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People manage emotions to cope with life’s demands1,2. 
Previous research has identified affective patterns using 
self-reports3 and text analysis4,5, but these measures track 
the expression of affect, not affective preference for external 
stimuli such as music, which affects mood states and levels 
of emotional arousal1,6,7. We analysed a dataset of 765 mil-
lion online music plays streamed by 1 million individuals in 51 
countries to measure diurnal and seasonal patterns of affec-
tive preference. Findings reveal similar diurnal patterns across 
cultures and demographic groups. Individuals listen to more 
relaxing music late at night and more energetic music during 
normal business hours, including mid-afternoon when affec-
tive expression is lowest. However, there were differences 
in baselines: younger people listen to more intense music; 
compared with other regions, music played in Latin America 
is more arousing, while music in Asia is more relaxing; and 
compared with other chronotypes, ‘night owls’ (people who 
are habitually active or wakeful at night) listen to less-intense 
music. Seasonal patterns vary with distance from the equa-
tor and between Northern and Southern hemispheres and are 
more strongly correlated with absolute day length than with 
changes in day length. Taken together with previous findings 
on affective expression in text4, these results suggest that 
musical choice both shapes and reflects mood.

Individuals manage mood to function productively and cope 
with the demands of daily routines1,2. The way in which a person 
chooses to regulate their mood has consequences for mental health, 
interpersonal functioning and personal well-being8; social network-
ing, exercise and meditation generally have positive consequences, 
while cigarettes, drugs and alcohol can be detrimental9. People may 
also choose to regulate their mood through media consumption, 
including movies, TV, books and music. Among these media, music 
is unique in predating recorded history as a universal component 
of human life10,11, one that both reflects and alters levels of emo-
tional arousal1,6,7, energy, wakefulness12 and tension1,7. Music is also 
uniquely omnipresent, serving as a background soundtrack to both 
leisure and work activities13, with reported listening time averaging 
up to 44% of waking hours14. While consumption of other media 
may also be useful for understanding emotion management, the 
omnipresence of music affords a singular opportunity to identify 
diurnal and seasonal patterns in listener’s musical choices, at a very 
high level of temporal granularity and across diverse cultures and 
demographic groups.

Previous research on music consumption has relied largely on 
self-reports, surveys and laboratory experiments, with severely 
restricted numbers of participants, observation periods and geo-
graphic ranges, and without representative or naturalistic musi-
cal stimuli14. These limitations can now be overcome due to the  

rapidly growing use of mobile devices and music-streaming services 
worldwide. Almost half (45%) of Internet users aged 16–64 actively 
access licensed music throughout the day using streaming services15 
on a variety of devices, such as mobile phones, computers and smart 
speakers15–17. Of equal importance, detailed sonic and affective attri-
butes are now available for millions of individual songs14.

The growth of text-based social media has enabled a growing 
number of large-scale studies of global affect using text analysis. 
Recent studies used Twitter and Facebook data to take ‘the pulse of 
the nation’18, for cross-cultural comparisons of diurnal and seasonal 
patterns of positive and negative affective expressions4, to measure 
affective responses to events19 and track the consequences of shared 
emotionally salient news feed content20.

Music listening differs from what people write in that it offers 
insight not only into what people may be feeling but also what they 
may want to feel. Put another way, people can choose which music 
to consume to achieve a desired mood (along, of course, with pur-
poses unrelated to mood management, such as learning to sing or 
play the song). While previous studies of social media postings make 
it possible to track daily and seasonal patterns of affective expres-
sion, music consumption offers an unprecedented opportunity to 
identify global patterns of affective preference. Affective expression 
exposes others (the readers) to the writer’s emotional content; con-
versely, the choice of music is a ‘revealed preference’21 for exposure 
to emotional content created by others. In short, tracking the tem-
poral patterns of affective preference can offer a more complete pic-
ture of the emotional rhythms in human behaviour, beyond what 
has been learned from previous studies of affective expression.

To that end, we report hourly, daily and seasonal patterns of 
affective preference based on musical choices on a global scale. This 
descriptive account does not attempt to answer important questions 
about the motivations that shape listening behaviour, the emotional 
effects of music exposure or the latent cognitive strategies in mood 
management. Instead, we contribute an empirical foundation for 
future investigations by tracking the affective content of the music 
people choose to listen to, broken down by hour, day and month, 
and by user demographics and global locations.

Accordingly, we analysed hourly, daily and seasonal changes 
in affective preferences as revealed by the choice of online music 
streamed via Spotify around the clock across 51 countries. For 
each listener with at least 25 completed plays, we collected up to 
1,000 completely played tracks (mean (M) =  771.9; s.d. =  336.8). 
The set of listeners comprised a stratified random sample of one 
million worldwide Spotify users, matching each country’s age 
and gender distribution on Spotify with current data from the 
Central Intelligence Agency’s The World Factbook22. This sample 
included a total of 765 million tracks played between 1 January and  
31 December 2016. Completed plays measure active self-exposure 
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to music, excluding any songs the user may have sampled and dis-
carded (see ‘Completed plays’ in the Methods for more details).

Spotify offers a way to analyse each track using 11 highly corre-
lated audio attributes: acousticness, danceability, duration, energy, 
instrumentalness, liveness, loudness, mode, speechiness, tempo 
and valence. Principal component analysis (PCA) identified a latent 
construct that accounts for 29.4% of the variance in the correlation 
matrix (see ‘Musical intensity measured by audio features of a track’ 
in the Methods for more details). This principal component corre-
sponds to musical intensity, ranging from highly relaxing (acoustic, 
instrumental, ambient, and flat or low tempo) to highly energetic 
(strong beat, danceable, loud and bouncy).

Aggregate temporal patterns in music consumption confound 
within-individual diurnal rhythms with between-individual differ-
ences in the hours when individuals with different baseline pref-
erences for musical intensity tend to listen to music. Accordingly, 
we removed between-individual differences by mean-centring each 
individual’s intensity scores such that every individual has the same 
baseline affective preference. We then restored between-group dif-
ferences (for example, when comparing men and women or days 
of the week) by adding the group mean as a constant to the scores 
of each individual group member (see ‘Measures of within- and 
between-individual affective preferences’ in the Methods for more 
details). Thus, the reported temporal dynamics reflect changes over 
time for a prototypical group member, while differences in the inter-
cept reflect between-group differences in baseline intensity scores.

Figure 1 reveals qualitatively identical patterns of affective pref-
erence for musical intensity on a global scale across days of the week. 
Musical intensity levels were highest between 08:00 and 20:00, and 
lowest around 03:00, with a 5-h rise (between 03:00 and 08:00) and 
a 7-h decline (between 20:00 and 03:00). Maximum intensity was 
sustained for 12 h (from 08:00 to 20:00), while minimum intensity 
reversed quickly and lasted only about 1 h (from 03:00 to 04:00 on 
weekdays and 04:00 to 05:00 on weekends). Although the timings 
of minimum and peak intensity were nearly identical for all 7 d, the 
baseline intensity level was higher on Friday and Saturday than on 
other days, especially in the evening when weekend social activities 
are likely (M =  0.879 and 0.883 for Friday and Saturday, compared 
with 0.820 <  M <  0.852 for other days; P <  0.001 for all pairwise 
comparisons; all tests for equal means throughout the paper use 

Welch’s t-test to correct for unequal size and variance between 
paired samples; see Supplementary Table 1 for additional statistical 
details). The morning dip on Saturday and Sunday was delayed by 
1 h (from 03:28 to 04:28), suggesting that listeners may have been 
sleeping in.

Overall, the diurnal pattern is remarkably similar to the tempo-
ral changes in positive affect reported in previous research using 
sentiment analysis of time-stamped Twitter messages4 to measure 
user’s affective expression. Nevertheless, we discovered one striking 
exception: people the world over continue to choose highly intense 
music throughout the day, despite the mid-afternoon slump that 
is registered by what they write on Twitter. The dynamic congru-
ence with positive affect and non-congruence with negative affect 
suggest an intriguing hypothesis for future research: listeners select 
arousing music that matches their positive mood and offsets their 
negative mood.

Figure 2 shows that the diurnal pattern is highly consistent across 
five geographic regions—Latin America, North America, Europe, 
Oceania and Asia (Fig. 2a)—and across demographic groups based 
on gender (Fig. 2b), age (Fig. 2c) and chronotypes (Fig. 2d). Although 
the overall temporal pattern is highly robust, there are interesting 
between-group baseline differences. Music played in Latin America 
(M =  1.053) is relatively more intense, and music in Asia is more 
relaxed (M =  0.698) compared with Oceania (M =  0.807), Europe 
(M =  0.804) and North America (M =  0.830; P <  0.001 for eight 
pairwise comparisons of Latin America with the four other regions 
and Asia with the four other regions; see Supplementary Table 1 for 
additional statistical details). This result corroborates and extends 
survey- and experiment-based findings that show cultural differ-
ences in affective preferences23. These studies suggest that there 
may be cultural differences in preferences for high-arousal positive 
affective states, such as excitement or enthusiasm, and low-arousal 
positive affective states, such as calm and peacefulness, between, for 
example, Western and East Asian cultures.

Across the globe, intensity scores also differ by age and gender. 
As people get older, they listen to less-intense music (M =  1.162, 
0.970, 0.841, 0.769 and 0.484, respectively, for the five age groups 
from 10–19 to over 50; P <  0.001 for all pairwise comparisons; see 
Supplementary Table 1 for additional statistical details). Intensity 
scores were lower for music streamed by women (D =  − 0.037; 
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Fig. 1 | Millions of global music plays reveal diurnal affective patterns. Within-individual hourly changes in mean musical intensity scores for the global 
user population, broken down by day of the week, with 95% confidence intervals (translucent regions). The colours represent the days of the week, and 
hours were normalized to the local time (see ‘Dataset description’ in Methods). The x axis is the hour, beginning at midnight, and the y axis is the mean 
within-individual musical intensity score for each of 24 h over 7 d. The score represents the level of musical intensity among complete plays by the subset 
of active users during a given hour. Musical intensity levels were lowest around 03:00, with the exception of a weekend delay of 1 h (from 03:28 to 04:28), 
increased for about 5 h (between 03:00 and 08:00) and then were sustained for 12 h (from 08:00 to 20:00). Although the diurnal pattern was similar 
across all 7 d, the baseline intensity level was higher on Friday (M =  0.879) and Saturday (M =  0.883), and lower on Sunday (M =  0.820), compared with 
the other 4 d (M =  0.828, 0.835, 0.843 and 0.852, respectively, for Monday–Thursday; P <  0.001 for all pairwise comparisons). See Supplementary Table 1 
for additional statistical details.
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Fig. 2 | Diurnal affective patterns are robust across diverse geographic regions, demographic groups and chronotypes. a–d, Hourly within-individual 
changes in mean musical intensity scores across diverse geographic regions (a) and demographic groups based on gender (b), age (c) and chronotypes 
(d). Chronotypes are defined as 6-h intervals beginning at midnight when users are most active. The translucent regions represent 95% confidence 
intervals. The colours represent different groups by region, gender, age and chronotype. The x axis is the hour, beginning at midnight and normalized to the 
local time (see ‘Dataset description’ in Methods). The y axis is the mean within-individual intensity score for each of 24 h over 7 d. The score represents the 
level of musical intensity among complete plays by the subset of active users during a given hour. Musical intensity exhibits a dip in the morning (around 
03:00), with a quick reversal and relatively constant plateau during working hours. However, there are between-group baseline differences. Across 
different geographical regions (a), music played in Latin America (M =  1.053) is relatively more intense and music in Asia is more relaxed (M =  0.698) 
compared with other regions (M =  0.807, 0.804 and 0.830 for Oceania, Europe and North America, respectively; P <  0.001 for all pairwise comparisons 
except Europe–Oceania with P =  0.633). In b, intensity scores are lower for music streamed by women (D =  − 0.037; P <  0.001). As people age (c), they 
listen to less-intense music (M =  1.162, 0.970, 0.841, 0.769 and 0.484, respectively, for the five age groups from 10–19 to over 50; P <  0.001 for all pairwise 
comparisons). Finally, night owls (d) listen to more-relaxing music (M =  0.684) than other chronotypes (M =  0.834, 0.861 and 0.903, respectively, for 
morning, afternoon and evening; P <  0.001 for all pairwise comparisons). Night owls also display a longer rise and larger increase in musical intensity from 
the morning dip to the afternoon peak (D =  0.412), and this temporal increase is larger among night owls compared with the increase among the other 
chronotypes (D =  0.280; P <  0.001). See Supplementary Table 1 for additional statistical details.
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t =  − 26.04; d.f. =  1,033,792; P <  0.001), especially in the evening. 
Curiously, however, this global gender difference masks large gen-
der differences on opposite sides of the equator, as reported in 
Supplementary Fig. 1a. Women stream music with higher inten-
sity than men in the Southern Hemisphere (D =  0.017; t =  6.50;  
d.f. =  262,409; P <  0.001), while the pattern is the opposite in the 
Northern Hemisphere (D =  − 0.054; t =  − 32.31; d.f. =  771,029; 
P <  0.001).

The temporal dynamics are also similar across three of four chro-
notypes. Chronotypes were defined by when users are most actively 
listening, in six-hour increments beginning at midnight. The out-
lier group is the night owls whose baseline music intensity scores 
(M =  0.684) are lower than the scores for the other three chrono-
types, with group averages increasing with the time of day during 
which users are most likely to listen (M =  0.834 for morning people, 
M =  0.861 for afternoon people and M =  0.903 for evening people; 
P <  0.001 for all pairwise comparisons; see Supplementary Table 1  
for additional statistical details). These diurnal patterns among 
chronotypes closely resemble the previous findings4 based on affect 
words in Twitter messages, suggesting that music consumption is 
closely aligned with the emotions people express. However, there 
is an interesting difference with affective expression in the behav-
iour of night owls who tend to prefer more relaxing music overall, 
yet display a larger increase in musical intensity during the daytime 
(D =  0.412; t =  239.66; d.f. =  2,648,000; P <  0.001 for the compari-
son between 04:00 and 18:00) compared with the daytime increase 
for the other 3 chronotypes (D =  0.280; t =  344.11; d.f. =  4,300,469; 
P <  0.001). A possible explanation is that night owls may need stron-
ger musical stimuli to stay alert during the day.

Figure 3 reports weekly and monthly changes in music consump-
tion that suggest that people have seasonal music preferences24,25. 
Previous research using self-reports found that listeners prefer highly 
arousing music during warmer months and serene music in colder sea-
sons25,26, but these studies were based on self-reports from small sam-
ples in specific countries. Figure 3 confirms these results on a global 
scale, except during winter weeks when music listening is dominated 
by ceremonial holiday music for Christmas and Carnival. Intensity 
scores peak around the summer solstice (D =  0.078; t =  507.83; 

d.f. =  107,747,995; P <  0.001 for the mean difference in intensity 
between summer weeks 24–28 and all other weeks). Intensity scores 
then decline with day length, but the seasonal variation decreases 
with proximity to the equator. Remarkably, music associated with 
late-December holidays is associated with a steep winter decline 
in intensity in the Northern Hemisphere and a sharp uptick in the 
Southern Hemisphere, suggesting that seasonal variation associated 
with holiday music can depend decisively on day length at the time 
of the holiday (D =  − 0.049; t =  − 304.82; d.f. =  116,364,849; P <  0.001 
for winter weeks 48–0 compared with other seasons in the Northern 
Hemisphere; D =  0.087; t =  109.51; d.f. =  2,347,689; P <  0.001 for 
week 28 compared with other seasons in the Southern Hemisphere).  
The other summer uptick in the south at latitudes under 30° S is 
Carnival on 7 February.

The results in Fig. 3 resemble the seasonal patterns reported 
in previous studies based on affective expression in global Twitter 
messages4,27. However, while Golder and Macy4 found that positive 
mood covaries with change in day length, not absolute day length, 
we found that absolute day length (the interval between sunrise and 
sunset) is a better predictor of musical intensity (r =  0.029; P <  0.001) 
than change in day length (r =  − 0.007; P < 0.001; difference in 
the Pearson’s correlations =  0.036; Steiger’s z =  743.585; P <  0.001; 
n =  764,992,760). The same result holds when excluding holiday 
songs (r =  0.014; P <  0.001 for absolute day length; r =  − 0.008; 
P <  0.001 for change in day length; difference in the Pearson’s cor-
relations =  0.023; Steiger’s z =  464.790; P <  0.001; n =  752,692,716). 
This indicates that seasonal variations in affective music choices 
are more strongly influenced by seasonal activities that depend on 
temperature, weather, and indoor and outdoor daylight than by sea-
sonal changes in the timing of sleep relative to the dawn signal that 
synchronizes the circadian pacemaker (see ‘Seasonal activities and 
choice of music’ in the Supplementary Information for additional 
details). Longer days are also associated with warmer temperatures, 
with peak temperature often lagging behind the solstice (depend-
ing on the location relative to land, water and prevailing winds). 
Peak music intensity also lags behind the solstice, suggesting that 
the mechanism that drives musical preference may be the activities 
associated with temperature as well as daylight.
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Fig. 3 | affective preference is associated with seasonal variation in day length. Weekly changes in the mean musical intensity scores for five regions 
based on distance from the equator (colour) and hemisphere (line type), with 95% confidence intervals (translucent regions). Data were not available 
for the Southern Hemisphere at the longest distance from the equator. The x axis is the week of the year, ordered by day length, beginning with the winter 
solstice (week 0), with the summer solstice at the midpoint. Thus, the weeks on the x axis are different for the Southern and Northern Hemispheres (see 
‘Seasonal variation’ in Methods). The y axis is the mean within-individual intensity score among complete plays by the subset of active users during each 
of the 53 weeks (including the 2016 leap year). Scores are broken down by distance and direction from the equator, which affect seasonal variation in day 
length and the timing of the winter and summer seasons. Intensity scores are highest around the summer solstice (weeks 24–28; M =  0.919; P <  0.001) 
and decline with day length (r = 0.029; P <  0.001), but the seasonal variation decreases with proximity to the equator. Music played around the late-
December holidays is associated with a steep winter decline in intensity in the Northern Hemisphere (D =  − 0.049 for weeks 48–0 compared with other 
seasons; P <  0.001) and a sharp uptick in the Southern Hemisphere (D =  0.087 for week 28 compared with other seasons; P <  0.001). The other summer 
uptick in the south at latitudes under 30° S coincides with Carnival on 7 February. See Supplementary Table 1 for additional statistical details.
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In conclusion, data from on-demand music streaming now 
make it possible to study music consumption across highly diverse 
cultures, including countries whose music consumption is rarely 
studied. The findings reveal diurnal and seasonal patterns of affec-
tive preference that are highly robust across different user groups 
as well as countries that differ both geographically and culturally. 
Additional robustness tests are reported in the Supplementary 
Information, including seasonal patterns by different user groups 
(Supplementary Fig. 1), diurnal patterns broken down by day of 
the year (Supplementary Fig. 2), and similar results using posi-
tive and negative emotional valence instead of musical intensity 
(Supplementary Figs 3 and 4).

Although the robustness of the results is encouraging, there 
are important limitations. First, despite the reliance on a stratified 
random sample that reflects local census distributions of age and 
gender, the sample is potentially biased towards individuals who 
have access to streaming services and devices, particularly in lower-
income countries. Second, the data are observational, and without 
randomized trial experiments, temporal patterns of musical inten-
sity cannot directly test whether and when listeners use music to 
reflect rather than influence their mood. The relative importance of 
mood management and mood expression is likely to depend heavily 
on the cultural activities to which music provides an accompani-
ment, such as parties and holiday rituals.

In addition, we have data only on the intensity level of the music 
people choose to consume, not the affective states of the listeners. 
We were therefore limited to comparisons with affective expression 
among a different set of users on a different platform and during an 
earlier time period. Nevertheless, our diurnal and seasonal results 
show a remarkable similarity to results based on sentiment analysis 
of Twitter messages4. There are differences as well. Positive emotion 
in Twitter messages dips around 15:00 while the consumption of 
arousing music does not, suggesting that music can also be used as a 
mid-afternoon stimulant. While diurnal mood patterns on Twitter 
point to the sleep cycle as the synchronizing mechanism, listen-
ing behaviour suggests that temporal variations in preferences for 
affective stimuli through music may be more closely aligned with 
the temporal organization of daytime and night-time activities. 
For example, we found that listeners across the globe prefer quiet, 
low-intensity, relaxing music late at night and high-intensity, ener-
getic music with a strong beat throughout the day, including late 
afternoon when affect expressed in writing is depressed. The com-
parisons suggest the possibility that music choices may reflect the 
emotional rhythms of daily and seasonal activities to which music 
contributes by shaping as well as expressing mood.

Methods
Dataset description. This study uses redacted retrospective data collected between 
1 January and 31 December 2016 from music-streaming instances at Spotify—a 
popular streaming service for music, podcasts and video. Spotify provides 11 sonic 
and mood attributes (for example, acousticness, loudness, valence and energy), 
available through their API (https://beta.developer.spotify.com/documentation/
web-api/reference/tracks/get-audio-features/). We obtained data for 764,992,760 
streams from a stratified random sample of 991,035 users across 51 countries. The 
sample excludes users with fewer than 25 plays and was stratified to match each 
country’s age and gender distributions and population size, based on current data 
from Central Intelligence Agency’s The World Factbook22. The sample excludes 
countries where Spotify is unavailable, or with too few users after sampling to 
measure cross-cultural patterns. This stratified sampling adjusts the sampling 
frame to reflect the population distribution, since the distribution of Spotify 
users does not necessarily reflect the underlying population distribution. As a 
result, the stratified sample represents world population distribution, not Spotify 
user distributions over the globe. The mean age of this sample (not the service) 
was 37.1 years (median =  29 years; s.d. =  23.9 years) and 49.2% were female. 
Demographic distributions for each country can be found in Supplementary 
Table 2. A user’s geo-location (for example, city, country, region and continent) 
was assigned based on the most commonly occurring geo-grid—one-tenth 
decimal degree by one-tenth decimal degree of pairwise latitude and longitude 
(approximately 100 km2)—based on Internet Protocol address. Using the Python 
pytzwhere library, the geo-grids were matched with time zones to normalize all 

time stamps to local time and adjust for daylight saving time (DST). Age and 
gender were obtained from current Spotify user profiles.

Chronotypes. Following Golder and Macy4, users were allocated to four six-hour 
chronotypes based on the time when the user was most active on Spotify, beginning 
at midnight. Some 15.1% were morning people (06:00 to 12:00); 44.8% were 
afternoon people (12:00 to 18:00); 35.1% were evening people (18:00 to 00:00);  
and 5.0% were night owls (00:00 to 06:00). These chronotypes are similarly 
distributed across gender and age. The baseline intensity of music played by night 
owls differs from the other three chronotypes, as reported in Fig. 2d (see also 
Supplementary Fig. 5 for the distribution of plays across different times of day).

Completed plays. In contrast with radio-like streaming services, Spotify is a user-
driven on-demand service with a vast catalogue from which users search for and 
choose songs they want to listen to. Spotify reports that more than 80% of listening 
on Spotify in 2016 (when we collected the data) was initiated by user selection 
and not through algorithmic personalization28. Users can also exercise selection 
by choosing which songs to play to completion and which to skip. We limited the 
analysis to completed (or non-skipped) plays to focus on the music people actively 
choose to listen to, excluding what they choose to skip.

Musical intensity measured by audio features of a track. Music provides listeners 
with an affective experience through various musical features, ranging from song 
lyrics to the emotional attributes of audio features. Musicologists argue that audio 
features (particularly biopsychological cues, such as arousal) have better cross-
cultural applicability without the language constraints of lyrics29. Spotify’s track-
specific audio attribute data are considered the gold standard in music information 
retrieval30. Spotify provides 11 common audio features: acousticness, danceability, 
duration, energy, instrumentalness, liveness, loudness, mode, speechiness, tempo 
and valence (see descriptions in Supplementary Table 3). The attributes are 
highly correlated, and PCA identified a latent structure, with the first principal 
component unambiguously interpretable as a measure of intensity that explains 
29.4% of the variance. We excluded the second principal component, which 
explained an additional 12.1% of the covariance but did not have a meaningful 
interpretation including shared characteristics related to known musical attribute 
dimensions that people usually perceive, such as arousal (similar to our intensity 
measure), valence and depth31, among others. Supplementary Fig. 6 displays the 
locations of the 11 Spotify attributes on the PCA coordinate space for the first two 
principal components. Song-specific intensity scores range from −7.70 to 3.96 and 
are strongly associated with musical acousticness (r =  − 0.765), energy (r =  0.867) 
and valence (negative to positive emotion; r =  0.643; all of the Pearson’s correlations 
are significant at P <  0.001; n =  13,578,157). Factor loadings show that tracks with 
high intensity tend to be fast, loud, vocal (that is, not instrumental), happy, cheerful 
and euphoric (see Supplementary Table 3 for the complete set of factor loadings).

Measures of within- and between-individual affective preferences. Temporal 
changes in affective preference were measured as the average intensity level of the 
music that a user listened to in each of the 24 ×  7 =  168 h of the week. Failure to 
disaggregate within- and between-individual affective preferences makes changes 
over time uninterpretable due to the confounding of individual diurnal rhythms 
and temporal changes in the composition of active users on Spotify. Between-
individual variation in intensity scores (that is, the average level of intensity in the 
music that a user listened to) captures how individuals differ from one another 
in their baseline affective preferences, regardless of the time of day or day of the 
week. Between-individual baseline intensity (BIntensity) scores were averaged over 
the scores for tracks played during 168 time points for each user, across all hours 
(which therefore does not vary from hour to hour):

∑= =
∥ ∥ ∈H

hBIntensity Intensity 1 Intensity ( )u u h H u

The within-individual intensity score (WIntensity) for a person-hour measures 
the signed difference between an individual’s mean intensity score for that hour 
and their baseline score (as defined above). Within-individual differences in 
intensity scores measure how a given individual’s affective preference varies over 
time, after removing differences in baseline scores between individuals who are 
active at different times, leaving only the change over time that is within each 
individual:

∑

= −

+
∥ ∥ ∈

h h

UH g
h

WIntensity ( ) Intensity ( ) BIntensity

1
( )

Intensity ( )

u g u u

u h UH g u

,

( , ) ( )

where u and h pairs indicate user-hours, and UH(g) is the set of all user-
hour combinations in the group g (where g can be a day of the week, region, 
demographic group or chronotype) for which the within-individual pattern is 
measured.

The final term in WIntensityu,g(h) is the grand mean across all user-hours in g. 
Note that the final term is ∑

∥ ∥ ∈ BIntensity
U g u U g u

1
( ) ( )  for groups g (such as region, 
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demographics or chronotype) as the grand mean across all user baseline intensities 
in group g. Adding back the group-specific grand mean restores between-group 
differences while preserving within-individual temporal changes, since adding this 
constant to the mean-centred data for each individual member of that group does 
not affect the within-individual temporal dynamics. However, care should be taken 
in trying to interpret between-group differences by visual inspection of the figures, 
since the number of observations varies greatly over the course of the day (see 
Supplementary Fig. 5). Thus, a group with much higher musical intensity scores 
late at night (when listening is less frequent), and only slightly lower scores during 
the day, might have a significantly lower baseline score than might be inferred 
simply by imagining a horizontal line fitted to the figure.

Plots in the main text show the mean within-individual intensity scores  
across different groups for each of 24 h over 7 d (that is, 168 hourly observations 
per user):

∑=
∥ ∥ ∈

h
UG h

hWIntensity ( ) 1
( )

WIntensity ( )g u g UG h u g( , ) ( ) ,

where u and g pairs are the subset of users in group g who were active during hour 
h, and UG(h) is the set of all users in group g who were active during hour h. These 
scores reveal diurnal patterns in affective preferences over the course of a day.

Seasonal variation. The seasonal analysis parallels the diurnal analysis, except 
that intensity scores are averaged over person-weeks (or person-days for 
Supplementary Fig. 2) instead of person-hours. The analysis tests the hypothesized 
emotional effects of changing day length. The length of the day at a given location 
varies sinusoidally over the year, with higher amplitude waves the farther one 
moves from the equator, resulting in long summer days and short winter days in 
extreme latitudes, and consistent day length near the equator. The day length at a 
given location on a given day is governed by the day of the year and the latitude at 
that location.

Two models are widely used to estimate day length. Although the Center 
for Biosystems Modeling (CBM)32 reports more accurate day length estimation 
than the Brock model33 when compared with the Astronomical Almanac, this 
only applies to low and mid-latitudes, with CBM accuracy declining rapidly 
poleward of 60°. Therefore, we use both models, the CBM for < 60° and the 
Brock model for ≥ 60°.

The Northern and Southern hemispheres have winter and summer six months 
apart, which makes interpretation of day length patterns awkward when the 
person-week (or person-day) affective preference is plotted against calendar dates. 
Instead, the x-axis in Fig. 3 is ordered by day length, starting and ending with the 
winter solstice, with the longest day at the mid-point. The x axis begins with 21 
December 2016 for countries in the Northern Hemisphere and 20 June 2016 for 
those in the Southern Hemisphere, with the summer solstice (20 June in the north 
and 21 December in the south) at the mid-point, and the day preceding the winter 
solstice on the far right (see also Supplementary Figs 1, 2 and 4).

Group baseline comparisons. In the main text, we report baseline differences 
in mean musical intensity scores across groups in different group categories (for 
example, day of the week, age, gender, chronotype and geographical region). We 
performed all statistical tests of group differences in baselines using the unadjusted 
data, not the mean-centred data points with adjusted baselines. However, in 
the figures that report mean-centred within-individual results (Figs. 1–3 and 
Supplementary Figs 1–4), we facilitated visual inspection (both of variations 
around the baseline and of baseline comparisons) by adding back the mean for 
each group. The group means were also computed from the unadjusted data  
and did not reflect the mean-centring used to identify within-individual  
temporal variation.

Other psychological features in music attributes. Based on a hierarchical PCA 
on 25 computer-generated attributes for 102 music excerpts across diverse genres 
and styles, previous research34 has shown that computer-generated sonic and 
affective features can similarly capture latent dimensions of human-perceived 
attributes31 on the same music excerpts: arousal (the first principle component, 
indicating music that is danceable and loud), valence (the second; positive and 
happy) and depth (the third; instrumental and low tempo). While the arousal 
dimension has very similar characteristics to our intensity measure (for example, 
positive correlations with danceability and loudness, and negative correlations 
with acousticness), none of our lower-ranked PCA dimensions was directly 
matched with the other two dimensions. This is not surprising, given that we 
applied PCA to 11 audio features generated from a large body of popular music 
(that is, hundreds of millions of complete songs by millions of artists) while 
previous work relied on 25 features in hundreds of excerpts from commercially 
unreleased songs that were previously curated for balance across genres and styles. 
A curated pool of music excerpts may be suitable for the fine assessment of music 
preferences and validation of automated feature extraction, but the latent feature 
structures should not be expected to match those of actual listening behaviours.

Nevertheless, valence is included as 1 of our 11 features, and readers familiar 
with previous research may therefore find it interesting to see how this measure 

of positive and negative affect varies across time, space and demographic groups. 
We include results on diurnal and seasonal patterns of musical valence in the 
Supplementary Information (see Supplementary Results and Supplementary 
Figs. 3 and 4).

Effects of DST. The transition to DST provides an opportunity to tease apart  
the effects of day length from the potential confound of biorhythms associated  
with the light–dark and wake–sleep cycles. DST radically shifts the light–dark 
cycle, but there is only a very small change in day length, which affords the 
opportunity to use regression discontinuity for causal inference35. In our dataset,  
31 countries had DST in 2016. We labelled each day of the year relative to the start 
and end dates for DST for a given country. For instance, Sunday 13 March 2016 
was the start date of DST in the United States. Accordingly, 12 March, 13 March 
and 14 March were labelled − 1, 0 and 1, respectively. We took mean intensity 
scores across 31 countries for each labelled day. For each DST start-date and 
end-date-based daily intensity score, we conducted two tests: (1) non-parametric 
discontinuity estimation using the smoothing parameter (bandwidth) proposed  
by Imbens and Kalyanaraman36,37 (IK bandwidth) for discontinuity at the  
DST start or end dates; and (2) McCrary’s test38 for possible discontinuity around 
the DST start or end dates. Supplementary Fig. 7a shows the result of the  
non-parametric discontinuity estimation based on the start date of DST. This 
indicates discontinuity around New Year’s Day and Christmas, but no discontinuity 
at the start date of DST. This was statistically confirmed by McCrary’s test 
(z =  0.200; P =  0.842) and by a regression using the local approach with default IK 
bandwidth (z =  − 1.101; P =  0.271; R2 =  0.144). Supplementary Fig. 7b also shows  
no discontinuity at the end date of DST, which was statistically confirmed using 
local linear regression (z =  − 0.855; P =  0.392; R2 =  0.399) and McCrary’s test 
(z =  0.195; P =  0.846).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
Aggregate data and code are available at https://github.com/minsu-park/affective_
preference_rhythm.

Data availability
The datasets used in this study are available from Spotify, but restrictions apply to 
the availability of these data, which were used under an agreement for the current 
study, and so are not publicly available. Data are, however, available from the 
authors upon reasonable request and with permission from Spotify.
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