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Abstract
In models of electrical stimulation of the nervous system, the electric potential is typically
calculated using the quasi-static approximation. The quasi-static approximation allows
Maxwell’s equations to be simplified by ignoring capacitive, inductive and wave propagation
contributions to the potential. While this simplification has been validated for bioelectric
sources, its application to rapid stimulation pulses, which contain more high-frequency power,
may not be appropriate. We compared the potentials calculated using the quasi-static
approximation with those calculated from the exact solution to the inhomogeneous Helmholtz
equation. The mean absolute errors between the two potential calculations were limited to
5–13% for pulse widths commonly used for neural stimulation (25 µs-1 ms). We also
quantified the excitation properties of extracellular point source stimulation of a myelinated
nerve fiber model using potentials calculated from each method. Deviations between the
strength–duration curves for potentials calculated using the quasi-static (σ = 0.105 S m−1) and
Helmholtz approaches ranged from 3 to 16%, with the minimal error occurring for 100 µs
pulses. Differences in the threshold–distance curves for the two calculations ranged from 0 to
9%, for the same value of quasi-static conductivity. A sensitivity analysis of the material
parameters revealed that the potential was much more strongly dependent on the conductivity
than on the permittivity. These results indicate that for commonly used stimulus pulse
parameters, the exact solution for the potential can be approximated by quasi-static
simplifications only for appropriate values of conductivity.

(Some figures in this article are in colour only in the electronic version)

List of symbols

α Attenuation constant, Np m−1

β Phase constant, rad m−1

ε0 Free space permittivity, 8.854 × 10−12 F m−1

εc Complex relative permittivity
εr Relative permittivity, Real {εc}
� Extracellular potential, volts
γ Propagation constant, m−1

σ Conductivity, S m−1

ω Angular frequency, rad s−1

ζ Impedance density, Ohm m

1. Introduction

Electrophysiological modeling studies are typically carried out
under the assumption that the dielectric properties of the tissue
and the nature of bioelectric sources allow for a quasi-static
solution for the potential. The quasi-static approximation
enables Maxwell’s equations to be simplified by ignoring
capacitive, inductive and wave propagation effects. The
basis for applying these simplifications to living tissue was
originally derived by Plonsey and Heppner (1967). Their
analysis was limited to signals generated by excitable cells
within the body, where the spectral content of the signal was
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Validity of the quasi-static approximation for neural stimulation

limited to frequencies below 1 kHz. They focused exclusively
on applications where the activity of this tissue is recorded at
the body surface (e.g. EEG, ECG, EMG). By contrast, neural
stimulation models are distinct from recording models in two
key ways. First, contemporary stimulators generate rapidly
rising, short duration pulses (∼100 µs), whose frequency
content extends well beyond 1 kHz. Second, the concern is
not only that the extracellular potential may be affected by the
quasi-static assumption, but that the outcome of stimulation
may also be affected. Neuronal excitation is a nonlinear
function of the extracellular potentials, and differences in
the spatiotemporal distribution of the potentials may affect
stimulus efficacy. These issues have not been addressed by
any previous examination of the quasi-static approximation.
The purpose of our investigation was to use first principles
to determine if this approximation significantly affects the
extracellular potentials generated by electrical stimulation, and
whether these changes altered stimulus efficacy.

Recent studies have provided evidence that tissue acts as a
frequency filter and argue that the quasi-static assumption may
not always be appropriate. Bedard et al (2004) modeled this
filtering effect in EEGs and local field potentials using spatial
profiles for the extracellular conductivity and permittivity.
Stinstra and Peters (1998) also modeled the tissue as being
inhomogeneous, but treated the material properties as being
frequency dependent. Both these studies showed that realistic
volume conductor models could possess frequency-filtering
characteristics. However, because the modeled signal sources
were biological, the spectral content of the signal was limited.
In addition, these studies focused on recording neural behavior,
rather than on trying to alter it. Thus, we gain no insight as to
whether their findings apply to neural stimulation.

An investigation by Butson and McIntyre (2005) implies
that the quasi-static approximation may lead to an overestimate
of the volume of tissue activated by neural stimulation.
Their model included electrode and tissue capacitances, and
incorporated realistic stimulus pulses. However, this analysis
did not consider the inductive and propagation effects present
in Maxwell’s equations (Plonsey and Heppner 1967). In
addition, the tissue conductivity was fixed, and only a limited
number of permittivities were considered. The dielectric
properties of tissue can exhibit strong frequency dependence
(Duck 1990, Geddes and Baker 1967, Pethig and Kell 1987,
Foster and Schwan 1989, Gabriel et al 1996a, 1996b, 1996c),
and the impact of this dependence on the potentials is unclear.

In this analysis, we considered the accuracy of the quasi-
static approximation for a neural stimulation model using
a first-principles approach. An analytical expression for
the potential in an infinite, homogeneous, isotropic volume
conductor using a point current source stimulus was derived
from the inhomogeneous Helmholtz wave equation. Using a
myelinated nerve fiber model, we demonstrate the similarity
between the strength–duration and threshold–distance curves
for potentials calculated using the quasi-static and Helmholtz
approaches. We also demonstrate that the potential is
much more sensitive to the choice of conductivity than to
the inclusion of the full range of dielectric phenomena.
For commonly used stimulus pulse parameters, the exact

solution for the potential can be approximated by quasi-
static simplifications only for appropriately selected values
of conductivity.

2. Theory

We calculated the potentials generated by a point source
electrode in an infinite, homogeneous, isotropic volume
conductor using both the quasi-static approximation and
the exact solution to the inhomogeneous Helmholtz equation.
The conductivity, σ (S m−1), represented the effective
conductivity of the material, and encompassed both the
static and alternating conductivities, (where the alternating
conductivity is brought on by the rotation of dipoles). The
permittivity, ε (F m−1), represented the product of the relative
permittivity, εr, and the free space permittivity, ε0. We will also
refer to the complex relative permittivity, which is classically
represented by the following expression:

εc = εr − j
σ

ωε0
(1)

where ω is the angular frequency. The complex permittivity
is obtained from this expression by multiplying by ε0. The
permeability, µ (H m−1), was assumed to be that of free space.

2.1. Quasi-static potential

Under quasi-static conditions, the potential was derived
through the integral solution to Poisson’s equation. This
exercise has been exhaustively documented (Plonsey and Barr
2000, Plonsey and Collin 1961, Johnk 1988, Balanis 1989),
and is withheld for brevity. The result is

�(R) = I

4πσR
. (2)

Here, � is the potential, I is the stimulus intensity and R is the
distance between the source and field points. The conductivity,
σ , is a real constant, and is not frequency dependent. For
all quasi-static simulations, the default conductivity was
0.105 S m−1. As discussed below, both the potential and
excitation thresholds are strongly dependent on σ , and the
above value was selected to minimize error in the potential for
100 µs pulses.

2.2. Time harmonic potential

When the quasi-static assumption is relaxed, the
inhomogeneous Helmholtz equation must be solved:

∇� − γ 2� = ∇ · J
jω(ε0εc)

= ∇ · J
σ + jωε

. (3)

The derivation of this equation is presented in the appendix.
Within the expression, J is the current density and γ is the
complex propagation constant, defined as

γ = α + jβ, (4)

where

α = ω
√

µε

{
1

2

[√
1 +

( σ

ωε

)2
− 1

]} 1
2

(5)
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β = ω
√

µε

{
1

2

[√
1 +

( σ

ωε

)2
+ 1

]} 1
2

. (6)

Here α (np m−1) represents the amplitude decay and β

(radians m−1) represents the sinusoidal phase shift. The
solution to equation (3) is typically expressed as an integral and
the analytical expression in spherical coordinates is (Balanis
1989, Johnk 1988)

�(r) = 1

4π(σ + jωε)

∫
V

∇ · J e−γ r

r
dV. (7)

Here, the volume integral is taken over all space. For a fixed
distance, R, from the source, this integral can be rewritten as
a surface integral using the divergence theorem. We can also
express the source current density in terms of the stimulus, I,
by assuming spherical symmetry. Making these modifications
and including unit vectors for a spherical coordinate system,
equation (7) becomes

�(R) = 1

4π(σ + jωε)

∮
S

(
1

R

)
I e−γR

4πR2
ar · arR

2 sin θ dθ dφ.

(8)

Analytical evaluation of this integral yields

�(R) = I e−γR

4π(σ + jωε)R
. (9)

This result assumes that the source is oscillatory at a single
frequency, ω. In general, we would like to write an expression
for the potential that reflects the broadband nature of the
stimulus current. Thus, the stimulus is written as a complex
exponential Fourier series:

I =
∞∑

n=−∞
Xn ejnω0t , (10)

and the expression for the potential becomes

�(R) =
∞∑

n=−∞

Xn e(jnω0t−γnR)

4π(σn + jnω0εn)R
. (11)

Note that the dielectric parameters in equation (11) have been
indexed to indicate their frequency-dependence, as described
in the following section. The constant, ω0, is the repetition
frequency for a periodic stimulus pulse train. Complex Fourier
coefficients, Xn, can be calculated for a specific stimulus
waveform.

2.3. Frequency-dependent dielectric properties

The dielectric properties of tissue are frequency dependent
(Duck 1990, Gabriel et al 1996c, Pethig and Kell 1987, Foster
and Schwan 1989). For a single polarization mechanism,
the complex relative permittivity can be approximated by the
Debye equation (Debye 1929):

εc(ω) = ε∞ +
εS − ε∞
1 + jωτ

. (12)

Here, ε∞ is the permittivity as ω → ∞, εS is the permittivity
as ω → 0 and τ is the relaxation time constant.

However, in tissue there are several polarization
mechanisms that result in multiple dispersions, including the
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Figure 1. Frequency-dependent relative permittivity (εr) and
conductivity (σ ) of gray matter. The properties were based on a
model developed by Gabriel et al (1996c). (a) The relative
permittivity. (b) The real and imaginary components of conductivity.
The ratio of the two components is also shown, for later comparison.

α, β, γ and δ dispersions, which are dominant at low, medium,
high and very high frequencies, respectively (note that α and
β, as used in this instance, do not indicate the components
of the propagation constant). Each of the dispersions can be
represented by a particular τ . Because these mechanisms
interact, each dispersion region is broadened. Cole and
Cole (1941) accounted for this effect by adding a distribution
parameter to the Debye equation (12), resulting in the Cole–
Cole equation:

εc(ω) = ε∞ +
εS − ε∞

1 + (jωτ)(1−α)
, (13)

where α is the distribution parameter (not to be confused
with either the type of dispersion or the attenuation constant).
Gabriel et al (1996c) used multiple Cole–Cole dispersions to
model the dielectric spectrum of various types of tissue:

εc(ω) = ε∞ +
4∑

n=1

�εn

1 + (jωτn)(1−αn)
+

σi

jωε0
. (14)

Note that a static ionic conductivity term is included to account
for the complete spectral behavior. In this expression, the �εn

are the changes in relative permittivity as a result of each
dispersion (α, β, γ and δ). It is also implicit in this equation
that the real and imaginary terms can be equated with the
corresponding terms in equation (1).

We used the parameters presented in Gabriel et al (1996c)
for brain gray matter. The permittivity was then determined by
multiplying the real part of equation (14) by ε0, at the frequency
of interest (figure 1(a)). Similarly, the frequency-dependent
conductivity (figure 1(b)) was determined by multiplying the
imaginary part of equation (14) by ωε0.
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Figure 2. Comparison of potentials calculated from the Helmholtz solution and the quasi-static approximation of potentials. (a) Diagram of
the four steps used to calculate the potentials. First, the periodic continuous time current pulse, I(t), was represented as complex Fourier
series coefficients I(ω) (open arrow). Second, the complex frequency-dependent impedances, Z(ω), were calculated for the Helmholtz and
quasi-static approaches. Third, the frequency-dependent potentials, V(ω), were obtained by multiplying I(ω) and Z(ω). Fourth, V(ω) was
multiplied by the complex time-dependent Fourier series term (ejnωot ) and the product was summed over the length of the series for each
time step (bold arrow), resulting in the potential as a function of time, �(t). (b) Time-domain current trace for a 1 mA cathodic pulse with a
duration of 100 µs. (c) Amplitude and phase characteristics of I(ω). (d–e) Magnitude and phase characteristics of Z(ω) for the Helmholtz
solution (d) and quasi-static approximation (e) (R = 1 mm). (f–g) Magnitude and phase characteristics of V(ω) for the Helmholtz solution
(f) and quasi-static approximation (g). (h and i) The complete time domain Helmholtz (h) and quasi-static (i) representations of �(t) both
demonstrated slight Gibbs phenomenon distortion and were quite similar. When the quasi-static potential was calculated directly, Gibbs
phenomenon was eliminated; however, the potential was the same as the truncated quasi-static potential in all other respects. All magnitude
and phase plots represent discrete Fourier series with Fo = 100 Hz and 5000 harmonics. Only frequency content up to 100 kHz is illustrated.

3. Methods

3.1. Stimulus waveforms

For all simulations, potentials were calculated from
equation (11) using MATLAB (The Math Works, Natick,
MA). The Fourier coefficients were determined for a square
pulse, with a repetition frequency of 100 Hz. The series was
truncated at 500 kHz, and to avoid aliasing, the sampling rate
was 10 MHz (20 times the highest frequency component in
the stimulus waveform). The waveforms were aligned such
that each pulse began at t = 500 µs. To ensure a baseline
potential of 0 V, a dc offset was subtracted from the time-
shifted stimulus. This offset was determined by taking the
mean of the potential from t = 0–20 µs.

3.2. Filtering properties of the Helmholtz solution

To compare and contrast the quasi-static and Helmholtz
methods, we examined their frequency filtering properties in
four steps (figure 2(a)). First, we computed the Fourier series
of the periodic square wave stimulus current, and determined
the amplitude and phase as a function of frequency, I(ω).
Second, we calculated the frequency-dependent impedance
used in the Helmholtz method, ZHelm(ω):

ZHelm(ω) = e−γR

4π(σω + jωεω)R
, (15)

and the frequency-independent resistance used in the quasi-
static method, Zquasi,

Zquasi = 1

4πσR
(16)

where R represents the radial distance from the electrode.
In the Helmholtz impedance, σω and εω were frequency
dependent (figure 1); however, in the quasi-static case, σ was
constant at 0.105 S m−1. The third step was to multiply the
frequency-dependent representations of the current, I(ω), and
impedance, Z(ω), to yield a Fourier series representation of
the potential, V(ω). Fourth, we calculated the time series
potential, �(t), using equation (11). These quantities allowed
us to compare the frequency filtering properties of the quasi-
static and Helmholtz methods.

We quantified the percent error between the quasi-static
estimate of the potentials, �quasi, and Helmholtz solution of
the potentials, �Helm, at a given distance (R) and time (t) as
follows:

Errorpercent = 100

∣∣∣∣�quasi(R, t) − �Helm(R, t)

�Helm(R, t)

∣∣∣∣ . (17)
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3.3. Neuronal excitation

We used a computer-based model of a myelinated nerve fiber
to quantify differences in neuronal excitation by potentials
calculated by the Helmholtz and quasi-static methods. The
nerve fiber model consisted of a 20 µm diameter myelinated
axon with 22 nodes. Each node contained leakage, fast
sodium, persistent sodium and slow potassium currents
(McIntyre and Grill 2000). Myelin internodes were 2 mm in
length, and were electrically insulated from the extracellular
space. Each node was 1.5 µm long, 12 µm in diameter and
had a membrane capacitance of 2.5 µF cm−2. All other nerve
fiber parameters were taken from McIntyre and Grill (2000).

We used monophasic, cathodic, extracellular stimulation
with a point source electrode to calculate strength–duration
and threshold–distance curves. For strength–duration curve
simulations, the electrode was positioned 1 mm above the
center node of the axon and the stimulus pulse width was
varied from 5 µs to 1 ms. Conversely, for threshold–distance
curve simulations, the stimulus pulse width was held constant
at 100 µs and the electrode-to-fiber distance was varied from
100 µm to 1 cm. At each electrode-to-fiber distance and
stimulus pulse width, we varied the amplitude of the stimulus
pulse until we identified the minimum current (threshold ±
0.2 µA) necessary to generate a propagating action potential
in the nerve fiber. Individual simulations were run for a full
period (10 ms) to determine whether a given stimulus pulse
activated the model axon.

We also computed input–output curves for activation
of a population of 100 identical parallel myelinated nerve
fibers positioned randomly within a sphere of 3 mm radius.
The stimulating point source electrode was positioned at the
center of the sphere. The center node of each model fiber
was positioned within the sphere by generating uniformly
distributed random 3D coordinates. Each axon extended
from the center node in both the positive and the negative
x-directions, and the transmembrane potential was recorded
at the end of each axon. Thresholds for each nerve fiber
with a pulse width of 100 µs were calculated in the same
manner as the strength–duration curves, and the percentage of
nerve fibers stimulated as a function of stimulation amplitude
was computed. Individual simulations were run for 5 ms—
sufficient time to determine whether a given stimulus pulse
activated the model axon. Potentials were only calculated for
the 2 ms period beginning from −0.5 ms before the start of the
pulse to 1.5 ms after the start of pulse, and were zero otherwise.
This period was considered sufficient because approximately
99% of the decay to rest occurred within 1.5 ms after the
beginning of these pulses.

Model nerve fiber simulations were implemented in
NEURON (Hines and Carnevale 1997), and Crank–Nicholson
integration was used to calculate the transmembrane potential
in response to the extracellular stimulation with a time step of
1 µs (population model) or 0.1 µs (all other simulations).

4. Results

We compared the electrical potentials and resulting patterns
of neuronal excitation calculated using both the quasi-static

approximation and the exact solution to the inhomogeneous
scalar Helmholtz equation.

4.1. Filtering properties of the Helmholtz solution

The filtering characteristics of the quasi-static and Helmholtz
impedances, and the corresponding effects on the potential
produced by a single stimulus pulse, are shown in figure 2.
The stimulus, I(t), had an amplitude of 1.0 mA, a pulse width
of 100 µs and a repetition frequency of 100 Hz (figure 2(b)).
The magnitude spectrum of the stimulus was a discretized
sinc function, with envelopes spaced at 10 kHz intervals
(figure 2(c)), and within each envelope, the phase decreased
linearly from 0 to −π (figure 2(c)).

While Zquasi had no frequency-dependent characteristics,
ZHelm(ω) acted as a weak low-pass filter. This was evident in
the magnitude of ZHelm(ω), which decreased as a function of
frequency (figure 2(d)). However, between 0 and 100 kHz, the
magnitude of ZHelm(ω) varied from the magnitude of Zquasi by
less than a factor of two (figures 2(d) and (e)), suggesting that
the filtering was somewhat weak. The phase angles of the two
impedances were also similar. The phase of Zquasi was always
zero, while the phase of ZHelm(ω) only varied from −0.25 to
0 rad at very low frequencies and was constant at ∼−0.1 rad
at higher frequencies (figures 2(d) and (e)).

When the frequency-dependent current and impedances
were multiplied, the magnitudes and phases of the frequency-
dependent quasi-static and Helmholtz potentials, V(ω), were
nearly indistinguishable (figures 2(f) and (g)). The magnitudes
of both potentials approximated discretized sinc functions with
envelopes spaced at 10 kHz intervals (figures 2(f) and (g)).
Within each envelope, the phase of the quasi-static potential
decreased linearly from 0 to −π rad (figure 2(g)), while
the phase of the Helmholtz potential decreased linearly from
0 to −3.25 rad (figure 2(f))—varying only slightly from the
quasi-static phase.

There were small but clear differences between time-
domain versions of the Helmholtz and quasi-static potentials
(figures 2(h) and (i)). As predicted by the magnitude
of ZHelm(ω), �Helm appeared to be low-pass filtered with
prolonged rise and fall times (figure 2(h)). Both �quasi and
�Helm exhibited ringing at the onset and offset of the pulses as
a result of truncating the Fourier series (figures 2(h) and (i)).
For all simulations except those reported in figure 2, the �quasi

were calculated directly from equation (2). Nevertheless, by
using the same Fourier series method to analyze both �quasi

and �Helm in figure 2, we verified that the differences between
�Helm and �quasi in subsequent analyses did not result from the
Fourier representation of �Helm.

4.2. Error analysis: quasi-static versus the Helmholtz
solution

We calculated the errors between �quasi and �Helm for
electrode-to-fiber distances ranging from 100 µm to 1 cm, and
for pulse widths that varied from 5 µs to 1 ms. The percent
error was not constant during a stimulus pulse, and the relative
errors peaked at the beginning and end of the pulses, while
the middle of the pulses was characterized by minimal errors
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Figure 3. The percent error between the quasi-static estimate of the
potentials, �quasi, and Helmholtz solution of the potentials, �Helm,
was small across pulse widths commonly used in neural stimulation.
(a) Sample traces of the potential as a function of time for five
different pulse widths (R = 1 mm). The dashed line represents the
magnitude of the quasi-static potential (σ = 0.105 S m−1). After the
pulse, the potentials calculated by the Helmholtz method decayed
by 80% within a time equal to 3% of the pulse width. (b) The
percent errors that were associated with the potentials shown in (a)
evolved as a function of time (R = 1 mm, σ = 0.105 S m−1). Note
the log scale on the abscissa. The spikes in the error that occur at the
end of a stimulus pulse reflect the rapid fall time in the quasi-static
case. (c) percent error averaged over the duration of the quasi-static
pulse for three estimates of quasi-static conductivity (0.105 S m−1,
0.10 S m−1 and 0.11 S m−1), with distance held constant at 1 mm.
Changing the quasi-static conductivity estimate by approximately
5% shifted the minimum of the error curve along the pulse duration
axis by approximately a factor of 2.

(figure 3(b)). To quantify the percent error associated with
a given stimulus pulse, we averaged the percent errors over
the duration of the quasi-static pulse (figure 3(c)). For pulse
widths less than 25 µs, the mean percent errors ranged from
15 to 34%. However, the mean relative error was only
5–13% for pulse widths generally used for neural stimulation
(25 µs to 1 ms), demonstrating that �quasi provided a
reasonable estimate of the extracellular potentials. We also
varied the electrode-to-fiber separation from 10 µm to 1 cm,
and with a 100 µs pulse, the relative error between the two
potentials remained constant at 5.4%.

The pulse duration at which the minimum error occurred
was strongly dependent on the conductivity. A ∼5% change
in σ resulted in a factor of two change in the pulse duration
at which the minimum error occurred (figure 3(c)). In
the following sections we provide further evidence that
the conductivity is the most crucial material parameter for
ensuring accuracy of the quasi-static approximation.

4.3. Sensitivity analysis

We conducted a sensitivity analysis to determine the effects of
the parameters of the Helmholtz solution (γ , ε and σ ) on the
potential (equation (9)).

4.3.1. Propagation effects. To determine the effects of
propagation due to the e−γ R term, we computed the magnitude
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Figure 4. Propagation effects (from e−γR) were negligible.
Magnitude and phase characteristics of Z(ω) are shown for the
Helmholtz solution with and without including these effects (R =
Rmax = 1 cm). The magnitude and phase characteristics of Z(ω)
were nearly identical for both cases. (Note that R is an order of
magnitude larger than that used in figure 2(d).) Only frequency
content up to 100 kHz is illustrated.

and phase of ZHelm(ω) at a maximum distance of 1 cm from
the electrode, both with and without propagation effects.
When propagation was excluded, the magnitude and phase
of ZHelm(ω) did not change (figure 4); therefore, propagation
effects can be neglected.

4.3.2. Sensitivity to conductivity and permittivity. To
determine the effects of the permittivity and conductivity
on the Helmholtz solution, we doubled and halved each
parameter and examined the magnitude and phase of the
radius-independent impedance density, ζ (ω):

ζ(ω) = 1

(σ + jωε)
. (18)

When the conductivity was halved or doubled, both the
magnitude and phase of ζ were doubled or halved (figure 5(a)).
On the other hand, when the permittivity was halved or
doubled, the phase of ζ was also halved or doubled, while
the magnitude of ζ did not change (figure 5(a)).

The effects of changing the conductivity and permittivity
were not limited to ζ ; similar changes were observed in
�Helm. When the conductivity was halved or doubled, �Helm

was also halved or doubled (figure 5(b)). In contrast, when
the permittivity was approximately halved or doubled, �Helm

changed by only 2–11% (figure 5(c)). These results indicate
that �Helm is more sensitive to changes in conductivity than
changes in permittivity.

4.4. strength–duration and threshold–distance
characteristics

We assessed the differences in neural excitation thresholds
between �quasi and �Helm. Neuronal excitability was more
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Figure 5. Potential was more strongly dependent on the
conductivity than on the permittivity. (a) The magnitude and phase
of the impedance density, ζ (ω), are shown for baseline
frequency-dependent dielectric properties, as well as for cases
where either the conductivity or permittivity was doubled or halved,
while the other was held constant. The magnitude was sensitive to
changes in conductivity, but not changes in permittivity. In contrast,
the phase was equally sensitive to changes in conductivity and
permittivity. Only frequency content up to 100 kHz is illustrated.
(b) The potential as a function of time for normal, halved and
doubled conductivity. (c) The potential as a function of time for
normal, halved and doubled permittivity. The potential was much
more sensitive to changes in the conductivity than to changes in the
permittivity. PW = 100 µs for (a–c), R = 1 mm for (b) and (c).

strongly dependent on the conductivity than on carrying out
the full Helmholtz solution. When the myelinated axon was
stimulated by �quasi calculated with the baseline conductivity
(σ = 0.105 S m−1), the strength–duration curves (figure 6(a))
and threshold–distance curves (figure 6(b)) were very similar
to those calculated with �Helm. The percent error between the
threshold current calculated with �quasi (σ = 0.105 S m−1)
and the threshold current calculated with �Helm ranged from
3 to 16% (figures 6(a) and (b)) for pulse durations ranging
from 25 µs to 1 ms (electrode-to-fiber distance = 1 mm), and
across distances from 100 µm to 1 cm (pulse width = 100 µs).
However, when the conductivity used to calculate �quasi was
halved or doubled, the thresholds for neuronal excitation were
approximately halved or doubled (figure 6(a)). These results
provide evidence that the excitation thresholds were more
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Figure 6. Neuronal excitability was similar for quasi-static
estimates and Helmholtz solutions for the potential.
(a) strength–duration curves are shown for an axon 1 mm from the
point source electrode. Extracellular potentials were calculated from
the Helmholtz solution and the quasi-static approximation with three
different conductivities (0.05 S m−1, 0.105 S m−1 and 0.2 S m−1).
(b) threshold–distance curves for a stimulus pulse width of 100 µs.
For the Helmholtz solution, potentials were calculated over a full
period (10 ms), starting from 0.5 ms before the beginning of the
pulse and ending 9.5 ms after the beginning of the pulse. Note that
the distance, pulse duration and threshold current axes are scaled
logarithmically, while the percent error axis is scaled linearly.

sensitive to the value of conductivity than to whether the
potential was calculated with the quasi-static assumption or
the full Helmholtz solution.

4.5. Input–output characteristics

We assessed the differences in neural recruitment between
�quasi and �Helm. Input–output curves calculated with �quasi

and the baseline conductivity (σ = 0.105 S m−1) were very
similar to those calculated with �Helm (figure 7). Similar to
the case of a single fiber, the excitation of a population of
neurons was strongly dependent on the conductivity. When
the conductivity was halved or doubled, the amount of current
required to excite a particular percentage of the fibers was also
approximately halved and doubled, respectively.

5. Discussion

The objective of this study was to determine whether
the quasi-static approximation is appropriate for calculating
the potentials in models of extracellular stimulation of
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Figure 7. Input–output properties of a population of 100 randomly
positioned axons activated by extracellular stimulation, with
potentials calculated by Helmholtz and quasi-static methods. Three
conductivity estimates were used for the quasi-static approximation
(0.05 S m−1, 0.105 S m−1 and 0.2 S m−1).

neurons. In contrast to previous analysis that only considered
low frequency biopotentials (Plonsey and Heppner 1967),
this analysis considered the wide-band nature of potentials
generated by rapid stimulating pulses, as well as the effects
of the potentials on neuronal excitation. The quasi-static
approximation is valid for pulse widths typically used for
neural stimulation (∼100 µs) when the value of conductivity
is selected appropriately (∼0.105 S m−1 for gray matter).
The quasi-static approximation may lead to substantial errors
depending on the duration (frequency content) of the stimulus
pulse and on the value of the modeled conductivity (figure 6).
To understand why the quasi-static approximation is valid for
the particular conditions analyzed here, some discussion of the
loss terms in equation (9) is required.

5.1. Loss due to damping and phase delay

There are two components that contribute to loss in traveling
waves: damping and phase delay. For the potential described
by equation (9), damping is caused by the α component of the
propagation constant (γ , equation (4)) and by the factor R in the
denominator. For the frequencies considered here, α ranges
from 10−3 to 10−1 Np m−1. Because distances are limited to
�1 cm, the range of attenuation resulting from exponential
damping is only 0.998–0.999. Thus, as demonstrated in
figure 4, this term is not significant. On the other hand, the
damping that results from the 1/R term is substantial. This
factor changes the potential by an order of magnitude for an
order of magnitude change in R.

The other component of loss, phase delay, also contributes
little to the potentials. The solution to the Helmholtz equation
introduces two sources of phase delay. The first is the βR
component of the propagation constant; the other is the phase
angle of ζ , the impedance density (equation (18)). The delay
contributed by the propagation constant is shorter than the
period of any of the sinusoids that make up the stimulus
pulse by more than three orders of magnitude (figure 8).
Additionally, the delay contributed by ζ is shorter than the
period of any of the sinusoids by more than one order of
magnitude, and for most frequencies, it is shorter by nearly
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Figure 8. Phase delay resulting from impedance density and
propagation effects. The impedance density results in a much larger
phase delay than that from the propagation term, but is still more
than an order of magnitude smaller than the period of each
frequency that makes up the stimulus pulse.

two orders of magnitude. For the delay to have a major
effect, the phase of each sinusoid would have to be shifted
enough that the stimulus pulse is disrupted through destructive
interference. For the relevant frequencies, the delay is limited
to only 1/10 to 1/100 of the period, which is not sufficient to
substantially disrupt the resulting potential.

Considering the effects of both α and β, it is clear that, for
physiologic distances, the propagation effects represented by
the e−γR term in equation (9) can be ignored. A similar result
is obtained for the jωε term in ζ (equation (18)), with a note
of caution. The jωε component, which represents capacitive
effects, is responsible for the qualitative changes in stimulus
pulse morphology (figure 2(h)). The impact of this term on
the potential will depend strongly on the frequency content of
the stimulus pulse and the specific dielectric properties of the
tissue. For the model of gray matter used in this study, σ is
the dominant term in ζ (figure 1(b)), and both ζ and �(t) are
much more dependent on σ than on ε (figures 6 and 7).

5.2. Comparison with classic quasi-static criteria

The bases for the quasi-static assumption were summarized in
Plonsey and Heppner (1967). Several criteria were given for
determining whether the propagation, inductive and capacitive
effects could be ignored in Maxwell’s equations. Here, we
compare our findings with these criteria.

As stated above, the propagation effect is represented
by the e−γ R term in equation (9). This effect is considered
negligible if |γ R| � 1. In the present study, γ is frequency
dependent; however, worst-case parameter values provide an
upper bound. With α = 0.1 Np m−1, β = 0.25 rad m−1 and R =
0.01 m, we have |γ R| = 0.0027 rad. Thus, our finding that
propagation effects can be ignored is in agreement with this
criterion.

51



C A Bossetti et al

If inductive effects are ignored, the Helmholtz equation
(equation (3)) can be simplified to Poisson’s equation, by
ignoring the jωA term in the expression for E (equation (A.1)).
Inductive effects are negligible if |γ R|2 � 1. So as long as
the propagation effect is negligible (i.e. |γ R| � 1), then the
inductive effect can also be ignored.

If capacitive effects are ignored, the medium is considered
purely resistive and the jωε term in the denominator of
equations (3) and (9) can be neglected. This simplification
can be made if ωε/σ � 1, which states that the capacitive
current must be much smaller than the conductive current.
Again, these parameters are frequency dependent, but can be
bounded. The ratio ranges from 0.24 at 100 Hz to 0.09 at
600 Hz. Across the spectrum (100 Hz to 500 kHz), the
mean value of the ratio is approximately 0.17 (figure 1(b)).
According to Plonsey and Heppner (1967), the criterion is
fairly well satisfied for this range of values. Our finding that
�quasi differs from �Helm by less than 13% leads us to conclude
that the capacitive term can be ignored, under the conditions
used in this study. However, of the three mathematical
simplifications that make up the quasi-static approximation,
elimination of the capacitive effects is the most questionable.
The frequency content of the stimulus pulse and dielectric
properties of the tissue must be considered before making this
simplification.

5.3. Limitations

Several limitations of our computational approach require
discussion. First, we approximated the stimulating electrode
as a point source. For distances �50 µm from the electrode
tip, a finely tipped microelectrode can be well approximated
by a point source (McIntyre and Grill 2001). We examined
the potentials at distances �100 µm from the source. While
it is true that a given type of electrode may not lend itself to
this approximation, the purpose of our study was to address
the errors associated with the quasi-static assumption, not
electrode geometry.

We used a model of dielectric tissue properties based
on Gabriel et al (1996c), which itself may have several
limitations. First, as a result of the impedance of the
measurement electrodes, the measurements on which the
model was based may contain errors at frequencies less
than 1 kHz and substantial errors at frequencies less than
∼100 Hz (Gabriel et al 1996b). The authors indicate that
these errors may affect the permittivity by a factor of two
or three. However, our results showed that the potential is
relatively unaffected by changes in ε. Second, this model
does not incorporate tissue inhomogeneities. However, over
the distances considered, it is reasonable to assume that the
material is homogeneous. Finally, the model does not include
anisotropy. Since the conductivity has a significant effect on
the potential, and conduction can vary greatly between the
longitudinal and transverse directions in a group of parallel
fibers, care should be taken when applying the results of this
study to tissue with a preferred orientation.

Another limitation was that a truncated Fourier series
was used to approximate the square wave stimulus. Gibbs

phenomenon was apparent in the time-domain potential
solutions (figure 2), and the magnitude of the overshoot was
approximately 9% of the stimulus magnitude. Even though
these artifacts may not be representative of physical stimuli,
our stimulus pulses exhibited 0.9 µs rise times, which is typical
for commercially available stimulators. In addition, most of
the power in this signal was located at frequencies below
10 kHz, and including frequencies as high as 500 kHz allowed
us to represent accurately the power spectral density of the
square wave stimulus.

Finally, there are several clinical features that were not
accounted for in our model. For example, clinical stimulators
typically apply charge-balanced, biphasic pulses, rather than
monophasic pulses. However, complex pulse shapes can easily
be implemented with our approach, through the use of the
Fourier series. It is also well established that significant
capacitance exists at the electrode–tissue interface. Again,
such a feature could be incorporated for a more complete
model. Our objective, though, was to study the validity of a
common mathematical assumption used in stimulation models,
rather than to investigate the effects of these clinical features.

6. Conclusion

The quasi-static approximation is a widely used simplification
in electrophysiological modeling studies. To date, the validity
of this simplification has not been thoroughly analyzed for
neural stimulation, where the frequency content of a stimulus
pulse extends well beyond that of bioelectric sources. We
used the Helmholtz wave equation to determine the exact
solution for the potential developed by a point source of current
in a homogeneous isotropic medium. Within this model,
we incorporated frequency-dependent dielectric properties,
to account for tissue filtering characteristics. We then
compared the resulting potential with that calculated using
the quasi-static approximation. Because neural excitability is
a nonlinear function of the extracellular potentials, we also
compared the efficacy of stimulation of the two methods. We
found that the errors between �quasi and �Helm were 5–13%, the
errors in strength–duration curves were 3–16%, and the errors
in threshold–distance curves were 0–9% for pulse widths from
25 µs–1 ms. These results highlight the similarity between the
errors in the potentials and the errors in neuronal excitation.

These findings lead us to conclude that the quasi-
static approximation is valid only over a limited range of
conductivity. The phase delay and damping that result
from propagation effects are completely negligible over
physiologically relevant distances. Using the classic quasi-
static criterion, the Helmholtz wave equation can be simplified
to Poisson’s equation, since inductive effects are also
negligible. The most questionable simplification is whether
the capacitive term can be neglected. Under the conditions
established in our model, the capacitive term could be ignored,
since the errors associated with its absence were limited
to 16%. In general, before neglecting tissue capacitance,
the criterion given in the section 5.2 should be consulted.
Ultimately, the most important dielectric property is the
conductivity. We estimate that for gray matter, choosing
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σ = 0.105 S m−1 results in a neural response that is similar to
that of the exact solution.

Acknowledgments

This work was supported by NIH grant R01 NS040894,
a graduate research fellowship from the National Science
Foundation and DARPA contract N66001-02-C-8022. The
authors would also like to thank Dr S Nagarajan for his
comments on the vector potential.

Appendix: Derivation of the inhomogeneous scalar
Helmholtz equation

In this appendix, the expression for the inhomogeneous scalar
Helmholtz equation is derived. We start from the expression
for the electric field (E), in terms of the vector potential (A)
and scalar potential (�).

E = − jωA − ∇�. (A.1)

Taking the divergence of both sides yields

∇ · E = ∇ · (−jωA − ∇�)

= −jω(∇ · A) − ∇2�. (A.2)

According to the Helmholtz theorem, a vector is uniquely
defined if its curl and divergence are specified. The curl of
A is established by its definition (B = ∇ × A). We are at
liberty to choose its divergence. A typical assumption, which
is appropriate in this case, is the Lorentz condition (or gauge):

∇ · A = −jωεµ�. (A.3)

Here, ω is the angular frequency, ε is the permittivity
and µ is the permeability. Substituting this selection into
equation (A.2) and simplifying yield

∇ · E = −ω2µε� − ∇2�. (A.4)

Using the differential form of Gauss’ law,

∇ · E = ρ

ε
, (A.5)

we can rewrite equation (A.4)

∇2� + ω2µε� = −ρ

ε
. (A.6)

However, we would like to represent the scalar potential in
terms of the stimulus current density, J, rather than the charge
density, ρ. Therefore, we employ the time-harmonic form of
the law of conservation of charge,

∇ · J = −jωρ. (A.7)

Substituting this relation into equation (A.6)

∇2� + ω2µε� = ∇ · J
jωε

. (A.8)

This result represents the case of a lossless material. For a lossy
dielectric, the permittivity must be replaced by the complex
permittivity, as described in the section 2 (equation (1)).

∇2� + ω2µ
(
ε − j

σ

ω

)
� = ∇ · J

jω
(
ε − j σ

ω

) . (A.9)

Simplifying and rearranging the terms

∇2� − [jωµσ − ω2µε]� = ∇ · J
σ + jωε

. (A.10)

The portion in brackets is referred to as γ 2. Thus, the final
result is

∇2� − γ 2� = ∇ · J
σ + jωε

. (A.11)

Note that this representation of γ 2 agrees with the
nomenclature used in Plonsey and Heppner (1967), except
for a minus sign. This choice will not affect the solution to
the Helmholtz equation, in which the sign of the exponent is
chosen to match physical conditions.
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