
Start with a single shape.  Repeat it in some way—translation, reflection over a line, 
rotation around a point—and you have created symmetry.  

Symmetry is a fundamental phenomenon in art, science, and nature that has 
been captured, described, and analyzed using mathematical concepts for a long 
time.  Inspired by the geometric intuition of Bill Thurston and empowered by his 
own analytical skills, John Conway, together with his coauthors, has developed a 
comprehensive mathematical theory of symmetry that allows the description and 
classification of symmetries in numerous geometric environments.  

This richly and compellingly illustrated book addresses the phenomenological, 
analytical, and mathematical aspects of symmetry on three levels that build on one 
another and will speak to interested lay people, artists, working mathematicians, and 
researchers.    
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Preface

This book has been germinating for a long time. John Conway has
always been interested in geometrical groups, for many of which he
devised particular notations when he was teaching at Cambridge
University. However, after he moved to Princeton University in 1985
and Bill Thurston told him of the orbifold idea, he dropped those
notations forever and devised the signature notation used in this
book. He then became Thurston’s most avid prophet, lecturing on
the theory to scores of audiences—ranging from the Princeton Rug
Society to the International Congress of Mathematicians!

One of those audiences contained the young graduate student
Heidi Burgiel, who was taking notes on the talk for distribution dur-
ing the conference. Heidi went on to complete a graduate program in
combinatorics and discrete geometry. Years later, when John spent
some time at Northwestern University, Heidi offered to “write some-
thing else up” with John, but in the end they decided to write the
same theory in more detail as a proposed book. That book has been
growing ever since.

All they had intended to write was the content of what is now
Part I—an elementary introduction to the orbifold signature nota-
tion. But then came the idea of writing a second part that would
extend the signature to color symmetry. At this point it became
clear that Chaim Goodman-Strauss would make an excellent addi-
tion to the team of authors. Chaim had been preaching the gospel
of the orbifold signature on his own and was known for his gorgeous
illustrations.

More topics burst into bloom at various seasons. When Conway,
Delgado, Huson, and Thurston used the signature to re-enumerate
the three-dimensional space groups, it seemed a good idea to incor-
porate this also in the second part. That “second part” is now Parts
II and III.

xiii



xiv Preface

Much of the book was written in hectic three-day sessions on the
few occasions when all three of us could get together—this paragraph
is being finalized on the way to the Tampa airport, days before the
book is sent to press. We usually managed to write several chapters
in each session, often including one that only arose just then. For
example, at one session, Chaim said “we could perhaps do Heesch
types,” and an hour later Chapter 15 was complete. Just after com-
pleting the next section of this introduction (which describes what’s
new to this book), the three of us celebrated at a restaurant, dis-
cussed “Archimedean tilings,” and Chaim and John discovered the
“Archifold notation” that characterizes such things as they walked
home after the meal. The next day this too was in the book. Of
course, it often took Chaim years to catch up with the illustrations.

What’s New in This Book?

Many of the results and proofs in this book are new, or nearly new,
in the sense that their only previous appearances have been in the
scholarly papers (often involving one of us) that are cited in the
appropriate chapters. These new things are

• the orbifold signature,

• the statement of our Magic Theorem,

• its use to enumerate symmetry types
(however, we should point out that a few decades ago, MacBeath
introduced his own signature that is in fact equivalent to ours—
but more complicated—and used it in the same way),

• Conway’s “zip proof” of the classification of surfaces,

• uniform presentations for all the groups,

• their proof,

• our analysis and notation for color symmetry,

• the p-color types for all primes p,

• the simplified enumeration of Heesch types,



Preface xv

• the Besche-Eick-O’Brien table of group numbers,

• the extension of all of the above geometrical theory to hyper-
bolic groups,

• a new proof of the abstract distinctness of infinite groups with
compact orbifolds,

• the explanation of isospectral “drums” via hyperbolic groups,

• the classification of Archimedean tilings in the hyperbolic plane,

• generalized Schläfli symbols,

• Architectonic 3-tessellations,

• the new space group notations and a panoply of objects with
prime space symmetries,

• names and enumeration of platycosms,

• a list of Archimedean 4-polytopes.

Even when the results are old, our exposition is new.
We are also proud of our exposition and illustrations. Chaim

Goodman-Strauss assures our readers that his software and illustra-
tions are available for sale and licensing.

We are relieved that now the book is in print, bringing the orb-
ifold signature to the world. This would not have happened with-
out help from many people including Robert Strauss, Troy Gilbert,
Marc Culler, Tom Moore, Charlotte Henderson, Alice and Klaus
Peters, Bill Thurston, Silvio Levy, Peter Doyle, Natasha Jonaska,
Daniel Huson, Olaf Delgado Friedrichs, Doris Schattschneider, Mar-
jorie Senechal, Javier Bracho, our students, and our colleagues; and
the patience and sympathy of our partners Diana, Kendall, and
Rachel. We thank the institutions that supported our work, in-
cluding Princeton University, the University of Arkansas, the Uni-
versidad Nacional Autómata de México, Northwestern University,
the University of Illinois at Chicago, Bridgewater State College, and
the National Science Foundation.
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Part I

Symmetries of Finite Objects
and Plane Repeating Patterns





Introduction to Part I

Symmetries and symmetric patterns surround us throughout our
lives. The aim of the first part of this book is to describe and
enumerate all the symmetries found in repeating patterns on sur-
faces. To prove that our enumeration is accurate, we then explain
the beautiful ideas from topology and algebra that form the basis
for our conclusions.

We start with a problem—enumerating symmetric patterns. We
then introduce tools for solving this problem and complete the enu-
meration. But then we are presented with a second problem—
demonstrating that these tools work the way we claim, that there
is a solid mathematical foundation beneath our results. Again, we
solve this problem with some tools, then present the mathematics
supporting the use of those tools. In this way, each chapter reduces
the problems left by the preceding chapter to another problem whose
solution is postponed to the following chapter.

This is a departure from the traditional practice of building a the-
ory starting with basic principles and working toward the ultimate
goal of proving some final theorem. We believe that our backward
approach will be successful because it allows us to present one con-
cept at a time, at the cost of always postponing the proof of just
one thing to the next chapter. We hope also that the argument
will be clearer when presented in a single logical thread, of the form
A⇐ B ⇐ C ⇐ ...⇐ Z.

The first chapter is a gentle introduction to symmetry. Chap-
ter 2 introduces the four fundamental features that we use to clas-
sify symmetry. In Chapter 3 we state our Magic Theorem and apply
it to find the 17 possible types of repeating planar patterns, while
Chapters 4 and 5 perform a similar service for spherical and frieze
patterns, respectively. The Magic Theorem is deduced in Chapter 6

3



4 Introduction to Part I

from Euler’s Theorem, which is itself proved in Chapter 7. Finally,
Chapter 8 gives our new proof of the classification of surfaces, and
Chapter 9 illustrates the orbifolds that underlie our theory.
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Symmetries

Every day we are surrounded by symmetric objects and patterns.
From furniture to flooring, symmetry is the rule. In art, symmetry
is pleasing to the eye, and the intricacies of extremely symmetric
patterns can entrance an audience. In architecture, symmetric de-
signs are attractive for yet another reason—repetition of a design
element means re-use, which ultimately requires less planning and
testing. In manufacturing, it is simpler, cheaper and more efficient
to repeat a pattern at regular intervals. Even Nature has reasons to
use symmetry in her work.

Etymology

The word symmetry is a
combination of the words
sym (together) and metron
(measuring). The meaning
of bilateral is, literally, two-
sided.

Recently, John H. Conway and William Thurston adapted Mur-
ray MacBeath’s mathematical language for discussing symmetry.
Now, the symmetries of a pattern can be defined by a single symbol
that we call its signature: for example, 3*3, for the pattern on the
left. With some practice, almost anyone with some knowledge of
high-school geometry can read this signature and identify the sym-
metries it describes.

Kaleidoscopes

The simplest signature is just * (star). A * denotes a mirror or
kaleidoscopic symmetry, and a * alone means that there are no other
symmetries to the figure. The pair of gryphons (right) has a single
line of mirror symmetry running between them.

(opposite page) This pattern—which to amathematician extends forever in every direction!—
has reflections and gyrations.

7
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“Vesica piscis” (fish bladder)
is the traditional architec-
tural name for patterns of
this shape.

This vesica piscis (left) has signature *2•, pronounced “star two
point symmetry” or, more formally, “period two kaleidoscopic sym-
metry fixing a point.” We use stars for kaleidoscopes to suggest the
star formed by the mirrors through a kaleidoscopic point. The pe-
riod of a kaleidoscopic point is the number of mirror lines through
it. In this case two lines of mirror symmetry—one vertical, the other
horizontal—meet at the center of the flower. Finally, the point (•)
indicates that all the symmetries fix a point.

You can probably guess that in a figure with signature *3•, three
lines of mirror symmetry meet at its center, and similarly for signa-
tures *4•, *5•, *6•, and so on. Mark the mirror lines and find the
signatures of the tracery shown above.

WAVYTUM WAVYTUM

BDECKBDECK HIXOHIXO HIXOHIXO

Many letters of the Ro-
man alphabet have mir-
ror symmetry (or approxi-
mately so)! Symmetry will
vary from typeface to type-
face.

For your first quiz, identify the mirror lines and signatures of these lovely cut-paper
snowflakes.
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Gyrations

This triskelion (right) appears on the coat of arms of the Isle of
Man. This figure looks the same in three orientations; the rotation
through 120 degrees is a congruence that takes the figure to itself. A
triskelion has period 3 gyrational point symmetry and signature 3•.

The snakes in the middle of the above figure entwine with a
period 2 gyrational point symmetry and so have signature 2•. The
gothic tracery patterns to the left and right have signatures 4• and
6•, respectively. NSZ

NSZ

Three roman letters have
gyrational symmetry.

These hubcaps have gyrational symmetries, whose signatures you may identify for your sec-
ond quiz.
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Rosette Patterns

Obviously, we could keep going like this, generating pictures with
period 37 kaleidoscopic point symmetry or period 42 gyrational point
symmetry. But what else can we do?

For the finite rosette patterns like those on the last two pages,
there are no other signatures. In a finite pattern, all symmetries
of the pattern must fix (i.e., cannot move) the center of the pattern.
Reflections across the center of the rosette and rotations about its
center are the only symmetries that do this, so they’re the only
symmetries such a pattern can have.

By experimenting with different combinations of rotational and
reflective symmetries, you can easily convince yourself that the types
*•, *2•, *3•, *4•, . . . , *N• and 2•, 3•, 4•, 5•, . . . , N• are the only
signatures possible for rosettes, to which we add 1• = • for the case
of no symmetry.

Milan Cathedral window.
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Frieze Patterns

After isolated pictures on a page, the easiest patterns to understand
are those made by repeating pictures in a row. We see patterns like
this in friezes, ribbons, animal tracks and fences.

Frieze patterns photographed in downtown Chicago.
Make Your Own
Frieze Patterns

You can easily generate
frieze patterns using sym-
metric letters! Here are
some examples; can you
make some others?

The difference between frieze patterns and isolated figures is that,
in addition to any reflective and rotational symmetries of the figures
that make up the pattern, a frieze pattern has a translational sym-
metry that takes the figure to a neighboring figure. The first half of
the book concerns itself with patterns of this sort, called repeating
patterns.

The “dart and egg” frieze pattern is truly ancient; like all frieze patterns with this type of
symmetry, it is created by reflecting a motif across a line of kaleidoscopic symmetry, then
repeating the pair of images forward and backward along the kaleidoscope.
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Repeating Patterns on the Plane and Sphere

Frieze patterns have “forward and back” translational symmetry.
Plane patterns add translational symmetry in another direction.
These patterns can extend to cover an entire page, or beyond. We
see them every day on the floors and walls around us.

In order to study the symmetries of common objects like hair-
brushes and furniture, we will also need to learn about the symme-
tries of patterns on spheres. Basketballs have two planes of reflective
symmetry, as do tennis balls. But these balls also have a 2-fold rota-
tional symmetry. A cube has nine planes of mirror symmetry, while
some soccer balls have fifteen! In order to classify such patterns we
will study repeating patterns on spheres.
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Where Are We?

At the beginning of this chapter we found all the possible types of
symmetry for rosettes—namely • = 1•, *• = *1•, 2•, *2•, 3•, *3•,
4•, *4•, . . . . We’ve also introduced three categories of repeating
pattern—repeating patterns in the Euclidean plane, frieze patterns,
and patterns on the sphere. The focus of this book is to classify
the different types of symmetry that objects in these categories can
have. We’ve told you roughly what it means to say that two things
have the same type of symmetry, but we’ll have to postpone a precise
definition of our problem until we’ve nearly solved it.

In fact, our book will have about as many postponements as
chapters! For example, in the next chapter we’ll introduce four fea-
tures that in fact determine the notion of symmetry type, but will
postpone the proof that they do so. These features determine the
signatures that we use in Chapters 2–5 and 17 to list all possible
types for each of our three categories. To do so, we employ a “Magic
Theorem” whose proof is postponed to Chapter 6. In that chapter
we also see that the signature really describes a topological surface
called an orbifold that encapsulates all the symmetries of a pattern.
The Magic Theorem is then revealed to describe a simple invariant,
the Euler characteristic, of this orbifold; a detailed investigation of
the Euler characteristic is in turn postponed to Chapter 7. An orb-
ifold is a special kind of surface, and our last postponement is the
fact that Euler’s characteristic really does characterize the different
possible topological types of surface. Our new “zip proof” of this
wraps up the proof of all our results, and closes the first part of our
book.
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Planar Patterns

In this book we help you understand the symmetries of things. In
this chapter we look at some repeating patterns and introduce you
to the way we think about them. We describe the four fundamental
features of a repeating pattern in the plane (or on any surface!) and
introduce the signature we use to record these features of the pattern.

Mirror Lines

The floral pattern to the left has many symmetries. For example,
the pattern is left-right symmetric: it has the vertical mirror line
shown on the left below.

The figure in the middle shows another mirror line, which is a
different kind because, unlike the first one, it runs between, rather
than along, the petals. Drawing all the mirror lines we can, we get
the figure on the right, which is at first sight rather confusing.

Fortunately, the small part we’ve highlighted in the margin con-
tains enough information to reconstruct the whole pattern. This is
because if we surround this small triangle by mirrors, as in a kalei-
doscope, the reflections of the original triangle will fill in the neigh-
boring triangular regions. The reflections of these reflections will fill

15
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in the neighbors of these neighbors, and so on, until the entire pat-
tern is restored. With three small pieces of mirror (available at most
hardware stores) and a little dexterity, you can try this yourself!

The patterns of Figures 2.1 and 2.2 are less ornate. The new
patterns are somewhat simpler but have all the symmetries of the
original; for our purposes all three patterns are identical.

Figure 2.1. A simpler pattern.

Figure 2.2. Another simple pattern.

Repeating patterns like the ones studied in this book are made
up of many symmetric copies of a motif. What we are studying here
are the symmetries relating each motif to each other motif in the
pattern.
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Describing Kaleidoscopes

Patterns whose symmetries are defined by reflections are called kalei-
doscopic because of their similarity to the patterns seen in kaleido-
scopes. They are classified by the way their lines of mirror symmetry
intersect. So, for instance, in Figure 2.3 there are three particularly
interesting kinds of point, one where six mirrors meet, one where
three mirrors meet, and one where two mirrors meet. We call these
6-fold, 3-fold, and 2-fold kaleidoscopic points, respectively, because
the local symmetries (right) are *6•, *3•, and *2•. The whole pat-
tern has kaleidoscopic symmetry of signature *632, where there is
no final point (•) because the symmetries don’t all fix a point.

Figure 2.3. A kaleidoscope of type ∗632.

The numbers defining the type (or signature) of a kaleidoscope
can be cyclically permuted, so that *632, *326, and *263 mean the
same, or also reversed, equating these with *236, *362, and *623.
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Figure 2.4. Decorated square tiling.

Patterns with a squarish sort of symmmetry, such as in Figure 2.4
are more common. The symmetry of this pattern is kaleidoscopic
with signature *442. There are two 4’s in the symbol because there
are two different kinds of 4-fold kaleidoscopic points. The 2 in the
symbol refers to the 2-fold kaleidoscopic point.

The fact that there can be several different kinds of kaleido-
scopic points of the same order forces us to make it clear what
same kind means for such points. We say, more generally, that any
two features of a pattern are of the same kind only if they are re-
lated by a symmetry of the whole pattern. The points shown in
the top two marginal figures are both 4-fold kaleidoscopic points
but are obviously different. We will say that two points P and
Q are the same if P can be moved to Q without changing the
pattern’s appearance in any way. (This “move” could include a
reflection.)
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Gyrations

The type of the kaleidoscope in Figure 2.5 is only *3 rather than
*333, because all the kaleidoscopic points in that figure are of the
same kind. However, the symmetries of this pattern are not purely
kaleidoscopic. There is a new feature—a 3-fold rotational symmetry
shown at right below.

Let’s look at this more closely. The pattern would be undisturbed
if the whole plane were to be rotated through 120 degrees around
the point marked 3 in the middle of the figure. The same is also
true of the point 3 in the top figure, but we’ve already accounted for
this by calling it a 3-fold kaleidoscopic point—this rotation is “done
by mirrors.” Since the pattern has one kind of 3-fold gyration point
and a kaleidoscope with one kind of 3-fold kaleidoscopic point, its
signature is 3*3.

Figure 2.5. A pattern with signature 3∗3.
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Figure 2.6. Pattern with signature 2∗22.

The pattern in Figure 2.6 has two kinds of 2-fold kaleidoscopic
points and one kind of 2-fold gyration point. The signature of this
pattern is 2*22.

The * designating the presence of a kaleidoscope separates the
digit representing the gyration point from those describing the kalei-
doscopic points, which are read around the kaleidoscope.
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Once you are familiar with this notation, you can tell immediately
that the symbol 4*2 describes a pattern with one kind of 4-fold
gyration point and one kind of 2-fold kaleidoscopic point. Figure 2.7
and the marginal figures show an example of such a pattern.

Figure 2.7. Pattern with signature 4∗2.



22 2. Planar Patterns

In Figure 2.8 we see a pattern that has only gyration points and
no kaleidoscopes. Since there are three kinds of 3-fold gyration point,
the symmetry is of type 333.

Figure 2.8. Pattern with signature 333.
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More Mirrors and Miracles

So far we have discussed two features of patterns in the plane: kalei-
doscopes and gyration points. It is natural to ask in what ways these
can occur in planar patterns. For instance, can a pattern have more
than one kaleidoscope?

Figure 2.9. More than one kind of mirror signature ∗∗.

All the kaleidoscopes that we’ve seen so far have been defined by
polygons enclosing part of our pattern, but that’s not the only type
there is. A single mirror line that has no other mirror lines crossing
it is a kaleidoscope with signature *. Figure 2.9 shows a pattern with
two of this kind of kaleidoscope in it, and its signature is **. (You
should check that these two mirror lines really are different!)

We’re also seeing something else for the first time here. The
smallest subregion marked off by mirror lines in Figure 2.9 is infinite!
There are several new features to be found in patterns like this, which
will be presented in this section and the next.
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Figure 2.10. A pattern with a mirror and a miracle: signature ∗×.

At first, Figure 2.10 looks very much like Figure 2.9. None of its
mirror lines intersect, and the smallest subregion bounded by mirror
lines is again infinite. But in this figure there is only one kind of
mirror line!

And, there’s a miracle here! There is a path from a left-handed
spiral to a right-handed spiral that does not go through a mirror
line. We will record the presence of such a path by a red cross (×)
in the signature. We call this a “mirrorless crossing,” or, for short,
a miracle, and indicate it in figures by a red dotted line and cross.

Figure 2.10 has both mirrors and miracles, but only one kind of
each, so its signature is *×.
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We can have two miracles, just as we can have two different kinds
of mirror. This happens in Figure 2.11, which has signature ××.
(There are more than two paths from left-handed to right-handed
spirals, but all of them can be made up of combinations of identical
copies of the ones we’ve marked in the margin.)

Figure 2.11. More than one kind of miracle: signature ××.
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Wanderings and Wonder-Rings

Just as a miracle is a repetition-with-reflection of a fundamental
region that’s not “explained by” mirrors, it’s possible to have a fun-
damental region repeated without reflection in a way that’s not ex-
plained by gyrations, mirrors, or miracles. In fact, such repetitions
always come in pairs. We call such a pair of paths a “wonderful wan-
dering” and denote it by a blue “wonder-ring,” ◦. As in the figure
in the margin, we draw such a pair of paths with blue dotted lines
and with a blue ring nearby. The signature for Figure 2.12 is just ◦.

Figure 2.12. A wonderful wonder-ring: signature ◦.
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The Four Fundamental Features! Gyrations; What’s in a
Name?

We choose the term gy-
ration to suggest motion
about a point. The rota-
tionally symmetric patterns
created by crossed mirror
lines are the same in the
clockwise direction as they
are in the counterclock-
wise direction. In a pat-
tern with gyrational sym-
metry, there is a clear dis-
tinction between the clock-
wise and counterclockwise
directions at the gyration
point.

It is a remarkable fact that wonders, gyrations, kaleidoscopes, and
mirrors suffice to describe all the symmetries of any pattern what-
soever, as we shall show in Chapter 3. We therefore call them the
four fundamental features. You get the signature of a pattern just
by writing down whichever of these features it has. Up to this point,
we’ve used blue for wonders and gyrations, since these preserve the
true orientation of a fundamental region, and red for kaleidoscopes
and miracles, since these reflect. However, you can write these in
black ink if you always write them in the same order, since then
you’ll be able to work out which colors they should be.

Table 2.1 lists the four fundamental features in the appropriate
order and the codes we use to represent them in the signature.

wonders gyrations kaleidoscopes miracles

◦...◦ AB...C *ab...c*de...f... ×...×
Table 2.1. Features of a pattern.

Where Are We?

In this chapter, we have described the four features of repeating plane
patterns and introduced the signature that describes which of them
appear in a given pattern. In the next chapter, we learn how these
signatures can be used to determine what combinations of features
are possible for plane patterns.
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The Magic Theorem

In the last chapter we introduced the four fundamental features that
completely describe the types of symmetry for repeating patterns.
From now on we shall often specify the symmetries of a pattern just
by giving its signature (which lists its features). We haven’t yet said
why just these particular features are so fundamental—and we won’t,
until Chapter 8—nor have we found just which signatures arise.

In this chapter we’ll introduce you to the “Magic Theorem” [4],
use it to show that just 17 signatures are possible for plane repeating
patterns, and then deduce that such patterns come in just 17 types.
The proof of the Magic Theorem itself is something else you’ll have
to wait for!

Everything Has Its Cost!

It turns out to be a good idea to associate a cost to every symbol in
the signature, as shown in Table 3.1.

Symbol Cost ($) Symbol Cost ($)◦ 2 ∗ or × 1

2 1
2

2 1
4

3 2
3

3 1
3

4 3
4

4 3
8

5 4
5

5 2
5

6 5
6

6 5
12

...
...

...
...

N N−1
N

N N−1
2N

∞ 1 ∞ 1
2

Table 3.1. Costs of symbols in signatures.

(opposite page) The magic theorem not only classifies signatures, but helps us calculate the
signature of a pattern. The signature 22× of this pattern, like that of all planar patterns,
costs exactly $2.

29
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*632 costs $2

3*3 costs $2

2*22 costs $2

*× costs $2

Why is this? Because, as we shall see in the next few chapters,
there are Magic Theorems that describe the possible signatures in
terms of their costs. Here is the one we’ll use in this chapter:

Theorem 3.1 (The Magic Theorem for plane repeating patterns) The
signatures of plane repeating patterns are precisely those with total
cost $2.

For example, the first pattern we analyzed (Figure 2.3) had sig-
nature ∗632, which has cost

$1 +
5

12
+

1

3
+

1

4
= $2.

(Normally, we only put the dollar sign on the first of several terms
to be summed.) Figure 2.5 has signature 3∗3, which costs

$ 2

3
+ 1 +

1

3
= $2.

The pattern in Figure 2.6 has a kaleidoscope with two different 2-
fold kaleidoscopic points and a 2-fold gyration point. Its signature
is 2∗22, with cost

$ 1

2
+ 1 +

1

4
+

1

4
= $2.

Finally, the signature of Figure 2.9 is ∗∗, with cost

1 + 1 = $2.

This is the same as the cost for the pattern of type ∗× in Figure
2.10.

The proof of the Magic Theorem is quite easy, but we’ll postpone
it until later in our book. In this chapter we just use the theorem to
help find the possible signatures for repeating patterns.

Finding the Signature of a Pattern

We can now exactly identify the signature of any repeating pattern
on the plane by the following steps. As we proceed, we write down
the symbols in the signature, starting from the middle and working
outward. If we list larger numbers before smaller ones (using ∗632
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rather than ∗236), we can tell at a glance which patterns have the
same type.

1. Mark any kaleidoscopes in red. If there are mirror lines, restrict
attention to one of the regions into which they cut the plane.
Put a red ∗ near any one kaleidoscope; then, find just one
corner of each type (as in Chapter 2), and write the numbers
of mirrors through each of these corners, also in red.

2. Look for gyration points. In blue, mark just one gyration point
of each type with a spot and its order.

3. Are there miracles? Can you walk from some point to a copy
of itself without ever touching a mirror line? If so, a miracle
has occurred. Mark just one such path with a broken red line
and a red cross nearby.

4. Is there a wonder? If you’ve found none of the above, then
there is: mark it with a blue wonder-ring.

If you encounter a tricky pattern, there are some things you
should do to make your work easier. If two features are the same you
must only mark one of them; sometimes it helps to label gyration
points before labeling kaleidoscopes. Be sure there aren’t any mirror
lines inside the region bounded by a kaleidoscope, and don’t forget
that gyration points never lie on mirror lines!

The rules above work for any repeating pattern; here are some
more hints that work just for patterns in the plane. There is one type
of plane pattern with two kaleidoscopes and one with two miracles; if
you’re working with one of these, you should be able to see differences
between these features by looking carefully at your pattern. You
know that the total cost is $2; you can use this in several ways. You
can stop when it reaches $2 (for instance, if you find a wonder), or if
you have not yet reached $2, you will know that there must be more
features to find.



32 3. The Magic Theorem

The fact that the signature of a plane pattern always costs $2
can help us check that the signature we have found for a pattern
is correct: it can also help to complete it! For example, all we can
see at first is that there are two kinds of 2-fold gyration points in
Figure 3.1. But, 22 would only cost $ 1

2 +
1
2 = $1, so there should be

an extra dollar’s worth to be discovered. Indeed there is! Figure 3.1
is the same as its mirror image although it has no mirror line, so
there must be a miracle instead! We look at this more closely in
the figure in the margin: there’s a symmetry that takes a leaf to a
backwards copy of itself, and the path joining these is the required
mirrorless crossing, giving us the signature 22×.

Figure 3.1. What type is this?
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What is the signature of the pattern in Figure 3.2? Here there are
also two kinds of 2-fold gyration points, which do not by themselves
cost $2. The pattern is again the same as its mirror image, but a
mirror, not a miracle, explains this, and the type is 22∗. (See the
marginal figure.)

Figure 3.2. What signature does this have?

Just 17 Symmetry Types

Why are there just 17 types of symmetry for plane patterns? We’ll
deduce this using only the Magic Theorem and some simple arith-
metic. The calculations in the next few sections are very similar
to those that answer the question, “How many different ways can I
make change for a dollar if I use only quarters and dimes?” If the
results at first seem mystical, try working through a few examples
for yourself.
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The Five “True Blue” Types

If all symmetries of a pattern are obtainable by true motions, as in
the patterns on these two pages, the signature will be entirely blue.
If a blue string of digits AB...C is to cost $2, there must be more
than two of them, since each costs less than $1. If there are exactly
three, the values in Table 3.1 show that the signature can only be
one of 632, 442, or 333. If there are more, it can only be 2222,
since each digit costs at least $ 1

2 . Finally if there’s a wonder-ring,

the signature must be ◦, since the ring already costs us $2.
The following figures illustrate the five true blue types: 632, 442,

333, 2222, and ◦.
Exercise

Check the types on these
two pages.

We get type 333 if all characters have the mean cost of $ 2
3
. Otherwise, one character must

be 2.



Just 17 Symmetry Types 35

If the remaining two characters have their mean cost of $ 3
4
,

we get 442.
If not, a second character must be 3, and 632 is forced, since
$ 5
6
+ 2

3
+ 1

2
= $2.

The only Euclidean type with four kinds of gyration points is
2222, since $ 1

2
+ 1

2
+ 1

2
+ 1

2
is already $2.

If there’s a wonder ring ◦ (costing $2), there can’t be any-
thing else.
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The Five “Reflecting Red” Types

Now consider the signatures that are entirely red and have no crosses.
They correspond to the previous cases because ∗AB...C costs $2 if
and only if if AB...N does:

$1 +
A− 1

2A
+ . . .+

N − 1

2N
= $2 ⇐⇒ $A− 1

A
+ . . .+

N − 1

N
= $2,

while there can only be one such signature (∗∗) with more than one
star. This yields the five reflecting red types.

Exercise

Check the types on these
two pages.
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The all-red signatures, ∗333, ∗442, ∗632, ∗2222, and ∗∗, corre-
spond exactly to the all-blue signatures 333, 442, 632, 2222, and
◦, since each red digit costs half as much as the corresponding blue
digit and a kaleidoscope (∗) costs half of $2.
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The Seven “Hybrid” Types

The remaining signatures either mix blue and red or involve × sym-
bols. To help us enumerate these “hybrid” types, we note that the
“demotions”

replace n∗ by ∗nn
replace × by ∗

don’t change the cost and must eventually lead to one of the five
previous cases. So, we can recover all these mixed signatures by
making the inverse “promotions”

replace ∗nn by n∗
replace a final ∗ by ×

in all possible ways:

∗632 ∗442 ∗333 ∗2222 ∗∗
↓ ↓ ↓ ↓

4∗2 3∗3 2∗22 ∗×
↓ ↓

22∗ ××
↓

22×

The following seven figures represent the mixed types 3∗3, 4∗2, 2∗22,
22×, 22∗, ∗×, and ××.

Exercise

Check the types on these pages.
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We conclude that there are just 17 possibilities for the signature,
and so just 17 symmetry types for repeating patterns on the plane.
(See Table 3.2.)

∗632 ∗442 ∗333 ∗2222 ∗∗
2∗22

*×
4∗2 3∗3 22∗ ××

22×
632 442 333 2222 ◦

Table 3.2. The 17 symmetry types of plane patterns

So indeed the Magic Theorem does imply that there are at most 17
symmetry types for a plane repeating pattern. These are tradition-
ally called the 17 plane crystallographic groups.1

How the Signature Determines the Symmetry Type

π/3 π/2

π/6

We have ignored some details. To what extent can we recover the
symmetry of a pattern from its signature? This is a real problem, as
we shall see in the spherical case, but the answers in the plane case
are easy. In the end, they depend only on the existence of rectangles
and triangles with given angles, provided that those angles have the
correct sum of π.

For instance, a pattern with signature ∗632 must be generated
by reflections in the sides of a triangle with angles π

6 ,
π
3 , and

π
2 . All

triangles that satisfy this condition will be the same up to size, so
up to similarity there’s just one possibility for the symmetries of a
pattern with signature ∗632.

For 4∗2, four copies of a fundamental region combine to form a
square. Then reflections in the sides of that square generate the rest
of the pattern, as shown to the left, so there’s really only one set of
symmetries corresponding to 4∗2 as well. Case-by-case arguments
like these work for all 17 types; you can confirm for yourself that the
argument given for 4∗2 is easily adapted to the types 3∗3 and 2∗22.

1The nonreflecting elements of any of these groups form its rotation subgroup,
at the bottom of the column.
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In the same vein, the symmetries of a pattern with signature
∗2222 are generated by the reflections in the sides of a quadrilateral
whose four angles are π

2—that is to say, a rectangle. Here the set
of symmetries is no longer unique up to scale; any one version can
be continuously reshaped into any other by gradually varying this
rectangle.

The result is that one set of symmetries can be continuously
transformed into the other while consistently maintaining its type.
In technical language this kind of deformation is called an isotopy .
So, we’ll say that the symmetries of any one pattern with a given
signature can be isotopically reshaped to become those of any other
pattern with the same signature.

Interlude: About Kaleidoscopes

Kaleidoscopes—the physical kind found in toy stores—were invented
by Sir David Brewster in 1816. In a real kaleidoscope, with a properly
repeating, planar pattern seen at the end, the mirrors can only be
arranged as shown on the right.

That is, the symmetry signature is just that of one of the reflect-
ing red types ∗333, ∗442, ∗632, or ∗2222. Obtain some mirrors and
make a kaleidoscope yourself!

Where Are We?

What we’ve shown (using the Magic Theorem, of course!) is that up
to isotopic reshaping there are just 17 plane crystallographic groups.
As we said, you’ll have to wait to see why the Magic Theorem is
true.

The next two chapters will discuss the versions of it that apply
to patterns on the sphere and to planar frieze patterns.

Exercises

We’ve told you how to find the signature of a pattern, but most
people need some practice to get it right. Follow the steps on page 31
to identify the types of the patterns on pages 42-49.
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1. Repeating patterns on brick walls.

(a) Running bond (b) English bond

(c) Flemish bond (d) Dutch bond

(e) Spiral bond (f) Zigzag running bond

(g) An unusual bond, seen on the old sec-
tion of Princeton’s Frist Student Center

(h) Another unusual bond, seen on the
new section of the Frist Student Center
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Check your answers.

(a) Running bond has type 2*22 (b) English bond has type *2222

(c) Flemish bond has type 2*22 (d) Dutch bond also has type 2*22

(e) Spiral bond has type 2222 (f) Zigzag running bond has type 22*

(g) Old Frist bond has type 22* (h) New Frist bond also has type 22*
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2. The placement of the dots changes the symmetry types of these
patterns. Identify them.

(a) (b)

(c) (d)

(e) (f)
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Check your answers.

(a) *632 (b) 2*22

(c) *× (d) ◦

(e) 2222 (f) 22*
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3. Find the signatures of these patterns.

(a) (b)

(c) (d)

(e) (f)
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Check your answers.

(a) 632 (b) 442

(c) *× (d) 4*2

(e) *632 (f) 442
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4. Even more!

(a) (b)

(c) (d)

(e) (f)
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Check your answers.

(a) 3*3 (b) 22×

(c) 4*2 (d) 632

(e) 22× (f) 22×
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The Spherical Patterns

So far, we have discussed only symmetric patterns on planar surfaces.
However, most of the symmetric things we encounter in our everyday
lives aren’t planar surfaces. Chairs, desks, boxes, and even people
(roughly) are symmetric, but non-planar.

To find the features describing the symmetries of an object like
a chair or table we imagine it as resting inside the “celestial sphere”.

(opposite page) Three spherical patterns, with signatures *532, *2 2 11, and *432.
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For the chair there is a single plane of reflection that intersects
the sphere in a single mirror line—in other words, it has bilateral
symmetry. The signature for the bilateral type of symmetry is ∗,
because we see one mirror line on the surface of the sphere and it
meets no other mirror lines.

We see from Table 3.1 that this only costs $1, so it is cheaper
than the plane crystallographic groups, which all cost $2.

More complicated objects can have kaleidoscopic points, gyration
points and miracles. For the rectangular table above, the mirror lines
are two great circles that meet at right angles. On the sphere they
have two intersection points, both of angle π

2 , so the symmetries of
this table have type ∗22. They cost

$1 +
1

4
+

1

4
= $ 3

2
,

again less than $2.

It turns out that an important quantity is the change we get from
$2, for which we will use the abbreviation ch. Thus,

ch(Q) = $2− cost(Q).

In particular,

ch(∗) = $2− cost(∗) = $2− 1 = $1,

ch(∗22) = $2− cost(∗22) = $2− 3

2
= $ 1

2
.
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The signatures of the Euclidean plane patterns all cost exactly
$2, so if you purchased any one of them with a $2 bill, you would
get no change at all. But for spherical patterns, which have only
finitely many symmetries, the rule is different: the change you get is
precisely $2 divided by the number of symmetries.

Theorem 4.1 (The Magic Theorem for spherical patterns) The signa-
ture of a spherical pattern costs exactly $2 − 2

g , where g is the to-
tal number of symmetries.

In particular, the change is always positive, so the cost is always
less than $2. We’ll prove this in Chapter 6. In this chapter, we’ll use
it to derive the list of possible types of spherical pattern.

Our Euclidean Magic Theorem is really just a particular case of
this, because there g =∞ and so the change is ch = $ 2

∞ , or 0. Thus,
we don’t really have two magic theorems but only one.

The 14 Varieties of Spherical Pattern

Here the conclusion from the Magic Theorem is only that the spher-
ical types are among

∗532 ∗432 ∗332 ∗22N ∗MN
3*2 2*N

N∗
N×

532 432 332 22N MN

but it turns out that there is a proviso: the types ∗MN and MN only
happen when M = N . Here M and N represent arbitrary positive
integers. We allow these integers to be 1, with the convention that
digits 1 can be omitted. This makes sense—a gyration point of order
1 or a kaleidoscopic point with exactly 1 mirror passing through it
is uninteresting to us, so we let 1∗ = ∗11 = ∗.

As in Chapter 2, we proceed by first counting the all-blue spheri-
cal signatures, then the red ones, and finally those that involve both
colors.
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The Five “True Blue” Types

Since the total cost of the signature must be less than $2, we cannot
afford a wonder ring (◦) or to have more than three digits (distinct
from 1). The most general signature with fewer than three digits
may be written MN by inserting 1’s if necessary. Every such sig-
nature does cost less than $2, but according to the proviso it only
corresponds to a symmetry type if M = N.

Finally, if there are exactly three digits, then one must be a 2,
because $ 2

3 + 2
3 + 2

3 = $2. Then the symbol is 22N if there are two
or more 2’s, and just 332, 432 or 532 if there is only one.

First note that if the signature contains two 2’s, it must be 22N
for some N.

SignatureNN
Signature 22N

If there is just one 2, then some other digit must be 3 since
$ 1
2 + 3

4 + 3
4 = $2; then, the remaining digit must be 3, 4, or 5 since

$ 1
2 + 2

3 +
5
6 = $2.

Signature 332 Signature 432 Signature 532
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The Five “Reflecting Red” Types

The all-red signatures for sphere patterns must have the form ∗AB...N
since we can no longer afford two ∗’s. The ones for which ch is pos-
itive are in perfect correspondence with the true blue types, since
ch(∗AB...N) is exactly half of ch(AB...N), as we see from the fol-
lowing:

ch(∗AB...N) = $2− 1−
(
A− 1

2A
+ · · · + N − 1

2N

)
,

ch(AB...N) = $2−
(
A− 1

A
+ · · · + N − 1

N

)
.

But remember the proviso: ∗MN exists only if M = N .

Signature *NN Signature *22N

Signature *432 Signature *532 Signature *332
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The Four Hybrid Types

As in the plane case, these must all be obtainable by promotion from
the red reflective cases. Here are all the possibilities:

∗532 ∗432 ∗332 ∗22N ∗NN
↓ ↓ ↓

3∗2 2∗N N∗
↓

N×

Signature 3*2 SignatureN*

Signature 2*N SignatureN×
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The Existence Problem: Proving the Proviso

A triangle on the sphere
with angles π

5
, π
3
, and π

2
.

A two-sided spherical poly-
gon with two angles of π

6
radians.

All 17 possibilities that we enumerated for plane patterns actually
arose. In the spherical case, the corresponding statement is not quite
true; the types MN and ∗MN only exist if M = N . The other cases
cause no problem.

For example, ∗442 was generated by reflections in a triangle of
angles π

4 ,
π
4 ,

π
2 , and a plane pattern with this type of symmetry exists

because such a triangle exists in the Euclidean plane. Similarly,
∗532 is generated by reflections in a triangle of angles π

5 ,
π
3 ,

π
2 , and

a spherical pattern with this symmetry exists because there is a
spherical triangle with these angles.1

Now for the proviso! The type ∗MN, when it exists, is generated
by the reflections in the sides of a two-sided polygon with angles π

M
and π

N . This does exist when M = N ; it’s the lune bounded by two
great semicircles at angle π

N (at right), but does not when M 	= N .
(For the same reason ∗M, which equals ∗M1, fails to exist for M > 1.)

A hypothetical pattern of type MN with M 	= N would contain
just two types of gyration point. But then, by superposing it with
its image under a reflection fixing a gyration point of each type, we
should obtain one of type ∗MN, which is impossible. Therefore, MN
also fails to exist if M 	= N , and M fails to exist if M 	= 1.

Group Theory and All the Spherical Symmetry Types

Group theory is not discussed in detail here, at least not until much
later in this book; there are many texts available that teach group
theory better than we are able to in the space available here. In
brief, the symmetries of a pattern form a group; suppose A and
B are symmetries of a pattern, described by some motion of the
pattern that takes a fundamental region to a copy of itself. Then, the
“product” symmetry AB is what you get when the motion associated
with A is followed by the motion associated with B. You may wish

1In the plane, the sum of the angles of a triangle is always π radians = 180◦.
On a sphere, the sum can be larger. For example, a triangle on the globe with
one vertex on the North Pole and two vertices on the equator has two angles of
π
2
radians at the equator. The sum of the angles of that triangle will be π plus

the angle at the pole.
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Order NN N N 2 N 22N NN 22N Nu m b er

of G rou p s

1 11 1

2 22 22 3(1)

3 33 1

4 44 2 2 2 222 22 22 5(2)

5 55 1

6 66 3 3 223 33 5(2)

7 77 1

8 88 4 4 2 2 224 44 222 7(4)

9 99 1

10 10 10 5 5 225 55 5(2)

11 11 11 1

12 12 12 6 6 2 3 226 66 223 332 8(4)

13 13 13 1

14 14 14 7 7 227 77 5(2)

15 15 15 1

16 16 16 8 8 2 4 228 88 224 7(4)

17 17 17 1

18 18 18 9 9 229 99 5(2)

19 19 19 1

20 20 20 10 10 2 5 22 10 10 10 225 7(3)

21 21 21 1

22 22 22 11 11 22 11 11 11 5(2)

23 23 23 1

24 24 24 12 12 2 6 22 12 12 12 226 332 432 3 2 10(6)

27 27 27 1

30 30 30 15 15 22 15 15 15 5(2)

33 33 33 1

36 36 36 18 18 2 9 22 18 18 18 229 7(3)

39 39 39 1

42 42 42 21 21 22 21 21 21 5(2)

45 45 45 1

48 48 48 24 24 2 12 22 24 24 24 22 12 432 8(5)

51 51 51 1

54 54 54 27 27 22 27 27 27 5(2)

57 57 57 1

60 60 60 30 30 2 15 22 30 30 30 22 15 532 8(4)

63 63 63 1

66 66 66 33 33 22 33 33 33 5(2)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

120 120 120 60 60 2 30 22 60 60 60 22 30 532 8(5)

C 2  C D 2  D P 2  P2  

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

*****

**

****

**

*****

**

****

**

******

**

****

**

****

**

****

**

****

**

****

**

****

Table 4.1. Types of spherical repeating patterns and their equivalences as groups.

for n = 3, 4, 5
C cyclic 〈a|an = 1〉
D dihedral 〈a, b|an = b2 = (ab)2 = 1〉
P polyhedral 〈a, b, c|an = b3 = c2 = abc = 1〉

2×G direct product of G with a group of order 2.

Table 4.2. Legend for Table 4.1.
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to confirm for yourself that in the examples we have seen so far this
composition is associative (i.e., that (AB)C = A(BC) for all choices
of A, B, and C) and that in the relation AB = C, any two of A, B,
and C uniquely determine the third.

The size or order of a group is the number of elements in it—here
it is the number of symmetries. Two different geometrical groups
have the same abstract structure if their elements multiply in the
same way.

All the Spherical Types

Table 4.1 lists the types of spherical repeating patterns and their
equivalences as groups. The table is complete for patterns with up
to 24 symmetries, after which we restrict to multiples of 3. The last
column gives the number of distinct geometrical groups, followed
in parentheses by the number of different abstract structures (as
separated by the lines). Each row of Table 4.1 lists all the groups of
a given size; groups with different abstract structures are separated
by the curved and straight lines. Codes for these structures are given
below the table and are explained in Table 4.2: the polyhedral groups
are isomorphic to the alternating and symmetric groups A4, S4, or
A5 according as n is 3, 4, or 5.

Where Are We?

We have shown in this chapter that the spherical form of the Magic
Theorem implies that the spherical symmetry types fall into seven
infinite families plus seven individual types. The groups of symme-
tries of these patterns are listed by increasing number of symmetries
in Table 4.1. As before, the proof of the Magic Theorem that leads
to this conclusion is postponed to Chapter 6.
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Examples

Polyhedra

This marked cube has type 332; an un-
marked cube has type *432.

The cube and octahedron, and their
“marriage,” shown here, all have type
*432.

This marked octahedron has type 3∗2. The snub dodecahedron has type 532.

The regular tetrahedron has type *332,
and a regular icosahedron has type *532.
However, this model has type 332.

If we ignore the colors, this origami
model has type 532; the symmetry type
of each (one-colored) band is 225. There
is no symmetry that fixes all the colors.
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Symmetries of Playing Balls

A volleyball has type 3*2.

A tennis ball has mirror symmetry and rotations; its type is 2*2. A baseball has stitching, and
its type is 2×.

A soccerball has type *532. What type does a basketball have? Find one and take a look!
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Temari Balls

This ball has gyration points of order 2. It also has a kaleidoscope *3; the type is 2*3.

This ball has type 2 2 12. Another example of an object with cubic symme-
try, signature *432.

This ball has signature 532. At first glance, this has type *22N for some large
N. But if we pay very close attention to the weav-
ing, the mirror symmetries are broken and the
type is 22N.
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Spherical Kaleidoscopes

Physical kaleidoscopes that generate spherical patterns are far less
known than they should be. We attempt to remedy this by including
plans for their construction! The balls on page 50 were made in just
these sorts of kaleidoscopes.

The Di-scope, with signature *22N: Simply rest a pair of mirrors, meet-
ing at an angle of 180◦

n degrees, on a horizontal mirror. Can you ex-
plain the “mirrored corner paradox” that arises when n = 2: when
peering into three mirrors meeting at a right-angle, your image is
not reversed!

attach

1

√
2

1√
2

attach

1

1
√
2

The Tetrascope and Octascope, with signatures *332 and *432: Cut mir-
rors as shown (above, right) and fold into a cone. Drop objects into
the chamber for fascinating fun!

φ = (
√
5 + 1)/2

2

φ2

The Icosascope, with signature *532: This is the most marvelous of all!
Cut the mirrors as shown above and fold into a cone. If you cut a
hole on one end, along the gray lines, you will see a pattern in the
shape of a stellated dodecahedron!
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Bathsheba Grossman’s Sculptures

Grossman’s sculptures reveal our lack of full intuition about three
dimensional symmetry; the symmetry type can really only be appre-
ciated by holding the model and examining it from several points of
view.

The sculpture Quintrino has a five-fold axis of rota-
tional symmetry and so is easily recognized as hav-
ing type 532.

We can verify this from other vantage points. Here
we look down a two-fold axis of rotational symme-
try.

We can guess that Ora has the rotational symmetry
type 332 of the tetrahedron.

Here is a view of Ora down a two-fold axis.
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The ones here are far more difficult to recognize.

Soliton is somewhat more mysterious. Here is a view
down one 2-fold axis.

Here is another. There is one more two-fold axis—
which we don’t show here—and the type is 222.

Clef also has type 222, though it is hard to imagine
from this one image how the views down the other
axes might appear.

Can you guess what signature Antipot might have?
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The Seven Types of
Frieze Patterns

You can find the signature
for a frieze pattern just as in
the Euclidean and spherical
cases: imagine the pattern
wrapped around the equa-
tor of a very big sphere.

There are other interesting patterns we’ve not yet considered. They
are formed by the symmetries of plane patterns that repeat infinitely
in one direction only: we call them frieze patterns. The facing page
shows the seven different types of frieze pattern.

As we shall see in a moment, there is a Magic Theorem that we
can use to list these. However, we don’t really need it because any
frieze pattern can be wrapped around a finite object such as a vase,
which means that we can find all types of frieze patterns by looking
at our results for the sphere.

According to the number of repetitions of the fundamental re-
gion, this vase will have one of the seven spherical symmetry types
that involve a parameter N (namely NN, N×, N∗, ∗NN, 22N,
∗22N, or 2∗N), and so it’s natural to say that the corresponding
infinite frieze pattern has symmetry type ∞∞, ∞×, ∞∗, ∗∞∞,
22∞, ∗22∞, or 2∗∞. These could also be deduced from the
following.

Theorem 5.1 (The Magic Theorem for Frieze Patterns) The signatures
of frieze patterns are precisely those that contain an ∞ symbol and
cost exactly $2.

The symbol ∞ costs $1, which makes perfect sense since
∞−1
∞ = 1. The symbol ∞ costs $ 1

2 , since
∞−1
2∞ = 1

2 .

Figure 5.1 shows frieze patterns formed by footprints in the sand
of an infinite desert plane. To analyze them, we transfer each one

(opposite page) Seven frieze patterns.
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hop:∞∞

step:∞×

jump:∞∗

sidle: ∗∞∞

dizzyhop: 22∞

dizzyjump: ∗22∞

dizzysidle: 2∗∞

Figure 5.1. Tripping around the world in seven different ways!
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to a finite spherical planet, where our previous methods show the
resulting types to be NN, N×, N∗, ∗NN, 22N, ∗22N, and 2∗N for
very large N. The originals were therefore ∞∞, ∞×, ∞∗, ∗∞∞,
22∞, ∗22∞, and 2∗∞, respectively.

The patterns for the types NN, N×, N∗, and ∗NN are what we
get when we hop, step, jump, or sidle around the world. For the
types 22N, ∗22N, and 2∗N, we spin between each hop, jump, or
sidle, so we call these the “dizzy” types, or “ditypes.”

With a little practice, the types can be found directly from the
original patterns. For instance, the “dizzy jump” or “dijump” pat-
tern has these mirror lines:

It is clear that the kaleidoscopes in this pattern have corners with
angles of π

2 and that the kaleidoscopic points are 2-fold. We declare
that the parallel sides of the kaleidoscope meet “at infinity” with an
angle of π

∞ , and so the signature of this pattern is ∗22∞. In a similar
way, the infinity symbols in the signatures of frieze patterns refer
to translations (regarded as rotations about the infinitely distant
poles).

Where Are We?

In Chapters 2–5, we’ve determined all possible types of symmetry
for plane repeating patterns, spherical patterns, and frieze patterns
using various forms of our Magic Theorem. So, the Magic The-
orem is quite powerful. What we haven’t done is explain why it
is true! Because this theorem is so powerful you might think it
would be hard, but the next chapter shows that, in fact, it’s quite
easy.



70 5. Frieze Patterns

Exercises

1. What are the signatures of the friezes shown on page 66?

2. Take another look at the beautiful frieze patterns photographed
by S. McBurney in Chicago (seen in Chapter 1) and analyze
their types. Of course, more than one type appears in the top
photograph!

3. What types are these alphabet friezes? Make up a few more!
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4. Check the types of these coffee friezes.
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5. Analyze the appearences of this Sonny Bono look-alike. Be
careful: some of these friezes have the same type and not every
type is represented.
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Answers to Exercises

1. Listed in order from top to bottom: ∞∞,∞×,∞∗, ∗∞∞,22∞,
∗22∞, 2∗∞.

2. Listed in order from top to bottom (including three in first
photograph): 22∞, ∗∞∞, ∞×, ∞∞, ∗∞∞, 2∗∞.

3. ∞∞ ∞*

22∞
*22∞

*∞∞
∞× 2*∞

4. Listed in order from top to bottom: ∞∞,∞×,∞∗, ∗∞∞,22∞,
2∗∞, ∗22∞.

5. Listed in order from top to bottom:∞∞, 2∗∞, 22∞,∞∗,∞×,
∗22∞, 2∗∞.
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Why the Magic
Theorems Work

In this chapter we’ll deduce the Magic Theorems from Euler’s well-
known theorem about maps. A mathematical map is like an ordinary
map of countries and their borders.

We’ll show how the different features of a symmetric pattern
affect the structure of some specially chosen maps and how Euler’s
theorem is used to determine the costs assigned to the features of
a signature. First, we’ll consider the symmetries of finite objects,
which, as we showed in Chapter 4, can be thought of as symmetries
of the surface of a celestial sphere.

Folding Up Our Surface

We’ve told you that when several features are of the same kind you
should count them only once. What this means is that we are really
counting things not on the original surface but on a folded-up version
of it, the folding taking all the points of the same kind to a single
point. The set of points of the same kind is called the orbit of that
kind of point under the action of the symmetry group, so this “orbit-
folded” version of the surface is called the orbifold.

For example, the chair of Figure 6.1 has two symmetries: the
trivial one and the reflection in its plane of symmetry. This reflection
equates pairs of points in the left and right hemispheres, defining
orbits. For example, the reflection equates the pair of blue points,
and the pair of blue points is an orbit. The single red point lies on
the mirror and is an orbit by itself.

(opposite page) A planar pattern lifted stereographically up to a sphere.
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Figure 6.1. Folding a sphere (left) into a hemisphere (right). Matching points are fused to
form an orbifold.

We can fold each orbit into a single point by pushing the right
hemisphere into the left one as in the middle of Figure 6.1. The
orbifold is therefore a hemisphere. Most points of the orbifold, like
the blue, green, and yellow points, correspond to full-sized orbits (of
two points), but the boundary of the orbifold consists of half-sized
orbits like the red one. The signature for this pattern is ∗ and its
cost is $1. In the next section, we see how the cost of $1 relates to
the fact that the orbifold is a hemisphere.

Maps on the Sphere: Euler’s Theorem

Leonhard Euler discovered a wonderful fact about maps drawn on a
sphere—namely that V − E + F = 2, where V , E, and F are the
numbers of vertices, edges, and faces of the map, respectively. We’ll
use char for V −E +F since this number is traditionally called the
Euler characteristic. The proof of Euler’s Theorem is postponed to
Chapter 7: for now we study what happens to char when we fold up
our maps into orbifolds. On the left in the following figure, we see a
map that has

V = 5, E = 8, F = 5.

So in accordance with Euler’s Theorem, char = 5− 8 + 5 = 2.
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h

h

h

h
q

q

On the right we see the folded form of this map. Some of the
vertices, edges, and faces have been halved (h) or quartered (q), so
that we have

V = 1
2 + 1

2 +
1
4 = 5

4 ,

E = 1 + 1
2 + 1

2 = 2,

F = 1 + 1
4 = 5

4 .

So, for this quarter-spherical folded map, char = V − E + F =
5
4 − 2 + 5

4 = 1
2 .

In general, the same argument shows that under the folding cor-
responding to the symmetries of any spherical pattern, any map
having the same symmetries as that pattern is taken to an orbifold
map for which char = 2/g, where g is the number of symmetries of
the pattern.

For example, when we fold a cubical map (shown below on the
left) along the mirror lines indicated in the middle image below, we
get a very simple orbifold map that has only 1

6 of a vertex, 1
4 of an

edge, and 1
8 of a face, so char = 1

6− 1
4 +

1
8 = 1

24 = 2
48 . This is obvious

because all we’ve done is take 1
48 of V −E + F = 8− 12 + 6 = 2 for

the original cube map.

1
4

1
6

1
8
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Why char = ch: Proving the Magic Theorem for the
Sphere

We’ve now shown that for spherical types char = 2/g, so to prove
the magic theorem in the spherical case we only need to explain why
char = ch, the change after subtracting the cost of our signature
from $2.

The following figures show how char changes as we add features
to the orbifold. It is important to realize that in these arguments we
can choose whichever map we like, since char doesn’t depend on the
map.

Punching a hole (∗) decreases char by 1. Choose a map for which the
“hole” is a single k-sided face. Then, removing it decreases F by
1 and V and E by k

2 (since vertices and edges around the hole get

halved). Therefore, V − E + F is reduced by k
2 − k

2 + 1 = 1.

1
5

Replacing an ordinary point by an N-fold cone point
(N) decreases char by N−1

N . Choose a map for which
the point is a vertex. Before the change, it con-
tributes 1 to V ; afterwards it contributes only 1

N .
The net change is

1− 1

N
=

N − 1

N
.

Replacing an ordinary boundary point by an N-fold corner point (N) de-
creases char by N−1

2N . Again, choose a map for which the given bound-
ary point is a vertex. After the replacement, it will be 1/2N of a
point, for a net change of N−1

2N .

The orbifolds for 13 of the 14 spherical signatures, namely

∗532 ∗432 ∗332 ∗22N ∗NN
3∗2 2∗N N∗

532 432 332 22N NN

can be obtained from the sphere (for which char = 2) by introducing
holes, cone points, and corner points—the features symbolized by ∗,
N, and N, respectively. The figures show that these changes to the
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Figure 6.2. The orbifold of a pattern with
signature × has char = 1. Bringing to-
gether opposite points on the sphere halves
the sphere and so halves char.

Figure 6.3. Across the Euclidean plane in
∞ steps: around the world in 80 paces (or
maybe less).

orbifold do indeed decrease char by 1, N−1
N , and N−1

2N , respectively.
Since the costs of features in the signature equate with changes to
the Euler characteristic, we find that char equals ch.

The fourteenth spherical signature is N×. The × stands for a
crosscap, the orbifold obtained by folding each point of the sphere
onto the point opposite it (Figure 6.2.) The end result is a weirdly
twisted half sphere with char = 1. Crosscaps are discussed further in
Chapter 8, where we’ll also show that the list of 14 types is complete.

Otherwise, our Magic Theorem for sphere patterns is really just
Euler’s theorem V − E + F = 2 for maps on the sphere.

The Magic Theorem for Frieze Patterns

The Magic Theorem for frieze patterns is an easy consequence of the
one for spherical patterns. This is because we can roll up an infinite
frieze pattern into a finite one around the equator of a sphere, as in
Figure 6.3.

The resulting spherical pattern will have a rotational symmetry
of order N , and its symmetry will be one of the seven types ∗22N,
2∗N, 22N, ∗NN, N∗, N×, or NN, whose Euler characteristics have



80 6. Why the Magic TheoremsWork

the form 1
2N , 1

2N , 1
N , 1

N , 1
N , 1

N , or 2
N , respectively. The frieze pattern

will correspondingly be one of ∗22∞, 2∗∞, 22∞, ∗∞∞, ∞∗, ∞×,
or ∞∞, whose Euler characteristics (obtained by letting N grow to
∞) are 0.

The Magic Theorem for Euclidean Plane Patterns

Here we must prove that any orbifold corresponding to a Euclidean
plane pattern has Euler characteristic equal to 0. We do this by
showing that, for any really large circular portion of the plane pat-
tern, the Euler characteristic must be close to 0. In the proof, we
use the fact that the numbers of vertices, edges, and faces inside the
circular region is proportional to the area of the circle and so to the
square of its radius, while the numbers of vertices, edges, and faces
along the boundary of the region are just proportional to the length
of the boundary and to the radius of the circle.

To begin the proof, take a map having the same symmetry as
the pattern and delete everything that lies outside a circle of large
radius R on it. Wrap the circular patch P of the map around a
large sphere; this turns a region of our planar map into a map on
the sphere.

The numbers V , E, and F for the portion P of the infinite map
will be close to Nv, Ne, and Nf , where v, e, and f are the (possibly
fractional) numbers of these things on the orbifold of the original
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map and where N is the number of copies of this orbifold completely
covered by the portion P . Since the area of P is just πR2, this
number N will be approximately kR2 for some positive number k.

In fact, the differences V −Nv, E−Ne, and F −Nf between the
actual V , E, and F and their approximations will be bounded by
multiples of R. This is because the “extra” vertices, edges, and faces
belong to copies of the fundamental region of the map that lie across
the perimeter of P . The perimeter has length 2πR, so the number
of copies of the fundamental region that overlap the perimeter is
proportional to R.

We can therefore suppose that

(V −Nv)− (E −Ne) + (F −Nf) < cR

for some number c, and so

ch = v − e+ f < |(V − E + F + cR)/N | < |(2 + cR)/kR2|.

Since the right-hand side of this inequality tends to zero as R tends
to infinity, it must be true that ch = 0.

Where Are We?

We have just shown that plane patterns always have char = ch = 0,
and so we have completed our justification of the costs given for
the symbols in the signature by proving the Magic Theorem for the
plane.

Up to now it has been important to distinguish between the red
and blue digits in our signatures because they have different costs.
From now on we’ll feel free to print them in black. It’s easy to recover
the proper colors, if you want them; the symbols that should be blue
are just those before the first cross (×) or star (∗).
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Euler’s Map Theorem

We’ve made some powerful deductions from Euler’s Theorem that
V − E + F = 2 for maps on the sphere. Now we’ll prove it!

Proof of Euler’s Theorem

This is really quite familiar—
we’ve all seen maps of the
Earth in the plane.

We can copy any map on the sphere into the plane by making one
of the faces very big, so that it covers most of the sphere.

We’ll think of this big face as the ocean, the vertices as towns
(the largest being Rome), the edges as dykes or roads, and ourselves
as barbarian sea-raiders! (See Figure 7.1.)

Figure 7.1. Our prey.

(opposite page) Like all maps on the sphere, this beautiful map (signature *532) has V +F −
E = 2.
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In this new-found role, our first aim is to flood all the faces as
efficiently as possible. To do this, we repeatedly break dykes that
separate currently dry faces from the water and flood those faces.
This removes just F − 1 edges, one for each face other than the
ocean, by breaking F − 1 dykes.

Deleting an edge decreases the
number of edges by 1 and also de-
creases the number of faces by 1, so
V − E + F is unchanged.

We next repeatedly seek out towns other than Rome that are
connected to the rest by just one road, sack those towns, and destroy
those roads. (See Figure 7.2.)

Figure 7.2. Our raid continues!
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Deleting a vertex and the edge
joining it to the rest of the tree
does not change V −E+F either,
so V − E + F must always have
been 2.

We have sacked V − 1 towns by destroying V − 1 roads, one for
each town other than Rome. The number of edges in the original
map must therefore have been (F − 1) + (V − 1) = V + F − 2 = E.
Therefore, V + F − E = 2, proving Euler’s Theorem.

(Did we sack every town other than Rome? Yes; an unsacked
town furthest from Rome would have two paths back to Rome, which
however must enclose some dry fields, a contradiction. Did we de-
stroy all remaining roads? Yes; an undestroyed road must be between
unsacked towns, which must both be Rome; but then again it must
enclose some dry fields.)

We have tacitly assumed that each face is a topological disk, and
we will continue to suppose this. We have also taken for granted
some intuitively obvious facts about the topology of the sphere whose
formal proofs are surprisingly difficult.

The number 2 is Euler’s characteristic number for the sphere.
Every surface has such a number.

The Euler Characteristic of a Surface

Theorem 7.1 Any two maps on the same surface have the same value
of V −E+F , which is called the Euler characteristic for that surface.

We prove that any two maps on the same surface have the same
Euler characteristic V −E+F by considering a larger map obtained
by drawing them both together. We shall suppose that no two edges
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meet more than finitely often, pushing the maps around a bit if
necessary.

We first draw one map in black ink, the other in red pencil. Then
we gradually ink in parts of the pencil map, noticing that V −E+F
does not change. The following figures show the first few steps of
this process for a pair of maps.

Inserting a vertex. V in-
creases by 1, E increases
by 2− 1 = 1, so V −E+F
increases by 1− 1 + 0 = 0.

Inserting an edge. E in-
creases by 1, F increases
by 2− 1 = 1, so V −E+F
increases by 0− 1 + 1 = 0.

We can continue to make these insertions, gradually inking in the
entire figure and not changing V − E + F :
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This argument shows that the characteristic number V −E + F
for the compound map is the same as that for the originally
black map. Equally, it’s the same for the originally red map!
Therefore, those two original maps must have had the same char-
acteristic.

The Euler Characteristics of Familiar Surfaces

Let us work out a few examples.

The Euler characteristic of a torus is 0.

The map on the left has 16 vertices, 32 edges, and 16 faces, so
V−E+F = 16−32+16 = 0. The map on the right is much simpler: it
has just 1 vertex, 2 edges, and 1 face, so V −E +F = 1− 2+ 1 = 0.
The theorem tells us that we can use either map to work out the
characteristic.
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The Euler characteristic of an annulus or Möbius band is 0.

On the left, we see a map on an annulus, on the right a map on a
Möbius band. Both maps have 2 vertices, 3 edges, and 1 face, and
so V − E + F = 0.

The Klein bottle also has Euler characteristic 0.

The Klein bottle, a one-sided, boundary-less surface, also has Euler
characteristic 0. Again, we choose a map with just 1 vertex, 2 edges,
and 1 face, yielding V −E + F = 1− 2 + 1 = 0.
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A sphere with n holes punched in it has Euler characteristic 2− n.

We may see this easily by taking a map on the sphere that has a
great many more than n faces. If we delete n non-adjacent faces, we
have kept V and E the same but decreased F by n. Consquently, the
Euler characteristic will be n less than that of a sphere: 2 − n. (In
fact, punching n holes in any surface will always decrease the Euler
characteristic by n.) Alternatively, we may systematically design
a map specifically for this surface. On the right above, we see a
map with 2n vertices, 3n edges, and 2 faces, and so V − E + F =
2n−3n+2 = 2−n. As we will see in Chapter 8, a disk is topologically
equivalent to a sphere with one hole in it, and so a disk has Euler
characteristic 1.

An n-fold torus has Euler characteristic 2− 2n.

An n-fold torus is a surface obtained from a sphere by adding n
handles, or equivalently n tunnels. We make it by deleting n faces
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from a sphere and then attaching n handles. Each handle is just a
torus with a (very large) hole punched in it and will contribute 0−1
to the total Euler characteristic. Each hole punched in the sphere
will contribute −1. So the net result is that the Euler characteristic
of an n-holed torus is 2 − 2n. Or we may design a map specifically
for this surface, with 2n vertices, 4n edges, and 2 faces: V −E+F =
2n− 4n+ 2 = 2− 2n.

Two mystery surfaces with Euler characteristic –2.

Here we have two mystery surfaces with V −E+F = −2. Both have
two boundaries and are two-sided; in Chapter 8, we will learn that
they then must be the same surface, topologically. In the meantime,
you might try to decide for yourself whether this is obvious!

Where Are We?

In this chapter we have shown that for the sphere the Euler charac-
teristic is 2 and more generally that the value of V −E+F depends
only on the surface on which a map is drawn and not on the map
itself. This supports the proof of the Magic Theorem in Chapter
6, which in turn supports the enumeration of symmetry types in
Chapters 2–5.

In the next chapter we shall classify all possible surfaces, which
will show us all the forms an orbifold could possibly take and will
help us conclude that we’ve enumerated the signatures of all possible
symmetry types.
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Classification of Surfaces

In Chapters 2–5, we gave a supposedly complete list of symmetry
types of repeating patterns on the plane and sphere. Chapters 6–7
justified our method of “counting the cost” of a signature, but we
have yet to show that the given signatures are the only possible ones
and that the four features we described are the correct features for
which to look.

Any repeating pattern can be folded into an orbifold on some
surface. So to prove that our list of possible orbifolds is complete,
we only have to show that we’ve considered all possible surfaces.

In this chapter we see that any surface can be obtained from a
collection of spheres by punching holes that introduce boundaries (∗)
and then adding handles (◦) or crosscaps (×). Since all possible sur-
faces can be described in this way, we can conclude that all possible
orbifolds are obtainable by adding corner points to their boundaries
and cone points to their interiors. This will include not only the
orbifolds for the spherical and Euclidean patterns we have already
considered, but also those for patterns in the hyperbolic plane that
we shall consider in Chapter 17.

Caps, Crosscaps, Handles, and Cross-Handles

Surfaces are often described by identifying some edges of simpler
ones. We’ll speak of zipping up zippers. Mathematically, a zipper
(“zip-pair”) is a pair of directed edges (these we call zips) that we
intend to identify. We’ll indicate a pair of such edges with matching
arrows:

(opposite page) This surface, like all others, is built out of just a few different kinds of pieces—
boundaries, handles, and crosscaps. But it may be hard to tell how, at just a glance!
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There are simple modifications that you can make to a surface
by zipping together the boundaries of one or two holes. If a single
hole is bounded by a clockwise zip and its counterclockwise mate, we
have a cap: zipping this up just seals the hole, so we can ignore it.

Zipping a cap.

If instead the two zips are in the same sense (e.g., both counter-
clockwise), we have the instructions for what’s called a crosscap. To
get a clear picture is rather difficult: the usual one involves letting
the surface cross itself along a line, leading to an 8-shaped cross-
section as shown in the lower figure.

Zipping a crosscap.

We start by dividing each zip into two zips, as in the top of the
figure. Then we distort the surface, bringing the two sets of zips
together. We obtain something like the final surface.
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If two nearby holes on a surface are bounded by zips in opposite
senses, we have the instructions for a handle. To see this, let the two
“tubes” grow out of the same side of the surface and then meet.

Zipping a handle.

If such zips are in the same sense, we can let the “tubes” grow
out of opposite sides of the surface to form a cross-handle, which is
sometimes called a Klein handle.

Zipping a cross-handle.
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Any one sphere with the instructions for three handles, two cross-
caps, and two holes, for example, is topologically the same as any
other sphere with the instructions for three handles, two crosscaps,
and two holes, since we can just push the holes around. So, the
important point is just how many of each of these things there are
for each component.

Two equivalent, tidy surfaces. Each has three handles, two holes, and one crosscap.

Lemma 8.1 (Tidying Lemma) Every surface is topologically equivalent
to a “tidy” one, obtained from a collection of spheres by adding han-
dles (◦), holes (∗), crosscaps (×), and cross-handles (⊗).



Caps, Crosscaps, Handles, and Cross-Handles 97

We will suppose that the surface is given to us as a collection
of triangles that have zips indicating how they should be pieced
together. (In technical language, this is called a “triangulable 2-
manifold.” It is a deep and difficult theorem, proved by Tibor Rado
in 1925, that every compact 2-manifold is triangulable.)

Figure 8.1. A triangle is a tidy surface—it’s a sphere with a hole in it.

Since topologically a triangle is just a sphere with a hole (Fig-
ure 8.1), it’s certainly tidy before we do any zipping up. So, all we
need to prove is that we can zip up any one zip-pair of a tidy surface
in such a way as to preserve its tidiness.

The lemma is obvious in the “snug” cases when the two zips
of this zipper together occupy all the boundary components they
involve (Figures 8.2–8.4). But Figures 8.5–8.9 show that it is almost
as obvious in the “gaping” cases when they don’t, since these produce
the same surfaces as the snug ones, with an extra boundary or two.
(The figures illustrate only the “totally gaping” cases.)

In fact, we can improve the lemma.

Theorem 8.2 (The Classification Theorem for Surfaces) To obtain an
arbitrary connected surface from a sphere, it suffices to add either
handles or crosscaps and maybe to punch some holes, giving
boundaries. So, the symbols ◦a∗b and ∗b×c represent all possible
surfaces.

See the next two sections to find out why.
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Figure 8.2. Zips on different components of a surface. From ∗a+1 ◦b ×c⊗d and ∗A+1 ◦B
×C⊗D , we get ∗a+A ◦b+B ×c+C⊗d+D .

Figure 8.3. Zips on different boundaries of the same surface component. At top we zip a
pair with opposite orientations. On the bottomwe zip a pair with the same orientation. From
∗a+2 ◦b ×c⊗d , we get ∗a ◦b+1 ×c⊗d or ∗a ◦b ×c⊗d+1 according to the orientations of the
zips.
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Figure 8.4. Zips on same boundary. From ∗a+1 ◦b×c⊗d , we get ∗a◦b×c⊗d or ∗a ◦b×c+1⊗d

according to the orientations of the zips.

Figure 8.5. Gaping zips on different components form a joined surface with boundary.
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Figure 8.6. Gaping zips with opposite orientations on the same boundary form a cap with
boundaries. From ∗a ◦b ×c⊗d , we obtain ∗a+1 ◦b ×c⊗d .

Figure 8.7. Gaping zips with the same orientation on the same boundary form a crosscap
with boundaries. From ∗a ◦b ×c⊗d , we obtain ∗a ◦b ×c+1⊗d .

Figure 8.8. Gaping zips with the same orientation on different boundaries of the same com-
ponent form a crosshandle with a boundary. From ∗a+1 ◦b ×c⊗d , we obtain ∗a ◦b ×c⊗d+1.

Figure 8.9. Gaping zips with opposite orientations on different boundaries of the same
surface form a handle with boundaries. From ∗a+1 ◦b ×c⊗d , we obtain ∗a ◦b+1 ×c⊗d .
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We Don’t Need Cross-Handles Nonorientability and
One-sidedness.

Most surfaces we see in
ordinary life are orientable.
No matter what journey
the pinwheel makes on a
torus, it always returns in
the same orientation; the
torus is orientable.

However, the crosscap is
non-orientable, because
if the pinwheel is taken
once right round the cap,
through the crossing in
the middle, it returns in the
other orientation.

This is shown by zipping up Figure 8.10(b) in two ways. If we do up
the blue horizontal zipper first, we get the instructions for a cross-
handle (⊗) (Figure 8.10(a)); therefore, doing up both zippers will
give a cross-handle.

Alternatively, we can find what would result (Figure 8.10(c))
from doing up the green vertical zipper first from the general theory.
Namely, we get the crosscap (×) that would come from the corre-
sponding “snug” case, together with a boundary formed by the blue
zips. But this boundary is just the instructions for another crosscap,
so what we’ve proved may be expressed by an equation:

⊗ = ××; a cross-handle may be replaced by two cross-caps.

(a) (b) (c)

Figure 8.10. A cross-handle (a) is just a combination of the two crosscaps (c), since
they are both generated by the same set of instructions (b).

We Don’t Need to Mix Crosscaps with Handles

If we have both a crosscap (×) and the instructions for a handle (◦),
we can take the hole at one end of the handle for a “walk” through

Figure 8.11. By moving one of the holes to be zipped along the surface (and through the
crosscap) in the right way, the instructions for a handle become the instructions for a cross-
handle.
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the crosscap so that it returns with the reversed orientation. We will
then have instructions for a cross-handle (Figure 8.11). Symbolically,
this proves that ◦× can be replaced by ××× or ×3. More generally,
◦a×b =× 2a+b if b > 0.

That’s All, Folks!

We cannot simplify this system for describing surfaces any further
beause all these surfaces are topologically distinct. This is because

• ◦a∗b is orientable, with b boundary components and Euler
characteristic = 2− b− 2a,

while

• ∗b×c (c > 0) is non-orientable, with b boundary components
and Euler characteristic 2− b− c,

so that the numbers a, b, and c are invariants.
In particular, we can use one of ◦a∗b and ∗b×c to indicate the

topological type of an orbifold. But, an orbifold differs from an
abstract surface just because it has local features coming from points
that were fixed by some symmetries. Since we showed in Chapter 1
that the only possibilities for the symmetries fixing a point are n
and ∗n, there can be no other local features than gyration points
and kaleidoscopic points.

This proves at last that the four fundamental features that make
up our signature symbol

wonders gyrations kaleidoscopes miracles
◦...◦ AB...C ∗ab...c∗de...f... ×...×

really are all that’s needed to specify its orbifold. In turn, this fin-
ishes our discussion of planar and spherical groups, since we saw in
Chapters 3–5 that these are determined up to isotopic reshaping by
their orbifolds.1

The miracles and wonders in Chapter 2 were just a poor man’s
way of approaching the global topology of the orbifold surface. We

1For hyperbolic groups, there is something more to say, as we shall see in
Chapter 17.
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Euler Characteristics of Standard Surfaces

In the last chapter, we showed that the Euler characteristic of a given
surface was independent of its triangulation. To work out the Euler char-
acteristic, we can make our triangulations as nice as we please. The
following figures show that

• punching a hole (∗) decreases the Euler characteristic by 1,

as does

• adding a cross-cap (×),

while

• adding a handle (◦) decreases the Euler characteristic by 2.

We know that a sphere has Euler characteristic 2; hence, the Euler char-
acteristic is

2− 2a− b for ◦a∗b,
2− b− c for ∗b×c.
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can now formally define them by saying that a pattern “has just
a wonders” or “has just c miracles” according as this surface is an
orientable one, ◦a ∗b, or a non-orientable one, ∗b ×c.

Where Are We?

Chapter 1 showed that local symmetries must be kaleidoscopic or gy-
rational, and in Chapter 2 we added miracles and wonders to obtain
our four fundamental features. Supposing that these were enough,
we then enumerated the symmetry types of planar and spherical
patterns in Chapters 3, 4, and 5, using the Magic Theorem that
Chapter 6 deduced from Euler’s Theorem, proved in Chapter 7.

In this chapter we have proved the Classification Theorem for
Surfaces, which shows that miracles and wonders (now properly de-
fined as crosscaps and handles) can describe the global topology of
any orbifold (see also [30]). Putting everything together, this shows
that our four fundamental features suffice for the entire structure,
so completing the investigation, we therefore state that our lists of
Euclidean and spherical groups are indeed complete.

Is this all? No! So far we’ve mentioned only the Euclidean and
spherical signatures, which cost at most $2. But we’ve really clas-
sified the more expensive ones too, and we’ll see some of the lovely
patterns to which they correspond in Chapter 17.

Examples

We have shown that every surface is topogically a sphere, possibly
with some number of holes, possibly with some number of cross-
caps or handles. But what should we make of the following strange
surface?



Examples 105

Our classification theorem is actually an algorithm, a process, for
breaking apart our surface and then putting it back together again,
in a tidy form. In practice, though, this can be a little tedious.

We can immediately work out the tidy form of a surface just by
drawing a map on the surface and calculating its Euler characteristic,
counting the number of boundaries, and checking whether the surface
is orientable.

Our strange surface has Euler characteristic −2, has two bound-
aries (which we can check by tracing a finger around each boundary
curve), and is orientable. The topology of this surface is not visible
at a glance but can only be ◦∗∗—the surface is a torus with two
holes (a twice-punched torus).

Punched or Punctured?

We distinguish between
punching a surface, by
removing a disc, and
puncturing it, by removing
a single point. Most topol-
ogists use “puncturing” in
both senses.

What are the tidy forms of familiar surfaces?

The disk, of course, has signature ∗; it is an
orientable surface with Euler characteristic 1
and one boundary.

The annulus has Euler characteristic 0, is ori-
entable, and has two boundaries; it is there-
fore ∗∗—a twice-punched sphere.

The torus has Euler characteristic 0, is
orientable, and has no boundary; it is—
unsurprisingly!—◦, a sphere with a handle.

The Möbius band has Euler characteristic 0,
is non-orientable, and has one boundary; it
is ∗×, a punched crosscap.
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The Klein bottle has Euler characteristic 0, is
non-orientable, and has no boundary; it is
××, a pair of crosscaps.

This strange-looking surface is just a
punched Möbius band, ∗ ∗ ×: it has Euler
characteristic −1, has two boundaries, and
is non-orientable.







- 9 -
Orbifolds

In Chapter 6 we showed how to fold up a pattern into a surface that
we called its orbifold. We didn’t really discuss the peculiar surfaces
we get, because we didn’t need to, but maybe you’ll be interested to
see some of them.

In this chapter, we give a number of examples of patterns on
surfaces, which you can use to increase your understanding of orb-
ifolds. There is very little text: we prefer to explain things largely
by picture.

You might even want to make your own orbifolds. We suggest
you buy a spare copy of the book before cutting out the patterns on
the next few pages, so as to increase our royalties. Or if you don’t
have enough money for that, feel free to photocopy them instead.
Can you fold or roll each pattern up so that all the faces coincide?

(opposite page) Each type of symmetry has its orbifold, found by folding or rolling the pattern
up so that corresponding points are brought together. For example, to find the orbifold of
this wallpaper pattern with signature ∗∗, we first fold the pattern along its mirror lines, into
a fan shape and then into a strip. We then roll this strip into a cylinder—the orbifold of the
pattern. All curlicues have been brought together to coincide on the final surface.

109
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A kaleidoscopic point.

A gyration point.

✁

✁

✁

✁
★

❉
■

▼
✚

✟✟❃
◆

▼
✟❈

❅
❒

❅
✟
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Three frieze patterns.
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Here are the orbifolds for the previous patterns:

The signature is *4. A kaleidoscopic corner is folded up into just that—a corner of a kalei-
doscope!

✁
✁

✁

✁
★

❉
■

▼
✚

✟✟❃
◆

▼
✟❈

❅
❒

❅
✟

The signature is 3·. A gyration point is rolled into a cone.
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The signature is ∗∞∞. A pair of reflections folds fan-like into a strip.

The signature is∞∞. The orbifold is a cylinder.

The signature is∞×. The orbifold is a Möbius band.
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Now try this for some of the other patterns in the book.

The orbifold for 3∗3 is a topological disk, with a cone point of order 3 in the interior and a
corner point of order 3 on its mirror boundary.

The orbifold for 4∗2 is also a topological disk, with one cone point and one corner point.
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The orbifold for 2∗22 is a topological disk, with one cone point and two corner points.

The orbifold for 22∗ is a topological disk, with two cone points. The “kaleidoscope” here, of
type ∗, has no corner points.
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The orbifold for 2222 is simply a sphere with four cone points.



Part II

Color Symmetry,
Group Theory, and Tilings





Introduction to Part II

The first part of this book provided the details needed to classify
the symmetries of repeating patterns on the plane and sphere us-
ing the method of orbifolds and the signature notation for them.
Traditionally, this enumeration was done using group theory. In
the central section of the book, we show how our method relates
to the traditional one, by way of a discussion of color symmetries.
We continue to provide examples and illustrations to accompany the
material.

So far we’ve avoided group theory, except for an aside in Chap-
ter 4 but we expect readers of Part II to know some group theory. We
expect such readers will be surprised that we classified these groups
without using any group theory! Surprisingly, group theory doesn’t
really help.

In the upcoming chapters we once again place the results before
the theorems, this time discussing color symmetries using the ideas
supported by the discussion in Chapter 14.

The new method we used for classifying repeating patterns was
pioneered by Murray McBeath and is now recognized as part of the
wide-ranging theory of groups and manifolds that William Thurston
has made his own. Our signature is a shortened form of McBeath’s,
which conveys exactly the same information.

We have been following what one can call Thurston’s command-
ment:

Thou shalt know no geometrical group save by under-
standing its orbifold.

Our orbifold signature is only one—which we hope is the last
one—of several systems of names for these groups. Dictionaries be-
tween it and the other systems are given in Tables A.1 and A.2 of
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the appendix. There is an important way in which it differs from all
the other systems except McBeath’s; namely, these systems usually
name groups by somehow specifying their generators. After mathe-
maticians have been thinking for a century, we can see that this was
not a good way to proceed—after all, it disobeys Thurston’s com-
mandment! Because groups have many generating sets, each author
has made a more or less arbitrary choice of which generators to use
and how to indicate them. Moreover, since their systems are usually
not theoretically complete, difficult cases must often be distinguished
by adding arbitrary signs.

It is important to realize that the characters in the signature
do not correspond to generators in this way. What they do name
(in compliance with the commandment!) is features of the orbifold,
which may correspond to local singularities (gyration points and
kaleidoscopes) or global properties of the topology of the orbifold
(wonders and miracles).

There is a vague relationship between these notions and the group
elements that are responsible for them, but it’s far from being a one-
to-one correspondence and is usually misleading. For instance, there
are two 2’s in our name 22 for a certain group despite the fact
that that group has just one order-2 rotation. Why? Because that
rotation creates two singularities on the orbifold. Again, the two ∗’s
in ∗∗ don’t really correspond to a generating set. Each ∗ is caused
by a reflection, but those two reflections do not suffice to generate
the group!

However, there must be a way to recover group generators from
the signature since everything about the group can be read from
its orbifold. We provide it in the next chapter, which sets forth
the rules for obtaining group presentations from signatures. The
following chapters then apply these presentations to the problem of
finding symmetric “colorings” of repeating patterns.

The complete lists of all primefold colorings of repeating patterns
in the plane and sphere appear for the first time in this book. You
can understand these lists without needing to follow the technical
arguments of Chapters 11–13 that deduce them from the group pre-
sentations. Following our practice, group presentations are finally
justified in Chapter 14.
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We turn to two other subjects in the last two chapters of Part II.
Chapter 15 uses the orbifold idea to enumerate interesting tilings,
while Chapter 16, as a digression, enumerates the abstract groups.

Some Group Theory

In this next portion of the book we will be discussing the groups of
symmetries of our patterns. Here we give a gentle introduction to
mathematical group theory.

In Chapter 4 we said that the symmetries of a pattern form a
group. This means something quite specific. Consider this gyro-
scopic pattern.

It has exactly twelve symmetries: we may rotate by 30◦, 60◦, . . .
on up to 330◦. That makes eleven, and the twelfth symmetry—the
identity—is the one that does nothing at all or, equivalently, rotates
through 360◦.

These symmetries may be combined: we may first rotate by, say,
240◦ and then by 150◦; the end result would be the same as rotating
by 390◦ or, more simply, 30◦, which (of course) is also one of our
twelve symmetries.

The identity is special: when we combine the identity with any
other symmetry, we don’t change the result. Also, every symmetry
has an inverse that is its undoing; combining a symmetry with its
inverse produces the identity.
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In general, a pair of symmetries A and B of a pattern have a
product AB, obtained by performing the motions of the pattern
corresponding to A and B one after the other, producing another
symmetry in the group. This production is associative: performing
motion AB followed by motion C is the same as performing mo-
tion A followed by motion BC. There is an identity symmetry, 1,
which doesn’t move the pattern at all; in particular, for any sym-
metry A, A1 = A and 1A = A. Finally, for every symmetry A
there is an inverse symmetry A−1 with AA−1 = 1 and A−1A =
1. These conditions are precisely those that define a mathemati-
cal group. How much information is needed to specify a group? In
the example above, all the symmetries could be formed by applying
just one symmetry repeatedly—say, rotating by 30◦—over and over
again. We say that this symmetry, which we’ll call α, generates the
group.

Moreover, some symmetries can be made in many ways; for ex-
ample, the rotation by 60◦ can be achieved by applying the rotation α
twice, fourteen times, or twenty-six times. But knowing that 1 = α12

suffices to explain this, and we call this equation a relation of the
group.

A group presentation consists of a list of generators and relations
that suffice to describe the group. The figure’s group of gyroscopic
symmetries is fully described by knowing it has one generator α and
one relation 1 = α12. We can summarize the presentation by writing
〈α | 1 = α12〉.

In this next example, of a pattern with kaleidoscopic symmetry,
there are ten symmetries: five are reflections across the marked mir-
ror lines, four are rotations of 72◦, 144◦, 216◦, and 288◦, and the tenth
is the identity. When we combine these, do we really get a symmetry
on our list? If we reflect across line P and then Q, the deep blue
lobe is first taken to the medium blue one and then on to the light
blue one. The net effect is that we rotated counterclockwise by 72◦.
Try combining other symmetries yourself! In general, applying first
one and then another of the symmetries of any pattern will result in
a symmetry. But, the order in which these symmetries are applied
can make a difference! PQ amounts to a counterclockwise rotation
but QP is clockwise.
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This group can be presented with just two generators, P and
Q—all the symmetries are formed from these—and three relations,
1 = P 2, 1 = Q2, and 1 = (PQ)5, that explain all other equivalences.
We can summarize this presentation by writing 〈P,Q | 1 = P 2 =
Q2 = (PQ)5〉.
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Presenting Presentations

In later chapters we will use some simple ideas from group theory to
enumerate symmetric colorings of the patterns discussed in the first
third of this book. In this chapter we tell you how to find generators
and relations for the symmetry group of a pattern from its signature.
The proof that the resulting presentations are correct is (of course!)
postponed until Chapter 14.

Generators Corresponding to Features

There are some generators for each feature and also some relations
arising from that feature. In addition to these local relations, there is
a single global relation, which asserts that the product of the “Greek”
generators, of which there is one per feature, is trivial. We indicate
the generators for the various features by annotating the signature
in a manner that we shall now explain.

For a handle (◦), there is a Greek generator, say α, and two
“Latin” ones, say X and Y , subject to the local relation

X−1Y −1XY = α,

for which the annotation is

α◦X,Y .

For a gyration point (A) of order A, we have only a single Greek
generator, say β, and a single relation,

1 = βA,

(opposite page) The presentation for *×. The orange “lenses” are the relator P 2, and the
green “vases” are the relator PZ2PZ−2.
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annotated by
βA.

For a kaleidoscope (∗ab...c) with n types of corner point, there
is a Greek generator, γ, together with n + 1 Latin ones, P,Q, ..., T ,
subject to the relations

1 = P 2 = (PQ)a = Q2 = (QR)b = ... = S2 = (ST )c = T 2,

γ−1Pγ = T.

For this the annotation is

γ∗P aQbR...ScT .

Finally, a crosscap (×) yields one Greek generator, δ, and one
Latin generator, Z, subject to the relation

Z2 = δ

and annotated by
δ×Z .

This completes our description of the local relations. If there are
h handles, g gyration points, k kaleidoscopes, and x crosscaps, then
the only other relation is the global one:

α1α2...αhβ1β2...βgγ1γ2...γkδ1δ2...δx = 1,

which we usually put first.

Understanding and Simplifying the Presentations:
The Geometry of the Generators

The geometrical meaning of our generators is simpler to explain in
any particular case than it is in general. So, we’ll postpone the
general description (and proof) to Chapter 14 and content ourselves
for now with some illuminating examples.
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Pure Kaleidoscope Groups

The generic presentation γ∗P6Q3R2S for ∗632 is

γ = 1 = P 2 = (PQ)6 = Q2 = (QR)3 = R2 = (RS)2 = S2,

S = γ−1Pγ.

We can obviously simplify this by dropping γ and replacing S by P .
This gives the simplified presentation ∗P6Q3R2:

1 = P 2 = (PQ)6 = Q2 = (QR)3 = R2 = (RP )2,

in which the remaining generators, P , Q, and R, are just the reflec-
tions in the edges of the defining triangle. The relation (PQ)6 = 1 is
accounted for by the fact that the product PQ is a rotation through
2π/6. Similarly, QR is a rotation by 2π/3 and RP is a rotation by
2π/2.

The groups

∗632, ∗442, ∗333, ∗2222, ∗532, ∗432, ∗332, ∗22N, ∗NN

all have this type of presentation.

Pure Gyration Groups

The three rotations α = PQ, β = QR, and γ = RP in ∗632 generate
its subgroup 632. They satisfy the presentation

α6β3γ2 : αβγ = 1 = α6 = β3 = γ2.

(For example, in the following figure α takes the red swoosh to the
blue swoosh, then β takes this to the green swoosh, which γ sends
back to our starting point, so that αβγ = 1.)
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The groups

632,442,333,2222,532,432,332,22N,NN

all have presentations of this form.

“Gyroscopic” Groups

The generic presentation for 4∗2 is

α4γ∗P2Q : αγ = 1 = α4 = P 2 = (PQ)2 = Q2, γ−1Pγ = Q.

Here the generators α and γ are mutually inverse and are order-4
rotations that conjugate the reflections P and Q into each other:

Q = γ−1Pγ, P = α−1Qα.

So, we can reduce the presentation to

α4∗P2 : 1 = α4 = P 2 = (PαPα−1)2

by dropping the generators γ and Q and the redundant relation
Q2 = 1.
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The groups

4∗2,3∗3,3∗2,2∗N
have similar presentations.

In 2∗22 the kaleidoscopic part has two types of corner, exempli-
fied by P,Q and Q,R. The generic presentation is

αγ = 1 = P 2 = (PQ)2 = Q2 = (QR)2 = R2, γ−1Pγ = R,

which reduces to

1 = P 2 = (PQ)2 = Q2 = (QαPα−1)2.

For 22∗ there are two types of gyration. The generic presentation

α2β2γ∗P : αβγ = 1 = P 2, P = γ−1Pγ

reduces to

α2β2∗P : 1 = α2 = β2 = P 2, αβP = Pαβ.

The combination γ = βα is a translation.
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The group N∗ has a similar but simpler presentation:

αN∗P : 1 = αN = P 2, αP = Pα.

We have discussed all the plane and spherical groups except those
that “involve topology”:

∗∗, ∗×,22×,××,◦,N×.
The geometric meanings of the generators in these cases will be de-
scribed as they arise in the next few chapters. However, we briefly
discuss the first three here.

The generic presentation

α∗P β∗Q : αβ = 1 = P 2 = Q2, α−1Pα = P, β−1Qβ = Q

for ∗∗ simplifies to

α∗P ∗Q : 1 = P 2 = Q2, αP = Pα,αQ = Qα.

The presentation

α∗P β×Z : αβ = 1 = P 2, α−1Pα = P, β = Z2
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for ∗× reduces to

α∗P×Z : P 2 = 1, α−1Pα = P,α−1 = Z2,

and so to
∗P×Z : 1 = P 2 = PZ2PZ−2.

The presentation

2α2β γ×Z : αβγ = α2 = β2 = 1, γ = Z2

for 22× reduces to

2α2β×Z : α2 = β2 = αβZ2 = 1.

However, we will also find useful the “non-standard” presentation
generated by Z and Y = Z−1α with relations (Y Z)2 = (Y Z−1)2 = 1.
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Where Are We?

We can now find a presentation in terms of generators and relations
for the symmetry group of a pattern from its signature. Chapters 11–
13 use this information to enumerate the symmetries of some families
of colored patterns.
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Twofold Colorations

Throughout the ages artists and artisans have made use of the won-
derful ways color can interact with the symmetries of a pattern. In
this chapter we discuss the mathematics of color symmetry. The
situation is simplest in the two-color case, which we discuss first.

First, we’d better say exactly what we mean. M. C. Escher’s
Symmetry Work 22 (at right) uses two colors but since the fish are of
one color and the birds of another, this really makes no difference—
a monochromatic version would have exactly the same symmetries.
We are really studying patterns in which there are symmetries that
interchange the two colors; we shall say that such a pattern has
twofold coloration, and we will assign it a (twofold) color signature.

Describing Twofold Symmetries

Symmetry Work 22, by
M. C. Escher.

In Escher’s Symmetry Work 67 (left) the horses and their riders
are differently colored in a way that corresponds to the direction in
which they are riding. What are the symmetries of this picture?

They are of two kinds. Half the symmetries fix each of the colors
while the other half interchange them. The collection of all of the
symmetries forms what we’ll call the full group G, while the ones
that fix the colors form the kernel K. We’ll call it a G/K coloring
and will often only indicate G and K by their signatures. So, for
instance, Symmetry Work 67 is a ××/◦ coloring. This is because
the figures of one color all face the same way, so its kernel consists
only of translations (signature ◦). But as the figure on the next
page shows, the full group has signature ××, since there are also
glide reflections that interchange the colors.

(opposite page) Symmetry Work 67, by M. C. Escher, is a twofold coloring.
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More formally, we have the following definition. Two G/K and
G′/K′ colorings have the same color type just when G can be iso-
topically reshaped into G′ in a way that takes K to K′. We usually
regard colorings of the same type as identical. In many cases there
is only one type of G/K coloring, so we can speak of “type G/K.”

To completely describe twofold color types, we must say whether
each symmetry fixes or interchanges the two colors a and b. Mathe-
matically, this amounts to specifying a homomorphism from G into
the group permuting {a, b} whose kernel is K, and we can do this
very simply by replacing the generators in our presentation symbols
by the appropriate permutations.

Glide reflections inter-
change the colors yellow
and brown in Symmetry
Work 67.

For example, the generators Y and Z in our simplified presenta-
tion ×Y×Z are glide reflections. Y and Z both interchange brown
and yellow in the marginal figure, so a complete specification is

×(yellow↔brown)×(yellow↔brown);

we call this the color signature for the twofold coloring in Symmetry
Work 67. Since the names of the two colors are immaterial, we lose
no information by replacing these permutations by their orders,1

which leads to a shorter form for the color signature:

×2×2.

In the next few sections we shall classify all the types of twofold
plane colorings. Although we must do this by considering all possi-
bilities for their color signatures, it turns out that the simpler symbol
G/K suffices to describe the color type in all but one case.

Classifying Twofold Plane Colorings

The symmetries of twofold colorings are completely determined by
the ways in which the two colors are fixed or interchanged by the
symmetries of the full group, or just by its generators. Each genera-
tor maps to a permutation of the colors, and they must do this in a
manner so as to satisfy the relations obeyed by the generators. We
warn the reader that the explanations sometimes get technical.

1The order of a permutation is the number of times it must be repeated for
the colors to return to their original positions.
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Generators for an (uncol-
ored) pattern with symme-
try type *632

For example, we can find all possible twofold colorations of
∗P6Q3R2 by finding all mappings of P,Q,R to permutations p, q, r
of the color-set {a,b} that satisfy the familiar relations 1 = p2 =
(pq)6 = q2 = (qr)3 = r2 = (rp)2. However, we can immediately
narrow the possibilities to

∗262322, ∗162322, ∗261312, ∗161312,

because we can show that Q and R must in fact map to the same
permutation, a fact that is indicated by “Q = R” in Table 11.1.
This is because their images, q and r, lie in the group of order 2
generated by (yellow ↔ brown) and so satisfy q2 = r2 = 1, qr = rq,
which together with (qr)3 = 1 imply q = r. It’s easy to check that for
each of the possibilities mentioned above the images p, q, and r do
indeed satisfy the relations, but since the last one has no symmetry
interchanging the two colors, it is not “twofold”. The other three
cases are illustrated below, which shows that they are adequately
described by

∗632/632, ∗632/3∗3, ∗632/∗333.

Later in this chapter, we will illustrate twofold coloring of all
possible types. First, let’s look at a few more examples and some
special cases.

The symbol 1222∗1 denotes a coloring of α2β2∗P in which α
and P fix the colors, while β interchanges them. The figure below
also gives the generators (P,α, β−1αβ) for K in the resulting color-
ing, showing that the kernel for 1222∗1 is also 22∗, so it has type
22∗/22∗.
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The twofold color-
ing 1222∗1 has type
22∗/22∗.

The calculations for most cases are as simple as those above, but
sometimes there are equivalences that are not immediately obvious.
For example, 2222 has isotopic reshapings that achieve all permu-
tations of α, β, γ, and δ, so that we get only one type of coloring
from the six symbols

12122222, 12221222, 12222212, 22121222, 22122212, 22221212,

explaining the “Number” entry, (6), in Table 11.1.

The equivalence of the two cases for 22×/×× is best shown using
the presentation 〈Y,Z | (Y Z)2 = (Y Z−1)2 = 1〉 on two orthogonal
glide reflections. This shows that the two cases Y → +, Z → −
and Y → −, Z → + are similar, although their names, 2222×1 and
2222×2, with respect to our usual presentation look different.
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Finally, the equivalences for ◦ = ◦X,Y are made visible by intro-
ducing the third translation Z defined by XY = Z, showing that all
three cases

X → +, Y → −, Z → −,
X → −, Y → +, Z → −,
X → −, Y → −, Z → +

are similar.

There is only one case in which the symbol G/K does not com-
pletely specify the color type. Namely, the case ∗∗/∗∗ denotes two
types that may be distinguished by their numbers of colorings.

Complete List of Twofold Color Types

Plane Patterns

The complete list of twofold color types for plane patterns appears
in Table 11.1. For each of the 17 plane groups, we first give the
annotated signature that specifies the presentation from which the
color types are derived, followed by the short forms of our “color
signatures.” When more than one of these specify the same color
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Annotated Signature Color Signature Number Color Type

and “Consequences” (short form) (when > 1)

∗162322 ∗632/3∗3
∗P6Q3R2 ∗261312 ∗632/∗333
“Q = R” ∗262322 ∗632/632
α6β3γ2 261322 632/333

“β = 1, α = γ”

∗141422, ∗241412 (2) ∗442/∗442
∗142422, ∗242412 (2) ∗442/4∗2

∗P4Q4R2 ∗142412 ∗442/∗2222
∗241422 ∗442/2∗22
∗242422 ∗442/442
14∗22 4∗2/442

α4∗P 2 24∗12 4∗2/2∗22
24∗22 4∗2/22×

α4β4γ2 142422, 241422 (2) 442/442

“αβγ = 1” 242412 442/2222

∗P 3Q3R3 ∗232323 ∗333/333
“P = Q = R”

α3∗P 3 13∗23 3∗3/333
“α = 1”
α3β3γ3 No case

“α = β = γ = 1”

∗12121222, etc. (4) ∗2222/∗2222
∗12122222, etc. (4) ∗2222/2∗22

∗P2Q2R2S2 ∗12221222, ∗22122212 (2) ∗2222/∗∗
∗12222222, etc. (4) ∗2222/22∗
∗22222222 ∗2222/2222

12∗1222, 12∗2212 (2) 2∗22/22∗
12∗2222 2∗22/2222

α2∗P 2Q2 22∗1212 2∗22/∗2222
22∗1222, 22∗2212 (2) 2∗22/∗×

22∗2222 2∗22/22×
1212∗2 22∗/2222

1222∗1, 2212∗1 (2) 22∗/22∗
α2β2∗P 1222∗2, 2212∗2 (2) 22∗/22×

2222∗1 22∗/∗∗
2222∗2 22∗/××

Table 11.1. Table of twofold color types for plane patterns.

type, they are put on one line, followed by their number, which
is the number of colorings of this type for the given group. The
diagrams on pages 142–143 display examples of all the twofold color
types of plane patterns.
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Annotated Signature Color Signature Number Color Type

and “Consequences” (short form) (when > 1)
α2β2×Z 1212×2 22×/2222

2222×1, 2222×2 (2) 22×/××
α2β2γ2δ2 12122222, etc. (6) 2222/2222

22222222 2222/◦
1∗2∗2 ∗∗/◦

1∗1∗2, 1∗2∗1 (2) ∗∗/∗∗(2)
α∗P ∗Q 2∗1∗1 (1) ∗∗/∗∗(1)

2∗1∗2, 2∗2∗1 (2) ∗∗/∗×
2∗2∗2 ∗∗/××
∗1×2 ∗×/∗∗

α∗P×Z ∗2×1 ∗×/××
∗2×2 ∗×/◦

×Y×Z ×1×2, ×2×1 (2) ××/××
×2×2 ××/◦

◦X,Y ◦1,2, ◦2,1, ◦2,2 (3) ◦/◦

Table 11.1. (continued.)

The final column of the table gives the “G/K” notation, which
specifies the color type except in the case ∗∗/∗∗, which we now de-
scribe.

The ∗∗/∗∗ coloring below is unique (up to swapping the two
colors), so we call its type ∗∗/∗∗ (1).

However, the two ∗∗/∗∗ colorings that follow have the same type,
which we therefore call ∗∗/∗∗ (2).
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*632/3*3

*632/*333

*632/632

632/333

*442/*442 *442/4*2

*442/*2222 *442/2*22 *442/442

4*2/442

4*2/2*22 4*2/22×

442/442 442/2222

*333/333

3*3/333

*2222/*2222

*2222/2*22*2222/***2222/22*

*2222/2222

*632632

*442

4*2

442

*333

3*3

*2222
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2*22/22* 2*22/2222

2*22/*2222

2*22/*× 2*22/22×

22*/2222 22*/22*22*/22×

22*/**22*/××

22×/2222

22×/××2222/2222

2222/◦

**/◦

**/**(2)**/**(1)

**/*× **/××

*×/**

*×/××*×/◦

××/××

××/◦

2*22

22*

22×2222

**

*×

××

◦ ◦/◦
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The Topology of Coloring Symmetries

If H is a color subgroup of G, then the orbifold of G must be a “branched
cover” of the orbifold of H . That is, we can wrap H ’s orbifold around
that of G.

For example, the full type ∗2222 can be two-colored to have color type
∗2222/2222. The orbifold of 2222, a sphere with four cone points, can
be squashed flat, double covering the orbifold for *2222: just as the group
is half as large, the orbifold is twice as big.

*2222/2222

For simple color types, at least, we can easily intuit such covers. For
example, each of these orbifolds can be double-covered by the orbifold
for 2222, and each of the corresponding symmetry groups contains an
index-2 group of type 2222.

2*22/2222

22*/222222x/2222

442/2222

bl2222/2222
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Spherical and Frieze Patterns

Twofold color types for the sphere are computed similarly to those
for the plane. The results of these computations are presented in
Table 11.2, and the color types are illustrated on the following two
pages. Each of the infinite families of spherical color types naturally
corresponds to the color type of a frieze pattern. The seven twofold
frieze types are just the cases of Table 11.2 with N = M =∞. They
are displayed on page 148.

Group Color Signature Number Type

∗532 ∗252322 ∗532/532
532 no case
∗432 ∗242322 ∗432/432

∗142322 ∗432/3∗2
∗241312 ∗432/∗332

432 241322 432/332
∗332 ∗232322 ∗332/332
3∗2 13∗22 3∗2/332
332 no case

∗22N ∗12221N ∗22N/∗NN
∗22122N ∗22N/N∗
∗22222N ∗22N/22N

∗22121N = ∗12122N (2) ∗22N/∗22M
∗22221N = ∗12222N (2) ∗22N/2∗M

2∗N 22∗1N 2∗N/∗NN
12∗2N 2∗N/22N
22∗2N 2∗N/N×

22N 22221N 22N/NN
12222N =2 2122N (2) 22N/22M

∗NN ∗2N2N ∗NN/NN

∗2N1N = ∗1N2N (2) ∗NN/∗MM
N∗ 1N∗2 N∗/NN

2N∗1 N∗/M∗
2N∗2 N∗/M×

N× 1N×2 N×/NN

NN 2N2N NN/MM

Table 11.2. Twofold spherical types (hereM = N/2).
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2*N

*532/532

*432/432 *432/3*2 *432/*332

432/332 *332/332

3*2/332

2*N/*NN 2*N/22N 2*N/N×

*532 532

*432

432 *332

3*2 332
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*22N

22N

*NN

N*

N× NN

*22N/*NN *22N/N* *22N/22N

*22N/*22M

*22N/2*M

22N/NN 22N/22M

*NN/NN *NN/*MM

N*/NN N*/M* N*/M×

N×/NN NN/MM
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*22∞/*∞∞ *22∞/∞* *22∞/22∞

*22∞/*22∞

*22∞/2*∞

2*∞/*∞∞ 2*∞/22∞ 2*∞/∞×

22∞/∞∞ 22∞/22∞

*∞∞/∞∞ *∞∞/*∞∞

∞*/∞∞ ∞*/∞* ∞*/∞×

∞×/∞∞ ∞∞/∞∞

*22∞

2*∞

22∞

*∞∞

∞*

∞× ∞∞
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Duality Groups

When a polyhedron or tessellation is dual to a copy of itself, we ob-
tain a more symmetrical figure by drawing both of the correspond-
ing maps on the same surface in two different colors, say green and
brown. If the resulting figure has color type G/H, we’ll say that the
duality group is H\G. We reverse the order since now H is the more
important group and also to distinguish between duality groups and
more general color-symmetry groups.

Not every twofold color group G/H yields a duality group H\G.
The reason is that a point P fixed by an element of order 3 or
more in H cannot also be fixed by any element of G outside H.
This is because P must be either a vertex or the center of a face,
but the elements of G outside H (the “dualities”) interchange those
concepts.

For instance, the green and brown pyramids in Figure 11 are
mutually dual. In this case all the symmetries of one fix its apex,
but the dualities interchange it with the apex of the other (and vice
versa).

This condition prevents 432\∗432 from being a duality group
since the fourfold gyration points of H = 432 are fixed by further
elements of ∗432. The groups that do satisfy it can all arise as
duality groups and are listed in Table 11.3.

A Euclidean tessellation that is dual to a copy of itself has a
duality group H\G in the same way as the spherical case. The
Euclidean duality groups are listed in Table 11.4.

Figure 11.1. Two intersecting pyramids.
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∗332 \ ∗432
332 \ 432
332 \ 3∗2

∗222 or 2∗2 \ ∗ 224
222 \ 224
∗22 \ ∗44

2∗ or 2× \ 4∗
22 \ 44

∗22 or 2∗ or 222 or ∗22 \ ∗222
∗22 or 222 or 2× \ 2∗2

22 \ 222
22 or ∗ \ ∗22

22 or ∗ or × \ 2∗
22 \ 2×
1 \ 22
1 \ ∗
1 \ ×

Table 11.3. The spherical duality groups.

∗442 or ∗2222 or 2∗22 \ ∗442
442 or 2∗22 or 22× \ 4∗2

442 or 2222 \ 442

∗2222 or 2∗22 or ∗∗ or 22∗ or 2222 \ ∗2222
22∗ or 2222 or ∗2222 or ∗× or 22× \ 2∗22
2222 or 22∗ or 22× or ∗∗ or ×× \ 22∗

2222 or ×× \ 22×
2222 or ◦ \ 2222◦ or ∗∗(1) or ∗∗(2) or ∗× or ×× \ ∗∗
∗∗ or ×× or ◦ \ ∗×
×× or ◦ \ ××◦ \ ◦

Table 11.4. The Euclidean duality groups.

Where Are We?

In the previous chapter we described the algebraic structure un-
derlying the symmetric patterns that we’ve been studying. In this
chapter we defined twofold colorings and used our algebraic under-
standing of repeating patterns to enumerate twofold color types for
plane, spherical, and frieze patterns. Using that enumeration, we
also enumerated the duality groups that arise when a polyhedron or
tessellation can be dual to a copy of itself. Subsequent chapters deal
with threefold and primefold colorings.
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Threefold Colorings of
Plane Patterns

What is a “color”? Although “color-symmetry” is the standard term
for this subject, the number of colors a pattern has is a rather indef-
inite concept. The problem arises particularly when there are three
or more colors, although really it’s already happened in the two color
case.

Let’s look again at Escher’s Symmetry Work 67 of horses and
their riders. In Chapter 11, we described this as a pattern that has
two colors, brown and yellow. But it has several shades of brown and
several of yellow, and the exact number of colors is rather indefinite—
we might even think it infinite if we regard the colors as continuously
variable. So, it isn’t really a “two-color pattern,” which is why we
deliberately used the term “twofold color symmetry” where other
authors might say “two-color symmetry.”

Symmetry Work 67, by
M. C. Escher.

However, you know what they mean by calling it a two-color
pattern: there is a clear distinction between “brownish” regions and
“yellowish” regions even though each involves several distinct shades.
Lots of patterns (for example, Escher’s Symmetry Work 72 with sail-
boats and rainbow-colored fish) have many colors, but their symme-
tries never change the colors. So, from our point of view, the colors
are irrelevant, and they are “onefold” colorings. In general, an n-
fold coloring is one in which there are regions of n distinct “colors”
(which need not in fact be single colors) that has symmetries that
take any one of the n “colors” to any other one. (Mathematicians
express this by saying that the symmetries are transitive on the col-
ors.) These “colors” need not cover the whole pattern; for instance,

(opposite page) Escher’s Symmetry Work 70 is a threefold coloring of type 6323/632/333,
which we abbreviate 632//333.

153
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they might be separated by black lines or white space (to be regarded
as “uncolored”), and we can even allow the “colors” to overlap.

A Look at Threefold Colorings

Having found all the twofold coloring types in the plane, we might
move on to describe the threefold ones. It is only slightly more
difficult to describe the p-fold types for arbitrary primes p, so in the
next chapter we will do that as well. We work with three arbitrary
colors A, B, and C—say Apple green, Banana yellow, and Cherry
red.

In this case, each symmetry achieves a permutation of the three
colors, as in Figure 12.1. Therefore, the coloring type is determined
by a homomorphism from G onto some subgroup of the group

S[3] = {1, (A)(BC), (B)(AC), (C)(AB), (ABC), (CBA)}
of all permutations of the three colors.

Moreover, since our term “threefold coloring” applies only to the
“transitive” cases when there are symmetries that take any one color
to any other color, the subgroup can only be S[3] itself or its cyclic
subgroup

C[3] = {1, (ABC), (CBA)}
(because these are the only transitive subgroups of S[3]).

In Chapter 11 there were two groups: the full group G of all sym-
metries and the kernelK containing just the symmetries that fix each

1=(A)(B)(C) (A B C) (A C B)

(A)(B C) (B)(C A) (C)(B A)

Figure 12.1. Threefold coloring types.
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color. Now there is a third group H, consisting of the symmetries
that fix any one chosen color. This group is called the stabilizer of
that color. (Actually, there are three stabilizer groups, one for each
color, but they are all abstractly equivalent—indeed conjugate in the
group-theoretical sense.)

The right-hand figure above is a coloring of a pattern of type
∗333. On the left, we ignore the three colors: the group G has sig-
nature ∗333. In the middle, we consider the group H of symmetries
that fix color C: it has signature 3∗3. Finally, at right, the signature
of the group K of symmetries that fix all three colors is 333.

The signatures of these groups usually specify the color type,
which we therefore call G 3/H/K. We simplify this to G 3/K when
H = K and to G 3//K otherwise, since we don’t usually need to
specify H. For p-fold colorings, we use similar notations, G p/H/K,
G p/K, and G p//K, and allow ourselves to omit the number p when
it is understood.

Complete List for Plane Patterns

Table 12.1 lists all of the threefold colorings for plane patterns. We
use 1 for (A)(B)(C), the identity permutation; 2 for any of (A)(BC),
(B)(CA), or (C)(AB), the permutations of order 2; and 3 for (ABC)
or (CBA), those of order 3.

In the following we evaluate these groups G, H, K in the various
cases and only telegraphically hint at the arguments (often quite
technical) that restrict us to the answers given.
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Annotated Signature Color Signature Type

∗P6Q3R2
∗162322 ∗632//∗333
∗262322 ∗632//2222

α6β3γ2
362322 632/2222

632//333

∗P3Q3R3
∗(AB)3(BC)3(CA)3 ∗333//◦
∗(AB)3(BC)3(BC)3 ∗333//333

α3 ∗P 3
33 ∗1 3 3∗3/◦
33 ∗2 3 3∗3//∗333

α3β3γ3
333333 333/◦
333313 333/333

∗P2Q2R2S2 ∗12221222 ∗2222//∗∗
α2 ∗P 2Q2 22 ∗1 222 2∗22//∗∗

1212∗2 22∗//◦
α2β2∗P 2222∗1 22∗//∗∗
α2β2×Z 2222×2 22×//××

α2β2γ2δ2 22222222 2222//◦
α ∗P ∗Q

3 ∗1 ∗1 ∗∗/∗∗
1 ∗2 ∗2 ∗∗//◦

α ∗P ×Z ∗1×3 ∗×/∗×
∗2×2 ∗×//◦

×Y×Z ×3×3 ××/××
×2×2 ××//◦

◦X,Y ◦1,3 ◦/◦
Table 12.1. Threefold coloring types on the plane.

∗P 6Q3R2 : 1 = P 2 = (PQ)6 = Q2 = (QR)3 = R2 = (RP )2.

Since P,Q,R→ 1 or 2, there is no map onto C[3]. To generate S[3],
two of them must map to distinct 2’s, but these can’t be P and R
in view of (RP )2 = 1. The cases in which Q,R→ 1, 2 or 2, 1 violate
(QR)3 = 1, so only ∗16(AB)3(BC)2 = ∗162322, type ∗632//∗333,
and ∗(BC)6(AB)3(BC)2 = ∗262322, type ∗632//2222, survive.
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α6β3γ2 : αβγ = 1 = α6 = β3 = γ2.

If there is a map onto C[3] then γ → 1, so αβ → 1. Thus, without
loss of generality, α→ (ABC) β → (CBA), giving (ABC)6(CBA)312 =
363312, type 632/2222. To generate S[3], α or γ → 2, since β → 1
or 3. Now αβγ = 1 determines β from α and γ, which must there-
fore map to distinct 2’s, yielding one more case: (AB)6(ABC)3(AC)2 =
263322, type 632//333.

∗P 4Q4R2 :1 = P 2 = (PQ)4 = Q2 = (QR)4 = R2 = (RP )2. No cases!
Since P,Q,R → 1 or 2, none map onto C[3]. To generate S[3], one
needs two distinct 2’s; but their product maps to 3, contradicting a
relation.

α4∗P 2 : 1 = α4 = P 2 = (PαPα−1)2 . No cases! As before, none
map onto C[3]. None map onto S[3] since the only hope is α →
(AB), P → (BC), which contradicts (PαPα−1)3 = 1.

α4β4γ2 : αβγ = 1 = α4 = β4 = γ2. No cases! None onto C[3] and none
onto S[3] since two of α, β, γ → distinct 2’s, making their product
(which is the inverse of the third 2) → 3.

∗P 3Q3R3 : 1 = P 2 = (PQ)3 = Q2 = (QR)3 = R2 = (RP )3.
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The fact that P,Q,R → 1 or 2 implies that none map onto C[3].
Now, without loss of generality, P,Q→ distinct 2’s, when (QR)3 =
1 implies R 	→ 1, yielding (without loss of generality) two cases:
∗(AB)3(BC)3(CA)3, type ∗333//◦, and ∗(AB)3(BC)3(BC)3, type
∗333//333. (We can’t use the short notation here, since both of
these abbreviate to ∗232323.)
α3∗P 3 : 1 = α3 = P 2 = (PαPα−1)3 .

Since α → 1 or 3, p → 1 or 2, and there are just two cases: onto
C[3] (ABC)3∗13 = 33∗13, type 3∗3/◦, and onto S[3] (ABC)3∗(AB)3 =
33∗23, type 3∗3//333.
α3β3γ3:αβγ = 1 = α3 = β3 = γ3.

Since α, β, γ → 1 or 3, the image must be C[3]. Now αβγ = 1
implies just two cases (w.l.o.g.): (ABC)3(ABC)3(ABC)3 = 333333,
type 333/◦, and (ABC)3(CBA)313 = 333313, type 333/333.

Where Are We?

We have enumerated the threefold color types of plane groups except
for

∗2222,2∗22,22∗,22×,2222, ∗∗, ∗×,××,◦.
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We could continue by handling those in the same manner, but the
more sophisticated argument of the next chapter finds the p-fold
types for larger primes at the same time. However, for the reader’s
convenience, we have quoted the results in Table 12.1.



0

1 2

3 4

∞
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Other Primefold Colorings

Plane Patterns

We next show how to enumerate the p-fold colorings of plane patterns
for any prime p. The new argument uses a fair amount of group
theory. In group theorists’ slang, the group G of a Euclidean plane
pattern has shape L.Q, meaning that it has a normal subgroup L
with finite quotient Q. The group L ∼= C∞ × C∞ (“the lattice”)
consists of the translations inG, and its quotient groupQ (“the point
group”) is not necessarily realized as a subgroup. The argument
works for a prime p that doesn’t divide the order ofQ (so, for p ≥ 5 in
the cases ∗632, 632, ∗333, 3∗3, and 333, and for p ≥ 3 otherwise.)
The missing threefold cases are precisely those that were done in the
previous chapter.

We need only seek the stabilizer subgroup H of index p in G that
fixes a given color, since this determines the coloring type. Since H
has index p in G, it must contain the normal subgroup Lp of G that
is generated by the pth powers of all translations. H is therefore

04

3
2

1

04

3
2

1

04

3
2

1

〈1− t〉 〈−t〉

Figure 13.1. In the images in this chapter, we will use p = 5, with this coloring. Note that 〈−t〉
is the permutation (0)(14)(23) and 〈1− t〉 is (01)(24)(3).

(opposite page) There are just p+1 groups of index p in L (see page 162), determined by their
slopes modulo p. Here, p = 5, and we show groups with slopes∞, 0, 1, 2, 3, and 4.

161
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determined by its image modulo Lp, a subgroup of index p in the
finite group G/Lp ∼= (Cp ×Cp) ·Q.

But, we can now regard Q as a particular subgroup1 of this finite
group; this must be in H, and so H is determined by its intersection
with L, a subgroup of index p in L.

There are just p+ 1 such subgroups of L, characterized by their
“slopes” (see page 283), but ours must be one that is fixed by Q.
The groups

∗2222,2∗22,22∗,22×, ∗∗, ∗×,××
have symmetries that negate slopes, which restricts us to the two
possibilities2 corresponding to slopes ∞ and 0. We telegraph the
arguments in the following, as before; the typical “color” t will be
one of 0, 1, 2, ..., p − 1, and the permutation that takes t to f(t) is
called 〈f(t)〉.

*P2Q2R2S2 1 = P 2 = (PQ)2 = Q2 = (QR)2 = R2 = (RS)2 =
S2 = (SP )2. Here, the only invariant slopes ∞ and
0 are interchangeable, so yield just one case: P → 1,
Q→ 〈1− t〉, R→ 1, S → 〈−t〉, i.e., ∗12221222, type
∗2222//∗∗.

α2*P2Q2 1 = α2 = P 2 = (PQ)2 = Q2 = (QR)2 = α−1PαR−1.
The same argument yields one case: α→ 〈−t〉, P →
1, Q→ 〈1− t〉, i.e., 22∗1222, type 2∗22//∗∗.

α2β2*P αβγ = 1 = α2 = β2 = P 2 = γ−1PγP−1 Here, the two
invariant slopes ∞ and 0 yield two possibilities that
lead to distinct cases: α→ 1, β → 1, P → 〈1− t〉, i.e.,
1212∗2 of type 22∗//◦, and α → 〈−t〉, β → 〈1 − t〉,
P → 1, or 2222∗1, type 22∗//∗∗.

1Because, by Hall’s theorem, there is a subgroup of the same order as Q, and
all such are conjugate. (Hall’s theorem asserts that, for any set π of primes, a
solvable finite group F has a subgroup whose order is the π part of |F| and that
all such subgroups are conjugate.)

2These may, however, be equivalent under some automorphism that inter-
changes x and y.
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∗P2Q2R2S2 α2∗P2Q2 α2β2∗P

α2β2×Z α2β2γ2δ2 α∗P ∗Q

∗P×Z ×Y×Z ◦X,Y

α2β2×Z αβγ = 1 = α2 = β2 = Z2γ−1. The slopes ∞ and 0
are interchangeable, so we get just one case: α, β →
〈−t〉, Z → 〈1− t〉, or 2222×2, type 22×//××.

α2β2γ2δ2 αβγδ = 1 = α2 = β2 = γ2 = δ2. Here, the elements
of the point group either fix or negate all vectors.
Therefore, all p+1 slopes are invariant, but the group
has automorphisms that make them all equivalent.
We obtain just one case: α, β → 〈−t〉, γ, δ → 〈1 −
t〉 >, or 22222222, type 2222//◦.

α*P*Q 1 = P 2 = Q2 = α−1PαP−1 = αQα−1Q−1. The
slopes ∞ and 0 lead to distinct cases: α → 〈t + 1〉,
P,Q → 1, or p∗1∗1, type ∗∗/∗∗; and α → 1, P →
〈1− t〉, Q→ 〈−t〉, or 1∗2∗2, type ∗∗//◦.
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*P×Z 1 = P 2 = (PZ−2PZ2). Again, this leads to two
cases: P → 1, Z → 〈t + 1〉, or ∗1×p, type ∗×/∗×;
and P → 〈1− t〉, Z → 〈−t〉, or ∗2×1, type ∗×//◦.

×Y×Z 1 = Y 2Z2. There are two cases: Y → 〈t + 1〉, Z →
〈t − 1〉, or xpxp, type ××/××; and Y → 〈1 − t〉,
Z → 〈−t〉, or ×2×2, type ××//◦.

◦X,Y XY = Y X. Since the point group is trivial, all p+ 1
slopes are invariant. But, all are equivalent under
automorphisms, so we obtain just one case: X → 1,
Y → 〈t+ 1〉, or ◦1,p, type ◦/◦.

Annotated Signature Color Signature Type Restriction

*P6Q3R2
∗16(12)3(13)2 ∗6323/∗333 p = 3

∗(12)6(13)3(12)2 ∗6323/2222 p = 3
(12)6(123)3(23)2 6323/333 p = 3

α6β3γ2 (123)6(132)312 6323/2222 p = 3
663322 632p/◦ p ≡ 1 (mod 6)

∗P4Q4R2 No cases
α4∗P2 No cases
α4β4γ2 444422 442p/◦ p ≡ 1 (mod 4)

∗P3Q3R3 ∗(12)3(13)3(23)3 ∗3333/◦ p = 3

∗(12)3(23)3(12)3 ∗3333/333 p = 3
α3∗P3 (123)3∗(12)3 3∗33/◦ p = 3

3(123)∗13 3∗33/∗333 p = 3
13(123)3(132)3 3333/333 p = 3

α3β3γ3 (123)3(123)3(123)3 3333/◦ p = 3
333333 333p//◦ p ≡ 1 (mod 3)

∗P2Q2R2S2 ∗12221222 ∗2222p//∗∗ p ≡ 1 (mod 2)
α2∗P2Q2 22∗1222 2∗22p//∗∗ p ≡ 1 (mod 2)
α2β2∗P 2222∗1 22∗p//∗∗ p ≡ 1 (mod 2)

22221∗2 22∗p//◦
α2β2×Z 2222×2 22×p//×× p ≡ 1 (mod 2)

α2β2γ2δ2 22222222 2222p//◦ p ≡ 1 (mod 2)
α∗P ∗Q 1∗2∗2 ∗∗p//◦ p ≡ 1 (mod 2)

p∗1∗1 ∗∗p/∗∗
∗P×Z ∗2×2 ∗×p//◦ p ≡ 1 (mod 2)

∗1×p ∗×p/∗×
×Y×Z ×2×2 ××p//◦ p ≡ 1 (mod 2)

×p×p ××p/××◦X,Y ◦1,p ◦p/◦ p ≡ 1 (mod 2)

Table 13.1. Primefold color types of plane patterns (p �= 2.)



The Remaining Primefold Types for Plane Patterns 165

The Remaining Primefold Types for Plane Patterns

We have now found the threefold color versions of all 17 groups and
indeed the p-fold ones for all except

∗632,632, ∗442,4∗2,442, ∗333,3∗3,333.
We now close this gap, assuming p ≥ 5, which ensures that p does
not divide the order of the point group Q. The simplest way to do so
is to employ the Gaussian and Eisensteinian integers, two simple yet
important sets of complex numbers that are not described in detail
here.

The “Gaussian” Cases

In these cases,3 the lattice may be thought of as the translations
through Gaussian integers, a + bi (i =

√−1). Then the index-p
sublattice must be closed under multiplication by i, since this is in
G; it is therefore an ideal of norm p.

Such things exist just when p ≡ 1 (mod 4), and there are just two
of them, consisting respectively of the multiples of a+bi or a−bi for
some a and b with a2 + b2 = p. Neither of these is invariant under
∗442 or 4∗2 since those groups have symmetries that interchange
a+bi and a−bi. Since these same symmetries are automorphisms of
442 we have just one case: 444422, type 442 p/◦. (See Figure 13.2.)

Figure 13.2. The single case for 442, illustrated with p = 5 (and a = 2, b = 1).

3All three groups contain 442, which is generated by the maps α : z → iz and
γ : z → 1− z.
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The “Eisensteinian” Cases

The discussion here is similar to the previous one except that we must
replace the Gaussian integers by the Eisensteinian integers a + bω,
where ω = 1

2 (−1 +
√−3) is a primitive cube root of 1. The index-p

sublattice, being closed under multiplication by ω, is an ideal of norm
p. Such things exist just when p ≡ 1 (mod 6) and then consist of
the multiples of a+bω or a+bω2 for some a and b with a2+ab+b2 =
p. Like those in the previous section, the groups ∗632, ∗333, and
3∗3 have symmetries that interchange the two ideals. Again, these
symmetries are automorphisms of 632 and 333, which therefore give
just one case each: namely, 663322, type 632p/◦, and 333333, type
333p/◦. (See Figure 13.3.)

Figure 13.3. The single cases for 632 and 333, illustrated with p = 7 (and a = 2, b = 1).

Spherical Patterns and Frieze Patterns

We can hope to p-fold color a spherical group only if p divides its
order. Therefore, the only odd primes for which we can p-fold color
the polyhedral groups are p = 3 or 5 for ∗532 and 532 and p = 3
for ∗432, 432, ∗332, 3∗2, and 332. It turns out that ∗532 and 532
each have just one 5-fold coloring, shown below, but no 3-fold one,
since neither has a subgroup of index 3.

In the remaining polyhedral groups, a subgroup of index 3 ex-
ists and is unique by Sylow’s theorem, since it must be a Sylow-2-
subgroup.
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In any p-fold coloring (p odd) of one of the axial groups

∗22N,2∗N,22N, ∗NN,N∗,N×,NN,

we can suppose that the rotation of order N effects the permutation
(0, 1, 2, ..., p − 1) = 〈t + 1〉 since there must be some element that
does so, and this is essentially the only choice. The coloring types
that arised are listed in Table 13.2. Once again we merely telegraph
the necessary arguments.

∗P5Q3R2 α5β3γ2 ∗P4Q3R2 α4β3γ2

∗P3Q3R2 α3∗P2 α3β3γ2

*P5Q3R2 1 = P 2 = (PQ)5 = Q2 = (QR)3 = R2 = (RP )3,
abstractly 2 ×A[5], has no subgroup of index 3 but
one (∼= 2×A[4]) of index 5: ∗532 5/3∗2/×.

α5β3γ2 αβγ = 1 = α5 = β3 = γ2, abstractly A[5], has
no subgroup of index 3 but one (A[4]) of index 5:
532 5/332/1.

*P4Q3R2 1 = P 2 = (PQ)4 = Q2 = (QR)3 = R2 = (RP )2,
abstractly 2 × S[4], has one 3-fold coloring given by
Sylow’s theorem: ∗432 3/∗422/∗222.
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α4β3γ2 αβγ = 1 = α4 = β3 = γ2 is abstractly S[4]. Again,
Sylow’s theorem tells us there is only one 3-fold col-
oring: (AB)4(ABC)3(AC)2 or 243322, 432 3/422/222.

*P3Q3R2 1 = P 2 = (QP )3 = Q2 = (QR)3 = R2 = (RP )2 is
also S[4] and has one 3-fold coloring:
∗(AB)3(BC)3(AB)2 = ∗232322; ∗332 3/2∗2/222.

α3*P2 1 = α3 = P 2 = αPα−1P−1 is abstractly 2×A[4] with
one 3-fold coloring: (ABC)3∗12 =33∗12.

α3β3γ2 αβγ = 1 = α3 = β3 = γ2 is simply A[4]. It has one
3-fold coloring of type 332 3/222.

We illustrate the remaining cases, taking N = pM to be very
large, with p = 3 in the figures. The analysis applies to the frieze
groups (N =∞) as well.

∗P2Q2RN α2∗PN α2β2γN ∗PNQN

αN∗P N×Z αNN

*P2Q2RN 1 = P 2 = (PQ)2 = Q2 = (QR)2 = R2 = (RP )N has
one p-coloring: ∗〈−t〉212〈1−t〉2 = ∗221222;
∗22N p/∗22M/M∗.

α2*PN 1 = α2 = P 2 = αPα−1P−1 has one p-fold coloring:
〈−t〉2∗〈1−t〉N; 2∗N p/2∗M/M×.

α2β2γN αβγ = 1 = α2 = β2 = γN has one such coloring:
〈1−t〉2〈−t〉2〈t+1〉N =2 222pN; 22N p/22M/MM.
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*PNQN 1 = P 2 = (PQ)N = Q2 has coloring ∗〈−t〉N〈1−t〉N or
∗pNpN; ∗NN p/∗MM/MM.

αN*P 1 = αN = P 2 = αPα−1P−1 has coloring pN∗1;
N∗ p/M∗.

N×Z 1 = Z2N has coloring N×p; N× p/M×.
αNN 1 = αN has coloring pNN; NNp/MM.

Spherical Group Color Type Spherical Group Color Type

∗532 ∗5325//× ∗22N ∗22Np//M∗
532 5325//1 2∗N 2∗Np//M×
∗432 ∗6323//∗222 22N 2NNp//MM

432 4323//222 ∗NN ∗NNp//MM

∗332 ∗3323//222 N∗ N∗p/M×
3∗2 3∗23/∗222 N× N×p/M×
332 3323/222 NN NNp/MM

Table 13.2. Odd primefold color types of spherical and frieze patterns.

Where Are We?

Taken together, our “coloring chapters” have enumerated all prime-
fold color types for repeating patterns on the plane and the sphere.
While there are infinitely many further colorings to explore, we shall
end our discussion here.
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Searching for Relations

In this chapter, we establish the presentations that we introduced
in Chapter 10. First, though, we must clear up the little matter of
“left” and “right.”

On Left and Right

If α and β are two group operations, what should αβ mean? Many
mathematicians write α(P ) for the image of P under α, which has
the rather confusing effect that αβ means “β, followed by α”. In this
book, we adopt the more natural meaning “α followed by β” and so
write Pα for the image of P under α.

The underlying fact is that a group can act on its own elements
in two different ways: either on the left or on the right. It is mul-
tiplication on the left that causes the confusing reversal: the result
of multiplying α first by β and then by γ (on the left) is γβα rather
than αβγ. We might avoid this problem by using division on the
left, which gets the order right because dividing by α and then by β
is equivalent to dividing by αβ—they both take γ to β−1α−1γ.

Justifying the Presentations

One of the confusing things about geometrical groups is that they
involve both left and right actions.

Our first figure shows the images of a particular point P under
the group α6β3γ2 generated by the particular rotations α, β, and γ
shown below; note that αβγ = 1.

(opposite page) The Cayley graph for our presentation of 632.

171
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α

β
γ

P = Pαβγ

Pα

Pαβ

It is annoying that the image Pαβ of a typical point Pα appears
far away in the figure from Pα. In other words, it is hard to see the
action by right multiplication. The left action, although it has less
geometrical meaning, is much easier!

α

Pw

Pwα

α
P

Pw

Pα−1w
Pα−1

It is annoying that, after applying α to Pw, the image Pwα is quite far away. On the other
hand Pα−1w is just as close to Pw as Pα−1 is to Pw.

For the reasons given, we actually use left division, rather than
left multiplication. For any word w, the points Pw and Pα−1w,
being the images of P and Pα−1 under w, are just as close to each
other as those two points. So the green arrows, which lead from
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each point Pw to the corresponding Pα−1w in the figure on page
170, are all the same length. Of course, the same is true of the red
(Pw → Pβ−1w) and yellow (Pw → Pγ−1w) arrows.

Since left division is a homomorphism, our relations αβγ = 1 =
α6 = β3 = γ2 must hold in this diagram. This is why the green
arrows form hexagons (because α6 = 1), the red ones triangles
(β3 = 1), and the yellow ones digons (γ2 = 1), while following green-
then-red-then-yellow arrows always determines a triangle, because
αβγ = 1.

α6 = 1

β3 = 1

γ2 = 1

αβγ = 1

These tiles correspond to the relations.

The Sufficiency of the Relations

Simple-Connectedness

The sphere is simply
connected—every closed
path can be shrink to a
point—as is the plane, but
the torus is not. Though
some closed paths on the
torus can be shrunk to a
point, some cannot.

Because the relations describe the borders of tiles, it is easy to see
why they suffice. The argument uses the fact that the polygons
corresponding to the relators tile the plane, which topologically is a
simply-connected manifold. This means that any closed path in the
plane can be shrunk to a point without leaving the plane. This is
also true for the sphere but is false for the torus. Now suppose that
the geometrical transformation corresponding to some complicated
product (or “word”) w in α, β, γ is the identity. Then, in particular,
we must have Pw−1 = P , which shows that the path starting at P
that corresponds to this word must return to P .

One such word is (α2β−1γ−1)2, which corresponds to the blue
path in the next figure. Since this is closed, it can be shrunk to a
point!



174 14. Searching for Relations

1

2

3

456

7

8
9

We can do this by a sequence of alterations, each of which replaces
a path partway around some tile by the remainder of the boundary
of that tile. For example, cutting off the digon 1 replaces the first
γ−1 by γ, leading to α2β−1γα2β−1γ−1; then, cutting off triangle 2
will replace γα by β, leading to α2β−2αβ−1γ−1. These are the first
two of the nine replacements that we suggest in figures above, the
next being that of β−2 by β (triangle 3) and the last (using digon 9)
that of γ2 (which is all that then remains of the word).

The same argument would establish the analogous presentation

α5β3γ2 : αβγ = 1 = α5 = β3 = γ2

for 532, even though the analogous figure for that case is on a sphere
rather than the Euclidean plane. This makes no difference because
the sphere is still a simply-connected manifold—any closed loop can
still be shrunk to a point on it.
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The General Case

The argument for 632 worked because our figure, which was a “Cay-
ley graph” for that group, was formed by the edges of a particular
kind of tiling. Namely, the vertices of the tiling are in exact cor-
respondence with the elements of the group, there is one type of
directed edge for each generator, and each type and direction of
edge appears at each vertex. One vertex, g, is connected to an-
other, h, by an edge corresponding to a generator α if and only if
h = gα.

α

g

h = gα

p = p−1

If a generator is its own
inverse we draw a dou-
bled edge instead of two di-
rected edges.

There is one type of tile for each relator; the relator corresponding
to any tile is the word obtained by reading the generators around
that tile. Of course, for our two-dimensional groups, each edge must
belong to just two tiles.

Loops in the tiling correspond to words that represent the iden-
tity, simply because we may shrink such a loop to a point, just as
we saw for 632 and 532.

We call this a van Kampen tiling. The justification of our presen-
tations for the other groups reduces to finding analogous van Kam-
pen tilings.

Recall that the orbifold of any of our groups is obtained from the
sphere by adding some handles, cone points, boundary curves with
corners, and crosscaps. We will carve this up into pieces that “lift
up” to a van Kampen tiling when we unfold the orbifold.
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α

α

β

β

γ

γ
δ

δ

The global relation: We fix a basepoint and carve the orbifold up into pieces that will lift to
the tiles of our van Kampen tiling. First, we separate off each piece of the orbifold with a loop
from the base point. The portion that remains is a disk corresponding to the global relation.
Here, αβγδ = 1.

The cutting paths shown in the following figures represent the
elements of the fundamental group of this orbifold that correspond
to our chosen generators.

αX Y α

α = X−1Y −1XY

β

a

βa = 1

Handles Cone points

. . .

γ

a b c

PQRST T

(PQ)a = 1

γ−1Pγ = T

δZ

δ

δ = Z2

Kaleidoscopes Crosscaps

Handles: We can carve a handle to lie flat by cutting along
two curves X and Y , producing a tile corresponding
to the relation α = X−1Y −1XY .

Cone points: The loop around a cone point of order A already
separates off a piece that lifts to a tile, corresponding
to a relation βA = 1.
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Kaleidoscopes: So that the pieces will lift to tiles that are disks, we
must carve apart the kaleidoscopic points of a kalei-
doscope, obtaining the relations P 2 . . . , T 2, (PQ)a =
. . . = (ST )d = 1, and γ−1Pγ = T .

Crosscaps: A crosscap can be cut open along a single loop to pro-
duce a flat tile, corresponding to the relation Z2 = δ.

The way we get the desired tiling is very simple: we just “lift” the
figure to the original surface by unfolding the orbifold! We illustrate
this with the presentation

α4β ∗P 2Q : αβ = 1 = α4 = P 2 = (PQ)2 = Q2, Q = β−1Pβ

for the group 4∗2. The orbifold of this group is very simple: it looks
like a sort of ice-cream cone, but we redraw it as at the right below
to show it as part of the general case.

4 2

The figure below shows the unfolded tiling that corresponds to
this. The reader should check the essential properties that each gen-
erator appears once inwards and once outwards at each vertex and
that the word around each tile is a relator. The argument we used
for 632 now shows that 4∗2 does indeed have the given presentation.

α

β

P
Q
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The previous diagram contains three types of two-sided region.
We can simplify it by collapsing these to single edges, as in the
figure below. Identifying β with α−1 collapses the pink regions, while
noticing that P andQ are self-inverse does the same for the two green
types of two-sided region.

We shall routinely collapse two-sided regions in this way. How-
ever, there can be less obvious simplifications. For instance, omit-
ting all the edges of one particular kind sometimes still yields a tiling
with the van Kampen properties, which then corresponds to a pre-
sentation obtained by making the appropriate substitution for the
corresponding generator. This happens for either of the two types
of green edge in our example. We may eliminate all the edges of a
particular kind, so long as our graph remains connected.

Simplifications

Nothing more needs to be said to justify the presentation in the
general case, but it is interesting to observe how the form of the tiling
simplifies in various special cases. Thus, the generic presentation
α ∗P 6Q3R2S for ∗632 is shown in the next figure.

α
P

Q

R

S



Alias and Alibi 179

We can eliminate the “peapods” whose two “peas” are one-sided
faces corresponding to the relation α = 1 contained in a four-sided
face that completes the “pod” and corresponds to the relation
α−1Pα = S. We obtain another simplification by dropping α and
identifying S with P , which is equivalent to collapsing these pods.
The resulting diagram is typical of those for kaleidoscopic groups.

The justification of our presentations is now complete, but we
add a final note for the interested reader on why the argument takes
the form that it does.

Alias and Alibi

The real problem is, why do the left and right actions of G both
occur here? The reason is that a permutation—say, of the names of
a number of people—can be thought of as moving either the names
or the people. The alias viewpoint regards the permutation as as-
signing a new name or “alias” to each person (from the Latin alias
= otherwise). Alternatively, from the alibi viewpoint we move the
people to the places corresponding to their new names (from the
Latin alibi = in another place).

The two resulting mathematical descriptions of the permutation
are inverses:

Jane moves to John’s spot,
John to Baby’s,
and Baby to Jane’s,
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John
John

Jane

JaneBaby
Baby

Figure 14.1. On the left, changing each alias; on the right, changing alibis. The effect is
the same, but expressed as group operations, one is Jane→John→Baby→Jane, the other
Jane→Baby→John→Jane.

but

Jane’s spot becomes Baby’s,
Baby’s becomes John’s,
and John’s becomes Jane’s.

So if we use right multiplication for one of them, we should use left
multiplication for the other.

In the figures at the beginning of this chapter, we named various
points (Pw) by group elements (w). The group acts on points by
multiplication on the right, and so it is natural that it should act on
the left for their names or, equivalently, for the group elements. It
is the action on group elements that was needed to understand the
relations.

Where Are We?

We have now justified the presentations that we used to enumerate
coloring types in Chapters 11–13.
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Exercises

Now for an exercise: name the symmetries of the following graphs,
and decipher the presentations. One group has two graphs shown,
corresponding to two different presentations discussed in Chapter 10.

1 2

3 4

5 6
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7 8

9 10

11 12

Answers to Exercises

1. 22∗; 1 = α2 = β2 = P 2, Pαβ = αβP .

2. ◦; XY = Y X.
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3. 22×; 1 = (Y Z)2 = (Y Z−1)2.

4. 22×; 1 = α2 = β2 =∞BZ2.

5. ∗∗; 1 = P 2 = Q2, αP = Pα,αQ = Qα.

6. ××; 1 = Y 2Z2.

7. ∗×; 1 = P 2, PZ2 = Z2P .

8. 2222; αβγδ = 1 = α2 = β2 = γ2 = δ2.

9. 3∗3; 1 = P 2 = α3 = (α−1PαP )3.

10. 2∗22; 1 = P 2 = Q2 = (PQ)2 = (α−1PαQ)2.

11. ∗333; 1 = P 2 = (PQ)3 = Q2 = (QR)3 = R2 = (RP )3.

12. 333; αβγ = 1 = α3 = β3 = γ3.
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Types of Tilings

Heesch Types

In how many topologically different ways can we choose a simply
connected fundamental domain (“the tile”) for one of the seventeen
plane groups? This subject was investigated by Heesch and indepen-
dently by Escher, and an exhaustive enumeration of the plane types
is found in Grünbaum and Shephard [18].

The very much simpler treatment we give here was pioneered by
Daniel Huson and Olaf Delgado. The answer, of course, depends on
the group—obviously for a reflection group there is just one funda-
mental domain. On the other hand, there are four for 632 as shown
on the next page. Why is this? The answer is found by looking at
the orbifold: a graph on the orbifold will be the boundary of a fun-
damental domain if it cuts the orbifold into a topological disk that
has no internal cone point and can be opened flat onto the plane. We
just call such a disk a flat disk. There are two topologically distinct
ways to cut open a sphere with three cone points into such a tile,
shown below.

(opposite page) A Heesch tiling made by unusual paving stones, in Zakopane, Poland.

185
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The previous figure is an example of the visual shorthand that
we use to represent various types of orbifolds. Here is the complete
list:

Spheres with cone points:
signatures NN, 22N, 332,
333, 432, 442, 532, 632,
2222.

Disks with kaleidoscopic
points: signatures *NN,
*22N, *332, *333, *432,
*442, *532, *632, *2222.

Disks with kaleidoscopic
points and cone points:
2*N, 2*22, 3*2, 3*3, 4*2.

Disks with cone points: N*,
22*.

Crosscaps with cone
points: N×, 22×.

The twice-punched sphere,
or annulus, **; and the
once-punched crosscap, or
Möbius band, *×.

A pair of crosscaps, or klein
bottle,××; and a handle, or
torus, ◦.

Now back to a sphere with three cone points. If the cone points
have distinct orders, as for 632, we get four possible graphs alto-
gether: we can label the cone points of the second graph in just
one way, topologically, but the other can be labeled in three distinct
ways. So there are four possible fundamental domains.

2
2

2 2 33
3 3 6

66 6

For 4∗2, there are just two graphs possible on the orbifold, and
so just two possible fundamental domains. The reason a reflection
group has a unique fundamental domain is that its orbifold is already
a flat disk!
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Groups with topologically equivalent orbifolds have correspond-
ing kinds of fundamental domains since they will have topologically
the same graphs; this holds whether the types are on the sphere or
the plane. For example, the types 4∗2, 3∗3, 3∗2, and 2∗N have
topologically equivalent orbifolds: a disk with one cone point in the
interior and one kaleidoscopic point on the boundary. Below are
tilings of several types, arising from (topologically) the same graph
on (topologically) the same orbifold.

The figures on the following pages show the answers for all the
planar and spherical types. They were found by enumerating graphs
on the corresponding orbifolds that cut it into a disk and pass through
all its cone points.

Isohedral Types

Grünbaum and Shephard also list all types of isohedral tilings—
which is to say, those whose tiles are all of the same type in the
precise sense that there are symmetries taking any tile to all the
others. Since the symmetries that fix a tile form at most a point
group N· or ∗N·, the condition for this is that the graph must cut
the orbifold into a topological disk that has, at worst, either a single
cone point on its boundary or a single cone point in its interior. It
may include parts of the boundary.
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For example, four such graphs are possible on the orbifold for
4∗2, yielding four new isohedral tilings in addition to the two Heesch
tilings already shown.

As before, the topology of the orbifold is what matters. Below
are isohedral tilings with symmetry types 4∗2, 3∗3, 3∗2, and 2∗N,
all arising from the same kind of graph on the same kind of orbifold.

There may be symmetries of the tile itself that do not extend to
the tiling. We indicate this possibility, for it is clearly important to
designers and other tile users.
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The types of isohedral tiling for the plane groups are shown below
and on the following pages.

NN

N×22×
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*22N *332 *432 *532
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*NN

*333*442*632 *2222
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22N 332 432 532
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333442632 2222
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2*N 3*2 3*3 4*2
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2*22 N*22*



196 15. Types of Tilings

** *× ××

◦
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Where Are We?

In this chapter, we used our orbifold theory to enumerate the isohe-
dral tilings of the sphere or plane (the so-called Heesch types).



Order (Number) Groups
1 (1) 1.
2 (1) 2.
3 (1) 3.
4 (2) 4, 2× 2.
5 (1) 5.
6 (2) 6 = 3× 2,D6 = 3 : 2 = S[3].
7 (1) 7.
8 (5) 8, 4× 2, 2× 2× 2,D8 = 4 : 2 = 21+2

+ ,Q8 = 4|2 = 21+2
− .

9 (2) 9, 3× 3.
10 (2) 10 = 5× 2,D10 = 5 : 2.
11 (1) 11.
12 (5) 12 = 3× 4, 3× 2× 2,D12 = 6 : 2,Q12 = 6|2,A[4] = (2× 2) : 3.
13 (1) 13.
14 (2) 14 = 7× 2,D14 = 7 : 2.
15 (1) 15 = 5× 3.

16, 8× 2, 4× 4, 4× 2× 2, 2× 2× 2× 2,
16 (14) 2×D8, 2×Q8, 2

1+3 = 4 ◦Q8 = 4 ◦D8,D16,Q16,
QD16 = 8 : 23, 8 : 2 = 8 : 25, 4 : 4, (2× 2) : 4.

17 (1) 17.
18 (5) 18 = 9× 2, 3× 3× 2, 3×D6,D18, (3× 3) : 2 = (3× 3) : 2−1.
19 (1) 19.
20 (5) 20 = 5× 4, 5× 2× 2,D20 = D10 × 2,Q20, 5 : 4 = 5 : 42.
21 (2) 21 = 7× 3, 7 : 3.
22 (2) 22 = 11× 2,D22 = 11 : 2.
23 (1) 23.

24 = 3× 8, 3× 4× 2, 3× 2× 2× 2, 3×D8, 3×Q8,
24 (15) 4×D6, 2× 2×D6 = 2×D12, 2×Q12, 3 : D8, 3 : Q8,

D24,Q24,S[4] = (2× 2) : S[3], 2×A[4], 2|A[4] = Q8 : 3.
25 (2) 25, 5× 5.
26 (2) 26 = 13× 2,D26 = 13 : 2.
27 (5) 27, 9× 3, 3× 3× 3, 31+2

+ = (3× 3) : 3, 31+2
− = 9 : 3.

28 (4) 28 = 7× 4, 7× 2× 2,D28 = 2×D14,Q28, 7 : 4.
29 (1) 29.
30 (4) 30 = 5× 3× 2, 5×D6, 3×D10,D30.
31 (1) 31.
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Abstract Groups

It seems silly to have enumerated so many different kinds of geomet-
rical groups without enumerating abstract groups in their own right.
We now rectify this omission.

Hans Ulrich Besche, Bettina Eick, and Eamonn O’Brien have
celebrated the completion of the second millenium by publishing a
paper [1] that gives the number of groups of each order up to 2000.
The table that forms the appendix to this chapter, taken from their
paper with their help and permission, extends this to 2009 so as to
contain the publication date of this book.

But what about the groups themselves? The frontispiece gives
our short names for the 93 groups whose order is at most 31. We
briefly explain the notations used.

Cyclic Groups, Direct Products, and Abelian Groups

A number N represents the cyclic group (often also called CN ) of
order N . We use G×H for the direct product of groups G and H
— if G = 〈g1, g2, . . . |r1, r2, . . .〉 and H = 〈h1, h2, . . . |s1, s2, . . .〉 are
presentations for G and H, then one for G×H is

G×H = 〈g1 . . . , h1 . . . |r1, r2, . . . , s1, s2, . . . , gihj = hjgi〉,

it being supposed that the generators for G and H don’t overlap. It
is a well-known theorem that every finite abelian group is a direct
product of cyclic groups.

(opposite page) The groups of orders 1 through 31.

199
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Split and Non-split Extensions

We say that G is an extension1 of H by K and write G = HK
or H.K to mean that G has a normal subgroup H whose quotient
G/H is isomorphic to K. The extension is a split one, written G =
H : K, if it has a subgroup disjoint from H and isomorphic to K,
and otherwise non-split, written G = H|K. Usually we still need
more information to specify the structure of G. If K = N is a cyclic
group of order N generated by c, then it is enough to specify the
automorphism γ of H defined by c−1hc = hγ . We do this by writing
G = H : Nγ , where the subscript may either name γ completely or
just hint at it—for example a number n denotes the nth power map
h �→ hn. Often we omit the hint completely, understanding that
G : N means the only group of form G : Nγ for which γ has as large
an order as possible subject to having no simpler name.

Non-split extensions by cyclic groups are named similarly, re-
placing : by |, except that we might also need to specify the element
z = cN . We write G = H|zNγ when c−1hc = hγ and cN = z, but
since z is often determined by the condition that it must be a central
element of H that is fixed by γ, we can usually omit it.

Some of the simplest split and non-split extensions are the dihe-
dral and quaternionic groups defined in the next section. The more
interesting ones in the table are A[4] = (2 × 2) : 3 in which the
automorphism cyclically permutes the three nontrivial elements of
2× 2; S[4] = (2× 2) : S[3], where the S[3] achieves all permutations
of these elements; and 2|A[4], which is simpler to describe as Q8 : 3,
in which the automorphism is the one described below.

Dihedral, Quaternionic, and QuasiDihedral Groups

Three closely related groups have long received special names. They
are n : 2−1, the Dihedral group D2n of order 2n; 2n|2−1, the Quater-
nionic group Q4n of order 4n; and 2n : 2n−1, the QuasiDihedral
group QD4n of order 4n.

1Since there are two conventions, more precisely this is an upward extension
of H by K or a downward extension of K by H.
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The group Q8 has been notorious as the group of the unit quater-
nions ±1,±i,±j,±k ever since October 16, 1843, when Hamilton
carved its defining relations in the form

i2 = j2 = k2 = ijk = −1
into the stone of Dublin’s Brougham bridge. It has an obvious au-
tomorphism cyclically permuting i, j, k.

The two nonabelian groupsD8 andQ8 of order 8 are very similar,
and lead us into a new topic.

Extraspecial and Special Groups

An extraspecial p-group is one with a center of prime order p that is
also its derived group and in which the pth power of every element
is in the center. (The derived group of a group is the subgroup gen-
erated by commutators a−1b−1ab.) It follows from this description
that any extraspecial group has structure

p | (p × p× . . . p)︸ ︷︷ ︸ , or p1+e in brief.

e

It turns out that e = 2n is always even and that there are two
cases p1+2n

+ and p1+2n
− for each n. Moreover, these cases are central

products

p1+2n
± = X± ◦X+ ◦X+ . . .︸ ︷︷ ︸

n

of the two nonabelian groups of order p3, say X+ = p1+2
+ and X− =

p1+2
− . The central product G ◦H of two groups is defined only when

they have isomorphic central subgroups, say Z1 and Z2; then it is
obtained from G×H by adding the relations that equate Z1 to Z2.

To complete this description, we need only identify X+ and X−.
They are

21+2
+ = D8 and 21+2

− = Q8, when p = 2,

p1+2
+ = (p× p) : p and p1+2

− = p2 : p, for odd p,
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where the implied automorphism takes a �→ ab, b �→ b in the first case
and a �→ ap+1 in the second. In fact, any central product of factors
X± is extraspecial, but since X− ◦X− is isomorphic to X+ ◦X+ (if
p = 2) or X+ ◦X− (if p is odd), we can suppose there is at most one
− sign.

Closely related to the two extraspecial groups p1+e
± (e = 2n) is

the special group p1+d (d = 2n+ 1), defined by

p1+d = X± ◦X± ◦ . . .X±︸ ︷︷ ︸ ◦ C
n

,

where C is the cyclic group of order p2 and the common central
subgroup has order p. The signs are irrelevant since X+ ◦ C and
X− ◦C are isomorphic.

Groups of the Simplest Orders

We have now said enough to identify all the groups listed on page 196.
The rest of the chapter is about groups whose order factorizes in some
simple way.

p-Groups

Groups whose orders are powers of a prime p are normally called p-
groups: they were enumerated through order p4 by Hölder in 1893,
and we shall briefly describe them in this section.

For p = 2 they appear on page 196 and for p odd in Table 16.1,
except that for order 34 there are certain changes. For p ≥ 3, all
groups in a given line have the same number of elements of every
order as the first one, which is an abelian group.

We can take the implied automorphisms to be

for p3 : p a �→ ap
2+1

p2 : p2 a �→ ap+1

(p× p) : p2 a �→ ab, b �→ b
(p× p× p) : or |p a �→ ab, b �→ bc, c �→ c

(p2 × p) : p± a �→ abi, b �→ apjb, where ( ijp ) = ±1.
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Order (Number) Groups
p (1) p.
p2 (2) p2,

p× p.
p3,

p3 (5) p2 × p; p2 : p = p1+2
− ,

p× p× p; (p× p) : p = p1+2
+ .

p4,
p3 × p; p3 : p,

p4 (15) p2 × p2; p2|p2,
(p > 3) p2 × p× p; (p× p) : p2, p× p1+2

− , p1+3;
(p2 × p) : p+, (p

2 × p) : p−, (p× p× p)|p,
p× p× p× p; p× p1+2

+ , (p× p× p) : p.

Table 16.1. The p-groups.

The two groups (p2×p) : p± are very similar and have been called the
twins. They are distinguished only by the quadratic residuacity of ij
(mod p) — the exact values of i and j being otherwise unimportant.
For (p×p×p)|p the pth power of the automorphism may be taken to
be c. However, for this and the earlier groups we don’t really need
to specify the automorphism since all appropriate values for it lead
to the same group.

For the groups of order 34, one should make the following changes:
in the line starting 9 × 3 × 3 there is no group of the form 33|3 —
instead in line 9 × 9 we have a group (9 × 3)|3 for which the auto-
morphism is the same as in (9 × 3) : 3−. The numbers of elements
of orders 1, 3, 9 in (9 × 3) : 3− and (3 × 3 × 3) : 3 are 1, 62, 18 and
1, 44, 36.

Groups of Squarefree Order

Hölder also classified all the groups of squarefree orders. We shall
describe them as follows. For any particular group of squarefree order
pqr . . ., there are generators whose orders are the primes p, q, r, . . ..
The further relations are all of the form either xy = yx or y−1xy =
xk 	= x. If there is a relation of form y−1xy = xk 	= x, we say that
y acts on x and call y an actor and x a reactor. No generator may
be both an actor and a reactor, but there may be generators that
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Opportunity Graph (Number) Groups

p (1) p

Opportunity Graph (Number) Groups

p q (1) p× q

p← q (2) p× q, (p : q)

Table 16.2. Cases p and pq.

Opportunity Shape
Graph name (Number) Groups

q
0 (1) p× q × r

p r

q
↙ 1 (2) p× q × r, (p : q)× r
p r

q
↙ ↖ 2 seq (3) p× q × r, (p : q)× r, p× (q : r)
p r

q
↙ 2 in (4) p× q × r, (p : q)× r,(p : r)× q,

p ←− r p : (q × r)

q
↖ 2 out (r+2) p× q × r, p× (q : r), q × (p : r),

p ←− r (p× q) : ri,j
q

↙ ↖ 3 (r+4) p× q × r, (p : q)× r,
p ←− r p× (q : r), q × (p : r),

p : (q × r) , (p× q) : ri,j

Table 16.3. Case pqr.

are neither; such generators z we may call commuters, since they
commute with all the other generators.

A generator y of order q can only act on x of order p if p ≡
1 (mod q) — this condition we call an opportunity for action and
symbolize it by putting a directed edge p ← q in the opportunity
graph.

Not every group seizes every opportunity! The opportunities that
are seized by a particular group we call its action graph, a subgraph
of the opportunity graph. We explain the situation by discussing the
cases p, pq, and pqr covered by Tables 16.2 and 16.3.
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The case p : q is exemplified by 11 : 5, for which the relations are

1 = a11 = b5,

b−1ab = b3 or 9 or 5 or 4,

since 3, 9 ≡ 32, 5 ≡ 33, and 4 ≡ 34 are the numbers of order 5 (mod
11). However, it doesn’t matter which one we choose, since we can
pass from one to another by replacing b by b2, b3, or b4. For similar
reasons there is only one group named p : q (which exists when p ≡ 1
(mod q)).

There is similarly only one group named p : (q×r) (existing when
p ≡ 1 (mod qr)). An example is 31 : (5× 3), for which the relations
are

1 = a31 = b5 = c3,

bc = cb,

b−1ab = a2 or 4 or 8 or 16,

c−1ac = a5 or 25,

since we can pass between 2, 4, 8, and 16 by choice of b, and between
5 and 25 by choice of c. The same happens in any other “2 in” case.
However, in the “2 out” and “3” cases, there are r−1 groups of form
(p× q) : r, exemplified by (31× 11) : 5i,j , for which the relations are

1 = a31 = b11 = c5,

ab = ba,

c−1ac = ai,

c−1bc = bj .

In this case we can vary c to choose either between i in {2, 4, 8, 16}
or between j in {3, 9, 5, 4}, but not both, so there are 4 = r − 1
distinct groups of this form.

For a general squarefree group the analysis is similar. Hölder
shows that the total number of groups is given by the formula

gnu(n) =
∑
d|n

∏
p|d

(popp(p,e) − 1)

(p− 1)
,

where de = n, p|d and opp(p, e) is the number of opportunities for p
to act on the primes dividing e.



206 16. Abstract Groups

Groups of Order pq2

Hölder also enumerated the groups of order pq2. He found that for a
triprime (a number with three prime factors) of form n = pq2 > 12,
gnu(n) is

2 if we have none of p|q − 1, p|q + 1, q|p − 1;
3 if both p, q > 2 and p|q + 1;
4 if p > 3, q|p− 1, but not q2|p− 1;
5 if q2|p− 1; and finally[

p+9
2

]
if p|q − 1,

the corresponding groups being

q × q × p, q2 × p
q × q × p, q2 × p, (q × q) : p
q × q × p, q2 × p, (p : q)× q, p : (q × q)
q × q × p, q2 × p, (p : q)× q, p : (q × q), p : q2

q × q × p, q2 × p, q × (q : p), q2 : p, (q × q) : pi,j.

In the last case, the automorphism is a �→ ai, b �→ bj where i and j
are numbers of order p (mod q).

To help us count the groups of this last form, we study the exam-
ple (11× 11) : 5i,j , when i and j range over the set {3, 9, 5, 4}. Since
i and j can be replaced by in and jn, all that matters is the number
m for which j ≡ im (mod 5). Since i and j can be interchanged, the
cases m and m′ are the same if mm′ ≡ 1 (mod 5). For general p,
m and m′ are mutually inverse members of a cyclic group of order
p − 1, which gives the integer part of p+1

2 for the number of groups

of this form, and so the integer part of p+9
2 for the total number of

groups in the last line.

The Group Number Function gnu(n)

We have already mentioned that the appendix to this chapter tab-
ulates the number of abstract groups of each order n < 2010. In
a forthcoming paper Conway, Dietrich, and O’Brien [5] study this
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group number function, gnu(n), in more detail. They note that the
initial values approximately depend only on what we call the mul-
tiprimality of n (by which we mean its number of prime factors,
counting repetitions), namely gnu =

1 for all prime numbers,
2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, ... for the first few biprimes,
5, 5, 5, 5, 5, 4, 4, 6, 4, 2, 5, 5, 4, 4, 5, ... for triprimes,
14, 15, 14, 15, 14, 14, 15, 13, 13, 15, 15, 12, 10, 16, ... for quadriprimes,
51, 52, 50, 52, 45, 43, 47, 55, 57, 42, 37, 52, 51, 67, ... for quinqueprimes,
267, 231, 197, 238, 177, 197, 208, ... for sextiprimes,

where, of course, by a k-prime we mean a number whose multipri-
mality is k. It seems that when the multiprimality of n is k, gnu(n)
is approximately the kth Bell number, its “expected value.” The
expected values for multiprimality 1, 2, 3, 4, 5, 6, ... are 1, 2, 5, 15,
52, 203, ... .

However, for larger values this rule is not always reliable. It’s
true that for biprimes gnu(n) is always 1 or 2 but it’s usually 1,
not 2, while for triprimes and above gnu(n) can be as small as 1 and
can also be arbitrarily large.

The state of knowledge for prime powers is

gnu(p) = 1, gnu(p2) = 2, gnu(p3) = 5, gnu(p4) = 15

(the expected values), except that gnu(16) = 14. For fifth, sixth,
and seventh powers, we have exact formulae. Usually

gnu(p5) = 61 + 2p+ 2gcd(p− 1, 3) + gcd(p− 1, 4),

gnu(p6) = 3p2 + 39p+ 344 + 24 gcd(p − 1, 3) + 11 gcd(p− 1, 4)

+2 gcd(p − 1, 5),

gnu(p7) = 3p5 + 12p4 + 44p3 + 170p2 + 707p + 2455

+(4p2 + 44p+ 291) gcd(p− 1, 3)

+(p2 + 19p + 135) gcd(p− 1, 4)

+(3p+ 31) gcd(p− 1, 5) + 4 gcd(p− 1, 7)

+5 gcd(p − 1, 8) + gcd(p− 1, 9),
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but the first few cases are exceptions:

gnu(25) = 51,

gnu(35) = 67,

gnu(26) = 267,

gnu(36) = 504,

gnu(27) = 2328,

gnu(37) = 9310,

gnu(57) = 34,297.

The only higher powers we know exactly are

gnu(256) = 56,092,

gnu(512) = 10,494, 213,

gnu(1024) = 49,487,365,422,

but there is an asymptotic estimate

gnu(pn) ∼= p2n
3/27+O(n5/2),

originally by Higman [19] and Sims [25], improved by M.F. Newman
and C. Seeley (private communication). Pyber [23] has deduced that

gnu(n) ≤ n(2/27+o(1))μ(n)2 ,

where μ(n) is the largest exponent in the prime-power factorization
of n.

There is a sense in which “almost all groups have order a power
of 2.” For example, there are 423,164,719 groups of orders < 2048
other than 1024 and 49,487,365,422 of order 1024. If a group is
selected at random from all the groups of order less than 2048, the
odds are more than 100-to-1 that it will have order 1024. The first n
for which gnu(n) is unknown is 2048, but it is known that gnu(2048)
strictly exceeds 1,774,274,116,992,170, which is the exact number of
groups of order 2048 that have “exponent 2 nilpotency class 2.”
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The gnu-Hunting Conjecture: Hunting moas

The gnu-hunting conjecture is that every positive integer n arises
as gnu(m) for some m. R. Keith Dennis has verified that every
n < 10, 000, 000 is in fact of the form gnu(m) for some square-free m.
Conway, Dietrich, and O’Brien define moa(n) (the minimal order
attaining n) to be the least m with gnu(m) = n and have hunted
down the following moas:

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 1 4 75 28 8 42 375 510 308
10 90 140 88 56 16 24 100 675 156 1029
20 820 1875 6321 294 546 2450 2550 1210 2156 1380
30 270 ? 630 ? 450 616 612 180 1372 264
40 280 420 176 112 392 108 252 120 2730 300
50 72 32 48 656 272 162 500 168 4650 6875
60 378 312 702 3630 1596 ? 588 243 882 1215
70 4100 3660 1638 ? ? 2420 2964 1092 ? 3612
80 6050 6820 ? ? 2394 ? ? ? 2028 4140
90 ? ? ? ? ? ? 6930 6498 4950 1188

100 3822

The best guess for the first unknown entry moa(31) is 11, 774. They
also make the galloping gnu conjecture, stating that iterating the gnu
function always leads to 1 in finitely many steps. For n < 2048 at
most five steps are needed, the hardest case to verify being

1024→ 49, 487, 365, 422 → 240→ 208→ 51→ 1.

However, it seems that the galloping gnu conjecture will be extremely
difficult to prove.

Appendix: The Number of Groups to Order 2009

The table on the next four pages, largely taken from a paper by
Besche, Eick, and O’Brien [1], lists the number of groups for each
order below 2010. There are many interesting patterns in the num-
bers, but exact formulae are known only for the few cases given in
the text. The table has been extended privately to 2047, but finding
the number for 2048 will be very difficult.
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+0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0 1 1 1 2 1 2 1 5 2

10 2 1 5 1 2 1 14 1 5 1
20 5 2 2 1 15 2 2 5 4 1
30 4 1 51 1 2 1 14 1 2 2
40 14 1 6 1 4 2 2 1 52 2
50 5 1 5 1 15 2 13 2 2 1
60 13 1 2 4 267 1 4 1 5 1
70 4 1 50 1 2 3 4 1 6 1
80 52 15 2 1 15 1 2 1 12 1
90 10 1 4 2 2 1 231 1 5 2

100 16 1 4 1 14 2 2 1 45 1
110 6 2 43 1 6 1 5 4 2 1
120 47 2 2 1 4 5 16 1 2328 2
130 4 1 10 1 2 5 15 1 4 1
140 11 1 2 1 197 1 2 6 5 1
150 13 1 12 2 4 2 18 1 2 1
160 238 1 55 1 5 2 2 1 57 2
170 4 5 4 1 4 2 42 1 2 1
180 37 1 4 2 12 1 6 1 4 13
190 4 1 1543 1 2 2 12 1 10 1
200 52 2 2 2 12 2 2 2 51 1
210 12 1 5 1 2 1 177 1 2 2
220 15 1 6 1 197 6 2 1 15 1
230 4 2 14 1 16 1 4 2 4 1
240 208 1 5 67 5 2 4 1 12 1
250 15 1 46 2 2 1 56092 1 6 1
260 15 2 2 1 39 1 4 1 4 1
270 30 1 54 5 2 4 10 1 2 4
280 40 1 4 1 4 2 4 1 1045 2
290 4 2 5 1 23 1 14 5 2 1
300 49 2 2 1 42 2 10 1 9 2
310 6 1 61 1 2 4 4 1 4 1
320 1640 1 4 1 176 2 2 2 15 1
330 12 1 4 5 2 1 228 1 5 1
340 15 1 18 5 12 1 2 1 12 1
350 10 14 195 1 4 2 5 2 2 1
360 162 2 2 3 11 1 6 1 42 2
370 4 1 15 1 4 7 12 1 60 1
380 11 2 2 1 20169 2 2 4 5 1
390 12 1 44 1 2 1 30 1 2 5
400 221 1 6 1 5 16 6 1 46 1
410 6 1 4 1 10 1 235 2 4 1
420 41 1 2 2 14 2 4 1 4 2
430 4 1 775 1 4 1 5 1 6 1
440 51 13 4 1 18 1 2 1 1396 1
450 34 1 5 2 2 1 54 1 2 5
460 11 1 12 1 51 4 2 1 55 1
470 4 2 12 1 6 2 11 2 2 1
480 1213 1 2 2 12 1 261 1 14 2
490 10 1 12 1 4 4 42 2 4 1
500 56 1 2 1 202 2 6 6 4 1
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+0 +1 +2 +3 +4 +5 +6 +7 +8 +9
510 8 1 10494213 15 2 1 15 1 4 1
520 49 1 10 1 4 6 2 1 170 2
530 4 2 9 1 4 1 12 1 2 2
540 119 1 2 2 246 1 24 1 5 4
550 16 1 39 1 2 2 4 1 16 1
560 180 1 2 1 10 1 2 49 12 1
570 12 1 11 1 4 2 8681 1 5 2
580 15 1 6 1 15 4 2 1 66 1
590 4 1 51 1 30 1 5 2 4 1
600 205 1 6 4 4 7 4 1 195 3
610 6 1 36 1 2 2 35 1 6 1
620 15 5 2 1 260 15 2 2 5 1
630 32 1 12 2 2 1 12 2 4 2
640 21541 1 4 1 9 2 4 1 757 1
650 10 5 4 1 6 2 53 5 4 1
660 40 1 2 2 12 1 18 1 4 2
670 4 1 1280 1 2 17 16 1 4 1
680 53 1 4 1 51 1 15 2 42 2
690 8 1 5 4 2 1 44 1 2 1
700 36 1 62 1 1387 1 2 1 10 1
710 6 4 15 1 12 2 4 1 2 1
720 840 1 5 2 5 2 13 1 40 504
730 4 1 18 1 2 6 195 2 10 1
740 15 5 4 1 54 1 2 2 11 1
750 39 1 42 1 4 2 189 1 2 2
760 39 1 6 1 4 2 2 1 1090235 1
770 12 1 5 1 16 4 15 5 2 1
780 53 1 4 5 172 1 4 1 5 1
790 4 2 137 1 2 1 4 1 24 1
800 1211 2 2 1 15 1 4 1 14 1
810 113 1 16 2 4 1 205 1 2 11
820 20 1 4 1 12 5 4 1 30 1
830 4 2 1630 2 6 1 9 13 2 1
840 186 2 2 1 4 2 10 2 51 2
850 10 1 10 1 4 5 12 1 12 1
860 11 2 2 1 4725 1 2 3 9 1
870 8 1 14 4 4 5 18 1 2 1
880 221 1 68 1 15 1 2 1 61 2
890 4 15 4 1 4 1 19349 2 2 1
900 150 1 4 7 15 2 6 1 4 2
910 8 1 222 1 2 4 5 1 30 1
920 39 2 2 1 34 2 2 4 235 1
930 18 2 5 1 2 2 222 1 4 2
940 11 1 6 1 42 13 4 1 15 1
950 10 1 42 1 10 2 4 1 2 1
960 11394 2 4 2 5 1 12 1 42 2
970 4 1 900 1 2 6 51 1 6 2
980 34 5 2 1 46 1 4 2 11 1
990 30 1 196 2 6 1 10 1 2 15

1000 199 1 4 1 4 2 2 1 954 1
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+0 +1 +2 +3 +4 +5 +6 +7 +8 +9
1010 6 2 13 1 23 2 12 2 2 1
1020 37 1 4 2 49487365422 4 66 2 5 19
1030 4 1 54 1 4 2 11 1 4 1
1040 231 1 2 1 36 2 2 2 12 1
1050 40 1 4 51 4 2 1028 1 5 1
1060 15 1 10 1 35 2 4 1 12 1
1070 4 4 42 1 4 2 5 1 10 1
1080 583 2 2 6 4 2 6 1 1681 6
1090 4 1 77 1 2 2 15 1 16 1
1100 51 2 4 1 170 1 4 5 5 1
1110 12 1 12 2 2 1 46 1 4 2
1120 1092 1 8 1 5 14 2 2 39 1
1130 4 2 4 1 254 1 42 2 2 1
1140 41 1 2 5 39 1 4 1 11 1
1150 10 1 157877 1 2 4 16 1 6 1
1160 49 13 4 1 18 1 4 1 53 1
1170 32 1 5 1 2 2 279 1 4 2
1180 11 1 4 3 235 2 2 1 99 1
1190 8 2 14 1 6 1 11 14 2 1
1200 1040 1 2 1 13 2 16 1 12 5
1210 27 1 12 1 2 69 1387 1 16 1
1220 20 2 4 1 164 4 2 2 4 1
1230 12 1 153 2 2 1 15 1 2 2
1240 51 1 30 1 4 1 4 1 1460 1
1250 55 4 5 1 12 2 14 1 4 1
1260 131 1 2 2 42 3 6 1 5 5
1270 4 1 44 1 10 3 11 1 10 1
1280 1116461 5 2 1 10 1 2 4 35 1
1290 12 1 11 1 2 1 3609 1 4 2
1300 50 1 24 1 12 2 2 1 18 1
1310 6 2 244 1 18 1 9 2 2 1
1320 181 1 2 51 4 2 12 1 42 1
1330 8 5 61 1 4 1 12 1 6 1
1340 11 2 4 1 11720 1 2 1 5 1
1350 112 1 52 1 2 2 12 1 4 4
1360 245 1 4 1 9 5 2 1 211 2
1370 4 2 38 1 6 15 195 15 6 2
1380 29 1 2 1 14 1 32 1 4 2
1390 4 1 198 1 4 8 5 1 4 1
1400 153 1 2 1 227 2 4 5 19324 1
1410 8 1 5 4 4 1 39 1 2 2
1420 15 4 16 1 53 6 4 1 40 1
1430 12 5 12 1 4 2 4 1 2 1
1440 5958 1 4 5 12 2 6 1 14 4
1450 10 1 40 1 2 2 179 1 1798 1
1460 15 2 4 1 61 1 2 5 4 1
1470 46 1 1387 1 6 2 36 2 2 1
1480 49 1 24 1 11 10 2 1 222 1
1490 4 3 5 1 10 1 41 2 4 1
1500 174 1 2 2 195 2 4 1 15 1
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+0 +1 +2 +3 +4 +5 +6 +7 +8 +9
1510 6 1 889 1 2 2 4 1 12 2
1520 178 13 2 1 15 4 4 1 12 1
1530 20 1 4 5 4 1 408641062 1 2 60
1540 36 1 4 1 15 2 2 1 46 1
1550 16 1 54 1 24 2 5 2 4 1
1560 221 1 4 1 11 1 30 1 928 2
1570 4 1 10 2 2 13 14 1 4 1
1580 11 2 6 1 697 1 4 3 5 1
1590 8 1 12 5 2 2 64 1 4 2
1600 10281 1 10 1 5 1 4 1 54 1
1610 8 2 11 1 4 1 51 6 2 1
1620 477 1 2 2 56 5 6 1 11 5
1630 4 1 1213 1 4 2 5 1 72 1
1640 68 2 2 1 12 1 2 13 42 1
1650 38 1 9 2 2 2 137 1 2 5
1660 11 1 6 1 21507 5 10 1 15 1
1670 4 1 34 2 60 2 4 5 2 1
1680 1005 2 5 2 5 1 4 1 12 1
1690 10 1 30 1 10 1 235 1 6 1
1700 50 309 4 2 39 7 2 1 11 1
1710 36 2 42 2 2 5 40 1 2 2
1720 39 1 12 1 4 3 2 1 47937 1
1730 4 2 5 1 13 1 35 4 4 1
1740 37 1 4 2 51 1 16 1 9 1
1750 30 2 64 1 2 14 4 1 4 1
1760 1285 1 2 1 228 1 2 5 53 1
1770 8 2 4 2 2 4 260 1 6 1
1780 15 1 110 1 12 2 4 1 12 1
1790 4 5 1083553 1 12 1 5 1 4 1
1800 749 1 4 2 11 3 30 1 54 13
1810 6 1 15 2 2 9 12 1 10 1
1820 35 2 2 1 1264 2 4 6 5 1
1830 18 1 14 2 4 1 117 1 2 2
1840 178 1 6 1 5 4 4 1 162 2
1850 10 1 4 1 16 1 1630 2 2 2
1860 56 1 10 15 15 1 4 1 4 2
1870 12 1 1096 1 2 21 9 1 6 1
1880 39 5 2 1 18 1 4 2 195 1
1890 120 1 9 2 2 1 54 1 4 4
1900 36 1 4 1 186 2 2 1 36 1
1910 6 15 12 1 8 1 4 5 4 1
1920 241004 1 5 1 15 4 10 1 15 2
1930 4 1 34 1 2 4 167 1 12 1
1940 15 1 2 1 3973 1 4 1 4 1
1950 40 1 235 11 2 1 15 1 6 1
1960 144 1 18 1 4 2 2 2 203 1
1970 4 15 15 1 12 2 39 1 4 1
1980 120 1 2 2 1388 1 6 1 13 4
1990 4 1 39 1 2 5 4 1 66 1
2000 963 1 8 1 10 2 4 4 12 2
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Introduction to Part III

Part I of our book is accessible to those interested in mathematics
but with no particular mathematical skills, while we expect readers
of Part II to know some group theory (a first course suffices for all
but a few tricky details). We expect that Part III will be completely
understood only by a few professional mathematicians. Once again,
however, much of it can be read with profit by some readers, and
many more will enjoy inspecting our pretty pictures.

In Chapter 2 we listed the 17 plane crystallographic groups.
Chapters 22–25 perform the same service for their three-dimensional
analogs, the 219 crystallographic space groups. The most interesting
of these are the 35 groups that we call “prime,” which are discussed
in Chapters 22 and 23.

The orbifolds of those space groups in which only the identity
element fixes a point are the ten platycosms, or ”flat universes,”
which are the three-dimensional analogs of the torus and Klein bot-
tle. They are illustrated in Chapter 24, which derives them from the
complete list of 184 composite space groups in Chapter 25.

Finally, Chapter 26 discusses dimensions higher than three. The
enumeration of the finite groups in four dimensions is due to sev-
eral authors, starting with Goursat in 1889. The regular polytopes
in high dimensions were listed by Schäfli in 1852, while Coxeter
enumerated groups generated by reflections in all dimensions. Our
book is the first to describe the complete list of four-dimensional
Archimedean polytopes found by Conway and Guy in 1965. The
book ends with a few remarks on very high dimensions indeed!

217





- 17 -
Introducing Hyperbolic

Groups

In Chapter 3, we saw that Euclidean plane groups are classified by
signatures that cost exactly $2, and in Chapter 4 we saw that the sig-
natures costing less than $2 perform the same service for the spherical
groups.

What about signatures like ∗732 that cost more than $2 or,
equivalently, have negative Euler characteristic and ch? The an-
swer is that they classify the corresponding symmetry groups in the
geometry of the non-Euclidean plane discovered by Lobachevski in
1829, in which there are many lines through a point that don’t meet
a given line. Nowadays, mathematicians use the name “hyperbolic
plane” introduced by Cayley. But you won’t need to know any hy-
perbolic geometry, because we can say it all in pictures!

In fact, there has already been some non-Euclidean geometry in
our book—that of the sphere, in which every “straight line” (i.e.,
great circle) meets every other. The fact that the hyperbolic plane
is not Euclidean won’t stop us from drawing pictures, just as nothing
prevents us from drawing pictures of a sphere on our Euclidean pages.

Parallel Principle

In the Euclidean plane,
there is just one line parallel
to a given line through a
given point. In spherical
geometry there are no
parallels, as shown above.
In hyperbolic geometry,
there are many lines
through a point that don’t
meet a given line.

Just as geographers “project” the spherical surface of the earth
on their flat atlas pages, we can map the hyperbolic plane onto the
Euclidean.

No Projection Is Perfect!

As you probably know, Mercator’s projection distorts areas. Every-
body knows that it makes Greenland look larger than the whole of

(opposite page) A hyperbolic pattern of type 23×.
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South America, but even worse, it makes Antarctica infinite! Its
great advantage is that it preserves angles and directions, which is
what made it a boon to the navigators for whom it was designed. On
the other hand, the cylindrical projection discovered by Archimedes
(though called “Lambert’s projection” by cartographers), preserves
areas but grossly deforms angles, directions, and shapes. If you find
a projection that preserves one thing important to you, you can be
sure that it will disturb another! There is no perfect projection from
a spherical surface to the Euclidean plane.

The orthogonal projection distorts areas
and angles and only shows half of the
earth at a time!

The Mercator projection preserves an-
gles but greatly distorts areas!

The less common cylindrical projection preserves areas but greatly distorts horizontal dis-
tances near the poles.

The two most common ‘projections’ of the hyperbolic plane take
it to a disk in the Euclidean plane. One of them, due to Beltrami
and Klein, takes hyperbolic straight lines to (segments of) Euclidean
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Figure 17.1. The Beltrami-Klein disk model of the hyperbolic plane, which is similar to the
orthogonal projection of the sphere.

ones. (See Figure 17.1.) This is really the most natural projection,
because it is the way the hyperbolic plane would appear if you viewed
it from a point in hyperbolic 3-space.

However, the other method, usually credited to Poincaré, is more
widely known to both mathematicians and artists. It is the projec-
tion used, for example, in Maurits C. Escher’s famous “Circle Limit”
engravings. (See Figure 17.4.) It preserves angles but takes hyper-
bolic straight lines to arcs of circles perpendicular to the boundary.
(See Figure 17.2.) The reason this less-natural projection is so often
used is that it shows more of the plane. It is equivalent by inversion
to the upper half-plane model used by mathematicians—shown in
Figure 17.3—which also preserves angles.
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Figure 17.2. The Poincaré disk model of the hyperbolic plane, which preserves angles.

Figure 17.3. The upper half-plane model, which also preserves angles.
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Poincaré and Klein

Here are drawings of the same tiling in the hyperbolic plane, shown in
different models:

In the Klein model (left) straight lines on the hyperbolic plane are shown
as straight lines in the drawing. The drawing appears to be in perspective
and shows how the hyperbolic plane would really look were we to view it
from within hyperbolic 3-space.

The Poincaré model (right) and the upper half-plane model (below) pre-
serve angles; straight lines appear to be circular arcs perpendicular to the
boundary of the drawing. We can see much further than we could in the
Klein model.
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Figure 17.4. At first glance, M. C. Escher’s Circle Limit IV, often called “Angels and Devils,”
seems to have signature 4∗3, but in fact it has signature ∗3333.

Analyzing Hyperbolic Patterns

It is a remarkable fact that essentially all the orbifold theory contin-
ues to work in the hyperbolic case. This even includes the proofs,
so we can use it immediately to analyse the symmetries of the “Cir-
cle Limit” engravings. The one that personally intrigues us most is
Circle Limit IV, often called “Angels and Devils” (Figure 17.4). Re-
membering our advice from Chapter 3, you should first concentrate
on the mirrors; you will find that they cut the (hyperbolic) plane into
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quadrilaterals with four angles of π
3 . If there were no further symme-

tries, the answer would be the kaleidoscopic group ∗3333. However,
Escher cleverly chose this particular quadrilateral so that he could
suggest the 4-fold rotational symmetry that extends this group to
4∗3. Look at the way that the four devils’ wingtips alternate with
four angels’ ones at the center of each of these quadrilaterals, and
it will be easy for you to conclude that its symmetry group is 4∗3.
The total cost of this is

$ 3

4
+ 1 +

1

3
= 2

1

12
, making ch = $ − 1

12
,

exemplifying our assertion that the signatures for hyperbolic groups
are those with negative orbifold Euler characteristics.

However, Escher is more devilish than you think. His angels and
devils don’t in fact have symmetry group 4∗3, but only its kaleido-
scopic subgroup ∗3333. And we are no angels either; although we
told no lies, we must admit that we deliberately tried to deceive you.
Did we succeed?

The subtle thing that Escher did in this wonderful work was
to make every fourth figure—either angel or devil—face away from
the viewer. This does not easily show itself in poor reproductions,
but it is well worth observing. If you look closely at one of those
quadrilaterals, you will find that one of its four devils seems to have
no eyes (this is because you can’t see through the back of his head!),
as does one of its four angels. You are also looking at the backs of
their garments, although this might be hard to see.
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Now we evaluate the true cost and characteristic of Circle
Limit IV :

cost = $1 +
1

3
+

1

3
+

1

3
+

1

3
= 2

1

3
, ch = $− 1

3
.

What Do Negative Characteristics Mean?

In Chapter 6 we saw that the characteristic of a pattern that has a
finite number g of symmetries was 2

g , and we had already seen that
the characteristic of an infinite Euclidean pattern was 0, which can be
regarded as the case g =∞ of this formula, which therefore works for
all positive or zero characteristics. What do negative characteristics
tell us about the number of symmetries of hyperbolic patterns like
Escher’s Circle Limit IV ? Since the correct characteristic for this
pattern is −1

3 = 2
−6 , it seems to be trying to tell us that the number

of symmetries is −6, which can hardly be! If we hadn’t noticed
the subtlety, we would have found the equally nonsensical answer
−24. Let’s be honest: the order formula fails for hyperbolic groups.
But it’s the only thing that does. This one failure does not matter
too much because we know how many symmetries there are: all
hyperbolic patterns have infinitely many.

Even the order formula gets something right. Look at the two
“wrong” answers, −6 and −24, for Circle Limit IV with and without
its subtlety. The second is four times the first, and it is indeed true
that a person who doesn’t notice the subtlety will think the pattern
is four times as symmetric as it really is.

This corresponds to the group-theoretical fact that ∗3333 has
index 4 in 4∗3. Our “incorrect” order formula always gets the correct
indices. Why is the formula wrong, and why does it get indices right?

The reason that indices continue to work is that if a group H has
index n in a larger group G, then H’s orbifold is n times as big as
G’s (in the precise sense that there is an n-to-1 map from the former
to the later), and so it is obvious that H’s characteristic is n times
as big as G’s. The way we proved the order formula for G was just
to apply this fact with H = 1. We cannot do this in the hyperbolic
case, since there the trivial group has infinite index (and even if we
could, we would get the meaningless answer ∞/∞).
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With this one exception, all the ideas and proofs we’ve used
continue to work in the hyperbolic cases, and they need no further
justification.

Types of Coloring, Tiling, and Group Presentations

Almost everything that we did earlier in the book for spherical, Eu-
clidean, and frieze types extends easily to the hyperbolic case, with
the exception that there are now infinitely many starting groups.
For example, presentations can be found in exactly the same way
and their generators indicated by annotating the signature as usual.

Here is, for example, a Cayley graph of the group with type 732;
it looks almost exactly like the similar graph for 532—the graphs
are the same on the orbifold.

A Cayley graph of the hyperbolic group 732.
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By replacing the names of generators by permutations that sat-
isfy the relations, we obtain an annotated symbol that always charac-
terizes the color type. In simple cases our notations G/H/K, G/K,
and G//K suffice. Duality groups can be handled in the same way.

Prime colorings in the plane, sphere, and hyperbolic plane.
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A 3-coloring of the spherical group 3*2; a 4-coloring of the Euclidean group 4*2; a 5-coloring
of the hyperbolic group 5*2.

Our method of classifying Heesch and isohedral tilings of a given
symmetry type by cutting open the corresponding orbifold is still
valid. Since, in fact, this only depends on the topology of the orb-
ifold, we’ve already classified all Heesch and isohedral tilings with
the hyperbolic symmetries of the forms pqr, pqrs, pq∗, pq×, p∗q,
p∗qr, ∗pqr, and ∗pqrs!

The Heesch tilings with symmetry 732.

Where Are We?

In this chapter, we introduced the hyperbolic groups and showed the
ways they are the same as the Euclidean and spherical groups. In the
next chapter, we’ll discuss issues that are particularly hyperbolic.





- 18 -
More on Hyperbolic Groups

In this chapter, we consider a number of topics that are special to
the hyperbolic groups.

Which Signatures Are Really the Same?

The symbols ∗632, ∗623, ∗362, ∗326, and ∗263, ∗236 all mean
the same thing. What’s the general rule for telling when two signa-
tures are “really the same”? For the reasons explained in Chapter 3,
“the same” should mean that the corresponding groups are isotopic.
The answer is best expressed by describing various operations that
don’t change the isotopy type. Namely, the group represented by
the typical signature

. . .◦◦◦ABC ... ∗a1b1c1...∗a2b2c2... ∗ anbncn...××

will be unchanged up to isotopy if we

• exchange an ◦ and an × for three ×’s,
• freely permute the digits A,B,C,... that correspond to gyra-

tions,

• cyclically permute the digits ak,bk, ck, ... in any one kaleido-
scope,

• freely permute the portions ∗a1b1c1 . . . , ∗a2b2c2 . . . , . . . ,
∗anbncn... of the signature corresponding to the individual
kaleidoscopes,

(opposite page) For your viewing pleasure, this figure has signature ×××. The precise
symmetry is difficult to discern without examining the guide lines shown.

231
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• simultaneously reverse the cyclic orders in all n kaleidoscopic
portions.

If the orbifold surface is orientable (i.e., there is no × in the signa-
ture), this is all. But, we may also

• independently reverse the cyclic orders in individual kaleido-
scopic portions, provided that the signature contains an ×.

This is all—if two signatures represent isotopic groups, then you
can get from one to the other using only these operations. This
is immediate from Thurston’s way of constructing orbifolds, which
we’ll briefly describe later in this chapter. In particular, it implies
the strong theorem that, if two orbifolds are homeomorphic in a
way that preserves the orders of their cone points and kaleidoscopic
points, they are actually isotopic.

Inequivalence and Equivalence Theorems

As we saw in Chapter 4, there are many isomorphisms between dis-
tinct spherical groups, for instance ∗ ∼= 22 ∼= ×, but in 1954 W.
Nowacki proved that the 17 Euclidean groups are abstractly distinct
using a number of ad hoc invariants [22]. There are, however, some
isomorphisms between the frieze groups:

2∗∞ ∼= 22∞ ∼= ∗∞∞ ∼= D∞,∞× ∼=∞∞ ∼= C∞.

(The remaining two groups have different structures: ∗22∞ ∼= 2 ×
D[∞], ∞× ∼= 2 × C[∞].) So such isomorphisms can happen be-
tween finite groups or groups with ∞ in their name, (i.e., those
whose orbifolds are non-compact). We shall soon describe all these
equivalences.

Groups with Compact Orbifolds

On the other hand, Thurston has given a uniform proof that infinite
groups with compact orbifolds can only be isomorphic if they are
isotopic. Thurston’s proof is unpublished and quite complicated,
since it involves his subtle geometrization techniques. We give a
simple (but long!) group-theoretical proof in the appendix to this
chapter.
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Groups with Noncompact Orbifolds

Signatures also work for some hyperbolic groups for which the orb-
ifold is not compact. It is usual to describe this class as those whose
orbifolds “have finite volume,” but we prefer to say “are almost-
compact,” since this also applies to their Euclidean analogs, the frieze
groups (whose orbifolds have infinite area). (The almost-compact
groups are those that can be compactified by adjoining the images
in the orbifold of finitely many ideal points.)

Figure 18.1. A pattern with non-compact orbifold and signature∞32, isomorphic toSL2(Z).

The signatures for groups that are almost compact but not com-
pact are precisely those for which at least one digit is∞. Figures 18.1
and 18.2 show the two best known examples,∞32 and ∗∞32, which
are isomorphic to the modular group SL2(Z) and the extended mod-
ular group GL2(Z), respectively.

Geometrically, GL2(Z) is the symmetry group of the packing of
Ford circles in the upper half-plane model—Figure 18.3 shows this,
as well as the Poincaré disk model. In the hyperbolic plane, these
circles have infinite radius and are called horocycles.
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Figure 18.2. A pattern with signature ∗∞32, isomorphic toGL2(Z).
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Figure 18.3. The Ford circles also have symmetry groupGL2(Z).
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Abstract Isomorphisms between Almost-Compact Groups

Of course, we can only hope to find nontrivial isomorphisms between
groups whose signatures both contain ∞. It is easy to find all such
isomorphisms, because when ∞ is involved, the groups break up
into free products. We first “normalize” so that the name of each
kaleidoscope that contains an ∞ begins ∗∞... and call such a star
an infinite red star. Then, the abstract group is not affected when
we

• replace a wonder-ring (◦) by two infinite gyration points (∞∞),

• replace a cross (×) by one infinite gyration point (∞),

• replace a simply-infinite kaleidoscope (∗∞) by two gyration
points (2∞) of degrees 2 and ∞,

• trade each infinite red star after the first for a blue ∞,

• fuse an adjacent pair of red ∞’s and adjoin a blue 2.

For instance, the groups ∗ab . . .∞∗cd . . .∞ and∞∗ab . . .∞cd . . .∞
are abstractly isomorphic (here we have traded the second infinite
red star for a blue ∞).

After all such replacements, the signature consists of numbers
that indicate gyration points (some of which may be ∞) and kalei-
doscopes (at most one of which includes∞). If there is a kaleidoscope
with more than one ∞, say

∗∞ab...c∞de...f∞gh...i∞ ... ... ∞xy...z

(with a, b, ..., z all finite), then we can also

• bodily permute the “finite blocks” ab...c, . . . ,xy...z and/or

• reverse the digits in any of them.

For example, the above kaleidoscope can be replaced by

∗∞f ...ed∞xy...z∞ab...c∞ ... ... ∞i...hg.
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We omit the easy proof that these alterations account for all iso-
morphisms. The isomorphisms arise because the presence of an ∞
causes the group to decompose as the free product of the separate
groups defined by the local relations, but with one free generator
deleted.

Existence and Construction

Recall that in the spherical case there were “bad” signatures like
∗MN and MN (M 	= N) for which there were no corresponding
groups. Are there any such “bad” signatures in the hyperbolic plane?

No! Thurston has shown that every signature with negative char-
acteristic really does correspond to a group and moreover that if two
groups have the same signature then one can be isotopically de-
formed until it is isometric to the other. He does this by cutting
the putative orbifold into parts along geodesics (in increasing order
of length) until each part is a “generalized triangle.” His argument
doesn’t work for the last four spherical types (∗NN, N∗, N×, NN)
and the last four Euclidean ones (∗∗, ∗×, ××, ◦) since for them the
decomposition involves digons rather than triangles. This is why it
doesn’t prove that orbifolds exist in the above bad cases.

The real angles of these “triangles” are prescribed numbers of
the form Aπ/n. The imaginary ones are really line-segments at
which one triangle should be attached to another, so the lengths
of these segments should be equal in pairs. These are conditions on
the “trigonometry” of these triangles, so the construction of all orb-
ifolds satisfying them reduces to finding all solutions of a certain set
of equations. Thurston shows that the space of solutions, counted
up to scale, is homeomorphic to a Euclidean space R

n (and in par-
ticular is not empty). He also gives an elegant rule for the dimension
n: namely, χ3 = −n/3, where χ3 is the orbifold Euler characteristic
of the orbifold obtained from the given one by replacing each of its
numerals by 3. How many parameters has

4∗235∗74××?
The answer is 13, since the characteristic of 3∗333∗33×× is

2−
(
2

3
+ 1 +

1

3
+

1

3
+

1

3
+ 1 +

1

3
+

1

3
+ 1 + 1

)
= −13

3
.
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Parameters in the hyperbolic groups. The hyperbolic groups typically have a great deal
of flexibility in their particular geometric realizations. For example, the group *3* has char-
acteristic −1/3 and thus has one degree of freedom in its construction. In these images, we
see how the spacing of the lilies can be varied.

The argument doesn’t work for the last four spherical cases,
∗NN, N∗, N×, and NN (where it would make the number of pa-
rameters negative!), and the last four Euclidean ones, ∗∗, ∗×, ××,
and ◦, which have respectively one, one, one, and two parameters
rather than the zero given by the rule.
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Enumerating Hyperbolic Groups

It is now easy to list all the possibilities for groups of any given char-
acteristic, except that in the hyperbolic case the number of answers
can be arbitrarily large. However, it is always finite, which proves
that the hyperbolic groups can be well-ordered so that their char-
acteristics are monotonic. The higher-dimensional analogs of this
result have also been proved but are more subtle.

Table 18.1 lists all possibilities that have characteristic at least
−1

8 . We use ordinal numbers, which may be infinite, to enumerate

Number −1/char Groups

ω+1 84 ∗237
ω+2 48 ∗238
ω+3 42 237
ω+4 40 ∗245
ω+8 24 ∗2 3 12, ∗246, ∗334, 3∗4, 238
ω+11 20 ∗2 3 15, ∗255, 5∗2, 245
ω+ 18 2/3 ∗247

ω+15 18 ∗2 3 18, 239
ω+21 16 ∗2 3 24, ∗248
ω+27 15 ∗2 3 30, ∗256, ∗335, 3∗5, 2 3 10
ω+33 14 2/5 ∗2 3 36, ∗249
ω+57 13 1/3 ∗2 3 60, ∗2 4 10
ω+63 13 1/5 ∗2 3 66, 2 3 11
ω+102 12 8/11 ∗2 3 105, ∗257
ω+129 12 4/7 ∗2 3 132, ∗2 4 11
· · · · · · · · ·

∗23∞, ∗2 4 12, ∗266, 6∗2,
ω · 2 12 ∗336, 3∗6, ∗344, 4∗3, ∗2223,

2∗23, 2 3 12, 246, 334
ω · 2+ 9 3/5 ∗2 4 24, ∗268, ∗338, 3∗8, 2 3 16
finite 9 13/23 ∗2 5 11

9 1/3 ∗2 4 28, ∗277, 7∗2, 247
9 3/11 2 3 17
9 3/13 ∗2 4 30, ∗2 5 12, ∗345

9 ∗2 4 36, ∗269, ∗339, 3∗9, 2 3 18
8 28/29 ∗2 5 13
8 3/4 ∗2 5 14

8 10/13 2 3 19
8 8/13 ∗2 4 56, ∗278
8 4/7 ∗2 4 60, ∗2 5 15, ∗2 6 10, ∗3 3 10, 3∗10, 2 3 20

Table 18.1. The first few hyperbolic groups.
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Number −1/char Groups

ω · 2+ 8 8/19 ∗2 4 80, ∗2 5 16
finite 8 2/5 2 3 21

8 12/41 ∗2 5 17
8 1/4 ∗2 4 132, ∗2 6 11, ∗3 3 11, 3∗11, 2 3 22
8 2/11 ∗2 4 180, ∗2 5 18
8 4/31 ∗2 4 252, ∗279
8 2/17 2 3 23
8 4/47 ∗2 4 380, ∗2 5 19
· · · · · ·

8N/(N – 4) ∗24N only
· · · · · · · · ·

∗24∞, ∗2 5 20, ∗2 6 12, ∗3 3 12,
ω · 3 8 3∗12, ∗288, 8∗2, ∗346, ∗444, 4∗4,

∗2224, 2∗24, 2 3 24, 2 4 8.

Table 18.1. (continued.)

the characteristics that arise. The finite numbers correspond to the
finite groups (listed on page 58), and the first infinite number, ω,
corresponds to the Euclidean plane groups, so the numbering in the
table starts at ω + 1.

Thurston’s Geometrization Program

This work is the two-dimensional part of Thurston’s geometrization
program by which he planned to classify 3-manifolds by proving his
Geometrization Conjecture that every 3-manifold can be cut into cer-
tain pieces having natural metrics, in an essentially unique way. This
conjecture has now been proved, by Grigory Perelman [21]. The met-
rics are of eight different types, as compared with the three (spheri-
cal, Euclidean, hyperbolic) that happen in the two-dimensional case.
But, just in that case, there is a precise sense in which almost all the
manifolds are hyperbolic.

We enumerated the groups that act on two-dimensional surfaces
by listing the possible orbifolds. This cannot be done in the three-
dimensional case because, even after Perelman’s work, we don’t have
a classification of even the three-dimensional closed manifolds. In a
sense, Thurston’s geometrization is the converse of that idea, because
the information transfer is in the reverse direction: rather than de-
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ducing information about groups from information about manifolds,
we deduce information about properties of possible 3-manifolds from
properties of groups.

Appendix: Proof of the Inequivalence Theorem

We prove here that there are no abstract isomorphisms (other than
the isotopies) among the Euclidean and hyperbolic groups with com-
pact orbifolds—in other words, the infinite groups that do not have
an ∞ in their signatures.

The proof proceeds by systematically showing that we can recover
more and more geometrical information from the abstract group.

Recovering the Simplest Concepts

The only elements of finite order are reflections and rotations, so we
first distinguish between these. Since the orbifold is compact, the
image of a mirror line in it must also be compact, which shows that
any reflection commutes with a translation. But the only things that
can commute with a rotation about a point P are the elements that
fix P , which generate a finite group. This starts a dictionary:

Reflections↔ Elements of order 2 with infinite centralizer.
Rotations↔ Elements of finite order and finite centralizer.

We can also tell when the mirrors of two reflections intersect—
when and only when they generate a finite group. Of course the
rotations that are not gyrations are the ones in finite groups gen-
erated by reflections, so we can identify the gyrations as those that
aren’t. The dictionary therefore continues:

Mirror line ↔ Order 2 element with infinite centralizer.
Mirror lines join ↔ They generate a finite subgroup.

Kaleidoscopic point↔ A maximal such subgroup.
Gyration point ↔ Any other maximal finite subgroup.
Kaleidoscope ↔ Maximal connected set of mirror lines.

We can also tell whether any two such things have the same type—
when and only when they are conjugate—and in addition we know
the degree of any gyration point or kaleidoscopic point.
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Recovering the Shapes of Kaleidoscopes

The generators and relations corresponding to a kaleidoscopic part
of the signature have the form

α∗PaQb . . . eSfT ,

1 = P 2 = (PQ)a = Q2 = . . . = S2 = (ST )f = T 2, Pα = T,

where Pα = α−1Pα. Then, in the doubly-infinite sequence of reflec-
tions

. . . Pα−1
, Qα−1

, . . . , Sα−1
, Tα−1

= P,Q, . . . , S, T = Pα, Qα, . . . ,

we know the orders of all products of adjacent pairs, namely

. . . , a, b, . . . , e, f, a, b, . . . , e, f, a, . . . .

Let’s call any reflections that satisfy these relations a standard gen-
erating set for the kaleidoscope they generate. Then, we’ll prove
that the meeting points of adjacent pairs in any standard gener-
ating set must actually be adjacent in the real kaleidoscope. Of
course, this enables us to identify the above sequence of numbers
. . . , a, b, . . . , e, f, . . ., up to reversal, for each kaleidoscope.

The adjacency is preserved because adjacent mirrors of these
reflections necessarily intersect, and so they mark out a possibly zig-
zag path in the real kaleidoscope (as on the left in Figure 18.4). If
the meeting points are not all adjacent, this path has some extra

Tα−1

P

P

Q

R

S

(T ′)α−1

Q′

Figure 18.4. Recovering a kaleidoscope.
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kaleidoscopic points along its edges; but then we can see that what
it generates isn’t all of the kaleidoscope.

This is particularly obvious in the general case when the kaleido-
scope is a tree, because then we can find new generators . . . , (Tα−1

)′,
P,Q′, R′, . . . , S′, T ′, . . . that “roll up” the kaleidoscope around a fun-
damental region for the group they generate (as on the right in Fig-
ure 18.4), where Q′ is that conjugate of Q inside 〈P,Q〉 whose mirror
makes the correct angle π

a with that of P in the correct sense, and
so on. But, it is clear from the new generators that the group they
generate isn’t all of the original kaleidoscope, since it still has extra
kaleidoscopic points on some edges.

When there are closed polygons, we need a further argument.
This is that the supposed alternative generators must also have a
closed cycle, and the region enclosed by the mirrors of these must
be made of several copies of the fundamental region for the real
kaleidoscope, and so have area at least equal to the area of that.
But, its angles must also be multiples of the angles of that region,
whence (in the hyperbolic case) its area is at most that area, since it
is a decreasing function of the angles. The new angles must therefore
equal the old ones, so the new fundamental region is an old one,
completing the proof in the hyperbolic case. In the Euclidean case,
the two angle sums are necessarily equal, so the new fundamental
region must be similar to the old one and if it’s to generate the same
group must actually be an old fundamental region.

Recovering the Topology

We have now nearly solved our problem of recovering the signature,
say

α1◦X1,Y1 . . . αh◦Xh,Yh β1A1 . . .
βgAγ1

g ∗P1aQ1
1 b1 . . .

γk∗PkaQk
k bk . . .

. . . δ1×Z1 . . .δx ×Zx

from the abstract form of G. We have already said enough to iden-
tify the number g of kinds of gyrations, their orders A1, . . . Ag, the
number k of kinds of kaleidoscopes, and their shapes ∗a1b1 . . . , . . . ,
∗akbk . . ., up to possible reversal of some of them.

All that’s left is the topology of the orbifold, and if it is orientable,
the correspondence between the two possible cyclic orders for each
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kaleidoscope. The topology is easy! We needn’t have both handles
and crosscaps, so we can suppose that one of h and x is zero. If
we factor G by the group generated by all its gyrations and the
normalizers of all its kaleidoscopes, all that’s left is the group

〈α1,X1, Y1, . . . , αh,Xh, Yh|α1α2 . . . αh = 1, αi = [Xi, Yi]〉
in the orientable case, or

〈δ1, Z1, . . . δx, Zx|δ1δ2 . . . δx = 1, δi = Z2
i 〉

in the nonorientable one. But, the abelianized forms of these, namely

C2h
∞ and C2 ×Cx−1

∞ ,

are different, which determines the orientation and also determines
the number h or x.

Reducing to One Last Problem

In the nonorientable case we’re finished, because then the individual
kaleidoscopes can be independently reversed. What we do in the
orientable case is factor out all elements of finite order and then
abelianize, obtaining the abelian group generated by

α1,X1, Y 1, . . . , αh,Xh, Y h, γ1, γ2, . . . , γk

subject to the relations

α1 . . . αhγ1 . . . γk = 1, α1 = [X1, Y 1], . . . , αh = [Xh, Y h].

But, these imply that αi = 1 and simplify the only remaining rela-
tion to γ1γ2 . . . γk = 1. But, in this abstract group we can identify
the γi up to inversion, since we have factored out the appropriate
kaleidoscopic subgroup. The only thing that we don’t yet know is
which of γi and γ−1i is which. When we do know this, we’ll know
everything, since the shape of the corresponding kaleidoscope differs
from its reversal. If we replace some of the γi by their inverses, this
relation would become

γ±11 γ±12 · · · γ±1k = 1,

which is equivalent to the original only when all the signs are equal.



Appendix: Proof of the Inequivalence Theorem 245

Solving the Last Problem

Now look at (the geometrical form of) a kaleidoscope of some non-
palindromic signature, such as ∗2243 (left, Figure 18.5). In the full
group G, this has four conjugacy classes of kaleidoscopic points (i.e.,
subgroups of a certain form), represented by

k0 = 〈e0, e1〉, k1 = 〈e1, e2〉, k2 = 〈e2, e3〉, k3 = 〈e3, e4〉,
where e0, e1, e2, e3, e4 correspond to consecutive edges around the
appropriate boundary curve of the orbifold. Continuing along that
curve would give us more such groups k4 = 〈e4, e5〉,k5 = 〈e5, e6〉,
but of course these are conjugate in G to k0,k1, . . ..

However, they give new conjugacy classes inside the proper sub-
group K generated by all the reflections of this kaleidoscope. What
happens is that the neighbors of k2 are alternately conjugate to k1

and k3 by e2 and e3, and so inside K, and similarly the neighbors of
any kn are alternately conjugate inside K to kn−1 and kn+1, as indi-
cated in Figure 18.5 on the right. This shows that inK there is a dou-
bly infinite sequence of conjugacy classes of maximal finite subgroups
generated by reflections, represented by . . .k−2,k−1,k0,k1,k2,
k3, . . .. If m 	= n, km and kn cannot be conjugate inside K be-
cause we can see that every reflection preserves subscripts in the
figure, and therefore K does also.

0

0

1

2

2k0

k1 k2

k3

k4

km

Figure 18.5. Kaleidoscope of a non-palindromic signature.
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How, then, did k4 become conjugate to k0 in G? The answer is
that if the kaleidoscope corresponds to the portion

γ∗e02e12e23e34

of the signature, then γ conjugates each en to en+4 and so each kn =
〈en, en+1〉 to kn+4 = 〈en+4, en+5〉. But that refers to a particular
presentation; how can we identify γ abstractly? We can’t precisely,
but we can roughly, because the normalizer of K in G is 〈K, γ〉, so
that the infinite cyclic group 〈γ〉 is determined moduloK. Therefore,
the image γ of γ modulo K is determined up to inversion, as a
generator of this cyclic group.

Since the doubly infinite sequence of digits

. . . 2, 2, 3, 4, 2, 2, 3, 4, . . .

for this particular kaleidoscope is distinct from its reversal

. . . 3, 2, 2, 4, 3, 2, 2, 4, 3, 2, . . . ,

we can in this case distinguish γ (or γ) from its inverse, which de-
creases subscripts by 4.

Since distinguishing between the γi and their inverses was all that
we had left to do, we have completed the proof that we may only
reverse all or none of the kaleidoscopes.

Interlude: Two Drums That Sound the Same
When Mark Kac gave his famous lecture “Can You Hear the Shape of a
Drum?” [20] in 1965, he popularized an old and important problem, whose
technical statement is, “Does the Laplace spectrum of a plane region deter-
mine its shape?” The Laplace spectrum consists of the eigenvalues of the
Laplacian operator ∇2. The answer (which is “no!”) was finally found by
Gordon, Webb, and Wolpert [14] (relying heavily on a crucial contribution
by Sunada [27]) only in 1992, about a century after the problem was first
posed.

The Gordon-Webb-Wolpert examples were rather complicated. The
simplest known examples and proof were found by Buser, Conway, Doyle,
and Semmler [3]. The book The Sensual Quadratic Form [9] gives a simple
exposition of their proof of the following result:
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Take an acute angled scalene triangle. Create a copy of it, and
reflect both copies once across each edge. On one copy, further
reflect across the right edges of the images; on the other copy
reflect instead across the left edges. Each resulting set of seven
triangles is a drum, the two drums have different shapes, and
they sound the same.

The shapes of the triangles here are totally immaterial to the argument—
the two drums will be isospectral no matter what shape they are, and they
will usually not be isometric. Indeed, the triangles can be replaced by arbi-
trary curved surfaces (maybe with holes!) provided only that adjacent ones
are related by reflection. To explain how the two propeller shapes were
found, we study the effect of making the basic triangle be the equilateral
hyperbolic triangle that is the orbifold of ∗444 (even though this is one of
the infinitely rare cases that yields isometric drums).

Then (Figure 18.6, right) the two drums are orbifolds for two mirror
image copies of the hyperbolic group ∗424242. Since the reflections that
generate these groups all belong to the ∗444 group defined by the central
triangle, this shows that ∗444 has two distinct subgroups of index 7 and
signature ∗424242. It turns out that the intersection I of all the conjugates

Figure 18.6. The first column shows a pair of drums obtained from one shape of triangle; the
middle column shows an alternative pair obtained from another shape, and the right column
shows hyperbolic drums.
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of these groups has index 24 in each of them, and so index 168 in the central
∗444 group. Its signature is ×23. We can at least check this using the index
rules:

Group Cost Characteristic Index

∗444 1 + 3
8
+ 3

8
+ 3

8
= 2 1

8
− 1

8

7
∗424242 1 + 3

8
+ 1

4
+ 3

8
+ 1

4
+ 3

8
+ 1

4
= 2 7

8
− 7

8

24
×23 23 = 2 + 21 −21

Indeed, it is not too hard to convert this check into a proof. For,
obviously, there is a conjugate of either group that avoids any particular
reflection or rotation, which entails that we can take the signature of I to
consist entirely of either ×’s or ◦’s; but we cannot get the correct charac-
teristic −21 using only ◦’s. We defined I in such a way that it is obviously
a normal subgroup of all the other groups mentioned. The group ∗444
maps modulo I to a group of order 168 and the two groups ∗424242 to
two order-24 subgroups of this.

This explains how the example was found. The group of order 168 is the
well-known group that consists of all automorphisms of the finite projective
plane with seven points and seven lines, and the two subgroups of index 7
are the stabilizers of a point and line, respectively. The crucial fact about
these groups is that they are themselves isospectral in the sense that they
contain the same number of elements in each conjugacy class of the group
of order 168. Sunada’s theorem tells us that isospectral subgroups of the
group with a given orbifold will have isospectral orbifolds.

Many other examples can be found by the same method. What one has
to do is find a finite group, with two subgroups isospectral in this group
theoretical sense, that acts on some surface in such a way that the orbifolds
of those subgroups are topological disks.

Homophonic Drums

Peter Doyle has observed that in both the original example of Gordon-
Webb-Wolpert and these simple propeller examples, the two drums don’t
really “sound the same.” The argument proves only that they have the
same resonant frequencies, which just entails that if you place them in
a hall with an orchestra, they will respond in the same way. They only
“resound the same”!

The two “peacocks” of Doyle and Conway cope with this problem.
(Figure 18.7). Each is made of 21 copies of the same triangle and has a
unique internal “node” at which six of those triangles meet. The proof
in [3] shows that the sound produced by hitting the node of a drum in
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Figure 18.7. Peacocks rampant and couchant.

the shape of the “peacock rampant” is exactly the same as that produced
by hitting the node of a drum in the shape of the “peacock couchant.”
These were obtained by Sunada’s method from a suitable mapping from
∗633 to the automorphism group of the 21-point projective plane. The
signatures of the appropriate pair of index 21 subgroups are ∗63623333
and ∗66323333 and that of the intersection of all their conjugates is ×1682,
which you can check must have index 20,160 in ∗633 and index 960 in the
above two subgroups.
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- 19 -
Archimedean Tilings

Archimedes enumerated the convex polyhedra with regular faces and
only one type of vertex (because the symmetry group is transitive
on the vertices). Many people have independently enumerated the
tilings of the Euclidean plane that satisfy the same condition, and a
few have tried to enumerate the corresponding tilings of the hyper-
bolic plane and achieved some partial results.

Often there is some subgroup H of the full symmetry group G of
such a tiling that remains transitive on the vertices; in this case we
say that the tiling is Archimedean relative to H, to contrast it with
the absolute case when H = G.

For example, the Archimedean snub square tessellation (top right)
has full symmetry group 4∗2, with respect to which it is absolute.
However, coloring the tiles as in the second marginal figure, we see
that the group 442 still acts transitively on its vertices, and so it is
Archimedean relative to this subgroup.

The complete classification of all Archimedean tilings, both rel-
ative and absolute, appears for the first time in this book. As usual
the guiding idea is that of orbifold, since once we have specified the
orbifold we can recover the tiling by “unwrapping.” The orbifold
of an Archimedean tiling is hard to visualize, in view of all those
faces. Fortunately, we don’t have to visualize the faces, because we
can remove them from the tiling with no loss of information if we’re
careful.

What we do is enlarge the vertices to blobs and the edges joining
them to strips by slightly shrinking the faces. (One can think of these
blobs and strips as the grout between the tiles.) Then we simply
remove these shrunken faces! The result is like a doily made of paper

(opposite page) The thirty-five relative Archimedean tilings of the Euclidean plane by squares.

251
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circles and strips. This doily still contains all the information, since
we can recover the original tessellation simply by sewing polygonal
patches onto all the boundary curves.

The orbifold of the doily is really quite a simple thing, since the
Archimedean property of the tessellation implies that it consists of
just one blob, possibly folded and probably connected to itself by
various strips, again possibly folded.

Below we see the doily for the snub square tessellation, with its
full symmetry group 4∗2; the blob in it has five arms which are
numbered 0, 1, 2, 2′, and 1′, because in the orbifold arms 1′ and 2′

have been folded onto 1 and 2, respectively. Also, arm 0 has been
folded onto itself to become a half arm 〈0〉. Finally, the outer ends
of arms 1 and 2 have been identified, turning those arms into a band
(12) that joins the blob to itself.

0

1
2

1′
2′

{3}

{4}

〈0〉

(12)

What has become of the two types of faces? The square face
has become the brown boundary curve, which now consists of just
one edge in the orbifold; since this goes around the order-4 gyration
point, we know it must have had four sides in the original, as in-
dicated by our {4}. The triangle has become the purple boundary,
which has 11

2 sides (the full side at arms 1 and 2 and the half side
at 0). But, since it ends on the red mirror line, its original polygon
was a {3}.

We can convey the topological information here by the permuta-
tion symbol 〈0〉(12), (which conveys the topology), together with the
face-code 34343, starting with the face between arms 0 and 1.

We combine both parts into a single symbol, here

〈0〉(12)∗(3, 4, 3, 4, 3),
with the separating symbol (here ∗) indicating the local symmetry
at the vertex.
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The Permutation Symbol

In general, neighboring blobs in an archimedean tiling can be con-
nected to one another by arms in just a few ways.

Suppose that arm i of one blob is connected to arm i of another
vertex. Then there is a symmetry fixing the central point of this
edge. If there is only a rotational symmetry, of order 2, then in the
orbifold we see the arm grasp an order 2 cone point: we call this a
rotary arm (i). If there is a reflection symmetry interchanging the
two blobs, in the orbifold we see the arm run from the vertex to a
boundary of the orbifold; this is a folded band [i]. Finally, if there
is a symmetry ∗2 at the center of this edge, in the orbifold we have
a half arm 〈i〉, just as we saw in the snub square tessellation. The
type of brackets used here hints at the shape at the end of the arm.

i

i

i

i

i

i

rotary arm (i) folded band [i] half arm 〈i〉

Or, we might have arm i of a blob connected to arm j 	= i of
another blob. If there is a symmetry interchanging the two sides
of this edge in the tiling, we have a half band 〈ij〉, running along
a boundary of the orbifold. If not, and the blobs are of the same
orientation, we see an untwisted band (ij) in the orbifold, just as
in the snub square tessellation. Finally, if the blobs are of opposite
orientations, the orbifold will contain a twisted band [ij].

iii

jjj

untwisted band (ij) twisted band [ij] half band 〈ij〉
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The parts of the orbifold that correspond to the faces we removed
must each be disks; these may contain at most one cone point or
kaleidoscopic point according to whether they lie in the interior of
the orbifold or on its boundary, as shown on the left in the figure
below.

a
b

{6a} {6b}

·
∗

n
n

Our separating symbol is a · if the blob lies in the interior of
the orbifold, when it might become a cone point of order n, and a
∗ if it lies on a boundary of the orbifold, when it might become a
kaleidoscopic point ∗n.

The key observation is that an arbitrary permutation symbol
precisely describes the topology of the orbifold, up to the orders of
cone and kaleidoscopic points! This is simply because there is just
one way to zip disks to the boundary of the doily to get a closed
surface.

Euler Characteristic

If a filled in doily has f
faces and g bands (of all
kinds—untwisted, twisted,
half, and folded), the Euler
characteristic is 1 + f − g.
Half arms and rotary arms
contribute nothing. This
number, together with the
number of boundaries and
the orientability of the orb-
ifold, determines the orb-
ifold’s topology.

The orbifold for the symbol [0](12)[34]· is drawn below: we see
that the blob may have a cone point of order n ≥ 1 at its center.
There are two boundary curves of the doily, one of which must meet
the boundary of the orbifold. Consequently, the orbifold has exactly
two faces, one with (perhaps) a cone point of order a and the other
with (perhaps) a kaleidoscopic point of order b. We shall see that
the values of a, b, and n can be deduced from the face code.

01

2
3

4

a

b

n

[0](12)[34]·(8b, a, 8b, 8b, 8b)n
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This orbifold is nonorientable with one boundary component; its
Euler characteristic is 0, so the orbifold must be a Möbius band and
the tiling must have symmetry a∗b×. Moreover, counting the edges
of the two faces, we see that the face code can only be (8a, 8a, 8a, b,
8a)n. Conversely, given the face code, we can deduce a, b, and n,
and so know the symmetry.

Consider the more complicated example

〈08〉(1)[26](34)(57)∗.

What is the corresponding orbifold? Beginning at arm 0 and tracing
around, we find that the doily has two boundaries, colored purple
and yellow, and so the orbifold will be filled in with two faces. It’s
difficult to draw these, though!

0
1 2

3
4
5

67
8

2

2

∗2 9

〈08〉(1)[26](34)(57)∗(143, 9, 148, 9, 143)2

What can we deduce about the local features of the orbifold from
the symbol? There is an order-2 cone point at the end of rotary arm
(1). The boundary of the half band might have a kaleidoscopic point
n at the blob, and two faces may each have cone points of orders, say,
a for yellow and b for purple. The yellow face has seven edges and
so will be a (7a)-gon in the tiling. The purple face has just one edge
and so will be a b-gon in the tiling. Any tiling with the permutation
symbol 〈08〉(1)[26](34)(57)∗ must therefore have a face code of the
form ((7a)3, b, (7a)8, b, (7a)3)n; this immediately implies that for the
face code we were given, (143, 9, 148, 9, 143)2, we have n = 2, a = 2,
and b = 9.
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What is the orbifold’s topology? The orbifold is nonorientable
because it includes the twisted band [26]. The orbifold has one
boundary along the half band 〈08〉. There are four bands altogether,
so the Euler characteristic is 1+ f − g = 1+2− 4 = −1, and the un-
derlying surface of the orbifold is ∗××. We now know the symmetry
of the tiling with this symbol: it has signature 229∗2××.

Existence

Is there really a tiling with this face code? We are actually asking
whether there exist a regular 9-gon and a regular 14-gon in the hy-
perbolic plane, with matching edge-lengths so that four of the 9-gons
and twenty-eight of the 14-gons can fit together at a vertex.

The answer is easy: yes, there is, a unique one with the given
symbol. Why is this? The answer is that the universal cover of the
orbifold is a plane that is topologically tiled in the required way,
and that there is a unique edge-length for which the angles of the
corresponding regular polygons that should fit around a vertex will
add to 360◦. To see this, it suffices to note that when the edge-length
is very small the angles will be close to their values in the Euclidean
case, which add to more than 360◦, and that they decrease to zero
as the edge length increases to ∞.

With trivial modifications the argument works also in the Eu-
clidean and spherical cases, with the single exception that if the
group signature derived from the symbol is one of the bad ones (ab
or ∗ab with a 	= b), then there is no orbifold and so no tessellation.

Relative versus Absolute

Our combined symbol exactly classifies tilings that are Archimedean
relative to H, that is, pairs (T,H) where T is a tiling by regular
polygons and H is a group of automorphisms of T that is transitive
on the vertices.

A tiling with permutation symbol [0][12]∗, for example, cannot
be absolute. Its orbifold has only one face, so the tiling is regular
and there is more symmetry than the symbol reflects. As a regular
tiling, it has a different symbol 〈0〉∗ and orbifold.
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Figure 19.1. The tiling as drawn has less symmetry than the tiling by unmarked, uncolored
polygons. Accordingly, the permutation symbol corresponding to this tiling, [0][12]∗, can only
be relative, not absolute.

Again, the doily for (0)(1)(2)· can only be relative, since it has
only one face and so describes a regular tiling; the absolute symbol
will be 〈0〉∗. The more complicated example of (03)(16)(25)(47)·
has two faces but has a rotational symmetry and is also necessarily
relative.

The symbol [0][1][2]· describes both relative and absolute tilings.
The orbifold has three faces, each with a kaleidoscopic point, of or-
ders a, b, and c. If all three of these orders are distinct, then there is
no symmetry of the doily and the tiling is absolute; otherwise, there
is such a symmetry and the tiling is merely relative.

A tiling T will automatically be absolute with respect to the full
group G of all its automorphisms. So, we can classify the absolute
Archimedean tilings by discarding any for which G 	= H.

For the small cases it is easy to apply tests like those we just
described to decide whether a symbol is merely relative, but what
should we make of

[0][15][2][37](4)(6)· or [0](1)[25][3](47)(6)· ?

Both of these have more than one face and neither has an obvious
symmetry of the doily. A simple algorithm quickly shows that both
are relative.1

1The simple tests do settle the matter for the vast majority of symbols: these
two examples are the smallest for which more subtle arguments are needed.
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0
1

2
3

4
5

6

7

[0][15][2][37](4)(6)·, shown at left, is relative. The group *2 acts on the vertex. The reflections
preserving 4 and 6 transmute (4) and (6) into [4] and [6]. The rotation swapping 1 and 5, and
3 and 7, transmutes [15] into [1][5] and [37] into [3][7], yielding the doily [0][1][2][3][4][5][6][7]·
with face code (abbaabba), which is symmetric under *2. The absolute code is thus 〈0〉[1]〈2〉*.

0
1

2

3
4

5

6

7

[0](1)[25][3](47)(6)·, shown at left, is also relative. The group *2 acts on the vertex; the re-
flection swapping 2 and 5 transmutes [25] into (2)(5); the reflection swapping 4 and 7 trans-
mutes (47) into [4][7], yielding the doily [0](1)(2)[3][4](5)(6)[7]· with face code (aaabaaab).
This is symmetric under *2, and the absolute code is [0](1)*.

To determine that a symbol is merely relative we first must see
that the arrangement of faces at a vertex has greater symmetry than
implied by the symbol. This was just the test that showed that
[0][1][2] could not be relative for distinct a, b, and c. It is easily made
algorithmic, but we shall merely suggest how by the discussions of
the two examples in the figures above.

Replace: With: If There Is:

[ij] (ij) just a reflection preserving i and j
[ij] (i)(j) just a reflection swapping i and j
[ij] [i][j] just a rotation swapping i and j
[ij] [i][j] all of the above

(ij) (ij) just a reflection preserving i and j
(ij) [i][j] just a reflection swapping i and j
(ij) (i)(j) just a rotation swapping i and j
(ij) [i][j] all of the above

(i) [i] a reflection preserving i
[i] [i] a reflection preserving i
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Enumerating the Tessellations

We shall now use this theory to enumerate our Archimedean tessel-
lations of small rank. The rank is the number of half or halved arms
at a vertex.

In the following tables we first list all very small symbols with
rank up to 3. We next list all absolute symbols with rank up to 5. We
then list all absolute examples for which the vertex is in the interior
of the doily, up to rank 10, which in this case (since there are no
half arms) means valence 5. Finally, at the end of this chapter, we
give a table listing the number of absolute and relative symbols up
to rank 19.

We write the rank as a sum of 2’s (for full arms) and 1’s (for
half arms) and follow it by (∗) or (·) according as there is or is not
a reflection through the vertex. We see that only three of the first
nine cases can be absolute.

Rank Group Symbol Comment Example

1(∗) ∗na2 〈0〉∗(a)n always absolute all regular tilings

2(·) na2 (0)·(a)n always relative
2(·) n∗a [0]·(2a)n always relative
2(∗) 2∗na (0)∗(2a)n always relative
2(∗) ∗nab [0]∗(a, b)n absolute if a �= b semiregular tilings

(1+1)(∗) ∗n2a2 〈0〉〈1〉∗(2a)n always relative
(1+1)(∗) a∗n 〈01〉∗an always relative

(2+1)(∗) 2∗na2 〈0〉(1) ∗(3a)n always relative
(2+1)(∗) ∗n2ab 〈0〉[1]∗(2a, b, 2a)n absolute if 2a �= b truncated regular tilings

Now we give a table up to rank 5 for the absolute cases only.

Rank Group Symbol Condition

1(∗) ∗na2 〈0〉∗(a)n —

2(∗) ∗nab [0]∗(a, b)n a �= b

(2+1)(∗) ∗n2ab 〈0〉[1]∗(2a, b, 2a)n 2a �= b

(2+2)(∗) 2∗nab (0)[1]∗(3a, 3a, b, 3a)n 3a �= b
(2+2)(∗) ∗nabc [0][1]∗(a, 2b, c, 2b)n a �= c

(1+2+1)(∗) ∗n2ab2 〈0〉[1]〈2〉∗(2a, 2b, 2b, 2a)n a �= b

(1+2+2)(∗) 2∗n2ab 〈0〉(1)[2]∗(4a, 4a, b, 4a, 4a)n 4a �= b
(1+2+2)(∗) 2∗n2ab 〈0〉[1](2)∗(2a, 3b, 3b, 3b, 2a)n 2a �= 3b
(1+2+2)(∗) ∗n2abc 〈0〉[1][2]∗(2a, 2b, c, 2b, 2a)n 2a, 2b, c not all equal
(1+2+2)(∗) a∗n2 〈0〉(12)∗(3b, 2a, 3b, 3b, 2a)n 2a �= 3b
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We now consider the absolute cases for which there is no collapse
of the vertex, up to rank 10; the rank is then twice the valence.

Valence Symbol Conditions

3 [0][1][2]·(2a,2b,2c) a, b, c distinct

4 [0](1)(23)·(6a,6a,b,6a) 6a �= b
[0][1][2][3]·(2a,2b,2c,2d) see † below
[0][1][2](3)·(2a,2b,4c,4c) a �= b

5 [0][12](34)·(8a,8a,8a,b,8a) 8a �= b
[0](12)(34)·(6a,b,6a,c,6a) b �= c
(0)[12](34)·(4a,4a,4a,b,4a) 4a �= b
(0)(12)(34)·(3a,b,3a,c,3a) b �= c
[0][1][2][34]·(2a,2b,6c,6c,6c) a �= b
[0][1][2](34)·(2a,2b,4c,d,4c) a �= b
[0][1](2)[34]·(2a,8b,8b,8b,8b) a �= 4b
[0][1](2)(34)·(2a,6b,6b,c,6b) 2a, 6b, c not all equal
[0][1][3][24]·(2a,4b,4c,4b,4c) b �= c
[0](1)(2)(34)·(8a,8a,8a,b,8a) 8a �= b
[0](1)[3][24]·(6a,6a,4b,6a,4b) 3a �= 2b
[0](1)[3](24)·(6a,6a,4b,4b,6a) 3a �= 2b
[0](1)(3)(24)·(6a,6a,2b,2b,6a) 3a �= b
[0][1][2][3][4]·(2a,2b,2c,2d,2e) see ‡ below
[0][1][2][3](4)·(2a,2b,2c,4d,4d) a �= c
[0][1][2](3)(4)·(2a,2b,6c,6c,6c) a �= b
[0][1](2)[3](4)·(2a,4b,4b,4c,4c) b �= c

† No symmetry of a square with vertices labeled a, b, c, d; that is, a �= c, and b �= d and neither
a = b and c = d, nor a = d and b = c.

‡ No symmetry of a pentagon with vertices labeled a, b, c, d, e.

Archimedes Was Right!

We have done enough to verify Archimedes’ assertion that the only
finite “Archimedean” polyhedra are precisely those illustrated in the
first half of Table 19.1. Similarly, the Archimedean plane tessella-
tions are those illustrated in the second half of Table 19.1.

Since the angle of a regular polygon is at least 60◦, there can be
at most five around a vertex, making the rank at most 10. If there
is no collapse at the vertex the polyhedron is included in the latter
part of our table, and if there is it is in the former part, since then
its rank is at most 5. All we have to do is pick out the cases for
which the group is spherical, which is easy.
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The enumeration of Euclidean Archimedean tilings is almost the
same. The valence is at most 6 and can only be 6 for the regular
triangular tessellation itself, so it is still true that all cases are in
our table; the answers are found by picking out those whose group
is Euclidean.

The Hyperbolic Archimedean Tessellations

The remaining tessellations are all hyperbolic. The number of per-
mutation symbols increases tremendously with rank. Also, for any
given permutation symbol, there are infinitely many distinct possible
face codes.

We list the number of distinct symbols with a given rank. A
permutation symbol is listed as absolute if it describes some absolute
tilings. In the headings a(n) indicates the total number of absolute
symbols of rank n and r(n) the total number of all symbols, relative
and absolute, of rank n. We further divide these into ·a(n) and ·r(n),
for which the vertex of the doily lies in the interior of the orbifold—
and so the valence is n/2— and ∗a(n) and ∗r(n), for which the vertex
lies on a mirror.

n/2 a(n) r(n) ·a(n) ·r(n) ∗a(n) ∗r(n)
1/2 1 1 1 1

1 1 6 0 2 1 4

3/2 1 2 1 2
2 3 14 0 5 3 9

5/2 4 6 4 6
3 12 32 1 8 11 24

7/2 16 20 16 20
4 48 100 3 24 45 76

9/2 64 76 64 76
5 210 324 17 52 193 272

11/2 276 312 276 312
6 946 1285 74 185 872 1100

13/2 1252 1384 1252 1384
7 4510 5442 343 578 4167 4864

15/2 6023 6512 6023 6512
8 22380 25692 1593 2412 20787 23280

17/2 30364 32400 30364 32400
9 116481 128354 7797 10082 108684 118272
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tr. cubocta

(a)b

〈0〉[1]∗
(2a, b, 2a)

(a, b)2

(a, 2c, b, 2c)

[0][1][2]·
(2a, 2b, 2c)

(0)(12)(34)·

c = 2

c = 2

c = 3

(3a, b, 3a, c, 3a)

{a, b} = {3, 3} {a, b} = {3, 4} {a, b} = {3, 5}

tetrahedron octahedron icosahedron dodecahedroncube

snub dodecahedronsnub cube

tr. cube

icosidodecahedron

rhombicosidodecahedron

cuboctahedron

rhombicuboctahedron

tr. tetrahedron tr. octahedron tr. icosahedron tr. dodecahedron

tr. icosidodecahedron

〈0〉∗

[0]∗

[0][1]∗

Table 19.1. The Archimedean polyhedra and tessellations. The spherical and Euclidean
Archimedean tilings are shown. Each absolute tiling is shown with its name, “tr.” being short
for “truncated.” The relative tilings are lightened. With the single exception of “deltille,” the
valence of an Archimedean spherical or Euclidean tiling can be at most five, and so we can be
sure their enumeration is complete by examining our enumeration of small symbols.



The Hyperbolic Archimedean Tessellations 263

{a, b} = {3, 6} {a, b} = {4, 4}{a, b} = {2,∞}{a, b} = {2, n}

hextille deltille

tr. hextille

hexadeltille

tr. hexadeltille

rhombihexadeltille

snub hextille

quadrille

isosnub quadrille

snub quadrille

infinite dihedron

infinite prism

infinite antiprism

dihedron

prism

antiprism

〈0〉[1](2)∗

a = 2, b = 1

〈0〉(12)∗
(3a, b, 3a, b, 3a)
a = 1, b = 4

tr. quadrille

(2a, 3bn, 2a)

Table 19.1. (continued.) Allowing infinite faces—kaleidoscopic or gyration points of infinite
order—we gain the infinite prism, the infinite antiprism, and the infinite dihedron. The gaps
on this side of the table would be filled by tilings that include two-sided polygons of no area,
which we do not allow.
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Examples and Exercises

Try your hand at verifying these symbols.

1. [0][1][2][3]·(6, 4, 4, 8) 2. (0)[1][2][3]·(4, 6, 8, 4)

3. (0)[1][2][3]·(4, 6, 4, 4) 4. (0)(12)[3]·(6, 3, 6, 6)
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5. (0)(12)(34)·(3, 4, 3, 5, 3) 6. (0)(12)(34)·(3, 5, 3, 6, 3)

7. the relative (0)(12)(34)·(3, 5, 3, 5, 3) 8. the absolute 〈0〉(12)∗(3, 5, 3, 5, 3)
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9. (0)(12)[34]·(3, 4, 4, 4) 10. (0)[1][2](34)·(6, 4, 6, 3, 6)

11. [0][1][2](34)·(6, 4, 4, 3, 4) 12. [0][1][2](34)·(6, 8, 4, 3, 4)
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- 20 -
Generalized Schläfli Symbols

The ordinary Schläfli symbol, {p, q} in Coxeter’s version (Schläfli
wrote (p, q) and Hoppe (p|q)), denotes the Platonic solid whose faces
are regular p-gons and whose vertex figures are regular q-gons. In
this chapter, we describe a generalization we call the “generalized
Schläfli symbol of Dress and Delaney” that works for all topologi-
cally spherical polyhedra (and as we shall see later, also in higher
dimensions). Andreas Dress, who really coined the symbol, called
it the “Delaney Symbol” because he got the idea from a paper of
M. Delaney. Our changed name reflects the fact that the version we
present here visibly generalizes the Schläfli symbol.

Flags and Flagstones

Mathematicians use the word “flag” for a collection of mutually in-
cident spaces, one of each dimension up to some limit—our little
picture shows why! The flags of a polyhedron P are those whose
points, lines, and planes are chosen from the vertices, edges, and
faces of the polyhedron P .

plane

line

point

A flag is a collection of a
point, a line, a plane, . . .

For our purposes, it is useful to note that these flags correspond
to the tiles of the barycentric subdivision of P , which we therefore
call “flagstones.”

This subdivision is obtained by dividing each n-gonal face of P
into 2n triangles whose new vertices are at the center of that face
and its edges. We shall number each vertex with the appropriate
dimension: 0 if it is a vertex of the original solid, 1 if it’s the midpoint
of an edge, and 2 if it’s the center of a face.

(opposite page) The Schläfli symbols for the cuboctahedron under its full group of symme-
tries, the three subgroups of index 2 in that, and the one of index 4.

269
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The figure above shows the barycentric subdivision of the rhom-
bicuboctahedron, which has three types of face: equilateral triangles,
regular squares, and half-regular squares. Under the symmetries of
this polyhedron, its flagstones (or flags) fall under four types:

a: those in the regular square faces,

b: those next to type a, but in half-regular squares,

c: those in half-regular squares next to the triangular faces,

d : those in the triangular faces.

For a given dimension number d, we say one flagstone is d-joined
to another if they share all their vertices except those numbered d.
In the rhombicuboctahedron, a flagstone of type a is 2-joined to one
of type b, but 0-joined and 1-joined to ones of type a.

The (generalized) Schläfli symbol has a row for each type of flag-
stone and a column for each of the three dimensions, 0, 1, and 2.
Each row has horizontal lines joining each dimension to the next,
while the dth column contains vertical lines that indicate the d-joins.

What we have just described would, for the rhombicuboctahe-
dron, produce the figure in Figure 20.1(b), but it makes things very
much clearer if we double everything for the intermediate dimensions
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(a) (b) (c)

Figure 20.1. (a) The row for the flagstones of type a: they are 0-connected and 1 connected
to a, and 2-connected to b. (b) The full Schläfli symbol for the rhombicuboctahedron. (c) The
clearer symbol produced by doubling everything for dimension 1: we add numbers to describe
the size of each face and vertex figure.

(here only in dimension 1) as in Figure 20.1(c), and we shall always
do this in the future.

Each component of Figure 20.1 so modified now receives a num-
ber. For an ordinary polyhedron, these numbers are, between di-
mensions 0 and 1, the sizes of the corresponding faces and, between
dimensions 0 and 2, the sizes of the vertex figures.
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How the numbering arises.

Before we give more precise and more general definitions, let’s
give some properties of this new kind of Schläfli symbol. The most
important one is that by deleting the parts corresponding to a given
dimension, one obtains the (generalized) Schläfli symbols of the faces
of that dimension. So, for instance, covering up the right-hand side
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3

44

4

(a) (b) (c)

Figure 20.2. The effects of covering up various parts of the figure: (a) we see there are three
kinds of faces, two of which are regular and one of which is half regular; (b) we see there are
two kinds of edges; (c) we see there is just one kind of vertex, which is just 1

4
-regular.

4

4
4

4 4

4

4

4

square

rhombus gyrational square rectangle

kite parallelogram isosceles
trapezoid

irregular

Figure 20.3. Schläfli symbols of quadrilaterals.
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of our example (as in Figure 20.2(a)), we see that the rhombicuboc-
tahedron does indeed have three types of face: two four-sided ones
and one three-sided one.

Moreover, it actually tells us that the three-sided face is regular
as is one of the two kinds of four-sided faces, while the other kind of
four-sided face is only half regular. This is because the generalized
Schläfli symbol of the regular polytope {p, q, r, ...} just has one row:

p q r
. . . .

Correspondingly, a polytope that is only half regular will have
two rows. In general, the number of rows in the Schläfli symbol is,
of course, the number of orbits of its flags (or flagstones), which is
called the flag rank . If the flag rank is r, we sometimes say that the
polytope is 1

r -regular.

Covering up the dimension-0 part of this example (as in Fig-
ure 20.2(c)), we see that the rhombicuboctahedron has just one kind
of vertex, which is only 1

4 -regular, having the symmetry of an isosce-
les trapezoid. Figure 20.3 shows the Schläfli symbols that correspond
to quadrilaterals of varying degrees of regularity.

And naturally, we can read off the symbol of the dual of a poly-
hedron just by reversing its own symbol. For example, a rectangle
and a rhombus are dual, and their symbols are reflected.

More Precise Definitions

More precisely, this new kind of Schläfli symbol is defined not really
for an abstract polyhedron but for a polyhedron together with some
group of its symmetries. This has already happened in our example:
the half-regular embedded squares are geometrically regular squares,
but the way they are embedded in the rhombicuboctahedron has only
rectangular symmetry, since their sides alternately border triangles
and squares.

0

0

0

0

1

1

1

1

4

aa

aa

bb

bb

Let’s look at the Schläfli symbol of this kind of face, or equiva-
lently, of a rectangle. How many types of edge does it have? The
answer is two, since covering up the dimension-1 part leaves just two
dots. Since a dot lies in just one row, we can see that each edge is
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regular; that is to say it has the symmetry interchanging its two ends.
Covering up the dimension-0 part instead, we see that the Schläfli
symbol of the vertex figure is a vertical line. This shows that there
is only one kind of vertex, which is half regular, since this symbol
has two rows, and indeed a rectangle does not have the symmetry
that interchanges the two sides at a vertex.
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0 0
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abb b
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gh

Verify that the isosceles trapezoid (above, left) has the three
types of edges given by the dimension-1 coverup rule, namely two
regular and one semi-regular, but only two kinds of vertices, both
semi-regular, as given by the dimension-0 coverup rule. An irregular
quadrilateral (above, right), which is only 1

8 -regular, has four kinds
of vertices and four kinds of edges.

More General Definitions

The new kind of symbol is really defined for tessellations in an arbi-
trary simply connected space1 of any dimension n, under arbitrary
subgroups of their automorphism groups. In particular, it works for
all topologically spherical polytopes. We shall give some interesting
four- and eight-dimensional examples in our last chapter.

The general symbol will have a column for each dimension from
0 to n, the columns for dimensions 1 to n − 1 customarily being
doubled for clarity. Moreover, each component of the symbol (under
this doubling convention) receives a number. We now describe the
rule that determines these numbers. How is this number determined?

1The symbol cannot distinguish between a non-simply connected space and
any of its topological quotients; on the other hand, the symbol is unambiguous if
we specify that the space is simply connected. In essence we are describing the
way the simplices of a barycentric subdivision of the orbifold fit together.
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For each d, the relation of d-joining is a permutation of order 2
on the flagstones of the tessellation—let us call this permutation πd.
It is easy to see that if d and d′ differ by at least 2, then πdπd′ also
has order 2. However, πdπd+1 can have any order and arbitrary cycle
shape. The numbers attached to the components that lie between
columns d and d + 1 are the lengths of the corresponding cycles of
πdπd+1.

Interlude: Polygons and Polytopes

The Types of Symmetry of a Polygon

Everybody is familiar with the classification of triangles into scalene, isoce-
les, and equilateral. This is really a classification by symmetry, and if our
triangle has a pattern on it there is a fourth type, gyrational, as indicated
by the arrows in Figure 20.4.

Quadrilaterals come in eight symmetry types, shown in Figure 20.3, al-
though once again the gyrational type only happens for patterned squares.

3

3

3

3

gyrational isoceles

scalene

trapezoid

Figure 20.4. Types of triangles.
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Figure 20.5. Types of hexagons.

r16

d8

d4

d2

g8
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p8

p4
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a1

dia per

g2

Figure 20.6. Types of octagons.
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How many types of n-gons are there? The symmetry group of the
regular n-gon is D2n, the dihedral group of order 2n, and what we are
really doing here is drawing the lattice of subgroups of this, considered up
to conjugacy. Each such subgroup has both an order and an index in D2n,
and the rule is that the number of conjugacy classes of groups of a given
size is three if both order and index are even, and is one otherwise.

Figures 20.5 and 20.6 illustrate the types of hexagons and octagons
and will help us to introduce some terminology. We’ll call a polygon n-
symmetric if its symmetry group has order n and 1

r -regular to mean that
its index is r.

Different types having the same order are distinguished by the nature
of their symmetry axes. Such an axis may be a diagonal, meaning that
it passes through two vertices, or a perpend, meaning that it is perpen-
dicular to two edges. (In masonry, a “perpend stone” is one that abuts
both sides of a wall.) We will call a polygon diasymmetric if all its axes
are diagonal, persymmetric if they’re all perpend, and isosymmetric if it
either has both types or has axes that are both perpendicular to an edge
and pass through the opposite vertex. (We may regard “isosymmetric” as
abbreviating “having isosceles symmetry.”) Finally, we call the symmetry
of a polygon gyrational if it has no reflection axes, and we abbreviate “has
gyrational symmetry” to “is gyrosymmetric.”

This kind of terminology is also useful in higher dimensions, supple-
mented by “chirosymmetric” for “having chiral symmetry,” since not all
chiral symmetry groups are generated by gyrations.

Unfulfilled Groups

For unpatterned plane polygons, one kind of semiregularity (= 1
2 -regularity)

does not appear, namely the gyrational type that corresponds to the cyclic
subgroup Cn of D2n. Any n-gon that has all the symmetries of Cn auto-
matically has the remaining symmetries of D2n. The same sort of thing
happens for other categories of object, and we describe the missing sub-
groups as unfulfilled for the given category of object. For instance, for
unpatterned polyhedra that are topologically cubes, the pyritohedral sub-
group 3∗2 is unfulfilled.

Subgroup Lattices

We have some useful conventions for lattices of subgroups of small enough
groups. A “card” represents a type of subgroup up to cojugacy, and the
different styles of line represent containments to different prime indices
(here thick for index 2, thin for index 3, and dotted, dashed or non-existent
for higher indices, while composite indices are represented by combining
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these lines in the way shown in the figures, in which the gray spots may be
regarded as“missing groups” (i.e., are unfilled).

We have found that this unorthodox convention handles complicated
lattices so well that we earnestly recommend it to interested readers, along
with the following extra conventions for the subgroup lattice of a group
of form 2 ×G. Each rectangular card represents a pair of subgroups, of
which the lower one H is a ”pure subgroup” (i.e., a subgroup of H) while
the upper one 2×H is its double. Any other (hexagonal) card lies on the
edge between H and K, where H (the Half group) has index 2 in K, and
denotes the third, ”hybrid,” subgroup ”HK” of 2×K that contains H.

If the generator of the direct summand group 2 is called −1, then 2×H
consists of the elements +h and −h for h in H, while HK consists of the
elements +h and −k, for h ∈ H, k ∈ K\H.

Subgroups of Polyhedral Groups (Hendecacity)

Figures 20.7 and 20.8 show the lattices of subgroups of the polyhedral
groups ∗532 and ∗432 under the above conventions, that for ∗332 being
visible in the latter. It is a useful mnemonic (“hendecacity”) that the
number of conjugacy classes of subgroups is 22 for ∗532, 33 for ∗432, and
11 for ∗332, always a multiple of 11.

Each group is given both an algebraic name, reflecting its structure
as a pure or double or hybrid group, and a geometric name (its orbifold
signature). In the algebraic names, a dihedral group of order 2n is called
D2n or E2n according as it is generated by odd or even permutations; in a
hybrid group HK we keep only the parameter of K. In the cubic case there
are several cases in which groups of the same signature are not conjugate in
∗432. When there are just two classes, we distinguish them by appending
a − sign if the group has odd (or diagonal) order-2 elements, or a + sign
when it has only even (or perpend) ones. In the ∗22 case there are three
signs, as shown below.

+− ±

Note that the lower part of Figure 20.8 is the lattice of subgroups of
2×D8, except that groups C2 and E2 have been identified, since they are
conjugate in S[4].
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C1 1

2×C1 ×

C2 = E2 22

2×C2 2*

E4 222

2×E4 *222

C3 33

2×C3 3×

C5 55

2×C5 5×

A[4] 332

2×A[4] 3*2

D10 522

2×D10 2*5

A[5] 532

2×A[5] *532

CC2 = CE2 *

CD4 *22

CD10 *55

CD6 *33

D6 223

2×D6 2*3

Figure 20.7. The lattice of subgroups of *532.
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C1 1

2×C1 ×

CD2 *− CE2 *+

D2 22− C2 = E2 22+

2×D2 2*− 2×E2 2*+

DD4 *22− ED4 *22± EE4 *22+CC4 2×

D4 222− E4 222+C4 44

2×D4 *222− 2×E4 *222+2×C4 4*

DD8 2*2− ED8 2*2+CD8 *44

D8 224

2×D8 *224

C3 33

2×C3 3×

CD6 *33

D6 223

2×D6 2*3

A[4] 332

2×A[4] 3*2

AS[4] *332

S[4] 432

2× S[4] *432

Figure 20.8. The lattice of subgroups of *432. Each lower group is of index three in the
corresponding group in the upper part of the figure.
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Naming Archimedean and
Catalan Polyhedra and

Tilings

The book in which Archimedes enumerated the polyhedra that have
regular faces and equivalent vertices is unfortunately lost; however,
its contents were reconstructed by Kepler, from whom the tradi-
tional names descend. In this chapter we explain these “Keplerian”
names for the Archimedean and Catalan solids and extend them to
the analogous tessellations of two- and three-dimensional Euclidean
space.

We shall describe the polyhedra in dual pairs indicated by the ar-
rows, and at the same time give our abbreviations for them, starting
with the five Platonic (or regular) ones:

T C ↔ O D ↔ I
Tetrahedron Cube Octahedron Dodecahedron Icosahedron

Etymologically, the Greek stem “hedr-” is cognate with the Latin
“sede-” and the English “seat,” so that, for instance, “dodecahedron”
really means “twelve-seater.”

(opposite page) The Archimedean solids and their duals can be nicely arranged so that their
edges are mutually tangent, at their intersections, to a common sphere.
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Truncation and “Kis”ing

These are followed by their “truncated” and “kis-” versions. Here,
truncation means cutting off the corners in such a way that each
regular n-gonal face is replaced by a regular 2n-gonal one. The dual
operation is to erect a pyramid on each face, thus replacing a regular
m-gon by m isoceles triangles. These give five Archimedean and five
Catalan solids:

truncated truncated truncated truncated truncated
Tetrahedron Cube Octahedron Dodecahedron Icosahedron

tT tC tO tD tI
� ↗↙↖↘ ↗↙↖↘
kT kC kO kD kI

kisTetrahedron kisCube kisOctahedron kisDodecahedron kisIcosahedron

The names used by Kepler for the Catalan ones were rather longer,
namely,

triakis tetrakis triakis pentakis triakis
tetrahedron hexahedron octahedron dodecahedron icosahedron

and were usually printed as single words. In these, “kis” meant
“times,” so that Kepler’s “tetrakishexahedron” was literally a “(4×
6)-seater.” We retranslate “kis” as “multiplied,” allowing us to ab-
breviate this to “kiscube,” meaning “multiplied cube.”1

1Beware! This is not the same as the “mucube” of later chapters.
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Marriage and Children

We marry a regular polyhedron P and its dual Q by placing them
so that corresponding edges intersect at right angles. Then, their
daughter polyhedron is the Archimedean polyhedron that is their
intersection, whose dual, their son, is the Catalan one that is their
convex hull. This gives rise to only two new Archimedean and two
new Catalan solids, which we can respectively truncate and “kis” to
get two more of each:

Polyhedral Sex

We call a polyhedron with
V vertices and F facesmale
if V > F (its virility ex-
cedes its feminity) and fe-
male if F > V . Those with
V = F are hermaphrodites.

truncated truncated
CubOctahedron IcosiDodecahedron CubOctahedron IcosiDodecahedron

CO ID tCO tID

� � � �

R12 R30 kR12 kR30

Rhombic Rhombic kisRhombic kisRhombic
dodecahedron triacontahedron dodecahedron triacontahedron

The daughter and son of two mutually dual tetrahedra are the reg-
ular octahedron and cube, so that particular “marriage” leads to no
new Archimedean and Catalan solids. However, we can incestuously
marry the two Rhombic solids R12 and R30 to their respective duals
CO and ID, producing two more Archimedean daughters and two
more Catalan sons:
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RhombiCubOctahedron RhombIcosiDodecahedron
RCO RID
� �

T24 T60

Tetragonal Tetragonal
icosikaitetrahedron hexacontahedron

Trapezium and Trapezoid

If you look in a large
enough dictionary you will
probably find the asser-
tions that “trapezium” (Br.)
= “trapezoid” (U.S.) while
“trapezoid” (Br.) = “trapez-
ium” (U.S.)!
Although only the first of
these is still true, it is inter-
esting to see how this curi-
ous situation came about.
Proclus, a commentator
on Euclid, used “trapezion”
for a quadrilateral with
(just) two parallel sides
and “trapezoid” for a
general four sided polygon
with (typically) no parallel
sides. All the European
languages except English
have maintained this usage.
However, in English the
words “trapezium” and
“trapezoid” were acci-
dentally interchanged in
Hutton’s Mathematical
Dictionary of 1800 and
this switched usage has
persisted in the U.S.A. but
was corrected in England
between 1875 and 1900.
The end result has been
that British “trapezium” and
U.S. “trapezoid” have sur-
vived as synonyms, while
British “trapezoid” and U.S.
“trapezium” have been ob-
solete for more than a cen-
tury, the word “quadrilat-
eral” having been reintro-
duced to replace them.

Strictly speaking, the solids we get by truncating CO and ID
are not Archimedean since they have unequal edges, but they can
be reformed to become so by distorting them suitably, and Kepler’s
names refer to the reformed versions. Their duals, the two Catalan
solids we have described as kisrhombic have traditionally been called
the hexakis octahedron and icosahedron. We prefer to use “hexakis”
only for the replacement of a hexagon (rather than a triangle) by six
triangles.

Since the traditional names here have often been misunderstood,
we shall explain them. The prefix “rhombi-” in rhombicuboctahe-
dron, for instance, does not refer to a supposed operation of “rhombi-
truncation” but is an abbreviation for “rhombic dodecahedron,”
one of the two polyhedra R12 and CO of which RCO is the
daughter.

In the names of the two Catalan solids, “icosi-kai-tetra” and
“hexaconta” mean “twenty-plus-four” and “sixty,” respectively, and
“tetragonal” refers to the four-cornered-ness of the faces. Tradition-
ally, the adjective has been “trapezoidal,” but this is based on an
obsolete meaning of the word “trapezoid” (see sidebar).

The two “rhombi” solids have some square faces that come from
their father “rhombic” polyhedra, and we can divide each such square
into two triangles in such a way as to increase the number of faces
at each vertex from four to five and then reform the resulting two
solids so that all their faces are regular.



Coxeter’s Semi-Snub Operation 287

Kepler’s term for the first of the resulting two solids was “cubus
simus” in which the second Latin word means “rounded” or “flat-
tened.” The “simian” apes are those with flattened noses. The
traditional English names are snub cube (sC) and snub dodecahe-
dron (sD), although they could equally be described as the snub
octahedron and icosahedron. Their duals have respectively 24 and
60 pentagonal faces:

snub Cube snub Dodecahedron
sC sD
� �

P24 P60

Pentagonal Pentagonal
icosikaitetrahedron hexacontahedron

Coxeter’s Semi-Snub Operation

Coxeter pointed out that since the snub cube is equally the snub
octahedron, it would be more sensible to regard it as being derived
from the cuboctahedron, by a new type of snubbing operation. We
call this semi-snubbing, abbreviated to “ssnub,” because it is only
half of the operation that leads from the cube to its ordinary snub:
C → CO → ssCO = sC.

Regarded as the semi-snub cuboctahedron, the snub cube is ob-
tained by distorting its daughter rhombicuboctahedron by twisting
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the regularly embedded (regular) squares in one direction, say, clock-
wise, which automatically twists the triangles counterclockwise and
turns the non-regularly embedded (half-regular) squares into skew
quadrilaterals that can be filled with two triangles. However, this is
only a topological description; the canonical snub cube is obtained
by a deformation that makes all the faces regular. (If we continue
this twisting, until the skew quadrilaterals have no width at all, we
obtain the cuboctahedron.)

The semi-snub can be defined topologically for an even-valence
polyhedron in a similar way, but its faces can all be made regular only
for some very special polyhedra. A notable example is the semi-snub
mucube of Chapter 23.

Euclidean Plane Tessellations

Not many of the corresponding tilings of the Euclidean plane have
previously received names. However, quadrille (Q), which we can
interpret as “quadrangular grille,” has been used for the standard
tiling by squares. Based on this we propose deltille (Δ) for that by
equilateral triangles and hextille (H) for that by regular hexagons.
In these, the termination “tille” may be regarded as an amalgam
of “tile” and “grille.” The following table gives the resulting “Ke-
plerian” names for the “Archimedean” and “Catalan” tilings of the
plane. We have encountered their figures already, in Table 19.1 on
pages 262–263.

Symbol Archimedean Face Code Catalan Symbol
Tiling Tiling

Q quadrille 4444 quadrille Q
Δ deltille 333333 hextille H
H hextille 666 deltille Δ
tQ tr. quadrille 488 kisquadrille kQ
tH tr. hextille 3 12 12 kisdeltille kΔ
HΔ hexadeltille 3636 rhombille R∞
tHΔ tr. hexadeltille 4 6 12 kisrhombille kR∞
RHΔ rhombihexadeltille 3464 tetrille T∞
sQ snub quadrille 43343 4-fold pentille 4P∞
isQ isosnub quadrille 44333 iso(4-)pentille i4P∞
sH snub hextille 63333 6-fold pentille 6P∞
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Additional Data

We pause for additional data on the Archimedean polyhedra and
planar tilings.

Vertex Figures

To any vertex V of a polyhedron, we associate the vertex figure,
which is customarily obtained by slicing the polyhedron by a plane
suitably near to V and perpendicular to the line joining V to the
center of the polyhedron. Usually, each edge of the vertex figure is
marked with the number of sides of the corresponding face of the
polyhedron. Thus, the vertex figures of the cuboctahedron (Fig-
ure 21.1, left) and icosidodecahedron are rectangles whose sides are
numbered 4,3,4,3 and 5,3,5,3. The vertex figures of the rhombicuboc-
tahedron and rhombicosidodecahedron (Figure 21.1, right) are trape-
zoids with sides numbered 4,4,4,3 and 5,4,3,4.

The notion is analogously defined for higher-dimensional poly-
topes (Chapter 26) and can also be used for tessellations, despite the
fact that this definition no longer applies. For example, the vertex
figure of hexadeltille is a similar rectangle to the one in Figure 21.1
on the left, but now numbered 6,3,6,3.

Figure 21.1. The vertex figures of the cuboactahedron and the rhombicosidodecahedron.

Wythoff Triangles

In a sense, the doily construction of Chapter 19 is a generalization
of the Wythoff triangle (see Figure 21.2), a simple way to enumerate
the tilings on which a kaleidoscopic group ∗2pq acts. The orbifold



290 21. Naming Archimedean and Catalan Polyhedra and Tilings
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p
p

p

p

p

p

p

p

q
q

q

q

q

q

q

q

[0][1]∗(p, 4, q, 4)〈0〉∗qp

[0]∗(2q, p)

[0]∗(pq)2

[0][1][2]·(2p, 2q, 4)
〈0〉∗pq

[0]∗(2p, q)
∗2pq

Figure 21.2. The Wythoff triangle; to each class of point in the triangle, there corresponds
an archimedean tiling. The Wythoff-Coxeter symbol, discussed in Chapter 26 and shown
beneath each triangle, indicates on which sides of the kaleidoscope the point lies.

for ∗2pq is of course a triangle, with vertices labeled 2, p, and qs.
Metrically, the triangle has vertex angles π

2 ,
π
p , and

π
q , determining

its geometry.

Topologically, there are just seven distinct classes of points on
this orbifold: the three vertices, a point on one of the three edges,
and an interior point. In each case, there is a canonical representative
that is the vertex of an equilateral tiling by regular polygons.

More generally, as we will see in Chapter 26, Wythoff’s con-
struction can be used to generate higher-dimensional Archimedean
tesselations, based on the Coxeter reflection groups. We postpone a
discussion of the Wythoff-Coxeter symbol for these tesselations until
that chapter.

The Data

In the following figures, we show data for the Archimedean polyhedra
and planar tilings; we will use the dodecahedron and its descendants
as examples (so, in the following figures p = 5 and q = 3). From left
to right, we show the polyhedron; the Wythoff triangle, the archi-
fold symbol, and the Wythoff-Coxeter symbol; the Schläfli symbol
(Chapter 20); and the vertex figure. (The snub is chiral and does
not arise from the Wythoff triangle, so does not receive a Wythoff-
Coxeter symbol.)
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Architectonic and Catoptric 3-Tessellations

We shall use the term Architectonic tessellation for the three-
dimensional analogs of the plane Archimedean tessellations of the
previous section. The term is appropriate because Architectonics is
the theory of structural design and because its beginning reminds us
of Archimedes. The most interesting ones are those whose symmetry
group is one of the “prime” space groups of Chapter 22, and we shall
restrict ourselves to these.

Their duals turn out to be precisely those tessellations that can
be obtained by repeated reflection of a suitable polyhedron in all its
faces. Accordingly, we call them the Catoptric tessellations, since
Catoptrics is the theory of mirror-reflections and because its begin-
ning reminds us of Catalan. Once again, we restrict ourselves only
to those with “prime” space groups.

There are thirteen tilings of each type, whose names are given
in abbreviated form in Table 21.1 and more formally on the pages
that follow it. The three rhombicuboctrilles are distinguished by
the number of rhombicuboctahedra at each vertex and the three
truncated cuboctrilles by their symmetry.

The simplest case is the tiling of space into cubes, which in anal-
ogy to quadrille we call cubille, for “cubic grille” (see Figure 21.3).
This, being self-dual, belongs to both families and appears as the
first line in Table 21.1, in which the tessellations are named by their
most prominent cells.

Only four symmetry groups arise, which in the first column of
the table we indicate as bc, nc, and fc for the groups 8◦:2, 4−:2, and

Figure 21.3. Cubille.
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Symmetry Flag Architectonic Architectonic Catopric
Group Rank Name Cells Name

nc 1 cubille C(8) cubille 6c
fc 2 tetroctahedrille T(8),O(6) dodecahedrille 12d
d 4 trunctetrahedrille tT(6),T(2) obcubille 3d
bc 3 truncoctahedrille TO(4) obtetrahedrille 1/2d
nc 3 cuboctahedrille CO(4),O(2) oboctahedrille 4/2d
nc 4 tr. cubille tC(4),O pyramidille 1c
fc 8 tr. tetroctahedrille tT(2),tO(2),CO 1/2-oboctahedrille 1d
nc 9 2-RCO-hedrille RCO(2),CO,C(2) 1/4-oboctahedrille 2/4 e
fc 6 3-RCO-hedrille RCO(3),C,T 1/4-cubille 3/2 e
nc 16 1-RCO-hedrille RCO, tC,C,P8(2) sq 1/4-pyramidille 1/4 c
nc 12 n-tCO-hedrille tCO(2),tO,C triangular ditto 1/4 e
fc 12 f-tCO-hedrille tCO(2),tC,tO 1/2-pyramidille 1/2 e
bc 12 b-tCO-hedrille tCO(2),P8(2) 1/8-pyramidille 1/2d

Table 21.1. Prime Architectonic and Catoptric tilings of space.

2−:2 of the bicubic, normal cubic, and half-cubic lattices, respec-
tively, and d for the diamond group 2+:2. In the second, we give the
flag rank, defined at the end of this chapter. The next two columns
give the names and cells of the Architectonic tessellation (with their
number at each vertex), while the penultimate one names the Catop-
tric chamber. Each of the catoptric chambers can be obtained by
subdividing a cube (c), a rhombic dodecahedron (d), or either (e).
We indicate which of these, and how many faces of the cube or rhom-
bic dodecahedron are included in the chamber, in the final column
of the table.

In the figures that follow, we show, starting on the far left and
going clockwise, a portion of the architectonic tiling, a cell of the cor-
responding catoptric tiling shown relative to the architectonic cells,
the Schläfli symbol of the architectonic tiling, a vertex figure, and,
finally, a subdivision of the cube or rhombic dodecahedron or both
into the catroptic cells. The cells of the architectonic tiling are col-
ored red, green, blue, and yellow, corresponding to the code in Chap-
ter 22. The symbols in the figure captions relate to those used in the
table.

We comment briefly on the most interesting cases. Tetrocta-
hedrille is the tessellation into alternating regular tetrahedra and
octahedra. The catoptric that is dual to it is the one into rhombic
dodecahedra. Both have appeared several times in our book.
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3

3

3

3

4

Tetroctahedrille. (fc 2) T(8),O(6) dodecahedrille 12d.

The chambers of the next three Catoptrics are “oblate” versions
of the cube, tetrahedron, and octahedron, and so we call them obcu-
bille, oboctahedrille and obtetrahedrille, respectively, more formally
“oblate cubille,” etc. Those of the later catoptrics are obtained by
cutting these figures up—for instance, the oboctahedron decomposes
into two square pyramids that are chambers for pyramidille, and
these pyramids can be cut into two or four or eight in various ways
to give chambers for the Catoptrics in the last few lines of Table 21.1.

3

3

3

3

4

6

Trunctetrahedrille. (d 4) tT(6),T(2) obcubille 3d.
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33

4

6

Truncoctahedrille. (bc 3) TO(4) obtetrahedrille 1/2d.

33

3

44

4

Cuboctahedrille. (nc 3) CO(4),O(2) oboctahedrille 4/2d.

The “trunc” in “truncoctahedrille” does not mean that this tiling
is obtained by truncating another one. Rather, it indicates the fact
that the cells of this tiling are truncated octahedra. However, “trunc
cubille” and “trunc tetroctahedrille” are genuine truncations, the
truncations of the Architectonic tilings of cubille and tetrahedrille,
respectively. Note that truncations of Architectonic tilings are no
longer Architectonic.
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3

33

3

4

4

8

Trunc cubille. (nc 4) tC(4),O pyramidille 1c.

3
3

33

3

4

4
44

6

6

Trunc tetroctahedrille. (fc 8) tT(2),tO(2),CO 1/2-oboctahedrille 1d.

The three rhombicuboctahedrilles we call 1-fold, 2-fold, and 3-
fold (1-RCO, 2-RCO, 3-RCO) according to the number of rhom-
bicuboctahedra at each vertex, and (1 the chambers for their duals
are quarters of various simpler ones. Perhaps the most interesting is
quarter cubille, whose chambers are the quarter-cubes “subtended”
at the center of a cube by the four faces of one of the inscribed
tetrahedra—see the last figure on the next page.
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3-RCO-trille. (fc 6) RCO(3),C,T 1/4-cubille 3/2e.
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2-RCO-trille. (nc 9) RCO(2),CO,C(2) 1/4-oboctahedrille 2/4e.
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1-RCO-trille. (nc 16) RCO, tC,C,P8(2) square 1/4-pyramidille 1/4c.
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n-tCO-trille. (nc 12) tCO(2),tO,C triangular pyramidille 1/4e.
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f-tCO-trille. (fc 12) tCO(2),tC,tO 1/2-pyramidille 1/2e.
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b-tCO-trille. (bc 12) tCO(2),P8(2) 1/8-pyramidille 1/8c.
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- 22 -
The 35 “Prime” Space

Groups

Color Coding

In the pictures, we use:
yellow = 0
crimson = 1
blue = 2
green = 3
black = + = plus
white = - = minus

In this chapter we discuss the 35 most interesting crystallographic
space groups, namely the “prime” ones that don’t fix any family
of parallel lines. The less interesting ones that do fix such a fam-
ily are naturally called “composite,” since they can be obtained by
compounding one- and two-dimensional groups; they are listed in
Chapter 25.

This more mathematical chapter only describes the enumeration
of prime groups—some things of which they describe the symmetries
will appear in the next chapter.

The enumeration uses the particular families of points shown in
the figure on the facing page, which we call nodes. Their coordinates
(x, y, z) have the forms

0 (Z,Z,Z), x+ y + z even
2 (Z,Z,Z), x+ y + z odd
1 (h, h, h), x+ y + z − 1

2
even

3 (h, h, h), x+ y + z − 1
2
odd

+ (Z, q, h), (q, h,Z) or (h,Z, q)
− (Z, q, h), (q, h,Z) or (h,Z, q)

where Z denotes any integer, h any integer + 1
2 , and q any integer

±1
4 .
In summary, the “digital” nodes d = 0, 1, 2, 3 are the (x, y, z)

for which x, y, and z are either all integers or all integers +1
2 , with

x + y + z = d
2 (mod 2), while the “sign” nodes + and − are those

with one coordinate of each type (integer, integer ±1
4 , integer +1

2),
the sign being + for that cyclic order and − for the reverse.

(opposite page) The 35 prime space groups can be understood by their action on the colored
nodes shown here.

301
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8◦ : 2
8◦
8◦/4

4+ : 2
4+

4+/4

4◦ : 2
4◦
4◦/4

4− : 2
4−
4−/4

2+ : 2
2+

2+/4

2◦ : 2
2◦
2◦/4

2− : 2

2− : 2

2−

2−

2−/4

2−/4

1◦ : 2

1◦ : 2

1◦

1◦

1◦/4

1◦/4

8+◦ 8◦◦ 8−◦

4++ 4+◦ 4◦◦ 4−◦ 4−−

2+◦ 2◦◦

2−◦

2−◦

index 4

index 2
index 4

index 2

Figure 22.1. Relationships between the 35 prime space groups of this chapter. Bold edges
represent multiple subgroup relations, as shown in the inset.
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The Three Lattices

Collectively, the nodes 0, 1, 2, and 3 form two normal cubic (nc) lat-
tices: 0 and 2 forming the usual one comprised of points with integer
coordinates and 1 and 3 its translation by (12 ,

1
2 ,

1
2). Since each of

these normal cubic lattices consists of the body-centers of the other,
they together form what is usually called the body-centered (bc) cu-
bic lattice—we prefer the shorter name bicubic lattice—fortunately,
“bc” abbreviates both names.

The normal cubic (nc) lattice, uncolored on the left and showing the colors of the nodes on
the right.

The bicubic (bc) lattice, again uncolored on the left and showing the colors of the nodes on
the right.
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The nodes numbered by any particular one of the four digits form
what we call the half-cubic (fc) lattice since they are half the points
of a cubic lattice. We have abbreviated “half” to its last letter “f”
so that “fc” can also abbreviate the traditional name “face-centered
cubic lattice.” The new name makes it much easier to understand its
symmetries, which are exactly half those of the normal cubic lattice.

The half-cubic (fc) lattice, formed by the nodes of any one color.

The largest prime group P consists of all symmetries of the bc
lattice. Each such symmetry effects some permutation of the symbols
0, 1, 2, 3, +, −, and 27 of the groups—the so-called plenary groups—
are distinguished merely by saying which permutations they effect,
as in the first part of the catalogue presented later in this chapter.

Displaying the Groups

We display the pure permutations (the ones that don’t interchange
+ and −) inside a quartered box as follows:

I (02)(13)
(0123) (0321)

(13) (02)
(01)(23) (03)(21)

We also display their products with (+−) immediately above or be-
low them:
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I (02)(13) (0123)(+−) (0321)(+−)
(+−) (02)(13)(+−) (0123) (0321)

(13) (02) (01)(23)(+−) (03)(21)(+−)
(13)(+−) (02)(+−) (01)(23) (03)(21)

We use x for the present and o for the absent elements of any
given group. For instance, the array for the group we call 4−, whose
permutations are {I, (02)(13), (02), (13)}, is

x x o o
o o o o

x x o o
o o o o

Translation Lattices and Point Groups

This arrangement makes it easy to pick out various things of inter-
est, for instance, translation lattices and point groups. The sub-
group formed by the translations in a given group is usually called
its translation lattice: for the plenary groups it consists just of the
translations of one of our three lattices, fc, nc, and bc. How do we
tell which? Since the permutations effected by translations lie in the
top row of our table, this is easily determined by the shape of the
top row:

fc

x o o o

nc

x x o o

bc

x x x x

The point group of a given group is the finite group we get when
we regard elements as identical if they differ merely by translations.
This is also easily determined from the array, being 332 if the group
is contained in the top row; ∗332, 3∗2, or 432 if it’s confined to that
row and the appropriate one of the other three rows; and finally ∗432
if it involves all four rows:

332
∗332
3∗2
432

⎫⎪⎬
⎪⎭ ∗432
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Here are two useful ways of getting from one group to another.
One can enlarge the translation lattice in the obvious way: to enlarge
it all the way to bc one simply fills any nonempty row, while to go
from fc to nc one replaces each x by an adjacent pair xx. Equally, one
can restrict the point group into a possibly smaller one by discarding
the parts that are not in the appropriate rows.

A local subgroup is one that fixes a point. The most interesting
cases are those for which no line through the point is also fixed: i.e.,
the local subgroup is “prime.” Since the point must be a node 0, 1,
2, or 3, these are also easily read from the array: the rule is that one
intersects with

x
x

x
x

or

x
x

x
x

and then applies the point group rule.

Catalogue of Plenary Groups

For each group, the entry starts as follows:

Name of group, notation, international number

lattice | point group (local groups)
lattice enlargements | point group restrictions

Presentation by generators and relations

It first gives the array of group elements (x for present, o for absent),
followed by a line giving the lattice (bc, nc, or fc), the point group
(one of ∗432, 432, 3∗2, ∗332, 332), and finally gives the lattice
enlargements and point group restrictions (in the above orders). This
is followed by generators and relations, then usually some examples
of objects (to be described in the next chapter) whose symmetries
are the given group, and possibly some further remarks.
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The doubled octad group, 8◦:2, #229

x x x x
x x x x

x x x x
x x x x

bc | *432(*432)
− | 8+◦, 8−◦, 4◦:2, 4◦◦

Presentation: ∗ 4 6 2|4, meaning ∗P4Q6R2 with
(PQRQ)4 = 1.

The largest plenary group P, which is the symmetry group of the bc
lattice and also the Scottish bubbles, the mucube, the muoctahedron,
and the best lattice sphere-covering.

The pure octad group, 8◦, #223

x x o o
o o x x

x x o o
o o x x

nc | *432 (3*2)
8◦:2 | 4+, 4−, 4◦, 2◦

Presentation: ∗ 4 4 32, meaning ∗P4Q4R3 with
(PQRPRQ)2 = 1.

The symmetry group of tetrastix, also the Irish bubbles.

The negative hybrid octad group, 8−◦, #204

x x x x
o o o o

x x x x
o o o o

bc | 3*2 (3*2)
− | 4◦◦

Presentation: 6 ∗ 22, meaning α6 ∗P2 with [α2, P ]2 = 1.

The symmetry group of the icosahedral 39-hedron.
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The null hybrid octad group, 8◦◦, #222

x x o o
o o x x

o o x x
x x o o

nc | *432 (432)
8◦:4◦−, 4◦+, 4◦, 2◦

Presentation: 4 6 2|4, meaning α4β6γ2 with (α−1β)4 = 1.

(μC)2 = (μO)2: the 2-chiral symmetries (i.e., those that fix the
surface orientation) of the mucube or muoctahedron.

The positive hybrid octad group, 8+◦, #211

x x x x
o o o o

o o o o
x x x x

bc | 432 (432)
−|4◦◦

Presentation: ∗ ∞ ∞ 22|3, meaning ∗P∞Q∞R2 with
(PQRPRQ)2 = (PQRQ)3 = 1.

(μC)3 = (μO)3: the 3-chiral symmetries of the mucube and muocta-
hedron—since these form the chiral part of 8◦:2, equally the chiral
symmetries of the objects mentioned there. It is also the full sym-
metry group of tristix.

The negative doubled tetrad group, 4−:2, #221

x x o o
x x o o

x x o o
x x o o

nc | *432 (*432)
8◦:2 | 4◦−, 4−, 2◦:2, 2◦

Presentation: [4, 3, 4], meaning ∗P4Q3RrS2 with (PR)2 =
(QS)2 = 1.

The symmetry group of the normal cubic lattice or tessellation.
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The null doubled tetrad group, 4◦:2, #217

x x x x
x x x x

o o o o
o o o o

bc | *332 (*332)
− | 4◦◦

Presentation: 4 ∗ 32, meaning α4∗P3 with [α2, P ]2 = 1.

ssμC: the symmetries of the “semi-snub mucube” (i.e., the semi-
snub of the multiplied cube).

The positive doubled tetrad group, 4+:2, #224

x x o o
x x o o

o o x x
o o x x

nc | *332 (*332)
8◦:2 | 4+:2, 4◦+, 2◦:2, 2◦

Presentation: ∗ 6 4 23, meaning ∗P6Q4R2 with
(PQRPRQ)3 = 1 or ∗ 6 6 22, meaning ∗P6Q6R2
with (PQRPRQ)2 = 1.

μCO : the symmetries of the mucuboctahedron.

The negative tetrad group, 4−, #200

x x o o
o o o o

x x o o
o o o o

nc | 3*2 (3*2)
8−◦|2◦

Presentation: 3
4/24/2

, meaning 1 = P 2 = [P,Q]2 =
Q3 = [Q,R]2 = R2 = (RP )2.
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The null tetrad group, 4◦, #218

x x o o
o o x x

o o o o
o o o o

nc | *332 (332)
4◦:2 | 2◦

Presentation: 4 4 32, meaning α4β4γ3 with (α2β2)2 = 1.

(ssμC)2: the 2-chiral symmetries of the semi-snub mucube.

The positive tetrad group, 4+, #208

x x o o
o o o o

o o o o
o o x x

nc | 432 (332)
8+◦|2◦

Presentation: (∗ 3 2 3 2)2, meaning ∗P3Q2R3S2 with
(PQRS)2 = 1.

(μCO)3: the 3-chiral symmetries of the mucuboctahedron—equally
the chiral symmetries of tetrastix or the Irish bubbles.

The binegative (hybrid) tetrad group, 4−−, #226

x o o o
o x o o

x o o o
o x o o

or

x o o o
o x o o

o x o o
x o o o

fc | *432 (3*2, 432)
8◦, 4−:2 | 2◦−, 2−, 2◦◦, 1◦

Presentation: 3
3 4

, meaning 1 = P 3 = (PQ)3 =
Q2 = (QR)4 = R2 = [P,R].

The symmetries of the snub-cubical 38-hedron. This group is the
unique one that is “semisplit” in two distinct ways.
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The negative hybrid tetrad group, 4◦−, #207

x x o o
o o o o

o o o o
x x o o

nc | 432 (432)
8+◦ | 2◦

Presentation: [4, 3, 4]+, meaning α4β3γ4δ2 with (αγ)2 =
(βδ)2 = 1.

The chiral symmetries of the normal cubic lattice or tessellation.

The null hybrid tetrad group, 4◦◦, #197

x x x x
o o o o

o o o o
o o o o

bc | 332 (332)
−|−

Presentation: ∞ ∞ 22|3, meaning α∞β∞γ2 with
(α2β2)2 = (α−1β)3 = 1.

(ssμC)3: the (3-)chiral symmetries of the semi-snub mucube and
the snub-cubical 38-hedron. Also the symmetries of the propeller-
hedron 37; this leads to the alternative presentation α3β2Z× with
(αZβZ)2 = 1. The appearance of × in this signature is connected
with the fact that this is the unique prime space group not generated
by its elements of finite order.

The positive hybrid tetrad group, 4◦+, #201

x x o o
o o o o

o o x x
o o o o

nc | 3*2 (332)
8−◦|2◦

Presentation: 6 6 22, meaning α6β6γ2 with (α2β2)3 = 1.
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The bipositive (hybrid) tetrad group, 4++, #228

x o o o
o x o o

o o x o
o o o x

or

x o o o
o x o o

o o o x
o o x o

fc | *432 (332)
8−◦:2, 4+:2 | 2+, 2◦+, 2◦◦, 1◦

Presentation: 6 4 23, meaning α6β4γ2 with (α2β2)3 = 1.

(μCO)2: the 2-chiral symmetries of the mucuboctahedron. This is
the unique plenary group that is neither split nor semisplit.

The negative doubled dyad group, 2−:2, #225

x o o o
x o o o

x o o o
x o o o

fc | *432 (*432, 3*2)
8◦:2, 4−:2 | 2◦−, 2−, 1◦:2, 1◦

Presentation:

3
3

4
, meaning ∗P3Q3R2S2 with

(PR)2 = (QS)4 = 1.

The symmetries of the fc lattice, the best lattice sphere-packing, and
a salt crystal.

The null doubled dyad group, 2◦:2, #215

x x o o
x x o o

o o o o
o o o o

nc | *332 (*332)
4◦:2 | 2◦

Presentation: ∗ 4 4 3|3, meaning ∗P4Q4R3 with
(PQRQ)3 = 1.

(ssμC)1: the 1-chiral symmetries of the semi-snub mucube.
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The positive doubled dyad group, 2+:2, #227

x o o o
x o o o

o o x o
o o x o

or

x o o o
x o o o

o o o x
o o o x

fc | *432 (*332)
8◦:2, 4+:2 | 2+, 2◦+, 1◦:2, 1◦

Presentation: ∗ 6 6 2|3, meaning ∗P6Q6R2 with
(PQRQ)3 = 1.

(μT ): the symmetries of the mutetrahedron 66; equally those of a
diamond crystal.

The negative dyad group, 2−, #202

x o o o
o o o o

x o o o
o o o o

or

x o o o
o o o o

o x o o
o o o o

fc | 3*2 (3*2, 332)
8−◦, 4− | 1◦

Presentation: 3
3 4/2

, meaning 1 = P 2 = (PQ)3 =
Q3 = [Q,R]2 = Q2 = [P,R].

The symmetries of the dodecahedral packing.

The null dyad group, 2◦, #195

x x o o
o o o o

o o o o
o o o o

nc | 332 (332)
4◦◦ | 1◦

Presentation: (3 2 3 2)2, meaning α3β2γ3δ2 with
(αγ)2 = (βδ)2 = 1.

(ssμC)123: the symmetries of the semi-snub mucube that preserve
all three orientations.
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The positive dyad group, 2+, #210

x o o o
o o o o

o o o o
o o x o

or

x o o o
o o o o

o o o o
o o o x

fc | 432 (332)
8+◦, 4+ | 1◦

Presentation: (∗ ∞ ∞ 3|3)3, meaning ∗P∞Q∞R3 with
(PQRQ)3 = (PQR)3 = 1.

(μT )3: the (3-)chiral symmetries of either the mutetrahedron or a
diamond crystal.

The negative hybrid dyad group, 2◦−, #209

x o o o
o o o o

o o o o
x o o o

or

x o o o
o o o o

o o o o
o x o o

fc | 432 (432, 332)
8+◦, 4+◦ | 1◦

Presentation: 4
33

, meaning 1 = P 2 = (PQ)3 =
Q4 = (QR)3 = R2 = [P,R].

The chiral symmetries of either the fc lattice or a salt crystal.

The null hybrid dyad group, 2◦◦, #219

x o o o
o x o o

o o o o
o o o o

fc | *332 (332)
4◦:2, 2◦:2|1◦

Presentation: 4 4 3|3, meaning α4β4γ3 with (α−1β)3 = 1.
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The positive hybrid dyad group, 2◦+, #203

x o o o
o o o o

o o x o
o o o o

or

x o o o
o o o o

o o o x
o o o o

fc | 3*2 (332)
8−◦, 4◦+ | 1◦

Presentation: 6 6 2|3, meaning α6β6γ2 with (α−1β)3 = 1.

(μT )2: the 2-chiral symmetries of the mutetrahedron.

The doubled monad group, 1◦:2, #216

x o o o
x o o o

o o o o
o o o o

fc | *332 (*332)
4◦:2, 2◦:2 | 1◦

Presentation: �, meaning ∗P3Q3R3S3 with (PR)2 =
(QS)2 = 1.

(μT )1: the 1-chiral symmetries of the mutetrahedron.

The monad group, 1◦, #196

x o o o
o o o o

o o o o
o o o o

fc | 332 (332)
4◦◦, 2◦|−

Presentation: �+, meaning α3β3γ3δ3 with (αγ)2 =
(βδ)2 = 1.

(μT )123: the symmetries of the mutetrahedron that preserve all three
orientations. This is the smallest plenary group, p.

The Quarter Groups

In the plenary groups there are four axes of 3-fold rotations (“triad
axes”) through each node 0, 1, 2, 3. The quarter groups retain just
one of these, in a subtle way.
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The eight pure groups

8◦, 4−, 4◦, 4+, 2−, 2◦, 2+, 1◦

have subgroups of index 4 that we naturally call the quarter groups:

8◦/4, 4−/4, 4◦/4, 4+/4, 2−/4, 2◦/4, 2+/4, 1◦/4,

defined by fixing a distinguished axis through each digit or node.
These are described more fully in the next chapter.

The rule is that the direction of the distinguished axis through a
given node is

±(+,+,+) ±(+,−,−) ±(−,+,−) ±(−,−,+)

if the coordinates of the node are respectively congruent (mod 2) to

(0, 0, 0) (1, 1, 0) (0, 1, 1) (1, 0, 1)

(1, 1, 1) (0, 0, 1) (1, 0, 0) (0, 1, 0)

(12 ,
1
2 ,

1
2) (−1

2 ,
1
2 ,−1

2) (−1
2 ,−1

2 ,
1
2) (12 ,−1

2 ,−1
2 )

(−1
2 ,−1

2 ,−1
2) (12 ,−1

2 ,
1
2) (12 ,

1
2 ,−1

2) (−1
2 ,

1
2 ,

1
2)

The rule is “Integers Advance, Fractions Retard,” meaning that
if the odd-coordinate-out (mod 2) for the point is x or y or z and
the coordinates are integers, then the odd-coordinate-out for the
direction is y or z or x, while if they are fractions, it is z or x or y.
When there is no odd-coordinate-out for the point, then there is none
for the direction.

Catalogue of Quarter Groups

This catalogue has the same form as that for the Plenary groups,
except that the correspondence of translation lattices to top rows
becomes

2nc

x o o o

2bc

x x o o
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and there are no “prime” local groups. Some of the presentations
involve bars, and others “fractional powers,” which are explained in
the appendix to this chapter.

The quarter octad group, 8◦/4, #230

x x o o
o o x x

x x o o
o o x x

2bc | *432
−|4+/4, 4−/4, 4◦/4, 2◦/4

Presentation: 4̄ 6̄ 2, meaning α4β6γ2 with
(αγα2γα3γ)2 = 1 or (βγβ2γβ3γ)2 = 1.

The largest quarter group, Q. Best thought of as the (larger) sym-
metry group (4stakes) of tetrastakes (equally of checkerstix). It is
also the symmetry group of hexastix (6stix) and the musnub cube
(μsC).

The negative quarter tetrad group, 4−/4, #206

x x o o
o o o o

x x o o
o o o o

2bc | 3*2
−|2◦/4

Presentation: 6̄ 6̄ 2, meaning α6β6γ2 with
(αβ2α3βα2β3)2 = 1.

(6stix)2: the “2-chiral” symmetries of hexastix, that is, the chiral
symmetries that fix directions of the “pencils” together with the
achiral ones that reverse these directions.

The null quarter tetrad group, 4◦/4, #220

x x o o
o o x x

o o o o
o o o o

2bc | *332
−|2◦/4

Presentation: 4̄ 4̄ 3, meaning α4β4γ3 with
(αβ2α3βα2β3)2 = 1.

6stakes: the symmetries of hexastakes.
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The positive quarter tetrad group, 4+/4, #214

x x o o
o o o o

o o o o
o o x x

2bc | 432
− | 2◦/4

Presentation: 3
10/210/3

, meaning 1 = P 2 =
“(PQ)10/3” = Q3 = “(QR)10/2” = R2 = (PR)2.

(4stakes)3 = (6stix)3: this is the chiral part of 8
◦/4, so it also con-

sists of the chiral symmetries of the other objects mentioned there.

The negative quarter dyad group, 2−/4, #205

x o o o
o o o o

x o o o
o o o o

or

x o o o
o o o o

o x o o
o o o o

2nc | 3*2
4−/4 | 1◦/4

Presentation: 6̄ 6̄ 3, meaning α6β6γ3 with α2β = β2α.

The symmetries of birhombohedrille, a tiling of space that alternates
rhombohedra of two different shapes (left).

The null quarter dyad group, 2◦/4, #199

x x o o
o o o o

o o o o
o o o o

2bc | 332
− | 1◦/4

Presentation: 3
10/3

, meaning 1 = P 2 = “(PQ)10/3” =
Q3.

(6stakes)3: the (3-)chiral symmetries of hexastakes.
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The positive quarter dyad group, 2+/4, #212, #213

x o o o
o o o o

o o o o
o o x o

or

x o o o
o o o o

o o o o
o o o x

2nc | 432
4+/4 | 1◦/4

Presentation: 3
10/2

, meaning 1 = Q3 = “(QR)10/2” = R2.

This the unique one of the 35 prime groups that is “metachiral,”
that is to say it is distinct from its mirror image group. The two
enantiomorphous forms have international numbers 212 and 213.

The quarter monad group, 1◦/4, #198

x o o o
o o o o

o o o o
o o o o

2nc | 332
2◦/4 | −

Presentation: 3 3
5/2

, meaning 1 = P 3 = “(PQ)5/2” = Q3.

(4stakes)123: the symmetries of tetrastakes that fix all three orienta-
tions; equally, the color-preserving symmetries of the snub mucube.
This is the smallest quarter group, q.

Why This List Is Complete

Our list of the 35 prime groups is taken, like the list of 184 composite
ones in Chapter 25, from [6]. A simple proof is given there that the
list is complete, by first using an algebraic argument to show that
any such group must contain elements of order 3 and then using
a geometric one to show that there are only two configurations for
the axes of these. The group is a plenary group if these axes may
intersect and otherwise a quarter group.

When the configuration of triad axes is known, the group must
be contained in their symmetry group, which is P or Q, and must
contain the group generated by the order-3 rotations around them,
which is p or q. Since the later containment is obviously normal,
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0 1

23

Figure 22.2. The enumeration of the prime groups reduces to that of the subgroups of
2 ×D8

∼= P/p and D8
∼= Q/q. D8 (as do its subgroups) acts on the symbols 0, 1, 2, 3 as

shown here, and 2×D8 (etc.) acts on +,− and 0, 1, 2, 3.

this reduces the problem to enumerating the subgroups of the finite
quotient groups P/p ∼= 2×D8 and Q/q ∼= D8. This enumeration is
quite easy and is illustrated in Figure 22.2.

Appendix: Generators and Relations for the 35 Groups

The presentations by generators and relations that we have given are
in many cases associated to infinite polyhedra such as the mucube
(see the next chapter for its definition!). We illustrate the idea by
describing how that for 8◦:2 may be derived from the mucube.

The universal cover of the mucube is a map of squares in the
hyperbolic plane, six to a vertex, whose group is obviously ∗462
with presentation

∗P4Q6R2 : 1 = P 2 = (PQ)4 = Q2 = (QR)6 = R2 = (RP )2.

In this (see Figure 22.3) P and Q are reflections fixing a square, while
R reflects in an edge of the square. It follows that the conjugate
RQ = QRQ of R by Q reflects in an edge not meeting P , and so the
product PRQ = PQRQ translates the given square to an adjacent
one. But, the fourth power of this translation maps to the identity
in the mucube because of the way the four squares form a ring.
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Figure 22.3. A presentation for *462.

Moreover, it is easy to see geometrically that this new wrapping
relation (PQRQ)4 = 1 determines the mucube and so completes the
above presentation for ∗462 to one for the mucube’s symmetry group
8◦:2. (See Figure 22.4.)

Figure 22.4. A presentation for ∗P4Q6R2.
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Naming the Wrapping Relations

We call the resulting presentation ∗ 4 6 2|4; this name extends the
signature ∗462 analogously to the way Coxeter’s name [4, 6 | 4] ex-
tends his name [4, 6] for the hyperbolic group. It is appropriate since
the final numbers 2 and 4 are alternatives: if we used P,Q,R′ = RQ

as generators, the presentation would become

∗4 6 4|2 : 1 = P 2 = (PQ)4 = Q2 = (QR′)6 = R′2 = (R′P )4

with the wrapping relation (PQR′Q)2 = 1.

The subgroup Coxeter calls [4, 6 | 4]+ generated by α = PQ, β =
QR, γ = RP we analogously call 4 6 2|4, meaning that its presen-
tation is obtained from

α4β6γ2 : αβγ = 1 = α6 = β4 = γ2

by adjoining the wrapping relation (αβ−1)4 = 1. This “new” wrap-
ping relation is really the same as the old one, since αβ−1 = PQRQ.

In a similar way, the subscript 2 that defines the wrapping rela-
tion in the related cases 4 4 32, ∗ 4 4 32, and 4 ∗ 32 indicates the
order of an element that is really the same in all three cases, al-
though its expression in terms of their generators will vary. The new
relation is (αγ−1β)2 = 1 or (α2β2)2 = 1 for α4β4γ3; equivalently,
(PQPRQR)2 = 1 or (QPQR)2 = 1 for ∗P4Q4R3, and [α2, P ]2 = 1
for α4∗P3.

Finally, the subscript appended to the entire name in the cases
(∗3232)2 and (3232)2 indicates the symmetric relation (PQRS)2 =
1 for ∗P3Q2R3S2, which becomes the pair of relations (αγ)2 = 1 =
(βδ)2 in α3β2γ3δ2, since αγ = PQRS and βδ = QRSP .

Coxeter-Type Presentations

The groups 4−:2, 2−:2, and 1◦:2 are generated by reflections, so
Coxeter diagrams (treated more fully in Chapter 26) are appropriate
for them. We shall also adopt Coxeter’s convention of appending a +
sign to indicate the “chiral subgroup.” The nodes in these diagrams
represent elements of order 2, while a branch marked n between
nodes P and Q indicates the relation (PQ)n = 1. Marks of 3 are
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usually omitted, while generators that correspond to unjoined nodes
commute.

We extend these conventions in several ways. First, a generator
of order n > 2 is represented by a circled n. Second, the “alternative”
relation (PQRQ)n = 1 is indicated by putting n̂ near Q and between
P and R, as in the marginal figure for 4 6 2|4. The third extension
deserves a section of its own.

4 6

4̂

Fractional Powers and the Chiral Quarter Groups

The “fractional power” notation is exemplified by

“(PQ)4/2” = P̄ Q̄PQP̄ Q̄PQ,

“(PQ)5/3” = P̄QPQ̄P̄QP̄ Q̄PQ,

“(PQ)10/3” = P̄ Q̄P̄QPQP̄ Q̄P̄ Q̄PQPQ̄P̄ Q̄PQPQ,

“(QR)10/2” = Q̄R̄Q̄R̄Q̄RQRQRQ̄R̄Q̄R̄Q̄RQRQR,

in which the bars denote inverses. These appear in our presentations
for the chiral quarter groups.

The general rule here is as follows. We obtain “(PQ)n/d” by writ-
ing PQ n times and then alternately barring and unbarring stretches
of average length n/d. For example, “(PQ)2/1” denotes the commu-
tator P̄ Q̄PQ. When n/d is not an integer, the exact rule is as follows:
write the multiples of n/d up to 2n as mixed fractions; for instance,
in the case 10/3 these are 0, 31

3 , 6
2
3 , 10, 13

1
3 , 16

2
3 , 20. Then, the dif-

ferences of their integer parts, namely 3, 3, 4, 3, 3, 4, give the lengths
of the barred and unbarred stretches.

These curious relations really come from knot theory; for exam-
ple, the one for 1◦/4 corresponds to Thurston’s wonderful observa-
tion that the orbifold of this group is a 3-sphere in which the figure
eight knot is a “cone-line” of order 3. The figure eight knot is the
rational knot 5/3, whose fundamental group has the presentation

P,Q : “(PQ)5/3” = 1.

Similarly, the orbifold of 2◦/4 is a 3-sphere containing the rational
link 10/3 in which the components are cone-lines of distinct orders
2 and 3.

Coxeter found presentations for some complex reflection groups
that involve such fractional power relations.
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The Achiral Quarter Groups

Each of the four remaining groups—8−/4, 4−/4, 4◦/4, 2−/4—can be
generated by two rotatory reflections of orders p and q, say, whose
product is a rotation of order r. The group is therefore a quotient
of p q r, which we call p̄ q̄ r.

This symbol does not actually specify a presentation, since in
each case there are infinitely many ways to select such generators.
However, it appears that the simplest choices are essentially unique:
they lead to the wrapping relations that were given in the text.
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Objects with Prime
Symmetry

The purpose of this chapter is to describe the objects used as exam-
ples in Chapter 22.

The Three Lattices

The symmetries of the three lattices are easily found. Since the
bc lattice consists of all points 0, 1, 2, 3 and doesn’t distinguish +
from −, its symmetries can achieve the full dihedral group of per-
mutations of 0, 1, 2, 3 and also the interchange of + and −. They
therefore constitute the doubled octad group (8◦:2). The nc lattice
consists just of 0 and 2, whose symmetries effect 〈(02), (13), (+−)〉,
determining the negative double tetrad group (4−:2). Finally, the
symmetries of the fc lattice, whose points are those colored 0, effect
only 〈(13), (+−)〉, so form the negative double dyad group (2−:2).

The three cubic lattices: The bc lattice has symmetry 8◦ :2, the nc has 4− :2, and the fc has
2− :2.

(opposite page) The fascinating propeller-hedron has group 4◦◦ .

327
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Each of the three lattices actually gives five groups, one for each
point group:

point group ∗432 432 3∗2 ∗332 332
bc lattice 8◦:2 8+◦ 8−◦ 4◦:2 4◦◦

nc lattice 4−:2 4◦− 4− 2◦:2 2◦

fc lattice 2−:2 2◦− 2− 1◦:2 1◦

The additional groups in the table are obtained by restricting to the
given point groups. Assemblies with these as symmetries are easily
obtained by surrounding the lattice points by finite objects that force
the appropriate point group and are all parallel to each other.

One such assembly gives the densest known packing of regular
dodecahedra (see Figure 23.1): these dodecahedra are arranged much
like the rhombic ones we will see shortly in Figure 23.4, so alternate
cubes of the cubic lattice are inscribed in them. The packing has
density ρ = .9405, the unused space consisting of curious polyhedra
we call endo-dodecahedra, which like regular dodecahedra have 12
pentagonal faces with all edges of the same length although neither
the faces nor the polyhedron are convex. Since the dodecahedra are
centered on the fc lattice and force the pyritohedral group 3∗2, the
symmetry group is 2−.

Although the cubic tessellation has group 4−:2, a model of it
made with the Zome System construction set (a proprietary system

Figure 23.1. A packing of regular dodecahedra. This half-cubic lattice of dodecahedra has
point group 3∗2 and symmetry 2− . The endo-dodecahedral holes are shown in orange.
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Figure 23.2. A bicubic assembly of regular tetrahedra with symmetry 4◦ :2.

also known as “Zometool”) can only have the subgroup 4−, obtained
by restricting the point group to 3∗2, when examined in fine detail.
This is because the edges, as shown at the right, have rectangular
cross-section and are assembled pyritohedrally into the balls at the
vertices. For the same reason, the largest of the 35 prime groups
that can be exactly modeled with Zometool is 8−◦.

Figure 23.2 shows a bicubic assembly of parallel regular tetra-
hedra, so (if we ignore the colors) its symmetry group (obtained by
restricting the bc group to ∗332) is 4◦:2. The cyclic order is forced
by the way the vertices of the tetrahedra point to each other: yel-
low → red → blue → green → yellow. If we pay attention to the
colors, the lattice drops to fc with the same point group 332 and so
the group decreases to 1◦, otherwise known as the smallest plenary
group p.

Voronoi Tilings of the Lattices

Any lattice determines a tiling of space into polyhedra called its
Voronoi cells (“vocells”). The vocell of any lattice point consists
of all points of space that are nearer to it than they are to any
other lattice point. For the normal cubic (nc) lattice, the Voronoi
tiling is obviously the decomposition of space into cubes (Figure 23.3,
left). For the body-centered or bicubic (bc) lattice, it is the tiling
(“truncoctahedrille”) into truncated octahedra (Figure 23.3, right)
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Figure 23.3. The Voronoi cells of the normal cubic lattice are cubes; those of the bicubic
lattice are truncated octahedra.

described at the start of Chapter 21. The centers of the tiles are the
nodes 0, 1, 2, 3 and their vertices are the nodes + and −.

Finally, for the face-centered or half-cubic (fc) lattice, the vocells
are the rhombic dodecahedra of “rhombohedrille.” This tiling can
be obtained as follows: To obtain the vocells of the half-cubic lattice,
divide alternate cubes of the lattice into six square pyramids (Fig-
ure 23.4, left) by joining their centers to their faces, and then join
these square pyramids to the adjacent, undivided cubes, resulting in
rhombic dodecahedra. Their centers are, say, the nodes 0, and their
vertices are the other three digital nodes 1, 2, and 3 (red, blue, and
green, respectively, on the right in Figure 23.4). The vertices (here
2) that have the same parity as the centers are 4-valent while those
(1 and 3) of the other parity are 3-valent.

Figure 23.4. The Voronoi cells of the fc are rhombic dodecahedra.
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Salt, Diamond, and Bubbles

Salt.

Many simple crystals are easily described in terms of one or other
of these lattices. For example, the atoms of a salt crystal will form
a normal cubic lattice, but it does not have all the symmetries of
the nc lattice, since the atoms alternate between sodium (Na) and
chlorine (Cl)—say 1 = Na and 3 = Cl. So, we can no longer move
1 or 3, and the symmetries effect only 〈(02), (+−)〉, showing that a
salt crystal has the negative double dyad group 2−:2.

The diamond net has the same symmetry as the catoptric tiling by obcubes (Chapter 21).

A diamond crystal is made of carbon atoms situated at the 0
and 1 nodes. Its symmetries effect1 〈(01)(23), (+−)〉, so the group
is now the positive double dyad group 2+:2. The diamond net is
formed by the blue and green balls on the left in the figure above
and the lines joining them. (Beware! The polyhedra between them
are oblique cubes or “obcubes,” not cubes!) The points at maximal
distance from these (our red and yellow nodes on the right above,
at the centers of the obcubes) would form another diamond net; the
two together form what we call the “Double Diamond” with group
4+:2.

1We cannot interchange just 0 with 1 or just 2 with 3, since the permutations
(01) and (23) are not in the group of possible effects.
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Voronoi cells of atoms in a diamond.

The Voronoi cells of the atoms in a diamond are triakis truncated
tetrahedra formed by erecting small pyramids on the triangular faces
of a truncated tetrahedron. The Voronoi tiling is closely related to
the Architectonic “trunctetrahedrille” tessellation of space into the
truncated tetrahedra obtained by removing these pyramids and the
ordinary tetrahedra obtained by gluing them together in sets of four.
Both tessellations have the same group, 2+:2, as the diamond.

In 1887 Lord Kelvin asked what was the most efficient way to
fill space with bubbles of equal volume, and he conjectured that it
was the arrangement shown on the left in Figure 23.5, in which the
bubbles are “relaxed” versions of our truncated octahedra (“relaxed”
because the area of the faces is reduced by allowing them to be
slightly curved). We shall call these the Scottish bubbles.2 Their
centers are 0, 1, 2, and 3, so the group is again the double octad
group 8◦:2 of symmetries of the bc lattice.

The record stood until 1993, whenWeaire and Phelan found what
we call the Irish bubbles, shown on the right in Figure 23.5, whose
centers are all the points 0, 1, 2, 3, and +, by relaxing the Voronoi
cells determined by these points. Their group is therefore the pure
octad group 8◦, since + and − can no longer be interchanged.

2Lord Kelvin was actually born in Belfast: however, he did most of his work
at Glasgow University and in 1892 became Baron Kelvin of Largs, the nearby
town where he lived.
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Figure 23.5. Efficient bubbles: At left, the Scottish bubbles, considered by Kelvin in 1887; at
right, the more efficient Irish Bubbles, found by Phelan andWeaire in 1993. The actual bubbles
are slightly “bulgy” versions of the polyhedra illustrated here.

Infinite Platonic Polyhedra

In 1923, the 16-year-old schoolboys H. S. M. Coxeter and J. F. Petrie
found themselves confined to the same sanatorium and started to
discuss mathematics. Later they published a paper about three new
regular polyhedra [10]. These Coxeter-Petrie polyhedra don’t seem
to have received individual names in their first eight decades; since
they are multiple covers of the first three Platonic solids, we shall call
them the multiplied tetrahedron, multiplied cube, and multiplied oc-
tahedron and slangily shorten these to mucube (μC), muoctahedron
(μO), and mutetrahedron (μT ), respectively.

Any such polyhedron can be given three kinds of “orientation”:

• A 1-orientation directs lines normal to the surface.

• A 2-orientation is an orientation in the surface.

• A 3-orientation is an orientation of space.

Accordingly, we can speak of the 1-chiral, 2-chiral, and 3-chiral
subgroups G1, G2, and G3 of its symmetry group G. Of course,
“3-chiral” is synonymous with “chiral.” Fixing any two orientations
fixes all three, producing a further group G123, the “polychiral” part.
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For the mucube (μC), we find G1 = 4−:2, G2 = 8◦◦, G3 = 8+◦, and
G123 = 4◦−.

The universal covers of these infinite polyhedra are certain tilings
of the hyperbolic plane and so have hyperbolic symmetry groups, as
explained in the appendix to the previous chapter. “Hyp” refers to
the signatures of these hyperbolic groups.

We specify each polyhedron by its face code and a placement
symbol, when appropriate. The face code merely lists the sizes of
the faces around a vertex; for instance, the mucube has six squares
around each vertex, so its face code is 46. Placement symbols, less
precise, are more complicated and will be described as we go on.

The multiplied cube or mucube (μC): 46, Group 8◦:2, Hyp ∗642.
This object—{4, 6 | 4} in Coxeter’s notation—has six square faces
at each vertex. These are the walls of a system of (cubical) corridors
joining empty cubical rooms as in the figure. The inside rooms are
centered at nodes 0 and 2 and outside ones at 1 and 3. The centers
of the faces are alternately + and −. It has all the symmetries of
8◦:2 of the bc lattice formed by the room-centers.

The multiplied octahedron (μO): 64, Group 8◦:2, Hyp ∗642.
This—{6, 4 | 4} in Coxeter’s notation—has four hexagonal faces per
vertex that are exactly the hexagonal faces of the truncated octa-
hedral vocells of the bc lattice (that form the “truncoctahedrille”).
Alternate vertices are the nodes + and −. Of course, it has the same
symmetries as its dual, the mucube.

The multiplied tetrahedron (μT ): 66, Group 2+:2, Hyp ∗662.
The mutetrahedron—{6, 6 | 3} in Coxeter’s notation—has for its
faces the hexagonal faces of the Voronoi tessellation for the diamond,
or equivalently those of the Architectonic tessellation into truncated
tetrahedra (centered at 0 and 1) and ordinary tetrahedra (centered
at 2 and 3). Its group is that of the diamond, 2+:2.

It is self-dual, and its duality group in the sense of Chapters 11
is 2+:2\4+:2.
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The mucube, shown with the colored nodes on the right.

The muoctahedron.

The mutetrahedron.



336 23. Objects with Prime Symmetry

Their Archimedean Relatives

The next simplest class is formed by infinite polyhedra that are re-
lated to the infinite Platonic polyhedra in much the same way as
the traditional Archimedean solids are related to the Platonic ones,
although there are some subtleties on which we shall not elaborate.

The multiplied cuboctahedron (μCO): 6.4.6.4, Group 2+:2, Hyp ∗642. The
faces are the squares of our truncated octahedra together with half
their hexagons, namely those separating 0 and 1 or 2 and 3 but not
0 and 3 or 2 and 1.

Themurhombicuboctahedron (μRCO): 6.4.4.4, Group 8◦:2, Hyp ∗642. This
can be obtained by exploding the faces of either μC or μO, so it has
the same group.

The semi-snub mucube (ssμC): 4.3.4.3.3.3, Group 4◦:2, Hyp 4∗3. This can
be obtained from the multiplied cube, regarded as (4.4)3, by ap-
plying the Coxeter semi-snub operation (see Chapter 21), which re-
places face code (p.q)r with p.3.q.3.r.3. Its square faces are the “mid-
squares” of those of the mucube (formed by joining the midpoints
of the edges of those squares). Between them are skew hexagons
that can each be filled in either of two different ways by four faces
of an ordinary octahedron so as to produce a bulge on the surface.
We choose these bulges so that they point alternately in and out.
If the bulge between nearby nodes 0 and 1 points from 0 to 1, say
0 → 1, then we find this entails 1 → 2, 2 → 3, and 3 → 0, thus
setting up the cyclic order shown below that restricts the effects to
〈(0123), (+−)〉, yielding the unusual group 4◦:2.

The propeller-hedron or double-snub mucube: 37, Group 4◦, Hyp 32×.
We can “oversnub” the semi-snub mucube ssμC to obtain another
fascinating polyhedron that we describe here although it really be-
longs with its pseudo-Platonic friends (see page 340). Divide each
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The mucuboctahedron μCO (left) and the murhombicuboctahedron μRCO (right).

The semi-snub mucube ssμC is shown here with colored nodes, connected to show the
direction of the “bulges” described in the text. As with the bicubic lattice of tetrahedra, there
is a cyclic symmetry on the colors, and the symmetry of the polyhedron is 4◦ :2.

0 → 1
↑ ↓
3 ← 2

Directing the axes in the semi-snub mucube.



338 23. Objects with Prime Symmetry

square of ssμC by a diagonal into two triangles in such a way that
each vertex ends just one of the new diagonals. The resulting object,
with nine triangles per vertex, can be deformed until all its triangles
are equilateral! It turns out that sets of seven of these triangular
faces are coplanar; they form propeller shapes like those of the drums
in Chapter 17. The fact that the group is not generated by its finite
order elements is related to the × in its hyperbolic signature.

The multiplied snub cube or musnub cube (μsC): 6.3.4.3.3, Group 8◦/4, Hyp
642. This fascinating polyhedron has the face code 6.3.4.3.3 that
would be produced by the traditional snub operation from 64 or 46.
Its group is the largest quarter group Q = 8◦/4, and the subgroup
that fixes each color in the right half of the figure is the smallest quar-
ter group q = 1◦/4. All the other quarter groups can be obtained
by restricting to the appropriate groups of color permutations.

The simplest way to understand it is to regard it as (nearly) the
surface that separates black wood from white wood in checkerstix,
which we define later. To keep it with its friends, we nevertheless
discuss it here. The non-snub faces are the hexagons that bisect
the empty cubicles between their white faces and their black ones,
together with the midsquares of the squares between black and white
rods. These faces are separated by skew quadrilaterals that can
each be filled uniquely by two equilateral “snub” triangles. (The
snub faces cut notches into the rods, which is why this only nearly
separates the two colors.)

Smooth surfaces: Easily-described smooth surfaces approximate some
of the polyhedra above. For example, the surface of points (x, y, z)
that satisfy

sinx+ sin y + sin z = 0

closely approximates both the mucube and the muoctahedron. It
even more closely approximates a famous minimal surface, the
Schwarz P-surface, which can be obtained by relaxing it. This means
that if the above surface were made out of soap-film, the surface ten-
sion would automatically reshape it into the Schwarz P-surface.
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The centers of the star faces of the multiplied snub cube μsC lie on the bc lattice; at right,
these faces are colored accordingly.

The multiplied snub cube μsC and checkerstix. The rods have been made narrow for clarity.

sinx+ sin y + sin z = 0 sinx cos y + sin y cos z + sin z cos x = 0
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In a similar way, the points satisfying

sinx cos y + sin y cos z + sin z cos x = 0

closely approximate the multiplied snub cube and even more closely
approximate Schoen’s minimal surface, the gyroid, into which it
would relax.

Pseudo-Platonic Polyhedra

We believe that nobody has yet enumerated the hundreds of
“Archimedean” polyhedra in 3-space. The only further ones we’ll
discuss here are pseudo-Platonic, meaning that all their faces are
the same shape.

Often they are formed by sticking together finite polyhedra, and
so we name them by the principal polyhedron involved and the face
code. We also give a placement code, which hints at how the polyhe-
dra are placed and joined, and also makes it easy to find the group
in a way we shall describe with our first example.

It turns out that most of these polyhedra are 1-chiral, because
their “insides” and “outsides” are different shapes. So, their groups
have only one “chiral part,” the chiral subgroup G3. The propeller-
hedron that starts this chapter is the exception.

Icosahedral 37: Group 2◦+, Hyp 3222, Chiral part 1◦, Placement I{0+, 1−}
with O-joins. The placement code here means that we place icosahe-
dra in the + orientation at each node 0, and in the − orientation
at each 1, choosing their sizes so that adjacent ones can be joined
by an octahedron. The result is that four octahedra join each 0-
icosahedron to four parallel 1-icosahedra. The group is found by
asking what permissible permutations of 0, 1, 2, 3, +, and − fix the
code. Since 0 and 1 can only be interchanged if 2 and 3 are, there
is only one nontrivial one, namely (01)(23)(+−), and so the group
is 2◦+.

Octahedral 38: Group 2+:2, Hyp 2∗32, Chiral part 2+, Placement O{0, 1}
with O-joins. The same, with octahedra replacing icosahedra. Since
these have only one orientation, we can now separately perform
(01)(23) and (+−), so the group is 2+:2.
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Icosahedral 37 .

Octahedral 38 .

Snub-cubical 38 .
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Snub-cubical 38: Group 4−−, Hyp 32∗, Chiral part 2◦−, Place-
ment sC{0L, 2R}, touching. The placement code means that we in-
scribe snub cubes in the cubes of the normal cubic tiling, of alternate
handedness (left-handed L around 0-nodes, right-handed R around
2-nodes). Since odd permutations interchange L and R, we can un-
derstand the group by writing its four effects as

identity, (13)(+−), (02)(LR), (02)(13)(+−)(LR).

So (dropping this convention), it is 〈(13)(+−), (02)〉 = 4−−.
This is the unique group that is semisplit in two distinct ways.

The local groups at the centers 0 and 2 are the chiral cubic group
432 of the snub cube corresponding to our placements 0L and 2R.
However, the structures at the vertices are pyritohedral 3∗2, and
the alternative placement code {1+, 3−} describing these gives an
easier way to compute the group as the 4−− generated by (02) and
(13)(+−).

Icosahedral 39: Group 8−◦, Hyp 22∗2, Chiral part 4◦◦, Placement
I{0+, 1−, 2+, 3−}, withO-joins. Now each icosahedron is joined to eight
others by octahedral rings. Plainly the group 4− generated by (02)
and (13) fixes the code, as does (01)(23)(+−), which extends this to
the hybrid group 8−◦.

Octahedral 312: Group 8◦:2, Hyp 2∗42, Chiral part 8+◦, Place-
ment O{0, 1, 2, 3}, with O-joins. The same with octahedra for icosa-
hedra. Plainly its group contains all permissible permutations of
0, 1, 2, 3 and +,−.

Cubical 45: Group 8◦:2, Hyp ∗4222, Chiral part 8◦+, Placement C{0, 1, 2, 3}
with 1

27 overlap. The “cubes” of the placement code are empty 3×3×3
cubical chambers, of which adjacent ones intersect in 1×1×1 cubes.
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Icosahedral 39 .

Octahedral 312 .

Cubical 45 .
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Truncoctahedral 45 .

Truncoctahedral 45: Group 8◦:2, Hyp 2∗42, Chiral part 8◦+, Place-
ment tO{0,1,2,3}with P6-joins. The placement code indicates that this
can be obtained by joining truncated octahedra by hexagonal prisms.
The truncated octahedra are the large chambers in the figure, but
they are not so easy to see because their hexagons are missing. By
comparing the small piece shown with the corresponding piece of the
cubical 45, we see that the two 45 polyhedra have the same symme-
tries.

The Three Atomic Nets and Their Septa

There are, in fact, three interesting nets made by line segments join-
ing suitable points, which we’ll call atoms:

• the unit net, formed by the edges of the tiling by unit cubes,
whose atoms are those of a salt crystal;

• the dia-net, formed by the atoms and valence bonds of a dia-
mond;

• the tria-net, which we shall define later in this chapter.

These are analogous in many ways. For example, the points max-
imally distant from the atoms of one of these nets are the atoms
of another net of the same type—its mate, which together with the
original form a “double-net” with twice the symmetry. For example,
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the 4− : 2 of the unit net becomes 8◦ : 2 for the double unit net;
similarly, 2+ : 2 becomes 4+ : 2 for the double diamond, and 4+/4
becomes 8◦/4 for the double triamond.

For each of the three double nets, there is a natural family of
surfaces, all topologically equivalent, that separate them. One such
surface is formed by the points maximally distant from the double
net, and the others are topological deformations of this. We call any
such surface a unit-septum, dia-septum, or tria-septum, respectively
(since the word “septum” means “separating surface”).

Most of the infinite polyhedra that we’ve discussed are septa of
these three types. Thus, the mucube and the muoctahedron are unit-
septa, while the mucuboctahedron is dia-septal and the musnub cube
tria-septal. This is no accident: it can be shown that any surface
that supports3 a hyperbolic triangle group (i.e., one of shape pqr,
∗pqr, or p∗q) is a septum of one of these three types.

Naming Points

We have already used notations like 12 for the midpoint of the seg-
ment joining a 1-node to a 2-node. We can extend this to notations
like 122 for the point one third of the way along such a segment. In
general if 0, 1, 2, and 3 are the vectors to the nodes of a tetrahe-
dron of sign ±, then we write 0a1b2c3d (+ or −) for the point of the
tetrahedron represented by (a0+b1+c2+d3)/(a+b+c+d). There
are obvious abbreviations when one of a, b, c, d is 0 or 1, and we can
omit the sign when it doesn’t matter (which it certainly won’t if one
of a, b, c, d is 0, since then the point lies on the surface of tetrahedra
of both kinds).

Often we’re not interested in the exact values of a, b, c, d but just
their relative sizes. In this case, we can abbreviate 0a1b, a > b, to
01 and 0a1b2c, a = b > c, to 012, for example.

Any set of equivalent points under one of the plenary groups can
be named in this way. For the quarter groups, we add a further
convention. The directions of the triad axes we name according to

3Strictly, the lifts of its symmetries to the universal cover form such a group.
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their odd coordinate out as

w = (+ ++), x = (−++), y = (+ −+), z = (+ +−),

and we append these letters as subscripts to the names of the nodes.
For instance, 2z denotes a node 2 that lies on a triad axis in direction
(+ +−).

The nodes of the triamond are, thus, 0v1v, 1v2v, 2v3v , and 3v0v,
where v denotes any one of w, x, y, z.

We usually understand such names only up to even permutations
of w, x, y, z, since these lead to points that are equivalent under all
the quarter groups. Thus, squares of the musnub cube can be de-
scribed simply as having centers at 0w1x2y3z and vertices 0w1

2
x2y,

1x2
2
y3z, 2y3

2
z0w, and 3z0

2
w1x.

Polystix

There’s a nice way to arrange square-section sticks (tetrastix ) so as
to occupy 75% of space. The unoccupied space consists of 1

2 × 1
2 × 1

2
cubes centered at nodes 0, 1, 2, and 3 and surrounded “pyritohe-
drally” as shown below. Remarkably, there is an alternative system
of tetrastix that occupies exactly the same portion of space. The
two systems may be distinguished by the directions of the grain of
the wood abutting the faces of the empty cubes, so we’ll call them
+-tetrastix and −-tetrastix. The effects of the symmetries of either
are just the permutations that fix + and −, so their symmetries are
the pure octad group 8◦.

A precisely similar thing happens for sticks whose cross-sections
are equilateral triangles (tristix ). This time the holes are rhombic
dodecahedra of the four colors, and again there are two arrangements
of tristix that occupy the same space.

We indicate them by {0L1L2L3L} or {0R1R2R3R}, since the holes
are at 0, 1, 2, and 3 and the grains around a hole are either all
left-handed or all right-handed. Their common group is the chiral
portion of 8◦:2, namely 8−◦.
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How two systems of tetrastix occupy the same space (group 8◦). Below, the empty spaces
contain nodes of four different colors, of which only three can be seen here.

Tristix (group 8−◦): At left, a bc lattice of rhombic dodecahedral “holes”; there are two ways
to fill in tristix, {0L1L2L3L} (middle) and {0R1R2R3R} (right).
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The hexastix arrangement (of which a model made with pencils
is shown below) is more subtle, and we shall postpone its discussion
for a moment).

Hexastix: If these pencils (after an idea of George Hart) were infinitely long we’d get hexastix
(group 8◦/4); if we sharpened them, we’d get hexastakes, which has group 4+/4.

Checkerstix and the Quarter Groups

How many ways can we color the sticks of a tetrastix model so that
those of any given direction are alternately black and white, like a
checkerboard? Since there are two choices for each of three direc-
tions, the answer is 23 = 8, but we reduce this to 4 by regarding the
overall interchange of black and white as giving “the same” checker-
ing.

All these checkerings are related by elements of the tetrastix
group 8◦, so the group that fixes any one of them contains just
one quarter of the elements of that group. We therefore call it the
quarter octad group 8◦/4. By intersecting it with the remaining pure
groups 4−, 4◦, 4+, 2−, 2◦, 2+, and 1◦, we obtain the other quarter
groups, respectively 4−/4, 4◦/4, 4+/4, 2−/4, 2◦/4, 2+/4, and 1◦/4.
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Checkerstix and hexastix: group 8◦/4, or 4+/4 if we fix black and white.

Hexastix from Checkerstix

It is time to define hexastix more precisely!

Each empty cubicle of checkerstix has a natural diagonal, from
the vertex on three white faces to the opposite one, on three black
ones (shown by white rods in the figure above). These diagonals
join up to produce the triad axes of the quarter octad group 8◦/4,
the empty cubicles being skewered along them like meat on a kebab,
and the convex hulls of these kebabs are the hexagonal “pencils” of
hexastix.

Tristakes, Hexastakes, and Tetrastakes

We get some subgroups by assigning a direction to each stick of
tetrastix, tristix, or hexastix. In figures this can be indicated by
sharpening one end of the stick, turning it into a “stake.”

This naturally gives rise to two groups, a smaller one that takes
all sharpened ends to sharpened ends, and a larger one that also
includes operations that interchange sharpened ends with unsharp-
ened ones. If the larger one is called G, then the smaller one is its
1-chiral part G1. The ordinary chiral part is again called G3, and
there is a 2-chiral part preserving the orientation of the planes per-
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pendicular to the sticks and a polychiral part G123 that preserves all
three orientations.

Tristakes (group 4◦◦).

For tristakes and hexastakes, there’s only one sensible way to
choose the directions, and it’s equivalent to restricting the point
group to 332 and ∗332, respectively, which gives the groups 4◦◦ and
4+/4, respectively.

For tetrastakes, we have a remarkable coincidence: “staking” a
tetrastix, up to reversing all directions, is equivalent to “checkering”
its mate, up to interchanging all colors. To understand this, look at
the figure below. It shows how the (wooden) rods of one tetrastix
cut those (the white “pencils”) of its mate. If these pencils have been
sharpened into “stakes” (directed alternately), then each wooden rod
acquires a spiral structure. In the figure we have made it of pine if
the spiral is dextral (like a corkscrew) and of ebony if it is sinistral
(a reflected corkscrew).
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Understanding the Irish Bubbles

The Irish bubbles are closely related to tetrastix: regard each rod
of tetrastix as divided into cubes in the usual way, and then push
all these divided rods one half of a cube-width along themselves.
Then, if the cube-surfaces were relaxed, they would become the two
shapes of Irish bubble: a dodecahedron (with only pyritohedral sym-
metry) and a dodecadihedron, so called because it has 12 (“dodeca”)
pentagonal faces and 2 (“di”) hexagonal ones. So, tetrastix and
the Irish bubbles have the same symmetry (8◦)—the original empty
holes are now dodecahedral, while the dodecadihedral bubbles stack
along their hexagons into nubbly columns that are what the rods
have become.

The Triamond Net and Hemistix

The net [10, 3]a was given its name by A. F. Wells in the 1970s. Its
existence is implicit in a paper written by Laves in the first half of
the twentieth century, and it was discussed explicitly by Coxeter in
the 1950s. It was rediscovered as recently as 2007 by Sunada; it is
discussed by Ludwig Danzer in [13].
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It is closely related to the object we call hemistix, formed by the
rods of one color in checkerstix. In hemistix, the rods that touch a
given one spiral around it (the spirals being dextral for one color,
sinistral for the other.) Below, we show a segment from each such
rod, and the positions of the nodes 0, 1, 2, and 3.

Hemistix and the Triamond: On the left, hemistix, one half of the checkerstix. In the middle,
we see how neighboring rods coil around a given rod. At right, a portion of the Triamond.

The segments of the Triamond wind helically around each orig-
inal stick, in the squares where it touches its neighbors. Thus, a
Triamond, like its parent hemistix, is either dextral or sinistral and
has for its group the chiral part of 8◦/4, namely the positive quarter
tetrad group 4+/4. The points of space at maximal distance from
one Triamond form another, of the opposite handedness, coming
from the other half of checkerstix: the two Triamonds together form
a “Double Triamond” (compare Double Diamond), with group 8◦/4.
We close this section with a three-dimensional view of the Triamond
for those lucky enough to be able to view stereoscopic images, with
or without a stereoscope.

The Triamond net (group 4+/4).
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Further Remarks about Space Groups

The three-dimensional analogs of the 17 plane crystallographic groups
are the 219 (three-dimensional) space groups. This chapter and
the last have been about the 35 most interesting ones, namely the
“prime” ones that don’t fix any family of parallel lines; the “com-
posite” ones that do fix such a family are handled in Chapter 25.

We have chosen to distinguish the two classes by these terms
because the “composite” space groups are those that are in a certain
sense composed of lower-dimensional ones. Crystallographers usually
use the term “cubic” for our “prime” because the point groups of the
35 prime groups are all contained in ∗432, the symmetry group of
the cube. However, since other groups have this property, this term
is insufficient. The true criterion, already sufficient in itself, is that
these groups do not fix any direction, i.e., are prime in our sense.

Crystallographers usually give the number of space groups as 230.
This is because 11 of them have both left-handed and right-handed
forms, that is to say, they are metachiral. Metachirality is stronger
than mere chirality. We say an object is chiral if it differs from its
mirror image, and traditionally we also say that its symmetries form
a chiral group. However, the group itself might still be the same as
its mirror image! When it is not, the group is metachiral.

In the real world that chemists inhabit, we cannot interchange
left and right, so for their purposes the count of 230 is quite cor-
rect. However, as mathematicians, we prefer to obey Thurston’s
commandment that one should always think of groups in terms of
their orbifolds, and this makes 219 the appropriate number.

What happens is that the orbifolds of the 11 metachiral groups
each have two orientations. However, many orbifolds have no orien-
tation, with the consequence that there is no way of counting orb-
ifolds that yields the number 230.
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Flat Universes

What is the shape of the universe? For a long time, people thought
that it had to be the infinite three-dimensional space described by
Euclid and therefore called it Euclidean 3-space. Then a few people
realized that that wasn’t the only possibility. It might, for instance,
be like the surface of a sphere in four-dimensional space, which nowa-
days is called three-dimensional spherical space or just the 3-sphere.
Then, it would be “finite but unbounded,” meaning that the total
volume would be finite even though there would be no bounding
walls. In that case, space would be curved, in a three-dimensional
analog to the two-dimensional surface of the Earth, which has finite
total area even though there is no edge for people to fall off. Still
more recently, physicists have become aware that the universe might
not only be finite and unbounded, but also exactly flat, in the sense
that the local geometry is exactly Euclidean.

It might, for instance, be the three-dimensional analog of a torus,
which we shall call a torocosm. If you’ve played computer games
such as Asteroids, you won’t find it too hard to understand. In that
game, an asteroid or space ship that goes off one edge of the screen
reappears from the opposite edge.

Flying around in an Asteroids universe: As the ship exits one side of the picture of its universe,
it reappears on the other side. From the ship’s perspective, the universe is unbroken and
continuous. This universe is finite, yet unbounded, and is topologically a torus.

(opposite page) The Hexacosm.
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This chapter is about all the ways the universe might be flat.
First we’ll think about the two-dimensional analogs.

Compact Platycosms

If you lived in a small, flat two-dimensional space like the Aster-
oids universe, what would you see? Because light rays travel like
everything else in that world, you’d see lots of images of any given
thing.

Sight in the Asteroids universe: Light would travel like any other thing, wrapping around
the universe. From the point of view of the ship, it would seem as if the light travelled
across consecutive copies of the universe, and you would see lots of images of any given
thing. . . including yourself! These copies form the universal cover of the torus, which is a Eu-
clidean plane.

The entire set of images you’d see would be related to each other
by a lattice of translations. Geometrically, these translations form
a copy of the plane group we call ◦, and the flat torus is just the
orbifold for ◦.

Thus, flat universes are described by space groups, in that they
describe ways in which one might return to one’s starting place after
“circumnavigating the universe.” We shall obtain the ten most in-
teresting flat universes from ten of the space groups described in the
next chapter. Technically these are the ten closed flat 3-manifolds.
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Torocosms

The above figure represents the appearance of a two-dimensional
torus. A (flat) torocosm (also called a “3-torus”) is its three-dimen-
sional analog. It’s like a room without walls with the strange prop-
erty that if you leave from one side you come in at the opposite
side.

The figure on the next page suggests what the universe would
look like if it were a sufficiently small torocosm. Geometrically, a
torocosm is the orbifold of the space group generated by three inde-
pendent translations. These need not be mutually perpendicular—
there is a torocosm based on any parallelepiped.
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The Klein Bottle as a Universe

Games like Asteroids can also be played on other surfaces, for ex-
ample, on a flat Klein bottle.

Flying around in a Klein-bottle universe: Now, whatever leaves the screen on the top will re-
enter it on the bottom, but reverse. However, what leaves at the right returns in the way it
did in the original game.

Geometrically, this twisted Asteroids world is of course a Klein
bottle, the orbifold of the plane group ××. The torus and Klein
bottle are the only closed, flat 2-manifolds. Why is this? Because
the universal cover argument shows that any such space must be the
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orbifold of one of the 17 plane groups, and each of the 15 other than
◦ and ×× has either a boundary (if its name involves ∗) or a cone
point, at which the local geometry will not be Euclidean.

The Other Platycosms

The three-dimensional analogs of the torus and Klein bottle we call
platycosms, meaning “flat universes.” More precisely, they are the
compact platycosms, meaning that they have finite volume. There
are ten such spaces [8], whose individual names are

torocosm, dicosm, tricosm, tetracosm, hexacosm

(these are collectively called the helicosms) and

didicosm, positive and negative amphicosms,
and positive and negative amphidicosms.

We describe them by pictures. We have already seen the hexacosm
(on page 354) and the torocosm (previous page), which is the heli-
cosm with N = 1. In another helicosm, say the N -cosm, the images
of an object fall into parallel layers and one moves up a layer by
rotating it through 360◦/N .

The images of any one layer are related to each other by a lattice
of translations that has this rotation as a symmetry—for instance,
it must be a square lattice for the tetracosm.

So, in an N -cosm, one’s images face in just N different directions,
which are related by a cyclic group of N rotations. They all have
the same handedness: if you were to wave your right hand, each of
your images would wave its right hand, in contrast with what would
happen in a mirror, where your image would wave its left hand. This
is described technically by saying that the helicosms are all orientable
manifolds.

The only other orientable platycosm is the didicosm, in which
one’s images are in four different orientations. They can be head
up or feet up and face either left or right, but are all of the same
handedness.
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The dicosm. The tricosm.

The tetracosm.
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We shall show the remaining platycosms with ships as before,
but for clarity we will also use blocks that have the letters b, d, p, or
q on them; each kind of block stacks top and bottom, right and left,
to form layers, but the letters are always on the tops of the blocks.

The didicosm.

The amphicosms and amphidicosms are nonorientable, meaning
that half the images of an object have one handedness and half the
other. So, if you were to wave your right hand in one of these four
platycosms, half of your images would wave their right hands, the
other half their left hands. It is hard to illustrate these correctly (the
four pictures in [31] represent only two manifolds). The cockpits of
the ships in our pictures are always on top.
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The amphicosms and amphidicosms: from left to right, +a1, −a1, +a2, and −a2.

The positive amphicosm +a1. The negative amphicosm -a1.

The positive amphidicosm +a2. The negative amphidicosm -a2.
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The reason that these ten platycosms are the only compact ones
is much the same as the reason that the torus and Klein bottle
are the only compact two-dimensional flat surfaces, namely that the
corresponding space groups are the only ones in which there is no
fixed point for any nonidentical element. This is easily checked by
hand from the list in the next chapter. The 35 prime space groups
have lines that are analogous to order-3 cone points in a plane group
and so need not be considered.

The ten space groups that arise are those called

c1 (◦),
c2 (21212121) = (×̄×̄),
c3 (313131),
c4 (414121),
c6 (613121),

c22 (2121×̄),
+a1 (◦̄0) = (∗:∗:) = (××0),
-a1 (◦̄1) = (∗:×) = (××1),
+a2 (2121∗ :) = (*̄ : *̄ :) = (×̄×0),
-a2 (2121× :) = (∗ : ×̄) = (×̄×1),

in the next chapter. Some of these groups have more than one name
as a consequence of the alias problem discussed there. We summarize
the names and notations for the ten compact platycosms below.

orientable
helicosms didicosm

c1 c2 c3 c4 c6 c22

nonorientable
+a1 -a1 +a2 -a2

amphicosms amphidicosms

Infinite Platycosms

The compact platycosms are the only ones of finite volume, but
there are eight more infinite, or noncompact, ones. The infinite two-
dimensional flat surfaces are the Euclidean plane, the cylinder, and
the Möbius cylinder.

The following figures suggest what it would look like to live in
these spaces. The infinite platycosms are named in the captions.
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Circular Prospace∼= circle x Euclidean plane. Circular Mospace.

Toroidal Prospace∼= torus x Euclidean line. Toroidal Mospace.

Kleinian Prospace ∼= Klein bottle x Euclidean
line.

Orientable Kleinian Mospace.

Nonorientable Kleinian Mospace. Euclidean three-space.
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Here, “Prospace” abbreviates “product space” because those three
spaces are the direct products indicated. “Mospace” means “Möbius
space”: the four Mospaces are related to the Prospaces in the way
that the Möbius cylinder relates to the ordinary one.

Where Are We?

This chapter has described the three-dimensional flat universes (platy-
cosms). The enumeration of the ten compact ones was deduced from
that of the 184 composite space groups in the next chapter.
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The 184 Composite Space

Groups

The composite space groups are the groups that preserve at least one
family of parallel lines, and so, in a suitable sense, are composed of
one- and two-dimensional groups, which makes them less interesting
than the 35 prime groups of Chapter 22. For that reason, we shall
only explain how to read Tables 25.1–25.17, taken from [6].

Let’s suppose that the invariant direction is the vertical or z-
direction. Then, if we look downwards from a great height while
some group operation is being performed, we will see an operation
of one of the 17 plane crystallographic groups, which we shall call
the horizontal group for this case. Each operation of this group is
coupled to a vertical operation of the form z → k+z or z → k−z.

We suppose that the smallest upward translation in the group
is z → 1+z, so that the vertical translations are z → n+z for all
integers n. Modulo these, any other vertical operation takes the form
z → f+z or f−z, where 0 ≤ f < 1. We’ll abbreviate these to f+
and f−.

Tables 25.1–25.17 merely specify, in this notation, the possible
ways that the generators of a given one of the 17 groups can be
coupled with such vertical operations.

Thus, for instance, the entry 1
2+

1
3−0− for the group whose “fibri-

fold name” is (∗ : 6312) tells us that this group is obtained from the
horizontal group ∗632 = ∗P 6Q3R2, by coupling the generators P , Q,
and R with z → 1

2+z, z → 1
3−z, and z → −z, respectively.

The fibrifold name is part of a “decorated form” of the name
of the horizontal group, according to the system described in [6],

(opposite page) The space group denoted (313131), with coupling 1
3
+ 1

3
+ 1

3
+, is the tricosm.
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Figure 25.1. The space group (∗ : 6 :3 :2), with coupling 1
2
+ 1

2
+ 1

2
+.

inside a kind of bracket that specifies what is coupled to the identity.
The parentheses used in this case tell us that these are merely the
translations n+. Square brackets would indicate both these and the
reflections, n−, for all integers n.

For example, the entries 1
2+

1
2+

1
2+ and 1

2+
1
2+

1
2+0− for (∗ :6 :3 :2)

and [∗ :6 :3 :2] (Figures 25.1 and 25.2) show that P , Q, and R are
all coupled to z → 1

2 +z in both these groups, but the latter also
contains z → −z, since the identity is coupled to 0−.

The Alias Problem

Some groups have more than one fibrifold name, because they have
more than one invariant direction. In fact there are never more than
three names, and all the names for a given group are collected in
the following tables, in which the 184 composite space groups are
organized by point group.
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Figure 25.2. The space group [∗ : 6 :3 :2], with coupling 1
2
+ 1

2
+ 1

2
+0−.

This is all you should need to identify any of the groups listed,
but some readers will want to understand roughly how the lists were
proved to be complete. The idea is to find all ways of “decorating”
the symbols in the orbifold notations so as to indicate the topological
features of the “fibered orbifold,” or fibrifold. This is a delicate
business, because it is important that whatever is written should be
an invariant feature of the fibrifold.

For example, we use a subscripted digit nd when a horizontal
rotation of order n couples to d

n+, but merely n when it couples to
any k−, since the value of k is not an invariant. Again, when the
space between two digits corresponds to a reflection, we fill it with ·
or : when this relfection is coupled to 0+ or 1

2+, but leave it blank
for a coupling to any k−, for a similar reason.

We refer the reader to the original paper [6] for the coupling rules
for the further generators corresponding to the symbols ∗, ◦, and ×,
since they are rather subtle and not needed to understand the tables.
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Fibrifold Couplings for Point Intern.
name P Q R (I) group no.

[∗·6·3·2] 0+0+0+0− ∗226 191
[∗:6·3·2] 1

2
+0+0+0− ∗226 194

[∗·6:3:2] 0+ 1
2
+ 1

2
+0− ∗226 193

[∗:6:3:2] 1
2
+ 1

2
+ 1

2
+0− ∗226 192

(∗·6·3·2) 0+0+0+ ∗66 183
(∗:6·3·2) 1

2
+0+0+ ∗66 186

(∗·6:3:2) 0+ 1
2
+ 1

2
+ ∗66 185

(∗:6:3:2) 1
2
+ 1

2
+ 1

2
+ ∗66 184

(∗6·3·2) 0− 0+0+ 2∗3 164
(∗6:3:2) 0− 1

2
+ 1

2
+ 2∗3 165

(∗·6 302) 0+0− 0− 2∗3 162
(∗·6 312) 0+ 1

3
− 0− 2∗3 166

(∗:6 302) 1
2
+0− 0− 2∗3 163

(∗:6 312) 1
2
+ 1

3
−0− 2∗3 167

(∗603020) 0− 0− 0− 226 177
(∗613121) 1

2
− 1

3
−0− 226 178

(∗623220) 0− 2
3
− 0− 226 180

(∗633021) 1
2
− 0− 0− 226 182

Table 25.1. Plane group: ∗632; Relations ∗P 6Q3R2 :
1 = P 2 = (PQ)6 = Q2 = (QR)3 = R2 = (RP )2

Fibrifold Couplings for Point Intern.
name γ δ ε (I) group no.

[603020] 0+0+0+0− 6∗ 175
[633021]

1
2
+0+ 1

2
+0− 6∗ 176

(603020) 0+0+0+ 66 168
(613121)

1
6
+ 1

3
+ 1

2
+ 66 169

(623220)
1
3
+ 2

3
+0+ 66 171

(633021)
1
2
+0+ 1

2
+ 66 173

(6 302) 0− 0+0− 3× 147
(6 312)

1
3
− 1

3
+0− 3× 148

Table 25.2. Plane group: 632; Relations γ6 δ3 ε2 :
1 = γ6 = δ3 = ε2 = γδε

Fibrifold Couplings for Point Intern.
name P Q R (I) group no.

[∗·4·4·2] 0+0+0+0− ∗224 123
[∗·4·4:2] 0+0+ 1

2
+0− ∗224 139

[∗·4:4·2] 0+ 1
2
+0+0− ∗224 131

[∗·4:4:2] 0+ 1
2
+ 1

2
+0− ∗224 140

[∗:4·4:2] 1
2
+0+ 1

2
+0− ∗224 132

[∗:4:4:2] 1
2
+ 1

2
+ 1

2
+0− ∗224 124

(∗·4·4·2) 0+0+0+ ∗44 99
(∗·4·4:2) 0+0+ 1

2
+ ∗44 107

(∗·4:4·2) 0+ 1
2
+0+ ∗44 105

(∗·4:4:2) 0+ 1
2
+ 1

2
+ ∗44 108

(∗:4·4:2) 1
2
+0+ 1

2
+ ∗44 101

(∗:4:4:2) 1
2
+ 1

2
+ 1

2
+ ∗44 103

(∗4·4·2) 0− 0+0+ ∗224 129
(∗4·4:2) 0− 0+ 1

2
+ ∗224 137

(∗4:4·2) 0− 1
2
+0+ ∗224 138

(∗4:4:2) 0− 1
2
+ 1

2
+ ∗224 130

(∗·4 4·2) 0+0− 0+ 2∗2 115
(∗·4 4:2) 0+0− 1

2
+ 2∗2 121

(∗:4 4:2) 1
2
+0− 1

2
+ 2∗2 116

(∗404·2) 0− 0− 0+ ∗224 125
(∗414·2) 1

4
−0− 0+ ∗224 141

(∗424·2) 1
2
−0− 0+ ∗224 134

(∗404:2) 0− 0− 1
2
+ ∗224 126

(∗414:2) 1
4
−0− 1

2
+ ∗224 142

(∗424:2) 1
2
−0− 1

2
+ ∗224 133

(∗4·4 20) 0− 0+0− 2∗2 111
(∗4·4 21) 1

2
−0+0− 2∗2 119

(∗4:4 20) 0− 1
2
+0− 2∗2 112

(∗4:4 21) 1
2
− 1

2
+0− 2∗2 120

(∗404020) 0− 0− 0− 224 89
(∗414121) 1

2
− 1

4
− 0− 224 91

(∗424220) 0− 1
2
−0− 224 93

(∗424021) 1
2
−0− 0− 224 97

(∗434120) 0− 1
4
−0− 224 98

Table 25.3. Plane group: ∗442; Relations ∗P 4Q4R2 :
1 = P 2 = (PQ)4 = Q2 = (QR)4 = R2 = (RP )2
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Fibrifold Couplings for Point Intern.
name γ P (I) group no.
[40∗·2] 0+0+0− ∗224 127
[42∗·2] 1

2
+0+0− ∗224 136

[40∗:2] 0+ 1
2
+0− ∗224 128

[42∗:2] 1
2
+ 1

2
+0− ∗224 135

(40∗·2) 0+0+ ∗44 100
(41∗·2) 1

4
+0+ ∗44 109

(42∗·2) 1
2
+0+ ∗44 102

(40∗:2) 0+ 1
2
+ ∗44 104

(41∗:2) 1
4
+ 1

2
+ ∗44 110

(42∗:2) 1
2
+ 1

2
+ ∗44 106

(4∗̄·2) 0− 0+ 2∗2 113
(4∗̄:2) 0− 1

2
+ 2∗2 114

(40∗20) 0+0− 224 90
(41∗21) 1

4
+0− 224 92

(42∗20) 1
2
+0− 224 94

(4∗̄020) 0− 0− 2∗2 117
(4∗̄120) 0− 1

2
− 2∗2 118

(4∗̄21) 0− 1
4
− 2∗2 122

Table 25.4. Plane group: 4∗2; Relations γ4∗P 2 :
1 = γ4 = P 2 = [P, γ]2

Fibrifold Couplings for Point Intern.
name γ δ ε (I) group no.

[404020] 0+0+0+0− 4∗ 83
[424220]

1
2
+ 1

2
+0+0− 4∗ 84

[424021]
1
2
+0+ 1

2
+0− 4∗ 87

(404020) 0+0+0+ 44 75
(414121)

1
4
+ 1

4
+ 1

2
+ 44 76

(424220)
1
2
+ 1

2
+0+ 44 77

(424021)
1
2
+0+ 1

2
+ 44 79

(434120)
3
4
+ 1

4
+0+ 44 80

(4 402) 0+0− 0− 4∗ 85
(4 412)

1
4
+0− 1

4
− 4∗ 88

(4 422)
1
2
+0− 1

2
− 4∗ 86

(4 4 20) 0− 0− 0+ 2× 81
(4 4 21)

1
2
−0− 1

2
+ 2× 82

Table 25.5. Plane group: 442; Relations γ4 δ4 ε2 :
1 = γ4 = δ4 = ε2 = γδε

Fibrifold Couplings for Point Intern.
name P Q R (I) group no.

[∗·3·3·3] 0+0+0+0− ∗223 187
[∗:3:3:3] 1

2
+ 1

2
+ 1

2
+0− ∗223 188

(∗·3·3·3) 0+0+0+ ∗33 156
(∗:3:3:3) 1

2
+ 1

2
+ 1

2
+ ∗33 158

(∗303030) 0− 0− 0− 223 149
(∗313131) 2

3
− 1

3
− 0− 223 151

(∗303132) 1
3
− 1

3
− 0− 223 155

Table 25.6. Plane group: ∗333; Relations ∗P 3Q3R3 :
1 = P 2 = (PQ)3 = Q2 = (QR)3 = R2 = (RP )3

Fibrifold Couplings for Point Intern.
name γ P (I) group no.
[30∗·3] 0+0+0− ∗223 189
[30∗:3] 0+ 1

2
+0− ∗223 190

(30∗·3) 0+0+ ∗33 157
(31∗·3) 1

3
+0+ ∗33 160

(30∗:3) 0+ 1
2
+ ∗33 159

(31∗:3) 1
3
+ 1

2
+ ∗33 161

(30∗30) 0+0− 223 150
(31∗31) 1

3
+0− 223 152

Table 25.7. Plane group: 3∗3; Relations γ3∗P 3 :
1 = γ3 = P 2 = [P, γ]3

Fibrifold Couplings for Point Intern.
name γ δ ε (I) group no.

[303030] 0+0+0+0− 3∗ 174

(303030) 0+0+0+ 33 143
(313131)

1
3
+ 1

3
+ 1

3
+ 33 144

(303132) 0+ 1
3
+ 2

3
+ 33 146

Table 25.8. Plane group: 333; Relations γ3 δ3 ε3 :
1 = γ3 = δ3 = ε3 = γδε
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Fibrifold Couplings for Point Intern.
name P Q R S (I) group no.

[∗·2·2·2·2] 0+0+0+0+0− ∗222 47
[∗·2·2·2:2] 0+0+0+ 1

2
+0− ∗222 65

[∗·2·2:2:2] 0+0+ 1
2
+ 1

2
+0− ∗222 69

[∗·2:2·2:2] 0+ 1
2
+0+ 1

2
+0− ∗222 51

[∗·2:2:2:2] 0+ 1
2
+ 1

2
+ 1

2
+0− ∗222 67

[∗:2:2:2:2] 1
2
+ 1

2
+ 1

2
+ 1

2
+0− ∗222 49

(∗·2·2·2·2) 0+0+0+0+ ∗22 25
(∗·2·2·2:2) 0+0+0+ 1

2
+ ∗22 38

(∗·2·2:2:2) 0+0+ 1
2
+ 1

2
+ ∗22 42

(∗·2:2·2:2) 0+ 1
2
+0+ 1

2
+ ∗22 26

(∗·2:2:2:2) 0+ 1
2
+ 1

2
+ 1

2
+ ∗22 39

(∗:2:2:2:2) 1
2
+ 1

2
+ 1

2
+ 1

2
+ ∗22 27

(∗2·2·2·2) 0+0+0+0− ∗222 51
(∗2·2·2:2) 0+0+ 1

2
+0− ∗222 63

(∗2·2:2·2) 0+ 1
2
+0+0− ∗222 55

(∗2·2:2:2) 0+ 1
2
+ 1

2
+0− ∗222 64

(∗2:2·2:2) 1
2
+0+ 1

2
+0− ∗222 57

(∗2:2:2:2) 1
2
+ 1

2
+ 1

2
+0− ∗222 54

(∗202·2·2) 0− 0− 0+0+ ∗222 67
(∗212·2·2) 1

2
− 0− 0+0+ ∗222 74

(∗202·2:2) 0− 0− 0+ 1
2
+ ∗222 72

(∗212·2:2) 1
2
− 0− 0+ 1

2
+ ∗222 64

(∗202:2:2) 0− 0− 1
2
+ 1

2
+ ∗222 68

(∗212:2:2) 1
2
− 0− 1

2
+ 1

2
+ ∗222 73

(∗2·2 2·2) 0− 0+0− 0+ 2∗ 10
(∗2·2 2:2) 0− 0+0− 1

2
+ 2∗ 12

(∗2:2 2:2) 0− 1
2
+0− 1

2
+ 2∗ 13

(∗20202·2) 0− 0− 0− 0+ ∗222 49
(∗20212·2) 0− 0− 1

2
− 0+ ∗222 66

(∗21212·2) 1
2
− 0− 1

2
−0+ ∗222 53

(∗20202:2) 0− 0− 0− 1
2
+ ∗222 50

(∗20212:2) 0− 0− 1
2
− 1

2
+ ∗222 68

(∗21212:2) 1
2
− 0− 1

2
− 1

2
+ ∗222 54

(∗20202020) 0− 0− 0− 0− 222 16
(∗20202121) 0− 0− 0− 1

2
− 222 21

(∗20212021) 0− 0− 1
2
− 1

2
− 222 22

(∗21212121) 0− 1
2
− 0− 1

2
− 222 17

Table 25.9. Plane group: ∗2222; Relations ∗P 2Q2R2S2 :
1 = P 2 = (PQ)2 = Q2 = (QR)2 = R2 = (RS)2 =
S2 = (SP )2

Fibrifold Couplings for Point Intern.
name γ P Q (I) group no.

[20∗·2·2] 0+0+0+0− ∗222 65
[21∗·2·2] 1

2
+0+0+0− ∗222 71

[20∗·2:2] 0+0+ 1
2
+0− ∗222 74

[21∗·2:2] 1
2
+0+ 1

2
+0− ∗222 63

[20∗:2:2] 0+ 1
2
+ 1

2
+0− ∗222 66

[21∗:2:2] 1
2
+ 1

2
+ 1

2
+0− ∗222 72

(20∗·2·2) 0+0+0+ ∗22 35
(21∗·2·2) 1

2
+0+0+ ∗22 44

(20∗·2:2) 0+0+ 1
2
+ ∗22 46

(21∗·2:2) 1
2
+0+ 1

2
+ ∗22 36

(20∗:2:2) 0+ 1
2
+ 1

2
+ ∗22 37

(21∗:2:2) 1
2
+ 1

2
+ 1

2
+ ∗22 45

(20∗2·2) 0+0+0− ∗222 53
(21∗2·2) 1

2
+0+0− ∗222 58

(20∗2:2) 0+ 1
2
+0− ∗222 52

(21∗2:2) 1
2
+ 1

2
+0− ∗222 60

(2∗̄·2·2) 0− 0+0+ ∗222 59
(2∗̄·2:2) 0− 0+ 1

2
+ ∗222 62

(2∗̄:2:2) 0− 1
2
+ 1

2
+ ∗222 56

(2∗̄2·2) 0− 0− 0+ 2∗ 12
(2∗̄2:2) 0− 0− 1

2
+ 2∗ 15

(20∗2020) 0+0− 0− 222 21
(21∗2020) 1

2
+0− 0− 222 23

(20∗2121) 0+ 1
2
−0− 222 24

(21∗2121) 1
2
+ 1

2
−0− 222 20

(2∗̄02020) 0− 0− 0− ∗222 50
(2∗̄12020) 0− 1

2
− 1

2
− ∗222 48

(2∗̄2021) 0− 1
4
− 1

4
− ∗222 70

(2∗̄2121) 0− 0− 1
2
− ∗222 52

Table 25.10. Plane group: 2∗22; Relations
γ2∗P 2Q2 : 1 = γ2 = P 2 = (PQ)2 = Q2 =
(QγPγ−1)2
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Fibrifold Couplings for Point Intern.
name γ δ P (I) group no.

[2020∗·] 0+0+0+0− ∗222 51
[2021∗·] 0+ 1

2
+0+0− ∗222 63

[2121∗·] 1
2
+ 1

2
+0+0− ∗222 59

[2020∗:] 0+0+ 1
2
+0− ∗222 53

[2021∗:] 0+ 1
2
+ 1

2
+0− ∗222 64

[2121∗:] 1
2
+ 1

2
+ 1

2
+0− ∗222 57

(2020∗·) 0+0+0+ ∗22 28
(2021∗·) 0+ 1

2
+0+ ∗22 40

(2121∗·) 1
2
+ 1

2
+0+ ∗22 31

(2020∗:) 0+0+ 1
2
+ ∗22 30

(2021∗:) 0+ 1
2
+ 1

2
+ ∗22 41

(2121∗:) 1
2
+ 1

2
+ 1

2
+ ∗22 29

(2020∗) 0+0+0− 222 17
(2021∗) 0+ 1

2
+0− 222 20

(2121∗) 1
2
+ 1

2
+0− 222 18

(202∗̄·) 0+0− 0+ ∗222 57
(212∗̄·) 1

2
+0− 0+ ∗222 62

(202∗̄:) 0+0− 1
2
+ ∗222 60

(212∗̄:) 1
2
+0− 1

2
+ ∗222 61

(202∗̄0) 0+0− 0− ∗222 54
(202∗̄1) 0+ 1

2
− 0− ∗222 52

(212∗̄0) 1
2
+ 1

2
− 0− ∗222 56

(212∗̄1) 1
2
+0− 0− ∗222 60

(2 2∗·) 0− 0− 0+ 2∗ 11
(2 2∗:) 0− 0− 1

2
+ 2∗ 14

(2 2∗0) 0− 0− 0− 2∗ 13
(2 2∗1) 0− 1

2
− 0− 2∗ 15

Table 25.11. Plane group: 22∗; Relations γ2 δ2∗P :
1 = γ2 = δ2 = P 2 = [P, γδ]

Fibrifold Couplings for Point Intern.
name γ δ Z (I) group no.

[2020×0] 0+0+0+0− ∗222 55
[2020×1] 0+0+ 1

2
+0− ∗222 58

[2121×] 1
2
+ 1

2
+0+0− ∗222 62

(2020×0) 0+0+0+ ∗22 32
(2020×1) 0+0+ 1

2
+ ∗22 34

(2021×) 0+ 1
2
+ 1

4
+ ∗22 43

(2121×) 1
2
+ 1

2
+0+ ∗22 33

(2020×̄) 0+0+0− 222 18
(2121×̄) 1

2
+ 1

2
+0− 222 19

(2 2×) 0− 0− 0+ 2∗ 14

Table 25.12. Plane group: 22×; Relations γ2 δ2×Z :
1 = γ2 = δ2 = γδZ2

Fibrifold Couplings for Point Intern.
name γ δ ε ζ (I) group no.

[20202020] 0+0+0+0+0− 2∗ 10
[20202121] 0+0+ 1

2
+ 1

2
+0− 2∗ 12

[21212121]
1
2
+ 1

2
+ 1

2
+ 1

2
+0− 2∗ 11

(20202020) 0+0+0+0+ 22 3
(20202121) 0+0+ 1

2
+ 1

2
+ 22 5

(21212121)
1
2
+ 1

2
+ 1

2
+ 1

2
+ 22 4

(20202 2) 0+0+0− 0− 2∗ 13
(20212 2) 0+ 1

2
+0− 1

2
− 2∗ 15

(21212 2)
1
2
+ 1

2
+0− 0− 2∗ 14

(2 2 2 2) 0− 0− 0− 0− × 2

Table 25.13. Plane group: 2222; Relations γ2 δ2 ε2 ζ2 :
1 = γ2 = δ2 = ε2 = ζ2 = γδεζ
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Fibrifold Couplings for Point Intern.
name λ P Q (I) group no.
[∗0·∗0·] 0+0+0+0− ∗22 25
[∗1·∗1·] 1

2
+0+0+0− ∗22 38

[∗0·∗0:] 0+0+ 1
2
+0− ∗22 35

[∗1·∗1:] 1
2
+0+ 1

2
+0− ∗22 42

[∗0:∗0:] 0+ 1
2
+ 1

2
+0− ∗22 28

[∗1:∗1:] 1
2
+ 1

2
+ 1

2
+0− ∗22 39

(∗·∗·) 0+0+0+ ∗ 6
(∗·∗:) 0+0+ 1

2
+ ∗ 8

(∗:∗:) 0+ 1
2
+ 1

2
+ ∗ 7

(∗̄·∗̄·) 0− 0+0+ ∗22 26
(∗̄·∗̄:) 0− 0+ 1

2
+ ∗22 36

(∗̄:∗̄:) 0− 1
2
+ 1

2
+ ∗22 29

(∗·∗0) 0+0+0− ∗22 28
(∗·∗1) 1

2
+0+0− ∗22 40

(∗:∗0) 0+ 1
2
+0− ∗22 32

(∗:∗1) 1
2
+ 1

2
+0− ∗22 41

(∗̄·∗̄0) 0− 0+0− ∗22 39
(∗̄·∗̄1) 1

2
− 0+0− ∗22 46

(∗̄:∗̄0) 0− 1
2
+0− ∗22 45

(∗̄:∗̄1) 1
2
− 1

2
+0− ∗22 41

(∗0∗0) 0+0− 0− 22 3
(∗1∗1) 1

2
+0− 0− 22 5

(∗̄0∗̄0) 0− 0− 0− ∗22 27
(∗̄0∗̄1) 0− 0− 1

2
− ∗22 37

(∗̄1∗̄1) 0− 1
2
− 1

2
− ∗22 30

Table 25.14. Plane group: ∗∗; Relations λ∗P ∗Q :
1 = P 2 = Q2 = [λ, P ] = [λ,Q]

Fibrifold Couplings for Point Intern.
name P Z (I) group no.
[∗·×0] 0+0+0− ∗22 38
[∗·×1] 0+ 1

2
+0− ∗22 44

[∗:×0]
1
2
+0+0− ∗22 46

[∗:×1]
1
2
+ 1

2
+0− ∗22 40

(∗·×) 0+0+ ∗ 8
(∗:×) 1

2
+0+ ∗ 9

(∗·×̄) 0+0− ∗22 31
(∗:×̄) 1

2
+0− ∗22 33

(∗0×0) 0− 0+ ∗22 30
(∗0×1) 0− 1

2
+ ∗22 34

(∗1×) 0− 1
4
+ ∗22 43

(∗×̄) 0− 0− 22 5

Table 25.15. Plane group: ∗×; Relations ∗P×Z :
1 = P 2 = [P,Z2]

Fibrifold Couplings for Point Intern.
name Y Z (I) group no.
[×0×0] 0+0+0− ∗22 26
[×0×1] 0+ 1

2
+0− ∗22 36

[×1×1]
1
2
+ 1

2
+0− ∗22 31

(××0) 0+0+ ∗ 7
(××1) 0+ 1

2
+ ∗ 9

(×̄×0) 0− 0+ ∗22 29
(×̄×1) 0− 1

2
+ ∗22 33

(×̄×̄) 0− 0− 22 4

Table 25.16. Plane group: ××; Relations × Y ×Z :
1 = Y 2Z2

Fibrifold Couplings for Point Intern.
name X Y (I) group no.
[◦0] 0+0+0− ∗ 6
[◦1] 1

2
+ 1

2
+0− ∗ 8

(◦) 0+0+ 1 1

(◦̄0) 0− 0− ∗ 7
(◦̄1) 0− 1

2
− ∗ 9

Table 25.17. Plane group: ◦; Relations ◦X Y : 1 = [X, Y ]
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Examples and Exercises

Try your hand at verifying the couplings in the following pictures!

1. (∗·6 312) with coupling 0+ 1
3
− 0−.

2. (∗.6.3.2), with coupling 0 + 0 + 0+
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3. (∗623220) with coupling 0− 2
3
− 0−.

4. (∗:6·3·2) with coupling 1
2
+0+0+. 5. (∗:6 312) with coupling 1

2
+ 1

3
− 0−.

6. (∗613121) with coupling 1
2
− 1

3
− 0−. 7. (∗6:3:2) with coupling 0− 1

2
+ 1

2
+.
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8. (613121) with coupling 1
6
+ 1

3
+ 1

2
+.

9. (603020) with coupling 0+0+0+. 10. (623220) with coupling 1
3
+ 2

3
+0+.

11. (633021) with coupling 1
2
+0+ 1

2
+. 12. (6 302) with coupling 0− 0+0−.
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13. (41∗:2) with coupling 1
4
+ 1

2
+.

14. (40∗·2) with coupling 0+0+ 15. (42∗:2) with coupling 1
2
+ 1

2
+.

16. (41∗·2) with coupling 1
4
+0+. 17. (4∗̄:2) with coupling 0− 1

2
+.
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18. (×̄×1) with coupling 0− 1
2
+.

19. (×̄×̄) with coupling 0− 0−. 20. (×̄×0.) with coupling 0− 0+

21. [×0×0] with coupling 0+0+0−. 22. (××1) with coupling 0+ 1
2
+.
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23. (2021×) with coupling 0+ 1
2
+ 1

4
+.

24. (2020×0) with coupling 0+0+0+. 25. (2020×1) with coupling 0+0+ 1
2
+.

26. (2121×̄) with coupling 1
2
+ 1

2
+0−. 27. (2020×̄) with coupling 0+0+0−.
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Higher Still

Four-Dimensional Point Groups

There are only a few types of higher dimensional group for which
we have complete enumerations. Next in sequence are the four-
dimensional point groups, which of course can also be regarded as
three-dimensional spherical groups, since they act on the unit sphere
x2+y2+z2+t2 = 1. Their enumeration was started by Goursat [16],
continued by Seifert and Threlfall [28], and also by Du Val [29]—we
shall comment on their roles later.

The groups are usually described in terms of quaternions, because
the general orthogonal operation has the form

[q, r] : x→ q−1xr or

∗[q, r] : x→ q−1x̄r

accordingly as its determinant is plus or minus 1.
We should only briefly explain Tables 26.1, 26.2, and 26.3, which

are quoted from On Quaternions and Octonians [26]. The name
of the typical group has a form ± 1

f [L × R] if it contains −1 (the
negative of the identity matrix), so that its elements come in pairs
±g, and otherwise + 1

f [L×R]. These names are appropriate because,

up to sign, the group contains the proportion 1
f of the elements of a

direct product of the groups L and R that consist of left and right
multiplications, respectively.

A generator [l, r] denotes the map x → l̄xr while the names of
individual quaternions are given below Table 26.1. When only a +
or − is given, it is to be applied to a generator written explicitly

(opposite page) A portion of the polydodecahedron, stereographically projected into 3-
space.

383
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Group Generators

±[I ×O] [iI , 1], [ω, 1], [1, iO], [1, ω];

±[I ×T ] [iI , 1], [ω, 1], [1, i], [1, ω];

±[I ×D2n] [iI , 1], [ω, 1], [1, en], [1, j];

±[I ×Cn] [iI , 1], [ω, 1], [1, en];

±[O×T ] [iO, 1], [ω, 1], [1, i], [1, ω];

±[O×D2n] [iO, 1], [ω, 1], [1, en], [1, j];

± 1
2 [O×D2n] [i, 1], [ω, 1], [1, en];[iO, j]

± 1
2 [O×D4n] [i, 1], [ω, 1], [1, en], [1, j];[iO, e2n]

± 1
6 [O×D6n] [i, 1], [j, 1], [1, en];[iO, j], [ω, e3n]

±[O×Cn] [iO, 1], [ω, 1], [1, en];

± 1
2 [O×C2n] [i, 1], [ω, 1], [1, en];[iO, e2n]

±[T ×D2n] [i, 1], [ω, 1], [1, en], [1, j];

±[T ×Cn] [i, 1], [ω, 1], [1, en];

± 1
3 [T ×C3n] [i, 1], [1, en];[ω, e3n]

± 1
2 [D2m×D4n] [em, 1], [1, en], [1, j];[j, e2n]

±[D2m×Cn] [em, 1], [j, 1], [1, en];

± 1
2 [D2m×C2n] [em, 1], [1, en];[j, e2n]

+ 1
2 [D2m×C2n] − , − ; +

± 1
2 [D4m×C2n] [em, 1], [j, 1], [1, en];[e2m, e2n]

Key: iI =
i+ σj + τk

2
(σ =

√
5− 1

2
, τ =

√
5 + 1

2
),

iO =
j + k√

2
, ω =

−1 + i+ j + k

2
, iT = i, en = eπi/n

Table 26.1. Chiral groups, I. These are most of the “metachiral” groups—some others appear
in the last few lines of Table 26.2.

in a previous line. Generators before a “;” are pure left or right
multiplications; those after involve both.

We now comment on the history of the enumerations. What
Goursat enumerated, strictly speaking, were the groups of motions
in elliptic three-space. This is equivalent to finding the subgroups
of SO4 that contain −1. He missed the group ±1

4(D4m × D4n), as
was noted by Seifert and Threlfall and independently by J. Sun-
day. Seifert and Threlfall extended this to the general case and
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Group Generators Coxeter Name

±[I× I] [iI , 1], [ω, 1], [1, iI], [1, ω]; [3, 3, 5]+

± 1
60 [I × I] ;[ω, ω], [iI , iI ] 2.[3, 5]+

+ 1
60 [I × I] ; + , + [3, 5]+

± 1
60 [I × I] ;[ω, ω], [iI , i

′
I ] 2.[3, 3, 3]+

+ 1
60 [I × I] ; + , + [3, 3, 3]+

±[O×O] [iO, 1], [ω, 1], [1, iO], [1, ω]; [3, 4, 3]+ : 2

± 1
2 [O×O] [i, 1], [ω, 1], [1, i], [1, ω];[iO, iO] [3, 4, 3]+

± 1
6 [O×O] [i, 1], [j, 1], [1, i], [1, j];[ω, ω], [iO, iO] [3, 3, 4]+

± 1
24 [O×O] ;[ω, ω], [iO, iO] 2.[3, 4]+

+ 1
24 [O×O] ; + , + [3, 4]+

+ 1
24 [O×O] ; + , − [2, 3, 3]+

±[T ×T ] [i, 1], [ω, 1], [1, i], [1, ω]; [+3, 4, 3+]

± 1
3 [T ×T ] [i, 1], [j, 1], [1, i], [1, j];[ω, ω] [+3, 3, 4+]

∼= ± 1
3 [T ×T ] [i, 1], [j, 1], [1, i], [1, j];[ω, ω] ”

± 1
12 [T ×T ] ;[ω, ω], [i, i] 2.[3, 3]+

∼= ± 1
12 [T ×T ] ;[ω, ω], [i,−i] ”

+ 1
12 [T ×T ] ; + , + [3, 3]+

∼= + 1
12 [T ×T ] ; + , + ”

±[D2m×D2n] [em, 1], [j, 1], [1, en], [1, j];

± 1
2 [D4m×D4n] [em, 1], [j, 1], [1, en], [1, j];[e2m, e2n]

± 1
4 [D4m×D4n] [em, 1], [1, en];[e2m, j], [j, e2n] Conditions

+ 1
4 [D4m×D4n] − , − ; + , + m,n odd

± 1
2f [D2mf ×D

(s)
2nf ] [em, 1], [1, en];[emf , e

s
nf ], [j, j] (s, f) = 1

+ 1
2f [D2mf ×D

(s)
2nf ] − , − ; + , + m,n odd, (s, 2f) = 1

± 1
f [Cmf ×C

(s)
nf ] [em, 1], [1, en];[emf , e

s
nf ] (s, f) = 1

+ 1
f [Cmf ×C

(s)
nf ] − , − ; + m,n odd, (s, 2f) = 1

Table 26.2. Chiral groups, II. These groups are mostly “orthochiral,” with a few “parachiral”
groups in the last few lines. The generators should be taken with both signs except in the
haploid cases, for which we just indicate the proper choice of sign.
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Group Extending element Coxeter Name

±[I× I] · 2 ∗ [3, 3, 5]

± 1
60 [I× I] · 2 ∗ 2.[3, 5]

+ 1
60 [I× I] · 23 or 123 or 21 ∗ or − ∗ [3, 5] or [3, 5]◦

± 1
60 [I× I] · 2 ∗ 2.[3, 3, 3]

+ 1
60 [I× I] · 23 or 21 ∗ or − ∗ [3, 3, 3]◦ or [3, 3, 3]

±[O×O] · 2 ∗ [3, 4, 3] : 2

± 1
2 [O×O] · 2 or 2 ∗ or ∗ [1, iO] [3, 4, 3] or [3, 4, 3]+·2
± 1

6 [O×O] · 2 ∗ [3, 3, 4]

± 1
24 [O×O] · 2 ∗ 2.[3, 4]

+ 1
24 [O×O] · 23 or 21 ∗ or − ∗ [3, 4] or [3, 4]◦

+ 1
24 [O×O] · 23 or 21 ∗ or − ∗ [2, 3, 3]◦ or [2, 3, 3]

±[T ×T ] · 2 ∗ [3, 4, 3+]

± 1
3 [T ×T ] · 2 ∗ [+3, 3, 4]

± 1
3 [T ×T ] · 2 ∗ [3, 3, 4+]

± 1
12 [T ×T ] · 2 ∗ 2.[+3, 4]

± 1
12 [T ×T ] · 2 ∗ 2.[3, 3]

+ 1
12 [T ×T ] · 23 or 21 ∗ or − ∗ [+3, 4] or [+3, 4]◦

+ 1
12 [T ×T ] · 23 or 21 ∗ or − ∗ [3, 3]◦ or [3, 3]

±[D2n×D2n] · 2 ∗
± 1

2 [D4n×D4n] · 2 or 2 ∗ or ∗ [1, e2n]
± 1

4 [D4n×D4n] · 2 ∗ Conditions

+ 1
4 [D4n×D4n] · 23 or 21 ∗ or − ∗ n odd

± 1
2f [D2nf ×D

(s)
2nf ] · 2(α,β) or 2 ∗[eα2nf , eαs+βf

2nf ] or ∗ [1, j]
+ 1

2f [D2nf ×D
(s)
2nf ] · 2(α,β) or 2 ∗[eα2nf , eαs+βf

2nf ] or ∗ [1, j] See [23,

± 1
f [Cnf ×C

(s)
nf ] · 2(γ) ∗[1, eγ(f,s+1)

2nf ]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

pages 50–53]

+ 1
f [Cnf ×C

(s)
nf ] · 2(γ) ∗[1, eγ(f,s+1)

2nf ]

Table 26.3. Achiral groups.

studied the orbifolds (as they are now known) of some of the groups.
Du Val’s elegant book on Quaternions and Homographies also con-
tains an enumeration, but sadly omits the relatives of the group
±1

4(D4m,D4n) that Goursat missed. There is a minor respect in
which all enumerations before that of [26] were incomplete—namely
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some of the groups depend on several parameters and the exact con-
ditions on the parameters for two groups to be isomorphic were first
given in [26].

The four-dimensional space groups have also been enumerated.
However, their enumeration takes up an entire book [2] and so we
cannot summarize it here.

Higher-dimensional point groups have also been listed, but in
more and more abbreviated ways as the dimension increases.

Regular Polytopes

The term regular polytope is usually understood to mean “convex
regular polytope.” These are

• in one dimension, the line segment with Schäfli symbol {};

• in two dimensions, the regular polygons with symbols {3}, {4},
{5}, . . .;

• in three dimensions, {3, 3}, {3, 4}, {3, 5}, {4, 3}, {5, 3};

• in four dimensions,

– {3, 3, 3} the simplex, or 5-cell,

– {4, 3, 3} the tesseract, or 8-cell,

– {3, 3, 4} the orthoplex, or 16-cell,

– {3, 4, 3} the polyoctahedron, or 24-cell,

– {5, 3, 3} the polydodecahedron, or 120-cell,

– {3, 3, 5} the polytetrahedron, or 600-cell;

• in n ≥ 5 dimensions,

– {3, 3, . . . , 3, 3} the n-simplex,

– {4, 3, . . . , 3, 3} the n-hypercube,

– {3, 3, . . . 3, 4} the n-orthoplex.
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A gratuitous but pretty figure of a 5-coloring of the polydodecahedron.

Since lavish treatments are available elsewhere, we won’t say
much more about these here. But we will comment briefly on our
proposed names, first for the polytopes that exist in all dimensions.

The well-established word “simplex” for {3, 3, . . . 3, 3} was appar-
ently first used by Schoute in 1902, while “hypercube” for {4, 3, . . . ,
3, 3} appears in a 1909 Scientific American. We adopt Conway and
Sloan’s “orthoplex” (abbreviating “orthant complex”) for {3, 3, . . .
3, 4}, which is appropriate since this has one cell for each orthant.

In the generic name “polytope” (introduced by Alicia Boole Stott),
the suffix “-tope” refers to the shape of the cells. Since the cells of
{5, 3, 3}, for example, are dodecahedra, this polytope can correctly
be called the “polydodecahedron,” and similarly {3, 4, 3} the “poly-
octahedron.”

There are, of course, three four-dimensional polytopes with tetra-
hedral cells, {3, 3, 3}, {3, 3, 4}, and {3, 3, 5}; but since the first two
have already been named, and “poly-” really means “many,” we le-
gitimately reserve the name “polytetrahedron” for {3, 3, 5}, which
has no fewer than six hundred tetrahedral cells! The “poly-” ter-
minology has the great advantage of extending nicely to the regular
star polytopes discussed later.

Finally we remark that “hypercube” is often used also in four
dimensions, but we have adopted Hinton’s 1888 term “tesseract,”
which refers only to the four-dimensional case.
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Other terms that have been used are “pentatope” for {3, 3, 3},
“measure-polytope” for {4, 3, . . . , 3, 3}, and “cross-polytope” for
{3, 3, . . . , 3, 4}.

Four-Dimensional Archimedean Polytopes

The four-dimensional analogs of the Archimedean polyhedra were
enumerated by Conway and Guy [7]. Since they only published a
brief announcement, we shall describe the polytopes here. Almost
all of them can be obtained by Wythoff’s construction from the four-
dimensional reflection groups, the irreducible ones having Coxeter
diagrams:

54

The exceptions are the prisms on the antiprisms, snub cube and
snub dodecahedron, which we don’t illustrate, together with two very
interesting ones we do. The latter are the “semi-snub polyoctahe-
dron,” discovered in 1900 by Thorold Gosset [15], and the “grand
antiprism,” discovered by Conway and Guy in 1965 [7].

The Coxeter diagram for a reflection group has a node for each
mirror of the kaleidoscope that outlines its fundamental region. If a
pair of mirrors meets at angle π/n, n ≥ 4, the corresponding nodes
are connected by a line marked n; we omit the marking for n = 3
and omit the line for n = 2.

The vertices of the typical polytope produced from a Coxeter
diagram by Wythoff’s construction are just the images of a suitably
chosen point, which is sufficiently well indicated by ringing just those
nodes corresponding to mirrors not containing the point.

There is an easier description when the reflection group is that
of an n-dimensional regular polytope P , when the nodes can be
numbered 0, 1, 2, ..., n − 1. Then if we ring only node i, we obtain
the polytope i-ambo P , whose vertices are just the centers of the
i-dimensional cells of P (so that “0-ambo P” is P itself). If instead
we ring two nodes i and j, we obtain ij-ambo P , whose typical
vertex is a suitably chosen point on the line-segment joining the
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centers of incident i-dimensional and j-dimensional cells of P . In
general, the typical vertex of the n-dimensional polytope ij . . . k-
ambo P is a suitably chosen interior point of a simplex whose vertices
are the centers of mutually incident i-dimensional, j-dimensional, . . .,
k-dimensional cells of P .

Such polytopes usually have two names, because if Q is the regu-
lar polyhedron dual to P , then ij . . . k-ambo P = IJ . . . K-ambo Q,
where i+ I = j + J = . . . = k+K = n− 1. We have systematically
chosen the name with the “lower” ambo-numbers.

This is not the only kind of repetition that occurs—there are cer-
tain cases in which extra symmetries can be adjoined. For example,
each polytope P obtained by Wythoff’s construction from the only
finite four-dimensional reflection group that is not that of a regular
polytope can also be obtained from one that is. For the group is

0 1
2

2′

and we can always arrange that the upper and lower nodes of this are
either both ringed or both unringed, when adjoining the reflection 3
that interchanges them enlarges the group to

4
0 1

2

3

Then P is seen to be the i . . . j-ambo orthoplex, where i, . . . , j are
those nodes from 0,1,2 that were ringed in the original diagram.

In a similar way, we can adjoin an extra symmetry to see that
the three polytopes

44 4

are also obtainable from the polyoctahedral group, as

44 4
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The reducible reflection groups give rise to two kinds of prisms:
those with one node disconnected from Coxeter diagram for a three-
dimensional Archimedean or regular polyhedron, and the “proprism”
(product prism) with Coxeter diagram

p q

a portion of which appears thus (with p = 10, q = 15):

p

q

4

p

q

4

4

On the following pages, we illustrate the Archimedean polytopes
arising by Wythoff’s construction on the reducible four-dimensional
reflection groups. The vertex figure and ring notation for the gen-
eral polytope are followed by the generalized Schläfli symbol as in
Chapter 21. Where the valence of a vertex or the number of sides
of a face depends on the diagram, we have indicated this as (p), (q),
or (r).

We then illustrate portions of the polytopes that the construction
produces from the most interesting group [5, 3, 3] in stereographic
projection, accompanied by names in the ambo notation, and a list
of the polyhedra at each vertex, as in Chapter 21; we also name the
analogous polyhedra in the groups [4, 3, 3], [3, 3, 3], and [3, 4, 3].
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Regular Polytopes

p

(q) (r)

p q r

p q r

5

the (0-ambo) polydodecahedron, D(4)

4-analog: the tesseract, C(4)

5

the (0-ambo-) polytetrahedron, T(20)

4-analog: the orthoplex, T(8)

common 3-analog: the simplex, T(4)

further analog: the polyoctahedron, O(6)
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1-ambo Polytopes

p

q

(r)

p q r

p
q

q r

4

5

the 1-ambo polydodecahedron, ID(3), T(2)

4-analog: the 1-ambo tesseract, CO(3),

T(2)

5

the 1-ambo polytetrahedron, O(5), I(2)

4-analog: is the polyoctahedron

common 3-analog: the 1-ambo simplex, O(3), T(2)

further analog: the 1-ambo polyoctahedron, CO(3), C(2)
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Truncated or 01-ambo Polytopes

q

2p

(r)

p q r

q
q

r

r

2p

5

the 01-ambo (or truncated) polydodecahe-

dron, tD(3), T(1)

4-analog: the 01-ambo (or truncated)

tesseract, tC(3), T(1)

5

the 01-ambo (or truncated) polytetrahedron,

tT(5), I(1)

4-analog: the 01-ambo (or truncated)

orthoplex, tT(4), O(1)

common 3-analog: the 01-ambo (or truncated) simplex, tT(3), T(1)

further analog: the 01-ambo (or truncated) polyoctahedron, tO(3), C(1)
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Bitruncated or 12-ambo Polytopes

p

r

2q

p q r

p

r
2q

2q

5

the 12-ambo (or bitruncated) polydodecahedron or polytetrahedron, tI(2), tT(2)

4-analog: the 12-ambo (or bitruncated) tesseract or orthoplex, tO(2),tT(2)

3-analog: the 12-ambo (or bitruncated) simplex, tT(4)

further analog: the 12-ambo (or bitruncated) polyoctahedron, tC(4)
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02-ambo Polytopes

p

q
r

4

p q r

p

q
q

r
r

4

4

44

5

the 02-ambo polydodecahedron, RID(2),

P3(2), O(1)

4-analog: the 02-ambo tesseract, RCO(2),

P3(2), O(1)

5

the 02-ambo polytetrahedon, CO(2), P5(2),

ID(1)

4-analog: is the 1-ambo polyoctahedron

common 3-analog: the 02-ambo simplex, CO(2), P3(2), O(1)

further analog: the 02-ambo polyoctahedron, RCO(2), P3(2), CO(1)
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03-ambo Polytopes

pr
(q)

4

p q r

p
p

q

q

r
r

4

4

5

the 03-ambo polydodecahedron or polytetrahedron, D(1),P5(3), P3(3), T(1)

4-analog: the 03-ambo tesseract or orthoplex, C(1+3), P3(3), T(1)

3-analog: the 03-ambo simplex, T(2), P3(6)

further analog: the 03-ambo polyoctahedron, O(2), P3(8)
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012-ambo Polytopes

r

2p
2q

4

p q r

2p

2q

2q

4

4

r
r

5

the 012-ambo polydodecahedron, tID(2),

P3(1), tT(1)

4-analog: the 012-ambo tesseract, tCO(2),

P3(1), tT(1)

5

the 012-ambo polytetrahedron, tO(2), P5(1),

tI(1)

4-analog: is the 01-ambo (or truncated)

polyoctahedron

common 3-analog: the 012-ambo simplex, tO(2), P3(1), tT(1)

further analog: the 012-ambo polyoctahedron, tCO(2), P3(1), tC(1)
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013-ambo Polytopes

q

r

2p
4

p q r

q

q

r
r

2p

2p

4

4

4

44

5

the 013-ambo polydodecahedron, tD(1),

P10(2), P3(1), CO(1)

4-analog: the 013-ambo tesseract, tC(1),

P8(2), P3(1), CO(1)

5

the 013-ambo polytetrahedron, tT(1), P6(2),

P5(1), RID(1)

4-analog: the 013-ambo orthoplex,

tT(1), P6(2), C(1), RCO(1)

common 3-analog: the 013-ambo simplex, tT(1), P6(2), P3(1), CO(1)

further analog: the 013-ambo polyoctahedron, tO(1), P6(2), P3(1), RCO(1)
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Fully Expanded or 0123-ambo Polytopes

2p
2q

2r

4

p q r

2p

2p

2q

2q

2r

2r

4

4

4

4

4

4

5

the 0123-ambo polydodecahedron or polytetrahedron, tID(1), P10(1),P6(1), tO(1)

4-analog: the 0123-ambo tesseract or orthoplex, tCO(1), P8(1), P6(1), tO(1)

3-analog: the 0123-ambo simplex, tO(2), P6(2)

further analog: the 0123-ambo polyoctahedron, tCO(2), P6(2)
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The polytopes not obtainable from Wythoff’s construction are,
first, the prisms on the three-dimensional antiprisms and snub poly-
hedra, for which we give only the vertex figures

p

4 4
3

3

n

The vertex figures for the prisms on the three-dimensional antiprisms (left, with n ≥ 3) and
snub polyhedra (right, with p = 4, 5).

and, second, two very interesting polytopes, the “semi-snub polyoc-
tahedron,” discovered in 1900 by Thorold Gosset, and the “grand
antiprism” found by Conway and Guy in 1965.

Gosset’s Semi-snub Polyoctahedron

Coxeter called this polytope the “snub 24-cell,” but since the op-
eration here is really “semi-snubbing,” our formal name is “semi-
snub polyoctahedron.” The cells of the 24-cell are octahedra, with
a cubical vertex figure, a few of which are shown here, with a nice
six-coloring.
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An icosahedron can be inscribed within each octahedron of the
24-cell

and clusters of five tetrahedra can replace each of the 24-cell’s ver-
tices, producing Gosset’s semi-snub polytope. The 600-cell is pro-
duced in turn by replacing each of the twenty-four icosahedra with
twenty tetrahedra.

5

4

The Grand Antiprism

This figure emerged only from the Conway–Guy enumeration and,
like the Gosset polytope, can be described as the convex hull of
some vertices of {3, 3, 5}. This time the omitted vertices form two
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equatorial decagons that lie in orthogonal planes. This replaces 300
of the original 600 tetrahedral cells by 20 pentagonal antiprisms, one
for each of the omitted vertices.

There are two interlocked rings of pentagonal antiprisms in the
grand antiprism, with three layers of tetrahedra between them. The
tetrahedra of the middle layer, shown below on the right, have one
edge on antiprisms of each ring.

All three layers of tetrahedra are shown in the next figure; the
vertex figure and Schläfli symbol appear on the right.

5

4

4
4

5

5

3
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Regular Star-Polytopes

Regular star-polytopes exist only in two, three, and four dimensions.
By rights the two- and three-dimensional ones should have appeared
earlier in our book, but we have put them here as to incorporate
them with the discussion of the four-dimensional ones.

Dimension 2

The regular star-polygons were discussed by Thomas Bradwardine
in the fourteenth century. A typical one with Schläfli symbol {nd }
has the same vertices as the regular n-gon, but its edges connect
vertices that are d steps apart, where 1 < d < n/2 and (d, n) = 1.

{52} {72} {73} {83} {92} {94}

The density of {nd } is d, meaning that its edges surround the center
d times.

Dimension 3

In three-dimensional space, there are only four star-regular polytopes
in three dimensions, namely the two discovered by Kepler early in
the seventeeth century,

{52 , 5} the stellated dodecahedron,

{52 , 3} the great stellated dodecahedron,

and their duals, discovered by Poinsot in the nineteenth century,

{5, 52} the great dodecahedron,

{3, 52} the great icosahedron.
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{52 , 5} {5, 52}{52 , 3} {3, 52}

The list was proved complete shortly afterwards by Cauchy. The
hexagon of Figure 26.1 illustrates all the relationships between all six
pentagonal polyhedra. Polyhedra on the same horizontal line (joined
by brown arrows) are mutually dual, while a blue arrow stellates a
polyhedron, that is to say, takes it to another polyhedron whose
edges are longer segments lying in the same lines.

Similarly, a green arrow greatens a polyhedron to another one
whose faces are larger polygons of the same shape that lie in the
same planes. The algebraic conjugation that changes the sign of

√
5

in all coordinates interchanges 5 with 5
2 in the Schläfli symbols and

takes each vertex of the hexagon to its opposite.

1

3{52 , 5}{5, 52}

{52 , 3}{3, 52}

{3, 5}{5, 3}

gr
ea
te
ni
ng

stellation

ID

gD sD

gsDgI

duality

7

density

Figure 26.1. Relationships among the three-dimensional star-polytopes.
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The four polyhedra of density 1 or 7 are topological spheres, but
the two ({5, 52} and {52 , 5}) of density 3 are surfaces of genus 4 since
they are orientable of Euler characteristic 12− 30 + 12 = −6.

Dimension 4

Similarly, in four dimensions, the two convex pentagonal polytopes
{5, 3, 3} and {3, 3, 5} are extended by the ten star-regular polytopes
to a set of twelve that correspond to the vertices of a cuboctahedron.

The colored lines indicate various operations: brown for duality,
blue for s = stellation, green for g = greatening, and a new operation
red for a = aggrandisement, which replaces the three-dimensional
cells by larger ones of the same shape lying in the same 3-spaces.
Once again, the

√
5 conjugation replaces each vertex by its opposite.

In the symbols at the nodes are abbreviations of our suggested
names:

4

1

density{3, 3, 5}
pT

{5, 3, 3}
pD

{3, 5, 52}
pI

{52 , 5, 3}
spD

{5, 52 , 5}
gpD

{5, 3, 52}
apD

{52 , 3, 5}
gspD

{52 , 5, 52}
aspD{5, 52 , 3}

gapD

{3, 52 , 5}
gpI

{3, 3, 52}
apT

{52 , 3, 3}
gaspD

6

20

66

76

191

Figure 26.2. Relationships among the four-dimensional starry polytopes.
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“g” should be pronounced “great,”
“a” should be pronounced “grand,”
“s” should be pronounced “stellated,”
“p” should be pronounced “poly-,”
“D” should be pronounced “dodecahedron,”
“T” should be pronounced “tetrahedron,”
“I” should be pronounced “icosahedron.”

Thus, {52 , 3, 3} is

“The great grand stellated polydodecahedron” (gaspD)!

Logically, the small letters g, a, s, and p can be written in any order;
for instance, this is also the grand poly-(great stellated dodecahe-
dron) since its cells are great stellated dodecahedra that are larger
than those of the poly-(great stellated dodecahedron) but lie in the
same 3-spaces.

All of these polytopes were discovered by Schläfli, but he rejected
some of them on the grounds that they were not manifolds, as re-
quired by his definition. The ones that are manifolds are the six
outermost ones in Figure 26.2. The others have 5’s adjacent to 5

2 ’s
in the Schläfli symbol and so have points whose neighborhood is a
cone on the genus-4 surface {5, 52} or {52 , 5}. The only non-spherical
3-manifold that arises is the interesting one common to {5, 3, 52} and
{52 , 3, 5}.

Coordinates

The famous Golden Number τ is (
√
5+1)/2 with inverse σ = (

√
5−

1)/2 = τ − 1, and the Golden Ring is Z[τ ]. The Icosians are certain
quaternions. We write [a, b, c, d] for the Icosian (a+ bi+ cj + dk)/2,
whose norm is (a2 + b2 + c2 + d2)/4. The definition of an Icosian is
that its coordinates a, b, c, d must be in the Golden Ring and con-
gruent modulo 2 either to each other or to some even permutation
of 0, 1, σ, τ .

There are precisely 120 Icosians of norm 1, namely the even per-
mutations of

A = [±2, 0, 0, 0], B = [±1,±1,±1,±1], C = [0,±1,±σ,±τ ],
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which are the vertices of a polytetrahedron. (A alone yields an or-
thoplex, B a tesseract, A and B together a polyoctahedron.) In a
similar way, the 600 Icosians of norm 2 are the vertices of a polydo-
decahedron. We write {norm} for the set of all Icosians of a given
norm.

In this notation, the vertices and the centers of the edges, faces,
and cells of all twelve pentagonal regular 4-polytopes are given below.
Note that the set of vectors is always proportional to one of {1},
{2}, {τ√5}, or {3}, which have respectively 120, 600, 720, or 1200
elements.

Schläfli Vertices Edge Face Cell Abbrev.
Symbol Centers Centers Centers Name

{5, 3, 3} {2} {3σ2}/2 {σ√5}/5 {1}/2 pD

{3, 3, 5} {1} {τ√5}/2 {3τ2}/3 {2}/4 pT

{3, 5, 52} {1} {τ√5}/2 {3τ2}/3 {τ2}/2 pI

{ 52 , 5, 3} {1} {3}/2 {τ√5}/√5 {τ2}/2 spD

{5, 52 , 5} {1} {τ√5}/2 {τ√5}/√5 {τ2}/2 gpD

{5, 3, 52} {1} {τ√5}/2 {τ√5}/√5 {1}/2 aspD

{ 52 , 3, 5} {1} {σ√5}/2 {σ√5}/√5 {1}/2 gpD

{ 52 , 5, 5} {1} {σ√5}/2 {σ√5}/√5 {σ2}/2 aspD

{5, 52 , 3} {1} {3}/2 {σ√5}/√5 {σ2}/2 gapD

{3, 52 , 5} {1} {σ√5}/2 {3σ2}/3 {σ2}/2 gpI

{3, 3, 52} {1} {σ√5}/2 {3σ2}/3 {2}/4 apT

{ 52 , 3, 3} {2} {3τ2}/2 {τ√5}/5 {1}/2 gaspD

Star-Archimedean Things

There are also starry analogs of the Archimedean polyhedra, which
were tentatively classified in a beautiful 1954 paper by Coxeter,
Miller, and Longuet-Higgins. Their list was proved complete by
Skilling, with the exception of an interesting but slightly problematic
polyhedron he discovered.

So far as we know, nobody has yet enumerated the analogs in
four or higher dimensions.

Since the only finite reflection groups in five dimensions are those
of the regular polytopes (see below), the five-dimensional polytopes
given by Wythoff’s construction all have ambo-names:
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ij . . . k-ambo simplex, or
ij . . . k-ambo orthoplex = IJ . . . K-ambo hypercube, where now
i+ I = j + J = . . . = k +K = 4.

A similar statement is true in nine or higher dimensions. However,
in six, seven and eight dimensions, there are some fascinating new
polytopes corresponding to the exceptional reflection groups E6, E7,
and E8 (see below).

Groups Generated by Reflections

This is the largest geometrically-defined class of groups that have
been completely enumerated in all dimensions. According to Cox-
eter’s famous theorems, the groups correspond to diagrams known
as Coxeter graphs (or sometimes as Dynkin diagrams).

The diagrams for the irreducible Euclidean groups are given in
Figure 26.3. The reducible groups are direct sums of the irreducible
ones.

There is an interesting correspondence between these and some
of the irreducible spherical groups, the so-called “crystallographic”
ones. These are obtained by omitting the (solid) extending nodes,
and their names are obtained by removing the tilde (so that Bn =
Cn.) However, there are a few non-crystallographic irreducible spher-
ical groups, whose diagrams we now give:

55

H2 H3 H5

n

Unfortunately, the theory of reflection groups is too rich in both
content and application for us to pursue it further here. However,
we shall briefly mention some objects associated with the most in-
teresting reflection groups.

Hemicubes

The n-dimensional hemicube is the convex hull of alternate vertices of
the n-dimensional hypercube. It can also be obtained by Wythoff’s
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4

4 44 44 4

444

Ã2 Ã3 Ã4 Ã5

B̃4B̃2 B̃3

C̃3 C̃4 C̃5

D̃4 D̃5 D̃6

Ẽ6 Ẽ7 Ẽ8

F̃4 G̃2

6

Figure 26.3. Coxeter graphs of the irreducible Euclidean groups.
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construction, and here are the Coxeter-Wythoff symbols for the first
few cases:

=
4

101 111 121 131

These symbols explain Coxeter’s notation for the (n+3)-dimensional
hemicube, 1n1. The first few cases are rather special. We start with
n = 0 because the “two-dimensional” hemicube is just a line segment.
The Coxeter-Wythoff symbol shows that the three-dimensional hemi-
cube is just a tetrahedron, while the four-dimensional one is an or-
thoplex, but with only half its symmetry, as is better revealed by the
generalized Schläfli symbols:

4

4

4
4

101
111

121
131

141

These show that in n dimensions the flag-rank is n−2 and there are
two types of cell, a simplex and the (n− 1)-dimensional hemicube.

The five-dimensional hemicube is special in that both its cells
are regular polyhedra, the 4-simplex and 4-orthoplex, although the
latter appears with only half symmetry. It is a member of a more
interesting series of polytopes, as follows.

The Gosset Series

Gosset discovered a much more interesting, but finite, series of poly-
topes, all of which have flag-rank 3. The first few are shown in the
following figure.
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4 4 4 4

prism (1-)ambo simplex 121 221

The disconnected Coxeter-Wythoff symbol in the three-dimensional
case shows that this is a Cartesian product of a triangle and an
interval, i.e., a triangular prism.

2-simplex abuts
only orthoplexes

2-orthoplex alternately abuts
simplexes and orthoplexes

The combinatorics of this case apply to all members of the Gosset
series; in every case, their cells are simplexes and orthoplexes, the
latter appearing with only half symmetry. Each simplex abuts only
orthoplexes, while the orthoplex cells alternately abut simplexes and
other orthoplexes.

The Coxeter-Wythoff symbol of the four-dimensional case shows
that it is the four-dimensional (1-)ambo simplex, whose vertices are
the edge midpoints of a 4-simplex. In this case the orthoplexes arise
as ambotetrahedra (i.e., octahedra) while the simplex cells are the
tetrahedra originating from the truncated vertices.

As we have already remarked, the five-dimensional case is the
5-hemicube 121. The six-dimensional case is the interesting Hesse
polytope (221 in Coxeter’s notation), which has 72 simplex cells and
27 orthoplex cells opposite its 27 vertices.

There are only three more cases. The Hesse polytope 321, the
Gosset polytope 421, and the Gosset tessellation 521.
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4 4

4 321

421 521

For n ≤ 4, it is natural to regard n21 as a tessellation on a spherical
surface of dimension n+3. However, 521 is a tessellation of Euclidean
8-space by simplexes and orthoplexes, and so its symmetry group is
infinite. Its vertices form the celebrated E8 root lattice.

The Gosset tessellation is vaguely analogous to the tessellation
of 3-space that we called tetroctahedrille (or tetroctille) except that
the orthoplexes in the Gosset tessellation abut both simplexes and
orthoplexes.

Although Gosset did not discover it, there is in fact one fur-
ther term to the series: the tessellation 621 of hyperbolic 9-space by
“ideal” simplexes and orthoplexes having all their vertices at infinity!

The Symmetries of Still Higher Things

There is a wonderful packing of spheres in eight dimensions, almost
certainly the densest, in which the spheres are centered at the points
of the E8 lattice. In 1965 John Leech discovered a similar packing of
spheres in 24 dimensions, again almost certainly the densest centered
at the points of what is now called the Leech lattice, Λ24. (Cohn and
Kumar have proved that no packings in dimensions 8 and 24 can be
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more than microscopically denser than those given by E8 and Λ24,
which are the densest lattice packings.)

One of us made his mathematical name by proving that the num-
ber of symmetries of the Λ24 packing that fix any given sphere is

8, 315, 553, 613, 086, 720, 000.

(Of course, the entire symmetry group is infinite.)
This is not all. In 1973 Berndt Fischer discovered, and in 1980

Bob Griess constructed, the so-called Monster group, which arises
as the symmetries of a 196883-dimensional polytope! Its order is

808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000

Where Are We?

We may seem to have come a long way, but in fact we have barely
scratched the surface of the mathematics of symmetry. A universe
awaits—Go forth!



- A -
Other Notations for the
Plane and Spherical Groups

The columns of Table A.1 correspond to different notation systems,
subject to the remarks noted below. The column titles are abbrevi-
ations:

OS our orbifold signature
I International notation
C&M Coxeter and Moser
S Speiser
N Niggli
P Pólya
G Guggenheim
F Fejes Tóth
C Cadwell

Our orbifold signature is the one presented in this book. The Inter-
national notation is the most used of the older notations. The C&M
notation is the notation used in Coxeter and Moser’s Generators and
Relations for Discrete Groups [11], which should be consulted for the
individual references.

The notations p3m1 and p1m3 were inadvertently interchanged
by Niggli, whose notation is otherwise taken from Spieser with the
addition of the Roman numerals in parentheses. This error is re-
peated in editions of Coxeter and Moser before 1980, by which time
Doris Schattschneider [24] and H. Martyn Cundy [12] had indepen-
dently discovered the interchange, and in many other places. We
thank Schattschneider for this information.

415



416 A. Other Notations for the Plane and Spherical Groups

OS I S P F
(C&M) (N) G C

∗632 p6m C
(I)
6v D6 W1

6

632 p6 C
(I)
6 C6 W6

∗442 p4m C
(I)
4 D∗

4 W1
4

4∗2 p4g CII
4v D◦

4 W2
4

442 p4 C
(I)
4 C4 W6

∗333 (
p3m1
p31m

) (
CII

3v

CI
3v

)
D∗

3 W1
3

3∗3 D◦
3 W2

3

333 p3 C
(I)
3 C3 W3

∗2222 pmm CI
2v D2kkkk W2

2

2∗22 cmm CIV
2v D2kgkg W1

2

22∗ pmg CIII
2v D2kkgg W3

2

22× pgg CII
2v D2gggg W4

2

2222 p2 C
(I)
2 C2 W2

∗∗ pm CI
s D1kk W2

1

∗× cm CIII
s D1kg W1

1

×× pg CII
2 D1gg W3

1◦ p1 C
(I)
1 C1 W1

Table A.1. The Euclidean plane groups.

OS C S W P&M I
∗532 [3,5] Ih P̄ I 53m
532 [3,5]+ I P I 532
∗432 [3,4] Oh W̄ Oi m3m
432 [3,4]+ O W O 432
∗332 [3,3] Td WT TO 4̄3m
3∗2 [3+,4] Th T̄ Ti m3
332 [3,3]+ T T T 23
∗22N [2,N] DNh

(
D̄N

D2NDN

) (
DNi

DN D2N

)
N/mmm or 2̄N m2

2∗N [2+,2N] DNd 2̄N 2m or N̄ m
22N [2,N]+ DN DN DN N2
∗NN [N] CNv DN CN CN DN Nm
N∗ [2,N+] CNh

(
C̄N

C2NCN

) (
CNi

CN C2N

)
N/m or 2̄N

N× [2+,2N+] S2N 2̄N or N̄
NN [N]+ CN CN CN N

Table A.2. The spherical groups.
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The abbreviations for Table A.2 are as follows:

OS our orbifold signature
C Coxeter
S Schoenflies
W Weyl
P&M Pólya and Meyer
I International notation

Table A.2 compares our signature with older notations for the spher-
ical groups; it is adapted from Coxeter and Moser’s Generators and
Relations for Discrete Groups, which should again be consulted for
the references. The reader should be warned that the fonts have been
uniformized for simplicity and that for N = 1 or 2 there are various
special notations and equivalences that we have ignored, since they
become obvious from the signature when digits 1 are omitted. Some
pairs of lines contain notations in braces, which as they stand are
for even values of N, but should be interchanged when N is odd.
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Start with a single shape.  Repeat it in some way—translation, reflection over a line, 
rotation around a point—and you have created symmetry.  

Symmetry is a fundamental phenomenon in art, science, and nature that has 
been captured, described, and analyzed using mathematical concepts for a long 
time.  Inspired by the geometric intuition of Bill Thurston and empowered by his 
own analytical skills, John Conway, together with his coauthors, has developed a 
comprehensive mathematical theory of symmetry that allows the description and 
classification of symmetries in numerous geometric environments.  

This richly and compellingly illustrated book addresses the phenomenological, 
analytical, and mathematical aspects of symmetry on three levels that build on one 
another and will speak to interested lay people, artists, working mathematicians, and 
researchers.    

K00526
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