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Abstract

Functional electrical stimulation (FES) involves artificial activation of muscles with surface or
implanted electrodes to restore motor function in paralyzed individuals. Currently, FES-based
prostheses produce only a limited range of movements due to the difficulty associated with
identifying patterns of muscle activity needed to evoke more complex behaviour. Here we test
three probability-based models (Bayesian density estimation, polynomial curve fitting and
dynamic neural network) that use the trajectory of the hand to predict the electromyographic
(EMG) activities of 12 arm muscles during complex two- and three-dimensional movements.
Across most conditions, the neural network model yielded the best predictions of muscle
activity. For three-dimensional movements, the predicted patterns of muscle activity using the
neural network accounted for 40% of the variance in the actual EMG signals and were
associated with an average root-mean-squared error of 6%. These results suggest that such
probabilistic models could be used effectively to predict patterns of muscle stimulation needed
to produce complex movements with an FES-based neuroprosthetic.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Functional electrical stimulation (FES) involves the controlled
stimulation of one or more skeletal muscles to produce
movements in otherwise paralyzed limbs. Many of the
substantial difficulties associated with chronic deployment of
FES systems have been overcome (Ko et al 1977, Keith et al
1988, Handa et al 1989, Hoshimiya et al 1989, Kilgore et al
1989, Peckham et al 2002) and a growing number of patients
are using FES systems to regain some of the function of their
upper limbs (Triolo et al 1996, Smith et al 1987, Peckham
et al 2001). However, only a few pre-programmed movements
are permitted by these systems. This is primarily because of
the difficulty associated with identifying the complex patterns
of muscle activity needed to produce even relatively simple
movements. Most natural movements require coordination
of multiple muscles across multiple joints (Schieber 1995,
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Valero-Cuevas 2000) and such complex systems do not readily
lend themselves to deterministic solutions.

An alternative probability-based approach has been used
previously by Seifert and Fuglevand (2002) to predict patterns
of muscle stimulation needed to produce simple finger
movements, and by Anderson and Fuglevand (2008) to
predict the activity in muscles associated with complex two-
dimensional movements of the arm. The reasonable level
of prediction accuracy achieved by these models suggests
that probabilistic approaches may provide a flexible means to
control FES systems. The probabilistic models used in these
previous studies, however, were relatively unsophisticated, and
it is reasonable to assume that more refined models might
generate better results.

In the present study, we evaluated the ability of three
different types of probabilistic models, an unsupervised
Bayesian density estimation, a polynomial curve fitting
algorithm and a dynamic neural network, to predict the
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simultaneous activity of multiple muscles in the upper limb
during sagittal-plane arm movements. The data used for
testing the different algorithms were those acquired previously
by Anderson and Fuglevand (2008). For each probabilistic
method tested, the inputs to the models were the kinematics
of the hand. The analyses indicated that the neural network
approach yielded slightly better predictions than the other
two methods. We then tested the ability of the neural
network model to predict muscle activity associated with three-
dimensional movements. The high correspondence between
the muscle activity predicted by the neural network model
and the recorded muscle activity during three-dimensional
movements confirms that this approach may be an effective
tool for identifying the complex patterns of muscle activity
needed to control a wide range of movements using FES.

2. Methods

2.1. Experimental setup

The data set that served as the ‘test-bed’ to evaluate different
probabilistic methods was that collected and published by
Anderson and Fuglevand (2008) where a detailed description
of the methods can be found. Here we give only a
brief overview of the experimental procedures. Five male
subjects participated in the study, each of whom gave
informed consent to participate in the study, which was
approved by the institutional human subjects committee. As
described in more detail below, electromyographic (EMG)
and kinematic data from the upper limb were recorded from
each subject while they made a variety of sagittal plane
movements (figure 1). Subjects sat upright in an armless, low-
backed chair. Recording electrodes were placed in bipolar
configurations on the surface of the skin over 12 target
muscles controlling movements of the upper limb (latissimus
dorsi, pectoralis major, serratus anterior, teres major, anterior
deltoid, posterior deltoid, triceps brachii, biceps brachii,
brachialis, brachioradialis, extensor carpi radialis and flexor
carpi radialis). Glow-in-the-dark markers were affixed to the
hand (metacarpalphalangeal joint on the ulnar aspect of the
hand) and to the shoulder so that their positions could be
tracked by video recording.

EMG signals from the 12 muscles were differentially
amplified by a factor of 1000, band-pass filtered between 100
and 1000 Hz, and sampled at 2000 Hz. The lower frequency
limit of the filter was chosen to minimize movement artefacts
(Anderson and Fuglevand 2008).

The positions of the hand and shoulder markers were
sampled from video recordings at 30 frames per second. The
camera was set up approximately 4 m from the subject and
oriented so that the camera axis was aligned perpendicular to
the sagittal plane of the subject. A flashing LED generated by
the data acquisition system was also recorded by the camera
and served as a datum for synchronizing the EMG signals with
the kinematic data.

2.2. Experimental procedures

Recording sessions lasted for approximately 18 min. Subjects
were asked to perform natural, comfortable, random
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Figure 1. Experimental setup. Surface EMG signals from 12 arm
muscles and kinematic data from markers placed on the hand and
shoulder were recorded during sagittal-plane random movements.
These data served as inputs to one of three probabilistic algorithms
that characterized the relation between EMG and kinematics. Once
a probabilistic algorithm was trained, a new set of kinematic data
served as inputs to the algorithm in order to predict the associated
patterns of EMG activity across the 12 muscles (Lats: latissimus
dorsi, Pec Maj: pectoralis major, Ter Maj: teres major, Ser Ant:
serratus anterior, Ant Delt: anterior deltoid, Post Delt: posterior
deltoid, Tri: triceps brachii, Bic: biceps brachii, Bra: brachialis, Bra
Rad: brachioradialis, ECR: extensor carpi radialis, FCR: flexor
carpi radialis) (adapted from Anderson and Fuglevand (2008)).

movements in the sagittal plane while keeping the hand
pronated in order to keep the hand marker facing the camera
(figure 1). Subjects were asked to move through as many
points of the space as possible and to use different speeds.
Subjects were encouraged to take short breaks during which
time the arm hung pendant at the side. No subjects reported
muscle fatigue.

2.3. EMG processing

All off-line processing was performed in Matlab (Mathworks,
Natick, MA). In accordance with conventional processing
methods (Winter 2005), EMG signals were full-wave rectified
and low-pass filtered at 6 Hz (sixth order, Butterworth, zero
phase). EMG signals were subsequently downsampled to
match the sampling frequency of the kinematic data and
normalized to the maximum amplitude detected in the signal.
A fixed delay of 60 ms was added to the EMG signals
to compensate for the time lag between EMG activity and
kinematics (Manal and Rose 2007).

2.4. Kinematic processing

The sagittal-plane locations of the hand and shoulder markers
were identified in each frame of the video recordings using
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automated digitizing software. These data were then low-pass
filtered at 6 Hz (sixth order, Butterworth, zero phase). Position
data of the hand were expressed in terms of a shoulder-based
coordinate system in which the shoulder marker represented
the origin. The x (horizontal) and z (vertical) components
of the hand marker were scaled by the maximal displacement
of the hand detected over the entire recording session. Single
and double differentiation of the x- and z-components of
the processed hand-position data were performed to obtain
horizontal and vertical velocities and accelerations of the hand.

2.5. Probabilistic models

Three model architectures were used to represent different
classes of probabilistic regression: Bayesian density
estimation, polynomial curve fitting and a neural network.
These categories were selected because they are commonly
used for science and engineering applications. Furthermore,
Bayesian density estimation has been used previously by
Seifert and Fuglevand (2002) and Anderson and Fuglevand
(2008) to predict patterns of muscle activity. Polynomial curve
fitting was included because it is a simple method to establish
a predictive relationship. Finally, we chose to use a neural
network partly because neural networks have been used to fit
the forward problem, namely to predict kinematics from EMG
signals (Au and Kirsch 2000, Cheron et al 1996, Koike and
Kawato 1995), and partly because neural networks have been
extensively used to solve a variety of nonlinear problems.

All of the models that we tested relied on some
dimensionality reduction as a way to mitigate the problem
of inter-dependent input variables while at the same time
reducing the computational burden of the algorithms. To this
end, we applied a principal components analysis (PCA) to
the kinematic input vector. PCA is a linear transformation
that uses the covariance of the variables to find the optimal
linear reduction of the data from m dimensions down to n
dimensions. While the principal components are uncorrelated
with each other, they are only linearly independent if all of
the variables have a Gaussian distribution. If the data sources
are normally distributed, then they are completely described
by their second-order statistics, and PCA provides the optimal
separation of the data (Hyvarinen 1999). Dimensionality is
reduced by choosing the first n components.

We constructed a six-dimensional vector composed of the
horizontal and vertical positions (x, z), velocities (vx, vz) and
accelerations (ax, az) of the hand to represent the kinematic
state of the limb. Depending on the data set, the first
principal component accounted for 40–70% of the variance
in the full kinematic vector. Inclusion of additional principal
components (PC) dramatically increased the computational
load, particularly for the Bayesian-based model, without
markedly increasing prediction accuracy. Therefore, the first
principal component was used as the input for all of the
algorithms. In some test cases (see section 3), we quantified
the effect of including higher-order principal components on
the ability of the models to predict EMG.

2.6. Unsupervised Bayesian density estimation

For this model, the joint probability distribution between
the EMG signal and kinematic state for each muscle was
determined from the training data (the characteristics of
the training data sets are described in detail below). This
distribution was then conditioned, according to Bayes’
theorem, on a prior distribution, which took into account
the kinematic state at previous time steps. The prior was
constructed by low-pass filtering the kinematic data with
a 15-sample (0.5 s) linear-ramped window. In this way,
a linearly decreasing amount of information from the past
was represented in the kinematic state at any given time
point. The inclusion of data from multiple time points and
the dimensionality reduction of the input vector by PCA
represent major differences between our Bayesian model and
that used previously by Anderson and Fuglevand (2008). A
joint probability density distribution between the time-shifted
version of the kinematics and the EMG activity was then
determined. Thus, the total probability distribution was

P(EMGj |Kin) = P(Kin|EMGj ) · P(EMGj |KinTS)

P (Kin)
, (1)

where EMGj is the EMG activity of the j th muscle at a
particular instant in time, Kin is the first principal component
of the kinematic state, and KinTS is the time-shifted version of
the reduced kinematic state. Predictions of EMG amplitude
for new kinematic inputs were made by finding the expected
value of P(EMGj |Kin) evaluated at each time point.

2.7. Polynomial curve fitting

For this model, dimensionality of the kinematic data vector
was again reduced to the first principal component. For
each muscle, EMG was plotted as a function of the reduced
kinematic parameter, and a third-order polynomial curve was
fit to these points using linear least squares. A third-order
polynomial was used because it captured the dynamics of the
system without over-fitting. Predictions of EMG amplitude
for new kinematic inputs were then made by evaluating the
polynomial at each time point.

2.8. Dynamic neural network

As for the other two models, the kinematic input vector
was reduced to one principal component. The training
data (described below) were mapped to zero mean and unit
amplitude representations. A feed-forward, time-delayed
neural network with four hidden layers was created using the
Matlab Neural Networks Toolbox. The first hidden layer had
20 neurons, the second and third layers each had 9 neurons,
and the fourth layer had 20 neurons. The network was built
with two time delays; the kinematic vectors from the two
immediately preceding time points were included as inputs.
The network was fully connected so that in every layer all of
the neurons received all of the outputs from the previous-layer
neurons, or in the case of the input layer, all of the kinematic
inputs. Hyperbolic tangent sigmoidal transfer functions were
used for each of the hidden neuron layers. At the output
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layer, the 20 neurons were fully connected to the 12 muscle
outputs with a linear transfer function. The network was
initialized with random weights and biases and trained for 100
iterations using gradient descent with momentum weight and
bias learning function, the resilient backpropagation training
function and a mean-squared error performance function.
After the network was trained, new predictions were made
by preprocessing the testing data in the same way as the
training data and finding the output of the network. Predictions
were low-pass filtered with a 10-point moving average filter
to remove high-frequency deflections. This final filtering step
was not necessary for the other two models as the outputs were
already highly smoothed.

The particular architecture of the neural network used here
was chosen based on an iterative approach that began with a
single layer network with one neuron and then progressively
increased the number of neurons to 100. Each network was
trained five times and used to predict a novel data set. The
average error was found for each network and the approximate
number of neurons at which the average error did not appear to
continue to improve appreciably (based on visual inspection)
was selected. An additional layer was then added to the
network, and the same iterative process was performed on
the new layer. This was repeated for all four layers of the
network and for the delay parameter (which ran between 0 and
10). On this basis, we ended up with a final network with 20
neurons in the first layer, 9 neurons in the second and third
layers, 20 neurons in the fourth layer, and two time delays.

2.9. Over-fitting

It is possible that a model may over-fit the specific data set used
for training, and thereby may begin to predict noise in the
training set rather than tracking the underlying relationship.
To determine if the Bayesian or polynomial models were
over-fit to the training data, a portion of the training data
was reserved as a validation set and not used in the training.
After the model was trained, predictions were generated for a
series of randomly chosen portions of the training set and the
validation set. For both the Bayesian and polynomial models,
the prediction errors for the training data and the validation
data were not different from one another, suggesting that the
models were not over-fit. Likewise for the neural network, a
portion of training data was set aside to serve as a validation set.
For each iteration of training, the ability of the neural network
to predict the validation set was assessed. If the predictions
of the validation set stopped improving, then training was
halted (called ‘early stopping’). The network, however, always
reached the maximum number of training epochs before it was
terminated by early stopping.

2.10. Data analysis

Kinematic and EMG data were recorded from five able-bodied
male volunteers during approximately 18 min of random arm
movements in the sagittal plane. Analyses were carried out
using two compositional forms of training data. For one
form, which we refer to as within-subject training, the data
used to train the algorithms, and the data used for testing

the algorithms, were obtained from the same subjects. This
represents a best-case scenario for prediction because subject
differences in the relationship between EMG and kinematics
do not contaminate predictions. For the other form, referred
to as across-subject training, data recorded from each subject,
in turn, were used to train the algorithms, while data obtained
from the other subjects were used to test the predictions of
the algorithm. This form of training provides a more realistic
evaluation of the probabilistic approaches associated with the
development of an FES controller, which by necessity, would
need to be trained on able-bodied subjects and deployed in
paralyzed individuals.

For within-subject training, multiple training and testing
sets were extracted from the ∼18 min (1100 s) time series
by designating different sections of the data as testing and
training data. Each testing set consisted of 100 s of data; the
rest of the data set (excluding the testing data) was used as
the corresponding training data (about 1000 s). In the first
‘trial’, the initial 100 s were used as the test data and the
subsequent 1000 s were used as training data; in the second
trial, the second 100 s were used as the test data and the first
100 s plus the last 900 s were used as training data; in the
third trial, the third 100 s were used as the test data and the
first 200 s plus the last 800 s were used as the training data,
etc. In this way, 11 non-overlapping trials were extracted from
each full data set. For the across-subject training, the full data
set collected from one subject was used as the training data,
and the 11 non-overlapping 100 s partitions of data from each
of the other subjects were used as the test data. In repeated
runs, each subject in turn provided the data that served as the
training set.

Two performance metrics were used to quantify the
quality of the predictions made by each model; the squared
correlation coefficients (r2) and the root-mean-squared (RMS)
error. The r2 value, or the coefficient of determination,
indicates the amount of variance in the recorded EMG signal
that is explained by the predicted EMG signal. This measure
is not sensitive to the absolute amplitudes of the signals, but
rather it indicates how closely the activity patterns are matched.
This was our primary performance measure. The secondary
metric, RMS error, represents the average difference in the
amplitudes of the two signals at every time point. RMS
error values are expressed in terms of normalized EMG units,
namely, as a percentage of the peak EMG detected during the
18 min recording. A highly accurate prediction will have an r2

value approaching one and an RMS-error value approaching
zero. These two performance indicators were calculated for
each muscle over each trial, where a trial indicates a 100 s
segment of test data. The r2 and RMS error values were then
averaged across the 11 trials for each muscle and subject.

Repeated measures ANOVA was performed on r2 values
and on RMS-error values, using algorithm or muscle as
factors. This was done separately for predictions based
on within-subject training and for predictions derived from
across-subject training. The main goal of this analysis was
to determine if certain algorithms were more effective at
predicting EMG from kinematics than others. A secondary
goal was to ascertain whether EMG signals were better
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predicted for some muscle than others. Post-hoc analyses
using pair-wise multiple comparisons were carried out using
the Holm–Sidak method (Holm 1979). Data are reported as
means (±SD) and the level chosen for significance in the
statistical tests was p < 0.05.

Finally, based on these statistical analyses and the mean
values of r2 and RMS error, we identified one algorithm
that yielded the best predictions of EMG from kinematics.
We then tested the general capacity of that algorithm to
make predictions on a new data set that involved three-
dimensional arm movements. EMG data from the same
12 muscles monitored for the planar-movement experiments
were recorded for 15 min while a male subject made
random movements of the hand in the three-dimensional
seated workspace. The subject was encouraged to include
supination/pronation, flexion/extension and ulnar/radial
deviation movements at the wrist during this task. Three-
dimensional (x, y, z) position data as well as pitch, roll
and yaw orientations of the hand were recorded using
small electromagnetic sensors (Liberty System, Polhemus,
Colchester, VT, USA) attached to the back of the hand and
to the shoulder. EMG and kinematic data were then processed
as described earlier. For this three-dimensional data set,
the inputs to the model consisted of the positions, velocities
and accelerations (x, y, z, vx, vy, vz, ax, ay, az) as well as the
pitch, yaw and roll orientations of the hand. This 15 min data
set was broken into multiple trials in the same way as described
earlier for the two-dimensional experiments, which yielded a
total of seven testing/training sets.

3. Results

3.1. Within-subject training

Examples of within-subject training predictions generated by
the three models are shown in figure 2 for three different
muscles, triceps brachii (figure 2(A)), pectoralis major
(figure 2(B)) and anterior deltoid (figure 2(C)). In each panel,
the black traces indicate the actual EMG recorded during a
single 100 s trial, and the red traces indicate the predicted
signals based on hand kinematics. Within each panel, the
actual EMG signal is replicated three times to aid in visual
comparison to each of the predicted signals. The probabilistic
model used for each prediction is indicated immediately above
each trace pair, and the associated coefficient of determination
(r2) between predicted and actual EMG is shown for each
case. All three models performed reasonably well in that
the predictions matched both the amplitude and the temporal
dynamics of the recorded signal. This was especially the case
for the triceps brachii (figure 2(A)) and for the anterior deltoid
(figure 2(C)). As has been reported previously (Soechting and
Flanders 1997, Anderson and Fuglevand 2008), predictions
for pectoralis major were not as good as for other shoulder
muscles, likely because of the limited activity of this muscle
in the performance of unloaded movements. For all three
muscles, the neural network performed slightly better than
either of the other two algorithms.

Figure 3(A) shows the r2 values, averaged across the
five subjects, for each muscle and for each algorithm based
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Figure 2. Within-subject training predictions for three muscles.
Example predictions made by each of the models (Bayesian density
estimation, polynomial curve fitting and dynamic neural network)
for triceps brachii (A), pectoralis major (B) and anterior deltoid (C).
All three muscles were recorded simultaneously in the same subject;
the models were trained by different data recorded from that same
subject. The black lines correspond to the actual EMG and the red
lines correspond to the predicted EMG. Within each panel, the
actual EMG signal is replicated three times to aid in visual
comparison to each of the predicted signals. The coefficient of
determination (r2) between predicted and actual EMG is shown for
each case. The triceps brachii and the anterior deltoid were better
predicted than the pectoralis major. In every muscle, the neural
network made better predictions than the other two models. Vertical
scale—% peak EMG.

on within-subject training data. For clarity, the standard
deviations are not depicted here. Likewise, figure 3(B) shows
the averaged RMS errors for each muscle and algorithm.
Overall, there was a general tendency for the neural network
to predict EMG with slightly higher r2 values (figure 3(A))
and with modestly lower RMS errors (figure 3(B)). Analysis
of variance indicated a significant effect of algorithm (p <

0.001) on r2 values and RMS error for the within-subject
predictions of EMG signals. The average r2 values for the
three algorithms were 0.34 ± 0.04, 0.32 ± 0.03 and 0.36 ±
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Figure 3. Mean r2 values (A) and mean RMS errors (B) averaged across the five subjects, for each muscle (abbreviations as used in
figure 1) and for each algorithm (Bayesian density estimation: circles, polynomial curve fitting: triangles and dynamic neural network:
squares) based on within-subject training data. For clarity, the standard deviations are not depicted. (C) Mean (SD) r2 values and (D) RMS
errors between predicted and actual EMG signals for three prediction models (Bayesian density estimation, polynomial curve fitting,
dynamic neural network) based on within-subject training. The neural network yielded significantly larger r2 values (A) and lower error
values (B) than the other two methods (∗ p < 0.01).

0.04 for the Bayesian density estimation, the polynomial curve
fit and the neural network, respectively (figure 3(C)). Post-hoc
analysis indicated that r2 associated with the neural network
was significantly greater (p < 0.01) than that associated with
either of the other methods, and r2 for the Bayes method was
significantly greater (p < 0.01) than that for the polynomial
method. Likewise, analysis of variance on RMS error
indicated a significant effect of algorithm (p < 0.001). The
RMS error values were 11.7 ± 1.0, 11.7 ± 1.0 and 11.2 ±
1.1% peak EMG for the Bayes, polynomial and neural network
models, respectively (figure 3(D)). Post-hoc analysis indicated
that RMS error for the neural network model was significantly
(p < 0.01) less than that of either of the other two models.
According to both assessment metrics (i.e. large r2 and small
RMS error), the performance of the neural network model was
marginally, though significantly, better than the performance
of the other two.

As is evident in figure 3(A), the activities of some muscles
were better predicted than others. The order of the muscles
presented in this figure is roughly from most proximal to most
distal. The muscles that operate directly on the shoulder
appeared to be the best predicted (in terms of r2 values),
namely, anterior deltoid, teres major and posterior deltoid,
while the most distal muscles were least well predicted. This
is probably a function of the extent to which such shoulder
muscles were called upon to perform the type of movements

associated with the sagittal-plan task (Soechting and Flanders
1997). Analysis of variance indicated a significant effect of
muscle on r2 (p < 0.001). Post-hoc analysis indicated that the
r2 value for anterior deltoid (Ant Delt) was significantly greater
(p < 0.001) than that for Bra Rad, ECR and FCR. The only
other significant (p < 0.001) pair-wise muscle comparisons
were between teres major (Ter Maj), and ECR and FCR.
There was no significant effect of muscle, however, on RMS
error, with all muscles predicted with error of ∼10–13%
(figure 3(B)).

3.2. Across-subject training

To determine if the solutions generated by the probabilistic
models were transferable across subjects, training data
acquired from each subject were used to predict EMG signals
in the other subjects. Due to an incompatible position
reference scheme used with the first subject, only four of
the original five subjects’ data were included in this analysis.
Figure 4 shows examples of the across-subject predictions
for each of the three algorithms. The same muscles and test
trial are shown in figure 4 as in figure 2 to enable comparisons
across the two forms of training data. Not surprisingly, in these
examples, the r2 values tended to be smaller for the across-
subject training predictions (figure 4) compared to the within-
subject training (figure 2), with the exceptions of anterior
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Figure 4. Across-subject training predictions for three muscles.
Example predictions made by each of the models (Bayesian density
estimation, polynomial curve fitting and dynamic neural network)
for triceps brachii (A), pectoralis major (B) and anterior deltoid (C).
The format and the example trials are the same as for figure 2. As
before, all three muscles were recorded simultaneously in the same
subject; however, the predictions shown here were made by models
that were trained on data recorded from a different subject. The
accuracy of the across-subject training predictions was not as high
as for the within-subject training predictions, but the overall pattern
of predictability was the same: triceps brachii and anterior deltoid
were predicted better than pectoralis major and the neural network
tended to make the best predictions for all three muscles.

deltoid, which was predicted with more or less equivalent
accuracy for the two sources of training data.

Figures 5(A) and (B) show the r2 values and RMS errors,
averaged across four subjects, for each muscle and for each
algorithm based on across-subject training data. Overall,
predictions were not as accurate for across-subject training (r2:
0.24 ± 0.04, 0.26 ± 0.01, 0.28 ± 0.01; RMS error: 14.8 ± 0.7,
14.4 ± 0.4, 14.1 ± 0.2% peak EMG, for Bayes, polynomial
and neural network algorithms, respectively) (figures 5(C) and
(D)) as compared to within-subject training. While there was

a weak tendency for EMG predictions based on the neural
network to exhibit higher r2 values and lower RMS errors,
these differences were not significant (p = 0.124 and p =
0.061, respectively).

The pattern of prediction accuracy for the different
muscles based on across-subject training was generally
consistent with that which was observed for the within-subject
training predictions. Muscles operating primarily on the
shoulder and scapula were better predicted (i.e. higher r2

values, figure 5(A)) than those acting on the elbow, which
in turn, tended to be more accurately predicted than those
acting at the wrist.

3.3. Kinematic representation

We applied PCA to the original kinematic input vector as a way
to reduce the computational load and to avoid the problem of
lack of independence among the kinematic variables. For
all of the algorithms tested, we used only the first principal
component of the full kinematic vector. Figure 6(A) shows an
example of a short time segment of test data depicting the first
principal component (red trace) repeatedly overlaid upon each
of the corresponding kinematic-variable traces. About half
way through this example, the subject paused briefly with the
arm pendant at their side before continuing with movements.
In this example, there was a high correspondence between
the first principal component and the horizontal position of
the hand. Indeed, as shown in figure 6(B), the weighting
coefficients for the first principal component were largest for
the horizontal (x) position and next largest for the vertical (z)
position of the hand in all subjects. In addition, there was
a remarkable consistency across the five subjects in terms of
the pattern of weighting coefficients associated with the first
principal component. Overall, these results indicate that for
these sagittal plane movements, the horizontal position of the
hand was the dominant kinematic feature.

In order to evaluate the effect of including higher-order
principal components on the ability of the models to predict
EMG, we re-performed the analyses on the within-subject
training data using the first two principal components of the
kinematic vector rather than just the first. Inclusion of two
principal components had no significant effect when using the
Bayes algorithm on the average r2 value (0.29 ± 0.07, p = 0.18,
paired t test) or RMS error (12.2 ± 0.6%, p = 0.26) compared
to that in which only the first principal component was
used (see section 3.1). In contrast, prediction accuracy
improved significantly (p < 0.01, paired t tests), in terms
of increased r2 values and lowered RMS errors, when using
two principal components compared to one for the polynomial
algorithm (r2 = 0.40 ± 0.04; RMS error = 10.8 ± 1.0%)
and for the neural network (r2 = 0.42 ± 0.05; RMS error =
10.6 ± 1.2%). Therefore, as might be expected, additional
information tends to increase the accuracy of the predictions,
at least for the polynomial and neural network algorithms.
The probable reason that the Bayes algorithm failed to show
improvement was that there were insufficient data in the
training set to fully characterize the increased dimensionality
of the kinematic space.
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Figure 5. Mean r2 values (A) and mean RMS errors (B) averaged across four subjects, for each muscle (abbreviations as in figure 1) and for
each algorithm (Bayesian density estimation: circles, polynomial curve fitting: triangles and dynamic neural network: squares) based on
across-subject training data. For clarity, the standard deviations are not depicted. (C) Mean (SD) r2 values and (D) RMS errors between
predicted and actual EMG signals for three prediction models (Bayesian density estimation, polynomial curve fitting, dynamic neural
network) based on across-subject training.

3.4. Model selection

One of the objectives of this study was to choose the most
appropriate model for predicting EMG amplitude given the
trajectory of the hand. Our results indicate that all three
models were effective. However, the neural network model
performed significantly better according to both r2 and RMS
error metrics on the within-subject training predictions, and
there was a non-significant trend towards better predictions
for across-subject training. Furthermore, as indicated above,
it may be desirable to increase the dimensionality of the
input vector, particularly when attempting to predict more
complex movements or movements in three dimensions by
including higher-order principal components. The inclusion
of additional components is readily accomplished with the
neural network but is computationally taxing for the other
methods. On the basis of slightly better predictions and
practical considerations related to computational efficiency
when dealing with higher dimensionality, we chose the neural
network algorithm as the best model for this type of prediction
task.

3.5. Reaching task

As an extra validation and to provide a reference for
comparison to other work, we used the neural network to
predict simple reaching movements. Figure 7 shows examples

of across-subject predictions of the neural network model for
a series of ten repeated reaching movements to one of three
targets in the sagittal plane (a high target, a middle-height
target and a low target). For each reaching movement, the
subject started from a rest position with the arm pendent,
and then reached to a self-specified location as if touching
a target (though no real target existed) with the arm fully
extended, and then returned the hand to the starting position.
For the high target (figure 7(A)), subjects reached to a location
above the head and in front of the body; for the middle
target, subjects reached to a location about shoulder level
(figure 7(B)), and for the low-reaching task, subjects reached
to a location about knee level (figure 7C). As seen for random
movements (figures 2 and 4), predictions were best for the
anterior deltoid and triceps, and not as good for pectoralis
major (figure 7). Therefore, as was shown previously
by Fuglevand and Anderson (2008), predictions of EMG
activity for episodic reaching movements are similar to those
associated with continuous random movements.

3.6. Three-dimensional test

In order to test whether the neural network algorithm would
be as effective for predicting more complex movements, a
three-dimensional data set was also recorded and analysed. In
this experiment, the subject made a series of unconstrained
arm movements, including free wrist movements, in three
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Figure 6. (A) Example time segment depicting the first principal
component (red trace) repeatedly overlaid upon each of the
corresponding kinematic-variable traces. (B) The weighting
coefficients for the first principal component (PC) associated with
each of the six kinematic parameters in the original input vector. For
each kinematic variable, each dot represents the value of the first PC
coefficient for a single subject.

dimensions. Surface EMG signals from the same set of
muscles were recorded. At the same time, the pitch, yaw
and roll, and the positions (x, y, z), velocities (vx, vy , vz) and
accelerations (ax, ay, az) of the hand relative to the shoulder
were measured. To deal with the increased complexity
introduced by these additional kinematic parameters, the
neural network was slightly modified. Dimensionality was
not reduced with PCA, and the number of neurons in the two
intermediate layers was increased from 9 to 20 each.

Figure 8 shows a small time segment of some of the
kinematic data (x, y and z positions of the hand) and processed
EMG signals from the 12 muscles recorded during this task.
Example predictions generated by this model are shown in
figure 9. In figure 9(A), the same three muscles depicted
in previous figures for two-dimensional movements (i.e.,
figures 2, 4 and 7) are presented for comparison. Predictions of
EMG activity for these three muscles during three-dimensional
movements were not as good as they were for those associated
with two-dimensional movements. On the other hand, some
other muscles were predicted better in three-dimensional
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Figure 7. Examples of across-subject predictions of activities of
three muscles (triceps brachii, pectoralis major and anterior deltoid)
based on the neural network model for a series of ten repeated
reaching movements to one of three targets in the sagittal plane: a
high target (A), a middle-height target (B) and a low target (C). The
black lines correspond to the actual EMG and the red lines
correspond to the predicted EMG.

compared to two-dimensional movements. Examples of three
such muscles are shown in figure 9(B).

Figure 10 shows the mean (SD) of the r2 values for
all 12 muscles averaged across the seven test trials in
this subject. Overall, muscles that were well predicted
in the two-dimensional tests were not necessarily the same
muscles that were well predicted in the three-dimensional
tests. Most notably, the FCR, a wrist muscle, was the best
predicted muscle in the three-dimensional case while it was
the least well predicted for two-dimensional movements. This
difference can probably be attributed to the additional wrist
movements that were allowed in these tests; increasing the
proportion of the total movement that the muscle was directly
responsible for increased the predictability of the muscle from
the movement. When averaged across all muscles, the r2

value for predictions involving three-dimensional movements
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Figure 9. Predictions for three-dimensional movements made by
the neural network for (A) triceps brachii (top), pectoralis major
(middle) and anterior deltoid (bottom). These muscles are the same
as those shown for the two-dimensional examples in figures 2, 4,
and 7. The black lines are the recorded signals and the red lines are
the predicted signals. (B) Predictions for a different set of muscles:
latissimus dorsi (top), biceps (middle) and flexor carpi radialis
(bottom), and posterior deltoid (bottom). These three muscles were
better predicted in the 3D experiments than they were in the 2D
experiments.

was 0.40 ± 0.18. The overall average RMS error for
predictions based three-dimensional movements was 5.9 ±
2.2% of peak EMG. Therefore, the neural network model
predicted, with good fidelity, patterns of muscle activity based
on hand-trajectory information associated with complex three-
dimensional movements.
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here (FCR) was the least well predicted for the two-dimensional
movements. Abbreviations as in figure 1.

4. Discussion

Previous studies have shown that probability-based models
can effectively predict EMG amplitudes given kinematic
parameters representing movements of the hand (Seifert and
Fuglevand 2002, Anderson and Fuglevand 2008). In this
study, we implemented three different types of probabilistic
regression models in order to determine which was best suited
to this type of prediction. The models were chosen to represent
different categories of prediction techniques commonly used:
Bayesian density estimation, polynomial curve fitting and
neural networks. The specific structures and parameters of
each model were chosen to best accommodate our data set and
computational constraints. Our results strongly suggest that
among the models we tested, the dynamic neural network was
the most effective predictor of EMG activity, both within and
across subjects.

4.1. Comparison to previous models

The results of our two-dimensional, across-subject tests are
directly comparable to those reported by Anderson and
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Fuglevand (2008). The predictions generated by their
maximum likelihood based model accounted for, on average,
24% of the variance (r2 = 0.24) in the recorded signal. Using
the neural network model, here we were able to achieve
an overall mean r2 value of 0.28. This represents a 17%
increase in overall prediction accuracy. In addition, we were
able to address some of the limitations of the Anderson
and Fuglevand model. For example, that model assumed
independence between all of the kinematic parameters. This
assumption was eliminated by dimensionality reduction in
the models tested here. The neural network model was also
expanded to deal with movements in three dimensions. A
high level of prediction accuracy was maintained (average
r2 = 0.40) in the three-dimensional tests; the predictability
of some muscles even increased with the introduction of
more degrees of freedom. This demonstrates the general
applicability of the model to predict muscle activity during
complex, unconstrained movements of the upper limb.

4.2. Probability versus determinism

The three different types of models we tested were similar in
that they used a large set of training data to determine the most
likely level of EMG activity given the kinematic state of the
hand. The advantage conferred by the neural network derives
from basis functions that are adapted to the particular form of
training data—which is a feature of all neural networks—
and also from the high level of complexity incorporated
into this particular network architecture (many neurons in
multiple layers). However, all of the models performed
reasonably well. This finding is particularly striking when
compared to the performance of deterministic models. These
models use inverse dynamics in an attempt to predict muscle
torques or muscle activity based on kinematics and physical
characteristics of a limb. Such deterministic approaches tend
to be complex, typically including a large number of input
parameters corresponding to the physical states of the arm and
physiological properties of the muscles. For example, Blana
et al (2008) developed a three-dimensional musculoskeletal
model of the upper limb that included 6 bones, 5 joints and
29 muscles. Several elements were used to represent each
muscle. Parameters included the positions of joint centres,
inertial parameters of the body segments, physiological cross-
sectional area of the muscles and pennation angle of every
muscle element. This impressive model generated EMG
predictions based on limb kinematics with an average r2 value
of 0.21, which is less than what we obtained here using
relatively simple probabilistic methods.

Probabilistic models, however, work as ‘black boxes’
in that they do not provide information about the physical
mechanisms responsible for EMG production. Indeed, one
important advantage of deterministic models is that they
readily enable predictions of motor function associated with,
for example, changes in tendon insertion location as might
occur with tendon transfer surgery or the outcome associated
with stimulating a subset of muscles in a paralyzed limb (Blana
et al 2008). However, for some FES applications, it may be
more important to be able to predict activity patterns efficiently

and with high fidelity. Probability-based methods, therefore,
may be particularly well suited for these types of applications.

4.3. Limitations

While the neural network model presented here represents an
improvement upon the Anderson and Fuglevand model (2008),
the model is still limited in its application to many movements.
For example, the model does not predict the activity of muscles
controlling the digits due to the practical difficulty involved in
recording many additional muscles and kinematic parameters.
Theoretically, however, there is no reason why the model could
not be expanded to include finger movements when such data
become available. Additionally, the model does not presently
predict changes in muscle activity arising from interactions
with objects or external loading, but it should be possible to
incorporate information about contact forces into the model.
Finally, the model does not account for muscle fatigue. This is
a somewhat more difficult problem to address since including
information about fatigue would require knowledge about
the physiological states of the muscles. Therefore, a more
complex network architecture ultimately may be necessary
for real-world implementations. Nevertheless, probabilistic
approaches show promise for predicting patterns of muscle
activity needed to produce complex movements.

Another limitation of the present study was that the
movements tested were relatively slow. Subjects were
instructed to move at a comfortable speed, and most adopted a
moderate pace of movement (see Anderson and Fuglevand
(2008)). Previous studies have shown that EMG activity
in the arm during slow movements primarily reflects a
postural component counteracting the effect of gravity (e.g.
Flanders and Soechting (1990), Flanders and Herrmann
(1992), Flanders et al (1996)). Consequently, the first
principal component was dominated by the horizontal position
of the hand (figure 6). Little weighting was given to
coefficients associated with higher-order kinematic parameters
(i.e. velocity and acceleration) suggesting these parameters
were not critical for the prediction of EMG signals in the
movements tested here. It seems likely that had we tested
movements of a more rapid or ballistic nature, higher-order
kinematic parameters would have played a more important
role in predicting EMG.

Related to practical implementation of the approach
outlined here to control an FES-based neuroprosthesis,
the pre-processing of the kinematic inputs, including
filtering, scaling, differentiation and principal component
decomposition, represent non-negligible computational time.
This is especially true when the program is run in a high-
level application as it currently is. However, because
sampling rates are relatively low (30 Hz or less per
channel), there may be sufficient time to carry out such pre-
processing operations without introducing significant delays.
Furthermore, in a clinical application, the flexibility of a
software implementation might not be necessary, and some
of the delay could be recovered in hardware. Thus, we do
not believe that pre-processing presents a significant barrier to
real-world applications.
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4.4. Application to neuroprosthetics

The long-term objective of this study is to develop a
flexible means to control muscle stimulation in an FES-based
neuroprosthetic. We envision a three-component system in
which (1) the user’s intended movement is identified from
recordings of activity in the cerebral cortex, (2) such intended
movement is translated into a corresponding pattern of muscle
activities, and (3) the predicted patterns of muscle activity are
realized as a movement of the limb by electrical stimulation
of the muscles. Some experimental evidence is available to
support, in concept, each of these components. For example,
related to the first component, it is known that during actual
or imagined movements, the collective activity of populations
of neurons in motor regions of the cerebral cortex appears to
provide a moment-by-moment representation of the planned
trajectory of the limb (Georgopoulos et al 1989, Schwartz
1993, Moran and Schwartz 1999, Schwartz and Moran 1999).
Similar information has also been shown to be derived from
local field potentials (Mehring et al 2003, Rickert et al
2005, Scherberger et al 2005), electrocortigrams (Leuthardt
et al 2004, Pistohl et al 2008) and even from surface EEG
signals (Wolpaw and McFarland 2004, Waldert et al 2008).
Furthermore, this information can be used to control external
devices and to interact in real time with the environment
(Chapin et al 1999, Wessberg et al 2000, Serruya et al 2002,
Musallam et al 2004, Velliste et al 2008).

Related to the second component, we have shown here
that given the desired trajectory of the hand, the time-varying
activity patterns in a large number of muscles controlling
the upper limb can be predicted. It remains to be seen
how effectively these predicted EMG patterns can then be
transformed into the desired hand trajectory evoked through
electrical stimulation (i.e. the third component). Small
prediction errors in each of the individual muscles could add
up to significant deviations in the overall evoked movement.
Even if the EMG could be perfectly predicted for each
muscle, the evoked movements could vary widely across
subjects, especially in subjects having different biomechanical
properties of the limb. This might be particularly the
case for individuals with spinal cord injuries who present
with significant muscle atrophy. Additional errors will
also be introduced in the transformation of EMG activity
into a comparable muscle ‘active state’ through electrical
stimulation. Seifert and Fuglevand (2002), however, were
able to evoke a set of desired finger movements using a simple
transfer function that converted predicted EMG signals into
frequency-modulated patterns of stimulus pulses in several
subjects. Furthermore, Hoshimiya et al (1989) showed
that complicated, coordinated movements of the arm could
be evoked in spinal cord injured patients using amplitude-
modulated stimulus patterns derived from averaged EMG
patterns recorded in healthy subjects. Thus, with respect to the
third component, it is possible, at least in some cases, to convert
predicted patterns of muscle activity into trains of stimulus
pulses needed to evoke desired movements. We are currently
exploring ways to optimize this transfer function in order to
re-enact the active state of muscle as faithfully as possible
represented by EMG signals using electrical stimulation.

All three components of the device that we envision
are, therefore, established to some degree. The significant
challenge that remains is to link these three components
together into a unified system that re-establishes functional
communication between the brain and muscles to restore
voluntary movements in paralyzed individuals.
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