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Abstract

Standard bioelectric field models assume that the tissue is purely resistive and frequency
independent, and that capacitance, induction, and propagation effects can be neglected.
However, real tissue properties are frequency dependent, and tissue capacitance can be
important for problems involving short stimulation pulses. A straightforward interpolation
scheme is introduced here that can account for frequency-dependent effects, while reducing
runtime over a direct computation by several orders of magnitude. The exact Helmholtz
solution is compared to several approximate field solutions and is used to study neural
stimulation. Results show that frequency-independent tissue capacitance always acts to
attenuate the stimulation pulse, thereby increasing firing thresholds, while the dispersion
effects introduced by frequency-dependent capacitance may decrease firing thresholds.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Most bioelectric modeling studies make the assumption that
the electrical field can be regarded as quasi-static and that
capacitive effects can be neglected [1, 2]. These assumptions
must be carefully examined for problems involving electrical
stimulation of peripheral nerves or brain tissue, as the
stimulation waveforms have rapid rise times. An excellent
comparison of exact and approximate methods for modeling
neural stimulation is given in [3] and concludes that the most
questionable assumption made in standard modeling is that
capacitive effects are negligible. Capacitance can be expected
to be particularly important for problems involving surface
electrodes, as skin capacitance is much larger than body tissue
capacitance.

Some recent work has included a frequency-independent
capacitance term in bioelectric simulations [4, 5]. However,
measurements show that capacitance in biological tissues is
generally frequency dependent [3, 6], which gives rise to
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dispersive effects [7]. The quasi-static field equations can be
modified to account for frequency-dependent capacitance by
including a complex, frequency-dependent conductivity [2].
The equations can then be solved in the frequency domain, with
time-domain response found via an inverse transform. This
requires solving the field equations at every frequency of the
discrete Fourier transform (DFT), which greatly increases the
computational load. This ‘brute force’ approach is manageable
for scenarios where analytic solutions are available. For
example, a brute force approach was used in [3] to find
solutions to a current point source in an infinite homogeneous
medium. A brute force solution requiring calculations at
1024 frequencies was also used for a 2D axisymmetric finite
element method (FEM) model of brain tissue [5]. However,
computational load can become an issue when 3D FEM or
other numerical models are required.

Several authors have investigated time-domain finite
element methods for including frequency dependence and
capacitive effects. A combined time domain/frequency
domain solution [7] was developed that requires that the tissue
is homogeneous and isotropic. More recently, this work has

© 2011 IOP Publishing Ltd  Printed in the UK
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been extended to yield an exact, direct time-domain solution
that can account for frequency-dependent permittivity and can
model inhomogeneous tissues [8].

In this paper we offer an alternative, frequency-domain
approach. Based on tabulated values of tissue properties
[6] we have noted that both the magnitude and phase of the
solution varies fairly smoothly with frequency. This suggests
the use of an interpolation approach in which the equations
are first solved at a smaller number of frequencies, and then
interpolated to the DFT frequency bins. A key assumption
is that the phase of the solution can be unambiguously
interpolated across frequency. An interpolation approach that
enforces this assumption is outlined below. Interpolation leads
to a reduction in computational time of roughly two orders of
magnitude as compared to a full calculation at every DFT
frequency.

While this approach is straightforward (and is easily
implemented using the output of commercial FEM codes),
it does not appear to have previously applied to bioelectric
modeling. A frequency-domain approach is computationally
attractive when studying the effects of stimulus waveform
shape. The FEM model can be run once, after which solutions
are calculated via forward and inverse Fourier transforms of
the different waveforms weighted by the pre-computed FEM
results.

The interpolation approach was used to compare an
exact Helmholtz equation solution to various approximate
solutions for finite element models. Differences between the
exact and approximate solutions are presented below. An
additional finding is that the exact Helmholtz solution is as
computationally fast as approximate solutions.

Finally, we apply the interpolation method to study the
effects of tissue properties on neural firing thresholds. A recent
study [5] modeled brain tissue with a frequency-independent
capacitive component and showed that capacitance led to
increased firing thresholds and up to 20% reduction in activated
brain volume. We show below that frequency-independent
capacitance (as studied in [5]) will always attenuate the
bioelectric field, leading to higher thresholds, while frequency-
dependent capacitance causes distortion of the pulse and can
lead to lower thresholds. While some measurements show
brain tissue as having frequency-dependent capacitance [6],
other measurements do not [10]. The work below shows that
these differences may lead to different conclusions about the
role of tissue capacitance in neural stimulation.

2. Methods

2.1. Bioelectric field equations

The inhomogeneous scalar Helmholtz equation is derived in
[3]. The derivation first expresses the electric field E in
terms of the vector potential A and scalar potential ¢. These
quantities are then related to each other through the Lorenz
condition. Gauss’s law and charge conservation are used to
simplify the expression. Written in terms of the complex
conductivity, o.(w) = o(w) + jwe,(®) &o, the field equation
is [3]

0 (@)V?9 — juwol(w)p =V - J, (la)

where o and ¢, are the conductivity and relative permittivity
of the tissue, ¢ is the potential, &g = 8.854 x 1072 Fm!
is the permittivity of the vacuum, u = 47 x 1077 H m~!
is the magnetic permeability, and V - J represents a current
source (assumed here to be a point source). As noted, the
conductivity and permittivity are assumed to be functions of
frequency. Although not shown explicitly above, they can also
change spatially (i.e. different parts of the model have different
tissue properties).

Boundary conditions for the problem are zero potential
(¢ = 0) on the ground electrode; no current flows through
tissue/air surfaces; and continuity of current across internal
interfaces.  Together, (la) and the boundary conditions
describe a problem that can be solved numerically to give
the electrical potential in the tissue.

Nearly all published studies rely on simplifications of
(la). The first simplification that can be made is that
propagation effects can be ignored when calculating the
electric potential. This is felt to be a good assumption at
the distances and frequencies of interest for neural stimulation
problems. The simplified equation is then

o (W) Vi =V-J. (1b)

This solution is denoted QS-RC below as it is quasistatic
but both resistive and capacitive effects are retained (i.e. the
complex conductivity is used). Solutions based on (1b) have
been used in [6].

A very common further assumption made in the literature
is that capacitive effects are negligible at the frequencies of
interest [2]. Under this assumption, the (real) conductivity is
used in place of the complex conductivity, giving

o (@) Vip=V-J. (1c)

This solution is denoted QS-R below as only resistive terms
are retained. Generally, a further assumption is made that
a frequency-independent value of conductivity can be used,
giving

oVip=V.J. (1d)

This solution is denoted QS-RFI (resistive frequency-
independent). It is by far the most widely used approximation
to equation (1a) (see [9] for an example of the state of the art).

2.2. Modeling of frequency-dependent tissue properties

We next assume that a current pulse x(¢) is applied (for
example, a square or biphasic pulse). The resulting waveform
in the tissue can be found by convolving the pulse with the
tissue’s impulse response k. If r is the observation point in
space, then

o(t,r) =x(t) x h(t, 7). 2)

This can be solved using a frequency-domain solution. The
current pulse is first transformed into the frequency domain,
giving a spectrum X (f). H(f, r) is the calculated electrical
potential at each frequency and spatial point generated by a
unit amplitude current source. The time domain solution is

o(t,m) = STH(f, ) - X(H)], 3
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Figure 1. Magnitude and phase of the FEM solution along the axon as a function of frequency (logarithmically spacing) and along-axon
distance for a current source at a distance of 5 mm from the midpoint of the axon. Note the smooth variations in magnitude and phase.

where 37! denotes the inverse Fourier transform (commonly
evaluated using an inverse FFT). Note that H(f, r) must be
found for every frequency, and that accurately representing the
current pulse may require several thousand DFT bins.

Here, an interpolation approach is used to solve (3). The
basic observation behind the proposed interpolation approach
is that H( f, r) is often a slowly varying function of frequency.
Itis therefore possible to find the solution at a coarse frequency
spacing and then interpolate it to the DFT frequency bins. The
interpolated unit-amplitude solution can be used in (3) to find
the time-domain solution. If there are M bins in the coarse
frequency spacing and N DFT bins, the computational savings
will be on the order of N/M.

The proposed approach relies on two assumptions.
First, the frequency sampling must be sufficiently fine to
capture frequency-dependent variations in the magnitude of
H. Second, the phase difference between nearby frequencies
must be small enough that the phase can be unambiguously
interpolated across frequency (this is satisfied if phase
differences between neighboring frequencies are < m; if
needed, phase unwrapping can be applied [11]). In detail,
the proposed iterative approach is as follows.

(1) Calculate the solution H at a vector f’ of coarsely spaced
frequencies.

(2) Check for possible phase ambiguities in the result, and
unwrap the phase if needed.

(3) Interpolate H calculated at f’ to the vector f containing
all DFT frequency bins, and use equation (3) to calculate
the time-domain waveform.

(4) Calculate the potential at a more finely spaced set of
frequencies f” (for example, twice as finely spaced as
.

(5) Repeat steps 2-3 for the frequencies f”.

(6) Check for convergence, as determined by the mean-square
error between the two calculated time series or a similar
metric.

(7) Continue steps above until convergence is achieved.

3. Results

3.1. Model geometry

The interpolation approach was tested using the COMSOL
finite element code (COMSOL, Burlington, MA, USA), which
was used to model a homogeneous 20 cm long cylinder of 5 cm
width. This geometry is similar to that from [5]. Stimulating
electrodes, modeled as a point source, were located inside the
tissue midway along the cylinder length and at varying depths.
To model monopolar stimulation, a 2 cm long region of the
tissue exterior, centered midway along the cylinder, was held
at ground to provide the return path for the current. Otherwise
the tissue exterior was assumed to be electrically insulated.
Tissue electrical properties are isotropic, homogeneous and
frequency dependent, and were chosen to match gray matter
properties from [6]. The neurons were assumed to be located
at the center of the cylinder and to be oriented along the long
axis of the cylinder.

Point sources were activated one at a time (in different
model runs) to investigate the effect of source position. The
source was assumed to apply pulses (100 us typical pulse
width) with 1 mA current (note that FEM outputs can be
scaled to model other input currents). The input waveform
was sampled at 1 MHz. This high sampling rate was used
to give an accurate reconstruction of the waveform. For this
sampling frequency, there are N = 2048 positive DFT bins.

3.2. Numerical results for frequency interpolation

Figure 1 shows the calculated electrical potential H(f, r) when
the source is 5 mm away from the axon. The potential is
calculated at 50 points along the axon, and for 30 frequencies
spaced logarithmically between O and 0.5 MHz (Nyquist
rate). The solution varies smoothly with frequency and has
an unambiguous phase, indicating that interpolation should be
straightforward. Phase variations in the along-axon dimension
are very small.
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Figure 2. Predicted response to a 0.1 ms pulse at 3 mm (higher
curves) and 5 mm from the axon. The interpolation approach is used
with 15, 7, and 4 frequencies logarithmically spaced from 1 Hz to

1 MHz.

Figure 2 shows the predicted time series created using
the iterative procedure outlined above for the needle positions
3 mm and 5 mm from the axon. An initial frequency sampling
consisting of 15 logarithmically spaced points in frequency
from 1 Hz to 1 MHz was used to generate a first set of
results; note the charging/discharging behavior seen at the
start and end of the pulse due to tissue capacitance. A
downsampled solution with seven frequency points gives very
similar solutions. Reducing the number of points to 4 leads to
a noticeable increase in the solution error.

While the results in figure 2 indicate that the numerical
solution is converging, it would be desirable to use an
arbitrarily fine frequency sampling to further check the
solution. While this would be computationally demanding
for an FEM calculation, the analytic result for a point source
in free space [3] can be used to validate the interpolation
approach.

Figure 3 shows the calculated results in free space at
a distance of 5 mm from a point source. The results of
calculating the potential at every DFT bin are compared
to solutions found by -calculating it at 30, 15, and 7
logarithmically spaced points between 1 Hz and 1 MHz,
followed by interpolation. An additional point at 0 Hz is
added to capture DC shifts in the solutions. Nearly identical
results are seen for 15 and 30 points. Asin figure 4, some small
differences are seen when the frequency sampling is decreased
to seven points. Based on these results, 15 frequency points
are used for simulations presented below.

3.3. Numerical results for approximate solutions

Next, the model was set up to find three separate solutions,
for the Helmholtz equation (la) and the two quasistatic
approximations (1) and (lc¢). For the quasistatic models,
the tissue conductivity was specified to be real in the QS-R
model (Ic) or complex in the QS-RC model (15). Typical
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Figure 3. Predicted free-space response to a 0.1 ms pulse at 5 mm
distance. Interpolation of 30, 15, and 7 logarithmically spaced
frequencies is compared to a solution that is calculated at every DFT
bin.

solutions are shown in figure 4. To demonstrate the flexibility
of the calculation approach, results are shown for both
monophasic (left) and biphasic (right) stimulation. The
change in waveform shape did not require recalculating FEM
results; instead, the source spectrum used in equation (3) was
recalculated for each waveform.

Helmholtz and QS-RC solutions are indistinguishable,
while the QS-R solution does not demonstrate the
charging/discharging behavior introduced by tissue
capacitance. The rising and falling edges of the QS-R
solution are rounded as the frequency-dependent conductivity
is explicitly modeled.  Tissue conductivity drops with
frequency, so the tissue acts as a low-pass filter.

Figure 4 also shows a predicted QS-RC response assuming
frequency-dependent conductivity, but frequency-independent
permittivity (labeled ‘QS-RC, constant C’). The frequency-
independent permittivity value was found by averaging over
frequency, weighted by the magnitude of the source spectrum.
Note that the peak amplitude of this solution is essentially
identical to the QS-R solution, while the full frequency-
dependent QS-RC solution has a higher peak amplitude. This
phenomenon and its effects on neural response are discussed
below.

The error in the approximate solutions, compared to QS-
H, can be expressed as the percentage difference between the
various models, averaged over time samples when stimulus is
being applied [3]. Using QS-RC as an example, the error is

N
1 — is - m /i

£ 100_2 ¢qs—rc (ti, T) — PHeim (4, T)
N i=1 ¢Helm (tia 7‘)

Equation (4) was evaluated for the various solutions as a
function of distance to source for monophasic 100 s pulses.
Differences between the Helmholtz and QS-RC model are
negligible at all distances (ranging from 0.0003 to 0.0025%)
while differences between Helmholtz and QS-R models are
roughly 11.8% and are nearly constant with distance (ranging
from 11.79 to 11.80%).

“
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Figure 4. Predicted response to a 0.1 ms pulse at a 5 mm distance under the three approximations to equation (1a) considered here. Results
are shown for a monophasic stimulation (left) and biphasic stimulation (right). Note that including frequency-dependent conductivity (in
QS-R) leads to a rounding of the waveform. The effects of capacitance vary depending on whether capacitance is frequency dependent or

frequency independent.

3.4. Computational load

Computation times were measured for the various solutions
on a 3.4 GHz PC with 3.5 MB of RAM. A solution
of the Helmholtz equation required roughly 18 min for
15 frequencies versus 37 min for 30 frequencies. Extrapolating
these values, we estimate that a full direct calculation of 2048
frequencies would have required 41 h.

The differences in computational load for evaluating
the Helmholtz solution (equation (la)) versus approximate
solutions were also measured. Moving from a real-valued
to a complex-valued problem (i.e. from QS-R to QS-RC)
caused the runtime to nearly double. However, the runtime for
the full Helmholtz solution (1a) showed only an insignificant
(3%) increase over the QS-RC time. Thus, for problems in
which capacitance is important, there appears to be minimal
computational penalty for calculating the exact solution.

3.5. Neural activation thresholds

The axon fiber response was described using the well-
known Frankenhaeuser—Huxley, or F—H model [12]. The
transmembrane voltage at the nodes of Ranvier is expressed
as a matrix equation [1]

Cm% +in=G WV, +V,), 5
where V,, are the transmembrane voltages and V, are the
external potential values at each node. The first term on the
left represents capacitive currents across the membrane, while
the second represents the summed ionic currents through ion
channels. These ionic currents have a complicated nonlinear
behavior that is described by the F—H model as found in [12].
The right side represents current flow from adjacent nodes,
with G being a tridiagonal matrix expressing the conductance
between adjacent nodes.

Figure 5 shows neural activation thresholds for a
20 pum fiber excited by a monophasic 100 ws pulse,

50 I I I I I I I I
45—
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30~ ’ —+— QS-RC, constant C N

20—
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Figure 5. Activation thresholds versus distance from the source for
a 20 pum fiber excited using a 1 mA, monophasic 100 s pulse.
Including a frequency-independent capacitive component increases
firing thresholds relative to the QS-R solution, while
frequency-independent capacitance decreases threshold currents.

modeled using the F—H model.  The fiber excitation
threshold is shown as a function of source-to-axon distance.
Thresholds for Helmholtz and QS-RC models (with frequency-
dependent capacitance) are indistinguishable. = However,
interesting differences can be noted by comparing two
capacitive solutions to the QS-R solution. Including a
frequency-independent capacitance has little effect at short
distances, but increases thresholds by roughly 7% at distances
>5 mm. This trend is consistent with results in [5], which
noted a decrease in activated brain volume when frequency-
independent capacitance was included. In contrast, adding
a frequency-dependent capacitance decreases thresholds by
roughly 6% across all distances modeled.
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frequency-dependent o but frequency-independent ¢ (green) and
both ¢ and ¢ frequency dependent. Frequency-independent
capacitance has the effect of attenuating higher frequency
components, while frequency-dependent capacitance distorts the
waveform through variable group delay.

This behavior can be explained by viewing the tissue
as a filter. In free space, the analytic solution for the field
(neglecting propagation effects) is [3]

I
H{ B = 4R [o(f) +iwe(f)]’

where R is the distance to the source. If the permittivity
is frequency independent, its only effect is to attenuate the
field. The response magnitude is reduced at higher frequencies
(denominator grows), and no signal distortion is introduced,
since the linear phase shift iwe ensures that the group delay is
constant with frequency [13]. This ensures that the addition
of a frequency-independent permittivity can only increase
thresholds. In contrast, a frequency-dependent permittivity
will lead to a nonlinear change in phase with frequency. Thus,
variable group delay and signal distortion can be expected. The
importance of these effects will depend on the tissue properties.

Figure 6 shows the calculated magnitude and group
delay for a freespace source at R = 5 mm for the tissue
properties used in the FEM model. The frequencies below
10 kHz are of most interest as they contain most of the
signal energy for 100 us pulses. As expected, the frequency-
independent permittivity acts to reduce the field magnitude at
high frequencies. In contrast, the gray matter permittivity from
[6] decays rapidly with frequency and has little effect on field
magnitude at higher frequencies, though some attenuation is
seen at low frequencies. Differences in the calculated group
delay (change of solution phase with frequency) are noticeable.
Frequency-independent permittivity causes basically constant
group delay over the frequencies of most interest, though the
delay does transition to zero as the field magnitude goes to zero.
Strong frequency-dependent effects are seen for frequency-
dependent permittivity, indicating that signal distortion is
expected.

These results help us to explain the waveforms from
figure 4. For frequency-independent conductivity, waveform
transitions are slower due to attenuation of high frequencies,
but peak amplitudes are unchanged. Thus, the total power
in the pulse is reduced, which in turn leads to the higher
thresholds seen in figure 5. In contrast, dispersive effects
cause the solutions with frequency-dependent capacitance to
be distorted, resulting in a higher peak amplitude and the lower
thresholds seen in figure 5.

4. Discussion

The first set of results above demonstrated that the proposed
frequency interpolation approach converges with a relatively
coarse frequency sampling. This reflects the relatively slow
change in tissue properties with frequency and also the fact that
propagation effects (which could introduce phase ambiguities)
are negligible over the distances considered. The coarse
frequency sampling gives rise to a reduction in computation
time of roughly two orders of magnitude compared to a brute-
force approach. While of course slower than a frequency-
independent solution, the runtime of the interpolation approach
is very manageable.

While the interpolation approach above used a simple
refinement of frequency sampling (halving the frequency
spacing) it would also be possible to adaptively refine the
frequency sampling. This could allow regions of rapid
variation to be sampled in greater detail, while more slowly
varying regions could be sampled more coarsely.

In comparing the different models used, the Helmholtz
and QS-RC models gave nearly identical predicted waveform
shapes and had very similar computational loads. Much
larger differences were seen when comparing a purely resistive
(but frequency dependent) QS-R solution to the Helmholtz
solution. This reflects the fact that capacitive effects are known
to be the most significant effect that is commonly neglected in
quasi-static studies. The predicted errors in waveform shape
for a 100 us stimulus were roughly 12% over the distances
considered. These values are of the same order of magnitude
as those reported in [3] for a problem involving muscle tissue.

The QS-R results above used frequency-dependent values
for conductivity, which gave rise to the low-pass filtered
appearance of the waveforms (i.e. pulse edges are rounded).
More typically, a frequency-independent conductivity value
is used. Since tabulated tissue values are frequency
dependent, it is not immediately obvious how to pick the
best frequency-independent value for modeling. Comparison
with a frequency-dependent model, as done in [3], can be
helpful in determining an appropriate frequency-independent
conductivity value. If this approach is chosen, this
interpolation approach described here may be of use in
providing a reference solution.

The second set of results above explored differences
between frequency-independent and frequency-dependent
capacitance. In the former case, capacitance always causes
an attenuation of high-frequency field components and does
not introduce signal dispersion. In the latter case, signal
dispersion can be dominant, as in the examples shown. These
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results lead to opposite effects on neuron activation thresholds;
while attenuation due to frequency-independent capacitance
can only increase thresholds, the dispersion due to frequency-
dependent capacitance can cause fibers to fire at lower currents.

This study has several limitations in terms of exploring the
effect of capacitance on pulse shape and axon firing thresholds.
Electrode-tissue impedance is not included here, but in some
cases (especially for surface electrodes) this interface may
include a significant capacitive component. Second, the effect
of pulse duration was not explored. Earlier work [3] suggests
that capacitive effects can become more important for both
shorter (<25 ps) and longer (>200 us) pulses.

It is important to note that, for the cases studied here,
the differences in solutions obtained by different models are
small compared to uncertainties in actual tissue properties.
Also, accurate measurements of frequency-dependent tissue
properties are difficult to obtain.  The importance of
capacitance also depends on the problem at hand; the approach
described here was originally developed to model a peripheral
nerve stimulation scenario [14], and capacitive effects were
less important for the muscle tissues involved in that problem.
Thus, for many problems the standard approach of using a
frequency-independent model that ignores capacitance may
be quite reasonable. However, the conclusions of this paper
are that tissue capacitance can be modeled in a computationally
efficient manner, and that frequency-dependent properties may
have a noticeable effect on model predictions.

5. Conclusion

This paper introduced a frequency-domain interpolation
approach that allows frequency-dependent tissue properties
to be modeled at reasonable computational cost. Using this
framework, the (exact) Helmholtz solution was compared to
several quasistatic approximations, in terms of both predicted
fields in the tissue and predicted threshold currents for
neural stimulation. Results show that previous reports
that capacitance leads to higher threshold currents [5] will
hold true whenever frequency-independent capacitance is
assumed. When frequency-dependent capacitance is assumed,
dispersion effects can dominate and may lead to lower
threshold currents. These results highlight the importance
of accurate measurements of tissue properties.
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