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SUMMARY

How do we remember emotional events? While
emotion often leads to vivid recollection, the preci-
sion of emotional memories can be degraded,
especially when discriminating among overlapping
experiences in memory (i.e., pattern separation).
Communication between the amygdala and the hip-
pocampus has been proposed to support emotional
memory, but the exact neural mechanisms remain
unclear. Here, we used intracranial recordings in
pre-surgical epilepsy patients to show that success-
ful pattern separation of emotional stimuli is associ-
ated with theta band (3–7 Hz)-coordinated bidirec-
tional interactions between the amygdala and the
hippocampus. In contrast, discrimination errors
(i.e., failure to discriminate similar stimuli) were
associated with alpha band (7–13 Hz)-coordinated
unidirectional influence from the amygdala to the hip-
pocampus. These findings imply that alpha band
synchrony may impair discrimination of similar
emotional events via the amygdala-hippocampal
directional coupling, which suggests a target for
treatments of psychiatric conditions such as post-
traumatic stress disorder, in which aversive experi-
ences are often overgeneralized.

INTRODUCTION

Emotion is a powerful modulator of episodic memory. Emotional

events are thought to promote arousal during acquisition, which

facilitates later recall (McGaugh, 2013). However, studies in hu-

mans have shown that the impact of emotion on memory is not

always positive. We often remember the emotional gist but
Ne
forget the details (Adolphs et al., 2005; Leal et al., 2014b). For

instance, eyewitness testimony tends to focus on the weapon,

while witnesses have impaired memory for other details of the

crime scene and the perpetrator (Loftus et al., 1987). This

emotional memory modulation can impair the discrimination of

similar experiences, which is mediated by pattern separation

(Leal et al., 2014a). This neural computation is critical for episodic

memory and is vulnerable in neuropsychiatric disorders (Leal

and Yassa, 2018). Therefore, the neural dynamics of emotional

mnemonic discrimination not only are vital to understanding

the biological basis of emotion and memory processing, but

also provide circuit-level insights for understanding psychiatric

illness, offering improved targeting of therapeutic interventions.

Although several hypotheses have been proposed to explain

how emotional memories are processed in the human amyg-

dala-hippocampal circuit (Phelps, 2004), the underlying neural

mechanisms remain elusive. Prior brain imaging studies have

suggested that the hippocampus plays a critical role in pattern

separation (Leutgeb et al., 2007), while the amygdala modulates

the strength of memory (Leal et al., 2014a). This division of labor

is based on fMRI studies, which are limited by coarse temporal

resolution and cannot inform on oscillatory modes of network

communication to support emotional memory. In contrast,

rodent neurophysiological studies show that low-frequency os-

cillations (3–13 Hz) reflect rhythmic fluctuations of membrane

potentials and provide flexible temporal windows (Fries, 2005)

to support interregional communication during aversive memory

retrieval (Seidenbecher et al., 2003). High-frequency activity

(HFA) (30–250 Hz) closely correlates with population spiking ac-

tivity and likely reflects local neural processing. Coupling be-

tween the phase of low-frequency activity and the amplitude of

HFA (i.e., phase-amplitude coupling [PAC]) has been proposed

to modulate synaptic plasticity (Huerta and Lisman, 1995; Orr

et al., 2001), flexibly organizing complex mnemonic information

(Heusser et al., 2016) to increase memory capacity (Inman

et al., 2018; Lisman and Jensen, 2013) and promote adaptive

learning (Stujenske et al., 2014), which requires highly detailed
uron 102, 1–12, May 22, 2019 ª 2019 Published by Elsevier Inc. 1
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Figure 1. Experiment Design, Behavioral Results, and Electrode Locations

(A) Mnemonic discrimination task with emotional stimuli. Each trial consists of three parts: a 500-ms maintenance fixation period followed by a 2,000-ms image

display (processing period) and a self-paced response window up to 2,000 ms. During the encoding phase, participants were cued to rate the emotional valence

of each stimulus (Neg, negative; Neu, neutral; Pos, positive). During the retrieval phase, participants were cued to identify the same stimuli presented in the

encoding phase as old or to indicate similar scenes (lure items) and novel items (foil items) as new. See Table S4 and Figure S6 for visual controls of the stimuli set.

(B) Across all subjects, the lure discrimination index was significantly lower in negative and positive conditions compared to the neutral one (error bar, SEM;

*p < 0.05, **p < 0.01, Scheffé test). See Tables S1 and S2 for subjects’ information and individual subject’s behavior performance.

(C) Electrode localizations across 7 subjects, rendered onto a three-dimensional glass brain (gray) based on a high-resolution anatomical atlas, with amygdala

electrodes in red and hippocampal electrodes in blue (L, left; R, right). See Figure S1 for individual electrode localization.
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pattern-separated representations (McClelland et al., 1995).

Here we use human depth electrode recordings with a high

spatial and temporal resolution to test the hypothesis that low-

frequency oscillations and HFA cooperatively facilitate amyg-

dala-hippocampal interactions to support mnemonic discrimina-

tion of emotional stimuli in humans.

We recorded intracranial stereo-electroencephalography

(SEEG) simultaneously from the amygdala and the hippocampus

in 7 pre-surgical epilepsy patients while they performed an

emotional pattern separation task (Leal et al., 2014b), in which

participants were asked to distinguish among memories of
2 Neuron 102, 1–12, May 22, 2019
similar emotional scenes (Figure 1A). This task has shown robust

amygdala-hippocampal involvement in previous fMRI studies

(Leal et al., 2014a, 2017), which reported that the amygdala

response is elevated in emotional conditions regardless of mne-

monic accuracy. In contrast to the fMRI studies, we observed

that neural responses in both the amygdala and the hippocam-

pus are modulated by both memory accuracy and valence. Spe-

cifically, correct discrimination of similar emotional stimuli was

associated with bidirectional interactions between the amygdala

and the hippocampus mediated by theta oscillations (3–7 Hz). In

contrast, discrimination errors (i.e., failure to discriminate similar
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stimuli) were associated with alpha (7–13 Hz)-driven unidirec-

tional influence from the amygdala to the hippocampus. These

results highlight the complex oscillatory dynamics of amyg-

dala-hippocampal interactions in facilitating retrieval of detailed

emotional memories and provide a putative mechanism for

emotional discrimination errors.

RESULTS

Emotion Interferes with Mnemonic Discrimination
Seven pre-surgical epilepsy patients (3 males and 4 females)

(Table S1) performed an episodic memory task (Figure 1A)

(Leal et al., 2014b). During encoding, subjects were instructed

to rate the emotional valence (negative, neutral, or positive) of

each picture. Immediately following encoding (�1 min), subjects

performed a recognition test to categorize the repeated images

as old and the first-seen images as new. To induce memory

interference, lure items, which are similar to the ones presented

in the encoding phase, were included in the recognition test,

along with targets (i.e., repeated images) and foils (i.e., new im-

ages). All subjects performed well on the task (79.8% ± 1.8% ac-

curacy, mean ± SEM; range = 73.1%–86.6%, Tables S1 and S2;

chance level = 54.8%, p < 0.05, permutation test). We calculated

the lure discrimination index (LDI) (Leal et al., 2014b) for each

subject, operationalized as pð0New0 jLureÞ� pð0New0 jTargetÞ,
which corrected for the general tendency to reject items (Yassa

and Stark, 2011) (e.g., calling an item new). This is analogous to

the inverse of the corrected recognition score widely employed

in a previous recognition memory test (Andersen, 2007). Similar

to prior work (Kensinger and Schacter, 2007; Leal et al., 2014a,

2014b), performance significantly differed among positive, nega-

tive, and neutral stimuli (Fvalence 3 LDI (subject number 3 3) (2, 18) =

6.32, p = 0.008) (Figure 1B), with diminished LDI for emotional

lures compared to the neutral ones (post hoc analysis,

Scheffé test: djNeg�Neu j = 0:272, CVjNeg�Neu j = 0:219, p < 0.01;

djPos�Neu j = 0:171, CVjPos�Neu j = 0:169, p < 0.05, where Neg,

negative; Neu, neutral; and Pos, positive). The magnitude of

the effect was larger for negative stimuli compared to positive

stimuli, which might be due to the higher level of arousal elicited

by the negative condition (Lang et al., 1993) (see Discussion).

Increased Theta Power and Decreased Alpha Power
Predict Successful Mnemonic Discrimination
Local field potentials (LFPs) were recorded from the depth elec-

trodes implanted in the amygdala (13 electrodes) and the hippo-

campus (17 electrodes) (Figure 1C). The localizations of depth

electrodes were determined by three experienced raters (inter-

rater reliability: k = 0.824; see STAR Methods) based on the

co-registered post- to pre-implantation MRI scans (post-

computed tomography [CT] to pre-MRI for subject 7) and was

guided by a high-resolution anatomical atlas, labeled withmedial

temporal lobe (MTL) sub-regions of interests (Figure S1). We

examined neural responses while individuals performedmemory

recognition (processing period during the retrieval phase in Fig-

ure 1A), comparing correctly rejected (lure correct rejection

[LCR]: lures correctly identified as new) versus incorrectly recog-

nized (lure false alarm [LFA]: lures incorrectly identified as old)

negative, neutral, and positive lures.
Both amygdala and hippocampal electrodes showed strong

oscillatory activity peaking in the theta and alpha band range

(3–13 Hz) (Figures 2A and 2B) during lure discrimination trials,

which is consistent with previous findings of increased theta

and alpha oscillations facilitating memory retrieval (Jutras

et al., 2013; Seidenbecher et al., 2003). Furthermore, when we

separated trials into LCR and LFA conditions (collapsed across

valence) (Figure 2C), oscillations at distinct low-frequency bands

reflected different task outcomes. Specifically, more prominent

theta band (�2–7 Hz) activity was observed in both the amygdala

and the hippocampus during LCRs, while more prominent alpha

band (�7–14 Hz) activity was presented during LFAs (p < 0.05,

corrected for multiple comparisons using the cluster-based per-

mutation test; see STAR Methods) (Figure 2D). Moreover, the

theta power increase and the alpha power decrease occurred

simultaneously in the hippocampus (latency difference =

0.012 ± 0.004 s, p = 0.421), while the theta power increase led

the alpha power decrease in the amygdala (latency difference =

0.824 ± 0.032 s, p = 2.35e�7). These dual frequency changes

were only observed during lure discrimination (Figures S2A and

S2B), with stronger theta power increases and alpha power sup-

pression for LCRs compared to targets hits (i.e., targets correctly

identified as old) and foil correct rejections (i.e., foils correctly

identified as new) (p < 0.05, corrected using the cluster-based

permutation test; see STAR Methods) (Figures S2C and S2D).

We observed significant three-way interactions (emotion [nega-

tive, positive, and neutral], trial type [lure and foil], and accuracy

[correct rejection and false alarm]) across theta and alpha power

in both the amygdala and the hippocampus. Furthermore, signif-

icant emotion (negative, positive, and neutral) 3 accuracy (cor-

rect rejection and false alarm) interactions were observed in

lures, but not foils, for these dual frequency changes in the amyg-

dala and the hippocampus (Table S3). These results suggest that

the theta power increase and the alpha power decrease in the

amygdala and hippocampus were spectral features specific to

pattern separation.

Next, we examined the impact of emotional valence. Within

each condition (LCR and LFA), trials were grouped based on

each subject’s valence ratings (negative, positive, or neutral)

during the encoding session. The conditional power difference

(LCR � LFA) was then calculated and averaged across time

within the theta and alpha bands separately for different

valences (negative, neutral, and positive). The theta and alpha

bandwidths used in this analysis were determined by the

significant clusters detected in Figure 2D (amygdala: AMYtheta =

�2–7 Hz, AMYalpha = �8–14 Hz; hippocampus: HPCtheta =

�2–6 Hz, HPCalpha = �7–13 Hz). We found the same spectral

pattern (increased theta power during LCRs and increased alpha

power during LFA s) across all three valence categories, indi-

cating that theta and alpha oscillatory multiplexing served as a

common mechanism for mnemonic discrimination irrespective

of emotional valence. However, the magnitude of these condi-

tional power differences was amplified by emotional valence

in both regions (AMYtheta: Fvalence 3 trial (2, 216) = 4.627, p =

0.011; AMYalpha: Fvalence 3 trial (2, 216) = 7.934, p = 4.730e�4;

HPCtheta: Fvalence 3 trial (2, 216) = 10.325, p = 5.211e�5; HPCalpha:

Fvalence 3 trial (2, 216) = 8.272, p = 3.461e�4) (Figure 2E), suggest-

ing that a more robust oscillatory pattern is needed when
Neuron 102, 1–12, May 22, 2019 3
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Figure 2. Task-Evoked Spectrotemporal Power in the Amygdala and the Hippocampus during Task Performances for Lure Items

(A) Averaged power spectra during the retrieval processing period in the amygdala (red) and the hippocampus (blue) for lure items across all valence groups.

(B) Signal trial examples of local field potentials (LFPs) from a pair of electrodes in the amygdala (red) and the hippocampus (blue) from the same subject and the

same LCR/LFA trial. Gray traces represent raw LFPs and red and blue lines denote LFPs filtered within 3–13 Hz. The vertical lines represent stimuli onsets. Slower

oscillatory activity was observed during the LCR (�4 Hz) compared to the LFA (�7 Hz).

(C) Averaged power of electrodes in the amygdala (left) and the hippocampus (right) across all 7 subjects, normalized to the pre-trial baseline (500-ms fixation

period) and grouped according to performance outcomes (LCR, top row; LFA, bottom row, collapsed across all valence groups). Warmer colors denote task-

induced power increases from the baseline, while cooler colors refer to power decreases from the baseline. The relative power changes from the baseline within

the theta and alpha bands are highlighted with dashed and solid boxes, respectively. Dashed vertical lines indicate stimuli onsets. See Figure S2 for the task-

evoked spectrotemporal power for target hits and foil correct rejections and Table S3 for the comparisons of theta and alpha power between lure and target trials,

as well as between lure and foil trials.

(D) Averaged power difference (LCR� LFA) across all 7 subjects and collapsed across all valence groups. Positive values (yellow colors) indicate greater power in

the LCR compared to the LFA, while negative values (blue colors) refer to greater power in the LFA. The significant conditional power differences (p < 0.05,

corrected with the cluster-based permutation test) were highlighted with black contours (LCR > LFA) and white contours (LCR < LFA). Dashed vertical lines

indicate the stimuli onset. Moreover, the power differences observed here were not driven by the influence of evoked response potentials (Figure S3).

(E) Conditional power difference (LCR � LFA) averaged within the significant theta (blue) and alpha (pink) clusters (detected in D) in the amygdala (left) and the

hippocampus (right). Each dot represents the results of an individual subject. Power differences were plotted for negative, positive, and neutral valence stimuli

(*p < 0.05).
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discriminating similar emotional experiences compared to

similar neutral ones. To ensure that these effects were not driven

by the influence of evoked transients on the power estimation

and the subsequent interpretation of directional analyses

(Kovach, 2017;Wang et al., 2008), we assessed evoked response

potentials (ERPs) for both LCR and LFA trials. This analysis

showed no significant difference between conditions (Figure S3).

Theta and Alpha Amygdala-Hippocampal Synchrony
Differentially Bias Discrimination Outcomes
Given the putative role of low-frequency oscillations in support-

ing interregional communication (Fries, 2005), we investigated

low-frequency phase synchrony between the amygdala and the
4 Neuron 102, 1–12, May 22, 2019
hippocampus. Instantaneous phases from both regions were ex-

tracted using the Hilbert transformation. Cross-regional coordi-

nation was quantified with phase locking values (PLVs), which

measure the consistency of the phase relationship of each amyg-

dala-hippocampal electrode pair (Lachaux et al., 1999). We

computed PLVs up to 64 Hz at each time point to reveal the

spatiotemporal dynamics of amygdala-hippocampal phase syn-

chrony. After averaging across subjects, we found amygdala-

hippocampal phase synchrony was evident in two frequency

bands: early theta synchrony (�3–7 Hz), predicting LCRs, and

later alpha synchrony (�7–13 Hz), associated with LFAs (p <

0.01, permutation test) (Figure 3A). This frequency-specific

pattern was consistent at the individual level, with 6 of 7 subjects
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Figure 3. Frequency-Specific Amygdala-Hippocampal Phase Synchrony Reflects Discrimination Outcomes and Emotional Valence

(A) Amygdala-hippocampus synchrony (i.e., phase locking value [PLV]) averaged across all subjects, with stronger theta synchrony for LCRs (top left) and greater

alpha synchrony for LFAs (bottom left). Phase locking value ranges from 0 to 1, with warmer colors indicating greater PLVs and stronger amygdala-hippocampal

phase synchrony compared to baseline. The significant PLVs (p < 0.05, permutation test) were plotted for both conditions (right), with warmer colors denoting

lower p values. The vertical dashed lines indicate stimuli onsets. The significant phase synchrony was not attributed to local power differences and was not due to

volume conduction and uncorrelated noise (Figure S4).

(B) Peak frequency of amygdala-hippocampus synchrony for each subject (S1–S7, coded with different colors; the average peak frequency for each subject is

labeled to the side in the plot), with theta synchrony for LCR and alpha synchrony for LFA.

(C) Consistent spectral patterns (theta synchrony for LCR and alpha synchrony for LFA) emerged with different emotional valence.

(D) Conditional differences in amygdala-hippocampus synchrony (LCR � LFA) are co-varied with emotional valence, with decreased theta synchrony (blue) and

increased alpha synchrony (pink) for negative trials compared to neutral ones (*p < 0.01).

See Figure S5A and Table S3 for comparisons of theta and alpha phase synchrony between lure and foil trials.
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demonstrating theta synchrony for LCRs and alpha synchrony for

LFAs (chi-square = 18.24, p = 0.006) (Figure 3B). In addition, such

a frequency difference between the two conditions was consis-

tent across different emotional conditions (Figure 3C), and the

strength of conditional differences (LCR versus LFA) of theta or

alpha band synchrony was enhanced for emotional trials

versus neutral ones (neutral < positive < negative; theta syn-

chrony: Fvalence 3 trial (2, 216) = 5.621, p = 0.004, post hoc anal-

ysis, Scheffé test, djNeg�Neu j = 0:400, CVjNeg�Neu j = 0:327, p =

2.241e�3; alpha synchrony: Fvalence 3 trial (2, 216) = 4.212, p =

0.016, post hoc analysis, Scheffé test, djNeg�Neu j = 0:356,

CVjNeg�Neu j = 0:288, p = 1.826e�3) (Figure 3D). The outcome

selectivity was not attributed to local power differences (Kovach,

2017): frequency-specific interregional synchrony remained sig-

nificant even when computed using the trials with balanced theta

and alpha power across LCRs and LFAs (n = 133 trials, p < 0.01,

permutation test) (Figures S4A and S4B). To reduce sensitivity to

volume conduction and uncorrelated noise, we conducted phase

synchrony using the weighted phase lag index (WPLI) (Vinck

et al., 2011), which validated the prediction power of theta and

alpha synchrony for subjects’ behavioral outcomes (Figure S4D).

Moreover, although increased theta phase synchrony was

observed in the foil trials (Figure S5A), the significant emotion 3
accuracy interactions were observed only in lures, not in foils (Ta-

ble S4), providing evidence that the emotional modulation of

theta and alpha phase synchrony is specific to pattern

separation.

Bidirectional Amygdala-Hippocampal Interactions
Support Mnemonic Discrimination
We used frequency-domain Granger causality analysis to quan-

tify interregional directional influence, which measures the de-

gree to which the signal from one region can be better predicted

by incorporating information from the other. We found that the

direction of influence differed between conditions, with theta-

driven bidirectional interactions for LCRs and alpha-driven unidi-

rectional influence from the amygdala to the hippocampus for

LFAs (p < 0.01, permutation test) (Figure 4A). Moreover, this

directional influence was specific to lure trials: no significant

directional interactions between the amygdala and the hippo-

campus were observed during foil trials (Figure S5B). These con-

ditional differences remained significant when band-specific

LFP power was balanced across LCRs and LFAs (Figure S4C),

indicating that the observed frequency-specific directionality

was not due to differences in local power. During LCRs, direc-

tional influence in the theta band from the amygdala to the
Neuron 102, 1–12, May 22, 2019 5



Figure 4. Bidirectional Amygdala-Hippocam-

pal Interactions Support Mnemonic Discrimi-

nation

(A) Averaged Granger causality index across all

subjects, with bidirectional interactions for LCRs

(green lines) and unidirectional influence from the

amygdala to the hippocampus for LFAs (yellow lines).

The dashed gray lines represent the 99.9% threshold.

Color shaded areas, SEM. The significant directional

influence was not attributed to local power differ-

ences (Figure S4).

(B) Difference of Granger causality indices (LCR �
LFA) averaged within the theta (top) and alpha (bot-

tom) bands for both directions (red, amygdala to

hippocampus; blue, hippocampus to amygdala).

*p < 0.05 indicates that the conditional difference of

Granger causality indices significantly differed across

groups with different emotional valences.

Neg, negative; Pos, positive; Neu, neutral; n.s., not

significant; AMY, amygdala; HPC, hippocampus. See

Figure S5B for comparisons of directionality between

lure and foil trials.
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hippocampus was amplified by emotion (negative > positive >

neutral; Fvalence 3 Granger causality index (subject number 3 3) (2, 18) =

5.084, p = 0.018) (Figure 4B, top), while the reciprocal influence

from the hippocampus to the amygdala remained constant

(Fvalence 3 Granger causality index (subject number 3 3) (2, 18) = 2.976,

p = 0.076) (Figure 4B, top), suggesting that successful discrimi-

nation of similar emotional stimuli involved an enhanced

engagement of the amygdala to overcome emotional interfer-

ence. In contrast, for LFAs, the network is dominated by

the greater influence from the amygdala to the hippocampus in

the alpha band compared to the reverse direction, which

is consistent across negative, positive, and neutral valence

(Fvalence 3 Granger causality index (subject 3 3) (2, 18) = 2.268, p =

0.132) (Figure 4B, bottom). These results suggest that successful

discrimination of overlapping memories (for all three valence

groups) requires bidirectional information exchange in the amyg-

dala-hippocampal circuit.

Distinct Theta Phases Encode Information from the
Amygdala and Hippocampus
PAC is an important mechanism to flexibly coordinate interre-

gional information transfer, with the phase of slow oscillations

dynamically modulating the amplitude of HFA (Helfrich and

Knight, 2016). This mechanism has been shown to support

phase-dependent encoding of different mnemonic representa-

tions (Heusser et al., 2016; Watrous et al., 2015). We performed

cross-regional PAC in both phase-amplitude combinations (low-

frequency phase from the amygdala and high-frequency ampli-

tude from the hippocampus, and vice versa) using the electrode

pairs exhibiting the most significant low-frequency phase syn-

chrony (Zheng et al., 2017). The interregional influence was

quantified as the correlation between low-frequency (2–32 Hz)

phases from one region (i.e., the modulating signal) and the

amplitude of HFA (30–250 Hz) from the other (i.e., the modulated

signal). Again, frequency-specific features emerged in interre-

gional PACs between the amygdala and the hippocampus for

LCRs, with the theta phase of the amygdala entraining the HFA
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of the hippocampus (�70–130 Hz, peaked at 93 Hz) and the

theta phase of the hippocampus modulating the HFA of the

amygdala (�60–140 Hz, peaked at 84 Hz). In contrast, for

LFAs, the alpha phase of the amygdala was found to modulate

hippocampal HFA (�45–125 Hz, peaked at 112 Hz) (Figures 5A

and 5B). To address whether the low-frequency phase drives

the amplitude of HFA, or vice versa, we performed the cross-fre-

quency directional analysis. Because the signal-to-noise ratio

(SNR) varies across frequency bands and Granger causality

analysis is sensitive to SNR (Cohen, 2014), we re-assessed the

interregional directionality between low-frequency oscillations

(i.e., theta and alpha) and HFA using the phase slope index

(PSI) (Nolte et al., 2008). We found that PSI differed between

the two conditions, with a bidirectional, theta phase-driven

network during LCRs and a unidirectional, amygdala-alpha

phase-driven network during LFAs (p < 3.2123 10�12, permuta-

tion test) (Figures 5C and 5D). These results not only confirmed

the directional interactions observed from the Granger causality

analysis but also suggested that such directional influence could

shape HFA, an index of local neural activity, via PAC.

Because low-frequency oscillations are thought to organize

cell assemblies to encode distinct information (Lisman and

Jensen, 2013), we then asked whether a specific phase of

the low-frequency oscillation was co-modulated with HFA in

a behaviorally relevant manner, analogous to spike and phase

coupling, in which local neuronal spiking is biased according

to the oscillatory phase of the LFP (Buzsáki et al., 2012). Given

that the SNR strongly depends on the strength of oscillatory

modulation (Watrous et al., 2015), we bandpass-filtered the

modulating signals within the frequencies demonstrating the

strongest modulation effect (extracted from Figures 5A and

5B) and examined when HFA from the modulated signals

occurred relative to the phases of the modulating signal. A

phase-dependent coding mechanism emerged in single-trial

examples (shown in Figure 5E) and was confirmed by group

analysis across all subjects and trials (Figure 5F). Specifically,

for LCRs, HFA from both the amygdala and the hippocampus
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Figure 5. Distinct Theta Phases Encode Information from the Amygdala and the Hippocampus
(A) Averaged interregional phase-amplitude coupling (PAC) across all subjects within the amygdala-hippocampal network for LCRs (A) and LFAs (B). Warmer

colors denote lower p values (permutation test; see STAR Methods).

(C) Phase slope indices (PSIs) were calculated for two directions (red, amygdala leads hippocampus; blue, hippocampus leads amygdala) in each condition (left,

LCR; right, LFA). Positive values indicate low-frequency phases driving high-frequency activity. Dots represent the PSI value of each subject.

(D) PSI differencewas calculated by subtracting thePSI values from twodirections (PSIAMYtoHPC�PSIHPCtoAMY). Then, the calculated PSI differenceswereZ scored

against null distributions generated by randomly shuffling trials. The colored lines represent the results of individual subjects. PSI differed between two conditions,

from a bidirectional network during LCR to a unidirectional, amygdala-driven network during LFA (p < 3.2123 10�12) (AMY, amygdala; HPC, hippocampus).

(E) Example trials from one subject demonstrate that high-frequency activity (HFA) occurred at different phases of theta oscillations for different conditions (LCR,

top; LFA, bottom). The LFP traces were color coded by the phase of the peak modulating frequency from either the amygdala (top rows) or the hippocampus

(bottom rows). Gray dots indicate the time when HFA from the modulated signal (top rows, hippocampus; bottom rows, amygdala) occurred.

(F) Circular distributions of phases at which HFA occurred across all 7 subjects.

(G) Overlapping percentage of the occurring phases of HFA from the amygdala and the hippocampus for both conditions (left, LCR; right, LFA). For LCR, the

phase overlapping percentage reduced with the decrease of emotional valence (negative > positive > neutral, *p < 0.05). For LFA, the phase overlapping per-

centage remained constant across different emotional valence (n.s., not significant).
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amygdala-hippocampal circuit (left), with bidirec-

tional interregional interactions via phase-specific
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the overlapping memories and store them as inde-

pendent mnemonic representations (i.e., pattern

separation). In contrast, an amygdala-dominated

circuit (right), with unidirectional influence from the

amygdala to the hippocampus via alpha oscilla-

tions, could lead to discrimination errors.
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was modulated by the theta oscillations around the trough

(average amygdala HFA occurred at 157�, pAmygdala = 1.05 3

10�4, Rayleigh test; average hippocampal HFA occurred at

202�, pHippocampus = 2.33 3 10�5, Rayleigh test), with HFA

from the amygdala and hippocampus separately occurring at

the descending and ascending slope, respectively (pattern

classification methods, p < 10�8, binomial test; see STAR

Methods). In contrast, for LFAs, the occurring phases of

HFA from both sides were largely overlapping (pattern classifi-

cation methods, p > 0.05, binomial test) and were distrib-

uted across different alpha phases (pAmygdala HFA = 0.068,

pHippocampus HFA = 0.082, Rayleigh test). Moreover, for LCRs,

the overlapping ratio between the occurring phases of the

amygdala and the hippocampal HFA differed across emotional

valences (Fvalence 3 phase overlapping ratio (subject number 3 3) (2, 18) =

4.062, p = 0.035), with greater overlap for the emotional stimuli

compared to the neutral trials. However, for LFAs, the

overlapping ratio remained the same across all valence groups

(Fvalence 3 phase overlapping ratio (subject number 3 3) (2, 18) = 2.205,

p = 0.139) (Figure 5G). Such phase-dependent coding provides

a putative oscillatory mechanism that may increase the coding

capacity of the amygdala-hippocampal circuit, with different
8 Neuron 102, 1–12, May 22, 2019
phases reflecting distinct information

(Heusser et al., 2016; Lisman and Jensen,

2013; Watrous et al., 2015). In summary,

the amygdala and the hippocampus use

frequency- and phase-specific oscillatory

mechanisms to optimize bidirectional in-

formation transfer, with HFA at the trough

phase of theta oscillations predicting suc-

cessful mnemonic discrimination.

DISCUSSION

We provide evidence that interregional

communication between the amygdala

and the hippocampus, using specific oscil-

latory modes of frequency, directionality,

and phase information, supports success-

ful mnemonic discrimination of emotional

events. In particular, bidirectional theta os-

cillations in the amygdala-hippocampal
circuit are enhanced during LCRs, with HFA in both regions

nested at distinct phases around the theta trough (Figure 6).

Furthermore, this oscillatory pattern is driven by a stronger theta

power when successfully discriminating similar emotional expe-

riences, indicating that a more robust oscillatory communication

is needed to prevent discrimination errors. In contrast, enhanced

alpha power, driven by the amygdala, is associated with theta

power decreases in both the amygdala and the hippocampus

during LFAs. The latter observation suggests that the amygdala

exerts a unidirectional influence on the hippocampus via

increased interregional alpha synchrony, providing a novel

mechanistic account for discrimination errors in memory, which

may underlie pathological remembering in conditions such as

post-traumatic stress disorder (PTSD).

These interregional oscillatory dynamics are consistent with

known structural connections between the amygdala and the

hippocampus. Because of our surgical technique of aiming

the depth electrode in a superior trajectory to access the inferior

amygdala above the tentorium, all of our electrodes targeting the

amygdala were located in the basolateral nucleus. Amaral and

Cowen demonstrated that in nonhuman primates, retrograde

tracers from the hippocampal formation were predominately
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found in the anterior amygdaloid area, including the basolateral

nucleus (Amaral and Cowan, 1980). A subsequent study by Ste-

fanacci and colleagues showed that the perirhinal and parahip-

pocampal cortices (which are strongly interconnected with the

hippocampus) have robust bidirectional connections with the

basolateral nucleus (Stefanacci et al., 1996). Our results suggest

that the functional connectivity of the hippocampal-basolateral

nucleus could be dynamically modulated by pattern separation

signals.

Low-frequency oscillations (3–13 Hz) in theMTL are thought to

play a critical role in successful memory encoding (Hasselmo

and Stern, 2014) and retrieval (Seidenbecher et al., 2003). In

particular, enhanced theta power during LCRs is consistent

with the well-established role of theta oscillation modulation

of amygdala-hippocampal synaptic plasticity (Bazelot et al.,

2015; Huerta and Lisman, 1995; Orr et al., 2001) to flexibly orga-

nize complex mnemonic information via theta-gamma phase

coding (Heusser et al., 2016). Moreover, increased theta power

was associated with decreased alpha power, suggesting that

synergy between theta power increases and alpha power de-

creases supports mnemonic discrimination. Previous studies

have shown that decreased alpha power in the hippocampus

is associated with successful memory retrieval (Staresina et al.,

2016), consistent with our results. In the cortex, decreased alpha

power is correlated with an increase in HFA power and firing

rates and has been associated with improved cognitive process-

ing (Bahramisharif et al., 2018; Bastos et al., 2018; Haegens

et al., 2011; Lundqvist et al., 2016; Miller et al., 2018). In contrast,

increased alpha power is linked to decreased HFA power and

neuronal spiking and poor discrimination performance. These

findings suggest that alpha oscillations are correlates of rhythmic

inhibition, possibly providing top-down executive control to gate

information flow (Cooper et al., 2003; Hanslmayr et al., 2007; Kli-

mesch et al., 2007; Min and Herrmann, 2007; Pfurtscheller,

2001). Considering our results and these works, we suggest

that the theta power increases and the alpha power decreases

facilitate amygdala and hippocampal processing during mne-

monic discrimination by organizing neural activity (theta) and

selectively filtering task-relevant information to attend to

emotional information (alpha) (Jokisch and Jensen, 2007; Miller

et al., 2018; Nerad and Bilkey, 2005; Parish et al., 2018; Sauseng

et al., 2005; Staresina et al., 2016). Alpha power increases are

also observed during the processing of emotional stimuli in other

studies (G€untekin and Başar, 2014) and the magnitude of alpha

power increases with the stimulus’s arousal level (Aftanas

et al., 2002), possibly serving an important adaptive function of

sharpening attention to emotional stimuli (i.e., threat detection).

The role of alpha power increases in the detection of emotional

stimuli may come at the cost of the precise theta-gamma phase

coding (Heusser et al., 2016; Lisman and Jensen, 2013) required

for mnemonic discrimination to favor knowledge critical for sur-

vival. The result is that information about threats may be over-

generalized. For example, if someone is bitten by a dog, he or

she may become anxious around dogs of all breeds and sizes,

i.e., generalization at the cost of discrimination.

An alternative explanation of the role of theta and alpha oscil-

lations in the MTL is that these rhythms may exist on a contin-

uum, with the frequency modulated by the rate of environmental
exploration. Whereas several studies have observed a slower

theta rhythm (3–7 Hz) in humans during virtual navigation (Ek-

strom et al., 2005) and memory tasks (Axmacher et al., 2010),

more recent studies in freely moving humans have demonstrated

the presence of a high theta band (8–13 Hz, also referred to as an

alpha band) that is similar to the oscillations observed in freely

moving rodents (Bohbot et al., 2017; Bush et al., 2017; Aghajan

et al., 2017). This high theta increased in prominence with move-

ment speed, as well as the rate of exploration (Aghajan et al.,

2017), suggesting a role in active sensing and encoding the envi-

ronment. We speculate that alpha band oscillations, which

appear to gate unidirectional influence from the amygdala on

the hippocampus and enable false recognition of negatively va-

lenced information are functionally similar to the high theta oscil-

lations noted in studies in freely moving humans (Bohbot et al.,

2017; Bush et al., 2017; Aghajan et al., 2017), as well as in studies

of saccade-based environmental exploration in monkeys (Jutras

et al., 2013). By this account, higher frequency theta and alpha

oscillations could be related to a higher sampling rate of

emotional stimuli. This is consistent with an evolutionary account

in which the amygdala’s influence is thought to orient the hippo-

campus to emotional events in the environment and perhaps

generate an overgeneralization response (i.e., false alarm to

similar negative experiences) that is adaptive, especially if the

stimulus has the potential to threaten survival. This can be

thought of as a rapid override system that is related to active

sensing or alert exploration. These results further demonstrate

the potential functional heterogeneity of different theta and alpha

oscillations in the MTL.

During LCRs, the strength of theta synchronization and alpha

desynchronization is amplified by emotion (Figures 2E and 3C).

Previous studies have shown that increased theta synchroniza-

tion correlates with memory load and task difficulty (Jacobs

et al., 2006) while alpha desynchronization increases corre-

sponding to the amount of distracting information (Sauseng

et al., 2005). Because emotional stimuli can bias attention to

allocate more resources for the processing of emotional stimuli

(Taylor and Fragopanagos, 2005), it is possible that when

discriminating similar emotional experiences, stronger distract-

ing emotional signals need to be suppressed by higher levels

of alpha desynchronization. At the same time, task-relevant

mnemonic signals may need to be strengthened by theta to in-

crease SNR. This emotional modulation of mnemonic oscillatory

dynamics is not independent of valence.We observed that nega-

tive valence is associated with a greater magnitude of theta

synchronization and alpha desynchronization during LCRs

when compared to the positive ones. One possible explanation

for these results is that negative and positive stimuli are not

matched for arousal. Prior studies have also shown that this

matching is difficult to accomplish because negative stimuli, in

general, tend to induce higher levels of arousal compared to pos-

itive stimuli (Lang et al., 1993). In addition, the amygdala does not

solely respond to emotional stimuli but also prioritizes emotional

information such as reward, motivation, and socially relevant

events (Morrison and Salzman, 2010). Neutral stimuli in our study

also elicited amygdala-hippocampal interactions that were

modulated with valence. That said, understanding how positive

and negative valences influence oscillatory dynamics is an
Neuron 102, 1–12, May 22, 2019 9
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important facet of emotional memory that, if better understood,

may have therapeutic potential to reverse the negativity bias

often observed in patients with mood disorders (Leal and Yassa,

2018). The stronger effect in the negative trials might also be

influenced by the unbalanced social information in the stimuli

set, such as a greater number of faces present in the negative

stimuli. If this is the case, it would indicate that the amygdala fa-

cilitates the integration of socially relevant information for mne-

monic discrimination. Future studies regarding the interactions

between social and emotional dimensions could provide a

more precise model of how social-emotional information influ-

ences mnemonic discrimination.

Our results suggest that impaired discrimination of emotional

experience might result from an amygdala-driven amplification

of emotional processing via enhanced amygdala-hippocampal

alpha synchrony, which may lead to false alarms to similar

negative experiences (i.e., failure to discriminate or form highly

specific representations of negative experiences), which is

common in psychiatric disorders such as PTSD. Our findings

provide a neural mechanism underlying this phenomenon and

propose a circuit-level framework for possible neuropsychiatric

therapy, such as deep brain stimulation, transcranial alternating

current stimulation, and transcranial magnetic stimulation

(Zheng and Lin, 2018). Moreover, studies (Grossman et al.,

2017) in mice using temporally paired electrical fields to entrain

hippocampal oscillatory activity without recruiting the overlying

cortex suggest new possibilities for noninvasive stimulation of

deep brain structures. Although scaling the approach and tech-

nology safely to humans will be challenging, it is conceivable to

use such stimulation techniques in humans. Specifically, one

might be able to disrupt alpha synchrony (e.g., cancel out the

alpha wave by stimulating with the same frequency but oppo-

site phase) and boost theta synchrony (e.g., enhance theta

phase alignment) during aversive memory retrieval to noninva-

sively correct discrimination errors in patients with PTSD

(Zheng and Lin, 2018). In addition, a study has shown that direct

electrical stimulation of the amygdala can enhance declarative

memory in humans, possibly via increased theta and gamma

PAC (Inman et al., 2018). The overgeneralization behavior in pa-

tients with PTSD evolves over long periods, instead of the short

delay (i.e., a couple of minutes) used in current task design. In

addition, other brain regions, such as the prefrontal cortex,

may play critical roles as part of this emotional memory circuit.

Thus, future studies examining more brain regions and across

longer timescales are needed to understand the putative mech-

anisms underlying overgeneralization in patients with PTSD.

The current study was conducted with patients with epilepsy,

whose brains may undergo epilepsy-related changes. Howev-

er, behavioral outcomes from the patients closely match those

of healthy volunteers. Furthermore, in line with recommenda-

tions of a review from human and nonhuman primate intracra-

nial researchers, we excluded trials associated with seizures

and epileptiform discharges, as well as recordings from

epileptic tissues (Parvizi and Kastner, 2018).

In summary, we report evidence of novel electrophysiological

signatures of emotional memory in the amygdala-hippocampal

network, which is implicated in a host of neuropsychiatric

diseases and memory deficits. Understanding these neural
10 Neuron 102, 1–12, May 22, 2019
mechanisms provides a critical framework for developing cir-

cuit-specific intervention in people with disordered memory

and emotion (Gordon, 2016).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Datawere obtained from epilepsy patients undergoing intracranial EEGmonitoring at the University of California, Irvine, Medical Cen-

ter to localize epileptic foci for potential surgical resection. Intracranial depth electrodes (Integra or Ad-Tech, 5-mm inter-electrode

spacing) were stereotactically implanted with robotic assistance (Rosa Surgical Robot, Medtech, New York, NY). The electrode

placements were exclusively guided by clinical needs. Before testing, all subjects gave informed written consent in accordance

with the Institutional Review Board of the University of California, Irvine. Patient selection was based on the following inclusion

criteria: 1) having electrodes in both the amygdala and the hippocampus contralateral to or outside of the epileptogenic region;

2) meet the task performance criteria with accuracy rates above 70% (Table S1). In total, 12 patients participated in the task. Two

subjects were excluded because of low accuracy rate (56.7% and 64.4%) and 3 subjects were excluded because electrodes in

the amygdala and/or hippocampus region coincided with the epileptogenic zone. The remaining 7 subjects (4 Female, 3 Male,

Age 21-58, Table S1) were included in this study.

METHOD DETAILS

Electrode localization
Electrodes were localized in each subject using co-registered pre-implantation and post-implantation structural T1-weighted MRI

scans except S5, who only had post-implantation CT scans. First, we registered post-implantation scans to the pre-implantation

scans using a six-parameter rigid body transformation (three rotations and three translations in x-z directions), which was imple-

mented in Advanced Normalization Tools (ANTs http://stnava.github.io/ANTs/). Then a high-resolution anatomical template (an ul-

trahigh-resolution structural MPRAGE scans collected in our previous study and standardized to MNI space (Leal et al., 2014a),

0.55mm isotropic resolution, 273 sagittal slices, field of view = 240 3 240 mm, flip angle = 9o, TR/TE = 13/5.9ms, matrix size =

448 3 448, inversion pulse TI = 1110ms), with labels of medial temporal lobe subfields was applied to guide our localization for

each electrode. The labeled template was resampled (1mm isotropic) and aligned to each subject’s pre-implantation scans using

ANTs Symmetric Normalization (Avants et al., 2011). Based on the anatomical labels within each subject’s space, the electrode loca-

tion was determined by identifying the region of interest that encompassed the center of the electrode artifacts. The electrode local-

ization was performed by three experienced raters independently. The inter-rater reliability is 0.824 (function Kapam.fleiss from R

statistical tool). All the electrodes included in the analyses have consistent results from at least two raters. The electrode localization

results and the selection of re-referencing electrodes within white matter were furthered reviewed by the epileptologist (J.J.L.).

Experimental design
Participants viewed a series of images at the center of a laptop screen with a black background. The stimulus set consisted of novel

scenes freely available online. All the images were rated for emotional valence and similarity (scale from 1 to 8, with 1 indicating the
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least amount of similarity and 8 indicating that the items were identical) in orthogonal experiments with separate samples. Specif-

ically, for the similarity ratings, an independent group (N = 31, 21 female, age 19 ± 1,) was used to examine relative similarity of

each stimulus.We presented pairs of stimuli (the original image presented during study and its similar lure) side-by-side and collected

their subjective similarity ratings scaled from 1 to 8 (1 indicating the least amount of similarity and 8 indicating that the items were

identical). We controlled the similarity ratings for lures across different emotional group (Leal et al., 2014b). Detailed information about

the supplementary rating studies in the separate similarity rating participants can be found in the previous paper (Leal et al., 2014b). In

addition, emotional images are often related thematically while neutral pictures may cover broader themes (Talmi and Moscovitch,

2004). If this was the case, we might expect that similarities across emotional items higher than similarities across neutral ones. To

address this issue, we assessed similarities within stimuli across valence, based on similarity ratings from an independent group of

participants (27 participants, 11 females; via Amazon Mechanical Turk). To ensure the quality of online ratings, participants were

asked to complete only one session per day (�1.5 hours). In addition, we randomly inserted 5% of control trials with two identical

images in the task to track participants’ behavioral performance throughout the session. Only participants with greater than 95%

accuracy for these control trials were included (4 participants were excluded due to their low behavioral performance). Based on

the online ratings, we found no significant difference across valence (Similaritynegative = 5.47 ± 0.13, Similaritypositive = 5.39 ± 0.11,

Similarityneutral = 5.64 ± 0.14, p > 0.05); no significant difference across trial type (Similaritytarget = 5.68 ± 0.12, Similaritylure =

6.21 ± 0.28, p > 0.05); and no significant interaction (pvalence x trial type > 0.05).

During the encoding phase, 148 imageswere presented in pseudorandom order and subjects were instructed to rate the emotional

valence of each stimulus (‘negative’, ‘neutral’ or ‘positive’). After a short delay (�1 minute), subjects were exposed to 290 images

including target (repeated images, n = 54), lure (similar images, n = 97) and foil items (new images, n = 139). The lure itemswere evenly

distributed across emotional valence (NegLure = 33; NeuLure = 32; PosLure = 32) and similarity level (NegSIM = 6.29 ± 0.11;

NeuSIM = 6.14 ± 0.12; PosSIM = 6.41 ± 0.08, p > 0.05). During the test period, subjects were asked to identify whether each image

was shown in the encoding phase or not. Subjects needed to make the response via key press within the 2 s time window and the

trials where subjects failed to make a decision within the time period (< 2%) were excluded from the analysis.

Notably, the stimuli have balanced visual attributes: including balanced image size, luminance, contrast, complexity, entropy, and

color composition across all three valence groups (Table S4; each visual attribute was calculated using the samemethod from a pub-

lished image dataset, ‘‘Nencki dataset’’ (Marchewka et al., 2014). Moreover, the stimuli have balanced brightness (p theoritical = 0.243

and p human vision = 0.187) and color tone (82.2% negative images, 91.1% positive images and 94.2% neutral images were rated as

color balanced) across all three valence groups (Figure S6) as well based on the theoretical calculations and ratings from an inde-

pendent group (11 participants, 4 females) via Amazon Mechanical Turk.

Data acquisition and preprocessing
Stimuli were presented using PsychoPy2 (Version 1.82.01) software (Peirce, 2009) on an Apple MacBook Pro, which was placed on

the service tray at a comfortable distance in front of participants. An external Apple keyboard was used to capture subjects’ re-

sponses. Intracranial EEG data were acquired using a Nihon Kohden recording system (256 channel amplifier, model JE120A),

analog-filtered above 0.01Hz and digitally sampled at 5000Hz. After data acquisition, the preprocessing of raw data was conducted

using customized MATLAB scripts. First, neural recordings were down sampled at 2000Hz and band-pass filtered between 1 to

250Hz using the zero phase delay finite impulse response (FIR) filter with Hamming window. Then power spectral density (PSD)

was estimated using Welch’s method (pwelch,m in Signal Processing Toolbox fromMATLAB). Line noises (usually 60Hz and its har-

monics) inspected from PSD plots were removed via the multi-taper regression method. Based on the electrode localization results,

channels in the amygdala and the hippocampus were re-referenced to the nearest white matter electrodes on the same depth elec-

trode probe. The epileptiform discharges were manually marked (using databrowser.m in FieldTrip; Oostenveld et al., 2011) by the

epileptologist (J.J.L.), who was blinded to electrode locations and trial information (e.g., stimuli onsets and subject’s performance).

Importantly, there were no seizures recorded in any subject while performing the task, and only the electrodes contralateral to or

outside of the seizure onset zone were included in the analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis
First, we evaluated subject’s task performance by computing the accuracy rate over the test phase (i.e., the ratios between the total

number of correct trials and the total number of responded trials) across all conditions (Table S1) and for individual stimuli types (Table

S2). Then we quantified their discrimination ability by calculating the LDI, which is the difference between the number of lure correct

rejections and target miss: pð0New0 jLureÞ � pð0New0 jTargetÞ for each valence group. To more accurately reflect subjects’ perception

of emotional valence, we used subjects’ own ratings (97.2% consistent with the ratings from an independent group) during the en-

coding session to group trials into different valence conditions.

Event-related potentials
We then segmented the preprocessed intracranial recordings into event-related epochs, including a 500ms pretrial baseline and

a 2000ms time window after trial onset. The segmented data were zero-padded to minimize filter-induced edge effects and were
e2 Neuron 102, 1–12.e1–e5, May 22, 2019
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low-pass filtered at 30Hz using a finite impulse response filter (eegfilt.m function in EEGLAB toolbox; Delorme and Makeig, 2004).

Task-induced ERPs were calculated within each condition (lure correct rejection versus lure false alarm) by averaging across filtered

epochs and normalized to the averaged signal across the pre-trial baseline period. A two-sample t test was performed for each data

point to determine the significant difference between conditions (t test, p > 0.05). To remove the potential contribution of signal com-

ponents phase-locked to the trial onset (e.g., ERPs), calculated ERPs were subtracted from each channel before further analysis.

Frequency decomposition and task-induced power
Time-frequency representations of power were computed for each event-related epoch, with FIR filtering between 1 to 250Hz

through 28 logarithmically spaced frequencies. The adaptive bandwidths ensured precise phase estimations within narrow bands

of low-frequency oscillations while the broader range of higher-frequency eliminated sideband effects and prevented spurious

PAC (Aru et al., 2015).We then applied theHilbert transform (hilbert.m function in Signal Processing Toolbox fromMATLAB) to extract

analytic amplitude and phase for all filtered traces. The task-induced power (2-250 Hz) was calculated by squaring the analytic ampli-

tude envelope and was normalized to the pre-trial baseline using relative change in decibel conversion (dB). Results shown in

Figure 2C were averaged across all the subjects. Notably, the time-resolved power estimation is inherently temporally smoothed,

especially for low frequencies (in the order of hundreds of milliseconds), which could contribute to smearing effect onsets earlier

in time. To examine whether the task-induced power change reflected different task outcomes, we quantified the significance of

the power difference between the lure correct rejections and lure false alarms and corrected for multiple comparisons using clus-

ter-based permutation test (Function ft_timelockstatistics from Fieldtrip toolbox). Specifically, for every data sample ((channel, fre-

quency, time)-triplet), the power difference between the lure correct rejections and lure false alarms was quantified by means of a

t-value. Samples with t-values above the threshold (2.5th and 97.5th quantiles for the two-sided t test) were selected and were clus-

tered in connected sets on the basis of temporal, spatial, and spectral adjacency. This empirical dataset was then compared to a

Monte Carlo distribution, which was created by shuffling the conditional labels for 1000 times. Conditional power differences

were considered significant when the maximum of the cluster-level summed t-values in the empirical data exceeded the threshold

(i.e., 95th percentile of the maximum of the cluster-level summed t-values) of the null distribution. As shown in Figure 2D, significant

power increase (lure correct rejection > lure false alarm) and power decrease (lure correct rejection < lure false alarm) were high-

lighted by black and white curves respectively. Notably, similar analyses were also conducted when comparing the power difference

between the lure correct rejections versus target hits or foil correct rejections (Figure S2).

Inter-regional phase synchrony
The strength of inter-regional neural synchrony was quantified by the PLV (Lachaux et al., 1999), which calculates the phase q dif-

ferences between two channels ða;bÞ averaged across trials for a given time point t and frequency f:

PLVðt; fÞ= 1

Ntrials

�����
Xn=Ntrials

n= 1

expði½qn;aðt; fÞ � qn;bðt; fÞ�Þ
�����

It measures the degree of consistency for each electrode pair phase relationship independent of their absolute phases and ampli-

tudes - among repeated trials, with values approaching 1 referring to small variations across trials and strong phase synchrony be-

tween two channels.We performed the PLV analysis for each electrode pair, including all possible electrode pairs (one electrode from

the amygdala and one from the hippocampus), within the retrieval processing period (2 s time window after stimuli onset). Then we

grouped individual PLVðt; fÞ spectrogram according to different conditions (lure correct rejection versus lure false alarm as shown in

Figure 2A; negative, positive, and neutral as shown in Figure 2C). To test the statistical significance of PLV, a null distribution was

created by randomly shuffling the signal from each electrode pair, computing the corresponding PLV spectrograms and repeating

the same procedure for 1000 times. Then we averaged the null distribution of all electrode pairs and compared the observed aver-

aged PLV with this averaged null distribution. The results shown in the right panel of Figure 3A were depicted with P values (e.g.,

P= 0:05 observed data exceed 95% surrogate data), with warmer colors denoting greater significance levels. To improve visualiza-

tion, the PLV spectrogram plots were smoothed using a cubic spline interpolation method (spline.m function in MATLAB). Similar to

power estimates, the PLV results were temporally smoothed, which may result in smearing effect with earlier onset relative to stim-

ulus onset.

Weighted phase lag index (WPLI)
We further confirmed the amygdala-hippocampal phase synchrony results using weighted phase lag index (WPLI), which is less sen-

sitive to the volume conduction driven by a single or common source (Vinck et al., 2011). WPLI is based on the imaginary component

of the cross-spectrum between two signals, which reflects the conduction delay and is more reliable to detect the true neural inter-

actions. WPLI is defined as:

WPLI=

���XN

n=1
JfXng

���XN

n= 1
jJfXng j
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In which, JfXng denotes the imaginary component of the cross-spectrum in the nth trial and N is the total trial number. Thus, for each

condition (lure correct rejection and lure false alarm), we conducted WPLI for each amygdala-hippocampal electrode pair (across all

possible amygdala hippocampal electrode pairs) using function ft_connectivity_wpli.m from Fieldtrip Toolbox. To assess the signif-

icance level of WPLI-based phase synchrony measurements, we conducted similar permutation test as described in the ‘‘interre-

gional phase synchrony’’ section by generating null distribution based on 1000 shuffled datasets. The results shown in the Figure S4D

were depictedwith z scores (z = 5.32 equals toP = 0:05, whichmeans that observed data precede 95%surrogate data), with warmer

colors denoting greater significance levels. For better visualization, the WPLI spectrogram plots were smoothed using a cubic spline

interpolation method (spline.m function in MATLAB). WPLI results are temporally smoothed, whichmay contribute to smearing effect

as power estimates and PLV results.

Phase amplitude coupling and phase slope index
PACwas computed for the amygdala-hippocampus electrode pair with the strongest inter-regional phase synchrony in each subject

within the retrieval processing period (the 2 s time window after the stimuli onset) and was calculated as the phase coherence be-

tween the low-frequency oscillation and the low-frequency filtered HFA (methods have been described in the previous paper (Zheng

et al., 2017)). The directionality within each electrode pair with the strongest inter-regional phase synchrony in each subject was

quantified as Phase Slope Index (PSI) (Nolte et al., 2008), which estimates the slope of the phase differences between themodulating

(sender) and modulated (receiver) signals as a function of frequency. By applying the PSI to the phase of low-frequency ðfÞ oscilla-
tions and the amplitude envelope of high-frequency ðvÞ activity, the directional index can be defined as:

jðfÞ= Im

 Xf + b
2

f�b
2

C�ðv; fÞCðv; ðf + dfÞÞ
!

whereCðv; fÞ is the complex coherency as the normalized cross-spectra between two time series and Im denotes the imaginary part.

Since the transmission between modulating and modulated signal has a fixed time delay, the phase spectrum between these two

signals will change systematically as a function of frequency. In other words, when the phase differences increase with the corre-

sponding frequencies, a positive slope of phase spectrum is expected, suggesting that low-frequency phases lead the high-fre-

quency amplitude. On the other hand, a negative PSI refers to the opposite directionality. The statistical analysis of cross frequency

PSI is similar to the method described in the section ‘Interregional phase synchrony’, by randomly shuffling the trials 1000 times. The

PSI null distribution was calculated using shuffled low-frequency phase and high-frequency amplitude. The 95th percentile of the sur-

rogate data was defined as the significant threshold. For better visualization, the PSI spectrogram plots were smoothed using a cubic

spline interpolation method (spline.m function in MATLAB).

Granger causality analysis
To confirm the directionality between the amygdala and the hippocampus, we computed spectral Granger causality, which quan-

tifies the prediction error of the signal in the frequency domain by introducing another time series. Before fitting to the multivariate

autoregressive model to compute the spectral Granger causality, the time series data from each amygdala-hippocampal electrode

pair with the strongest inter-regional phase synchrony in each subject were low-pass filtered at 85 Hz, down-sampled to 250 Hz

and normalized within each trial (e.g., subtracting the temporal mean and cross-trial mean). Then, we defined the model order

using the Multivariate Granger Causality (MVGC) Toolbox based on the Akaike information criterion. The model order for each sub-

ject varied from 8 to 15. The Granger causality index was computed within the retrieval processing period (2 s time window after

stimuli onset) for both directions (amygdala to hippocampus, hippocampus to amygdala). The significance level testing for

Granger causality is the same method used in the section ‘Interregional phase synchrony’ by randomly shuffling the trials 1000

times. Then the Granger causality null distribution was created and the 95th percentile of the surrogate data was defined as

the significant threshold.

Pattern classification analysis
To test whether the phase of theta or alpha oscillations time-locked to the stimulus evoked HFA could decode distinct directional

information, we performed a pattern classification analysis. As shown in Figure 5E, HFA occurred at different phases of the low-fre-

quency oscillations. We used these occurring phase of HFA relative to its modulating frequency (lure correct rejection: theta oscil-

lations; lure false alarm: alpha oscillations) as the input of the classifier. The output of the classifier was the prediction of task

outcomes for each high-frequency event. Similar to previous studies (Lopour et al., 2013; Watrous et al., 2015), we chose a linear

classifier and converted phase values as a vector quantity in the complex plane, with cosine and sine of the phase referring to the

real and imaginary part respectively. The classifier was calculated by determining the sums for lure correct rejections and lure false
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alarms and taking the difference between the two conditions. Then, we projected the phase from new trials onto the classifier by

taking the dot product in each direction:

q=

Z1
0

cosqðtÞ�4real;incorrectðtÞ � 4real;correctðtÞ
�
dt

+

Z1
0

sinqðtÞ�4imag;incorrectðtÞ � 4imag;correctðtÞ
�
dt

We quantified the differences for the projection distributions between lure correct rejection qCR and lure false alarm qIC conditions

using the discriminability index d:

d =

��qCR � qIC

��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
s2
CR + s2

IC

�r

A high value of d indicated that the classifier was able to better discrimination between two conditions. For example, in our case, it

means that the phases of theta or alpha oscillations coupled to the stimulus evoked HFA are clustered at different phase angles and

separated with few overlaps. We tested the significance using a cluster-based permutation test and creating a distribution of pseudo

discriminability indexes by randomizing the category labels (lure correct rejection versus lure false alarm) associated with high-fre-

quency activity 100 times. Observed discriminability index above the 95th percentile of the surrogate data was considered significant.

Power-stratification controls
To ensure that the frequency specific pattern observed in the inter-regional phase synchrony (Figure 3A) and Granger causality ef-

fects (Figure 4A) were not due to the within-region conditional power differences, we repeated these analyses with power balanced

across the relevant conditions (Figure S4). To select the power balancing trials across two conditions (lure correct rejection and lure

false alarm), we performed a stratification method (ft_stratify.m from Fieldtrip Toolbox (Oostenveld et al., 2011)) to trim trials with

extreme power values from each condition until the histogram of trial power values between two conditions were closely matched.

We conducted this power-stratification control for both theta and alpha band power and selected the trials with balanced power for

both frequency bands (n = 133 out of 663) to repeat the analysis of interregional phase synchrony and Granger causality.

DATA AND SOFTWARE AVAILABILITY

Freely available software and algorithms used for analysis are listed in the Key Resources Table. All custom scripts and data con-

tained in this manuscript are available upon request from the Lead Contact.
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