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Preface

This book has been brewing for a long time. John Conway
was always interested in geometrical groups and devised
particular notations for these when he was teaching at
Cambridge University. However after Bill Thurston shared
the orbifold idea in 1985 John dropped those notations
forever and devised the signature notation used in this
book.

John shared the news with scores of audiences ranging
from the Princeton rug society to the International
Congress of Mathematicians. Many remember John rolling
around on his back legs and arms straight in the air as he
demonstrated the symmetry type of a dining room table!

At a presentation to the Smith College Regional
Geometry Institute graduate student Heidi Burgiel took
notes for distribution during the conference. Years later
when John spent some time at Northwestern University
Heidi proposed to expand those notes. They soon brought
on Chaim Goodman-Strauss who had been preaching the
gospel of the orbifold signature on his own and was known
for his beautiful illustrations.



All they had intended to write was the content of what is
now this book — an elementary introduction to the orbifold
signature notation and the theory beneath it. But then
came the idea of writing a second part that would extend
the signature to color symmetry. The book continued to
grow and grow, until The Symmetries of (S.0.T.) finally
appeared in the spring of 2008.

The full edition remains a bargain, with more than three
hundred pages of material not replicated here, a wealth of
symmetries of things. We ourselves are not just authors,
but are also regular users of S.0.T., often consulting its
extensive tables and enumerations.

As comprehensive as is S.0.T., we have always felt there
is much more to add. Even as the first edition appeared in
print, we were preparing material for its revision, with
many new examples, applications, and illustrations. That
very week, John was playing with “vo-cells” and Chaim
unveiled Double Triamond, w/ Hexastix!. This sculpture,
made with FEugene Sargent, appears below and
demonstrates the quarter group 4°/4.



John remained fascinated with the quarter groups and
was an inexhaustible well of knowledge and ideas. Heidi
continued her work in teacher professional development
and art in math, and went on to become an instructional
designer. Chaim has continued to produce sculpture,
software, graphic work, and hands-on activities showing off
the themes of S.0.T.

In just the last few years, we have seen a new flowering
of geometric ornament, with a flourishing community of
designers and mathematical illustrators working with
wonderful new software tools alongside ancient craft.
Today the ideas we use from topology and geometry are
more visible and accessible to mathematicians and non-
mathematicians alike, even appearing in widely-known,



popular games and videos. The time seems right to say
more.

With the passing of our dear friend, teacher, and senior
author, the inimitable John H. Conway (1937-2020), a full
second edition is too great a task for now.

Nonetheless we feel the Orbifold Theory of Symmetry has
yet to come completely into its own. As magnificent, if we
may say so, as is the full edition of The Symmetries of
Things, its very solidity (and expense) has kept its message
from reaching as wide an audience as it could. In this new
book,

The Magic Theorem: a greatly-expanded, much-
abridged edition of The Symmetries of Things

we aim to bring this notation to the appreciation of a wider
audience, presenting orbifolds and the magic theorems that
utilize them for anyone to enjoy, in a slimmer, more
accessible (and cheaper) volume.

This new book is essentially Part One of S.0.T., closer to
our initial vision, redesigned and lavishly illustrated, with
quite a lot of new and additional material such as:

« A new Chapter 9 on the orbifold theory which may
be read alongside the rest of this book.

« Many new examples and exercises, as well as their
solutions.



A large number of photographs of symmetrical
things designed by other artists and artisans,
contemporary and classic.

« Many extra images prepared for S.0.T., unseen until
now.

« Much new artwork prepared since.

- Hands-on symmetry activities for the home,
classroom, or office, available at
themagictheorem.com, listed on page 168,
including:

o a large number of polyhedra to download and
assemble,

o even more examples of geometric ornament to
analyze,

o and lots of things to create with paper, scissors,
and tape.

« A supplementary Chapter 10 on hyperbolic geometry
and Thurston's fullest form of the Magic Theorem.

We're especially pleased to show you so many repeating
patterns that we have found in the world around us, and we
know that you will enjoy finding and analyzing the
repeating patterns all around you too.

We hope this book will help inspire a new generation of
mathematicians, designers, scientists, artists, and
educators to use orbifolds to explore the wonders of
symmetry!


http://themagictheorem.com/
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Introduction

Symmetries and symmetric patterns surround us
throughout our lives. The aim of the first half of this book is
to describe and enumerate all the symmetries found in
repeating patterns on surfaces. To prove that our
enumeration is accurate, we then explain the beautiful
ideas from topology and algebra which form the basis for
our conclusions.

We start with a problem - enumerating symmetric
patterns.

We then introduce tools for solving this problem and
complete the enumeration. But then we are presented with
a second problem - demonstrating that these tools work the
way we claim, that there is a solid mathematical foundation
beneath our results. Again, we solve this problem with
some tools, then present the mathematics supporting the
use of those tools. In this way, each chapter reduces the
problems left by the preceding chapter to another problem
whose solution is postponed to the following chapter.

This is a departure from the traditional practice of
building a theory starting with basic principles and working
toward the ultimate goal of proving some final theorem. We
believe that our backward approach will be successful



because it allows us to present one concept at a time, at the
cost of always postponing the proof of just one thing to the
next chapter. We hope also that the argument will be
clearer when presented in a single logical thread, of the
formA<B<(C<«...< Z.

We suggest you read the first few chapters of this book
with markers in hand to analyze its repeating patterns for
yourself. (A real mirror or two will certainly be helpful for
spotting kaleidoscopic symmetries.)

The first chapter is a gentle introduction to symmetry.
Chapter 2 introduces the four fundamental features that we
use to classify symmetry. In Chapter 3 we state our Magic
Theorem, and apply it to find the 17 possible types of
repeating planar patterns, while Chapters 4 and 5 perform

a similar service for spherical and frieze patterns.

In Chapter 6, we turn to the topological tools that underly
the theory: The Magic Theorem is deduced in Chapter 6
from Euler's Theorem, which is itself proved in Chapter 7.

Chapter 8 gives our ZIP proof of the classification of
surfaces, completing the proof of the Magic Theorem.

In Chapter 9 we show many orbifolds of the patterns in
this book and how to make your own. You may read this

chapter alongside the earlier ones to better understand
how our fundamental features are used to describe the
orbifold of a pattern.

Finally in Chapter 10, we summarize the general
situation: the magic theorems for the planar, spherical, and
frieze patterns are special cases. Essentially every orbifold



symbol corresponds to the symmetry type of a repeating
pattern, generally one in the hyperbolic plane.

But what is an orbifold and why are they useful to the
study of repeating patterns?

The Orbifold Theory of Symmetry

The orbifold perspective provides a modern and complete
mathematical theory of planar symmetry.

Every symmetrical pattern like the ones that you will find
throughout this book and in the world around you is
associated with a particular surface, its orbifold, which we
imagine by considering points of the same kind to actually
be the same point. For example, folding over and fusing the
two halves of the shape at left gives us its orbifold, the half-
heart shape at right.

Our notation records features of the topology of the
orbifold — this orbifold is a surface with a boundary along a
fold line, which we denote with a *. In fact, it is these



topological features that we will learn to recognize as we
master the orbifold notation. You can see many examples of
these orbifolds in Chapter 9.

The magic theorems we will use to understand
symmetrical patterns rely on powerful and direct tools from
the study of the topology of surfaces — Euler characteristic
(Chapter 7), the Classification of Surfaces (Chapter 8), and
in the most general case, the Gauss-Bonet Theorem.

The key insight is that the features of a pattern's orbifold
determine its symmetry type. These tools constrain this
topology tightly, with a single number, the “cost” of a
symmetry type. Our magic theorems then simply list out
the symmetry types with a suitable cost.

Why Orbifolds?

« The Magic Theorems reduce the problem of listing out
the possible symmetry types of repeating patterns to a
simple arithmetic calculation, the “cost” of each type.

« The theory extends uniformly across patterns in the
plane (those with a “cost” of ¥2), on the sphere (costing
less than %2), and even those in the hyperbolic plane
(costing more). Frieze patterns are simply those with
cone or gyration points of infinite order.

« The notation is well-defined and unambiguous, as it
records topological features of a pattern's underlying
orbifold, and these determine the symmetry type. (See
page 143 for the illuminating example of 22.)



- Each symbol gives a presentation of its symmetry group
(Chapter 15 of S.0.T.).

« We can determine when and exactly how a pattern can
be stretched or skewed without changing its symmetry
type (Chapter 18 of S.0.T.).

« We can use the topology of orbifolds to enumerate
various types of patterns. For example, in Chapter 16 of
S.0.T. we list out the tilings that are formed from a
single tile moved about by a symmetry, by drawing
directly on the orbifold. These tilings are the essentially
the same for signatures of the same typographical
form. In a similar manner, in Chapter 19 of S.0.T. we
show how to enumerate all Archimedean tilings
working from the topology of their underlying orbifolds.

« To find the symmetry type of a pattern, you need only
find its orbifold!






Chapter 1

Symmetries

Every day we are surrounded by symmetric objects and
patterns. From furniture to flooring, symmetry is the rule.
In art, symmetry is pleasing to the eye, and the intricacies
of extremely symmetric patterns can entrance an audience.
In architecture, symmetric designs are attractive for yet
another reason — repetition of a design element means re-
use, which ultimately requires less planning and testing. In
manufacturing, it is simpler, cheaper, and more efficient to
repeat a pattern at regular intervals. Even Nature has
reasons to use symmetry in her work.

Recently, John H. Conway and William Thurston adapted
Murray MacBeath's mathematical language for discussing
symmetry. Now, the symmetries of a pattern can be defined
by a single symbol that we call its signature: for example,



3*3, for the pattern on the previous page. With some
practice, anyone can read this signature and identify the
symmetries it describes. You'll soon recognize the
signatures of the everyday things around you, and perhaps
you will wonder how many different types of symmetry
there are.

Together in this book, we'll learn to recognize different
kinds of symmetries and how to find their signatures. Using
the Magic Theorem we will work out all of the types of
symmetry that it is possible for a planar pattern to have. In
the second half of this book we'll show how each symmetry
is related to a special surface, its orbifold, and use powerful
tools from topology to prove the Magic Theorem. As you
read this book, you can turn to Chapter 9 to see examples
of orbifolds of many of the patterns we will encounter.

The word symmetry is a combination of the words sym
(together) and metron (measuring). The symmetries of
a thing are those transformations — such as rotations
or reflections, even doing nothing at all — that do not
change its shape or size.

The triskelion above appears on the coat of arms of the Isle of Man and looks
the same in three orientations; the rotation through 120 degrees is a
congruence that takes the figure to itself. A triskelion has order 3 gyrational
point symmetry and signature 3*. The pattern on the previous page — which to
a mathematician extends forever in every direction! — has reflections and
gyrations, and signature 3*3.



Kaleidoscopes



The simplest signature is just * (star). A * denotes a mirror
or kaleidoscopic symmetry, and a * alone means that there
are no other symmetries to the figure. This pair of gryphons
has a single line of mirror symmetry running between
them. Reflecting the image across this mirror line wouldn't
change its appearance.

The vesica piscis (“fish bladder”), at left, has signature *2
e, pronounced “star two point symmetry” or, more formally,
“order two kaleidoscopic symmetry fixing a point.” We use
stars for kaleidoscopes to suggest the star formed by the
mirrors through a kaleidoscopic point. The order of a
kaleidoscopic point is the number of mirror lines through it.
In this case two lines of mirror symmetry — one vertical,
the other horizontal — meet at the center of the pattern.
Finally, the point (e) indicates that all the symmetries fix a
point, the order two kaleidoscopic point where the mirrors
Cross.

You can probably guess that in a figure with signature *3
e, three lines of mirror symmetry meet at its center and
similarly for signatures *4e, *5e, *6e, and so on.



Find some signatures: Mark the mirror lines and find the
signatures in these stone traceries. You can check your
answers on page 11.



To find mirror lines in a pattern, it often helps to use a
real mirror, or even a shiny dinner knife. When your mirror
is upright on a mirror line, the reflected image on the
mirror will match up with the real pattern behind it. The
mirror will seem to disappear, just like the ones in the
photographs on this page.

Quiz: Identify the mirror lines and signatures of these cut-
paper snowflakes. (Answers are on page 11.)

Cut-paper snowflakes like these are made by folding
paper and cutting through the layers. When we unfold a
snowflake, our cuts in the paper are the same on both sides
of each fold line.

These fold lines are exactly the mirror lines in the pattern
— you can turn to page 132 to learn more. At right we've
folded paper with four mirror lines, and this snowflake has
signature *4e. In the photograph, different ways of folding
produced patterns with different signatures.

Fold up paper to cut your own snowflakes!

Gyrations



This snake design has no kaleidoscopic symmetry yet looks
the same in two orientations: leaving it as is or rotating
through 180 degrees, congruences that take the figure to
itself. This design has 2-fold gyrational symmetry, centered
on a 2-fold gyration point, and signature 2e.

The stone tracery design at far left has no kaleidoscopic
symmetry either, yet it looks the same in three orientations:
a rotation through 120 degrees in either direction is a
congruence that takes the figure to itself. This tracery has
order 3 gyrational point symmetry and signature 3e. The
tracery at near left has signature 4e.

Quiz: These hubcaps have gyrational symmetries. What are
their signatures? Do they change if you take into account
the brand logos? The answers are on page 11.



Spin your pattern to test for gyrations! Here we placed
the tip of our pencil at the center of this pattern. We spun
the pattern around 1/2 of a revolution but the pattern looks
the same, as though it hadn't moved at all. There aren't any
mirror lines, and this isn't a kaleidoscopic symmetry. We
are spinning around a gyration point, which we mark with
the pattern's signature 2e.



Rosette Patterns

Obviously, we could keep going like this, generating
pictures with order 37 kaleidoscopic point symmetry or
order 42 gyrational point symmetry. But what else can we
do?

For the finite rosette patterns like those on the last few
pages, there are no other signatures. In a finite pattern, all
symmetries of the pattern must fix (i.e., cannot move) the
center of the pattern. Reflections across the center of the
rosette and rotations about its center are the only
symmetries that do this, so they're the only symmetries
such a pattern can have.

By experimenting with different combinations of
rotational and reflective symmetries, you can easily
convince yourself that the types *e, *2e, *3e, *4e, ..., *Ne
and 2e, 3e, 4, 5e, ..., Ne are the only signatures possible
for rosettes, to which we add 1e (or just ¢) for the type with
that has only one symmetry: leaving a pattern alone.



Quiz: Some of these Gothic tracery patterns have mirror
lines and a kaleidoscopic signature. Some of them only
have gyrational symmetry. Which are which, and what are
their signatures? You can check your answers on page 11.

Quiz: These rosette patterns were spotted around town.
Which of these are kaleidoscopic and which are gyrational?
What are their signatures? (See page 11 for the answers.)



Frieze Patterns



In the rest of this chapter, we show you the kinds of
patterns that we will analyze later in the book. After
isolated pictures on a page, the easiest patterns to
understand are those made by repeating pictures in a row.
We see patterns like this in friezes, ribbons, animal tracks,
and fences, even as ancient signature seals.

In addition to any reflective and rotational symmetries of
the figures that make up the pattern, a frieze pattern has a
translational symmetry that takes the figure to a
neighboring figure. This book concerns itself with patterns
of this sort, called repeating patterns. We'll learn how to
analyze frieze patterns in Chapter 5. (Turn to page 94 for
the signatures of the patterns below.)



Repeating Patterns on the Plane and Sphere

Frieze patterns have “forward and back” translational
symmetry. Plane patterns add translational symmetry in
another direction. These patterns can extend to cover an
entire page, or even the infinite Euclidean plane. We see
them every day on the floors and walls around us. The next
few chapters describe how to identify all of the symmetries



of these patterns. We've put the symmetry types of these
patterns on page 57 if you'd like to see the answers now.

In order to study the symmetries of common objects like
hairbrushes and furniture, we will also need to learn about
the symmetries of patterns on spheres, because the
symmetries of an object will always be the same as those of
a sphere wrapped around it. In Chapter 4 we also study



things with more elaborate spherical symmetries such as
these:



Where Are We?

At the beginning of this chapter we described all of the
possible types of symmetry for rosettes — namely « = le, *e
= *le, 20, *2e, 3e, *3e, 4e, *4e, .... We've also introduced
three categories of repeating pattern — frieze patterns,
repeating patterns in the Euclidean plane, and patterns on
the sphere. This book classifies the different types of
symmetry that objects in these categories can have. We've
told you roughly what it means to say that two things have
the same type of symmetry, but we'll have to postpone a
precise definition of our problem until we've nearly solved
it.

In fact, our book will have about as many postponements
as chapters! For example, in the next chapter we'll
introduce four features that are enough to completely
specify symmetry types, but will postpone the proof that



they do so. These features determine the signatures that
we use in Chapters 2-5 to list all possible types for the
kinds of patterns we've shown in this chapter. To do so, we
employ a “Magic Theorem” whose proof is postponed to
Chapter 6.

In that chapter we see that the signature describes a
topological surface, an orbifold, that encapsulates all the
symmetries of a pattern. The Magic Theorem is simply a
statement about a number, the Euler characteristic, that
describes the topology of the orbifold. In turn, we postpone
detailed investigation of the FEuler characteristic until
Chapter 7.

In Chapter 8 we learn that Euler's characteristic really
does characterize the different possible topological types of
surface. Our “zip proof” of this will then close up proof of
the Magic Theorem. In Chapter 9 we show you orbifolds of
many of the patterns in this book.

The orbifold theory we set out is simple and natural. It
explains and describes all the different kinds of pattern
we've seen in this chapter and, as we'll conclude in Chapter
10, smoothly handles patterns in the hyperbolic plane too.

Answers for Chapter 1

The traceries of page 2 have kaleidoscopic symmetry types



Here are the signatures of the paper snowflake
symmetries shown on page 3. Patterns to print and cut out
are in the online supplement (pg. 168).



None of the hubcaps on page 4 have mirror lines; all of
them have only gyrational symmetry. We've marked the
signatures of the hubcaps without considering logos or
bolts at their centers. For example, the hubcap at top left
has signature 21e if you don't consider the pattern of bolts
at its center; if you do, the hubcap has signature 3e. If we
consider all their details, most of the others have only the
“trivial” symmetry of doing nothing at all, with signature
we write as 1e or simply .. Many hubcaps in the world have
kaleidoscopic symmetry — look around to find them!



On page 6 we asked for the symmetries of the letters in
the Roman alphabet. Many letters have mirror symmetry,
or approximately so! (Symmetry will vary from typeface to
typeface.) The letters WAVYTUM and BDECK have a mirror
symmetry and signature *e. The letters HIX have two
mirrors meeting at their centers and signature **2., and
the same for an oval-shaped O. The letters SNZ have
gyrational symmetry and symmetry with signature 2e. The
letters FGJLPQR have only trivial symmetry, with signature



At the top of page 5, many of the traceries have elements
with different symmetries overlaid on top of one another.
Paying attention just to the main design, the signatures,
from left to right, top row, are *8e, ¢, 50,*12¢, and Ge. On
the second row are 4e, 3e, *3¢, 50, and 4e.

Below are signatures of some rosettes that we spotted
around town. Alone, the peace sign has signature *., as
does the heart within it. Together they have trivial
symmetry .



The next few chapters will explain how to find the
signatures of repeating patterns. After you've had some
practice, you can work out the signatures on the rest of the
patterns in this chapter, and check your answers on pages
57, 82, and 94.






Chapter 2

Planar Patterns

This book helps you understand the symmetries of things.
In this chapter we look at some repeating patterns and
introduce you to the way we think about them. We describe
the four fundamental features of a repeating pattern in the
plane (or on any surface!) and introduce the signature we
use to record them. These features describe the underlying
topology of a special surface associated with a symmetry
type, its “orbifold” — many examples of these are shown in
Chapter 9.

Mirror Lines

The floral pattern to the left has many symmetries. For
example, the pattern is left-right symmetric: It has the



vertical mirror line shown on the figure to the right, and
many more vertical mirror lines besides.

We've also drawn another mirror line, which is a different
kind because, unlike the first one, it runs between, rather
than along, the petals. Draw some more of the mirror lines
on the pattern — and then turn the page to see if you have
found them all!

Place three mirrors around the triangle at top above, and look inside to see the
floral pattern at left! The mirror lines around the triangle together form the
kaleidoscope *632, which is the signature of the symmetry of this pattern.



Drawing all the mirror lines we can, we get something
like the figure to the left, which is at first sight rather
confusing. Fortunately, the small part we've highlighted —
and any other part like it, such as the triangle at the top of
this chapter — contains enough information to reconstruct
the whole pattern.

This is because if we surround the small triangle by
mirrors, as in a kaleidoscope, the reflections of the original
triangle will fill in the neighboring triangular regions. The
reflections of these reflections will fill in the neighbors of



these neighbors, and so on, until the entire pattern is
restored.

With three small pieces of mirror and a little dexterity,
you can try this yourself!

Finding Kaleidoscopes

Patterns whose symmetries are defined by reflections are
called kaleidoscopic because of their similarity to the
patterns seen in kaleidoscopes. They are classified by the
way their lines of mirror symmetry intersect.

So, for instance, in these figures there are three
particularly interesting kinds of point, shown below: one
where six mirrors meet, one where three mirrors meet, and
one where two mirrors meet. We call these 6-fold, 3-fold,
and 2-fold kaleidoscopic points, respectively, because the
local symmetries are *6e, *3e, and *2e.

The mirror lines chain together to form a kaleidoscope,
which we mark as *. (There are infinitely many repeated
copies of this kaleidoscope. We highlight one to look at.)



In this pattern the kaleidoscope is a triangle, and its
corners are one of each of a 6-fold, a 3-fold, and a 2-fold
kaleidoscopic point. As we shall see, the type of symmetry
of the pattern is determined by the type of this
kaleidoscope — we indicate this type by its signature. This

kaleidoscope and this pattern have signature

The numbers in the signature of a kaleidoscope can be
cyclically permuted, so that *632, *326, and *263 mean the
same, or also reversed, equating these with *236, *362, and
*623. We'll put our digits in decreasing order when we can;
hence for this signature we write *632. Turn to page 133 to
learn more about the orbifolds of patterns with this
signature.

The patterns on this page are somewhat simpler, but if
we mark the mirror lines, we see that they have all of the
symmetries of the first pattern, and the same kaleidoscope,
with signature *632. With a mirror, you can find more
mirror lines and check that the kaleidoscopes that we've
drawn replicate the patterns.






Patterns with a squarish sort of symmmetry such as this
one are more common. Marking all of the mirror lines, we
find the kaleidoscope indicated by the triangle drawn in the
pattern above. If you place three mirrors around this
kaleidoscope, you will see the entire pattern replicated
from this triangle. The symmetry of this pattern is
kaleidoscopic with signature



There are two 4's in the symbol because there are two
different kinds of 4-fold kaleidoscopic points. The 2 in the
symbol refers to the 2-fold kaleidoscopic point.

The fact that there can be several different kinds of
kaleidoscopic points of the same order forces us to make it
clear what same kind means for such points.

We say that any two features of a pattern are of the same
kind only if they are related by a symmetry of the whole
pattern. In other words, features of the same kind are those
that appear the same to us, because some rigid
transformation shifts one feature to the other yet leaves the
pattern as a whole unchanged.

On the other hand, we can distinguish between the two 4-
fold kaleidoscopic points in this kaleidoscope — they
obviously appear different in the pattern, and moving one
to the other shifts the pattern as a whole.



You can practice finding kaleidoscopes on these patterns
by looking for the smallest region that can be enclosed by
mirror lines.

When we draw all the mirror lines in the pattern above,
we find that its kaleidoscope is a triangle with three
different kinds of 3-fold kaleidoscopic points on its corners.

Its signature is :
When we draw all the mirror lines in the pattern below,
we find that its kaleidoscope has four different kinds of 2-

fold kaleidoscopic points and its signature is

Gyrations

To find the kaleidoscopic part of the signature, we mark all
of the mirror lines and locate the smallest kind of region
that they enclose — a kaleidoscope. We then read out the
different kinds of kaleidoscopic points around a
kaleidoscope. When you mark the mirror lines in the



pattern below you will find a kaleidoscope like the one we
have drawn.

Because all the kaleidoscopic points in the pattern are of
the same kind — any two of them are related by a
symmetry of the whole pattern — we discover that the
kaleidoscope is only of type *3 rather than *333.

However, the symmetries of this pattern are not purely
kaleidoscopic! There is a new feature — a 3-fold rotational
symmetry.

Let's look at this more closely. The pattern would be
unchanged if the whole plane were to be rotated through
120 degrees around the gyration point marked 3 in the
middle of the kaleidoscope. The same is also true of the
kaleidoscopic point marked 3, but we've already accounted
for this by calling it a 3-fold kaleidoscopic point — this
rotation is “done by mirrors.” Since the pattern has one
kind of 3-fold gyration point and a kaleidoscope with one

kind of 3-fold kaleidoscopic point, its signature is

You can turn to page 138 to see that the orbifold for this
pattern has a boundary * with a marked point 3 upon it,
and a special point 3 in its interior.






When we mark the mirror lines in this pattern, we find a
kaleidoscope like the one we've drawn. There are 2-fold
kaleidoscopic points around this kaleidoscope, but there
are only two different kinds. Together the kaleidoscope and
its two kaleidoscopic points are designated *22. In the
center of the kaleidoscope, there is a 2-fold gyration point
which we mark as 2. All together, this pattern has
signature



Once you are familiar with this notation, you can tell
immediately that a pattern with one kind of 4-fold gyration
point and one kind of 2-fold kaleidoscopic point, like the
pattern on this page, has signature

You can cover up our drawing on the pattern and practice
looking for the signature yourself. Draw in enough mirror
lines to find a kaleidoscope, and identify the kaleidoscopic
points and gyration points in this pattern. Check that there
really is only one kind of each.



On this page we see a pattern that has no mirror lines
and no kaleidoscopes, but has many gyration points. You
can check that all of the gyration points are 3-fold and that
there are three different kinds. The pattern has signature



More Mirrors and Miracles

The two kinds of features that we have discussed,
kaleidoscopes and gyration points, are easy to spot with a
little practice — you can try your hand on the patterns at
the end of this chapter. On the next few pages we'll meet a
few extraordinary features that are harder to spot, because
they really describe the building blocks of a pattern's



orbifold. In the next chapter, the Magic Theorem will help
us find them.

All the kaleidoscopes that we've seen so far have been
defined by polygons enclosing part of our pattern, but
that's not the only type there is. A single kind of mirror line
that has no other mirror lines crossing it is a kaleidoscope
with signature *.

You can check that this pattern has two different kinds of
mirror lines — it has two different kaleidoscopes in it. Its

signature is

We're also seeing something else for the first time here.
In this pattern, the smallest subregion marked off by mirror
lines is an infinite strip! There are several new features to
be found in patterns like this one, which will be presented
in this section and the next.

In the later chapters of this book we will learn that each
kaleidoscope * records a boundary of the orbifold of a
pattern. If you turn to Chapter 9 now, you can see that the
signature of this pattern ** describes the two boundaries of
its orbifold.






At first, this pattern looks very much like the one on the
facing page. None of its mirror lines intersect, and the
smallest subregion bounded by mirror lines is again
infinite. But in this figure there is only one kind of mirror
line!

And, there's a miracle here! There is a path from a left-
handed spiral to a right-handed spiral that does not go
through a mirror line. We will record the presence of such



a path by a red cross (x) in the signature. We call this a
“mirrorless crossing” or, for short, a miracle, and indicate
it in figures by a red dotted line and cross.

This pattern has both mirrors and miracles, but only one

kind of each, so its signature is Turn to page 141

to see that the orbifold of this pattern is a Mobius band!
Just as we can have two different kinds of mirror we can

have two miracles, as in this pattern which has signature

There are more than two paths from left-handed to right-
handed spirals, but all of them can be made up of
combinations of identical copies of the ones we've marked.
Amazingly, the orbifold surface for this pattern is a Klein
bottle (pages 127 and 143), though we must wait until
Chapter 8 to learn how that surface is composed of two x's.



Wanderings and Wonder-Rings

Just as a miracle is a repetition-with-reflection of a
fundamental region that's not “explained by” mirrors, it's
possible to have a fundamental region repeated without
reflection in a way that's not explained by gyrations,
mirrors, or miracles, but by a simple shift in some
direction.

In fact, such repetitions always come in pairs, in two
different shift-directions, like the pair drawn on the pattern



on this page. We call a pair of this kind a “wonderful
wandering”.

When we draw more copies of these pairs we can see
they form a “wonder-ring,” which we denote

On page 143 we roll these patterns up to see that their
orbifolds really are ring-shaped — they are toruses!

The Four Fundamental Features!



It is a remarkable fact that wonders, gyrations,
kaleidoscopes, and mirrors suffice to describe all the
symmetries of any pattern whatsoever, as we shall show in
the next chapter. We therefore call them the four
fundamental features. You obtain the signature of a pattern
just by writing down whichever of these features it has.

Up to this point, we've used blue for wonders and
gyrations, since these preserve the true orientation of a
fundamental region, and red for kaleidoscopes and
miracles, since these reflect. However, you can write these
in black ink if you always write them in the same order,
since then you'll be able to work out which colors they
should be.

The table below lists the four fundamental features in the
appropriate order and the codes we use to represent them
in the signature. In the later chapters of this book, we will
see that these features record the building blocks of a
pattern's orbifold.

Spherical and planar patterns use these features
sparingly, but nearly any orbifold symbol describes some
symmetry type if we include patterns in the hyperbolic
plane as well (Chapter 10).

Where Are We?



In this chapter, we have described the four features of
repeating plane patterns and introduced the signature that
describes which of them appear in a given pattern. In the
next chapter, we introduce a Magic Theorem which
determines what combinations of features are possible for
the signatures of plane patterns. There will be plenty of
examples for you to practice on yourself.

In Chapter 6, we will see that our notation really records
features of a pattern's orbifold and will better understand
their nature. Using tools from topology, we can work out
what features are possible for the orbifolds by a simple

accounting of their “cost,” the subject of the next chapter
and its Magic Theorem. Chapter 9 shows orbifolds for many
of the patterns that are in this book.

A Quiz

The features of these patterns are gyrations (with a
signature like 632), a kaleidoscope (like *333), or a mix of
the two (like 4*2).

You can find the signatures of patterns like these in two
steps. With a red pen, sketch in mirror lines and find a
kaleidoscope, if there is one. As soon as you've found a
region bounded by mirror lines, you can restrict your
search to that region. Note down the orders of the different
corners of the kaleidoscope — and don't double-count
corners of the same kind! Next, with a blue pen mark any
gyration points, where the pattern has rotational symmetry,
but no mirror line. Note their order, and list out all of the



features you have found. Congratulations: you have found
the signature of your pattern! (Answers appear at the top
of page 29.)

More patterns to analyze!



Answers:

Here are our signatures for these patterns. Top row:
2*%22, 333, *333, and 4*2. Second row: 4*2, 632,632, and
2222.



Extraordinary symmetry types:

The patterns in the quiz were more “ordinary”: Their
features are all gyration points and kaleidoscopes. None of
these patterns has an “extraordinary” feature, like a
miracle (x) or a wondering (0), or more than one
kaleidoscope.

Analyzing patterns with features like these takes more
care. The signatures are recording topological features of
the pattern's orbifold, and some of these cannot be found
just by looking at one location in the pattern. In the next
chapter, we will use the Magic Theorem to help us find
these “extraordinary” signatures. Meanwhile, here are
three patterns with extraordinary symmetry type for you to
practice on. The signatures for these patterns are on page
57.









Chapter 3

The Magic Theorem

In the last chapter we introduced the four fundamental
features of symmetry types for repeating patterns. From
now on we shall often specify the symmetries of a pattern
just by giving its signature (which lists its features). We
haven't yet said why just these particular features are so
fundamental — and we won't, until Chapter 8 — nor have
we found just which signatures arise.

In this chapter we'll introduce you to the “Magic
Theorem”, use it to show that just 17 signatures are
possible for plane repeating patterns, and then deduce that
such patterns come in just 17 types. The proof of the Magic
Theorem itself is something else you'll have to wait for!

Everything Has Its Cost!



It turns out to be a good idea to associate a cost to every
symbol in the signature, as shown in the table on the right.

Why is this? Because, as we shall see in the next few
chapters, there are Magic Theorems that tell us what
signatures are possible in terms of their costs.

Symbol Cost (%) Symbol Cost (%)

0 2 *orx 1
1 1
2 1
3 3
4 4 4 8
4 2

N-1 N—-1

N N N oN

0 1 o0 %

(opposite page) The Magic Theorem not only classifies signatures, but helps us
determine the signature of a pattern. The signature 22 x of this pattern, like

that of all planar patterns, costs exactly $2.

Costs of symbols in signatures.
With the costs from the table on page 31, here is the
Magic Theorem we'll use in this chapter.

Theorem 3.1. (The Magic Theorem for plane
repeating patterns)
The signatures of plane repeating patterns are precisely
those with total cost %2.



For example, the first pattern we analyzed on page 13
had signature *632, which has cost

5 1 1

$ $

14+ —+ =+ = =%,
12 3 ' 4

We saw this next pattern on page 18. It has signature
3*3, which costs

2

$ $
414+ 2 =%
3 3

The third pattern, from page 19 has a kaleidoscope with
two different 2-fold kaleidoscopic points and a 2-fold



gyration point. Its signature is 2*22, with cost

N R
2 4 4 7

Finally, the signature of the last pattern is x*, with cost
5141 =%2.

Later in this book we will see how tools from topology
will help prove the Magic Theorem. In this chapter we will
use the theorem to list all possible signatures for repeating
planar patterns. We will find there are seventeen, listed on
page 35.



The fact that the signature of a planar pattern always
costs %2 can help us check that the signature we have
found for a pattern is correct; it can also help to complete
it! For example, all we can see at first is that there are two
kinds of 2-fold gyration points in the pattern below. But, 22
would only cost $% + % — %1, so there should be an extra
dollar's worth to be discovered. Indeed there is! The
pattern below is the same as its mirror image although it
has no mirror line, so there must be a miracle x instead!
We look at this more closely in the figure at right: there's a
symmetry that takes a leaf to a backwards copy of itself,
and the path joining these is the required miracle, giving us
the signature 22x with a total cost of 59.






What is the signature of this pattern? Here there are also
two kinds of 2-fold gyration points, which do not by
themselves cost 2. The pattern is again the same as its
mirror image, but a mirror, not a miracle, explains this, and
the type is 22*, with cost $% + % +1=9%2,

In this way the Magic Theorem can help us recognize the
signatures of planar patterns, particularly those with

miracles, wonder-rings, or more than one kaleidoscope.



Finding the Signature of a Pattern

We can now exactly identify the signature of any repeating
pattern on the plane by the steps listed at right. As we
proceed, we write down the symbols in the signature. The
Magic Theorem tells us that when we've found them all, the
total cost of a planar pattern will be 52,

If we put our features in standard order, as listed in the
table at the bottom of the page, we can tell at a glance
which patterns have the same type.

If you encounter a tricky pattern, there are some things
you should do to make your work easier. If two features are
the same, you must only mark one of them. Sometimes it
helps to label gyration points before labeling kaleidoscopes.
Be sure there aren't any mirror lines inside the region
bounded by a kaleidoscope, and don't forget that gyration
points never lie on mirror lines!

The steps above work for any repeating pattern, on the
sphere or in the Euclidean plane, or even in the hyperbolic



plane. Here are some more hints that work just for patterns
in the plane. There is one type of planar pattern with two
kaleidoscopes and one with two miracles; if you're working
with one of these, you should be able to see differences
between these features by looking carefully at your pattern.
You can use the fact that the total cost is ¥2 in several
ways. You can stop when it reaches %2 (for instance, if you
find a wonder), or if you have not yet reached %2, you will
know that there must be more features to find.

1. If there are mirror lines, mark them in red, and
examine the smallest regions into which they cut
the plane. These regions are bounded by
kaleidoscopes. Mark one of each type of
kaleidoscope by a red * and each kind of
kaleidoscopic corner with its order. If you find a
kaleidoscope, you can now restrict your search to
any region bounded by mirrors.

2. Look for gyration points. In blue, mark just one
gyration point of each type with a spot and its
order.

3. Are there miracles? Can you walk from some point
to a reflected image of itself without ever touching
a mirror line? If so, a miracle has occurred. Mark
such a path with a broken red line and a red cross
X nearby.




4. Is there a wonder? If you've found none of the
above in a planar pattern, then there is one: mark it
with a blue wonder-ring o.

5. Finally, check that the total cost of the pattern's
signature is %2, to see that all of the features are
accounted for correctly.

In fact, as we shall soon see, all we have to do to find the
signature of a pattern is look at its orbifold surface!

Just 17 Symmetry Types

Why are there just 17 types of symmetry for planar
patterns?

We'll deduce this using only the Magic Theorem and
some simple arithmetic. The calculations in the next few
sections are very similar to those that answer the question,
“How many different ways can I make change for a dollar if
I use only quarters and dimes?” If the results at first seem
mystical, try working through a few examples for yourself.

*632 *4472 *333 *2222 *ok
2%22 * %
4*2 3*3 22% X X
22X
632 442 333 2222 0

The 17 symmetry types of planar patterns



The “True Blue” Types

If all symmetries of a pattern are obtainable by true
motions, without flips, as in the patterns on these two
pages, the signature will be entirely blue. If a blue string of
digits AB...C is to cost $2, there must be more than two of
them, since each costs less than ¥1. If there are exactly
three, the values in the table of costs on page 31 show that
the signature can only be one of 632, 442, or 333. If there
are more digits, the signature can only be 2222, since each
digit costs at least $%.

Finally if there's a wonder-ring, the signature must be o,
since the ring already costs us *2.

The following figures illustrate the five true blue types:

632, 442, 333, 2222, and o.
If no digit is 2 then there must be three 3's and the type is
333.






If the remaining two characters have their mean cost of $%,
we get 442.



The only Euclidean type with four kinds of gyration points
is 2222, since $% + + + 3 + 3 is already ®2.



If not, a second character must be 3, and 632 is forced,
since$%+%+% — %9,



If there's a wonder ring o (costing $2), there can't be
anything else.

The “Reflecting Red” Types

Now consider the signatures that are entirely red and have
no crosses. They correspond to the previous cases because
*AB...N costs %2 if and only if AB...N does:

$1‘|‘E+ _|_N_1_$2<:>$E_|_ _I_&
2A oN A N

while there can only be one such signature (**) with more
than one star. This yields the five reflecting red types
**632, ¥442, *333, *2222, and ***,






The all-red signatures, *333, *442, *632, *2222, and **
correspond exactly to the all-blue signatures 333, 442, 632,
22272, and o, since each red digit costs half as much as the

corresponding blue digit and a kaleidoscope (*) costs half
of $2.



Exercise Match the symmetry types to these patterns.

The “Hybrid” Types

The remaining signatures either mix blue and red or
include x symbols. To help us enumerate these “hybrid”
types, we note that the “demotions”

replace N* by *NN

replace x by *

don't change the cost and must eventually lead to one of
the five previous cases. So, we can recover all these mixed
signatures by making the inverse “promotions”

replace *NN by N*

replace a final * by x
in all possible ways.

The following seven figures represent the mixed types
3* 3, 4*2, 2*¥22, 22%, 22x, *x, and xx.

Exercise Find the symmetry types of these patterns.









We conclude that there are just 17 possibilities for the
signature costing *2, and so just 17 symmetry types for
repeating patterns on the plane.

The Magic Theorem states that the signatures of plane
repeating patterns are precisely those with total cost %2,
and so implies that there are at most 17 symmetry types for
a plane repeating pattern, traditionally called the 17 plane
crystallographic groups.!

How the Signature Determines the Symmetry
Type

We have ignored some details. To what extent can we
generate a pattern from its signature? This is a real
problem, as we shall see in the spherical case*, but the
answers in the plane case are easy. In the end, they depend
only on the existence of rectangles and triangles with given
angles, provided that those angles have the correct sum of
1.

For instance, a pattern with signature *632 must be
generated by reflections in the sides of a triangle with
angles % 5 3 , and . All triangles that satisfy this condition
will be the same up to size, so up to similarity there's just
one possibility for the symmetries of a pattern with



signature *632. The same holds for signatures *333 and

*4472.,

In the same vein, the symmetries of a pattern with
signature *2222 are generated by the reflections in the
sides of a quadrilateral whose four angles are ¥, that is to
say, a rectangle. Here the set of symmetries is no longer
unique up to scale; any one version can be continuously

reshaped into any other by gradually varying this rectangle.

The result is that one set of symmetries can be
continuously transformed into the other while consistently
maintaining its type, not changing the signature. In
technical language this kind of deformation is called an
isotopy. Some planar symmetry types, like *2222 can be
isotopically reshaped, distorting one pattern into another
with the same signature, while others, such as *632 are
rigid and cannot be reshaped.

fIn the table, the nonreflecting elements of any of these groups form its
orientation preserving subgroup, at the bottom of the column.



fIn fact, with only the exceptions of MN and *MN with M#N, every possible
signature describes a symmetry type, but our Magic Theorems show that only a

few are planar (cost $2) or spherical (cost <$2). All of the rest of the signatures

(cost >$2) describe symmetry types in the hyperbolic plane (Chapter 10).

For 4*2, four copies of a fundamental region combine to
form a square bounded by a kaleidoscope of mirrors. Then
reflections in the sides of that square generate the rest of
the pattern. Up to rescaling there's really only one set of
symmetries corresponding to 4*2, and this type is rigid.

You can confirm for yourself that the argument given for
4*72 is easily adapted to the rigid type 3*3 and to the type
2*22, which can be isotopically reshaped.



The signatures 632, 442, and 333 fix a lattice of gyration
points in the same manner as their red counterparts fix a
grid of mirror lines, and are also rigid. But both 2222 and o
can be isotopically reshaped by a choice of parallelogram
as a fundamental region.

Case-by-case arguments like these work for all 17 types.
Some experimentation will reveal that the shape of the
remaining signatures is determined by choosing the shape
of the rectangle to be used as a fundamental region.

Where Are We?

Using the Magic Theorem we've now shown that there are
just 17 plane crystallographic groups.

As we said, you'll have to wait to see why the Magic
Theorem is true.

The next two chapters will discuss the versions of it that
apply to patterns on the sphere and to planar frieze
patterns. Then we'll move on to the general theory, seeing
that a pattern's signature is really recording the topology of
the pattern's orbifold, and that the Magic Theorem
describes restrictions on the topological features a planar
pattern's orbifold may have.



Before we do that, we share some exercises and their
answers. We include an outline of the steps here. Turn to
page 35 for details and tips. On the next page we pause for
physical kaleidoscopes.

To find the signature of a pattern,

. identify any kaleidoscopes — a chain or loop of
mirrors — and the corner kaleidoscopic points
upon them;

. identify any gyration points;
« identify miracles and wonder-rings;

. and for a planar pattern, check that the cost of
your signature is $2.

Interlude: About Kaleidoscopes

Kaleidoscopes — the physical kind found in toy stores
— were invented by Sir David Brewster in 1816. In a
real kaleidoscope, displaying a properly repeating
planar pattern at its end, its mirrors can only be
arranged as shown at right. That is, the symmetry
type's signature is just that of one of the reflecting red
types *333, *442, *632, or *2222.

Here are some photographs taken inside of real
kaleidoscopes. We hope you are inspired to obtain some



mirrors and make a kaleidoscope yourself!



Exercises

1. We've told you how to find the signature of a pattern,
but you'll want some practice to get it right! Let's start
with these interesting patterns, which we saw on a
chair seat, on a floor mat, in a hotel lobby, on a parking
lot wall... Patterns like these are almost anywhere you
look!



After you've worked out the signatures of these
patterns for yourself, turn the page to check your
answers.

Here are the signatures of the patterns on the previous
page. Top row: 22%; 22x; and 2*22. Second row: 442;
22*; and *442. Third row: 2222; 3*3; 4*2.



2. Repeating patterns on brick walls are always fun to
analyze on a walk.

What are the signatures of these patterns?















3. Find the signatures of these patterns! Turn the page to
check your answers.

Check your answers. Top row: *632, 442, 3*3. Middle
row: *x, 4*2, 632. Bottom row 22x, 442 and again 22x.



4. The placement of the dots changes the signatures of
these patterns. Get out your markers and identify their
signatures. Be careful not to get your eyes crossed!



Check your answers, and create your own dot patterns
to analyze.






5. Here are more patterns that we found while walking
about.

What are their signatures?

The signatures of the patterns on the previous page
are: First row: x*; o but if symmetries may swap the
darker two grays, x*; 22* unless we pay closer attention



to the colors, in which case, **. Second row: o; 333;
2*272. Third row: 3*3; 2*22; and 2*22.

6. Here are pavements, mats,> and manhole covers that
we've encountered — only a fraction of the beautiful
geometric ornament that people have created around
us.



How many different signatures can you find where you
live?

The signatures of the patterns on the previous page:
First row: 4*2; xx; 2*22. Second row: 4*2; 2222; and
3*3. Third row: 2222; 442; 22%*,



Here are the signatures for the regular planar patterns
on page 8 of Chapter 1. Top row 632, o, and *632.
Bottom row 22x (that miracle can be hard to spot!),
333, and 442.



These are the signatures of the patterns at the end of
Chapter 2, on page 29.






Chapter 4

Symmetries of Spherical
Patterns

So far, we have discussed only symmetric patterns on
planar surfaces. However, most of the symmetric things we
encounter in our everyday lives aren't planar surfaces.
Chairs, desks, boxes, and even people (roughly) are
symmetric, but non-planar.

To find the features describing the symmetries of an
object like a chair or table, we imagine it as resting inside a
“celestial sphere” surrounding it. By studying spherical
symmetries, we can understand the symmetries of everyday
things.

For the chair (right) there is a single plane of reflection
that intersects the sphere in a single mirror line — in other



words, it has bilateral symmetry. The signature for the
bilateral type of symmetry is *, because we see one mirror
line on the surface of the sphere and it meets no other
mirror lines.

We see from the table of costs on page 31 that this only
costs %1, so it is cheaper than the plane crystallographic
groups, which all cost $2.

(opposite page) Four spherical patterns, with signatures *532, *432, and two
with *2 2 11. The strange pair of eyeglasses (above) has signature x.






More complicated objects can have kaleidoscopic points,
gyration points, and miracles. For the rectangular table at
left, the mirror lines are two great circles that meet at right
angles on the celestial sphere. On the sphere they have two
intersection points. Both of these are 2-fold kaleidoscopic
points. Therefore the symmetry type of this table has
signature *22, costing

1 1 43

$ $

1+ = +-=%2
4 4 2’

again less than $2.

In just the same way, the celestial sphere of an ordinary
box has three mirror lines, each pair of mirrors meeting at
a right angle, as we show below at left. The mirrors form a
kaleidoscope with three kaleidoscopic points of order 2 at
its corners. The symmetry type of an ordinary box is *222.

It turns out that an important quantity is the change we
get from %2, for which we will use the abbreviation ch.
Thus,

ch(Q) = %2 — cost(Q).

For our chair

ch(*) = %2 — cost(x) = ¥2 — 1 = %1,



and the chair has 2 -+~ 1 = 2 symmetries that do not change
it: a reflection taking the right side to the left, and the act
of doing nothing at all, which takes the left side of the chair
to itself. We say this pattern has order 2, because it
consists of two copies of its fundamental region.

Our table has change

1 1
ch(x22) = *2 — cost(x22) = "2~ 1 27 =5,

and the table has 2 = % = 4 symmetries and has order 4. A
box has change

ch(x222) = 52 — cost(x222) = %2 — 1 — 3% = %,
and we can count that a box has 8 =2 =+ % different
symmetries. This type of spherical pattern has order 8.

The signatures of the Euclidean planar patterns all cost
exactly ¥2, so if you purchased any one of them with a $2
bill, you would get no change at all. But for spherical
patterns, which have only finitely many symmetries, the
rule is different: The change you get is precisely ¥2 divided
by the number of symmetries.

Theorem 4.1. (The Magic Theorem for spherical
patterns) The signature of a spherical pattern costs



exactly %2 — %, where g is its order, or the number of its

symmetries.

In particular, the change is always positive, so the cost is
always less than 2. We'll prove this in Chapter 6. In this
chapter, we'll use it to derive the list of possible types of
spherical pattern.

Our Euclidean Magic Theorem is really just a particular
case of this, because there g = oo, and so the change is

ch=3%2%

o0 J
theorems but only one.

or 0. Thus, we don't really have two magic

The 14 Varieties of Spherical Pattern

From the Magic Theorem we conclude that the spherical
types are exactly

*532 *432 *332 *22N *MN
3*2 2*N N*

Nx

532 432 332 22N MN

Here M and N represent arbitrary positive integers, and
there are infinitely many spherical symmetry types — but it
turns out that there is a proviso: The types *MN and MN
only happen when M = N. T

We allow M and N to be 1, with the convention that digits
1 can be omitted. This makes sense — a gyration point of
order 1 or a kaleidoscopic point with exactly 1 mirror
passing through it is uninteresting to us, so we let 1* = *11



= *. So that trivial symmetry 11 does not have an empty
symbol, we denote it *. This is appropriate: In Chapter 1 we
introduced this * to indicate that a rosette symmetry fixes a
point. The trivial symmetry fixes all of them.

As in Chapter 2, we proceed by first counting the all-blue
spherical signatures, then the red ones, and finally those
that involve both colors.

Opposite points are identical in this spherical pattern with

signature x= 1x

fIn fact, every other combination of features describes a two-dimensional
symmetry type (Chapter 10). The Magic Theorems tell us if these are in the
Euclidean plane, on the sphere, or in the hyperbolic plane.



The Five “True Blue” Types

Since the total cost of the signature must be less than %2,
we cannot afford a wonder ring (o) or to have more than
three digits (distinct from 1). The most general signature
with fewer than three digits may be written MN by
inserting 1's if necessary. Every such signature does cost
less than %2, but according to the proviso it only
corresponds to a symmetry type if M = N.

If there are exactly three digits, then one must be a 2, or
the cost is at least $% + % + % = %3,

If there are two or more 2's, the symbol is 22N for some
N, costing 3% + % + %

If there is just one 2, then some other digit must be 3
since $% + 3 4+ 3 = %2, The remaining digit must be 3, 4,
or 5 since $% + % + % =32 and the signature of the
pattern is 332, 432 or 532.



The Five “Reflecting Red” Types

The all-red signatures for sphere patterns must have the
form *AB...N since we can no longer afford two *'s. The
ones for which ch is positive are in perfect correspondence
with the true blue types, since ch(*xAB...N) is exactly half
of ch(AB...N), as we see from the following:

A-1 N -1
Ch(*AB...N):$2—1—(W—|—"'+ oN ),



A-1 N -1
Ch(AB...N)=$2—<T—|—"'+ N )

But remember the proviso: *MN exists only if M = .

The Four Hybrid Types



As in the plane case, the hybrid, mixed types must all be
obtainable by promotion from the red reflective cases. Here
are all the possibilities:

*532 %432 *x332 *x22N «xNN

} y 1
3x2 2xN N=x
J

Nx



The Existence Problem: Proving the Proviso

All 17 possibilities that we enumerated for planar patterns
actually arose. In the spherical case, the corresponding



statement is not quite true; the types MN and *MN only
exist if M = N. The other cases cause no problem.

For example, *442 was generated by reflections in a
triangle of angles 7, 7, 5, and a planar pattern with this
type of symmetry exists because such a triangle exists in
the Euclidean plane.

Similarly, *532 is generated by reflections in a triangle of
angles ¥, 4, &, and a spherical pattern with this symmetry
exists because there is a spherical triangle with these
angles, drawn at right. Two of these triangles together
form a fundamental region for 532.

In the plane, the sum of the angles of a triangle is always
mradians = 180°. On a sphere, the sum will always be
larger.*

For example, a triangle on the globe with one vertex on
the North Pole and two vertices on the equator has two
angles of % radians at the equator. Since we may choose
the angle at the pole, we can create a fundamental region
for any *22N. Gluing two of these together, we have a
fundamental region for 22N.

Now for the proviso! The type *MN, when it exists, is
generated by the reflections in the sides of a two-sided
polygon with angles - and <. This does exist when
M = N; it's the lune bounded by two great semicircles at
angle — (at right), but does not when M # N. (For the

N
same reason *M, which equals *M1, fails to exist for M > 1

y



A hypothetical pattern of type MN with M # N would
contain just two types of gyration point. But then, by
superposing it with its image under a reflection fixing a
gyration point of each type, we should obtain one of type

*MN, which is impossible. Therefore, MN also fails to exist
if M # N, and M fails to exist if M # 1.

Group Theory and the Spherical Symmetry
Types
A symmetry of a pattern is a transformation that does not

change the pattern as a whole. The collection of all of the
symmetries of a pattern form what mathematicians call a



group. The central problem of this book is to classify the
groups that can be the symmetries of planar and spherical
patterns. We expect some readers will be surprised that we
do this without using any group theory! This is because our
Magic Theorems rely on simple and powerful tools from
topology, as we explain in the next few chapters. In the full
edition of The Symmetries of Things, we discuss the
symmetry groups of patterns in more detail, and there are
many texts available that teach group theory better than
we are able to in the space available here.

fIn fact, the area of the triangle is just this excess!

In brief, though, consider this gyroscopic pattern. It has
exactly twelve symmetries: we may rotate by a twelfth
clockwise, rotate by two-twelfths, etc., on up to rotating by
eleven-twelfths clockwise. The twelfth symmetry — the
“identity” — is the one that does nothing at all, or just the
same, rotates by any number of full turns. These
symmetries may be combined: we may first rotate by, say
five-twelfths clockwise and then by nine; the end result
would be the same as rotating by fourteen-twelfths, or,
more simply just two, which (of course) is also one of our
twelve symmetries.



Every one of the patterns in this book has a symmetry
group, a collection of rigid transformations that do not
change the pattern as a whole, with rules for how they may
be combined.

Any pair of symmetries A and B of a pattern have a
product AB, obtained by performing the motions of the
pattern corresponding to A and B one after the other. Since
the transformation A left the pattern unchanged and the
transformation B left the pattern unchanged, doing one
after the other also leaves the pattern unchanged, and their
product AB is also a symmetry in the group.

If you think about it you may see that in the examples we
have seen so far, this composition is associative (i.e., that
(AB)C = A(BC) for all choices of A, B, and C) and that in
the relation AB = C, any two of A, B, and C uniquely
determine the third.

The identity is special: when we combine the identity
with any other symmetry, we don't change the result. And
every symmetry has an “inverse” that is its undoing;
combining a symmetry with its inverse produces the
identity.

All together, these properties imply very many others,
and are the definition of a group. The geometrical groups
are the different ways that groups can act upon the plane,
or sphere, or some other space, and the signatures are
names for these groups.

Different geometrical groups have the same abstract
structure if their elements multiply in the same way. For



example, the geometrical groups with signatures 2 e and *.
both consist of two symmetries, the identity and another
transformation, which is undone by repeating itself a
second time. As abstract groups, these have the same
multiplication table and are equivalent.

Table 4.1 lists the types of spherical repeating patterns
and their equivalences as groups. The table is complete for
patterns of order up to 24, after which we restrict to
multiples of 3.






TABLE 4.1. Types of spherical repeating patterns and
their equivalences as groups.

The last column gives the number of distinct geometrical
groups, followed in parentheses by the number of different
abstract structures (as separated by the lines). Groups with
different abstract structures are separated by the curved
and straight lines.

Codes for these structures are given below the table and
are explained in Table 4.1: The polyhedral groups are
isomorphic to the alternating and symmetric groups Ay, S4,

or Ag according as n is 3, 4, or 5.

It may be surprising that the symmetry groups 432 and
*332 have the same abstract structure. Below, we can see
that 432 permutes the four axes of a cube, and thus the
colors. Indeed, there's a perfect one-to-one correspondence
between the permutations of the colors and the symmetries
in 432, and they multiply together the same way too — 432
is isomorphic to the group of permutations S,.



In the same way, each symmetry of *332 permutes the
four vertices of a tetrahedron, and every permutation of the
vertices determines a symmetry — *332 is also isomorphic
to S4, and thus to 432.

Where Are We?

In this chapter we have shown that the spherical form of
the Magic Theorem implies that the spherical symmetry
types fall into seven infinite families plus seven individual
types. The groups of symmetries of these patterns are
listed by increasing number of symmetries in Table 4.1.
After taking a look at many examples of spherical patterns
in the rest of this chapter and frieze patterns in the next,
we will reach the proof of the Magic Theorem in Chapter 6.

Examples and Exercises

The Regular Polyhedra



A polygon is called regular if all of its edges are of equal
length and all of its angles are congruent. A regular
polyhedron is a polyhedron with identical regular polygons
for its faces, and the same number of faces at each of its
vertices. On page 113 we will see why there are just five of
these regular polyhedra (once we further presume they are
topological spheres and not tangled up somehow in space).
Below we show them, together with their names and
signatures.

Each of the regular polyhedra has its own mirror planes
of symmetry. At right we show these for a cube. In the
figures below, mirror planes intersect the polyhedra in the
red lines.

The regular polyhedra are related in dual pairs, sharing
the same kaleidoscopic symmetry: At left below, the cube
and octahedron both have symmetry *432. At right below,
the dodecahedron and icosahedron both have symmetry
*532. The tetrahedron is dual to itself, with signature *332.

You can verify the symmetry types of the regular
polyhedra from the drawings, but it is much more fun and
instructive to make your own models!






Eyeglasses.

Each of these pairs of eyeglasses has two symmetries — the
one that does nothing, and one that swaps the two lenses.
The usual pair of eyeglasses at upper left has signature *
and a mirror symmetry, swapping from right to left. The
unusual pair at upper right in the photo has an inversive
symmetry, swapping points in opposite directions from the
bridge, and its signature is x. The two pairs at bottom both
have signature 22, but their 2-fold rotation axes are
oriented differently.



Symmetries of Playing Balls






Polyhedral Models

Let's analyze the symmetry types of a few paper polyhedra.
Among our teaching materials (page 168), we've put kits
for you to download, print out, and assemble into your own
polyhedral models.















More Polyhedra to Analyze

Here are a few more polyhedra to analyze. You can check
your signatures on page 82.









Bathsheba Grossman's Sculptures

Grossman's sculptures reveal our lack of full intuition about
three dimensional symmetry; the symmetry type can really
only be appreciated by holding the model and examining it
from several points of view.






These are more difficult to recognize.









Temari balls are a fascinating way to realize spherical
patterns.









Quiz: What are the symmetry types of these beautiful
temari balls, created by
Carolyn Yackel? Their signatures are on page 82.



Soccer Balls

Quiz: What are the symmetry types of Jon-Paul Wheatley's
playing balls?
Check your answers on page 88.









David Swart gathered these soccer balls in [16]. Every
spherical symmetry type appears, some more than once.

Quiz: How many signatures can you identify?
(Ignoring stitching and logos, the signatures appear on
page 83.)



Spherical Kaleidoscopes

Physical kaleidoscopes that generate spherical patterns are
uncommon but worth the effort to build yourself. Below we



include plans for their construction! The balls at the
beginning of this chapter were raytraced in virtual
kaleidoscopes; here are photos of real ones.

Two mirrors will form a simple kaleidoscope with
signature *NN if (and only if) they meet at an angle of
180° /N, an even fraction of a circle. In a true mathematical
kaleidoscope, like the one at far right, the images will
always appear whole. When you look into mirrors meeting
at any other angle, images will appear fractured behind the
line where the mirrors meet. The mirrors in the photograph
at close right meet at an angle of a fifth of a circle and do
not form a true mathematical kaleidoscope.

Can you explain the “Mirror Paradox” that arises when
N = 2? When peering into a pair of mirrors meeting at a
right angle, like the ones in the photograph at the top right,
your image is not reversed. The real toy is right-handed and
its image directly across in the back of the kaleidoscope is
too.

The di-scope, right. For a slightly more elaborate
kaleidoscope with signature *2NN, rest a pair of mirrors
meeting at an angle of 180°/N on a horizontal mirror. At
right is di-scope with all the mirrors meeting at right angles
and signature *222. Which of these toys are left hands and
which are right hands?






The Tetrascope, with signature *332: Cut mirrors as
shown below and fold into a cone. Drop objects into the
chamber to see images with this signature. With special
blocks you can show polyhedra with this symmetry, like the
stella octagula at left.



The Octascope creates patterns with signature *432. At
right we show a block shaped like 1/48th of a cube, placed
within an octascope. With the right pieces, we could show
an octahedron, or any other polyhedron with this
symmetry.

The Icosascope with signature *532 is the most
marvelous of all! Cut the mirrors as shown to the right and
fold into a cone. At left, smaller cardboard model of the
same shape is put into an icosascope to show that it is
really 1/120th of a dodecahedron. If you cut a hole on one
end, along the gray lines, you will see a pattern in the
shape of a stellated dodecahedron!












Generating Regular and Archimedean
Polyhedra in Kaleidoscopes

The regular polyhedra are related in dual pairs, sharing the
same kaleidoscopic symmetry. On page 68, we see that the
icosahedron and dodecahedron both have symmetry type



*532; the cube and octahedron both have *432 symmetry.
The tetrahedron is dual to itself, with *332 symmetry.

In fact, for any of these pairs, there's a continuum of
polyhedra between them, all with the same symmetry,
shown below for the dodecahedron and icosahedron pair,
drawn in Jeff Weeks' Kaleidotile software. Each member of
this family is given by a point in the kaleidoscope, known as
a Wythoff triangle.

These are some of the Archimedean polyhedra. (On page
532 we show an Archimedean polyhedron that has 532
symmetry, and so doesn't have a kaleidoscope. See
Chapters 19 and 21 of the full edition of The Symmetries of
Things for a complete accounting.)



The same construction works in any symmetry of type
*PQR — this is the unity of the orbifold perspective. The
figures at left show the Archimedean polyhedra
corresponding to the center of the Wythoff triangle, in
various kaleidoscopic symmetries. Below at left we show a
planar tiling with signature *632. The construction
seamlessly carries over into hyperbolic space, as shown
below right for *732 (Chapter 10).



Unusual Dice



Here are some interesting dice, produced by Dice Lab,
Kosmo Games, and Impact Miniatures, with unusual shapes
and numbers of sides. Some of these dice are not really
fair, and some don't look fair but are!

A die will be unbiased if there is a symmetry taking any
particular face to any other, so that each face is as likely to
come up as any other [6, 9]. We may reasonably presume
the converse, that a die must be biased, at least subtly, if it
has different kinds of faces up to symmetry.

The symmetry types of dice can be difficult to work out
from a photograph, but we can find some clues. For an
unbiased die, the number of its faces must divide the order
of its symmetry group. From Table 4.1 we can see that if
any of our dice with 5, 7, 9, 11, 14, 16, or 22 sides were
fair, it would have a symmetry type in one of the seven
infinite families NN, 22N, *NN, *22N, 2*N, N*, and Nx.
Things that have these signatures all have one special axis,
about which we may rotate by 1/ of a revolution. The red

14-sided d7 at center does have such an axis, and has
signature 227 — it's fair. None of the rest of those dice has
a suitable axis, and none are fair. In fact, many of these are
Archimedean polyhedra, and clearly have more than one
kind of face.

On the other hand, the 6- and 12-sided dice in this
photograph do not look like they are fair, but they are!
Their signatures are 322 and 332. The dice on the bottom
row are all fair, with one kind of face in the symmetry —



the dice are isohedra, two with signature *432, two with
signature *532.

Answers:

Top row, page 71: From left, 432; 332 accounting for
colors, 432 if not; 332 as colored, 532 if not colored, e if the
five tetrahedra are colored differently; *222 as colored, 3*2
if uncolored. See page 168 for designs to print out and
assemble for yourself!

Second row, page 75, overlooking finer details: 432;
*332; 532; and *532. Next are the signatures of the objects
with spherical symmetry on page 9: These subtle fair dice
from Dice Lab have signature 322; Dick Esterle's Knobbly
Wobbly has signature e accounting for the colors, 532 if
not; Bathsheba Grossman's Clef has signature 222; the
Craighill Jack Puzzle has signature 3*2; John Kostick's
brass star has signature 532. Shiying Dong's crocheted
Seifert surface has signature 332 if the colors are not
considered. Accounting for them, it has signature e — to
preserve the colors, the only possibility is do nothing.



The signatures of the balls on pages 76 and 77: Top row:
The Badly Drawn Ball has trivial symmetry, o. Al-Rilha has
signature 3*2. The 232 Panel Ball first appears to have
signature 532, but on closer inspection has trivial



symmetry. The hat ball has signature 532, and is based on
a planar periodic tiling with hexagonal holes and signature
632.

Second row: Eigil Nielsen's iconic Telstar ball (1968) has
signature *532; the other balls have 222 and 2*2. Third: 3x;
*432; *532; *332. Fourth: 332; 432; 3*2. Fifth: 33; 2*; *55;
532. Sixth: *222; *432; the ball decorated by flags has
trivial symmetry, signature e.









Chapter 5

The Seven Types of Frieze
Patterns

There are other interesting patterns we've not yet
considered. They are formed by the symmetries of plane
patterns that repeat infinitely in one direction only: We call
them frieze patterns. The facing page shows the seven
different types of frieze pattern.

As we shall see in a moment, there is a Magic Theorem
that we can use to list these. However, we don't really need
it because any frieze pattern can be wrapped around a
finite object such as a vase, which means that you can find
the signature for a frieze pattern just as we did in the
Euclidean and spherical cases:



Imagine the pattern wrapped around the equator of a
very big sphere, such as in the figure at the top of this

page.

According to the number of repetitions of the
fundamental region, this wrapped up frieze pattern will
have one of the seven spherical symmetry types that
involve a parameter N — namely NN, Nx, N*, *NN, 22N,
*22N, or 2*N — and so it's natural to say that the
corresponding infinite frieze pattern has symmetry type
000, 00 X, 0 * *ooco, 2200, *¥2200, or 2*w, These could also be
deduced from the following.

Theorem 5.1. (The Magic Theorem for Frieze
Patterns) The signatures of frieze patterns are precisely
those that contain an « symbol and cost exactly %2.

The symbol « costs *1, which makes perfect sense since

-1 — 1. The symbol « costs $%, since % = %

(opposite page) Seven frieze patterns to analyze, with signatures on page 94.

Figure 5.1 shows frieze patterns formed by footprints in
the sand of an infinite desert plane. To analyze them, we
transfer each one to a finite spherical planet, such as the
one at right. There our previous methods show the
resulting signatures of these wrapped up footprints to be
NN, Nx, N*, *NN, 22N, *22N, and 2*N for very large N.
(The pattern of footsteps on the sphere at right has



signature 11 x.) The originals were therefore «w, © x, 0 *, *
0000, 2200, ¥2200, and 2*oo, respectively.

FIGURE 5.1. Tripping around the world in seven different
ways!



The patterns for the types NN, Nx, N*, and *NN are what
we get when we hop, step, jump, or sidle around the world.
For the types 22N, *22N, and 2*N, we spin between each
hop, jump, or sidle, so we call these the “dizzy” types, or
“ditypes.”

With a little practice, the types can be found directly from
the original patterns. For instance, the “dizzy jump” or
“dijump” pattern has the mirror lines:

It is clear that the kaleidoscopes in this pattern have
corners with angles of n/2 and that the kaleidoscopic
points are 2-fold. We declare that the parallel sides of the
kaleidoscope meet “at infinity” with an angle of 7/oc0, and
so the signature of this pattern is *2200. In a similar way,
the infinity symbols in the signatures of frieze patterns
refer to translations (regarded as rotations about the
infinitely distantpoles).






In just the same way, we can explain a hall of mirrors
trick, below at right. Two mirrors meeting at an angle of
w/N form a kaleidoscope with spherical symmetry type
*NN. As the angle between the mirrors decreases, the
number of symmetries (R's) in the pattern increases as
seen in the top two figures.

Below these two figures, we see that as N increases
without bound and the angle between the two mirrors
decreases to zero, the pattern of R's becomes a frieze. The
mirrors are now parallel and we can imagine that their
ends meet infinitely far away at an angle of 7/oco, at
kaleidoscopic points of infinite order. The mirrors bound an
infinite strip that repeats infinitely in both directions. The
signature of this pattern is *ooco. With two mirrors you can
try this for yourself!

We can also view this pattern as the limit of a series of
patterns with signature *Ne. The symbol « in *Ne is a
stand-in, indicating a kaleidoscopic point of order N sitting
“at infinity”. In fact, the spherical symmetry type of a
rosette pattern with signature *Ne is *NIN.



Where Are We?

5, we've determined all possible types of
symmetry for plane repeating patterns, spherical patterns,
and frieze patterns using various forms of our Magic
Theorem. So, the Magic Theorem is quite powerful.

What we haven't done is explain why it is true! Because
this theorem is so powerful you might think it would be
hard, but the next chapter shows that, in fact, it's quite
easy.

In Chapters 2-5



Examples and Exercises

We list our answers on pages 94-95.

1.

What are the signatures of the friezes shown on page
77

. What of those on page 847 (Their orbifolds appear on

page 145).

. What types are these alphabet friezes? Make up a few

more! (What frieze symmetry types are possible with
each letter?)



4. Find the types of these coffee friezes.



5. Analyze the appearances of this Sonny Bono look-alike.
Be careful: some of these friezes have the same type
and not every type is represented.



6. What are the symmetry types of these beautiful frieze
patterns? Of course, more than one type may appear in
the same photograph!






7. Here are some vertical friezes we spotted. What are
their types?

8. A few more to practice on.



9. There are marvelous friezes in the world around you:
What are their types?

Answers

1. From top to bottom, the friezes on page 7 are of types
2200, © X, 2*00, *2200, 2200, and ocooco. (It can help to
imagine these on an enormous sphere with gyration or
kaleidoscopic points of infinite order at its poles.)



2. The frieze patterns on page 84 are of types « x, o *,
0000, 2*00, 2200, *oc000, *2200. (On page 84, you can
see how these patterns' signatures record the building
blocks of their orbifolds.)

3. When repeated in a horizontal or vertical line, a letter
with *2e point symmetry, such as H, I, X, or O (page
11), will form friezes with signature *2200. Letters with
a single vertical mirror line, such as W,A,V,Y,T,U, or M
will form horizontal friezes of type *co oo and vertical
ones of type » *. The reverse holds for letters with a
single horizontal mirror, B, D, E, C, K. A letter with
gyrational point symmetry 2e, such as N, Z, or S, will
produce a frieze of type 2200 when it is repeated in any
direction. The repeated p's have signature « «; pd's



have signature 2200; pq's *oooo; pb's 2x. The remaining
friezes have signatures « *, *2200, and 2x.

4. Listed in order from top to bottom: cocoo, © %, © *, *ocooo
, 2200, 2*00, *¥2200.

5. Listed in order from top to bottom:ocooo, 2*00, 2200, =
*, 00 x, ¥2200, 2*00.



6. From top to bottom: First frieze 2200, *oo 00, and « X;
second « x; third and fourth *oo oo. The fifth frieze
shows types *2200, *oo oo, and 2200. Sixth is « x and
seventh is *oo oo.

7. From left to right, 200, not paying close attention to the
screws; o« o (if we may flip the stairs over, then 2200);

0 X; © ©; 0 X; © X,

8. From top to bottom: « «; 2200 and *oo 00; 2200; 2*00;
2*00 (ignoring windows).



9. You tell us!






Chapter 6

Why the Magic Theorems
Work

In this chapter we'll deduce the Magic Theorems from
Euler's well-known theorem about maps. A mathematical
map is like an ordinary map of countries and their borders.
We'll show how the different features of a symmetric
pattern affect the structure of some specially chosen maps
and how Euler's theorem is used to determine the costs
assigned to the features of a signature.

Folding Up Our Surface

We've told you that when several features in a pattern are
of the same kind you should count them only once. We are
really counting things not on the original surface but on a
folded-up version of it, the folding taking all the points of



the same kind to a single point. An orbit is a set of all of the
points that are the same kind in a pattern, so this “orbit-
folded” version of the surface is called the orbifold.

As we remarked in Chapter 4, the symmetries of finite
objects can be thought of as symmetries of the surface of a
celestial sphere. For example, the chair at the top of the
page has two symmetries: the trivial one and the reflection
in its plane of symmetry. This reflection equates pairs of
points in the left and right of the celestial sphere, defining
orbits. For example, the reflection equates the pair of blue
points, and the pair of blue points is an orbit. The single
red point lies on the mirror and is an orbit by itself. We can
fold each orbit into a single point by pushing the right
celestial hemisphere into the left one.

The orbifold is therefore a hemisphere. Most points of the
orbifold, like the blue, green, and yellow points, correspond
to full-sized orbits (of two points), but the boundary of the
orbifold consists of half-sized orbits like the red one. The
signature for this pattern is * and its cost is *1.

At left, a planar pattern lifted stereographically up to a sphere.

Each pattern has an orbifold of its own, equating points
that are of the same kind: the points in the orbifold
correspond to orbits in the pattern. These orbifolds are
topological surfaces, with a few marked points. The
signatures we've been using describe topological properties
of these surfaces. For example, the orbifold of a pattern of



signature * is a hemisphere, which topologically is a sphere
with a very large hole * punched into it.

In this chapter we will use topological tools to study
orbifolds and prove our Magic Theorem, explaining why,
for example, each hole costs *1, and why planar signatures
total exactly $2.

Orbifolds

Each of the symbols in a signature describes a distinct
feature of an orbifold. For example, around an N-fold
gyration point marked N in a pattern, there will be N
copies of each kind of point. On the orbifold we bring points
of the same kind together until we have 1/N th of a disk's-
worth of material, forming a cone. We call such a point an
N-fold cone point, and mark it as N on the orbifold. This
crossword pattern has a 2-fold gyration point and its
orbifold has a 2-fold cone point, which we mark 2. (We take
this up further on page 134.)



Near an N-fold kaleidoscopic point, an orbifold is a folded
wedge, 1/N th of a folded-over disk, called an N-fold
kaleidoscopic corner.



This paper snowflake pattern has signature *7e. Folding
this pattern along mirror lines brings points of the same
kind together. Its orbifold has a 7-fold kaleidoscopic corner
7 on a piece of a boundary *. You can confirm that this is
the orbifold by framing it between a pair of mirrors, or by
cutting out your own paper snowflake from this design.
(More of these are on page 132.)

In a signature, a red digit N can only come after a *,
because an N-fold corner can only lie on a boundary of the
orbifold. For example the signature *632 describes an
orbifold with a single boundary and three marked corners
upon it, a triangle consisting of one copy of each of the
different kinds of point in the pattern. (More kaleidoscopic
orbifolds appear on page 133.)

In Chapter 8 we will study topological surfaces, learning
that they can all be described as a sum of “boundaries” *,
“handles” o, and “crosscaps” x. Together with marked cone
points N in the interior of an orbifold and corners N on its
boundaries *, these are the features that the signature
records. In Chapter 9 we'll take a closer look at some
patterns and get a better feel for their orbifolds. For now
we will use them to prove our Magic Theorems.

Euler's Map Theorem on Spherical Orbifolds

Leonhard Euler discovered a wonderful fact about maps
drawn on a sphere — namely that V — E + F = 2, where V,
E, and F are the numbers of vertices, edges, and faces of



the map, respectively. We'll use char for V — E + F' since
this number is traditionally called the Euler characteristic.
The proof of Euler's Theorem is postponed to Chapter 7:
For now we study what happens to char when we fold up
maps on spheres into orbifolds.

At right, we show a sphere decorated with five vertices
and eight edges. These divide the sphere into five separate
regions, or faces of this map. So in accordance with Euler's
Map Theorem,

char =5 -8+ 5 = 2.

As shown by the red mirror lines this map has signature
*22. Its orbifold is a quarter sphere, with one boundary *
and two corners 22 upon it.

On this orbifold, we see a folded form of this map. Some
of the vertices, edges, and faces have been halved or
quartered. Examining the figure at right, we have



1 1 1 5
V' =rte ity
—1+l—|—l—2
B 2 2
and
1 5)
F=1+-—=-—.
* 4
This quarter-spherical folded map has
5 5 1
har=V -FE+F=— -2+ — = —.
char =V + 1 +4 5

The same argument works for any spherical map: When
we bring together points that are the same in the pattern's



symmetry, the resulting orbifold map has char =2/g,
where g is the number of symmetries of the pattern.

For example, the cubical map at left has forty-eight
symmetries (taking any marked triangle to any other).
When we fold this map along the mirror lines shown, the
orbifold is a triangle * with corners, with signature *432.

On its orbifold the map has only % of a vertex, % of an
edge, and % of a face, so

1+1_1_2
4 8 24 48"

1
h = —
cnar 6



This is obvious because all we've done is take 1/48 th of
V_-E+ F =8—12+ 6 = 2 for the original cube map.
Similarly, this colorful map has signature 3*2 — its
orbifold has a 3-fold cone point 3 and a corner 2 on a
boundary *. You can check that on this orbifold, we have

1 1 1
5 E=1+1+1 and F=1++

V= 2 9

+

!
3

1
4

giving char =V — E+ F = %, which is 1/24th of the char

of the original map on the sphere.

Why char = ch: Proving the Magic Theorem for
the Sphere

We've now shown that for spherical types char = 2/g, so to
prove the Magic Theorem in the spherical case we only
need to explain why char =ch, the change after
subtracting the cost of our signature from *2.

We work out how char changes as we add features to the
orbifold — this is the cost of each feature. By Euler's Map
Theorem, which we will prove in Chapter 7, any planar map
has char = 2. To work out the orbifold Euler characteristic
of a map like the one at upper right on the next page, we
will choose a convenient planar map, like the one to its left,
where the kaleidoscopic boundaries are filled in with faces,
and the gyration and kaleidoscopic points are included
among the map's vertices. Now we proceed to put in the
features of the orbifold, to see the effect on char:



Punching a boundary * decreases char by 1. Choose a map
for which the boundary is filled in by a single k-sided face,
like in the drawing above. Then, removing it decreases F by
1 and V and E by % (since vertices and edges around the
hole get halved). Therefore, V — FE + F is reduced by
% — % + 1 = 1; a boundary decreases char by 1, the cost of

each * in the Magic Theorems.

Replacing an ordinary point by an N-fold cone point N
decreases char by % Choose a map for which the point
is a vertex. Before the change, it contributes 1 to V;
afterwards it contributes only % Therefore in the Magic
Theorems the cost of an N-fold cone point is:

Replacing an ordinary boundary point by an N-fold corner
point N decreases char by % Again, we choose a map
for which the point is a vertex and 1/2 a vertex once the



boundary has been punched out. After the replacement, it
will be 1/(2N) of a point, decreasing char by the cost of N
by:

1 1 N -1
2 2N 2N

The orbifolds for 13 of the 14 spherical signatures,

namely

*532 *432 *332 *22N *NN
3*2 2*N N*

532 432 332 22N NN

can be obtained from the sphere (for which char = 2) by

introducing holes, cone points, and corner points — the
features symbolized by *, N, and N, respectively.

These changes to the orbifold decrease char by 1, %
and % respectively, the costs of these features in the

Magic Theorem. An orbifold with these features has Euler
characteristic char equal to ch.



The fourteenth spherical signature is Nx. The x stands for
a crosscap, the orbifold obtained by folding each point of
the sphere onto the point opposite it, as at right. Bringing
together opposite points on the sphere results in a weirdly
twisted half sphere, and halves char, with char = 1.

In Chapter 7 we'll see that each o reduces char by 2,
which is too much to appear in the signature of any
spherical symmetry. In Chapter 8 we'll discuss the topology
of surfaces, and prove that these are all of the features that
an orbifold could possibly have. Thus the list of 14
signatures of spherical symmetry types is complete.

The Magic Theorem for Frieze Patterns

The Magic Theorem for frieze patterns states that the
signature of a frieze pattern costs #2. Its proof is an easy
consequence of the one for spherical patterns. This is
because we can roll up an infinite frieze pattern into a
finite one around the equator of a sphere.



The resulting spherical pattern will have a rotational
symmetry of order N, and its symmetry will be one of the
seven types *22N, 2*N, 22N, *NN, N*, Nx, or NN, whose

- 111 1 1 1
Euler characteristics have the form 3, 55, %, % %' 7

or % respectively. The frieze pattern will correspondingly
be one of *2200, 2*00, 2200, *0000, © *, © X, or cooo, whose
Euler characteristics (obtained by letting N grow to «) are

0.

In fact patterns with these symmetries really do have -
fold cone points and kaleidoscopic corners — the limits of
N-fold ones. As N increases while keeping the length of



each period in the pattern the same, these special points
will pull further and further away from the rest of the
orbifold and ultimately they will “lie at infinity.” At right we
show orbifolds for NN tending towards the orbifold for cooco
, an infinite cylinder whose ends are cone points with angle
w/oo = 0. Turn to page 144 to see more frieze pattern
orbifolds with «-fold cone points and kaleidoscopic corners.

The Magic Theorem for Euclidean Planar
Patterns

Here we must prove that any orbifold corresponding to a
pattern in the Euclidean plane has Euler characteristic
equal to 0. We do this by showing that, for any really large
circular portion of the plane pattern, the Euler
characteristic must be close to 0. In the proof we use the
fact that the numbers of vertices, edges, and faces inside



the circular region are proportional to the area of the circle
and so to the square of its radius, while the numbers of
vertices, edges, and faces along the boundary of the region
are just proportional to the length of the boundary and to
the radius of the circle.

To begin the proof, take a map having the same
symmetry as the pattern and delete everything that lies
outside a circle of large radius R on it. Wrap the circular
patch P of the map around a large sphere. This turns a
region of our planar map into a map on the sphere, as
shown above.

The numbers V, E, and F for the portion P of the infinite
map will be close to Nv, Ne, and Nf, where v, e, and f are
the (possibly fractional) numbers of these things on the



orbifold of the original map and where N is the number of

copies of this orbifold completely covered by the portion P.
Since the area of P is just wR?, this number N will be

approximately kR? for some positive number k.

In fact, the differences V — Nv, E— Ne, and FF— Nf
between the actual V, E, and F and their approximations
will be bounded by multiples of R. This is because the
“extra” vertices, edges, and faces belong to copies of the
fundamental region of the map that lie across the perimeter
of P. The perimeter has length 2mR, so the number of
copies of the fundamental region that overlap the
perimeter is proportional to R.

We can therefore suppose that
(V — kR?v) — (E — kR%) + (F — kR*f)] <cR for a
constant ¢, and so

1
—=(-e+(V-E+F)/R)

<ch=v—e+f

< %(c—l— (V- E+ F)/R).

Since the bounds of this inequality tend to zero as R tends
to infinity, it must be true that ch = 0, completing the proof
of the Magic Theorem for planar patterns.

Where Are We?



We have just shown that planar patterns always have
char = ch = 0, proving the Magic Theorem for the plane. In
the remaining chapters of this book, we classify the
topological features a surface may have and work out their
costs. You can turn to Chapter 9 to learn how to make your
own orbifolds for many of the patterns in this book, and in
Chapter 10 we conclude with the broadest form of the
Magic Theorem.

Up to now it has been important to distinguish between
the red and blue digits in our signatures because they have
different costs. After this chapter, we'll feel free to print
them in black. It's easy to recover the proper colors if you
want them; the symbols that should be blue are just those
before the first cross (x) or star (*).

Examples and Exercises

We may verify that an orbifold of a planar symmetry type
has Euler characteristic char equal to 0, even without
knowing much about its topology, by drawing a map like
the ones on these pages and then counting the (possibly
fractional) numbers V of kinds of vertices, E of kinds of
edges, and F of kinds of faces in the pattern. These are the
same as the numbers V of vertices, E of edges, and F of
faces on the orbifold, and we may check that char
=V -E+F=0.

By looking at the planar map on the previous page, we
can see that its orbifold has V =1 (there is one kind of
vertex where the triangles and hexagons meet), £ = 2 (two



kinds of edge, that of a triangle, and that of a hexagon), but
F=1/2+41/341/6 (half a rhombus, a third of a triangle,
and a sixth of a hexagon) for char = 0.

The pattern at right has V =1 (a black dot), E=3
(brown, green, and blue edges), but F=1+1/2+1/2,
because there are 2-fold cone points in the centers of the
blue and green faces. Overall, char = 0. In Chapter 8 we
will show how to work out that this orbifold has the
topology of a crosscap x, and together with its cone points
has signature 22x.



Quiz: Find the signature of these planar patterns and check
that their orbifold Euler characteristic, the sumV — E + F
is 0.

Remember, the numbers of vertices, edges and faces
might be fractional! Our answers are on the next page.

Quiz: cont'd. Here are a few more to analyze.



Prev. page, left, x* with V =1, E =1+ %, F = %; right,
xx with V =1, E = 2, F = 1. This page, top left, 2*22 with
V=1, E=1+4(3), F=2(%)+ 3(5); top right, 3*3 with
V=1,E=1+3, F= %+ 3. Middle left, 632 with



V:2% E:3%,F: 1%. Bottom left 4%*2,
V=1,E=1+2(5),F=4%+2(g); right 22% with
V = 2(%), E=1+2(3), F=2(3). All these planar

patterns have orbifold Euler characteristic V — F + F = 0,
as indeed they must. With a symmetry drawing program
you can create and check your own!



Chapter 7

Euler's Map Theorem

We've made some powerful deductions from Euler's
Theorem that V — F + F' = 2 for maps on the sphere. Now
we'll prove it!

Proof of Euler's Theorem

For our convenience, we can copy any map on the sphere
into the plane by making one of the faces very big, so that it
covers most of the sphere. This is familiar to us: We've all
seen maps of the earth drawn in the plane. At the top of the
page, we stretch open the back face of a cube, drawing a
planar map.

In this planar map, we'll think of this big outer face as the
ocean, the vertices as towns (the largest being Rome), the



edges as dykes or roads, and ourselves as barbarian sea-
raiders!

FIGURE 7.1. Our prey.

In this new-found role, our first aim is to flood all the
faces as efficiently as possible. To do this, we repeatedly
break dykes that separate currently dry faces from the
water and flood those faces. This removes just F' — 1 edges,
one for each face other than the ocean, by breaking F' — 1
dykes.

At left, like all maps on the sphere, this beautiful map (signature *532) has
V-E+4+F=2

Deleting an edge decreases the number of edges by 1 and
also decreases the number of faces by 1, so V — E+ F'is
unchanged each time we destroy a road and flood a field.



When all the fields have been flooded, we next repeatedly
seek out towns other than Rome that are connected to the



rest by just one road, sack those towns, and destroy those
roads.

(Every town is connected back to Rome, because they all
were to begin with and we haven't yet destroyed the last
road back. There has to be some town connected to the rest
by just one road, or otherwise a loop of roads would
enclose dry fields we have yet to flood.)



Deleting a vertex and the edge joining it to the remaining
roads does not change V — E + F either.

Eventually all of the roads have been deleted, all of the
fields flooded, and every vertex but Rome removed.

We have sacked V — 1 towns by destroying V — 1 roads,
one for each town other than Rome. We destroyed F' — 1
roads to flood all F' — 1 fields. The number of edges in the
original map must therefore have been
(F-1)+(V-1)=V+F—-2=E. Therefore,
V — E+ F = 2, proving Euler's Theorem.

(Did we sack every town other than Rome? Yes; an
unsacked town furthest from Rome would have begun with
two paths back to Rome, which however must enclose some
dry fields, a contradiction. Did we destroy all remaining
roads? Yes; any undestroyed road would be between



unsacked towns, which must both be Rome; but this loop
encloses dry fields.)

We have tacitly assumed that each face is a topological
disk, and we will continue to suppose this. We have also
taken for granted some intuitively obvious facts about the
topology of the sphere whose formal proofs are surprisingly
difficult.

The number 2 is Euler's characteristic number for the
sphere. We next show that every surface has such a
number.

The Euler Characteristic of a Surface

Theorem 7.1. Any two maps on the same surface have the
same value of V — E+ F, which is called the Euler
characteristic for that surface.

We prove that any two maps on the same surface have
the same Euler characteristic V — E + F' by considering a
larger map obtained by drawing them both together, like
these two below are. We shall suppose that no two edges
meet more than finitely often, pushing the maps around a
bit if necessary.



We first draw one map in black ink, the other in red
pencil. Then we gradually ink in parts of the pencil map,
adding vertices and edges as needed, and noticing that
V — FE + F does not change.

Inserting a vertex.

Vincreases by 1, E increasesby 2 —1=1,s0 V — E+ F

increasesby1 —1+4+0 = 0.

Inserting an edge.
E increases by 1, F increases by 2 —1=1,soV — E+ F
increasesby 0 —1+1 = 0.



We can continue to make these insertions, gradually
inking in the entire figure and not changing V — E + F, as
at left. Feel free to try this yourself!

This argument shows that the characteristic number
V — E+ F for the compound map we end up with is the
same as that for the originally black map. Equally, it's the
same for the originally red map! Therefore, those two
original maps must have had the same characteristic, as
must any maps on the surface we began with — the Euler



characteristic is a constant for each type of topological
surface.

The Euler Characteristics of Familiar Surfaces

In Chapter 8 we'll learn more about different types of
surfaces. Here we find the Euler Characteristic for a few
examples. On each surface, we will obtain the same value
for V — E + F regardless of map, so we will choose helpful
ones. For maps on more complicated surfaces, we take care
to ensure that each each face is a topological disk (which
implies the edges and vertices are all connected to one
another), and that any boundary is covered by a loop of
edges and vertices, counted fully so that Euler's Map
Theorem may be correctly applied.

The Euler Characteristic of a Torus is 0.

The map on the torus at left has 16 vertices, 32 edges, and
16 faces,soV —E+ F =16 —-32+ 16 = 0.

The map below is much simpler: it has just 1 vertex, 2
edges, and — though this takes some checking — just 1
face, so V- E+ F=1—-2+1=0. The theorem tells us
that we can use either map to work out the characteristic.



A Disk has Euler Characteristic 1.

A disk always has Euler characteristic 1: the very simplest
map has 1 face, 1 edge, and 1 vertex, for
V-FE+F=1-2+1=0, but any map will do.

In fact, a disk is topologically a sphere with one hole
punched into it. We've met the annulus, with Euler
characteristic 0, which may be regarded as a sphere with
two (very large) punctures.

The Euler Characteristic of an Annulus or
Mobius Band is 0.



On the left, we see a map on an annulus, on the right a map
on a Mobius band. Both maps have 2 vertices, 3 edges, and
1 face, and so V — E + F = 0. This is so for all maps on a
Mobius band or an annulus.

The Klein Bottle Also Has Euler Characteristic
0.

The Klein bottle, a one-sided, boundary-less surface, also
has Euler characteristic 0. Again, we choose a map with
just 1 vertex and 2 edges, as shown. With a little care you
can verify this map has 1 face, and this face is a connected
disk, yieldingV - E+F=1-2+1=0.



A Sphere with n Holes Punched in It Has Euler
Characteristic 2 — n.

We have already seen that a disk (a sphere with 1 punch)
has Euler characteristic 1 and an annulus (a sphere with 2
punches) has Euler characteristic 0. The pattern continues:

We may see this easily by taking a map on the sphere
that has a great many more than n faces. If we delete n
non-adjacent faces, we have kept V and E the same but
decreased F by n.

Consquently, the Euler characteristic will be n less than
that of a sphere: 2 —n. In fact, punching n holes in any
surface will always decrease the Euler characteristic by n.



Alternatively, we may systematically design a map
specifically for this surface. Here is a specially designed
map on a sphere with n punches. It has 2n vertices, 3n
edges, and 2 faces, and SO
V-E+F=2n—-3n+2=2—mn, and so by Theorem 7.1
must be for any map on this surface.

An n-fold torus has Euler characteristic 2 — 2n.

An n-fold torus is a surface obtained from a sphere by
adding n handles, or equivalently n tunnels. We make it by
deleting n faces from a sphere and then attaching n
handles. Each handle is just a torus with a (very large) hole
punched



in it and will contribute 0—1 to the total Euler
characteristic. Each hole punched in the sphere will
contribute —1. So the net result is that the Euler
characteristic of an n-holed torus is 2 — 2n.

Or, as we show above, we may design a map specifically

for this surface with 2n vertices, 4n edges, and 2 faces:
V-FE+F=2n—4n+ 2 =2 — 2n.

Two Mystery Surfaces with Euler Characteristic
—2.

Here we have two mystery surfaces with V — E + F = —2,
Both have two boundaries and are two-sided; in Chapter 8,
we will learn that they then must be the same surface,
topologically, and the same as a twice punched torus o**. In



the meantime, you might try to decide for yourself whether
this is obvious!

Two More Mystery Surfaces with Euler Char. —2.

Verify that these surfaces also have Euler characteristic —2
. Though they both have two boundaries, they cannot be
the same topological type as the two at left, since they are
both one-sided, as you should check for yourself. In
Chapter 8, you'll find the tools to verify that these are both
topologically equivalent to a twice-punched Klein botitle,
which we will soon denote xx**,

Where Are We?

In this chapter we have shown that for the sphere the Euler
characteristic is 2 and more generally that the value of
V — E + F depends only on the surface on which a map is
drawn and not on the map itself. This supports the proof of
the Magic Theorem in Chapter 6, which in turn supports
the enumeration of symmetry types in Chapters 2-5.

In the next chapter we shall classify all possible surfaces,
which will show us all the forms an orbifold could possibly



take and will help us conclude that we've enumerated the
signatures of all possible symmetry types.

There Are Just Five Regular Polyhedra

The five regular polyhedra have been known for
millennia. Each has one kind of regular polygon for its
faces, and the same number of them meeting at each
vertex.

Above, from left to right, we see a tetrahedron
(regular 3-gons, meeting 3-to-a-vertex, which we will
abbreviate {3,3}), an octahedron {3,4}, an
icosahedron {3,5}, a dodecahedron {5,3} and a cube

{4,3).

Are these all of them? Consider a regular {p,q}
polyhedron with F p-gons, with g of them meeting at
each of its V vertices.

Each of the E edges meets 2 vertices, and each vertex
meets g edges. Counting all these meetings, we have
2F = qV. Similarly, each edge bounds 2 faces, and



each face is bounded by p edges. Counting these
boundings, we have 2F = pF..
Since V + F' — E = 2, we find that

Since E is positive,

1 1 1
— 4+ = > —.
qg p 2

Moreover, since the faces of this polygon must have
at least three sides, and at least three faces must meet
each vertex, p,q > 3. The only possible values for p and
q are on the list above, and so these are all of the

regular polyhedra.

But what do we make of the polyhedra above, with
faces that cross through one another? (A face of each is
highlighted.)

The great icosahedron at left has 20 triangular faces,
five of them meeting edge-to-edge at each of 12



vertices. With 30 edges, it has Euler characteristic 2.
Topologically, it is a sphere, partitioned in the same
way as a regular icosahedron but tangled up in space in
a curious way.

The great dodecahedron at right has 12 regular
pentagons as faces, meeting along 30 edges, five faces
at each of its 12 vertices. Its Euler characteristic is —6
and topologically, this polyhedron is a four-holed torus.
It is not a spherical polyhedron at all!

In the calculation at left we tacitly required a regular
polyhedron to be topologically a sphere, and by
common sense, we mean an embedded one. The
enumeration is complete and there are just the five
regular polyhedra at top left.






Chapter 8

The Classification of
Surfaces

In Chapters 2-5, we gave a supposedly complete list of
symmetry types of repeating patterns on the plane and
sphere. Chapters 6-7 justified our method of “counting the
cost” of a signature, but we have yet to show that the given
signatures are the only possible ones and that the four
features we described are the correct features for which to
look.

Any repeating pattern can be folded into an orbifold on
some surface. So to prove that our list of possible orbifolds
is complete, we only have to show that we've considered all
possible surfaces.



In this chapter we see that any surface can be obtained
from a collection of spheres by punching holes that
introduce boundaries (*) and then adding handles (o) or
crosscaps (x). Since all possible surfaces can be described
in this way, we can conclude that all possible orbifolds are
obtainable by adding corner points to their boundaries and
cone points to their interiors. This will include not only the
orbifolds for the spherical and Euclidean patterns we have
already considered, but also those for patterns in the
hyperbolic plane that we shall consider in Chapter 10.

(opposite page) The surfaces shown on these pages, like all other surfaces, are
built out of just a few different kinds of pieces — boundaries %, handles o, and
crosscaps x. But it may be hard to tell how, at just a glance! Turn to page 129
to work out the topology of these models crocheted by Shiying Dong.

Caps, Crosscaps, Handles, and Cross-Handles

Surfaces are often described by identifying some edges of
simpler ones. We'll speak of zipping up zippers.
Mathematically, a zipper (“zip-pair”) is a pair of directed
edges (these we call zips) that we intend to identify. We'll
indicate a pair of such edges with matching arrows:

Zipping a Cap



There are simple modifications that you can make to a
surface by zipping together the boundaries of one or two
holes.

If a single hole is bounded by a clockwise zip and its
counterclockwise mate, we have a cap: zipping this up just
seals the hole, so we can ignore it.

Like a sphere or disk, and unlike other surfaces, a cap is
simply connected: any loop upon it can be contracted to a
single point without being hung up on the topology of the
surface.

Zipping a Crosscap

If instead the two zips are in the same sense (e.g., both
counterclockwise), we have the instructions for what's
called a crosscap.To get a clear picture is rather difficult:
The usual one involves letting the surface cross itself along
a line, leading to an 8-shaped cross-section as shown at
right.



We start by dividing each zip into two zips, as at left.
Above we distort the surface, bringing the two sets of zips
together. We obtain something like the final surface shown.
To really understand crosscaps, draw your own pictures or
make some models! (See page 127).

Zipping a Handle

If two nearby holes on a surface are bounded by zips in
opposite senses, we have the instructions for a handle. To
see this, let the two “tubes” grow out of the same side of
the surface and then meet, as below.

Zipping a Cross-handle



If such zips are in the same sense, we can let the “tubes”
grow out of opposite sides of the surface to form a cross-
handle, which is sometimes called a Klein handle, shown
here:

Non-orientability and One-sidedness

Most surfaces we see in ordinary life are orientable. No
matter what journey the pinwheel makes on a torus, it
always returns in the same orientation; the torus is
orientable.



However, like the Mobius band and the Klein bottle
(page 127), the crosscap is non-orientable, because if
the pinwheel is taken once right round the cap, through
the crossing in the middle, it returns in the other
orientation — left and right have been swapped.

These non-orientable surfaces are also one-sided in our
surrounding space. It is possible to walk along the
surface from each side to the other, and so they are the
same side!

Tidy Surfaces



In fact, any sphere with the instructions for, say, adding
three handles, two crosscaps and two holes is topologically
just the same as any other sphere with the instructions for
three handles, two crosscaps, and two holes, since we can
just push the holes around. The important point is just how
many of each of these things there are for each component
— each piece — of the surface.

Lemma 8.1. (Tidying Lemma) Every surface is
topologically equivalent to a “tidy” one, obtained from a
collection of spheres by adding handles o, holes *,
crosscaps x, and cross-handles ®.

To prove this we will suppose that the surface is given to
us as a collection of triangles that have zips indicating how
they should be pieced together. (In technical language, this
is called a “triangulable 2-manifold.” It is a deep and
difficult theorem, proved by Tibor Rado in 1925, that every
compact 2-manifold is triangulable in this manner.)

On the next few pages, we present our proof through
diagrams:



A triangle is already a tidy surface — it's a sphere with a
hole in it — and therefore our collection of triangles is
certainly tidy before we do any zipping up. So, all we need
to prove is that we can zip up any one zip-pair of a tidy
surface in such a way as to preserve its tidiness.

The proof is simple in the “snug” cases when the two zips
of this zipper together occupy all the boundary components
they involve, which we show in Figures 8.1 through 8.3.
But Figures 8.4 through 8.8 show that it is almost as
obvious in the “gaping” cases when they don't, since these
produce the same surfaces as the snug ones, with an extra



boundary or two. (The figures illustrate only the “totally
gaping” cases.)

FIGURE 8.1. Zips on different components of a surface.

From #%T1ob x¢®? and 418 xC9@P, we get
*a+A Ob+B XC+C®d+D.



FIGURE 8.2. Zips on different boundaries of the same
surface component. At top we zip a pair with opposite
orientations. On the bottom we zip a pair with the same
orientation. From *%t2 0% x°®%, we get %% o’ x°®? or
%@ ob xcgdtl according to the orientations of the zips.



FIGURE 8.3. Zips on same boundary. From %! o® x°®¢?,
we get x%0% x°®% or %o xt'@? according to the

orientations of the zips.



FIGURE 8.4. Gaping zips on different components form a
joined surface with boundary.



FIGURE 8.5. Gaping zips with opposite orientations on
the same boundary form a cap with boundaries. From
%% o x¢®%, we obtain x*T! o® x°¢®¢,

FIGURE 8.6. Gaping zips with the same orientation on the
same boundary form a crosscap with boundaries. From
%% o? x°®?, we obtain x® o® x°t1®?,



FIGURE 8.7. Gaping zips with the same orientation on
different boundaries of the same component form a
crosshandle with a boundary. From "1 o? x°®?, we obtain
%@ Ob Xc®d—|—1.

FIGURE 8.8. Gaping zips with opposite orientations on
different boundaries of the same surface form a handle
with  boundaries. From x%1o? x¢®% we obtain
%0 OIH—l ><C®d.

In fact we can improve on Lemma 8.1:

Theorem 8.2. (The Classification Theorem for
Surfaces) To obtain an arbitrary connected surface from a
sphere, it suffices to add either handles or crosscaps and
maybe to punch some holes, givingboundaries. So, the
symbols 0% and % ®x° represent all possible surfaces.

Here's why:

We Don't Need Cross-Handles.



A cross-handle is just a combination of two crosscaps since
they are both generated by the same set of instructions.
This is shown by zipping up this figure in two ways:

If we do up the blue horizontal zipper first, we get the
instructions for a cross-handle (®), as in the first figure at
top right. Therefore, doing up both zippers will give a
cross-handle.

Alternatively, as at right above, if we do up the green
vertical zipper first, the general theory tells us we get the
crosscap (x) that would come from the corresponding
“snug” case, together with a boundary formed by the blue
zips. But this boundary is just the instructions for another



crosscap, so what we've proved may be expressed by an
equation:

X = XX

A cross-handle may be replaced by two cross-caps.
We Don't Need to Mix Crosscaps with Handles.

If we have both a crosscap (x) and the instructions for a
handle (0), we can take one of the holes to be zipped for a
“walk” around the crosscap so that it returns with the
reversed orientation. The instructions for a handle become
the instructions for a cross-handle.

Symbolically, this proves that ox can be replaced by xxx
or x3. More generally, 02x? = x 22+ if p > 0.



Euler Characteristics of Standard Surfaces

In the last chapter, we showed that the Euler
characteristic of a given surface was independent of its
triangulation. To work out the Euler characteristic, we
can make our triangulations as nice as we please. The
following figures show that

« punching a hole (%) decreases the Euler
characteristic by 1,

as does

- adding a cross-cap (x),



while

- adding a handle (0) decreases the Euler
characteristic by 2.

We know that a sphere has Euler characteristic 2;
hence, the Euler characteristic is

2 — 2a — bfor o %,

2 —b—cfor *° xC.



Therefore, to work out the topological type of a
surface, count the number n of boundaries of the
surface and check to see if the surface is non-
orientable, which is the same as having a Mobius band
embedded within it. Conversely once we find the Euler
characteristic y of the surface, its type is 02 "=X)/24n if
it is orientable, and x(2~" %) %™ if it is not.

As a shortcut to calculate the Euler characteristic, as
in many of the examples at the end of this chapter, we
can slice the surface up, along a (possibly empty)
collection of disjoint loops and some arcs between them
(“slices”), so that the complement is a topological disk,
and then apply this lemma.

Lemma 8.3. (Slicing Lemma) Suppose S is a
surface, other than a sphere and that slices along s arcs
and some number of disjoint loops are necessary to
slice it into a single topological disk. Then x(S) =1 —s

Thus if S has n boundary components, its type is
0®/2%™ if it is orientable, and x®%" if not, where
A=1+s—n.

To see why this is so, let S be a surface that is not a
sphere. We construct a graph that suits our needs. A
surface has a loop on each component of its boundary,
or (since S is not a sphere) a non-separating loop if it
does not have boundary. On each loop, choose a cycle

of vertices and edges — there will always be as many of



these vertices as edges, and these will not contribute to
our final Euler characteristic count.

Next, we add slices to the graph, paths of edges and
vertices, beginning and ending on our initial loops; this
may always be done so that the remaining part of the
surface can be laid flat as a single, simply connected
piece, i.e. a topological disk (If it does not lie flat, there
remains something to slice; one never needs to slice the
surface into two parts.) Each arc has one more edge
than vertex to contribute to the Euler characteristic
count, no matter how many there are.

When we are done, there is a single disk as a face,
and F'=1. No matter how many vertices and edges
this graph has, there are exactly s more edges than
vertices. Therefore x(S)=F+V —E=1—s. If the
surface has type 02/2x" or x“%", x(S)=2—n— A,
and thus A =1+ s —n.

That's All, Folks!

We cannot simplify this system for describing surfaces any
further since all these surfaces are topologically distinct.
This is because

. 0%x? is orientable, with b boundary components and

Euler characteristic = 2 — b — 2a,

while



. x°x° (¢ >0) is non-orientable, with b boundary

components and Euler characteristic 2 — b — ¢,

so that the numbers a, b, and c are invariants.

In particular, we can use one of 0%’ and *’x¢ to indicate
the topological type of an orbifold. But, an orbifold differs
from an abstract surface just because it has local features
coming from points that were fixed by some symmetries.
Since we showed in Chapter 1 that the only possibilities for
the symmetries fixing a point are N and *N, there can be no
other local features than gyration points and kaleidoscopic
points.

This proves at last that the four fundamental features
that make up our signature symbol

wonders gyrations miracles kaleidoscopes
0..0 AB..C X ... X *ab...c *de...f

really are all that's needed to specify its orbifold. In turn,
this finishes our discussion of planar and spherical groups,
since we saw in Chapters 3-5 that these are determined up
to isotopic reshaping by their orbifolds.

The miracles and wonders in Chapter 2 were just a poor
man's way of approaching the global topology of the
orbifold surface. We can now formally define them by
saying that a pattern “has just a wonders” or “has just c
miracles” according as this surface is an orientable one,
b or a non-orientable one, *°

0% % x€.



Where Are We?

Chapter 1 showed that local symmetries must be
kaleidoscopic or gyrational, and in Chapter 2 we added
miracles and wonders to obtain our four fundamental
features. Supposing that these were enough, we then
enumerated the symmetry types of planar and spherical
patterns in Chapters 3, 4, and 5, using the Magic Theorem
that Chapter 6 deduced from Euler's Theorem, proved in
Chapter 7.

In this chapter we have proved the Classification
Theorem for Surfaces, which shows that miracles and
wonders (now properly defined as crosscaps and handles)
can describe the global topology of any orbifold (see also
[18]). Putting everything together, this shows that our four
fundamental features suffice for the entire structure, so
completing the investigation. We conclude that our lists of

Euclidean and spherical groups are indeed complete.

Though we've finished our proof of the Magic Theorem,
in the next chapter we'll take a look at some of the orbifolds
we've been working with, the actual folded and rolled-up
surfaces that produce our symmetrical patterns.

Is this all? No! So far we've mentioned only the Euclidean
and spherical signatures, which cost at most $2. But we've
really classified the more expensive ones too, and we'll see
some of the lovely patterns to which they correspond in
Chapter 10.



Examples and Exercises

We have shown that every surface is topogically a sphere,
possibly with some number of holes, possibly with some
number of crosscaps or handles. Our proof of the
classification theorem is actually a process for breaking
apart our surface and then putting it back together again,
in a tidy form. In practice, though, this can be a little
tedious.



We can work out the tidy form of a surface just by
counting the number of its boundaries, checking whether it
is orientable, and calculating its Euler characteristic (which
we'll call y). We can work out y by drawing a map of the



surface or applying the Slicing Lemma 8.3: If a surface
requires s slices to be simply connected, then its Euler
characteristic yis 1 — s.

For example, three slices suffice for the strange surface
at left to lie flat in one connected piece.Thus it has Euler
characteristic Yy =1—3 = —2. By tracing around the
surface with a finger, we can check that this surface is
orientable and that is has two boundaries. The topology of
this surface can only be o * * — this surface is a twice-
punched torus! Let's take a closer look and determine the
topological types of some other surfaces:

These are orientable surfaces with one boundary. They
need no slices to be simply connected, and so have Euler
characteristic )y = 1. Therefore each has signature * and is
a topological disk.

You can check that the surfaces shown at left and below
are each orientable and have two boundaries. With a single
slice they are simply connected, and so they each have
X =1—1=0. Each has type ** and is thus a twice-
punched sphere, an annulus. We are not concerned with
the way that these surfaces are placed into our space —
topologically all of these are equivalent.



The Mobius Band and Crosscap

What is the topological type of the celebrated Mobius
band?

To make your own Mobius band, attach the ends of a
strip of paper, putting a half-twist between them, as we've
indicated in the figure below. This half twist that renders
the Mobius band non-orientable (page 117) — taking a
clockwise pinwheel around a Mobius band will flip it over
and leave it counter-clockwise.

The Mobius band has one boundary, and is therefore a
punched form of some surface. In order to work out what
that surface is, we can fill in the punch by zipping a disk



back onto the boundary of a Mobius band. This is difficult
to imagine, but we can build this up in our minds!

In this diagram, zipping together the top and bottom of
the rectangular strip at left yields a Mobius band. If we zip
a disk to half of the boundary of this band, we'll have the
figure at right. The zips that remain are on opposite sides
of a disk. When we zip together opposite sides of a disk we
have a crosscap. We conclude that a Mobius band is
equivalent to a once-punched crosscap, x*.



To imagine a crosscap surface, we can wrap a disk
around itself as we've shown above left, so that it may be
zipped onto the boundary of a Mobius band, producing
something like this:

Below we draw another way to visualize the crosscap. In
the middle, a Mobius band has been punched in the back
and its new boundary stretched out into a circle, with its
original twist in the middle. At left, a disk has been
arranged so that we can see how it can be zipped on,
producing the surface at right.

Adding one punch and filling in another does not change
topology — this surface is also a Mobius band, with its
boundary nicely arranged as a circle, but with its interior
tangled up!



We can imagine zipping off this boundary with a disk —
closing off the surface in the drawing yields a crosscap
surface. From above, it really does look like an x as it
crosses through itself!

The Torus and Klein Bottle

There are three essentially different ways we can zip
together opposite sides of a square.

Zipping together opposite sides of a square without any
twists produces a torus o:



If both pairs of zips are twisted, we are zipping together
points that are opposite one another on the boundary of a
disk, and the result is a crosscap, something like the
drawing below right.



If one zip is twisted and the other is not, we will have a
Klein bottle, a cross-handle ® added to a sphere.

We have learned that a crosshandle surface is
topologically equivalent to a sphere with two crosscaps xx
added. Let us try to see this directly by zipping together
two punched crosscaps x* along their boundaries:



Can you work out how the figures below show Klein
bottles?

Exercises

1) Look back on page 112 — can you work out for yourself
what the mystery surfaces are?

2) Using the Slicing Lemma to find Euler characteristics,
what are the tidy forms of these surfaces? Check that both
of these strange-looking surfaces are non-orientable, have
two boundaries, and have Euler characteristic —1 (two
slices render them simply connected). They must both have
the same topologicial type. What type is that?



4

3) The two surfaces below appear to be completely
different, but both are twice-punched crosscaps, x x %k, as
you may verify for yourself: They are non-orientable
surfaces with one boundary and Euler characteristic —1
(two slices suffice to simply connect them).



4

4) Check that each of these surfaces has one boundary, is
orientable, and has Euler characteristic —1 (two slices
render them simply connected). That is, verify that each of
these is a singly-punched torus, o*.



4

5) You can draw your own mystery surfaces like these to
analyze. Draw some loops and shade in their crossings,
choosing which alternating regions on the paper will be
part of the drawn surface. Check to see if your surface is
orientable, and how many boundaries it has. How many
slices suffice to render it simply connected? What is its
Euler characteristic? — What is the topological type of your
surface?



4

6) Let's apply the method of counting slices to Shiying
Dong's crocheted surfaces which we saw at the beginning
of this chapter and in Chapter 1. We don't need to see the
image on page 115 very clearly to tell that it has the same
topology as this surface, which is non-orientable and has
two boundaries.



With two slices it can lie flat as one piece; its Euler
characteristic is —1 and its type is x**.

Ignoring its colors, the crocheted surface on page 9 has
signature 432. Its four bounding rings fit nicely on the
equators of a cuboctahedron, which we show splayed out
below, to see that five slices suffice. This surface has Euler

characteristic —4 and is therefore x2*4,



Though the surface on page 114 is fantastically complex,
we can use its 532 symmetry type to see that it is
assembled from modules with five-, three- and two-fold
symmetry. From this we find that F' =12 4 30 4+ 20 = 62.
Counting each vertex and edge only once, V = 240,
E = 360, and xy = —58. The surface is non-orientable and
has six colored boundaries. Its type is thus X 5446,






Chapter 9

Orbifolds

The signatures we use to describe symmetry types and
prove the Magic Theorem describe features of the orbifold
of a repeating pattern. As we've mentioned, we obtain the
orbifold of a pattern by equating points that are of the
same kind. In this chapter we explore orbifolds in a little
more detail — you might recognize some of the patterns we
use!

You can read this chapter before, after, or alongside the
rest of the book. As you do, we hope you'll keep paper,
scissors, and tape on hand so that you can build your own
orbifold models for patterns you find on these pages and in
the world.



The heart pattern below left has a reflection symmetry
across a mirror line. We made this pattern by folding paper
along this line, and then cutting a lobe shape into it. (We
hope you've all done this before, and if you haven't, please
do so right away.) The folded pattern has layers, which we
imagine to be fused together into a single sheet to form an
orbifold consisting of half of the pattern. This orbifold has a
boundary along the fold line in the pattern, and we mark
this boundary as *.

The planar pattern on the facing page has many vertical
mirror lines. Folding along these mirror lines accordion-
style yields a vertical strip with a pattern repeating along
it. Rolling that up into a hollow cylinder brings together all
of the printed curlicues to coincide as shown at the top of
this page. Fusing together points of the same kind
produces the orbifold for this pattern — shown at the top of
this page — which has the same topology as a sphere with
two punches. The signature of this symmetry type is **.



Kaleidoscopic Orbifolds

To make a pattern with kaleidoscopic point symmetry, like
this one or the cut-paper snowflakes on page 3, you can
fold the paper into wedges that are each 1/Nth of a half
circle, all meeting at a point. Cut through all of the layers
and unfold your paper to find a snowflake pattern with N-
fold kaleidoscopic symmetry and signature *Ne.

The orbifold of the snowflake pattern is the single-layered
wedge formed by fusing together all of the layers of the
folded up paper. Mirrors placed on either side of this
orbifold replicate the full pattern of the paper snowflake, as
shown below. The boundary of this orbifold, a chain of two
mirrors, is what we have been calling a kaleidoscope. This
boundary is marked as * in the signature of the pattern,
and the corner on it as N. You may recall from Chapter 1
that we use a « when the symmetries of the pattern fix a
point.






At the start of Chapter 2 we showed you kaleidoscopes
for patterns that have signature *632, like this one does.

Folding along all of the mirror lines of the pattern at right
and fusing together points that are the same kind yeilds the
pattern's orbifold — a triangle with corners that are 1/6th,



1/3rd, and 1/2 of a half-circle. To produce the pretty
pattern at right, we folded up paper into this triangular
shape and cut through the layers.

We've seen many “reflecting red” patterns in this book,
with planar signatures like *2222, *332, or spherical ones
like *22. These patterns have orbifolds that are polygons
bounded by mirror lines.

Below and right are cut-paper patterns and their
orbifolds, with signatures *442 and *333, respectively. We
made these patterns by folding paper up into triangular
shapes. After cutting designs into the paper and unfolding,
the fold-lines become mirror lines in the pattern.
Conversely, we can find the orbifolds of these patterns by
folding across their mirror lines and fusing together points
that are of the same kind. The boundary of an orbifold
(enhanced on the photographs) is formed from these folds,
and each piece of this boundary is what we have been
calling a kaleidoscope *.






Gyrations and Cone Points

In a gyrational rosette with signature Ne there are N
copies of each kind of point around a special center
gyration point. If we want to bring together and fuse points
of the same kind, there are no mirror lines to fold along as
there were in kaleidoscopic patterns. Instead we roll such a
pattern into a cone with only 1/N th of the original
material around it. The unique center of this cone-shaped
orbifold is a N-fold cone point. Conversely, if we roll a
paper disk into a cone with N layers and cut through it, the
unrolled pattern will have gyroscopic symmetry like the
ones above.



Many crossword puzzles have gyrational point symmetry
2e, with a 2-fold gyration point at their center. We can split
such a pattern into two equal pieces, dividing twin pairs of
matching points between them. In the photograph we
chose a splitting path in green.



Instead of reassembling a piece with its twin, we can
attach its cut edges to each other, forming a cone like the
one at right. This cone is the orbifold of the pattern
because it has exactly one copy of each kind of point.

All the points on the cone have a complete circle of
pattern around them — even the points on the cut are
rejoined and made whole — with the exception of the 2-fold
cone point at its tip, which has only half of a circle's worth
of material around it.

On the other hand, if we have a 2-fold cone, we can split
from its cone point along any path we choose, and we will



always produce a shape that fits together with a twin copy.
The resulting pattern will have a 2-fold gyrational
symmetry! This is because each copy has half of a circle's
worth of material, and since they meet along curves that
were originally the same on the cone, they must fit together
perfectly.

In Chapter 3 we described the “true blue” planar
patterns with signatures like 333 or 632, and in Chapter 4
we encountered the spherical ones. These patterns have
gyrations as their only features, and correspondingly the
only features of a true blue orbifold are its cone points. For
example, a pattern with signature 2222 has an orbifold
with four 2-fold cone points. To see this, you can make your
own 2222 pattern by splitting open an envelope as its
orbifold.

Begin with copies of this rectangle, at least one per
person — this activity is best shared with friends!



Fold over your paper and tape its sides together to form a
kind of envelope. (We've drawn green lines in the photo
below to show where to tape.) Next, color the corners of
your envelope as shown, everyone in the same way.



Then cut it open along its printed markings, unfolding it
to discover — a dog!



By experimenting, you all will discover that your pieces
fit together following a simple rule, that the colors match.
The pieces form a regular planar pattern.



This pattern has several kinds of 2-fold gyration points,
where the colored markings matched. These points began
as the colored corners of the original envelope — the four
corners and the four kinds of gyration point are in precise
correspondence!

The signature of this pattern is 2222: there is one 2 for
each of the four colors, whether as a corner of the envelope
or as a gyration point in the pattern. We named this
classroom activity Tooti! Tooti! after this signature. Discuss
with your friends

How does this trick work?



and turn the page for more!
With scissors and some envelopes, there are infinitely
many more tessellating shapes to discover for yourself! So
long as your splits reach each corner of an envelope, are
connected to one another, and do not divide the envelope
into pieces, you will have a tile that tessellates with 2222
symmetry just like the dog shape on the previous page.
More than that, the four corners of the envelope will
correspond to the four kinds of 2-fold rotation points in the
pattern!



It's often surprising what shape you'll find, and it's
always fun to decide what it looks like. We split open the
square envelope in the photograph above and found a long-
necked tessellating chicken:

We can understand why this shape must tessellate by
looking at the four corners of the envelope. On an envelope,
most points have their full circle's worth of material about
them, but its corners do not — these each have only a



quarter of a circle of material on the front and another
quarter on the back, for a total of half a circle's worth all
together. This means that each of the four corners of the
envelope is a 2-fold cone point.

As we saw on at the bottom of page 9, when we split open
a 2-fold cone to lay it flat we will always find a shape that
fits together with itself to form a pattern with a 2-fold
gyrational symmetry, such as at the chicken's shoulder.

In any way that you might split open an envelope to lay it
flat, the sides of the resulting shape must match — they
matched before they were split apart, and so they match



after. Moreover, at each corner there is just the right
amount of material at each point for two copies of the
shape to fit together perfectly, half a circle's worth each.
The shape you'll find must be a fundamental region for a
tessellated pattern with 2222 symmetry. The four cone
points on the orbifold will precisely correspond to the four
kinds of gyration point in the pattern. It's fun to try this
out!

There are infinitely many ways to split open an
envelope, but topologically there are only a few
different kinds. Correspondingly, there are just a few
different topological types of fundamental region for a
pattern with 2222 symmetry — these are called Heesch
types, which we take up on page 148. Can you find
them all in the meantime?

Tessellation Station in the National Museum of
Mathematics (MoMath) shows more patterns with
gyrational symmetry. This rabbit pattern has signature 333
(if we disregard colors). Can you locate the three kinds of
3-fold gyration point in the pattern?

We can form the orbifold of this pattern by attaching the
sides of this rabbit shape to form an equilateral triangle-
shaped pillow. Each of its three corners has a third of a
circle's worth of material about it — a sixth on the front and



sixth on the back. (We've shown two copies of this orbifold
to illustrate both of its sides.)

Conversely, this rabbit shape is formed by splitting open
the orbifold of type 333, and any shape made in this way
may also tessellate a pattern type 333. In such a pattern,
there are three kinds of 3-fold gyration point, and these
correspond to the three 3-fold cone points at the corners of
its triangular pillow-shaped orbifold.









MoMath's Tess the Monkey forms tessellations with 632
symmetry (ignoring colors). Both sides of her triangular
orbifold appear in the photograph below, at left. The cone
angles at the corners of this envelope are 1/6 th, 1/3 rd,
and 1/2 of a circle, corresponding to 6, 3, and 2-fold
gyration points. We've marked these points on Tess — can
you find the corresponding gyration points in her
tessellation?

Orbifolds of Hybrid Types

On page 18 in Chapter 2 we met patterns like this one, with
signature 3*3, that have both kaleidoscopic and gyrational
symmetries. Their orbifolds must have both cone points and
kaleidoscopic boundaries.



Folding along its mirror lines to bring like points together
yields a single triangle in the pattern. Such a triangle is not
yet the orbifold because we have not yet brought together
all points of the same type — the triangle has gyrational
symmetry.

If we cut to its center and bring points of the same kind
together, we get the orbifold of signature 3*3 — a
topological disk with one boundary, *. A 3-fold cone point is
in the interior of this disk and a 3-fold kaleidoscopic point
lies on its boundary.






The orbifold for a pattern with signature 4*2 is also a
topological disk with one cone point and one kaleidoscopic
point. If we fold up the pattern on the left along all of its
mirror lines we will have a single square, but this is not the
pattern's orbifold. Bringing like points together forms a
cone with an 4-fold cone point at its center.

Spherical patterns with signature 2*N or 3*2 and friezes
with signature 2*oco have orbifolds with the same topology
as the planar ones on this page do — a disk with a marked
cone point in its interior and a marked kaleidoscopic point
on its boundary. In the hyperbolic plane there are infinitely
more patterns with signatures of the form P*Q.

The orbifold of a pattern with signature 2*22 is a
topological disk, with a cone point in its interior, a
boundary *, and two kaleidoscopic points 2 and 2 upon it.
We can work out what this looks like, bringing like points
together in the pattern. Folding up the pattern along its
mirror lines yields a rectangle that has two-fold gyrational
symmetry. Rolling the rectangle into a cone to bring



together points of the same kind, we obtain the orbifold
shown below.



In Chapter 3 we saw this pattern with symmetry type 22*.
If we fuse like points together we will have a pillow-case
shaped orbifold, with two cone points 2, 2 and a boundary
kaleidoscope *, but no kaleidoscopic points.



Tie-dyeing Orbifolds

Carolyn Yackel has folded and rolled fabric into orbifold
shapes, which she dyes, producing a planar repeating
pattern, like these two. You may not be surprised that
you can tie-dye a pattern with signature *632 by folding
cloth into a triangular pillow. But what is the signature
of the lower pattern, and what is its orbifold?

Many symmetry types can't be tie-died, at least not
without cutting the fabric — namely those whose
orbifolds are not embeddable in our space. You can
check that there are ten of these. Yackel shows how to
dye the other seven in [14].



Orbifolds with Topology

So far in this chapter we have focused on “ordinary”
patterns, with gyration points, kaleidoscopes, and
kaleidoscopic points as their only features. Their orbifolds
are simply connected: Topologically they are just spheres
or disks, with some marked points. All of the features of



these patterns can be recognized by looking directly at
them.

As a review, you can match these topological types to the
orbifolds and patterns we have seen throughout this book:

The remaining symmetry types have orbifolds that are
not simply connected. Because of this, these
“extraordinary” types can be more difficult to recognize
from the patterns directly — we cannot really understand
them without examining their orbifolds.

On the opening pages of this chapter, we saw a pattern
with signature **, and its orbifold, a surface with two



boundaries. This signature describes the topology of the
orbifold and therefore determines the symmetry type.

We now take a look at some of the remaining topological
types of the patterns we've encountered.

Mobius Band Orbifolds

Below, a sheet of paper has been folded accordian-style,
then rolled up into a Mobius band. Cutting through the
layers and spreading out the result produces a pattern with
signature x*.



A Paper Torus -



Here is another amusing paper and scissors trick that you
can show your friends: First, glue or tape together two
bands, making sure that they are sealed together to form
one solid surface, a square with arms linking out of it, like
this one:

Now cut down the middle of each of these bands, with
the cuts crossing where the bands do. (We've drawn our
cutting lines rather boldly.) Unravel result, and you have:



Presto! A rectangle with a big gap in it?

(Your shape will be missing its middle: we've filled in ours
and marked it with a large letter R.) If your cuts are
distinctive, as ours are in these photographs, you'll
discover that the top of your shape matches the bottom,
and the left side matches the right.



Because the sides of your shape match, copies of it can
tessellate the plane in a pattern with signature o.

We can understand this by looking at the orbifold of this
pattern of type o. The left and right sides of a fundamental
region match to form a cylinder, and as we showed you on
page 127, attaching the top and bottom ends of this
cylinder produces a torus — though for a paper model of
the orbifold you will first have to mash the cylinder flat,
keeping the layers as separate pieces of surface.

Your original cut-apart surface was the rectangle with a
gap in it. Therefore, reattaching its sides, our original
bands must have formed a torus with a gap in it — a huge



gap, the missing square in the middle of the cut open
bands.

Klein Bottles

In the same manner, we may attach attach a twisted band
to an untwisted one, forming something like the paper
model in this photograph.



When we cut this open, we again obtain a square with
opposite sides that match, but this time a flip is required to
match up one of the pairs of sides. We may form a pattern
with this square shape and form a pattern like the following
one. Because the orbifold of this pattern is formed by
equating points of the same kind, it is the same as what we
would obtain by attaching opposite sides of the square



shape in this pattern. It has one pair of sides reversed,
producing a Klein bottle, xx, as we saw on page 127.

Exercise: In Exercise 2 on page 8 you may verify that a
surface made by joining two twisted bands is a crosscap
with two holes in it. If you make this surface out of paper
and cut it open, you will find that copies of the pieces can
tile the sphere with x symmetry!

The Case of 22 X

The orbifold notation gives a unique, well-defined name to
each symmetry type, whether in the plane, on the sphere,
or even in the hyperbolic plane. This is because the



features in a signature record the topology of the orbifold.
Other notations — if they are not altogether ad hoc —
instead record isometries that can generate the symmetries
of the pattern, often requiring an arbitrary choice of which
generators to use (see Tables A.1 and A.2).

For example, the planar pattern at the beginning of
Chapter 3 has signature 22x. Among its symmetries are two
kinds of 2-fold rotation, one kind of glide reflection with a
horizontal glide axis, and another kind with a vertical one,
and infinitely many kinds in other directions! The pattern
can be generated by the two kinds of glide reflection, or by
any glide reflection and a single 2-fold rotation. If we were
naming this symmetry type by these isometries, there is no
clear choice of which ones we should record.

On the other hand, the topological type 22x of this
pattern's orbifold is fixed and precise: It is a crosscap with
two 2-fold cone points, which we may obtain by attaching
opposite points together on the boundary of either of these
paper models. The two different models show the results of
unzipping the orbifold along different kinds of glide axes.



Orbifolds of Friezes

Friezes have just the same sort of orbifolds as other
patterns but have kaleidoscopic points or gyration points of
infinite order. For example on page 88 we show how a
frieze pattern with a kaleidoscopic point of infinite order is
the limit of kaleidoscopic point patterns of finite order.

By folding a frieze pattern with signature *oooo
accordion-style along its mirror lines, we bring together
points of the same kind. We can imagine the orbifold of this
frieze pattern as a strip bounded by two mirrors which



meet infinitely far away, top and bottom, at an angle of
(180/00)°.

Just as we did with rosettes, we can create a pattern
which has this shape as its orbifold. Fold up a strip of paper
accordion-style, and then cut through the layers. When you
unfold it, you'll have (part of) a frieze pattern with
signature *oooo.

Similarly, the orbifold of a frieze pattern with signature
oooo will be a surface with two infinitely distant cone points
of angle (360/00)° (page 102). This orbifold is modeled by a
rolled up piece of paper! If we cut through all the layers of
paper under the R on the figure to the right, we can unroll
the paper to get the frieze pattern below.



We can make a paper model of the orbifold of any frieze
pattern, recording cone points and kaleidoscopic corners of
infinite order, infinitely far away. Counting these points in,
the orbifolds of the frieze patterns are topologically the
same as their spherical counterparts.



An orbifold of type ocooo is an infinite cylinder, a sphere
with a pair of cone points of infinite order that we mark .
Indeed, for thousands of years people used orbifolds of this
kind to roll out a frieze pattern as their signature! We show
such a cylinder seal on page 7.

An orbifold of type *ocooo is an infinite strip, the two sides
meeting infinitely far away at a pair of kaleidoscopic
corners of infinite order on its boundary. This is
topologically just a disk, or punched sphere, with two
points marked on its boundary as these corners.

An orbifold of type 2200 is a topological sphere with three
marked cone points, two that are 2-fold and one of infinite
order. Geometrically, it is an infinitely long rectangular
pillowcase.

An orbifold of type *2200 is a topological disk with a
boundary *. On this boundary there are three kaleidoscopic
points, two of order 2 and one of infinite order. The orbifold
is one end of an infinitely long strip.

An orbifold of type 2*oc is a topological disk with a cone
point of order 2 in its interior and a kaleidoscopic point of
infinite order on its boundary. It looks something like the
illustration at right.

An orbifold of type » * is a topological disk with a cone
point of infinite order in its interior. Geometrically, it is an



infinite cylinder, capped at one end by a boundary * and
with the cone point of infinite order at the far end.

Finally an orbifold of type « x is a topological crosscap
with a cone point of infinite order. We can visualize this as
an infinite strip with opposite sides attached, or as
something like the orbifold of « * but with opposite points
on its boundary fused together.






Where Are We?

In this chapter, we've shown you many examples of
orbifolds for the kinds patterns in this book. In the next
chapter, we'll take up the general case, stating the
complete form of the Magic Theorem. We'll close this
chapter with a few applications and observations.

A puzzle:

On page 88 we saw a hall of mirrors trick, formed by
reflections between two parallel mirrors. In a similar
manner, you could trap a beam of light reflecting back
and forth between them forever, at least if you could
ever get the source of the light out of the way! Our
question here is:

Can you trap a beam of light between two mirrors
that are not parallel?



Is it possible, as in the figure above right, for a beam
of light to enter into a kaleidoscopic chamber, yet
bounce forever and never re-emerge? A little
experimentation and intuition suggests not, but we
would like an explanation.

Perhaps you have stood in front of a mirror and
imagined that a duplicated copy of our world really lies
beyond it. If you shine a flashlight into a mirror, it will
look as if its beam has passed straight into this
duplicated mirrored world! This is because the angle of
incidence is the same as the angle of reflection:

In the same way, we can imagine that what we see
when we look into a chamber between two mirrors
really does exist just as we see it, with many duplicates
of the region between them. The real chamber is the
orbifold of the pattern as it appears to us. In the



photograph below, two mirrors meet together to bound
an orbifold with signature *4e.

You can see for yourself that when we shine a beam
of light into the chamber it appears to cross straight
into the space that we see and can only cross a few
mirror lines before it disappears. Correspondingly, a
beam of light bounces finitely many times before
exiting the real chamber.

In order for a pair of mirrors actually to bound an
orbifold of a kaleidoscopic pattern, they must meet at a
special angle, an even integer fraction of the circle. But
for any angle, a beam of light will appear to continue in
a straight line, and eventually must exit the reflected
chambers that we see. Light will always escape.

Isotoping Orbifolds



On page 43 we saw that some types of pattern may be
isotoped continuously without changing their symmetry
type. For these types, we may correspondingly isotope their
orbifolds, changing their geometry, but leaving their
topology unchanged.

Patterns with signature *2222, 2*22, 22*, and 22x, as
well as *x and **, have orbifolds that are fundamentally
rectangular, and we may change the ratio of this
rectangle's height to its width. Correspondingly there is a
single choice in the geometry of these orbifolds, and in the
pattern themselves, up to scale or positioning.

More interestingly, we have two degrees of freedom
when we isotope patterns with signature o, xx, or 2222.
Let's take a look at the latter.

The 2-fold rotation points in a pattern with signature
2222 will lie on a lattice, and this lattice may be
continuously isotoped, by changing the direction vectors
that determine it.



If the 2-fold gyration points remain on a rectangular grid,
the shape of the orbifold remains a flat pillow: the envelope
that we first encountered on page 135.

We can shear a pattern of this signature so that its
gyration points lie on a skew lattice, as above. The
resulting orbifold will be a tetrahedron. Its four faces will
be copies of an acute triangle, as shown in the pattern
above. At each vertex of this tetrahedral orbifold, we will



find one copy of each of the triangle's three corners. These
together form a half-circle's worth of material, and the
corners of this tetrahedron are therefore 2-fold cone points.

At a special moment of this isotopy, the gyration points
lie on a lattice of equilateral triangles as in the pattern
below. At right is a pretty computer-generated image of its
orbifold, puffed out to better show its cone points. A paper
model of this will be a regular tetrahedron with flat faces.



Heesch Types

In how many topologically distinct ways can we choose a
shape to be a connected fundamental region for any of the
symmetry types? This subject was investigated by Heesch
and independently by M.C. Escher [11]. Branko Grunbaum
and G.C. Shephard give an exhaustive enumeration of the
plane types in [8]. Daniel Huson and Olaf Delgado
pioneered a much simpler and more general treatment
using orbifolds, which we sketch here and treat more fully
in Chapter 16 of The Symmetries of Things.

The answer, of course, depends on the symmetry type —
obviously for a reflection group the fundamental region is
unique. On the other hand, there are four topologically
different kinds of fundamental region for 632. Why is this?



The answer is found by looking at the orbifold: A graph on
the orbifold will be the boundary of a fundamental region if
it cuts the orbifold into a topological disk which has no
internal cone point, and can be opened flat onto the plane
— a tile. We cut along a graph like this when we split open
envelopes to make tessellations on pages 135 and 137.

There are two topologically different ways to split open a
sphere that has three cone points into such a tile:

If the cone points have distinct orders, as for 632, we get
four possible graphs altogether: There is essentially only
one way to label the cone points of the second graph, but
the other can be labeled in three different ways. So there
are four topological kinds of fundamental region.



In fact, this must be so for every group with signature of
the form MNP, with M,N and P distinct, since they will
have topologically the same graphs; this holds for both
spherical and planar symmetry types.

For signatures with (say) M = N # P, we have three
possible labeled graphs, shown below for 332 and 442. For
those with M = N = P we have just two, shown for 333.

Earlier in this chapter, we saw that splitting open an
envelope to lay flat produces a fundamental region for a
pattern with signature 2222 — the envelope was the
pattern's orbifold. We can work out that there are five
different ways to draw a graph that splits open the orbifold,
giving us the five Heesch types for this signature:



Symmetry types with with topologically equivalent
orbifolds must have corresponding Heesch types since they
will have topologically the same graphs. For example the
orbifolds with signature 4*2, 3*3, 3*2, and 2*N are disks
with a cone point in the interior and a kaleidoscopic point
on the boundary. There are just two ways to draw a graph
that splits such an orbifold into a fundamental region, and
so there are two Heesch types for each of these signatures,
as there are for any symmetry with a signature of the form
M*N.



Because symmetries with signatures of the same
typographical form have the same topology of orbifold, we
may work out the Heesch types for all of them at once —
whether in the Euclidean plane, on the sphere, or (Chapter
10) even in the hyperbolic plane — by enumerating graphs
on this orbifold that split it into a disk and pass through all
its cone points. You may wish to work out the remaining
Heesch types for yourself before reading on!

Symmetry 22* has four Heesch types, as would any
symmetry of the form NN*. (How many Heesch types would
MN*, M # N, have?)

There is only one Heesch type with symmetry N*, and
there are two for 2*22 (as there are for any of the form
M*NN).



Orbifolds that are not simply connected are a little more
challenging. Here are the Heesch types for 22x:

For ** and Nx:



For x*:

Finally, there are two Heesch types for symmetry o:

The Archimedean Polyhedra and Tilings

In Table 9.1 are the Archimedean tessellations of the
sphere and Euclidean plane. These each have regular
polygons for tiles and all vertices are of the same kind once
we account for symmetry.




TABLE 9.1. Regular and Archimedean polyhedra...

Consequently, on each tiling's orbifold, there is just one
vertex (perhaps folded over or on a cone point). Each
different kind of edge in a tiling corresponds to an edge on



the orbifold (perhaps half an edge or a quarter edge, if it
passes through a mirror or a gyration point).

In Chapter 19 of the full edition of The Symmetries of
Things we show that each arrangement of edges
determines the form of the orbifold and the typographical
type of the symmetry. On the sides of these pages, we show
the orbifolds for the tessellations beside them, with
parameters a, b, etc. that shape the geometry of the
pattern.

For example in each of the patterns in the first row, each
edge in the patterns has a 2-fold kaleidoscopic point at its
center. On the corresponding orbifolds, there is a quarter
edge. An orbifold for an Archimedean tiling with a quarter
edge upon it can only be of the form *2ab. As we've
determined which a and b yield spherical or plane
repeating patterns, this enumerates the Archimedean
tilings of this form.

Planar and spherical orbifolds have room only for a few
edges at a vertex, but any arrangement is possible if we
consider Archimedean tilings of the hyperbolic plane — a
few examples appear on page 156.

In the table, we've abbreviated truncated as tr and
“relative” Archimedean tilings are faded out. Such tilings
have an additional symmetry and appear higher up in
simpler form.









Chapter 10

A Bigger Picture

In Chapter 3, we introduced the “cost” of each fundamental
feature, and a magic theorem that classifies the Euclidean
plane symmetry types — exactly those with signatures that
cost exactly $2. In Chapter 4 we saw that signatures costing

less than %2 perform the same service for the spherical
groups.

What about signatures like *732, 23x, or even
2340x**7*89, that cost more than $27?

Remarkably, every one of these also describes a
symmetry type, in the non-Euclidean geometry of the



hyperbolic plane, discovered by Nikolai Lobachevski in
1829 and named by Arthur Cayley. William Thurston
proved that in this geometry there is enough room to fit in
as many features as we wish [17].

In fact he showed that every orbifold signature with the
exceptions of those of the form N, MN, *N, or *MN with
M # N, describes a symmetry type for repeating patterns
— Euclidean if its cost is 2, spherical if less, hyperbolic if
more. Moreover, these are exactly all of the two-
dimensional symmetry types.

In the full edition of The Symmetries of Things we give a
more complete account, but you won't need to know any
hyperbolic geometry to read this book because we can say
it all in pictures. You can make your own patterns with
tools like the Kaleidesign software that we use to create
these illustrations, and you can even experience life in non-
Euclidean worlds by playing video games like the ones we
showcase on pages 160 and 161!

(Opposite page and above) In the hyperbolic plane, all of these daffodil stems
are the same size and shape. In this pattern, look for the 5-fold, 4-fold, and 3-
fold gyration points, and verify that there one of each kind — the pattern has
symmetry type 543. In order to draw it flat in the pages of this book we had to
distort its geometry, applying the Poincaré disk projection, opposite, and the
Klein projection, above.

We have already encountered some non-Euclidean
geometry — that of the sphere. In the Euclidean plane, the
Parallel Principle says there is just one line parallel to a
given one through a given point, but on the sphere every
“straight line” (i.e great circle) meets every other, and



there are no parallel lines anywhere at all. The sphere is
more constricted than is the Euclidean plane.

In hyperbolic geometry, the opposite applies, and there
are infinitely many lines through a point that don't meet a
given one. This means that hyperbolic space is vastly more
expansive than the Euclidean plane. The fact that the
hyperbolic plane is not Euclidean does not stop us from
drawing pictures of it, just as nothing prevents us from
drawing distorted pictures of a sphere — we are used to
images like the one at right, of a spherical pattern with
symmetry type 532.

The pattern below is just the same, only projected from
the sphere in a different manner. Its type is also 532 —
even when they are distorted these patterns remain
spherical, and their orbifolds are equivalent.



We have no trouble viewing a Euclidean pattern on a
piece of fabric or wrapped around the side of a vase, and
we can distort a picture of a planar pattern without
changing its type. In the illustration at right, if we imagine
all of the flashlights are the same shape and size, we find 6-
fold, 3-fold, and 2-fold gyration points, and only one of each
kind. The symmetry type is 632, and this pattern is actually
Euclidean!









There are countless ways to render the hyperbolic plane
on a flat page. The two most common ‘projections' of the
hyperbolic plane take it to a disk in the Euclidean one. One
of them, found by Beltrami and named for Klein [15],
shown at top left below, takes hyperbolic straight lines to
(segments of) Euclidean ones. This is really the most
natural projection, because it is in fact the way the
hyperbolic plane would appear if you viewed it from a point
in hyperbolic 3-space, as in the first-person video games
shown on page 161.

However, the other common method, usually credited to
Poincaré though earlier known to Beltrami [15], top right
below, is more widely known to both mathematicians and
artists. It is the projection used in Maurits C. Escher's
famous “Circle Limit” engravings and is the one we use for
most of the illustrations in this chapter. It preserves angles
but takes hyperbolic straight lines to arcs of circles
perpendicular to the boundary. The reason this less-natural
projection is so often used is that it shows more of the
plane. It is equivalent by inversion to the upper half-plane
model often used by mathematicians.

But there are infinitely many possibilities — on the
bottom row, we show this pattern with signature 433 in two
more projections that also preserve angles.



On the previous pages, we saw several patterns that
looked somewhat the same although they had very different
geometries. They each had signatures of the form PQR, and
orbifolds of the same topological type, a sphere with three
cone points. In the same way, with the exceptions of NN
and *NN, any repeating symmetry type with a digit in its
signature generalizes to infinitely many types in the
hyperbolic plane.



Although there are only five regular polyhedra and three
regular planar tilings (listed on the first row of Table 9.1),
if we include regular tilings of the hyperbolic plane, then
M-gons may meet N-to-a-vertex (denoted {M, N}) for any
N, M > 3, with signature *2NM. Above is a drawing of a
{5,4} tiling by right-angled pentagons — in the hyperbolic
plane these are all the same shape and size.

Each row of Table 9.1, showing a type of Archimedean
tiling defined by a topological arrangement of edges on an
orbifold, is only the beginning of an infinite list of tilings
differing only in the orders of their gyration and
kaleidoscopic points. For example, below we see the
rhombi-{5,4} and the snub {5,4}, which properly belong
with the tilings on the last two rows of the table with a = 5
and b = 4.



The bottom two tilings are more novel, with symmetry
types 32x (left) and 2*43 (right), which may be confirmed
by assembling a fundamental region — one is outlined for
the tiling at bottom left — into the pattern's orbifold. (The
corresponding Euclidean tilings in 22x and 2*22 are by
squares, meeting four-to-a-vertex. Like the shaded out
entries in the table, those are only “relative” — they have
further symmetry and a simpler orbifold.)

We give a method for enumerating all Archimedean
tilings Chapter 19 of The Symmetries of Things, and still
more exotic tilings appear at the end of this chapter.



Hyperbolic geometry can fit into the real world on
surfaces that are saddle-shaped everywhere, like this
sculpture is.



The blue strips form regular polygons, with equal edge
lengths and angles, if we measure them within the surface
defined by the sculpture. Three squares and a regular
pentagon fit together at each vertex of this pattern. This is
a piece of an undistorted rhombi-{5,4} tiling, placed into
our space!

The yellow paths are straight in this surface, as they must
be because steel strips cannot easily be bent to veer
sideways. They lie along most of the mirror lines of the
pattern — can you spot the others? — and the pattern has
signature *542.

In fact, everything that we have done in this book for
spherical, Euclidean, and frieze types extends easily to the
hyperbolic case. This is because we have been working
with the orbifolds that underly these patterns, and these
orbifolds are fundamentally topological in nature. They are
compact connected surfaces with specially marked points
— cone points in their interiors and kaleidoscopic corner
points on their boundaries.

The geometry of an orbifold and the patterns that it
produces are determined by its topological type and the
orders of these special points. Therefore, anything that is
unchanged when we relabel the orders of our special cone
and corner points will remain the same across a range of
patterns, those with the same typographical type, such as
M*N or PQR.

In the full edition of The Symmetries of Things, we give
other applications of this principle. For example, to



produce the table of Archimedean tilings and polyhedra at
the end of Chapter 9, we enumerated the ways that edges
of the tiling may be placed on a spherical or planar
orbifold. Any symmetry with the same topological type of
orbifold will have corresponding tilings, like the ones on
the previous page. Moreover, the same general method can
be continued indefinitely, listing out new kinds of
Archimedean tilings in the hyperbolic plane with larger and
larger orbifolds.

On pages 148 and 149, we enumerated the Heesch types
for planar and spherical symmetries by looking at graphs
on their underlying orbifolds. Just as there are four Heesch
types of symmetry 632, there are four corresponding types



for 732, shown above, as there are for any PQR with
distinct BQ, and R.

Similarly, at right are several patterns of signature M*N.
Each has a disk as its orbifold, with a path connecting a
cone point of order M in its interior to a kaleidoscopic point
of order N on its boundary *. These points may be of
infinite order, as with the frieze pattern on the far right on
the top row.

Where Are We?

In this chapter we took a wider view: If we include the
patterns on the hyperbolic plane, every orbifold signature



(with a few simple exceptions) describes a symmetry type
in some geometry.

In Chapters 1 through 8 we have proven this for
signatures costing *2 or less, but we only hinted what this
means for those costing more than *2.

In this book, we haven't explained how the typical
hyperbolic planar symmetry type may be isotoped and
changed continuously, like the duck designs on this page
have been, or indeed that geometric symmetry groups with
the same signature must always be isotopic. In a complete
accounting, we would explain that the area of a
fundamental region is related to its cost, and we would
have a lot to add about hyperbolic geometry itself.

This awaits a future richly illustrated work. In the
meantime, you can turn to Chapters 17 and 18 of the full
edition of The Symmetries of Things to learn more, or
experiment with our new Kaleidesign software and make
beautiful illustrations of your own.



Non-Euclidean Video Games

The best way to gain a feel for hyperbolic geometry is
to work and play there. Now we can! Here are some of
our favorite games set within non-Euclidean worlds. In
Hyperrogue, by Eryk Kopczynski and Dorota Celinska,
you can adventure, slay monsters and explore strange
lands [7]. The game is set is set on a “hyperbolic
soccer-ball”, a.k.a. the truncated {7,3}, an Archimedean
tiling with heptagons surrounded by hexagons. There is



much more room around you than in the Euclidean
plane — you soon realize that the hyperbolic plane is
truly capacious.

Each of this game's puzzles reveals another feature of
hyperbolic geometry, and within its settings is an
encyclopedia of projections, other geometries, and
tilings.

On our phones we play Non-Euclidean Minesweeper
on a regular tiling of our choice (left) [12]. Jeff Weeks'
Hyperbolic Games (middle and right) [19] are played
on an underlying grid with *732 symmetry, but the
boards themselves are fundamental regions for a
pattern of type ooo! (This pair of symmetries shows the
famous “Klein Quartic.”)



Immersing ourselves in Jeff Weeks' Curved-Space
Pool Hall we strike balls on a non-Euclidean table, with
five straight sides and five right-angled corners [20]. In
any geometry we inhabit, angles will be distorted
unless we look directly down upon them, but as you can
see, straight paths will appear straight to our eyes. This
is even so in the curved geometry of the hypersphere,
one of the many geometries to visit in CodeParade's
Hyperbolica, shown below [2].



Examples and Exercises

These patterns have only gyration points.
What are their signatures? Answers are on page 165.









The pattern at top left has a signature of the form M*N.
Can you identify M and N? The orbifolds of the other
patterns on this page have topological features. You can
work out each signature by finding a fundamental region,
and then examining how it attaches to copies of itself — by
attaching the fundamental region to itself in the same way
we form the pattern's orbifold. We can use the tools we
learned about in Chapter 8 to find the orbifold's topology,
and hence the symmetry type.

For example, we've outlined a fundamental region in the
upper right image. After identifying like edges, we find the
orbifold has two cone points, of orders 2 and 3, and the
topology of a crosscap. The symmetry type is 23x.

The figure below left has two kinds of mirror lines, that
don't intersect, and one kind of gyration point. What is its
signature? You can verify that it is 3** by checking its
orbifold is an annulus with a single cone point.

We've marked a fundamental region for the pattern
below right. On the orbifold the markings form a graph

with one face, three vertices, and five edges. The pattern
has orientation-reversing symmetries. The orbifold is
therefore non-orientable, with Euler characteristic —1. The
symmetry type of the pattern and the topological type of its
orbifold are thus both ox = xxx.



We conclude for now with a few of the many thousands of
tilings by regular polygons that Marek Ctrndct has
enumerated in the hyperbolic plane [4]. The top two are
not uniform, in the sense that they have more than one kind
of vertex arrangement within them. The bottom two have
identical polygons, arranged differently. Can you identify
the symmetry types of these patterns?



Answers

On page 162 we have at top 433 and 543, 732 in the
center, and (20)32 and « 32 at bottom. On page 163
appear 732 (in the Klein model of the hyperbolic plane),
532 (in a picture of a sphere), and 632 (in an unusual
projection of the Euclidean plane). The pattern at upper left
on this page has symmetry type 32*. At upper right, each
polygon has a gyration point at its center, and the type is
3332. The pattern at lower right has signature 4*3. The
pattern at lower left is trickier — there are gyration points
at the centers of each polygon and between each adjacent



pair of polygons of the same color. If you look closely, the
blue and the green squares cannot be interchanged, but
those of the same color can be. The type is therefore
322222,



Appendix A

Other Notations for the Plane and
Spherical Groups

The columns of Table A.1 correspond to different notation
systems, subject to the remarks noted below. The column
titles are abbreviations:

OS our orbifold signature
I International notation
C&M Coxeter and Moser
S Speiser
N Niggli
P Podlya
G Guggenheim
F Fejes T6th
C Cadwell
OS I S P F
(C & M) (N) G C
*632 p6m C gg Dg W
632 p6 C éU Ce We




0S I S P F
(C&M) (N) G C
*442 p4m clV D} W
4% pag CEV Dy WZ
442 p4 C ff) Cy Wg
*333 (p3m1) o D W}
p3lm Cgﬂ)
3%3 D3 w3
333 p3 C§I> Cs W
%2222 pmm Ci, D,kkkk | W3
2%22 cmm Cyy D,kgkg W3
22% pmg C%IJ D,kkgg Wg
22x pPgy Chy D,gggg | W3
2222 p2 c C, W,
ok pm c! D, kk w2
*X cm cit D.kg Wi
XX pg cy D1gg W
0 pl cll Cy W,

TABLE A.1. The Euclidean plane groups.

Our orbifold signature is the one presented in this book [1].
The International notation is the most used of the older
notations. The C & M notation is the notation used in
Coxeter and Moser's Generators and Relations for Discrete



Groups [3], which should be consulted for the individual
references.

The notations p3ml and plm3 were inadvertently
interchanged by Niggli, whose notation is otherwise taken
from Spieser with the addition of the Roman numerals in
parentheses. This error is repeated in editions of Coxeter
and Moser before 1980, by which time Doris
Schattschneider [10] and H. Martyn Cundy [5] had
independently discovered the interchange, and in many
other places. We thank Schattschneider for this
information.

Table A.2 compares our signature with older notations for
the spherical groups; it is adapted from Coxeter and
Moser's Generators and Relations for Discrete Groups,
which should again be consulted for the references. The
reader should be warned that the fonts have been
uniformized for simplicity and that for N = 1 or 2 there are
various special notations and equivalences that we have
ignored, since they become obvious from the signature
when digits 1 are omitted. Some pairs of lines contain
notations in braces, which as they stand are for even values
of N, but should be interchanged when N is odd. The
abbreviations for Table A.2 are as follows:

OS our orbifold signature
C Coxeter

S Schoenflies

W

Weyl



P& M Pélya and Meyer
I International notation
OS C S W P& M I
*532| [3,5] | I P I 53m
532| [3,5]t | I P I 532
*432| [3,4] | Oy W O; m3m
4321 13,417 | O W O 432
*332| [3,3] | Ty WT To 4 3m
3*2 | [3t,4] | Ty T T, m3
332 13,317 | T T T 23
*22N| [2,N] Dnnl/ Dn Dni \[N/mmm or 2N m2
(DQNDN) (DN D2N)
2*N | [2%,2N] Dng 2N 2m or N m
22N| [2,N]* |Dy| Dy Dy N2
*NN| [N] |Cnyl Dy Cn Cn Dy Nm
N* | [2,N*] |Cxnl/ Cn Cni N/m or 2N
(CQNCN) (CN C2N)
Nx ([2+,2N*](Son 2N or N
NN | [N]* |Cy Cn Cn N

TABLE A.2. The spherical groups.




Additional Teaching
Materials

These materials and more appear at themagictheorem.com

Please download them and enjoy! For further intuition, we
highly recommend playing with a symmetrical drawing
program, such as Jeff Weeks' KaleidoPaint, Jurgen Richter-
Gerharts' iOrnament, or our own Kaleidesign.

Page 3: Cut paper snowflake designs to print.
Page 4: Hubcaps to analyze.

Page 5: Gothic tracery patterns to analyze.
Page 6: Rosette patterns to analyze.

Chapter 2: Photographic symmetry patterns to analyze and
Kaleidesign software.

Page 45: Real world symmetry designs to analyze.
Page 49: Fun planar patterns to analyze.

Page 68: Models of the regular polyhedra to assemble.


http://themagictheorem.com/

Page 70: An extensive collection of polyhedra to print out
and assemble.

Page 71: Compound and stellated polyhedra to assemble.
Page 78: Polyhedral kaleidoscope pieces.
Page 80: Polyhedra Basics.

Page 80: Plans for pieces of Archimedean polyhedra to put
into spherical kaleidoscopes.

Page 88: Real-world frieze patterns to analyze.
Page 104: Orbifold Euler characteristic worksheet.
Page 112: The Euler characteristic game.

Page 112: What are the Euler characteristics of these
surfaces?

Page 126: The Mobius band.
Page 126: Paper and scissors topology.
Page 128: Topological surfaces to analyze.

Page 132: Cut paper snowflake designs to print and an
orbifold method to design cut paper snowflakes.

Page 133: Cut paper planar patterns.

Page 134: Cones to cut.



Page 135: Tooti! Tooti!

Page 145: Paper dolls for the seven frieze groups, following
those of Bridgette Servatius [13].

Page 153: Kaleidesign software.



[l1lustration Credits

Throughout this book, the symmetrization of photographic
imagery is inspired by Chris Whatley's Tess, written for the
NeXT computer, ca. 1992. We used software written with
the assistance and collaboration of many people, especially
Troy Gilbert and Vladimir Bulatov.

Page 2: Gryphons, Chicago, photograph by Susan
McBurney. Tracery drawing from MafSwerk, Gunther
Binding (Wissenschaftliche Buchgesellschaft, Darmstadt,
1988), Kosciét Mariacki, Torun (Thorn). Tracery
photographs: Central Park, New York.

Page 4: Snakes: 1,100 Designs and Motifs from Historical
Sources, John Leighton (Dover Press, New York, 1995).
Tracery: from MafSwerk, Bazylika Katedralna, Pelplinie
(Pelplin); Frauenkirche, Esslingen.

Page 5: From MafSwerk: (top) St. Peter und Paul, Leignitz;
Bazylika Katedralna, Pelplinie (Pelplin); Peterskirche,
Gorlitz; Kathedrale Notre-Dame, Riems; Jakobikirche,
Neilse. (bottom) Pelplinie (Pelplin); and Kosciét Mariacki,
Torun (Thorn).



Page 6: Rosettes: seen in New York City.

Page 7: Bow Bridge, New York; Medinah Temple, Chicago
(photo: Susan McBurney); New York; CGS; New York;
cylinder seal: Ashmolean Museum, Oxford AN1949.900.

(photo: Zunkir, Wikimedia Commons).

Page 8: Shirt: designed by Jhane Barnes, modeled by Stan
Isaacs; Bethesda Terrace; midtown; Bloomingdales;
Bethesda Terrace; MoMath after N. Myrhvold, all in New
York City.

Page 9: Dice Labs; Eigil Nielsen (photo: unknown); Carolyn
Yackel (photo: C.Y.); CGS, found using Robert Webb's
Great Stella software; Dick Esterle (photo: D.E.);
Bathsheba Grossman (photo: B.G.); Jack Puzzle by Craighill
(photo C.H.); John Koski; Shiying Dong (photo S.D.).

Page 30: La Mano loteria card, unknown.

Page 45: Top row: New York City; R. Guastavino,
Queensborough Bridge, NYC; Holiday Inn Express, Abilene.
Second row: NYC; NYC DoT; Abilene. Third row: Bristol;
Abilene; USA.

Page 53: Top row: Marine Air Terminal, LGA, New York.
Imperial College, London; Brooklyn. Second row: Terminal
2, LGA; NYC; NYC. Third Row: photographed in Olympia,
widely seen; NYC; NYC, widely known.



Page 55: Top: London; Cassis; London. Middle: Ljubljana
business district; Cassis; unknown. Bottom: Roosevelt
Island, NYC; UN, NYC; Aberyswyth.

Page 69: Eyeglass idea: unknown. Soccerball Pov-ray file,
Remco de Korte.

Page 70: (center top) Shiying Dong; (lower right) Judy
Peng.

Page 71: Stellations found with Great Stella software, by
Robert Webb. Painted compound of three cubes: Zoe
Curlee-Strauss.

Page 72: Bathsheba Grossman (photos: B.G.).

Page 73: Bathsheba Grossman (photos: B.G.).

Page 74: Lower right, unknown; others, Ginny Thompson.
Page 75: Carolyn Yackel (photos: C.Y.).

Page 76: Jon-Paul Wheatley (photos: J-P.W.).

Page 77: Collected by David Swart; see [16].

Page 78: (Lower left) Elsa Pendoza (photo: E.P.).

Page 79: (Lower left and upper right) Elsa Pendoza (photo:
E.P.).

Page 80: Kaleidotile, Jeff Weeks.



Page 80: Five-, seven-, nine-, eleven-, fourteen-, eighteen-
and twenty-two-sided dice, Impact Miniatures; the red
fourteen-sided d7, and black tetrakis hexahedron, Koplow;
others, Dice Lab.

Page 91: Friezes: first four, Chicago (photo: Susan
McBurney); latter three, New York.

Page 103: After Robert Dixon, Mathographics (Dover Press,
New York, 1991).

Page 106: Image and software, Ken Stephenson;
combinatorics: Jim Cannon, Bill Floyd, and Walter Perry.

Page 114: Shiying Dong (photo: S.D.).
Page 115: Shiying Dong (photo: S.D.).

Page 137: Tessellation Station, National Museum of
Mathematics. Tiles: Makoto Nakamura. Orbifold idea:
Jeffrey Wack.

Page 159: Duck: Tub Time L'il Duck.

Page 160: Hyperogue: Eryk Kopczynski, Dorota Celinska
and Marek Ctrnact [7]. Non-Euclidean Minesweeper: Sci-
Tech Binary, Ltd. Co. [12]. Hyperbolic Sudoku: Jeff Weeks
[19].

Page 161: Hyperbolica: CodeParade [2]. Curved Space Pool
Hall: Jeff Weeks [20].



Page 163: Boat: unknown.
Page 165: Marek Ctrnéct.

All other illustrations, models, and photographs are by
Chaim Goodman-Strauss.
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annulus, 125
Euler characteristic of, 111
Archimedean polyhedra and tilings, 150, 151, 15

Archimedean tiling
spherical and Euclidean, 15

Beltrami, Eugenio, 155
boundary, 115

as kaleidoscope, 131
brick walls, 47

cap, 116

Cayley, Arthur, 153
celestial sphere, 59
change, 60

char, 99

Circle Limit, 155

Classification Theorem for surfaces, 122
cone point, 98

cost of feature, 31

crosscap, x, 101, 116

Mobius band as punched, 127



crosshandle, ®, 117, 122
crystallographic groups, planar, 42

di-scope, 78
dice, 81
disk
Euler characteristic of, 111

Escher, M.C., 155
Euler characteristic
of a sphere
proof, 107
of a surface, 109

of an orbifold, 101
on orbifolds, 99
Euler's Map Theorem, 1

extraordinary types, 2, 141

features
cost of, 31
four fundamental, 26
topology of, 115
frieze patterns, 7, 85

fundamental region, 26, 43, 85, 14

glide reflections
are not the same as miracles, 143
group theory, 65
gyration point, 4
gyrational symmetry, 4



gyrations, 4, 18

handle, o, 117

Heesch Type, 148

hybrid types, 18, 40, 41

hyperbolic geometry, 154
symmetry groups, 153
video games, 160, 161

icosascope, 78
isomorphism of sphere groups, 67
isotopy, 42

kaleidoscopes
*, 14
as boundaries, 115, 131
on an orbifold, 132
physical, 44
spherical, 78
kaleidoscopic
corner, 98
patterns, 14
point, 2, 14
symmetry, 2
Klein bottle, 117, 126, 12

as an orbifold, 24, 1 3
Euler characteristic of, 111
Klein handle, 117

Klein, Felix, 155



Lobachevski, Nikolai, 153

Mobius band, 23, 126, 127
as an orbifold, 141
Euler characteristic of, 111
MacBeath, Murray, 1
Magic Theorem, 31
for frieze patterns, 85
in the plane, 32
on the sphere, 61
proof, 102
map, 97
miracle, 23
crosscap, x, 124
is not a glide reflection, 143
orbifold, 141
mirror line, 13
how to find, 3

mirror symmetry see kaleidoscopic symmetry2

non-Euclidean geometry, 154
non-orientable surface, 117, 126

octascope, 78
orbifold, 10, 97, 98, 131-134, 137-139, 142, 144, 145

kaleidoscopic, 98, 132, 133

of a gyration, 98, 134, 1

of frieze patterns, 144, 145
tie-dye, 140



wonder-ring, 142
orbit, 97
order
of a kaleidoscopic point, 2
of a gyration point, 4
ordinary type, 22
orientability, 117

patterns
frieze, 7
hyperbolic, 153
in the plane, wall-paper patterns, 8
repeating, 7
spherical, 59
Poincaré, Henri, 155
polyhedra
Archimedean, 80, 150, 151

as dice, 81

regular, Platonic, 68, 113

reflecting red orbifolds, 133
reflecting red types, 38, 39
reflection

mirror line, 2
repeating patterns

on the plane, 31
rosette patterns, 5

rotational symmetry, 18



signature, 1, 14, 26

of a rosette, 5

determining, 35

generating symmetry type, 42
simply connected, 116
software, 168

Kaleidesign, 153

Kaleidotile, 80

non-Euclidean video games, 160, 161
spherical patterns, 9
spherical symmetry, 9, 59
spherical triangle, 65
stella octangula, 70
surface

Classification Theorem, 122

non-orientable, 117, 126

tidy, 118
symmetries of a thing, 1
symmetries of planar patterns, 35
symmetry

17 planar types, 35

definition, 65

etymology, 1

group, 65

gyrational, 4, 18

kaleidoscopic, 2

plane patterns, 8

point, 2



spherical, 9, 59
spherical types, 64
translational, 7, 25

tetrascope, 78
Thurston, William, 1, 153
tiling, 148
torus, 110

n-fold, 112

punched, 128
translational symmetry, 7
translations, 25
triskelion, 1
true blue types, 36, 37

vesica piscis, 2

wall-paper pattern, 8
wonder, 25

handle, o, 124
Wythoff triangle, 80

zip-pair, zipper, 11
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