
output of the filter in response to a brief impulse. ERP waveforms are analogously
filtered by treating each sample point as an impulse and replacing each sample point
with a scaled copy of the impulse response function, as shown in (D) and (E). In
(D), the unfiltered ERP waveform is represented by the solid waveform, and each
open circle represents a sample point; to illustrate the scaling process, this panel
also shows the scaled impulse response functions corresponding to three of the
sample points. Note that the function is inverted when the ERP voltage is negative.
(E) Shows the result of replacing every point in the ERP waveform with a scaled
copy of the impulse response function; the filtered waveform is equal to the sum of
these scaled impulse response functions.
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waveform is filtered by replacing each data point with a scaled

copy of the impulse response function (for the sake of simplicity,

panel D shows this for only three data points). Panel E shows all

of the scaled copies of the impulse response function, which are

added together to compute the filtered ERP waveform (not shown).

By conceiving of filtering in this manner, it is possible to visualize

how a filter’s output is related to its impulse response function, as

discussed further below.

It may seem strange that filtering can be achieved by simply

replacing each data point with the impulse response function and

summing. In fact, this is true only for a subset of filters, called finite

impulse response filters. For these filters, the filter’s output does

not feed back into its input, which leads to this simple pattern of

behavior. It is possible to design more sophisticated filters that do

not obey this rule (called infinite impulse response or recursive

filters), but these filters are unnecessarily complex for the needs of

most ERP experiments.

Relationship Between the Time and Frequency Domains

We have now seen how filtering can be accomplished in the

frequency domain and in the time domain. These may seem like

completely different procedures, but there is a fundamental rela-

tionship between the time-domain and frequency-domain ap-

proaches to filtering that allows a straightforward conversion

between a filter’s impulse response function and its transfer func-

tion. This relationship is based on an important mathematical

principle: Multiplication in the frequency domain is equivalent

to convolution in the time domain. As a result of this principle,

convolving an ERP waveform with an impulse response function

in the time domain is equivalent to multiplying the frequency-

domain representation of the ERP waveform with the frequency-

domain representation of the impulse response function.

This implies an important fact about filters, namely that the

Fourier transform of a filter’s impulse response function is equal
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to the filter’s transfer function (remember that the transfer function

is the combination of a frequency response function and a phase

response function). It is therefore possible to determine a filter’s

transfer function by simply transforming its impulse response

function into the frequency domain by means of the Fourier trans-

form. Conversely, the inverse Fourier transform of a transfer func-

tion is equal to the impulse response function of the filter. As a

result, one can compute the impulse response function that will

yield a desired transfer function by simply transforming the trans-

fer function into the time domain. Figure 5.6 illustrates this.

It is usually substantially faster to filter via convolutions than

via Fourier transforms, and because the two methods yield iden-

tical results, most digital filters are implemented by means of
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Figure 5.6 Relationship between filtering in the time and frequency domains, showing: (1) that
each term in the time domain can be converted to a corresponding term in the fre-
quency domain by means of the Fourier transform; and (2) that convolution (repre-
sented by the � operator) in the time domain is equivalent to multiplication
(represented by the � operator) in the frequency domain.
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Figure 5.7 Relationship between the time and frequency domains for 60-Hz filtering. (A) Time-
and frequency-domain representations of a finite-duration 60-Hz sine wave. (B)
Time- and frequency-domain representations of a windowed sine wave (tapered
with a Blackman window). (C) Result of convolving the 60-Hz sine wave in (A) with
the ERP waveform shown in figure 5.1A, which extracts the 60-Hz component of
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convolutions. The method usually recommended for constructing

filters is therefore to create the desired transfer function for the fil-

ter and then transform this function into the time domain to create

an impulse response function; this impulse response function can

then be convolved with the ERP waveform to create the filtered

ERP waveform.4 However, although this approach yields very nice

results in the frequency domain, it may lead to significant distor-

tions in the time domain, as I will describe below.

As an example of the relationship between the impulse response

function and the corresponding frequency response function, con-

sider how a filter would be constructed to pass the 60-Hz

frequency band in an ERP waveform and eliminate all other fre-

quencies. The frequency response function of such a filter would

have a magnitude of 1.0 at 60 Hz and a magnitude of 0.0 at all

other frequencies. Transferring this function into the time domain

to derive the impulse response function of the filter would simply

yield a sine wave at 60 Hz, and convolving a 60-Hz sine wave with

an ERP waveform would therefore extract the 60-Hz component

from the waveform.

In practice, filtering everything except the 60-Hz activity would

be complicated by the fact that the impulse response function

must be finite in duration, as figure 5.7 illustrates. Panel A of the

figure shows how a 60-Hz sinusoidal impulse response function of

finite length yields a frequency response function that contains a

peak at 60 Hz but also contains power at a broad set of higher and

lower frequencies. The power at these other frequencies is due to

the sudden transitions at the beginning and end of the impulse

response function, which is unavoidable with a sine wave of finite

duration. As panel B shows, you can mitigate this problem by mul-

tiplying the sinusoidal impulse response function by a windowing

H Figure 5.7 (continued)
the waveform. (D) Effect of removing the 60-Hz component shown in (C) from the
unfiltered ERP waveform, which effectively eliminates the 60-Hz artifact from the
waveform without attenuating the higher or lower frequencies.
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function to taper the ends of the function. This yields a frequency

response function that, although somewhat broader around 60 Hz,

is smoother and falls to zero sooner than the frequency response

function of the pure sinusoid. Panel C shows the results of con-

volving this windowed sinusoid with the ERP waveform shown in

figure 5.3A, which effectively extracts the 60-Hz component from

the ERP waveform. Panel D of figure 5.7 shows how subtracting

this 60-Hz component from the original waveform provides a

means of eliminating the 60-Hz noise from the waveform. Unlike

the filter used in figure 5.3E to attenuate all high frequencies, this

filter has removed only frequencies around 60 Hz, allowing infor-

mation at both lower and higher frequencies to remain in the

filtered waveform.

Time-Domain Distortions Produced by Filters

In the above examples, we have seen how noise can be attenuated

from ERP waveforms by means of filtering. However, transient ERP

waveforms necessarily contain a broad range of frequencies, and

filtering a restricted range of frequencies from a waveform consist-

ing of both noise and an ERP response will attenuate those fre-

quencies from both the noise and the ERP signal. This will almost

always lead to some distortion of the time-domain ERP wave-

form, and the distortion may range from mild to severe depend-

ing on the nature of the impulse response function and the ERP

waveform.

Distortions Produced by Notch Filters

To illustrate the distortion produced by filtering, figure 5.8 shows

the effects of applying several types of notch filters to an artificial

ERP waveform consisting of one cycle of a 10-Hz sine wave. Panel

A of this figure shows the artificial ERP waveform and its Fourier

transform. Note that although the ERP waveform consists of a por-

tion of a 10-Hz sine wave, it contains a broad range of frequencies
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because it is restricted to a narrow time interval (remember, a

narrow distribution over time corresponds to a broad distribution

over frequencies, and vice versa). If we apply a filter to remove

the 10-Hz component, therefore, we will not eliminate the entire

ERP waveform, but only the 10-Hz portion of it. This is illustrated

in figure 5.8B, which shows the impulse response function for a

10-Hz notch filter, the filter’s frequency response function, and

the results of applying this filter to the waveform shown in figure

5.8A.

The impulse response function was created by windowing a

10-Hz sine wave, as in figure 5.7B, and then converting it into a

filter that removes rather than passes power at 10 Hz (see below).

The resulting impulse response function has a positive peak at

time zero, surrounded on both sides by oscillations at@10 Hz that

are 180 degrees out of phase with the artificial ERP waveform;

these opposite-phase oscillations cause power at @10 Hz to be

subtracted away from the original ERP waveform. When applied to

the artificial ERP waveform, the peak amplitude of the waveform is

therefore reduced, but the oscillation in the impulse response func-

tion is carried over into the filtered waveform, where it can be seen

both in the prestimulus interval and in the time period following

the end of the original response. The frequency spectrum of the

filtered ERP waveform has a sharp drop to zero power at 10 Hz,

but the nearby frequencies still have significant power, and these

nearby frequencies are the source of the oscillation that can be

observed in the filtered waveform. Thus, a filter designed to elimi-

nate the 10-Hz component from a waveform can actually produce

an output containing artificial oscillations near 10 Hz that weren’t

present in the input. Although these oscillations are more extreme

than those that a more typical combinations of filters and ERP

waveforms would produce, this example demonstrates that im-

pulse response functions that contain oscillations can induce artifi-

cial oscillations in the filtered ERP waveform. This important fact

is often overlooked when filtering is considered as a frequency-

domain operation rather than a time-domain operation.
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The presence of oscillations in the impulse response function is

not alone sufficient to produce large oscillations in the output of

the filter. As figures 5.8C and 5.8D show, notch filters at 20 Hz and

60 Hz produce much smaller oscillations than the 10-Hz notch fil-

ter in the context of this particular artificial ERP waveform. This is

due to the fact that there is much less power at these frequencies in

the spectrum of the unfiltered ERP waveform (see figure 5.8A).

Thus, you must consider both the impulse response function and

the nature of the unfiltered ERP waveform to determine the distor-

tion that a filter will produce.

From these filter-induced distortions, it should be clear that you

must know the shape of the impulse response function to assess

the distortions that a filter might produce. For example, a filter

that is simply labeled ‘‘60-Hz notch filter’’ on an EEG amplifier

will have a very different impulse function from the filter shown

in figure 5.8D, and may lead to much greater distortion of the ERP

waveform than the minimal distortion present in figure 5.8D. Thus,

the common practice of specifying only the half-amplitude or half-

power cutoff of a filter is clearly insufficient; descriptions of filter-

ing should specify the impulse response function in addition to the

cutoff of the filter. For example, when I describe a filter in a journal

article, I write something like this: ‘‘The ERP waveforms were low-

pass filtered offline by convolving them with a Gaussian impulse

response function with a standard deviation of 6 ms and a half-

amplitude cutoff at@30 Hz.’’

Distortions Produced by Low-Pass Filters

In many cases, it is useful to attenuate all frequencies above some

specified point (low-pass filtering). Such filtering is necessary

H Figure 5.8 Examples of temporal distortions produced by notch filters. (A) Shows the original
artificial ERP waveform (one cycle of a 10-Hz sine wave) and its Fourier transform.
(B), (C), and (D) show the impulse response and frequency response functions for
10-, 20-, and 60-Hz notch filters and also display the result of applying these filters
to the waveform shown in (A).
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during digitization of the raw EEG data, because you must sample

at a rate that is at least twice as high as the highest frequency in the

incoming data. Low-pass filtering is also useful for attenuating the

relatively high-frequency noise caused by muscle activity or by ex-

ternal electrical devices (e.g., line-frequency noise at 50 or 60 Hz).

The cutoff frequency used for a given experiment will depend on

the frequency content of the ERPs being recorded and the fre-

quency content of the noise to be filtered. For example, brainstem

evoked responses contain substantial power at very high frequen-

cies, making a 5-KHz cutoff appropriate, but this makes it difficult

to filter out muscle noise, which falls into the same frequency

range. In contrast, the long-latency ERP components consist

primarily of power under about 30 Hz, making a 30–100 Hz cutoff

appropriate and allowing high-frequency muscle activity to be fil-

tered without much distortion of the underlying ERP waveform.

However, there is almost always some overlap between the fre-

quencies in the ERP waveform and in the noise, and some filter-

induced distortion is therefore inevitable.

This leads us once again to Hansen’s axiom: There is no substi-

tute for good data. Filters necessarily cause distortion, and it is

always better to reduce noise at the source (e.g., through shielding,

low electrode impedance, high common-mode rejection, careful

experimental design, etc.) than to attenuate it with filters. When

you cannot avoid filtering, it is important to choose a filter with an

optimal balance between suppression of noise and distortion of the

ERP waveform. Depending on the nature of the experimental ques-

tion being addressed, some types of distortion may be more prob-

lematic than others, and there are therefore no simple rules for

designing an optimal filter.

Most discussions of filter design emphasize the frequency do-

main and therefore lead to filters such as the windowed ideal filter

shown in figure 5.9A. This particular windowed ideal filter has a

half-amplitude cutoff at 12.5 Hz and is an ‘‘ideal’’ filter because it

perfectly passes all frequencies below approximately 12 Hz and

completely suppresses all frequencies above approximately 13 Hz,
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with only a narrow ‘‘transition band’’ in which the attenuation is

incomplete. This filter also produces no phase distortion because

its impulse response function is symmetric around time zero.

Despite the usefulness of these attributes, the sharp transitions

in the frequency response function of this filter require a broad,

oscillating impulse response function, which leads to substantial

distortion in the time domain. This can be seen when this filter is

applied to the artificial ERP waveform from figure 5.8A, yielding

an output containing damped oscillations both before and after the

time range of the original ERP waveform5 (see figure 5.9A, right

column). Importantly, the filtered waveform contains peaks at

around 70 ms and 230 ms that are completely artifactual and are a

consequence of the oscillations in the filter’s impulse response

function. Thus, filters with sharp cutoffs in their frequency re-

sponse functions may lead to large distortions in the apparent

onset and offset of an ERP waveform and to artifactual peaks that

are not present in the original ERP waveform. In other words, a

filter that is ideal in terms of its frequency-domain properties may

be far from ideal in terms of its time-domain properties.

Let us consider briefly how this type of distortion might influ-

ence the interpretation of an ERP experiment. As an example, con-

sider the ERP waveform elicited by a visual stimulus over frontal

cortex, which typically contains an N1 component at about 130

ms but has no prior peaks (the earlier P1 component is typically

absent at frontal sites). If this waveform were filtered with the low-

pass filter shown in figure 5.9A, the filtered waveform would con-

tain an artifactual positive peak preceding the N1 component and

peaking at about 70 ms post-stimulus, and this artifactual peak

might be mistaken for the P1 component. Moreover, if two condi-

tions were compared, one of which produced a larger N1 compo-

nent than the other, these amplitude differences would also be

observed in the artifactual pseudo-P1 component. On the basis of

the filtered response, one might conclude that the experimen-

tal manipulation caused an increase in P1 amplitude at 70 ms

even though there was no real P1 component and the experimental
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effect did not actually begin until 100 ms. This example under-

scores the necessity of knowing the impulse response function of a

filter to avoid making incorrect conclusions about the time course

of ERP activity.

The bottom three panels of figure 5.9 show several alternative

filters that have approximately the same 12.5-Hz half-amplitude

cutoff frequency as the windowed ideal filter shown in the top

panel, but produce substantially less waveform distortion. The first

of these is a simple running average filter that is equivalent to aver-

aging successive points together (as described in the initial discus-

sion of low-pass filtering). The impulse response function of this

filter extends over a very narrow time range compared to the win-

dowed ideal filter, and therefore causes much less temporal spread

in the filtered ERP waveform. As the right column of figure 5.9B

shows, the output of the running average filter begins slightly be-

fore and ends slightly after the original waveform, but the filter

causes relatively little change in the overall shape of the waveform.

This filter has two shortcomings, however. First, there is substan-

tial attenuation in the 10-Hz frequency band where most of the

power of the original ERP waveform is located, so the filtered

waveform is somewhat smaller than the original. Second, the fre-

quency response function of the filter does not fall monotonically

to zero. Instead, there are side lobes that allow substantial noise

from some high frequencies to remain in the filtered waveform

(this cannot be seen in the examples shown in figure 5.9, which

contain no high-frequency noise). These side lobes can be pre-

dicted from the square shape of the impulse response function:

because the transfer function is the Fourier transform of the im-

pulse response function, the high frequencies required for the

H Figure 5.9 Examples of temporal distortions produced by several types of low-pass filters, each
with a half-amplitude cutoff of approximately 12.5 Hz. The left and middle columns
show the impulse and frequency response functions of the filters, respectively. The
right column shows the result of applying each filter to the artificial ERP waveform
shown in figure 5.8A.
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sudden onset and offset of the impulse response function lead to

the presence of substantial high frequency power in the frequency

response function.

Figure 5.9C shows a filter with a gaussian impulse response

function that has approximately the same temporal spread as the

running average impulse response function. Like the running aver-

age filter, the gaussian filter produces some smearing in the onset

and offset of the filtered ERP waveform and some attenuation of

the overall waveform. However, the frequency response function

of the gaussian filter falls monotonically to zero, leading to virtu-

ally complete attenuation of frequencies greater than 30 Hz. In

most cases, a gaussian filter provides the best compromise between

the time and frequency domains, with a monotonic and fairly rapid

fall-off in the frequency response function combined with minimal

temporal distortion of the ERP waveform. Typically, a gaussian

filter with a half-amplitude cutoff of 30 Hz will eliminate most

line-frequency and muscle noise while producing very little atten-

uation of the long-latency ERP components and relatively little

latency smearing. In the vast majority of cases, I would recommend

using gaussian impulse response functions for low-pass filtering.

The frequency-domain properties of filters are often described

by a single number, the half-amplitude cutoff frequency. The time-

domain properties of a gaussian filter can also be described with a

single number that reflects the width of the impulse response

function. There are two common ways to do this. First, you can

indicate the standard deviation of the gaussian. Second, you can

indicate how many milliseconds wide the gaussian function is at

half of its maximum value, which is called the full width at half

maximum (FWHM). fMRI experiments commonly use spatial gaus-

sian filters, and FWHM is the usual way of describing the impulse

response function in that context. These values can be intercon-

verted with the filter’s half-amplitude cutoff. The half-amplitude

cutoff in Hz of a gaussian filter with a standard deviation of s milli-

seconds is simply 185:5=s (e.g., a gaussian filter with a standard

deviation of 4 ms would have a half amplitude cutoff of 185:5=4
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Hz). The FWHM in milliseconds is equal to 2.355 times the stan-

dard deviation in milliseconds, and the half-amplitude cutoff in

Hz can be computed as 79:62=FWHM.

The windowed ideal, running average, and gaussian filters de-

scribed so far are among the most commonly used low-pass dig-

ital filters for ERP research, and each has certain advantages and

disadvantages. Because of its sharp cutoff, the windowed ideal

function may be appropriate when the ERP waveform and the to-

be-filtered noise contain substantial power in nearby frequency

ranges. However, this filter type leads to substantial distortion in

the time domain, which may lead to incorrect conclusions about

the timing of an ERP component and may even lead to spurious

peaks before the onset or after the offset of the real ERP waveform.

In recordings of long-latency ERP components, the noise is usually

concentrated at substantially higher frequencies than the majority

of the ERP power, making the sharp cutoff of the windowed ideal

filter unnecessary, and a gaussian or running average filter is there-

fore more appropriate. One exception to this occurs when an ERP

waveform is contaminated by alpha-frequency (@ 10 Hz) EEG noise

that interferes with late components such as the P300, which have

their power concentrated at slightly lower frequencies. The best

way to eliminate alpha noise is usually to maintain subject alert-

ness and average together a large number of trials (consistent with

Hansen’s axiom), but this is not always feasible. When necessary, it

is possible to use a windowed ideal filter with a half-amplitude

cutoff frequency of around 8 Hz to attenuate alpha activity, but the

resulting data must be interpreted cautiously because of the time-

domain distortions that such a filter will inevitably produce.

The running average and gaussian filters produce similar pat-

terns of temporal distortion, characterized primarily by the smear-

ing of onset and offset times, but the gaussian filter is usually

preferable because its frequency response function falls to zero at

high frequencies. The running average filter is somewhat easier to

implement, however, which is important in some applications. In

addition, it is sometimes possible to take advantage of the multiple
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zero points in the frequency response function of the running

average filter. If the primary goal of filtering is to attenuate line-

frequency noise, it may be possible to employ a running average

filter where the zero points fall exactly at the line frequency and

its harmonics, producing excellent attenuation of line frequency

noise.

The last class of low-pass filters I will discuss here are called

causal filters and are used in analog filtering devices such as EEG

amplifiers (but can also be implemented digitally). These filters

are labeled causal because they reflect the normal pattern of causa-

tion in which an event at a particular time can influence subse-

quent events but not previous events. More precisely, the impulse

response functions of causal filters have values of zero for times

preceding time zero. Viewed from the opposite temporal perspec-

tive, the output of the filter at a given time point reflects only the

input values at previous time points and not the input values at

subsequent time points. Figure 5.9D shows an example of such a

filter, displaying the impulse response function of a very simple

analog filter. Filters that do not obey the normal pattern of causa-

tion (i.e., because they nonzero values before time zero in their

impulse response functions) are called noncausal filters.

Because their impulse response functions extend only one direc-

tion in time, causal filters produce shifts in peak latency and in off-

set time, which are typically considered negative traits. However,

causal filters may produce relatively little distortion of onset la-

tency, which may provide an advantage over noncausal filters

when onset latency is an important variable (see Woldorff, 1993).

This is not always true of causal filters, however; it depends on a

relatively rapid, monotonically decreasing fall-off from time zero in

the impulse response function, as in the filter shown in figure 5.9D.

The frequency response function of the causal filter shown in

figure 5.9D is suboptimal for most purposes because it falls rela-

tively slowly and never reaches zero. This is not an inherent prop-

erty of causal filters, however. For example, if the gaussian impulse

response function shown in figure 5.9C were simply shifted to the
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right so that all values were zero prior to time zero, the resulting

causal filter would have the same frequency response function as

the noncausal gaussian filter, but the output waveform would be

shifted in time by the same amount as the shift in the impulse

response function. Bessel filters, which can be implemented in

analog circuitry, have an impulse response function that approxi-

mates a shifted gaussian and therefore make an excellent choice

for on-line filtering (e.g., during EEG digitization). Bessel filters

also have a linear phase response, which means that all fre-

quencies in the output waveform are shifted by the same amount

of time. This time shift can be computed and the filtered waveform

can be shifted backwards by this amount off-line, thus eliminating

the latency shifts inherent in analog filters. Unfortunately, Bessel

filters are expensive to implement in analog circuitry, so they are

relatively uncommon.

Some Important Properties of Convolution

Before going further, it is useful to discuss some important

mathematical properties of the convolution operation. In particu-

lar, convolution has the same commutative, associative, and dis-

tributive properties as multiplication. The commutative property

states that it doesn’t matter which of two functions comes first in a

convolution formula. More precisely:

A � B ¼ B �A

The associative property states that multiple consecutive con-

volutions can be performed in any order. More precisely:

A � ðB � CÞ ¼ ðA � BÞ � C

The distributive property states that the convolution of some

function A with the sum of two other functions B and C is equal to

A convolved with B plus A convolved with C. More precisely:

A � ðBþ CÞ ¼ ðA � BÞ þ ðA � CÞ
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These mathematical properties of convolution lead to several

important properties of filters. For example, one common question

about filtering is: what happens when you filter a filtered waveform

a second time? If we have two filters with impulse response func-

tions denoted by IRF1 and IRF2 and an ERP waveform denoted by

ERP, we can write the process of filtering twice as:

ðERP � IRF1Þ � IRF2

Because of the associative property, this is equal to convolving

the two impulse response functions first and then convolving the

result with the ERP waveform:

ERP � ðIRF1 � IRF2Þ

To take a concrete example, the convolution of two gaussian

functions yields a somewhat wider gaussian, and filtering an ERP

twice with a gaussian filter is therefore equivalent to filtering once

with a wider gaussian.

In addition, because convolution in the time domain is equiva-

lent to multiplication in the frequency domain, the frequency re-

sponse function of the double filtering is equal to the product of

the frequency response functions of the two individual filters. In

the case of two gaussian filters, this would lead to greater attenua-

tion of high frequencies than either filter would produce alone. In

the more common case of the application of both a low-pass filter

and a high-pass filter, the result is a band-pass filter that simply

cuts both the high and low frequencies. However, if both filters

have relatively gradual frequency response functions, the multipli-

cation of these functions may also lead to fairly substantial attenu-

ation of the intermediate frequencies.

Time-Domain Implementation of High-Pass Filters

In the initial discussion of high-pass filters near the beginning of

the chapter, I mentioned that one can accomplish high-pass filter-

ing by creating a low-pass-filtered waveform and subtracting this
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from the unfiltered waveform, thus yielding the high frequencies

that are present in the unfiltered waveform and absent in the low-

pass-filtered waveform. This process can be expressed as:

ERPH ¼ ERP � ERPL ¼ ERP � ðIRFL � ERPÞ

where ERPH and ERPL are the high- and low-pass-filtered ERP

waveforms and IRFL is the impulse response function of the

low-pass filter. This convolution-and-subtraction sequence can be

replaced by a single convolution with a high-pass impulse re-

sponse function that can be computed by some simple algebraic

manipulations. First, it is necessary to define a ‘‘unity’’ impulse

response function IRFU that is 1.0 at time zero and 0.0 at all other

points; the convolution of this function with an ERP waveform

would be equal to the ERP waveform (analogous to the multiplica-

tion of a number by 1.0). By using this unity function, we can use

the distributive property to create an impulse response function

IRFH that will accomplish high-pass filtering in a single step:

ERPH ¼ ERP � ðIRFL � ERPÞ

¼ ðIRFU � ERPÞ � ðIRFL � ERPÞ ½because ERP ¼ IRFU � ERP�

¼ ðIRFU � IRFLÞ � ERP ½because of the distributive property�

¼ IRFH � ERP; where IRFH ¼ IRFU � IRFL

Thus, we can create a high-pass impulse response function by

subtracting a low-pass impulse response function from the unity

impulse response function ðIRFU � IRFLÞ. The frequency response

function of the resulting high-pass filter is simply the complement

of the frequency response function of the low-pass filter (1.0 minus

the response at each individual frequency point in the low-pass

frequency response function).

Figure 5.10A diagrams the creation of a high-pass impulse

response function from a unity impulse response function and

a gaussian low-pass impulse response function with a half-

amplitude cutoff of 2.5 Hz. The unity impulse response function

(figure 5.10A, left) consists of a single spike of magnitude 1.0 at
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time zero, which is very large compared to the values at individual

time points in the gaussian low-pass impulse response function

(figure 5.10A, middle). The high-pass impulse response function is

created by simply subtracting the low-pass impulse response func-

tion from the unity function, as shown at the right of figure 5.10A.

A related attribute of the class of filters discussed here is that

they are linear, so you can combine filtering with other linear oper-

ations in any order. For example, signal averaging is also a linear

process, and this means that filtering an averaged ERP waveform

yields the same result as filtering the EEG data before averaging.6

Averaged ERP data sets are typically considerably smaller than the

EEG data from which they are derived, and filtering after averaging

is therefore more efficient than filtering the raw EEG and then

averaging.

Distortions Produced by High-Pass Filters

Figure 5.10 shows the application of a gaussian high-pass filter to

two artificial ERP waveforms and one realistic ERP waveform. The

inverted gaussian in the impulse response function is visible in the

filtered ERP waveforms, where it produces overshoots that one can

observe at the beginning and end of the waveforms. These distor-

tions are particularly evident for ERP waveforms that consist pri-

marily of one polarity, such as those in figures 5.10C and 5.10D.

This can be understood by viewing filtering as replacing each sam-

ple in the ERP waveform with a scaled copy of the impulse

response function: when the unfiltered ERP waveform consists of

roughly equivalent positive and negative subcomponents, as in

figure 5.10B, these subcomponents will lead to opposite-polarity

copies of the impulse response function, which will cancel each

H Figure 5.10 Construction and application of a gaussian high-pass filter. (A) A unity impulse
response function multiplied by a gaussian low-pass impulse response function
yields a gaussian high-pass impulse response function. (B), (C), and (D) show the
application of this filter to three different ERP waveforms.

Filtering 219



other out to some extent. The amount of cancellation will depend

on the exact shapes of the waveform and the impulse response

function, but in most cases the overshoot will be greater when one

polarity dominates the ERP waveform.

The distortions in figure 5.10 are in some sense similar to the

distortions the gaussian low-pass filter shown in figure 5.9C pro-

duced, but reversed in polarity because the gaussian in the high-

pass impulse response function is inverted (because of the lower

cutoff frequency of the high-pass filter, the distortion in figure 5.10

is also somewhat broader than the distortion in figure 5.9C). Thus,

when an ERP waveform is low-pass filtered, the gaussian impulse

response function produces a spreading of the peaks that is the

same polarity as the peaks, whereas using a high-pass filter

produces opposite-polarity spreading. Although these distortions

are similar in many ways, the distortions the high-pass filter pro-

duces may be more problematic because they may lead to the ap-

pearance of artifactual peaks, such as the peaks at approximately

75 ms and 450 ms in the filtered waveform shown in figure 5.10D.

Figure 5.11 shows the effects of several different types of high-

pass filters (all with half-amplitude cutoffs at approximately 2.5

Hz) on a realistic ERP waveform. Although the impulse response

and frequency response functions of the windowed ideal and gaus-

sian filters (panels A and B) look very similar, the windowed ideal

impulse response function contains damped oscillations just like

those in the windowed ideal low-pass filter in figure 5.9A. The

half-amplitude cutoff frequency of the high-pass filter shown here

is so low, however, that these oscillations fall outside of the plotted

time window; with a higher cutoff frequency, these oscillations

would be more apparent. Thus, windowed ideal high-pass filters

may induce artificial oscillations in the filtered ERP waveform,

whereas gaussian high-pass filters do not. As discussed above and

shown in figure 5.11B, however, gaussian high-pass filters can

produce individual artifactual peaks at the beginning and end of

the filtered waveform, unlike gaussian low-pass filters. For this

reason, you must take extreme caution in interpreting high-pass-
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Figure 5.11 Application of four different high-pass filters to a sample ERP waveform. All have a
50 percent amplitude cutoff near 2.5 Hz.
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filtered waveforms, even when using a gaussian impulse response

function.

Figure 5.11C shows the impulse response and frequency re-

sponse functions of the type of causal filter found in older EEG

amplifiers. Because its impulse response function is zero for all

points before time zero, this filter cannot produce any distortion

before the onset of the unfiltered ERP waveform and thus does not

produce an artifactual peak at the beginning of the filtered ERP

waveform. However, this same attribute of causal filters leads to

distorted peak latencies in the filtered waveform, whereas this

form of distortion is absent for most noncausal filters. These differ-

ent forms of distortion underscore the important principle that all

filters produce distortions, and the choice of which filter to use

will depend upon the goals of the experiment and the types of

distortion that are acceptable. The filter shown in figure 5.11C also

has a relatively gradual roll-off; this can be improved by using the

filter in figure 5.11D, which uses the right half of a gaussian in its

impulse response function. Like the filter in figure 5.11C, this

‘‘half-gaussian’’ filter produces minimal distortion at the beginning

of the filter ERP waveform, but has a somewhat sharper roll-off and

is therefore a better choice in many cases.

In most cases, noncausal high-pass filters tend to take low-

frequency information away from the time zone of the unfiltered

ERP waveform and ‘‘push’’ it forward and backward in time in the

filtered ERP waveform. In contrast, causal high-pass filters of the

type shown in figure 5.11 push the information exclusively to later

time points. Figure 5.12 illustrates this. ERP waveforms typically

consist of small, relatively high-frequency early components fol-

lowed by larger, relatively low-frequency late components, and

this asymmetrical sequence makes the bidirectional distortions

produced by noncausal high-pass filters particularly harmful.

In particular, low frequency information from the large, low-

frequency later components is pushed into the latency range of the

smaller early components, causing substantial distortion of the

early components even though they contain relatively little low-
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frequency information. Using a causal filter such as those shown in

panels C and D of figure 5.11, however, will minimize distortion of

the early components because low-frequency information from the

late components will not be pushed backward into the time range

of the early components. Note, however, that this is true only for

filters that have monotonically increasing impulse response func-

tions after time zero; filters that do not possess this property, such

as Bessel filters, may cause distortions similar to those produced

by noncausal filters. In addition, causal filters may produce sub-

stantial latency shifts that may be problematic in some cases.

Recommendations Revisited

I discussed some recommendations about filtering early in this

chapter. Now that you have a deeper understanding of how filters

actually work, you might want to read through those recommenda-

tions again.

Noncausal gaussian
high-pass filter

Causal half-gaussian
high-pass filter

Latency
Shift

Time
100 200 300 400 5000 600 100 200 300 400 5000 600

Low frequency
information pushed
backward in time

Low frequency
information pushed

forward in time

Low frequency
information pushed

forward in time

Time

Figure 5.12 Comparison of a noncausal gaussian high-pass filter and a causal half-gaussian
high-pass filter. Note that the noncausal filter produces obvious distortions at the
beginning and end of the waveform, whereas the causal filter produces no distortion
at the beginning of the waveform. Note also that the causal filter produces a large
latency shift, but the noncausal filter does not.
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My two most important recommendations are as follows.

First, filter the data as little as possible. As you’ve seen, filters

always distort the time-domain properties of ERP waveforms, and

you don’t want to distort your waveforms unnecessarily. My sec-

ond main recommendation is that before you use a filter, think

about exactly how it might distort your data. Often, the best way

to see how a filter will distort your data is to create a simulated,

noise-free waveform and apply the filter to it. This will allow you

to see how the filter distorts component onsets and offsets and

adds spurious components or oscillations to your data. If the

effects of the filter on the simulated data aren’t too bad, then you

can use the filter on your real data with confidence that the filter

will help you rather than hurt you.
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6 Plotting, Measurement, and Analysis

The previous chapters have discussed designing experiments, col-

lecting the data, and applying signal processing procedures; this

chapter discusses the final steps in an ERP experiment: plotting the

data, measuring the components, and subjecting these measure-

ments to statistical analyses.

Plotting ERP Data

Although it might seem trivial to plot ERP waveforms, I regularly

read ERP papers in which the waveforms are plotted in a way that

makes it difficult to perceive the key aspects of the waveforms.

Thus, I will begin this chapter with a few recommendations about

plotting ERP data.

The most important thing to keep in mind is that virtually all

ERP papers should include plots of the key ERP waveforms. Given

all of the difficulties involved in isolating specific ERP com-

ponents, it is absolutely necessary to see the waveforms before

accepting the validity of a paper’s conclusions. Remember that

Kramer (1985) showed that ERP experts do a good job of determin-

ing the underlying latent components when they see the observed

ERP waveforms, and presenting the waveforms is essential for

this. In fact, the official publication guidelines of the Society for

Psychophysiological Research (SPR) state that ‘‘the presentation of

averaged ERP waveforms that illustrate the principal phenomena

being reported is mandatory’’ (Picton et al., 2000, p. 139).

The SPR guidelines describe several additional elements of ERP

figures that you should keep in mind. First, it is almost always a

good idea to show the data from multiple electrode sites, spanning



the region of the scalp where the effects of interest were present.

This information plays a key role in allowing experts to deter-

mine the underlying component structure of the waveform. How-

ever, including multiple electrode sites is not as important when

you can isolate components by other means (e.g., by performing

the subtraction procedure that isolates the lateralized readiness

potential).

Second, plots of ERP waveforms should indicate the voltage

scale and the time scale in a way that makes it easy for readers to

assess amplitudes and latencies. The voltage scale should indicate

whether positive or negative is up (and if negative is up, I would

recommend stating this in the figure caption). In addition, the elec-

trode sites should be labeled in the figure (if a single site is shown,

I often indicate the site in the caption).

Figure 6.1 shows an example of a bad way (panel A) and a good

way (panel B) to plot ERP waveforms. The most egregious error in

200 ms
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Figure 6.1 Examples of a poor way to plot ERP waveforms (A) and a good way to plot them (B).
Negative is plotted upward.
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panel A is that there is no X axis line running through zero micro-

volts to provide an anchor point for the waveforms. It is absolutely

essential to include an X axis line that shows the zero microvolt

point and the time scale for each waveform. Without it, the reader

will find it difficult to determine the amplitude or the latency of

the various points in the waveform. A separate scale marker, such

as that shown in figure 6.1A, is not enough, because it does not

provide a visual reference point. For example, can you tell how

much bigger the first component is in the left waveform than in

the right waveform? And can you see that this component peaks

earlier in the right waveform than in the left waveform?

The second most egregious error in figure 6.1A is that the wave-

forms are not overlapped. This makes it very difficult for the reader

to determine the exact pattern of effects. For example, can you

tell exactly when the difference between the waveforms switches

polarities? All key effects should be shown by overlapping the rel-

evant waveforms. Figure 6.1A also fails to indicate time zero, and

it is impossible to tell which polarity is plotted upward.

Panel B of figure 6.1 solves these problems. It has an X axis run-

ning through the waveforms, which are overlapped. It provides ad-

ditional calibration axis, indicating the latencies (with minor tick

marks as well, showing the intermediate latencies). The voltage

calibration indicates the polarity of the waveform. The two wave-

forms are drawn in easy-to-distinguish line types, and the figure

provides a legend to indicate what condition each line type repre-

sents (this is much better than providing this information in words

in the figure caption or main text). The figure also indicates the

electrode site at which the waveforms were measured.

It is also essential for the plot to show a significant presti-

mulus portion of the waveforms. The prestimulus period allows

the reader to assess the overall noise level of the recordings and

the presence of overlap from the preceding trials. In addition, the

apparent amplitude of the ERP peaks will depend on the baseline

level, and a stable baseline is therefore essential for accurately

characterizing the differences between two or more waveforms.
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I almost always provide a 200-ms prestimulus baseline, and I

would recommend this for the vast majority of cognitive ERP

experiments.

You should be careful when selecting the line types for the ERP

waveforms. First, you need to use reasonably thick lines. Figures

are usually reduced by a factor of two or three times for publica-

tion, making lines that were originally moderately thin become so

thin that they are nearly invisible. If someone makes a photocopy

of the journal article, portions of the lines may disappear. Of

course, you don’t want to make the lines so thick that they obscure

the experimental effects. I find that a two-point width works well

in the majority of cases. In addition, when multiple waveforms

overlap, you should make sure that the different lines are easy to

differentiate. The best way to do this is with solid, dashed, and

dotted lines (or with color, if available, but then photocopies will

lose the information). You should avoid using different line thick-

nesses to differentiate the waveforms; this doesn’t work as well,

and the thin lines may disappear once the figure has been reduced

for publication. In general, you should avoid overlapping more

than three waveforms (four if absolutely necessary). With more

overlapping waveforms, the figure starts to look like spaghetti.

How many different electrode sites should you show? This

depends, in part, on the expected audience. If the paper will be

published in an ERP-oriented journal, such as Psychophysiology,

the readers will expect to see waveforms from a broad selection of

electrode sites. If the paper will be published in a journal where

ERP studies are not terribly common, such as Journal of Neuro-

science or JEP: General, you should show only the key sites. If you

have recorded from a large number of electrodes, it is pointless to

include a figure showing the data from all the sites. If a figure con-

tains more than ten to fifteen sites, the individual waveforms will

be so small that they will provide very little information. It is

much better to show a representative sample of the electrode sites

and then use topographic maps to show the distribution of voltage

over the scalp.
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Measuring ERP Amplitudes

Most ERP studies concentrate on the amplitudes of one or more

ERP components, and it is important to measure amplitude accu-

rately. As figure 6.2 illustrates, there are two common ways to mea-

sure ERP amplitudes. The most common method is to define a time

window and, for each waveform being measured, find the maxi-

mum amplitude in that time window. This is called a peak ampli-

tude measure. The second most common method is to define a

time window and, for each waveform being measured, calculate

the mean voltage in that time window. This is called a mean am-

plitude measure. It is also possible to calculate the sum of the vol-

tages at each time point within the measurement window (an area
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Figure 6.2 (A) ERP waveform with several peaks. (B) ERP waveform, with a measurement
window from 150–300 ms poststimulus and several measures. (C) Filtered ERP
waveform. Negative is plotted upward.
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amplitude measure), but this is really just the mean amplitude

multiplied by the number of points in the measurement window.

For all of these measures, the voltages are typically measured rela-

tive to the average voltage in the prestimulus period. Other tech-

niques are sometimes used, but they are beyond the scope of this

book.

The goal of these techniques is to provide an accurate measure-

ment of the size of the underlying ERP component with minimal

distortion from noise and from other, overlapping components. As

I discussed at the beginning of chapter 2, it is very difficult to mea-

sure the amplitude and latency directly from a raw ERP waveform

without distortion from overlapping components. That chapter

also described several strategies for avoiding this problem (e.g., us-

ing difference waves), but those strategies often rely on the use of

an appropriate measurement approach. And don’t forget rule 1

from chapter 2: Peaks and components are not the same thing.

There is nothing special about the point at which the voltage

reaches a local maximum.

Peak Amplitude

Given that the point at which the voltage reaches a local maximum

is not special, why should you use peak amplitude to measure

the amplitude of an ERP component? In fact, there is no compel-

ling reason to use peak amplitude measures in most ERP experi-

ments (although there might be good reasons to use this measure

in some special cases). Moreover, there are several reasons why

you shouldn’t use peak amplitude in many cases, at least not with-

out some modifications to the basic procedure.

Consider, for example, the ERP waveform shown in panel A of

figure 6.2. To measure the peak of the P2 wave, you might use a

time window of 150–300 ms. As panel B of figure 6.2 shows, the

maximum voltage in this time window occurs at the edge of the

time window (300 ms) due to the onset of the P3 wave. Conse-

quently, the amplitude of the P2 wave would be measured at 300
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ms, which is not very near the actual P2 peak. Clearly, this is not a

good way to measure the P2 wave. You could avoid this problem

by using a narrower measurement window, but a fairly wide win-

dow is usually necessary because of variations in peak latency

across electrode sites, experimental conditions, and subjects. A

much better way to avoid this problem is to search the measure-

ment window for the largest point that is surrounded on both sides

by smaller points. I call this measure local peak amplitude, and

I refer to the original method as simple peak amplitude. To

minimize spurious local peaks caused by high-frequency noise,

the local peak should be defined as having a greater voltage than

the average of the three to five points on either side rather than the

one point on either side.1

Local peak amplitude is obviously a better measure than the

simple peak amplitude. Strangely, I have never seen anyone

explicitly describe this way of measuring peaks. It may be that

people use it and just call it peak amplitude (I have done this my-

self), but it would probably be best if everyone used the term local

peak amplitude to make it clear exactly how the peaks were

measured.

Although local peak amplitude is a better measure than the sim-

ple peak amplitude, high-frequency noise can significantly distort

both of these measures. In figure 6.2B, for example, the local peak

is not in the center of the P2 wave, but is shifted to the right be-

cause of a noise deflection. It makes sense that peak amplitude

would tend to be noise-prone, because the voltage at a single time

point is used to measure a component that lasts for hundreds of

milliseconds. Moreover, the peak amplitude measurements will

tend to be larger for noisier data and for wider measurement win-

dows, because both of these factors increase the likelihood that a

really large noise deflection will occur by chance. Consequently, it

is never valid to compare peak amplitudes from averages of differ-

ent numbers of trials or from time windows of different lengths. I

have seen this rule violated in several ERP papers, and it definitely

biases the results.
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If, for some reason, you still want to measure peak amplitude,

you can reduce the effects of high-frequency noise by filtering out

the high frequencies before measuring the peak. Panel C of figure

6.2, which shows the waveform in panels B and C after low-pass

filtering, illustrates this. In the filtered waveform, the simple peak

amplitude again provides a distorted measure, but the local peak

provides a reasonably good measure of the amplitude. As dis-

cussed in chapter 5, when high frequencies are filtered out, the

voltage at each point in the filtered waveform reflects a weighted

contribution of the voltages from the nearby time points. Thus, the

peak amplitude in a filtered waveform avoids the problem of using

the voltage at a single time point to represent a component that

lasts hundreds of milliseconds.

Another shortcoming of peak amplitude measures is that they

are essentially nonlinear. For example, if you measure the peak

amplitude of the P2 wave for several subjects and compute the av-

erage of the peak amplitudes, the result will almost always be dif-

ferent from what would you would get by creating a grand average

of the single-subject waveforms and measuring the peak amplitude

of the P2 wave in this grand average. This may cause a discrepancy

between the grand-average waveforms that you present in your

figures and the averaged peak amplitude values that you analyze

statistically. Similarly, when there is variability in the latency of

a component from trial to trial in the raw EEG data, the peak ampli-

tude in the averaged ERP waveform will be smaller than the single-

trial amplitudes (see panels G and H of figure 2.1 in chapter 2). If

latency variability is greater in one condition than in another, the

peak amplitudes will differ between conditions even if there is no

difference between conditions in the single-trial peak amplitudes.

To summarize, peak amplitude measures have four serious

shortcomings: (1) when the maximum voltage in the measurement

window is measured, the rising or falling edge of an overlapping

component at the border of the measurement window may be

measured rather than the desired peak; (2) peak amplitude uses a
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single point to represent a component that may last hundreds of

milliseconds, making it sensitive to noise; (3) peak amplitude will

be artificially increased if the noise level is higher (due, for exam-

ple, to a smaller number of trials) or if the measurement interval is

longer; (4) peak amplitude is a nonlinear measure that may not cor-

respond well with grand-average ERP waveforms or with single-

trial peaks.

It might be tempting to argue that peak amplitude is a useful

measure because it takes into account variations in latency among

conditions, electrode sites, and subjects. After all, you wouldn’t

want to measure the amplitude of a component at the same time

point at all electrode sites if the component peaks later at some

sites than at others, would you? This argument is fallacious and

points to a more abstract reason for avoiding peak amplitude mea-

sures. Specifically, peak amplitude measures implicitly encourage

the mistaken view that peaks and components are the same thing

and that there is something special about the point at which the

voltage reaches its maximum value.

For example, the fact that the voltage reaches its maximum value

at different times for different electrode sites is unlikely to reflect

differences in the latency of the underlying component at different

electrode sites. A component, as typically defined, is a single brain

process that influences the recorded voltage simultaneously at all

electrode sites, and it cannot have a different latency at different

sites. As described in chapter 2 (see especially figure 2.1), the tim-

ing of a peak in the observed ERP waveform will vary as a function

of the relative amplitudes of the various overlapping components,

and this is the reason why peak latencies vary across electrode

sites. Indeed, it would be rather strange to measure the same com-

ponent at different times for the different electrode sites. Similarly,

peak latency differences between subjects are just as likely to be

due to differences in the relative amplitudes of the various under-

lying components as differences in the latency of the component

of interest. In contrast, the latency of the underlying component
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may indeed vary considerably across different experimental condi-

tions. But in this case, it will be nearly impossible to measure the

component without significant distortion from other overlapping

components, because amplitude and latency measures are often

confounded (see chapter 2). Thus, although peak amplitude mea-

sures might seem less influenced by changes in component timing,

this is really an illusory advantage.

Mean Amplitude

Mean amplitude has several advantages over peak amplitude. First,

you can use a narrower measurement window because it doesn’t

matter if the maximum amplitude falls outside of this window

for some electrode sites or some subjects. In fact, the narrower

the window, the less influence overlapping components will have

on the measurements. As an example, a measurement window of

200–250 ms would be appropriate for measuring the mean ampli-

tude of the P2 component in the waveform shown in figure 6.2,

compared to a window of 150–300 ms that would be appropriate

for a peak amplitude measure.

A second advantage of mean amplitude measures is that they

tend to be less sensitive to high-frequency noise than are peak am-

plitude measures, because a range of time points is used rather

than a single time point. For this reason, you don’t want to make

your measurement windows too narrow (< 40 ms or so), even

though a narrow window is useful for mitigating the effects of over-

lapping components. You should also note that, although filtering

can reduce the effects of high-frequency noise in peak amplitude

measures, there is no advantage to low-pass filtering when measur-

ing mean amplitude. By definition, mean amplitude includes the

voltages from multiple nearby time points, and this is exactly

what low-pass filtering does. In fact, filtering the data before mea-

suring the mean amplitude in a given measurement window is the

same thing as measuring the mean amplitude from an unfiltered

waveform using a wider measurement window.
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A third advantage of mean amplitude measures is that they

do not become biased when the noise level increases or when

one uses a longer measurement window. In other words, the

variance may change, but the expected value is independent of

these factors. Consequently, it is legitimate to compare mean am-

plitude measurements from waveforms based on different num-

bers of trials, whereas this is not legitimate for peak amplitude

measurements.

A fourth advantage is that mean amplitude is a linear measure.

That is, if you measure the mean amplitude of a component from

each subject, the mean of these measures will be equal to measur-

ing the mean amplitude of the component from the grand-average

waveform. This makes it possible for you to compare directly

your grand-average waveforms with the means from your statis-

tical analyses. This same principle also applies to the process

of averaging together the single-trial EEG data to form averaged

ERP waveforms. That is, the mean amplitude measured from a

subject’s averaged ERP waveform will be the same as the aver-

age of the mean amplitudes measured from the single-trial EEG

data.

Although mean amplitude has several advantages over peak am-

plitude, it is not a panacea. In particular, mean amplitude is still

quite sensitive to the problem of overlapping components and can

lead to spurious results if the latency of a component varies across

conditions. In addition, there is not always an a priori reason to se-

lect a particular measurement window, and this can encourage

fishing for significant results by trying different windows. There

are some more sophisticated ways of measuring the amplitude of a

component (e.g., dipole source modeling, ICA, PCA, etc.), but these

methods are based on a variety of difficult-to-assess assumptions

and are beyond the scope of this book (for more information on al-

ternative measures, see Coles et al., 1986). Thus, I would generally

recommend using mean amplitude measures in conjunction with

the rules and strategies for avoiding the problem of overlapping

components discussed in chapter 2.
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Baselines

Whether you are measuring mean amplitude or peak amplitude, you

will be implicitly or explicitly subtracting a voltage—usually the

average prestimulus voltage—that represents the baseline or zero

point. Any noise in the baseline will therefore add noise to your

measures, so it is important to select an appropriate baseline. When

you are measuring stimulus-locked averages, I would recommend

that you use the average voltage in the 200 ms before stimulus onset

as the baseline. A 100-ms baseline is common, and although it’s

not as good as 200 ms, it’s usually acceptable. If you use less than

100 ms, it is likely that you will be adding noise to your measures.

The prestimulus interval is usually used as the baseline because

it is assumed that the voltage in this period is unaffected by the

stimulus. Although it is true that the time-locking stimulus cannot

influence the prestimulus period, it is important to realize that the

processing does not always begin after the onset of a stimulus. If

the interval between stimuli is relatively short (< 2 s), the late

potentials from the previous stimulus may not have completely

diminished by the time of the time-locking stimulus and may

therefore contribute to the baseline voltage. In addition, regardless

of the length of the interstimulus interval, the prestimulus voltage

may be influenced by preparatory processes (in fact, the effects of

preparatory processes are more visible when the interstimulus in-

terval is long). For these reasons, the prestimulus baseline rarely

provides a perfectly neutral baseline, and in many experiments it

is clear that the voltage slopes upward or downward during the

prestimulus interval because of these factors. This can be a major

problem if the prestimulus activity differs across experimental con-

ditions, because any difference in measured amplitudes between

conditions might reflect prestimulus differences rather than post-

stimulus differences (see chapter 4, and Woldorff, 1988).

Even when the prestimulus activity does not differ across condi-

tions, it is important to recognize that the prestimulus interval is

usually not completely neutral. For example, scalp distributions

can be significantly distorted if significant activity is present in the
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prestimulus interval and then fades by the time of the component

being measured. The only real solution is to keep in mind that the

measured voltage reflects the difference between the amplitude in

the measurement window and the amplitude in the prestimulus

period (just as it also reflects the difference between the active and

reference electrodes).

Baselines become much more complicated when using response-

locked averages, because the activity that precedes the response is

often as large as or larger than the activity that follows the re-

sponse. One solution to this problem is to use as the baseline a pe-

riod of time that precedes the response by enough so that it always

precedes the stimulus. Another solution is to use the average volt-

age of the entire averaging epoch as the baseline. As far as I am

aware, there is no single best solution, other than thinking care-

fully about whatever baseline period you use to make sure that it

isn’t distorting your results.

I should also mention that investigators sometimes compute

peak-to-peak amplitudes that consist of the difference in amplitude

between two successive peaks of opposite polarity. For example,

the amplitude of the visual N1 wave is sometimes measured as the

difference in amplitude between the N1 peak and the preceding P1

peak (this could also be done with mean amplitudes, although this

is much less common). This approach is sometimes taken if the

components are assumed to overlap in time such that the earlier

component distorts the amplitude of the later component. This

may be a reasonable approach, as long as you keep in mind exactly

what you are measuring.

Measuring ERP Latencies

Peak Latency

ERP latencies are usually measured with peak latency measures

that find the maximum amplitude within a time window and use
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the latency of this peak as a measure of the latency of the underly-

ing component. All of the shortcomings of peak amplitude mea-

sures also have analogs in peak latency measures. First, when the

measurement window includes the rising or falling edge of a larger

component, the maximum voltage will be at the border of the win-

dow (see figure 6.2B). Fortunately, this problem can be solved by

using a local peak latency measure in which a point is not consid-

ered a peak unless the three to five points on each side of it have

smaller values.

A second shortcoming of peak latency measures is that, like peak

amplitude measures, they are highly sensitive to high-frequency

noise. If a peak is rather broad and flat, high-frequency noise may

cause the maximum voltage to be very far away from the middle

of the peak (see the local peak in figure 6.2B). In fact, this is proba-

bly an even more significant problem for peak latency than for

peak amplitude, because a noise-related peak may be far in time

from the true peak but close to the true peak’s amplitude. As in

the case of peak amplitude, you can mitigate this problem to some

extent by filtering out the high frequencies in the waveform (see

the local peak in figure 6.2C).

A third shortcoming is that peak latency, like peak amplitude,

will change systematically as noise levels increase. Specifically, as

the noise increases, the average peak latency will tend to be nearer

to the center of the measurement window. To understand why this

is true, imagine an ERP waveform that is entirely composed of ran-

dom noise. If you measure the peak latency between 200 and 400

ms, the peak latency on any given trial is equally likely to be at

any value in this range, and the average will therefore be at the

center of the range. If there is a signal as well as noise, then the av-

erage will tend to be somewhere between the actual peak and the

center of the range.

A fourth shortcoming of peak latency is that it is nonlinear. In

other words, the peak latency measured from a grand average

will not usually be the same as the average of the peak latencies

that were measured from the single-subject waveforms. Similarly,
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the peak latency measured from a single-subject average will

not usually be the same as the average of the single-trial peak

latencies.

A fifth shortcoming is that peak latency measures, like peak am-

plitudemeasures, implicitly encourage themistaken view that peaks

and components are the same thing and that there is something

special about the point at which the voltage reaches its maximum

value. The latency at which the voltage reaches its maximum value

depends greatly on the nature of the overlapping components and

the waveshape of the component of interest, so peak latency bears

no special relationship to the timing of an ERP component.

Although peak latency has many shortcomings, there just aren’t

many good alternatives, and so it is often the best measure. When

measuring peak latency, you should take the following precau-

tions: (1) filter out the high-frequency noise in the waveforms; (2)

use a local peak measure rather than an absolute peak measure; (3)

make sure that the waveforms being compared have similar noise

levels; and (4) keep in mind that peak latency is a coarse and non-

linear measure of a component’s timing.

Fractional Area Latency

Under some conditions, it is possible to avoid some of the short-

comings of peak latency measures by using fractional area latency

measures, which are analogous to mean amplitude measures. Frac-

tional area measures work by computing the area under the ERP

waveform over a given latency range and then finding the time

point that divides that area into a prespecified fraction (this

approach was apparently first used by Hansen & Hillyard, 1980).

Typically the fraction will be a half, in which case this would be

called a 50 percent area latency measure. Figure 6.3A shows an ex-

ample of this. The measurement window in this figure is 300–600

ms, and the area under the curve in this time window is divided

at 432 ms into two regions of equal area. Thus, the 50 percent area

latency is 432 ms.
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The latency value estimated in this manner will depend quite

a bit on the measurement window chosen. For example, if the

measurement window for the waveform shown in figure 6.3A was

shortened to 300–500 ms rather than 300–600 ms, an earlier 50

percent area latency value would have been computed. Conse-

quently, this measure is not appropriate for estimating the absolute

latency of a component unless the measurement window includes

the entire component and no other overlapping components are

present. However, peak latency also provides a poor measure of

absolute latency because it is highly distorted by overlapping com-

ponents and is relatively insensitive to changes in waveshape. For-

tunately, in the vast majority of experiments, you don’t really care
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Figure 6.3 Application of 50 percent area latency and local peak latency measures to a noise-
free ERP waveform (A), an ERP waveform with a moderate amount of noise (B),
and an ERP waveform with significant noise (C). In each case, measurements were
obtained from 100 waveforms, and the mean (M) and standard deviation (SD)
across these 100 measures are shown. Negative is plotted upward.
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about the absolute latency of a component and are instead con-

cerned with the relative latencies in two different conditions. Con-

sequently, when you are deciding how to measure the latencies in

an experiment, you should base your decision on the ability of

a measure to accurately characterize the difference in latency be-

tween two conditions. In many cases, the 50 percent area latency

measure can accurately quantify latency differences even when the

measurement window does not contain the entire component and

when there is some overlap from other components.

One advantage of the 50 percent area latency measure is that it is

less sensitive to noise. To demonstrate this, I added random (Gaus-

sian) noise the waveform shown in figure 6.3B and then measured

the 50 percent area latency and the local peak latency of the P3

wave. I did this a hundred times for each of two noise levels, mak-

ing it possible to estimate the variability of the measures. When the

noise level was 0.5 mV, the standard deviation of the peak latency

measure over the hundred measurements was 15.6 ms, whereas

the standard deviation of the 50 percent area latency measure was

only 1.9 ms. This is shown in figure 6.3B, which shows the wave-

form from one trial of the simulation (the basic waveform was the

same on each of the hundred trials, but the random noise differed

from trial to trial). When the noise level was increased to 1.0 mV

(figure 6.3C), the standard deviation of the peak latency measure

was 20.4 ms, whereas the standard deviation of the 50 percent

area latency measure was only 2.9 ms. The variability in peak la-

tency measures can be greatly decreased by filtering the data, and

a fair test of peak latency should be done with filtered data. When

the waveforms were filtered by convolving them with a Gaussian

impulse response function (SD ¼ 30 ms, half-amplitude cutoff at

6 Hz), the standard deviations of the peak latency measures

dropped to 3.3 ms and 6.1 ms for noise levels of 0.5 and 1.0 mV, re-

spectively. Thus, even when the data were filtered, the standard

deviation of the peak latency measure was approximately twice

as large as the standard deviation of the 50 percent area latency

measure.
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The 50 percent area latency measure has several other advan-

tages as well. First, it is a sensible way to measure the timing of a

component that doesn’t have a distinct peak or has multiple peaks.

Second, it has the same expected value irrespective of the noise

level of the data. Third, the 50 percent area latency is linear, so

the mean of your measures will correspond well with what you

see in the grand-average waveforms. Finally, 50 percent area la-

tency can be related to reaction time more directly than peak

latency, as described in the next section.

Although the 50 percent area latency measure has several advan-

tages over peak latency, it also has a significant disadvantage. Spe-

cifically, it can produce very distorted results when the latency

range does not encompass most of the ERP component of interest

or when the latency range includes large contributions from multi-

ple ERP components. Unfortunately, this precludes the use of the

50 percent area latency measure in a large proportion of experi-

ments. It is useful primarily for late, large components such as P3

and N400, and primarily when the component of interest can be

isolated by means of a difference wave. In my own research, for ex-

ample, I have used the 50 percent area latency measure in only two

studies (Luck, 1998b; Luck & Hillyard, 1990). However, these were

the two studies in which I was most interested in measuring ERP

latencies and comparing the results with RT. Thus, 50 percent area

latency can be a very useful measure, but it is somewhat limited

and works best in experiments that have been optimized to isolate

a specific ERP component.

I would like to end this section by emphasizing that it is very

difficult to measure ERP latencies. The peak latency measure has

several problems, and although the 50 percent area latency mea-

sure has some advantages over peak latency, it is appropriate only

under a restricted set of conditions. Moreover, the sophisticated

PCA and ICA techniques that have been developed for measuring

ERP amplitudes cannot be used to measure latencies (and gener-

ally assume that latencies are constant). Thus, you must be ex-

tremely careful when interpreting latency measures.
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Comparing ERP Latencies with Reaction Times

In many studies, it is useful to compare the size of an ERP latency

effect to the size of a reaction time (RT) effect. This seems straight-

forward, but it is actually quite difficult. The problem is that RT is

usually summarized as the mean across many trials, whereas a peak

in an ERP waveform is more closely related to the peak (i.e., the

mode) of the distribution of single-trial latencies, and 50 percent

area latency is more closely related to the median of this distribu-

tion. In many experiments, RT differences are driven by changes in

the tail of the RT distribution, which influences the mean much

more than the mode or the median. Consequently, ERP latency

effects are commonly smaller than mean RT effects.

To make this clearer, figure 6.4A shows the probability distribu-

tion of RT in two conditions of a hypothetical experiment, which

we’ll call the easy and difficult conditions. Each point represents

the probability of an RT occurring with G15 ms of that time (that

is, the figure is a histogram with a bin width of 30 ms). As is typi-

cal, the RT distributions are skewed, with a right-side tail extend-

ing out to long RTs, and much of the RT difference between the

conditions is due to a change in the probability of relatively long

RTs rather than a pure shift in the RT distribution. Imagine that

the P3 wave in this experiment is precisely time-locked to the re-

sponse, always peaking 150 ms after the RT. Consequently, the P3

wave will occur at different times on different trials, with a proba-

bility distribution that is shaped just like the RT distribution from

the same condition (but shifted rightward by 150 ms). Imagine fur-

ther that the earlier components are time-locked to the stimulus

rather than the response. Figure 6.4B shows the resulting averaged

ERP waveforms for these two conditions.

Because most of the RTs occur within a fairly narrow time

range in the easy condition, most of the single-trial P3s will also

occur within a narrow range, causing the peak of the averaged

ERP waveform to occur approximately 150 ms after the peak of the

RT distribution (overlap from the other components will influence

the precise latency of the peak). Some of the single-trial RTs occur
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Figure 6.4 (A) Histogram showing the probability of a response occurring in various time bins
(bin width ¼ 30 ms) in an easy condition and a difficult condition of a hypothetical
experiment. (B) ERP waveforms that would be produced in this hypothetical experi-
ment if the early components were insensitive to reaction time and the P3 wave was
perfectly time-locked to the responses. Negative is plotted upward. (C) Response
density waveforms showing the probability of a response occurring at any given
moment in time.
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at longer latencies, but they are sufficiently infrequent that they

don’t have much influence on the peak P3 latency in the averaged

waveform.

The mean RT is 50 ms later in the difficult condition than in

the easy condition. However, because much of the RT effect con-

sists of an increase in long RTs, the peak of the RT distribution is

only 30 ms later in condition B than in condition A. Because the

peak of the P3 wave in the averaged ERP waveform is tied closely

to the peak of the RT distribution, peak P3 latency is also 30 ms

later in the difficult condition than in the easy condition. Thus, the

peak latency of the P3 wave changes in a manner that reflects

changes in the peak (mode) of the RT distribution rather than its

mean. Thus, when RT effects consist largely of increases in the tail

of the distribution rather than a shift of the whole distribution,

changes in peak latency will usually be smaller than changes in

mean RT, even if the component and the response are influenced

by the experimental manipulation in exactly the same way. Conse-

quently, you should never compare the magnitude of an ERP peak

latency effect to a mean RT effect unless you know that the RT ef-

fect is simply a rightward shift in the RT distribution (which you

can verify by plotting the distributions, as in figure 5.4A).

How, then, can you compare RT effects to ERP latency effects?

The answer is you must measure them in the same way. One way

to achieve this would be to use a peak latency measure for both

the ERPs and the RTs (using the probability distribution to find

the peak RT). However, the peak of the RT distribution is unlikely

to reflect the RT effects very well, because the effects are often

driven by changes in the longer RTs. In addition, RT distributions

are typically very noisy unless they are computed from thousands

of RTs, so it is difficult to get a stable measure of the peak of the RT

distribution in most experiments. Moreover, the latency of a peak

measured from an ERP waveform is not a particularly good mea-

sure of the timing of the underlying component, as discussed ear-

lier in this chapter.
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The 50 percent area latency measure provides the time point that

bisects the area of the waveform, and this is similar to the median

RT, which is the point separating the fastest half of the RTs from

the slowest half. Indeed, I once conducted a study which com-

pared the 50 percent area latency of the P3 wave with median RT,

and the results were quite good (Luck, 1998b). However, 50 per-

cent area latency is not quite analogous to median RT, because me-

dian RT does not take into account the precise values of the RTs

above and below the median. For example, a median RT of 300 ms

would be obtained for an RT distribution in which half of the

values were between 200 and 300 ms and the other half were be-

tween 300 and 400 ms, and the same median RT would be

obtained if half of the RTs were between 290 and 300 ms and the

other half were between 300 and 5,000 ms.

Thus, we need a measure of RT that represents the point that

bisects the area of the RT distribution, just as the 50 percent area

latency measure represents the point that bisects the area under

the ERP waveform. The problem is that RTs are discrete, instanta-

neous events, and this is a problem for area measures. One way

to achieve a curve with a measurable area would be to compute

histograms of RT probability, as in figure 6.4A. However, these

histograms are not really continuous, so they do not provide a per-

fect measure of area. Researchers who conduct single-unit record-

ings have to deal with this same problem, because spikes are also

treated as discrete, instantaneous events. To create a continuous

waveform from a set of spikes, they have developed spike density

waveforms (see, e.g. Szücs, 1998). In these waveforms, each spike

is replaced by a continuous gaussian function, peaking at the time

of the spike, and the gaussians are summed together. The same

thing can be done for reaction times, creating response density

waveforms.

Figure 6.4C shows an example of such a waveform. Each indi-

vidual response that contributed to the histogram in figure 6.4A

was replaced by a Gaussian function with a standard deviation of

approximately 8 ms, and the average across trials was then com-
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puted. The 50 percent area latency was then computed, just as it

was for the ERPs. The resulting latencies were 240 ms for the easy

condition and 272 ms for the difficult condition, and the 32-ms dif-

ference between these latencies compares favorably with the 30-ms

effect observed in the 50 percent area latency measures of the ERP

waveform.

I don’t know of anyone who has tried this approach, and I’m sure

it has limitations (I described some of the limitations of the 50 per-

cent area latency measure toward the end of the previous section).

However, this approach to comparing RT effects with ERP latency

effects is certainly better than comparing peak ERP latencies with

mean RTs.

Onset Latency

In many experiments, it is useful to know if the onset time of

an ERP component varies across conditions. Unfortunately, onset

latency is quite difficult to measure. When the onset of the com-

ponent of interest is overlapped by other ERP components, there is

no way to accurately measure the onset time directly from the

waveforms. To measure the onset time, it is necessary to somehow

remove the overlapping components. The most common way to do

this is to form difference waves that isolate the component of in-

terest (such as the difference waves used to extract the lateralized

readiness potential, as described in chapter 2). More sophisticated

approaches, such as dipole source analysis and independent com-

ponents analysis may also be used to isolate an ERP component.

Once a component has been isolated, it is still quite difficult to

measure its onset time. The main reason for this is that the onset

is a point at which the component’s amplitude is, by definition, at

or near zero, and the signal-to-noise ratio is also at or near zero.

Thus, any noise in the waveform will obscure the actual onset

time. Researchers have used several different methods to measure

onset time over the years; I’ll describe a few of the most common

methods.
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One simple approach is to plot the waveforms for each subject

on paper and have a naı̈ve individual use a straight-edge to extrap-

olate the waveform to zero mV and then record the latency at that

point. This can be time consuming, and it assumes that the compo-

nent can be accurately characterized as a linearly increasing wave-

form. Despite the fact that this approach is somewhat subjective, it

can work quite well because it takes advantage of the sophisticated

heuristics the human visual system uses. But it is also prone to

bias, so the person who determines the latencies must be blind to

the experimental conditions for each waveform.

Another approach is to use the fractional area latency measure

described previously in this chapter. Instead of searching for the

point that divides the waveform into two regions of equal area, it

is possible to search for the point at which 25 percent of the area

has occurred (see, e.g., Hansen & Hillyard, 1980). This can work

well, but it can be influenced by portions of the component that oc-

cur long after the onset of the component. Imagine that waveforms

A and B have the same onset time, but waveform B grows larger

than waveform A at a long latency. Waveform B will therefore

have a greater overall area than waveform A, and it will take longer

to reach 25 percent of the area for waveform B.

Another approach is to find the time at which the waveform’s

amplitude exceeds the value expected by chance. The variation in

prestimulus voltage can be used to assess the amplitude required

to exceed chance, and the latency for a given waveform is the time

at which this amplitude is first reached (for details, see Miller,

Patterson, & Ulrich, 1998; Osman et al., 1992). Unfortunately, this

method is highly dependent on the noise level, which may vary

considerably across subjects and conditions.

A related approach is to find the time at which two conditions

become significantly different from each other across subjects,

which provides the onset latency of the experimental effect. The

simplest way to achieve this is to perform a t-test of the two condi-

tions at each time point and find the first point at which the corre-

sponding p-value is less than .05. The problem with this is that
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many comparisons are being made, making it likely that a spurious

value will be found. One could use an adjustment for multiple

comparisons, but this usually leads to a highly conservative test

that will become significant much later than the actual onset time

of the effect. A compromise approach is to find the first time point

that meets two criteria: (1) the p-value is less than .05, and (2) the

p-values for the subsequent N points are also less than .05 (where

N is usually in the range of 3–10). The idea is that it is unlikely to

have several spurious values in a row, so this approach won’t pick

up spurious values. That is fairly reasonable, but it assumes that

the noise at one time point is independent of the noise at adjacent

time points. This is generally not true, and it is definitely false if

the data have not been low-pass filtered. As discussed in chapter

5, low-pass filtering spreads the voltage out in time, and a noise

blip at one point in time will therefore be spread to nearby time

points. However, if the data have not been extensively low-pass fil-

tered, and N is sufficiently high (e.g., 100 ms), this approach will

probably work well.

Miller, Patterson, and Ulrich (1998) have developed an excellent

approach for measuring the difference in the onset latency of the

lateralized readiness potential between two conditions, and this

approach should also be useful for other components that can be

isolated from the rest of the ERP waveform. In this approach, one

uses the grand-average waveforms from two conditions and finds

the point at which the voltage reaches a particular level (e.g., 50

percent of the peak amplitude of the waveform). The difference be-

tween the two conditions provides an estimate of the difference in

onset times. Because this estimate is based on the point at which a

reasonably large amplitude has been reached in the grand average,

it is relatively insensitive to noise. One can then test the statistical

significance of this estimate by using the jackknife technique to

assess the standard error of the estimate (see Miller, Patterson, &

Ulrich, 1998 for details). This is a well-reasoned technique, and

Miller and colleagues (1998) performed a series of simulations to

demonstrate that it works well under realistic conditions.
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Statistical Analyses

Once you have collected ERP waveforms from a sample of subjects

and obtained amplitude and latency measures, it is time to perform

some statistical analyses to see whether your effects are significant.

In the large majority of cognitive ERP experiments, the investiga-

tors are looking for a main effect or an interaction in a completely

crossed factorial design, and ANOVA is therefore the dominant

statistical approach. Consequently, this is the only approach I will

describe. Other approaches are sometimes useful, but they are be-

yond the scope of this book.

Before I begin describing how to use ANOVAs to analyze ERP

data, I would like to make it clear that I consider statistics to be a

necessary evil. We often treat the .05 alpha level as being somehow

magical, with experimental effects that fall below p < .05 as being

‘‘real’’ and effects that fall above p < .05 as being nonexistent.

This is, of course, quite ridiculous. After all, if p ¼ .06, there is

only a 6 percent probability that the effect was due to chance,

which is still rather low. Moreover, the assumptions of ANOVA

are violated by almost every ERP experiment, so the p-values that

we get are only approximations of the actual probability of a type I

error. On the other hand, when examining a set of experimental

effects that are somewhat weak, you need a criterion for deciding

whether to believe them or not, and a p-value is usually better

than nothing.

I have two specific recommendations for avoiding the problems

associated with conventional statistics. First, whenever possible,

try to design your experiments so that the experimental effects are

quite large relative to the noise level and the p-values are very low

(.01 or better). That way, you won’t have to worry about one ‘‘bad’’

subject keeping your p-values from reaching the magical .05 crite-

rion. Moreover, when your effects are large relative to the noise

level, you can have some faith in the details of the results that are

not being analyzed statistically (e.g., the onset and offset times of

the experimental effects). My second suggestion is to use the one

statistic that cannot fail, namely replication (see box 6.1). If you
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keep getting the same effect in experiment after experiment, then

it’s a real effect. If you get the effect in only about half of your

experiments, then it’s a weak effect and you should probably figure

out a way to make it stronger so that you can study it more easily.

The Standard Approach

To explain the standard approach to analyzing ERP data with

ANOVAs, I will describe the analyses that we conducted for the

experiment described briefly near the beginning of chapter 1. In

this experiment, we obtained recordings from lateral and midline

electrode sites at frontal, central, and parietal locations (i.e., F3,

Fz, F4, C3, Cz, C4, P3, Pz, and P4). Subjects saw a sequence of Xs

and Os, pressing one button for Xs and another for Os. On some

trial blocks, X occurred frequently (p ¼ .75) and O occurred in-

frequently (p ¼ .25), and on other blocks this was reversed. We

also manipulated the difficulty of the X/O discrimination by

Box 6.1 The Best Statistic

Replication is the best statistic. I learned this when I was a graduate student
in the Hillyard lab, although no one ever said it aloud. I frequently say it aloud
to my students. Replication does not depend on assumptions about normal-
ity, sphericity, or independence. Replication is not distorted by outliers. Rep-
lication is a cornerstone of science. Replication is the best statistic.

A corollary principle—which Steve Hillyard has said aloud—is that the
more important a result is, the more important it is to replicate the result be-
fore you publish it. There are two reasons for this, the first of which is obvi-
ous: you don’t want to make a fool of yourself by making a bold new claim
and being wrong. The second and less obvious reason is that if you want peo-
ple to give this important new result the attention it deserves, you should
make sure that they have no reason to doubt it. Of course, it’s rarely worth-
while to run exactly the same experiment twice. But it’s often a good idea to
run a follow-up experiment that replicates the result of the first experiment
and also extends it (e.g., by assessing its generality or ruling out an alterna-
tive explanation).
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varying the brightness of the stimuli. The experiment was focused

on the P3 wave, but I will also discuss analyses of the P2 and N2

components.

Before measuring the amplitudes and latencies of these com-

ponents, we first combined the data from the Xs and Os so that we

had one waveform for the improbable stimuli and one for the prob-

able stimuli. We did this for the simple reason that we didn’t care

if there were any differences between Xs and Os per se, and col-

lapsing across them reduced the number of factors in the ANOVAs.

The more factors are used in an ANOVA, the more individual p-

values will be calculated, and the greater is the chance that one of

them will be less than .05 due to chance (this is called an increase

in experimentwise error). By collapsing the data across irrelevant

factors, you can avoid this problem (and avoid having to come up

with an explanation for a weird five-way interaction that is proba-

bly spurious).

Figure 6.5 illustrates the results of this experiment, showing the

ERP waveforms recorded at Fz, Cz, and Pz. From this figure, it is

clear that the P2, N2, and P3 waves were larger for the rare stimuli

than for the frequent stimuli, especially when the stimuli were

bright. Thus, for the amplitude of each component, we would ex-

pect to see a significant main effect of stimulus probability and a

significant probability� brightness interaction.

The analysis of P3 amplitude is relatively straightforward. We

measured P3 amplitude as the mean amplitude between 300 and

800 ms at each of the nine electrode sites and entered these data

into a within-subjects ANOVA with four factors: stimulus proba-

bility (frequent vs. rare), stimulus brightness (bright vs. dim),

anterior-posterior electrode position (frontal, central, or parietal),

and left-right electrode position (left hemisphere, midline, or right

hemisphere). We could have used a single factor for the electrode

sites, with nine levels, but it is usually more informative to divide

the electrodes into separate factors representing different spatial

dimensions. Consistent with the waveforms shown in figure 6.5,

this ANOVA yielded a highly significant main effect of stimulus
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probability, Fð1; 9Þ ¼ 95:48, p < .001, and a significant interaction

between probability and brightness, Fð1; 9Þ ¼ 11:66, p < .01.

Some investigators perform a separate ANOVA for each elec-

trode site (or each left-midline-right set) rather than performing a

single ANOVA with electrode site as a factor. Although there may

be advantages to this approach, it is likely to increase both the

probability of a type I error (incorrectly rejecting the null hypothe-

sis) and the probability of a type II error (incorrectly accepting the

null hypothesis). Type I errors will be increased because more p-

values must be computed when a separate ANOVA is performed

for each electrode, leading to a greater probability that a spurious

effect will reach the .05 level. Type II errors will be increased
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Figure 6.5 Grand-average ERPs for frequent and rare stimuli in the bright and dim conditions.
Negative is plotted upward.
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because a small effect may fail to reach significance at any individ-

ual site, whereas the presence of this effect at multiple sites may be

enough to make the effect significant when all of the sites contrib-

ute to the analysis.

Even when a single ANOVA includes multiple electrode sites, it

is usually best not to include measurements from electrode sites

spanning the entire scalp. Instead, it is usually best to measure

and analyze an ERP component only at sites where the component

is actually present. Otherwise, the sites where the component is

absent may add noise to the analyses, or the presence of other com-

ponents at those sites may distort the results. In addition, it is

sometimes useful to analyze only the sites at which the component

of interest is large and other components are relatively small so

that they do not distort measurements of the component of interest.

In the present study, for example, we used all nine sites for analyz-

ing the P3 wave, which was much larger than the other compo-

nents, but we restricted the P2 analyses to the frontal sites, where

the P2 effects were large but the N2 and P3 waves were relatively

small. However, when you are trying to draw conclusions about

the scalp distribution of a component, it may be necessary to in-

clude measurements from all of the electrodes.

Box 6.2 provides a few thoughts about how to describe ANOVA

results in a journal article.

Interactions with Electrode Site

It is clear from figure 6.5 that the difference in P3 amplitude be-

tween the rare and frequent stimuli was larger at posterior sites

than at anterior sites. This led to a significant interaction between

stimulus probability and anterior-posterior electrode position,

Fð2; 18Þ ¼ 63:92, p < .001. In addition, the probability effect for

the bright stimuli was somewhat larger than the probability effect

for the dim stimuli at the parietal electrodes, but there wasn’t

much difference at the frontal electrodes. This led to a significant
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three-way interaction among probability, brightness, and anterior-

posterior electrode position, Fð2; 18Þ ¼ 35:17, p < .001.

From this interaction, you might be tempted to conclude that dif-

ferent neural generator sites were involved in the responses to the

bright and dim stimuli. However, as McCarthy and Wood (1985)

pointed out, ANOVA interactions involving an electrode position

factor are ambiguous when two conditions have different mean

amplitudes. Figure 6.6 illustrates this, showing the scalp distribu-

tions that one would expect from a single generator source in two

different conditions, A and B. If the magnitude of the generator’s

Box 6.2 The Presentation of Statistics

Inferential statistics such as ANOVAs are used to tell us how much confidence
we can have in our data. As such, they are not data, but are a means of deter-
mining whether the data pattern is believable. However, many ERP results
sections are written as if the inferential statistics are the primary results, with
virtually no mention of the descriptive statistics or the ERP waveforms. For
example, consider this excerpt from a Results section:

Results
There was a significant main effect of probability on P3 amplitude,
Fð1; 9Þ ¼ 4:57, p < :02. There was also a significant main effect of
electrode site, Fð11; 99Þ ¼ 3:84, p < :01, and a significant interaction
between probability and electrode site, Fð11; 99Þ ¼ 2:94, p < :05 . . .

In this example, the reader learns that there is a significant effect of proba-
bility on the P3 wave but cannot tell whether the P3 was bigger for the prob-
able stimuli or for the improbable stimuli. This is not an unusual example: I
have seen Results sections like this many times when reviewing journal sub-
missions. It is important to remember that inferential statistics should always
be used as support for the waveforms and the means, and the statistics
should never be given without a description of the actual data. And I am not
alone in this view. For example, an editorial in Perception & Psychophysics a
few years ago stated that ‘‘the point of Results sections, including the statis-
tical analyses included there, is to make the outcome of the experiment clear
to the reader. . . . Readers should be directed first to the findings, then to their
analysis’’ (Macmillan, 1999, p. 2).
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activation is 50 percent larger in condition B than in condition A,

the amplitude at each electrode will be 50 percent larger in condi-

tion B than in condition A. This is a multiplicative effect, and not

an additive effect. That is, the voltage increases from 1 mV to 1.5 mV

at Fz and increases from 2 mV to 3 mV at Pz, which is a 0.5 mV in-

crease at Fz and a 1 mV increase at Pz. Condition C in figure 6.6

shows an additive effect. In this condition, the absolute voltage at

each site increases by 1 mV, which is not the pattern that would re-

sult from a change in the amplitude of a single generator source.

Thus, when a single generator source has a larger magnitude in

one condition than in another condition, an interaction between

condition and electrode site will be obtained (as in condition A

versus condition B), whereas a change involving multiple genera-

tor sites may sometimes produce a purely additive effect (as in con-

dition A versus condition C).

0.0
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Fz Fz FzCz Cz CzPz Pz Pz
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Figure 6.6 Examples of additive and multiplicative effects on ERP scalp distributions. Condition
B is the same as condition A, except that the magnitude of the neural generator site
has increased by 50 percent, thus increasing the voltage at each site by 50 percent.
This is a multiplicative change. Condition C is the same as condition A, except that
the voltage at each site has been increased by 1 mV. This is an additive change and
is not what would typically be obtained by increasing the magnitude of the neural
generator source.
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To determine whether an interaction between an experimental

condition and electrode site really reflects a difference in the in-

ternal generator sources, McCarthy and Wood (1985) proposed

normalizing the data to remove any differences in the overall

amplitudes of the conditions. Specifically, the data are scaled so

that the voltages across the electrode sites range between 0 and 1

in both conditions. To do this, you simply find the electrode sites

with the largest and smallest amplitudes in each condition, and

for each condition compute a new value according to the formula:

New value ¼ ðold value�minimum valueÞ

o ðmaximum value�minimum valueÞ

Once these normalized values have been computed, there will

be no difference in amplitude between the conditions, and the

condition � electrode site interaction is no longer distorted by the

multiplicative relationship between the magnitude of the internal

generator and the distribution of voltage across electrodes. Thus,

any significant interaction obtained with the normalized values

must be due to a change in the relative distribution of internal

brain activity.

But there is a problem. Many labs used this procedure for almost

two decades, and then Urbach and Kutas (2002) convincingly dem-

onstrated that it doesn’t work. For a variety of subtle technical rea-

sons, normalization procedures will fail to adjust accurately for the

multiplicative interactions that arise when ANOVAs are conducted

with electrode as a factor. A significant condition� electrode site

interaction may be obtained after normalization even if there is no

difference in the relative distribution of internal brain activity, and

a real difference in the relative distribution of internal brain activ-

ity may not yield a significant condition� electrode site interac-

tion (even with infinite statistical power). Thus, you should not

use normalization procedures, and there is simply no way to deter-

mine the presence or absence of a change in the relative distribu-

tion of internal brain activity by examining condition � electrode

site interactions. It just cannot be done.
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There is also another problem with normalization, but it’s

conceptual rather than technical. Many researchers have looked

at condition � electrode site interactions to determine whether

or not the same brain areas are active in different experi-

mental conditions. Even if normalization worked correctly, it

would be impossible to make claims of this sort on the basis of

a condition � electrode site interaction. The problem is that this

interaction will be significant when exactly the same generators

are active in both conditions as long as they differ in relative mag-

nitude. That is, if areas A and B have amplitudes of six and twelve

units in one condition and eight and nine units in another con-

dition, this will lead to a change in scalp distribution that will

produce a condition � electrode site interaction. Moreover, even

if there is no difference in the magnitude of the generators

across conditions, but there is a latency difference in one of the

two generators across conditions, it is likely that the measured

scalp distribution at any given time point will differ across condi-

tions. Thus, you cannot draw strong conclusions about differences

in which generator sources are active on the basis of ANOVA

results.

Violation of ANOVA Assumptions

It is well known that the ANOVA approach assumes that the data

are normally distributed and that the variances of the different con-

ditions are identical. These assumptions are often violated, but

ANOVA is fairly robust when the violations are mild to moderate,

with very little change in the actual probability of a type I error

(Keppel, 1982). Unless the violations of these assumptions are

fairly extreme (e.g., greater than a factor of two), you just don’t

need to worry about them. However, when using within-subjects

ANOVAs, another assumption is necessary, namely homogeneity

of covariance (also called sphericity). This assumption applies

only when there are at least three levels of a factor. For example,

imagine an experiment in which each subject participates in three
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conditions, C1, C2, and C3. In most cases, a subject who tends to

have a high value in C1 will also tend to have high values in C2

and C3; in fact, this correlation between the conditions is the es-

sential attribute of a within-subjects ANOVA. The assumption of

homogeneity of covariance is simply the assumption that the de-

gree of correlation between C1 and C2 is equal to the degree of

correlation between C2 and C3 and between C1 and C3. This

assumption does not apply if there are only two levels of a factor,

because there is only one correlation to worry about in this case.

The homogeneity-of-covariance assumption is violated more

often by ERP experiments than by most other types of experiments

because data from nearby electrodes tend to be more correlated

than data from distant electrodes. For example, random EEG noise

at the Fz electrode will spread to Cz more than to Pz, and the cor-

relation between the data at Fz and the data at Cz will be greater

than the correlation between Fz and Pz. In addition, ANOVA is

not very robust when the homogeneity of covariance assumption

is violated. Violations will lead to artificially low p-values, such

that you might get a p-value of less than .05 even when the actual

probability of a type I error is 15 percent. Thus, it is important to

address violations of this assumption.

The most common way to address this is to use the Greenhouse-

Geisser epsilon adjustment (see Jennings & Wood, 1976), which

counteracts the inflation of type I errors produced by heterogeneity

of variance and covariance (which is also called nonsphericity).

For each F-value in an ANOVA that has more than 1 degree of

freedom in the numerator, this procedure adjusts the degrees of

freedom downward—and hence the p-value upward—in a manner

that reflects the degree of nonsphericity for each F-value. Fortu-

nately, most major statistics packages provide this adjustment, and

it is therefore easy to use.

We used the Greenhouse-Geisser adjustment in the statistical

analysis of the P3 amplitude data discussed above. It influenced

only the main effects and interactions involving the electrode fac-

tors, because the other factors had only two levels (i.e., frequent
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vs. rare and bright vs. dim). For most of these F-tests, the adjust-

ment didn’t matter very much because the unadjusted effects were

either not significant to begin with or were so highly significant

that a moderate adjustment wasn’t a problem (e.g., an unadjusted

p-value of .00005 turned into an adjusted p-value of .0003). How-

ever, there were a few cases in which a previously significant p-

value was no longer significant. For example, in the analysis of the

normalized ANOVA, the main effect of anterior-posterior electrode

site was significant before the adjustment was applied (Fð2; 18Þ ¼
4:37, p ¼ .0284) but was no longer significant after the adjustment

(p ¼ :0586). This may seem like it’s not such a great thing, because

this effect is no longer significant after the adjustment. However,

the original p-value was not accurate, and the adjusted p-value is

closer to the actual probability of a type I error. In addition, when

very large sets of electrodes are used, the adjustments are usually

much larger, and spurious results are quite likely to yield signifi-

cant p-values when no adjustment is used.

In my opinion, it is absolutely necessary to use the Greenhouse-

Geisser adjustment—or something comparable2—whenever there

are more than two levels of a factor in an ANOVA, especially

when one of the factors is electrode site. And this is not just

my opinion, but reflects the consensus of the field. Indeed, the

journal Psychophysiology specifically requires that authors either

use an adjustment procedure or demonstrate that their data do not

violate the sphericity assumption. In addition, most ERP-savvy

reviewers at other journals will require an adjustment procedure.

Even if you could ‘‘get away’’ with not using the adjustment, you

should use it anyway, because without it your p-values may be

highly distorted.

Follow-Up Comparisons

Once you find a significant effect in an ANOVA, it is often neces-

sary to do additional analyses to figure out what the effect means.

For example, if you have three experimental conditions and the
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ANOVA indicates a significant difference among them, it is usually

necessary to conduct additional analyses to determine which of

these three conditions differs from the others. Or, if you have a sig-

nificant interaction, you may need to conduct additional analyses

to determine the nature of this interaction. In our P3 experiment,

for example, we found an interaction between stimulus brightness

and stimulus probability, with a larger effect of probability for the

bright stimuli than for the dim stimuli. One could use additional

analyses to ask whether the probability effect was significant only

for the bright stimuli and not for the dim stimuli, or whether the

brightness effect was significant only for the rare stimuli and not

for the frequent stimuli.

The simplest way to answer questions such as these is to run ad-

ditional ANOVAs on subsets of the data. For example, we ran an

ANOVA on the data from the bright stimuli and found a significant

main effect of probability; we also ran an ANOVA on the data from

the dim stimuli and again found a significant main effect of proba-

bility. Thus, we can conclude that probability had a significant

effect for both bright and dim stimuli even though the original

ANOVA indicated that the probability effect was bigger for bright

stimuli than for dim stimuli.

When a subset of the data are analyzed in a new ANOVA, it

is possible to use the corresponding error term from the original

ANOVA (this is called ‘‘using the pooled error term’’). The advan-

tage to using the pooled error term is that it has more degrees of

freedom, leading to greater power. The disadvantage is that any

violations of the homogeneity of variance and covariance assump-

tions will invalidate this approach. Because ERP data almost

always violate these assumptions, I would recommend against

using the pooled error term in most cases.

There are several additional factors that you must consider when

conducting additional analyses of this nature. For example, the

more p-values you compute, the greater is the chance that one of

them will be significant by chance. However, these additional fac-

tors are no different in ERP research than in other areas, and I will
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not try to duplicate the discussions of these issues that appear in

standard statistics texts.

Analyzing Multiple Components

In the standard approach to ERP analysis, a separate ANOVA is

conducted for each peak that is measured. It would be possible to

include data from separate peaks, with peak as a within-subjects

ANOVA factor, but this would not be in the univariate ‘‘spirit’’ of

the ANOVA approach. That is, the different components are not

really measurements of the same variable under different condi-

tions. Of course, performing a separate ANOVA for each peak can

lead to a proliferation of p-values, increasing your experimentwise

error, and this can be a substantial problem if you are measuring

many different peaks. As chapter 2 discussed, it is usually best to

focus an experiment on just one or two components rather than

‘‘fishing’’ for effects in a large set of components, and this mini-

mizes the experimentwise error. It is also possible to enter the

data from all of the peaks into a single MANOVA, but multivariate

statistics are beyond the scope of this book (for more information,

see Donchin & Heffley, 1978; Vasey & Thayer, 1987).

When it is necessary to analyze the data from multiple peaks, it

is important to avoid the problem of temporally overlapping com-

ponents as much as possible. For example, the effects of stimulus

probability on the P2, N2, and P3 waves shown in figure 6.5 over-

lap with each other, especially at the central and parietal electrode

sites. In particular, the elimination of the P2 effect at Cz and Pz for

the dim stimuli could be due to an increase in P2 latency, pushing

the P2 wave into the latency range of the N2 wave and leading to

cancellation of the P2 wave by the N2 wave.

When you are faced with data such as these, you really have

three choices. The first is to simply ignore the P2 and N2 waves

and focus on the P3 wave, which is so much larger than the P2

and N2 waves that it is unlikely to be substantially distorted by

them. This is a very reasonable strategy when the experiment was
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designed to test a specific hypothesis about a single component

and the other components are irrelevant. A second approach is to

use a more sophisticated approach such as PCA or ICA. This can

also be a reasonable approach, as long as you are careful to con-

sider the assumptions that lie behind these techniques. The third

approach is to use simple measurement and analysis techniques,

but with measurement windows and electrode locations designed

to minimize the effects of overlapping components (however, you

must be cautious about the possibility that the overlapping compo-

nents might still distort the results).

As an example of this third approach, we measured P2 ampli-

tude as the mean voltage between 125 and 275 ms, which spanned

most of the P2 wave for both the bright and dim stimuli. In addi-

tion, to minimize the effects of the overlapping components, we

measured the P2 wave only at the frontal electrode sites, where

the P2 wave was fairly large and the other components were fairly

small. In this analysis, we found a significant main effect of stim-

ulus probability, Fð1; 9Þ ¼ 6:13, p < .05, a significant main effect

of stimulus brightness, Fð1; 9Þ ¼ 22:12, p < .002, and a signifi-

cant probability� brightness interaction, Fð1; 9Þ ¼ 5:44, p < .05.

Although we can’t be 100 percent certain that these effects aren’t

distorted somewhat by the overlapping N2 wave and the effects of

stimulus brightness on P2 latency, they correspond well with the

waveforms shown in figure 6.5 and are probably real.

The Bottom Line

In this section, I have discussed the most common approach to per-

forming statistical analyses on ERP data. As I mentioned at the be-

ginning of the section, this approach is not without flaws, but it also

has two important positive attributes. First and foremost, it is a

conventional approach, which means that people can easily under-

stand and evaluate results that are analyzed in this manner. Sec-

ond, even though a rigid .05 criterion is somewhat silly when the

assumptions of ANOVA are violated and when a large number of
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p-values are calculated, it is reasonably conservative and allows

everyone to apply a common standard. My ultimate recommen-

dation, then, is to use the standard approach when presenting

results to other investigators, but to rely on high levels of statistical

power, replication, and common sense when deciding for yourself

whether your results are real.
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7 ERP Localization

The ultimate goal of cognitive neuroscience is to understand how

the neural circuitry of the brain gives rise to cognitive processes.

This is a challenging enterprise, and one of the central difficulties

is to measure how specific populations of neurons operate during

the performance of various cognitive tasks. The best techniques

for measuring activity in specific populations of neurons are inva-

sive and cannot usually be applied to human subjects, but it is dif-

ficult to study many aspects of cognition in nonhuman subjects.

PET and fMRI provide noninvasive means of localizing changes in

blood flow that are triggered by overall changes in neural activity,

but blood flow changes too slowly to permit the measurement of

most cognitive processes in real time. ERPs provide the requisite

temporal resolution, but they lack the relatively high spatial reso-

lution of PET and fMRI. However, ERPs do provide some spatial

information, and many investigators are now trying to use this spa-

tial information to provide a measurement of the time course of

neural activity in specific brain regions.

The goal of this chapter is to explain how this process of ERP

source localization works in general and to provide a discussion

and critique of the most common source localization techniques.

Before I begin, however, I would like to provide an important ca-

veat: I tend to be extremely skeptical about ERP localization, and

this chapter reflects that skepticism. Many other researchers are

also skeptical about ERP localization (see, e.g., Snyder, 1991), but

I am more skeptical than most. Consequently, you should not as-

sume that my conclusions and advice in this chapter represent

those of the majority of ERP researchers. You should talk to a broad



range of ERP experts before making up your mind about source

localization.

Source localization is very complex, both in terms of the under-

lying mathematics and the implementation of the procedures, and

it would require an entire book to provide a detailed description of

the major techniques. This chapter therefore focuses on providing

a simple description of the two major classes of techniques—

including their strengths and weaknesses—so that you can un-

derstand published research using these techniques and decide

whether to pursue localization yourself.

My main advice in this chapter is that beginning and intermedi-

ate ERP researchers should not attempt to localize the sources of

their ERP data. ERP localization is a very tricky business, and do-

ing it reasonably well requires sophisticated techniques and lots of

experience. Moreover, the techniques currently in wide use are not

completely satisfactory. However, many smart people are working

to improve the techniques, and some promising approaches are on

the horizon. Thus, you may eventually want to do some source

localization, and you will certainly be reading papers that report

localization results. The goal of this chapter is therefore to make

you an informed and critical observer of source localization efforts

rather than a participant in these efforts.

The Big Picture

If you place a single dipole in a conductive sphere, you can use

relatively simple equations to predict the precise distribution of

observable voltage on the surface of the sphere. This is called the

forward problem, and it is relatively easy to solve. Voltages sum-

mate linearly, which means that the forward problem is also easy

to solve for multiple simultaneously active dipoles—the voltage

distributions for the individual dipoles are simply added together

to derive the distribution for the set of dipoles. The forward prob-

lem can also be solved for realistic head shapes.
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The problem arises in solving the inverse problem of determin-

ing the positions and orientations of the dipoles on the basis of the

observed distribution of voltage over the scalp. If only one dipole

is present, and there is no noise, then it is possible to solve the in-

verse problem to any desired degree of spatial resolution by com-

paring forward solutions from a model dipole with the observed

scalp distribution and then adjusting the dipole to reduce the dis-

crepancy between the predicted and observed distributions. How-

ever, it is not possible to solve the inverse problem if you don’t

know the number of dipoles (or if the activity is distributed rather

than dipolar) because there is no unique solution to the inverse

problem in this case. In other words, for any given scalp distribu-

tion, there is an infinite number of possible sets of dipoles that

could produce that scalp distribution (Helmholtz, 1853; Plonsey,

1963). Thus, even with perfectly noise-free data, there is no perfect

solution to the inverse problem.

Several investigators have proposed ways around this unique-

ness problem, and their solutions fall into two general categories.

One approach is to use a small number of equivalent current

dipoles, each of which represents the summed activity over a small

cortical region (perhaps 1–2 cm3), and assume that these dipoles

vary only in strength over time; this is the equivalent current

dipole category of source localization methods. The second cate-

gory divides the brain’s volume (or the cortical surface) into a

fairly large number of voxels (perhaps a few thousand), and com-

putes the set of strengths for these voxels that can both explain

the observed distribution of voltage over the scalp and satisfy

additional mathematical constraints; this is the distributed source

category.

The Forward Solution

Early forward solutions assumed that the head was a sphere, which

makes the computations relatively simple. That is, if we assume
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that the head is a sphere and that the head’s resistance is homoge-

neous, it is very easy to compute the voltage created at every point

on the scalp by a single dipole or an arbitrarily large set of dipoles.

The skull and scalp have a higher resistance than the brain, but

this is easily accommodated by a model in which skull and scalp

layers cover a homogeneous, spherical brain. Researchers often

use a spherical approximation for computing forward solutions

because it is easy to generate the model and because they can com-

pute the forward solution very rapidly. However, this model is

obviously an oversimplification, and many researchers are now

using more detailed models of the head, such as finite element

models. A finite element model divides the volume of the head

into thousands or even hundreds of thousands of individual cubes.

The resistance within each cube is assumed to be homogeneous

(which is a reasonable approximation given that each cube is very

small), but the resistances are different for each cube. In addition,

the set of cubes that define the head are not constrained to form a

large sphere, but instead take into account the shape of each sub-

ject’s head (as determined by a structural MRI scan).

Once the researcher has divided the head into a set of cubes and

determined the resistances of the individual cubes, simple equa-

tions can determine the surface voltages that a dipole in a known

location would produce. Given the large number of cubes in a real-

istic model of the head, it takes a lot of computer power to do this

sort of modeling, but as computers become faster, this sort of mod-

eling will fall within the means of more and more researchers. The

hard part is to determine the resistances of the individual cubes.

The resistances can’t actually be measured for a living human sub-

ject, but they can be estimated by performing an MRI scan, divid-

ing up the head into regions of different tissue types on the basis

of the MRI scan, and using normative resistance values for each

tissue type (i.e., resistance values that have been determined inva-

sively from cadavers, from nonhuman animals, and possibly from

human neurosurgical patients).
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Because finite element models are so computationally intensive,

researchers have developed a less intensive variant, the boundary

element model. This approach takes advantage of the fact that

the brain itself has a relatively constant resistance, and most of the

action is in the boundaries between the brain, the skull, and the

scalp. The model therefore consists of boundary surfaces for these

tissues, with the assumption that the resistance within a tissue is

constant throughout the extent of that tissue. As in finite element

models, the boundaries are estimated from structural MRI scans

and the conductivities of each tissue type are based on normative

values.

Equivalent Current Dipoles and the BESA Approach

The brain electrical source analysis (BESA) technique is the

prototypical example of an equivalent current dipole technique. In

addition, BESA has been the most commonly used method for

localizing ERP sources over the past twenty years, in part because

it is relatively simple and inexpensive (both in terms of computing

resources and money). Thus, this section will focus on the BESA

technique. The interested reader may also want to learn about

the MUSIC (multiple signal characterization) technique, which

provides a more sophisticated approach to computing equivalent

current dipole solutions (see Mosher, Baillet, & Leahy, 1999;

Mosher & Leahy, 1999; Mosher, Lewis, & Leahy, 1992).

BESA is based on the assumption that the spatiotemporal distri-

bution of voltage can be adequately modeled by a relatively small

set of dipoles (< 10), each of which has a fixed location and ori-

entation but varies in magnitude over time (Scherg, Vajsar, & Pic-

ton, 1989; Scherg & von Cramon, 1985). Each dipole has five major

parameters, three indicating its location, and two indicating its

orientation. A magnitude parameter is also necessary, but this pa-

rameter varies over time and is treated differently from the location

and orientation parameters.
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The Essence of BESA

The BESA algorithm begins by placing a set of dipoles in an ini-

tial set of locations and orientations, with only the magnitude be-

ing unspecified. The algorithm then calculates a forward solution

scalp distribution for these dipoles, computing a magnitude for

each dipole at each point in time such that the sum of the dipoles

yields a scalp distribution that fits, as closely as possible, the

observed distribution for each point in time.

The scalp distributions from the model are then compared with

the observed scalp distributions at each time point to see how well

they match. The degree of match is quantified as the percentage of

the variance in scalp distribution that is explained by the model;

alternatively, it can be expressed as the percentage of unexplained

variance (called the residual variance). The goal of the algorithm is

to find the set of dipole locations and orientations that yields the

lowest residual variance, providing the best fit between the model

and the data.

This is accomplished in an iterative manner, as shown in figure

7.1. On each iteration, the forward solution is calculated, leading

to a particular degree of residual variance, and then the positions

and orientations of the dipoles are adjusted slightly to try to reduce

the residual variance. This procedure is iterated many times using

a gradient descent algorithm so that the positions and orientations

will be adjusted in a way that tends to decrease the residual vari-

ance with each successive iteration. In the first several iterations,

the residual variance drops rapidly, but after a large number of

iterations, the residual variance stops declining much from one

iteration to the next and the dipole positions and orientations be-

come stable. There are various refinements that one can add, but

this is the essence of the BESA technique.

Figure 7.2 shows an example of a BESA solution (from Di Russo

et al., 2002). The goal of this source localization model was to char-

acterize the generators of the early visual sensory components. The

top of the figure shows the scalp distribution of the ERP response

to a checkerboard stimulus in the upper left visual field in various
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time ranges, and the bottom of the figure shows the BESA model

that was obtained. Each dipole is represented by a dot showing its

location and a line showing its orientation; three different views

of the head are shown so that the dipoles can be seen in three

dimensions. Each dipole is also associated with a source wave-

form, which shows how the estimated magnitude for that dipole

varies over time.

The Starting Point

Before initiating this iterative procedure, it is necessary to decide

how many dipoles to use and what their starting positions will

be. These are important decisions, and they will have a very

Current model of dipole 
locations and orientations

Starting model of dipole 
locations and orientations

Distribution of voltage 
computed from current model

Compare with observed 
distribution of voltage

Calculate residual variance 
(RV = XX.XX%)

Make small adjustment to 
model to reduce RV

Figure 7.1 Basic procedure of the BESA technique.
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Figure 7.2 Example of an equivalent current dipole model generated using the BESA technique
(from the study of Di Russo et al., 2002). The top shows the scalp distributions of
voltage measured in various time ranges in response to a checkerboard in the upper
left visual field. This time-space-voltage data set is modeled by a set of seven
dipoles. The locations and orientations of the dipoles are shown in three different
views in the lower right region, and the magnitude of each dipole over time is shown
in the lower left region. (> 2002 Wiley-Liss, Inc.) Thanks to Francesco Di Russo for
providing electronic versions of these images.
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substantial impact on the solution the algorithm ultimately

reaches. In fact, the most problematic aspect of the BESA tech-

nique is the fact that the user has a lot of control over the results

(this is called operator dependence); consequently the results may

be biased by the user’s expectations.

You can use several different strategies to select the number

of dipoles. One approach is to use principal components analysis

(PCA) to determine how many underlying spatial distributions of

activity contribute to the observed distribution of voltage over the

scalp. This technique can work well in some cases. However, if

the magnitudes of two dipoles are correlated with each other over

time, they may be lumped together into a single component. Thus,

the number of components identified by PCA can only provide a

lower bound on the number of dipoles.

Another strategy is to start by using one or two dipoles to create

a model of the early part of the waveform, under the assumption

that the response begins in one or two sensory areas. Once a stable

solution is reached for the early part of the waveform, the time

window is increased and new dipoles are added while the original

dipoles are held constant. This procedure is then repeated with a

larger and larger time window. This procedure makes some sense,

but it has some shortcomings. First, at least a dozen visual areas

are activated within 60 ms of the onset of activity in visual cortex

(Schmolesky et al., 1998), so representing the early portion of the

waveform with one or two dipoles is clearly an oversimplification.

Second, some error is likely in any dipole solution, and small

errors in the initial dipoles will lead to larger errors in the next set

of dipoles, and the location estimates will become increasingly in-

accurate as you add more and more dipoles.

A third strategy is to use preexisting knowledge about the brain

to determine the number of dipoles. For example, if you use differ-

ence waves to isolate the lateralized readiness potential, it would

be reasonable to start with the assumption that two dipoles are

present, one in each hemisphere.
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There are also several strategies that you can use for determining

the starting positions and orientations of the dipoles, and different

strategies will lead to different results. Unfortunately, most papers

using the BESA technique describe the model produced by one or

two different starting positions. Almost every time I have read a

paper that used the BESA technique, I wished the authors had

provided a detailed description of the results that would have

been obtained with a wide variety of different starting locations. It

would be possible for researchers to do this. Indeed, Aine, Huang,

and their colleagues have developed what they call a multi-start

approach to localization, in which they apply the localization algo-

rithm hundreds or even thousands of times with different starting

parameters (Aine et al., 2000; Huang et al., 1998). It is then possi-

ble to determine which dipole locations occur frequently in the

solutions and are therefore relatively independent of the starting

parameters.

Another strategy is to start with dipoles in locations that are

based on preexisting knowledge about the brain. The locations

could be based on general knowledge (e.g., the location of primary

and secondary auditory areas), or they could be based on specific

results from previous experiments (e.g., activation centers from

a similar fMRI experiment). When using the latter approach, re-

searchers sometimes say that the solution is based on seeded

dipoles, and some studies have explicitly shown that similar

results were obtained with random dipole locations and seeded

dipoles (e.g., Heinze et al., 1994). This is, in some ways, a reason-

able approach. However, it seems likely to lead to a confirmation

bias, increasing the likelihood that the expected results will be

obtained even if they are not correct.

Shortcomings of the BESA Approach

The BESA approach has several shortcomings, but the most signif-

icant problem is that there is no mathematically principled means
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of quantifying the accuracy of a solution. Specifically, in the pres-

ence of noise, it is possible for a substantially incorrect solution to

have the same (or lower) residual variance than the correct solu-

tion. Even with minimal noise, it is possible for a substantially in-

correct solution to have a very low residual variance (especially

when using more than a few dipoles). One reason for this is that

each BESA dipole has five free parameters (plus a time-varying

magnitude parameter). Thus, a model with only six dipoles has

thirty free parameters, and a relatively large error in one of these

parameters can easily be offset by small adjustments in the other

parameters, resulting in low residual variance. Even if only one

dipole is present, the BESA solution may be inaccurate due to

noise in the data and errors in the head model. Without some

means of quantifying the likelihood that a solution is correct or

even nearly correct, it’s hard to use a BESA solution to provide

strong support for or against a hypothesis.

The second most significant shortcoming of the BESA technique

is the operator dependence of the technique (as mentioned briefly

in the previous section). In addition to setting the number and ini-

tial positions of the dipoles, a researcher can adjust several other

parameters that control how the algorithm adjusts the positions

and orientations of the dipole while searching for the configuration

with the least residual variance. Moreover, at several points in the

process, the researcher makes subjective decisions about adding or

deleting dipoles from the solution or changing various constraints

on the dipoles. I have seen ERP researchers spend weeks applying

the BESA technique to a set of data, playing around with different

parameter settings until the solution ‘‘looks right.’’ Of course, what

‘‘looks right’’ is often a solution that will confirm the researcher’s

hypothesis (or at least avoid disconfirming it).

Another significant shortcoming of the BESA technique is that

it will produce an incorrect solution if the number of dipoles is

incorrect. It is difficult or impossible to know the number of

dipoles in advance, especially in an experiment of some cognitive
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complexity, so this is a significant limitation. Moreover, BESA uses

a discrete dipole to represent activity that may be distributed

across a fairly large region of cortex, and this simplification may

lead to substantial errors.

A Simulation Study

There have been a variety of tests of the accuracy of equivalent cur-

rent dipole localizations, but they have mostly used only one or

two simultaneously active dipoles (see, e.g., Cohen & Cuffin, 1991;

Leahy et al., 1998). These simulations are useful for assessing the

errors that might be likely in very simple sensory experiments, but

they do not provide meaningful information about the errors that

might occur in most cognitive neuroscience experiments.

Miltner et al. (1994) performed the most informative simulation

study in the context of cognitive neuroscience. This study used

BESA’s spherical, three-shell head model to simulate a set of

dipoles and produce corresponding ERP waveforms from thirty-

two electrode sites. From these ERP waveforms, nine participants

attempted to localize the dipoles using BESA. The participants

consisted of ERP researchers with various levels of expertise with

BESA (including three with very high levels of expertise).1 The

participants were told that the data were simulated responses from

left somatosensory stimuli that were presented as the targets in an

oddball task, and they were given the task of trying to localize the

sources. The simulation comprised ten dipoles, each of which was

active over some portion of a 900-ms interval. White noise was

added to the data to simulate the various sources of noise in real

ERP experiments. The simulation included two dipoles in left pri-

mary somatosensory cortex (corresponding to the P100 wave and

an early portion of the N150 wave), a mirror-symmetrical pair of

dipoles in left and right secondary somatosensory cortex, midline

dipoles in prefrontal and central regions, and mirror-symmetrical

pairs of dipoles in medial temporal and dorsolateral prefrontal

regions.
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This is a fairly large set of dipoles,2 but the participants’ task

was made easier by at least seven factors: (1) the solution included

several dipoles that were located exactly where they would be

expected (e.g., the primary and secondary somatosensory areas);

(2) three of the dipole pairs were exactly mirror-symmetrical

(which matches a typical BESA strategy of assuming mirror

symmetry at the early stages of the localization process); (3) the

spherical BESA head model was used to create the simulations,

eliminating errors due to an incorrect forward solution; (4) the tem-

poral overlap between the different dipoles was modest (for most

of the dipoles, there was a time range in which only it and one

other dipole or mirror-symmetrical dipole pair were strongly

active); (5) with the exception of the two dipoles in primary soma-

tosensory cortex, the dipoles were located fairly far away from

each other; (6) the white noise that was added was more easily fil-

tered out than typical EEG noise and was apparently uncorrelated

across sites; and (7) the simulation used discrete dipoles rather

than distributed regions of activation.

Despite the fact that the simulation perfectly matched the as-

sumptions of the BESA technique and was highly simplified, none

of the participants reached a solution that included all ten dipoles

in approximately correct positions. The number of dipoles in the

solutions ranged from six to twelve, which means that there were

several cases of missing dipoles and/or spurious dipoles. Only

two of the nine participants were able to distinguish between the

midline prefrontal and midline central dipoles, and the other

seven participants tended to merge them into a single dipole even

though the actual dipoles were approximately 5 cm apart.

Across all dipoles that appeared to be localized by the partici-

pants, the average localization error was approximately 1.4 cm,

which doesn’t sound that bad. However, this was a simplified sim-

ulation based on the BESA head model, and the errors with real

data are likely to be greater. Moreover, there were many cases in

which an individual dipole’s estimated location was 2–5 cm from

the actual dipole’s location, and the mean errors across dipoles for
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individual participants were as high as 2 cm. To be fair, however,

I should note that most of the participants provided a reasonably

accurate localization of one of the two primary somatosensory

dipoles, the secondary somatosensory dipoles, the medial temporal

lobe dipoles, and the dorsolateral prefrontal dipoles. But each of

the nine participants had at least one missing dipole, one spurious

dipole, or one mislocalization of more that 2 cm.

From this study, we can draw two main conclusions. First, in

this highly simplified situation, dipoles were often localized with

a reasonable degree of accuracy, with an average error of 1–2 cm

for most of the participants (relative to a 17-cm head diameter).

Thus, when reality does not deviate too far from this simplified sit-

uation, the BESA technique can potentially provide a reasonable

estimate of the locations of most of the dipoles most of the time.

However, some of the simplifications seem quite far from reality,

so it is entirely possible that average errors will be considerably

larger with most real data sets.

The second main conclusion is that any single dipole in a given

multiple-dipole BESA model has a significant chance of being sub-

stantially incorrect, even under optimal conditions. Dipoles may

be mislocalized by several centimeters or completely missed; mul-

tiple dipoles may be merged together, even if they are fairly far

apart; and spurious dipoles may be present in the model that corre-

spond to no real brain activity. Thus, even if the average error is

only 1–2 cm for most dipoles, this simulation suggests that BESA

solutions for moderately complex data sets may typically contain

at least one missing dipole, one spurious dipole, or one 2–5 cm lo-

calization error. And the accuracy of the technique is presumably

even worse for real data sets that deviate from the simplifications

of this simulation.

Although the BESA technique has been widely used over the

past twenty years, most ERP researchers now appreciate its limita-

tions. There is a clear trend away from this technique and toward

more sophisticated equivalent current dipole approaches and dis-

tributed source approaches.
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Distributed Source Approaches

General Approach

Instead of using a small number of equivalent current dipoles to

represent the pattern of neural activity, it is possible to divide the

brain up into a small number of voxels and find a pattern of activa-

tion values that will produce the observed pattern of voltage on the

surface of the scalp. For example, you could divide the surface of

the brain into a hundred little cubes. Each cube would contain

three dipoles, one pointing upward, one pointing forward, and

one pointing laterally (a single dipole of an arbitrary orientation

can be simulated by varying the relative strengths of these three

dipoles). You could then find a pattern of dipole strengths that

would yield the observed distribution of voltage on the surface of

the head. This would provide you with an estimate of the distribu-

tion of electrical activity throughout the brain.

The problem with this approach is that even this relatively

coarse parcellation of the brain requires that you compute 300

different dipole strengths. That is, your model has 300 free param-

eters to be estimated. Generally speaking, you need at least as

many independent data points as you have free parameters, and

even if you have voltage measurements from 300 electrodes,

they are contaminated by noise and are not independent of each

other. Consequently, there are many different sets of strengths of

the 300 dipoles that could produce the observed ERP scalp distri-

bution. This is the problem of nonuniqueness. And it would

get even worse if we wanted to divide the brain into even smaller

voxels.

Cortically Constrained Models

Researchers have developed several strategies to avoid the non-

uniqueness problem. One strategy is to reduce the number of

dipoles by assuming that scalp ERPs are generated entirely by
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currents generated in the cerebral cortex, flowing perpendicular to

the cortical surface (which is a reasonable assumption in most

cases). Instead of using a set of voxels that fills the entire volume

of the brain, with three dipoles per voxel, this approach uses struc-

tural MRI scans to divide the cortical surface into hundreds or

thousands of small triangles, each with a single dipole oriented

perpendicular to the cortical surface. This cortically constrained

approach dramatically reduces the number of free parameters in

the model (although some error may be introduced by inaccuracies

in the cortical surface reconstruction). The result is a model of the

distribution of electrical activity over the cortical surface.

Figure 7.3 illustrates this approach, with a slice through a car-

toon brain that shows the cortical surface and recording electrodes

for the left hemisphere. The cortical surface has been divided into

a number of small patches, and each patch is treated as a dipolar

current source pointing perpendicular to the cortical surface. This

reduces the number of dipole locations and orientations compared

to dividing the entire volume of the brain into voxels, each of

which contains three dipoles. However, the number of dipoles

needed in a real experiment is still very large (usually in the hun-

dreds or thousands), and there is still no unique pattern of dipole

strengths that can account for the observed distribution of voltage

on the scalp. That is, the use of a cortically constrained model

reduces the number of internal patterns of activity that could ex-

plain the observed distribution of voltage over the scalp, but it

does not bring the number all the way to one (i.e., to a unique

solution).

The non-uniqueness problem in cortically constrained models

can be appreciated by considering sources 15 and 16 in figure 7.3.

These sources are almost perfectly parallel to each other, but they

are inverted in orientation with respect to each other (i.e., the outer

surface of the cortex points downward for source 15 and upward

for source 16). This is a common occurrence given the extensive

foldings of the human cerebral cortex. The non-uniqueness prob-

lem occurs because any increase in the magnitude of source 15
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can be cancelled by an increase in the magnitude of source 16,

with no change in the distribution of voltage on the surface.

The Minimum Norm Solution

To get around the nonuniqueness problem (for both whole-brain

and cortically constrained models), Hämäläinen and Ilmoniemi

(1984) proposed adding an additional constraint to the system. This

constraint is based on the fact that the cancellation problem—as
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Figure 7.3 Example of the electrical sources and measurement electrodes used by cortically
constrained distributed source localization methods. The figure shows a coronal
section through the brain. The cortex is divided into a large number of patches that
are assumed to be the electrical sources (labeled S0–S29 here). Each source is
modeled as a dipole that is centered in the corresponding cortical patch and ori-
ented perpendicular to the patch. The voltage corresponding to each source propa-
gates through the brain, skull, and scalp to reach the recording electrodes (labeled
E0–E6), and the voltages from the different sources simply sum together.
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exemplified by sources 15 and 16 in figure 7.3—allows the magni-

tudes of nearby sources to become huge without distorting the dis-

tribution of voltage on the scalp. These huge magnitudes are a

biologically unrealistic consequence of the modeling procedure,

and it therefore makes sense to eliminate solutions that have huge

magnitudes. Thus, Hämäläinen and Ilmoniemi (1984) proposed

selecting the one solution that both produces the observed scalp

distribution and has the minimum overall source magnitudes.

This is called the minimum norm solution to the problem of find-

ing a unique distribution of source magnitudes.

One shortcoming of the minimum norm solution is that it is

biased toward sources that are near the surface, because a larger

magnitude is necessary for a deep source to contribute as much

voltage at the scalp as a superficial source. However, this problem

can be solved by using a depth-weighted minimum norm solu-

tion that weights the magnitudes of each source according to its

depth when finding the solution with the minimum overall source

magnitudes.

Other researchers have proposed other types of minimum norm

solutions that reflect different constraints. The most widely used

of these alternatives is the low-resolution electromagnetic tomo-

graphy (LORETA) technique, which assumes that the voltage will

change gradually (across the volume of the brain or across the cor-

tical surface) and selects the distribution of source magnitudes that

is maximally smooth (Pascual-Marqui, 2002; Pascual-Marqui et al.,

2002; Pascual-Marqui, Michel, & Lehmann, 1994). The smoothness

constraint may be reasonable in many cases, but sharp borders

exist between adjacent neuroanatomical areas, and these borders

would sometimes be expected to lead to sudden changes in cortical

current flow. Indeed, if an experimental manipulation is designed

to activate one area (e.g., V3) and not an adjacent area (e.g., V4),

then the goals of the experiment would be incompatible with an

assumption of smoothness. On the other hand, gradual changes in

activity are probably the norm within a neuroanatomical area, so

the smoothness constraint may be appropriate in many cases. Note
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also that, because of its smoothness constraint, the LORETA tech-

nique is appropriate only for finding the center of an area of acti-

vation and not for assessing the extent of the activated area. In

contrast, nothing about the original and depth-weighted minimum

norm solutions will prevent sharp borders from being imaged.

It is possible to combine empirical constraints with these mathe-

matical constraints. For example, Dale and Sereno (1993) describe

a framework for using data from functional neuroimaging to pro-

vide an additional source of constraints that can be combined with

the minimum norm solution (see also George et al., 1995; Phillips,

Rugg, & Friston, 2002; Schmidt, George, & Wood, 1999). Like the

LORETA approach, this approach has the advantage of using bio-

logical information to constrain which solution is chosen. How-

ever, it is easy to conceive of situations in which an fMRI effect

would not be accompanied by an ERP effect or vice versa (see

Luck, 1999), so the addition of this sort of neuroimaging-based

constraint may lead to a worse solution rather than a better one. It

may also produce a confirmation bias: when you use fMRI data to

constrain your ERP localization solution, you’re increasing the

likelihood of finding a match between the ERP data and the fMRI

data even if the ERP is not generated at the locus of the fMRI

BOLD signal. A simulation study suggested that the most problem-

atic situation arises when an ERP source is present without a corre-

sponding fMRI source (Liu, Belliveau, & Dale, 1998). This study

also indicated that the resulting distortions are reasonably small if

the source localization algorithm assumes a less-than-perfect corre-

spondence between the ERP and fMRI data. It remains to be seen

whether the use of fMRI data to probabilistically constrain ERP

source localization leads to substantial errors when applied to real

data.

Unlike equivalent source dipole approaches, minimum norm-

based techniques will always find a unique solution to the inverse

problem, and they do it largely automatically. However, a unique

and automatic solution is not necessarily the correct solution. The

correctness of the solution will depend on the correctness of the
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assumptions. As Ilmoniemi (1995) discussed, an approach of this

type will provide an optimal solution if its assumptions are valid,

but different sets of assumptions may be valid for different data

sets. For example, if one applies the LORETA technique to the

three-dimensional volume of the brain without first creating a

model of the cortical surface, the smoothness assumption will al-

most certainly be violated when areas that are distant from each

other along the cortical surface abut each other due to the folding

pattern of the cortex. But if the smoothness constraint is applied

along the reconstructed 2-D cortical surface, then this assumes

that subcortical regions do not contribute to the data, which may

be incorrect.

The Added Value of Magnetic Recordings

As described in chapter 1, the EEG is accompanied by a magnetic

signal, the MEG, and event-related electrical potentials (ERPs) are

accompanied by event-related magnetic fields (ERMFs). Because

the skull is transparent to magnetism, it does not blur the MEG sig-

nal, and this leads to improved spatial resolution for MEG record-

ings. Another benefit of MEG is that, because magnetism passes

unimpeded through the head, MEG/ERMF localization does not re-

quire a model of the conductances of the head; it simply requires a

model of the overall shape of the brain. Thus, it can be advanta-

geous to apply localization techniques to ERMFs rather than ERPs.

ERMF localization faces the same non-uniqueness problem as

ERP localization, but combining ERP and ERMF data provides a

new set of constraints that can aid the localization process. The

main reason for this is that the voltage field and the magnetic field

run in different directions, and they therefore provide complemen-

tary information. As figure 7.4A illustrates, the magnetic field runs

in circles around the current dipole. When the current dipole is

oriented in parallel to the skull, the magnetic field exits the skull

on one side of the dipole and reenters the skull on the other side

(figure 7.4B). The strength of the magnetic field varies as a function
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Figure 7.4 Relationship between an electrical dipole and its associated magnetic field. An elec-
trical dipole has a magnetic field running around it (A), and when the dipole is
roughly parallel to the surface of the head, the magnetic field leaves and reenters
the head (B). If the dipole is oriented radially with respect to the head, the magnetic
field does not vary across the surface of the head (C). When a dipole runs parallel to
the surface of the head (represented by the arrow in D), there is a broad region of
positive voltage at the positive end (solid lines) and a broad region of negative
voltage at the negative end (dashed lines), separated by a line of zero voltage (rep-
resented by the dotted line). The magnetic field, in contrast, consists of magnetic
flux leaving the head on one side of the dipole (solid lines) and reentering the head
on the other side (dashed lines), separated by a line of no net flux (dotted line).
Thanks to Max Hopf for providing the electrical and magnetic distributions shown
in (D).
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of distance from the dipole, just like the strength of the electrical

field, but the voltage distribution is broader due to the blurring of

the scalp (figure 7.4D). In addition, the magnetic and electrical dis-

tributions are oriented at 90 degrees with respect to each other. As

figure 7.4D shows, the positive and negative electrical potentials

appear at the positive and negative ends of the dipole, and the line

of zero voltage runs perpendicularly through the center of the

dipole. The efflux and influx of the magnetic field, in contrast, oc-

cur on the left and right sides of the dipole, and the zero flux line

runs in parallel with the orientation of the dipole.

MEG fields differ from EEG fields in another key way as well. If

the current dipole is perfectly perpendicular to the skull, as in

figure 7.4C, the magnetic field does not exit and reenter the head,

and it is essentially invisible. As the dipole tilts from perpendicu-

lar toward parallel, a recordable magnetic field begins to appear

again. In contrast, a large and focused voltage will be present di-

rectly over a perpendicular dipole. A dipole near the center of the

head will act much like a perpendicular dipole, generating a rea-

sonably large voltage on the surface of the scalp that is accompa-

nied by a magnetic field that does not exit and reenter the head

and is therefore effectively invisible. Thus, magnetic signals are

largest for superficial dipoles that run parallel to the surface of the

skull, and fall off rapidly as the dipoles become deeper and/or per-

pendicularly oriented, but voltages do not fall off rapidly in this

manner.

The different effects of dipole depth and orientation on electrical

and magnetic signals provide an additional set of constraints on

source localization solutions. In essence, there are many internal

source configurations that can explain a given electrical distribu-

tion, and there are also many internal source configurations that

can explain a given magnetic distribution. But there will be far

fewer configurations than can explain both the electrical distribu-

tion and the magnetic distribution. Consequently, the combination

of magnetic and electrical data is substantially superior to either

type of data alone. The main drawbacks of combining magnetic

Chapter 7 288



and electrical data compared to using magnetic data alone are that

(a) a more complex head model is needed for the electrical data,

and (b) some effort is required to ensure that the electrical and

magnetic data are in exactly the same spatial reference frame.

Can We Really Localize ERPs?

Each of the source localization techniques described in this chap-

ter has shortcomings. Of course, any scientific technique has

limitations and shortcomings, but the shortcomings of source local-

ization techniques are fundamentally different from the shortcom-

ings of other techniques for localization of function. This section

will explore these differences and consider a new approach that

seems more promising.

Source Localization as Model Fitting

To understand the essence of ERP source localization, it is useful

to compare it with a ‘‘true’’ neuroimaging technique, such as PET.

In the most common PET approach, radioactively labeled water

molecules travel through the bloodstream, where their diffusion

properties are straightforward. Consequently, the number of radio-

active molecules in a given volume of the brain can be directly re-

lated to the flow of blood through that part of the brain. When a

labeled water molecule decays, it gives off a positron, which trav-

els a known distance (or distribution of distances) before colliding

with an electron. This collision leads to a pair of annihilation pho-

tons that travel in opposite directions along the same line. When

these high-intensity photons are picked up simultaneously by two

detectors within the ring of detectors around the subject, there is a

high likelihood that they were generated somewhere along the line

between the two detectors, and the decaying isotope is known to

have been within a certain distance from this line. Thus, by com-

bining the known physics of radiation with various probability

distributions, one can directly compute the maximum likelihood
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location of the radioactively labeled water molecules and the mar-

gin of error of this location. The story is analogous, although more

complicated, for fMRI.

Because the ERP localization problem is underdetermined, main-

stream ERP localization techniques employ a different approach.

That is, they do not simply compute the maximum likelihood loca-

tion of an ERP source, along with a margin of error, on the basis of

the physics of electricity and magnetism. Instead, ERP localization

techniques generate models of the underlying distribution of elec-

trical activity, and these models are evaluated in terms of their

ability to satisfy various constraints. The most fundamental con-

straint, of course, is that a given model must recreate the observed

distribution of voltage over the surface of the head. However, a cor-

rect model may not fit the data exactly, because noise in the data

distorts the observed distribution. Consequently, any internal con-

figuration that is, say, 95 percent consistent with the observed

scalp distribution might be considered acceptable. Unfortunately,

there will be infinitely many internal configurations that can ex-

plain an observed scalp distribution, especially when only a 95

percent fit is required.

Additional constraints are then added to select one internal con-

figuration from the many that can explain the observed scalp distri-

bution. Each source localization technique embodies a different set

of these additional constraints, and the constraints can be either

mathematical (as in the use of the minimum norm) or empirical

(as in the use of fMRI data to constrain ERP localizations). The

most straightforward empirical constraint is the use of structural

MRI scans to constrain the source locations to the cortical surface.

However, this alone does not lead to a unique solution (and it may

not always be the case that all scalp ERP activity arises from the

cortex). Researchers therefore add other constraints, but there is

usually no way of assessing whether these constraints are correct

and sufficient.

The bottom line is that ERP localization leads to a model of the

internal configuration of electrical activity, not a measurement
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of the internal distribution of electrical activity. In contrast, PET

and fMRI provide measurements and not merely models. PET, for

example, provides a measurement of the internal distribution of

radioactively labeled blood. This measurement is derived from

more basic measurements, but that is true of most sophisticated

scientific measurements. And although the PET measurements are

not error-free, this is true of any measurement, and one can specify

the margin of error. It is more difficult to describe exactly what the

BOLD signal reflects in fMRI, but the location of this signal is mea-

sured with a known margin of error. In contrast, one cannot use

surface electrodes to measure the distribution of internal electrical

activity with a known margin of error.

People occasionally ask me how accurately ERPs can be local-

ized, hoping for a quantification of accuracy that they can compare

with the accuracy of PET and fMRI. My response is that the accu-

racy of ERP localization is simply undefined. That is, in the ab-

sence of any constraints beyond the observed scalp distribution,

radically different distributions of internal electrical activity would

produce the observed scalp distribution, and the margin of error is

essentially the diameter of the head.

Once constraints are added, some source localization approaches

could, in principle, quantify the margin of error. For example, it

would be possible to state that the estimated center of a region of

activation is within X millimeters of the actual center of the acti-

vated region. Or it would be possible to state that the amount of

estimated current flow within each patch of cortex is within Y per-

cent of the actual current flow. I’ve never seen anyone do this in

the context of a serious experiment, but it would be an extremely

useful addition to the source localization techniques. However,

the margin of error that could be specified in this manner would

be meaningful only if the constraints of the model were fully ade-

quate and the only sources of error arose from noise in the ERP

data (and perhaps errors in specifying the head model). If the con-

straints were insufficient, or if they reflected incorrect assump-

tions about the underlying neural activity, then the margin of error
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would be meaningless. Thus, the source localization techniques

that are currently in widespread use do not, in practice, provide a

meaningful estimate of the margin of error.

Probabilistic Approaches

The commonly used source localization techniques attempt to find

a single pattern of internal electrical activity that best explains the

observed scalp distribution (along with satisfying other implicit or

explicit constraints). When I read a paper that reports source local-

ization models, I always wonder what other distributions would fit

the data as well as, or almost as well as, the reported solution. Are

all reasonable solutions similar to the reported solution? Or are

there other solutions that are quite different from the reported solu-

tion but fit the data and the constraints almost as well? After all,

the presence of noise in the data implies that the correct solution

will not actually fit the data perfectly, so a solution that explains

only 97 percent of the variance may be closer to the correct solu-

tion than a solution that accounts for 100 percent of the variance.

Figure 7.5 shows a simulation presented by Koles (1998) that

illustrates this problem. Koles created a distributed source by using

several nearby dipoles arranged along a curved surface, and fit an

equivalent current dipole to the scalp distribution produced by

this distributed source. He placed model dipoles systematically at

a variety of locations, and measured the residual error for each of

these locations. As the right side of figure 7.5 shows, the error was

lowest near the location of the best equivalent current dipole, but

there wasn’t much difference in error over a fairly wide range of

locations. This is exactly the sort of information that one needs to

know when trying to evaluate a source localization model.

In my view, it is misguided to attempt to find a unique solu-

tion given the uncertainties inherent in ERP localization. A better

approach would be to report the entire range of solutions that fit

the data and constraints to some criterion level (e.g., a fit of 95 per-

cent or better). Moreover, it would be useful to report the range of
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solutions obtained as one adds and removes various constraints. If,

for example, one were to find high levels of estimated activity in

a particular region in almost any solution, no matter what con-

straints were used, then this would give us considerable confi-

dence that this region really contributed to the observed ERPs.

A few investigators have explored this general sort of approach.

For example, as described in the section on equivalent source

dipole approaches, Huang, Aine, and their colleagues (1998) have

developed a multi-start approach in which the dipole localization

procedure is run hundreds or thousands of times with different

starting positions. This makes it possible to see which dipole loca-

tions are found frequently, independent of the starting positions or

even the number of dipoles in the model. This approach poten-

tially solves the most significant shortcomings of equivalent source

dipole approaches. In particular, the solutions are largely operator-

independent, and it is possible to assess the likelihood that a given
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Figure 7.5 Example of a distributed electrical source (A) and the amount of error that would
occur in estimating this source by a single dipole over a range of positions (B). Al-
though a single point of minimum error exists, the amount of error varies little over
a fairly wide range. (Adapted from Koles, 1998. > 1998 Elsevier Science Ireland
Ltd.) Thanks to Zoltan Koles for providing electronic versions of these images.

ERP Localization 293



dipole location occurred because of the starting positions of the

dipoles or because of incorrect assumptions about the number of

dipoles.

Although the multi-start approach addresses these shortcomings,

it still falls short of providing a quantitative description of the

probability that a particular brain area contributed to the observed

ERP data. That is, a dipole may have been found in a given region

in some percentage of the solutions, but the localization approach

does not guarantee that the space of adequate solutions is sampled

completely and evenly. However, Schmidt, George, and Wood

(1999) have developed a distributed source localization technique

based on Bayesian inference that provides a more sophisticated

means of assessing probabilities. This technique is similar to the

multi-start technique insofar as it generates thousands of potential

solutions. However, its basis in Bayes’s theorem allows it to pro-

vide a more complete and quantitative description of the space of

possible solutions. This is the most promising localization tech-

nique that I have seen. Unfortunately, it has not yet been widely

applied to real experiments, and other groups of researchers

have not yet thoroughly explored its limitations. Nonetheless, the

more general principle embodied by this approach and the multi-

start approach—which systematically explore the space of likely

solutions—seems like the best direction for the development of

source localization techniques.

Recommendations

I will end this chapter by providing some recommendations about

whether, when, and how you should use source localization tech-

niques. My basic conclusion is that ERP localization is extremely

difficult, and it should be attempted only by experts and only

when the solution space can be reduced by well-justified con-

straints, such as structural MRI data and the combination of elec-

trical and magnetic data. In addition, the most commonly used

techniques are useful primarily for obtaining converging evidence

rather than providing a conclusive, stand-alone test of a hypothe-
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sis, although ongoing developments may someday allow source lo-

calization data to provide definitive results.

Source Localization and Scientific Inference

To assess the value of source localization techniques, it is useful

to put them into the context of general principles of scientific infer-

ence. Perhaps the most commonly cited principle of scientific in-

ference is Popper’s (1959) idea of falsification. A commonly used,

although less commonly cited, extension of this idea is Platt’s

(1964) notion of strong inference, in which the best experiments

are those that differentiate between competing hypotheses, sup-

porting one and falsifying the other.

How do source localization techniques fare when judged by

these standards? Not well. I don’t think anyone really believes that

a single source localization model can conclusively falsify a hy-

pothesis or definitively decide between two competing hypotheses.

There are simply too many uncertainties involved in source local-

ization. On the other hand, it is rare that a single experiment us-

ing any method is 100 percent conclusive, so this standard may be

unrealistic.

A more flexible approach is to apply Bayes’s Theorem to scien-

tific inference. In this context, we can summarize Bayes’s Theorem

by stating that a new result increases the probability that a hypoth-

esis is true to the extent that (a) there is a high probability of that

result being true if the hypothesis is true, and (b) there is a low

probability of that result being true if the hypothesis is false. In

other words, a finding that is consistent with a hypothesis does

not give us much more faith in the hypothesis if the finding is

likely even if the hypothesis is wrong.

In this context, a given source localization model will have value

to the extent that it not only supports a specific hypothesis but is

also unlikely to have been obtained if the hypothesis is false. It’s

the second part of this equation that is especially problematic for

source localization models, at least as researchers typically use

them. As discussed in the previous section, source localization
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models provide an estimate of the internal distribution of electrical

activity, but they do not typically quantify the probability that the

estimate is incorrect (which is related to the probability that the

finding would be obtained even if the hypothesis is false). How-

ever, this problem can be overcome, at least in principle. For

example, the probabilistic approaches described in the previous

section are designed to provide information about the range of

possible solutions, making it possible to assess the probability that

activity would appear in a given location in the models even if the

corresponding brain location were not truly active. Thus, although

most source localization methods are not well suited for this kind

of scientific inference, this does not appear to be an intrinsic limi-

tation of the entire source localization enterprise.

Another commonly cited principle of scientific inference is the

idea of converging evidence, which was first developed in the con-

text of perception research (Garner, Hake, & Eriksen, 1956) but is

now widely used in cognitive neuroscience. The basic idea is that

many interesting questions about the mind cannot be answered by

means of any single method, but a clear answer can be obtained

when many methods with different strengths and weaknesses con-

verge on the same conclusion. This is a common use of source

localization models. That is, the researchers understand that the

models are not conclusive evidence that the ERPs are generated in

specific brain regions, but they believe that the models are valuable

insofar as they converge with data from other sources. Box 7.1 pro-

vides an example of this from my own research.

Until source localization techniques routinely provide meaning-

ful, quantitative information about the probability that a given

model is correct, the main role of source localization models will

be to provide converging evidence. However, not all cases of con-

verging evidence are created equal: If a model uses weak methods

to create a given source localization model, then this model will

provide only weak converging evidence. And the value of such

models is questionable, especially given the time and expense

often involved in the modeling process. At present, source local-
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ization models provide reasonably strong converging evidence

only if they are the result of state-of-the-art methods and only if

they are developed thoughtfully and carefully.

Specific Recommendations

My first specific recommendation is to avoid techniques that

involve substantial input from the operator (which is true of

many, but not all, equivalent current dipole approaches). These

Box 7.1 Converging Evidence

The following is an example of how I have used source localization to provide
converging evidence for a specific hypothesis. My initial visual search experi-
ments examining the N2pc component suggested that this component reflects
the focusing of attention onto a target and filtering out irrelevant information
from the distractor objects (Luck & Hillyard, 1994a, 1994b). This seemed
similar to the types of attention effects that Moran and Desimone (1985)
observed in single-unit recordings from area V4 and from inferotemporal cor-
tex, but I had no way of localizing the N2pc to these areas. Then Leonardo
Chelazzi conducted a series of follow-up studies in Desimone’s lab using vi-
sual search tasks that were more similar to the tasks that I had used to study
the N2pc component (Chelazzi et al., 1993, 1998, 2001). The onset of the at-
tention effects in these single-unit studies was remarkably similar to the onset
time of the N2pc component, and this suggested that the N2pc component
might reflect the same neural activity as the single-unit attention effects.
To test this hypothesis, I conducted a series of N2pc experiments that paral-
leled Chelazzi’s single-unit experiments, and I found that the N2pc compo-
nent responded to several experimental manipulations in the same way as the
single-unit attention effects. To provide converging evidence, I collaborated
with Max Hopf and Hajo Heinze on a combined ERP/ERMF study of the N2pc
component using the cortically constrained minimum norm approach (Hopf et
al., 2000). The resulting source localization model was consistent with a
source in the general area of the human homologues of monkey V4 and IT
(with an additional source in posterior parietal cortex). In this manner, the
source localization data provided converging evidence for a link between the
N2pc component and a specific type of neural activity (see Luck, 1999 for an
extended discussion of this general approach, which combines traditional hy-
pothesis testing with source localization).
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techniques are so prone to experimenter bias that they can provide

only the weakest sort of converging evidence. In fact, I would argue

that these models are often worse than no models at all, because

they provide the illusion of strong evidence when in fact the evi-

dence is weak. The one exception to this recommendation is that

these approaches may be adequate when a combination of three

criteria are met: (1) the data are very clean; (2) you can be sure

that only one or perhaps two dipoles are present; and (3) you have

good reason to believe that the electrical activity is relatively fo-

cused rather than being distributed over a large region. Localiza-

tion is fairly easy under such conditions, and validation studies

have shown that localization errors average approximately 1 cm or

less when these criteria are met (see, e.g., Cuffin et al., 1991; Leahy

et al., 1998).

My second specific recommendation is to obtain structural MRI

scans from each subject so that you can create a reasonably ac-

curate head model and use one of the cortically constrained

approaches (which typically involve distributed source solutions

rather than equivalent current dipole solutions). For most experi-

ments in cognitive neuroscience, it is very likely that the activity

is generated exclusively in the cortex with a perpendicular orien-

tation, and this provides a powerful constraint that reduces the

solution space considerably. The most common versions are the

depth-weighted minimum norm and LORETA techniques, de-

scribed previously in this chapter. LORETA is well suited for

situations in which (a) you want to determine the center of each

activated region, (b) you do not care about the spatial extent of the

activated regions, and (c) the activated regions are well separated

from each other. If these conditions are met, LORETA appears to

work quite well (see, e.g., the impressive LORETA/fMRI corre-

spondence obtained by Vitacco et al., 2002). If these conditions

are not met, I would recommend using the depth-weighted mini-

mum norm approach.

My third recommendation is to use difference waves to isolate a

single component (or small set of components; see chapter 2 for
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more discussion). The more components are active, the more of

a mess you will have to sort out. Equivalent current dipole ap-

proaches become particularly problematic when more than a few

sources are present, but this can also be a problem for distributed

source approaches.

My fourth recommendation is to record ERMFs in addition to

ERPs. ERMFs have two major advantages over ERPs. First, they are

not blurred and distorted by the high resistance of the skull, lead-

ing to greater resolution and a smaller space of possible solutions

(see, e.g., the simulation results of Leahy et al., 1998). Second, be-

cause biological tissues are transparent to magnetism, it is not nec-

essary to create a model of the conductivities of the brain, skull,

and scalp, and this eliminates one possible source of error. ERMF

recordings do have a couple disadvantages, though. First, they are

very expensive, both in terms of the initial capital investment and

the maintenance costs (particularly the coolant). Second, ERMF

recordings will not be able to detect sources that are deep or per-

pendicular to the surface of the head (note, however, that this

becomes an advantage rather than a disadvantage when ERMFs

are combined with ERPs). In my experience, source localization is

just too uncertain when based on ERPs alone.

The bottom line is that source localization is extremely difficult,

and any serious attempt at localization will require sophisticated

methods and considerable costs (both in terms of time and money).

If you simply record ERPs from a large number of channels and

try to fit a half dozen dipoles to the data with no additional con-

straints, it’s not clear what you will have learned. At best, you will

gain some weak converging evidence. At worst, you will be misled

into believing in a solution that is simply incorrect.

I would like to end by noting that the clear strength of the ERP

technique is its temporal resolution, not its ability to localize brain

function. It is therefore sensible to use this technique primarily to

answer questions that require temporal resolution, leaving ques-

tions about localization of function to other techniques. When a

question requires a combination of temporal and spatial resolution,
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a combination of ERPs, ERMFs, structural MRI scans, and fMRI

data may provide reasonably strong evidence, but the commonly

used methods for localizing ERPs/ERMFs do not make it clear

how strong the evidence is. As new techniques are developed—

particularly those based on probabilistic approaches—we may

eventually get to the point where we can have a reasonably high

(and known) level of certainty.
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8 Setting Up an ERP Lab

This chapter describes how to set up an ERP lab, including advice

on selecting equipment and software for stimulus presentation,

data collection, and data analysis. There are certainly many ways

to set up an ERP lab, and some factors will depend on the topic

area of your research. However, the suggestions in this chapter

will provide a good starting point for almost anyone who is setting

up an ERP lab for the first time. Also, many of the suggestions in

this chapter are based on my experience, but there are often other

good ways of achieving the same goals, and it is worth asking a

variety of ERP researchers how they set up their labs. If you al-

ready have access to an ERP lab, you may find some good ideas for

improving the lab in this chapter (see especially box 8.1 later in

this chapter).

The Data Acquisition System

Computers

Figure 8.1 shows a diagram of a generic ERP data acquisition sys-

tem. It is usually desirable to have at least two and possibly three

computers. One computer presents the stimuli, and a second com-

puter records the EEG. These functions are not ordinarily combined

into a single computer, because each requires precise timing, and it

is difficult to coordinate two real-time streams of events in a single

computer. It is also very useful to have a third computer that pro-

vides real-time information about the subject’s performance on the

task. The stimulus presentation computer sometimes provides this
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function, but in this case performance information is usually sum-

marized at the end of each trial block rather than being displayed

in real time (and a real-time display is definitely better).

The computers will need some means of communicating with

each other in real time so that event codes can be sent to the digiti-

zation computer whenever an event of some sort occurs (e.g., a

stimulus or a response). These event codes are used as the time

locking points for averaging, so the timing must be precise. A con-

sistent delay is not a big problem, because you can shift the

averages in time to compensate for the delay. A variable delay,

however, is usually difficult to compensate for, and it will have

the effect of smearing out the ERP waveforms in time, distorting

the onset and offset times of the components and experimental

effects (just like a low-pass filter).

The stimulus presentation computer’s video output is usually

directed into a video splitter that serves two functions. First, it

splits the video signal so that the experimenter can see what the

subject is seeing (this is essential so that the experimenter can

intelligently monitor the EEG display and detect problems, such

as blinks and eye movements that certain stimuli may trigger). Sec-

ond, it amplifies the video signal so that one can use a relatively

long cable to get the video signal into the recording chamber. It

is important to use a high-quality, shielded video cable from the

splitter into the chamber to minimize electrical noise inside the

chamber and to avoid degradation of the video signal. As discussed

in chapter 3, it’s a good idea to enclose the video monitor in a Far-

aday cage to avoid bringing a large noise signal into the recording

chamber. I provide more information about the video system later

in this chapter, in the section on stimulus presentation.

Seating

In experiments using visual stimuli, the subject is seated at a spe-

cific distance from the video monitor. Even with a Faraday cage,
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some electrical noise may be picked up from the monitor, so the

subject should not be too close to it. I would suggest a minimum

distance of 70 cm, and 1–2 m is even better if the chamber is large

enough.

It is very important for the subject to be seated in a comfortable

position. In the early days of ERP recordings, very few electrodes

were used and auditory stimuli were more common than visual

stimuli. A large, padded recliner was the most sensible chair for

such experiments. This kept the subject comfortable, and mini-

mized any need for subjects to use their neck muscles to support

their heads, which in turn minimized EMG noise (see chapter 4).

However, when electrodes are placed over the back of the head, a

recliner doesn’t work as well: the head puts pressure on the elec-

trodes, and any small head movement will cause the electrodes to

move on the scalp, producing a large and sudden voltage shift.

If your experiments will require recording from electrodes on the

back of the head, I would not recommend using a recliner. Instead,

I would recommend a high-quality office chair that provides good

lumbar support and has an easy mechanism for height adjustment.

It is also preferable to use a chair that is on glides rather than

casters so that subjects do not move the chair around inside the

chamber. The position of the chair on the floor should be marked

so that you can correctly reposition the chair if it gets moved. I

would also recommend against using any kind of chin rest or other

head stabilization. Although you might think that this would re-

duce strain on the neck muscles, my experience has been that

chin rests become uncomfortable after 15 minutes or so (and most

ERP experiments require at least an hour of recording time).

Behavioral Responses

Most cognitive ERP experiments use a small set of behavioral re-

sponse alternatives, and only two to four buttons are usually neces-

sary. The most convenient device for responses is usually a small,
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lightweight, hand-held device of some sort. My lab uses computer

video game controllers. It is easy to find game controllers that are

very comfortable and lightweight, and they usually offer at least

four response buttons (which is enough for most experiments).

Various custom response devices are also possible, but they are

not usually as easy to hold and use as a game controller. A com-

puter keyboard is not usually very good, because it is too big to

rest on the subject’s lap, and if it’s on the table in front of the sub-

jects, EMG noise is likely to occur as the subjects hold their arms

up to the keyboard. If a keyboard is necessary because of a large

number of response alternatives, the data around the time of the

response may be contaminated by EMG noise, and eye movement

artifacts may be seen if the subject needs to look at the keyboard

to find the right key to press. However, it may be possible to design

the experiment so that the data around the time of the response are

not important. Also, it may be possible to use a keyboard tray to

minimize the need to hold the hands upward and outward to reach

the keyboard.

Devices such as keyboards and game pads are not designed for

real-time electrophysiological recording, and a delay may occur

between the time of the buttonpress and the time that the computer

records the buttonpress. Response times are usually so variable

that this small error will not matter. However, it may be a signifi-

cant problem if you are doing response-locked averaging. In such

cases, you will probably need some sort of custom response device

with known and consistent temporal properties. One way to ensure

precise timing is to use a response device with an analog output

that can be recorded via the ADC along with the EEG.

Electrode-Amplifier-Computer Connections

The EEG is picked up by the electrodes and travels through cables

to the amplifier system. Before they are amplified, the signals are

miniscule, and any electrical noise that the cables pick up will be
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relatively large compared to the EEG. Consequently, the cables be-

tween the electrodes and the amplifier system should be kept as

short as is practical. It is now possible to purchase electrodes with

built-in pre-amplifiers, which will increase the size of the EEG sig-

nal relative to any noise picked up by the cables. This is a good

idea conceptually, but I have not tested these electrodes and I don’t

know how well they work in practice.

Many EEG amplifier systems have a headbox that provides a

flexible means of connecting the electrodes to the amplifier. Flexi-

bility is important. For example, you want to be able to select a

common reference electrode for most of the channels (e.g., a mas-

toid or earlobe reference) while allowing other channels to use

a different reference electrode (e.g., eye movements are usually

recorded as the voltage between electrodes on either side of the

eyes). Because the output of the headbox is not amplified, the cable

from the headbox to the amplifier should be relatively short. Opti-

mally this cable should be shielded, especially if the actual ampli-

fier is outside the recording chamber. If the amplifier is inside the

chamber, an unshielded ribbon cable will probably be sufficient (a

ribbon cable keeps the active, reference, and ground signals close

to each other so that they pick up the same noise signals, and this

allows the differential amplifier to subtract away the noise).

If the amplifier is connected to AC power, it is usually best to

place it outside the recording chamber to avoid inducing noise in

the electrodes. If it is battery powered, it can probably be placed

inside the chamber, which is good because only amplified signals

will leave the chamber, where electrical noise is much greater.

Once the signals have been amplified, they are usually much larger

than any induced electrical noise, so you may use longer cables to

connect the amplifier to the digitization computer. However, some

noise may still be picked up at this stage, and some shielding may

be necessary even after the signals have been amplified. In one of

the recording rooms in my lab, we found that shielded cables were

necessary to avoid picking up noise between the amplifier and the

digitization computer.
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Recording Chamber

One of the most expensive elements of an ERP lab is the electri-

cally isolated chamber. These chambers are usually designed as

sound-attenuating chambers for hearing testing, broadcasting, or

auditory research, but some manufacturers offer electrical shield-

ing options. I have chambers made by Industrial Acoustics Com-

pany and Acoustic Systems, and they work quite well. In the late

1990s, I paid approximately US $11,000 for a medium-sized cham-

ber (including installation costs).

Is an electrically isolated chamber really necessary? Not always.

If there are not many significant sources of electrical noise nearby,

you might be able to get away with using a low-pass filter with a

half-amplitude cutoff around 30 Hz to get rid of line-frequency

noise. If you are just starting to do ERP research and you are not

sure how many experiments you will be doing, this might be a

reasonable choice. However, if you plan to do ERP research for

several years, the cost of a chamber isn’t really that high, and it’s a

worthwhile investment. Remember that any significant decreases

in signal-to-noise ratio will be very costly in terms of the number

of trials (or subjects) needed to get reliable ERP waveforms (see

chapter 3).

Don’t assume that the chamber effectively eliminates all sources

of electrical noise. Chambers often include AC outlets, fans, and

lights that may cause substantial electrical noise. In fact, the first

chamber I ever used induced so much noise that I was able to get

cleaner recordings outside the chamber than inside. I eventually

found the circuit breaker for the chamber, and turning it off elimi-

nated the noise. You can use the device described in chapter 3 (see

figure 3.3B) to find sources of noise inside the chamber.

Accessories

A few accessories are important in an ERP lab. First, it is usually

necessary to have an impedance meter to test electrode impedan-

ces while attaching the electrodes. Some amplification systems
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have this function built into them, which is very useful for de-

termining if impedance problems are occurring once you’ve

started collecting data. Second, some sort of calibrator is neces-

sary for measuring the actual gain of the amplifiers. Many ampli-

fication systems have a built-in calibrator, but you can purchase

an external calibrator if your amplification system does not

have its own calibrator. If possible, the calibrator should be able

to produce square-wave pulses triggered by the stimulus presenta-

tion computer. This will help you to determine if there are any

time delays in your event codes, and it will also make it easy for

you to see exactly what kinds of distortion the amplifier’s filters

produce.

A third important accessory is an intercom system that will

allow you to communicate with the subject during the record-

ings. When purchasing an intercom system, keep in mind that

you don’t want a system that is AC powered, because this will

introduce electrical noise into the recording chamber. I’ve tried

several different types of systems, and my preferred intercom

system consists of a pair of microphones and powered speakers

(which you can purchase at many places, such as Radio Shack).

One microphone is attached to the ceiling of the recording cham-

ber and is connected to a powered speaker outside the chamber.

The other microphone is mounted near the experimenter and is

connected to a powered speaker inside the chamber. The speaker

inside the chamber should be powered by a battery. The advan-

tages of this system over a conventional intercom are that a) it

allows simultaneous two-way communication between the sub-

ject and experimenter (which is more natural than pressing a

button when you want to talk), and b) the fidelity is quite a bit

higher.

Finally, if you will be presenting visual stimuli, I strongly recom-

mend that you enclose the video monitor in a Faraday cage to re-

duce electrical noise, as described in chapter 3 (see figure 3.3A).

Some additional suggestions for recording high-quality data appear

in box 8.1.
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Box 8.1 Keeping Subjects Happy

ERP experiments tend to be long and boring, with trial after trial of the
same basic task. To ensure that you are collecting the highest quality data
possible, it is important to keep your subjects happy and relaxed. If they are
unmotivated or become bored, they may not pay close attention to their per-
formance, weakening your effects. Moreover, bored subjects tend to become
tense and uncomfortable, leading to muscle noise and movement artifacts. By
keeping your subjects happy and relaxed, you will get larger and more consis-
tent effects, which will save you lots of time in the long run. Here are four
suggestions for accomplishing this.
First, talk to the subject. As you are applying the electrodes, chat with the

subject, asking about school, work, hobbies, family, sports, and so on (but
stay away from potentially inflammatory topics such as politics). Make sure
that the conversation revolves around the subject rather than yourself. By do-
ing this, you will ingratiate yourself to the subject, and the subject will be
more likely to try to please you during the experiment. In addition, when there
are breaks in the experiment, you should continue to converse with the sub-
ject to keep the subject alert and interested. Some subjects just want to finish
the experiment as rapidly as possible, and you should respect this. But if the
subject is at all interested in talking, you should do so. This is also a good
time to provide some positive feedback to the subject about behavioral perfor-
mance, blinks, and eye movements, as well as encouraging the subject to im-
prove if necessary. If a subject isn’t doing well (e.g., in terms of behavioral
accuracy or artifacts), don’t be shy about telling them that, because poor per-
formance and artifact-laden data won’t be of much use to you. You should
also make sure that the subject understands exactly what is going to happen
and when (especially during the electrode application process). People are
much more relaxed when they know what to expect.
Second, make sure that the blocks of trials are a reasonable length. If the

blocks are too long, the subject’s attention is likely to wane toward the end. I
find that trial blocks of 5–7 minutes, separated by 1–2 minutes of rest, are
optimal in most experiments. In addition, you will usually ask the subject to
suppress blinks and eye movements during the recordings, and it is difficult
to do this for a long period of time. Some experiments consist of brief trials
separated by an intertrial interval of 1–3 seconds, and this provides a time for
subjects to blink (although the offset of the blink during the intertrial may
contaminate the early portion of the ERP on the next trial). If this is not pos-
sible, I would recommend providing short breaks of 15–20 seconds after
every 1–2 minutes.
Third, due to the long duration of a typical ERP experiment, it is helpful

to provide snacks and drinks, usually 30–50 percent of the way through the
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Choosing Electrodes, Amplifiers, and Digitization Software

New ERP users occasionally ask for my advice about what elec-

trodes, amplifiers, and software to buy for recording ERPs; this sec-

tion summarizes my usual advice. Given that I haven’t thoroughly

tested all of the commercially available systems, it would be in-

appropriate for me to recommend specific manufacturers. How-

ever, I can provide some general advice about how to go about

selecting data acquisition equipment.

First, however, I’d like to provide a caveat. The suggestions here

are my own opinions, and they may be different from the opinions

Box 8.1 (continued)

session. Drinks including caffeine can be particularly useful in helping sub-
jects to maintain alertness (although this may be contraindicated in some
experiments). This helps to keep the subjects awake, alert, and friendly.
My fourth recommendation is something that I started doing when I first

set up my own ERP lab, and I don’t know if anyone else does it. Specifically,
we play background music in the chamber while the subject is doing the task.
In fact, we suggest to the subjects that they bring CDs of their favorite music
with them (and the musical genres have included classical, pop, rock, metal,
rap, country, electronic/ambient, and just about everything else imaginable).
Of course, the music produces some distraction from the task, and the
sounds will generate ERP activity. However, I believe that the music is less
distracting than the alternative, which is mind-numbing boredom. And any
ERP activity generated by the music will be unrelated to the stimuli and will
just add a small amount of noise to the EEG. I suspect that any additional
EEG noise created by the music is more than balanced by a reduction in other
forms of EEG noise, such as alpha waves. Of course, there are situations in
which background music is a bad idea. For example, it would be problematic
in many studies using auditory stimuli, and it might cause too much distrac-
tion in some types of subjects. But if these circumstances don’t apply to you,
I would definitely recommend playing background music. I’ve never done a
direct comparison of data collected with versus without background music,
but I strongly suspect that background music leads to a moderate increase in
the overall quality of the data. If you play music, make sure that you use
shielded speakers and that the cables leading from the stereo to the speakers
are shielded. Speaker cables are not usually shielded, but you can easily en-
case them in some form of shielding, such as Wiremold.
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of other researchers (and especially certain equipment manufac-

turers). Consequently, I would recommend seeking advice from a

variety of experienced ERP researchers (but not from the manufac-

turers, who are quite naturally biased).

Electrodes My electrode recommendation is simple: Old-

fashioned, low-tech electrode caps are the best option for the vast

majority of new ERP users. As discussed in chapter 3, some newer

systems allow you to apply a large number of electrodes in a short

amount of time, whereas traditional electrodes require you to

abrade the skin under each electrode, which takes quite a bit of

time when applying large numbers of electrodes (e.g., an hour for

sixty-four electrodes compared to 15 minutes for sixteen elec-

trodes). However, these systems tend to be more expensive than

conventional systems, and the high electrode impedances in these

systems can lead to a substantial increase in low-frequency noise

from skin potentials. Moreover, large numbers of electrodes do

not provide a very significant advantage in most ERP studies,

but they can provide a disadvantage because there are more oppor-

tunities for electrodes to misbehave as the number of electrodes

increases. Consequently, I would recommend standard electrode

caps with between twenty and thirty-two electrodes for most ERP

studies.

Fast-application, high-impedance electrode systems may seem

particularly appealing to researchers who study subjects who do

not easily tolerate being poked and prodded, such as infants and

young children. However, some researchers have been recording

ERPs from such subjects for many years with conventional electro-

des, so it can be done (although it requires good measures of both

ingenuity and patience). Moreover, given that it is difficult to col-

lect a large number of trials from such subjects, their data are far

too noisy to be suitable for source localization procedures, so there

is little or no advantage to having large numbers of electrodes.

Thus, I would recommend using conventional electrodes even for

infants and young children.
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Amplifiers When selecting an EEG amplifier, there are a few key

specifications that you should examine and several features that

you may wish to have (depending on your budget). The most im-

portant specifications are the input impedance and the common

mode rejection (see chapter 3 for definitions of these terms). The

input impedance should be at least 100 KW, and the common

mode rejection should be at least 100 dB. The essential features

are (a) the ability to select a common reference for many sites but

separate references for other sites, and (b) a wide range of filter set-

tings. In particular, I would recommend having a low-pass filter

that can be set to half-amplitude cutoffs of 20–40 Hz, 80–120 Hz,

and 300–700 Hz, and a high-pass filter that can be set to cutoffs

of approximately 0.01 Hz (for most recordings) and approximately

0.1 Hz (for use with especially troublesome subjects). In some am-

plifiers, the lowest half-amplitude cutoff is 0.05 Hz, which is five

times higher than the 0.01 Hz that I would recommend; this is right

at the border of what I would consider acceptable. It would also be

worth asking the manufacturer to provide the impulse response

function of the filters so that you can assess the time-domain dis-

tortions that the filters will produce (if they can’t provide the

impulse response functions, then that should be a warning sign

about the manufacturer). I would recommend against DC ampli-

fiers that don’t have a high-pass filter, unless you plan to record

very slow voltage shifts.

Here are some features that are useful, but not absolutely

necessary:

1. Multiple gain settings. It can be useful to increase or decrease the

gain for testing purposes or to match the input range of the analog-

to-digital converter.

2. Impedance checking. It’s convenient to be able to test impedances

without disconnecting the subject from the amplifier. It’s even

better if the system can automatically warn you if a channel’s im-

pedance exceeds some user-defined level.

3. Calibration. It’s useful for the amplifier to have a built-in calibrator.
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4. Notch filter. Although notch filters are generally a bad idea, they

are sometimes a necessary evil (see chapter 5).

5. Independent or linked filter settings. You will usually want to use

the same filter settings for every channel, but it’s occasionally use-

ful to have different filter settings for a few of the channels.

6. Computer-controlled settings. If a computer can set the amplifier’s

settings on the basis of a user-defined profile, this will decrease

the probability that another user will unintentionally change the

settings.

Digitization Software Once you have electrodes and an amplifier,

you will need a computer and software for digitizing the EEG. In

some cases, the electrodes will dictate the choice of amplifier, and

the amplifier may have an associated digitization program. Most

digitization programs have the basic features that you will need,

so you should choose whatever seems convenient and will work

with the other components of your system. The essential features

of a digitization program (and associated analog-to-digital con-

verter) are as follows:

7. The analog-to-digital converter must have at least twelve bits of

precision. Many now offer sixteen bits of precision, but given the

poor signal-to-noise ratio of the EEG signal, this is not a very big

advantage. A sixteen-bit converter allows you to use a lower ampli-

fier gain, reducing the probability that the amplifier will saturate.

However, saturation is usually caused by large, slow voltage shifts

that will contaminate your data even if the amplifier does not

saturate.

8. There must be a convenient means of sending event codes to

the system. Some systems merely use one channel of the analog-

to-digital converter to encode a pulse whenever an event occurs,

and the actual nature of the event is stored on another computer

(usually the stimulus presentation computer). This makes averag-

ing the stimuli less convenient, so it is better for the digitization

computer to receive codes indicating the precise nature of each
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stimulus. This is usually done with eight-bit digital codes (it is con-

venient to have even more than eight bits for some experiments).

9. The system must allow continuous EEG recording. Many ERP para-

digms involve stimuli that are separated by long periods of time

with no ERP-eliciting events, and it is therefore possible to record

just the EEG segments surrounding the stimuli, pausing during

intertrial intervals. This is called epoch-based recording. However,

you may later wish that you had recorded a longer epoch. For ex-

ample, you may find an effect that is still growing in amplitude at

the end of the epoch, or you may want to evaluate prestimulus

overlap more thoroughly. Epoch-based recording does not allow

this. The alternative (continuous recording) is to record the EEG

continuously and extract whatever epochs are necessary during

the averaging process. All of the data are saved, so it is possible to

re-average the data with a different epoch at a later time. This

requires more storage space, but storage space is so cheap now

that it’s not a problem to record continuously. Thus, you will

want a system that can do continuous recording. The option to

do epoch-based recording may sound attractive, but I would

recommend against epoch-based recording because of the loss of

flexibility.

10. The system must allow a convenient way to view the EEG in

real time as it is being recorded. Real-time monitoring is essen-

tial so that the experimenter can identify problems with the elec-

trodes, high levels of artifacts (especially ocular artifacts and

muscle activity), and subject weariness as indicated by high levels

of alpha activity (weariness can be a significant issue because ERP

experiments usually last several hours). It is essential to be able to

adjust the vertical scale of the signal to match the size of the EEG

signal, and it is also useful to be able to adjust the horizontal

(time) scale. The system should also include some means of seeing

the arrival of event codes. It is very convenient if the event

codes appear in a position that is synchronized to the EEG dis-

play so that you can view the relationship between event codes

and artifacts.
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Some additional options that may be useful are as follows:

11. The ability to view the EEG in the frequency-domain as well as the

time domain. This makes it easier to determine the level of vari-

ous noise signals, such as line-frequency electrical noise, and to

notice when alpha levels are getting high (which is often a sign of

drowsiness).

12. The ability to save the data in multiple formats, including text files.

Text files are huge, but they have the advantage of being easy to

convert into other formats.

13. The ability to do channel mapping, in which the amplifier chan-

nels are sampled in an arbitrary, user-controlled order. This makes

it easy to put the data into a useful order, skipping channels that

are not necessary for a given experiment.

14. The ability for the user to define the spatial layout of the EEG dis-

play. This may make it easier to see patterns in the EEG that are in-

dicative of artifacts. Some systems can even display maps of EEG

frequency bands in real time.

15. The ability to do simple on-line averaging. In some experiments,

for example, subjects may tend to make small but systematic eye

movements that are difficult to see on individual trials but can be

easily seen in averaged waveforms. By doing on-line averaging, it

may be possible to identify and correct artifacts such as this during

the recording session rather than throwing out the subject’s data

afterwards.

Basic digitization software is fairly straightforward, so you don’t

need to worry too much about getting software that will work well.

The only tricky aspect of digitizing the EEG is that both the EEG

and the event codes must be acquired in real time, with no tempo-

ral errors. Modern computer operating systems make this difficult,

so I would not recommend that you write your own digitization

software unless you have considerable expertise with real-time

programming.

Once you have purchased a digitization system, it is very impor-

tant that you test it very carefully. The most common problem is
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that delays will be introduced between stimuli and the event codes

stored on the digitization computer. In fact, my lab recently found

that one of the most common commercial digitization systems

introduced delays that increased gradually over the course of a

trial block. When we contacted the manufacturer, they told us

that this problem arises when their software is used with a particu-

lar brand of computer, and the problem disappeared when we

switched to a different computer. But we never would have noticed

the problem if we hadn’t tested the system extensively. You cannot

simply assume that your software works correctly.

To test a digitization system, you need to be able to record a ref-

erence signal that is triggered by your stimulus presentation sys-

tem. The easiest way to do this is to use a square-wave calibration

signal with an external trigger input (if your amplifier doesn’t have

such a calibrator, you can buy one). You can trigger the calibrator

with your stimulus presentation software and see if the calibration

pulse occurs at the same time as the event codes in the EEG data

file. The square wave should start at the same time as the event

code, and you should test this over a period of many minutes to

convince yourself that the timing does not drift over time. Depend-

ing on the nature of your system, you may occasionally see an off-

set of one sample period; this can occur occasionally even if the

timing only off by a microsecond or two. But if this happens on

more than 10 percent of event codes, or if the errors are more than

one sample period, you should contact the manufacturer.

The Data Analysis System

My lab uses a terrific package of custom ERP analysis software, but

this software is not available to the general public. Thus, my ad-

vice in this section is based on what I would do if I did not have

access to this system.

I have taken a look at some of the commercial ERP analysis sys-

tems that are available, and I haven’t been favorably impressed by

them. They are full of bells and whistles, but they are expensive
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and they don’t seem to do exactly what I need them to do. One rea-

son for this is that scientific research is generally focused on doing

things that have never been done before or that need to be done in

a way that depends on the details of the research domain. This

makes it hard for software companies to write ERP analysis soft-

ware that suits the specific needs of the diverse set of researchers

and can anticipate future needs. They also try to make the software

easy to use, but ease of use is usually inversely related to power

and flexibility.

Instead of buying commercial software, you may want to write

your own ERP analysis software. I’ve done a fair amount of this

over the years, and it’s very time consuming. Flexible data analysis

programs that can be used in many experiments takes a very long

time to write, especially in general-purpose programming lan-

guages such as C, Pascal, and BASIC. Special-purpose programs

written for a single experiment take less time to write, but your re-

search will go slowly if you have to write new programs for the

analysis of every experiment.

Perhaps the best compromise is to write your own software, but

to do it in a development system that is designed for numerical

processing, such as MATLAB. MATLAB is designed for perform-

ing mathematical computations on arrays and matrices of num-

bers, and this is exactly what ERP waveforms are. That is, in a

typical experiment, the averaged data can be described as a

time� electrode � condition � subject matrix of voltage values.

MATLAB contains built-in routines for quickly performing mathe-

matical operations on matrices, and these routines are accessed

from a relatively simple but powerful programming language.

To make data analysis with MATLAB even easier, two groups of

researchers have developed free, public-domain MATLAB libraries

for analyzing EEG/MEG and ERP/ERMF data. One of these pack-

ages is called EEGLAB (Delorme & Makeig, 2004, hhttp://sccn

.ucsd.edu/eeglab/i). This package includes routines for basic

functions, such as artifact rejection and averaging, and it also in-

cludes excellent support for some advanced functions, particularly
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frequency-based analyses and independent components analysis.

And it can import EEG data files from a variety of data acquisition

systems. The second package is called BrainStorm (Baillet et al.,

1999, hhttp://neuroimage.usc.edu/brainstorm/i). It focuses pri-

marily on source localization techniques.

Both of these packages provide a graphical user interface, which

is very useful for new users. However, it is also possible to type

written commands, and this makes it possible to generate scripts,

which are extremely valuable for experienced users. Moreover,

once you learn a little bit of MATLAB, you can add your own

functions. I would definitely take this approach if I were setting

up an ERP lab and didn’t have access to my current data analysis

package.

Assuming that these free software packages will not fill 100

percent of your needs, this approach requires that you are (a) rea-

sonably competent at computer programming, (b) willing to spend

a considerable amount of time learning computer programming, or

(c) willing to hire someone else to do some computer program-

ming. If you are a graduate student and you are planning to do

ERP research extensively in graduate school and beyond, it would

be worth learning some programming. If you are already an

advanced researcher and you are planning to augment your re-

search with a modest number of ERP experiments, you probably

won’t have time to learn to program and write the programs you

need.

If you can’t do the programming yourself, and you can’t pay

someone else to do it for you, then you’ll have to buy one of the

commercial ERP analysis systems. I can’t tell you what package to

buy, but I can make a few suggestions about some features that are

important:

16. Easy methods for averaging the data on the basis of sophisticated

criteria, such as sequences of stimuli, correct versus incorrect

responses, and responses with various different reaction times.

Response-locked averages must be possible.
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17. A broad set of artifact rejection functions, such as those described

in chapter 4. You should be able to set the parameters on the basis

of visual inspection of the EEG. It is also useful to be able to do ar-

tifact rejection manually on the basis of visual inspection.

18. The ability to filter the raw EEG and the averaged ERP waveforms

with a variety of half-amplitude cutoffs. The impulse response

functions of the filters must be clearly described, and the inclusion

of filters with gaussian impulse response functions is highly desir-

able (see chapter 5).

19. A broad set of component measurement routines should be avail-

able (see chapter 6).

20. The ability to plot topographic maps showing the distribution

of voltage (or current density) over the scalp, preferably using

the spherical spline interpolation algorithm (see Perrin et al.,

1989).

21. It must be easy to perform mathematical operations on the ERP

waveforms, including re-referencing the data and forming differ-

ence waves.

22. The ability to import and export data in different formats, particu-

larly text files, is very useful.

23. The ability to automate processing can be very useful. For exam-

ple, you may find that you need to re-average the data from each

subject in an experiment with a longer time epoch, and you will

save a lot of time and effort if you can automate this process.

24. Convenient statistical analyses are good to have. You can use stan-

dard, general-purpose statistical packages instead, but it is useful

to be able to automate the process of measuring and analyzing the

data, which is difficult with most general-purpose packages.

25. A convenient but flexible means of plotting the ERP waveforms

is essential. You must be able to specify the line types and line col-

ors used for overlapping waveforms, the placement of these sets of

overlapping waveforms, and the formatting of the time and voltage

axes (see the section on plotting at the beginning of chapter 6). In

addition, the system must be able to save the plots in a vector-

based file format that can be imported by standard vector-based
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graphics packages (bitmapped outputs are not usually suitable for

creating figures of ERP waveforms for publication).

The Stimulus Presentation System

Timing of Event Codes

In general, the key to good ERP stimulus presentation is precise

timing of the event codes with respect to the stimuli. Modern com-

puter operating systems are not designed to operate in real time,

and programs are often interrupted briefly so that the operating

system can conduct various housekeeping tasks. These interrupts

are not usually noticeable during normal computer usage, but they

can introduce timing errors that are large relative to the time scale

of ERP recordings (as much as 200 ms). Real-time programming

and precise timing was actually easier to achieve with more primi-

tive systems, such as MS-DOS and the Apple II’s operating system.

Consequently, you should not attempt to create your own stimulus

presentation software unless you really know what you are doing

(or have access to software development systems that simplify

real-time control).

In addition, you should not assume that commercially available

stimulus presentation software has the level of precision necessary

for ERP recordings. About 15 years ago, I tested one of the most

popular stimulus presentation programs of the time, and I found

very significant timing problems (it was truly shocking!). Thus,

whatever system you use, you should verify the precision of its

timing (I’ll explain how to do this in the next paragraph). And

keep in mind that precision is the key, not accuracy (as these terms

are technically defined). That is, a constant, known delay between

the stimulus and the event code is fine, because it can be sub-

tracted away by shifting the averaged waveforms by the delay fac-

tor. An unpredictably varying delay is not acceptable, however,

because there is typically no way to compensate for it.
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The best way to test the timing of a stimulus presentation system

is to somehow record the stimulus with your data acquisition sys-

tem. With auditory stimuli, for example, you can place a micro-

phone in front of the speakers and record the microphone’s output

as if it were the EEG. You can then use your data analysis software

to see if the onset of the stimulus occurs exactly at the time of the

condition code. This is a bit more difficult with visual stimuli, but

figure 8.2 shows a circuit for a simple device that can be used to

measure the light being generated by a video monitor. You can

point this device toward the part of the screen where the stimuli

appear and record the output on your data acquisition system.

When you do this kind of testing, I would recommend using a

higher-than-normal sampling rate to record the signals (1000 Hz or

greater). This will make it easier to see these signals, which may

contain very fast transitions. In addition, you should record a large

number of stimuli so that you can test for the presence of occa-

sional large timing errors. If you find timing errors, you may be
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Figure 8.2 A circuit that can be used to measure the light emitted by a small region of a video
display. The output can be connected directly to the analog-to-digital converter of
your EEG digitization system (assuming that the voltage range is correct). Thanks
to Lloyd Frei for designing this circuit.
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able to eliminate them by disabling any unnecessary hardware and

software systems on the computer. For example, you can make

sure that no other programs or operating system extensions are

running in parallel on the computer, and you can disconnect the

computer from networks, unnecessary hard drives, printers, and

so on.

Stimulus-Related Artifacts

Whatever stimuli you use, you should make sure they will not

cause electrical artifacts that will be picked up by the electrodes

or cause reflexes that will contaminate the data. For example, most

audio headphones operate by passing a current through a coil to

cause the movement of a membrane with respect to a magnet, and

this can induce a current in the electrodes. Thus, shielded head-

phones may be important for auditory ERP studies. In addition,

sudden noises can elicit a muscle twitch called the post-auricular

reflex, which the EEG electrodes can pick up. Somatosensory stim-

ulation is most often produced with small shocks, and these can

also induce artifacts in the electrodes and elicit reflexes.

Stimulus Timing on CRTs

The remainder of this chapter will focus on presenting visual stim-

uli on a computer-controlled cathode-ray tube (CRT) monitor (see

Brainard, Pelli, & Robson, 2002 for a more detailed discussion).

There are three reasons for focusing on visual stimuli. First, visual

stimuli are used much more commonly than stimuli in other modal-

ities. Second, the presentation of visual stimuli on a CRT involves

some subtle timing issues that are particularly important in ERP

experiments. Finally, I just don’t have much experience with stim-

uli in other modalities, so I can’t provide much detailed informa-

tion. You can learn about the details of non-visual stimulation

from the literature or by asking experts.
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CRT Basics CRTs pose special problems for stimulus timing, and

you need to understand how computer-controlled CRTs operate in

order to avoid timing errors. As figure 8.3A illustrates, CRTs oper-

ate by passing a narrow electron beam through a magnetic field,

which directs it to a specific location in a phosphor layer at the

front of the monitor. When the electron beam hits the phosphor,

the phosphor emits light that is proportional to the intensity of the

electron beam. The location that is struck by the electron beam at a

given time corresponds to a single pixel on the monitor. A color

CRT uses three beams pointed at slightly different locations con-

taining phosphors that emit red, green, and blue light; for the sake

of simplicity, however, we will assume a single electron beam ex-

cept as noted.

The electron beam activates only one pixel at a given moment.

The magnetic field is modulated moment by moment to control

which pixel is being activated. In an oscilloscope, the electron

beam can be moved around in any desired pattern. A CRT, how-

ever, uses a raster pattern, and the electron beam is called a raster

beam (see figure 8.3B). The raster beam starts in the upper left cor-

ner of the screen and illuminates all of the pixels on the top row of

the monitor, one by one, with an intensity that is adjusted individ-

ually for each pixel. It then shifts down to the next row and draws

the next set of pixels, and so on until it reaches the bottom right

corner, at which point every pixel on the monitor will have been

illuminated by some amount. The beam is then turned off briefly

and moves back to the upper left corner of the monitor, and the

whole process is repeated. The rate of repetition (the refresh rate)

is usually between 50 and 100 Hz, corresponding to a time be-

tween refreshes of between 20 and 10 ms, respectively.

The intensity of the raster beam for each pixel is determined by

a series of numbers stored in the video card’s frame buffer. The

frame buffer is just a contiguous set of memory locations, where

each location contains the intensity value for a given pixel (or

three values in the case of a color CRT, one each for the red, green,
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and blue intensities). When a program draws an image to the mon-

itor, it is really just updating values in the frame buffer. No change

occurs on the monitor until the raster beam reaches the set of pix-

els corresponding to the updated values, at which point the values

are read from the frame buffer and the pixels are activated accord-

ingly. This is a big part of why timing is so tricky for CRTs: the

time at which something actually appears on the screen is deter-

mined by both the contents of the frame buffer, which your pro-

gram directly controls, and the position of the raster beam, which

your program does not directly control.

CRT Timing As illustrated in figure 8.3C, a pixel’s intensity

increases almost instantaneously when the raster beam hits the

phosphor, and then the intensity falls fairly rapidly toward zero

when the raster beam moves away As an example, consider a sce-

nario in which the refresh rate is set at 60 Hz (16.67 ms per re-

fresh), the raster beam starts at the upper left corner at time zero,

and the entire screen is to be turned on at 50 ms, remain visible

for 50 ms, and then be turned off. The top trace in figure 8.3C

shows the intensity of the pixel at the top left corner of the screen

for this scenario. The intensity of the raster beam will be low when

it hits this pixel at times 0, 16.67 ms, and 33.33 ms, and then tran-

sition to high when it hits the pixel at times 50, 66.67, and 83.33

ms, returning again to a low value at 100 ms. The pixel’s illumina-

tion will spike upward at these times and then decay downward in

the intervening periods. We don’t perceive it as flickering, how-

ever, because the retina integrates information over time.1

Less than a microsecond after the pixel in the upper left corner is

illuminated at 50 ms, the next pixel to the right will be illumi-

nated, and then the next one, and so on until the entire top row

has been illuminated (drawing one row of pixels will take approxi-

mately 120 ms with a 640� 480 resolution). The pixels in the next

row will then be sequentially illuminated, and then the next row,

and so on until the entire display has been illuminated (which
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will take approximately 16 ms with a 60-Hz refresh rate). The bot-

tom trace in figure 8.3C shows the actual illumination that would

be observed for a pixel near the bottom of the display. The illumi-

nation of this pixel is delayed by approximately 16 ms compared

to the pixel in the upper left hand corner of the display. Thus, the

display is not drawn in a single instant, but instead is gradually

painted over a period of many milliseconds.

Timing Errors If your stimulus presentation program draws an ob-

ject at some random time, it may cause a large, visible artifact

known as tearing. This happens when the frame buffer is being

updated in the same set of locations that are currently being drawn

to the display by the raster beam. It is important to avoid this arti-

fact, which can be very distracting.

To avoid tearing and permit precise timing, video cards send a

signal to the computer called a vertical retrace interrupt or video

blanking interrupt just after the raster beam has finished a cycle of

drawing and just before the next cycle is about to begin. In most

cases, the best way to ensure correct timing is to use the following

sequence of events in the stimulus presentation program: (a) wait

for the interrupt signal, (b) send an event code, and (c) draw the

stimuli in a manner that ensures that any changes in the intensity

values stored by the frame buffer occur after the interrupt but be-

fore those values are read by the raster beam.

By following this sequence, you can be sure that your event code

is linked to the position of the electrode beam and therefore to the

moment at which the illumination of the monitor actually changes.

There will be a delay between the event code and the illumination

of a given pixel, and this delay will depend on the location of the

pixel (i.e., it will be larger for lower rows than for higher rows).

However, this delay is constant for a given location, and you can

determine the amount of delay by recording the illumination at a

given location with the device shown in figure 8.2C. A known,

constant delay is a minor annoyance, whereas an unknown, vari-

able delay can be a major problem.
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The tricky part of this sequence is the last part, making sure that

you do not change values in the frame buffer after those values

have already been used to control the raster beam on a given raster

cycle. There are two common ways this can occur. First, if you are

drawing a complex stimulus or have a slow computer or software

system, it may take longer than one raster cycle to draw the stimu-

lus. Second, you may not draw from top to bottom, and a portion of

the stimulus display may be drawn to the frame buffer after the

raster beam has already drawn this portion of the display. For ex-

ample, imagine you are conducting a visual search experiment in

which twenty-four squares are drawn at random locations across

the display. If you wait for the vertical retrace interrupt and then

start drawing the squares to the frame buffer in random order, you

may end up drawing a square near the top of the frame buffer 5 ms

after the interrupt. By this point, the raster beam will have already

drawn the top portion of the frame buffer, so you may see tearing

artifacts, and the square will not appear until early in the next

raster cycle.

In most cases, the best way to avoid these problems is to predraw

each stimulus display in an offscreen memory buffer. That is, prior

to each trial of the experiment, you can predraw the stimulus dis-

plays in an area of memory that simulates the frame buffer but is

not actually visible. When it is time to display the stimulus, you

will wait for the vertical retrace interrupt, send an event code, and

then copy the simulated frame buffer into the actual frame buffer.

As long as the copying is done from top to bottom and is faster

than the raster beam, this will guarantee that your timing is per-

fectly precise (although pixels near the bottom of the display will

still be illuminated later than pixels near the top of the display).

Alternatively, some video cards contain multiple frame buffers,

and it is possible to predraw the stimuli in one frame buffer while

another frame buffer is being displayed. The predrawn frame buffer

can then be displayed by telling the video card to switch the

displayed location, which is virtually instantaneous. No copying

from memory into the frame buffer is necessary in this case.
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Software Packages Various stimulus presentation programs are

available, and some are designed expressly for use in ERP experi-

ments. Before purchasing a program, you should inquire about the

nature of the video timing. Every vendor will tell you that the tim-

ing is accurate, but you should find out exactly how the program

works. In particular, you should find out whether the program (a)

synchronizes stimulus presentation and event codes to the vertical

retrace interrupt, (b) predraws each display to an offscreen memory

buffer, and (c) might be occasionally interrupted by other programs

or the operating system, which may cause large timing errors.

If you are inclined to write your own visual stimulus presenta-

tion programs, I would highly recommend using MATLAB and a

set of routines called the PsychToolbox. This toolbox was devel-

oped by two highly respected vision researchers, David Brainard

and Dennis Pelli (Brainard, 1997; Pelli, 1997), and they have rigor-

ously tested its timing. MATLAB provides an excellent environ-

ment for the relatively rapid development of new experiments,

and the PsychToolbox makes it easy to implement the sequence of

procedures described here.

CRTs versus LCDs At the time of this writing, CRT monitors are

quickly being displaced by LCD monitors, and this change may ob-

viate much of the information provided so far. Unfortunately, LCD

technology has not stabilized enough for me to provide useful in-

formation about how to achieve precise timing with LCDs.

LCD displays operate by using electrical signals to change the

polarization of display elements, which in turn influences the trans-

mission of light. No raster beam is necessary, so LCDs can poten-

tially make instantaneous changes to pixels in any position on the

screen. However, LCDs are being integrated into computer systems

that were originally designed with CRTs in mind, and information

from the video card’s frame buffer is typically transmitted serially

to the LCD display. Thus, it is still important to consider carefully

the timing of the stimuli with respect to the event codes.

The optical properties of LCDs can also be problematic. In the

context of ERP recordings, the biggest problem is that the trans-
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mission of light by LCDs changes relatively slowly. As a result,

stimulus onsets and offsets will be more gradual than on CRTs.

Fortunately, LCD manufacturers are motivated to reduce this prob-

lem because of the growing use of LCDs for television displays,

video games, and other high-speed applications. Thus, LCDs may

soon have better temporal properties.

To examine LCD timing firsthand, I used the circuit shown in fig-

ure 8.2 to measure the output of a high quality LCD monitor, and I

recorded this signal with an ERP digitization system. Rather than

using a digital LCD interface, I connected the LCD display to the

computer’s analog VGA output, which is designed for CRTs. Most

current LCDs have both analog and digital inputs, and the digital
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Figure 8.4 Luminance recorded from an LCD monitor in response to a white square presented
on a black background. The same luminance signal is shown on three different time
scales.
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input will usually have higher fidelity (but may have unknown

timing properties). Figure 8.4 illustrates the output of the LCD at

the location of a white square that was presented on a black back-

ground. The square was supposed to onset at 0 ms (the time of the

event code) and offset at 350 ms (and this is exactly what would

have happened if I had used a CRT monitor).

Figure 8.4A shows the entire time course of the LCD output; the

onset and offset appear on expanded time scales in figures 8.4B

and 8.4C, respectively. The figure illustrates three potential prob-

lems with LCDs. First, the LCD’s output is slightly delayed: The

onset of the luminance change does not begin until approximately

7 ms after the event code, and the luminance does not begin to de-

cline until approximately 357 ms. I suspect that this is caused by

the analog VGA connection; the analog signal must be converted

back into a digital form by the LCD monitor. Second, the onset is

not instantaneous, but instead builds up over a period of approxi-

mately 5 ms. This is probably fast enough for the majority of ERP

experiments, but this particular LCD display was chosen for its

rapid onset time, and other LCD displays ramp up over a substan-

tially longer period. Third, the offset of the display is very gradual,

requiring almost 100 ms to reach the baseline luminance value.

This won’t be a significant problem when stimuli are presented on

a black background. However, if the stimuli are presented on a

white background, the onset of a stimulus will be achieved by a de-

crease in luminance, and the luminance will change in the slow

manner shown in figure 8.4C. This could be quite problematic for

experiments in which precise timing is important.

LCDs do have a very significant advantage over CRTs: They don’t

pump a stream of electrons directly toward the subject’s head. Con-

sequently, LCDs should produce less electrical noise than CRTs,

and a Faraday cage may not be necessary. LCDs may therefore be-

come the best choice for most experiments once the technology

reaches maturity. In the meantime, you may wish to try using LCD

monitors, but you should carefully test the timing of an each dis-

play before using it (different models may have radically different

temporal properties).
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Appendix: Basic Principles of Electricity

This appendix describes some important aspects of electricity and

magnetism that arise when considering the neural origins of ERPs

and sources of noise that can arise in ERP recordings.

Electricity is simply the flow of charges through a conductive

medium. In electrical circuits, it is usually electrons that actually

flow. In the nervous system, much of the electricity is due to the

movement of small ions across cell membranes. But the principles

of electricity are the same in both of these situations.

Voltage, Current, and Resistance

The three most fundamental terms in electricity are voltage, cur-

rent, and resistance. Voltage is essentially electrical pressure and

is analogous water pressure. Voltage is also called electrical poten-

tial, because it reflects the potential for electrical current to flow

from one place to another. This can be understood by analogy to

the flow of water through pipes. Consider, for example, a tank of

water at the top of a hill. There is a lot of potential for the water to

flow to the bottom of the hill, but little potential for the water to

float up to the top. Importantly, the potential for water to flow

downhill is present even if no water is flowing at a given moment

(e.g., because a valve is closed). Similarly, there is potential for

electrical current to flow from one terminal of a car battery to the

other even if no current is flowing. Voltage is usually labeled E for

electromotive force.

Current is the number of charged particles (e.g., electrons) that

flow past a given point in a specific amount of time. Current is

measured in amperes, where 1 ampere is equal to 1 coulomb



(6:24� 1018) of charges moving past a single point in one second.

Measuring electrical current is analogous to measuring the quan-

tity of water that passes through a given segment of pipe in a fixed

time period (e.g., 10 liters per minute). Current is usually labeled I

for intensity.

Resistance is the ability of a substance to keep charged particles

from passing (it’s the inverse of conductance). Three main factors

contribute to resistance: (1) the composition of the substance, (2)

its length, and (3) its diameter. Due to their molecular properties,

some substances conduct electricity better than others (e.g., copper

is a better conductor than zinc). However, the ability of any sub-

stance to conduct electricity will be reduced if it is very thin. To

use yet another hydraulic example, consider a water filtration sys-

tem in which the water supply for a house passes through a large

tank filled with carbon. If the carbon is tightly packed, water will

not easily flow through the tank, but if the carbon is loosely

packed, water will flow easily. This is analogous to the depen-

dence of electrical resistance on the properties of the substance.

Now imagine water passing through a hose. If the hose is very

long and narrow, a great deal of pressure will be necessary to fill a

bucket in a short amount of time; if the hose is short and wide, the

bucket will fill quickly with only a moderate amount of water pres-

sure. This is analogous to the dependence of electrical resistance

on the length and diameter of the conductor. Resistance is mea-

sured in Ohms (W) and is usually labeled R.

This last analogy also illustrates the relationships among voltage,

current, and resistance. If a thin hose is used, the volume of water

that passes out of the end of the hose will be small relative to what

would be obtained with a wider hose and the same water pressure.

Similarly, if voltage stays the same and the resistance increases,

the current will decrease. However, if a thin hose is used, a large

volume of water can be obtained in a given time period by increas-

ing the water pressure. Similarly, it is possible to maintain a con-

stant current when the resistance is increased by increasing the

voltage.
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Ohm’s Law

These relationships are summarized by Ohm’s law: E ¼ IR (volt-

age is equal to the product of the current and the resistance). This

means that 1 volt of electromotive force is required to pass 1 am-

pere of current through a resistance of 1 ohm. This equation

implies that if the voltage is increased, then this must be accom-

panied by an increase in current, an increase in resistance, or

changes in both current and resistance. In particular, if the voltage

increases and the resistance is constant, then the current must in-

crease in proportion with the voltage. This makes sense, because

an increase in the pressure (voltage) naturally leads to an increase

in current. However, a somewhat less intuitive consequence of

Ohm’s law is that if the resistance increases and the current is

held constant, then the voltage must increase in proportion to the

resistance. This might seem counterintuitive, because you might

expect that an increase in resistance would lead to a decrease in

voltage, but it actually leads to an increase in voltage (assuming

that current remains constant). However, this makes sense if you

think about the hydraulic analogy: If you use a thinner hose but

still have the same amount of water coming out the end, you must

have increased the water pressure.

Another implication of Ohm’s law is that it is possible to have a

very large voltage without any significant current if the resistance

is near infinity, which is very common (as in the case of the termi-

nals of a car battery when they are not connected to anything).

However, the only way to get a significant current without any sig-

nificant voltage is to have a resistance that is near zero, which is

very uncommon (it requires supercooling).

Impedance

There is one other term that I would like to mention in this con-

text, namely impedance. Technically, the term resistance applies

only when the current is constant over time (which is called direct

current or DC), and impedance is the appropriate term to use when
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the current varies over time (alternating current or AC). Because

ERPs vary over time, impedance is generally the most relevant

concept. A different term is necessary because there are certain

factors that contribute to impedance that do not contribute to DC

resistance (specifically, inductance and capacitance). However, for

most practical purposes, impedance is analogous to resistance, so

you don’t need to worry about the differences. Impedance is usu-

ally labeled Z, and most impedance meters measure the impedance

using a small sine-wave voltage oscillating at around 10 Hz.

Electricity and Magnetism

Electricity and magnetism are fundamentally related to each other,

and it is important to understand this relationship to understand

how ERP recordings pick up electrical noise and how MEG/ERMF

recordings are related to EEG/ERP recordings. Current flowing

through a conductor generates a magnetic field that flows around

the conductor. Moreover, if a magnetic field passes through a con-

ductor, it induces an electrical current. Figure A.1 illustrates these

Current flows
through conductor #1

Magnetic field
induces current flow

in conductor #2

Magnetic field
generated around

conductor #1

Conductor #1

Conductor #2

Figure A.1 Relationship between electricity and magnetism. A current is passed through
conductor #1, and this generates a magnetic field that circles around conductor #1.
As this magnetic field passes through conductor #2, it induces a small current in
conductor #2.
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two principles, showing what happens when a current passes

through one of two nearby conductors. The flow of current through

one of the conductors generates a magnetic field, which in turn

induces current flow in the other conductor. This is how electrical

noise in the environment can induce electrical activity in an ERP

subject, in the electrodes, or in the wires leading from the elec-

trodes to the amplifier.
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Notes

Chapter 1

1. The concept of noise is fundamental to any data recording technique, but this term is un-

familiar to many beginners. The term noise simply refers to any source of variation in the

data that is unrelated to thing you are trying to record (which is termed the signal). Keep

in mind that one researcher’s noise may be another researcher’s signal. For example, elec-

trical activity generated by the heart (the EKG) may sometimes contaminate ERP record-

ings, and ERP researchers treat it as noise. To a cardiologist, however, the EKG is a signal,

not noise. Noise may be random and unpredictable or it may be nonrandom and predict-

able. As long as it causes the recorded data to differ from the signal, however, it’s still

noise.

2. This assumes that the recording electrode is at a sufficient distance from the activated

cortex, which will always be true in scalp recordings.

3. To be more precise, the high resistance of the skull causes a small amount of volume-

conducted electrical current to flow perpendicular to the skull, and this perpendicular

electrical activity is accompanied by a small magnetic field. In this manner, the high re-

sistance of the skull may indirectly cause a small amount of distortion in magnetic fields.

However, this is a relatively minor effect compared to the distortion of the electrical

activity.

4. You may wonder why all this research has not led to a consensus about the psychological

or neurophysiological processes reflected by the P3 wave. I suspect there are two main

contributing factors. One factor is that the P3 wave is present, at least to some extent, in

almost every condition of almost every experiment. Because the P3 wave is so ubiquitous,

it’s hard to narrow down the general cognitive domain associated with it. A second factor

is that it’s difficult to isolate the P3 wave from other overlapping ERP components.

It seems very likely that many different positive-going ERP components are active over

the broad time range and scalp distribution of the P3 wave, each reflecting a different

cognitive process. Because we don’t have a good means of isolating these different P3

subcomponents, it’s very hard to associate this amalgam of P3 activity with a specific psy-

chological process.

Chapter 2

1. An abbreviated version of this chapter has been published previously (Luck, 2005).

2. This definition has a bit of wiggle room in the definition of a neuroanatomical module.

You could use Brodmann’s areas to define the modules, but you could also use the finer



divisions of modern neuroanatomy (Felleman & Van Essen, 1991) or coarser divisions

such as the dorsal stream or the ventral stream.

3. The results in the figure are summarized in a bar graph, and ERP waveforms are not

shown. Because it is difficult to measure the latent components from the observed ERP

waveforms, it is important to show the ERP waveforms and not just provide measure-

ments of component amplitudes and latencies (see the first section of chapter 6 for more

details). However, at the time of this experiment, computers were quite primitive, and

computing something as straightforward as the average waveform across subjects was

not terribly common. The original journal article describing this experiment did not con-

tain any grand averages, and instead showed examples of the waveforms from a few sub-

jects. The individual-subject waveforms were just too ugly to show here.

Chapter 4

1. Technically speaking, covariance is used rather than correlation, which means that the

matching EEG segment must be large as well as being similar in shape to the template.

2. The data shown in this figure were actually computed using a somewhat different tech-

nique, which used wavelet transforms instead of Fourier transforms. However, the gen-

eral principle is the same.

3. This framework was originally developed by Jon Hansen at UCSD. He also developed sev-

eral of the specific artifact rejection algorithms described later in this chapter.

4. Although a chinrest seems like it ought to reduce muscle tension, my lab has found that

they actually increase muscle noise. But it may be possible to set up a chinrest in a way

that reduces rather than increases muscle noise.

Chapter 5

1. In this context, power is simply amplitude squared.

2. The discussion of filtering presented here applies to transient waveforms from virtually

any source, including event-related magnetic fields. However, these principles are rele-

vant primarily for the transient responses that are elicited by discrete stimuli and not to

the steady-state responses that are elicited by fast, repetitive streams of stimuli presented

at a constant rate.

3. Plots of phase are often difficult to understand, and the Fourier transforms shown in

this chapter will show the amplitude information without the corresponding phase

information.

4. The process is actually somewhat more complex than this due to the fact that both the

ERP waveform and the impulse response function are finite in duration and digitally

sampled.

5. A 12.5-Hz half-amplitude cutoff is much lower than the cutoff frequencies typically

employed for attenuating high frequency noise. However, filter-induced distortions are

more apparent in this context with lower cutoffs, and a 12.5 Hz cutoff was therefore

chosen to make these distortions clearer.

6. Artifact rejection is a nonlinear process, and filtering before artifact rejection and

averaging will not yield the same result as filtering after artifact rejection and averaging
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(although the result will be very similar if the specific filter used doesn’t influence the

artifact rejection process very much).

Chapter 6

1. Occasionally, the waveform will not have a local peak within the measurement time

range that exceeds the average of the three to five points on either side. This occurs

when the waveform gradually increases or decreases monotonically through the entire

measurement window. In this case, you can just use the simple peak amplitude or the

amplitude at the midpoint of the latency range. These aren’t perfect solutions, but they’re

better than always using the simple peak amplitude.

2. The Greenhouse-Geisser adjustment tends to be overly conservative, especially at moder-

ate to high levels of non-sphericity. Many statistical packages also include the Hyun-

Feldt adjustment, which is probably somewhat more reasonable and may be useful when

low statistical power is a problem.

Chapter 7

1. A physicist with no knowledge of BESA or ERPs was also tested, but his localizations

were both unrepresentative and far from correct, so I will not include his results in the

discussion here.

2. If two dipoles are assumed to be mirror-symmetrical, only seven parameters are

required to represent the two dipoles, rather than the twelve that would be otherwise

required. That is, six parameters are used to represent one of the two dipoles, as usual,

but the other dipole requires only one additional parameter, representing its magnitude

(which is the only parameter that may differ from the other dipole). Moreover, because

magnitude is treated differently from the other parameters in BESA, the assumption of

mirror symmetry essentially removes all of the major parameters from one of the two

dipoles. Thus, this ten-dipole simulation is equivalent to an unconstrained seven-dipole

simulation.

Chapter 8

1. Because of the integration time of the retina, reducing the duration of a stimulus from 100

ms to some shorter duration leads to the perception of a dimmer stimulus rather than a

shorter stimulus (this is Bloch’s law). In addition, stimuli of approximately 100 ms or

less do not elicit separate onset and offset ERP responses, but longer stimuli do. Con-

sequently, I would recommend a duration of 100 ms for experiments with brief stimuli,

and I would recommend a duration that exceeds the interesting portion of the ERP wave-

form for experiments with long stimuli. This way you will not have offset responses in

the middle of your waveform.
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Näätänen, R., & Picton, T. W. (1986). N2 and automatic versus controlled processes. In W.

C. McCallum, R. Zappoli & F. Denoth (Eds.), Cerebral Psychophysiology: Studies in

Event-Related Potentials (pp. 169–186). Amsterdam: Elsevier.

Nagamine, T., Toro, C., Balish, M., Deuschl, G., Wang, B., Sato, S., Shibasaki, H., &

Hallett, M. (1994). Cortical magnetic and electrical fields associated with voluntary

finger movements. Brain Topography, 6, 175–183.

Norman, D. A. (1968). Toward a theory of memory and attention. Psychological Review,

75, 522–536.

Nunez, P. L. (1981). Electric Fields of the Brain. New York: Oxford University Press.

Osman, A., Bashore, T. R., Coles, M., Donchin, E., & Meyer, D. (1992). On the trans-

mission of partial information: Inferences from movement-related brain potentials.

Journal of Experimental Psychology: Human Perception and Performance, 18, 217–

232.

Osman, A., & Moore, C. M. (1993). The locus of dual-task interference: Psychological

refractory effects on movement-related brain potentials. Journal of Experimental Psy-

chology: Human Perception and Performance, 19, 1292–1312.

Osterhout, L., & Holcomb, P. J. (1992). Event-related brain potentials elicited by syntactic

anomaly. Journal of Memory & Language, 31, 785–806.

Osterhout, L., & Holcomb, P. J. (1995). Event-related potentials and language comprehen-

sion. In M. D. Rugg & M. G. H. Coles (Eds.), Electrophysiology of Mind (pp. 171–215).

New York: Oxford University Press.

Paller, K. A. (1990). Recall and stem-completion priming have different electrophysiolog-

ical correlates and are modified differentially by directed forgetting. Journal of Exper-

imental Psychology: Learning, Memory and Cognition, 16, 1021–1032.

Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomo-

graphy (sLORETA): Technical details. Methods & Findings in Experimental & Clini-

cal Pharmacology, 24 Suppl D, 5–12.

Pascual-Marqui, R. D., Esslen, M., Kochi, K., & Lehmann, D. (2002). Functional

imaging with low-resolution brain electromagnetic tomography (LORETA): A re-

view. Methods & Findings in Experimental & Clinical Pharmacology, 24 Suppl C,

91–95.

Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromag-

netic tomography: A new method for localizing electrical activity in the brain. Inter-

national Journal of Psychophysiology, 18, 49–65.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming

numbers into movies. Spatial Vision, 10, 437–442.

References 351



Pernier, J., Perrin, F., & Bertrand, O. (1988). Scalp current density fields: Concept and

properties. Electroencephalography and Clinical Neurophysiology, 69, 385–389.

Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp

potential and current density mapping. Electroencephalography and Clinical Neuro-

physiology, 72, 184–187.

Phillips, C., Rugg, M. D., & Friston, K. J. (2002). Anatomically informed basis functions

for EEG source localization: Combining functional and anatomical constraints. Neu-

roimage, 16, 678–695.

Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of

Clinical Neurophysiology, 9, 456–479.

Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Jr., Miller,

G. A., Ritter, W., Ruchkin, D. S., Rugg, M. P., & Taylor, M. J. (2000). Guidelines for

using human event-related potentials to study cognition: Recording standards and

publication criteria. Psychophysiology, 37, 127–152.

Picton, T. W., & Hillyard, S. A. (1972). Cephalic skin potentials in electroencephalogra-

phy. Electroencephalogray and Clinical Neurophysiology, 33, 419–424.

Picton, T. W., Hillyard, S. A., & Galambos, R. (1974). Cortical evoked responses to

omitted stimuli. In M. N. Livanov (Ed.), Basic Problems in Brain Electrophysiology

(pp. 302–311). Moscow: Nauka.

Picton, T. W., Linden, R. D., Hamel, G., & Maru, J. T. (1983). Aspects of averaging. Semi-

nars in Hearing, 4, 327–341.

Picton, T. W., Lins, O. G., & Scherg, M. (1995). The recording and analysis of event-

related potentials. In F. Boller & J. Grafman (Eds.), Handbook of Neuropsychology,

Vol. 10 (pp. 3–73). New York: Elsevier.

Picton, T. W., & Stuss, D. T. (1980). The component structure of the human event-related

potentials. In H. H. Kornhuber & L. Deecke (Eds.), Motivation, Motor and Sensory

Processes of the Brain (pp. 17–49). North-Holland: Elsevier.

Platt, J. R. (1964). Strong inference. Science, 146, 347–353.

Plonsey, R. (1963). Reciprocity applied to volume conductors and the EEG. IEEE Transac-

tions on Biomedical Engineering, 19, 9–12.

Polich, J. (2004). Clinical application of the P300 event-related brain potential. Physical

Medicine & Rehabilitation Clinics of North America, 15, 133–161.

Polich, J., & Comerchero, M. D. (2003). P3a from visual stimuli: Typicality, task, and

topography. Brain Topography, 15, 141–152.

Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: An integrative

review. Biological Psychology, 41, 103–146.

Polich, J., & Lawson, D. (1985). Event-related potentials paradigms using tin electrodes.

American Journal of EEG Technology, 25, 187–192.

Popper, K. (1959). The Logic of Scientific Discovery. London: Hutchinson.

Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental

Psychology: Human Learning and Memory, 2, 509–522.

Pritchard, W. S. (1981). Psychophysiology of P300. Psychology Bulletin, 89, 506–540.

Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual

processing in an RSVP task: An attentional blink? Journal of Experimental Psychol-

ogy: Human Perception and Performance, 18, 849–860.

Regan, D. (1989). Human Brain Electrophysiology: Evoked Potentials and Evoked Mag-

netic Fields in Science and Medicine. New York: Elsevier.

Ritter, W., Simson, R., Vaughan, H. G., & Friedman, D. (1979). A brain event related to the

making of a sensory discrimination. Science, 203, 1358–1361.

References 352



Ritter, W., Vaughan, H. G. Jr., & Costa, L. D. (1968). Orienting and habituation to auditory

stimuli: A study of short term changes in average evoked responses. Electroencepha-

lography and Clinical Neurophysiology, 25, 550–556.

Rohrbaugh, J. W., Syndulko, K., & Lindsley, D. B. (1976). Brain wave components of the

contingent negative variation in humans. Science, 191, 1055–1057.

Rosler, F., & Manzey, D. (1981). Principal components and varimax-rotated components

in event-related potential research: Some remarks on their interpretation. Biological

Psychology, 13, 3–26.

Rossion, B., Curran, T., & Gauthier, I. (2002). A defense of the subordinate-level expertise

account for the N170 component. Cognition, 85, 189–196.

Rossion, B., Delvenne, J. F., Debatisse, D., Goffaux, V., Bruyer, R., Crommelinck, M., &

Guerit, J. M. (1999). Spatio-temporal localization of the face inversion effect: An

event-related potentials study. Biological Psychology, 50, 173–189.

Rossion, B., Gauthier, I., Goffaux, V., Tarr, M. J., & Crommelinck, M. (2002). Expertise

training with novel objects leads to left-lateralized facelike electrophysiological

responses. Psychological Science, 13, 250–257.

Ruchkin, D. S., & Wood, C. C. (1988). The measurement of event-related potentials. In

T. W. Picton (Ed.), Human Event Related Potentials (pp. 121–137). Amsterdam:

Elsevier.

Schendan, H. E., Ganis, G., & Kutas, M. (1998). Neurophysiological evidence for visual

perceptual categorization of words and faces within 150 ms. Psychophysiology, 35,

240–251.

Scherg, M., Vajsar, J., & Picton, T. (1989). A source analysis of the human auditory evoked

potentials. Journal of Cognitive Neuroscience, 1, 336–355.

Scherg, M., & von Cramon, D. (1985). A new interpretation of the generators of BAEP

waves I–V: Results of a spatio-temporal dipole model. Electroencephalography and

Clinical Neurophysiology, 62, 290–299.

Schmidt, D. M., George, J. S., & Wood, C. C. (1999). Bayesian inference applied to the

electromagnetic inverse problem. Human Brain Mapping, 7, 195–212.

Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., &

Leventhall, A. G. (1998). Signal timing across the macaque visual system. Journal of

Neurophysiology, 79, 3272–3278.

Shapiro, K. L., Arnell, K. M., & Raymond, J. E. (1997). The attentional blink. Trends in

Cognitive Science, 1, 291–296.

Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1994). Attention to visual pattern informa-

tion produces the attentional blink in rapid serial visual presentation. Journal of Ex-

perimental Psychology: Human Perception and Performance, 20, 357–371.

Shibasaki, H. (1982). Movement-related cortical potentials. In Evoked Potentials in Clini-

cal Testing (Vol. 3, pp. 471–482). Edinburgh: Churchill Livingstone.

Simson, R., Vaughan, H. G., & Ritter, W. (1977). The scalp topography of potentials in

auditory and visual discrimination tasks. Electroencephalography and Clinical Neu-

rophysiology, 42, 528–535.

Snyder, A. (1991). Dipole source localization in the study of EP generators: A critique.

Electroencephalography & Clinical Neurophysiology, 80, 321–325.

Soltani, M., & Knight, R. T. (2000). Neural origins of the P300. Critical Reviews in Neuro-

biology, 14, 199–224.

Squires, K. C., & Donchin, E. (1976). Beyond averaging: The use of discriminant functions

to recognize event related potentials elicited by single auditory stimuli. Electroence-

phalography and Clinical Neurophysiology, 41, 449–459.

References 353



Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency

positive waves evoked by unpredictable auditory stimuli. Electroencephalography

and Clinical Neurophysiology, 38, 387–401.

Sutton, S. (1969). The specification of psychological variables in average evoked potential

experiments. In E. Donchin & D. B. Lindsley (Eds.), Averaged Evoked Potentials:

Methods, Results and Evaluations (pp. 237–262). Washington, D.C.: U.S. Government

Printing Office.

Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked potential correlates of stim-

ulus uncertainty. Science, 150, 1187–1188.

Sutton, S., Tueting, P., Zubin, J., & John, E. R. (1967). Information delivery and the sen-

sory evoked potential. Science, 155, 1436–1439.
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