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Abstract
New findings in the nervous system of invertebrates have shown how a number of features of
central pattern generator (CPG) circuits contribute to the generation of robust flexible rhythms.
In this paper we consider recently revealed strategies that living CPGs follow to design CPG
control paradigms for modular robots. To illustrate them, we divide the task of designing an
example CPG for a modular robot into independent problems. We formulate each problem in a
general way and provide a bio-inspired solution for each of them: locomotion information
coding, individual module control and inter-module coordination. We analyse the stability of
the CPG numerically, and then test it on a real robot. We analyse steady state locomotion and
recovery after perturbations. In both cases, the robot is able to autonomously find a stable
effective locomotion state. Finally, we discuss how these strategies can result in a more
general design approach for CPG-based locomotion.

S Online supplementary data available from stacks.iop.org/BB/6/016006/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Effective locomotion is an ability inherent to the animal
kingdom. Throughout evolution, life has put to test many
different designs to solve the problem. As a result, the
present landscape of living forms is a compendium of
tested and validated locomotion solutions. Not surprisingly,
there are generic mechanisms that solve similar solutions
in different contexts: phenotypically distant species use the
same strategies to achieve similar goals. Through the study
of nervous system commanding locomotion, we can unveil
the strategies that can be applied to design novel robotic
paradigms.

There are an increasing number of new results on
motor control research in living neural systems that remain
unexplored in the context of bio-inspired locomotion [1–3]. Of
particular interest to robotics are the studies regarding central

pattern generator (CPG) circuits [4, 5]. CPGs are neural
networks that generate rhythmic activity to control motor
neurons and are involved in motion that require periodicity,
robustness and/or precision. CPGs are autonomous in the
sense that they do not need external input to produce a rhythm.
However, sensory signals modulate CPG activity in order to
adapt to external conditions.

CPGs of invertebrates are the best-known neural
circuits in neuroscience research. Recent studies in living
CPGs have shown that these circuits (i) have common
connectivity building blocks based on mutual inhibition [5–7];
(ii) have neurons and synapses that exhibit rich dynamics with
multiple time scales to swiftly negotiate robust sequential
activations [8]; (iii) display dynamic invariants to preserve
rhythms that are simultaneously robust and flexible [1, 2, 9];
and (iv) have multiple codes that allow cells to multiplex both
neural messages and neural signatures, a mechanism that can
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allow a receiver neuron to identify who the sender cell is
[10, 11].

In this context, modular robotics provides a flexible
platform where different locomotion paradigms can be studied
[12, 13]. Using a number of homogeneous modules,
one can easily construct different-sized robots, reconfigure
their topology or assemble completely newly shaped robots.
Moreover, modular robots represent a very good starting point
for new paradigms. By their very nature, there are a number of
problems that must be solved at different levels of abstraction.
For instance, how to code information in one individual
module, build a single oscillator or couple oscillators together.
Furthermore, modularity calls for generic principles that will
scale well when new modules are added in. That is, there is the
need for design patterns that can be reproduced locally in each
module, while maintaining the global invariant of effective
locomotion.

Neuroscientific CPG knowledge has already been
successfully applied to robotic control [14, 15] focusing on
different aspects: for instance, Ayers et al [16] developed
a highly realistic motion model of a crustacean limb, while
Arena et al [17] developed an artificial neural network to
control a hexapod robot; different forms of fin/wing control
have been achieved by Chung et al [18] and Seo et al
[19] both with an extensive analysis of the convergence and
stability of the controllers. Besides these, work has been
done on biped locomotion using CPGs [20, 21] and modular
locomotion [22], and there have been different approaches
to learning, for instance offline genetic CPG design [23] and
online optimization methods [24, 25].

In most cases, CPG bio-inspiration in robotics uses the
scientific knowledge from these circuits that was available
more than 20 years ago. Thus, bio-inspiration is often reduced
to the use of oscillators implemented with basic single time-
scale limit cycle behaviour. While this type of CPG control
has proved highly successful, in this paper we argue that
the use of novel findings regarding living CPGs can result
in more general design strategies for autonomous locomotion
in modular robots. We argue that the proposed biological
strategies will provide greater flexibility and robustness and
lead to more autonomous behaviour.

In this paper, we first introduce relevant results of recent
CPG research; we then apply some of the studied strategies to
illustrate the control design of a simple modular robot. After
this we study the stability of the generated signals: amplitude,
frequency and synchronization, and finally we present the
results of the robot in the real world. An appendix illustrates
the implementation of a feedback mechanism between a servo
and our CPG to achieve entrainment between them.

2. Recent results on living CPG research

In order to build effective artificial CPGs, we want to study
what common strategies living CPGs follow for their own
work. One ubiquitous feature of invertebrate CPGs is that they
are built with non-open topologies, i.e. every neuron receives
at least one connection from another CPG member. This is
called a ‘non-open’ network topology, in contrast to an ‘open’

topology, where at least one neuron does not receive synapses
from any other CPG member [6, 7]. In principle, one could
build CPGs by having one single pacemaker neuron drive a set
of other neurons. However, even CPGs containing pacemakers
provide some feedback to it from the rest of the circuit [2, 5].

Together with non-open connection architecture, the
ability of individual elements of the circuit to operate on
multiple time scales allows CPGs to produce signals that take
into account present and past status of the circuit rhythm.
During non-transient behaviours, CPG circuits produce robust
rhythms that seem to be built with low-dimensional oscillators
[8]. However, individual CPG neurons, when isolated,
display a spiking–bursting activity capable of generating
highly irregular rhythms [5]. This rich dynamics is built with
slow and fast time scales, which are also present in the synaptic
connections. We thus believe that in order to achieve richer
rhythms and build CPGs that can perform complex tasks, we
need to take advantage of multiple time-scale mechanisms.

It is important to emphasize that living CPG rhythms
are not only robust; they are also flexible and capable of
undergoing fast transients in which neurons negotiate their
dynamics to create new rhythms from external inputs. Non-
open CPG topologies are mainly based on mutual inhibition,
which combined with the rich behaviour of individual neurons
generates a so-called winnerless competition dynamics among
them [8]. It is the negotiating nature of this dynamics that
endows CPG circuits the ability to build a wide variety of
motor commands required for autonomous locomotion.

First we will introduce the basic elements we propose to
build CPGs: neurons and synapses, and show how modular
robotics can take advantage of a set of design principles derived
from the discussed phenomena observed in living CPGs.

3. Bio-inspired CPG components

Most of these strategies, all the more so those regarding
architecture, are independent of the individual details of
neurons and synapses. However, for our purpose, we demand
specific characteristics of a neuron model and a synapse model.
Specifically, the neuron model of choice must be able to
robustly encode locomotion information, while at the same
time being flexible enough to negotiate a stable rhythm, and
the synapse model must be able to process different time scales
in the neuron model.

3.1. Multiple time-scale neuron model

CPG neuron models for robot locomotion typically use
oscillator models with one single time scale. The negotiation
capacity of these units to produce robust yet flexible rhythms
within the network is more limited than that of neurons with
multiple time scales. Multiple time scales can account for
a wider variety of bifurcations and transient dynamics to
provide autonomous coordinated responses [5, 8]. Indeed,
multiple time-scale behaviours are ubiquitous in real living
CPG neurons [5].

In our work, we use a neuron model that mimics the
activity of real multiple time-scale neurons. Developed by
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Figure 1. Fast and slow subsystems of Rulkov’s neuron model. The slow subsystem (yn in (1c)) is responsible for signalling the beginning
and end of a burst; the fast subsystem (xn in (1b)) is responsible for the oscillations that generate individual spikes within each burst. Bottom
panel: α = 7 and σ = −0.33; centre panel: α = 10 and σ = 0; top panel: α = 15 and σ = 0.33.

Rulkov et al [26, 27], several characteristics have played in
its favour: its mathematical simplicity and the possibility to
easily control the possible set of behaviours depending on the
selection of a few parameters. Three stable regimes may be
selected by combination of its parameters: silent, in which
the potential of the neuron (variable xn in (1b)) remains in
a constant resting state; tonic spiking, in which the neuron
emits spikes at a constant rate; and tonic bursting, in which
bursts of spikes are emitted at a constant rate, with a silent
interval in between. Furthermore, in the boundaries of the
parametric regions of those regimes, chaotic behaviour may
be found [27]. Of these behaviours, tonic bursting is the one
of greatest interest to us. See figure 1 for an overall idea of the
model working in the tonic bursting regime.

The bursting regime of the model presents a slow wave
(slow time scale) with fast spikes of activity sitting on top of
it (fast time scale). We use the slow time scale (yn in (1b))
to encode movement duration, i.e. the temporal length of the
burst defines the temporal length of the movement, and the fast
time scale (xn in (1b)) to define angular velocity of the servo
(higher frequency of the spikes corresponds to faster servo
movements).

The mathematical description of Rulkov’s model as used
in this work is as follows:

f (x, y) =

⎧⎪⎨
⎪⎩

α

1 − x
+ y if x � 0

α + y if 0 � x < α + y

−1 otherwise

(1a)

xn+1 = f (xn, yn) (1b)

yn+1 = yn − μ(xn + 1) + μσ + μIn (1c)

with μ = 0.001 in all experiments.
This is a bi-dimensional model, where variable xn

represents a neuron’s membrane voltage and yn is a slow
dynamics variable with no direct biological meaning, but with
similar meaning as gating variables in biological models that

represent the fraction of open ion-channels in the cell. While
xn oscillates on a fast time scale, representing individual spikes
of the neuron, yn keeps track of the bursting cycle, a sort of
context memory. Units are dimensionless and can be rescaled
to match the requirements of the robot.

The combination of σ and α selects the working regime
of the model: silent, tonic spiking or tonic bursting. In
the bursting regime, these parameters also control several
properties of neural activity. Figure 4 shows the relationship
between parameters α and σ and several properties of the
neuron. For instance, the period of the neuron depends almost
linearly with α, so the larger its value, the larger the period.
These two parameters may be used to tune the locomotion of
the whole CPG.

Finally, the external input is modelled through In.
Depending on this value, a neuron will modify its behaviour.
For instance, an external driving force may be input using
this parameter. This property is essential for autonomous
organization: processing units in the CPG must be able to
negotiate the rhythm among them. Also entrainment between
the CPG and the physical robot can be achieved through In
by adding an error term as the external input to a neuron (see
the appendix for an example implementation). The total effect
of this parameter will depend upon past history of events,
the exact value of In and the phase within the burst cycle at
which the neuron finds itself. In our work, In is the current
flowing from one neuron to another: a periodic sampling of
the continuous function described below in (3).

3.2. Kinetic synapse model for interneuron communication

A key property of CPGs is that they are autonomous, i.e. the
different units in the circuit talk to each other to negotiate the
overall function. Here we present the model we have chosen to
implement synapses, the communication channel of neurons.
In this work we use a chemical synapse model [30].
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Figure 2. Synaptic response (upper panel) to a train of spikes arriving from the presynaptic neuron (lower panel). For each spike from the
presynaptic neuron, a small amount of neurotransmitter is released in the synapse that binds to receptors in the postsynaptic neuron. After a
short time, transmitters begin to unbind from receptors. The process of binding and unbinding causes the characteristic sawtooth shape.
This model of synapse shows a memory effect, in the sense that response to any given pulse depends on past history of events. The variable
r of the model (upper panel) represents the rate of bound receptors in the postsynaptic neuron. According to (3), the current that will flow
into the postsynaptic neuron is proportional to the rate of bound receptors. That is, when a neuron emits a series of spikes, the current that
will flow into the postsynaptic neuron has a dynamic behaviour, rising with time and converging to a stable value.

Chemical synapses are unidirectional. When a potential
spike arrives from the presynaptic neuron, the synapse releases
a certain amount of neurotransmitter molecules that bind to the
postsynaptic neuron’s receptors. With time, neurotransmitter
molecules begin to unbind. If a succession of spikes arrives
within a short time, the synaptic response to each of them may
overlap. Therefore, the state of the synapse is dependent upon
past events, a mechanism of context memory (see figure 2).

The additional time scale provided by kinetic synapses in a
CPG enriches synchronization between bursting neurons. For
instance, we may choose to synchronize two bursting neurons
upon the spike (fast) time scale or the burst (slow) time scale.
We have selected the kinetics of the binding and unbinding
processes such that synapses act as filters of the fast time scale
and synchronization occurs at the slow time scale. That is, the
basic unit of synchronization will be the burst as a whole, not
every individual spike. Beyond this, synapses may introduce
delays for a finer control of phase difference between neurons.

The mathematical description of the model follows:

ṙ =
{

λ[T ](1 − r) − βr if tf < t < tf + tr
−βr, otherwise

(2)

This equation defines the ratio of bound chemical
receptors in the postsynaptic neuron (see figure 2 for a sample
trace), where r is the fraction of bound receptors, λ and β

are the forward and backward rate constants for transmitter
binding and [T ] is the neurotransmitter concentration. The
equation is defined piecewise, depending on the specific times
when the presynaptic neuron fires (tf): during tr units of time,
the synapse is considered to be releasing neurotransmitters that
bind to the postsynaptic neuron. After the release period, no
more neurotransmitter is released and the only active process
is that of unbinding, as described by the second part of

the equation. Times tf are determined as the times when
the presynaptic neuron’s membrane potential crosses a given
threshold θ .

Synaptic current is then calculated as follows:

I (t) = g · r(t) · (Xpost(t) − Esyn) (3)

where I (t) is postsynaptic current at time t, g is synaptic
conductance, r(t) is the fraction of bound receptors at time
t, Xpost(t) is the postsynaptic neuron’s membrane potential
and Esyn its reversal potential, the potential at which the net
ionic flow through the membrane is zero. When coupling
two Rulkov map neurons we will need to use a discrete
synaptic function. We will build a sequence, let us call
it In, by simulating I (t) as a continuous function and then
taking samples every 0.01 time units (for our choice of kinetic
parameters as outlined in the different figures).

We say that a synapse is excitatory when the probability
of the postsynaptic neuron firing a spike increases after the
presynaptic neuron has fired. If the probability decreases, the
synapse is inhibitory. If the postsynaptic neuron rhythmically
emits spikes, an excitatory synapse will generally increase its
frequency while an inhibitory one will generally decrease it.

4. Bio-inspired strategies for the design of a modular
CPG

In this section, we will use an example to illustrate the process
by which we have designed a bio-inspired CPG to control a
modular worm robot1 by González et al [31]. This platform is
very powerful, in terms of locomotion capabilities, while still

1 More information about the robot is available at
http://www.iearobotics.com/personal/juan/doctorado/cube-revolutions/.
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Figure 3. General schema of the worm robot. A single module is
marked in grey; all other modules are exactly equal to this one.

being very accessible and easy to control. For simplicity, we
have focused on horizontal ground displacement, one of the
many locomotion modes this robot is capable of.

The robot, illustrated diagrammatically in figure 3,
consists of several modules attached side by side through
special connection points. Each of these modules consists
of two triangle-shaped rigid pieces, joint by one vertex of
the triangle, and a servomotor controlling the angle between
these two pieces. In the horizontal locomotion mode, modules
are connected sequentially, each of them oscillating on the
same plane. One solution to the control problem posed
here is undulatory locomotion. Each module must oscillate
periodically at a given phase lag from the neighbouring ones.
Thus, the CPG must solve the problem of individual oscillation
and global coordination.

The choice of this platform has been motivated by its
versatility (the reader is again referred to [31]), low cost and
ease of construction. The chassis is built of methacrylate
panels, assembled by hand in less than 1 h. The servos are
Futaba S3003, readily available in any RC store and with
an approximate cost of $15 a piece. Finally, there being
no wheels, limbs or any other movable parts besides the
servos, the control of the robot is exclusively a problem of
synchronization among modules, a problem that CPG control
will solve in a robust and flexible manner.

As a summary of the section, we follow a bottom-up
approach: first, we devise how to code locomotion commands
using a neuron model with multiple time scales; then we
build a neural circuit based on a non-open topology and
mutual inhibition that will make one single module oscillate;
finally, we provide modules with a communication channel
with their neighbours for them to communicate and negotiate
with each other, following the non-open topology strategy,
which effectively gives rise to winnerless competition
dynamics by guiding the coordination of the activity of
multiple time-scale neurons.

4.1. Locomotion information coding: exploiting multiple
time scales

The goal of a CPG controller is to generate motor signals
that will ultimately drive a motor plant. Such signals
must be coordinated among themselves and they must carry
appropriate information for locomotion to be effective. In

our particular case, the targets are servomotors with only one
degree of freedom. A locomotion command for one servo
needs three parameters: duration of the movement, velocity
and direction. Therefore, we need a mechanism to encode this
information in neural activity.

A key biological strategy that we take advantage of is the
ability of single neurons to handle multiple time scales. With
this mechanism we can multiplex the different aspects of one
locomotion command in a single variable, namely membrane
potential, in a very robust way [32]. Using one bursting
neuron, each individual spike will trigger an atomic action;
the number of spikes in one burst will encode the amplitude
of movement; and the frequency of the spikes will define the
speed of movement. In this way, we can use the neuron model
exposed in the previous section to drive the servomotors in our
robot. Through control of the parameters of the model, α and
σ , properties of the bursts (see figure 1) may be controlled as
seen in figure 4. For instance, the length of one period can be
controlled almost linearly by tuning the α parameter. Also the
ratio of spiking activity to silent activity within one period is
better controlled by adjusting the σ parameter.

It is worth noting that this ability is independent of
the specifics of the neuron model used, as long as it has
the necessary property of bursting activity. The model that
we have chosen is capable of robustly encoding locomotion
information even in the presence of noise.

4.2. Building a CPG to drive one single module: non-open
topologies and mutual inhibition

We are designing a CPG to control a robot made of a number
of homogeneous individual modules. Since the robot can be
reconfigured by adding or subtracting modules, ideally the
reconfiguration of the CPG should be as easy as that of the
actual hardware. Therefore, we have chosen to first design
a small CPG that will drive one single module, and then
implement inter-module negotiation mechanisms. Here we
will explain how information encoded in neurons’ activity is
decoded and how the signal that drives the motors is generated.

We begin with the design of a CPG that will drive one
single module (servo). This same architecture is repeated in
every module. We use a strategy found in many species for the
generation of alternate rhythms, where neurons controlling one
side of the body inhibit antagonist neurons on the other side
of the body [29]. This strategy, named half-centre oscillator,
subsumes three of the basic strategies that we have outlined:
non-open topologies, so that every member of the CPG has
knowledge of the overall working of the system, mutual
inhibition and, as a result, winnerless competition, in order
to generate a reproducible sequential activation.

The need for anti-phase synchronization arises naturally
since for a rhythmic activity to be produced, there must
be a sequence of ‘doing’, ‘undoing’, ‘redoing’ and so on.
Take for instance walking. Each limb continuously repeats a
cycle of stance and displacement. Lifting the limb from the
ground is actively performed by a certain group of muscles;
placing the limb back on the ground is usually a collaboration
between relaxation of the previous group, gravity and active

5
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Figure 4. Different properties of an isolated neuron (Rulkov’s model) in the bursting regime for different values of α (from 6 to 16) and σ
(from −5 to 5). Controlling these parameters, the global locomotion of the robot can also be adjusted. For instance, parameter α has an
almost linear relationship with any of the properties analysed here. Thirty consecutive bursts in a stable regime were analysed: (a) mean
period, measured in simulation steps; (b) mean duty cycle, measured as the percentage of the period that corresponds to spiking activity;
(c) mean number of spikes per burst of 30 consecutive bursts. (d) Explanation of magnitudes: a is the period, b/a is the duty cycle and c is
the number of spikes per burst.

performance of an agonist group of muscles. For the cycle
to be effective the two agonist groups must be activated in a
non-overlapping sequence, or anti-phase synchronized.

The architecture of one single module is shown in
figure 5(a). Two endogenously rhythmic neurons (R and P) are
interconnected with inhibitory synapses. The role of inhibition
is to prevent both neurons from firing at the same time: when
one fires, the other’s activity is delayed; in turn, when the
second neuron is bursting, it delays the first neuron’s activity
and the cycle begins again. It is worth noting that bursting
neurons are flexible enough to negotiate a global rhythm while
still being able to independently code locomotion information.
Thus, after a process of synchronization, in which each neuron
is capable of encoding their own information, they both arrive
at a steady anti-phase state (figure 5(b)). Entrainment between
the physical module and the neurons is possible through
parameter In in (1c).

4.3. Translating from neural code to motor actuator
commands: motoneurons

Movement information is robustly encoded in the neurons’
bursting episodes. A neuron called motoneuron is then
responsible for decoding this information and translating it into
the signal that will finally be sent to the servo controller. This
signal tells the angle at which the servo should be positioned,
in degrees. Figure 5(b) shows an example pattern of activity of
an isolated module in its steady state, after an initial transient
period of self-adjustment.

In [33], biological evidence that muscles actually
summate spikes of a burst is provided (see also [34, 35]).
Muscles that act in this way achieve a contraction state,
which they call the ‘tonic component’ of the neural command,
and then rhythmically show small contractions provoked by
each individual spike. This behaviour is very similar to the
motoneuron model that we will introduce in this section.

With the motoneuron model provided in our paper, we
have tried to mimic the real transformation occurring between

living motoneurons and muscles. However, a key issue
in the design of biomimetic devices is that the principles
underlying activation of natural joints and artificial motors are
qualitatively distinct. Nonetheless, the departure from pure
biological inspiration is not as far as it may seem. In any case,
there needs to be a nonlinear process that ultimately translates
from neural activity to a physical action.

Motoneurons read the activity of the modular oscillator
through a pair of synapses. These synapses connect R and P
neurons to the motoneuron and are governed by a very simple
threshold equation

s(x, ν) =
{

1 if x > ν

0 otherwise.
(4)

The role of this function is to detect individual spikes
of neurons. By setting the threshold to, for example, ν =
−1.5 au, this function applied to the potential trace of one
neuron will have value 1 during individual spikes and 0
otherwise. In this way, communication between neurons is
event-based. That is, the actual shape of neural activity is
not so important, only their timing is. We believe this is
a mechanism that the nervous system employs to lower the
impact of noise [32].

The role of motoneuron M is now to integrate the
individual events emitted by each one of the neurons. If neuron
P emits a spike, motoneuron M will move the servo a little bit
in a positive angle. If it emits a second spike close enough to
the first one, the servo will be positioned a little bit further.
Analogously, the R neuron will make the motoneuron move
the servo towards negative angle positions. If both neurons
are silent, motoneuron M will slowly drive the servo to a
resting position of angle 0. This is accomplished through the
following equation governing motoneurons in our CPGs:

C(t) = γ [s(xp(t), ν) − s(xr(t), ν)] (5)

τṁ = C(t) − m(t) + offset, (6)

where m(t) is the output of neuron M (in degrees), the two s(.)

terms are the threshold function (4) applied to input from R

6
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(a) (b)

Figure 5. (a) Organization of the CPG within one module. The promotor (P) and remotor (R) neurons are interconnected with inhibitory
synapses so that they synchronize in anti-phase. The motoneuron M sends a command signal to the servomotor specifying the angle at
which the servo should position itself. The signal generated by R is directly input to M, and the opposite of the signal generated by P is input
to M. M integrates its input according to (6). (b) Activity sample (variable xn in (1b)). Neuron P contributes positively and raises M to 30◦;
neuron ‘R’ does exactly the opposite and drives M towards −30◦. P and R are synchronized in anti-phase. With no input, M tends to 0◦.
Parameters for P and R: α = 15, μ = 0.001, σ = −0.33, βe = 0, σe = 1; parameters for the inhibitory synapses between P and R: λ = 0.5,
β = 10, τ = 0, Esyn = 9, gsyn = 1.5, T = 1, tr = 0.01; parameters for M: γ = 30, τ = 0.5, ν = −1.5.

and P, τ is a time constant that controls how quick the output
signal m(t) will change and γ defines the maximum amplitude
of signal m(t). The parameter offset will add an offset so that
the servo oscillates around that value instead of zero. In all
results of this paper, offset = 0.

In this equation, P contributes positively and R negatively.
Given the fact that P and R oscillate in anti-phase, the solution
m(t) is an oscillatory function bounded between −γ and γ .

When the motoneuron receives no input because P and R
are silent, it will go back to zero due to the leak term (−m(t))
in (6) (see the decay between bursts in figure 5(b)).

4.4. Inter-module communication to generate a reproducible
activation sequence: winnerless competition dynamics

The final step in implementing our CPG is defining the
restrictions that will govern the working of the CPG in its
search of a stable rhythm. That is, we want to program the
collective behaviour of all the neurons within the network. We
call this approach dynamical invariant programming [36].

Here, we are interested in implementing a particular
kind of network dynamics named winnerless competition
[8]. In this type of dynamics, all neurons compete with
each other through inhibition. When one neuron is active,
it will inhibit some other neurons, preventing them from
activating as well. The key point is that there must be a
mechanism by which this inhibition is released. When this
occurs, the previously inhibited neurons are allowed to become
active, inhibiting other neurons in turn. With this release
mechanism, it is ensured that no single neuron will inhibit
all other neurons permanently, hence the term ‘winnerless’
competition. Beyond this, we seek a mechanism to implement
a winnerless competition in which the sequence of activation
is reproducible, in order for the robot to undulate properly.

In summary, three principles are required for generic
winnerless competition dynamics: non-open topologies,

asymmetric inhibition and a mechanism by which inhibition
is released, guaranteeing that no neuron will be permanently
inhibited. Together with these, we consider that the topology
of the CPG must be modular, as that of the robot, and that
the sequence of activation must be reproducible. With this
in mind, we proceed with the design of the inter-module
architecture. We have come up with different possible designs
based on these assumptions. We will describe a particular
case here, illustrated in figure 7. This solution is relatively
independent of the details of each single module. That is,
winnerless competition and the architecture proposed here
is a mechanism by which elements produce a reproducible
sequence, irrespective of whether their activity is bursting or
spiking.

We have added two bistable neurons (see (7b) through
(7d)), which are a modified Rulkov map (see (1a) through
(1c)) to every module. Their role is to inhibit the promotor
and the remotor neurons respectively to impose an ordered
activation of the modules. They can be either silent or in a
tonic spiking regime: when they are excited they switch to
the tonic spiking regime until an inhibition occurs; when they
are silent, they will remain in that state as long as there is no
excitation. That is, upon receiving excitation, the promotor
(remotor) neuron will be inhibited until an inhibitory signal
is received. Once this occurs, the promotor (remotor) neuron
is free to burst or remain silent until an excitatory signal is
received:

f (x, y) = (1a) (7a)

xn+1 = f (xn, yn) (7b)

yn+1 = yn − μ(xn + 1) + μσn (7c)

σn =
{

0.33 Whenever In > 0 until In < 0
−0.33 Whenever In < 0 until In > 0.

(7d)

The sources of inhibition and excitation are, respectively,
the following and preceding modules. If the promotor of
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module n − 1 is active, the promotor neuron of module n will
be inhibited until the promotor neuron of module n + 1 begins
bursting. When this occurs, the promotor n will be released
from inhibition and will be free to fire. When it does, module
n + 1 will be inhibited, and so on. This leads to the desired
winnerless competition.

Border neurons would only receive signals from one side,
not from both. If they were left to burst freely, they would
do so at a higher frequency than the rest, since they would
be receiving no inhibition. Thus the need for a non-open
topology emerges naturally. That is, border neurons need
to receive some feedback from the rest of the CPG. Adding
a ‘border synapse’ regularizes the CPG and a stable rhythm
may be achieved. The following section will further discuss
the effects of having an open and a non-open topology.

5. Analysis and quantitative results

In this section we will analyse a concrete CPG model and
study the stability of various attributes of the generated motor
signals, namely their amplitude, instantaneous frequency and
phase difference.

In order to analyse one signal generated for one motor by
the CPGs, we first generate an analytic signal that uniquely
represents it. The basic tool for our analysis is the Hilbert
transform (a complete revision of the theory can be found
in [37]). Basically, the Hilbert transform of a real-valued
function/sequence is another real-valued function/sequence
whose Fourier components are shifted 90◦ with respect to the
original.

Let m = {m1,m2, . . . , mn} be a signal generated for one
of the motors (thus a real-valued sequence). We will denote
H{m} the Hilbert transform of the sequence, which is also real-
valued and H{m}i the ith element of the resulting transformed
sequence. The equivalent analytic signal representation of m
is

Z = {Zi = mi + j · H{m}i}. (8)

This representation allows us to model Z as an amplitude
and phase-modulated oscillator

Zi = Ai exp(jφi) (9)

such that

Ai = |Zi | =
√

m2
i + H{m}2

i (10)

and

φi = � Zi = arctan

(
H{m}i

mi

)
. (11)

Furthermore, we can now reconstruct the original signal
m as

mi = Ai cos(φi). (12)

There has been extensive discussion about the
applicability of this technique in general cases, particularly
when calculating the instantaneous frequency derived from
instantaneous phase [38]. The two main restrictions applicable
to signals for their instantaneous frequencies to make physical

sense are that they be mono-component and that they oscillate
symmetrically around zero. Generally speaking, a mono-
component signal is one which does not have sub-oscillations
between zero-crossings, i.e. there is only one local extreme
between zero-crossings.

In order to gain some insight as to how the analytic signal
is related to the original signal, we present two examples in
figure 6. In this figure we show two signals and the complex
plane projection of their corresponding analytic signals. The
first signal is a mono-component signal. Its analytic signal
projected on the complex plane shows an oscillatory orbit
around the origin. Phase calculated as in (11) will yield
a monotonically increasing value within each period of the
signal. The other case is a non-monocomponent signal. In
this case, since the projected signal does not describe a simple
orbit but displays some loops, there will be at least two distinct
points within one period that will have equal phase value.

Signals of our CPGs have been filtered before plotting
with a moving average filter. The window size is 1000
points of width, a little less than the mean period of the
signals. This way we eliminate the small noise in the plot
and keep the general behaviour. Noise in the original signal
does not result in jerky locomotion of the robot as can
be seen in the online supplementary videos, available from
stacks.iop.org/BB/6/016006/mmedia.

5.1. Case study: non-open topology

We will apply the analytic signals’ technique to analyse three
parameters of the signals that command the motors of our
robot, namely amplitude, frequency and phase difference
among adjacent modules. We first study the behaviour of
the CPG depicted in figure 7.

5.1.1. Amplitude. Since our CPG is operating a real-world
robot, one major concern is that the output be kept stable and
within a desired range that will cause no harm to it. We want to
guarantee that this example CPG is capable of autonomously
constraining the amplitude of the output signal.

The amplitude envelope of a given signal m can be
calculated from the corresponding Z as in (10). It is
important to note that this function yields a value for every
time step i, i.e. we can define an amplitude value even for
sequence members of m where the signal is not at an extreme.
Figure 8(b) shows the amplitude envelope of the signal
generated by the bistable CPG in figure 7 for motor 8 of
the robot. There is a transient period at the beginning of the
simulation during which neurons P and R within the module
are not yet synchronized. The amplitude of oscillation is low
during this transient. Once the system stabilizes, oscillation
reaches its nominal amplitude, which is kept constant for the
rest of the simulation.

5.1.2. Phase difference. Efficient locomotion of the robot is
achieved when adjacent modules maintain a constant phase
difference between them in the steady state. In order to
study phase differences, we take signals m(k) and m(l), k �= l,

corresponding to motors k and l and construct Z(k) and Z(l).
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(a) (b)

Figure 6. Sample analytic signals from real-valued signals. The first example is a perfectly periodic mono-component signal. The structure
of the projected analytic signal is that of an orbit centred at the origin, with shape reflecting the shape of the oscillations. The phase of one
point is the angle of that point in polar coordinates. Even though instantaneous phase can always be mathematically defined, it does not
always carry a physical meaning. In the second example, there are different points within one single period with equal phase value due to
the loops. Upper row: (a) sin(2π5t), (b) sin(2π5t) + sin(2π13t). Lower row: complex plane projections along the time axis of the
corresponding analytic signals of the upper row.

From these, we calculate the phase difference between m(k)

and m(l) making use of (11) as

�(kl) = {
�

(kl)
i = φ

(k)
i − φ

(l)
i = angle

(
Z

(k)
i · Z

(l)∗
i

)}
, (13)

where the product with the complex conjugate is used
to subtract the angle of Z

(l)
i from the angle of Z

(k)
i .

Figure 8(c) shows the phase differences between modules
adjacent to module number 8. There is a clear transient period
at the beginning of the simulation in which modules are not
synchronized. During this time, the system explores its state
space trying to find a stable state. After the transient, the phase
differences between modules 8 and 7 and between 9 and 8
evolve in similar manners (see figure 9, where phase difference
between consecutive modules is kept constant during all
simulations). At the steady state, phase differences are
maintained constant. Other modules show similar behaviours.

5.1.3. Frequency. Having defined the instantaneous phase
of a signal in (11), we now define the instantaneous frequency
of a signal as

ωi = φi − φi−1. (14)

Figure 8(d) displays the frequency behaviour of module 8 of
this CPG. The mean frequency is kept constant during the

whole simulation except for an initial transient. Intra-cycle
frequency, however, is not constant. That means that the speed
at which the signal changes is not constant within one cycle.

5.2. Case study: an open topology

In the previous section we have addressed the analysis of
a particular CPG built on bursting neurons, with strong
inhibition and a non-open topology. The result is that all
modules are capable of finding a stable oscillatory state, with
constant amplitude and frequency, and with a constant phase
difference between them.

We will repeat in this section the same analysis for an
open topology. The basic structure is similar to that shown in
figure 7, except that the border synapses have been removed.
This way, border modules do not receive any input from
other modules. Figure 10(a)–(d) show the results of the
analysis applied to this open topology. Border modules
oscillate at a frequency slightly higher than the rest of the
modules because there is no inhibitory synapse acting on them.
This difference in frequency prevents synchronization between
modules. Figure 10(c) clearly shows how the phase difference
between modules 2 and 1 (border module) drifts constantly.

9



Bioinsp. Biomim. 6 (2011) 016006 F Herrero-Carrón et al

.... . .

.... . .

P PP

B B

P

B

P

B

PP

B

1 32 4 n−2 n−1 n

Border synapse

R RR

B B

R

B

R

B

RR

B

1 32 4 n−2 n−1 nR n−2

Figure 7. The ‘bistable’ CPG. The architecture for each module is
conserved. Inter-module coordination mechanisms are shown in
thicker trace. Arrow terminated lines are excitatory synapses; ball
terminated lines are inhibitory synapses. This CPG is based on the
assumption that to achieve a stable firing sequence, each neuron
may only fire in an allowed time window, defined by the bursting
activity of both its neighbours. ‘B’ neurons are bistable neurons.
When they receive excitation they enter a tonic spiking regime. If
they receive inhibition, they will enter a silent regime. Under
absence of input, they will remain in the same state they were. ‘B’
neurons effectively restrict the allowed intervals through a strong
synapse. When a ‘B’ neuron is in its active state, it will completely
inhibit one ‘P’ (respectively ‘R’) neuron until it goes back to the
silent regime. All parameters as in figure 5(b). Synapses from ‘B’ to
‘P’ and ‘R’: Esyn = 10, gsyn = 20.

Inner modules 2 and 3 cannot synchronize, yet their phase
differences diverge in a lesser degree. The result is that the
CPG fails to generate an efficient locomotion in the robot
(see figure 11, where phase difference between consecutive
modules suffers a slight shift during the simulation and is not
kept constant).

6. Real hardware analysis

With the purpose of illustrating how certain biological
principles can provide design guidelines for artificial CPG
design, we have implemented a simulated CPG and analysed
its stability. Now that we have concluded that the simulated

(a) (b) (c) (d)

Figure 8. Analysis of the signal generated by the bistable CPG for module number 8. The system displays an initial transient period
(marked with a green box in (a)) in which oscillations are not yet stable. After this, the system achieves a stable state in which amplitude,
phase difference with neighbour modules and frequency remain constant. Signals generated for other modules show similar behaviour, with
possibly different transient periods but similar steady states. (a) Projection of the analytic signal generated by the CPG for module number
8. The shape is similar to the mono-component signals in figure 6. This gives an idea of the oscillatory behaviour of the signal. The points
in the centre correspond to an initial transient period before the system achieves a stable state. (b) Amplitude envelope of the signal.
(c) Phase differences between modules 8 and 7 and between modules 9 and 8. (d) Frequency of the signal.

CPG is stable, we target a real-world testbed robot with eight
modules [31]. We refer the reader to section 4 for an extensive
explanation both of the architecture of the robot and the CPG
design process.

The simulation procedure is as follows: the CPG software
is run offline during 1000 000 simulation steps. A program
then reads each simulation step as a single line composed of
the target positions for each motor. It selects one of every five
lines so as to have an acceptable speed of locomotion, suitable
for later video processing. Higher speeds can be achieved
using a lower sampling rate, for instance one out of thirty
simulation steps. Each target position is sent along with the
number of the target motor over RS232, to a controller board
(http://www.iearobotics.com/proyectos/skypic/skypic.html)
running a program that generates a PWM signal that positions
the motor at the specified angle.

We have carried out two tests to illustrate how the robot
performs in the real world. The first one regards the stability
of steady state locomotion of the real robot. In the second
one, the robot is subject to a strong noisy perturbation, and
then its recovery is analysed. Results are extracted from
high-definition (hdv) video recordings (see figure 12) using
a Sony HDR-HC9. Shooting was done from a distance of
2.2 m, and then videos were downloaded to a computer using
dvgrab 3.5 on a linux machine. Uncompressed tiff frames were
extracted from the video using ffmpeg, and then converted to
uncompressed JPG using ImageMagick. A video-tracking
software has been used on these frames to extract the positions
of motor markers (figure 12).

6.1. First test: free run of the CPG

The first experiment consists of a free run simulation. We
start the CPG with arbitrary initial conditions and let it
evolve freely, with no perturbations. The output of the CPG
is sent to the robot, which is recorded in video. Direct
observation of the robot reveals that it performs an undulatory
movement with steady forward locomotion. To illustrate
this, we track the marker of one of the central modules
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Figure 9. Snapshot of the CPG analysed in figure 8. After an initial transient interval, the CPG runs synchronized and is working in the
stable regime. All signals show a steady oscillatory behaviour with constant amplitude and frequency. Grid marks are set at intervals of
1370 time steps, approximately one period of oscillation. All signals maintain a constant phase relationship among them and elicit a stable
locomotion.

(a) (b) (c) (d)

Figure 10. Analysis of the signal generated for module number 2 by a CPG with an open topology. In this simulation the transient period is
very short and the system quickly finds an oscillatory state. However, the system fails to maintain a stable rhythm and instead shows a
metastable sequence. There are periodic variations in frequency that, in turn, prevent adjacent modules from keeping a constant phase
difference. (a) Projection of the analytic signal generated by the CPG for module number 2. (b) Amplitude envelope of the signal. (c) Phase
differences between modules 2 and 1 and between modules 3 and 2. There is a clear constant phase difference shift which prevents the
necessary phase locking for efficient locomotion. (d) Frequency of the signal.

and analyse the trace offline (see figure 13). In order to
gain more insight about the performance of the robot, the
signal is decomposed into its two coordinates with respect
to time (figure 14). The vertical component of the module is
periodic: this reveals that the movement of the marker is indeed
oscillatory; due to the geometry of the robot the trajectory is
not constant, with some plateaus of resting activity, but the
overall behaviour is sinusoidal. Horizontal forward velocity
is almost constant, with a mean value of approximately 1.4
cm s−1, again with small plateaus of quietude due to the robot’s
geometry.

This experiment confirms that our CPG can effectively
drive the real robot and perform a steadily undulatory
locomotion, with uniform forward velocity.

For comparison purposes we include figure 15 in which
the analysis outlined in the previous section is performed on the
vertical displacement of the marker shown in figure 13. This

signal does not meet the requirements for the instantaneous
phase to have a valid physical interpretation for every time
instant (indeed, there is an artefact, surrounded by a rectangle,
in figure 15 whose interpretation would be that the phase went
backwards in time, which is physically impossible). However
it is still valid to infer the mean behaviour of the phase
difference between adjacent modules with respect to time.
Subfloat 15(a) shows the corresponding analytical signal,
obtained using the Hilbert transform, projected on the complex
plane. It is seen that the trace of the marker is oscillatory, stable
and periodic. What is more, the module at hand is seen to keep
a reasonably constant phase difference with its neighbours, as
seen in panel 15(b). Small oscillations in this panel are due
to the fact that instantaneous frequency is not constant within
one oscillation cycle. Effectively, coordination is guaranteed
by the CPG, which can easily handle these small differences.
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Figure 11. Snapshot of the CPG analysed in figure 10. This CPG is not built with an open topology. That is, there are two modules in the
topology that do not receive any feedback from the rest of the circuit. For this reason, the circuit is not able to maintain stable
synchronization between signals, and their frequencies diverge periodically in time as shown in figure 10(c). For this time slot, the three last
signals show a markedly skewed phase in relationship to the other servos. Grid marks set at intervals of 1350 time steps, approximately the
mean period of all signals. However, while signal number 2 has a period that fits the mean, signal number 8 is clearly oscillating faster.

Figure 12. High-definition motion tracking. Video was recorded
using a Sony HDR-HC9 in high definition (hdv), shooting from a
distance of 2.2 m, and downloaded to a computer using dvgrab 3.5
on a Linux machine. Uncompressed tiff frames where extracted
from the video using ffmpeg, and then converted to uncompressed
JPG using ImageMagick. The green trace corresponds to one of the
middle segments of the robot. In the upper-left corner the inset
shows a closeup of the modules with the position markers used for
locomotion tracking. Original footage is available as supplementary
data, available at stacks.iop.org/BB/6/016006/mmedia.

6.2. Second test: recovery after perturbation

In the second experiment, simulation begins with the CPG
at arbitrary initial conditions, as in the first one. The CPG
is left to evolve and settle at a stable steady state. At a
given interval in time, a noisy stimulus (random variable from
a uniform distribution in the interval [0, 30)) is applied to
all neurons in the CPG controlling the real robot. Analysis
is performed from the onset of the perturbation to a point
where locomotion is again stable (figure 16 and 17). During
perturbation the robot lies flat on the ground without making
any movement at all, not even small trembling of the motors.
Once the perturbation is over, neurons resume their activity and
a new synchronization process begins. During this process
locomotion is ineffective and the robot undulates in place,

Figure 13. Video tracking of the middle segment of the real robot,
locomoting in the stable regime. The X coordinate represents the
horizontal displacement from the left border of the recording area;
the Y coordinate represents vertical displacement from the ground.
The trace of the point is clearly periodic, a consequence of the
periodicity of the controller CPG.

without travelling (see the rectangle in figure 16). After a short
time synchronization is achieved and an effective locomotion is
re-established.

7. Discussion

CPGs are neural networks responsible for rhythmic behaviour
in animals. Based both on intrinsic neuron dynamics
and connectivity properties, CPGs generate and coordinate
rhythmic movements in a robust yet flexible manner modulated
by sensory feedback. Artificial CPG circuits are particularly
suitable for the design of autonomous modular robots, as CPG
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Figure 14. Video tracking of the real robot: vertical and horizontal
coordinates with respect to time. The bottom panel shows a steady
forward locomotion with an approximate overall speed of
1.4 cm s−1.

(a) (b)

Figure 15. (a) Hilbert transform of the vertical displacement of the
central module of the real robot (panel (a) in figure 14). The
analysed signal presents some anomalies (green rectangle) that
make instantaneous frequency interpretation invalid (here the phase
would go backwards, which is not a valid physical interpretation);
however, the analysis is still useful to convey an overall idea of the
behaviour of the system. The movement of the central module is
rhythmically stable, with constant amplitude and frequency. (b)
Phase difference of the central module with its predecessor and
successor modules. Since the analysis yields nonconstant
instantaneous frequency, instantaneous phase difference oscillates in
every cycle of the rhythm. However, the mean phase difference is
clearly bounded (mean: 1.55 ≈ π/2 rad; std: 0.39 rad).

control fully fits the idea of having variable number of modules
that are organized by the same scalable principles.

In this paper, we have analysed different strategies found
in recent research on living CPGs and tested them on an
example robotic platform. Then, we have dissected the
problem of designing a bio-inspired CPG for a modular robot
into individual independent problems. We have formulated
each problem in a way that is very general and should be
easily adapted for other robotic platforms. To begin with,
we have exposed the need for a mechanism to robustly encode
locomotion commands and still be flexible enough to negotiate
an effective rhythm, and have provided a solution based on

Figure 16. Recovery after a disruptive noise is applied to every
neuron controlling the real robot. A normal simulation is carried
out. At a given time a high level of noise (random uniform
distribution in the interval [0, 30)) is injected into every neuron of
the CPG. As a result of the noise, neurons stop displaying their
normal bursting activity and the CPG generates no oscillations at all.
Right after the noisy stimulus is released, neurons go back to their
bursting behaviour. The robot finds itself in an uncoordinated state
(activity surrounded by a rectangle). Eventually, the robot
resynchronizes itself and resumes forward locomotion.
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Figure 17. Recovery after a disruptive noise is applied to every
neuron controlling the real robot. A noisy stimulus is applied that
disrupts the activity of all neurons in the CPG. During this stimulus
the robot lies still on the ground without making any move. After
noise is removed, the robot begins searching for a synchronized
state. After only two oscillations, the robot is again moving forward
at an approximate speed of 1.5 cm s−1.

neuron models with multiple time scales. We have provided
a mechanism based on non-open topologies with mutual
inhibition that generates adaptable oscillations to control one
individual module.

The interface between neural language and servo
actuation is a bio-inspired integrator motoneuron model.
It is responsible for the decoding of the dynamics of
the CPG, and translating it into actual servo position
commands. Communication between servo and CPG to
promote adaptability is also possible. We have shown in a
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simulation that the oscillator can entrain a servo in a wide
range of situations, ranging from very fast servos to very slow
ones. In the appendix, we illustrate an implementation of
feedback to obtain entrainment. There, the oscillator shows
its ability to adapt its period well over several orders of
magnitude, depending on the capacity of the servo to follow
it. This ability is due to the fact that the neurons that compose
the oscillator have multiple time scales: the slow subsystem
may prolong its activity while the fast subsystem keeps on
oscillating. This translates into longer bursts, while individual
spikes are emitted at a constant frequency.

Then, we have built a modular and scalable inter-
module architecture, a non-open topology based on inhibitory
connections to first neighbours. This topology, together
with the intrinsic properties of the neurons, gives rise to a
winnerless competition [8] dynamics that allows modules to
exchange information and autonomously organize. Non-open
topologies, widespread in living CPGs, have proved to be the
most effective way of achieving rhythm autoregulation [6, 7].
We have quantitatively assessed the stability and robustness of
the rhythms produced by the proposed non-open architecture.
In particular, we have confirmed that under normal conditions,
the CPG is able to maintain stable amplitudes, frequencies
and phase differences. Moreover, it is able to recover from
perturbations and quickly regain normal activity.

Finally, hardware testing has confirmed that a CPG built
with these bio-inspired strategies can effectively drive a real
robot. After a short time of negotiation, the robot undulates
in forward locomotion with a steady speed. After a strong
perturbation to the CPG (running in open loop), the robot
recovers and resumes forward locomotion unaltered.

Recent theoretical and experimental evidence have
shown that the interplay between CPG network properties
and intrinsic activity in single neurons provides robust
and reproducible transient dynamics which is key to an
autonomous coordinated response [5, 8]. Our strategy to
build autonomous robots is based on connecting bio-inspired
building blocks with an appropriate topology, and we rely on
the properties of the elements so connected to negotiate an
effective locomotion plan.

The emphasis has been on a qualitative approach, where
the focus has been the selection of appropriate dynamical
properties of the building blocks of our CPG. We know
that living CPGs achieve similar behaviours with different
combinations of parameters [39, 40]. So despite the apparent
complexity of this approach, the fact that more parameters are
introduced in the design results in higher flexibility, rather than
increased complexity.

Living CPGs receive feedback from other CPGs, higher
centres and sensory receptors. Autoregulatory mechanisms
are essential in the ability of a CPG to adapt to external
circumstances. The proposed bio-inspired strategies are also
adequate for closed loop interaction and can lead to oscillation
period autoregulation, as we illustrate in the appendix.

Advances in CPG research in recent years provide new
bio-inspiration for robotic design. We believe that the
proposed design strategies can lead to CPG control paradigms
for autonomous locomotion that are less architecture specific

and provide solutions that present wider working regions in the
parameter space of the models. We plan to further investigate
and take advantage of how biological systems are able to
maintain their invariants and incorporate these new ideas into
autonomous robotic control.
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Appendix. Implementing entrainment between a
servo and its controller

The true power of a CPG controller lies in its ability to maintain
a certain rhythmic activity while adapting itself to external
conditions. The particular type of adaptation will depend
upon the configuration of the CPG. In this section, we will
briefly introduce a case study for a particular configuration.
We have performed several experiments to show how a
modular oscillator would react when coupled to different
servos in different working conditions, without modifying the
configuration of the CPG itself.

We simulate a servo using the following equation:

en = un − sn (A.1)

sn+1 = sn + μen, (A.2)

where sn is the servo position at time step n; un is the control
parameter indicating the target position and μ is a velocity
constant ranging from 0 to 1, whereby values of μ closer to 0
mean a very slow servo (up to infinitely slow, i.e. motionless
if μ = 0) and values closer to 1 mean a very quick servo (up
to infinitely quick, with only one time step of delay if μ = 1).

Coupling between the simulated servo and the CPG is
performed by using un = m(t) from (6) as the control
parameter. Then, for the promotor and remotor neurons of the
oscillator, the equation of synaptic input would read (compare
to the original in (3))

I p
n = g · rp

n · (
xp

n − Esyn
)

+ Aen (A.3)

I r
n = g · r r

n · (
xr

n − Esyn
) − Aen, (A.4)

where ‘p’ and ‘r’ denote whether the receiving neuron is
the promotor or the remotor neuron, respectively, and A is
a scaling factor that represents the importance of feedback.

Effectively, a modular CPG can be entrained with a servo
in this manner. Figure A1 depicts three working cases in which
three different servos are simulated, each one with different
working velocity. In all three cases the simulated CPG is
working with the same parameters. In the first case, a very
slow servo is simulated. The CPG sustains its activity for as
long as the servo needs to reach the final position. As faster
servos are simulated, the CPG oscillates ostensibly faster, up to
its nominal frequency for servos with μ close to 1. Figure A2
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-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0  2000  4000  6000  8000 10000

CPG
Servo

(b) µ = 0.0117, A = 1
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(c) µ = 0.1083, A = 1

Figure A1. Entrainment between a simulated servo and a modular CPG. Panels display CPG activity and corresponding servo position (in
degrees). The CPG reshapes its activity to accommodate the activity of the servo. Values of μ closer to zero indicate a slower servo; values
closer to 1 indicate a faster servo. The frequency of the CPG may be slowed down up to some orders of magnitude. Note the change in the
range of the axes. (a) An extreme example in which both the remotor and the promotor neurons wait for the servo to reach the targeted
position. (b) The CPG runs with a period of approximately 1500 time steps without feedback; in this example, the CPG has clearly adapted
its activity to a period well over 2000 time steps. (c) With a fast enough servo, the CPG runs close to its nominal regime.
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Figure A2. Period of oscillation (in time steps) of a servo in an
entrained setup, depending on servo capability and feedback
strength (note logarithmic scales in all axes). μ indicates the
responsiveness of the servo, ranging from 0 (motionless) to 1 (au),
an infinitely fast servo; A is a scaling factor for feedback, ranging
from 0, no feedback at all, to 1 (au); the error is fed back to the
CPG. Clearly, if the servo is fast enough (in the region μ ∈ [0.1, 1])
the period of oscillation does not depend on feedback strength. For
slower servos, feedback strength is definitely important in how long
the CPG will wait for it to reach the target position: for lower values
of A, the CPG is oscillating at its nominal frequency due to
insufficiently strong feedback, while for higher values of A, the
position error of the servo is taken into account, as is the case in
figure A1(a).

shows the simulated parameter region and how the CPG is
able to adapt its working period several orders of magnitude
beyond its nominal period.

The fact that the neurons that build the oscillator have
multiple time scales is key to the adaptability of the CPG.
With the proposed bio-inspired design, the CPG uses external
feedback to self-regulate its period, extending the length of
neural bursts. See for instance figure A1(a), where the CPG
is held in a steady state around 90◦, waiting for the servo to
reach that position. In this case, the fast subsystem (xn in

(1b)) oscillates unperturbed. If feedback is high enough, the
slow subsystem (yn in (1c)) is kept at a steady equilibrium that
prevents the burst from terminating.
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