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Preface

The Lagrangian method of dynamics is applicable to a very extensive field of particle
and rigid body problems, ranging from the simplest to those of great complexity. The
advantages of this procedure over conventional methods are, for reasons which follow, of
outstanding importance. This is true not only in the broad field of applications but also in
a wide area of research and theoretical considerations.

To a large extent the Lagrangian method reduces the entire field of statics, particle
dynamics and rigid body dynamics to a single procedure: one involving the same basic
steps regardless of the number of masses considered, the type of coordinates employed,
the number of constraints on the system and whether or not the constraints and frame of
reference are in motion. Hence special methods are replaced by a single general method.

Generalized coordinates of a wide variety may be used. That is, Lagrange's equations
are valid in any coordinates (inertial or a combination of inertial and non-inertial) which
are suitable for. designating the configuration of the system. They give directly the equa-
tions of motion in whatever coordinates may be chosen. It is not a matter of first intro-
ducing formal vector methods and then translating to desired coordinates.

Forces of constraint, for smooth holonomic constraints, are automatically eliminated
and do not appear in the Lagrangian equations. By conventional methods the elimination
of these forces may present formidable difficulties.

The Lagrangian procedure is largely based on the scalar quantities: kinetic energy,
potential energy, virtual work, and in many cases the power function. Each of these can
be expressed, usually without difficulty, in any suitable coordinates. Of course the vector
nature of force, velocity, acceleration, etc., must be taken account of in the treatment of
dynamical problems. However, Lagrange's equations, based on the above scalar quantities,
automatically and without recourse to formal vector methods take full account of these
vector quantities. Regardless of how complex a system may be, the terms of a Lagrangian
equation of motion consist of proper components of force and acceleration expressed in
the selected coordinates.

Fortunately the basic ideas involved in the derivation of Lagrange's equations are
simple and easy to understand. When presented without academic trimmings and unfamil-
iar terminology, the only difficulties encountered by the average student usually arise from
deficiencies in background training. The application of Lagrange's equations to actual
problems is remarkably simple even for systems which may be quite complex. Except for
very elementary problems, the procedure is in general much simpler and less time consum-
ing than the "concise", "elegant" or special methods found in many current texts. More-
over, details of the physics involved are made to stand out in full view.

Finally it should be mentioned ' that the Lagrangian method is applicable to various
fields other than dynamics. It is especially useful, for example, in the treatment of electro-
mechanical sytems.

This book aims to make clear the basic principles of Lagrangian dynamics and to give the
reader ample training in the actual techniques, physical and mathematical, of applying
Lagrange's equations. The material covered also lays the foundation for a later study of



those topics which bridge the gap between classical and quantum mechanics. The method
of presentation as well as the examples, problems and suggested experiments has been
developed over the years while teaching Lagrangian dynamics to students at the University
of Cincinnati.

No attempt has been made to include every phase of this broad subject. Relatively little
space is given to the solution of differential equations of motion. Formal vector methods
are not stressed; they are mentioned in only a few sections. However, for reasons stated
in Chapter 18, the most important vector and tensor quantities which occur in the book
are listed there in appropriate formal notation.

The suggested experiments outlined at the ends of various chapters can be of real value.
Formal mathematical treatments are of course necessary. But nothing arouses more in-
terest or gives more "reality" to dynamics than an actual experiment in which the results
check well with computed values.

The book is directed to seniors and first year graduate students of physics, engineering,
chemistry and applied mathematics, and to those practicing scientists and engineers who
wish to become familiar with the powerful Lagrangian methods through self-study. It is
designed for use either as a textbook for a formal course or as a supplement to all current
texts.

The author wishes to express his gratitude to Dr. Solomon Schwebel for valuable sug-
gestions and critical review of parts of the manuscript, to Mr. Chester Carpenter for review-
ing Chapter 18, to Mr. Jerome F. Wagner for able assistance in checking examples and
problems, to Mr. and Mrs. Lester Soilman for their superb work of typing the manuscript,
and to Mr. Daniel Schaum, the publisher, for his continued interest, encouragement and
unexcelled cooperation.

D. A. WELLS
October, 1967
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Basic laws of dynamics. Conditions under which valid. Two
principal types of problems and their general treatment.

1.1 Regarding Background Requirements.
The greatest obstacles encountered by the average student in his quest for an under-

standing of Lagrangian dynamics usually arise, not from intrinsic difficulties of the
subject matter itself, but instead from certain deficiencies in a rather broad area of back-
ground material. With the hope of removing these obstacles, Chapters 1 and 2 are
devoted to detailed treatments of those prerequisites with which students are most fre-
quently unacquainted and which are not readily available in a related unit.

1.2 The Basic Laws of Classical Newtonian Dynamics and
Various Ways of Expressing Them.

Newton's three laws (involving, of course, the classical concepts of mass, length, time,
force, and the rules of geometry, algebra and calculus) together with the concept of virtual
work, may be regarded as the foundation on which all considerations of classical mechanics
(that field in which conditions C, D, E of Section 1.6 are fulfilled) rests. However, it is
well to realize from the beginning that the basic laws of dynamics can be formulated
(expressed mathematically) in several ways other than that given by Newton. The most
important of these (each to be treated later) are referred to as

(a) D'Alembert's principle (c) Hamilton's equations
(b) Lagrange's equations (d) Hamilton's principle

All are basically equivalent. Starting, for example, with Newton's laws and the principle
of virtual work (see Section 2.13, Chapter 2), any one of the above can be derived. Hence
any of these five formulations may be taken as the basis for theoretical developments
and the solution of problems.

1.3 The Choice of Formulation.
Whether one or another of the above five is employed depends on the job to be done.

For example, Newton's equations are convenient for the treatment of many simple problems;
Hamilton's principle is of importance in many theoretical considerations. Hamilton's
equations have been useful in certain applied fields as well as in the development of
quantum mechanics.

However, as a means of treating a wide range of problems (theoretical as well as
practical) involving mechanical, electrical, electro-mechanical and other systems, the
Lagrangian method is outstandingly powerful and remarkably simple to apply.

1.4 Origin of the Basic Laws.
The "basic laws" of dynamics are merely statements of a wide range of experience.

They cannot be obtained by logic or mathematical manipulations alone. In the final
analysis the rules of the game are founded on careful experimentation. These rules must
be accepted with the belief that, since nature has followed them in the past, she will con-

1



2 BACKGROUND MATERIAL, I [CHAP. 1

tinue to do so in the future. For example, we cannot "explain" why Newton's laws are
valid. We can only say that they represent a compact statement of past experience
regarding the behavior of a wide variety of mechanical systems. The formulations of
D'Alembert, Lagrange and Hamilton express the same, each in its own particular way.

1.5 Regarding the Basic Quantities and Concepts Employed.
The quantities, length, mass, time, force, etc., continually occur in dynamics. Most

of us tend to view them and use them with a feeling of confidence and understanding.
However, many searching questions have arisen over the years with regard to the basic
concepts involved and the fundamental nature of the quantities employed. A treatment
of such matters is out of place here, but the serious student will profit from the discussions
of Bridgman and others on this subject.

1.6 Conditions Under Which Newton's Laws are Valid.
Newton's second law as applied to a particle' of constant mass m may be written as

F mdt {1.1)

where the force F and velocity v are vector quantities and the mass m and time t are
scalars. In component form (1.1) becomes,

F,x = mx, Fb = my, Fz = mz (1.2)
2

(Throughout the text we shall use the convenient notation: dt = x, dt2 = x, etc.)

Relations (1.2), in the simple form shown, are by no means true under, any and all
conditions. We shall proceed to discuss the conditions under which they are valid.

Condition A.
Equation (1.1) implies some "frame of reference" with respect to which dv/dt is

measured. Equations (1.2) indicate that the motion is referred to some. rectangular
axes X, Y, Z.

Now, it is a fact of experience that Newton's second law expressed in the
simple form of (1.2) gives results in close agreement with experience when, and
only when, the coordinate axes are fixed relative to the average position of the
"fixed" stars or moving with uniform linear velocity and without rotation relative
to the stars. In either case the frame of reference (the X, Y, Z axes) is referred to
as an INERTIAL FRAME2 and corresponding coordinates as INERTIAL COORDINATES.
Stated conversely, a frame which has linear acceleration or is rotating in any
manner is NON-INERTIAL3.

'The term "particle", a concept of the imagination, may be pictured as a bit of matter so small that
its position in space is determined by the three coordinates of its "center". In this case its kinetic energy
of rotation about any axis through it may be neglected. -

'The term "inertial frame" may be defined abstractly, merely as one with respect to which Newton's
equations, in the simple form (1.2), are valid. But this definition does not tell the engineer or applied
scientist where such a frame is to be found or whether certain specific coordinates are inertial. This
information is, however, supplied by the fixed-stars definition. Of course it should be recognized that
extremely accurate measurements might well prove the "fixed-star" frame to be slightly non-inertial.

'Due to annual and daily rotations and other motions of the earth, a coordinate frame attached to its
surface is obviously non-inertial. Nevertheless, the acceleration of this frame is so slight that for many
(but by no means all) purposes it may be regarded as inertial. A non-rotating frame (axes pointing always
toward the same fixed stars) with origin attached to the center of the earth is more nearly inertial. Non-
rotating axes with origin fixed to the center of the sun constitutes an excellent (though perhaps not
"perfect") inertial frame.



CHAP. 1] BACKGROUND MATERIAL, I 3

The condition just stated must be regarded as one of the important foundation
stones on which the superstructure of dynamics rests. Cognizance of this should
become automatic in our thinking because, basically, the treatment of every problem
begins with the consideration of an inertial frame. One must be able to recognize
inertial and non-inertial frames by inspection.

The above statements, however, do not imply that non-inertial coordinates
cannot be used. On the contrary, as will soon be evident, they are employed perhaps
just as frequently as inertial. How Newton's second law equations can be written
for non-inertial coordinates will be seen from examples which follow. As shown
in Chapters 3 and 4, the Lagrangian equations (after having written kinetic energy
in the proper form) give correct equations of motion in inertial, non-inertial or
mixed coordinates.

Example 1.1:
As an illustration of condition A consider the behavior of the objects (a), (b), (c), shown in

Fig. 1-1, in a railroad car moving with constant acceleration as along a straight horizontal track.

Y,

Fig. 1-1

In Fig. 1-1, (a) represents a ball of mass m acted upon by some external force F (components
F.,, F,) and the pull of gravity. Assuming X1, Y, to be an ipertial frame, considering motion in a
plane only and treating the ball as a particle, the equations of motion, relative to the earth, are

(1) m x, = F. (2) m y, = F, - mg
Now relations between "earth coordinates" and "car coordinates" of m. are seen to be

(3) xi = X2 + v, t + l axt2 (4) y, = y2 + h
Differentiating (3) and (4) twice with respect to time and substituting into (1) and (2),

(5) m x2 = F - ma,, (6) m y2 = F, - mg
which are the equations of motion of the ball relative to the car.

Clearly the y2 coordinate is inertial since (2) and (6) have the same form. However, x2 is
non-inertial since (1) and (5) are different. Equation (5) is a simple example of Newton's second
law equation in terms of a non-inertial coordinate. (Note how incorrect it would be to write
m x2 = F,,.)

Notice that the effect of this non-inertial condition on any mechanical system or on a person
in the car is just as if g were increased to (a'.+ g2)"2, acting downward at the angle s = tan-' a.Ig
with the vertical, and all coordinates considered as inertial.

If the man pitches a ball, Fig. 1-1(b), upward with initial velocity vo, its path relative to the
car is parabolic but it must be computed as if gravity has the magnitude and direction indicated
above. If the man has a mass M, what is his "weight" in the car?
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As an extension of this example, suppose the car is caused to oscillate along the track about
some fixed point such' that s = so + A sin wt, where so, A, w are constants. Equation (6) remains
unchanged, but differentiating x, = X2 + so + A sin wt and inserting in (1) we get

art 72 = mAw' sin wt + F,
Again it is seen hat x2 is non-inertial.'

It is easily seen that the ball in (b) will now move, relative to the car, along a rather complex
path determined by a constant downward acceleration g and a horizontal acceleration Awe sin wt.

The man will have difficulty standing on the scales, regardless of where they are placed,
because his total "weight" is now changing with time both in magnitude and direction.

Example 1.2:
Consider the motion of the particle of ly, g- -

mass m, shown in Fig 1-2, relative to the
X2, Y2 axes which are rotating with con-
stant angular velocity w relative to the
inertial X,, Y, frame.

i

s`,
X,, Y.

Frame Rotating
The equations of motion in the inertial

coordinates are

m x, = Fr,, m y, = F'v,
where F., and F, are components of the
applied force along the fixed axes. We shall
now obtain corresponding equations in the
rotating (and as will oe seen, non-inertial)
coordinates.

Reference to the figure shows that

x,

y,

x2 cos wt - y2 sin wt
xz sin wt + y2 cos Wt

Fig. 1-2

Differentiating these equations twice and substituting in the first equations of motion, we obtain

Fr1 = m[x2 cos wt - 2x2w sin wt - 2y2w cos wt - x2 w2 cos wt + Y2 W2 sin wt - Vs sin wt] (9)

Fy, = m [x2 sin wt + 23 2W cos wt - 2y2 W sin wt - x2 W2 sin wt - y2 W' cos wt + 1;2 cos wt] (10)

Again referring to the figure, it is seen that the components of F in the direction of X2 and
Y2 are given by Fz2 = F, cos wt + F,, sin wt and F,2 = F,, cos wt - Fr, sin wt Hence multi-
plying (9) and (10) through by cos wt and sin wt respectively and adding, the result is

Fr2 = M72 - mx2w2 - 2m42 (11)

Likewise multiplying (9) and (10) through by sin wt and cos wt respectively and subtracting,

FH2 = M V2 - my2w2 + 2mwz2 (12)

These are the equations of motion relative to the non-inertial X2,Y2 axes. Note that it would
indeed be a mistake to write Fr2 = m x2 and F,2 = m 72. From this example it should be evident
that any rotating frame is non-inertial.

Condition B.
Equations (1.2) are valid only when m is constant. In case m is variable, equa-

tion (1.1) must be replaced by dF dt (-Yrw)

Various examples can be cited in which the mass of an object varies with
coordinates (a snowball rolling down a snow covered hill); with time (a tank car
having a hole in one end from which liquid flows or a rocket during the burn-out
period), with velocity (any object moving with a velocity approaching that of light).
However, we shall not be concerned with variable-mass problems in this text.

e_ wt
X,

'As a matter of convenience we shall, throughout the book, refer to the product (mass) X (acceleration)
as an "inertial force".
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Condition C.
In general, the masses of a system must be large compared with the masses

of atoms and atomic particles. The dynamics of atomic particles falls within the
field of quantum mechanics. But there are "borderline" cases; for example, the
deflection of a beam of electrons in a cathode ray tube is usually computed with
sufficient accuracy by classical mechanics.
Condition D.

Whether a mass is large or small, its velocity must be low compared with that
of light. As is well known from the special theory of relativity, the mass of any
object increases with the velocity of the object. For "ordinary" velocities this
change in mass is very small, but as the velocity approaches that of light its rate
of increase becomes very great. Hence the relation (1.2) will not give accurately
the motion of an electron, proton or baseball moving with a velocity of say
2 x 1010 cm/sec. (This condition could, of course, be included under B.)
Condition E.

In case certain masses of the system are very large and/or long intervals of
time are involved (a century or more), the general theory of relativity agrees
more closely with experiment than does Newtonian dynamics. For example,
general relativistic dynamics predicts that the perihelion of the orbit of the planet
Mercury should advance through an angle of 43" per century, which is in close
agreement with astronomical measurements.

In conclusion, we see that when dealing with "ordinary" masses, velocity and time
conditions C, D and E are almost always met. Hence in "classical dynamics" the greatest
concerns are with A and B.

It is evident from the above conditions that there exist three r ore-or-less well defined
fields of dynamics: classical, quantum.and relativistic. Unfortunately no "unified" theory,
applicable to all dynamical problems under any and all conditions, has as yet been
developed.

1.7 Two General Types of Dynamical Problems.
Almost every problem in classical dynamics is a special case of one of the following

general types:
(a) From given forces acting on a system of masses, given constraints, and the known

position and velocity of each mass at a stated instant of time, it is required to find
the "motion" of the system, that is, the position, velocity and acceleration of each
mass as functions of time.

(b) From given motions of a system it is required to find a possible set of forces which
will produce such motions. In general some or all of the forces may vary with time.

Of course considerations of work, energy, power, linear momentum and angular momen-
tum may be an important part of either (a) or (b).

1.8 General Methods of Treating Dynamical Problems.
Most problems in applied dynamics fall under (a) above. The general procedure is

the same for all of this type. As a matter of convenience it may be divided into the
following four steps.

(1) Choice of an appropriate coordinate system.
The ease with which a specific problem may be solved depends largely on the

coordinates used. The most advantageous system depends on the problem in hand,
and unfortunately no general rules of selection can be given. It is largely a matter
of experience and judgment.
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ready have been given. However, to illustrate
further the meaning of the. term "equations of
motion" consider the problem of a small mass m
suspended from a coiled spring of negligible mass
as shown in Fig. 1-3. Assume that m is free to
move in a vertical plane under the action of
gravity and the spring. Equations of motion,
here expressed in polar coordinates, are

r-r02-gcose+m(r-ro) = 0

Simple examples of equations of motion al- ...
(2) Setting up differential equations of motion.

Fig. 1-3

Two points must be emphasized: (a) These differential equations can be set up
in various ways (see Section 1.2). However, as in most cases, the Lagrangian
method is the most advantageous. (b) The equations above do not represent the
only form in which equations of motion for this pendulum may be expressed. They
may, for example, be written out in rectangular or many other types of coordinates
(see Chapters 3 and 4). In each case the equations will appear quite different and
as a general rule some will be more involved than others. Statements (a) and (b)
are true for dynamical systems in general.

(3) Solving the differential equations of motion.
Equations of motion, except in the Hamiltonian form, are of second order. The

complexity of the equations depends very largely on the particular problem in
hand and the type of coordinates used. Very frequently the equations are non-
linear. Only in certain relatively few cases, where for example all differential
terms have constant coefficients, can a general method of solution be given. It is
an important fact that, although correct differential equations of motion can be
written out quite easily for almost any dynamical system, in a great majority of
cases the equations are so involved that they cannot be integrated. Fortunately,
however, computers of various types are coming to the rescue and useful solutions
to very difficult equations can now be obtained rapidly and with relatively little
effort. This means, of course, that differential equations formerly regarded as
"hopeless" are presently of great concern to scientists and engineers. Moreover,
the more advanced and general techniques of setting up such equations are of
increasingly great importance in all fields of research and development.

(4) Determination of constants of integration.
The method of determining constants of integration is basically simple. It

involves merely the substitution of known values of displacement and velocity at
a particular instant of time into the integrated equations. Since the method will
be made amply clear with specific examples in the chapters which follow, further
details will not be given here.

r 8+ 2re + g sin 8= 0
where ro is the unstretched length of the spring
and k the usual spring constant. Integrals of
these second order differential equations give r
and 0 as functions of time.

1.9 A Specific Example Illustrating Sections 1.7 and 1.8.
As a means of illustrating the remarks of the preceding sections and obtaining a
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general picture of dynamics as a whole, before becoming involved in details of the
Lagrangian method, let us consider the following specific example.

The masses m, and m2 are connected to springs (having spring constants k, and k2) and the block B
as shown in Fig. 1-4 below. The block is made to move according to the relation s = A sin wt by the
force F. p0, p,, p2 are fixed points taken such that pop, and p, p2 are the unstretched lengths of the first
and second springs respectively. All motion is along a smooth horizontal line. Masses of the springs are
neglected.

Z4

- xs -

Fig. 1-4

We now set ourselves the task of giving a dynamical analysis of the system. The problem falls under
(a), Section 1.7. The method of treatment is that of Section 1.8. A broad analysis of the problem would
include a determination of:
(a) The position of each mass as a function of time.
(b) The velocity of each mass at any instant.
(c) The energy (kinetic and potential) of the system as functions of time.
(d) The acceleration of and force acting on each mass as functions of time.
(e) The frequencies of motion of each mass.
(f) The force which must be applied to B.
(g) The power delivered by B to the system at any instant.

It should be understood that the solutions given below are not for the purpose of showing details but
only to illustrate fundamental steps. Hence mathematical manipulations not essential to the picture as a
whole are omitted. We shall first determine (a), from which (b), (c), . . ., (g) follow without difficulty.

Following the steps listed under Section 1.8, we first select suitable coordinates. Since motion is
restricted to the horizontal line, it is evident that only two are necessary, one to determine the position
of each mass. Of the coordinates indicated in Fig. 1-4, any one of the following sets may be used, (x,, x2),
(X8, x,), (x2, x4), (x4, x,), etc. As a matter of convenience (x,, x2) have been chosen.

The equations of motion, obtained by a direct application of Newton's laws or Lagrange's equations, are
m, x, + (k, + k2)x, - ksx2 = k,A sin wt
m272 + k2x2 - k2x, = 0

(1)

(2)

To make the problem specific, let us set
m, 400 grams, m2 300 grams, A 5 cm
k, = 6 X 104 dynes/cm, k2 = 5 X 104 dynes/cm, w = 12 radians/sec

Now, by well-known methods of integration, approximate solutions of (1) and (2) are
x, = 6.25A, sin (19.37t + y,) - 3A2 sin (8.16t + y2) - .95 sin 12t (3)
X2 = -5A1 sin (19.37t + 7) - 5A2 sin (8.16t + y2) - 7 sin 12t (4)

which completes the first three steps of Section 1.8.
The arbitrary constants of integration A,, A2, y y2 can be determined after assigning specific initial

conditions. One could assume for example, as one way of starting the motion, that at t = 0,
x,=3cm, x24cm (5)

x, 0, z2 = 0 (6)

Putting (5) into (3) and (4), and (6) into the first time derivatives of (3) and (.4), there result four algebraic
equations from which specific values of the above constants follow at once. The displacements x, and x2
are thus expressed as specific functions of time.

Inspection shows that each of (b), (c), ..., (g) can be determined almost at once from the final forms
of (3) and (4). Hence further details are left to the reader.
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The above simple example presents a rather complete picture of the general procedure
followed in treating the- wide field of problems mentioned in Section 1.7(a). But a word
of warning. The equations of motion (1) and (2) are very simple and hence all steps
could be carried out without difficulty. Unfortunately this is by no means the case in
general (see Section 1.8, (3)). Moreover, it frequently happens in practice that many details
listed under Section 1.9 are not required.

The second general class of problems mentioned in Section 1.7 (b) will be treated in
Chapter 13.

Summary and Remarks
1. "Classical dynamics" is that branch of dynamics for which Newton's laws are valid

under restrictions C, D, E of Section 1.6.

2. The "basic laws" of dynamics are merely compact statements of experimental results.
They may be expressed mathematically in a variety of ways, all of which are basically
equivalent. Any one form can be derived from any other.

3. A cognizance and understanding of the conditions under which the laws of classical
dynamics are valid is of vital importance. The definition of "inertial frame" and a
full realization of the part it plays in the treatment of almost every dynamical problem
is imperative.

4. There are two principal types of problem in classical dynamics (as discussed in Sec-
tion 1.7), of which 1.7(a) is the most common. Cognizance of this fact and the general
order of treatment is of importance.

5. There exist, at the present time, three distinct (from the point of view of treatment)
and rather well defined (physically) fields of dynamics: classical, quantum and rela-
tivistic. No unified set of laws, applicable to any and all problems, has as yet been
developed.

Review Questions and Problems
1.1. State the meaning of the term "classical dynamics". Give specific examples illustrating the re-

maining two fields.

1.2. What can be said regarding the "origin" of and ways of formulating the basic laws of dynamics?

1.3. Make clear what is meant by the term "inertial frame of reference".

1.4. Prove that any frame of reference moving with constant linear velocity (no rotation) relative to
an inertial frame is itself inertial.

1.5. Can one recognize by inspection whether given coordinates are inertial or non-inertial? Is it
permissible, for the solution of certain problems, to use a combination of inertial and non-inertial
coordinates? ,3 (These are important considerations.)

1.6. The cable of an elevator breaks and it falls freely (neglect air resistance). Show that for any
mechanical system, the motions of which are referred to the elevator, the earth's gravitational
field has, in effect, been reduced to zero.
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1.7. 'A coordinate frame is attached to the inside of an automobile which is moving in the usual manner
along a street with curves, bumps, stop lights and traffic cops. Is the frame inertial? Do occupants
of the car feel forces other than gravity? Explain.

1.8. If the car, shown in Fig. 1-1, Page 3, were moving with constant speed around a level circular
track, which of the coordinates x2, y2, z2 of m1 (or of any other point referred to the X2, Y2, Z2
frame) would be non-inertial? Explain. (Assume Z, taken along the radius o£ curvature of track.)

1.9. Suppose that the X2, Y2 frame, shown in Fig. 1-2, Page 4, has any type of rotation (as for example
9 = constant, ® = constant, or 8 = oo sin wt), show that the x2, y2 coordinates are non-inertial.
See Example 1.2.

1.10. Suppose that the arrangement of Fig. 1-4, Page 7, be placed in the R.R. car of Fig. 1-1, Page 3,
parallel to the X2 axis and that the car has a constant linear acceleration ax. Show that the
equations of motion, (1) and (2) of Section 1.9, must now be replaced by

r,2, x, + (k1 + k2)x, - k2x2 = k1A sin wt - m., a.
m2 x2 + k2 x2 - k2xi _ -m2 ax

1.11. Assuming that the origin of X2, Y2, Fig. 1-2, Page 4, has constant acceleration a. along the X, axis
while, at the same time, X2, Y2 rotate with constant angular velocity w, show that equations (11)
and (12) of Example 1.2 must now be replaced by

F, = m x2 - mx2w2 - 2mwy2 + maz cos wt
F112 = my2 my2w2 + 2mwx2 - ma: sin wt

1.12. Assuming that the X, Y frame to which the simp13 pendulum of Fig. 1-5 below is attached has a
constant velocity vz in the X direction and vy in the Y direction (no rotation of the frame), show
that the equation of motion of the pendulum in the o coordinate is r -g sine. Is the period
of oscillation changed by the motion of its supporting frame?

Y,

11

81

x
r Moving Frame

82 f,
X

Earth (assumed inertial) I Xl

MINI

Fig. 1-5

113, If the X, Y frame of Fig. 1-5 above has a constant acceleration a. in the X direction and a constant
velocity v,, in the Y direction, show that

r 9 = -a. cos B -- g sin 8
and hence that 8 is no longer inertial. Does the pendulum now have the same period as in
Problem 1.12?

1.14. State and give examples of the two principal classes of problems encountered in classical dynamics.
Outline the general procedure followed in solving problems of the first type.
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2
Background at+ ali_

Coordinate systems, transformation equations, generalized coordi-
nates. Degrees of freedom, degrees of constraint, equations of
constraint. Velocity, kinetic energy, acceleration in generalized
coordinates. Virtual displacements and virtual work.

2.1 Introductory Remarks.
Theoretical treatments as well as the solution of applied problems in the field of

analytical dynamics involve, in addition to the important matters discussed in Chapter 1,
an immediate consideration of generalized coordinates, transformation equations, degrees
of freedom, degrees of constraint, equations of constraint, velocity and kinetic energy as
expressed in generalized coordinates, general expressions for acceleration, and the mean-
ing and use of virtual displacements and virtual work. No student is in a position to
follow the development of this subject without a clear understanding of each of these
topics.

2.2 Coordinate Systems and Transformation Equations.
The various topics under this heading will be treated, to a large extent, by specific

examples.

(1) Rectangular Systems.
Consider first the two-dimensional Y. Coordinates

tx,.v,): t==.v=1lrectangu ar systems, big. 2-1. The
lengths xi, yl locate the point p relative
to the X1, Y1 frame of reference. Like-
wise x2, y2 locate the same point relative

I
I X, m,

to X2, Y2. By inspection, the x1, yi co-
ordinates of any point in the plane are
related to the x2, y2 coordinates of the
same point by the following "transfor-
mation equations":

X. Jxi = x + X. COS a - 2 sin a

xs

2
(2.1) X,t i+ X si 8 += nyoU1 2 y2 cos

Note that x1 and yi are each functions
of both x2 and y2.

Fig. 2-1

It is seen that relations (2.1) can be written in the more convenient form

xi = xo + 11x2 + 12 y2 (2.2)
Y1 = y0 + mlx2 + m2y2

where li, m1 and 12, m2 are the direction cosines of the X2, Y2 axes respectively
relative to the Xi, Yi frame.

As a further extension, suppose that the origin of X2, Y2 is moving with, say,
constant velocity (components v, v,) relative to the Xi, Y1 frame while, at the same
time, the X2, Y2 axes rotate with constant angular velocity W such that 0 = Wt.
Equations (2.1) or (2.2) can be written as

vX t + x2 cos Wt - y2 sin wtx1

v, t + x2 sin u,t + y2 cos Wtyl

10
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Note that xi, yl are now each functions of x2, y2 and time. Corresponding
equations for any assumed motions may, of course, be written out at once.

Transformation equations of the above type are encountered frequently and
are often indicated symbolically by

xi = X1 (X2, y2, t), y1 = y l(x2, y2, t)

Considering three-dimensional rec-
tangular systems, Fig. 2-2, it may be
shown, as above, that transformation
equations relating the xi, yi, zi coordi-
nates of a point to the x2, y2, z2 coordi-
nates of the same point are

x1 = xo + 11X2 + 12y2 + 13x2
Y1 = yo + m1x2 + m2y2 + `In3z2 (2.4)
zi = zo + nix2 + n2y2 + n3z2

where li, m1, ni are direction cosines of
the X9 axis. ete_

I)irectiert Co8i es of
X: aas°

etc.

! Y,
f X Zth YQ course e 2,2, 2 frame may i / y,

be moving, in which case (for known - -- - - -J/
motions) xo, yo, zo and the direction co-
sines can be expressed as functions of
time, that is, xi = X, (X2, y2, z2, t), etc.

(2) The Cylindrical System.

Fig. 2-2

This well-known system is shown in Fig. 2-3. It is seen that equations relating
the (x, y, z) and (r,, z) coordinates are

x= p cos 4,, y= p sin 4), z= z

Cylindrical Coordinates

Fig. 2-3

0

P, 0, z
/X

Spherical Coordinates r, e, 0

Fig. 2-4

(3) The Spherical System.
Spherical coordinates consisting of two angles 0 and 0 and one length r are

usually designated as in Fig. 2-4. Reference to the figure shows that
x = r sin B cos 0, y = r sin 0 sin 4), z = r cos 9 (2.6)

Note that x and y are each functions of. r, ¢, B. It happens that z is a function of
r and 0 only.
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(4) Various Other Coordinate Systems.
Consider the two sets of axes X, Y

and Q1, Q2 of Fig. 2-5, where a and p
are assumed known. Inspection will
show that the point p may be located
by several pairs of quantities such as
(x, y), (q1, q2), (qi, q2), (si, s2), (s,, x), etc.
Each pair constitutes a set of coordi-
nates. Transformation equations relat-
ing some of these are

x = q1 cos a + q2 cos R
(2.7)y =. q1 sin a + q2 sin R

qi = q1 + q2 COS (/3 - a)
(2.8)

qz = q2 + qi coS
S2 = x sin /3 - y COS j3
Si = y COs a x Sin a

(2.9)

Other interesting possibilities are
shown in Fig. 2-6. Measuring ri and r2
from fixed points a and b, it is seen that
they determine the position of p any-
where above the X axis (they are not
unique throughout the X Y plane). Like-
wise (8, a) or (ri, sin 0), etc., are suitable
coordinates.

Writing x = r1 cos 0, y = r1 sin 0
and -designating sin 0 by q, it follows
that

x = r1(1 - g2)1i2, y = ri q (2.10)

which relate the (x, y) and (ri, q) coordi-
nates.

It is interesting to note that the
shaded area A and sin 0 constitute per-
fectly good coordinates. Relations be-
tween these and x, y are

Oblique Axes QA, Q2

Fig. 2-5

- 8 -

Fig. 2-6

[CHAP. 2

Possible
Coordinates:

(x, y); (q., q,); (qt, q;)
(a,, a,); (a., x); etc.

Q. Axis

x

Possible
Coordinates:

(x, y); (r,, e); (r,, r,)
(e, a); (r., sin e); (A, sin e)

xy = 2A, y = ( q x (2.11)
Cg

1 - q2 C2 A-lines
Coordinate' lines corresponding to = b,, b,, ba, etc.

A and q are shown in Fig. 2-7. The
"q-lines" are obtained by holding A con-
stant and plotting the first relation of
(2.11). Likewise "A-lines" result from
the second relation above for q constant.

It is evident from examples given
above that a great variety of coordi-
nates (lengths, angles, trigonometric
functions, areas, etc.) may be employed.

Fig. 2-7

(5) Coordinates for the Mechanical System of Fig. 2-8 below.
Assume that the masses mi and m2 are connected by a spring and' are free to

move along a vertical line only. Since the motion is thus limited, the positions



CHAP. 2] BACKGROUND MATERIAL, II 13

of the masses are determined by specifying only two coordinates as, for example,
y, and Y2. Also (y,, y3), (y2, y3), (q,, y,), (q2, y,), (q,, y2), etc., are suitable. When
any one of these sets is given, the configuration of the system is said to be
determined. Obvious relations (transformation equations) exist between these sets
of coordinates. Note that since m, q, = m2 q2, q, and q2 are not independent.
Are q, and y3 suitable coordinates?

Y

yI

Y2

Y

q2

Fig. 2-9

Disc D, fixed. D2 can move vertically. Mass m3
serves as bearing for D2 and does not rotate.
m,, m2, m3, m4 have vertical motion only. Tensions

X in ropes are represented by r1, 72, r31 T4. Neglect
masses of D, and D2.

Fig. 2-8

(6) Coordinates for a System of Masses Attached to Pulleys.
Assuming that the four masses of Fig. 2-9 above move vertically, it is seen

that when the position of ml is specified by either y, or s,, the position of m3 is
also determined. Again, when the position of m2 is specified by giving either
Y2 or s2, the position of m4.is also known. (These statements presuppose, of course,
that all fixed dimensions of ropes and pulleys are known.) Hence only two co-
ordinates are necessary to completely determine the configuration of the four
masses. One might at first be inclined to say that four coordinates, as y,, y2, y3, y4,
are necessary. But from the figure it is seen that y, + y3 = C, and y2 + y4 - 2y3 = C2
where C, and C2 are constants. Hence if values of the coordinates in any one of
the pairs (y,, y2), (yl, y4), (y2, y3) are given, values of the remaining two can be
found from the above equations.

For future reference the reader may show that

y, = h+s4+q,-l,-l2-2C,
y2 = h-s4-2q,+11,

y3 = h-s4-q,+1,
y4 = h - 84 (2.12)

where 1, and 12 are the rope lengths shown. Note that for given values of two
coordinates only, (s4,q,), the vertical positions of all four masses are known.

(7) Possible Coordinates for a Double Pendulum.
The two masses m, and m2, Fig. 2-10 below, are suspended from a rigid sup-

port and are free to swing in the X, Y plane.
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(a) Assuming that ri and r2 are inextensible
strings, two coordinates such as (8, ¢),
(x1, x2), (y1, y2), etc., are required.

(b) Assuming the masses are suspended

[CHAP. 2

from rubber bands or coil springs,
four coordinates such as (ri, r2, 8, 4)),
(xi, y1, x2, y2), etc., are necessary. Trans-
formation equations relating the above
two sets of coordinates are

x1

Y1

X2
(2.13)

Y2

xo + ri sin 0
yo - ri cos 8
xo + r1 sin 0 + r2 sin
yo - ri cos 0 - r2 coS 4) Fig. 2-10

(8) Moving Frames of Reference and "Moving Coordinates".
In practice, many problems are encountered for which it is desirable to use

moving frames of reference. (As a matter of convenience, coordinates measured
relative to such a frame may at times be referred to as "moving coordinates".)
General examples are: reference axes attached to the earth for the purpose of
determining motion relative to the earth; a reference frame attached to an elevator,
a moving train or a rotating platform; a reference frame attached to the inside
of an artificial satellite.

One specific example has already been mentioned (see Equation(2.3)), but perhaps
the following additional ones may be helpful.
(a) Suppose that in Fig. 2-1, Page 10, the origin 0 has initial velocity (vx, vy) and

constant acceleration (ax, ay) while the axes rotate with constant angular
velocity to. Equations (2.2) obviously take the form

xi = vxt + . -axt2 + X2 COS tot - y2 sin tvt (2.14)
yi = vyt + ' 'ayt2 + x2 sin tot + y2 COS wt

Again note that xi x1 (X2, y2, t), etc.

(b) If the support in Fig. 2-10 is made to oscillate along an inclined line such
that x0 = A0 + A sin wt, yo = Bo + B sin wt, then relations (2.13) have the
form x2 = Ao + A sin wt + ri sin 8 + r2 sin

Y2 = Bo + B sin wt - ri cos 0 - r2 COS 4 (2.15)

etc., which may be indicated as x2 = x2(ri,r2, 0, (p, t), etc. It is important
to understand and develop a feeling for the physical and geometrical meaning
associated with symbolic relations of this type.

(e) If in Fig. 2-9 the support is given a constant vertical acceleration with initial
velocity vi, h = vi t + 2at2 and relations (2.12) must be written as y, _
v, t + lat2 + s4 + q1 + constant, etc.

(d) Suppose the reference axes Qi and Qz, Fig. 2-5, Page 12, are rotating about
the origin with constant angular velocities t0i and o2 such that a = wit, ,3 = w2 t.
They still can be used as a "frame of reference" (though for most problems
not a very desirable one). Relations (2.7) then become

x = q1 cos w1 t + q2 cos W2 t (2.16)
y q1 sin tut t + q2 sin W2 t

or x x(qi, q2, t), etc.
It is important to note that the moving frame of reference in each of the

above examples is non-inertial.
Finally, regarding transformation equations in general:
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(i) Each coordinate of one system is as a rule a function of each and every co-
ordinate of the other and time (if frames are moving), as illustrated by equa-
tions (2-14), (2.15), (2.16).

(ii) In previous examples most transformation equations relate rectangular co-
ordinates to some other type. But when desirable to do so, equations relating
various types can usually be written.

2.3 Generalized Coordinates. Degrees of Freedom.
(1) Generalized Coordinates.

As seen from previous examples, a great variety of coordinates may be employed.
Hence as a matter of convenience the letter q is employed as a symbol for coordinates
in general regardless of their nature. Thus q is referred to as a generalized
coordinate.

For example, eq. (2.15) could be written as x2 = Ao + A sin wt + gig2 + q3q4
and y2 = Bo + B sin wt - q 1--q22 - q3 1 - q4 , where ri is replaced by qi, sin B
by q2, etc.

In conformity with common practice we shall frequently indicate the n co-
ordinates required to specify the configuration of a system as q1, q2, :.., qn.
(2) Degrees of freedom, defined and illustrated.

One of the first considerations in the solution of a problem is that of determin-
ing the number of "degrees of freedom" of the system. This is defined as:

The number of independent coordinates (not including time) required to specify
completely the position of each and every particle or component part of the system.

The term "component part" as here used refers to any part of a system such
as a lever, disk, gear wheel, platform, etc., which must be treated as a rigid body
rather than a particle.

Examples illustrating systems having from one to many degrees of freedom
will now be given.
(a) Systems having one degree of freedom.

A particle constrained to move along a straight line (bead on a wire) the equation of which
is y = a + bx. If either x or y is given the other is known.

A bead free to move on a wire of any known shape: parabolic, helical, etc.
A simple pendulum, motion confined to a plane. Or a pendulum whose string is pulled up

through a Amall hole in a fixed board, at a known rate. (Length of pendulum is a known function
of time.) Note that time is never included as a degree of freedom.

The bead, shown in Fig. 2-11 below, free to slide along the rod which rotates- about p in any
known manner.

Fig. 2-11

(b) Two degrees of freedom.

Fig. 2-12

A particle free to move in contact with a plane or any known surface: spherical, cylindri-
cal, etc.
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The dumbbell, shown in Fig. 2-12 above, free to slide along and at the same time rotate
about the Y axis. -

The system of masses and pulleys shown in Fig. 2-9, Page 13. Note that by equations (2.12),
given sa and qi the complete configuration is known. If support AB is moving, two coordinates
and t are required; however, it is still regarded as having two degrees of freedom.

The double pendulum of Fig. 2-10, Page 14, rl and r2 being inextensible strings.
(c) Three degrees of freedom.

A particle free to move in space Possible ZI b\ B

inextensible.
14, assuming that r, is a rubber band and r2 ep YI.. I

e r 1'." to rod OB.
Double pendulum, as shown in Fig. 2-10, Page Ball Joint

tact with a plane. Two coordinates are required ffi 90, Rigid Body
for translation and one for rotation. fastened

coordinates: (x, y, z), (r, gyp, e), etc.

A board or any lamina free to slide in con-

point 0, as shown, in Fig. 2-13. Orientation is
Rigid body free to rotate about any fixed /"-" ¢ __ -Vertical Line

completely determined by o, o, a. (m is any typi- A
cal particle of the body.) Line ab, normal to rod Oa, and in the

The system shown in Fig. 2-8, Page 13, with AOZ plane. Line ac is normal to rod.

Fig. 2-13

The double pendulum, shown in Fig. 2-10, Page 14, with variable lengths ri and r2 (rubber
bands or coil springs).

The arrangement shown in Fig. 2-14 below where m,. is allowed vertical motion only. Particle
m2 is free to move about in any manner under the action of gravity and a rubber band.

The pulley system shown in Fig. 2-15 below, assuming vertical motion only.
The rigid body, shown in Fig. 2-13, with the ball joint free to slide along the X axis.

an additional spring and mass connected to m2.
(d) Four degrees of freedom.

A &,

Si

A

1

Fig. 2-14

(e)

B

Fig. 2-15

Five degrees of freedom.

The rigid body, Fig. 2-13, with the ball joint free to slide in contact with the X Y plane.
A system of five pulleys mounted as indicated in Fig. 2-16 below.

Pg MP2

Torsion springs c,, c,, c,, etc., allow disks to move, one relative to the other.
Fig. 2-16



CHAP. 2] BACKGROUND MATERIAL, II 17

The pulley system shown in Fig. 2-15 above, with a spring inserted in the rope connecting
mi and m2.

Five particles connected in line with springs as those shown in Fig. 2-18 below, horizontal
motion only (or vertical motion only). Would the degrees of freedom be the same without the
springs, that is, with no connection between masses?

(f) Six degrees of freedom.

The double pendulum, shown in Fig. 2-10, Page 14, particles mi and 7n2 suspended from
rubber bands and free to move in space.

A rigid body free to move in space, even though connected in any way to springs.
The rigid body of Fig. 2-13 above with another rigid body connected to it by means of a

ball joint, say at point P.
The pulley system, shown in Fig. 2-15 above, with a spring inserted in the rope supporting

m2 and another in the. rope supporting ma.

(g) Many degrees of freedom.
Two boards hinged together so that the angle between them can change but allowed to move

freely in any manner except for the constraint of the hinge, has seven degrees of freedom.

A row of seven pulleys as those in Fig. 2-16
above has seven degrees of freedom. A system con-
sisting of three particles suspended from one an-
other so as to form a "triple pendulum" has eight
degrees of freedom provided two of the supporting
cords are elastic and motion is not confined to a
plane. If each of the three cords is elastic, this
system has nine degrees of freedom.

Two rigid bodies fastened together with a uni-
versal ball joint and allowed to move freely in
space has nine degrees of freedom.

The arrangement shown in Fig. 2-17 has ten
degrees of freedom. Three coordinates are required
to locate the point p, two more to determine the
configuration of the bar (we assume that the bar
d t t t boes no ro a e a out its longitudinal axis), three
more to fix the position of m2, and finally two more
to locate m, (supporting string assumed to be in-
extensible).

Ten Degrees of Freedom

Fig. 2-17

The arrangement of springs and "particles" in Fig. 2-18 below may have various numbers of
degrees of freedom depending on how the masses are allowed to move. If motion is restricted to
the Y axis, the system has only four degrees of freedom; if restricted to the XY plane, there are
eight degrees of freedom. If m1 and m2 are allowed to move along the Y axis only while m3 and
m4 are free to move in the XY plane, the system is one of six degrees of freedom. If each particle
is allowed to move in any manner, the system has twelve degrees of freedom, and if each mass
is regarded as a rigid body it has twenty-four.

Fig. 2-18

It is thus seen that mechanical systems may have any finite number of degrees
of freedom. The actual number in any particular case depends altogether on the
number of masses involved and the geometrical restrictions placed on their motions.
Indeed certain systems may be regarded as having an unlimited number of degrees
of freedom. A coil spring, vibrating string, drumhead, etc., are examples if we
imagine each to be composed of an unlimited number of particles. In many
problems, but not all by any means, the masses of springs, supporting cords, etc.,
may be neglected. This we shall do throughout the text.
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Systems having an "infinite number of degrees of freedom" are treated by
methods which -are quite distinct.

(3) Selection of independent coordinates.
In the mathematical treatment of a system there is usually a wide range of

choice as to which coordinates shall be regarded as independent.

For a simple pendulum, 0, the angular displacement of the string, is usually
selected. However, the x or y coordinate of the bob or many others could be
employed.

Referring to Fig. 2-9, Page 13, it is seen that, for given values of the coordinates
in either of the following pairs, (yi, y2), (s3, q2), (y2, y4), (si, qj), (s4, qi), etc., the posi-
tion of each mass of the system is determined. Thus either pair may be selected
as the independent coordinates for treating the system.

It is a well known fact that certain coordinates may be more suitable than
others. Hence the quantities chosen in any particular case are those which appear
to be most advantageous for the problem in hand. The final choice depends largely
on insight and experience.

2.4 Degrees of Constraint, Equations of Constraint, Superfluous Coordinates.
It is evident from the preceding section that the degrees of freedom of a system

depend not only on the number of masses involved but also on how the motion of each
is restricted physically. A single particle, free to take up any position in space, has
three degrees of freedom. Three independent coordinates, (x, y, z), (r, -¢, 0), etc., are re-
quired to determine its position. But if its motion is restricted to a line (bead on a rigid
wire), only one coordinate is sufficient. The bead is said to have two degrees of constraint
and two of the three coordinates required for the free particle are now "superfluous".

Thus it is evident that a system of p particles can have, at most, 3p degrees of freedom
and that the actual number, n, at any particular instant is given by

n = 3p - (degrees of constraint) (2.17)

Now the constraints of a system may be represented by equations of constraint. If
the bead is constrained to a straight wire in the XY plane, the equation of the wire
y = a + bx and z = 0 are equations of constraint. If the wire is parabolic in shape,
y = bx2 and z = 0 are the equations of constraint.

Again consider Fig. 2-9, Page 13. For vertical motion only it is seen that
xi = Ci, zi = bi ; X2 = C2, z2 = b2; etc. (2.18)
yi + ys = constant ; J(y2 + Y4) - y3 = constant

where xi, zi are the (x, z) coordinates of mi; Ci, bi are constants, etc. Thus, all told, there
are ten equations of constraint and the degrees of freedom have. been reduced from a
maximum of twelve to only two. We may say that ten coordinates are superfluous.

2.5 Moving Constraints.
It is frequently the case that some or all constraints of a system are in motion.

A simple example is shown in Fig. 2-11 where the rod is rotating in the XY plane
about the axis indicated, with constant angular velocity wi. The bead m is free to slide
along the rod and since a = wit, the equation of constraint may be written as y =
s + (tan (oit)x. Note that t appears explicitly in this relation.
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As an extension of this example, suppose that the X, Y axes above are the X2, Y2
translating and rotating axes of Fig. 2-1; then y2 = s + (tan 0,1t)x2. Therefore trans-
formation equations (2.14) written in terms of x2 and t (they could just as well be expressed
in y2, t) have the form

19(2 )y1 = v,t + -a,, t2 + X2 sin Wt + (s + x2 tan o)1t) cos tilt .

xi = vxt + laxt2 + x2 COS tot - (s + x2 tan )1t) sin ,t

where both x1 and y1 are now functions of x2 and t alone.
General remarks: From a purely mathematical point of view, equations of constraint

are merely certain relations existing between the possible and otherwise independent 3p
coordinates. They may be indicated in a general manner as

4i (ql, q2, ... , qsn, t) = 0, where i = 1,2, ... , 3p - n (2.20)

2.6 "Reduced" Transformation Equations.
Assuming no constraints but possibly moving frames of reference, transformation.

equations relating the rectangular coordinates of p particles to their 3p generalized co-
ordinates may be indicated as xi = xi (ql, q2, . . ., qan, t), etc. However, when there are
constraints, stationary or moving, all superfluous coordinates can be eliminated from the
above relations by means of equations of constraint, giving

xi = xi(g1, q2, . . ., q,, t); yi = yi(gl, q2, ..., q,, t); zi = zi(g1, q2, . . ., qn, t) (2.21)

which now contain only independent coordinates, equal in number to the degrees of free-
domof the system. We shall refer to these as "reduced" transformation equations. It
should be noted that t may appear explicitly in (2.21) as a result of moving coordinates
and/or moving constraints. Simple examples of (2.21) are equations (2.12) in which
t does not appear and (2.19) in which t appears explicitly.

The great importance of relations (2.21) in obtaining expressions for velocity, kinetic
energy, potential energy, etc., in just the appropriate number of independent coordinates
will soon be evident.

Note. (a) In some cases the algebra involved in eliminating superfluous coordinates may
be difficult. (b) For the relatively rare "non-holonomic" system, equations of constraint must
be written in non-integrable differential form. See Section 9.12, Page 193.

2.7 Velocity Expressed in Generalized Coordinates.
Expressions for the velocity of a point or particle may be arrived at by either of the

following two procedures. The first brings out the fundamental definition of velocity and
the basic physical and geometrical ideas involved. The second is more convenient.

(1) Velocity from an element of path length, As. (As regarded as a vector.)

Suppose the point p, shown in Fig. 2-19 below, moves the distance As from a
to b in time At. Its average velocity over the interval is As/At. When At ap-
proaches zero, we write

velocity = urn ®s = s (2.22)
4t-a0

where s is a vector quantity of magnitude ids/dtJ, pointing in the direction of the
tangent to the path at a. As an aid in appreciating the physics and geometry
involved, we may think of a particle as having a velocity "in the direction of its
path" at any position in the path.
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The above definition of velocity makes no reference to any particular coordinate
system. But, of course, As can be expressed in any coordinates we wish. Hence
by so doing and passing to a limit as at - 0, i is expressed in the chosen coordinates.
Examples:

In rectangular coordinates, (AS)2 = (Ax)2 + (Ay)2 + (AZ)2. Dividing by (At)2 and
passing to the limit we write,

i2 = x2+y2+z2

Fig. 2-19

(2.23)

Element of length As
A82 = Ar' + r,08Y+r' sin' v A02

Fig. 2-20

In spherical coordinates (see Fig. 2-20), (AS)2 = (Ar)2 + r2(AO)2 + r2 sin2 0 (A4 )2; then

s2 = r2 + r202 + r2 sin2 8 2 (2.2.¢)

In the two-dimensional oblique system, Fig. 2-5, Page 12, imagine p given any
small general displacement As. It is seen, for example, that (AS)2 = (Agl)2.+ (Aq2)2 +
2(Agl)(Ag2) cos ((3 - a); then

i2 = q2 + q2 + 2ql g2 cos (2.25)

Let us outline the steps required to find the velocity 31 and s2 of m1 and m2
respectively shown in Fig. 2-10. Basically these are As1/At and As2/At. By sketch-
ing a small general displacement of the pendulum and indicating As, and AS2 as
corresponding general displacements of ml and m2 respectively, one can from the
geometry of the drawing (and considerable tedious work) express each in terms of
ri, Ar1, 0, A9, r2, Are, A4. Final results, after dividing through by (At)2 and passing
to the limits, are

2 r2 + r2921 1

i2 = ri + r i12 + 2(rlr2 + cos ( - 0) (2.26)

+ r2 + r2 ¢,2 + 2(rlr2B - r2r1cb) sin (4 - 0)

It should be noted that, even though the expression for S2 appears complicated,
basically it is merely an element of length As2 divided by a corresponding element
of time At. Also note that, as expressed above, i2 is a function of every coordinate
as well as their time derivatives, that is, i2 s2(ri, 0, r2, r2, ).
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(2) Velocity through the use of transformation equations.
Given an expression for s in one system of coordinates, we can express it in

another by means of transformation equations (or reduced transformation equa-
tions) relating the two. Examples:

Differentiating equations (2.6), Page 11, with respect to time and substituting
in (2.23), relation (2.24) is obtained.

Differentiating relations (2.13), Page 14, and inserting in (2.23), relations (2.26)
are obtained with little effort.

It follows at once from relations (2.12), Page 13, that velocities of the individual
masses, Fig. 2-9, are given by

yl -- S4 + ql, y2 = -S4 - 2q1, y3 = -s4 - q1, y4 = -84 (2.27)

This assumes of course that h is constant. Note that all velocities are expressed
in terms of only s4 and ql.

For use in a later example, consider the vertical velocities yi and y2 of m1 and
m2, shown in Fig. 2-8, Page 13, relative to the fixed X axis. Let us express these
in terms of y and q1. As seen from the diagram, y1 = y + qi, y2 = y - q2 and
m1 q1 = m2 q2 (center of mass relation). Hence

m1 (2.28)y1 = y+q1, y2 = y--gl 4-
M2

(3) Velocity expressed in terms of moving coordinates.
One point must be understood: in the Lagrangian treatment one of the first

considerations is the velocity of each particle relative to an inertial frame. If a
moving frame of reference is used in which some or all of the chosen coordinates
are non-inertial (this implies that, eventually, we expect to find the motion of the
system relative to the moving frame), the velocity required is not that relative to
the moving frame but rather equations for velocity relative to inertial axes, but
expressed in terms of the moving coordinates. (The reason for this will be evident
in Chapter 3.) Examples should make clear this statement and how the desired
results are obtained.

Assume as a simple case that the X2, Y2, Z2 axes, shown in Fig. 2-2, Page 11,
are moving parallel to the fixed X1, Y1, ZI frame with constant acceleration (ax, ay, a,).
Transformation equations are xi = vx t +

2
ax t2 + x2, etc. The velocity components

of p relative to fixed axes are xl, yi, z1 and relative to the moving axes, x2, y2, z2.
But from the transformation equations,

x1 = vx + axt + x2, etc. (2.29)

which express the velocity of p relative to the stationary axes but in terms of
velocities relative to the moving axes and time.

If the X2, Y2, Z2 frame is regarded as moving in any manner (rotation as well
as translation), equations corresponding to the above are

x1 = xo + 11x2 + 12y2 + 13z2 + lix2 + 12y2 + 13z2, etc. (2.30)

In this case xo, yo, zo and all direction cosines are changing with time. Equations
(2.30) play an important part in the development of rigid body dynamics, Chapter 9.

As a final example consider the following. DI and D2 shown in Fig. 2-21 below
are rotating platforms. Dl is driven by a motor at an angular velocity of 81
relative to the earth. D2, mounted on D1, is driven by another motor at an angular
velocity of 82 relative to D1. Axes X1, Y1 are fixed relative to the earth. Line ab
is fixed to the surface of D1. Axes X2, Y2 are fixed to the surface of D2. A particle
of mass m is free to move in contact with D2. We shall find an expression for its
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xi, yi = coordinates of m relative
to stationary Xi, Y, axes.

[CHAP. 2

velocity relative to the earth but expressed in terms of the moving polar coordinates
r, a and other quantities.

It is easy to see that

x1 = s Cos B1 + r cos s sin 01 + r sin

where /3 = 81 + 02 + a. Differentiating and substituting in v2 = 2 + yi, we get
V2 = s2B1 + 2s B1 r sin (02 + a) + r2 /12 + r2 + 2s61 /fir Cos (62+ a) (2.31)

which is correct regardless of how the motors may cause 81 and 02 to change with
time. If, as a special case, we assume that 81 = w1 = constant and ®2 = C = constant,
then v becomes a function of r, a, r, «, t only.

If desired, v can easily be expressed in terms of the rectangular coordinates
x2, y2- by differentiating

x1 S COS 81 + x2 COS (81 + 02) - Y2 sin (61 + 02)
y1 = s sin 01 + x2 sin (81 + 02) + y2 cos (©1 + 82)

and substituting in v2 = xa + y2

2.8 Work and Kinetic Energy.
(1) Projection of a vector on a line.

By way of review consider the following
form of expressing the projection f of any
vector F on the line ob having direction co-
sines 1, m, as shown in Fig. 2-22. Clearly,

f = FCos0 = FCos(a-/3)
= F Cos a cos /3 + F sin a sin /3

But F cos a = and cos /3 = 1, etc.; hence
f = Fxl + F, m. Extended to three dimen-
sions,

(2.32)

f = Fxl + F,,m + Fn.. .(2.33) Fig. 2-22
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Referring to Fig. 2-23, ds is an element ab of the line AB. T is tangent to the
line at a. Direction cosines of T are seen to be dxlds, dylds, dz/ds. Hence the
projection f of any vector F on T is given by

f = F cos e = Fx ds + Fy
ds + Fz Ws (2.34)

x
Fig. 2-23

(2) Definition of work.
Suppose F is a force acting on a body at point a and that this point of applica-

tion moves along some general path from a to b. Now, (even though the shift in
position may not be entirely due to F; other forces may be acting), the element of
work dW done by F is given by dW = F ds cos 0, a scalar quantity. But by (2.34)
this may be written as

dW =. F. dx + Fy dy + Fz dz (2.35)

Hence the work done over any finite path from A to B is given by
B

W = J (F. dx + F,, dy + Fz dz) (2.36)
A

This general statement is correct even though F may change in both magnitude
and direction along the path (may be a function of x, y, z).

(3) Definition of kinetic energy.
Now suppose F is the net force causing a particle of mass m to accelerate as

the particle moves along any path AB. The work done on the particle is given by
(2.36); and if X, Y, Z are inertial axes, Fx = m x, etc. Thus writing x dx = x dx,
(2.36) takes the form

B B

W = m(x dx + y dy + z dz) = 2 (xz + y2 + z2)
A

=
2 (vB ° vA)

which is an expression for the work required to change the velocity of the particle
from vA to VB. It is a scalar quantity depending only on m and the magnitudes
of vA, VB.

If the initial velocity vA = 0, then W = jmvB, which leads us to the following
definition of kinetic energy.

The kinetic energy of a particle is the work required to increase its velocity
from rest to some value v, relative to an inertial frame of reference.
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As shown above, this is 2mv2; and since it is a scalar quantity, the kinetic
energy T of a system of p particles is

1 m; v{ (2.37)T = 2
i

where, of course, the velocities vi may be expressed in any inertial coordinates and
their time derivatives or the equivalents of these quantities expressed in non-
inertial coordinates.

The kinetic energy of a rigid body rotating with angular velocity e about a
fixed axis follows at once from (2.37). The velocity of any typical particle is re,
where r is the perpendicular distance from the axis to the particle. Hence, con-
sidering particles of mass dm and replacing the 'sum with an integral, (2.37) may
be written as

(2.38)

where the "moment of inertia" I, is defined by the integral. We shall assume that
the student is familiar with the use of the above relation in simple problems and
postpone a general treatment of moments of inertia and kinetic energy of a rigid
body until Chapters 7 and 8.

2.9 Examples Illustrating Kinetic Energy.
(1) Kinetic energy of a particle.

T (x2 + y2 + z2),

T

In
2 [q1 +

42 + 241j2 cos (R' a)),

2

see equation (2.23)

see equation (2.24) (2.39)

see equation (2.25)

Making use of equations (2.11), Page 12, and the first equation above (with z = 0),
T can for example be expressed in the A, q coordinates and their time derivatives.

(2) Kinetic energy of the double pendulum, Fig. 2-10, Page 14. In rectangular
coordinates, m1 m2 .T = (x1 + y1) + 2 (x2 + y2) (2.40)

If the masses are suspended from springs or rubber bands, the system has four
degrees of freedom and (2.40) contains no superfluous coordinates. However,
suppose r1 is an inextensible string, i.e. xi + y2 r12 = constant, (an equation of
constraint). By means of this we can eliminate say y1 from (2.40), giving

(r2

2r2

T = 21 1 X2
+ 22 (x2 + y2) (2.41)

1
1

In the coordinates ri, r2, 6, 4 (assuming all variable, see equations (2.26)),

T = 21 282) + 22 [r"; + ri + r2 + x242
(2.42)

+ 2(r1r2 + rjr2O4) cos (0 - 0) + 2(rir2B r2;1 4) sin (q, - 0)]

(3) Kinetic energy of the system, Fig. 2-9, Page 13, neglecting masses of pulleys
and assuming vertical motion only:

21 y2 + 22 y2 + 23 y2 +
24 y4

This is correct but, since the system has only two degrees of freedom, the expression
contains two superfluous coordinates. However, we see that Y1 + y3 = CI and

In
(r2 + r2B2 + r2 sin2 6

2
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(y3 - y4) + (ys - y2) = C2 (equations of constraint) by means of which two veloci-
ties, say y3 and y4, can be eliminated giving

T = 2(ml+m3+4m4)y2 + 2(m2+m4)y2 + 2m4yly2 (2.43).

Applying relations (2.27), T can immediately be expressed in terms of s4 and
(1, if so desired.

As noted above, superfluous coordinates may be eliminated from T by means
of the equations of constraint. This is an important matter in future developments.

(4) Kinetic energy expressed in non-inertial coordinates.
Basically, kinetic energy is always reckoned relative to an inertial frame since

the velocities v; in equation (2.37) must be measured relative to inertial axes.
However, as previously explained, expressions for v; in inertial coordinates can,
by means of proper transformation equations, be written in terms of non-inertial
coordinates.
(a) Consider the system in Fig. 2-8, Page 13. For vertical motion only, T =

2m1 y1 + 2m2 y2 since y, and yz are each inertial. Notice that T is not equal
to 2m, y1 + 2m2 y3, since y3 is non-inertial. However, T can be expressed in
terms of yi and y3 as follows. Since y3 = y1 - y2, y3 = y1 - y2 and thus

T = 2m1 yl + 2m2(yl - y3)2
Or again, eliminating -1 and y2 from our original expression, T in terms

of y and q, (y is inertial, qi is non-inertial) becomes
T (mI +m2\ 2+ m1 (mi +m2 2 (244)

2 ,1 2 m2 ) qi

MI + m2 .2 1 m1m2 2In terms of y and y3, T = ( 2 ) y + 2 (m, + m2) y3

(b) Consider the first example discussed under Section 2.7(3), Page 21. Applying
equations (2.29) we see that, if p represents a particle, its kinetic energy is

T = 2m [(vi + ax t + x2)2 + (vy + a, t + j2)2 + (vz + at + 22)2 (2.45)

where v, ax, etc., are constants. Note that this expression contains time
explicitly.

(c) If the origin 0, Fig. 2-1, Page 10, has an initial velocity (vi, v,) and constant
acceleration (ax, a,) while the axes rotate with constant angular velocity t),
from equations (2.14) we have

xl = v., + ax t+ x2 COs Wt - x2w sin a,t - y2 sin &,t - y2 W cos wt

Putting this, together with the corresponding, expression for y,, into T =
2m(xi + yi) we have T expressed as a function of x2, y2, x2, y2, t.

(d) Referring to Fig. 2-21, Page 22, and equation (2.31) it is seen that the kinetic
energy of the particle free. to slide in contact with the second rotating table
is given by

(2.46)T = 2m[s2ii + 2s8ir sin (02 + a) + r2R2 + r2 + cos (02 + a)]

It should be noted that (2.46) is true regardless of how 01 and 02 may be
assumed to vary with time. For the case of constant angular velocities, we
merely replace 6, and 82 by the constants w, and w2. But if it is assumed, for
example, that D, and D2 are made to oscillate such that 0, = A sin at, 02 =
B sin bt, then 8i and 82 must be replaced by Aa cos at and Bb cos bt respec-
tively. In this case T will contain t explicitly.
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2.10 "Center of Mass" Theorem for Kinetic Energy.
Consider a system of p particles moving relative to an inertial X, Y, Z frame. Imagine

an X', Y', Z' frame whose origin is located at and moves with the center of mass of the
particles while X', Y', Z' remain always parallel to X, Y, Z respectively. Transformation
equations relating the coordinates of a particle in one system to those of the second are
x = x + x', y = i + y', z = z + z' where z are coordinates of the origin of the moving
frame. Hence

=
1

T mi(x?+y2+zi) = 2a mi[(x+xi)2+(y+y,)2+(z+z;)2]
Expanding, writing M = Ymi and noting from the definition of center of mass I..mixi = 0
that Ymixi = 0, etc., the above reduces to

P

T 2 (x2 + Y2 + z2) + mi[(x2)2 + (y2)2 + (z)2] (2.47)

Four important statements should be made regarding (2.47):
(a) It demonstrates that the kinetic energy of a system of particles is equal to that of

a single "particle" of mass M = Imi (total mass of system) located at and moving
with the center of mass, plus the kinetic energy of each particle figured relative to
the X', Y1, Z' frame as if these axes were inertial.

(b) The above statement is true whether the particles are free or constrained in any
manner. Indeed it even applies to a rigid body. In this case, motion relative to the
moving frame can only take the form of a rotation.

(c)' If we think of the particles of the system divided into two or more groups, it is clear
that the theorem may be applied to each group individually.

(d) Although (2.47) is written in rectangular coordinates, one can of course express this
form of T in any other convenient coordinates by means of proper transformation
equations.

2.11 A General Expression for the Kinetic Energy of p Particles.
We shall now derive a very general expression for the kinetic energy of a system of p

particles having n degrees of freedom and 3p - n degrees of constraint. It will be assumed
that some or all constraints may be moving and that any or all of the generalized co-
ordinates are non-inertial. This expression will be found very useful in the chapters
which follow.
(1) As an introductory step let us consider the kinetic energy of a single particle having

three degrees of freedom (no constraints). Assuming that any or all of the generalized
coordinates ql, q2, q3 are moving, transformation equations may be indicated as

x = x(qi, q2, q3, t) ; y = y(qi, q2, q3, t) ; z = z(ql, q2, q3, t)

By differentiation, x = aql qi + q2 q2 + aq3 q3 + at , etc.

For convenience we write
x = algl +a2g2+a3g3 +a

Likewise, y = b1g1 + b2g2 + b3g3 + /3, z = Ci ql + C2 q2 + C3 q3 + 'Y

where, for example, b3 = ay/aq3, etc.
Now squaring these expressions and eliminating x2, y2, z2 from T = m(2 z2),

we finally get

T = 2m[(ai + bi + ci)gi + (a2 + b2 + cz)g2 + (a3 + b3 + C3)g3

+ 2(a, a2 + b1b2 + C1C2)gi42 + 2(a1a3 + blb3 + C1 C3)4143

+ 2(a2a3 + b2b3 + C2C3)g2g3- + 2(aia + blg + ci'Y)gl

2(a2a + b2p + C2-Y)42 + 2(a3a + b3R + C3y)g3 + a2 + R2 + 72]
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qk qd

Note that T contains four types of terms: those containing 4T, q,.qs and qr alone
as well as those which contain no coordinate velocities. However, each term
throughout is dimensionally JMv21.

The following example will give more meaning to the above expression. Referring
to Fig. 2-5, Page 12, and assuming that the origin of the Q1, Q2 axes have a constant
linear acceleration a (no rotation), it is seen that

x = xo + vxt + ' axt2 + q1 cosa + q2 cos,8
y = yo + vyt + 2ayt2 + ql sin a + q2 Slri (2.49)

tf3

Differentiating and eliminating x2 and y2 from Im(x2 + j2), we have
T = m{42 + 42 + 2gIg2 cos(/3-a) + 2[(vx+axt) cosa + (vy+ayt) sina]4,

+ 2[(vx + axt) cos f + (vy + at) sin f3]g2 + 2(vxax + vyay)t (2.50)
+ (ax + 4)t' + vx2 + vY}

Inspection will show that (2.50) has just the form of (2.48). In fact, of course, all
terms in (2.50) may be obtained from (2.48) by evaluating the a's, b's, c's, etc., from
equations (2.49).

Relation (2.50) presents a good opportunity to emphasize a basic point. In spite

of its complexity, the right side of this relation is merely VAS s

ot) ' where As is a

displacement of p, relative to the inertial X, Y frame.

(2) Now considering the more general case mentioned at the beginning of this section,
transformation equations may be written as

xi = xi (qi, q2, ... , qn, t), etc. (2.51)

where i runs from 1 to p and where it is assumed that superfluous coordinates have
been eliminated by equations of constraint. Differentiating these relations, we have

n n n
xi = I aikgk + ai, yi = bikgk + /3i, zi = Cikgk + y

k=1 k=1 k=1. '

where, for example, aik = axilagk, ai = axi/at, etc. Note that aik aki, etc.

By a straightforward process of squaring it may be shown that
n n n

aik ait qk ql + 2ai 1, aikgk + a2
k=11=1 k=1

Similar relations are obtained for yki and i2. Eliminating x2, y2,2
1 PT = A mi (x2 y2 + z2)

and collecting terms,

T kI 1I mi (aik aid + bik bit + Cik Cil)
i=1

from

27

(2.52)

(2.53)

J (2.54)
+ n P 1 y /I [ mi(aiaik + f3ibik + yiCik)] qk + mi(a2+ N2 + y2)

k=1 i=1 1=1

For brevity, the above may be written as
n n

T = I Akt 4k Qd + Bk qk + C (2.55)
k.d, k=1

where the meanings of Akd, Bk and C are obvious. Note that if t does not enter equa-
tions (2.51) (no moving constraints or reference frames), ai = 8i = yi = 0. Hence
(2.55) reduces to nT = Aklgkgl (2.56)

kA
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It should be understood that (2.51). (2.55) and (2.56) are not mere academic rela-
tions which must forever remain in symbolic form. As shown by the example above,
relations (2.51) (transformation equations with superfluous coordinates removed) can
usually be written in explicit form for any particular problem. Hence expressions for
a;k, bik, etc., follow at once by partial differentiation. These quantities are, in general,
algebraic relations involving the coordinates and possibly time. Thus we obtain ex-
pressions .for AM, Bk and C and finally T. It should be noted that AM, Bk and C are
not, in general, constants but functions of qi, q2, . . ., q,, and t. They are not functions
of the q's. Note that AM = Alk.

An expression for the kinetic energy of a rigid body, more useful than (2.55),
is derived in Chapter 8. See equation (8.10), Page 148.

2.12 Acceleration Defined and Illustrated.
Lagrangian equations, without the necessity of giving any special consideration to the

matter, automatically take complete account of all accelerations. (See Section 3.9, Page 48,
and Section 4.8, Page 69.)

Nevertheless, due to the importance of this quantity in the basic principles and develop-
ments of dynamics, a brief review of its definition and the procedures for setting up
general expressions will be given here.

(1) General considerations.
Imagine a point (or a particle) moving in space along the path AB, as shown

in Fig. 2-24 below. At pz its velocity is v,. After an interval of time At it has
arrived at p2 where the velocity is now V2. In general, v2 has neither the same
direction nor magnitude as vi. Thus the change, Av, represents a change not only
in magnitude but direction as well. With this in mind, the acceleration of the
moving point at p, is defined by

a = Otl for At -> 0, or

Fig. 2-24 -

dv
a dt

(2.57)

It is clear that a is a vector quantity which has the direction of ova for At - 0.
This definition brings out the important fact that the acceleration vector does not
in general point in the direction of motion. (Note that the velocity vector v = ds/dt,
defined in Section 2.7, Page 19, is always in the "direction of the path".)

Acceleration as defined by (2.57) is without reference to any particular co-
ordinate system. But since the rectangular components of Av are Ax, c1y, ®z, its
magnitude is given by (Av)2 = (Ax)2 + (Aj)2 + (AZ)2. Dividing by (At)2 and passing
to the limit the magnitude of a is given by

2+ 52 +. j2 (2.58)

Clearly its direction is determined by the direction cosines x/a, y/a, z/a.
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(2) Acceleration expressed in generalized coordinates.
The magnitude of a as given by (2.58) as well as its direction cosines can be ex-

pressed in any other coordinates by means, of transformation equations. Examples:

(a) Applying relations (2.6), Page 11, x, y, z and hence finally (2.58.) can be written
in terms of spherical coordinates.

(b) Using the last two equations of (2.13), Page 14, and (2.58), the acceleration
of m2, Fig. 2-10, can be expressed in terms of r,, r2, 0, ¢ and their time
derivatives.

(c) By means of (2.32) and (2.58) one can easily obtain a relation for the accelera-
tion of the particle, shown in Fig. 2-21, Page 22, relative to the stationary
axes X, Y, but expressed in terms of the moving coordinates x2, y2, their time
derivatives and the time. (Time enters explicitly when 0, and 02 are assumed
to change in some known manner with time.)

(3) Components of total acceleration along any line.
The component a' of acceleration along any line having direction cosines 1, m, n

is given by (see equation 2.33)
a' = lx+my+nz (2.59)

which can, of course, be expressed in other coordinates.
(a) Consider the expressions for (a,, a9, ad,), components of a along coordinate lines

in the spherical system; that is, in the directions of line elements indicated by
®r, r ©0, r sin 0 A0 of Fig. 2-20, Page 20. We shall look at aq in detail.
Cosines of the angles which r sin 0 A0 makes with the X, Y, Z axes are - sin
cos 0, 0 respectively. Hence a,, x sin 0 + y cos 0. Eliminating x, y by
means of (2.6), we finally get after considerable tedious work the following
expression (and similarly those for a,. and ao),

a,

a,.

ae

r sin 0 + 2r4 sin 0 + cos 0
r - rd2 r¢2 sine 0
r 8 + 2r® - sin 0 cos 0

(2.60)

(b) Referring to Fig. 2-21, Page 22, let us determine the component of the total
acceleration of m (relative to the fixed axes X,, Y,) along the radius r. Here
a, = 1 x, + m y, where 1, m are direction cosines of r relative to the stationary
axes; that is, 1 = cos /3, m = sin (3 (see the last example given under Section
2.7(3)). Applying

x, = s cos 0, + r cos,3, y, = s sin 0, + r sin a
we obtain

a, + d2 + a)2 + S0, Sin (02 + a) - sdi cos (02 + a) (2.61)

When the manner in which the tables are made to rotate is specified, ar con-
tains t explicitly.

As shown in Section 3.9, Chapter 3, these and other expressions for ac-
celeration can easily and quickly be determined from Lagrange's equations.

2.13 "Virtual Displacements" and "Virtual Work."
Virtual displacements and virtual work play a very important part, as a means to an

end, in the basic developments of analytical dynamics. But after serving a useful purpose
they fade from the picture.
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(1) Real and Virtual Displacements; Virtual Work.
For simplicity consider a particle of mass m constrained to move in contact with

a rough surface which is itself in motion. Acted upon by a force F (F = vector sum
of an applied force, a frictional force, and a force of constraint*), m moves along some
definite path (determined by Newton's laws) in space and at the same time traces a
line on the surface. During any given interval of time dt, m undergoes a specific
displacement ds (dx, dy, dz) measured say relative to stationary axes. Here ds is
referred to as an "actual" or "real" displacement.

Consider now any arbitrary infinitesimal displacement Ss (Sx, 8y, 8z) not neces-
sarily along the above mentioned path. In this case 8s is referred to as a virtual
displacement. For convenience in what follows, we mention three classes of such
displacements: (a) Ss in any direction in space, completely disregarding the surface
(this may require a slight distortion of the constraint); (b) 8s in any direction on the
moving surface and (c) in any direction on the surface now regarded as stationary.

For a virtual displacement of any type the "virtual work" done by F is given by

8 W = FSscos(F,Ss) = Fx8x + Fy8y + F_.8z

and considering a system of p particles acted on by forces F1, F2, ..., Fp and given
displacements SsI, 8s2, ... , 8sp, the total virtual work is

p
8W = (Fxi Sxi + Fbi Syi + F=i Szi) (2.62)

i-1

(2) Manner in which expressions for 8W become useful.
The surprising importance of (2.62) stems eventually from the following con-

siderations.
(a) Making use of xi = xi (q,, q2 ,.. . , q3p, t), etc., (in which there is the maximum

axiof 3p coordinates), Sxi =
axi
aql Sqi +

axi
aq2 8q2 + + ag3p 8g3p +

axi
at St, etc., for

Syi and Szi. For these displacements, which are not necessarily in conformity
with constraints, 8W clearly contains work done by forces of constraint.

(b) Employing relations (2.21), (see Section 2.6, Page 19),

Sxi aql Sq1 +
aq2

Sq2 + ... + qn $qn + ata S$ , etc.

Such displacements do not violate constraints, but during the elapsed time 8t
moving frames and moving constraints have changed position slightly. Hence,
as examples will show, 8W again contains work done by forces of constraint.

(c) However, again determining displacements from (2.21) but holding time fixed,
(that is, including in Sxi, Syi, Szi changes in qi, q2, ..., q, only and not the terms

at 8t,
aatx St, at St which represent shifts in the positions of moving frames

and constraints),

Sxi = aqr Sq, + aq2 8q2 + ... + axiaqn
Sqn, etc. (2.63)

*Tensions in inextensible strings, belts or chain drives; compressions or tensions in connecting rods
or supports; reactive forces exerted by smooth wires, rods or guides of any type along which masses may
slide; reactive forces between smooth gear teeth, or forces exerted by smooth surfaces with which parts
of the system are constrained to move in contact will here be referred to as "forces of constraint". It
should be clearly understood that frictional forces are not included in this class. Frictional forces usually
depend on forces of constraint and in general they do work (dissipated as heat).
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These displacements are in conformity with constraints, and the work done
by the forces of constraint adds up to zero. In effect, forces of constraint have
been eliminated from (2.62).

While the truth of this statement is easily demonstrated with simple examples
(Section 2.14), a general proof is usually not attempted. It may be regarded as a
basic postulate.

Substituting (2.63) into (2.62) and collecting terms,

SW = ( Fxiai + Fyiayl + Fxiagi &q, +

ate a7

q -
8qn (2.64)P'xi aqn + Fbiaq- + Fzi+ Z+ ( a

Moreover, since the q's are independent, it is permissible to set all Sq's equal
to zero except one, say Sqr. Hence (2.64) becomes

P axi
SWQ,. Fxj + Fytiaye

+ Fzi aqr Sqr (2.65)
i=1 Sqr qr

This likewise contains no forces of constraint even though 8s1, Ss2, ..., 8sp are
now restricted to values such that.qr only is varied. As illustrated below, in finding
an explicit expression for 8W9r, forces of constraint (which originally were assumed
to be a part of F,ri, Fyi, Fzi) may be completely ignored.

This method of eliminating forces of constraint is one of the great achievements
of the Lagrangian method.

The above considerations are of vital importance in D'Alembert's principle.
The manner in which they become an important part of an actual down-to-earth
method of setting up equations of motion for almost any dynamical system, will
be made clear in Chapters 3 and 4.

2.14 Examples Illustrating Statements (a), (b), (c) Above.
(i) Consider the simple arrangement shown in

Fig. 2-25. The bead of mass m can slide along y
the smooth rod OA which is made to rotate /
about 0 in the XY plane with constant angu- c / (x + ax t allowed
lar velocity w. A force f, due to the spring, the f3 Y + ay to vary
force of constraint f, (reactive force of the rod)
and applied force f, are acting on m. Let us

consider three cases: x+ax tnot
1. Imagine m given a perfectly arbitrary dis- / - y + ay varied

placement Ss as if it were free. (This could x _a.rr ,. wni l ti thdi t d bit Thnvo ngve s or e ro a .) us,
since in general f f2, f, would each have a
component along Ss, each force will do work
in accord with statement (a). E 0n' X

2. Considering m confined to the rod we write 0
x = r cos wt, y = r sin wt. Hence for an
arbitrary displacement in which the bead
remains on the rod and time varies (account
is taken of the rod's motion),

Fig. 2-25

Sx = Sr cos wt - rw St sin wt, Sy = Sr sin wt + rw St cos wt

Here Ss = ac, Fig. 2-25. The constraint is not violated but since each force has a component

along ac, each does work in accord with (b).

3. Suppose we neglect the rotation of the rod (in effect t is held , fixed). Ss has components
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8x = Sr cos wt, Sy = Sr sin wt. This displacement is along the rod: Ss = Sr = ab. Clearly f, and
f3 do work but f2 (assumed normal to the rod) does no work, in accord with (e).

(ii) Consider the system shown in Fig. 2-9, Page 13. Here T1, T2, etc., refer to tensions in the.inextensible
cords. We shall assume that each pulley has mass and thus 71 1-31 72 # T4, T2 + T4 T3. Now for a
general virtual displacement of each mass vertically (assuming strings always under tension), (2.62)
becomes

sW = (mig - TS)881 + (mig + T2 + T4 - 73)883

+ (m2g - 72)1582 + (m4g - 74)884 + (T3 - Tl)Rl Sel + (T4 - T2)R2 862 (2.66)

where e1 and 02 are angular displacements of the upper and lower pulleys respectively and ma is
regarded as the entire mass of the lower pulley.

Regarding the above displacements as arbitrary (not in conformity with constraints), it is clear
that work done by the forces of constraints (tensions) will not in general be zero.

Taking account of constraints by the relations

Ssa = -8s1, Sy4 = 2 Ss1 - Sy2, R1881 = -881, R2 8e2 = Sy2 - 881, Sy4 = -884, S82 = -Sy2

equation (2.66) becomes, after eliminating 88a, 884, 581, 802,

or

SW = (41g - T1 -'3g - 74 - 7-2 + 7-3 + 274 - 2m4g - 73 + 71 - 7-4 +
+ (72 - m2g - 7-4 + m4g + T4 - T2)Sy2

8W = (mig - mig - 2m4g)8s1 + (m4g - m2g)Sy2

(2.67)

(2.68)

Equations (2.67) or (2.68) correspond to (2.64). It is clear that Ss, and 8y2 are in conformity with
constraints and that the work done by the tensions adds up to zero. Moreover, it is seen that, for a
variation of either si or y2 alone, the work of the tensions is zero, which is in accord with the state-
ment following equation (2.65).

It is important to note that we could, for example, just as well have regarded y3 and qi as the
independent coordinates of the system. In this case it is again easily shown that, for a variation of
either y3 or q1 alone, the work done by the tensions is zero.

(iii) Suppose the support AB, shown in Fig. 2-9, is made to move vertically in some known manner with
time; for example, h = ho + C sin wt. Then from relations (2.12), y1 = C sin wt + s4 + q1 + Cl,
y2 = C sin wt - 84 - 2q1 + C2, etc., where C1 and C2 are constants. Now the reader can easily show
that for a variation of either s4 or q1, holding t fixed, the work done by the tensions adds up to zero;
this is also in accord with the last part of statement (c).

Summary and Remarks

1. Coordinate Systems and Transformation Equations (Section 2.2)
One of the first steps in the treatment of any problem is that of selecting ap-

propriate coordinates. Transformation equations play an important part in expressing
kinetic energy, acceleration and many other quantities .in terms of the chosen coordi-
nates. Many theoretical developments depend on the use of transformation equations.

2. Generalized Coordinates and Degrees of Freedom (Section 2.3)
"Generalized coordinate" is a convenient term for any coordinate whatever. The

use of q1, q2, .. . , q, to designate generalized coordinates is almost universal and has
decided advantages.

Before actual work can begin on a problem the number of "degrees of freedom"
of the system must be known. This is determined by inspection.
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3. Degrees of Constraint, Equations of Constraint, Superfluous Coordinates
(Sections 2.4, 2.5, 2.6)

An understanding of the physics and geometry of constraints and how each "degree
of constraint" can be expressed by a corresponding "equation of constraint" is im-
perative.

Through the use of these equations, "superfluous coordinates" can be eliminated
from transformation equations, kinetic energy, potential energy and other quantities.

4. Velocity in Generalized Coordinates (Section 2.7)
The velocity of a particle can be expressed in terms of any convenient generalized

coordinates and their time derivatives. Frequently t enters. Without a knowledge
of how this is done, further steps can not be taken. Hence the importance of Section 2.7.

5. Work and Kinetic Energy (Sections 2.8, 2.9, 2.10, 2.11)
An understanding of the correct definitions of work and kinetic energy is imperative.
It is extremely important to realize that kinetic energy must be reckoned relative

to inertial space. We always begin by writing T in inertial coordinates. This can
then, if so desired, be written in terms of any other coordinates (inertial, non-inertial,
or mixed) by means of proper transformation equations.

6. Acceleration (Section 2.12)
The treatment here given is for the purpose of making clear the basic definition

of acceleration and demonstrating how its component along any line can be expressed
in generalized coordinates. However, in spite of the basic part which acceleration
plays in all equations of motion, the above technique is not of vital concern since, as
shown in Section 3.10, Page 50, components of acceleration are automatically taken
care of by the Lagrangian equations.

7. Virtual Displacements and Virtual Work (Sections 2.13, 2.14)
The general methods employed in this book (which, for analytical dynamics,

have tremendous advantages over conventional vector methods) depend on the concepts
and use of virtual displacements and virtual work. Many important developments
which follow make use of the treatment given above.
Final word: As will be evident in Chapters 3 and 4, items 1 to 7 above (excepting 6)

constitute the necessary background material for an understanding of Lagrange's equa-
tions and indeed are just the preliminary steps which must be followed in applying these
equations.

Problems

Answers to the following problems are given on Page 350.

2.1. Show that the following are transformation equations relating the usual plane polar coordinates
r, o to the qi, q2 coordinates shown in Fig. 2-5, Page 12:

r cos e = qi cos a + q2 cog (3
r sin o = qi sin a + q2 sin /3

2.2. Write out equations relating the r2, a coordinates, Fig. 2-6, Page 12, to the A, q coordinates (A is
the shaded area and q = sine).
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2.3. The family of parabolic lines, shown in Fig. 2-26, is given by y = bx2 where b is constant for any
one line. For specific values of x and b, corresponding values of y can be found. Hence in the
XY plane, x and b may be regarded as coordinates.

(a) Show that in these coordinates, T = 4m[x2 + (bx2 + 2bxx)2].
(b) Show that T may be expressed in b, a coordinates, where a is the usual angle in polar coordinates

(r, e), by eliminating r and r from T = 2m(r2 + r'b2) with the relation r = (sin e)/(b cos' B).

Fig. 2-26

2.4. (a) Write out equations relating coordinates y,, y2 to y, q,, Fig. 2-8, Page 13.
(b) Repeat for y,, y2 and y, y3.
Are q, and y3 inertial?

2.5. The support on which D1, Fig. 2-21, Page 22, is mounted is moved along the X, axis with constant
acceleration a,. Write transformation equations relating Si, y, and x2; y2. See relations (2.82).

2.6. Referring to Fig. 2-13, Page 16, show that the rectangular coordinates x, y, z of 4n are related to
the e, 0, a coordinates by

x = (R sin e - r cos a cos e) cos 0 + r sina sin 0
y = (R sin e - r cos a cos e) sin o - r sin a cos ,

z = R cos a+ r cos a sin 9
where R = Oa.

2.7. A railroad car is moving around a circular track of radius R with constant tangential acceleration
a. Write out transformation equations relating a rectangular system of coordinates attached to
the earth (origin at center of circle, Z, axis vertical) to a rectangular system attached to the car
with Z2 vertical and Y2 tangent to the circle, pointing in the direction of motion. X2 is along a
continuation of R. Write the Newtonian equations of motion of a particle relative to X2, Y2, Z2.

2.8. Relating Si, y,, z, of Problem 2.7 to spherical coordinates r, 9, ¢ attached to the car with origin at
the origin of X2, Y2, Z2, show that

x, = (R + r sin a cos 0) cos R - r sin 9 sin 0 sin /3
Y, = (R + r sin a cos o) sin /3 + r sin 9 sin ¢ cos /3
Si = r cos 8

2.9. The origin of a set of rectangular axes is attached to the center of the earth, but the directions
of the axes are fixed in space. Another rectangular set is fixed to the surface of the earth as shown
in Fig. 14-2, Page 286. Write out transformation equations relating the two coordinate systems.
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2.10. (a) A rigid wire of any known shape is fastened to disk D2, Fig. 2-21. A bead is allowed to slide
along the wire. Assuming 62 = rat t, 6, = w, t, how many degrees of freedom has the system?

(b) A flat board is fastened to a rigid body by means of a broad door hinge. This arrangement is
suspended in any manner by springs. How many degrees of freedom has the system?

2.11. (a) Two rigid bodies, fastened together at one point by means of a ball joint, are free to move in
space. How many degrees of freedom has the system?

(b) If one of the above masses is now fastened to a rigid support by another ball joint, how many
degrees of freedom has the system?

2.12. (a) A "simple pendulum" consists of a rigid body suspended from an inextensible string. Motion
is not confined to a plane. Determine the number of degrees of freedom.

(b) Regarding m, and m2, shown in Fig. 2-10, Page 14, as rigid bodies instead of "particles", how
many degrees of freedom has the system? ri and r2 are constant and motion is not confined
to a plane.

2.13. A uniform slender rod of mass M and length 1 slides with its ends in contact with the X and Y axes.
State the number of degrees of freedom, write equations of constraint and give an expression for
kinetic energy, having eliminated all superfluous coordinates.

2.14. Locating point p, shown in Fig. 2-1, Page 10, with plane polar coordinates (r, a) where r = Op
and a is the angle r makes with X2, show that

x1 = xo + r cos (a + 6), yl = yo + r sin (a + 6)

Assuming that the X2, Y2 frame is in motion, show that the velocity, v, of p relative to the
X,, Y1 frame but expressed in moving coordinates is given by

v2 = xo + yo + r2 + r2(a + B)2 + 2r[yo sin (a + 6) + xo cos (a + 6)]
+ 2r(a + 9) [yo cos (a + 6) - xo sin (a + 6)]

2.15. Referring to Problem 2.14, show that acceleration components of p, relative to the XI, Y1 frame,
in the directions of Ar and r Aa, are respectively

a, = xo cos (a + 6) + yo sin (a + 6) + r - r(« + 9)2
as = yo cos (a + 6) - xo sin (a +,9) + 2r(a + 6) + r(a + e )

2.16. Two particles m, and m2 fastened to the ends
of a light rigid rod of length 1 are allowed to
move in a plane. Determine the number of
degrees of freedom. Write out equations of
constraint. Write an expression for the total
kinetic energy of the masses in terms of
r, 6, o, where r is the distance from the origin
to mi, a is the angle between the X axis
and r, and rp tkie angle between the X axis
and the rod, eliminating all but the necessary
coordinates. See equations (2.26).

Write T for the above using rectangular
coordinates of the center of mass and 0.
See equation (2.47).

2.17. The uniform slender rods, Fig. 2-27, having
masses MI, M2, Mo and moments of inertia
11,12,13 about normal axes through the cen-
ters of mass, are hinged as shown. Centers
of mass are indicated at points Pl, P2, P3.
Motion is confined to the XY plane. Write
out T in terms of the coordinates indicated.
Write out equations by means of which super-
fluous coordinates may be eliminated from T.
How many superfluous coordinates are there?
Do springs S1 and S2 affect the degrees of
freedom of the system?

Y

Fig. 2-27

X
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2.18. Particles of mass m, and ins, shown in Fig. 2-28 below, are fastened to the ends of a light rod
having a length 1. A -bead of mass ms is free to slide along the rod between m, and m3. Point p
is the center of mass of m, and m3, not including m2. I is the moment of inertia of the m,, m3
rod arrangement about an axis perpendicular to the rod and passing through p. All motion is
considered in a plane.
(a) Write equations giving the position of m2 in terms of x, y, s, e.
(b) Write out the kinetic energy of the system in coordinates x, y, o, s.

2.19. Assuming that m, and m2, shown in Fig. 2-9, Page 13, are monkeys climbing up the ropes, determine
the degrees of freedom of the system. Write out an expression for T, neglecting masses of
monkeys' arms. 1,, 12 are moments of inertia of D,, D2 respectively.

Fig. 2-28 Fig. 2-29

2.20. A rigid parabolic wire having equation z = are is fastened to the vertical shaft of Fig. 2-29 above.
A bead of mass m is free to slide along the wire. (a) Assuming the vertical shaft, which together
with the wire has a moment of inertia I, is free to rotate as indicated, write out an expression
for T for the system. (b) Now assuming the shaft is. driven by a motor at a constant angular
velocity e = w, write out T.

2.21. Set up an expression for the kinetic energy of the system shown in Fig. 2-15, Page 16, in terms
of the s distances. Which of these coordinates are non-inertial?

2.22. Write an expression for the kinetic energy of the three masses, shown in Fig. 2-30 below, using the
three coordinates y,, y2, y3 and assuming vertical motion only. Would the expression for T be
altered if the springs were removed? y, is the distance from the X axis to the center of mass of
the system.

Fig. 2-30 Fig. 2-31
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2.23. Masses an, and m2 are suspended by inextensible strings from the ends of the bar B, Fig. 2-31 above.
The bar is free to rotate about a horizontal axis as shown. Its moment of inertia about this axis
is I. Assuming all motion is confined to the plane of the paper, determine the degrees of freedom
of the system and write an expression for T.

2.24. The entire framework in which m,, shown in Fig. 2-14, Page 16, slides is made to move vertically
upward with a constant acceleration a. Assuming that m2 swings in a plane with r constant,
show that

T = z[m2r2e2 + (m, + m2);2 - 2m2rei sin B + 2m2r9(vo + at) sin B
- 2(m, + m2) y (V0 + at) + (m, + m2)(vo + at)']

where vo is the vertical velocity of the framework at t = 0. Compare the form of this expression
for T with that of equation (2.48). Are coordinates y and a inertial?

2.25. A pendulum bob is suspended by a coil spring from the ceiling of a railway car which is moving
with constant angular velocity around a circular track of radius R. The bob is allowed to move in a
vertical plane which makes an angle a with R. Show that the kinetic energy of the bob is given by

T = Im(x2 + y2 + z2)

where x = R cos wt + r sin a cos (wt + a), y = R sin wt + r sine sin (wt + a), z = C - r cos 8.

The origin of the rectangular system is taken at the center of the circle with Z vertical. r is
the length of the pendulum, to be regarded as variable, and a is the angle made by r with a vertical
line through the point of support.

2.26. The disk D, shown in Fig. 2-32 below, is free to rotate with angular velocity about the horizontal
axis op. 0 is measured from the line ab which remains parallel to the XY plane. The entire
system is free to rotate about the vertical axis. A particle of mass m is fastened to the disk as
indicated. Show that its kinetic energy is given by

T = 2Rry sin 0 + r2¢2 cost d)

Show by integration that the kinetic energy of the thin uniform disk is
T = J(MR2 + I,),p2 + ?I22

where M is the total mass of the disk, 1, its moment of inertia about a diametrical line, and Is that
about the horizontal axis on which it is supported.

Fig. 2-32
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2.27. The following problem is for the purpose of demonstrating that, even in the case of simple systems,
expressions for T and equations of constraint may become somewhat involved. As the uniform
disk (mass M, radius R), shown in Fig. 2-33 below, rolls with angular velocity 92 along the X axis,
the slender rod (mass n, length 21) remains in contact with it without slipping. At the same time
the lower end of the rod slides in contact with the X axis.

For the limited range over which the above conditions can hold, write out an expression for T
in terms of 91, e2, x,, y,, xz and their time derivatives. How many superfluous coordinates are in-
volved? Show that the equations of constraint are

(1) R + R cos e, = [L - R(e, + 62 - 091)] sin o,
(2) x2 = Re2 + ox2 (3) y, _' l sin e,

(4) xi + [L - l - R(e, + ez - oe,)] cos 61 + R sin 9, = xi
where obi and oxz are values of e, and x, when point p is in contact at b.

Can T be expressed in terms of any one of the above coordinates? Try X2, .Nz. Write T in terms
of e,, e,.

Y
For point p in contact with Point p initially in contact
disk at b, write eI = oe,, the $ with disk. Hence the length
initial angular position of bar.

p
/ g b ab = 8 = L - (l + l,).

Fig. 2-33

2.28. Referring to Fig. 2-11, Page 15, assume the smooth rod is rotating in a horizontal plane, driven
by a motor. Of course, the bead will eventually fly off the end of the rod with considerable kinetic
energy.

The reactive force between rod and bead is normal to the rod. Is it correct to conclude that,
therefore, the reactive force does no work on m? Explain how the rod imparts energy to in.

2.29. Assume the upper pulley in Fig. 2-9, Page 13, is supported by a coil spring. The system now, of
course, has three degrees of freedom. Imagining a general displacement of the entire system,
write out an expression for SW regarding (for the moment) each rotation and vertical displacement
as independent of every other. Now choosing y,, qz, y4 as the independent coordinates of the system,
show (following the steps outlined in Section 14) that in each of the expressions SWY1, SWg2, SWr4,
the work done by the tensions in the ropes adds up to zero provided displacements are in conformity
with constraints.

2.30. Masses m, and mz, shown in Fig. 2-10, Page 14, are given arbitrary displacements. Applying
(2.62) show that for r, and r2 constants,

SW = [(r2 sin q, - r1 sin S)r, cos e + (r1 COS 6 - r2 cos 0 - m,g) r1 sin e
- r2r, sin 0 cos 6 + (r2 cos 0 - m2g)r1 sin o]Se

+ [(r2 cos 0 - m2g)r2 sin o - r2r2 sin 0 cos O]SO

= -(m, + mz) gr, sine Se - m2gr2 sin 0 80

and hence that the tensions r, and ra in the supporting strings (forces of constraint) do no work
for a variation of either a or 0 alone.
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rti

3.1 Preliminary Considerations.
Any one of several formulations of the fundamental laws of dynamics may be taken

as the basis for the derivation of the Lagrangian equations. In this text we begin with
Newton's laws of motion, establish D'Alembert's equation, and from this finally derive
Lagrange's relations. This approach is followed because it leads directly from familiar
territory into unknown fields along a path in which it is easy to understand the physical
and mathematical significance of each step.

As a further means of eliminating distracting details, we shall here limit ourselves
to the derivation and consideration of Lagrange's equations for a single particle. The
more general treatment, applicable to a system of many particles, is given in Chapter 4.

3.2 Derivation of Lagrange's equations for a single particle. No moving coordinates
or moving constraints.

For the sake of clarity let us be rather specific by assuming that the motion of the
particle under consideration is confined to a smooth surface such as a plane or a sphere.
Hence it has two degrees of freedom, and there must be one equation of constraint. No
frictional force is acting.

Let F, with components Fx, Fy, Fzj represent the vector sum of all forces (externally
applied, those due to springs, gravity, the force of constraint, etc.) which may be acting
on the particle. Then, assuming constant mass m and that x, y, z are inertial coordinates,
we write the "free particle" Newtonian equations of motion:

Fx=mY, Fy=my, F,=mz (3.1)

These equations are correct, even though the motion is constrained, because F, F,,, F-. are
assumed to include whatever force of constraint may be acting.

At this point consider the work 8W done by F when it is imagined that the particle
undergoes (perhaps under the action of another force not included in F) a completely
arbitrary infinitesimal displacement Ss with components Sx, 8y, 8z. (This is referred to
as "virtual work" in accord with Section 2.13, Chapter 2.) Thus,

SW = F Ss cos (F, Ss) = Fx Sx + Fy By + F. Sz (3.2)

Note that, since F includes the force of constraint, (3.2) is correct even though Ss may not
be in conformity with the constraint. (That is, 8s could be in a direction such that the
surface with which m is in contact is slightly "distorted".) It should also be remembered
that the right side of (3.2), as shown in Section 2.8, Page 22, takes full account of the
fact that F and as may not be in the same direction.

39



40 LAGRANGE'S EQUATIONS OF MOTION FOR A SINGLE PARTICLE [CHAP. 3

Now multiplying equations (3.1) through by Sx, By, 8z respectively and adding*, we get

m(x Sx + y By + z 8z) Fx Sx + F, By + Fz Sz (3.3)

the right side of which is just the work SW done by F, and the left side may be interpreted
as a corresponding slight change in the kinetic energy of m. (See again Section 2.8,
Page 22.) We shall refer to this relation as "D'Alembert's equation".

Upon introducing generalized coordinates into (3.3) and carrying through a few mathe-
matical manipulations, Lagrange's equations (3.15) and (3.16) are obtained. Since we
assume the motion confined to a surface, two generalized coordinates q1, q2 are required.
Hence making use of proper transformation equations and one equation of constraint,
it is possible to express the x, y, z coordinates of m as functions of qi and q2, indicated
as follows (see Section 2.6, Page 19),

x = x(ql, q2), y = y(qi, q2), z = z(ql, q2) (3.4)

Specific example to show the meaning of (3.4):
Suppose the confining surface is a sphere of constant radius r = C. In spherical co-

ordinates, specific relations corresponding to (3.4) are then

x = C sin 0 cos 0, y = C sin 0 sin 4), z = C cos o (3.5)

Time does not enter (3.4) because we are here assuming
stationary constraint.

The virtual displacements 8x, 8y, 8z, will, for
from (3.4). That is,

Sx = q Sq, + aq2 Sq2,

reasons

BY = aqi Sq, + q Sq2,

stationary X, Y, Z

stated below, be

axes and a

determined

az az
aqi Sqi +

age
8q2

Substituting (3.6) into D'Alembert's equation, (3.3), and collecting terms,

SW -- m x ax + y ay + z az Sq, + m x ax
+ y ay + z az

Sg2( agi aqi aqi (11 aq2 aq2 aq2)

(Fx aq, + Fyq + F., aq, Sq, + ( Fxaq2 + Fb aq + F.,q2 Sq2

(3.7)

At this point the student should become fully aware of certain basic facts.

(a) Since (3.4) are the equations of the confining surface, (3.6) represent displacements
in conformity with the constraint. Hence 8W of (3.7) is for a displacement Ss in
conformity with the constraint (along the surface). Considering again the sphere
as a special case, Sx, Sy, Sz as determined from (3.5) are Sx = C cos B cos.(A 80 -
C sin 0 sin 0 84>, etc., which clearly represent a displacement on the sphere.

(b) Coordinates qi and q2 (9 and 0 in 3.5) are independently variable; that is, 8q, and 8q2
may each be given arbitrary small values without violating the constraint.

*Note regarding equation (3.3). Multiplying relations (3.1) through by a, b, c respectively and adding,
we get m(xa+yb+zc) Fsa+Fyb+F.c
which is a ,true relation regardless of the quantities a, b, c. (They may represent constants of any value,
displacements, velocities, or even functions of variables.) Hence, insofar as (3.3) is concerned, Sx, Sy, Sz
are completely arbitrary quantities. However, for our purpose, we shall regard them as components of 8s,
the infinitesimal virtual displacement of m. Moreover, in what follows, we shall regard them as in con-
formity with the constraint. (When so considered (3.3) is often referred to as "D'Alembert's Principle".)
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(c) As a result of (a) and (b) and the assumption that the constraint is smooth, the work
done by the force of constraint when either coordinate alone or both together are
varied, is zero. (See Section 2.13, Page 29.) For this reason the force of constraint
need no longer be regarded as a part of F.r, Fy, Fz. In other words, the force of con-
straint has been eliminated from the picture. This is a very important fact.
Now since ql and q2 are independently variable, let us fix our attention on 8 W91, the

3.7) then reduces towork done when only qi is allowed to vary (8q2 = 0). (

ay azax ?z
aql = + + Fc++ y ) 8ql (3.8)8W, 1 _ m (x (F* aqa aql l ql

At this point we shall make use of the following relations, proofs of which
below*. The reader need not, at the moment, be concerned with the proofs.

ax d ax d(lx)
x

_
aq, dt x

aql - x dtagl
ax

aqi

ax

aq1

ax _ ax

dt aql aq1

Inserting (3.10) and (3.11) into (3.9), we have

.. ax d ax ax
X aql d x

aql - x
aq1

and a little consideration shows that this may be written as
.. ax d a(x2/2)1 a(x2/2)(
X aql

=
dt a&1

JJ

-
aq1

(3.12)

(3.13)

Substituting (3.13) and exactly similar relations involving y and z into (3.8), it follows that

8Wg1

But 2m(x2 + .,.2 + z2)

d / a m(x2 + y2 + Z2) a m(x2 + y2 + z2)dtcagl 2 ) - aq1
2 aql

ax ay
Fx aql + Fy aq + F, aql aql

is the kinetic energy T of the particle. Hence we finally write
d
dt

- azaT = Fx
ax + Fy ay + F- -

aq, aq1 aq, aq,

(3.14)

(3.15)

*To prove relations (3.9), (3.10) and (3.11) we proceed as follows.
d (.ax\ ax d /ax\
dt \ aq,

! = x ag + x dt l aq I

which is (3.9). To obtain (3.10), it is seen that the time derivative of the first equation in (3.4) is
ax ar ax ax
aq q, + a x q2. Now differentiating this partially with respect to q,, we see that all = aq. To prove

9
(3.11) first note that since x = x(qi, q2), the partial derivative ax/aq, is in general a function of both
q, and q2, that is, ax/ft = o(q,, q2). Differentiating this with respect to time, we get

.d ax _ a ax a ax
dt aq, aq, aq, q' + aq2 aq2

q2

But from the above expression for x it follows that
ax a ax . a ax .
aq, = aq, (ft gl + aq, aq2 q2

Comparing the last two equations, it is seen that (3.11) is true.
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Starting with (3.7) and considering the work 8Wg2 associated with a variation in
alone, it follows in exactly the same manner that

d
dt a 2 - Fx

aq2
+ Fy aq + Fz aq2

q2

(3.16)

Equations (3.15) and (3.16) are the Lagrangian equations which we set out to derive.

As a matter of convenience, write

Fx ax + Fy ay + Fz az = Fqr
aqr aqr aqr (3.17)

where qr is any one of the coordinates appearing in T and Fr is referred to as a "generalized
force". Thus the Lagrangian equations take the compact form

d
{

aT aT -
Fqr (3.18)dt `aqr / aqr

As will be seer. in the next chapter, Lagrange's equations have exactly the same form for
a system of many particles.

For the case just considered (one particle having two degrees of freedom), there are
two Lagrangian equations. If we should assume three degrees of freedom (no constraints
on the particle), relations (3.4) would each contain qi, q2, q3 and finally three Lagrangian
equations would be obtained. In general, there are as many Lagrangian equations of
motion as there are degrees of freedom.

However, (and this is important both from the point of view of basic ideas as well as
certain applications) even though, in reality, the particle may have only two degrees of
freedom, three Lagrangian equations can still be written. Disregarding the constraint,
we write x = x(qi, q2, q8), etc. Now pretending that qi, q2, qs are each independently vari-
able and following exactly the procedure outlined above, a Lagrangian equation correspond-
ing to each of the th, ee coordinates is obtained. There is, however, this important

.consideration. The displacement 8s, corresponding to 8q1, 8q2, 8q3, is clearly not in con-
formity with the constraint. (In the special example we have carried along

Sx = Sr sin B cos 0 + r 88 cos 8 cos 0 - r 80 sin 0 sin ¢, etc.

which is not along the surface of the sphere since Sr is not assumed to be zero.) Hence
SW includes work done by the force of constraint (reaction between bead and surface),
and components of this force must be included in F, Fy, F.. The force of constraint is
not eliminated, With this in mind, the three equations are perfectly correct.

For obvious reasons, therefore, all superfluous coordinates are usually eliminated from
transformation equations and T. However, the above procedure of deliberately introducing
superfluous coordinates may be made the basis of a powerful method for finding forces
of constraint. See Chapter 12.

3.3 Synopsis of Important Details Regarding Lagrange's Equations.
(a) Differential equations of motion.

The differential equations of motion for any specific problem are, of course,
obtained by performing the operations indicated in (3.18). But for a system of
n degrees of freedom, only n coordinates (and their time derivatives) should appear
in T. Superfluous coordinates must be eliminated as per Section 2.6, Page 19.
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(b) The meaning of generalized forces.
The importance of a clear understanding of the simple physical meaning of

generalized forces [relation (3.17)] can hardly be overemphasized either from the
point of view of basic ideas or applications.

The expression 8 W = Fx ax + F, By + F., Sz is a perfectly general equation
for the element of work done by a force (components F, Fy, F.) for a completely
general displacement Ss (components Sx, By, Sz). But let us consider 8W when 8s
is in conformity with the constraint and such that only qi varies (Sq2 = 0). Such
a displacement is assured if Sx, By, Sz are obtained from (3.4), holding q2 constant;
that is,

Sx
_ ax __ aySqi,

Sz =
az

qlaq- By
aqi ai

Substituting in the equation above for 8W, we have S Wgl = Fx
ax
x + F, aq +

Fz agiJ Sqt which is clearly just Fgl Sqi. Hence a generalized force Fqr is a

quantity of such nature that the product Fgr 8qr is the work done by driving
forces (not including "inertial" forces or forces of constraint) when q, alone is
changed to the extent of + 8q,.

A generalized force is not always a force in the usual sense of the word. For
example, if q, is an angle 0, then Fe must be a torque in order that Fe S0 be work.
If q, is the area A, Fig. 2-6, Page 12, FA SA = SW and clearly FA must have the
dimensions of force divided by length.

(c) Technique of Obtaining Expressions for Generalized Forces.
Either of three methods may be followed.
Substituting known expressions for F.., F,, Fz together with expressions for

ay azIax

' aqr , aq, (obtained by differentiating 3.4) into (3.17) gives Far. Fx,Fy, Fz are

usually not constant. They may be functions of coordinates, time, velocity, etc.
In any case, expressions for these forces must be known from the nature of the
problem in hand. This method is straightforward but may be long and tedious.

A second method, and one which in many cases is easier and more appealing
from the point of view of what takes place physically, is as follows. Imagine one
of the coordinates, q, increased to the extent of + Sq,, all other coordinates which
appear in T held fixed. Now determine by any convenient manner the work SWgr
done by any and all driving forces (disregard forces of constraint). The following
relation is then solved for Fgr:

SWq,. = Fgr Sqr (3.19)

In the determination of SW,,, work is taken positive or negative depending on
whether the force or forces involved tend to increase or decrease q,.

If the particle has two or three degrees of freedom it is sometimes more con-
venient to assume displacements 8qt, 8q2, 8q3 simultaneously and write out the
corresponding total work, S Wtota,. It will take the form

8Wtotat = [....]Sqt + [ ...]Sq2 + [ ]$q3 (3.20)

where the brackets in each case are in the corresponding Fg.
Examples which follow will make clear this technique.

(d) Regarding inertial forces in Lagrange's equations.
The expression "inertial force", as here used, refers to (mass) x (acceleration).

Terms such as m Y, mrO2, 2mo)x, etc., are examples.
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A glance at the left side of (3.3) and succeeding equations through (3.18)

will show that inertial forces appear exclusively in t
aT Likewise it
aqT

is clear that only applied forces appear in Fqr. In other words, in writing out the
Lagrangian equations of motion for any system, it should be remembered that the
left side of (3.18) automatically takes full account of all inertial forces while only
driving forces are to be considered in finding expressions for Fqr. (Centrifugal
force, Coriolis force, etc., are never included in Fqr.)

3.4 Integrating the Differential Equations of Motion.
It is an unfortunate fact, but one which the applied scientist must face, that in a great

majority of cases differential equations of motion are so involved that no methods of
integration are available. In certain cases justifiable approximations and simplifying
assumptions can be made which put the equations in integrable form.

Fortunately, however, computers are coming to the rescue. Through their use, graphical
or numerical solutions to otherwise' "hopeless" equations can now be obtained. Through-
out this text, where possible and advantageous to do so, integrations are carried out in
part or in full. But we are primarily concerned with setting up correct equations of motion.

3.5 Illustrative Examples.
The pedagogic value of a few examples may far exceed pages of discussion. It is the

ultimate means of "explaining the explanations".
Example 3.1:

Consider the motion of a projectile relative to rectangular axes attached to the earth. Regarding
these axes as inertial and treating the projectile as a particle of mass m, we write

T = 2 (12 + y2 + z2) from which IT = mz dt
az1aT = m x ax = 0

ax
Hence m!; = Fs. Likewise m y = Fa, m z = F.. Neglecting air resistance, the only force is the pull of
gravity in the negative direction of Z. Hence 8W. = - mg 8z and F. = - mg. Clearly, Fz = F,, = 0.
Thus finally m Y = 0, my = 0, m7 = - mg. This simple example does not demonstrate the power of
the Lagrangian method. It does show, however, that for a single particle treated in rectangular coordinates,
the Lagrangian equations reduce to the Newtonian form.
Example 3.2: Motion of a bead on a rigid parabolic wire.

A bead of mass m is free to slide along a smooth parabolic wire the shape of which is given by y = bx2.
Since motion is confined to a line, the bead has only one degree of freedom. There are two equations of
constraint, y = bx2 and z = C. The velocity z and either y or x can be eliminated from T = Jm(x2 + y2 + z2).
Eliminating y, T = &nu 2(1 + 4b2x2). Applying Lagrange's equation,

IT

I!
Hence finally

mx(1 + 4b2x2), dt (Ix) = m x (1 + 4b2x2) + 8mx2xb2,

m x (1 + 4b2x2) + 4mx2xb2 = Fs

IT = 4mx2xb2ax

Applying (3.19) we now find an expression for F. which, as will be seen, is not merely the x component
of a force. Let us assume that the Y axis is vertical and the only force acting (we need not consider the
force of constraint) is the pull of gravity. If the bead is given a displacement + Sx it, of necessity, must
move up the wire a corresponding distance + By and the work thus done by gravity is SW = -'Mg By.
But from the equation of constraint, By = 2bx Sx. Hence SW = - 2mgbx Sx = F. Sx, F. = - 2mgbx,
and the completed equation of motion is

m x (1 + 4b2x2) + 4mz2xb2 -2mgbx
As an extension of this, imagine that we pull with constant force f on a string which is attached to

the bead. Let us assume that the string is in the plane of the parabola and that its direction, determined
by direction cosines a, f3, is maintained constant. Thus for a small displacement,

SW = - mg By + of Sx + ,8f By see equation (2.35)
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But again, Sy = 2bx Sx. Hence
SW = (- 2mgbx + of + 2bx/3f)Sx and F. = 2bx(/3f - mg) + of

The left hand side of the equation of motion is unchanged.
Note that all of the above results can just as well be expressed in terms of y and y instead of x and

by first eliminating x from T, etc.
Example 3.3: Motion of a particle on a smooth hori-
soxtal table under the action of a spring.

A string attached to the particle passes through
a hole in a smooth horizontal table and is fastened
to a light spring as shown in Fig. 3-1. The point to
which the lower end of the spring is rigidly attached
is so placed that when m is at the hole the spring
its unstretched.

The system has two degrees of freedom and,
using polar coordinates, T = 2m(i2 + r2 92). The
only force acting on the mass is that of the spring.
Hence for an arbitrary displacement of the particle,
SW = - kr Sr where k is the usual Hooke's law
constant of the spring. No force is acting perpen-
dicular to r. Therefore Lagrange's equations give

Fig. 3-1

(1) m7 - mre2 = -kr, (2) d (mr2e) = 0
From (2) we see that mr2; = pe = angular momentum = constant. Eliminating a from (1), there

results an equation involving r and r only, which may be integrated by standard methods.
A treatment of this problem in rectangular coordinates demonstrates how, at times, equations of

motion may be considerably simplified by the proper choice of coordinates. Writing
T = 1 m(x2 + y2) and SW = - kr Sr k(x Sx + y Sy)

it follows that m x = - kx, m ky. Hence the motion is compounded of two simple harmonic motions
at right angles, each having the same period. Thus the path is, in general, that of an ellipse with the
origin at its center.
Example 3.4: The pendulum bob attached to a rubber
band, Fig. 3-2.

For motion in a plane the bob, regarded as a
particle, has two degrees of freedom. Using r and o as
coordinates, T = Jm(r2 + r292) from which it follows
that m;: - mre2 = F, and mr2 8 + 2mrr 9 = Fe. Let
us here illustrate two methods of obtaining generalized
forces. Imagine the bob given an arbitrary displace-
ment Ss in which a and r each undergo positive changes.
The work done by gravity and the rubber band is
given by

S Wtotat = - mgsh - k(r - ro)Sr

X

Fig. 3-2

where ro and k refer to the unstretched length of the band and its Hooke's law constant respectively. Each
term on the right is written with a minus sign because work must be done against gravity and against
the band in order to make positive displacements of r and 8. But, as can be seen from the figure,
Sh = r Se sin o - Sr cos a and therefore

S Wtata, = - mgr Se sin e - [k(r - ro) - mg cos e] Sr
Hence the work corresponding to a change in r alone is SW, = - [k(r - ro) - mg cos e] Sr = F, Sr
from which F, k(r - ro) + mg cos B
Likewise Fe = - mgr sin o.

Now let us find F, and Fe by a direct application of F9,. = F. ax + F ay + F az Taking account
aq, aq, aq,

of gravity and the tension in the band, we see that the x and y components of force on the bob are
F. = - k(r - ro) sin B, Fa = mg - k(r - ro) cos 8

From the relations x = r sin 8 and y = r cos 8, ax/ar = sin o and ay/ar = cos e. Hence

F, = F. asx + F, aar = - k(r - ro) sin2 8 + [mg - k(r - ro) cos 8] cos e

- k(r - ro) + mg cos 8
which is the same as previously found for F In the same way Fe easily follows.
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3.6 Lagrange's Equations for, a Single Particle, Assuming a Moving Frame of
Reference and/or Moving Constraints.

Thus far we have avoided a discussion of systems involving moving frames of refer-
ence and/or moving constraints. However, since numerous problems of this type occur
in practice, it is important that the derivation and application of Lagrange's equations
to such systems be given careful consideration.

Let us again assume that we are dealing with a single particle which is free to move
on a smooth surface. Furthermore we shall assume that the surface and/or the frame of
reference from which the generalized coordinates q, and q2 are measured are moving in
a known manner. Following the exact procedure of Section 3.2, we again write

m(M8x+y8y+z8z) = Fx6x+Fy6y+F,zSz
in which 8x, Sy, 8z represent a completely arbitrary displacement and Fx, Fy, Fx are the
components of the total force acting on the particle, including the force of constraint.
(The XYZ frame is assumed to be inertial.)

Transformation equations relating x, y, z to q,, q2, t will now be indicated as

x = f, (q I, q2, t), y = f2 (qi, q2, t), z = f3 (q,, q2, t) (3.21)

Only two generalized coordinates appear in these equations, and time enters explicitly
owing to the assumed motions. From this point on, equations (3.21) will take account of
the constraint and the assumed motions.

Since 8x, Sy, Sz are each arbitrary we may, if we wish, determine them from equations
(3.21) allowing t as well as q, and q2 to vary. Hence

8x = aq, Sq, + aq2 8q2 + at St, etc.
ax ax

Substituting in the first equation of this section and collecting terms, we have

my axc+yay+zaz Sqi + m :sax+yay+zaz 1q2
aq, aq, aq,)

(
6 q2 aq2 aq2)

ax .ay az ax ay
' Z+ m(xat + y at + z at St = F.

aq,
+ Fy aq, + Fz aq, l q, (3.22)

+ Fx a x + Fy aq + Fz qz q2 + (Fx T + Fy at + Fe at st

Since Sq,, 8q2, St are each arbitrary one may set Sq2 0 and 8t = 0. Hence (3.22) becomes

ax +9 ay +zaz
8q, rFx ax + Fy

ay + Fz az
8q,

aqI aq, aq,) aq, aq, aqI)
Finally, applying relations (3.9), (3.10) and (3.11) as in Section 3.2 (which are valid even
though (3.21) contain the time explicitly), a Lagrangian equation having exactly the form
of (3.15) is obtained. In like manner, setting 8q,, 8t = 0, (3.16) follows. Hence moving
frames of reference and/or moving constraints make no change in the form of the La-
grangian equations; (3.18) continues to be the general form.

3.7 Regarding Kinetic Energy, Generalized Forces and Other Matters when the
Frame of Reference and/or Constraints are Moving.

(a) Basically kinetic energy, as emphasized in previous discussions, must be referred to
an inertial frame (see Sections 2.8 and 2.9, Chapter 2). However, following the pro-
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cedure described and illustrated in the above reference, T can be expressed in moving
coordinates when such are to be used. Also, of course, superfluous coordinates must
be eliminated.

(b) The following statement regarding generalized forces is very important.

Note that, in the relation (F-- + Fy qr + Fz qr Sqr = Fgr 8q, = 8W,,, theaq,
derivatives of x, y, z are with respect to qr only, holding t and all other coordinates
constant. Hence it is clear that SW,, is the work done by the force acting when, under
the conditions just mentioned, qr is given a displacement + Sqr. In other words,
generalized forces are determined by imagining the frame of reference and constraints
at rest and then proceeding exactly as explained in Section 3.3(b), (c) and illustrated in
Section 3.5. If it happens that some or all of the applied forces are functions of
time, which frequently is the case, the above procedure is still followed. Since any
displacement, as determined by equations (3.21) with t constant, is in conformity with
constraints, the work done by the force of constraint is zero. Hence, as usual, this
force is to be disregarded.

(c) It will be seen that, by regarding Sq1 = 0, Sq2 = 0 and 8t 0, we obtain from (3.22)
the relation ax ., ay .. az (F. ax ay azm+ y at + z at}St = at + Fy at + Fz at) St (3.23)

As the reader cannn easily show, the right side of (3.23) is just the work done on the
particle by the total force (including the force of constraint) when the frame of
reference and/or the constraints shift position slightly in time St. However, since
(3.23) is redundant insofar as setting up equations of motion is concerned, it will not
be given further consideration at this point.

3.8 Illustrative Examples.
Example 3.5: l y

Fig. 3-3

The following simple example should help clarify a number of basic ideas. A smooth rigid rod,
shown in Fig. 3-3 above, is made to rotate with constant angular velocity in a plane, about the origin of
the X, Y axes. A bead of mass m is free to slide along the rod under the action of a force F, which
includes the force of constraint. Let us set up the equation of motion of the bead by a direct application
of D'Alembert's equation (3.3) which, for this case, is merely

m(x Sx + U By) = Fx Sx + Fy By (1)

The bead has only one degree of freedom. Choosing r as the coordinate, we write
x = r cos wt, y = r sin wt (2)

Hence Sx = Sr cos wt - rw St sin wt, By = Sr sin wt + rw St cos wt (3)

in which both r and t are allowed to vary. Likewise, expressions for x and y are found at once from (2).
Eliminating Sx, By, x, y from (1), we get

m(r - rw2)Sr + 2mrr` w2 at = (F x cos wt + Fy sin wt)Sr + (F y cos wt - Fz sin wt)rw St (4)
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But since Sr and St are arbitrary, it is clear that
m(r - rw2)Sr = (F z cos wt + F2 sin wt)Sr (5)

(2mrrw2)8t = (F9 cos wt - F.T sin wt)rw St (6)

Now inspection of the figure will show that the right side of (5) is just the work done by the total force
for a displacement Sr along the rod (not for the displacement Ss). Moreover, since the displacement is in

conformity with the constraint, the work done by the reactive force of the rod on the bead is zero.

Equation (5) is the equation of motion and is just what is obtained by a proper application of
Lagrange's equation. (The student should do this.)

Equation (6) corresponds to (3.23). Inspection of Fig. 3-3 shows that the right side of (6) is the work
done by F (including the force of constraint) for the displacement rw St.

Example 3.6:
Referring to Fig. 3-4, the rotating table D has

an angular velocity a determined by the motor M,. c, s lb

Attached to the table is a driving mechanism M2
which causes the smooth rod pa to rotate about a
horizontal axis at p in some given -manner. The
rod pa and the vertical lines pb and oc are all in the
same plane. A bead of mass m is free to slide along
the rod under the action of gravity.

Assuming that a and 8 are known functions of
time, the system has one degree of freedom. Taking
r as the coordinate, let us, set up the equation of
motion and find F,.

It easily follows that

T = 1m[r2 + r29t + ;2(s + r sin 8)2] (1)

Fig. 3-4

This is correct regardless of how a and 8 may be changing with time. But suppose it is assumed that
« = wl = constant and that the rod is forced by mechanism M2 to oscillate about the vertical line pb
according to e = Bo sin w2 t. Then

T = m{ rteow2 cost w2 t + wi [s + r sin (9o sin w2 t)]2} (2)

which now contains only r, and t. Applying Lagrange's equation, it follows that

m,'r - m{reo w2 cos2 c2 t + wi [s + r sin (o,, sin w2 t)] sin (d0 sin w2 t)} = F, (3)

In order to find an expression for F the motions of the table and rod are completely disregarded;
that is, while making a displacement + Sr, t is held fixed (e and a are held constant). Hence

SW, _ - mg cos a Sr = - mg cos (eo sin w2 t) Sr or F, = - mg cos (eo sin w2 t)

It should be noted that if the rod has no obligatory motion and is thus free to rotate about the axis
at p, the system has now two degrees of. freedom. Furthermore, neglecting the mass of the rod, (1) is
still the correct expression for T. Equations of motion corresponding to r and 8 may be written down
at once and it is seen that

F, = - mg cos 8, Fe = mgr sin 8

3.9 Determination of Acceleration by Means of Lagrange's Equations.
As previously shown (Section 2.12, Page 28), the component a' of the acceleration

vector a along any line having direction cosines 1, m, n is given by
a' = xl+jm+zn (1)

If a' is to be found in the direction of the tangent to a space curve at some point p, then

l-
ds, m -ds, n-d (2)

where ds is an element of length of the .line at p given by
ds2 = dx2 + dye + dz2 (3)
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Hence from equations of the space curve 1, m, n may be found.
Suppose now that we are to determine a general expression for the component of

acceleration along a tangent to the coordinate line of q1 in which the generalized co-
ordinates qi, q2, q3 are related to rectangular coordinates by

x = x(ql, q2, q3, t), y y(qi, q2, q3, t), z = z(q1, q2, q3, t) (44)

The coordinate line of qi is determined by holding q2, q3, t each constant in (4) and plotting
values of x, y, z for varying values of q1. In like manner coordinate lines of q2 and q3
are determined. Hence differentiating (4) holding q2, q3, t constant, we get dx = al dq1,
.w

i

++(-)22 ax

2
ay

2

az (5)]d2/ryy

where ds is now an element of length measured along the q1 line.

From (2),
dx 1 ax

qt1 = dql[(ax/ag1)2 + (ay/aq1)2 + (az/aq1)21112 W-1 al (6)

where the meaning of h1 is clear and where we have written dx/dqi as ax1ag1 since q2, q3, t

are still regarded as constants. Also m1 = hr
, n1 = hl a-l .

In like manner the

direction cosines of a tangent to the q2 coordinate line are

1
lax 1ay 10Z O2 = h2 aq2' M. h2 aq2' n2 = h2 aq2 7

Now denoting a' by aq1, equation (1) becomes
ax ..° ay .. az

aql hl aql + y aql + z 0q1) (8)

But by the steps followed in arriving at the left sidee1 of (3.15), we obviously can write (8) as

aq1 = 1 [ dt
T 1 - aT

]l.
(9)

where T' _(x2 + y2 + z2), expressed in generalized coordinates. Or in general,

T' - aT'1
(3.24)aq

=
h,

d (a
-_

aqr

This is a simple and easy way of arriving at general expressions for components of
acceleration along coordinate lines. See the following example.
Example 3.7:

Considering spherical coordinates, let us determine the well-known expression for ae, the component
of acceleration along a tangent to a 8 coordinate line, by an application of (3.24).

For these coordinates (see equation (2.39)), T' = j(r2 + r282 + r2 sin2 e 2) from which

d aT' aT'
dt ae 88

r2 6 + 2rre - r202 sin 8 cos 8

z

he [} ()2
+ (fi-)2] 2= [(rcos a cos )2 + (r cos a sin 95)2 + r2 sin2 6]12

Hence a6 = r B + 2re - sin a cos e. Likewise, a, and aft can be obtained at once.

If the motion of a point (or particle) is constrained to a moving surface, equations (4),
after removing a superfluous coordinate, become

x = x(ql, q2, t), y = y(qi, q2, t), z = z(q1, q2, t) (10)

which are indeed the equations of the surface at any instant.
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Now if we think of holding q2 and t constant, equations (10) represent a ql line on
the surface. Moreover,. it is clear that dx/ds, for example, gives an expression for one of
the direction cosines of the tangent to this line at any point. Therefore, if T' is written
in terms of qi, qz, qr, j2, t, equation (3.24) gives components of the acceleration vector along
tangents to ql, q2 lines on the surface at any given instant.

Again it is important to remember that, basically, accelerations found in this manner
are relative to the X, Y, Z frame.

3.10 Another Look at Lagrange's Equations.
For the sake of further clarifying the physical meaning of Lagrange's equations,

consider the following.

Writing T = 2
J_m(r2 + r282 + r2 2 sine 0), it follows from Section 3.9 that

1

he

d aT
dt

ae

aTl
a0

= mao (see Example 3.7)

Also, the reader may easily show that

where, if f is the force acting on m, f8 is the component of f in the direction of increasing 0.
(Note that f o is an actual force and not a torque. Moreover, ae is a linear acceleration.)
Hence it is clear that the Lagrangian equation gives merely mao = fo expressed in spherical
coordinates. Also, equations corresponding to r and may be written as mar = fr, may = f4',
and likewise for whatever coordinates that may be used.

If there is a constraint on the particle, transformation equations take the form of
equations (10), Section 3.9. Following the reasoning given at the end of Example. 3.7,
it follows that the Lagrangian equations corresponding to q1 and q2 may be written as
mag1= Al, mag2 = fg2

Hence, for a one-particle system, the physical interpretation of the Lagrangian equa-
tions is very simple.' Moreover, we see that in each equation the components of accelera-
tion are automatically taken account of.

This is true for any coordinates and any constraints. Consider, for example, a particle
on a rotating platform mounted on an accelerated elevator. Suppose we want the accelera-
tion components of the particle expressed in certain coordinates, the frame of which is
attached to the platform where account is taken of the motions of the earth, the elevator
and rotation of the platform. Even in this rather complicated case it is easy to write T
for the particle, and (3.24) gives the desired results at once. The student should compare
this with formal vector methods. See Problem 3.34.

1
ho

Fxae+Fyae+Fzae (3.25)

3.11 Suggested Experiments:
As previously mentioned, a few experiments which have been found especially worthy

of the students' time and efforts are listed at the ends of several chapters. These experi-
ments will contribute greatly to an appreciation of and a down-to-earth feeling for dynamics
which pencil and paper alone can never give.
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Experiment 3.1:
Determine the period of the pendulum shown in Fig. 3-6 (see Problem 3.7, Page 52). Support the

point p by a long light cord fastened directly overhead to a high ceiling. As the pendulum swings, p will
move along the arc of a large circle, but for small motion this may be regarded as a horizontal straight
line. For carefully determined values of k and m, experimental and computed values of the period check
closely.

The experiment may be repeated by adjusting the long string so that p is several centimeters above
the horizontal line ab, the springs now forming an inverted V. Of course, the force exerted by the springs
must now be approximated, assuming small motion (use Taylor's expansion).

Summary and Remarks
1. Derivation of Lagrange's Equations: Single particle, no moving coordinates or

constraints (Section 3.2).
(a) D'Alembert's equation is developed from Newton's second law and the concept of

virtual work. (It has been seen that virtual work is a simple yet powerful device
which is used as a means to an end.)

(b) D'Alembert's equation expressed in generalized coordinates leads directly (with
the aid of certain simple mathematical operations) to Lagrange's equations.

Important Details Regarding these Equations (Section 3.3b, c).
(a) Kinetic energy, T, must be expressed in terms of the chosen generalized coordinates

and their time derivatives. All superfluous coordinates should be eliminated from T.
(b) A clear understanding of the physical meaning of generalized forces not only

facilitates the use of Lagrange's equations but contributes much to an appreciation
of what is taking place.

Derivation of Lagrange's Equations: Moving coordinates and/or moving constraints
(Section 3.6).
(a) Derivation is again based on D'Alembert's z quation and the arbitrary character of

the virtual displacements 8xi, 8yi, 8zi. Equations have same form as before.
(b) T is now a function of the qr's, Q`r's and t.
(c) FQr is found as before, holding time fixed. The physical meaning of this (Section

3.7) must be understood for reasons mentioned in 2(b) above.

4. Acceleration Determined by Lagrange's Equations (Section 3.9).
As shown in Section 3.9, the component of acceleration of a point or particle along

a tangent to a q-line at any point may be obtained at once from equation (3.24).

5. Physical Interpretation of Lagrange's Equations (Section 3.10).
For a single-particle system the Lagrangian equations of motion may be reduced

to mar = fr where ar is the component of linear acceleration of m along the tangent to
the q,-line. and f, is the component of the total force on m (disregarding force of con-
straint) acting along the same tangent. Hence the above equations, regardless of what
coordinates may be used, reduce to the simplicity of Newton's second law equations.
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Problems
3.1. Assuming that motion is confined to the Q' Q2 plane, Fig. 2-5, Page 12, and that gravity acts in

the negative direction of the vertical Y axis, set up the equations of motion of a projectile in the
qi, q2 coordinates. Ans. m[ qi + q2 cos (/3 - a)] mg sin a, m[ q2 + q, cos (/i - a)] _ - mg sin /3

3.2. A bead of mass m is constrained to move along a smooth rigid wire having the shape of the
hyperbola xy = C = constant. Show that the kinetic energy may be expressed as

/ E

T = 2m12 (1 + x,

Write out the equation of motion and show that if the Y//axis is vertical the generalized. force
corresponding to x is F. = mgC/x2

3.3. Note that any point in the XY plane may be located by specifying C and y in the relation xy = C.
Hence regarding C as a variable, it may be used as a coordinate. Show that for motion in a plane
the kinetic energy of a particle may be written as

T = + (x_c)2]

and that, considering gravity acting parallel to and in the negative direction of the Y axis,
F. = + mgC/x2, Fc = - mglx

3.4. Instead of the familiar polar r, a coordinates (plane motion), let us consider r and sin o as coordi-
nates. Writing x = r cos e, y = r sin a and denoting .sin a by q, we have x = r 1 - q2, y = rq.
Show that the kinetic energy of a particle in r, q coordinates is given by

T = 2m (r2 + 1 qq2)

3.5. . A bead is constrained to move along the smooth conical spiral shown in Fig. 3-5 below. Assuming
that p = az and , = -bz, where a and b are constants, show that the equation of motion is

z (a2 + I + a2b2z2) + a2b2zz2 = -g

3.6. Set up the equations (11) and (12) of Example 1.2, Page 4, by the Lagrangian method.

3.7. The pendulum bob of mass in, shown in Fig. 3-6 below, is suspended by an inextensible string
from the point p. This point is free to move along a straight horizontal line under the action of
the springs, each having a constant k. Assume that the mass is displaced only slightly from the
equilibrium position and released. Neglecting the mass of the springs, show that the pendulum
oscillates with a period of

P = 2TT mg + 2kr
2ka
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3.8. A solid uniform disk of mass M and radius R has attached to its face a small mass m at a distance
r from its center. The disk is free to roll without sliding along a horizontal straight line. Show that

T = 2e2(MR2 + I + mR2 - 2mrR cos o + mr2)
where I is the moment of inertia of the disk about an axis perpendicular to its face through its
center and o is the angular displacement of the disk from its equilibrium position. Show that if
the disk is displaced only slightly from its equilibrium position and released it will oscillate with
a period

2a I + MR' + m(R - r)2
mgr

3.9. The particle of mass m, shown in Fig. 3-7 below, is free to move to any position under the action
of the two identical springs. When m is in equilibrium at the origin of the coordinate axes, the
length S of either spring is greater than the unstretched length lo. Show that F't = 0. Show that,
for very small displacements from equilibrium,

F. = - 2k(1 - to/S)x, Fa = - 2k(1 - to/S)y, Fz = - 2kz
Set up equations of motion and integrate.

lZ

Fig. 3-7 Fig. 3-8

3.10. Mass, m, shown in Fig. 3-8 above, is attracted to a stationary mass M by the gravitational force
F = -GmM/r2. At an initial distance ro, m is given an initial velocity vo in the XY plane, Set up
equations of motion in r, o coordinates. Show that the angular momentum pe = mr'B = constant.
With the aid of this, integrate the r equation and show that the path is a conic.

3.11. The rectangular components of force on a charge Q moving through a.magnetic and electric field
are given by relations (5.14), Page 91.
(a) An electron gun fires a narrow pencil of electrons, each with the same velocity (zo, yo, zo at

origin of axes at t = 0) into a uniform magnetic field (no electric field) at some initial angle 0
with the lines of flux. Set up equations of motion, integrate and show that the path described
by the beam is a cylindrical helix. (Assume B in Z direction.)

(b) Set up equations of motion assuming a uniform electric field parallel to the magnetic field.
What is now the path?

3.12. A bead of mass m is free to move on a smooth circular wire which is rotating with constant
angular velocity w about a vertical axis perpendicular to the face of the loop and passing through
its periphery. Another bead is moving under the action of gravity along an identical loop which
is stationary and in a vertical plane. Prove that both beads have exactly the same motion. What
quantity in the equation of motion for the first bead corresponds to g in the second equation of
motion?

3.13. In Example 3.2, Page 44, consider the location of m with polar coordinates r,6. Taking 8 as the
independent coordinate show that tan a tang ex = b , ?1 = b

Hence T can be written in terms of o and ®. Show that the generalized force is

Fa
F. 2F& tan e

b cos' 9 + b cos' B
where Fs and Fo are the force components acting on in. It is clear that B is not a desirable co-
ordinate for determining the motion of m. Repeat the above procedure for Problem 3.2, Page 52.
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3.14. In Fig. 3-9 below the bead of mass m is free to slide along the smooth rod under the action of
gravity and the spring. The vertical shaft is made to rotate at constant angular velocity w. Show
that the equation of motion is

m r - mrw' sin' o = k(l - lo) - kr mg cos o

and that the mass oscillates with
mperiod P = 2- 2 2k- mwsin e

Fig. 3-9

(a)

k(l - lo) - mg cos e
k - mw2 sine 8

(b)

Fig. 3-10

3.15. Assume that block B, shown in Fig. 3-10 above, to which the spring is attached is forced to oscillate
vertically according to the relation s = A sin wt. Let (a) represent the position of the system
with no motion applied to B and rn in equilibrium under the action of gravity and the spring.
Let (b) represent any general position of the system. Show that in effect the motion of B applies
a force of kA sin wt to m. Also show that the motion of m is given by

q = C sin ( k/m t + 8) + Ak
w2) sin wt

3.16. A massive uniform disk of radius R rolls down an inclined plane without slipping. X and Y axes
are attached to the face of the disk with origin at its center. A particle of mass m is free to move
in the plane of the disk under the action of gravity and springs, the specific arrangement of which
need not be given. From elementary considerations it is known that, neglecting the small mass of
the particle, the center of the disk moves with linear acceleration a = 2g sin a, where a is the
angle of the incline. Show that the kinetic energy of the particle in polar coordinates r, e
(0 measured from the X axis attached to the disk) is given by (measure /3 between X and a fixed
line normal to the inclined plane)

T 2m[a2t2 + r2 + 8)2 + 2atr sin (/3 - e) + 2atr(/3 - 8) cos (/3 - 8)]

where h = (a/R)t. Compare T here with the general form (2.55), Page 27.

3.17. The string supporting the pendulum bob, Fig. 3.11, passes
through a small hole in the board B which is forced to oscillate
vertically along the Y axis such that s = A sin wt. Show that

T = zm[2A2w2 cos' wt + (1 - A sin wt)' P
- 2A2w2 cost wt cos 8

- 2(1 - A sin wt) Awe cos wt sin e]
where 1 = r + s = constant.

Write out the equation of motion. Show that
F8 = - mgr sin 8 = - mg(l - A sin wt) sin 8

3.18. Referring to Example 3.6 and Fig. 3-4, Page 48, assume that
a = w = constant, that the mass of the rod pa is negligible,
and that the driving arrangement M2 is replaced with springs
which tend to keep pa in a vertical position by a torque of
-Co. Set up equations of motion corresponding to r and B.
Note that the expression for T [equation (1), Example 3.6] still
holds.

about the position r

where l = r + s and lo is the unstretched length of the spring.

Fig. 3-11
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3.19. Show that if the spiral, Problem 3.5, Fig. 3-5, is rotating about its own axis with constant angular
velocity w, T zm[z2(a2.+ 1) + a2z2(W - bz)2]

Also show that if the spiral has a rotation given by Wt + 2Jat2,
T = -m(a2z2 + a2z2(w + at - bz)2 + z2]

Note that in each case the generalized force corresponding to z is -mg.

3.20. Let us suppose that the disk, shown in Fig. 3-12,
can be given any desired rotational motion by a
motor (not shown) attached to its axis. The
string to which m is attached is wrapped around
and fastened to the disk. The angular position
of the disk is given by a, measured from the
fixed X axis to a line drawn on the face of the
disk. Angular position of the string (assumed
always to be tangent to the pulley) is given by e.
To is the initial length of the string as indicated.
Show that for mass vt,

T = lm[Rz«2 + (ro + Re - Ra)2e2]
F8 = - mg(ro + Re - Ra) sin e

and that the equation of motion is

Fig. 3-12

m(ro + Re - ROW - 2mRe a + mRe2 = - mg sin e
where a is assumed to be some known function of time.

3.21. In Fig. 3-13 below the rigid parabolic wire rotates in some known manner about the Z2 axis while
the platform to which X2, Y2, Z2 are attached moves with constant acceleration a parallel to the
Y, axis. The bead of mass m is free to slide along the smooth wire under the force of gravity.
(a) Show that

T 2m[r2 + a' t2 + 2rat sin 0 + cos 95 + 4b2r2r2]

Assuming . = w = constant, set up the equation of motion corresponding to r and show that
F, = - 2mgbr

3.22. As the wire in the above problem rotates it generates a parabolic cup. Suppose that m is confined
to move in contact with the inside surface of a stationary cup having this shape. The expression
for its kinetic energy is just as written in Problem 3.21, except that , must now be regarded as
an independent coordinate. Write out equations of motion for this case. Show that F, is the same
as above and F0 = 0.

Fig. 3-13

I

a

Fig. 3-14

3.23. By means of the crank handle the support of the pendulum, shown in Fig. 3-14 above, can be given
any desired rotation. Show that T for the pendulum is

T = r292 + r2(« - )2 sin2 9 - 2sra a cos a sin 0 + 2sr«(« -;) sins cos qs]
where r, e, 95 are spherical coordinates measured relative to the X, Y, Z axes attached to and
rotating with the horizontal bar ab. In this problem r is taken constant.

Assuming r variable (rubber band) repeat above. Write T as the sum of three terms cor-
responding to those in equation (2.55), Page 27.
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3.24. Assuming e, = w1 = constant, e2 = we = constant, show that the kinetic energy of the particle in
Fig. 2-21, Page 22, with motion confined to the X2Y2 plane, is given by

T = 2m{;2 + r'a2 + [2sw, sin (w2 t + a)]r + [2r2(w1 + w2) + 2sw, r cos (wet + a)]«
+ [r2(.,, + W X + 2sw, (w, + (02)r cos (w2 t + a) + s2w

Note that this has just the form of relation (2.55) where quantities corresponding to A, B, C are
evident.

3.25. A rotating platform P2, shown in Fig. 3-15 below, is mounted on a second rotating platform P,
which is in turn mounted on an elevator. P, is driven by a motor at a constant speed w,. In like
manner P2 rotates with constant speed w2 relative to Pi. The simple pendulum of length 1 attached
to P2 is allowed to swing in a plane containing the vertical axis of rotation of P2 and its point of
suspension. The elevator has a constant upward acceleration a. Find the equation of motion of
the pendulum.

m[12 ®+ 1 cos 9 (sl - l sin o)(w, + w2)2 + sew21 cos a cos wet + at sin e] mgl sin 9

Note that the left of this is merely (ml)ae, where a8 is the linear acceleration of in relative to an
inertial frame, in the direction of increasing e. [See equation (3.24).]

x,,y,z
. Z11-

m

, oto
1M,}evator I

Y2 x210

X,, Y,, Z, Stationary

Fig. 3-15 %mow Fig. 3-16

3.26. An X, Y, Z frame of reference is attached to the inside of an automobile. The Y axis points directly
forward, the Z axis vertically upward, and the X axis to the right side. The position of a particle
is to be located in spherical coordinates r, e, 0 measured relative to this frame.

Assuming that the car is moving along a level circular road of radius R with constant
tangential acceleration a, write out T and set up equations of motion for the free particle, gravity
alone acting.

3.27. The vertical shaft with an arm of length r rigidly attached as shown in Fig. 3-16 above is made
to rotate with constant angular velocity w. Write an expression for T and the equations of motion
of the particle relative to the rotating X2, Yz, Z2 system. For a hint and the answers, refer to
equations (14.15), Page 287.

3.28. Considering cylindrical coordinates r, 0, z, the relation z = br2 represents a parabolic "cup" for
b constant. The x and y coordinates of any particular point on the cup may be written as
x = r cos , and y = r sin 0. Now, just as an aid in becoming accustomed to all sorts of coordinates,
suppose b is regarded as a variable. Then b, r, 0 may be regarded as coordinates locating any
point in space. Hence the above three relations are the transformation equations relating the
rectangular and the b, r, ¢ coordinates.

Show that in these coordinates the kinetic energy of a particle is given by
T = -m[;2(1 + 4b2r2) + b2r4 + 4br3br]

For gravity acting in the negative direction of Z, show that
Fr = -2mgbr, Fb = -mgr2, F, = 0
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3.29. Determine an expression for the acceleration of m, shown in Fig. 3-9, Page 54, in the direction of
increasing r. Assume that the vertical axis is given constant angular acceleration ¢ = c. See
Problem 3.14.

Show that under these same conditions

a, = r - rc$t2 sin 2 9, a® = - rc2t2 sin o cos e, a, 2rct sin e + rc sin 9
are a, ae, at, relative to an inertial frame.

What are the components of the reactive force in the directions of increasing 9 and 0? Note
that, to get the above results, we in reality introduce o and 0 as superfluous coordinates. See
remarks at end of Section 3.2.

3.30. Referring to Fig. 2-5, Page 12, it is clear that for motion in the XY plane the general acceleration
vector of point p has a component along the Q, axis given by aql = x 1 + y m where 1, m are
direction cosines of this axis. Show that this expression reduces to aq, = Q, + a2 cos ((3 - a) and
that the latter may be obtained directly from equation (3.24).

3.31. Referring to Problem 3.22 and applying the methods of Section 3.9, find the component of the
acceleration along a tangent to a line (on the cup) for which r = constant. Compare results with
the 0 equation of motion obtained in Problem 3.22. , Repeat for a line for which 0 = constant and
compare with the r equation of motion.

3.32. Referring to Fig. 2-21, Page 22, equations (2.82) and (3.24), determine general expressions for the
x2, y2 components of acceleration of m. Are the accelerations thus obtained in reality relative to
the X,, Y, frame? What forces F.2, F, would be required to hold m fixed relative to X2, Y2?

3.33. Referring to Fig. 3-16, write out expressions for the components of the general acceleration vector
of m along the X2, Y2, Z2 axes, but relative to the inertial axes X,, Y,, Z,. See Problem 3.27.

3.34. A rotating platform. is mounted on the ground with axis of rotation vertical. A rectangular frame
of reference is attached to the platform, and the position of a particle relative to this frame is
determined by spherical coordinates. Find expressions in the spherical coordinates forthe accelera-
tion components a, ae, a , relative to an inertial frame, taking account of the earth's rotation as
well as that of the platform. See Section 14.7(b), Page 290.



CHAPTER
Lagrange's ;Equations of Motion

for ' a System of Particles

4.1 Introductory Remarks.
For pedagogic reasons, the treatment of Lagrange's equations given in Chapter 3 is

restricted to systems involving a single particle only. We shall now derive these equations
(they finally take the same form as equation (3.18)) for a very general type of dynamical
system consisting of many particles having any finite number of degrees of freedom and
in which there may be moving constraints, moving frames of reference or both. Following
this, the remainder of the chapter is concerned with the techniques of applying Lagrange's
equations to many and varied types of systems and to the important matter of under-
standing the physical significance of the mathematical relations employed.

4.2 Derivation of Lagrange's Equations for a System of Particles.
We shall first set up the general form of D'Alembert's equation. Consider a system.

of p particles having masses ml, m2, ... , m9 acted upon by forces F1, F2, ... , F, respec-
tively. Let it be understood that F1, for example, represents the vector sum of all forces
of whatever nature (including forces of constraint) acting on m1, etc. Thus, assuming
constant mass and an inertial frame of reference, the "free particle" equations for the
individual particles are

F., = m1 xi, FY1 = Fx1 = mi zl

Fxp = mn xp, Fop mp Fr,, Fzp = mp i,

where Fx1, F,,1, Fz1 are the rectangular components of F1, etc. It is important to note that,
since F1, F2, etc., are assumed to include forces of constraint, relations (.4.1) are true even
though the particles may be constrained in any manner.

Now imagining that each particle of the system undergoes a linear virtual displace-
ment, components of which are Sxl, Sy1, 8,,, etc., let us carry through the following simple
mathematical operations. Multiplying Fx1 = m z, through by 8xl, Fy1 = m1 yl by 8y1, etc.,
for all relations in (4.1) and adding the entire group, we obtain

mi(xi 8xi + Vi 8yi + it 8zti) _ (Fi 8xi + Fyj 8yi + Fxi sz,) (4.2)
i=1 i=1

which, when properly interpreted, leads to far reaching results. (See equation (3.3).) We
shall refer to (4.2) as D'Alembert's equation.

At this point several important statements, similar to those following equation (3.7),
must be made regarding (4.2).

(a) In so far as the validity of (.4.2) is concerned, 8xi, 8yi, 8zi need not represent displace-
ments nor do they have to be infinitesimal quantities. Indeed they could be replaced
by completely arbitrary quantities a., bi, ci.

58
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(b) However, assuming that they do represent infinitesimal displacements of the particles,
it is clear that the right side of (4.2) is just a general expression for the total work
8W done by the forces F1, F2, ... in the displacements 8x1, syi, 8z1, ... of each and
every particle. That is,

SW (Fxi sxi + F,, 8yi + Fzi Szi) (4.3)
i=1

(c) The above is true even though the imagined (virtual) displacements are not in con-
formity with the constraints; that is, we may regard the constraints slightly "dis-
torted". In this case 8W, of course, includes work done by the forces of constraint.

(d) But now considering displacements which are in conformity with constraints, the work
done by forces of constraint adds up to zero. (See Sections 2.13 and 2.14, Chapter 2.)
In other words, forces of constraint are in effect eliminated from (4.2) and (4.3).

(e) Under conditions stated in (d), relation (4.2) is referred to as D'Alembert's principle
or equation.

Though on first acquaintance rather unimpressive, D'Alembert's equation is perhaps
the most tall-inclusive principle in the entire field of classical mechanics. It includes statics
as a special case of dynamics. The equations of motion of any system having a finite
number of degrees of freedom, can be obtained directly from (4.2) in any coordinates upon
applying proper transformation equations and equations of constraint. Lagrange's equa-
tions are merely a more convenient form of (4.2). All other formulations such as Hamilton's
equations, Hamilton's principle, Gauss' principle of least constraint, etc., can be obtained
from D'Alembert's equations.

To continue with the derivation, suppose now that the system has n degrees of free-
dom, where n L 3p, and that the 3p- n equations of constraint are of such a form that all
superfluous coordinates can be eliminated from the transformation equations,

xi = xi (g1, q2, ... , qn, t)
yi = yi (q1, q2, ... , qn, t)
zi = z i (q1, q2, ... , qn, t)

With regard to these equations, we must keep in mind the following facts.

(a) Relations (4.4), as indicated above, are transformation equations from which super-
fluous coordinates have been eliminated and previously referred to as "reduced"
equations. Only holonomic systems are considered here. See Section 9.12, Page 193.

(b) Due to constraints the number of generalized coordinates occurring in (4.4) is 3p - n
less than the number of rectangular coordinates.

(c) The appearance of t indicates moving constraints, a moving frame of reference or both.

(d) These equations take full account of constraints in the sense that displacements
sxi, Syi, Szi obtained by applying the relations

sxi =
axi

Sql
axi

Sq2 + + axiSq+n, etc. (4.5)a + aq2 aqn

(with t held constant) to (4.4), are in conformity with constraints.

(e) Hence, if sxi, 8yi, Szi in (4.2) are thus determined, we can be assured that the work
done by the forces of constraint adds up to zero. Therefore forces of constraint; may
be disregarded. See Section 2.14, Page 31.
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Substituting relations (4.5) into (4.2) we get, after' collecting terms,
p axi azi.. ,I-xi ayi azi+

S +t + y 9n ( x + ii S+ zm q,
aqi ytaq, + z`agi

i i qn gni gn n
i-1

[CHAP. 4

ax ay az p axt ay azi+F,.=+F;,- S q, + ... + Fy - + Fyi t + Fzi q S q.
iagi aqt taq, i-1 iagn aqn a n

But since qi, q2, . . ., qn are each independently variable (physically, this means that the
particles of the system are free to shift positions in such a way that, without violating
constraints, any one of the q's may take on any value irrespective of what values the
others may have) we can regard each Sq as arbitrary. Hence let us suppose that all are
zero except, for example, Sqi. Equation (4.6) then reduces to

8 Wqz
P ax a azi yi i.. ..

?ni xi
a

+ zi a Sqt =+ yi aq qi
gi

axi azi
Fyi

aqi
+ F1,, aq, + Fzi Sqi

Here, employing relations corresponding to (3.9), (3.10), (3.11) and following the same
procedure outlined in Chapter 3, (4.7) may be written as

8Wgg

axi azi
Fyi agt +Fyi aqi + r' zi aq,

Sqi

Exactly similar equations follow in the same way involving q2, q3, ..., qn.. That is,

(4.9)

where r 1, 2, .. , n and generalized forces `Fqr are

axi aziFqr Fyi qr + Fyia ' + Fzi a r (4.10)
q

Note that (4.9) has just the same form as (3.18), Page 42.

4.3 Expressing T in Proper Form.

Although T = 2 mi(c + y2 + z?), where the frame of reference is inertial and
a-1

there are 3p rectangular coordinates, may be regarded as a basic expression for kinetic
energy, its final form to which the Lagrangian equations are applied should be expressed
in . terms of q1, q2, ... , qn generalized coordinates, their time derivatives and possibly t.
The steps required for this are explained and illustrated in Section 2.7, Page 19. As
shown there and in examples which follow, it is frequently advantageous first to write T
in any number of any convenient coordinates.. Then, by means of transformation equa-
tions and equations of constraint, it may be put in final form containing no superfluous
coordinates.

4.4 Physical Meaning of Generalized Forces.
Again, as in Chapter 3, a generalized force Fqr corresponding to coordinate q, is a

quantity (not always a force in the simple sense of the word) such that Fqr Sqr is the work
done by all applied forces when qr alone (time and all other coordinates held fixed) is in-
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creased to the extent of + Sqr. However, in this more general case, it is important to
realize that, for a system of p particles having various constraints, an increase in qr alone
may require a shift in the positions of several or even all the particles. Therefore 8Wgr
must include the work done by the applied forces acting on all particles, which as a result
of + Sqr must shift position.

As proof of the above statements, note that (4.3) is a general expression for the work
when every particle is given an arbitrary infinitesimal displacement. But assuming that
qr only varies, (4.5) reduces to

axi 8yi
$q

azi
Bq8xt = fq--8 r, 8yi = aqr

r, Szi = aqY r

and hence 4.3) becomes ,
Ar: av ate,

"V ar 11'xi + r'yi 1- 1+'xi-)dqr
i_ aqr aqr aqr

which by (4.10) is just Far Sqr. (See Example 4.1, Page 62.)
Inertial forces (see Section 3.3(d), Page 43) are taken complete account of by the left

,side of (4.9). For reasons discussed and illustrated in the last part of Chapter 2, forces of
constraint (for "smooth" constraints) cancel out in (4.10). Hence in the discussion of
techniques and examples which follow, these forces are disregarded.

4.5 Finding Expressions for Generalized Forces.
Expressions for Far may be found by either of the following techniques. They are

applicable to.any and all types of applied forces and are basically the same as those given
in Section 3.3(c), Page 43. (Inertial forces are never included.)

(a) Relation (4.10) may be applied directly. Fyi, Fzi, the rectangular components of
the force Fi acting on mi, must be determined from known forces on the system.
Explicit expressions for axi/agr, ayi/aqr, azi/aqr may be obtained from (4.4). Frequently
this method is tedious.

(b) Assuming that all moving constraints and/or moving frames of reference are stationary
and that all coordinates except qr are constant, imagine qr increased to the extent + Sq,.

Now by inspection of the particular problem in hand, write out an expression for
the work, 8War, done by all applied forces on the particles which must shift in position
as a result of + Sqr. This can usually be done directly without the use of rectangular
components of force. Then from the relation

8Wgr = Fqr Sqr (4.11)

(c)

Far follows at once.
In applying this method it is frequently advantageous first to write 8War in terms

of any number of any coordinates and later express it in terms of q1, q2, ..., qn.

Following the procedure outlined above in (b), it is possible and in many cases dis-
tinctly advantageous to write an expression for the total work 8 Wtotal when all co-
ordinates are varied simultaneously. As can be seen from (4.6) and from examples
to follow, this can be written in the form

aWtotai = [....]1881 + [. ]28g2 + + [ .. ]nSgn (4.12)

where the brackets may be constants but are usually functions of coordinates, velocity,
time, etc. It is clear that the bracket [ .. ] r is just Fqr. Hence all generalized forces
may be read directly from (4.12).
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An additional note: For a system having, say, four degrees of freedom, let Fq,, Fq2, Fq3, Fq4
indicate the generalized forces corresponding to ql, q2, q3, q4. Now suppose we start the
problem over, replacing q3 and q4 by different coordinates q3 and q4. Generalized forces
are now Fq,, Fq2, Fqs, Fq4; but Fq1 and Fq2 of the second instance are in general not equal to
Fql, Fq2 of the first, even though they do correspond to the same coordinates. (See
Example 4.1.)

(It should be stated here that: When forces are conservative, it is usually more con-
venient to determine Fq, from a potential energy function; see Chapter 5. For many
dissipative forces the "power function" method offers advantages; see Chapter 6. However,
regardless of the type of applied forces, either (a), (b) or (c) is applicable.)

4.6 Examples Illustrating the Application of Lagrange's Equations to Systems.
Involving Several Particles. ,,

Example 4.1. A system of three particles.
Consider the arrangement shown in Fig. 4-1. Assuming

vertical motion only, the system has two degrees of freedom.
Of the various coordinates which could be used, we shall choose
yi and y2. Disregarding masses of the pulleys,

T = 4m, yi + jms 8s + jma ss

But as is easily seen, is = y1- y2 and is = 1t, + y2. Hence

T = j-m1 H, + 4m2 (yl - 1/2)2 + '.}ms (y1 + y8)2

which now involves y1 and j2 only. (Note that y2 is a non-inertial
coordinate.)

The equation of motion corresponding to y1 is obtained as
follows:

aT = miy1oil + m2 (y1 - y2) + ms (y1 + 2)

and

d aT\
dt Ca;) _ (m1 + m2 + ma) y1 + (ms - m2) ys,

syz = 0

Hence (m1 + m2 + ms) y1 + (ms - m2) W2 = FyI Fig. 4-1

as

To obtain an expression for FyI we shall apply equation (4.11). Hence we determine the work done by
driving forces (gravity), neglecting forces of constraint. (tensions in the cords), when y1 is increased to
the extent of + 8y1 (m1 moved down a bit) with y2 kept constant. This is SWyl = + mfg Sy1 - (m$ + ms)g 8y1.

The second term in this expression comes from the fact that, since y2 remains constant, m2 and ms must
be lifted up the same distance that ml moves down. Therefore Fy, = (my - m2 - ma)g and the complete
equation of motion corresponding to y1 is

(m1+m2+ms) },1 + (ms-m2)y2 = (ml - m2 - ms)g (1)

To obtain the y2 equation,, of motion, it is seen that

(m'2 + ms) Vs, + (ms - m2) 1/1 and = 0
aY2

An expression for Fy2 is obtained by letting y2 increase to the extent of + Sy2, with yj constant. Clearly
the work done by gravity is S Wye = (m2 - nna)g Sy2 = Fy2 Sys. Hence, finally, the y2 equation of motion
has the form

(ms + ms) y2 + (ms - m2) y1 = (4112 - ms)g (2)

Relations (1) and (2) can be solved simultaneously for y1 and y2, and the resulting equations integrated
at once.
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As a simple example of (4.12), note that-

S T7oa =

1
2

But 8s2 = Syi - Sy2 and 8s3 = Sy, + Sy2. Hence, eliminating SS2 and 883,

S Wtotai = (m1 - m2 - ms)g Syi + (m2 - m3)g Sy2

from which Fy1 and Fy2 may be read off directly.

As an extension of this example, let us use y1 and S2 as coordinates. Since 82 + s3 - 2y1 = constant,
83 = 2y1 - s2. Hence

T =

from which

(ml Sy1- M2 8 S2- M3 883)9

2 + m2S, + m3(2y1 - s2)2

(mi + 4m3) y1 - 2m3 Sz = F51 (4)

(m2 + m3) S2 - 2m3 yx = Fs2 (5)

To find Fy1, hold s2 fixed ('in2 not allowed to shift position) and imagine yi increased to yi + Sy, (mi is
moved down a bit). But, as seen by inspection, this requires an upward shift of m3 to the extent of 2 Syi.
Hence

SWy1 = +mlg Syi - 2m3g By, or Fy1 = (mi 2m3)g

(Note that expressions for Fy1 in (1) and (4) are not the same.) In a similar manner it follows that
F59 = (m3 - M2)9-

Applying (4.12), we can again use (3). Eliminating 8s3 by 883 = 2 Syi - Ss2,

S wtotal = (mi - 2m3)g Syi + (m3 - m2)g 882 .

giving again the same expressions for F,1 and Fs2

It should be noted that, when varying one of the n coordi-
nates, holding the others fixed, other coordinates not used in
treating the problem may, of course, vary. For example, Fy1
(see first part of above example) was found by holding y2 fixed
and varying yi. In so doing, each of si, s2, 82 varied.

Example 4.2. Further emphasis on generalized forces.
In Fig. 4-2, neglect masses of pulleys and assume vertical

motion only with gravity and external forces fi, ..., fs acting.
For example, note that, for a displacement + Sq, (all other co-
ordinates held fixed), m1 moves down a distance Sq1 and m5 must
move up a distance 4 Sqi. Following this reasoning,

Fq1

Fq2

Fq3

Fq4

('mig + f 1) - 4(m5g +{ fs)

rn2 g + f2 - (m3 g + f3)

-(m2 + m3)g - f2 - f3 + 2(m5g + f5)

m5g + f5 - (rm4g + f4)

Now using q1, q2, s, q4 as coordinates, show that

Fq1 = mfg +-f1 - (m2g + mag + fg + fs) 2(m5g + fs)

Fs = (m2 + m3)g + fz + f3 - 2(msg + fs)

Fq2 and Fq4 are the same as above. Note the difference in Fq1
in the two cases.

In general the expression for Fq, depends on what other
coordinates are employed.

1 1 '14

i
j5

Fig. 4-2



64 LAGRANGE'S EQUATIONS OF MOTION FOR A SYSTEM OF PARTICLES

Example 4.3. Motion of a dumbbell in a vertical plane.

The particles having masses m, and m2, shown in
Fig. 4-3, are rigidly fastened to a light rod and are free
to move in the vertical XY plane under the action of
gravity. Assuming no rotation about the rod as an axis
and applying the center-of-mass theorem, we write

T =
2®2

where (x, y) locate the center of mass, I is the moment of
inertia of the dumbbell' about an axis through its center
of mass and perpendicular to the rod, and a is the angle
indicated. Since the system has three degrees of freedom
and x, y, o are convenient coordinates, T is already in
appropriate form.

Applying Lagrange's equations, it follows at once that

(m, + m2) (m, + m2)1 = F2, IF= Fe Fig. 4-3

[CHAP. 4

Holding y and a fixed and increasing x to x + 5x, it is clear that the work done by gravity 8W. = 0.
Hence F. = 0. Likewise F2 = - (m, + m2)g and FB = 0. Therefore the equations of motion in final
form are z = 0 e = 0, 7/ _ -9r
This means that the center of mass has the simple motion of a projectile (neglecting air resistance) and
the dumbbell rotates with constant angular velocity B.

Example 4.3A. Extension of Example 4.3.
Let us set up the equations of motion of the dumbbell using coordinates x1, y,, e. T may be written as

T = . m,(x1 + yI) + . mz(z2 + y2). But it is seen that x2 = x, + I cos 9, y2 = y, + l sin e. Differentiating
these relations and eliminating x2, y2 from the above, we get

m,+mz .2 .2 mz 2.2 -T = 2 (x, + y,) +
2

(l a 21x, a sine + 2ly, a cos e)

Applying Lagrange's equations, the following results are obtained:

(m, + m2) x, - m2 l 8 sin 9 - m2l e2 cos 9

(ml + m2) y, + m2l B cos e - m2l BZsin 9

m2 (l2 W - l xi sin 9 + l i, cos e) = FB

It easily follows that F., = 0, Fyl = -(m, + m2)g and F9 = -m2gl cos e.
It is important to note that when coordinates are changed the form of the equations of motion may

change greatly. Also, even when some of the original coordinates are retained (e in this case), the
corresponding generalized forces change as shown in Example 4.2.

Example 4.4. Pendulum with a sliding support.
The pendulum of Fig. 4.4 is attached to a block of mass m,

which is free to slide without friction along the horizontal X axis.
Assuming r constant and all motion confined to the XY plane,
the system has two degrees of freedom. We shall use coordinates
x, and 9. Starting. with coordinates x,, x2, y2 it is seen that

T = 2nx1x2 + -m2(x2+y2)

But x2 = x, + r sin a and y2 = r cos e. Eliminating x2 and
from T, we finally get x2

T = m, x
I

+ m2 (xI + 2rz, b cos e + r2 92) Fig. 4-4

from which (m, + m2);;, + mgr' cos e - rnzr62 sins F.., and mgr z, cos e + m2r2 ® = Fe. In the
usual way we find F. = 0 and Fe = -m2gr sin e, and thus the equations of motions are complete.
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If it is assumed that the motion is such that a is always quite small, we can replace cos a in T by unity,
sin a in F0 by 9, and neglect the term in 42. The equations of motion then become

(m, + m2) z, + mgr ® = 0

mzr x, + m2r2 o = -m2gre

The first equation integrates directly. Eliminating x, from the second equation by the first, we obtain
an easily integrated form. Final results are

x, + mare = C,t + C2, 9 = A sin(wt+S)mi +m2

where C,, C2, A, S are arbitrary constants to be determined by specific initial conditions and
(m, + mt)g . Let us assume that at t = 0, x, = xo, 8 = 9o and ®o. . Substituting these

rma,

conditions into the integrated equations, we obtain four equations from which it follows that

mzr mzr + 2 9o BowC1 = xo + eo, C2 = xo + eo, A 90 + , tan Sm,+m2 m,+m2 W2

which illustrates the general method of determining constants of integration from given initial conditions.

Example 4.5. The masses of Fig. 4-5 move vertically under the
action of gravity and the springs.

Applying the theorem of Section 2.10, Page 26, it is seen that

T
(MI+ m2 + mal2 + m, 2 ms 2 ma 2

_ 2 2q,+ 2q2+ 243
But from the definition of center-of-mass, ryn,gi = 1112 q2 + M3 q3.
Differentiating this and eliminating q, from T, we have

M 2 m, m2 m3 2 m2 2 ma 2T = 2 ?! + 2 (mi q2 + in, qa) + 2q2 + 2 qs

where M = m, + m2 + ins. Since the system has three degrees of
freedom and y, q2, qs are suitable coordinates, it is seen that the
second form of T contains no superfluous coordinates.

Applying Lagrange's equations, the following equations of
motion are easily obtained:

mL2
(m, + mz) ij2 -',-

m2ma
in, m, qs

+m)(mmm m _s ,sz

2

Q2 +
mi V. _ F93,

d.f. = 3

Fig. 4-5

The following is a clear demonstration of the nature of generalized forces and the technique of finding
expressions for same. Inspection will show that for a general displacement of the entire system (see
equation (4.12)),

-ki(q, + qs - li)(Sq, + Sq2) -- kz(gs - q2 - l2)(Sgs - Sqa) Mg Sy

where k,, k2 are the spring constants and 11, l2 are the unstretched lengths of the upper and lower springs
respectively. But again using the center. of mass relation, Sq, = m, 8q2 + mi Sqs. Eliminating q, and Sqi,

S Wtota, =

k,M-(9111 + m2 ma
+ m, m, qz + mi qs l,) ks(gs - qs - 12)] Sqs Mg Sy

This has the form of (4.12) and it is clear that the coefficients of Sq2, Sqs, Sy are the generalized
Fq,2, F43, Fy respectively, Hence the equations of motion are complete. See Problem 4.5, Page 74.

k,(m,+m2) (1111 +m2 ms
m, ` m, qs + in, qs - + k2 (qa - q2 - 12) Sq2

forces
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As an extension of the example, let us determine the generalized forces by a direct application of
(410) which, for this system, takes the form

For

where qr may represent y, q2 or q3.

m m

_ aY' aye
+Fs1 8q, + Fy2 aq,

ay.
Fs3 aqr

Fy1 is the total vertical force on m1,

shows that (since q, = mi q2 +
m1 q3)

-m1 g

Fs2

k1(m2 ms
m1 g2

+ ml q3 + q2 -

-m29 + k11 mi q2 + ma qs + q2 -

etc. Inspection of the figure

) - k2 (g, - q2 - 12)

-m3g + k2 (q3 - q2 - 12)

Also
m2 ms

PI1 y + m1 q2 + m1
q3, y2 = y - qz, y3 = y - q3

Hence Fq2, for example, is given by

Fq2
Fsay1 +Fsaye

+
Fsay3

I aq2 2 aq2 3 aq2

But ay-' = m2
2-Y2 = -1, = 0. Thus the above relation easily reduces to the previously foundQq2

,m1
' Qq2 ,

aq2

expression for Fq2. In like manner, Fq3 and Fy follow at once.

The equation of motion corresponding to y shows that the center of mass falls with constant accelera-
tion g. The remaining two easily integrated equations may be put in the form

all 2 + b11 g2 + a12 US + b12g3 = A

a21 q2 + b21 q2 + a22 qs + b2z q3 = B
where the a's, b's and A, B are constants. We shall not consider these equations further at this point since
methods for integrating this type are treated in detail in Chapter 10.

Example 4.6. The double pendulum of Fig. 2-10, Page 14.
Let us assume that the strings supporting the masses are inextensible and that motion is confined to

a plane. Expression (2.42), Page 24, reduces to

T = 2` ri92 + 21 [r; e2 + r2¢2 + 2r1r2iq cos (0 _ B)]

Thus

Hence

d OT
dt\ae/

m2 r1 r2 e sin (o - e)

(m1 + m2)r1 e + m2rlr2; cos (95- e) - m2rir2g2 sin (qs o) = Fe

Similarly, the equation corresponding to 0 is

m2r2 ¢ + m2r1r2 a cos (o - e) + m2rir292 sin ( - e) = Fp

To find Fe, imagine that o is increased to the extent of +Se with qs held fixed. This means that both
masses must be lifted up slightly. Thus

SW9 = - (m1 + m2)gr1 sine So and F8 = - (m1 + m2)gri sin a

aT

a®
= m1ri9 + m2r2; + m2rir2 cos (0 - B)

(m1 + m2)r; °e + m2rlr2;cos m2rlr2 ( - B) sin (0-9)

With a fixed, m1 does not move and S Wo - m2gr2 sin ql S0, from which Ft = - m2gr2 sin 0. Therefore
the equations of motion are complete. For small motion (o and 0 always small) these equations of motion
reduce to the same form as those of Example 4.5 and can, therefore, be integrated. See Chapter 10.
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Example 4.7. A system moving with constant linear acceleration. (Fig. 4-1.)
The support of the pulley system, shown in Fig. 4-1, Page 62, is moving upward with constant

acceleration a. In this case, _

T = .- m1 (l - yl)2 + -m2s22 + 2m3sg

where l = at, ys + s2 - yl = at, s3 = 2y2 + s2. Thus

T = ml (at - yi)2 + 2m2 (at + y1 - y2)2 + zm3 (at + y1 + y2)2

from which the equations of motion are

(m1+m2+m3) yl + (m3-m2) y2 + (m2+m3-ml)a

(ms - ms) y1 + (m2 + m3) y2 + (ma - m2)a

= Fy1

=
Fy2

Since in the determination of generalized forces time is held fixed, Fy1 = (mi - M2 - m3)g, Fy2 = (m2 - m3)g
exactly as in Example 4.1. Indeed, for this simple case of constant linear acceleration, the equations of
motion are just the same except that, in effect, g is increased to g + a.

As an extension of this the student can easily write out equations of motion assuming that h varies
in any known manner with time. (See Problem 4.16, Page 77.)

Example 4.8. A system moving with rotation and linear acceleration.
Consider the system shown in Fig. 4-6. A smooth tube containing masses ml and m2 connected with

springs is mounted on a rotating table at an angle a. A vertical plane passing through the center of the
tube also passes through the axis of rotation of the table. The table is mounted on an elevator which
moves up with an acceleration a. We shall obtain the equations of motion of ml and mz in terms of the
coordinates ql and q2.

Fig. 4-6

In cylindrical coordinates fixed relative to the earth and assumed inertial,

Elevator

T = 2m1( + 1.1 B1 +z1 + Im2(r2 + -12
B2 + z2)

Taking the origin of these coordinates at the center of rotation of the disk, it is seen that

rl = s + qi cos a, ei = wt, z, = q, sin a + 1at22

r2 = s + q2 cos a, 92 = wt, z2 = q2 sin a + zat2

By means of these relations T is easily expressed as

T = 2m1 [4'+ 241at sin a + (s + q1 cos a)2w2 + a2t2]
+ 2m2 [q2 + 2j2 at sin a + (s + q2 cos a)'&)' + a2t2]

The only coordinates now occurring in T are q, and qs, and it should be noted that time appears explicitly..
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An application of Lagrange's equations gives

m, (q, + a sin a) - m, w2(s + q, cos a) Cos a = Fq

m2 (q2 + a sin a) m2 w2(s + q2 cos a) Cos a = Fq2

Disregarding the motion of the system, the work done by gravity and the springs when q, alone is
increased slightly is

SW,i = -m,g sin a Sq, - k,(q, - l,) Sq, + kz(g2 - q, - 12) Sq,

where 1, and l2 represent the unstretched lengths of the first and second springs respectively. Thus

Similarly,
Fq1 = -mig sin a - (k, + k2)qi + k2q2 + k,1, - k212

Fq2 = _M29 sin a - (k2 + k2)g2 + k2q, + k212 + k3(l, + 12)

This completes the equations of motion. Inspection will show that the acceleration of the elevator has the
effect of increasing g to the extent of a.

Example 4.9. Equations of motion where parts of a system are forced to move in a known manner.
A type of problem sometimes encountered in practice may be illustrated by the following.
Assuming that a mechanism attached to the ground, Fig. 4-1, exerts a variable force on m2 such that 82

varies in a known manner with time, we shall determine the equation of motion for the remainder of the
system. Neglect masses of pulleys.

Due to this forced motion (that is, since 82 is a known function of time) the system now has, assuming
vertical motions only, one degree of freedom. Either y, or y2 is a suitable coordinate and, assuming the
cords are always tight, s, + y2 + s2 = C, and s, + yi = C2. Thus y2 = y, - s2. Hence we write

T = 2m,yi + JM23-2 + 2m,(2;, - sz)2

To be more specific, suppose the force applied to m2 is such that s2 = so + A.sin wt, where so is a
constant; then

T = 2mii', + 4.mzA2w2 cost wt + 2ms(2y, - Aw Cos wt)2

and the equation of motion is
(m, + 4ms) y, + 2m3Aw2 sin wt = F,

(Note that the second term in T, which is a function of t alone, need not be retained.) Applying
S Wy1 = Fyl Sy., holding t constant, we find Fy1 = (m, - 2m3)g. This completes the equation of motion.
It is -seen that Fy, here is not the same as in Example 4.1.

As a further example consider the system shown in Fig. 2-15, Page 16, which has four degrees of
freedom. But suppose that an external vertical force acting on the shaft of the upper pulley causes s, to
vary in a known manner and another acting on m2 gives it a known motion. The system now has only two
degrees of freedom and, assuming the cords always tight, T can be written in terms of, say, 32, Ss, t. (See
Problem 4.19, Page 78.)

4.7 Forces on and Motion of Charged Particles in an Electromagnetic Field.
The treatment of the motion of charged particles and masses through electric and

magnetic fields is an important branch of dynamics. However, except for the special case
of inertial coordinate systems and relatively low velocities (which we shall assume below),
the problem must be treated by relativistic methods. This topic could constitute a sizeable
chapter in itself:

On the above assumptions the rectangular components of force on a particle carrying a
charge Q and moving with velocity (x, y, z) through a space in which there exists an electric
field E, components (Er, Ey, E.,), and magnetic field B(BX, By, Bz) are given by

F. = QEx + Q (yBz - zB5), Fy = QE,, + Q (zB. - xB2), F, = QE= + Q (xBy - yB,') (4.13)

where E and B may. be functions of coordinates and time.
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Using these expressions for F, Fy, Fx in (4.10), Page 60, the procedure for setting up
equations of motion is just the same as in previous examples.

Example 4.10. Equations of Motion of a charged dumbbell in an electric and magnetic field.

The small spheres, Fig. 4-3, Page 64, carry uniformly distributed charges -Q, and +Qz respectively.
Assume a magnetic field in the direction of the Z axis and an electric field E in the direction of X, each
being uniform throughout the XY plane. Let us consider motion in the XY plane only.

As the dumbbell moves, m, experiences a force

Fr1 = -Q,E - Q,By,, F,1 = Q,Bi,

and similarly for m2. Hence for a general virtual displacement,

8 Wtotai = -(QE + Q,Bj,) Sx, + Q,Bx, Sy, + (Q2E + Q2By2) Sx2 - Q2Bx2 Sy2

Choosing x, y, ,g as generalized coordinates (see Example 4.3), it follows from the relations x, =
x - -l, cos e, y, = y - 1, sin 9, etc., that x, = x + 1, a sin e, Sx, = 8x + 1, sin 9 Se, etc. Hence the
above can finally written as

S YY total _ [(Q2 - Q,)E + B(Q2 - Q,)y + B(Q212 + Q11,)® cos 9] Sx

+ [B(Q, - Q2)'x. + B(Q,l, + Q2lz)9 sin e] Sy

- (Qil, + Q212)[E sin e + B(z cos 9 + y sin 9)] 89

from which expressions for the generalized forces are read off directly. (This has the form of (4.12).)
T and hence the left side of the equations of motion are exactly as in Example 4.3. (See Problem 4.20,)

4.8 Regarding the Physical Meaning of Lagrange's Equations.
The remarks of Section 3.10, Page 50, having to do with a single particle, will. now

be extended to a system of p particles.
Suppose that t and all coordinates except qr in equations (4.4) are held constant. These

equations then, in effect, become

xi = xi (qr), yi = yi (qr), zi = zi (qr) (4.14)

Since xi, yi, zi are the rectangular coordinates of the individual particle mi, there is a set
of these equations for each of the p particles. That is, (4-14) represents p sets of equations.

Now allowing qr to vary and plotting the xi, Vi, zi coordinates, (4.14), of any one particle
mi, a curve (in general a three-dimensional space curve) is obtained which represents a
possible path of mi in conformity with constraints. We shall refer to this as a q,.-line for mi.
Clearly the location and shape of this curve depends on the constant values assigned to t
and the remaining coordinates as well as the nature of the constraints. In this sense there
can be an unlimited number of qr-lines for any one particle. But at any given instant and
for given values of the other coordinates a specific q,-line can be plotted relative to X, Y,Z
axes. In the same way q,-lines can be plotted for each of the particles.

. The above ideas are not difficult to follow since they concern familiar three-dimensional
lines and surfaces. As a simple example consider the double pendulum of Fig. 2-10, Page 14.
Equations (2.13) correspond to (4.4), Page 59. For various constant values of (p, 0-lines
for mi as well as m2 can be traced on the XY plane. Likewise q)-lines can be drawn for m2.
(There are no 0-lines for mi.) See also Example 4.11.

The above meaning of q,-lines serves a useful purpose in. what follows.
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Writing Sir as the linear displacement of m; along a q,-line, it is seen that its com-
ponents axi, Syi, azi are just the virtual displacements considered in equations (4.2), (4.3),
etc. Direction cosines lir, mir, nir of the tangent to a qr-line at any point are given by

8xi ayi azi
(4.15)hir = ) mir = J nir =

SStrSSir asir

where the element of path length Ss;r = (Sx2 + Sy2 + 8z2)1'2. (Note that asir is exactly
the displacement (linear) which we imagine given to mi for purposes of determining 8Wq,.

in equation (4.11).) But from (4.4), with t and all q's except qT held fixed, axi =
axi
aqr Sqr,

etc. Thus [()2 +
(ayiaxi
agr)2 +

(')2]r1/2
SQr = hir eq,.

Finally,

(4.16)

1 axi 1 ayi 1 azi
hir

aqr , me,. - hir aqr ' 12iT = hir aqr
(4.17)

Since the component v' of any vector v along a line having direction cosines 1, m, n is
given by v' = lvx + mvy + nvzj it follows that fir, the component of the applied force Fi
acting on mi projected on the tangent 'to its q,-line, is

_ 1 axi ayi azi
(4.18)fzr hir

(Fx,
aqr

+ F1,, aqr + Fzi
aqr

Likewise, the component air of the acceleration vector ai of particle mi along the same
tangent is

air
1 axi ayi azixi aqr + yi i3qr + zi rugr (4.19)

Now multiplying and dividing each side of (4.7), (with Sqi replaced by Sqr), by hir and
using the relation Ssir hir 8qr, it is seen that the Lagrangian equations may be written as

miair asir = fir asir = Fqr aqr (4.20)
i=1 i=1

Keeping in mind the simple meaning of air, fir, and asir, the correspondingly simple
physical and geometrical interpretation of Lagrange's equations is made clear by (4.20).

Furthermore notice ' that, as can be seen from (4.19), an expression for air, the linear
acceleration of mi along its qr-line, may be obtained at once from

1 d aTi aq'imiair
hir tlt aqr aqr- (4.21)

where Ti = Jmi('2 + yf + z2) is expressed in generalized coordinates by means of equa-
tions (4.4).

Example 4.11.

Consider the system shown in Fig. 4-7 below. Particles of mass m, and n are suspended from the
ends of a string which passes through small smooth rings at a and b. m, is free to, move in contact with
the cone C. m2 is constrained (by means of two plane, parallel and smooth surfaces, not shown) to move
in contact with the vertical plane P. The cone is stationary, but P is made to oscillate about the vertical
axis B according to a = A sin wt, where a is measured from the X axis.

Since r, + r2 = c = constant and o = constant, the system has three degrees of freedom. In keeping
with the general notation let us write q, = r,, qz = S, qs = 92. In these coordinates equations (4.4), as
can easily be seen from the figure, have the form: for ma,

x, = q, cos q2 sin e,, y, = qi sin qz sin e,, z, = h - qi cos e, (1)
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q, and q, lines for
m, indicated on the
cone.

Graphical representation of q,, q2
lines for mi and qi, q3 lines for m2.

qi=r,, q2=0, q3 =02
Ti + r2 = C

Fig. 4-7

and for ms,
x2 = [1 + (c - q,) sin qa] cos (A sin wt),
y2 = [1 + (c - qi) sin qa] sin (A sin wt), (2)

Z2 = h - (c - q,) cos qa

Note that in this particular example not all of the coordinates appear in every equation of (1) and (2).
Allowing q, to vary and plotting relations (1) and likewise (2) for various constant values of q2, q3, t,

q,-lines of m, (straight lines on the cone) and q,-lines of m2 (radial lines on P) are obtained. In like manner
q2-lines of m, and q3-lines of m2 are obtained. Since qs does not appear in (1), there are no q3-lines for mi.
It is also clear that there are no q2-lines for m2. Note that an is the component of linear acceleration of m,
along one of its qi-lines on the cone. a2i is the acceleration of m2 along its q, line on P. Also a23, for
example, is the acceleration of m2 along a qs-line on the P plane. Expressions for these accelerations may
be found by applying (4.21) to

T = m1(g1 + g1 2 Sine B,) + m2 [gi + (C - gi)243 + (1 + (c - qi) sin gs)2A2w2 cos2 wt]

4.9 Suggested Experiment.
A determination of the frequencies of motion of the "two-particle system shown in Fig. 4-8 below.
The required equipment is simple and the results obtained are interesting and instructive. Nothing is

very critical about the values of masses and spring constants required. Those shown in the diagram are
only suggestive.
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Assuming vertical motion only and using as coordinates q, and q2, the
vertical displacements of m, and m2 from their positions of equilibrium, set up
the equations of motion. These second order equations with constant

[CHAP. 4

coefficients can easily be integrated by standard methods. Solutions will show k, = 3 x 10` dynes/cm

that, when the system is started moving in an arbitrary manner, the motion
of each mass is compounded of two simple harmonic oscillations having distinct
frequencies f, and 12. (Each mass oscillates with the same two frequencies

M = 15 kgbut with different amplitudes.)
To obtain an experimental check on the computed frequencies, we may

proceed as follows. Applying an oscillatory motion to m, (or m2) with the
hand, one can after a little practice excite either f, or f2 alone. Immediate
success is assured if we keep in mind the fact that, when the applied frequency k: = 10'dynes(em

is approximately equal to either f, or f2, very little effort is required to
establish large oscillations. On removing the hand the system continues to
oscillate with one of its natural modes. The time of fifty oscillations de- ia m = 500 grams

termined with a reliable stop-watch gives a good experimental value of the
frequency. For reasonable accuracy in the measurements of m,, rn2, k,, k2,
experimental and computed values of f, and f2 will agree closely.

Fig. 4-8

A qualitative check on the relative amplitudes of motion of in, and m2, for either f, or f2 excited, can
easily be made by direct observation.

Considerable insight into the behavior of oscillating systems may be obtained from an inspection of
the motions of m, and m2 when the system has been set in motion in some arbitrary manner so that both
frequencies are excited simultaneously.

Summary and Remarks
1. Derivation of Lagrange's Equations, General Form (Section 4.2)

The equations are here derived for a system of p particles having n degrees of
freedom and 3p - n degrees of constraint. Coordinates and constraints may be moving
or stationary.

The derivation, again based on D'Alembert's equation and the assumption that forces
of constraint do no work for displacements in conformity with constraints, follows the
same pattern as in Chapter 3.

2. Proper Form for Kinetic Energy (Section 4.3)
T is now the sum of the kinetic energy of p particles. It is expressed in terms of

ql, q2, ..., q, 4,, q2, . . ., 4. and t, having eliminated 3p - n superfluous coordinates.

3. Physical Meaning of Generalized Forces (Section 4.4)
The physical meaning of the now extended definition of Fqr is, as pointed out in

Section 4.4, still quite simple. A clear understanding of this is important because it
greatly facilitates the application of Lagrange's equations.

Finding Expressions for Fqr (Section 4.5)
Three techniques are described. All are essentially the same, but in certain circum-

stances one may be more convenient than another.
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5. Physical Interpretation of Lagrange's Equations (Section 4.8)
Since each of the quantities 8sir, fir and air has a very elementary meaning, it follows

that t aqr/

aT
= FQ,. (which in terms of the above quantities may be written asaqr

D

miair SSir
i-1

fir Ssir) has a simple physical interpretation.
i=1

Problems
4.1. Referring to Fig. 4-1, Page 62, assume that the upper pulley is suspended from a coil spring of

constant k, in place of the bar B. Neglecting masses of the pulleys, show that

T = 2mi (l - yi)2 + 2m2 (l + y, - y2)2 + 2m3(l + yi + ys)2

Write out equations of motion and show that

Fy1 = (m, ms - m3)g, Fy2 = (mz - m3)g, F1 = k(C - l - ho) - (m, + m2 + m3)g

where h + 1 = C = constant and ho is the value of h when the spring is unstretched.

4.2. Show that for the mass, pulley system of Fig. 4-9,

T '""" 2M,(' + fl)2 + 2m2 ( - yl)2 + 2Mj2 + 2(I/R2) 2y,
Write 'out equations of motion corresponding to y and y, in the
usual way and then show that

7I = -k (ABB C2) (y - yo) + g, B y, + C?% Cg

where A = m,+m2+M, B = m,+m2+I/R2, C = m,-m2
and yo is the value of y when the spring is unstretched. Inte-
grate these equations and describe briefly the motion.

4.3. As an extension of Example 4.4, Page 64, write out equations
of motion when:
(a) m, is compelled by some external force to move according

to the relation x, = B, sin to, t.
(b) A horizontal periodic force, F = B2 sin toe t, is applied

to m,.
(c) A coil spring, in a horizontal position, connects m, to the

point p.

k

Fig. 4-9

y

4.4. Referring to Fig. 4-5, Page 65, show that when coordinates y, si, s2 are used, q,M = s,(ms + ms) + 82m2,
q2M = ii rn1 - 82m3, and thus since

1T = .f 2m qi + 2,nt2g2 + 2ms m, 41 "_ ?Qz
2

ms ms ,
it can easily be expressed in terms of y, S,, s2. Show that generalized forces corresponding y, 81, 82
are Fy = -Mg, Fs, = -k,(s, - l,), Fs2 = -k2(s2 - l2) where M = m, + m2 + ms and l,, l2 are the
unstretched lengths of the springs respectively.

In applying (4.11) to a determination of Fg for example, show with the aid of a diagram what
virtual displacements must be given each mass.

Here generalized forces are quite simple, but see Problem 4.5.
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4.5. Show that when coordinates y, y, and y2 are used to represent the configuration

Fig. 4-5, the corresponding generalized forces are

Fy = -Mg + k2 nI
M3 (:3) y2 '+ m3 yl - m3 - 12

of the

Fyl = -kl (yl - yz - tl) - kz m,
7% [

m2 +
m4

m3) y2 +
mm.l

, yl - M
ms y - lz1

Fy = +k, (y1 - y2 - 1,) - k2 (m2 + 1911)[(M2 + m3 mi, M
2 . m, m3 / y2 + m3 yl - m3 y - 12

system in

4.6. In Fig. 4-10 below, the XY plane is horizontal. A fixed shaft S extends along the Z axis. Smooth
bearings support rods A and B, one just above the other, on the shaft. A clock spring with torsional
constant k connects A to B as shown. Moments of inertia of the rods are 1 and 12 as indicated. The
rods are free to rotate about the shaft under the action of the spring. Using 81 and a as coordinates,
show that

1 12

II+ T.
a = -ka, (Ii + I2);' - I2 P01 = constant

Integrate these equations and describe briefly the motion.
Show that if of and 82 are regarded as coordinates of the system, the generalized forces

F01 = F02 = -k(e1 + 02). Assume spring undistorted when A and B are collinear.

Fig. 4-10 Fig. 4-11

4.7. (a) The block of mass m, shown in Fig. 4-11 above, is free to slide along the inclined plane on the
cart under the action of gravity and the spring. The body of the cart has mass M,. Each
wheel has mass M, radius r and moment of inertia I about its axle. A constant force f is
exerted on the cart. Neglecting bearing friction, show that
C M, + 4[17 + 4I + n) . m y _ n .y m x = - k (yo y - qo)r2 x + tan 0 y f' sine 8 + tan 8 x -Mg +

sin B sin 8

where qo is the value of q when the spring is unstretched.

(b) Set up the equations of motion in the x,q coordinates. Show that F. = f and Fq =
+ mg sin 8 - k(q - qo).

4.8. If a light driving mechanism (a piston operated by compressed air for example) forces the block,
Fig. 4-11, to oscillate along the inclined plane so that displacements relative to the plane are given
by A sin wt, show that

T -
2

(M1 + 4M + 4I/r2 + m)x2 + --m(-2xAw cos wt cos 8 + A2w2 cos' wt)

and that, assuming f not acting, the motion of the cart is determined by
(M, + 4M + 4I/r2 + vn)x - mAw cos 8 cos wt = constant
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4.9. Particles having masses m, and m2 are connected with a cord in which a spring is located, as shown
in Fig. 4-12 below. The cord passes over a light pulley and the particles are free to slide in the
smooth horizontal tubes. The tubes together with the shaft have a moment of inertia I about the
vertical axis.

(a) Using o, r,, r2 as coordinates and assuming no torque applied to the vertical shaft, show that

(I + m,r; + m2r2)® = Ps = constant
m, r, - m, r, 02 = -k(r, + r2 - c)
m2r2- m2r2B2 = -k(r,+r2-c)

(b) Assuming that the shaft is driven by a motor at constant speed e = co, write out the equations
of motion for m, and m2.

Fig. 4-12 Fig. 4-13

4.10. The light rigid rod supporting the "particle" of mass m1, shown in Fig. 4-13 above, is pivoted at p
so that it is free to rotate in a vertical plane under the action of gravity. The bead of mass m2
is free to slide along the smooth rod under the action of gravity and the spring. Show that the
equations of motion are

(m,r, + M2 r22) + 2m2r27'28 + (m, r, + M2 r2)9 sin e = 0

m2 r2 - m2r282 - in29 cos e + k(r2 - lo) = 0

where lo is the unstretched length of the spring.

4.11. A motor is connected to three pulleys in the manner shown in Fig. 4-14 below. The first pulley,
including the armature of the motor, has a moment of inertia I,, and the remaining two 12 and Is
as indicated. The springs (equivalent to elastic shafts coupling the pulleys) have torsional con-
stants k, and k2.

(a) Neglecting bearing friction, set up equations of motion assuming the,motor exerts a torque
r(t) which is a known function of time.

(b) Set up equations of motion assuming that regardless of the motions of the second and third disk
the motor has constant speed.

Fig. 4-14
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4.12. Disk Di, shown in Fig. 4-15 below, is fastened to the vertical shaft of a motor which exerts on it a
torque r,. On the face of D, is mounted another motor the vertical shaft of which forms the axis
of disk D2. This motor exerts a torque r2. Show that,

T = Ili b2 + 112 (®, + 62)2 + M2r2e1

12 ®2 + ®, (I, + M2r2 + 12) = F®1 = r,

72 (g, + ®2) = Fee = r2

where It includes the combined moment of inertia of D,, armature of first motor and stator of
second. 12 includes D2 and armature of second motor. M2 is the mass of D2 plus that of second
armature.

Show that if we were using 8, and a as coordinates, then F. = r, - r2, Fa r2. Note that
above relations are true even though r, and r2 may vary with time.

Fig. 4-15 Fig. 4-16

4.13. The electric motor, shown in Fig. 4-16 above, is free to slide to any position on a smooth horizontal
plane. The center of mass of the frame and armature are each on the axis of rotation of the shaft.
The frame, armature plus shaft and arm ab have masses MI, M2, M3 respectively. The frame and
armature have moments of inertia It and I2 respectively about the axis of the shaft. The arm has
a moment of inertia 13 about a vertical axis through its center of mass at p. Show that

T = 121(M, + M2 + M3)(x2 + y2) + 1I1 ®i + ,'(I2 + Is + Mare)®= + Marb2(y cos e2 - x sin e2)

where x, y are the rectangular coordinates of the center of the motor (X, Y taken in the plane on

which the motor slides) and 8,, B2 are the angular displacements of the frame and armature
respectively relative to the X axis.

Show that, neglecting friction, F,, = 0, Fb = 0, F®1 F02 = r where r, the torque of
the motor, may be regarded as a known function of time.

4.14. In the system of gear wheels shown in Fig. 4-17 below, the shafts Si, ..., S4 are supported in fixed
bearings b,, .. , b4. Gears A, D, E, F are keyed to their respective shafts. An extension of shaft Ss
forms a crank as shown. Gear C is free to rotate on the crank handle. B is a "pie pan" (shown cut
away) with gear teeth g on its outer rim and similar teeth g' on the inner rim. B is free to rotate
on Si. It is seen that if, for example D is held fixed and A turned, C and the crank (thus E and F)
each revolves.

Moments of inertia of the gears, including that of the shaft to which they are keyed, are as
indicated in the figure. Radii of the gear wheels are rt, r2, etc. Springs, having torsional constants
ki and k2, are fastened to S2 and S4 as indicated. Measuring Ba relative to the crank C and all other
angles relative to fixed vertical lines, show that

T = 2ltbi + 2[ I2+I41r4)
82 +

2(r'2)[(R+rs)b2-r,81}2

3

1 I; + MR2 Is rs 2 .

22 4R2 + 4R2
(re)] (rtB, RB2 .{ r3$2)

Write out the equations of motion and find expressions for F0 and F02 assuming each spring exerts
a torque proportional to the angular displacement of the shaft to which it is fastened.
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4.15. Assume that masses m, and m2, shown in Fig. 4-3, Page 64, are attracted to the origin (perhaps
by a large spherical mass, not shown) with forces f, = cm,/r;, f2 = cm.2/r2 respectively where c is
a constant and r,, r2 are radial distances from m, and m2 to the origin. By inspection it is seen that
for a general displacement of the dumbbell, S Wtotat = -(em,/r,) Sri - (cm2/r2) Sr2. Using co-
ordinates x, y, a as in Example 4.3, show that

S Wtotat = - c [i. (x - 1, cos e) + m2
(x 12 cos e) Sx

r2

m, m2
LTA (y - 1, sin e) T2 (y + 12 sin 9) By

- c LM' (xl, sin 9 - yl, cos e) + m2 (yl2 cos 9 - xl2 sin 9)1 Se

where 1, and 12 are distances measured along the rod from m, and m2 respectively to the center of
mass. Note that S Wtota, has the form of equation (4.12). Coefficients of Sx, By, S9 are the generalized
forces Fem., Fy, F0 respectively, after expressing r, and r2 in terms of x, y, e.

Write 8Wtota, again, using coordinates r,, a, a where a is the angle between r, and the x axis.
Also write out T in these coordinates.

4.16. Referring to Fig. 4-1, Page 62, suppose that, with the supporting bar B removed, the shaft of the
large pulley is made to oscillate vertically according to h = ho + A sin wt by a force f(t) applied
to the shaft. Set up equations of motion for the system. Does f appear in the generalized forces?
Explain. (Assume strings are always under tension.)

4.17. Assuming the rotating table, shown in Fig. 4-6, Page 67, is on a cart (instead of the elevator)
which is moving horizontally with constant acceleration a, show that

T = I m, [a2t2 + (s + q, cos a)2w2 + qi 2atw(s + q, cos a) sin wt + 2atg1 cos a cos wt]

+ zm2[a2t2 + (s + q2 cosa)Zw2 + qQ - 2atw(s + q2 cos a) sin it + 2atg2 cos a cos wt]

where the line from which a is measured is taken in the direction of a. The distance moved by the
center of the disk, from some fixed point on this line, is given by s = 2at2. Set up equations of
motion and show that Fq1 and Fq2 are the same as in Example 4.8, Page 67.

4.18. A dumbbell is free to move in the X2Y2 plane of the rotating frame, shown in Fig. 3-16, Page 56.
Known forces (fx1, fyi) and (fx2, fy2) act on m, and m2 respectively. Using coordinates corresponding
to (x, y, e) of Fig. 4-3, Page 64, set up equations of motion assuming constant angular velocity w for
the vertical shaft. See Section 14.6, Page 286.
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4.19. A mechanism attached to A, shown in Fig. 2-15, Page 16, exerts a vertical force f, on the axis of
the upper pulley.- Another fastened to B exerts a force f2 on m2. Let us assume these forces are
such that s, and y each varies in a known manner with time. (For-example. Si = so + A, sin (wt+ 8)
and y = sot +

2
at2.) Assuming that each rope is always under tension, show that differential

equations corresponding to s3 and s4 are -

(I2/R2 + ma) ss + ma s, + y -81-84) - mag = 0
{M1 + I,/R; + 4m,) s4 + (M, + 2m,) y - k,(C - y - s, - s4) + (M, + 2m,)g = 0

where C is a constant and s,, s,, y, y are to be written in as known functions of time determined
by the types of motion assumed.

4.20. The masses of the double pendulum, shown in Fig. 2-10, Page 14, carry electrical charges - Q, and
Q2 respectively. A magnetic field is established normal to the XY plane. Consider all coordinates
variable.

(a) Find the generalized forces Fr1, Fr2, F8, F., taking account of the forces due to the motion of
the charges in the field. Neglect gravitational forces. See Example 4.10, Page 69.

(b) Determine the generalized forces when r, and r2 are constant; r, variable and r2 constant;
r2 variable and r1 constant. -

4.21. The dumbbell, Fig. 4-18, with equal charges-
+Q and -Q uniformly distributed over the
small spheres is free to move in space. By -
means of a large parallel plate condenser
(plates parallel to the XY plane) connected
to an alternating source of potential, a uni-
form alternating electric field E. = Eosin wxt
is established. Likewise large plane pole-
pieces furnish a uniform magnetic field such
that Ba = Bo sin wet. -

Write out proper expressions for the rec-
tangular components of force on each charge
and determine generalized forces correspond-
ing to x, y, z, 6, 0 (see Example 4.10, Page 69). Fig. 4-18

4.22. (a) In Fig. 4-9, Page 73, consider any particle m; (coordinates x;, y,) in the pulley and show using
D'Alembert's equation that

aXi+y;Sy) M'8y + IB$e

(b) By a direct application of D'Alembert's equation, (4.2), set up the equations of motion cor-
responding to y and y, for the system referred to in part (a). Compare results with those
previously obtained.

4.23. Assuming that the vertical shaft, Fig. 4-12, Page 75, is forced to rotate according to the relation
e = wo t + 4at2, set up equations of motion corresponding to r, and r2 by a direct application of
D'Alembert's equation. See Problem 4.9.

4.24. Obtain the equations of motion given in Problem 4.10 by a direct application of D'Alembert's
equation. -

425. Consider the dumbbell of Fig. 4-3, treated in Example 4.3, Page 64. Show that, using coordinates
x, y, 6: for m,, h,: = hi, = 1 and hie = l,; and for m2, h2: = ha,, = 1 and h2o = 12.

Now applying relation (4.21), Page 70, to

T, + y2 + li®a + 21, ;(a sin 8 cos 9)]

and a similar expression for T2, find a,=, a,,,, ale and a2., aay, ase. State the geometrical meaning of
each. Applying (4.20), write out the equations of motion of the system corresponding to x, y, 6.
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4.26. Show that, for the double pendulum of Example 4.6, Page 66,

hie = r1, h29 = r1 ; hi4 = 0, h2,p = r2

ai$ = r1 B, a29 r1 6 + r2 cos (0 - e) - r2;2 sin ( - e)
fie = - rn1g sine, f, ,,g - msg sine, Ssie = Ss2e = r1 Se

Hence show that (4.20) corresponding to e

miale Ssie + msa2e Ss2e = fie Ssie + fee Ss2e

is just the equation of motion corresponding to a obtained in Example 4.6. Interpret results
physically.

Set up the equation of motion corresponding to 0 in the same way.

4.27. - Referring to Fig. 2-15, Page 16, show that generalized forces corresponding to $1, 82, sa, 84 are

F,i = (Mi + M2 + ini + m2 + ma)g - k2(si - asi) F3 = m3g - ki(s2 - os2)

F3 = (Ml + mi + m2)g k1(s2 - o82) F34 = (m2 - m1)g

4.28. Supplementary exercise in the determination of generalized forces.
For the student who still feels a need, the following examples should contribute greatly to a

clear understanding of generalized forces and the techniques involved in finding expressions for same.

Various sets of coordinates, any one of which is suitable for a determination of the motion of
the system, are listed in Figures 4-19 and 4-20. Find generalized forces corresponding to the
coordinates of each set. Repeat this for the systems for which certain specified motions are indicated.

String pulled up with Bead of mass m on
p constant acceleration a. I' rigid parabolic wire.
a

Ig known

i

= const. F components)
f=, fg

x m
(a) a (a) coordinate x

r (b) x (b) coordinate y

m

y

a const.
x

' f

X
Yf I

Compare generalized forces with case XY frame rotates about Y and has
where a = 0. vertical acceleration a. Write T and

the equation of motion in x.
3 Y Fg

Di
;g D9

x2 F=
mC

ks 2 ki el
..

xi -®

yi
ys

I X
Uniform rod Motion confined to ver-

Disks D1, D2 mounted on bearings.
.

tical plane. Applied force has known Torsional constants of springs = ki, k2.

components F., F. Length of rod = 21. 61, e2 measured relative to fixed hori-

(a) xi, yi, 9; (b) X2, y2,
zontal lines. Take a = 02 - 01-
(a) ei, 82; (b) ei, a

Fig. 4-19
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q

c. in.

Y2

y

(a) yz, Y2
(b) yi, q
(c) y, q

Repeat assuming
XY frame has
vertical accelera-
tion a.

X

Two uniform bars each
free to swing in a verti-
cal plane about horizon-
tal rod P.

(a) Bi, ®2
(b) oi, a
Repeat assuming
rotation about AB.

(a) yi, q2; (b) Y2, y2; (c) q,, q2
What other sets of coordinates
can be used? Write T and equa-
tions of motion for (b).

Repeat above assuming that the

entire system falls freely under
the action of gravity.

Y2

Fig. 4-20
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and others for which a "Potential Function" may be written

5.1 Certain Basic Principles Illustrated.
As a means of introducing and illustrating the basic principles on which this chapter

,is founded, consider the following examples.

(a) A particle, attached to one end of a coil spring the other end of which is fastened at
the origin of coordinates, can be moved about on a smooth horizontal XY plane. Let
us compute the work done by the spring for a displacement of the particle from some
reference point xo, yo to a general point x, y. Assuming the spring obeys Hooke's law
and exerts no force perpendicular to its length, the rectangular components of force
on the particle are given by

Fx = -k(l - lo)(x/l), Fy = -k(l - lo)(y/l)
where k is the spring constant, 1 and lo are the stretched and unstretched lengths of
the spring respectively, and x, y the coordinates of the particle. Substituting in the
general expression

W =
fX

( Fx dx + Fdy)
0, y0

and noting that 12 = x2 + y2, it easily follows that

W =

which may be written as

fx.V

0, Yo

-kx dx - kydy + No
(x dx + y dy)

Ix2 + y2

W 5X.V
d[jk(x2 + y2 - 2lo x2 -+y2)] (5.1)

0,yo

Hence W = -jk(x2 + y2 - 2lo x2 -+y2) + jk(x0 + y0-21o xo + y® (5.2)

Here the following points should be noted. First, as is evident from (5.2), W is a
function of x0, yo and x, y only (depends only on end points of path). Or, regarding
xo, yo as a fixed reference point, W, except for an additive constant, is a function of
x, y only. Hence the work done by the spring does not depend on the length or shape
of the path taken by the particle from x0, yo to x, y. It is also clear that for any closed
path W = 0. Secondly, Fx and Fy are of such a nature (they depend on x and y in such

a way) that dW [see (5.1)] is an exact differential. Hence writing dW = aW dx +

aW dy and comparing with dW = Fx dx + Fy dy, it is evident that Fx = aW/ax,
Fy = aW/ay, That these relations are correct can be verified by differentiating (5.2).

As another example of this type let us suppose that Fx = 3Bx2y2, Fy = 2Bx3y,
where B is constant. Hence dW = Fx dx + Fy dy = d(Bx3y2) or W = +Bx3y2 -
Bxoya a quantity independent of path and for which F. = aW/ax, F. = aW/ay.

81
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(b) Now consider the work done by a frictional force F exerted by a rough plane on a
particle, for a displacement from xo, yo to x, y. Assuming only gravity acting normal
to the plane, F = µmg (µ = coefficient of friction) in a direction opposite to the element
of displacement ds = (dx2 + dy2)112. Hence Fx = -µmg(dx/ds) and Fy = -µmg(dy/ds).
Thus from dW = Fx dx + Fy dy,

W = - µmgf '
[1 + (dy/dx)2]1/2 dx (5.8)

xo

The quantity under the integral is not an exact differential. Hence the path,
y = y(x), must be specified before the integration can be performed. W depends on
the path and (5.3) does not yield a function of x, y such that Fx = aW/ax, F. = 8W/ay.

As a final example suppose Fx' = axy, Fy = bxy where a and b are constants.
Then dW = axy dx + bxy dy which is not exact. Therefore W again depends on
the path.

Examples under (a) and (b) above illustrate simple "Conservative" and "Non-conserva-
tive" forces respectively. -

5.2 Important Definitions.
(a) Conservative Forces; Conservative System.

If the forces are of such a nature (depend on coordinates in such a way) that
when the system is displaced from one configuration to another the work done by
the forces depends only on the initial and final coordinates of the particles, the
forces are said to be conservative and the system is referred to as a conservative
system.

(b) Potential Energy.
The work done by conservative forces in a transfer of the system from a general

configuration A (where coordinates of the particles are xl, y1, z1, x2, y2, z2, etc.) to
a reference configuration B (coordinates now oxi, oyi, ozi, 0X2, oy2, Oz2, etc.) is defined
as the potential energy V (xi, yi, zi) which the system at A has with respect to B.
Note that V is here defined as the work from the general to the reference con-
figuration and not the other way around.

Familiar examples of conservative forces are: gravitational forces between masses,
forces due to all types of springs and elastic bodies (assuming "perfectly elastic" material),
and forces between stationary electric charges. Non-conservative forces include those of
friction, the drag on an object moving through a fluid, and various types which depend
on time and velocity.

5.3 General Expression for V and a Test for Conservative Forces.
Consider a system of p particles on which conservative forces F1, F2, ... , F, are acting.

From the above definition it is clear that
oxi, Oyi, 0zi PV = f I (Fxi dxi + Fyi dyi + Fzi dzi)

xi, yi, zi 1=1

xi, yi, zi P

I (Fxi dxi + Fyi dyi + Fzi dzi) (5.4)
Cxi,Oyi,Ozi i-1

The integral (5.4) is in reality a general expression for work (regardless of the nature
of the forces). But in order that the result be independent of the path, the quantity under
the integral must be an exact differential. That is, it must be that

_ av, Fx = avav,
Fy, .5)

Fx= _ - axi i ayi Z azi
(5
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Now if, for example, we differentiate Fx3 partially with respect to y4, and Fb4 with respect
to x3, we have

aFx3 _ a2V OF,,, _ a2 V OF., _ aFy4
ay4 5y4ax3' ax3

_
ax3 ay4 or Cya

-
ax3

t. .

Thus in general,
aF`

_
OF,, aFx

` =
OFzr

etc. (5.6)ay, ax2 azr axj

It can be shown that these relations constitute necessary and sufficient conditions that
the quantity under integral (5.4) be exact. Also, of course, relations (5.6) may be used as
a test to determine whether or not given forces are conservative.

The greatest usefulness of the potential energy function stems from the fact (see Sec-
tion 5.6) that, when V is expressed in generalized coordinates, generalized forces are given
by Fqr = -aVlaq, (Note. In order to integrate (5.4) expressions for Fxi, F,,z, Fzi must be
known. But since we already know them, why bother to find V and determine them again
from Fx2 -W/ax,, etc? This seems absurd. But there is a payoff, not the least of
which derives from the fact that, for conservative forces, Fq,r = -aV/aqr )

5.4 Determination of Expressions for V.
Basically all expressions for V are obtained by evaluating integral (5.4). However,

the following points are of importance.

(a) This integral may be evaluated in any convenient coordinates (rectangular or otherwise)
and then, when so desired, expressed in other coordinates by means of transformation
equations. Care must be taken to give force components their proper algebraic signs.

(b) Potential energy is a relative quantity and the value of aV/aqr is not affected by an
additive constant. Hence such constants may be dropped.

(c) It frequently happens that when the potential energy of a system is due to springs,
gravity, electrical charges, etc., V can be written down at once, using any number of
any convenient coordinates, making use of already well known simple expressions for
the potential energy of individual springs, etc. See Section 5.5(4). The final form of
V, containing just the proper number n of any desired coordinates, can then be obtained
by means of transformation equations.

(d) In applying (c) there may be a question as to the algebraic sign of certain potential
energy terms. In this case it is well to remember that if work must be done by some
outside agency in order to transfer a particle from a general position x, y, z to a
reference point xo, yo, zo, its potential energy relative to xo, yo, zo is negative; otherwise,
positive.

5.5 Simple Examples Illustrating the Above Statements.

(1) The potential- energy of the pendulum, Fig. 5-1, may be referred to lines a,bl, a2b2, a3b3,
etc., in which case V = +mgh, -rugs, mg(l + s) respectively. If 0 is to be used
as coordinate, h and s may be eliminated, giving

V = mgr(1 - cos B), mg(l - r cos 0), - mgr cos B

which are all equal except for a constant term. (Constant additive terms may always
be dropped.)

Since y = r cos B, the potential energy expressed in y is merely V = - mgy.
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r = const.
b2

I ^ 8
u),

as b.

Fig. 5-1

a

x,

Fig. 5-2

P2J

2 --

(2) The familiar expression for the potential energy of a stretched spring is V = 2k(l - l0)2
where k is the spring constant and 1 and lo" are the stretched and unstretched lengths
of the spring. Hence in Fig. 5-2, referring V to pi, V +Zkx1. However, referred
to the fixed point P2, recalling that V is the work done by the spring from the general
point x1 to P2, it follows that V = - [zk(s - l0)2 -

2kxi]. Again, both expressions
are the same except for a constant term in the second.

If so desired, V may be expressed in terms of x2 by the relation s = x1 + X2 + lo.
Hence V = + k(s - lo - X2)2 or, dropping a constant term, V = - k(s - lo)x2 + .-kx 2-

(3) Consider the uniformly charged spheres A and B,
Fig. 5-3. Regarding A as fixed at the origin and
assuming empty space, it follows at once by integra-
tion that the potential energy of B with respect to
infinity is V = +Q1Q2/r. But referred to point p,
V = - [QIQ2/s - Q1Q2/r] which, dropping the constant
term, leaves the same expression. Fig. 5-3

(4) A more complex system: Referring to Fig. 5-4, a sphere of mass m carrying a
uniformly distributed charge +Q1 is attached to the springs as indicated.' Another
similar charge +Q2 is located on the X axis.

Assuming that the upper sphere is free to move in the vertical XY plane (two degrees

For demonstrating a useful technique in finding V.

Fig. 5-4
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of freedom) under the action of gravity, the springs and the electrical repulsion, we
shall finally express V for the system in terms of r and B.

First we write V as per Section 5.4(c) using any convenient coordinates, paying
no attention to how many may be superfluous. Later all coordinates except r and a can
be eliminated. By inspection,

V = -k1(li oli)z + 2k2(l2 - 012)2 + Q1Q2/l3 + mgh

where 11,12 and 011, 012 are the stretched and unstretched lengths of the springs, and k1, k2
the spring constants. (It has been assumed that the springs do not affect the electric
fields about the charges.) Note that V contains the variables 11, 13, h: too many co-
ordinates and not the ones desired. However, by means of the relation l1 = [r2 + s l -
2rs1 cos 811/2 and similar relations for 12 and 13, V may be written in terms of r and 9
only. Further details need not be given. This technique of determining V is simple
and frequently very convenient.

5.6 Generalized Forces as Derivatives of V.
As explained in Chapter 4, any generalized force, whether individual forces are con-

servative or non-conservative, may be expressed as

Fgr = + P

(Fxj
axe + F i ay' + F,zi q

i-1 aqr y aqr a r

Assuming the forces are conservative using equations (5.5), this may be written as

= P aV axi + aV ayi + aV aziF,qr

Caxi aqr ayi aqr azi aqr

But by well known rules of differentiation the right side of this equation is just -aV/aqr.
Hence

Fqr = aq (5.7)

For example, applying (5.7) to V = -mgr cos B, the potential energy of the simple pen-
dulum, we obtain F0 = -aV/a8 = -mgr sin B. Or again, generalized forces correspond-
ing to r and 0, Fig. 5-4, are given by Fr = -aV/ar, F0 -W/a® where V is the final
form of potential energy discussed in the latter part of Section 5.5.

It should be clear, however, that any generalized force which can be found by (5.7)
can also be found by the methods of Chapter .4. Nevertheless, as will be evident from
examples and other considerations to follow, considerable advantage is to be gained from
the use of potential energy and relations (5.7).

Also, since Fqr = -aV/aqr the student can show at once that, for conservative forces,
aFgr OFgs

aqs aq,

which is just a statement of (5.6) in terms of generalized forces and coordinates.

(5.8)

5.7 Lagrange's Equations for Conservative Systems (only conservative forces acting).
Using (5.7), we may write

d (aT1 aT aV or d (aT a

dt Cagr aqr aqr dt aqr
- agr(T - V) = 0
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Introducing the so-called "Lagrangian function" L, defined by L = T - V, the above
becomes

(5 9).q,at, agr

It is permissible to replace T by L in aT/ai, because, in the usual mechanical problem,
V is not a function of j, The usefulness of (5.9) will become evident from examples which
follow and from the applications made of it in the remaining chapters.

5.8 Partly Conservative and Partly Non-Conservative Systems.
It should here be stated that, if some of the forces acting on the system are non-

conservative, Lagrange's equations obviously may be written as

(510)aqr a4'r
yTdt

where F,, is found in the usual way, (Section 4.5, Page 61), taking account of non-
conservative forces only.

5.9 Examples Illustrating the Application of Lagrange's Equations to
Conservative Systems.

Example 5.1. A pendulum bob suspended from a rubber band.
Assuming motion in a vertical plane only and using r and a as coordinates, T = .m(r2 + r2®2) and

V =
2

k(r - ro)2 - mgr cos a where the first term is based on the assumption that the rubber band
obeys Hooke's law. Hence L = 4m(r2+r292) - -1k(r - ro)2 + mgr cos e, from which it follows that

m m42 + k(r - ro) - mg cos e = 0 and mr2 e + 2m4; + mgr sin e = 0
These are just the equations of motion obtained in Example 3.4, Page 45.

Example 5.2. A particle of mass m attached to a light rod pivoted at p, Fig. 5-5.

The kinetic energy for this arrangement is merely T 2mr262. For small angular motion from
the horizontal position, an approximate expression for V may be written as

V = ..k1(l + sle - l1)2 + P20 + see - 12)2 + mgre

where ll and 12 are the unstretched lengths of the first and second springs respectively. Thus

L = lmr2g2 -kl(l + sio - l1)2 - 2k2(l + see - 12)2 mgre

from which the equation of motion is found to be

mr2 + k1s1(1 + sl9 - l1) + k2s2(l + 828 - 12) + mgr 0

Let us assume that the springs have been so adjusted that the rod is in static equilibrium for e = 0. This
means that k1s1(1- 11) + k2s2(l -12) + mgr = .0. Hence the equation of motion reduces to mr2 B +

(k1s
i
+ k2s2)0. This simple equation integrates at once giving simple harmonic motion with a

i f 2do oper (
k18z2 + k2s2

Example 5.3. The system, of springs and pulleys shown in Fig. 5-6.

Assuming vertical motion only,, it follows withoutdifficulty that
III 12

T

\

2+7121J2

where the meaning of each symbolis clear from the figure.

rnr2 1/2

d aL) aL
C

(ad L\ aLL



CHAP. 5] CONSERVATIVE SYSTEMS 87

I

1 I_

11 /-11X I

Fig. 5-5 Fig. 5-6

Referring gravitational potential energy to the lower horizontal line from which yl and
measured and writing potential energy for the springs in the usual way,

Y2 are

V = m1gy1 + m2gy2 + lkl(s1 - l1)2 + k2(s2 - 12)2

where 11 and 12 are unstretched lengths. But s1 + y2 = C1 and (y2 - 82) + (Y2 - y1) = C2 where
C1 and C2 are constants. Eliminating s1 and 82 with these relations, we get

V = m1gy1 + m2gy2 + zk1(Cl y2 - 11)2 + Z k2(2y2 - yl - C2 - l2)2

which contains no superfluous coordinates. This completes the task of finding L. The equations of motion
follow at once. If y1 and y2 are measured from equilibrium positions of ml and m2 respectively, equations
of motion simplify somewhat and can easily be integrated.

As an extension of this example, the reader may show that, using the angular displacements of the
disks; e1 and 02, as coordinates:

L = 12
[(m.1+m2)RI+11]91+ 2(m1R2+12)92 + m1R1R9192

mlg(C3 - R1e1 - R282) - m2g(C3 - R1e1)

- zkl[(C1-C3+R1e1) 1112 - -k2[(C3-C2-Rle1+R282) - l2]
where it is assumed that when the system is in equilibrium,e =82=0.

2

Example 5.4. Potential energy and generalized forces for the double pendulum, Fig. 2-10, Page 14.
Referring potential energy to a horizontal line through p(xo, yo),

V = - m1gr1 cos e - m2g(r1 cos 0 + r2 cos 0)

from which Fe = -aV/ae (m1 + m2)grl sin o, FO _ -aV/a¢ m2gr2 sin 0

These are the same as previously found.

As an extension of this example the reader should show that, assuming m1 and m2 suspended from
light coil springs of constants k1, k2,

V = -m1gr1 cos 0 - m2g(r1 cos e + r2 cos 0) + fcl(rl - orl)2 + zk2(r2 or2)2

and write out generalized forces corresponding to r1, r2,0195-

Example 5.5. Potential energy of a number of masses connected "in line" with springs, Fig. 5-7.

Let us assume (a) that the masses are on a smooth horizontal plane, (b) that the motion of each
mass is "small" and is confined to a line perpendicular to ab, (c) that when the masses are in their
equilibrium positions along ab the springs are unstretched. The potential energy of the first spring is
clearly

V1 = Jk1( s1+y1-s1)2 = 1kl(yx+2s -291 1+yi/s1)



88 CONSERVATIVE SYSTEMS [CHAP. 5

Now assuming that y1 is less than sl, we write

1kl2 2 + 2s2 - 2s2(1 + 1
?!1 yi

+ 3 yi,1.
1 \ 2 82 8 s1 48 s6 _

...
/ 1

Retaining only the first three terms of the expansion the above reduces to V1 = (kl/8si )y4 . In like
manner the potential energy of the second spring is given by V2 = (k2/8s2)(yl - y2)¢, etc. Finally the
approximate expression for the total potential energy becomes

kl
4 k2 - ¢ k3 4 k4 4

V = 8si yl +
8s2

(y y2) + k3 (y2 - ys) + 8s2 y3
1 2 3 4

Hence F,1 = aV

ay1

k, k2

2
yl - g2 (y1 - y2)3 ,

2

etc.

If the masses are free to move in a plane, then V will, of course, involve the x and y coordinates of
each mass.

Fig. 5-7

d.f.=2

Fig. 5-8

Example 5.6. The spheres of Fig. 5-8 carry uniformly distributed charges Q, Q1, Q2.

Q1 and Q2 are fixed while Q is free to move in a plane. Considering only electrostatic forces, we write
(see Section 5.5(4), Page 84) V = + QQ1/r1 + QQ2/r2. Introducing r and 0, this becomes

QQ1 QQ2
V

(r2 + s2 + 2rs COS 0)1/2 + (r2 + s2 - 2rs cos 0)1/2

It follows from the binomial expansion that for Q1 = -Q2 and r > s, V = -(2QQ1s cos o)/r2; and for
Q1 = Q2 and r very large, V = 2QQ1/r.

Example 5.7. The "two body" central force system.

Imagine two homogeneous spheres, Fig. 5-9, hav-
ing masses m1, m2 moving through space under the
influence of no force except their mutual gravita-

tional attraction.

Axes X, Y, Z, with origin at the center of m1,
remain parallel to the inertial X1, Y1, Zl axes. Co-
ordinates of c.m. relative to X1, Y1, Z1 are x, y, z.
A simple integration shows that, referring the po-
tential energy of the system to r = -, V = -Gmlm2/r
where G is the gravitational constant. Applying the
"center of mass" theorem, Page 26, the reader can
show without too much effort that

L = --M(x2 + y2 + z2)

+ 2µ(r2 + r2;2 ±- r2 sin2 Gm,m2/r

where M = ml + m2 and the reduced mass"
p = m1m2/(m1 + m2).

Path of m2 as seen from m,.
Two-body Central Force Problem

Fig.5-9
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Many interesting facts may be obtained from a solution of the equations of motion. For example,
c.m. moves through space along a straight line with constant velocity. The path of m2i as seen from m1,
is an ellipse, parabola or hyperbola depending on whether 6 = T + V is less than, equal to, or greater
than zero. Assuming that initial motion starts in such a way that ;® = 0, it is seen that since
aL/a = µr2 sin 8 , = po = constant, o remains constant for all ; time. Hence for the general case
motion is in a plane and we can write (neglecting motion of c.m.)

L = 1 (r2 + r2e2) + Gm,m2/r

5.10. Approximate Expression for the Potential Energy of the System of Springs, Fig. 5-10.

Potential Energy of a Group of Springs
Fig. 5-10

The springs are flexibly fastened at points a, b, c, d with opposite ends flexibly con-
nected together at p. This junction is free to move in the XY plane. We shall determine
an approximate expression for V assuming x and y always small.

An exact expression for the potential energy of the first spring is simply V1 =
l ki(Li -1 i)2 where L1 is the length pa and li the unstretched length of the spring. But
Li = (l1a1- x)2 + (11/31 - y)2 where 11 and the direction cosines a,, P1 are shown on the
diagram.

Now applying Taylor's expansion for n variables (see Page 206) and retaining first
and second order terms (the (V)oo term is constant and may be dropped), it follows after
a bit of tedious work that

V1 (approx.)- _ -k1(1i - ll)(x«1 + yp1) + 21(x2 + y2)
211

(xRl - y«1)2

Hence for a group of S springs arranged as in Fig. 5-10,

V(approx.) -ki(li - 1;)(x«i + yfi) + ki
(X2 + y2) - 271ii (x f3i - yai)2J

ti=1

(1)

In use, proper algebraic signs must be given to the direction cosines.
If the junction p is in equilibrium at the origin (which was not assumed in the above

derivation), the first order terms in Taylor's expansion will be zero even though some or
all springs may still be stretched. This is because at the origin F. = -(aV/ax)o = 0, etc.
Hence (2) reduces to

1
V(approx.) _ [k(x2 + y2) - y)2] (5.11)

For any particular problem in hand the constants can be measured with good
accuracy. (Given the spring constants, unstretched lengths and locations a, b, c, d, the task
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of computing the equilibrium position of p and thus li, ail Rti is more involved than might
be expected. This is a good job for. a computer.)

Note that since a, = xi/li, R, = y,/l,, equation (5.11) can be written as

1
s kilti

V(approx.) = [ki(x- + y2) _
3 (xyi - yx.)21 (5.12)

2 i=1 li J
Denoting the ends of several coil springs by a,, b1, a2, b2, etc., let the a ends be fastened

at various random points to the inside walls of a rigid box and,the b ends fastened together
at a common junction which can be moved about in the box.

If the origin of an XYZ frame is taken at the equilibrium position of this junction, it
is easily shown (see Problem .5.16, Page 96) that

V(approx.) = 2 k l (x«i + y/3 + Zyi)2 + kit l /) (x2 + y2 + z2)] (5.13)
\ 1 / J

where S is the number of springs, ki the spring constants and ai, (3i, y, are direction cosines
of the axes of the springs when the junction is at the origin.

The above approximations are frequently useful in the field of small oscillations and
will be referred to again in Chapter 10.

Example 5.8.

The mass tin, Fig. 5-11, connected to springs by
means of a string as shown, is free to move about
on the smooth horizontal plane ab under the central
force determined by the springs. Each spring has a

constant k Then V = k(11 - l0)2 where h and l0 are
the stretched and unstretched lengths of either spring.
Let y represent the displacement of the junction from
its position p when the springs are unstretched as
shown in the figure. Then 11 = [si + (so + y)2]1"2
Thus, dropping constant terms, V = k12 - 2k1011 or

V ky2 + 2ks0y - 2klo[si + (s0 + y)211i2

Now applying either equation (10.6), Page 207,
to the above expression for V or (5.11) directly, we
find that

p/
I

h

Fig. 5-11

V(approx.) = k(s/lp)y2 = k(sp/lo)(r - r0)2

since y = r - ro. By inspection, for r equal to or less than r0, the tension in the string drops to zero;
but for small displacements in which r > r0,

L = m(r2 + r2e2) - r0)2

5.11 Systems in which Potential Energy Varies with Time. Examples.

It frequently happens that the forces acting on a system are functions of time as well
as coordinates. Moreover, these forces may be of such a nature that relations (5.6) hold
true. When this is the case it is clear that an integration of (5.4), holding t constant, will
give a quantity V (a potential energy which changes with time) such that Fq,r = --aV/aq,.
Hence relations (5.7) are directly applicable. Two simple examples are given below.

Example 5.9.
Suppose that the string to which a pendulum bob is attached passes through a small hole in the

support. Imagine the string pulled up through the hole with constant speed v. The length r of the
pendulum is given by r = r0 - vt. Hence, referring potential energy to a horizontal line passing through
the support, V = -rng(r0 - vt) cos a from which -13V/ae = -mg(r0 - vt) sin e = F0. That this ex-
pression for F0 is correct can easily be checked by the methods of Chapter 4.



CHAP. 5] CONSERVATIVE SYSTEMS 91

Example 5.10.
One end of a light coil spring is made to oscillate about the origin of coordinates along the X axis

according to the relation a = A sin wt, on a smooth horizontal plane. To the other end of the spring
is attached a particle of mass m. The particle is free to move about on the plane under the action of the
spring. We shall assume that the axis of the spring remains straight and that no force is exerted normal
to this axis (no bending moment exists).

By inspection Fx, the x component of the force on m, is given by

Fx = - k(l - lo) cos (l, x) = - k{ [(x - A sin wt)2 + y2] 1/2 - l0} (x - A sin wt)[(x-Asinwt)t

+y2]1/2

where 1 is the stretched and l0 the unstretched length of the spring. Fy is given by a similar expression.
Note that Fx and F. are each functions of t as well as x and y.

An application of the test (5.6) shows that aFx/ay = aF0/ax. Hence a potential energy function
may be determined from (5.4), holding t constant. Writing V = .k(l - l0)2 and replacing 1 by
[(x A sin wt)2 + y2]1/2. gives V = 2k{[(x - A sin wt)2 + y2]1/2 - l0}2. Now an application of Fx =
-aV/ax, F,, = -aV/ay leads to the same expressions as those obtained above.

Note that if it were desirable to use polar coordinates, V may easily be expressed in terms of r and 6,
eliminating x and y by x = r cos 6, y = r sin e. Generalized forces corresponding to r and e then follow
at once from Fr = -aVlar, F0 = -aVlae.

Many examples similar to (5.9) and (5.10) could be given. Imagine: the support A,
Fig. 5-1, made to oscillate or rotate in a circle; the point p, Fig. 2-10, Page 14, made to
oscillate vertically; the distances s, Fig. 5-8, to vary in some known manner with time; etc.

It is important to note that, since the quantities we have written as V contain t,
T + V =/= constant (see Section 5.13). In other words, if the forces depend explicitly on t
the energy integral cannot be written. The reason for this may be seen at once from
physical considerations.

5.12 Vector Potential Function for a Charge Moving in an Electromagnetic Field.
The components of force on a "point" charge +Q moving with velocity (x, y, z) in an

electric field (Ex, E,,, Ez) and magnetic induction (Bx, Be), each of which may be func-
tions of position and time, are given by

fx = QE. + Q(jBz - iBy)

f, = QE, + Q(iBX - xBx)

fz = QE, + Q(xBY - yBx)

(5.14)

For a mechanical system on which such forces are acting, an application of either
(4.10),'(4.11) or (14.12), Page 61, gives corresponding generalized forces.

However, the above forces are of such nature that neither a scalar potential V nor a
power function P (see Chapter 6) can be written such that FQr = aV/aqr or FQr = aP/aqr
But it is possible to write a "vector potential" function leading to a new form of L such
that (5.9) takes complete account of these electromagnetic forces. We mention this possi-
bility here for the sake of completeness. A treatment of the matter will not be given.

See for example: Roald K. Wangsness Introduction to Theoretical Physics, John Wiley
& Sons, Inc., 1963, Pages 397-400.

5.13 The "Energy Integral".
Under certain rather special conditions it may be shown that the total energy of a

system is constant.
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Consider a system for which L does not contain time explicitly and on which only
conservative forces are acting. (It should be evident to the student that the first assump-
tion means no moving coordinates or constraints and V is not of the form discussed in
Section 5.11.)

Hence, since L = L(q, j), its total time. derivative is
dL
dt

n aL .. n aL .I ° qr + L - qrr=1 aqr r=1 aqr

Introducing (5.9), this can be written as

dL n OL..
of = aqr qr which is just dL = d /4 - qr aL \

dt dt r=1 aqr/)

a-
=Integrating this .

once,
nI qr L + S

.. - r=1 aqr

where E is a constant of integration. Now writing T
Page 27],

1, Akrgkgr
kr

aT = 2 Akrqk = aL
aqr k=1 aqr

since V does not contain q. Substituting this into (5.15), we have
The sum is just 2T. Hence 2T = T - V + e or

(5.15)

see equation (2.56),

n

2 AkrgkiJr = L+&
kr

T + V = E = constant (5.16)

This "energy integral" or "first integral" of the system plays an important part in the
solution of many problems.

5.14 Suggested Experiments.
(1) Determine the period of oscillation of the system shown in Fig. 5-14, for small vertical

motion. See Problem 5.7, Page 93.

(2) Determine the period of oscillation of the rod of Fig. 5-13 for small motion. See
Problem 5.6.

(3) Determine the two periods of oscillation of the system of Fig. 5-20 for small values of
0 and-(p. See Problem 5.14, Page, 95.

Equipment for these experiments is easily and quickly assembled. The results obtained
are gratifying and well worth the small effort required.

Problems
Note. Drop constant, additive terms in V.

5.1. Determine which of the following forces are conservative. 'Find V for those that are conservative.

(a) F. = 0, Fy = -mg (b) FX -kx, Fy = -ky
(d) Fx = Axy, Fy Bxy (e) Fx Ayz, F, = Axz, Fz = Axy

(c) Fx = -ky, Fy = +kx

(f) Fr = 3Br2 sine cos 0, Fy = Brs cos a cos 0, F,, = -Br3 sine sin q,

(g) Fr = f1(r), F0 = f2 (e), F,p = fs (o) (h) Fx = -kx sin wt, Fy = kty
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5.2. Show that the work done by the forces of Problem 5.1(c) in passing around a rectangle having
sides x2 - x1 and Y2 yl is 2k(x2 -xl)(y2 - Show that the work done by forces Fx = 3Bx2y2,
Fe = 2Bx3y in traversing the same rectangle is zero.

5.3. Determine V for the system described in Problem 4.5, Page 74. Show that FQr = -aV/8q, gives
the same expressions for generalized forces as were obtained from SW FQr Sq,..

5.4. Write V in terms of 61i 82, Fig. 4-10, Page 74. Show that Fel = -aV/ae, and F02 = -aV/ae2
check with previously found values of the generalized forces.

5.5. The mass m, Fig. 5-12, is free to move along a smooth horizontal rod under the action of the spring.
When the mass is in its equilibrium position the spring is still stretched. Show that for small
displacements from equilibrium the potential energy is closely approximated by

=
k(s -lo) 2 NO 4

V
28

x +
883

x

where le is the unstretched length of the spring.

Fig. 5-12 Fig. 5-13

5.6. The uniform bar AB of mass M and length 1, Fig. 5-13, is supported by a smooth bearing at A.
The end B is attached to the spring BC as shown. For e 0 the spring is still stretched. Neglecting
the mass of the spring show that V for the system is

V = - jMgl cos e + jk[(s2 + 12 - 2sl cos 8)1'2 - 10]2

Assuming a small, approximate V by Taylor's expansion and determine the period of oscillation
of the rod.

5.7. The bar plus block, Fig. 5-14, have a mass M. The two springs are identical.

(a) Write an exact expression for V. Does this lead to a "linear" force on M?

(b) so = distance ab when system is in equilibrium (s = 0). Given k, sl, M and the unstretched
length to (same for each spring), show that to find so it is necessary to solve the following
fourth degree equation:

4k2so - 4Mgkao + (M2g2 + 4k2si - 4k210)sQ - 4Mgk8 80 + M2g2si = 0

(c) Assuming the equilibrium length 1 of each spring is known, approximate the potential energy
(see equation (2), Page 89) and find an expression for the period of oscillation about the
position of equilibrium.

(d) Assuming 80 known, show that 1 ='2kldsc/(2ks®-Mg).
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Fig. 5-14 Fig. 5-15

[CHAP. 5

5.8. The simple pendulum is supported near a large uniform sphere of mass M, Fig. 5-15. Write V in
terms of 8, taking account of the gravitational attraction between M and M. Approximate this
for small a and 1 only slightly greater than R + r. Determine the period of oscillation for small
motion, Neglect earth's gravitational field.

5.9. Three spheres carrying uniformly distributed charges +Q, -2Q, +Q are fixed on the X axis as
shown in Fig. 5-16. Another sphere having mass m and charge +Q1 is free to move in the XY
plane under the action of the electrical forces. Assuming empty space, write an exact expression
for V. Show that for r > s this may be written as

V
2QQ1s2 cos2 a QQ1s2 sine e

(approx.)
- r3

s ± s

Fig. 5-16

r3

Fig. 5-17

5.10. Determine the generalized forces Fyl and Fy2, Example 5.3, Page 86, Fig. 5-6, by the method of
Chapter 4 and compare with -aV/8yli -aV/ay2 respectively.

5.11. A uniform bar of length 2r2 and mass M is attached to the end of a coil spring as shown in
Fig. 5-17. Assuming motion in a plane show that

L = 2MEr
1
+ r182 + 2 cos (¢ - 8) rlr2®¢ - 2 sin (¢ - e)

+k(rl - ro)2 + Mg(rl cos e + r2 cos

where I is the moment of inertia of the bar about an axis through c.m. and perpendicular to its
length, k is the spring constant, and rQ the unstretched length of the spring.

5.12. The tightly stretched string of Fig. 5-18 is loaded with equally spaced beads. Assuming they are
displaced in the directions of y1, Y2, etc., only and that the displacements are so slight that the
tension r remains constant, show that the potential energy of the system (neglecting gravity) is
given by

T ,,2 2 2 2V = a !!1 + y2 + y3 + y4 + 7!5 '- '1/11/2 - y2y3 - Y04 - y4y5lj

and that for n beads we may write V = 1
n

T
y _ (yr+ 1 -1!r)2 where2 r=p4 =yn+1=0.
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Show that the potential energy of a uniform, tightly stretched flexible string, having any slight
('

distortion y = y(x,), is given by V = J r ! (dyltx)2 dx.
0

Show that for the distortion Y = A sin 7rx/l, V = A27r2r/41.

Fig. 5-18

5.13. Three meshed gears G1, G2, G3 are coupled through torsional springs to disks D1i D2, D3 as shown
in Fig. 5-19. Show that the Lagrangian function for the system is

1 I I
86 + ` 872181 + $

(3d

2+d2+.d2/ 9 + 2
6 2

1 2. 3

d

Bg

1/

2 kid 2 84 07k1 k2,d2

2
81)2- _ (04

2 d3 d2/1 d2

Fig. 5-19

5.14. Springs having constants k1 and k2 are attached
to m1 of the double pendulum as indicated in
Fig. 5-20. When the system is at rest m1 is at p
and the springs are still under tension. Lower
ends of the springs are attached to points a and b
(known coordinates (x1, yl) and (x2, Y2) respectively).

(a) Show that for the springs (not including grav-
ity),

Vi(exact) = zk1(s1 - 1l)2 + 2k2(82 12)2

where s1 = (x1 - x)2 + (y, + y)2
S2 = (x2 + x)2 + (y2 + y)2

How may Vexact be written in terms of o

V(approx.)

(b) Applying equation (2), Page 89, show that for
e small,

l l
2 (kt + k2yrIe2 +

j kiyi 1 11-1

k1l1 k2t2 0 2

2 [y+133

1 2

Fig. 5-20

k2y2 (l2
l

l2
/ J

r102
2
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5.15. Referring to Fig. 5-21, assume ab is the equilibrium position of the rod. Let 11 and 12 (with com-
ponents lx, ly, sx, s,) represent equilibrium lengths of the springs.

\ Uniform Rod, Motion in a Plane.

corresponding rotation of bar.

displacement of c.m. from equilibrium, and 0 gives

Y21 \

Fig. 5-21

(c)

(a) Show that an exact expression for the potential energy of the system may be written as

where

All coordinate axes shown are stationary. 2,y give
Equilibrium position ab. Any general position P1P2.

V(exact) = --k1{[(1 - x1)2 + (ly - 791)2]112 - 10}

+ 2 k2{ [(8x + x2)2 + (8y - Y2)2] 112 - 80} + Mg9

and so are unstretched lengths of the springs.10

(b) Show that relations relating x1, 791, x2, Y2 and 2, 9, a are

2R cos (e0 + 9) + x2 = 2R cos e0 + x1 2R sin (e0 + e) + Y2 = 2R sin e0 + yi
R cos (90 + 9) + 2 = R cos e0 + x1 R sin (eo + o) + 9 = R sin 8o + 791

Note that by means of these equations Vexact may be expressed in terms of 2, 9, o.

Applying equation (2), Page 89, and making use of the above show that, for small motion
about the equilibrium position,

Ilk, +k2-Aly-BSy]22 + J[ki+k2-Alx-Bsz]y2
+ -[k1R(1 - 10/l)(lx cos eo + ly sin oo) + k2R(1 - so/s)(sx cos e0 - sy sin 90)

+ (k1 + k2)R2 - (Ally - Bsxsy)R2 sin ao cos oo
- (Aly + Bsy)R2 sine 90 - (AlX + Bsz)R2 cost e0]e2

+ [Ally - Bsxsy]29

+ [(k2 - k1)R sin 90 + (Ally + Bsxsy)R cos e0 + (Alt - Bs
y)R

sin eo] 20

- [(k2 - kl)R cos oo + (Ally + Bsxsy)R sin B0 + (Alx - Bsz)R cos 90]96P

where A = k110/l3 and B = k2s0/s3, and that

L = JIe2 + JM(22 + 792) ` V(approx.)

where I is the moment of inertia of the rod about a normal axis through c.m.

V(approx.)

5.16. Give a detailed proof of relation (5.13), Page 90.
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5.17. Suppose the entire framework supporting, the double pendulum and springs in Fig. 5-20 is made
to move vertically upward with, constant acceleration a. Will this .change the potential energy of
the springs? To what extent may we regard the gravitational potential energy as having increased?
Write out the new expression for T.

5.18. The support ab, Fig. 5-17, is made to oscillate vertically about the position now shown, with
y = A sin wt. Show that the Lagrangian for the system is

L = M[rl + r2;2 + rZrp2 + A2w2 cos2 wt

_{'" 2rjr29c cos ( - e) 2r1r2¢ sin (¢ - e)
+ 2Aw cos wt (rl cos e - r18 sin e - r2. sin 0)]

+ 2Iq,2 - 2k(rl - ro)2 + Mg(rl cos e + r2 cos 95 + A sin wt)

Compare this with L in Problem 5.11.

5.19. Determine L for the system of Problem 5.11 assuming point p is made to move with constant linear
speed v in a small circle of radius a in the XY plane.

5.20. Referring to Example 5.7, Page 88, show that L may be written as -

M m1M Gym2L =
2

(x2 + y2 + z2) + 2m (pl + pies) +
2 P1

where Pl is the distance from ml to c.m. and r = p1+P2, m1P1 = m2P2

5.21. Referring to Fig. 5-22, the vertical shaft is made to rotate in some known manner. The X, Y axes
are attached to and rotate with the system. The "particle" of mass m is free to move in the XY
plane under the action of the springs and gravity. Show that

L = 4-m[(R + x)282 + x2 + y2] - mgy- 44k11[x2 ± (s - y)2]1/2 - li 12 'k2[(x2 + y2)1/2 - l212

Assuming e = w = constant, show that conditions to be met for "steady motion" (x = constant,
y = constant, z y = 0) are

m(R + x0)w2 - (ki + k2)xu +
klxoli + k2xol2

xo + (s - yo)2 xo + yo

k1(s - yo)li k2yol2mg + (kl + k2)yo - k1s +

Fig. 5-22

Thin uniform circular disk,
radius a, total mass M.

Fig. 5-2i

5.22. Referring to Fig. 5-23, the potential energy of m due to the gravitational pull of the disk is
(for r > a) given by

rV = Gam I a g ( )s ($ costo - 1) + s t )35 c®s4 e - 30 cos

Write L and the equations of motion of m.

xp + -(S- 1/o)2 xp + 7!0
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5.23. Referring to Example 5.7, Page 88, prove that the motions of n1 and m2 are confined to a plane
whose orientation does not change relative to an inertial frame.

Show that, in plane polar coordinates measured in this plane,
Gmli%L =

2
(r2 + 42) +

r2

where the term due to the motion of c.m. has been dropped. Also show that

n 2 Gmim2®2L = (r2 + a2 ) +
Mr2

where r1 + r2 = r and m1r1 = m2r2; r1 and r2 are measured from c.m. to ml and m2 respectively.

5.24. Show, for any system in which L does not contain time explicitly (see Section 5.8) but on which
non-conservative forces are acting, that the time rate of change of the total energy of the system
is given by

d(T+V) = Y, FQ grdt r=1 r

where the generalized forces, FQT,include only the non-conservative forces.

5.25. Suppose the supports a, b, c, d, Fig. 5-10, Page 89, fastened to a rigid movable structure such as a
picture frame. The frame is now forced to move, rotate and translate, in any given manner in its
own plane. Assuming X, Y fastened to the frame and x, y measured as indicated, is expression (2)
in any way changed?

Assuming the frame oscillates parallel to X about some point, fixed relative to inertial space,
with motion given by s = A sin wt, and assuming a particle m fastened to p (junction of springs)
write out L for the particle.

Note. As a good example of V, see Problem 13.15, Page 279.
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6
eter inatIon : Fir

or Forces

(a) Usual Procedure
(b) Use of "Power Function"

6.1 Definition and Classification.

Dissipative forces include any and all types of such a nature that energy is dissipated
from the system when motion takes place. The "lost" energy is usually accounted for by
the formation of heat.

It frequently happens in practice that the magnitude of the force, f, on a particle
(or on an element of area) may be closely represented, over certain ranges of velocity
at least, by

f = avn (6.1)
where v is the velocity of the particle, n is some number and a may be a constant or a
function of coordinates and/or time. As will be seen, this is an important and rather
general (but not the only) type of dissipative force.

(a) Frictional forces. The frictional force required to slide one surface over another is
assumed to be proportional to the normal force between surfaces, independent of the
area in contact and independent of speed, once motion has started. (We shall not
discuss "static" friction.) Hence for n = 0 and a equal to the coefficient of friction
times the normal force, (6.1) represents a frictional force. If the coefficient of friction
changes from point to point and if, perhaps, the normal force holding one surface
against the other changes with time, we have an example in which a is a function of
coordinates and time.

If both surfaces are moving, the frictional force on either one is opposite in
direction to the velocity of that surface relative to the other.

(b) Viscous forces. When the force on an object varies as the first power of its speed and
is opposite in direction to its motion, it is said to be "viscous". The drag on an object
moving slowly through a fluid of any kind or the drag on a magnetic pole which is
moving near a conducting sheet are examples of viscous forces. For n = 1, (6.1) rep-
resents such a force.

(c) Forces proportional to higher powers of speed. Except at low velocities the drag on
an object moving in a fluid is not a simple viscous force. However, it may be possible
to represent it, at least over a limited range, by (6.1). In certain cases n may be
considerably greater than one. (Also, see Section 6.6, Page 103.)

6.2 General Procedure for Determination of Fq,..
Two methods will be employed. The first, treated and illustrated in the following

sections, is based on the general relations (.4.10) and (.4.12), Page 61. The second, in which
the Fqy, are obtained from a "power function", is given in Section 6.8.

Assuming f expressed by (6.1) and directed opposite to v, it follows that, since J/v =
cosine of the angle between v and X, fx = -avn(x/v) = -axon-i. ` Likewise f,, = -ayvn-i,

fz = -azvn-L. Hence, assuming p particles and n the same for each, SWtot.i and generalized
forces are determined as summarized below.

99
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B Wtotai

P- s ati(xi Sxi + ji BNi + zt Bzi)v2 -1 (6.2)

General expression for B Wtota,. Eliminating x,, Sxi, etc., in favor of qi, qi, Bqi, etc., this
'becomes

BWtotai = [. ] Bqi + L' ] Bq2 + [r...] Bqn

Thus the coefficients of 6q1, 8q2, ..., Bqn in (6.3) are the generalized forces.

6.3 Examples: Generalized Frictional Forces.
In the following examples the dissipative forces are assumed to be dry friction for

which n = 0.

Example 6.1. Motion of a particle on a rough inclined plane.
A particle of mass m is projected upward along the rough inclined plane as in Fig. 6-1. The total

frictional force f = µmg. cos a is assumed to be constant in magnitude and opposite in direction to the
motion. Since x/ x2 + y2, for example, is the cosine of the angle between the velocity of m and the
X axis, it is clear that the components of frictional force are

(1) fz = -fx/ z2 + y2, (2) fy = _f/2 + j2
which, in this simple example are the generalized frictional forces. Thus, taking account of gravity also,
the equations of motion are

MX = -µmg cos a (xa i
y2)1f2 , md = - µmg cos a {x2 + y2)1/2 - mg sin a

Important note. If the particle were projected upward along a line x = constant, with initial
velocity yQ (x = x = 0 for all time), the second equation would become m y = - µmg cos a - mg sin a.
It will evidently reach a certain height and (possibly) start back down the incline. One might infer from
the above equation that µmg cos a is always in the negative direction of Y. However, we know that on
starting back the frictional force reverses direction and µmg cos a must now be regarded as positive.
The force is discontinuous and one must be alert to this possibility in dealing with frictional forces. See
Problem 6.12, Page 113.

Particle Moving on Rough
Inclined Plane

Fig. 6-1

Dumbbell Sliding on the Rough
Horizontal XY Plane

Fig. 6-2

X

Example 6.2. Two particles connected with a light rod are moving on a rough horizontal plane, Fig. 6-2.
Let us find the generalized frictional forces. (Other forces which may be acting will not be considered.)

The dumbbell has three degrees of freedom and we, shall use the coordinates x, p, a shown on the drawing.
The magnitudes of the frictional forces on mi and m2 are fi = µm1g and f2 = pm2g respectively.
Assuming the connecting rod is not in contact with the plane and applying relation (6.2) for n = 0,

_ 6x1__1 f1-1811 _ f2x26x2 f2Y2a2I2,
SWtotal -

x2 + 7/1 x2'i"'ZA x2 +2 x2 +i 1 2 2 2 2
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where x1, yl and x2, y2 are the rectangular coordinates of m1 and m2 respectively and -f 1x1/ xi +
for example, is the component of the frictional force on m1 in the direction of x1. But from the figure
it is seen that

xi = x + 11 cos 0, yi' = y + 11 sin e, etc. (2)

Thus xi, yi, Sx1, etc. can easily be eliminated from (1), giving

-SW =

+ f1

(x + lee sin o) Sx + l28 cos e) Sy + [l2(x sin e - cos e) + lze] Se

11/0 + l29 sin e)2 + (y - 129 cos 9)2

(x - 119 sine) Sx + (y +119 cos e) 8y + [l1(' cos o - sine) + lie] S8

f2

(3)

- 119 sin e)2 + (y + 119 cos e)2

Expressions for the generalized frictional forces Fx, FY and Fo may now be read directly from (3). For
example,

F - - f2 ( + l29 sin e) - f 1 (x - lie sine)
x (k)

(x + l29 sin e)2 + (y - l2e Coy 8)2 (x -lie sin 8)2 + (y + lie cos 9)2

For special cases such as z = y = 0 and b 0 or y = 9 = 0 and x 0, the reader may easily
show that F1, Fs, F0 reduce to simple expressions which may be verified by elementary considerations.

It is clear from this relatively simple example that frictional forces may become frightfully involved.
Thus, resulting differential equations may be difficult or impossible to solve except by computer methods.

Example 6.3. A more general case of the above.

Suppose that instead of the two shown in Fig. 6-2, there are p particles arranged in any pattern on
the XY plane and connected together with a rigid framework of rods. The system has only three degrees
of freedom and x, y, a are still suitable coordinates. Relation (6.2) becomes

P fti(xiSxi + 2iSyi)
8 Wtotai = - (6.4)i1 (x2 + y2)1/2

Eliminating xi, Sxi, etc., in favor of , Sx, y, Sy, 6, Se, (6.4) may be written as

a Wtotai = [....] sx + [.... ] Sy + [..] se (6.5)

which is just a special case of (6.3).
Thus coefficients of Sx, Sy, Se in (6.5) are the generalized forces F1, F2, Fo. It is important to realize

that the fi = µi (normal force) are assumed to be known.

Example 6.4. Generalized frictional forces on a thin rod sliding in contact with a rough plane.
Again referring to Fig. 6-2, first imagine a large number, p, of particles distributed along the rod,

each in contact with the rough plane. Relations (6.4) and (6.5) lead to the generalized frictional forces.
For a continuous thin rod it is clear that the summation in (64) must be replaced by an integral. The
reader may show that the integral expression for F1, for example, is

Fx - f-

11 f (x - 1; sin 8) dl

12 [z2 + y2 + 1292 + 2le(y cos e - x sin 8)] 1/2
(6.6)

where f is the frictional force per unit length of the rod (assumed known) and dl is an element of length
of the rod. 1 is measured from point p to dl. l1 and l2 are lengths above and below p. All quantities,
except 1, are here regarded as constants.

Integral expressions for F2 and Fo follow in the same way.

Example 6.5. Generalized frictional forces on a board sliding in contact with a rough plane.
Referring to Fig. 6-3 below it is seen that this is merely an extension of the problem discussed in

Example 6.4. Using the relations

x1 = x + x2 cos 8 - y2 sin 8, y1 = y + x2 sin 0 +y2 COS e

and remembering that, so far as the motion of the board is concerned x2, Y2 are constant, the student may
show that an integral expression for F9, for example, is given by
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E

Board Sliding in Contact with Rough X1Y1 Plane
Fig. 6-3

X,

F - f [(X. 2 + y2 2); + (7/x2 - ;Y2) COs 9 - (xx2 + y7l2) sin 6] dx2 dye
(6.7))

[x2 + y2 + (x2 + y2)®2 + 29 cos 00X2 - h2) - 2B sin 6(xx2 + yy2)]1/22 2

where all quantities, except x2, y2, are held constant and the integral is taken over the entire surface of
the board in contact with the X1Y1 plane. f dx2 dye is the magnitude of frictional force on the element
of area dx2 dy2. f is here assumed to be a known constant., Similar expressions follow for F, F.

The evaluation of these integrals is not simple. A somewhat more tractable form for finding
generalized forces of this and other types is given in Section 6.8.

6.4 Examples: Generalized Viscous Forces.
Setting n = 1 in (6.2), that relation is applicable and reduces to

P

8 Wtotal = - I ai('i 8xi + yi 8y + zi 6zi)
i=1

Example 6.6. Viscous forces on a dumbbell.

Let us assume that forces acting on ml and m2, Fig. 6-2, are viscous rather than frictional. Then

S Wtotal - -alxl Sx1 a1y1 Sy1 - a2x2 SX2 - a2y2 SY2

Eliminating x1, Sx1, etc.,- by the relations x1 = x + li cos e, yl = y + 11 sin e, etc.,

S Wtotai = -[(al + a2)z + (a212 - alll)4 sin e] 8x - [(al + a2)7' - (a212 - alll)® cos a] Sy

-[(a212 + alll)®+ (a212 - all,) (x sin e - ! cos 6)] Be

from which F, FY, FB may be read off directly.

Example 6.7. Viscous forces on a moving plane surface.
Imagine that the board, Fig. 6-3, is now moving near and parallel to the stationary X1Y1 plane.

Suppose that a viscous liquid fills the space between. We shall assume that the drag on each element
dx2 dy2 of the moving surface is viscous and that force components on the element are given by
dfx -axi dx2 dy2i df, = -ail dx2 dy2, where a is the viscous drag per unit area per unit velocity.

Hence, for a general virtual displacement of the entire surface,

a [x1 Sxl + y1 8y1] dx2 dye

where the integration extends over the entire moving surface. Again employing relations xl x +
x2 cos 0 - Y2 sin 6, etc., the above may be expressed as
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S Wtotal = - a f {(x - x28 sin e - 1128 cos e) dx + (y + x26 cos e - 1128 sin e) Sy
(6.8)

+ [(x2 + 112)6 + (.x2 - x112) COS 8 - (xx.2 + Y112) Sin 01 Se} dx2 dy2

Integrating over the moving surface, holding all quantities except x2, y2 constant, the coefficients of
Sx, Sy, So are the desired expressions for Fx, F2, Fe.

Example 6.8.

Suppose the surface above is a rectangle of area A = 2a X 2b with axes X2, Y2 parallel to its sides
and origin at its center. Evaluating the above integral for the limits x = -a to a and y = -b to b,
we get

-S Wtotal = Aaz Sx + Aay Sy + .t-lAa(a2 + b2)6 So

Hence Fx = -Aax, F,, = -Aay, Fo = -3Aa(a2 + b2)6
These simple results depend, of course, on the validity of the assumption regarding the drag on each
element of area. Note that the generalized viscous forces are very simple compared with those of dry
friction.

6.5 Example: Forces Proportional to nth Power of Speed, n > 1.
Relations (6.2) and (6.3) apply directly.

Example 6.9.
As a means of illustrating the method of finding generalized forces for any values of n, consider

again the dumbbell, Fig. 6-2. Let us assume that forces on mi and m2 are given in magnitude by
fi = alvni, f2 = a2vz2 respectively, and that each is opposite in direction to the motion of the cor-
responding particle. Applying (6.2), we have

SWtotal = -[alvl -1(x1 Sxi + yl Syi) + a27J22-1(x2 Sx2 + 112 Sy2)1
Writing vn; 1 = (x1 + )cni-1)/2, etc., and eliminating, xi, Sx1 by x1 = x + l1 cos e, etc., an expres-
sion is obtained from which Fx, Fr, F9 can be read directly. For example,

Fo = -alvi 1 'l1(y cos e - z sine + l1i) - a2v22-112(x sin e - y cos o + l26)

Note. Assuming that the drag df on an element of area dA, Fig. 6-3, is given by df = avn dx2 dy2 =
a(x2 + y1)n12dx2dy2, an extension of the method employed above leads directly to integral expressions
for the generalized forces Fx, F5, Fe on the board.

6.6 Forces Expressed by a Power Series.
Assume that the magnitude of the force on a particle (or element of area) may better

be represented by a series of terms as
f = ao + aiv + azv2 + a3v3 (6.9)

where v is the velocity of the particle and ao, al, a2, ... are constants or perhaps functions
of. coordinates and/or time. If f is opposite in direction to v,

fx = -(ao + aiv + a2v2 + a3v3 + .)(x/v)

Hence with this and corresponding relations for fy, fz, expressions for generalized forces
follow in the usual way.

6.7 Certain Interesting Consequences of Friction and Other Forces.
Consider the following questions:

(a) In removing a tightly fitting cylinder from inside another, why do we always twist one
with respect to the other as they are pulled apart, and likewise in removing a cork
from a bottle?

(b) Why is it that a block of wood, held in contact with a moving belt, can be slid sideways
with very little force; or when dragging a long, heavy object (such as a tank of com-
pressed gas) along a concrete floor, the "free end" in contact with the floor swings
sideways so easily?



104 DETERMINATION OF Fqr FOR DISSIPATIVE FORCES [CHAP. 6

(c) A penny is placed on a rough inclined plane: The tilt of the plane is not sufficient for
the coin to slide down under the action of gravity, even when started. Yet if given
a flick in the horizontal direction, its path is curved downward. Explain.

Answers to these and other questions may be obtained from the following considerations.

The block B of mass M, Fig. 6-4, rests on a cylinder of radius r which is made to
rotate with angular velocity B. The block is prevented from rotating by smooth guides
not shown.

Block B Sliding on Rotating Cylinder
Fig. 6-4

Reference to Sections 6.3, 6.4 and 6.5 will show that the force fx required to pull the
block along the cylinder with velocity x (x measured relative to the fixed line OX), is
given by

`1) fx (x2 + r2e2)1/2' (2) fx = Bx, (3) Jx = Cx(12 + r282)1/2

assuming in (1) that the basic force is dry friction, in (2) that it is a viscous drag and in
(3) that it is proportional to the square of the velocity of the block relative to the cylindrical
surface. (A, B, C are constants.)

Considering (1), it is seen that for rB > x, f is small and in effect is viscous in nature.
In (2), f is independent of the rotational speed of the cylinder. Under conditions stated
for (3) (or for any power of relative velocity greater than one), f increases with r9.

The above facts are of importance in many applications.

6.8 A "Power Function", P, for the Determination of Generalized Forces.
There exists a wide range of forces, including conservative as well as many forms

of dissipative, for which it is possible to write a function P such that generalized forces
are given by

aP
(6.10)

c9gr

P is analogous to the potential function V but considerably broader in scope.

For a system of p particles, each acted upon by forces (fxi, fyi, f=i),
following integral which, as will be seen, defines P:

let us consider the

y

= f (fxi dxi + fyi dyi + f zi dii) (6.11)
i=1

Now if the forces are of such a nature (depend on coordinates, velocity and time in such a
way) that

afxi afyk

axi
(6.12)

ayk
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for all combinations, the quantity under the integral is exact. Hence when the integral
is evaluated, holding all coordinates and time constant, we have a quantity P such that,
fxi = aP/axi, etc. Moreover, as shown below, (6.10) is true.

Substituting fxi = aP/axi, etc., into the general expression (4.10), Page 60, for F9,. and
remembering that axilagr = ax;Iagr, etc., we get

P aP axi aP aii aP az;
ii `axi aq, ayi aqr azi aqr

which is just aP/agr:
From (6.11) it is evident that P has the dimensions of power. Hence it is referred to

as a "power function".

6.9 Special Forms for the Power Function.
For certain types of forces (6.11) is easily put in a simple, directly applicable form.
Consider the case (quite wide in scope) for which fi, the force on mi, is given by

fi = 0i(xi, yi, zi, vi, t) where, as indicated, 0, is an arbitrary function of the coordinates of
the particle, its velocity vi and time t. We will assume that fi has the direction (or opposite)
of vi. Hence fsi xi4 /v1, fyi = y%0%/v%, etc. Thus

afxi a
(Vi)

4 yixi - etc.
ayi avi vi axi

afxi afyk =
Also, 0 for i k. Hence (6.12) is satisfied. Relation (6.11) then becomes

ayk taxi

5 %

v%(xi dxi + yi dy% + zi dzi) = S aI ci dvi

A summary of certain useful forms taken by (6.13) is given below.

Special Forms of the Power Function

For fi = a%v2 ,

For dry friction, n = 0

For viscous drag, n = 1

Surface moving in contact with another. d
where df = force on element of area dA.

n+i

_ aiviP
%=1n+1

P

P = Y, aivii=i

P
P =

1
Y, aivi

2 %_i

avn dA, _ avn+
P n+ dA

For fi a function of coordinates and t alone; fi con-
servative, for example.

P

P = I (fxixi + f4i + fzizi)
i=1

(6.13)

(6-14)

(6.15)

(6.16)

(6.17)

(6.18)

Important note. If the system is acted upon by a combination of forces, say dry
friction and conservative, a total P taking account of both types is merely the sum of (6.15)
and (6.18). Relation (6.16) is the Rayleigh dissipation function.
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6.10 Examples Illustrating the Use of P.
The following examples are for the most part taken from those already giyen above.

Hence the two methods of determining the may be compared directly.

Example 6.10.
A pendulum consisting of a small sphere suspended from a light coil spring (constant = k) is free

to swing in space under gravity, the spring and a dissipative force proportional to the nth power of its
speed. Applying (6.14) and (618), the total P expressed in spherical coordinates is

;2)(n+P n-+1 (r2 + 42 + r2 sin2 a 2)(n+1)/2 - k(r - ro)r + mg(; cos 9 - re sin e)

from which generalized forces follow at once.

Example 6.11.

Consider again the problem treated in Example 6.9. Assuming the plane is inclined at an angle a,
it follows from (6.14) and (6.18) that

a1(x2 + )(n,+1)/2 a2(x2 + y2)(n2+1)/2
P nl + 1 n2 + 1 - mig sin a yi - m29 sin a y2

Transforming this to x, y, e coordinates,

P = - al
[(x - l1o sin 0)2 + (y + l19 cos 9)2](n,+1)/2 - a2 [(x + 129 sin 9)2 + (7y - 129 COS 9)2]("2+1)/2

n1 + n2 + 1

- m1g sin a (y + l19 cos e) - m29 sin a (y - 12B cos 9) (6.19)

Thus generalized forces corresponding to x, y, 9 follow at once from Fx = OP/ax, etc.
Note that putting n1 = n2 = 0, the above applies to frictional forces; or for n1 = n2 = 1 it is the

proper P-function for viscous forces.

Example 6.12.

Referring to Example 6.7 and Fig. 6-3, we will determine a P-function for the board of any shape.
For this problem (6.16) takes the integral form (viscous forces assumed)

P = - 2 f av2 dx2 dye (6.20)

where v2 = X, + yi . Eliminating zl, 1 as in Example 6.7 and integrating over the area A (holding
all quantities constant except x2, y2), we obtain

P = -[2aA(x2 + J2) + 1I®2 - aA9x(x2 sine + 92 cos 9) + aA9y(x2 cos 9 - 7/2 sin 9)]

where I = f a(x2 + y2) dA, j x2 dA = x2A, etc., and .4 y2 locate the "center of gravity" of A.

As seen from (6.20), P is just the negative of the "kinetic energy" of a lamina of any shape moving
in any manner in the X1Y1 plane, where a replaces mass per unit area.

Example 6.13.
Referring to Example 6.4, Page 101, let us determine a P-function for the rod assuming here that

the force df on an element of length dl is given by df = avn dl.
+11 avn+1Applying (6.17), we write P = - f

_ n + 1 dl which when expressed in terms of x, y, 9 by the

relations x1 = x + 1 cos 6, etc., becomes
+tI af

2
n+1P 1; sin 0)2 + (y + 1; cos 9)21(n+1)/2 dl (6.21)

An evaluation of this integral, holding all quantities constant except 1, gives a quantity from which
all three generalized forces may be determined by FQr = aP/aq,

Important note. If the force on an element of area dA = dx2 dye, Fig. 6-3, is given by.
d f = avn dx2 dye, the method employed above may be extended without difficulty to a
determination of P for any surface. (For n 1, integrals are usually quite involved.)
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6.11 Forces Which Depend on Relative Velocity.
Forces of this type may be illustrated by the following example.

Example 6.14.

x3

P2-

M1

x2

Fig. 6-5
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The motions of ml and m2, Fig. 6-5, are confined to a smooth horizontal line. Dashpots in which
pistons p1, P2 can move are rigidly fastened to ml and m2. The pistons and m3 are rigidly fastened to the
horizontal rod. Springs are connected to m1, m3 and m31 m2 as indicated. We shall assume that the
equal and opposite force on a cylinder and its piston is in each case proportional to the nth power of the
velocity of the piston relative to the cylinder (n > 1), proportionality constants being al and a2. Hence
the magnitude of the force on ml due to its dashpot is given by

{1 = a1(x3 - xl)n

Now fl may act in either the positive or negative direction of xl depending on whether x3 - x1 is positive
or negative. But if, for example, n is an even integer, (13 11)n is always positive. To indicate this
condition we write

f1 = a1 Ix3 - x11n-1 (x3 - x1)

where the absolute value Ix3 - x1ln-1 is always to be taken positive.
Expressing forces on m2 and m3 in a similar manner, it follows that SWtotal, neglecting the springs

since their contribution to generalized forces can most easily be taken account of by a potential energy
function, is given by

S Wtotai = a1 Ix3 - xlin-1 (x3 - x1) Sx1 - a2 1x2 - x3In-1 (x2 - x3) Sx2

-al Ix3 - x1ln-1 (x3 - x1) Sx3 + a2 Ix2 - x3I'n-1 (x2 - x3) Sx3

But if, for example, we wish to use coordinates x1, q1, q2, then x2, x3, Sx2, Sx3 can easily be eliminated
from the above relation, and finally

j.'x1
= U, F41 -a2Ig1 - g2)--1 (q1- q2), Fq2 = a2141 - 42 In-1 (gl - q2) - al Ig2In-1 q2

The above example demonstrates the principles involved in the treatment of many
problems of this general type. Solutions to such problems may be obtained with the help
of a computer.

6.12 Forces Not Opposite in Direction to the Motion.
The assumption made thus far that the dissipative force acting on a particle or an

element of area is always opposite in direction to its motion is by no means true in all
cases. Consider the arrangement shown in Fig. 6-6 below.

A magnetic pole moves with velocity v, parallel to the XY plane, near a grill of elec-
trically conducting wires. As a result of the motion, currents are established in the wires;
thus there is a force on the magnet in the negative direction of y given by f = -Cv sin ¢
where C is a factor which depends on the strength of the magnet, its distance from the
grill, and the resistance and spacing of the grill wires. The force on the pole in the x direc-
tion will be regarded as zero. Hence, regardless of the motion, the force on the pole is
always perpendicular to the wires and opposite in direction, not to v, but to the component
of v normal to the wires.
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Magnetic pole is moving in XY plane near
grill of electrically conducting wires. Ends of
each wire are connected to conducting bars
albs, a2b2.

Fig. 6-6

Ngpw

Magnetic
Pole

Fig. 6-7

[CHAP. 6

If the grill is placed so that its wires make an angle a, Fig. 6-7, with the X axis, it is
seen that f x (Cv sin ¢,) sin a and fy = (-Cv sin ¢) cos a where q, is still measured
relative to the wires. Using the relations v cos,6, v sin ,ti, the above
expressions can be written as

fx = C sin a (y cos a - x sin a)
(6.22)

fy = C Cos a (x sin a - y Cos a)

It should be pointed out that, if the grill is made up of wires which are not uniformly
spaced or which vary in resistance from one to the next, the value of C in (6.22) becomes
a function of x and y. If the grill is moved in some known manner, C may be a function
of coordinates and time as well. (Note. v must be measured relative to grill.)

Example 6.15.
Imagine an "isolated" pole suspended from a rubber band so that it can swing in a vertical plane

as a pendulum of variable length near a vertical grill, the wires of which make an angle a with the
horizontal X axis. We shall find the generalized forces which arise as a result of the reaction between
grill and magnet (not bothering here to include forces due to gravity and the rubber band) for the usual
pendulum coordinates a and r. To this end we merely apply the relation S Wtotal = fx Sx + f y Sp.
Eliminating Sx, Sy by the relations x = r sin o, y = Yo - r cos e, it follows that

F,, = Cr; cos (8 - a) sin (e - a) ,- Cr2e sine (9 - a)

F,. = Cr; sin (e - a) cos(e - a) - Cr cos2 (e- a)

The reader may show that the following P-function can be written for this problem:

P = C(xy sin a cos a - x2 sin2 a - cos2

- JC(x sin a -- cos a)2

As an example similar to the above type, consider the motion of an object in contact
with a grooved surface (a small block of wood in contact with a phonograph record). The
force required to move it along the grooves may be considerably less than in a direction
normal to them.

Example 6.16.
Referring to Fig. 6-8 below, plp2 represents the extended pole face of a wide thin bar magnet which

is free to move so that P1P2 remains in the XY plane (with body of the magnet always normal to this
plane). Just below the XY plane is a grill as shown in Fig. 6-6, with the wires parallel to the X axis.
Assuming that ptp2 is uniformly magnetized, let us determine generalized forces corresponding to x1, yl, o.
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The force d f on an element dl of the pole face is given by d f = a dl v sin 0 where v2 = x2 + y2
and a is a constant. Since df is in the negative direction of y and v sin 0 = y, we write dfy = -a dl
and, of course, df,, =0.

Now for a general virtual, displacement of the entire pole face,

l1

8Wtotal (dfx 8x + dfy Sy)

where the integral must be employed to take care of the distributed force along the entire length
r n2 =11. But from y y1 + l sin e, y = yi + 1; cos a and Sy = Syi + l Se cos e. Hence

S Wtotai =
-a (i1

(yi + l9 cos 9)(8yi + 1 Se cos e) dl
J0

Integrating with respect to 1, holding all other quantities constant, we get

S Wtotal = -a(.111 + 2129 cos e) Syl - a(zylli cos e + 3139 cos2 9) So

Thus expressions for the generalized forces Fy1 and F0 are read off directly.

The reader may show that, for this problem,

P = -3a[yi11 + y11i9 cos o + 31392 cos2 9]

Extended pole face of magnet P1p2
free to move in XY plane near grill
wires located exactly as in Fig. 6-6.

Fig. 6-8

p2 X

Fig. 6-9

Example 6.17.
A rigid rod of length r is pivoted at p1i Fig. 6-9. On the other end of this a bar magnet (shaped as

shown at the lower left) is supported in a smooth bearing at p2. All motion is confined to the vertical
XY plane. Due to a grill of parallel wires (one wire indicated on the diagram) located just back of the
pole pieces, forces of the type given by (6.22) act on each pole. We shall write a P-function in terms of
coordinates el and e2 for this system (gravity not considered).

Inserting relations (6.22) into (6.11) and integrating for the single pole of Fig. 6-7, P = -2C(x sin a -
2! cos a)2. Hence for the problem in hand,

P = --C[(x1 sin a cos a)2 + (x2 sin a - y2 cos a)2]

where x1, yi and x2, y2 are coordinates of N and S respectively. But xi = r sin 81 + 1 sin 92, x2 =
r sin e1 - 1 sin 92, etc. Thus P finally reduces to

P = -C[r2®2 sing (91 + a) + 1292 sing (e2 + a)]

A Word of Caution. Much remains to be said about the basic expressions for fx, fy, f=
on a particle (or an element of area) due to the various dissipative forces. For example,
the magnitudes of frictional forces depend somewhat on velocity. Usually, so-called viscous
forces are not "viscous" except at very low velocities, etc. Hence it is not to be expected
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that the simple expressions which have here been assumed in order to illustrate general
techniques are strictly valid in all cases. However, given more exact expressions for
f, f y, fz for any particular problem, the methods illustrated lead to correct expressions for
the generalized forces.

6.13 Suggested Experiment.
Various interesting and instructive experiments can be performed with the arrange-

ment shown in Fig. 6-10. The block may be of wood or metal and the cylinders of any
convenient size. For relatively large values of 8, it is an intriguing surprise to see what
little force is required to move the block along the cylinders. Indeed the cylinders must
be leveled very carefully to prevent the free block from drifting under the slightest com-
ponent of gravity.

With cord and weight arrangement shown, it should be possible to make quantitative
measurements of fx (see Fig. 6-4) for various values of 8, x and with cylinders either dry
or lubricated.

Parallel Cylinders Rotating in Opposite Directions
Fig. 6-10

Problems

A. Use of standard methods [relations (4.10), (6.2), (6.3)] for the determination of generalized forces.

6.1. A small sphere is suspended from a rubber band in a viscous liquid Assuming a simple viscous
force acting on the sphere and no drag on the band, show that generalized viscous forces cor-
responding to the spherical coordinates r, 6, 0 are

Fr = -ar, Fg -ar28, Fo = -are sine 6
where a is the viscous force per unit velocity on the sphere.

6.2. Referring to Example 6.6, Page 102, and Fig. 6-2, show that generalized viscous forces cor-
responding to coordinates x1, yl, 8 are

Fx1 = -(a, + a2)x1 - a21; sin 8, Fy, = -(a, -i- a2)yi.+ a21; cos 6,

FB = -a212; a21(x1 sin 8 - ya, cos 6)
where 1= 11+12.
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6.3. Spheres m1, m2, Fig. 6-11, are submerged in a
viscous liquid. Show that generalized viscous forces
corresponding to coordinates y and y3 are

FY = -a1(j3 + y) + a2(y3 -
Fy3 = -al(iJ3 + -- a2(y3 -

where al and a2 represent the viscous force per unit

velocity on ml and m2 respectively.
Repeat above using coordinates yl and y3.

6.4. The masses in1, m.2i m3, Fig. 6-12, are free to slide
along a straight line on a horizontal plane. Coeffi-
cients of viscous drag between blocks and the plane
are al, a2, a3 respectively. Each of the magnets A and
B exerts a viscous drag on m2, and the force in either
case is determined by the velocity of the magnet rela-
tive to m2. Coefficients of viscous drag are a4, a5.

A

II

kI"""'L
x2 -

!r a,
k2

X3 -

m:

q2

i

ms,

Fig. 6-12

Show that the generalized forces (not including forces exerted by the springs) corresponding to
coordinates xl, x2, x3 are

and that for x1, q1, q2,

a4(x2 - x1)

-a2x2 + a4(x1 - x2) + a5(x3 - x2)

Fx3 = -a3x3 + a5(x2 - x3)

F'xl = -a1x1 - a2(xl + q1) - a3(xl + ql + 42)
Fql = -a441 - a2(x1 + 41) - a3(x1 + gl + g2)

Fq2 = -a542 - a3(x1 + g1 + g2)

6.5. Referring to Fig. 6-13, the horseshoe magnet and
copper disk are supported by three lengths of piano
wire, forming a double torsional pendulum. Tor-
sional constants of the wires are C1, C2, C3 respec-
tively. There is a viscous drag a1 per unit velocity
between the disk and brake blocks B1, B2, and a
similar drag a2 between the magnetic poles and the
disk. Show that the equations of motion for the
system are (assuming a1 and a2 acting at radial
distances r l, r2)

1191 + 0381 + C2(e1 - e2) + 2alr1g1

+ 2a2r2(e1 - 62) = 0
as

12 e2 - C2(e1 - 02) + C1e2 - 2a2r2(e1 - 82) = 0
where 11, I2 are moments of inertia of the disk
and magnet respectively and e1, e2 corresponding
angular displacements.

111

k
y

I I
L_y

'Y

M2

Viscous
Liquid y`- yz

Fig. 6-11

G5

Fig. 6-13
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6.6. A flat circular disk of radius r is in contact, with a plane surface coated with oil. Assuming the
oil exerts a uniform viscous drag on every element of area of the disk, show that the generalized
forces corresponding to x, y, o are

Fx = -Aax, FU = -Aa, F® _ -2Aar2e
where x, y locate the center of the disk and a its angular position. A = 1rr2 and a is the viscous
force per unit area per unit velocity. Note that each force depends only on the corresponding
velocity.

6.7. The bar magnet and "isolated" poles, Fig. 6-14,. each i
exerts a viscous force on the conducting sheet. Show
that the generalized dissipative forces corresponding to
coordinates y1 and y2 are

-4(a1 + a2 + a3)y1 + 2(a2 -

2(a2 - a3)y1 - (a2 +
a3 represent the viscous forces per unit

relative velocity exerted by the three magnets respec-
tively on the conducting sheet. Assume vertical motion
only for the sheet, bar and poles.

6.8. Assuming the force of dry friction is independent of
velocity, show how an almost "frictionless" bearing can
be constructed. Sketch possible arrangement. Fig. 6-14

6.9. A small mass ml attached to a light spring of length r, unstretched length ro and spring constant k,
can swing as a pendulum on the rough inclined plane, Fig. 6-1. Using polar coordinates show that
for a general virtual displacement (assuming kinetic friction in action),

S Wtotal (r2+r a )-
2

[mgr sin a sine +
2 f r g2 1/2

88 = Fr 8r + F0 8o
(r + rae )

where f = µmg cos a. Under what conditions may the frictional forces be discontinuous?

6.10. A particle is free to move in contact with the face of a disk rotating with angular velocity w
(constant or varying with time) about a vertical axis. Polar coordinates (r, e) of the particle are
referred to inertial X, Y axes with origin at the center of the disk.

(a) Assuming dry friction between particle and disk, show that
F = µmgr

r FB
µmgr2(B - w)

[?'.2 + r2(B - w)211/2

(b) Assuming a viscous drag, show that

Fr -ar, F® = ar2(® - w)

Note that if the disk is made to oscillate so that its angular displacement a is given by
a = ao sin fit, for example, then w = a = aof3 cos fit and thus time enters explicitly into all
forces above except Fr in the second case.

6.11. A particle moves in contact with a rough horizontal board. Assuming the coefficient of friction
for motion in the X direction is I.L. and in the Y direction µ,, show that the generalized frictional
forces corresponding to polar coordinates are

Fr = -AA. cos e + µN sin e), F,, -fr(µ, cos e - p,, sin e)

where f is the normal force between particle and board.

-k(r - ro) + mg sin a cos o - , f r, Sr
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6.12. Blocks a and b, Fig. 6-15, fastened rigidly together with a light rod of length 1, slide in contact
with blocks c and d. Block e slides without friction along the smooth rod. Block c slides along
the X axis and d is fixed. Coefficients of friction between surfaces in contact, are as
indicated. Note that each of the normal forces between surfaces in contact depends on the
position of m4.

Fig. 6-15

Assuming the system is in motion such that x2 and x1 are positive and z2 > x1, show that
generalized forces corresponding to x1, q1, q2 are

Fx1 [µ1(m1 + m2 + m4 - m4g1/l) + µ3(m3 + m4g1/l)]g

Fq2 = Fq1=0

Are the above expressions valid if, for example, x1 > x2? Obviously, forces of this type must
be treated with caution.

6.13. A rectangle of dimensions 2a x 2b is drawn on a flat board. Four tacks having small round heads
are driven in, one at each corner of the rectangle. The board is then placed, heads down, on a
rough plane. Using x, y, a as coordinates (x, y measured to the center of the rectangle and a taken
as the angle between the 2a side and X) and assuming dry friction, show that S Wtotat is given by

f1 {[x + r8 sin (e +,8)] [Sx + r SB sin (e + /3)]

+ [?! - r9 cos (e + a)] [Sy - r so cos (e + /3)] } v
1

+ f 2 { [x - r9 sin (e - /3)] [ax - r Se sin (e -13)]
I+ [y + re cos (e -,8)] [8y + r 8e cos (a -,8)1)
V2
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- [µ2(m2 + 7x24 - m4g1/l) + 93(m3 + m4g1/l)]g,

+ f3.{[x - re sin (e +p)] [Sx - r Se sin (e +,G)]

+ [y+ r®cos(o+(3)][Sy+rSecos(e+/3)]}v
3

where

r2 a2 + b2,

+ f4 {[x + re sin (e - /3)] [Sx + r Se sin (e - ,8)]

+ [7 - re cos (e -,a)] [Sy - r Se cos (e - a)]}
V4

tan p = b/a, v1 = {x2 + y2 + r2e2 + 2rd[z sin (e + /3) - y cos (8 +,8)]11/2

with similar expressions for v2, v3, v4. f1 = µ(normal force
on first tack head), etc. fl, f2, f3, f4 are assumed to be
known.

Note that generalized forces can be read off from

8 Wtotal

6.14. A circle of radius R is drawn on a flat board. n tacks
having small round heads are driven in at equal spacings
on the circle, as in Fig. 6-16. (Angular spacing between
each is a.) The board is then placed, heads down, on a
rough plane. Measuring x and y to the center of the circle,
denoting angular displacement of the board by 8, and
assuming frictional forces, ishow that an expression for
8 Wtotat from which Fy, F11, FB may be obtained is Fig. 6-16
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S Wtotai, = -f I 1 [x - Re sin (/3i + e)) [Sx R Se sin (/3 +
i=1 vi )]

n 1 .

f v. [y + Re cos (/3 + 8)] [Sy + R Se cos (/3 + e)]
i=1 i

where f is the magnitude of the frictional force on each sphere (all' assumed equal), 6i = (i - 1
and

v2 = [x - Re sin (/ii + o)]2 + [yi + Re cos (/3i + 8)]2

I

6.15. A thin circular ring of radius R is placed in contact with a rough plane. Using coordinates x, y, 9
where x, y locate the center of the ring and a its angular displacement relative to the X axis, show
that the generalized frictional force corresponding to x is given by

FX - f
{[x -

2r

Re sin (

[x

8 + a

Re

)]2

sin

+
([e

y

+

+

a)]

Re

R da

COs (8 + a)]2}112

where R da is an element of length of the ring and f is the frictional force per unit length of ring.
Compare above result with that of Problem 6.14.

6.16. Show that if the drag exerted by each magnet in Problem 6.7 is assumed to be proportional to the
square of its speed.relative to the sheet, the generalized forces are

F11

Fy2

8a 1 I7/l yl - 2a2 12711 - y21 (2y, - 112) - 2a3 12y1 + y21(2y1 + y2)

= + a2 12y1 - 7#21(2Y1 - 112) - a3 I2711 + Y21(2y1 + y2)

B. Use of power function for determination of generalized forces.

6.17. Show that P for the sphere in Problem 6.1, Page 110, is

P = - 2 a(;2 + x282 + r2 sin2 9 ¢2)

Apply (6.10), Page 104, and compare results with previously found expressions for generalized
forces.

6.18. Show that for Problem 6.3, Page 111,

P = -1a1y21 - - a2y2 = -4.al(7/ + 1/3)2 - .a2(y - 713)2

Determine Fy, Fy3 and check with previous results.

6.19. A dumbbell consisting of two small equal spheres fastened rigidly to the ends of a thin, smooth
rod is free to move in space through a viscous fluid. Neglecting drag on the rod and assuming no
rotation of the spheres about the rod as an axis, show that

P = --a(x2 + y2 + x2) - a(12e2 + 12c2 sin2 9)

where x, y, z locate c.m. of the dumbbell, 1 is the length from c.m. to the center of a sphere and
e, 0 are usual spherical coordinates.

6.20. A flat circular disk of radius r is in contact with a plane surface coated with oil. Assuming the oil
exerts a viscous drag (coefficient per unit area = a), show that the proper P-function is

P = -2Tr2a(x2 + y2) - 17rr4a92

where x and g/ are the velocity components of the center of the disk. Likewise show that for a
rectangle of area A = 2b X 2c,

P = aA(x2 + y2) - 6aA(b2 + 02)e2

Coordinates x and y are measured to the center of the surface in each case above. (See Example
6.8, Page 103.)
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6.21. Show that for the particle in Example 6.1, Page 100,

P = -1 mg cos a (x2 + y2)1/2 - mgy sin a

6.22. Show that P for Problem 6.9, Page 112, is

P = -a(r2 + r2e2)1/2 - k(r - ro)r + mg sin a (r cos e - re sine)

Compare generalized forces obtained from (6.10), Page 104, and those read from S Wtotai

6.23. Referring to Problem 6.15, Page 114, show that the corresponding P-function is given by

2vP = _f
{[x - Re sin (6 + a)] 2 + [ + Rs cos (B + a)]2}1/2 R da

0

where f is the frictional force per unit length of the ring.
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6.24. Show that the integral expression for the P-function for a flat disk of radius R in contact with
a rough plane using the same coordinates as in Problem 6.23 is

R a= - f 2

{x - re sin (e + a)] 2 + [y + re cos (e + a)]2}1/2 r dr daP f f
0

where f is now the dry frictional force per unit area in contact. Write the integral for viscous drag.

6.25. A thin rod of length I is in contact with a rough plane. Assuming a frictional drag, show that
(x and y measured to end of rod)

f
f

[x2 + 2 f 2 + r282 + 2re(y cos o - x sin B)]1/2 dy.

0

This integral clearly takes the form

where a =

ft
(are + br + c)112 dr

b=29(ycose-x sine), c=x2+y2.

6.26. Assuming that the force introduced by the dashpot, Fig. 6-17, is proportional to the cube of the
velocity with which the piston moves in or out of the cylinder (proportionality factor = b) and that
there is a viscous drag between each pair of flat surfaces (corresponding constants involved,
a1, a2, a3), show that

P = -2[a,;2 + a2(;2 - x1)2 + a3(x3 -x1)2] I b(x3 - x2)4
+ k1(11 - x1)xl + k2(12 + x1 - x2)(;2 - ;1) + k3(13 + x2 - x3)(;3 - x2)

where kl, k2, k3 are spring constants and 11,12,13 are unstretched lengths of the springs respectively.

Fig. 6-17
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6.27. If the grill, Fig. 6-6, Page 108, is rotating with angular velocity a about an axis perpendicular to
the XY plane and,passing through the origin, show that equations (6.22), Page 108, must be
replaced by

fx = C[y cos a - 1 sin a - (x cos a + y sin a)a] sin a

fy = -C[y cos a - x sin a - (x cos a + y sin a)a] Cos a

Show that P = ---C[y cos a - x sin a - a(x cosa + y sin a)].

6.28. A grill of conducting wires such as shown in Fig. 6-6, Page 108, is fastened to a flat board which
is free to slide about to any position on a smooth stationary XY plane. Coordinates x1, yl locate
its center of mass and a its angular position. A magnetic pole, located by coordinates (x, y), is free
to move parallel to (but not quite in contact with) the grill surface. Assuming a force on the
magnet and an equal and opposite force on the grill due to relative motion of the two, find
generalized forces corresponding to x, y, xl, yl, 0.

fx = C{[y - yl - (x - x1)9] cos e - [x - xl + (y - yl)9] sine} sin e

fy = -C{[y - ?h - (x - x1)9] cos 6 - [x x1 + (y - yi)9] sine} cos e

fx1 = -fx, fyl = -fv, fe fyl (x - x1) fxl (y - yl)

Show that all forces above may be obtained from

P = ---C{[j - yl - (x- x1)9] cos e - [x - 11 + (y -,yl)'b] sin 0}2

6.29. Referring to Example 6.2, Fig. 6-2, Page 100, let us assume that the rough plane on which the X, Y
axes are drawn is in motion. Origin 0 has a velocity v = (12 + ) 1/2 and X, Y rotate in the plane
of the paper with angular velocity a. xo, yo are measured relative to some inertial frame, say
X', Y', and a is the angle between X' and X.

Note that expressions for F, F,, Fe (see top of Page 101) are unchanged by the motion. How-
ever, in writing T in terms of x, y, e, x,y, 9 the translation and rotation of X, Y must of course, be
taken account of.

The above illustrates a rather general procedure which can be applied to Example 6.5, Example
6.12, and many other problems where the "dissipative surface" is in motion.

6.30. Suppose the force on an element of area dx2 dye is given by f = avn dx2 dye. (See Fig. 6-3, Page 102.)
n

Then by (6.17), Page 105, P = -af f v

n +21y2 which can be written as

P = -a ff 1
n + 1 [(z - x29 sin e - y29 cos e)2 + (y + x29 cos e - y29 sin e)2]nt2 dx2 dye

But, at any instant considered, let us regard X1, Y1 as inertial and superimposed on X2, Y2. Then
o = 0 (9 0) and

P -a f f fn + 1 [(x
Y2; )2 + (y + x2B)2]ni2 dx2 dye

which is considerably simpler than the original expression.



CHAPTER

7
latent Moments

Products I e
Rigid Body Dynamics: Part I

A clear and comprehensive understanding of moments and products of inertia and the
many important details associated with them is essential to a study of the motions of rigid
bodies. Hence the subject is here treated in a separate chapter before attempting a dis-
cussion of rigid body dynamics. It is assumed that the reader is familiar with the
definition of moment of inertia and its use in the solution of elementary problems.

7.1 General Expression for the Moment of Inertia of a Rigid Body About Any Axis.

Fig. 7-1

Referring to Fig. 7-1, it is seen that the moment of inertia Ioa, of the rigid body about
line Oa, is merely Ioa, = m'h2 where m' is the mass of a typical particle, h the normal
distance from Oar to m', and the summation includes all particles of the body. But
h2 = r2 - OP2, r2 = x2 + y2 + z2, OP = lx + my + nz and 12 + m2 + n2 = 1, where 1, m, n
are direction cosines of Oar. Hence we write

Ioa, = F,,

from which
Ioa,

m'(r2 - OP-2) = m'[(x2 + y2 + x2)(12 + M2- n2) - (lx + my + nz)2]

12 m'(y2 + z2) + m2 m'(x2 + z2) + n2 m'(x2 + y2)

- 21m 5' m'xy - 21n m'xz - 2mn I m'yz (7.1)

117
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Clearly I m'(y2 + z2) = I. is the moment of inertia about the X axis, etc. I m'x;
is called a product of -inertia. Thus

IOa1 = Ix12 + Iym2 + Izn2 - 21x,lm - 2lxzln - 21,,mn (7.2)

where, for convenience, we have written Ix instead of I. , etc. As a matter of clarity, sum-
mation rather than integral signs have been used in (7.1). For a continuous distribution of
mass,

Ix = 5 (y2 + z2) dm, etc.

Relation (7.2) is very important in that it constitutes the basis for all further treatments
.of moments and products of inertia.

Notice that Ix, Ixy, etc., are fixed quantities for a given body-fixed frame X, Y, Z. How-
ever, they will in general have different values for different locations and/or orientations
of the frame.

It is important to realize that for known values of Ix, I, etc., the moment of inertia
of the body about any line of given direction through 0, can be computed at once by (7.2).

7.2 The Ellipsoid of Inertia.
Selecting any point pi(x1, yi, z1) on Oat, Fig. 7-1, at a distance s, from 0, it is seen that

xi = sit, yl s1m, z,. =stn. Eliminating 1, m, n, (7.2) may be written as

Ioals21 IxxI + IyyI + Izzi - 2lxyx1yl - 21xzx1z1 - 21yzyiz1 (7.3)

Considering any other line, say Oat, an exactly similar expression holds for Ioa,s2 where
again 82 is an arbitrary distance along Oat, measured from the origin to any point
p2(x2, y2, z2) on the line. Hence the form (7.3) is applicable to all lines passing through 0.

Now imagining a large number of straight lines drawn in various directions through 0,
let us select s for each line such that

loa s2 = 1 (7.4)

Therefore we can write the general relation

Ixx2 + Iyy2 + Izz2 - 2lxyxy 21xxz - 2lyzyz = 1 (7.5)

which is the equation of an ellipsoidal surface (in general not one of revolution) oriented
in some, as yet undetermined, manner with respect to X, Y, Z as indicated in the figure.
It is referred to as the ellipsoid of inertia about 0.

The above results apply to an object of any shape: a stone, a chair, a steel girder, etc.
But it must not be supposed that there is only one ellipsoid per body. Indeed ellipsoids in
general, each of different size and orientation, can be drawn for all points in and through-
out space around every object.

The fact that there is an unlimited number of ellipsoids for any object is not as frightful
as it may appear since, as will soon be shown, when the ellipsoid about the center of mass
is known all other moments and products of inertia and ellipsoids can be computed.

It should be clear that the moment of inertia about any line drawn through 0 is given
by Ioa = 1/s2 where s is now the distance from 0 to where the line pierces the ellipsoid.
Also note that we could just as well have written (7.4) as Ioas2 = C = any constant, thereby
giving the ellipsoid any convenient size.
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7.3 Principal Moments of Inertia. Principal Axes and their Directions.
With axes X, Y, Z taken along the ' principal diameters 2a, 2b, 2c of any ellipsoid, the

equation of its surface has the form
x2 y2 z2W

+
b2

+
C2

= 1 (7.6)

Likewise, if X, Y, Z are taken along the principal diameters of the ellipsoid of inertia, the
products of inertia are zero and thus

IPx'2 + Iyy2 + IPz2 1 or IO,, = IPl2 + IPn' + 1,171,2 (7.7)

where Ix, IV', IP are referred to as "principal moments of inertia". Corresponding axes
XP, YP, ZP are called "principal axes of inertia".

From known values of I, Ixy, etc., in (7.5), the directions of the principal axes as well
as values of Ix, IY', IP can be found as follows. It can be shown that the direction cosines
1, m, n of a line drawn normal to the surface ¢(x, y, z) = C are proportional to
a//ax, a0/9y, ath/az respectively, that is,

a0 = ki, Lo = km, = kn (7.8)
ax ay ' az

where k is a constant. Applying these, relations to the ellipsoidal surface (7.5), we have

Ixx - Ixyy - Ixzz = kl

Iyy - Ixyx - Iyzz = km (7.9)

Izz - Ixzx - Iyzy = kn

But a principal axis is normal to the surface where it pierces the ellipsoid and at this point
(distant r from the origin and having coordinates x, y, z) 1 x/r, m = y/r, n = zlr. Note
carefully that r is the length of a principal radius and 1, m, n are here direction cosines of
a principal axis of inertia.

Now eliminating x, y, z from (7.9), multiplying through by 1, in, n respectively and
adding the group, there results

k/r = Ixl2 + Iym2 + Izn2 - 2fxylm - 21..ln - 21yzmn

Comparing with (7.2), k = IPr where, clearly, IP is a principal moment of inertia. Relations
(7.9) can now be written as

(IP - Ix)1 + Ixym + Ixzn = 0

Ixyl + (IP - Iy)m + Iyzn = 0

Ixzl + Iyzm + (IP - Iz)n = 0

(7.10)

from which the three principal moments of inertia and their directions will now be obtained.

In order that these equations have other than trivial solutions, it is necessary that

IV - Ix Ixy Ixz

Ixy IV - IV Iyz

Ixz Iyz IP - Iz

An expansion of this determinant gives a cubic equation in IP. Inserting known values of
I, Ixy, etc., (found by computation or by experiment) and solving for the three roots, we
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have lip, I2, Ia, the three principal moments of inertia. (Roots of the above equation are
easily found by the "Graeffe Root Squaring Method". See Mathematics of Modern Engi-
neering,, by R. E. Doherty and E. G. Keller, John Wiley, 1936, pp. 98-130. This powerful
method,;which is applicable to equations of any degree; has many practical applications.)

Inserting lip into (7.10), these relations may be solved for relative values (only) of h, mi, ni,
direction cosines of the principal axis corresponding to I. Writing expressions thus ob-
tained as cili, cirri, cini (ci is some constant) we have li = cili/(cili + c;mi + clni)1i2, etc. Like-
wise direction cosines of the remaining two principal axes follow.

Note. As seen from (7.10) the relative values of h, mi, ni are just the cofactors of the
first, second and third elements respectively of the first row (or any row) of (7.11) with
Ii inserted; etc. (For definition of "cofactor" see Page 210, directly above (10.11).)

7.4 Given Moments and Products of Inertia Relative to Any Rectangular Axes with Origin
at the Center of 1'Iass, to Find:

(a) Corresponding quantities referred to any parallel system of axes.

(b) The moment of inertia about any given line.

(c) The ellipsoid of inertia about any point.

Developments of this and coming chapters may be simplified by the following easy-to-
remember notation. Plain symbols such as X, Y, Z indicate any frame (origin not at c.m.),
and Ix, etc., indicate corresponding moments and products of inertia. A bar over a
symbol indicates a center-of-mass quantity. X, Y, g represents a frame with origin at c.m.,
and I,, I,y, etc., refer to corresponding moments and products of inertia. A superscript p
indicates a "principal" quantity. X", Yp, Zp are principal axes (origin not at c.m.), and
Ix, Iy, If are corresponding principal moments of inertia. XP, Yp, Zp are principal axes
through c.m., and Ixp, It, Ip are corresponding principal moments of inertia.

(a) In Fig. 7-2 the origin of X, Y, ,Z is at
c.m., and that of the parallel frame
X, Y, Z is at any point 0. Both frames
are regarded as attached to the body.

The moment of inertia Iz about OZ,
for example, is given by

Iz = 1, m'(x2 + y2)

But x = xi , etc. Hence
Ix. m'[(xi + F.)2 + (y' + 9)2]

m'(xi + y2)

+ (x2 + y2) m'
+ 2; 1 m'xi + 2P m'yi

Since 0, is at c.m. the last two terms
are zero. Hence

Iz = Iz + M(x2 +'J2) Fig. 7-2
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where M is the total mass of the body and (x? + 82)112 is the normal distance between
Z and Z. (Obviously this relation applies to any two axes, one of which passes through
c,m. Thus, for example, Ioa = Ioial + Md2 where d is the normal distance between
Oa and O1a1.)

The product of inertia Ixy m'(xy), by the same steps as above, is given by
xy = Ix1y1 + Mxg. Thus in general,

Ix = Ix + M(y2 f 22), Iy = Iy M(x2 + z2), Ix = Iz + M(x2 + y2) (7.12)

Ixy + Mxy, I. = Ixz +Mxz, Iyz = Iyz + W; (7.13)

Moments and products of inertia relative to X, Y, Z, Fig. 7-2, in terms
of c.m. quantities.

(b) From relations (7.2), (7.12) and (7.13) it follows that the moment of inertia about any,
axis Oa, Fig. 7-2, through 0 is given by

Ioa [Ix + M(92 + 22)]l2 + [Iy + M(x2 + 22)]m2 + [Iz + M(x2 + i2)]n2

- 2(Ix11 + Mxg)lm- 2(Ixz + Mx2)ln -- 2(Iyz + My2)mn (7.1.4)

Moment of inertia of body about any line Oa, Fig. 7-2, in terms of
c.m. quantities.

Thus given moments and products of inertia relative to any frame with origin at
c.m., we can write at once an expression for the moment of inertia about any desired.line.

(c)

[Ix + M()2 + 22)]x2 + [Iy + M(x2 + 22)]y2 + [Iz + M(x2 + y2)]z2

- 2(Ixy + Mxy)xy - 2(Ixz + Mx2)xz - 2(Iyz + My2)yz =
The ellipsoid of inertia about 0 in terms of c.m. quantities.

(7.15)

If X, Y, Z are principal axes, Ixy = Ixz = Iyz = 0 and the above simplifies some-
what. But since (7.15) still contains products of inertia, Ixy = Mxy, etc., it is evident
that X, Y, Z are in general not principal axes through 0. Thus principal axes through
any arbitrary point are, in general, not parallel to those through c.m.

However, if 0 is on a principal axis through c.m., ZP, for example, x 0
and (7.15) reduces to

1 = (Ix + M22)x2 + (I + M22)y2 + Izz2 (7.15)

with similar expressions for 0 anywhere on XP or YP. Since these relations contain
no products of inertia, principal axes through any point on XP, YP, ZP are parallel to
these axes; this is an important result.

The planes XP, PP, etc. are referred to as "principal planes" and it may be shown
that for any point on either of them, one principal axis is normal to the plane.. See
Problem 7.19.

7.5 Given Moments and Products of Inertia (Ix1, Ixlyl, etc.) Relative to Any Frame
X1, Y1, Z1, to Find Corresponding Quantities (1.,2, Ix2y2, etc.) Relative to Any Other
Parallel Frame X2, Y2, Z2.

Referring to Fig. 7-3 below, the X1, Y1, Z and X2, Y2, Z2 frames are parallel, but neither
origin is at c.m. The typical particle m' has coordinates xl, yi, z1 and x2, y2, z2.

From (7.14) it is clear that we can write
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X

Fig. 7-3

Writing Ixl = m'(y2+zi), Ixlyl = m'xiyi and employing the relations xl = xo+x2,
etc., it follows at once that

Ix1 Ix2 + M(yo + zo) + 2M(yo?2 + zoz2)

Ixlyl Ix2y2 + Mxoyo + M(xo92 + yo1t2)
(7.17)

=

where x%92,22 are coordinates of c.m. relative to X2, Y2, Z2. Similar relations follow for
I , lxlyl, etc. (For a slightly different form of (7.17), see Problem 7.25.)

7.6 Given Ixl, Ixlyl, etc., Relative to X1, Yl, Z1, Fig. 7-4, to Find Ix, Ixy, etc., Relative to
the Rotated X, Y, Z Frame.

Let all, a12, a13 be direction cosines of OX, etc., as indicated in Fig. 7-4. Then applying
(7.2), it is clear that

I. 1x1 all + ly1 ail + Izl al3 - 21x1y1 a11a12 - 21xlzl allal3 . 2Iy1z1 a12a13. . (7.18)

Moment of inertia I. about axis X in terms of moments and products
relative to the rotated Xl, Yl, Zl frame. I. and Iz are given by exactly
similar relations.

In order to determine products of inertia, Ixy for example, we return to the definition
I, = 17n'xy. Eliminating x, y with the transformation equations

x = a11x1 +a 12Y1 + a13z1, y = a21x1 + a22y1 + a23z1

we obtain
I 'mn'(a11x1 + a12y1 + a13z1)(a21x1 + a22y1 + a23z)
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Fig. 7-4
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The reader may easily show that this reduces to the first relation in (7.19) below. (Note. In
order to show, in this reduction, that

1Th`(a11a21X1 2 2
+ a12a22y1 + «13«2321) = -(a11a21Ix1 + a12a22Iy1 + a13a23Iz1 )

Iwe subtract from the sum the zero quantity
\\(

(a11«21 + al2«22 + a13«23/(x1
and collect terms.)

I =
xy

2x33 + a32a13)Iy1z1

(a21a32 + a22a31)Ix1yl + (a21a33 + a31a23)Ix1z1 + («22a33 + a23a32)Iylzl

- (a21a31jil + a22a32Iy1 + a23a33Izl )

Products of inertia relative to the rotated X, Y, Z frame.

(a11a21Ixl + a12a22Iyl + a13a23Izl )

(a11a32 + al2a31)Ixlyl + (a110'33 + a13«31)Ix1z1

- (a11a31IxI + a12a32Iyl + a13a33Izl )

yi + zi )

(a11a22 + a12a21)Ixly1 + (a11a23 + a13a21)Ixlz1 + (x12«23 + al3a22)Iylz1

(7.19)

Hence the moment of inertia about any line Oa having direction cosines 1, m, n relative
to X, Y, Z can be found in terms of Ixl, Idyl, etc., from

IOa = Ix12 + Iym2 + Izn2 - 21mIxy - 21nIxz - 2mnIyz

and relations (7.18) and (7.19).

If it is assumed that Ix, I, etc. are given, to find Ixl, lyl, etc., the reader may show,
following just the procedure outlined above, that

Ixai1 + Iya21 + Ixa31 - 21xyalla2l - 2lxza11a31 - 21 a21a31

(cell a22 + (x12a21)Ixy + (a1 1a32 + a12a31)Ixz (7.20)

+ -(a21«32 + a22a31)Iyz - (a11a12Ix + a2la22Iy + a31a32Iz)



124 GENERAL TREATMENT OF MOMENTS'AND PRODUCTS OF INERTIA [CHAP. 7

Similar relations follow for Iyl, I'll, I11z1, I ilzl.

Important note. Given moments and products of inertia relative to any rectangular
frame, we can now, applying (7.17), (7.18), (7.19), determine corresponding quantities
relative to any other such frame located and orientated in any manner with respect to the
first. Indeed the second frame might be moving in some known manner relative to the first.

7.7 Examples of Moments, Products and Ellipsoids of Inertia.
Example 7.1.

The basic physical and geometrical ideas of the past sections can be made clear by a consideration
of the simple "rigid body" shown in Fig. 7-5 which,, as will be seen, has all the dynamical properties of
any ordinary body such as a wheel, beam, chair, etc. `

Fig. 7-5

The arrangement consists of three particles rigidly connected to the Z axis by thin "massless" rods.
The X, Y, Z frame and the particles form a rigid unit. The mass and coordinates of each particle are
indicated on the figure.

(a) Let us first determine the moments and products of inertia relative to X, Y, Z.

Ix = mi(?1i2 + z2) = ml(y1 + z1) + m2(p2 + 22) + z3)

= 100(144 + 25) + 200(64 +'225) + 150(144 + 196) = 125,700 g-cm2

Likewise, I. = 117,250, Iz = 104,750.

Ixy = mi(xiyi) = 100(12 x 10) - 200(10 X 8) + 150(11 X 14) _= 19,100 g-cm2

Similarly, Ixz = -44,800, Iy, = 4800.

(b) From the above values we can immediately write the following expression for the ellipsoid of inertia
about the origin O.

125,700x2 + 117,250y2 + 104,750z2 - 2(19,100)xy + 2(44,800)xz - 2(4800)yz = 1
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(c) The moment of inertia of the "body" about any line through 0, as Oa, may be found as follows. A
point p on Oa has coordinates shown. Hence direction cosines of this line are -6/s, 8/s, 20/s where
s = 62 + 82 + 202. That is, l -.268, m = .358, n = .895. Hence by (7 2),

101, = (.268)2 (125,700) + (.358)2 (117,250) + (.895)2 (104,750)

+ 2(.268)(.358)(19,100) -2(.268)(,895)(44,800) - 2(.358)(.895)(4800)

(d) Consider moments and products of inertia relative to axes X, P, Z (not shown on the diagram) parallel
to X, Y, Z and with origin at c.m. By equation (7.12),

By (7.13)

Iz = Iz - M(22 + 7t2) = 104,750 - 450(5.882 + 1.562), etc.

Ixy IxY - Mzy = 19,100 - 450(-5.88 X 1.56), etc.

Hence we can find at once the moment of inertia of the body about any line through c.m., as well as
the ellipsoid of inertia about this point.

(e)

(f)

Since we have numerical values for Ix, Ixy, etc., applying results of Section 7.4, a numerical value for
the moment of inertia of the body about any given line in space can, be found at once. Likewise, an
expression for the ellipsoid of inertia about any given point in space can immediately be written down.

Finally, note that on applying the results of Section 7.3 the principal moments of inertia and the
directions of corresponding principal axes at 0, at c.m., or indeed at =any point in space, could be found.

Example 7.2.

Consider the thin triangle, Fig. 7-6. The following moments and products of inertia relative to
X, Y, Z are easily obtained by integration.

I, = .Mb2, Iy = WMa2, Iz = -M(d2 + b2), Ixy = iaMab,

Fig. 7-6

(a) The ellipsoid of inertia about the corner 0 is

.M[b2x2 + a2y2 + (a2 + b2)z2 - abxy] = 1

Ixz=Iyz=0

(b) The moment of inertia about any line Oa, not necessarily in the XY plane, is given by

IOa = *M[b2l2
+

aam2 + (a2 + b2)n2 - ablm]'

where 1, m, n are the direction cosines of Oa relative to X, Y, Z.
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(c) From (7.12) and (7.13), we find

Ix = IgMb2, Iy = iaMa2, 1, = AM(a2+ b2), Ixy = -s Mab, T. = Iyz = 0
Thus the ellipsoid about c.m. is

IsM[b2x + a2y2 + (a2 + b2)zi + abxlyl] = 1

(d) The moment of inertia of the triangle about any line 01a1i not necessarily in the plane of the triangle, is

1HM[b211 + a2 m" + (a2 + b2)nl + abllml]

(e) Following Section 7.3, the principal moments of inertia about axes through c.m. are

M(a2+b2-I- a=+bT-a2b2),Ii,2 = 136 73 = I1 + I' = sM(a2 + b2)
Writing (11, m1, n1), (l2, m2, n2) and (13, m3, n3) as the direction cosines of the principal axes, it is seen
from (7.10) that n1 = n2 = 0, n3 = 1, 13 = m3 = 0, and l1i 12, ml, ant are determined from

l = -Ixy[Izy+ (Ip-lx)2]-112 m = (1P-Ix)[12,+ (71,_1x)2]-1/2

(f)

Thus, for given values of a, b, M, the angle o (see figure) can be determined.

The origin of X1, Y1 (see upper right hand sketch in Fig. 7-6) is located at c(x,, y,) in the XY plane.
Yl makes an angle /3 with Y. Z1 and Z are parallel. x, y, are measured relative to X, Y. Let us
determine moments and products of inertia of the triangle relative to' X1, Yl, Z1. It is seen that

I = Mb2 + My2, Iy = 1gMa2 + Mx , 1', = Mx,,y, --- 36 1 Mab,

.I', = I', = 0, Iz = -1M(a2 + b2) + M(x2 + y2)

Direction cosines of the X1, Y1, Z1 are

all = Cos /3, a12 = sin /3, a13 = 0, a21 sin 13, a22 = COS /3, a23=0, a31 - 2=0, a33=1
Thus from relations (7.18) and (7.19) it follows that

M(is b2 + y2) cos2 /3 -1- M(iga2 + x2) sin2 /3 -- 2M(x,y, -- 3-Lab) sin /3 cos /3

M(13 b2 + y2) sin2 /3 + Nf(18a2 + x } cost (3 + 2M(x,y, - -Lab) sin /3 cos /3

36 is C
ab) cos 2/3 + M(-L b2 + y1) sin /3 cos /3 - M(1s a2 + x'2) sin ,6 cos /3M(x,.y, - -L

Iz = 18 M(a2 + b2) + M(xC + yC), Ix1z1 = Iylzl = 0

(g) Suppose that the X1Y1 axes rotate in some known manner about the fixed position of Z1. /3 then varies
with time and the above quantities become known functions of t.

Example 7-3.
Fig. 7-7 represents a thin lamina such as can be cut from sheet metal or thin plywood.

Fig. 7-7
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Assuming an area density p = 2 grams/cm2, the following values relative to X, Y, Z have been
computed:

Ix = 1.61 X 104 g-cm2, Iy = 2.62 X 104, Iz = 4.23 X 104, Ixy = -1.036 X 104, Ixz = Iyz = 0 (1)

(a) Principal moments of inertia and angle o are found to be (see Section 7.3)

Ix = 3.26 X 104, iP = .97 X 104, Iz = 4.23 X 104 (2)

e = 58° approximately.

(b) The ellipsoid about c.m. can be written in terms of either set of values, (1) or (2); that is,

(1.61x1 + 2.62y2 + 4.23z1 + 2 X 1.036x1yj)104 = 1 (3)

(3.26x2
2 2 2+ .97y2 + 4.23x2)104 = 1 (4)

where x1, yl, z1 are relative to and x2, y2, z2 to Xp, Yp, Zp.

(c) Note that Ioa = (3.2612 + .97nm22 2
.+ 4.23n2)104 (5)

or again, I,Q = (1.611' + 2.62m1 + 4.23n2 + 2 X 1.03611m1)104 (6)

where 11, nz1; n1 correspond to xl, yl, z1, etc. (5) and (6), of course, give the same value for any
particular line Oa.

Example 7.4.
Consider the rectangular block, Fig. 7-8. Here

Ix = *M(b2 + 02)

Iy = IM(a2 + C2)

Iz = 3M(a2 + b2)

Ixy = Ixz = Iyz = 0

(a) Then X, Y, Z are principal axes, Ix = Ix, etc.,
and the ellipsoid of inertia about c.m. is
Ixx2 + Iyy2 + Izz2 = 1.

(b) Moments and products of inertia relative to
X,Y,Z

Ix

Iy

Iz

are easily shown to be

=43 M(b2
+ c2)

= 3M(a2 + c2)

= s M(a2 + b2)

Ixy = Mab Ixz = Mac Iyz = Mbc

The ellipsoid about 0 follows at once.

2b

aN!(b2 + c2), Zar = c2), 1 = b2)

Fig. 7-8

(c) Let us determine the moment of inertia about any line Qa. The direction of Oa is determined by the
fact that at some point p the coordinates have, for example, the values shown. Hence direction cosines
of Oa are

1 = 10/(102 + 92 + 132)1/2 _ 10/18.7, nz = 9/18.7, n = 13/18.7

Thus applying (7.2),

Ioa = 350 [3 M(b2 + C2) 102 44M(a2 + c2) 92 + 3M(a2 + b2) 132

- 2Mab X 90 - 2Mac X 130 - 2Mab X 117

Note that (7.3) may be used directly, perhaps with some advantage because here no thought need be

given to direction cosines.
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Example 7.5.

Consider the uniform-solid
As determined by integration,

cone of Fig. 7-9.

Ix = Iy = so M(4r2 + h2), If = ,Mr2,

= ixz Iyz 0

(a) Applying the results of Section 7.4, we can find
Ix, Ixy, etc., relative to any parallel frame, the
moment of inertia of the cone about any line of
given direction and, of course, the ellipsoid of
inertia about any point. Relative to the X, Y, Z
axes shown,

Ix = 80M(4r2 + h2) + 11sMh2; Ixy = 0, etc.

(b) Taking X, Y, Z parallel to XP, YP, ZP but with
origin at 02,

Ix = e M(4r2 + h2) + M(r2 + 116h2); Ixy = 0

Iy -1 M(4r2 + h2) + 116Mh2; - Iyz = -1Mrh, etc.80

Fig. 7-9

(c) Applying the results of Section 7.6, Ix, Ixy, etc., can be found relative to any frame with origin
located at any point in space and axes rotated in any manner with respect to, say, XP, YP, Z. (See
the following example.)

Example 7.6.

The block of Fig. 7-10 (same as the one in Example 7.4) is shown in a rotated position. Axes X1, Y1, Z1
indicate the original location. To make clear the position now occupied, imagine the block first rotated
about OZ1 through an angle ¢, keeping OX in the X1Y1 plane. Then rotate it about OX, making an
angle o between OZ1 and OZ.

Fig. 7-10

Let us determine moments and products of inertia of the block relative to the X1, Y1, Z1 frame.
With a box in hand as a model, the reader can readily show that direction cosines of X, Y, Z are as

given on the diagram.



CHAP. 7] GENERAL TREATMENT OF MOMENTS AND PRODUCTS OF INERTIA 129;

Applying (7.20) and using values of Ix, Ixy, etc., from Example 7.4, it follows that

Ixl = 3M[(b2 + C2) COS2 y + (a2 + C2) Sin2 y COS2 a '- (a2 + b2) sin2 y sing e

+ 2 ab sin p cosy cos e - 2 ac sin p cosy sine + 2 bc sing sin e cos e]

Mab(cos2 y - sine y) cos e + Mac(sin2 ,, - cost 0) sin e

+ 2Mbc sin y cosy sin o Cos e - aM(b2 + c2) Sin p Cosy

+ 3 M(a2 + C2) Sin p COS y COS2 0 + 3 M(a2 + b2) sin . COS y sing e

Expressions for Iyl, Ixlzl, etc., follow in the same way.

Note. Imagine that either or both of the angles e, y are changing in some known manner with time.
Then, of course, Ixl, Ixlyl, etc., may be expressed as functions of time. The results of this example are
very important in Chapter 8.

In this example it was assumed for simplicity that the OX axis remains in the X1Y1 plane. When
this is not the case, the orientation of the X, Y, Z frame may be determined by three "Euler angles" 0, Q5, y,
the use of which is explained in detail in the following chapter.

7.8 "Foci" and "Spherical" Points of Inertia.
The following results are interesting and of practical importance. Let X", YP, ZP,

Fig. 7-11, be principal axes through c.m. As previously shown, principal axes through
any point on either XP, YP, or ZP are parallel to these axes. For the discussion which
follows let it be assumed that Ix> ly> If.

(a) Consider ellipsoids of inertia about points p, and pi at distances s
from the origin.

_ Vp - Iy)1M]1,2

Ixl - IxA ly1 = ly+Iz-Iy = F
Thus Ix1= Iy,; and since X1, Y1, Z1 are principal axes through p1, the ellipsoid about
this point is one of revolution. about Z1. Thus a section of the ellipsoid in the X1YI
plane is a circle. A similar statement holds for pz. pl and pi are referred to as "foci
of inertia". Show that another pair of focal points exist on XP. Determine focal points
on YP. Are there focal points on ZP?
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(b) If ly = Iz and Ix > 1,', then at points pi, pi on XP at distances s -}[(Ix - 101M] 1/2,

Ix = Iy = Iz = Ix. Hence the ellipsoid about either of these points is a sphere. pi and pi
are here called "spherical points". If the ellipsoid' about c.m. is one of revolution, do
spherical points always exist? (Find spherical points near a thin uniform disk.)

Example 7.7.
Referring to Fig. 7-8 (see Example 7.4), assume for example that a > b > c. Thus Iz > ly > 1f.

(a) Selecting points p, p' on the ZP axis at distances s = ±[(If - Iy)IM] 1/2,

Iz = Iz' ly Iy+Ms2 = ly+Iz -Iy = Iz
Hence a section of the ellipsoid about p or p' in the YZ plane is a circle. Thus p and p' are focal points.
The reader may find other such points.

(b) Suppose now that b = c and a < b, that is, Iy = I', 1z > Iy . Selecting points on the XP axis at
distances s _ -[(Ix - ly)/M]1/2,

Ix =
I7

X Iy = Iy + Ix - Iy = Ix , Iz iz + Ix - 1,P = ix

Hence Ix = ly = 4 = Ix in this case, s = a2)11/2 and Ix = 3Mb2 Thus the moment of
inertia of the block about any line through either point = 2Mb2.

7.9 Physical Significance of Products of Inertia.
Imagine the thin lamina, Fig. 7-12, rotating with constant angular velocity (,) about the

axis shown, in fixed bearings B, and B2. Each particle of the lamina, as m', exerts a
centrifugal force f = m'w2r on the surrounding material. (Neglect gravity.)

Fig. 7-12

An appreciation of the physical significance and importance of products of inertia may
be obtained from a determination of the total moment Tz of all centrifugal forces about
the Z axis with origin of X, Y, Z at pi. As can be seen from the diagram,

Tz = m'w2ry M10)2 (X + s)y = 02, m'xy + w2s m'y -

(1)

which for convenience we take as positive in a clockwise direction. Thus it is seen that

`02I + w2sMy (2)
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But Ixy Ixy + May (L2 determined relative to X, Y), from which
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Tz = tA21xy + (tu2Mr)y (3)

Now the total centrifugal force F due to all particles is F _ m'o,2r Mw2r. Hence
the second term of (3) is just Fi, with F regarded as acting at c.m.

Hence Tz, the total clockwise moments of the centrifugal forces about Z, may be re-
garded as due to a couple w2lxy acting in the plane of the lamina plus the moment Fg, F
acting at c.m. Note that the location of pi, the origin of X, Y, Z, does not affect the value
of the couple. Thus the moment about any axis normal to the lamina can be written down
at once. For example, about one through P2, T2 = w2lxy; through the center of B1, TB =
o,2lxy + w2Mrl1, etc.

To find F1, F2, the forces exerted by the bearings on the shaft, we write, taking moments
about the center of B2,

F1(li + 12) + Mo,2rl2 - Ixy o2 = 0 or F1 = 1, + la (Ixy - Mrl2)

Likewise, F2 = - li + 1
2

(Ixy+Mrl1)

(Of course F1 and F2 can be found by writing F1 + F2 + Mro,2 = 0 and taking moments
about P2.) If if, Y are principal axes, Ixy = 0 and F1, F2 are due only to the centrifugal
force Mw2r acting at c.m. If, in addition to this, c.m. is on the axis of rotation, F1 = F2 = 0.

The above discussion will later be extended to a rigid body of any shape rotating in
any manner. (See Example 9.7, Page 187; also Problem 9.17, Page 200.)

Example 7.8.

Suppose the triangle, Fig. 7-6, Page 125, is rotating with constant angular velocity (D about the Y axis
in fixed bearings located at 0 and 02i (distance between bearings = b). Find the bearing forces (gravity
not considered).

From Example 7.2, Ixy = -3&Mab. Hence bearing force at 0 is Fi = (w2/b)(eMab + ssMab)
_Jo2Ma and at 02 it is F2 =

112w2Ma.

7.10 Dynamically Equivalent Bodies.
Two or more bodies which are entirely different in appearance and in mass distribu-

tions may behave exactly the same dynamically when acted upon by equal forces applied
in the same manner. This is clearly the case when their total masses are equal and the
principal moments of inertia through their centers of mass are the same. Such bodies are
said to be "equimomental". The general method of finding such bodies is illustrated by
the following examples.

Example 7.9.

(a) Suppose that the pairs of equally massive particles, Fig. 7-13(1) below, are fastened to a rigid massless
frame as indicated. X, Y, Z are obviously principal axes through c.m., and the ellipsoid of inertia
about c.m. is seen to be

(2m2b2 + 2m3c2)x2 + (2mia2 + 2msc2)y2 + (2m1a2 + 2m2b2)z2 = 1

Values of m1, rn,,. m3 and the lengths a, b, c can be so chosen by the following procedure that the
arrangement is equimomental,to any given body.

Consider any object having principal moments of inertia Ix, I, Iz at c.m. and a total mass M. It is
clear that if values of m1, m2, m3 and a, b, c satisfy the relations 2(m, + m2 + m3) = 1V1,
I . = 2(m2b2 +'1713c2), etc., the arrangement shown in the figure is dynamically equivalent to the body.
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z

Four particles dynamically equal to the triangle.

12

(2)

O

Inertial Skeleton

Five particles equimomental to the lamina.
13

For proper values of 11, 12, 18, M
it is dynamically equivalent to any
rigid body.

(3) (4)

Fig. 7-13

An easy solution is obtained by setting m1 = m2 = m3 = M/6 and solving for a, b, c. Here
a = [(3/2M)(I + Iz - J)}1/2, etc.

(b) It-may be shown that the four particles, Fig. 7-13(2), are equimomental to the thin uniform triangle.
Also, the five particles of Fig. 7-13(3) are dynamically equal to the rectangle.

(c) An "inertial skeleton", Fig. 7-13(4), consisting of three mutually perpendicular slender rods rigidly
fastened together at 0, can always be found which is dynamically equivalent to any rigid body.

7.11 Experimental Determination of Moments and Products of Inertia.
The experimental determination of moments and. products of inertia is easy, and with

reasonable care results are quite accurate. For bodies of irregular shape this is the only
practical way of finding these quantities.

If moments and products of inertia relative to axes with origin at c.m. are known,
corresponding quantities relative to any other axes may readily be computed. Hence We
outline briefly an experimental method of determining these center-of-mass values.

(a) Select any two or more points on the body. Suspend it by a cord, first from one and
then from another of these points. Thus c.m. is, of course, located at the intersection
of the lines of suspension. Hence three mutually perpendicular axes, 1, Y, Z, with
origin at c.m. can then be chosen.
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(b) Having done this, fasten the body in a
supporting frame F of a torsion pendu-
lum, Fig. 7-14, so that, say the Z axis,
coincides with the axis of oscillation of
the pendulum. With the aid of a good
stop watch determine the period of oscil-
lation P. As can easily be shown,
P = 2-/(I. +I1)/c where Iz and It are
moments of inertia of the body and frame
respectively about the axis of oscillation
and c ' the torsional constant due to the
upper and lower piano wires. (Values of
It and c can be determined using, in
place of the body shown, say uniform
rods the moments of inertia of which
are known from dimensions and mass.)
Thus Iz = Plc/47r2 - It. In like manner
Ix and ly are found.

(c) Now having selected three other axes
Opt, Opt, Op3 (passing through c.m.) whose
direction cosines (11, mi, ni, etc.) are known,
determine as before IoPI, lope, IOP3. But

Piano Wire,
Torsional
Constant c

Fig. 7-14
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'Op1 = Ixl1 + lym1 + Izn1 - 2lxyl,m1 - 21xzllni - 2lyznim1 etc.

Hence with previously determined values of I4,I4,I4 these equations can be solved for
Ixy,Ix:,lyr.

If, as a matter of convenience, Op, is taken in the XY plane at 45° from either axis,
li = mi _ .707, ni = 0. Hence Iopl = .5(Ix + Iy) - Ixy or finally Ixy = .5(Ix + ly) - I o,, .
In like manner Ixz and Iyz are found.

7.12 Suggested Project on the Ellipsoid of Inertia.
This project and the following suggested experiment will give the reader confidence

in the theory and a down-to-earth feeling of familiarity with the material covered in this
chapter.

Two thin rectangular plyboards, of
any convenient dimensions, are cut and
rigidly glued together at right angles as
indicated in Fig. 7-15. Assuming an area
density of say 10 grams/cm2, compute
Ix; Iy, Iz for the "thin board" combination.
Show that Ixy = Ixx = lyz = 0 and hence
that X, Y, Z are principal axes. Write an
equation for the ellipsoid about c.m. In
the relation Is2 = C. choose e some con-
venient constant and draw to scale sec-
tions of the ellipsoid about c.m. in the XY
and YZ planes and (on a cardboard insert)
in the XZ plane. Measure the distance s
from c.m. to any point on the ellipsoid and Fig. 7-15
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compare c/s2 with the computed value of I about this line of known direction.
What changes would be made in the ellipsoid if a particle of mass m were glued to the

model at, say, point p? Sketch a section of the ellipsoid for this case.

7.13 Suggested Experiment.
Determination of the ellipsoid of iner-

tia of a thin lamina.
The frame ab of the torsion pendulum,

Fig. 7-16, consists of two flat metal strips
separated by only a fraction of an inch.
A thin lamina of any shape, cut from ply-
board, is clamped between the strips with
a bolt B passing horizontally through the
strips and board at point pi. The lamina
can be set at any angular position relative to
the axis of rotation by turning it around B.

Following the method outlined in Sec-
tion 7.11, moments of inertia about several
lines, all passing through the center of the
bolt and spaced say 15° apart from 0 to
180°, are determined. With this data and
the relation Is2 = c, a section of the ellip- T_ Piano
soid of inertia e, can be plotted on the I Wire

lamina. With reasonable care a surpris- Fig. 7-16

ingly good ellipse is obtained.
Using the above data, compute and plot an ellipse e2 about some other point P2. (This

will be a bit less tedious if the first ellipse is about c.m.) Repeating the first experimental
procedure with B passing through P2, compare computed and experimental results.

This interesting and instructive experiment gives real meaning to "ellipsoid of inertia",
"principal axes", etc. It never fails to make a lasting impression on the student who
performs it.

Problems

7.1. (a) The line Oa, Fig. 7-17 below, makes an angle e = 30° with Z. Show that 10,, = 76MR2.

(b) The coordinates of a point on a line Oa' (not shown) are x = 5, y = 4, z = 6 cm. Show that
Ioa, = YMR2.
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Fig. 7-17

7.2. (a) Obtain by integration expressions for I, I, Iz, Ixy, Fig. 7-6, Page 125.

(b) The coordinates of a point on line Oa are x = 4, y = 5, z = 7 cm. Show that

Ioa =
6

90[16b2 + 25a2 + 49(a2 + b2) - 20ab]
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7.3. Show that the moment of inertia of a body about any line Oa through the origin of coordinates
is given by

Ioa = (Iyx2 +.Iyy2 + Izz2 - 21xyxy - 2lxzxz - lyyz)(x2 + y2 + z2)-l

where x, y, z are coordinates of any point on Oa.

7.4. Show that the moment of inertia of the block, Fig. 7-8, Page 127, about the line Oa' is given by
IOa' = M[3 (b2 + C2)x'2 +

3
(a2 + c2)y'2 +

3
(a2 + b2)(4c2)

2abx'y' - 4ac2x' - 4bc2y'] [x'2 + y'2 + 4c2] -1

7.5. (a) A line Oa (not shown) passes through 0, Fig. 7-9, making an angle e with OZ. Show that

Ioa = QM(4r2 + h2)] sin2 B + oMr2 cost 6

(b) A line parallel to Oa passes through c.m. Show that the moment of inertia about this line is
soM(4r2 + h2) sin2 B + o0Mr2 cost e.

7.6. (a)' A line be, Fig. 7-17, makes an angle o with Z. Show that

Ibe = 1Mr2 cos 0 + (1MR2 + Ms2) sin2 6

(b) Show that the moment of inertia about 01a1 is

I01a = (1IMRt + M92)12 + (}MR2)m2 + (1MR2 +

7.7.- Write an expression for the moment of inertia of the block, Fig. 7-8, Page 127, about a line having
direction cosines 1, m, n which passes through the point x0, yo, zo. (1, m, n and x0, yo, zo are measured
relative to XP, YP, ZP.) The line does not necessarily pass through c.m.
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7.8. Show that for any rigid body, the moment of inertia about any line passing through two points
xl, yl, zl and x2i y2i Z2, measured relative to X, Y, Z (not necessarily principal axes) is

I = [Ix + M(yl+zi)] (X2
s x1)2 [ly + M(xi-l-zi)] (Y2 S Yi)2 + [Iz + M(xi+yl)] (Z2 ti112

-
\ l

2(I

+\\Mx

(x2 - xl)(y2 - iii) - 2(I \ Mx
(x2 - x1)(z2 - z1)

xy 1y1) 82 xz + 1z1) s2

'-
(Y2 - ylz2 - z1)

2(Iyz + Mylzl) S2

where s2 = (x2 - x1)2 + (Y2 - yi)2 + (z2 - z1)2.

7.9. Write an expression for the ellipsoid of inertia about a point on the periphery of the disk, Fig. 7-17.

7.10. Write an expression for the ellipsoid of inertia about the point p1(xo, yo, zo), Fig. 7-18.

(ZP 1, m, n
p1 Z (x0, Yo, zo)

1x'= I '= li2M(3R2 + L2), I a = -}MR2

Fig. 7-18

7.11. Referring to Fig. 7-7, Page 126, show that the angle e = 58°.

7.12. For the block, Fig. 7-8, M = 1000 grams, a = 3 cm, b = 5 cm, c = 5 cm. Determine numerical
values for the principal moments of inertia about the corner pl. From equations (7.10), Page 119,
determine two sets of direction cosines of the principal axes of the ellipsoid of inertia about pl.
Show that these sets are equivalent.

7.13. Considering a thin lamina of any shape, take reference axes X, Y, Z, with X, Y in its plane and the
origin at any point p. Ix, Iy, Iz, Ixy are relative to these axes. Prove that the principal moments
of inertia Ii, I2, I3 . about principal axes XP, YP, ZP respectively are given by

71,2 = 2[Iz -} Iz - 4(Ixly-I.y)], I3 = Ix + I.

Show that ZP (corresponding to I3) is normal to the lamina and that the angle e which XP
makes with X is given by

tan e = Ixy or tan e = Ix - Zi
Iy - Ii Ixy

7.14. Refer to Fig. 7-5, Page 124. At a point pl where x = 5 cm, y = 4, z = 0 measured relative to
X, Y, Z, compute the principal moments of inertia and find directions of principal axes.

7.15. Show that the ellipsoid of inertia about p2, Fig. 7-18, is given by
1 = (2MR2)y2

and that principal axes at p2 are parallel to XP, YP, ZP.



CHAP. 7] GENERAL TREATMENT OF MOMENTS AND PRODUCTS OF INERTIA 137

7.16.- Show that the moment of inertia is the same about all axes passing through either 0 or pl, Fig. 7-19;
that is, p, and 0 are spherical points. Check this by the methods of Section 7.8.

Fig. 7-19

7.17. Show that the moment of inertia about any line having direction cosines I, m, n and passing
through p2, Fig. 7-19, is given by

I = 20MR2[(24 - 15 sin o)12 +. (4 + 20 sine e - 15 sin e)m2

+ (4 + 20 cost e)n2 - 10(sin 8 cos o - a COS &)mnj

7.18. Referring to Fig. 7-18, show that:
(a) for L = Rvr3, the ellipsoid of inertia about c.m. is a sphere for which I = z-2MR2.

(b) for R = L there are spherical points on the PP axis at points distant -R// from the origin.
Here I = JMR2 about every axis through these points.

(c)

(d)

for L > RV3, focal points exist on the Xp and ZP axes at s = I11)/1VI.

for L very small, spherical points exist on YP at distances ± R from the origin. Do spherical
or focal points exist on ZP?

7.19. Consider any line parallel to the principal axis 2P through c.m. of any rigid body. Prove that it is
a principal axis of an ellipsoid drawn about the point where it pierces the "principal plane" XP P.

Show that, where 6 = angle between XP and XP,

tan 20 = 2Mxy
(Iy+Mx2) - (Ix+Mp2)

The same general results are true, of course, for lines normal to the XP ZP and YP ZP planes.

7.20. Consider a rectangular lamina, dimensions 2a X 2b, mass M. Draw X. YP, ZP axes through c.m.
with XP parallel to a and ZP perpendicular to the surface.

Consider another frame X 1, Y1, Z1 through c.m. with ZP and Zl collinear but X 1 along a
diagonal of the rectangle. 1 _ --Mb2, if = 3Ma2. Show that

Ixl aM \a2 + 82/ ' Iyl = aM \a2 + b2/ , ' 1 = M(a2 + b2), Ix1111 = 31YIab \ a2 + b2/

7.21. For the triangular lamina, Fig. 7-20 below, values of Ixl , etc., are as given
Prove that:

Ix2
Ix1 cost e + Iyl sine 0 - 21,1111 sin 0 cos 0

on the drawing.

1112 Ixl sine 0 + 1,1 cost e + 27x1111 sin o cos 0

Ix2y2
I,Llyl (COS2 6 - sing o) + (Ixl - 7I1) Sin 0 COS 8
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7.22. The triangular lamina, Fig. 7-20, is rotating with constant angular velocity w about the axis shown,
in fixed bearings B1 and B2. Show that the couple due to centrifugal forces is

C = w2[ IMh(2c - s) cos 2o + 18M(s2 - cs + c2 - h2) sin a cos B]

Determine the bearing forces F1 and F2, neglecting gravity.

7.23. (a) Prove that the four particles, Fig. 7-13(2), are equimomental to the uniform triangle.

(b) Design a skeleton of inertia which is equimomental to the hemisphere, Fig. 7-19.

7.24. Imagine the rigid body of Fig. 8-1.6, Page 156, replaced by the cone, Fig. 7-9, Page 128. The apex
is fixed at the origin 0, otherwise the cone can move in any manner about this point. X, Y, Z are
fixed to the cone with Z along its axis. Show that I,,, the moment of inertia of the cone about the
fixed X1 axis, is given by

0M[r2 + h2 - (4h2 - r2) sin2 B Sin2,p]

Test this for e = 0, ¢ = 0, and for e = = 90°. Write an expression for I,xlyl. (See Section 8.8,
Page 157. Note that direction cosines of X, Y, Z relative to X1, Y1, Z1 in terms of Euler angles, are
listed in Table 8.2, Page 158.)

The student should realize that, regardless of how the cone may be spinning and swinging
about 0, the above expressions are true for any position. If the motion were known, Ix1, 40

1,
etc.,

could then be written as functions of time.

7.25. For a more general case than the above, suppose the X, Y, Z axes, Fig. 8-16, Page 156, are principal
axes through 0 for a body of any general shape similar to the one shown. Corresponding moments
of inertia are Ip, Iy, If-

Show that moments and products of inertia relative to the fixed X1, Y1, Z1 axes are given by
Ixl = Ix (cos 0 cos p - sin 0 sin p cos e)2 + If, (sin o cos ¢ + cos 0 sin cos e)2 + If sin2 0 sin2 ¢, etc.
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Rigid Body Dynamics: Part II

8.1 Preliminary Remarks.
A "rigid body" is one in which no part of its mass undergoes a change in position

relative to any other part, regardless of what forces may be acting. Strictly speaking no
such object exists, but in practice there is of course an extensive field of dynamics for
which this greatly simplifying assumption is justifiable.

Basically no difference exists between rigid-body and particle dynamics since any rigid
body may be regarded as a very large number of particles constrained to remain at fixed
distances one with respect to the other. The primary reason for treating rigid-body
dynamics as a separate phase of the general subject is that certain special techniques are
required for writing appropriate expressions for T.

In setting up equations of motion, one of the following two methods is usually employed.

(a) The Lagrangian Method (treated in this chapter) in which, after writing a suitable
expression for T, Lagrange's equations are applied in the usual way.

(b) The Euler Method (treated in the next chapter) in which the Euler equations for
translation and rotation of the body are applied directly without considering T.
Whether one method is more suitable than the other depends somewhat on the problem

in hand but, in general, the Lagrangian has many advantages: simplicity, ease of writing
equations of motion, elimination of forces of constraint, readily applicable in any suitable
coordinates and for any number of rigid bodies.

A mastery of the basic principles and techniques of rigid-body dynamics requires a
clear understanding of (a) the background material covered in Section 8.2, (b) the deriva-
tion of T given in Section 8.3 and (c) the many examples given throughout. (a), (b), (c) are
by no means independent units. A full appreciation of (a) requires an understanding of
(b) and (c), etc. Hence considerable rereading, with close attention to detail, is required.

8.2 Necessary Background Material.
A. Angular velocity as a vector quantity.

Referring to Fig. 8-1 let us assume that the body, fixed at 0, is free to turn in any
manner about this point. All quantities here considered will be regarded as measured
relative to X, Y, Z. Hence whether this frame is inertial or not is of no concern at the
moment. Let it be assumed that, at some given instant, the body has an angular velocity
w about some line Oa. As a result of this the particle m has a linear velocity v normal to
the Oam' plane and of magnitude v = wh where h is the normal distance from m' to the
axis of rotation Oa.

We shall now show that angular velocity may be regarded as a. vector w directed along
Oa and of magnitude equal to its absolute value. That is, to can be replaced by X, Y, Z
components wz, &)Y, wz and treated in all respects as a vector. As will soon be evident, this
is of paramount importance in the treatment of rigid-body dynamics.

119
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Fig. 8-1

Y

One point of body attached at O. w = angu-
lar velocity of body, v = linear velocity
of m', each measured relative to X, Y, Z.
wy., wy, wz and v,, v,, v, = components of w
and v along X, Y, Z. vs = yz - ON, etc.

X, Y, Z components of v may be written as follows,

vx = va = ehai, vv = aha2, uz = aha3 (1)

where al, a2, a3 are direction cosines of v (direction cosines of a line normal to the Oam'
plane) which, as the reader can show (see Problem 8.1), are

at = (mz -- ny)/h, a2 = (nx - lz)/h, a3 = (ly - mx)/h (8.0)

where x, y, z are coordinates of m', and 1, m, n are direction cosines of Oa. Thus from (1),

vx = maz - nay, etc. (2)

Hence, regarding w as a vector along Oa, na is its component oY on Y. Likewise na az,

etc., and so we write
ux = aYz - azy, v2 = azx - elxxi, vz = axy - Wyx (8.1)

Correct expressions v, v., v,, (and thus v) are therefore obtained by treating angular velocity
as a vector w along Oa, the sense of which is determined by the right-hand screw rule.
(In vector notation relations (8.1) are equivalent to v = w x r. See Chapter 18.)

Relations (8.1) may be given a clear physical and geometrical interpretation as follows.
As can be seen from the figure, a rotational speed of wx about X gives m' a linear velocity
axz in the negative direction of Y. Likewise azx is: a velocity in the positive direction.
Hence v, = azx -,oxz, etc.

As a result of the above it follows that:

(a) Any number of angular velocities as wi, w2,w3 about axes through 0 can be added vec-
torially to give a resultant w = wi + (,, + w3 having magnitude o) = (ax + ay +,.2)1'2 and
direction determined by the cosines ax/a, etc., where ax olx + o32x +&)3V etc. (For
another proof of this see Problem 8.2, Page 167.)

(b) The component of co along any line Ob (not shown) is given by

aOb axl + wym + azn

where, in this case, 1, m, n are direction cosines of Ob.

LAGRANGIAN TREATMENT OF RIGID BODY DYNAMICS (CHAP. 8

normal to Oam' plane)

(8.2)
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Note that velocities cannot be expressed as > = B1, wy = B2, wz = B3 where 81, 02, 93 rep-
resent finite angular rotations. about X, Y, Z respectively. The final orientation of a body,
as a result of such rotations, is not unique. It depends on the order in which the rotations
are made. (The reader should try this with a box.) Nevertheless, o , wy, wz. can easily be
expressed in terms of suitable "true coordinates" as, for example, Euler angles and their
time derivatives. Various examples illustrating this will soon be given.

B. Inertial-space velocity of m', Fig. 8-2. Body translating and rotating.
X, Y, Z frame rotating about 0 relative to body.
In Fig. 8-2 the body is assumed to be rotating and translating through space. The

X, Y, Z frame, with origin attached to the body, at 0, may be rotating in any manner
relative to the body. The X', Y', Z' axes with origin also fastened to 0, remain parallel to
the inertial Xl, Y1; Z1 axes. x, y, z and x', y', z' are coordinates of m' with respect to X, Y, Z
and X',. Y', Z' respectively.

Z,

- Y'

Fig. 8-2

X, Y, Z are not fastened to body except at 0. X', Y', Z'
remain parallel to X1, Y,, Z1. w = angular velocity of
body, u = linear velocity of m', each relative to
X', Y', Z'. w,, wy, wz and ux, u. ui = components of w
and u along X', Y', T. x, w.y, wz = components of w
along instantaneous directions of X, Y, Z. v = in-
ertial space velocity of W. vX, vy, v, = components of
v along instantaneous directions of X, Y, Z.

Let o be the angular velocity of the body and u the linear velocity of m', each measured
relative to X', Y', Z'. Components of w and u along these axes are indicated by wx, W, o
and u', uy, uz respectively. Then following (8.1) above, we have u; = o,z, - wzy etc. Letting
ux, uy, uz be components of u along instantaneous positions of X, Y, Z, we can write ux =
uxa11 + uya12 + uz«13, etc., where a111 «12, «13 are direction cosines of X relative to X', Y', Z'
(the same as with respect to X1, Y1, Zi). Thus

uX = (wyz' - wzy')a11 + a12 + wzy'- wyx' a13

Eliminating x', y', z' by x' = xall + ya21 + za31, etc., it follows at once. (details left to reader;
see Appendix) that

ux = wyz - wzy where (o. = wxa21 + wya22 + o)za23

But this is just the component of w along Y. Likewise wz is the component of w along Z, etc.
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Now assuming that 0 has an inertial-space velocity vo with components voz, v0y, v.z along
the instantaneous directions of X, Y, Z, components vz, vy, vz of the inertial space velocity
of m' along these same axes can be expressed as

vX = v0x + wyz - wzy, vy = v0y + wzx - c Z, vz voz ± wxy -- w yX (8.3)

C. Summary of important points regarding (8.3).
The full meaning and importance of these relations can be made clear by a consideration

of the following statements together with a study of examples to follow.

(a) As assumed in the derivation of (8.3), the origin 0 must be attached to some point (any
point) of the body.

(b) As is evident from the derivation, relations (8.3) are valid even though the X, Y, Z
frame (origin fixed at 0) may rotate relative to the body. Of course this frame may be
"body-fixed" (rigidly attached so that it has all motions of the body). In the first case
x, y, z are variable and in the second they are constant. In practice, body-fixed axes
are almost always employed.

(c) v0x, v0y, voz must be so expressed (examples will demonstrate how this may be done) as to
give components of v0, the inertial-space velocity of 0, Fig. 8-2, along instantaneous di-
rections of X, Y, Z.

(d) For a given location of 0, voz, v0y, voz are the same regardless of what particle may be
considered (regardless of the values of x, y, z). Hence v0 represents a linear velocity of
the body as a whole.

(e) The magnitude and direction of vo will, in general, depend on the location of 0. For
example, imagine a body fixed in space at one point p. With 0 taken at p, v0x = v0y
voz = 0. But this is not true for any other location of 0.

(f) Keeping in mind dynamical problems to follow, ( the total angular velocity of the body
is always measured relative to an inertial frame, or what is the same thing, relative to
non-rotating axes as X', Y', Z', Fig. 8-2.

(g) wx, wy, wz must be so expressed as to give components of (a along the instantaneous di-
rections of X, Y, Z. (See Examples.)

(h) Regardless of the location of 0 in the body, w has the same magnitude and direction.
But as is evident from the derivation of (8.3), whatever the location of 0, (0 is always
regarded as directed along some line Oa passing through 0. This means that this vector
can be shifted, without change in magnitude or direction, from any origin to any other
origin in the body. See Problem 8.3, Page 168.)

(i) As the body moves through space under the action of forces, w and v0 will in general
change in magnitude and direction. Moreover, their directions are not fixed relative
to the body.

(j) Equations (8.3) form the basis for writing a general expression for the kinetic energy
of a rigid body. See Section 8.3.

D. Components of the inertial space velocity of a free particle
along instantaneous directions of moving axes.
Relations (8.4) below, though quite useful in certain particle problems, are not required

for our immediate purpose. However, this is the most suitable place for their derivation.
Referring to Fig. 8-3 below, regard X1, Y1, Z, as inertial. Assume that the X, Y, Z

frame is translating and rotating in any manner (fastened to the deck of a boat which is
rolling, pitching, yawing and moving forward, for example). Let f2. indicate the angular
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Fig. 8-3

Angular velocity of X, Y, Z frame relative
XI, Y1, Z,. (Same as relative to X', Y', Z'.)

vx = vox + z + Styx - n,y, etc, Vs = component of in-
ertial-space velocity of m' along instantaneous direc-
tion of X. voi may be expressed as voy = xoa11 +
7.S0a12 + z013, etc.. X, Y, Z are rotating about 0 and
translating in any manner. X', Y', Z' remain parallel
to X1, Y1, Z1.

velocity of the X, Y, Z frame, measured relative to Xi, Y1, Z1 (or to X', Y', Z') and having
components Q., .ny, nz along instantaneous directions of X, Y, Z. Take vo as the inertial
space velocity of 0 with components vox, voy, voz along X, Y, Z. The free particle (not one
of a rigid body) has coordinates xi, yr, zl and x, y, z relative to X1, Y1, Z1 and X, Y, Z re-
spectively. Let v indicate the inertial-space velocity of m.' with components vx, vy, vz along
instantaneous positions of X, Y, Z. We shall now obtain, in a descriptive yet meaningful
manner, expressions for vx., vy, vz.

First suppose that m' is fixed to the X, Y, Z frame at some point p(x, y, z). Then by
equations (8.3), vx = vox + f2yz - Sexy, etc. But now regarding m' as free with velocity com-
ponents , , z relative to X, Y, Z j, z are measured by an observer riding the X, Y, Z
frame), the above expression for vx and corresponding ones for vy and vx may be written as

vx - Z'ox + X + S2yZ - 9_zY, vy = voy ± y + tzX - txZ, vz vox + z + c1xy - QyX (8.4)

A straightforward but somewhat tedious derivation of (8.4) may be given as suggested
in Problem 8.9, Page 169. See Examples 8.2, Page 145.

E. Examples illustrating the treatment of angular velocity of a body
and linear velocity of a typical particle.

Example 8.1.
The frame supporting the rigid body, Fig. 8-4 below, can rotate about a vertical shaft A01 with

angular velocity ,. At the same time the body can rotate about a shaft, supported in bearings B1, B2,
with an angular velocity . This axis makes a constant angle a with the vertical. p is measured as shown
and ¢ is measured from line ab (see auxiliary drawing) which remains horizontal and in the plane of the
section shown.

The total angular velocity w of the body is obviously the vector sum of t. and ¢ regardless of where
reference axes X, Y, Z may be taken. We shall now consider components of a and the linear velocity of a
typical particle for various locations of the X, Y, Z frame.

(a) Let us take body-fixed axes X, Y, Z as shown, with origin 0 at the intersection of the vertical AO,
line and the B1B2 axis. as a vector is drawn along. Z, and . along the vertical line AO. X, Y, Z
components of w (which for this position of X, Y, Z we label wax, woy, wdz) are obtained by taking com-
ponents of .. and . along X, Y, Z. Thus

(1)wax = sin & sin, gyp, way = sin 0 cos wax = + cos 0
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X, Y, Z Body-fixed
with Origin at 0

Total angular velocity of body o = v + $
sine sin,,

.y sine cos 0 For body-fixed
mz = + V* cos a axes shown.
vox = voy = voz = 0

Fig. 8-4

Note that these components are along the "instantaneous" positions of X, Y, Z. That is, relations (1)
are so expressed as to give Wax, Way, Waz for any position X, Y, Z (assumed body-fixed as mentioned above)
can have relative to the X1, Y1, Z1 frame.

With 0 located as stated above, vo, the inertial space velocity of 0, is zero. Then v0x= voy =
voz = 0. Hence components of the inertial-space velocity of m' along instantaneous directions of X, Y, Z
are [see expressions (8.3)]

vx = V,z sine cos 0 ( + ' cos 9)y

v, = (, + cos e)x - z sine sin o

vx =

where x, y, z are coordinates of W.

,'y sine sin o - 1x sine cos o

(2)

(b) Now suppose that the origin of X, Y, Z is taken at p1, each axis remaining parallel to its first position.
The total angular velocity is of course unchanged. Shifting to a vertical line through pl and taking
components of i and ¢, we obtain (since the frame is parallel to its original position) exactly expres-
sions (1) again.

But in this case vo = ,j1 sin o (1 = distance Opt), which is directed along line Ob in the auxiliary
drawing. Hence components of the inertial-space velocity of pl (the new origin) along instantaneous
directions of X, Y, Z are

vo,. _ ¢l sin a cos 0, v01, = - ¢l sin 9 sin o, v0z = 0 (3)

(Note that (3) can be obtained directly from (2) by setting z = 1, x = y = 0. This technique is im-
portant in many problems.) Hence components of the inertial-space velocity of m' along axes in the
new position are

- l sin a sin o + [( + ¢cos 9)x - z sine sin of

y sin a sin 9 ¢x sin a cos ,

(4)

where x, y, z are measured relative to X, Y, Z in the new position. The reader can show at once that
(2) and (4) give just the same values.

It is important to realize the full meaning of vx, vy, vz. Imagine that an observer located on the
base A measures the velocity v of m' relative to X1, Y1, Z1. Then vx, vy, vz as given by (4) are com-
ponents of v along the body-fixed axes X, Y, Z respectively in the position they occupy at the instant
the observer takes the measurement.

vx = l in o cos 0 + ['z sine cos 0 - (¢ + cos e)y]
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Consider the origin of the body-fixed X, Y, Z frame at p2 (any point in the body) with each axis parallel
to its position in (a). Here we think of shifting both i and 4 from the positions shown in Fig. 8-4 to
parallel lines passing through P2. Hence it is evident that Wcx,WCy, Wcz are equal to Wax, way' Waz
respectively.

A convenient way of finding vox, voy, voz for this case is as follows. Let x2, y2, z2 be coordinates of
p2 relative to X, Y, Z in position (a). Then, applying (2), vox is given by

vqx = 1Gz2 sine cos , (cp + cos 9)y2

and similarly for voy and vaz. (They can, of course, be obtained from proper transformation equations.)
Hence vx for case (c) is given by

vx = ¢z2 sine cos 0 - (¢ + t% cos e)y2 + [¢z sine cos 0 - (¢ + cos e)y] (5)

Expressions for vy, vz follow in the same way. x, y, z in (5) are here measured relative to X, Y, Z in the
(c) position. Note that relations corresponding to (5) also give the same values of vx, vy, vz as given
by (2).

(d) Let us now suppose that, with origin still at p2, the X, Y, Z frame has any general orientation in the
body where X has direction cosines all, a12, a13 relative to X, Y, Z in position (a), etc. Hence components
Wdx, wdy, Wdz of a for this case may be written as

Wdx = Waxa11 + Wayai2 + Wazal3, etc. (6)

Letting uox, upy, uOz be components of the inertial-space velocity of p2 along instantaneous positions of
X, Y, Z, uox may be expressed as

uox = voxail + voyai2 t vozal3, etc. (7)

From (6) and (7), X, Y, Z components ux, uy, Ux of the inertial-space velocity of m' may be written out
at once. Note that for any specific orientation of the frame in (d) relative to X, Y, Z in (a), values of
all, a12, a13, etc., are known. The above is well worth careful study.

(e) Consider stationary axes X', Y', Z' parallel to X1, Y1, Zl respectively with origin at O. Components of
co along these axes are seen to be

wz = sin a cos p, wy = , sin o sin q5, Wz = f cos e (8)

Here vo = 0. Hence components of the inertial-space velocity of m' along these fixed axes are
vx' _ z' sin a sin 0 - (,p + cos e)y', etc., where x', y', z' are the X', Y', Z' coordinates of W. As the
body moves, x', y', z' change in value.

Note. Considering the inertial X1, Y1, Z1 axes shown, components of m along these are just those
given by (8) and 01 is at rest. Are the X1, Y1i Z1 components of the inertial-space velocity of m'
given by vl, = xl sin a sin 0 - (' + cos 9)yi, etc., where x1, yi, z1 are the X1, Yl, Z1 coordinates of
r'? See Section 8.2C(a), Page 142. .

Example 8.2.
The disk D, Fig. 8-5 below, is free to rotate about the shaft be with angular velocity where 0 is

measured relative to the shaft as indicated by pointer p2. At the same time ab can rotate with angular
velocity where p is taken as the angle between the fixed X1Z1 plane and the rotating abc plane.

The total angular velocity o of D is the vector sum of q, and .. Shifting.. to 0 and taking components
along the body-fixed X, Y, Z axes, it is seen that, just as in Example 8.1,

wx = sine sin 5, W,, ' sine cos o, w,x = + , cos a (1)

Similarly, components wlx, o. Y, wlz along the fixed axes are

Wix = ¢ sin e cos +t, w1y = ¢ sin e sin +b,

The magnitude of the total angular velocity of D is given by

cos a (2)

W = (WZ + ( + Wz)1/2 = (iJix + Wi, -° Wlz)1/2 = ( 2.+ tG2 + cos 9)112 (3)

The direction of w relative to the moving X, Y, Z axes is determined by the direction cosines 1, m, n where

sin 9 sin $ etc. (8.5)(,2 + 2 + cos e)1(2'
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A

X

wy = sine sin o

wy = ¢ sin 9 cos 0

wx =

Fig. 8-5

In Plane of Disk

Likewise, direction cosines ll, ml, nl of w relative to Xl Yl Zl are

o sin 9 cos ¢ll = .. etc.
(r12 + 2cptfi COS 8)112

X, Y, Z components of the linear inertial-space velocity of a typical particle in D are found exactly
as in Example 8.1(b).

As an illustration of the use of equations (8.4), Page 143, suppose that the motion of a free particle
(not a part of D) of mass m and acted on by an external force f is to be found relative to the X, Y, Z axes
in Fig. 8-5. Applying (8.4) it is seen that (see expressions (4), Example 8.1) the component vx of the
inertial-space velocity of m in the direction of X is given by

vx = x + s sin a cos ' + [¢z sine cos o - y(, + cos e)]

with similar expressions for vy and vz. Then applying Lagrange's equations to T = a
gives the desired equations of motion.

Example 8.3.
Referring to Fig. 8-6, the disks Dl, D2, D3 are mounted, one on the other, as shown. Angles e1, e2, e3

are measured relative to A, B, C respectively as indicated by pointers p1, p2, P3. 9l, i2, '3 regarded as vector
quantities are indicated by appropriate arrows. Let us fix attention on D3. Shifting 81 and 82 to the origin
0 as shown, the total angular velocity to of D3 is the vector sum w = B1 + 92 + 03i and the reader can
show at once that components of w along the body-fixed X, Y, Z axes (see auxiliary drawing to the right)
are

wx = (61 cos a+ 92 cos /3) sin 83, wy = (91 COS a + 92 COS 18) COS 03, wx = b3 + 91 Sin a + e2 sin /3 (1)

Considering a typical particle m' in D with coordinates x, y, z relative to X, Y, Z, components of the
inertial-space velocity of m' along these axes are vx = vox + wyz - wxy, etc., where VOx, voy, v0z are of
course the X, Y, Z components of the inertial-space velocity of O. Expressions for vox, etc., are in this case
somewhat involved but can be found without great difficulty. See Problem 8.12(c), Page 169.

Components of w along the space-fixed. X1, Y1, Zl axes are seen to be

w1x = [92 Sin (/3 - a) + 93 Cos a] Cos el, w1y = [B2 sin (/3 - a) + 93 COS a] sin 91,

= el + H2 COS (/3 - a) + 83 sin a (2)

The magnitude and direction of w can be found exactly as in Example 8.2.



CHAP. 8]

D1

LAGRANGIAN TREATMENT OF RIGID BODY DYNAMICS

X/11' A
X1, Y1, Z1 fixed in space

Fig. 8-6
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491Cosa+82cos/3

As further exercises in the treatment of angular velocity, the reader may check expres-
sions for w,,, oy,

Wz
given in Example 8.13, Page 155, or equations (8.11), Page 157.

F. Torque as a vector quantity.
To show the vector nature of torque we may proceed as follows. Suppose a force

F(fx, f',, fz) is acting on the body, Fig. 8-7, at the point p(x, y, z). The torque T exerted- by
this force about any line Oa having direction cosines 1, m, n and which we assume passes
through the origin, is defined as T= F'h where h is the normal distance from p to the Oa
line and F' is the component of F normal to the Oap plane. But F' = fzai + f,,a2 ± fza3
where al, a2, a3 are direction cosines of the above mentioned normal and are given by (8.0),
Page 140. Eliminating F', introducing expressions for the a's and summing over all forces
acting on the body, we get for the total torque about Oa,

Toa = 1 (fz y - fy z) + m I (fr z - fz x) + n L (fox - fx y) (8:6)

Asican be seen from diagram,
fXy- fyz, etc.

Forces F, F1, F2, ... acting on body

Fig. 8-7



148 LAGRANGIAN TREATMENT OF RIGID BODY DYNAMICS [CHAP. 8

But from the original definition of torque (or by a direct inspection of Fig. 8-7) it is seen
that I (fz y - fy z)) is the torque exerted by all forces about X, etc. /That is,

Tx Lr(fzy - fyZ), Ty (fxz - fzx), Tz (fyx - fxJ) (8.7)

Hence we can write Toa = Txl + Tym + Tzn (8.8)

from which it is seen that TOa is the component of a vector T having components Tx, ry, Tz ex-
pressed as in (8.7). The magnitude of T is given by T (Tx + Ty + Tz)i'2 and its direction by
TX /T, etc. It must be remembered that in (8.7) x, y, z are coordinates of the points of applica-
tion of the forces. Note that the above treatment of torque is in vector notation equivalent
to

T r x F = i V, y - fy z) + (fx z - fz x) + k I (fy x - fx y)
See Chapter 18.

8.3 General Expression for the Kinetic Energy of a Free Rigid Body.
When interpreted as in Section 8.2C, equations (8.3) express the X, Y, Z components of

the inertial space velocity of any particle in a rigid body, Fig. 8-2. Hence a general ex-
pression for T is obtained by inserting these relations in T = 2 1 m'(vx + vy + vz). On col-
lecting terms,

T = °M(voz + voy + voz) + 2Wi m'(y2 + z2) + 2Wy L: m'(x2 + y2)

(x2 + y2) - WxWy m'xy tyxcvz m'xz - mlyz+ 2WZ 6..r m'

r+ v0x(Wy I m'z Wz
m'y) +

voyrf\WZ

G: mix wx I m'z)

+ vOz (ox I m'y m'x)

which obviously takes the following form,

T = 2Mv2 + 2[Ia>2+Iw2+lw2-2I a,x -2Ixwxayz -2I ,vw]
0 x x y y z z xy y yz y Z

+ M[vox(Wyz - WZy) + v0y(WZx - wxz) + v0z(wxg coyx)

General Expression for Kinetic Energy of Rigid Body.

(8.9)

(8.10)

8.4 Summary of Important Considerations Regarding T.
(a) As previously stated, w is the angular velocity of the body relative to inertial space and

vo the linear inertial-space velocity of O. Wx, w', w, and vox, voy, voz are components of to
and vo respectively along instantaneous directions of X, Y, Z. They must be written in
terms of specific coordinates. As examples will show, it is not difficult to express these
quantities so as to meet the above requirements regardless of the orientation of X, Y, Z.
I, Ixy, etc., and x, y, 2 must be determined with respect to X, Y, Z. (Fig. 8-2, Page 141.)

(b) With x, I.,, vox, etc., determined as stated above, expression (8.10) is valid for X. Y, Z
either body-fixed or rotating about 0 in any manner relative to the body. This includes
the case for which X, Y, Z may be fixed in direction. But remember that 0 is assumed
attached to the body.

(c) For the case in which the X, Y, Z frame may rotate relative to the body, x, y, z in (8.9)
are of course variable. Hence I, I, etc., as well as x, g, z vary with the motion. As
would be expected, this introduces complexities. However, if we wish to use such a
frame (which is rarely the case) the difficulties are not insurmountable. See Section
8.9, Example 8.19, Page 162.
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(d) Regarding X, Y, Z as body-fixed, Ix, ITy, etc., and , 9, 2 are constant. Hence body-fixed
axes are almost always employed. But in any case statements made under (a) must be
kept in mind. See Problems 7.24 and 7.25, Page 138.

(e) Under certain conditions, which are frequently but not always convenient to meet,
(8.10) can be greatly simplified. For 0 at center of mass, = g = 2 = 0 and the last
term of T becomes zero. Note that this is true even though X, Y, Z are not rigidly
fastened (except at 0) to the body. If any point in the body is fixed relative to an inertial
frame and 0 is located at this point, vox = vo, = voz = 0 and both the first and last
terms are zero. If, for example 0 is at center of mass and body-fixed X, Y, Z axes are
taken along principal axes of inertia,

T = 2Mv2.m. + 2(JzW2 + Iy.,y + J1.2)

where Ix,1 and 1 are constants.

(f) It may seem to the reader that the simple basic principle of kinetic energy is completely
lost sight of in the formidable relation (8.10). However, it is evident from the derivation
of (8.9) that basically T as given by (8.10) is just 2 m'v2.

8.5 Setting Up Equations of Motion.
As previously stated, once T [relation (8.10)] has been expressed in the proper number

of suitable coordinates, equations of motion of a rigid body are obtained in the usual way
by an application of Lagrange's equations. The same may be said for a system of bodies.

Of course, there may be constraints. When this is the case superfluous coordinates must
be eliminated from T exactly as in previous chapters. (We are here assuming holonomic
systems. See Section 9.12, Page 193.) A free rigid body has six degrees of freedom.
Hence for b bodies, n = 6b - (degrees of constraint). See Section 2.4, Page 18.

Generalized forces present no difficulties. They have the same meaning as in particle
dynamics, and the basic procedure for obtaining expressions for Fqr are exactly those
described in Section 4.5, Page 61.

The following examples of degrees of freedom (d.f.) should be of help.
Single body completely free, d.f. = 6; one point constrained to move on a plane, d.f. = 5; two points

confined to a plane, d.f. = 4; one point fixed in space, d.f. = 3; any three non-collinear points confined to
a plane, d.f. = 3; the gyroscope, Fig. 8-18, d.f. = 3; Fig. 8-12, assuming disk free to slide along ab,
d.f. = 3; disk, Fig. 8-12, fixed to shaft, d.f. = 2; disk, Fig. 8-13, rolls without slipping on rough X1Y1
plane, ball joint at p, d.f. = 1; any two points in rigid body fixed in space, d.f. = 1; rigid body pendulum,
Fig. 8-19, r const., d.f. = 5; entire system, Fig. 8-14, block B free to slide on X1Y1 plane, d.f. = 5; entire
system, Fig. 8-15, block A free to slide on X1Y1 plane, d.f. = 6; masses of Fig. 8-20, d.f. = 9; two bodies
connected with springs in any manner and free to move in space, d.f. = 12. It should be remembered that
forces of any type, other than those of constraint, do not change the number of degrees of freedom.

Note. In the treatment of rigid bodies, one may encounter difficulties in visualizing
all angles and motion in space. The solution to this problem is a simple model.

8.6 Examples Illustrating Kinetic Energy and Equations of Motion.
In the following group of examples body-fixed axes have been employed throughout.

This is in general the most convenient procedure. The use of "direction-fixed" axes will
be illustrated in Section 8.9, Page 161.
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Example 8.4.

Three views of a physical pendulum, consisting of a lamina pivoted at p and free to swing in a
vertical plane through angle o, are shown in Fig. 8-8. A consideration of expressions for T, choosing axes
fixed to the lamina at the three locations shown, will help in understanding (8.10).

(a)

In (b) the origin is at c.m. Again
Hence T = 2Ml282 + 27x62.

(c)

Assuming axes X, Y, Z located as in (a), where Z is normal to the paper, it is seen that wx = wy = 0,
wz = e. Since the origin is stationary, vox - voy = voz = 0. Hence (8.10) reduces to T = -.Ize2 as is
to be expected from elementary considerations.

(2)

(3)

(b)

Fig. 8-8

wx=wy=0, wz=e. Here v0x=19, v0y=v0z=0,

In (c) the axes are oriented in a more general way. As above, wx = wy =
voy = -rb sin a, voz = 0 and 2, y have the values indicated. Hence

T = 1
-ff

Mr262 + 21x;2 - Mre2(x sin a + y cos a)

where Iz is now about Z in the position here considered.
The reader should show that expressions for T in (2) and (3)

Note that Iz appearing in (1), (2), (3) is different in each case.

The equation of motion is found by applying the Lagrangian
forms of T. In each case F0 = - Mgl sin o.

x=y=z= 0.

wz = 8. But v0., = ro cos a,

reduce to the expression in

equation to either of the above

Example 8.5.
The lamina, Fig. 8-9, is free to move in the X1Y1 plane under known forces F1, F2.

Fig. 8-9
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(a) Axes X, Y, Z are attached to the lamina with origin O at any arbitrary point. D.f. = 3, and x, y, 8
are suitable coordinates. wx = wy = 0, wz = 6. It is seen that vox = x cos e + y sin o, voy = y cos e -
x sin e, voz = 0. (Note that v0.,, voy are components of the velocity of 0 taken along the instantaneous
positions of X and Y.) Hence (8.10) gives

T = 2M(x2 + y2) + 2,x82 + Me[(yx - x11) cos e - (z2 + 319) sin e] (1)

from which equations of motion corresponding to x, y, a follow at once. For example, the 8 equation is
1, + M[(yx-xy)cos8 - (xx+yy)sin e] = F0

Writing xi, yi and x2, y2 as coordinates of the points of application of the forces Fl and F2 relative
to X, Y,

F0 = ro flyxl - fixyi + f2yx2 - f2xy2
where fix , fly are X, Y components of Fl, etc.

Note that the generalized forces corresponding to x and y are Fx = fix + f2x and Fy =fly + f 2y.

(b) It is interesting and instructive to determine T directly by evaluating the integral

T = 2 f (x2 + yi) dm' (2)

where dm' is an element of mass having coordinates xl, yi relative to the X1, Yl frame. Here

xl = x + xm cos 8 - ym sin 8, yl = y + x,,,, sin 8 + y,,,,, cos 8 (3)

where yare X, Y coordinates of dm'. Differentiating (3), inserting in (2). and integrating, we
obtain (1). (Take dm' = p dx,,,, dye,; p = uniform area density.)

(c) Expression (1) above for T and the corresponding equations of motion are somewhat involved. How-
ever, locating 0 at c.m., x = y = z = 0 and

T = 2M(;2 + ;2) + 21z e2

Hence equations of motion are greatly simplified. Generalized forces follow as in (a).

Example 8.6.

The lamina, Fig. 8-10(1) is suspended by a string of constant length r and can swing as a "double
pendulum" in a vertical plane.

X

(2)

Fig. 8-10

(a) Choosing body-fixed axes X, Y, Z as shown, o and 0 are suitable coordinates. It is seen that
tax = wy = 0, wz = ,, (wx ® + ,) and vo = re. Now v0,,, voy components of v0 must be taken along
X and Y. Hence vox = r0 sin (0 - o), voy = r® cos (0 - o). Thus

T 2Mr282 + Mrec[x cos (95 - e) - y sin ( - e)]

from which equations of motion follow at once. Expressions for F0 and F, are obtained in the usual
way, regarding Mg as acting at c.m.
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(b) As a variation of the above problem, suppose point 0 on the lamina' is free to slide along the smooth
parabolic line yi = bxi as shown in Fig. 8-10(2). It is seen that

2 '2 2vo = (x1 + yi), vox xi sin o - yi cos o, voy xi Cos o + yi sin o

and T = 2M(x1 + yl) + 21x02 + Mo[x(x1 cos 0 + yi sin 0) - y(x1 sin . - yi cos 95)]

yi, for example, can be eliminated by yi = 2bxixi, and equations of motion corresponding to x1, 0
can be determined at once.

Example 8.7.

A slender rod of mass o per unit length and total length L, Fig. 8-11, is free to rotate through angle 92
about a horizontal axis in the bearing at 0. This bearing is fixed to the horizontal arm AB. Let us
determine directly, by integration, the kinetic energy of the rod and compare results with those obtained
by applying relation (8.10).

Yi

= -e2, my = 91 cos 92, u = 6i sin 62
Relative to body-fixed X, Y, Z axes,

mil = _92
sin el, myl = 62 cos 81. mzl = el

Relative to space-fixed Xl, Y1, Z1 axes.

Fig. 8-11

As easily seen, the defining equation T = 2 J v2 dm can be written as

2 0
[(R + 1 sin 92)20, + 1202]p dlL

or T =
2R2ei

p dl + Zei sing 02 J p12 dl + Re sin 92 J pi dl + 292 0p1e dl
0 0 0

which, by inspection, can be put in the form

T = 2MR291 + 2,1x92 sine 92 + MyRel sin 92 + 21x92

The reader may show that a proper application of (8.10) gives exactly the same expression for T.

Example 8.8.

In Fig. 8-12, the uniform disk D can rotate with angular velocity , relative to the supporting frame.
At the same time the frame rotates with angular velocity about the vertical axis, measured between
Yi and the cOa plane. To find T for the disk, take body-fixed axes X, Y, Z with origin 0 at c.m. Thus
2 = y = z = 0. Since c.m. is at rest, vox = voy = voz = 0. From the two figures it is seen that

mx sin 0 sin o, 4)y sin 9 cos o, (0x 0+¢cos0

Note that i. = Iy, Ixy = Ixx = Iyz = 0. Hence

T = 11x,2 sin2 0 + 2Ix(gi + cos 0)2

If the frame (moment of inertia = If) is to be taken account of, we merely add
For any known forces acting, the complete equations of motion can now be written.
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Ws = ,p sin B sin o
Wy = sin B cos $
Wz = + Cos 6

s

X1

Fig. 8-12

Example 8.9.

Consider again disk D, Fig. 8-12. For pedagogic reasons let us take body-fixed axes X, Y, Z parallel
to those shown but with origin at 01. (Ox is at center of shaft and distance l from 0.) In this case
Wx, wy, wz are the same as above,

z = y = 0, +1, vOz = - 1; sin 8 cos voy = lye sin 0 sin o

Ixy = Iaz = Iyz = 0, I. = 4, Iz = Iz

Hence

where Ix 1 about X in its new position. The reader can show that this reduces at once to the expression
for T in E ample 8.8. Equations of motion follow at once.

rigin of body-fixed axes may of course be located at any point in the body, and the axes may have
any orientation. However, it is clear that certain locations and orientations. are much more advantageous
than others.

Example 8.10.
Suppose the disk, Fig. 8-12, is replaced by a rigid body of any shape. Let us take body-fixed axes

X, Y, Z exactly as shown on the figure. Assume that c.m. is not located at the origin and that X, Y, Z
are not principal axes.

(a) Since v0 = 0, the first and last terms of (8.10) are zero even though c.m. is not at 0. Hence

T = - -[Iz¢2 sine 8 sing + Iy¢2 sine a cost + Iz( + ¢ cos e)2]
[Ixy p2 sin2 8 sin 0 cos + Ixz(¢ sine sin 0)( + ; cos e) + Iyz(¢ sine cos o)( +' cos s)]

(b) As an extension of this example, let us take body-fixed axes Xp, Yp, Z. (origin still at 0) along the
principal axes of inertia of the body. Let all, a121 a13 be direction cosines of XP relative to X, Y, Z, etc.
Products of inertia vanish but components of is (W11 W2, w3) along X, Y, Z. are required; that is,

T = 4-M12;2 sing 8 + 4Ix,2 sing 0 + 21z(cb + cos e)2 - sing 8

W1 = (¢ sin a sin O)a11 + (' sin a cos o)a12 + ( + ,' cos 8)a13, etc.

Thus we can finally write T = [I, 1 + IvW2 + Izw$]
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(c) As a further demonstration of basic principles, consider body-fixed axes X', Y', Z' orientated in any
manner with origin 0' at any point in the body. Let x, y, z be coordinates of 0' relative to the
X, Y, Z axes shown. Let 911, 912, ,813 represent direction cosines of X' relative to X, Y, Z, etc.

Components of vo,, the velocity of 0' relative to X1, Y1, Z1, along X, Y, Z are

Hence

vx = Wy2 - Wzy, 11y = Wzx - Wxz, vz = WxY - Wyx

2 2 2 + 21/0. = vx + 'Uy r vz

Components of vo,, along X', Y', Z' are given by

v0'x = vx/311 + 1 ,/312 + vzl13,

Components of m along these same axes are

Wx = Wx,8li + wyQ12 + WzQ13,

(1)

etc. (2)

etc. (3)

Thus inserting (1), (2), (3) together with given values of 2, y, z and Ix, Ixy, etc., into (8.10) gives T.

Example 8.11.

The heavy disk, Fig. 8-13, can roll, without slipping, in contact with the rough X1Y1 plane. Taking
body-fixed X, Y, Z axes with origin at 0 and Z along the axis of the shaft Oc (X, Y not shown), it is seen that

wx = t' sin o sin o, WY sin o cos 95, Wz 4' + cos o

exactly as in Fig. 8-5, Page 146. But here o constant, sin e = rl/r3, cos o = r2/r3 and r3'G = -r24..
Hence 2

.. r1 . r1 . rl
Wx = >/i -Sin 4, Wy Cos 4,,3

Y3
r2r3

Thus, since Ix = Iy and Ixy = Ixz = Iyz = 0, (0 measured from Y1 to projection of OZ on X1Y1 plane)

T = 2[Ix(Wx + wy) + Izwz]

from which the following equation of motion is obtained

r IXIx + Izr2) _ -Mgl sin a sin P
2

where we have assumed the X1Y1 plane tilted at an angle e, with Y1 down the incline and >p measured from
Y1 to the projection of Z on the X1Y1 plane.. See suggested experiment, Page 167. Also see the Euler treat-
ment of this problem, Example 9.6, Page 185. See Example 12.5, Page 261.

-x sin B sin ¢
m = p sin 0 cos ¢
fdz = +#cosB

Tip of rod remains at 0 while disk D rolls without
slipping in contact with X, Y, plane. X, Y, Z are
body-fixed with origin at 0. (X, Y not shown.)

Fig. 8-13

Example 8.12.

Referring to Fig. 8-14, the mass M1 is free to slide along and rotate about the rod ab which is rigidly
attached to block B. This block can slide freely in contact with the X1Y1 plane. We shall outline steps for
finding T of the system in terms of coordinates x1, yl, r, 81, 02.
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Take X, Y, Z as body-fixed axes for Ml. Let all, a12, a13 represent direction cosines of X relative to
the inertial X1, Yl, Zl axes, etc. From the figure,

wx = 61 cos /3 sin 62, wy = 81 cos (3 cos 92, wz = ;,sing + 82
where 61 is the angular position of B relative to X1 and B2 is measured relative to the rod. Letting x2, y2, z2
be the X1, Yl, Zl coordinates of 0,

x2 = x1 + r cos /3 cos 61, y2 = yl + r cos /3 sin 61, z2 = r sin /3 + constant

v0 = (x2 + y2 + x2)112 can be obtained. Components of vo along X, Y, Z are given by vox 2a11+ y2a12 +
4a13i etc. Hence, with known values of x, y, z, Ix, Ixy, etc., relative to the body-fixed axes, Tl of Ml follows
at once from (8.10).

The kinetic energy of M2 (assuming for simplicity that the vertical dotted line through (xl, yl) passes
.2 -2through c.m. of B) is merely T2 = 2M2(xi +yl) + z18,2 where I is the moment of inertia of the block about

the dotted line. Thus, for the system, T = Tl + T2.
For any known forces acting, equations of motion follow at once by an application of Lagrange's equa-

tions in the usual way. Forces of constraint, as between the rod and Ml, will not appear in these equations.
Note that all, a12, a13, etc., can be expressed in terms of 61, 62,,8-

For example, all = -(sin 41 cos 62 + cos 61 sin 62 sin /3),

a12 = cos 01 cos 02 - sin 61 sin 62 sin /3, a13 = sin 02 cos /3, etc.

Example 8.13.

In Fig. 8-15 below, support A can move to any position on the X1Y1 plane. The shaft ab, on which the
rigid body can rotate with angular velocity /, is hinged at 0 and can swing in a vertical plane. 6l is
measured relative to X1, 62 relative to A, 63 as indicated, and /3 relative to the shaft ab. The following is
an outline of steps for finding T of the system.

Let us assume body-fixed axes X, Y, Z with origin at 0, and Z along ba. 83 is horizontal and always
normal to the abe plane. Angular velocity of table B is By + 82. Hence with the aid of the upper right hand
sketch the reader may show that

wx = (61 + 62) COS 63 sin /3 - 63 COS /31 wy = (61 + 62) COS 63 COS /3 + 63 sin /3, wz = /3 + (61 + 62) Sin 63

vo, the velocity of 0, and its components along X, Y, Z [see Problem 8.12(d)] may be found by the method
outlined in Example 8.12. Thus for known values of z, 9, z and Ix, Iy, etc., T1, the kinetic energy of Ml can
be obtained. For known masses, moments of inertia, etc., of rod ab, table B and support A, corresponding
kinetic energies T2, T3, T4 can be written out at once. Hence T for the system is just T = Tl + T2 + T3 + T4
from which equations of motion corresponding to x1, yi, 61, 62, 63, l3 follow in the usual way. It is important
to note that, assuming smooth bearings, all forces of constraint are automatically eliminated from equa-
tions of motion. This illustrates one of the great advantages of the Lagrangian over the Euler method.
See Chapter 9.
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8.7 EULER ANGLES DEFINED. EXPRESSING w AND ITS
COMPONENTS IN THESE ANGLES.

(a) Euler angles 0, , 0 shown in Fig. 8-16 are widely used in rigid body dynamics. The
manner in which they are measured is quite simple. In view of applications which
immediately follow, we shall assume Xi, Yi, Z, fixed in space. The rigid body, one
point of which is fixed at 0, is free to turn in any manner about O. Axes X, Y, Z are
attached to the body. 0 is the angle between Z1 and Z. Line ON is determined by
the intersection of the moving XY and stationary X1Yi planes. Angle ' is measured
between Xi and ON, and 0 between ON and X. (A simple model is very helpful in
understanding and working with these angles.)

Rigid Body Rotates in
any Manner about

Fixed Point 0.
x,y,z
x,. ij

ON Intersection of
and X'Y Planes

Euler Angles 6,,p, 0

Fig. 8-16
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(b) Angular velocity of the body and its components. Note that ®, ¢, ¢ may be regarded as
vectors along ON, Zl and Z respectively. The total angular velocity 6 is the vector sum
of these three quantities.

Making use of the following direction cosines (the reader may verify same),

Cosines of Angles between X, Y, Z and Z1, ON

X Y z
Zl sin 9 sin , sin 0 cos cos 0

ON cos. - sin 95 0

t Table 8.1

it follows, by taking components of 0, p, , along the body-fixed X, Y, Z axes, that

a)x = sine sin 0 + B cos 0

Wy _ ¢ sin 8 cos 0 B sin 0 (8.11)

Hence, for example, components of v (the inertial space velocity of any typical particle
m') along instantaneous directions. of X, Y, Z are given by

v., = ( sine cos ¢ - B sin c)z - (¢ +' cos 8)y, etc.

where x, y, z are the X, Y, Z coordinates of W.

8.8 Use of Euler Angles: Body Moving in Any Manner.

X'; Y', Z' Remain Parallel to X1, Y1, Z,
e, ¢, ¢ = Euler Angles. .32 = cos (Z, Y1), etc.

Fig. 8-17

Assume that the body, Fig. 8-17, is free to move in any manner under the action of
forces F1, F2, etc. Regard X, Y, Z as body-fixed and assume that X', Y', Z', with origin
attached to the body at 0, remain parallel to inertial axes X1, Yi, Z1. Euler angles are
measured as indicated. Let all, «2, a13 represent direction cosines of X relative to X', Y', Z'
(or, of course, relative to X1, Y1, Z1), etc., a. complete table of which follows. The reader
should verify these expressions.
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Cosines of Angles between X, Y, Z and X1, Y1, Z1

Refer to Fig. 8-16 or 8-17.

X Y Z

X
all = Cos 0 Cos \ a21 = -sin 0 cos

= sin o sinal - sin q sin p cos e Cos sin , cos e 31

Y a12 = COS 95 sin p a22 = - sin 0 sin V,
Sin 8 Cos=

,
1 + sin f, Cos i COS B + Cos 0 Cos /i cos 0

-32 -a32

ZI a13 = Sin B sin tp a23 = sin 0 Cos 95 a33 = COS B

Table 8.2

Components of the total angular velocity w relative to inertial space, taken along X, Y, Z
are given directly by (8.11).

The velocity vo of 0 relative to inertial space is just vo = (xi + y; + i2)1"2 where xi, yi, zl
are X1, Y1, Z1 coordinates of 0. xi, yl, it can of course be expressed in other coordinates,
such as cylindrical or spherical, if so desired.

Finally vox, voy, voz, components of vo in the instantaneous directions of X, Y, Z, are given

by vox = 1a11 + 1a12 + z1a10, etc.

Hence, applying (8.10), T may be expressed in terms of the six coordinates x1, y1, zi, 0, 0-,
and their time derivatives. An application of Lagrange's equations gives six equations of
motion. If there are constraints, such that equations of constraint can be written out in
algebraic form (the type dealt with in all previous chapters), a corresponding number of
coordinates can be eliminated from T in the usual way.

Suppose, for example, that components fx , fyz, f' of Fi, parallel to Xi, Y1, Z1, and co-
ordinates xi, yi, zi of points of application p relative to X, Y, Z, are known. Then generalized
forces corresponding to xi, yi, z1 are merely

p l
Fxl = fxt, F,,1 = Ifyi Fzl = fzi

In order to find Fy we may proceed as follows. The component of r, the total torque
vector, about X for example, is given by rx = I

(fx2 . yi -
fy2 .

zi) where
fx2 .

is the, component of
Fi in the direction of the body-fixed X axis, etc. But f. = fx.a11 + fy.a12 + fz, a13, etc. for
fyi and fzi. Having determined rx, ry, rz, r8 = TX COS - Ty sin q) = F®, with similar expres-
sions for rv,and r,,. That is,

FH = -,,. COS - ry sin F,, = rx

Fy = rx sin B sin o + ry sin B Cos ¢ + rz COS 6
(8.12)

If all forces are conservative, a potential energy function v(x1, yl, zl, a, i, 0) may be
written and all generalized forces found at once from FqT = -aV/aq,/. Or, of course, a
Lagrangian function L may be applied in the usual way.

As previously shown, T and consequently equations of motion can usually be greatly
simplified by properly choosing the location of 0 and the orientation of the body-fixed axes.
The reader should determine expressions for generalized forces assuming fxi, fyi, fzi given
instead of xi: yi,
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Example 8.14. Equations of motion of a top.
Imagine the body, Fig. 8-16, replaced by a top with the tip stationary at 0 and its axis of symmetry

along Z. Take X, Y, Z axes shown as body-fixed.

Since Ix = I, and 0 is at rest, T simplifies and L may be written as

L = .-[Ix(®2 + , 2 sine e) + Iz( + ¢ cos 8)2] Mgr cos o

where M is the total mass and r the distance along the axis of symmetry from 0 to c.m. Applying
Lagrange's equation, the following equations of motion are obtained.

Ix o + [(I, - Ix)t cos e + sin e = Mgr sin e
I,z { cos e + .) = Pq, = constant - (8.13)

Ix sin2 8 + P, cos 0 = Pp = constant
Detailed treatments of these equations, which may be found in many books, will not be repeated here.

See, for example: Gyrodynamics and its Engineering Applications by R. N. Arnold and L. Maunder,
Chapter 7, Academic Press, 1961; or A Treatise on Gyrostatics and Rotational Motion by Andrew Gray,
Chapter V, The Macmillan Co., 1918. The latter book gives extensive treatments of tops, gyroscopes, etc.

Example 8.15. Kinetic energy of top with tip free to slide on the smooth X1Y1 plane.
Assuming body-fixed axes as in Example 8.14 and locating 0 (the tip) by (x1, yl), the first term of

(8.10) is merely 2M(xi + yi ). Expressions for wx, wy, w, are as before.. Hence the second term is
-[Ix(92 + ¢2 sin2 0) + Iz( + cos 9)2]. Since x =,p = 0, z = r, the third term of T reduces to

Mr[voxwy - vo,ywx] in which vox, vo, must be components of vo along the instantaneous directions of X, Y
respectively. That is, vox = xia11-I- ylaj2, voy = x1a21 + y1a22. Note that vo,, is not required. Introducing
these and expressions for wy, wx completes the third term.

Equations of motion corresponding to x1, yl, o,,p, 0 can be obtained at once. Note that, assuming the
X1Y1 plane smooth, the reactive force on the tip will not appear in the generalized forces.

An alternative method of obtaining T, requiring perhaps less tedious work, is the following. Imagine
body-fixed axes taken as above but with origin at c.m. Since z = y = z = 0, the third term of (8.10)
drops out. vo, not so simple as before, may be obtained from the following relations. Coordinates x, y, z
of the origin of body-fixed axes relative to the X1, Y1, Z1 frame are x = x1 + ra31, y = y1 + ra32, z = ra33.
Differentiating and substituting into va = x2 + y2 + z2, we have an appropriate expression for vo. Hence

T jMvo + [Iz(wz + W,) + Izwz]

where wx, w, wz are the same as in the first, part of the example and Ix , if are principal moments of inertia
through c.m. (As a third method we can write vo = x2 + y2 + 42 sin2 o.)

Example 8.16. Kinetic energy and equations of motion of the gyroscope.

IZl

Gyro in Double Gimbals:
ai, az; bi,b2, cz,ca = bearings

42 /X X, Y, Z attached to disk
e, v, 0 = Euler angles

Yl

Fig. 8-18
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A gyroscope in a two-gimbal mounting is shown in Fig. 8-18 above. With X1, Y1, Z1 regarded as fixed,
it is seen that Euler angles e,,p, 0 measured as follows are suitable coordinates. p is determined by the
rotation of the outer gimbal G1 about axis a1a2; e by a rotation of G2 about b1b2 and 0 is a rotation of the
disk about c1c2. Line ON as indicated here has the same significance as in Fig. 8-16.

Thus, neglecting moments of inertia of the gimbals and assuming the origin of body-fixed axes
X, Y, Z located at the center of the disk, T is just

T = 1 Iy(02 singe + e2) 21( cos e + )2

from which equations of motion follow at once. Neglecting bearing friction and assuming c.m. at 0, each
generalized force is zero.

If so desired, the kinetic energy of the gimbal rings can easily be included.

For an extensive treatment of gyroscopes see, besides the references given in Example 8.14, The
Gyroscope by James Scarborough, Interscience Publishers, 1958, and Theory of the Gyroscopic Compass
by A. L. Rawlings, The Macmillan Co., 1944. For interesting reading, see Spinning Tops and Gyroscopic
Motions by John Perry, Dover Publications.

Example 8.17.
The rigid body, Fig. 8-19, is suspended by a string of constant length r1. Except for this one con-

straint it is free to move about in any manner under the action of gravity. Hence the system has five
degrees of freedom. We shall outline steps for finding T.

Fig. 8-19

Let r1, ol, 01, the usual spherical coordinates (951 not shown), determine the position of p. Assume that
axes X', Y', Z` with origin attached to the body at c.m. remain parallel to the inertial axes X1, Y1, Z1.
Taking body-fixed axes X, Y, Z with origin at c.m., we shall measure Euler angles between these and
X', Y', Z'. (Neither X, Y, nor ', 9 are shown on the diagram.) Angular velocities w.,, Wy, wz are given by
relations (8.11). Since 2 = P = z = 0, the last term of (8.10) drops out. vo, the velocity of c.m. relative
to ±1, Y1, Z1, is given by vo x1 + yi + zi where x1, yl, z1, the X1, Y1, Z1 coordinates of c.m., can be
expressed in terms of the constants r1, r2 and the angles [See (2.26) Page 20.] Hence va can
be expressed in terms of these coordinates. and their time derivatives. If X, Y, Z are chosen along the
principal axes of inertia,

T = 2Mvo + 2tlxwx + Iywy + I'w ]

Here V = -Mg(r1 cos of + r2 cos o). Thus equations of motion follow- at once.

The reader should find an explicit expression for T and write out equations of motion.

Example 8.18. The two masses Ma and Mb, Fig. 8-20 below, are fastened together by means of a ball
joint a£,O.

Otherwise they are perfectly free to move in space, perhaps under the action of springs, gravity, etc.
Clearly the system has nine degrees of freedom. An outline, of the procedure for finding T and the nine
equations of motion follows.



CHAP. 8] LAGRANGIAN TREATMENT OF RIGID BODY DYNAMICS

Fig. 8-20
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Let coordinates x, y, z represent the position of the center of the ball (point 0) relative to inertial
axes X1, Y1, Z1. The X', Y', Z' frame, with origin attached to 0, moves with 0 but remains always
parallel to X1, Y1, Z1. Axes Xa, Ya' Za and Xb, Yb, Zb, with common origin at 0 are attached to Ma and Mb
respectively (Xa, Ya and Xb, Yb not shown). Hence Euler angles 01 of All, and 02102102 of Mb can, for
each mass, be measured relative to X', Y', Z' just as in Fig. 8-17. Thus Ta, the kinetic energy of Ma, can
be written in terms of x, y, z, o1,,Di, 01 and their time derivatives by a direct application of (8.10). Like-
wise, Tb may be expressed in terms of x, y, z, 82,''2' 02; and finally the total T is just Ta + Tb which
involves nine coordinates. Note that vo is the same for each mass but expressions for vox, voy, vox for Ma
are not the same as corresponding quantities for Mb.

Equations of motion are now obtained by an application of Lagrange's equation. If springs, gravity,
externally applied forces, etc., are acting, generalized forces corresponding to the various coordinates
give no trouble. Note that the force of constraint at the smooth ball joint is automatically eliminated.

8.9 Kinetic Energy Making Use of Direction-fixed Axes. [See Section 8.4(c).]

In all previous examples of this chapter, body-fixed axes have been employed. How-
ever, as previously pointed out direction-fixed axes can also be used. In this case moments
and products of inertia (variable quantities), components of m (angular velocity of the body
relative to inertial space), coordinates of c.m. and components of vo must atl be expressed
relative to the direction-fixed axes.

To illustrate this, consider again the body shown in Fig. 8-17. Components of o along
the direction-fixed X', Y', Z' axes are given by

wx wxaii +wya21+ wza31, etc.

where wx = sin 0 sin ¢ + 0 cos 4,, etc. See equations (8.11). Moments and products of
inertia Ix, Ixy, etc., relative to X', Y', Z' may be expressed in terms of Is, Ixy, etc., relative
to the body-fixed X, Y, Z axes by means of equations (7.20), Page 123. Coordinates of c.m.
in terms of z relative to body-fixed axes may be written as t' = tail + 7a21 + za31,
etc. vo has the same meaning as before, but its components must be taken along the .fixed
directions of X', Y', Z'.
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On .substituting the above "direction-fixed" values into (8.10), a valid expression for T
is obtained. Note that this expression will finally reduce to exactly the same as obtained
by the use of body-fixed axes.

The above procedure is usually far less convenient than the body-fixed method. How-
ever, for the sake of illustrating basic principles, we give the following specific example.
Example 8.19.

Referring to Fig. 8-16, suppose M a spinning top with body-fixed axis Z along its axis of symmetry and
the tip fixed at 0. We shall find T using quantities relative to the fixed X1, Y1, Zl frame.

' x1 o cos ¢ + ¢ sin o sin ¢, wy, = 0 sin ¢ sin o cos ¢, Wz1 =

From relations (7.20), Page 123,

Ix (cost y + eos2 B sine b) + Iz sins 0 sine

I. (sin2 p + cost 0 eos2 ¢) + I. sin2 0 eos2

Ix sin2 0 + Iz eos2 0

- Ix sin2 0 sin ¢ cos ¢ + Iz sin2 0 sin p cos ¢

Ix sin 0 cos 0 sin p - Iz sine cos o sin e'

- Ix sin 0 cos 0 cos ' + Iz. sin 0 cos 0 cos p

jCOs8

Since the tip is fixed, vo = 0 and thus

T = 2 [IxW2 + IylW21 + Izl w2z1 - 2(Ix1y1 Wx1 Wy1 + Ixlzl coxl Wzl + Iy1z1 Wy1 Wzl)JX1 y

On substituting from above, T becomes, after some long tedious reductions,

T = 1Ix(e2 + 2 sin2 e) + Iz(0 + lL COS 0)2

which is just what was obtained in Example 8.14 making use of body-fixed axes.

8.10 Motion of a Rigid Body Relative to a Translating and
Rotating Frame of Reference.

The general type of problem to be considered may be stated and illustrated as follows.
Let X2, Y2, Z2, Fig. 8-21 below, be regarded as inertial. Imagine, for example, X1, Y1, Zl
attached to the cabin of a ship which is moving (translating, rolling, yawing, pitching) in
any known or assumed manner relative to X2, Y2, Z2. The motion of a rigid body, acted
upon by given forces F1, F2, etc., is to be determined relative to the cabin.

It is evident that, basically, the required procedure is the same as that followed in all
previous examples because, under any and all conditions, relation (8.10), Page 148, is valid
without change in form provided &jx, wy, wz and vyx, voy, v,z are so expressed that they represent
components of w (total angular velocity of the body relative to inertial space) and vo (the
linear inertial-space velocity of 0) respectively, along the instantaneous directions of the
body-fixed X, Y, Z axes. Details of how these quantities can properly be expressed for this
problem are given below.

Let 01 represent the angular velocity of the X1, Yi, Zl frame (the boat) relative to X2, Y2, Z2.
Write components of Q1 along "X1, Y1, Zl as S21x, f21y, .lz. Take ( as the angular velocity of
the body relative to X1, Y1, Zl with components nx, cy, Qz along the body-fixed X, Y, Z axes.
Let the orientation of the X1, Y1, Zl frame relative to inertial space (X2, Y2, Z2) be determined
by Euler angles 01, l, 0, as shown in the figure, and that of the body relative to the cabin
by 0, , s (not shown but measured in the usual way with respect to X1, Y1, Z1). Hence we
write [see (8.11), Page 157],

Qlx = 1 sin 01 sin 01 + 01 cos 41, etc. (1)
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X, Y, Z Are Body-fixed

= Angular velocity of
body relative to iner-

tial space.

= Angular velocity of
X1, Y1, Z1 relative to
inertial space.

Angular velocity of
body relative to
X1, Y1, Z1 frame.

Linear inertial-space

velocity of 0.

Linear inertial-space
velocity of 01.

Direction cosines of X
relative toX1, Y1, Z1, etc.

Direction cosines of X1
relative to X2, Y2, Z2, etc.

X, Y, Z are body-fixed. X2, Y2, Z2
remain parallel to inertial X2,Y2,Z2
axes.

Fig. 8-21

and likewise

Therefore wx, wy, co.-, as defined above, are given by

(Dx = fIx + Q1xa11 + n1ya12 + S2iza13

Wy = 0y + 21xa21 + )1ya22 + i1za23

Wz = SZz + O1xa31 + 21ya32 + UIza33

where all, a12, a13) etc., are given in Table 8.2, Page 158. These are the expressions for
required in (8.10), Page 148.

Indicating the linear velocity of 01 relative to X2, Y2, Z2 by u, with components
along X1, Y1, Z1, we write

Sex = sin 0 sin 4) + 0 cos 4), etc. (2)

ux = Al x+ y212 + z2913, etc. (3)

(8.14)

Ux, up, Uz

where the meanings of x2, RI1, etc., are indicated on the figure. Of course, u may be ex-
pressed in terms of spherical or other coordinates, if so desired.

Now writing v1, V2, V3 as components of vo (vo = inertial space velocity of the origin 0 of
X, Y, Z) along instantaneous directions of XI, Y1, Z1, it follows from (8.4), Page 143, that

V 1 = x2911 + y2l' 12 + '2913 .

+ xl + 21yzi lzyi
V2 =

V3 =

x221 + Y21'"22 + z2/323 + yl + QIzxI - 9 lxzI

2931 + y2' 32 + ,7+2833 +zl + &21xy1 - Qlyxl

(8.15)

where xi, yi, zi are the X1, Yi, Zl coordinates of 0 and the R's are obtained from Table 8.2,
Page 158, replacing 0 by 01, etc. Thus vo which appears in (8.10) is given by
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2 221 +v ",' v (4)vu

Also vox, voy, voz, as defined above, are

vox = V1a11 + v2a12 + v3a13, v0,, = V1a21 + v2a22 + v3a23, V0x = 211a31 + 212a32 + 213a33 (5)

Now inserting (4) in the first term of (8.10) and the results of (8.14) and (5) into the
second and third terms, we have

T _ T x1, Y1, z1; x2,.ys, z2; 01, 11 yii; 01 Y'f

and their time derivatives / (8.16)

But assuming that the motion of the ship (the X1, Y1, Z1 frame) is known, X2, y2, Z2 and
01, ¢t, 01 are known functions of time. Hence T can finally be put in the form

T = T(x1, y1, z1; x1, y1, z1; 0, , 0; 0, , ; t) (8.17)

which contains no coordinates other than those which locate the body relative to the cabin.
Thus equations of motion of the body relative to the cabin follow at once by an application
ofLagrange's equations. Expressions for generalized forces are obtained in the usual way.

Note that if 0 is taken at the center of mass, the third term of (8.10) drops out and
relations (5), which may be quite messy, are not necessary.

Results of the above section are illustrated by the following specific examples. As
further illustrations see Problems 14.30, 14.31 and 14.32, Pages. 299-301.

Example 8.20.
Referring to Fig. 8-22, the horizontal arm AB is made to rotate with angular velocity %& about a ver-

tical axis as shown. Disk D rotates with angular velocity 1, measured relative to the support C. Axes
X2, Y2, Z2 are assumed inertial. X1, Y1, Z1 are attached to D. Z1 extended backward intersects the vertical
line about which AB rotates. We shall regard ¢1 and 01 as known functions of time.

B

Motion of Rigid- Body Relative
to Moving X1, Y1, Z1 Frame
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A rigid body of mass M is acted upon by forces .F1,F2i etc., (magnitude, direction and point of applica-
tion of each assumed known). Following the same general notation and method outlined above in Section
8.10, let us determine the equations of motion of the body relative to the X1, Y11 Z1 frame.

It may be seen from the figure that

21x = Pi sin e1 sin ol, 21y..= +Gi sin 91 cos 01, 12lz 'i cos 61

Also, U., = ¢ sin a sin 0 + e cos 0, etc. (e, ¢, ¢ are, of course, the Euler angles which determine the
orientation of the body relative to X1iY1rZ1). Hence, just as in (8-14), Section 8.10,

Wx = 2x + 12lxall + 121ya12 + &11za13, etc.

01 has a linear velocity u relative to inertial space of magnitude (r + l sin 91)¢. Components along
X1, Y1, Z1 are ux = (r +l sin o1)+Gl cos 01, uy = -(r ± l sin sin 951, uz = 0

Hence it is seen [following (8.15), Section 8.10] that

vl (r + 1 sin ol) cos 01 + x1 + (Gl sin el cos o1)z1 cos B1)yi

and corresponding expressions for v2i v3. Assuming that 0 is at c.m., expressions for vox, voy, vOz are not
required. And if X, Y, Z are taken along principal axes of inertia, T reduces to

T = 2M(vi+v2+v3)-1-IX X+Iywy-I-Izwz

which, assuming Pi and 01 are known functions of time, is expressed as a function of x1, y1, z1i , their
time derivatives and t. For the special case of =constant and constant, the expression for T
is relatively simple.

Equations of motion are obtained at once by an application of Lagrange's equations. No further
details need be given.

Example 8.21. Regarding AB, D and M, Fig. 8-22, as a system of rigid bodies; to determine equations of
motion of the system.

We shall assume that known forces are applied to each component part, to find all motions of the
entire system. A brief outline of steps required for the determination of the total kinetic energy follows.

Assuming X2, Y2, Z2 as inertial, T1, the kinetic energy of AB, is just

T1 =.

where Ii is the moment of inertia of the arm AB, the vertical shaft and block C about Z2. It easily follows
that T2, the kinetic energy of D alone, is

T2 = 2M1(r + l sin 21P'i sine 91 + 2IP(&1 + +, cos 91)2

where M1 = mass of the uniform disk and Ix and 7P are moments of inertia of D about X1 and Z1 respec-
tively. The expression for T3, the kinetic energy of the rigid body, is exactly the one for T obtained in
Example 8.20 above where, for this problem, V'1 and of are not assumed to be known functions of time.
T4, kinetic energy of rod ab (mass M2, radius r, length 1), is left to reader. Hence finally,

Ttotai T1 + T2 + T3+ T4

Note the following: (a) The system has eight degrees of freedom. (b) Ttotai is expressed in terms of the
eight coordinates , 951; x1, yi, zl; o, ,P, o and their time derivatives. (c) An application of Lagrange's equa-
tions gives the eight equations of motion. Generalized forces are obtained in the usual way. Bearing forces
(bearings assumed smooth) do not enter. (d) Solutions to these equations give the rotational motion of AB
relative to the X2, Y2, Z2 frame, the rotation of D relative to C, and the motion of the rigid body relative
to the X1, Y1, Z1 frame.

Example 8.22. Motion of a space ship and rigid body inside ship.

Referring to Fig. 8-23 below, suppose the rigid body inside the space ship is acted on by forces F1, F21
etc., as well as the gravitational pull of the earth. Let us consider the problem of finding the motion of
the ship relative to X2, Y2, Z2 (assumed inertial) and the motion of the body relative to the ship (X1, Y1, Z1).
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X2, Y21 Z2 Fixed in Direction,
with 02 Fastened to Center of Earth

Earth

Fig. 8-23

Motion of Space Ship
and Body within

[CHAP. 8

T 1, the kinetic energy of the space ship, may be written in the usual way in terms of x2, y2, z2 (or r,
4j, a, see below) and Euler angles e1, 01, 01 (not shown) and their time derivatives. An expression for T2,
the kinetic energy of the rigid body, may be written in exactly the form of (8.16), Page 164. Thus

Ttotai = T 1 + T2

and for given forces (including gravity) the equations of motion follow at once.
It is important to note that: (a) The system has twelve degrees of freedom, assuming the rigid body

not constrained. (b) For this problem it is better to replace x2i Y2, z2 by r, I'i and angle a. If desired, a
can be written as a = wet+A where we = angular velocity of earth and X is the longitude of the meridian
through which r passes. (See Fig. 14-4, Page 144.) (c) Generalized forces are found in the usual way. How-
ever, it must be remembered that for every force exerted on the body by, say, a light mechanism attached
to the ship, there is an equal and opposite force on the ship itself.

Example 8.23. Illustrating the meaning of equations
(8.4), Page 143.

In Fig. 8-24 axes X, Y, Z are attached to the
rotating table. Base B, resting on an elevator, has
a constant acceleration, a, upward. X1, Y1, Z1 are
attached to the earth and regarded as inertial. Line
Oc is drawn on the table. Angle /3 = constant. As-
sume 9, a and vo (the initial upward velocity of the
elevator) as known quantities.

Applying (8.2) it follows that for the particle m',

vx = ro sin i3 + x - sy

vy = recos,6+y+bx
vz = vo+at+z

where v,, vy, v,,, are components of the inertial-space
velocity of m' along X, Y, Z. Hence Fig. 8-24

T = 2m'[x2 + y2 + r262 + (x2 + y2)92 + 2re2(x cos R - y sin a)

+ 2r®(y cos R + x sin fl) + 2e(x?1- y;) + (vo + at + z)2]

Show that transformation equations relating the inertial-space coordinates x1, y1, z1 of m' with x, y, z
are
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xl = rcos a + x cos (e +,a) - y sin (e + /3)

yl = r sin 0 + x sin (e + /3) + y cos (B +,8)

Zl = z + vot + 102
and check the above results by an application of these relations.

Let A represent the linear acceleration of m' relative to inertial space. Find expressions for its com-
ponents A., Ay, Az along the instantaneous directions of X, Y, Z. Apply the method of Chapter 3, Page 48.

8.11 Suggested Experiment: Determination of the period of oscillation of disk D, Fig.
8-13, Page 154.

A metal disk of any convenient thickness and radius, mounted on a slender rod with
end p sharpened as a pencil, is placed on an inclined plane consisting of a sheet of plate
glass (glass greatly reduces damping). If the angle of incline is not too great, the disk will
oscillate for some time about its equilibrium position without sliding down.

Find the period experimentally and compare with the computed value. With reasonable
care in the determination of moments of inertia, mass, etc., experimental and computed
values of the period will agree closely. For best results the mass, etc., of the supporting rod
(length rl along Z) should be taken account of. This introduces no difficulties.

The theory involved in computing the period includes many of the basic principles of
rigid body dynamics. Moreover, the experiment is quite interesting and inspires confidence
in the general methods employed.

Problems
A. Angular velocities and their components.

8.1. Prove expressions (8.0), Page 140.

8.2. Assume that the rigid body, Fig. 8-1, Page 140, is rotating about lines Oal and Oat (not shown)
with angular velocities wl and w2 respectively. Corresponding linear velocities of nn' are v1 = w1hl
and v2 = w2h2. Hence the magnitude of the total velocity v is given by

v2 = w1 h1 + w2h2 + 2w1w2hlh2 cos 18 (a)

where /3 is the angle between v1 and v2.

But assuming that w1 and w2 can be combined as vectors, the resultant w is given by
w2 = wl + w2 + 2w1w2 cos a where a is the angle between wl and w2. Hence it should be that

V2 = w2h2 (b)

where h is the normal distance from the line indicating w to m'. Show that the two expressions
(a) and (b) are equal. To simplify the work take 0a1 along X and Oat somewhere in the XY plane
but m at some general point x, y, z.
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8.3. Referring to Fig. 8-25, assume that the body, with one point fixed at 01, has an angular velocity
w(Wh, 01y, 111z) relative to X1, Y1, Z1. As a result, m' has a linear velocity with components along
X1, Y1, Z1 given by vx = wlyzi - Wlzy1, etc., where x1, yi, z1 are the X1, Y1, Z1 coordinates of m'.

Now consider the X, Y, Z frame with origin attached to the body at O. Assuming that these
axes remain parallel to X1, Y1, Z1, it is seen that x1 x0 + x, etc. Extending the above, prove the
statement made in Section 8.2C(h), Page 142.

v (vr, vy, v.) = Velocity
m' Relative to X1, Y1, Z1

X, Y, Z with origin attached to body at 0 remain
parallel to X1, Y1, Z1. w, v, vo regarded as relative
to X1, Yl, Z1.

Fig. 8-25

8.4. Prove relations (1) and (2), Example 8.3, Page 146. Indicating direction cosines of the total angular
velocity vector w by 1, in, n relative to X, Y, Z, and 11, in,, n1 relative to X1Y1Z1, show that,

I = (91 cos a + 92 COS /3)(sin e3)/w, etc.

and 11 = (92 sin (6 - a) + s3 cos a)(cos e1)/w, etc.

8.5. Referring to Fig. 8-11, Example 8.7, Page 152, show that the direction of the angular velocity
vector of the rod relative to instantaneous positions of the body-fixed axes is given by

1 -g2/w, m = (81 cos 62)/W, n = (91 Sin 02)/CO

where w2 = e1 + e2; and that relative to the space-fixed X1, Y1, Z1 axes,

11 = -(e2 sin 91)/w, m1 _ (e2 cos el)/w, W

8.6. Referring to Fig. 8-12, Example 8.8, Page 153, verify expressions given for w , Wy, Wz.

8.7. In Fig. 8-26 the disk D rotates through angle 03 measured by pointer p from a horizontal line
parallel to the face and passing through the center of D. Shaft bd can rotate in a vertical plane
through angle 92, about a horizontal bearing at b. The vertical shaft rotates through angle e1
measured from the fixed X1 axis.

With body-fixed axes attached to D as in Fig. 8-5, Page 146, show that components of the
angular velocity ( along these axes are

Wx = B1 COS 02 Sin B3 - 82 cos B3, coy 81 COS B2 COS 63 + B2 Sin 83, Wz = 83 + 81 sin 02

Show that components of w along the inertial X1, Y1, Z1 axes are

Wx1 = 83 COS B2 COS e1 + ®2 Sin B1, Wyl = B3 COS B2 sin e1 - B2 COS 0 1,
wz1

= 61 + B3 Sin 62
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A

1a
i

Fig. 8-26

8.8. Verify the important relations (8.11), Page 157. Also verify expressions for the direction cosines
given in Table 8.2, Page 158. Note. A simple model is very helpful.

8.9. Referring to Fig. 8-3 and regarding m as a free particle, write x1 = xo + xa11 + ya21 + za31, etc.
for y1 and z1. Differentiate these relations, regarding all quantities as variables. Making use of
relations (8.11), Page 157, show that the expression for vx (the component of the inertial space
velocity of m along the instantaneous direction of X), vx = x1a11 + y1a12 + x1a13, finally reduces to
the first of (8.4), Page 143. The above requires patience but is a valuable exercise.

8.10. Referring to Example 8.20, Page 164, write out in full expressions for ox, wy, Wz.

B. Kinetic energy and equations of motion.
8.11. (a) In Fig. 8-5, Page 146, A is at rest. The origin 0 of body-fixed axes is at c.m. of the disk.

Show that T for the entire system is

T =
2

(Ms2 + rx ).2 sing B + - lz ( cos B + ,)2 +

(b) Taking body-fixed axes as before but with origin at b, write an expression for T and show that
it reduces to the one above. Can we regard b as attached to D?

8.12. (a) With the aid of relations (8.3), Page 142, determine T for the thin disk, Fig. 8-5, Page 146, by

evaluating the integral T = .. f v2 dm and compare with the expression for T found in
Problem 8.11(a).

(b) The disk in Fig. 8-5 is replaced by a rigid body of any shape. Assuming the X, Y, Z axes to be
the same as in part (a) (principal axes with origin at c.m.), show by integration that the expres-
sion for T is the same as in (a).

(c) Referring to Fig. 8-6 and Example 8.3, Page 146, show that vox is given by
vox = -(s®1 cos 02 + .Blz2 cos B2 cos y) sin 83 sin (y - a)

+ [-sel sin 82 + (82 + 81 sin y)x2 - 81x2 sin 82 cosy] COS 03 - B1 x2 COS B2 cos y Sin 83 Cos (y - a)

(d) Referring to Fig. 8-15, Page 156, find expressions for vox, voy, v0z employing equations (8.3),
Page 142.
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8.13. Taking body-fixed axes as indicated in Fig. 8-10(1), Example 8.6, Page 151, and assuming that r
is a coil spring with. constant k, show that

T = I M(r2 + r292) + JI,z;2 - M;¢ [x sin (,b - 6) + y cos (95 - 6)]
- cos (¢ - B) - y sin (0 - 0)]

Show that the r equation of motion is
m(r - 42) - M [x sin (0 - e) + y cos ( - 6)]

- Mq,2[x cos sin (0 - 6)] = Mg cos o - k(r - ro)
Write the 9 and q, equations.

8.14. Disks DI and D2, Fig. 8-27, mounted in smooth bearings on a light bar ab, are free to rotate rela-
tive to the bar of length l with velocities 91 and 82. It is assumed the rims are in contact and rotate
without slipping. The combination is free to slide about in any manner on the smooth inertial X1Y1
plane. How many degrees of freedom has the system? Show that

T = 1(Ml + M,)(12 + y2) + 2M219(l9 + 2y cos 6 - 2x sin e)

+ 2I1(61 + 62)2 + 2I2(R1B1IR2 + 6)2

A force F is applied to the rim of D1 at p as indicated. As motion takes place, F remains in
the same direction (a = constant). Show that generalized forces corresponding to x, y, 01, 0 are

F cosa, Fy = -F sin a, F01 = -FR1sin(61+62+a), F0 = -FR1sin(61+6+a)

Y,

Inertial
y

I

Fig. 8-27

A

Fixedb fl
ag

Fig. 8-28

8.15. The uniform disks D1 and D2, Fig. 8-28, are mounted on the vertical shaft as shown. Angles
a, 01, 02 are measured by pointers as indicated. Neglecting masses of the shafts which support the
disks, show that T for the system is

T 2 [M1S1 + M232 + Ixl sing /31 + ' 1x2 sing 82]a2

+ 27x1(91 + « sin R1)2 + 2I,2(« sin 102 - 92)2

8.16. Referring to Fig. 8-5, Page 146, a free particle m has coordinates x, y, z in the X, Y, Z frame.
Making use of relations (8.4), Page 143, write T for the particle. Show by the method outlined in
Chapter 3, Page 48, that the X component of the inertial space acceleration of m is given by
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x + [(s + z) 7 + 2;. - (x cos ¢ - y sin ¢)¢2 sin e] sine cos 0

171

- y(¢ + cos e) - 2y(¢ + ' cos e) - x(, + ¢ cos 9)2 + (s + z)¢2 sine cos a sin 95

Check the above by means of equation (9.6a), Page 179. ay and a1 follow in the same way.

8.17. Using the results of Problem 8.7 and neglecting the mass of rod bd but including I1, show that

T = 2M1261 cost e2 + 27x(e2 + e 1 cost 92) + 2'1(83 + 61 sin 62)2 + 27191

Taking account of the torsional springs and gravity, show that generalized forces correspond-
ing to 61, 92, e3 are

F81 = C191, F®2 = -0282 - M91 COS 82, F03 = 0
where cl, c2 are torsional constants and the springs are assumed undistorted for 91 = 0, e2 = 0-

8.18. Rigid body B, Fig. 8-29, is mounted on A by a shaft S. The two, thus attached, are free to move in
space under the action of known forces. Origin 01 of X1', Y'1, Z'1 is fastened to c.m. of A. These
axes, not otherwise attached to the body, remain parallel to an inertial frame (not shown). The
same is true of 02 and X2, Y2, Z2. Take Xa, Ya, Z. and Xb, Yb, Zb as body-fixed Xl, Yl, Z1 axes of
A and B respectively. Zb is, for convenience, taken as an extension of Za. B can rotate with an-
gular velocity « relative to A. Euler angles for the masses are measured as indicated.

X1, Y1, Z1 and X2, Y2, Z2 remain parallel
to inertial axes not shown.

W1= %'2, 81=B2, 01#02, wz2 = mx1+a

Fig. 8-29

Show that the system has seven degrees of freedom and that xl, yl, z1 (coordinates of Ol
relative to some inertial frame), 91, 1, 01 (Euler angles for A), and the Euler angle 02 for B are
suitable coordinates. Prove the following relations:
01 = 82, 'Pi = +P2, ' x2 = xl + l sin el sin ¢l, y2 = y1 - l sin e1 cos ¢l, z2 = zl + l cos B1

where x2, y2, z2 are coordinates of 02 relative to the inertial frame and 1 is the constant distance
between 01 and O2. Note that angular velocities are given by relations (8.11), Page 157, and that

w12 = w11 + a. Write out expressions for all angular velocities and eliminate superfluous coordinates.
Assuming that body-fixed axes are principal axes of inertia, show that

T=
12
M+ M 2 2 2

1 2.2 2.2 2( 1 2)(x1 + y1 + z1) + 2M2[1281 + l ¢1 sin 61 + 2191 cos 91(x1 sin P% I - yl cos ¢)

+ 21 1 sin 91(x1 cos 1t'1 + yl sin,pl) - 212161 sin 91]

+2(Ix Wx +Iy Wy +Ix WZ )+2(IxWx +1;2W'2 +IP wz)
1 1 I l 1 1 2 2 2 2

where wxl = ¢1 sin e1 sin 01 + 91 cos 01, etc.;
wx2

= ,/il Sin 91 Sin 952 + 91 COS 02, etc.
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Suppose that a known force Fl (components fxhfyl,fzl along X., Y., Z,,) is acting on A at a
point pl, coordinates- of which in the Xa, Ya, Za system are lx,,1y1, 1,1. Likewise, F2 (components
f-2, fy2, fz2) acts on B at p2. Show that the generalized force corresponding to x1 is

Fxi fx1(COS 951 cos ¢1 - sin of cos 61 sin VI) - fy1(sin 95i cos t + cos 951 cos e1 sin Gl)

+ fzl sin el sin 01 + fx2(cos 952. cos 01 - sin 952 cos 61 sin V51)

- fy2(sin 952 cos 1b1 + cos 952 cos el sin V11) + fz2 sin e1 sin ¢1

Write corresponding expressions for F,,, Fz1. Show, for example, that

F.p1 (1y1fz1 - lzlfy1) sin Bl sin ol + (lzlfxl - lxlfzl) sin 91 cos 01

+ (lx1f'l - ly1fxl) cos el + 1z2fy2) sin 01 sin 02

+ (lz2fx2 lx2fz2) sin B1 COS 02 + (lx2fy2 - 112fx2) cos 01

Find expressions for F,yl, F4'2' F01.

8.19. See Section 8.4(f), Page 149. Consider a body, free to move in any manner. Take body-fixed axes
along the principal axes of inertia with origin 0 at c.m. At any given moment the body may be
regarded as having an angular velocity w about some instantaneous axis through 0. Direction
cosines of this line are wx/w, etc. Indicating the variable moment of inertia of the body about this
line by I, prove that T = 2Mv2C.,,,. + I(02, which is just the "center of mass" theorem (Page 26)
as applied to a rigid body.

C. T and equations of motion relative to moving frames.
8.20. In Fig. 8-30, X2, Y2 are fixed in space. X1, Y1 are attached to a horizontal rotating table which has

an angular velocity a about a vertical axis through 02. X, Y, Z are fastened to a lamina of mass M
which is free to slide on the X1Y1 plane under the action of forces f 1, f2, etc. The lamina is located
relative to X1, Y1 by coordinates x1, yl, a as shown.

Show that wx = wy = 0, wz = ®+ and that
x2 = (xl - yl«) cos a - [yl + «(r + xl)] sin a

with a similar expression for y2.
Show that components of the inertial space velocity of 0 along instantaneous positions of X

and Y are given by
VQx = x2 cos (0 + a) + y2 sin (9 + a), V0y = -x2 sin (e + a) + y2 cos (e + a)

Show that for the lamina,

T = 12M[(x1 - y«)2 + (- + «(r + x1))2] + 2Iz('9 + a)2

+ M(e + «){ (r + xl)«] (x cos 9 - y sin e - (xl - y1ce)(x sine + y cos 9)}

Assuming a to vary in any known manner with time, T = T(xl, yl, o; x1,1!1. e; t). Hence equa-
tions of motion (which are easily written out) determine the motion of the lamina relative to the
moving X1, Y1 axes. Note simplification of T for 0 taken at c.m.

Fig. 8-30
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8.21. Suppose that.base B, Fig. 8-12, Page 153, is fastened at a distance R from the center of a hor-
izontal table which rotates with known angular velocity ca about a vertical shaft through its center.
Let X1 be an extension of R. Taking body-fixed axes as shown for the disk, show that

wx = (a + ¢) sin a sin o, wy = (« + ) sin a cos o,. wz = + (« + ¢) cos e

vox = R«(cos o sin ¢ + sin 95 cos e cos ¢), vo, = -Ra(sin ¢ sin - cos 0 cos o cos ¢)

v0,- = -Ra sin o cos p, vo = R2a2

where vox, voy, v0 = components of vo, the inertial-space velocity of 0, taken along instantaneous
directions of the body-fixed axes X, Y, Z. Write out T. Compare with T given in Example 8.8,
Page 152.

8.22. In Fig. 8-31, the X1, Y1, Z1 frame is attached to the earth with Y1 tangent to a great circle and
pointing northward, Z1 normal to the earth's surface and Xl pointing to the east. Bearings sup-
porting the a1a2 axis of the gyro are fixed relative to the earth. The gyro can rotate about. ala2 and
blb2. Show that, taking account of the earth's rotation,

wz = (81 + we sin'') sin 62 + we COS 4' cos o1 cos B2

wy = (01 + wesin,f) cos 02 - we Cos' cos o1 sin 02

wz = B2 + wecost' sin t
and that

T = 2 jf [(s l + we sin (l')2 + we cos2 4' cost oil + 2Iz [B2 + we cos .Ysin 91] 2, + constant

where we is the angular velocity of the earth and `' the latitude. The origin 0 of body-fixed axes
X, Y, Z is taken at c.m.

Write equations of motion and show that, neglecting a term with we (me = 7.29 X 10-5 rad/sec),
p a + cwe cos P sin a = 0

where 91 + a = 901 and aT/3e9 c = constant.
For a small, show that 2ir(Ix/cwe cos 4')1/2 is the period of oscillation of the b1b2 axis about the

Y1 line. Consider the case of 9 reversed in direction.

$i

Fig. 8-31 Fig. 8-32

8.23. The base B on which the top, Fig. 8-32, is spinning is made to oscillate horizontally according to
x = A sin wt. Taking body-fixed axes with origin at the tip and Z along the axis of the top, show
that
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T --MA2w2 COS2 wt + Bi (ej + Sin2 o) + 27z(c + G COS 0)2

+ MAwr cos wt(¢ sin acos p + e cos e sin')

Show that the e equation of motion is (note that first term in T may be dropped)

Ixe + (I,, - sin a cos 8 + sin e

- MAw2r sin &)t cos a sin ¢ Mgr sin e

Write out the p and 0 equations of motion.

8.24. The tip of the top, Fig. 8-33, remains at 0. on the horizontal rotating arm R. X2, Y2, Z2 are fixed in
space. X1, Y1, Z1 are rigidly attached to the arm. X1 is, for convenience, taken as an extension of
R and X1, Y1 remain in the X2Y2 plane. Z1 remains parallel to Z2. X, Y, Z are body-fixed. Euler
angles 8,,G, 0 are measured relative to X1, Y1i Z1 as shown. This is a special case of the more gen-
eral problem treated in Section 8.10, Page 162. Notation used is the same as in Fig. 8-21. Show that

vo = R1 (always in the direction of Y1)
vox = o sin 1& + sin q, cosy cos e)

voy = R'1(cos , cos ¢ cos o - sin' sin')
voz = sin 8 COS ¢

wX = sin 0 sin o + B cos o + ¢i sin 0 sin o
my = sin 9 cos ¢ - e sin o + ''1 sin 0 cos.
wz = + V" cos 8 + 'p1 cos 0

Finally show that
_ff

[I.(wx +,02) + Izwz] + Mr(voxwy - v0y4'x)T = 2MR2¢1 + -
Note that, assuming ¢i, a known function of time (that is, the vertical shaft 02b is forced to

), , ¢, 0; 8, ¢, ; t). Hence equations of motion give the motion of theturn in a given manner), T = T(e
top relative to the rotating X1, Y1, Zi frame.

Above, special ease of Fig. 8-21
X2, with same notation

Fig. 8-33

8.25. Suppose the arm R, Fig. 8-33, and vertical shaft 02b are free to rotate under the action of some
known torque r,p1. How many degrees of freedom does the entire system now have? Write an ex-
pression for T of the entire system.
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8.26. In Fig. 8-34 a rotating, bearing B supports the shaft a1b1. On this shaft is mounted, in the manner
shown, disk D. Angular displacements are measured relative to A, B, C respectively.

(a) Show that with axes attached to D as in Fig. 8-5, Page 146, (simple model suggested),

w2 = [el COS a Cos 92 Cos /3 - (92 +

coy [el COS a COS B2 COS /3 - (B2 +

wz 93 + [e2 + 81 sin a] COB 9 +

(c)

(d)

(b) With the aid of principles outlined in
Section 8.10, Page 162, write expres-
sions for components of the inertial-
space velocity of c.m. of D along
X,Y,Z. (Hint. Take origin of X1,Y1,Z1
axes at point p with Y1 extending
along r and Z1 extending up along
shaft a1b1.)

Write out transformation equations
relating the position of c.m. to inertial
space. Differentiating these equations,
find the velocity of c.m. Compare this
value with the one found in (b).

Without inserting the, above explicit
expressions for (ax, vo,,, etc., write out
T.

8.27. Referring to Fig. 8-6, Page 147, a rigid
body is free to move relative to the X, Y, Z
axes shown, under the action of known
forces. Taking body-fixed axes with origin
at c.m., assuming el = constant, ®2 = con-
stant and following the general procedure
given in Section 8.10, Page 162, outline
steps for finding T of the body.

Bl sin a) sin /3] sin 93 + el COS a sin e2 COS e3

el sin a) sin /3] COS e3 - B1 COS a sin e2 sin 93

91 cos a cos 02 sin /3

Y

Fig. 8-34

8.28. In Example 8.20, Page 164, the supporting base is mounted at a point on the earth having latitude
4. (See Fig. 14-2, Page 286.) Write expressions for wy, wy, wz, ro and finally T for the rigid body
taking account of the earth's rotation.



CHAPTER

9
Rigid Body Dynamics: Part III

9.1 Preliminary Remarks.
The Lagrangian method just completed is, in most cases, more advantageous than the

one about to be considered. Nevertheless, this chapter is included because (1) the Euler
approach is quite helpful in making clear certain underlying physical and geometrical
principles of rigid body dynamics, (2) the method has been and still is used extensively
and (3) the examples and problems herein included furnish a means of making a direct
comparison of the two methods.

The Euler treatment is based on the consideration of a "free rigid body", free in the
sense that, if constrained, forces of constraint are included with those externally applied.
Mathematically it leads to two fundamental vector equations .(9.3) and (9.15), each of which
in scalar form is equivalent to: (a) three translational equations of motion of the center
of mass, equations (9.2); (b) three equations which determine the rotational motion of the
body, equations (9.10). Hereafter the above six are referred to as "Euler's equations". For an
understanding of their derivations and applications, close attention to detail is required. Con-
siderable rereading may be necessary. However, no intrinsic difficulties will be encountered.

As shown in the following section, the first three are easily obtained from elementary
considerations. The second set can be derived in several ways: from Lagrange's equations;
by formal vector methods; or by a simple. straightforward application of Newton's second
law equations.

The latter is here employed because it leads to the general form of these equations in an
easily understood manner and in such a way that sight is never lost of the basic physical
principles involved. Moreover, the final equations of motion can be given a very simple
physical interpretation.

The usual derivation of Euler's equations involves a consideration of the time rate of
change of "angular momentum". But since it is felt that the method here presented offers
certain pedagogic advantages, angular momentum is not discussed until near the end of
the chapter.

9.2 Translational Equations of Motion of the Center of Mass.
Referring to Fig. 9-1 below and regarding the typical particle m' as "free", we write

m' x1 = f=, m' y1 = fy, . m' z1 = f< (9.1)

where x1,y1,zi are coordinates of m',relative to the inertial Xi, Y1, Z1 frame and f=, f9, f= are
components of a net force f on m' giving it an acceleration a relative to inertial space.
The vector sum of forces on m' due to attraction or repulsion of surrounding particles is
assumed to be zero.

176
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F1, F2, etc. = externally applied
forces. f = force transmitted to
typical particle W. Free particle
equations of motion: fz = m' z,
fy = m' y, f. = WY. A = inertial-
space acceleration of c.m. Equa-
tion of motion of c.m., F = MA.
F = vector sum of externally ap-
plied forces.

Determination of equations of motion of c.m.
--- lf--------V

Fig. 9-1

Summing the first of (9.1) over all particles of the body, I mix = I fx = F. where
Fx is the sum of the X, components of all externally applied forces. But from the definition
of c.m., I m'xi = M2 where M is the total mass of the body and 2 is the X, coordinate of
c.m. Hence Fx = M 2, F.,, = M V, Fz = MR.

In order to avoid confusion in future notation we write 2 = Ax, etc. Thus the three
translational equations of motion of c.m. are written as

Fx = MA., Fy = MA,, F, = MA2 (9.2)

It is clear that (9.2) may be regarded as component equations of the vector relation

MA = F (9.3)

where F is the vector sum of all externally applied forces (regarded as acting at c.m.) and
A represents, in vector notation, the acceleration of c.m. relative to inertial space.

Note the following important facts:
(a) The center of mass moves as if the entire mass of the body were concentrated at c.m.

with all external forces transferred, without change in magnitude or direction, to
this point.

(b) Applied forces Fl, F2, etc., cause not only translation of c.m. but (as will soon be evident)
rotational motion of the body as well. However, it should be noted that, regardless of
the rotation, equation (9.3) is valid.

(c) Equation (9.3) obviously applies to a body constrained in any manner, provided forces
of constraint (usually introduced as unknown quantities) are included in F.

9.3 Various Ways of Expressing the Scalar Equations Corresponding to (9.3).
In equations (9.2) the c.m. may be treated just as a single particle. Components of A

and F (basically, of course A must be reckoned relative to inertial space) can be taken along
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any axes, moving or stationary, and expressed in any convenient coordinates. For example,
assuming X, Y, Z as inertial, equations (2.60), Page 29, may be regarded as components of
A along tangents to the coordinate lines corresponding to r, 0, 0. Or again, considering
Fig. 9-8, Page 189, equations of motion of c.m. may be obtained by taking components of
A and F either along instantaneous directions of the body-fixed axes or say X1, Y1, Z1, etc.

Specific expressions for the components of A may be found (a) as indicated in Section
2.12(3), Page 29, (b) by the Lagrangian method outlined in Section 3.9, Page 48, or (c) in
case components are to be taken along the axes of a rotating and translating frame, Ax, A,,, Az
may be obtained from relation (9.6).

9.4 Background Material For a Determination of Euler's Rotational Equations..
A. General expressions for the components of the inertial-space acceleration

of a free particle along the axes of a moving frame.
Referring to Fig. 9-2, regard X1, Y1, Zl as inertial. Assume the X, Y, Z frame is trans-

lating and rotating in any manner. This frame could, for example, be one attached to the
deck of a boat which is rolling, pitching, yawing and moving forward. X', Y', Z' axes,
with origin attached to that of X, Y, Z, are assumed to remain parallel to Xi, Y1, Z1. Let
(1 represent the angular velocity of the X, Y, Z frame relative to Xi, Y1, Zl (or to X', Y', Z').
Components of a along instantaneous positions of X, Y, Z will be written as ax, a, ax. Re-
gard m as a free particle (not one forming part of a rigid body), acted on by a force f
which gives it an acceleration a relative to inertial space.

Free Particle.
Coordinates = 1z'

I

x,?1, z; xl.U1, Z1
= Angular Velocity of Z Relative

to X1, Y1, Z1 (or to X', Y', Z')

x
amt IXt2+°t3

X, Y, Z translating and
rotating in any manner

X', Y', Z' remain parallel to X1, Y1, Z1. e, jp, 0 =
Euler angles. 11 = angular velocity of X, Y, Z frame
relative to X1, Y1, Z1. Sts, Sty, fl, = components of i1
along X, Y, Z. a = inertial-space acceleration of free
particle m. ate, a., ax = components of a along in-
stantaneous directions of X, Y, Z. ao = inertial-space
acceleration of 0.

Determination of ax, ay, az.

Fig. 9-2

We shall now find expressions (relations (9.6) below) for ax, a,, ax, the components of a
along. the instantaneous directions of X, Y, Z. As will be seen later these expressions play
a vital part in the derivation of Euler's rotational equations of motion.

Perhaps the clearest and most direct way of obtaining the desired results is through
the use of transformation equations. Let xl, yl, zl and x, y, z be coordinates of m relative
to Xi, Yi, Zl and X, Y, Z respectively. Denoting coordinates of 0 by xo, yo, zo, we write the
transformation equation
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xl x0 + xa11 + ya21 + Za 31

where, as indicated in the figure, au, a12, a13 are direction cosines of X, etc. Differentiating
the above twice with respect to time, we have

)Y, = x 0 + ya
11 + ya21 + Y-31 + xa 11 + a za 31 + 2(xa 11 + y« 21 + za

.31
(1)

Corresponding expressions follow for 51 and zl. Hence ax, ay, a, as defined above, are given.
by

= x1a11 + y1a12 + Zlal3, etc. (9.4)

These expressions can be put into final useful form, (9.6) below, as follows. Let Euler
angles be measured relative to X', Y', Z' as shown in Fig. 9-2. Hence direction cosines
a11, a12, a13 of X etc. can be written in terms of ry, 0, e by Table 8.2, Page 158, and expres-
sions for al, «l, etc., may be obtained by differentiation.

Now eliminating x1, y1, zl from (9.4) by (1), etc.; eliminating the a's, «'s, a's from the
resulting equations and making use of the following relations (see equations (8.11), Page 157)

S2x = sin B sin 0 + 8 cos 9s, Sty = p sin 0 cos p - B sin 0, 2,z = ¢ + cos 0 (9.5)

equation (9.4) finally takes the form of (9.6a) below. In like manner (9.6b) and (9.6c) may
be obtained.

However, in order to simplify the trigonometric manipulations, without the loss of
generality, we shall proceed as follows. Let us assume (as a matter of convenience) that
at any moment under consideration the inertial X1, Yl, Z1 frame is chosen in a position such
that 0 = 900 and v = 0 = 0. Note that in this case X is parallel to X1, Y to Z1 and Z points
in the negative direction of Yl. From Table 8.2 it is seen that all = 1, a12 = a13 = 0, etc.
Hence from (9.4), etc.,

ax = xl, ay = z1, az = - yl (2)

It also follows that for these values of the Euler angles,

ax

and from relations (9.5) it is seen that

S2x = e, Qy = y '

Qx =

S2z =

Finally, making use of (3) and (4), the first of (2) can be written as (9.6a) below.
(9.6c) may be determined by the same procedure.

all = 1, all = 0, all = -(`f,/'2 +

a21 = 0, a21 = -;, a21 = (28Y' - )

a31 = 0, a31 = ', a31
=

Y'

aox + x - x(S22 + 02) + y(S2xSly - S2z)

+ z(S2xS2z + SZy) + 2(zcy - yS2z) (a)

ay = aoy + y + x(S2xS2y + 6z) - y(q= + Q2)

+ z(S2yS2z -fix) + 2(xS2z -7,S2x)

az = aoz + z + x(12xS2z - Sty) + y(QYQ, + S2x

(3)

(4)

(9.6b) and

(b) (9.6)

z(S2x + Sty) + 2(yox - xoy) (c)

Components of a, the inertial space acceleration of in, Fig. 9-2, along
instantaneous positions of the translating and rotating X, Y, Z axes.
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The meaning of each symbol appearing in (9.6) must be kept in mind. a acceleration
of m, ao = acceleration of 0, St = angular velocity of . the X, Y, Z frame; each measured
relative to an inertial frame. ax, ay, az = components of a, aox, aoy, aoz = components of ao,
wx, wy, wz = components of Q; in each case taken along instantaneous directions of the trans-
lating and rotating X, Y, Z axes. x, x, etc., are components of velocity and acceleration of
m relative to X, Y, Z (as measured by an observer riding this frame).

In vector notation, equations (9.6) are equivalent to
a = To + al + 2wXv + wXr + wX(wXr)

where a is the inertial space acceleration of m, ro = the position vector measured from
01 to 0, al = iY + i5 + kz = acceleration of m relative to X, Y, Z, r = position vector
measured from 0 to m, v = ix + jy + kz = velocity of m relative to X, Y, Z, i, j, k = unit
vectors along X, Y, Z. See Chapter 18.

For another approach to the derivation of (9.6) see S. W. McCuskey, Introduction to Ad-
vanced Dynamics, Addison-Wesley, 1959, pp. 31, 32. Also see Problem 9.2, Page 197.

The basic nature and importance of (9.6) may be seen from the following example.

Example 9.1.
Referring to Fig. 2-21, Page 22, let us determine ax, ay the components of the inertial-space accelera-

tion of m, along instantaneous directions of X2, Y2 respectively. Note that
Wx2

= Wy2 = 0,
Wz2

= 91 + B2.
By elementary considerations aox, aoy, the components of the inertial-space acceleration of the origin of
the X2, Y2, Z2 frame along X2 and Y2 respectively, are seen to be

aox = -S01 COS 02 + 861 sin 02, aoy = 881 sin 02 + S 01 COS 02

Applying (9.6), we obtain at once

ax = -881 COS 02 + 801 sin 82 + x2 - x2(01 + 02)2. 712(01 + 82) - 2712(81 + 02
.. .. . . .. .. . . .

ay = 801 sin 02 + 581 cos 02 + V2 - 712(81 + 02)2 + x2(81 + B2) + 2x2(81 + 82)

An observer riding D2 and wishing to determine the motion of m relative to this moving disk would
then write the equations of motion as max = fx, may = f, where fx and f, are the X2, Y2 components of
force on m.

Note the following: It easily follows that the kinetic energy of m is given by

T = 21 -2m[S8 1 + (x2-7213)2 + (712+ x213)2 + 2501(x2'Y213) sin 62 + 2501(712+ x213) COS 821

where /3 = 01 + 02. See Problem 9.2, Page 197. Applying the method of Section 3.9, Page 48, the reader
should check the above expressions for ax and ay.

B. Form taken by equations (9.6) when m is a typical particle of a rigid body.
Suppose that m, Fig. 9-2, is now the typical particle m', Fig. 9-3. Assume, for sim-

plicity, that X, Y, Z are body-fixed as shown. In this case x, y, z are constants. Hence
x = y z = 0, x = y = z = 0. The angular velocity fl of the frame is now the angular
velocity w of the body relative to X1, Yi, Z1 (or to X', Y', Z') and Q = Wx, etc., where
(OX, wy, wz represent components of the inertial space angular velocity of the body along in-
stantaneous directions of X, Y, Z. Hence relations (9.6) immediately reduce to

2 2ax = aox - x(Wy + (02)
+ y(w'.x - Wz) + Z(wxwz + wy) (a)

ay = aoy + x(wxw +Wz) y(Wy +.2) + Z((o - (Ux) (b)

az = a0z + x((,wxwz - wy) + y(wywz } wx) - z(Wx + Wy) (c)

The above relations are, of course, applicable to any body-fixed axes with origin at any
point 0.

It should be noted that since ax, a,,, az are components of a, the inertial space accelera-
tion of m', the component aoa. of a along any line Oa through 0 and having direction cosines

2



CHAP. 9] THE EULER METHOD OF RIGID BODY DYNAMICS 181

1, m, ,n relative to X, Y, Z is given by
aoa = axl + aym + an (9.7a)

Indeed Oa may be rotating about 0 relative to the body, in which case 1, m, n are variable
and (9.7a) gives aoa along the instantaneous position of this line.

9.5 Euler's Three Rotational Equations of Motion for a Rigid Body. General Form.
We shall now derive the rotational equations of motion of the body, Fig. 9-3, to which

external forces F1, F2, etc., are applied.

_ Total Angular Velocity of
Body Relative to Inertial Space

X,Y,Z = body-fixed axes. F1,F2, etc. = applied forces,
m = total angular velocity of body. ao = linear in-
ertial-space acceleration of 0. a = linear inertial-
space acceleration of typical particle W. ox, my, wz;

or, aoy, aox; az, ay, a.. = components of w, ao and a
respectively along instantaneous directions of the
body-fixed X, Y, Z axes. o,.&, o = Euler angles.

Fig. 9-3

As the body rotates and translates, any typical particle m' will in general experience
some acceleration a (exactly as in Section 9.2), here regarded as measured relative to
inertial space. This is due to a force f which is the resultant of forces transmitted from
F1, F2, etc., the direct pull of gravity for example, and forces of attraction or repulsion
exerted by surrounding particles. In what follows the latter is assumed to cancel out in
pairs. Letting ax, ay, az and f., fy, fz indicate components of a and f respectively along in-
stantaneous directions of the body fixed X, Y, Z axes, we write "free particle" equations
of motion as

m'ax = fr, Way = fy, m'az = f,

Multiplying the last of (1) by y, the second by -z and adding, we have

m'(azy - ayz) = fy - f yz

(1)

(2)

(Note that insofar as the validity of (2) is concerned, y and z could be replaced by any ar-
bitrary quantities. Hence (2) is, in a sense, a type of d'Alembert's equation.) From Fig.
9-'below it is seen that fry - fyz is the moment of f about x. Hence summing (2) over all
particles of the body, we writeI m'(a,,,/ ayz) (fzy - fyz) TX (9.8)
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f = force applied to W. rz, Ty, rx = moments
of f about X, Y, Z respectively. fxy = posi-
tive and faz a negative moment about X.
Hence Ty = fy - faz. Likewise ra fzz -
fzx and rz = fax - fxy

Y

Moments of f about X, Y, Z.

Fig. 9-4

Since the summation is over all particles of the body, TX represents merely the sum of the
moments of all externally applied forces (including forces of constraint, if the body is in
any way constrained) about X. Equation (9.8) and two similar expressions for Ty and Tz are
the basic equations of rotation. They can be put into convenient useful form as follows.

ax, ay, az are given by (9.7). Eliminating ay and az from (9.8) we obtain

M(aozy - a(,y;L) + wx I m'(y2 + z2) - WyWZ I m'(Z2 y2)

+ (Wxwz - Wy) m'xy (o&W, + z) I m'xz - (w2 - 0)2) 1 m'yz = 7_X (9.9)

sum of moments of all external forces about X, Fig. 9-3.

But m'(y2+z2) = Ix, m'(xy) = Ixy,

m'(z2 - y2) = m,[(z2 + x2) - (x2 + y2)] = Iy - Iz, etc.

Hence (9.9) together with expressions for 7-y and Tz, found in the same way, may be written as

M(a0zy-aoyz) + IxWx + (Iz - Iy)wywz + Ixy( WZ wy)

Jj&)W Wy + U,z) + Iyz(WZ &)2) = TX

M(a,,._z - I, ,, + (I, - I>)w.w> + Wy)

'- Ixy(WyWZ + wx) + I(xz w2x - w2x = Ty

M(a x-a y)+Iw +(I -I)ww. +I

(a)

kn) (.Y.lu)

oy Ox z z y x x y xz y z x

-I ) I (W2- 2) =
yz(WxWZ + Wy xy y

Wx Tz

A General Form of Euler's Rotational Equations.

(c)

9.6 Important Points Regarding (9.10).
(a) Equations (9.10) constitute a very general and useful form of Euler's rotational equa-

tions of motion. These together with (9.2) determine completely the motion of a rigid
body. In Fig. 9-3, X, Y, Z = any body fixed axes, 0 located at any point.

(b) A simple physical interpretation of (9.10) may be given as follows. Remembering- that
ax, ay, az in equation (9.7) are relative to inertial space, m'ax, etc., are inertial forces,
"inertial force" being defined merely as (mass) x (acceleration) relative to inertial space.
Hence m'(azy ayz) is the sum of the moments of all inertial forces about X. And
clearly the left side of (9.10) must have the same meaning. Therefore this equation is
a statement of the following "principle of moments",

C Summation of moments of {Summation of moments of

inertial forces about X ) applied forces about X

which is likewise true for moments about Y and Z or indeed any line.

(9.11)
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(c) It is important to realize that in setting up the first three Euler equations, (9.2), Page
177, the frame of reference there referred to need not be the same as the one employed
in setting up the rotational equations (9.10).

(d) As is evident from (9.7a), Euler equations of rotation can be written for axes which
may be rotating-about 0 relative to the body. See Problem 9.10, Page 199. See Ex-
amples 9.8 and 9.9, Page 190.

(e) Determination of T., Ty, Tz. Let Fi indicate one of the forces applied at pi, Fig. 9-3.
X, Y, Z components of Fi are fxM1., fyM1., fzM1.. Coordinates of pi relative to this frame are
xi, y;, zi. Hence

If components (fx.
M1

(f)

Tx = (fr. yi - ftizi)

of Fi are given along, say, X1, Yi, Z1, then

fxi = fxia11 + f' a12 + fzia13

(9.12)

(9.13)

Simplified forms of (9.10). Assume 0 located at any point in the body and X, Y, Z body-
fixed. Take X, Y, Z along principal axes of inertia through. 0. Then, since Ixy = Ixz =
Iyz 0, all terms containing products of inertia drop out.

If 0 is taken at c.m., x = y = 2 = 0. Hence the first term in each of (9.10) drops
out, even though X, Y, Z may not be body-fixed.

If one point (any point) of the body is fixed in space (by means of a ball joint,
for example) and 0 is taken at this point, the first term of each drops out since
aox = apt = aoz = 0.

Note that in the last two cases, relations (9.10) have exactly the same form.
If 0 is either fixed in space or located at c.m. and if, moreover, body-fixed axes are

taken along principal axes of inertia, relations (9.10) reduce to the following important
form.

Ixwx + (Iz - Iy)wywz Tx

1:,;y + (Ip - Iz )wx Ty

Izwz + (Iy - Ix)wxwy = Tz

(g)

(9.14)

Equations (9.10) can be derived from Lagrange's equations. See Problem 9.9, Page 198.

9.7 Vector Form of Euler's Rotational Equations.
As shown in Section 8.2F, Page 147, torque can be treated as a vector r, rectangular

components of which are Tx = fy - fyz, etc. See equation (9.8). In like manner
rre'(azy-ayz) is the X component of a vector due to inertial forces.
For convenience let us write relations (9.10) as B. = Tx, By Ty, Bz = Tx where Bx

is merely shorthand for the left side of (9.10a), etc. Hence it is seen that (9.10) are com-
ponent equations of B = T
where components of B are Bx, By, Bx and those of T are T T y, Tz.

(9.15)

Taking components of B and 7- along any line Oa through 0 (which need not necessarily
be fixed in space or to the body, see Examples 9.8 and 9.9, Page 190) having direction
cosines 1, m, n, it is evident that

Bxl + Btm. + Bzn = Txl + Tym + Txn - Toa (9.16)

Euler's Equation: Applicable to any line Oa. (For a
more direct derivation see Problem 9.10, Page 199.)
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9.8 Specific Examples Illustrating the Use of Equations (9.2) and (9.10).
Note. Many of the 'examples in this chapter are taken from Chapter 8. Hence the

reader may make a direct comparison of the Lagrange and Euler methods.

Example 9.2. Consider Example 8.4(1), Fig. 8-8, Page 150.
Taking body-fixed axes as indicated, wx = wy = 0, wz = e. Inspection shows that Fx = -Mg sin o + fx,

Fy = -Mg cos o + fy, Fz = 0 where fx and fy are components of the reactive force at p along the in-
stantaneous directions of X and Y. TX = Ty = 0, Tx = -Mgl sin e. AT = l s, Ay =102, Az = aox = aoy = aoz = 0.
Ixz = Iyz = 0, Ixy 0. Hence equations (9.2) become

Mlo = fx - Mg Sin 0, Mle2 fy - Mg COS 0 (1)

and relations (9.10) finally reduce to Ize = - Mgl sin o (2)

For small motion, (2) may be integrated at once to give o as a function of time. Thus fx and f, may be
obtained from (1) as functions of time.

Note that (2) can be obtained directly by the Lagrangian method.

Example 9.3.
For the purpose of bringing out basic principles and illustrating important techniques (at the cost of

making the solution more involved) let us again treat the above problem, taking body fixed axes as shown
in Fig. 9-5.

Again co,, = wy = 0, wz = e and it is seen that

Fx = fx - Mg sin (e + /3), Fy = fy - Mg cos (0 +,13)

Tx = Ty = 0, TF = f yr sin /3 - f xr cos a + Mgy sin (9 + p) - Mgx cos (o +,8)

aox = re cos /3 + 42 sin /3, aoy = 42 cos /3 - re sin (3

Ax = l o cos a - 102 sin a, Ay = 1; sin a + lee cos

Note that aox, aoy, Ax, Ay are components of accel
eration, relative to an inertial frame, of points 0 and
c.m. respectively taken along instantaneous positions
of the body-fixed axes. fx and f, are components of
the reactive force on the body at the point of suspen-
sion. Note also that these reactive forces appear in rz.
x, y are known constants.

Thus equations (9.2) become
M(l a cos a - 102 sin a) = fx - Mg sin (0 +,a)

MY W sin a + 192 cos a) = fy - Mg cos (0 + /3) (1)

and equation (9.10c) reduces to

M(aoyx - aoxy) + Iz o = Tz (2)

Inserting expressions for aox, aoy and Tz into (2), the
Euler equations are complete.

With some tedious work the reader can show that
(2) reduces to (2) in the previous example. Note that Iz,
of this example is not equal to I, of Example 9,2.

As an exercise the reader should determine the e
equation of motion by the Lagrangian method and com-
pare with results above. Fig. 9-5.

Example 9.4. ConsiderExample 8.7, Fig. 8-1.1, Page 152.
Taking X, Y, Z as body-fixed and regarding the rod as a uniform slender one of length L, y = 2L,

x = Z = 0, Iy = 0, Ix = Iz, Ixy = Ixz = lyz = 0. It is seen that wx = -92i coy = 91 COS 02, wz = 91 Sin 02

about the body-fixed axes. Also, aox = -R B1, a" = -R®i sin 192, aoz = Ref cos 02 taken along, the, in-
stantaneous directions of X, Y, Z respectively. Components of the acceleration of c.m. relative to inertial
space and taken along the instantaneous positions of the body-fixed axes are found from (9.7) to be
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-(R + 9 sin 92) 91 - 291®29 cos 02

-(R + 9 sin 82)8 sin 82 - a2

Ax = (R + 9 sin e2)e1 cos o2 - 929

Hence equations (9.2) become

-M[(R + 9 sin 92) 81 ± 2®1929 cos 82] = fx

185

(1)

-M[(R + 9 sin 02)91 sin e2 + e2y] _ -Mg cos 02 -F f y (2)

M[(R + 9 sin 02)91 cos e2 - e2y] -Mg sin 82 + fz

where bearing forces fx, fy, fz acting at 0 are assumed to be in the instantaneous directions of X, Y, Z.

Equations (9.10) reduce to
M9R;1 cos 82 - Ix92 + Iz91 sin 02 cos 02 = Mg9 sin 02

MRy e1 + I,(91 sin 82 + 291;2 cos 82) = Tz, Ty = 0

where Tz is the torque about Z due to bearing forces.

(3)

The reader should set up the 82 equation of motion by the Lagrangian method (see expression for T
given in Example 8.7, Page 152) and compare with the first of (3). Assuming o1 a known function of time,
how can rz, f, fy, fz be found as functions of time?

Example 9.5. Determination of equation of motion and forces of constraint acting on the disk, Fig. 8-12,
Page 153.

Considering body-fixed axes as shown, wx, wy, wz are as given on the diagram. Components of force on
the disk are

Fx = -Mg sin a sin 95 + f1 + f Fy = -Mg sine cos 95 + fy1 + fy2, Fz = -Mg cos e + fz

where fx1,fy1 and fx2, fy2 are bearing forces at a and b respectively, assumed to be in the instantaneous
directions of X and Y.

Tx = fy111 - fy212' ry fx212 - fx111' Tz = 0

where l1 and 12 are distances Oa and Ob respectively. Assuming B fixed, aox = aoy = a0z = 0, Ax = Ay
Az = 0, 2 = 9 = z = 0. Hence equations (9.2) are

= fz (1)Mg sin a sin ¢ = fx1 + fx2, Mg sin 0 cos 95 = fyl + fy2, Mg cos
0

and relations (9.10) become,

Ix(SG sine sin 95 + sine cos ¢) + (Iz - lx)(¢ sine cos o)( + ' cos e)

Ix(,/ sine cos o - sine sin o) - (Iz - sine sin 0)( + cos e)

dIz dt ( + cos e) = 0

fy111 - fy212

fx212 - fx111

(2)

(3)

(4)

Multiplying (2) by sin a sin 0, (3) by sin 0 cos ., and adding, we obtain

It sine e = (fyl 11 - fy212) sine sin 0 + (fx212 - fx111) in 8 cos o (5)

the right side of which is just the torque r,p tending to change V,. Hence (4) and (5) are just the ys and ¢
equations of motion respectively.

Neglecting the moment of inertia of the frame, T,p is the torque applied to shaft cO by, say, a motor.
Assuming r;p known, integrating (4) and (5), f1. fy1, fx2' fy2

can be found as functions of time.

To complete this example the reader should show that (4) and (5) may be obtained at once by an ap-
plication of Lagrange's equations. See Example 8.8, Page 152.

Example 9.6. Equation of motion and forces of constraint on disk D, Fig. 9-6 below.
The edge of D rolls without slipping in contact with the inclined plane. A smooth ball joint at 0

holds the end of the shaft in place.
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fr'fy.fz

Mg cos

Ball Joint
nclined Plane

Oscillation of Disk on Inclined Plane

Fig. 9-6

[CHAP. 9 .

Regard X1, Y1, Zi as inertial. Take Xi horizontally (normal to paper) and Yi directly down the plane.
X, Y, Z (X, Y not shown) with origin at center of the ball are body-fixed. a and 0 are Euler angles
measured in the usual way. As a matter of convenience we shall introduce 'Dl, instead of V, as defined in
Fig. 8-16, Page 156, where p1 is measured between Yi and the projection of OZ on the X1Y1 plane. Hence
,p = p1 + 180°. Also note the following: e = constant, sin e = ri/r3, cos e = r2/r3, r3¢i = -r2o, Ix = I,
1 = distance from 0 to c.m. of the system, e = angle of the inclined plane, aox = aoy = aoz = 0,
ponents of angular velocity along X, Y, Z are

com-

ri . ri . ri
COS o, WzWx = 'i sin ¢, Wy = 'Pi (1)r3 r3 r2r3

From (9.7) or by elementary considerations it follows that

Ax =
Ay =

(lrir2/r3),, sin o - (lrl/r3) i cos 0

(1r1r2/r3)¢i cos 95 - (lri/r3),Pi sin 0 (2)

Az = -(lri/r3)'k,

Forces on the system are: Mg acting at c.m. and having components Mg sin e and -Mg cos e in the
direction of Y1 and Z1 respectively; fb = a reactive force at b in the direction of Z1; fb = a reactive force
at b tangent to the circular path described by b and assumed to be pointing in the positive direction of
increasing Gi; a reactive force on the ball at 0 with components f, fy, fz along the body-fixed X, Y, Z axes.
We assume that the total reactive force at b has no component in the direction of r3.

Now writing Fx1 as the sum of Xi components of the above forces, etc., and F,, the total X component
of all forces, we have

where (not including the reactive

F., = F,,ali + Fya12 + Fza13

force at 0)

Fxi = -fb cos>Gi, F,,, = -fb sin pl + Mg sin e, Fzi = A - Mg cos e

Thus finally

F.

Fy

fx + fb r3 sin 0 + f b' cos ¢ - Mg Lsin e ( cos 0 sin pi + r3 sin 95 cos ¢i ) + -cos3 e sin ¢

fy + f b
r3

cos f b sin 95 + Mg Ls n e sin 0 sin ¢i r2 cos 95 cos'ki ri COs ecos 95
r3 r3

(3)

(4)

(5)

L2 ri r2fz + fb- + Mg sine Cosllil --cose1
r3 r3 r3 J

With a simple model and a little patience these expressions can be verified directly.
Equations corresponding to (9.2) can now be written at once from (2) and (5). No further details will

be given. (Could equations of motion of c.m. be written employing components of acceleration and force
along the X1, Y1, Zi axes?)

The rotational equations are found as follows. It is seen that the X, Y, Z coordinates of c.m. and b
are (0, 0, 1) and (-r2 cos 95, -r2 sin o, r) respectively. Note that X, Y, Z components of the individual forces
may be read directly from equations (5). Thus applying the general relations r (fzy - fyz), etc.,
we finally obtain
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'rx =

TV =

Tz =

fbrl sin 0 - fbr3 cos 0 - Mgl I sin a (sin 0 sin 01 - r3 cos 0 cos'f1 - r3 cos e cos

flbr, cos

fbr2

cos e sin+ fbr3 sin 0 - Mgl sin e { cos 0 SinP1 + r3 sin 95 cos ¢l) +
r3

The reader may verify these relations by taking moments directly about X, Y, Z.
Equations (9.10), which for this problem reduce to (9.14), are easily shown to be

rl .. .2 r3 ri .2

Ixrs
sin o - ¢1

r2
cos 9 J - (Iz - Ix) ¢1 COS 9S = Tx

2 r3 ri 2Ix L,
T3

(..1
COS Q5 + 1 r2 sin e + (1z Ix) r2 r3 111 sin O

2ri .. r-4 Tz = fbr2
r2r3

Ty

187

(6)

(7)

(8)

(9)

Multiplying (7) by sin 0, (8) by cos 0 and adding, we get, after eliminating fb by (9), the following equation
of motion:

2

r3 CIx Iz r2) 1 = -Mgl sine sin 0l (10)
2

which is just the equation of motion obtained much more easily and quickly by the Lagrangian method in
Example 8.11, Page 154.

The integral of (10), which for small motion is simple harmonic, gives ¢1 (and also 0, since r31G1 = -r20)
as a function of time. Hence fb and fb can be found as functions of time from, say, (8) and (9). The (9.2)
equations can be solved for fx, fy, fz. Thus the motion as well as reactive forces have been determined.

The above treatment involves various tedious details. However, the procedure brings out clearly the
principles and techniques of the Euler method. It also illustrates, by comparison with Example 8.11, the
superiority of the Lagrangian method for obtaining equations of motion.

Example 9.7. Bearing Forces.
Regarding X1, Y1, Z1, Fig. 9-7, as inertial we shall determine expressions for the forces exerted by

bearings B1 and B2 on the shaft of the rotating body.

Y1=Z

Euler angles: e = 900, p = 1800. ON (see Fig. 8-16) is here along
(01, -X1) line. Hence , is measured between -X1 and X. Bearings
B1, B2 rigidly fastened to X1Y1Z1 frame. fl., fly; f2x, fey = bearing
forces in instantaneous directions of X and Y. X1, Y1, Z1 are inertial.

Fig. 9-7

Choosing body-fixed axes as shown and measuring Euler angles as indicated, it is seen that Co., = wy =
wz = aox = aoy = a0z = 0. Also (by elementary principles or from equation (9.7)),

A. = -( y + 2x), Ay x - ?f,2, A. = 0

X, Y, Z body-fixed
X, Y remain in X1Z1 plane



188 THE EULER METHOD OF RIGID BODY DYNAMICS [CHAP. 9

Forces and torques are given by

F. = fix + f2x - Mg sin ¢, Fy fly + fey - Mg cos ¢, Fx = 0

Tx = fly 12 - fly 11 + Mgt COS 0, Ty = fix 11 - f 2x 12 - Mgt Sin 0,

Tz = Mgy sin 0 -., Mgx cos 0 + r,,

where T,,,, is the torque exerted by the motor, and flx, fly and f2x, fey are components of bearing forces at B'
and B2 respectively regarded as being in the instantaneous directions of X and Y. Thus equations (9.2)
and (9.10) become

-fx + f2x - Mg sin 0

M( 2 - ,29) = fly + f2y - Mg COS ,

-Ixz + lyz/2 = f2y12

-4.0 - fixll

- flu11 + Mgzcos0

- f2x12 - Mgz sin 0

cos 0) +Iz = Mg(9 sin ¢ 2

Relations (1) and (4) may be solved for flx and f2x, giving

fix (li + 12) = Mg(12 + z) sin - (Ml2j + Iyz.) - (Ml2x + Ixz)¢2 (6)

f2x (11 + 12) = Mg(11 - z) sin + (Iyz - Ml19) b + (Ixz - (7)

In like manner (2) and (3) can be solved for fly and f 2y. For r,,,, -a known function of time, the integral of
(5) gives 0, as a function of t. Hence all bearing forces can be expressed in terms of time.

From the physics of the problem- it is evident that bearing forces cannot depend on the location or
orientation of the XYZ frame. The choice made above is merely for convenience.

Static and dynamic balancing: Consider the following two cases.
(a) If c.m. is on the axis of rotation there is no torque about this axis due to gravity and the body is said

to be "statically" balanced.

Suppose c.m. is on the axis of rotation and Z is a principal axis of inertia through some point 01 on the
rotational axis. -Taking X and Y along the- other two principal axes, (6) and (7) show that there are
no bearing forces due to rotation. - The body is now both statically and "dynamically" balanced.
For a derivation which shows much more clearly the physical meaning of (6) and (7), see Problem

9.17, Page 200.

9.9 Examples Illustrating the (9.16) Form of Euler's Equations [together with (9.3)].
First, consider the following important and somewhat more general techniques than

heretofore discussed or illustrated. Since Euler angles will be used throughout, the reader
should review Sections 8.7, Page 156, and 8.8, Page 157.

Regard the body, Fig. 9-8, as completely free to move under the action of forces F1, F2,
etc. Consider X1, Yi, Zl as- inertial and X, Y, Z as body-fixed. Dotted axes Xi, Yi, Zi, with
origin attached to the body at 0, are assumed to remain parallel to X1, Yl, Zi. Euler angles
0, , 0, indicated on the diagram and measured exactly as - in Fig. 8-17, Page 157, determine
the orientation of the body. Direction cosines of X, Y, Z relative to Xi, Y'1, Zi (or X1, Yl, Zi)
are indicated by all, a12, a13, etc. Expressions for the a's in terms of Euler angles are given
in Table 82, Page 158. Let F,,i indicate one of the forces, applied at point pi having co-
ordinates (xi, yi, zi), relative to the body-fixed frame.

If 0 were taken at c.m. and X, Y, Z along principal axes of inertia, (9.3), (9.10) and (9.16)
would be greatly simplified. However, for pedagogic reasons, we shall assume 0 located
at any, arbitrary-point. in the body. Coordinates x, g,2 of c.m. relative to X, Y, Z are as-
sumed known.
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m = angular velocity of body relative to X1, Y1, Z1.
mom, wy, e, = X, Y, Z components of m. Fl, F2, etc. =
applied forces. M = total mass. A = inertial space
acceleration of c.m. ao = inertial space acceleration
of 0. e, &, 0 = Euler angles. all, a12, 013 = direction
cosines of X, etc. X, Y, Z are body fixed.

Fig. 9-8

Scalar Equations corresponding to (9.3) may be found as outlined in Section 9.3. If
components of A are taken along the body-fixed axes, Ax for example may easily be obtained
from (9.7a) by setting x = x and ox ,' sin 0 sin 4 + 8 cos 0, etc. The quantities aox, aoy, aoz

may be expressed in any convenient coordinates. Or we can write a0z = xoall + 51«12 + zoa13,
etc. Writing fxi, fyi, f=i as the X, Y, Z components of Fi, F. for (9.2) is given by Fx = f,,,
etc.

Rotational Equations: Due to the vector nature of (9.15), three scalar equations of mo-
tion corresponding to (9.16) can be obtained by projecting B and T along any threenon-
coplanar lines through 0 which are not necessarily fixed in direction relative to the body.
Components of B and T are usually taken along ON, Zi and Z. Note that ON and OZ,' are
not stationary with respect to the body except at 0. Applying (9.16), it easily follows that
(see Table 8.1, Page 157)

Bx sin 0 sin 0 + By sin 0 cos ¢, + Bz cos 0 = Ttp
(9.17)

Bx cos 0 - By sin. = TOY Bz = r.

where, of course, Tkft, TB , T( represent applied torques about Zi, ON, Z respectively. Expres-
sions for Bx, By, B,, are just the left sides of (9.10a, b, c). One way of writing T1, 7- , To is as
follows. (In certain specific cases it may be possible to express them in a more direct
manner.)

TO = Tx sin-0 sin 0 + Tysin 0 cos + Tz cosy 0,

TB - TX COS Cp. - Ty sin yb,

where Tx = (fziyi - fyizi), etc.

(9.18)

Thus (9.17) are the three rotational equations of motion. As may be shown without
difficulty (see Example 9.8 below) they are just the 0, equations so easily obtained by
the Lagrangian method.

Again it should be emphasized that, with 0..located at c.m. (frequently, but not always
convenient), both (9.3) and (9.16) simplify considerably. If X,. Y, Z are taken along principal
axes of inertia through c.m., then (9.16) greatly simplifies.
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Example 9.8. Spinning top with tip in fixed position.
Imagine the body, Fig. 8-16, Page 156, replaced by a top with the tip located at O. For body-fixed axes

located as shown, z =,P = 0, z = r. Ix = I, Ixy. Ixz = Iyz = 0.
Following the procedure outlined above, we will set up the six equations of motion.
Since 0 is fixed, aox = aoy = aoz = 0. Applying (9.7),

Ax = sine cos o sin 0 + 29 cos e cos 95 + 7 sine cos o - o sin 0)

Ay = r(jl,2 sine cos a cos , - 29 cos e sin 0 - sin o sin 95 - cos 0)

A,z = -r(o2 + 2 20)sin

and it may be seen that

Fx = -Mg sin 9 sin q, + fx, FY = -Mg sin e cos 0 + f5, Fz = -Mg cos 9 + f,
where fx,fy,fz are components of the reactive force on the tip in the instantaneous directions of X, Y, Z.

Hence the three equations for the motion of c.m.,

Fx = MAX, FY = MAY, Fz = MA, (1)
can now be written out in full.

Taking moments about ON, Z and Z', equations (9.17) apply directly. For this problem B, etc., (see
equations (9.10)) are

Bx = Ix(y/ sin a sin 0 + 2Ve cos a sin 0 + 9 cos 0 - p2 sin a cos 9 cos

+ Iz(p sine cos o - e sin o)( + ' cos e)

BY = I5(jb sin a cos o + 2; 8 cos a cos (P- a sin o + ,2 sine cos o sin q,)

- jz(+% sine sin o + e cos o)(¢ + ¢ cos e)

(2)

(3)

Bz dz( + 7 cos e - s sine) (4)

From the diagram it is seen that To = Mgr sin 9, T,', = 0, Tp = 0. Hence the three rotational equa-
tions reduce to

Ix(e - ,2 sine cos e) + Iz(,i2 sine cos 9 + ¢; sin e) = Mgr sine (5)

Ix(0 sin2 9 + sin 6 cos e) + Iz( cos2 6 + cos 9 - 2e¢ sine cos e - 6 sin o) = 0 (6)

Iz( + 7 cos e - ye sin e) = 0 (7)

Relations (7) and (6) can each be integrated once, giving
e

jz(¢ + cos¢e) = Pb = constant, Ixo sin2 o + P0 cos e = P,, = constant

Thus (5), (6), (7) are just the e, and 0 equations (8.13), Page 159, which were obtained at once and with
much less effort by the Lagrangian method.

Note that, for 6, ik, 0 known functions of time, equations (1) give fx, fy, f, as functions of time.

Example 9.9. Euter equations of motion of the gyroscope. (See Fig. 8-18, Example 8.16, Page 159.)
The following is a brief sketch of steps leading to the desired equations. Taking body-fixed axes

as shown,
2=g=z=0, Ix=IY, Ixy=Ixz=Iyz=0, Ax=AY=A,=O, aox=aoy=aoz=0

Let fxl, f yi, fzl
and fx2, fY2, fz2 be components (along instantaneous directions of X, Y, Z) of the reactive

forces at cl and c2 respectively. Write Oc1 = 0c2 = 1. Then

F. = fx2 + fx2 - Mg sin 9, sin ¢, Fy = f,1 + f52 - Mg sine Cos 0,

Fz = fzI + fz2 - Mg COS 9, TO = (f52 - f51)l COS (fx1 - fx2)l sin 0,

T,U = (fY2 - fY)l sin a sin ,p + (fx2 - fx2)l sin 0 cos q,, T', = 0

Expressions for B, BY, Bz are just the left sides of relations (9.10), Page 182. Hence the translational
and rotational equations can be written out in detail.

The reader should show that the rotational equations reduce to the form given as by the Lagrangian
method.
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9.10 Equations of Motion Relative to a Moving Frame of Reference.
The problem here treated by the Euler Method is exactly the one considered in Section

8.10, Page 162, by the Lagrangian method. Hence the reader should review that section,
paying careful attention to the meaning of all symbols used. Neither a statement of the
problem nor Fig. 8-21 will be repeated.

With proper care equations (9.2) are directly applicable. We must remember that
Ax, Ay, Az are components of the acceleration of c.m. relative to inertial space. Hence they
must be expressed accordingly. Likewise, equations (9.10) or (9.16) are applicable provided
Wx, wy, Wz express the components of w (the angular velocity of the body relative to inertial
space) along the instantaneous directions of the body-fixed X, Y, Z axes.

Assuming for simplicity that 0, Fig. 8-21, is located at c.m., expressions for Ax1, Ay1, Az1
(components of the inertial-space acceleration of c.m. along instantaneous directions of
X1; Y1, Z1) may, be found from relations (9.6), Page 179. That is,

Ax1 = a1x+ x1 - XI(Q% + 2i) + yi(S2iySlix
(9.19)

+ z1(ci1xQ1z - S2ry) + 2(z1c?1y - yiS2ix)

with similar expressions for Ay, and Az1. Here nix, 21y, sl1z are components of fl along the
instantaneous directions of X1, Y1, Zi. They are given by relations (8.11), Page 158; that is,
nix = 1 sin 01 sin 01 + 81 cos 0,, etc. Writing a1 as the inertial space acceleration of 01,
21x, aiy, a1z = components of a1 along instantaneous directions of X1, Y1, Zi. a1x = x2#11 +
52#12 + z2#13, etc. (Of course 21x, aly, a1z may be expressed in terms of other coordinates.
See Section 2.12, (3), Page 29.)

Hence the translational equations of motion of c.m. are just MAx1 = Fx1, etc., where
Ax1 is given by (9.19) and Fx1 = sum of the X1 components of all applied forces, including
forces of constraint.

Proper expressions for Wx, e,y, (0z may be found exactly as shown in Section 8.10. Thus
rotational equations of motion have just the form of (9.10), without terms M(aozj - aoyz),
etc., since 0 is assumed located at c.m. If it is assumed that the motion (translation and
rotation) of the X1Y1Z1 frame relative to inertial space is known, then a1x, 21x, etc., are known
functions of time. Thus solutions of the first three equations give the motion of c.m.
relative to X1Y1Z1, and the second three determine the rotational motion of the body
relative to the same frame. Of course (9.16) can be applied in place of (9.10) if so desired.

9.11 Finding the Motions of a Space Ship and Object Inside, Each
Acted Upon by Known Forces.

The Lagrangian treatment is given in Example 8.22, Page 165. A sketch of the Euler
method is given below.

Referring to Fig. 8-23, Page 166, it is clear that six Euler equations for the space ship
can be written in the usual manner. Then six equations for the rigid body can be set up
exactly as outlined in Section 9.10.

The twelve equations of motion involve coordinates x1, y1, z1; X2, y2, z2; 01, i1, 01; 0, y, 4.
Thus solutions give the motion of the space ship relative to X2, Y2, Z2 and that of the body
relative to the space ship. In the treatment of this problem one must not forget that, for
every force exerted on M by a light device attached to the space ship, there is an equal and
opposite force on the ship.

Example 9.10(a).
Axes X1, Y1, Z1, Fig. 9-9 below, with origin at 01 are orientated as described on the diagram. Assuming

01 moves northward along a great circle (X1,Y1,Z1 attached to a train, for example) with constant velocity
R14', Y1 remaining tangent to the great circle through the poles, let us determine the equations of motion of
the particle m, acted upon by a known force F.
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Earth here assumed spherical. Y1
tangent to great circle. Z1 = ex-
tension of R1. X1 points eastward
(into paper). i1 = latitude of 01.
me = angular velocity of earth =

X2, Y2, Z2 remain fixed in di-
rection and are assumed in-
ertial. 02 is fastened to cen-
ter of earth.

Fig. 9-9

Earth 7.29211 X 10-1 radians/sec. Nota-
tion here same as in Fig. 8-21 with
01 = me +;1.

Expressions for ax1, ay1, a21, components of a, the inertial space acceleration of m, along instantaneous
directions of X1, Yl, Zl respectively may be found by a proper application of relations (9.6), Page 179. To
this end (see Fig. 8-21, Page 163) note that

01x = -4'1' '21y = we COS 'i, z sin ('i

Also, apx = -2Riwefi1 sin (Pi, apy = Rlw2 Sin (b, COS plr aoz -R1$2 - R1w2 COS2 4l

[see equations (2.60), Page 29]. Thus applying (9.6a),

axl 2Rlwe$l sin 4'1 + x1 - x1(02 - 2we'1(yl COS `hi + z

+ 2We(zi COS `' - yi sin 41)

sin (DI)
(9.20)

with similar expressions for ayl, azl. Hence the desired equations of motion are

maxl = Fx, mayl Fy, mazl = Fz

Note that solutions give the motion of m relative to the moving X1Y1Z1 frame. The same equations can
more easily be obtained by the Lagrangian method. See Problem 9.7, Page 198.

Example 9.10(b).
Particle m, Fig. 9-9, is now replaced by a rigid body of mass M. We shall determine the equations of

motion of the body relative to X1, Yl, Z1. Let 0, the origin of body-fixed axes X, Y, Z be located at c.m.
Xl, Yl, Z1 coordinates of c.m. are indicated by 21, 91, 21.

Now note that, merely replacing m by M and x1 by x1, etc., in (9.20) and corresponding expressions for
ayl, ax1, we have the three translational equations of motion of c.m. (not repeated here).

The rotational equations follow at once from the procedure outlined in Section 9.10. From equations
(8.14), Page 163, (see Fig. 8-21), it follows that components of is along the body-fixed X, Y, Z axes are given
by

= t sin 9 sine + 9 COS 0 - l«11 + we cos 4'1x12 + we sin '1x13

where Euler angles 8,,p, o determine, as in Fig. 8-17, Page 157, the orientation of the body relative to
X1, Y1i Z1. all = cos o cos ¢ - sin , sin p cos o, etc., (see Table 8.2, Page 157.) Similar relations follow
for wy and &j,.

Finally, inserting wx, wy, wz in

Ixwx + (Iz - 1y)wywz + Ixy(wxwz - wy) - Ixz(wxwy + %) + lyz(wz wy) = TX

and in corresponding expressions for Ty and Tz, we have the desired rotational equations of motion.

Example 9.11. Bearing Forces. Bator mounted on Moving Frame.
Suppose that the body, Fig. 9-7, is mounted in, say, a jet fighter plane which may be going through any

type of maneuvers; to find the bearing forces. The X1Y1Z1 frame and bearings are attached to the plane
and hence move with it.
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We shall assume that the motion of the plane relative to some X2Y2Z2 frame (attached to the earth
and regarded as inertial) is known. That is, the translational motion of 01, Fig. 9-7, and rotational motion
of X1, Y1, Z1, each relative to X2, Y2, Z2, are known functions of time. (The position of Ol and the orienta-
tion of Xl, Yl, Zl can be expressed in terms of x2, y2, z2 and ol,,Pl, 01, Fig. 8-21. See Section 8.10, Page 162.)

Let ao be the inertial-space acceleration of 01 with known components al, a2, a3 along X1, Yl, Zl
respectively. Hence aox, aoy, aoz, the components of ao along X, Y, Z, are given by aox = ala11 + a2a12 +
a3a13i etc., where all, a12, a13 are direction cosines of X relative to Xl, Y1, Z1, etc. But, since in Fig. 9-7,
e = 90° and ¢ = 180°, all = - cos 0, a12 0, a13 = sin 0, etc. (see Table 8.2, Page 158). Thus

aox = -al cos 9 + a3 sin 0, aoy = al sin . + a3 cos 0, aoz = a2 (8)

Let 0i be the inertial-space angular velocity of the plane with known components aix, 21y> lz about
Xl, Y1, Zl respectively. Then components of inertial-space angular velocity of the body along the body-
fixed X, Y, Z axes are

wx = -2lx cos 95 + 21z sin 95, wy = 521x sin 0 + St1z cos 0, wz = Stly + q, (9)

Hence it follows from equations (9.7) that Ax, Ay, Az, the components of the inertial-space acceleration of
c.m. along X, Y, Z, are

Ax = -a1 cos o + a3 sin 95 - x(109 -F wz) + y(wywx - W') + z(wxwz + wy) (10)

with similar expressions for Ay and AT.

Writing Mgx, Mg, Mgz as the X, Y, Z components of the weight (gx) gy, gx, components of g, may be
expressed in terms of e1, 1p1, oi, .p), we have

Fx = fix + f2x + Mgx, Fy = fly + f2, + Mgy, Fz fz+ Mgz (11)

and from Tx = (fz y - f, z), etc., it follows that,

Tz = fly l2 - f 1y l1 + Mgz31 - Mgy2, Ty = f l l - f2x l2 + Mgx2 - Mgzx, rz = Mgyx - Mgxy + T,,, (12)

We are now in a position to write equations (9.2) and (9.10). The first of (9.2) is

M[a3 sin - al cos c - z(wy + coz) + 9(wywx - Wz) + 2((0xwz + aoy)] = f 1x + f2x + Mgx (13)

with similar expressions for the second and third. Equation (9.10a) becomes

M(aozy - aoy2) + Ixwx + (I, - ly)wywz + Ixy(wxwz - wy)

- 1xz(wxwy z+ w) + 1yz(102 - 102) = l2 - flyZ1 + Mgz?/ - Mgyz (1 k)z y f2y _

with similar expressions for (9.10b) and (9.10c).

It is important to note that, for a given motion of the plane, (V2, ys, x2, B1, +4v 01, known functions of
time) equations (13) and (14) can be expressed in terms of t, , , . Thus, as before, (13) and (14) can be
solved for the bearing forces.

9.12 Non-Holonomic Constraints.
In all examples thus far given, equations of constraint have been written out in simple

algebraic form as indicated by (4.4), Page 59. With these relations it has been possible to
eliminate directly and without difficulty superfluous coordinates from T, V, etc. Constraints
of this type are referred to as holonomic.

There is, however, a class of problems (sometimes having considerable importance) for
which the constraints cannot be expressed as above. Instead, they must be written out as
differential relations of a type which cannot be .integrated.. Such expressions may have the
form

cii 8q1 + cti2 8q2 + ... + cti, 8qN = 0, i = 1, 2, ., s (9.21)

where s = number of constraints and N number of coordinates required, assuming no
constraints of this form. The o's are usually functions of the coordinates. Relations (9.21)
are called non-holonomic constraints.
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For s such equations there are s coordinates which are not independently variable.
But since (9.21) cannot be integrated, they cannot be employed for the direct elimination of
the s superfluous coordinates. Degrees of freedom, n N - s. A detailed treatment of
non-holonomic systems would require a separate chapter. However, the* following example
illustrates the above general ideas and how the Euler method may be employed to find
equations of motion and reactive forces.

Example 9.12.

cos ¢ + sine sin y.
sinp - sin acosp

-r.x,

Y1

Y,

(Jyl = 9 sin p- Sb sin 9 cos p

Fig. 9-10

The uniform sphere, Fig. 9-10, is allowed to roll, without slipping, in contact with the rough X1Y1
plane which is inclined at an angle e with respect to the horizontal. The position of its center relative to
X1, Y1, Zl is determined by z, fl, z (z = r = radius of sphere) and its orientation by Euler angles 9, ¢, 0
measured as shown. Since we assume no slipping, it may be shown (left to reader) that

82 = r(Se sin ¢ - S¢ sine cos ¢), Sy = -r(Se cosy + So sine sin p) (9.22)

which cannot be integrated to give relations between 2, fl, 6,,p, 95. Relations (9.22) are typical non-holonomic
constraints.

Euler's equations can, nevertheless, be applied to this problem as follows. Expressions (9.2) are

M 2 = fxl -f- Mg sin a, M y = fyl, M Z = fzl - Mg cos a

where fxl, fyl, fzl are X1, Y1, Zl components of the reactive force at p.

Relations (9.10) reduce to

Non-holonomic Problem
Sphere rolling on rough inclined X1Y1 plane

Iwxl = Txl, Iinyl = Ty1, IWZ =
Tzl

(1)

(2)

where I = moment of inertia of the sphere about any line through its center and wxi, wyl,
wz1

are components
of the angular velocity of the sphere about the direction-fixed Xf, Yi, Zi axes. The above form is conven-
ient because Ix = Iy = Ix = I = constant, regardless of the orientation of the sphere. Hence (2) may be
written as

I dt (e cos ¢ + 0 sine sin ¢)

I
dt

(e sin g - sine cos ¢)

0

= fylr

By inspection of the figure (or regarding 82, 89, etc., in (9.22) as displacements in time dt), we have

2 = rwyl, 2f = -r6)x11 Z = 0

(3)

(4)
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the first two of which can be written as

r(e sin' - sin o cos v'), y = -r(e cos ¢ + sin o sin ,)

From (1), (3) and (5) it follows at once that

(1/r2 + M) X = Mg sin e, (71 r'2 + M) y = 0

Hence x, 2f, z as well as fx, fy, f,, can each be determined as functions of time.

,195

(5)

9.13 Euler's Rotational Equations From the Point of View of Angular Momentum.
The development of Euler's rotational equations (Section 9.5, Page 181) and their

physical interpretation [Section 9.6(b)] has been based on the "principle of moments" ex-
pressed by relations (9.8) and (9.11).

We shall now present a brief treatment of these equations in which the emphasis is
placed on angular momentum and time rate of change of angular momentum. As far as
classical dynamics is concerned, this adds nothing basically new to the results of previous
sections. However, it is here given because (a) this approach represents another interest-
ing point of view, (b) most texts treat Euler's equations in this way, (c) momentum is of
importance in the development of Hamilton's equations, Chapter. 16, and (d) angular
momentum plays an important role in certain phases of quantum mechanics.

Referring to Fig. 9-11, regard X,, Y1, Z, as inertial. Assume X, Y, Z remain parallel
to these axes. The origin 0 may or may not be attached to the body. Coordinates of the
typical particle m' are x, y, z and x,, y,, zi which are related by x, = xo + x, etc.

Yl
', Z remain parallel to X1, Y1, Z1, origin
0 not necessarily attached to body.

Fig. 9-11

Regarding f(fx, fy, f=) as the net force on m', we write free particle equations as

fx f, f=

Multiplying the third by y,, the second by -z,, adding and summing over all particles of
the body, we have

m'(z,y, - y,zl) = (fzyi - fyz) = Txl (9.23)

where here Txl is the torque exerted by the applied forces F1, F2 about the X, axis. But in-
spection shows that (9.23) can be written as

d m'(zly - ylzl) Txl (9.2k)
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We now define angular momentum or moment of momentum, Pxt, of the body about the
inertial Xl axis as

Pxi I m'(z1y1. yizl) (9.25)

Likewise -angular momentum Py1, Pz1 about Yl and Zi are defined. (As shown in Problem
9.22, Px, P,, Pz are components of an angular momentum vector P. In vector notation (see
Chapter 18), P = I m'(r xr) where r is the position vector measured from 01 to m'. For
a final expression for Px, see Problem 9.23.) Hence from (9.24) it is seen that the time rate
of change of angular momentum about Xl is equal to the torque of applied forces about this
axis. That is,

Pxi Tx1, Pyl = Ty1, 1 z1
- Tx1 (9.26)

where in this case under consideration Px1, P,1, Pz1 are determined relative to inertial space.
, Tz, are components of a vector r (see Section 8.2F, Page 147). LikewiseBut :x , Ty lll

Px1, P11 Pz1 are components of P which is given in magnitude by P2 Pxl + Pt1 + Pzi and
in direction by Px1 /P, etc.

The torque about any line Oia having direction cosines 1, m, n may be expressed as

rag = P l+P m+P
1 1 1 1

(9.27)

or in vector notation, T = P (9.28)

Consider now the moving (but non-rotating) X, Y, Z frame. Eliminating x1, Yi, zl from
(9.23) by x1 = xo + x, etc., we have

m'[(zo + z)(yo + y) - (yo + J)(zp + z)]

I m'(ziyo - ylzo) + I m'(zy - yz) + I m'(zoy - ypz)
(9.29)

Making use of 7x1 = [fz (yo + y) - f, (zo + z)], m' z1 = fz, etc., I m' zoy = Mzoy (where
M = total mass, y = Y coordinate of c.m.), (9.25) can be written as

(fzy - f,z) = M(zpy - yoz) + I m'(zy - yz) (9.30)

The term on the left is obviously rx, the moment of the applied forces about X (not Xi); and
defining Px = I m' (zy - yz) as the angular momentum about X, (9.30) may be written as

rx = M(zoy - yoz) + Px, ,, = M(xoz - zox) + P, rz = M(yox - xoy) + Pz (9.31)

These relations are equivalent to (9.10) and can be put in exactly the same form. (For the
equivalent vector relation see Page 342.)

Note that if 0 is fixed or moves with constant velocity, xo = yo = zo = 0. If 0 is located
at and moves with c.m., x = y = z = 0. Hence, in either case, (9.31) reduce to rx = P, etc.

As to a physical interpretation of Euler's rotational equations from the point of view of
angular momentum, (9.27) states that the projection of F (a vector representing the time
rate of change of the angular momentum of the body) on any line Oia is equal to the sum of
moments of applied forces about this line. To some this interpretation may present a rather
vague "picture" or explanation of what takes place physically. On the other hand, equations
(9.8), Page 181, and (9.16), Page 183, which express the simple fact that the sum of the
moments of inertial forces about any line is equal to the sum of the moments of applied
forces about the same line, make quite clear the meaning of Euler's equations in terms of
elementary basic physical and geometrical principles. From the second point of view,
(9.16) is no more involved than, for example, fx m'x, etc.
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9.14 Comparison of the Euler and Lagrangian Treatments.
The Euler method is one in which the body is regarded as "free" and forces of constraint

must be included in equations (9.2) and (9.16). These relations lead to equations of motion
as well as expressions for the reactive forces.

Summarizing the Lagrangian method: if the body is regarded as free and T is written,

say, in terms of x, , z and(-)the Euler angles 0, then d
dt (at /)

-.aT

ax = Fx, etc., are just

equations (9.,2). Also, dt - aT = F0 = ToN, etc., are equations (9.16) and of course

reactive forces must appear in Fx, TIN, etc. (See Problem 9.9.) But if all superfluous co-

ordinates are eliminated from T, d aT _ aT Fqr are the equations of motion freedt Cagr aqr
from reactive forces (assuming smooth constraints).

This is by far the quickest and easiest way of obtaining final equations of motion, es-
pecially when two or more rigid bodies are involved.

The following resource letter contains valuable comments on certain phases of rigid body
dynamics as well as an excellent list of annotated references: Resource Letter CM-1, on
the Teaching of Angular Momentum and Rigid Body Motion, by John I. Shonle, American
Journal of Physics, Vol. 33, No. 11, November 1965, Pages 879-887. Remarks in the in-
troduction are very pertinent.

Problems

9.1. Differentiating the following relation (see Fig. 9-2)

x, = xo + xa11 + ya21 + za31

with respect tot and making use of relations (3), Section 9.4, Page 179, show that

vx = vOx + x + S2yz - Stzy

for a free particle where vx is the component of the inertial-space velocity of m along the instan-
taneous direction of X and v0x is the component of the inertial-space velocity of 0 along X. Of
course similar expressions follow for vy and vz. See equations (8.3), Page 142.

9.2. (a). Referring again to Fig. 9-2, write

T'
4

[(v0 + x + Slyz - Slzy)2 + (v0j + y + Slzx - Oxz)2 + (vo;. + z + Slxy - Slyx)2]

where vox xoail + jjoa12 + xOa13, etc. Now show (see Section 3.9, Page 48) that dt
aT
ax= ax, where ax is the first expression in (9.6), Page 179. Note that in certain terms as
xo(an - a21S2z + a81ny) the coefficient of x0 may be shown to be zero. The above is an easy way
of obtaining relations (9.6).

Write T' = 1(;2+y2
1

+ ) where x, y, z are the X1, Y1, Z1 coordinates of m, Fig. 9-2, and

xl = X0 + xail + ya21 + za31 + Xa 1 + Ya21 + za31, etc.

,
Write out d- (ax7 ) - Ox and introducing Euler angles, show that after considerable tedious

work the same expression is obtained for ax.
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9.3. (a) Assuming, for example, that the motion of the rigid body, Fig.:9-3, is completely known, show
that fx, the X component of the force f acting on the typical particle m', can be obtained from

fx = m'[ x0a11 + y0a12 + x0a13 - x(wy + wz) + y(wyWx - Wz) + x(cuxwz -1- wy)].,..

Similar expressions follow for fy and fz

(b) A particle of mass m is glued to the periphery (and on the X axis) of disk D, Fig. 8-5, Page 146.
Assuming ¢ and 0 are known functions of time, find the X, Y, Z components of force which the
glue exerts on the particle. Express the results in terms of ¢, 0, and their time derivatives.
See the following related problem.

9.4. Referring to Fig. 8-5, Page 146, a particle of mass in is acted upon by a known force having com-
ponents fx, f y, fz along the X, Y, Z disk-fixed axes. Motion of the particle is to be determined relative
to the moving X, Y, Z frame, assuming . and ' are known functions of time. Show that equations
of motion are

m[aox + x - X(W2 + C02) + y(Wy(Ox - wz)

+ x(WyWy + Wy) + 2(zwy - ywz)] = fx,

where wx = ¢ sin a sin ¢,, wy = ' sin a cos ¢, wz = + cos 9,

aox = 1s sin 6 cos 0 + Ps sine cos a sin 0,

etc.

aoy = -,ps sine sin 0 + V,2s sine cos a cos 0,

a0z = -¢2s sin2 e

Determine the above expressions for aox, aoy, a0z by a direct elementary method and also by an
application of (9.7), Page 180.

9.5. Referring to equations (14.15), Page 287, note that the coefficients of m in these three equations
are just the components ax, ay, az of the acceleration of m relative to inertial space, taken along the
instantaneous directions of X1, Y1, Z1 respectively. Show that exactly the same expressions can
be found at once by applying equations (9.7), Page 180.

9.6. Referring to Example.8.7, Fig. 8-11, Page 152, determine expressions for Ax, Ay, Az in a straight-
forward manner by the use of transformation equations. Compare results with (1), Example 9.4,
Page 185.

9.7. Referring to Example 9.10(a), Fig. 9-9, Page 192, show that for the single particle,

T = 2m[(Rwe cos 4' + z(Oe cos 4' + ywe sin q,)2

+ (R$ + y-+ xwe sin q, + z.)2 + (z - y4' - xwe cos 4))2]

Applying Lagrange's equations show that (9.20), etc., Page 192, follow at once.

9.8. Imagine the body shown in Fig. 8-16, Page 156, replaced by a spinning top with its tip fixed at O.
Axes X, Y, Z are fixed to the top. Find expressions for the X, Y, Z components of the inertial space
acceleration of a particle in the top (a) using relations (9.7), (b) applying the Lagrangian method
(see equation (3.24), Page 49). The particle is located at a normal distance r from the axis of spin
and distance h, measured parallel to this axis, from the tip.

9.9. Derive the Euler equation (9.10a), Page 182, by means of Lagrange's equation.

Hints. With T in the form of (8.10), Page 148, write out the o equation dt \ a®} ab
Fe,

re

garding Wx, Wy, wz as functions ' of e, ¢, .; (See relations (8.11), Page 157.) Since vox

x0a11 + y0a12 + x0a13, v0,, is a function of the Euler angles.
Now setting 9 = 90°, p 0 and noting that for these values F. = r , all = 0,

a12 = v' = wy, a13 0 wz etc., the above Lagrangian equation finally reduces to (9.10a). Of course
(9.10b) and (9.10c) can be found in the same way. For the above values of e,,P, 0, F,1, = ry and
F0=-Ty.

Considerable care is required in carrying through the steps of this problem.
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9.10. Referring to Section 9.5, Fig. 9-3, Page 181, imagine axes X2, Y2,Z2 with origin attached to the
body at 0. Assume that these axes may be rotating about 0 in any manner relative to the body.
Coordinates of m' relative to X2, Y2, Z2 are x2, Y2, z2. For this problem take all, a12, a13 as direction
cosines of the body-fixed X axis relative to X2, Y2, Z2, etc. Let axe, aye, az2 be components of the
inertial space acceleration a of m' along instantaneous positions of X2, Y2, Z2. That is, axe =
axall + aa21 + aza31 where a, ay, az = components of a along the body-fixed X, Y, Z axes (ax, ay, az
are given by (9.7), Page 180). Then

m'(a,, 2y2 - ay2z2) Tx2,. etc. (1)

where rx2 = moment of all external forces about the instantaneous position of X2. Show that (1)
can be written as

all Y, m'(azy - ayz) + a21 Y, m'(axz - azx) + a3i Y, m'(ayx axy) (2)

This is just relation (9.16). Moreover it shows that (9.16) is applicable to any line through 0,
whether rigidly attached or rotating relative to the body.

9.11. Referring to Section 8.2F, Page 147, Fig. 8-7, consider a typical particle m' at point p. Suppose
that f represents the net force on W.' Then fx = m'ax, etc., where ax is the X component of the
inertial-space acceleration of W. Applying the method of this section to show the vector nature
of torque, prove again relation (2), Problem 9.10.

9.12. (a) Referring to Example 8.5 and Fig. 8-9, Page 150, show that equations of motion of the lamina
as determined by the Lagrangian method are

Ize + M[(yz - xy) cos e - (xx + y9) sin e] = Mg[y sin e - x cos e] = ro

M[x - e (y cos e + x sine) + 92(p sin e - x cos e)] F, = -Mg sin e
M[y +e e( x cos e - p sin e) - 92(x sine + g cos e)] = Fy = -Mg cos e

where we have assumed gravity only acting in the negative direction of Y1.

(b) Applying Euler's method, regarding X, Y, Z as body-fixed, show that

I,ze + M(aoyx - aoxy) = Mg( g sine - 2 cos e)

Ma0x - M(e g + 922) = -Mg sine
Maoy + M(9 x -;2y-) = -Mg cos e

Show that equations in (b) are equivalent to those in (a).

(c) Nowemploying non-rotating axes with origin attached to 0, show that Euler's equations have
just the same form as those given in (a). Notice how the equations simplify with 0 at c.m.

9.13. In Fig. 9-12 the rigid body pendulum is allowed Ir_8
wing horiz l axi b with no bab ut th nt ato s o e o a s

friction in bearings. Angle e, measured from a
vertical line through 0, is positive in the direc- 7/77, . e Jm
tion shown. Using body-fixed axes X, Y, Z as Bearing Force Bearing Force
indicated, show that fb\fbx,fby.fbi)

(1) M(e2-92x) = Mgcose +fax+fay

(2) fay + fby = 0

(3) _M(;x + 922) Mg sin e + faz + A,

(4) -lxye - Iyze2 = Mgg sin 9 + (faz - fbz)S

(5) Iy® = Mgt cos 9 - Mgx sin e

(6) Ixy92 - Iy., = -Mg9 cos 0 - (fax fbx)S

where fax, fbx, etc., are X, Y, Z components of X1 x, Y, Z body-fixed with origin at 0.
bearing forces at a and b. -e measured between fixed vertical

Moments and products of inertia are for the
line and the x axis.. a positive for
body displaced into paper.

a Y Axis

entire system including rods ab and Op. c.m.' in-
dicates the center of mass of the system. Fig. 9-12
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Derive (5), the o equation of motion, by the Lagrangian method. Show that 60, the rest angle, is
given by tan e0 = z/x. Letting o = oo + /3, (5) can be integrated at once for f3 small. Hence show
how fax, fbx, faz, f bz can be determined as functions of time.

Write out the rotational equations taking body-fixed axes parallel to X, Y, Z with origin at c.m.
Is this advantageous?

9.14. Imagine the rod Op, Fig. 9-12, hinged at 0 (door type of hinge) so that the body can now rotate
about an axis through 0 perpendicular to the aOp plane; that is, Op can now swing through an
angle a in the aOp plane as well as rotate about ab. Taking the body-fixed axes as in Problem 9.13
(Y no longer remains along Oa), show that components of angular velocity are given by

wx = 6 sin a, - = 9 cos a, wz = a
Show that X, Y, Z components of the inertial-space velocity of c.m. are (see equations (8.1),

Page 140),
2vx = 62 cos a vy = ax - ez sin a, vz. = By sin a - 6`x cos a

Assuming 2, y, z, Ix, Ixy, etc. as known, write an expression for T. Applying Lagrange's equations,
write the equations of motion corresponding to o and a.

Find the same equations by the Euler method. Compare advantages of the two methods.

9.15. The double pendulum, Fig. 9-13, consists
of two thin laminae supported from a
smooth peg at pl. The bearing at P2 is
smooth. Outline steps (do not give all
details) for finding the e, ¢ equations of
motion. Compare this with the Lagran-
gian method.

9.16. Consider a system such as shown in
Fig. 8-26, Page 169. Outline steps (no
details) for finding equations of motion
of the entire system by the Euler method.
Compare this with the procedure re-
quired by the Lagrangian method. As-
sume, for example, that the uniform rod
bd has appreciable mass and that the
vertical shaft has a moment of inertia
Ii about Z1. Fig.9-13

9.17. Referring to Example 9.7, Fig. 9-7, Page 187, derive equations (6) and (7) from simple basic
considerations.

Hint. Inertial forces on any typical particle are m'(7 y + 2x) in the direction of X and, . .2m (fix - y) in the direction of Y. Sum moments of these forces for all particles of the body about
an axis, say through B2 and parallel to Y. Setting this equal to the applied torques about the same
axis, (6) is obtained. This derivation lays bare the basic physical principles involved and also gives
more meaning to products of inertia.

9.18. (a) Assume that the body, Fig. 9-7, is perfectly balanced statically and dynamically. A particle of
mass m, is now glued to it at a point x, y, z. Find expressions for the bearing forces.

(b) . Imagine the particle replaced by a thin rod of known length and mass. The rod, one end at
x, y, z and extending parallel to X, is rigidly glued to the body. Outline steps for finding bear-
ing forces.

9.19. The rotating body, Fig. 9-14 below, is mounted on a rotating table. The body is driven by a light
motor (not shown) at an angular velocity with 0 measured between the -X1 axis and the body-
fixed X axis (see notes on diagram; also see Example 9.7, Page 187). The table is driven at an
angular velocity /3 about the vertical inertial Z2 axis. Show that the bearing force fix is given by

f1(1 + 12) = MS103z + /322) + ly(/3 cos 95 - b3 sin 0) + (Ix - Iz)/ sin 0
+ Iyz(f32 sin o cos o - ) - Ixy(2A3 cos 0 + f3 sin o)

+ Ixz(f32 sine 0 - 952) + M[s1(3 cos 0 - x(,82 cos 0 + 2)

+ 9(/3 sin 0 cos 95 - b) + z %3 cos 95112 + Mg(12 + z) sin 95
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X1, Y1, Z1 fixed to rotating table. X, Y, Z attached to body.
Euler angles: e = 90°, p = 180°. X, Y remain in X1Z1 plane.

f2_ f25 = bearing forces in instantaneous directions
of X and Y. ff = total bearing force in direction of Z.

Fig. 9-14

Note that if X, Y, Z are principal axes of inertia and c.m. is located at 0, the above reduces to

I; ,Q cos o + (Ix - Iy - Iz) & sin o + M[s112%3 cos 0 + g12 sin 01 = f1E(11+12)
which shows that even if the body is statically and dynamically balanced on a stationary table,
there are bearing forces when the table is rotating.

Find expressions for the remaining bearing forces (see Example 14.11, Page 296).

9.20. Consider again Problem 9.19. Take body-fixed axes Xv, YP, ZP along the principal axes of inertia
with origin at the origin of X, Y, Z. Let 111,112, l13 be direction cosines of XP relative to X, Y, Z, etc.
Note that since X, Y, Z and XP, YP, ZP are each body-fixed the direction cosines are constant.
Numerical values of the l's as well as If,1 , If can be found from values of I, Ixy, etc., relative to
X, Y, Z (see Section 7.3, Page 119).

Show that components of inertial-space angular velocity of the body about XP, YT', Z1' are
given by

and that for these axes,

Al.u sin o + 8112 COS ¢ + 113

A121 sin ¢i + A122 COS 0 + P23

j3131sin cp + $132 COS 0 + 9'133

aox 81$ 111 cos 0 - 0 112 sin o 8281113, etc.

Show that the first equation of (9.2) is

?f(&jywx - wz) + 2(mxmz + w,,)] = Fx
and that the first of equation (9.10) becomes

M(a0J - ao,2) + 1x L. + (Iz - IP)c)ywz = 'rx

where in the above 2, jf, z are coordinates of c.m. relative to the XP, YP, Zp frame. The remaining
Euler equations can be written at once.

9.21. The gyroscope, Fig. 8-18, Page 159, is placed at the origin 01, Fig. 9-9, Page 192, with axis
a1a2 along Z1. Let us assume that 01 moves northward along the great circle with velocity R4', Y
remaining tangent to the great circle. Applying the Euler method, set up the s, ,J<, 0 equations of
motion. See Problem 8.22, Page 173.
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9.22. Referring to Fig.,9-15, let it be assumed that the body is free to move in space. The typical particle
m' has a velocity v(x, y, z) relative to the inertial frame X, Y, Z.

Determination of angular momentum about Oa- _ (or projection of total angular momentum vector on Oa)

Fig. 9-15

The "angular momentum" of m' about line Ola is defined as m'hv' where v' is the component of
v normal to the O1am' plane. Following exactly the procedure outlined in Section 8.2F, Page 147,
show that the total angular momentum, Pola, of the body about line Ola is given by

Poia = l 1 m'(zy - jz) + m I m'(xz - zx) + n Y. m'(yx - xy)

where 1, m, n are direction cosines of 01a. Show from the diagram that
the angular momentum about X, etc. Hence

I m'(zy - 'z) = Px is

Poia = Pxl+Pym+Pzn

Thus Po1a is the projection of a vector P (having magnitude P = (Px + Py + Pz)1'2 and direction
P,,/P, etc.) along O1a.

Taking moments about 01a, prove in a similar manner equation (9.27), Page 196.

9.23. Referring to Fig. 9-11 and assuming 0 located at c.m. of the body, show that Px1, the angular
momentum of the body about X1 (the component of the angular momentum vector along X1) is
given by

Pxi = M(zoyo -.?Iozo) + Ixwx - Ixywy - Ixzwz

where wx, wy, wz are components of the inertial space angular velocity of the body along X, Y, Z and
Ix, Ixy, Ixz are determined relative to the X, Y, Z frame.

9.24. Taking 0, Fig. 8-21, Page 163, at c.m. and regarding X, Y, Z as principal axes, show that

T = 2Mvo + 2(Ixwy + Iywy + Izwz)

where wx, wy, wz are given by (8.14), Page 163.

Now write the Lagrangian equation corresponding to o, for example, and show that exactly the
same relation is obtained by the second equation of (9.17), Page 189.



CHAPTER

10
1 Oscillations

10.1 The Type of Problem Considered.
In order that the reader may commence the study of "small oscillations" with some

general understanding of and feeling for the type of problem to be considered, let us
examine the various mechanical systems shown in Fig. 10-1 and 10-2.

Considering Fig. 10-1(a), suppose either ml or m2 (or both) slightly disturbed. ("Dis-
turbed" here means: the masses are given some slight initial velocities and displacements
from rest positions.) Subsequently each mass oscillates about its equilibrium position.
Assuming vertical displacements only, the motion of each, as soon to be shown, is composed
of two simple harmonic motions which can be expressed by

yl = Al COS (mlt + 01) + A2 COS (0)2t + 42), y2 = Bl COS (mlt +,il) + B2 COS (mgt + 02)

where wl, m2 and the phase angles 0l, 02 are the same in each relation, but corresponding
amplitudes are not equal. Moreover, it will be seen that 91 and m2 depend only on values
of ml, m2, k1, k2 and not on how the motion is started.

Now it is important to realize, as will be made clear in what follows, that the above
remarks apply to every system shown in Fig. 10-1. Each has two degrees of freedom and
two natural frequencies or "principal modes of motion".

The systems shown in Fig. 10-2 have from n = 3 to n = 9 degrees of freedom. When
slightly disturbed each part (mass, disk, bar, etc.) of a given system will, in general,
oscillate with n frequencies fl = ml/2a, f2 = m2/27T, .., fn = mn/27r; each part has the same
n frequencies, values of which again depend only on constants of the system (masses, spring
constants, dimensions, etc.).

Considering Fig. 10-2(b), for example, the oscillatory motion of the disks may be
written as

el = Al cos (mlt + 01) + A2 COS (mgt + 02) + A3 COS (a)3t + 4i3)

with identical expressions for B2 and 03 except for values of the amplitudes.
Hence the purpose of this chapter is to give somewhat detailed treatment of the

oscillatory motions of the parts of systems of the above general type about their respective
positions of static equilibrium. The methods introduced are applicable to a wide variety
of problems in classical dynamics and may be extended to atomic and molecular physics.
However, the treatment here given is subject to the following limitations.

10.2 Restrictions on the General Problem.
Following usual practice, we shall only consider oscillations for the restricted case in

which velocities and displacements from rest positions do not exceed (except in special cases)
very small values. In Sections 10.5 through 10.15 only conservative forces are assumed
acting. In Sections 10.16 through 10.19 both conservative and viscous are considered.
Dissipative forces other than viscous are not introduced.

203
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(c) Cart on horizontal track

(b) Double pendulum
r1, r2 = constants

(a)

Y

k2

kl

X
k

k4 k
s

(d) Double torsion
pendulum

(e) Single "particle", motion in a plane

(f) Mass-pulley combination

Fig. 10-1. Systems Having Two Degrees of Freedom and Two Natural "Modes of Oscillation".
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AK 3 II

MANI

(a) Assuming vertical
motion, M. = 3

VIA I

(b) Disks connected with flexible shafts
Torsional constants = K1, K2, K3; M. = 3

M

I

(c) For oscillations normal
to paper, d.f. = 3

(d) For motion in three dimensions
d.f. = 6, six natural modes

* k3

(c) Assuming vertical motion of masses, d.f. = 9

Fig. 10-2. Systems with Three or More Degrees of Freedom.
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The reason for these drastic limitations, rather than considering the more general case
in which oscillations may have large amplitudes and forces of any type may be acting,
is quite simple. In the general case differential equations of motion are usually non-linear
and so involved that general methods of integration are not available. Hence, except for
solving specific problems with special techniques or with the aid of a computer, not very
much can be done.

However, by making use of "equilibrium coordinates" and imposing the above restric-
tions, approximate expressions for T, V, P can (with few exceptions) be written in a form
such that resulting equations of motion are linear with constant coefficients for which
standard well-known methods of integration are available.

To illustrate the above statements we give, without proof at this point, the following
example.

Example 10.1.
The equations of motion of a double pendulum (see Fig. 2-10, Page 14, and Example 4.6, Page 66)

with gravity and viscous forces acting and no restrictions on values of a and 95, are

(ml + m2)r29 + m2rlr2 Cos (0 - 8) - m2r1r2;2 sin (0 - b)

+ (ml + m2)grl sin o + (b1 + b2)r2B + b2rlr2 cos (o - 8) = 0

m2r2 + m2rlr2 9 cos ( - e) + m2rlr292 sin (0 - e)

+ m2gr2 sin o + b2r2 + b2rlrse cos (0 - e) = 0

(10.1)

These non-linear relations are clearly quite complicated. However, if motion is limited to very small
values of a and 0, (10.1) may be replaced by the approximate equations

(ml + m2)r2l 9 + (bl + b2)r, e + (ml + m2)grlo + m2rlr2 + b2rlr2 = 0

(10.2)
m2rlr2 8 + b2rlr28 + mar2 + b2r20 + m2gr20 = 0

which are linear with constant coefficients and can easily be integrated by methods soon to be presented.

10.3 Additional Background Material.
(a) "Equilibrium Coordinates" measure the displacements of the masses from their posi-

tions of static equilibrium. They are usually so chosen that when the system is in
equilibrium the value of each is zero. Examples are y1, y2, Fig. 10-1(a), measured
from rest positions of ml and m2 respectively; 0 and S5 for the double pendulum of
Fig. 10-1(b); 81, 02, 0a, Fig. 10-2(b), measured from rest positions of the disks.

(b) Taylor's expansion for n variables. A well-behaved function of n variables,
f (q1, q2, . , qn) may be represented to any degree of accuracy desired (depending on
the number of terms retained) in the neighborhood of the "point" q1= c1, q2 = c2, qn = cn
by the following relation:

f(q1, q2, . . ., qj `= f(C1,c2, ...,C) + L, ( a
ag )(gr-Cr)

r

1 n n
(2q)(rcr)(scs)

r s r

+ 3 I I I (aqr aq aq )(gr - Cr)(qs - cs)(gi - c.) +

(10.3)

Partial derivatives must be evaluated for q1= c1, q2==C2' etc. Hence the first term
and all partial derivatives are constants. If q1, q2, ..., qn are equilibrium coordinates
and the expansion is about the equilibrium positions, then cl = c2 = = C. = 0.
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(c) An approximate expression for T in equilibrium coordinates. In rectangular co-
ordinates, T = 2 mi(x2 + y2 + z?). Applying (10.3) to the transformation equa-
tions xi = xi (g1, q2, .. qn), etc., (in which no moving coordinates or constraints are
assumed and q1, q2, ..., qn are just the number of equilibrium coordinates required
to represent the configuration of the system), we get

xa x(0) + r} (aqr)oqr + `1'' I I (qrs)oqrqs + ...
Now, if it is assumed that the displacements and velocities are so small that terms
containing ggs, etc., may be neglected, it follows that

n

(aXi)oxi =
a rq

r=1 qr

n n n

which we shall write as xi = «irgr . The square of this is 2 = ir«ilgrglr=1 r-11=1
Similar expressions hold for if and z?. Hence the original expression for T becomes

or

n nT = 11 [D

m2.(«ar az.l + R.arRit + EitEa.lJ)] 4Ar l

r i

T - 2 11: arlgrgl (10.4)

where arl = m1(«ir9ii + /"ir''"il + EirEil)' It is important to note that since all values
i=1

of arl are constant, T is a quadratic function of the velocities with constant coefficients.

(d) An approximate expression for the power function for viscous forces. As shown in
Chapter 6, the power function for p particles, assuming viscous forces, may be

1,

written as P = - I ki (x2 + js + z2), where ki is the coefficient of viscous drag

on the ith particle. Following the exact procedure outlined above, P may be written as

P = brlgrgl (10.5)

where the brl are exactly the same as the arl with the mi replaced by ki. Hence having
found T by (10.4) for a particular system, we can immediately write down the cor-
responding P.

(e) An approximate expression for V in. equilibrium coordinates. Since V is a function
of coordinates only, it can be expanded directly. Thus

V = V0
+

()o
+ ± (a2q)0ri +

Y `Z r l

But since we assume that q1= 0, q2 = 0, etc., are equilibrium positions, the generalized
forces, -aV/aqr, are zero at these points. Hence the second term above is zero.
Moreover, V. is a constant. Hence as a first approximation we retain the third term
and write

V = 1 . + crdgrg1 (10.6)
r l

constant. These partial derivatives, each evaluated atwhere crl =
(q1)0

02V
=

q1= 0, q2 = 0, etc., must be obtained from an exact expression for V written in terms
of equilibrium coordinates. (Note that arl = alr, br1= blr, Cr, = elr')
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Summarizing this section, we write

T

(10.5)

1 a
G crtgrgt

Approximate expressions for T, P, V where art, brt, crt are constants.

(10.6)

Example 10.2.

To illustrate the above results consider again the double pendulum, Fig. 2-10, Page 14. In rectangular
coordinates,

Transformation equations relating rectangular and the equilibrium coordinates a and 0 are

x1 = xo + r1 sin e, y1

X2

= yo-r1coso
x0 + r1 sin 0 + r2 sin 0, y2 = yo - r1 cos 0 - r2 cos 95

But for any system having only two particles and two degrees of freedom,

a m
axi axi + -1 a2'1

! m Cax2
ax2 + --- ayzl

/ - - l
rt

_
1

aqr aq, agragt
2

aqr aq, aqr 0qt

Thus (10.4) reduces to

ax,

L(agl/2 + m2 L(ag1)2 + (aql)2J} q1

+ 2 j ml ( aq, aq2 + aq, ag2) + m2 \ aq, aq2 + aq, age
)IM2

+ m1
F(

21 + m22 +Ca 2i2 + \aq2/ g2/ag2/ i
2
2

(1)

(2)

(3)

Let us regard q1 as 0 and q2 as .. From (2), (ael t o = r1, 0, etc. Substituting these quantities
in (3), we get -. : / o

Tapprox. =
2

[(MI + m2)r 02 + 2m2rir20 + m2r2 2] (4)

the terms of which are quadratic in the velocities with constant coefficients.

Let us assume that ml and m2 are acted upon by viscous forces the magnitudes of which are b1v1 and
b2v2 respectively. Replacing m1 and m2 in (4) by b1 and b2,

P = -
2

[(bl + b2)rie2 + 2b2r1r2ec +

The exact expression for V is

V = (m1 + m2)gr1(1 - cos e) + m2gr2(1 - cos o)

Vapprox. 2(01162.+ 2C12e0 + C2202)

Vapprox.
= 4[(m, + m2)r1e2 + mWr2c2]

Note that since Cos 6 1 - 462'+ 104 it is seen that, for
Hence, in this simple case, (7) follows at once from (6).

(m1 + m2)gr1, C12 = 0, C22 m,2gr2. Thus

mall angles

(5)

(6)

(7)
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10.4 The Differential Equations of Motion.
Applying Lagrange's equations to the "prepared" expressions for T, P and V, equa-

tions of motion follow at once. Assuming for the sake of simplicity three degrees of
freedom, the following equations are obtained.

a11Q1 + b11Q'1 + c11g1 + a12Cg2 + b12i2 + c12g2 + a13Q3 + b13g3 + c13g3 = 0

a21g1 + b21g1 + C21g1 + a22g2 + b22'2 + C22g2 + a23g3 + b23'3 + C23g3 = 0

a31g1 + b31'1 + C31g1 + a32g2 + b32 '2 + C32g2 + a33g3 +b33g3 + c33q3 = 0

(10.7)

Conservative forces in these equations are represented by c11g1, c12g2, etc., and viscous
forces by b11 1, b12 '2, etc.

10.5 Solutions of the Equations of Motion; Conservative Forces Only.
In the following treatment it is assumed that, conservative forces only are acting.

Reasons: (a) pedagogic; (b) the assumption is justifiable in many branches of theoretical
and applied physics. For this case equations (10.7) reduce to

a11g1 + C11g1 + a12g2 + C12g2 + a13g3 + C13g3 = 0

a2141 + C21g1 + a22g2 + C22g2 + a23g3 + C23g3 = 0

a31g1 + C31g1 + a32g2 + C32g2 + a33g3 + c33q3 = 0

(10.8)

We shall solve these equations and give a somewhat detailed treatment of the most
important mathematical and physical considerations which they embody.

In the usual way let us assume the following solutions
ql = A cos (cot + q2 = B cos ((,t +.p), q3 = c cos (wt + 95)

where A, B, C, (0, (b are unknown constants. Substituting into (10.8), it follows at once that

w2 - C11)A + (a12w2 - c12)B + (a13o,2 - C13)c = 0

(a21w2

- C21)A + (a22o12 - C22)B + (a.W2 - C23)C = 0 (10.9)

(a31(o
2 - C31)A + (a32w2 C32)B + (a33w2 - C33)c = 0

It may be shown that values of A, B, C (other than zero) which satisfy (10.9) cannot be
found unless the determinant of their coefficients is zero. Hence we write the determinant:

= 0 (10.10)
a33(02

- C33

Fundamental Determinant D

a31c)2 - C31 a32w2 - C32

(No dissipative forces acting)
Note. The above can be written down directly from T and V; (10.4) and (10.6).

The great importance of the above "fundamental determinant" will soon become
strikingly evident. Indeed there is contained in this "small package" almost everything
that can be known about the free oscillatory motions of systems of the type under
consideration.

Relation (10.10) when expanded leads to a third degree algebraic equation in ,2. For
any specific problem in hand, numerical values of the a's and c's are known. Hence this
equation can be written out with numerical coefficients.
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At this point it is important to realize that several methods are available for finding
approximate, yet quite accurate, values of the roots of any nth degree algebraic equation.
For this purpose the "Graeffe root squaring method" is highly recommended. It is easy
to apply, results are good and the time required is relatively short. For an excellent
treatment of this see: R. E. Doherty and E. G. Keller, Mathematics of Modern Engineering,
Vol. I, pp. 99-128, John Wiley, 1936.

Let us assume that the three roots Wl, w2,
W3 of (10.10) are each real and distinct.

(It may be shown that if V is "positive definite", positive for all values which the q's may
assume, all values of (o are real.)

Now inserting say wl in (10.9), the reader can show that these relations determine
only relative values, A1, B1, C1, of the constants. That is if, for example, A1= 3.5, B1= -9.2,
C1= 7.6 satisfy (10.9), they are also satisfied by A1= 3.5c, B1= -9.2c, C1= 7.6c where
c is any constant. Moreover, it is not difficult to show with a simple example that the
relative values of A1, B1, Cl are just the cofactors of the first, second and third elements
respectively of any row in (10.10), each multiplied by an arbitrary constant. ("Cofactor"
defined: Strike out row r and column c of a given element, leaving determinant Mrc, called.
a "Minor". Cofactor of this element = Drc = (-1)r+c Mr,.) That is, from row one we
can write

2 2 -a22w1 - C22 a23w1 C23
A = +C I B = -CB.

a21W12

- 2
C21 a23W1 C23

1 1 2 2
I 1- C32 a33w 1 - c33a32w 1 I a310'1 - C31 a30 1 - C33

a21W2

1
- C21 a22w12 - C22

+c1
2

(10.11)
a31W 1 - C31 a32W 1 - C32

For brevity we write the above as

Al = C1d11, B1 = C1d21, C, = C1d31

where, for example, d21 is the cofactor of the second element of any selected row, with
W1

inserted. That is d21=Dr2 (containing o1), where r may be either 1, 2, or 3. (The above
notation is convenient because it shows the element number in a row and the W number.
The row number is immaterial.)

Finally, it is clear that the following satisfy (10.8):

q, = C1d11 cos (w1t + 01), q2 = c1d21 cos (,,)1t + l ), q3 = C1d31 COS (w1t + c/ i)

In exactly the same manner, two other sets of solutions are obtained corresponding to
W2 and w3. Adding these to obtain the general solution, we have

q, = C1d11 cos (colt + 01) + C2d12 cos (w2t + cp2) + C3d13 COS (w3t + (i)

q2 = C1d21 COS (w1t + 4)1) + C2d22 COS (0)2t+ 02) + C3d23 COS (03t + 03) (10.12)

q3 = cid31 COS ((o1t + 01) + C2d32COS (0)2t + 02) + C3d33 COS (wit + cp3)

Integrated Equations of Motion.

in which the arbitrary constants c1, c2, c3, O1, 02, 03 can be determined from known initial
conditions. Inserting initial displacements, (10.12) can be solved for c1 cos 01, c2 cos 02,
C3 COS 43. Differentiating (10.12) and inserting initial values of velocity, 0q1, 0q2, 0q3, the
resulting equations can be solved for cl sin o1, c2 sin 02, c3 sin 43. Hence values of c and 0
follow at once. A simpler method of evaluating these constants is given in Section 10.15,
Page 224.
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10.6, Summary of Important Facts Regarding the Above Type of Oscillatory Motion.
(a) When slightly disturbed, every component of the system, in general, oscillates with

n natural frequencies or principal modes of motion. For example, in Fig. 10-2(e),
n = 9, there are nine values of w and each mass or pulley oscillates with nine cor-
responding frequencies.

(b) Frequencies are given by f, = wi/2a, etc., where wi, m2, ..., w,, are roots of a funda-
mental determinant having the form of (10.10). Note that this determinant can be
written down directly from T and V without writing out equations of motion.

As seen from (10.10), the w's depend only on constants of the system.

(c) Relative amplitudes of a particular harmonic term appearing in expressions for
q1, q2, . . ., q,, are determined entirely by cofactors and not by initial conditions.

Considering the oscillation corresponding to say wi in solutions (10.12), relative
amplitudes of cos (wit + .pi) in q1, q2, q3 are clearly just d11, d21, d31, since ci is the same
in each.

(d) 'Since constants c1, c2, c3 are determined by initial conditions, it is evident that actual
amplitudes of motion such as c1d11, cid21, c1d31 depend on how the system is started.

Note that, if the motion is properly started, any one or more of the arbitrary
constants c1, c2, :.., c.,, may be zero. Hence the system can oscillate with any one
frequency alone or with any combination of the n.

An experimental method of exciting any one mode alone is given in Section 10.20,
Page 228.

(e) Assuming say wi only excited, (10.12) gives

(f)

qi = cidii cos (wit + cpi), q2 = cid21 cos (wit + cpi), q3 = c1d31 cos (wit + 01)

The algebraic signs of d11, d21, d31 may be either positive or negative. Hence the
above motions may be exactly in phase or exactly out of phase.

Consider Fig. 10-10, Page 230. For vertical motion only, there are three fre-
quencies. The table to the left indicates how the masses move when either wi, 6)2 or o)3
alone is excited. Such phase relations are determined entirely by the algebraic signs
of the d's. However, it is seen that for a given to excited, each of m1, m2, m3 passes
through its equilibrium position at the same instant. Likewise, maximum values are
reached simultaneously.

One final word. If one is concerned with values of the natural frequencies only, as
is often the case, no work other than finding roots of the fundamental determinant
is required.

10.7 Examples Illustrating Results of Past Sections.
Example 10.3.

Consider the system shown in Fig. 10-1(a), Page 204. Assuming vertical motion only and letting
y1 and Y2 represent the displacements of m1 and m2 respectively from equilibrium positions,

T = 2(mly1 + m2y2)

Vexact = 2k1(y1 + S1)2 + 2 k2(y2 - y1 + S2) - m1gy1 - m2gy2

where s, is the difference between the equilibrium and unstretched lengths of the first spring and 82
has the same meaning for the second spring. But since y1 and Y2 are measured from rest points,
aV/ayl 49V/42 = 0 for yi = y2 = 0. Hence the reader may show that Vexact above may be replaced
by V = 4k1yi + 2k2(y2 - yi)2. Hence equations of motion are

-IV, + (k1 + k2)y1 - k2y2 = 0, -k2y1 + m2 y2 + k2y2 = 0 (1)
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Comparing with (10.8) and (10.10), we write

from which

mlw2 - (k1 + k2) k2

k2 m2w2 - k2

m1m2w4 - [k2m1 + (k1+k2)m2]w2 + k1k2 (3)

For ml = 400 grams, 1n2 = 300 grams, k1 = 6 X 104 dynes/cm and k2 = 5 X 104 dynes/cm, it follows
from (3) that w1= 8.16, w2 = 19.37. That is, f1 =1.30 and f2 = 3.08 oscillations per sec.

Hence, following (10.12) we write (after inserting proper cofactors and dividing out a factor of 104)
the general solutions as

yl = 6.25c1 sin (19.37t + 01) - 3°2 sin (8.16t + 952)

Y2 -5c1 sin (19.37t + 01) - 5c2 sin (8.16t + 02)
(4)

Note the following. (a) For this simple case T and V already have the forms of (10.4) and (10.6).
(b) For wl only excited, m1 and m2 oscillate in phase with relative amplitudes of 3 to 5. With w2 excited
the motion is exactly out of phase with relative amplitudes of 6.25 to 5. (c) For any given initial con-
ditions, c1, c2, 01, ¢2 can be evaluated at once.

Example 10.4.
The mass in, Fig. 10-3, is free to move in a plane under the action of the springs and gravity.

(In an actual experiment m consisted of two rather heavy disks fastened together with a short thin rod
through the center of each over which wires from the springs were hooked. This effectively eliminates
rotation of the disks, and hence m is treated as a particle.)

b Ja

Experimental values:
m = 679.2 grams
61 = 43°, 82 51°
kl = 3.7 X 104 dynes/cm
k2 = 3.8 X 104 dynes/cm
Pl = .73 sec, P2 = .70 sec

Fig. 10-3

11= 11.9 cm, 11= 23.5 cm

12= 18.7 cm, 12 = 31.2 cm

For this arrangement T is merely 2m(1 2 + y2). Assuming small motion from the equilibrium
position, an approximate expression for V is given by (see equation (5.11), Page 89),

Vapprox. k2
-k111 a2 - 12282 I x2 + (Ic1 +

11

klli k212
+ 2 ( a1Q1 + 22,02) xy]11 12

k,111 a2 - k212\ 2

11 12

y

J

which has the form V = .(cllx2 + 2c12xy + c22y2)

Hence, following exactly the steps outlined in the preceding example, equations of motion can be set up
and integrated at once.

It is suggested that the reader, making use of values of ml, k1i etc., given on the figure, compute the
two periods P1, P2 and compare with the given experimental values. It will be seen that the agreement
is very close.

Note that for (e11 + c22)2 = 4(c11c22 - c12), w1 = w2. Is this physically possible? Why is gravity
not considered in this example?

0 (2)
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Example 10.5.
Consider the double pendulum, Fig. 10-1(b). See (4) and (7), Example 10.2. It is left to the reader

to show that the basic determinant (which, of course, can be written out without writing equations of
motion) is

(m1 + (m1 + m2)g

m2r1r2w2

m2r1r2w2

m2r2 w2 - m2gr2
0

From this point on the solution follows exactly as in the previous example. (See Prob. 10.1, Page 229.)

Example 10.6. Small oscillations of the three bars suspended from strings as shown in Fig. 10-4.

r,=15cm

r1=12cm

r3 = 20 cmI 200 grams

m3 = 300 grams

(a) Three Bars Suspended by Cords.

(b)

ml = 250 grams

(c)

Fig. 10-4

The reader may show without much difficulty that Tapprox. is given by

(d)

Tapprox. = 2 [(m1 + m2 + m3)r29.1 + m2r2 92 + 2;2 63 + 2m2r1r2®192 + 2m3r

where 01, 02, 03 are angular displacements of ml, nag, m3 respectively.

8183] (1)

Vexact = m1gr1(1 - cos 01) + m2g[r1(1 - COS 81) + r2(1 - cos 82)] + m3g[r1(1 - cos 81) + r3(1 - cos 03)]

Writing 1 - cos of = 281, etc.,

Vapprox. = 2 [(m1 + m2 + m3)gr182 + m2gr202 + m3gr38g] (2)

From an inspection of (1) and (2), we write
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(ml + m2 + m3)(r1w2 - g)r1 m2r1r2w2 m3r1r3w2

m2r1r2w2 m2r2(r2w2 9) 0

m3r1r3w2 0 m3r3(r3w2 - g)

(3)

Expanding and inserting numerical values given in the figure, we get

ws - 451w4 + 37,616w2 - 784,327 = 0 (4)

which is cubic in w2. Applying GraefPe's method, w1 = 18.71, w2 = 8.21, w3 = 5.72: After evaluating
cofactors, the general solutions become

e1 = 2.78c1 cos (18.71t + Cpl) - 0.88c2 cos (8.21t + 02) + 2.75c3 cos (5.72t + 03)

e2 = -4.54c1 cos (18.71t + 01) - 5.70c2 cos (8.21t + 952) + 2.30c3 cos (5.72t + 03) (5)

63 = -2.43c1 cos (18.71t + 01) + 2.34c2 cos (8.21t + 02) + 4.16c3 cos (5.72t + 03)

For given initial conditions, C1, C2, C3, 951, 02' 953 can be determined.

For wl only excited, it follows from (5) that m2 and m3 oscillate in phase and out of phase with ml.
Their relative amplitudes (relative maximum angular displacements) are 2.78, 4.54, 2.43 for m1, m2, m3
respectively. The three "modes of motion" and their relative amplitudes are shown in Fig. 10-4(b)., (c), (d).

It should again be emphasized that, as clearly shown by the above example, (a) the natural frequencies
of the system, (b) the phase relations between oscillations corresponding to any one frequency, and
(c) the relative amplitude of motion are all found from the basic determinant and thus depend on
constants of the system.

Example 10.7.
A consideration of the oscillatory motion of the three "particles" connected with springs as shown

in Fig. 10-5, illustrates most of the basic points regarding small oscillations and gives the reader a good
overall picture of the general subject.

p3

V

p

X1, Y1 = fixed axes, with origin at the rest position of m1

Fig. 10-5

Considering motion in a plane, the system has six degrees of freedom and hence six natural frequencies
of motion. Let us assume that all values of the k's, unstretched lengths of the springs, equilibrium
positions of m1, m2, nz3, positions of p1, p2, p3, etc., and equilibrium lengths of springs are known.

Let x11 y1; x2, Y2; x3, y3 represent rectangular equilibrium coordinates of m1, m2, m3, regarded as
particles. Hence

1(xi + yi) + 2m2(x2 + lt2) + 2in3(x3 + y3)

Extending the principles outlined in Section 5.10, Page 89, V may be put in the form
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Vapprox. = 2(c11xl + C22y1 + c33x2 + C44y2 + C55x3 + C66yg)

+ C12x1y1 + C13XIx2 + C14x1Y2 + C15x1x3 +

+ C23y1x2 + C24y1y2 + C25y1x3 + C26y1y3 +

+ C35X2X3 + 036x2Y3 + C45y2x3 + C46y27J3 +

C16x1y3

C34x2y2

C56X3Y3

215

Determination of the c's. is straightforward but in an actual case requires considerable tedious work.
This having been done we are in a position to set up the fundamental determinant of the system, roots
of which give cal, (02, ... , w6. Finally, solutions have the form

x, = C1d11 cos (colt + ol) + C2d12 COS ((0et + ¢2) + ... + c6d16 cos (m6t + 956) ,
etc., for Yl, x2, y2, x3, y3

For a general disturbance of the system, each particle oscillates with the six frequencies given by
f 1 = cal/21r, etc. If any one frequency alone is excited, amplitudes of motion of ml, m2, m3 are not in
general the same; moreover, the particles do not oscillate along parallel lines. (See Section 10.14, Page 222.)

Note that if motion out of the plane of the frame is permitted, d.f. = 9. Hence the system has nine
natural modes of oscillation. It can be treated exactly as outlined above.

10.8 Special Cases of the Roots of D.
(a) Multiple Roots.

Consider the arrangement shown. in Fig. 10-6.. Suppose the frame attached to a smooth
horizontal table. Assume all springs identical and that, with m at rest, the springs have
an angular spacing of 120°.

For this case (see equation (5.11), Page 89),

T = 2m(x2 + y2) and V = [k(3 -1.51'/l)(x2 + y2)

Hence the fundamental determinant may be
written at once. Expanding this it is immedi-
ately evident that the two roots of D are equal,
that is, a)1= w2. The equations of motion show
that the general motion of m may be regarded
as compounded of two simple harmonic motions
at right angles, each having the same period.
But this is only true for the special arrange-
ment considered above. If the k's are not
quite equal and/or the angular spacing is
slightly changed, ,, and c,)2 will be distinct.

Other systems can b e found which, for
special values of the constants, fall into the
above class. However, truly equal roots are
rare. When this is the case the "degeneracy"
can usually be removed by a slight change in
the constants of the system. Fig. 10-6

(b) Zero Roots.
The basic determinant for each system shown in Fig. 10-7 has one zero root. Consider

Fig. 10-7(a), for example. A detailed treatment of the motion for B small, is given in
Example 4.4, Page 64, and as seen from the equations of motion

D _ j (ml + m2)o)2 m2r(1)2 = 0
I

m2rw2 m2r2<o2 - m2gr
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from which (m1 + m2)(m2r2w2 - mrm2gr)w2 M2r2w4 = 0. Hence one o,, say w1, is zero and
w2 = [(m1 + m2)g/r]1"2. The zero root means an "infinite period" 'or more precisely a
term vt, in the final solution, indicating motion with constant velocity. Note details of
the solutions, Page 65.

(a) Cart free to move along horizontal line

e1

(c) Disks connected with flexible
shaft. Torsional constant = K.

(b) CO2 "molecule" free to move along a line

(d) Assume m1 = m2

x1, x2 measured relative to cart. No friction assumed.

(e) Cart free to move along horizontal track

Fig. 10-7. Systems for which the Fundamental Determinant Has One Zero Root.
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The reader may easily write T and V for the disks, Fig. 10-7(c), and show that D has
one zero root and another which is not. Physically this means that the motion of each
disk is compounded of an oscillatory term ; plus another representing constant angular
velocity. (See Problem 10.9, Page 230.)

An example of a system, the determinant of which has two zero roots, is shown in
Fig. 10-14, Page 232. For details see Problem 10.18.

Example 10.8. The "CO2 molecule", Fig. 10-7(b).

Assuming motion along the X axis,

T =
1(m1 + M2 x2 +. m1x3), V = 2

k[(x2 - x1- l0)2 + (x3 - x2 - 10) 2]

where l0 is the unstretched length of each spring. Letting

ql ` x1 + l0, q2 = x2, q3 = x3 - l0

'2 '2(mlg1+ m2g2 + mlg3), V = --k[(g2 - q1)2 + (q3 - q2)2]

which now have the forms of (1014) and (10:61) respectively. Hence

m1w2k k 0

k m2w2 - 2k k

0 k m1w2 - k

0 (8)

Expanding D, we have
(m1(02 - k) [(m2w2 - 2k)(m1w2 - k) - k2] - k2(m1W2 - k) = 0

112 - rk(m2+2m1)11/2
from which w1 = k 1 w2 = 0, w3

m1 m1m2

Therefore D has one zero root.

The reader may show by direct substitution into the differential equations of motion that

-c1k2 Cog (w1t + 951) + c3k2 COS (w3t + 03) + vt + b

-2c3k2 cos (w3t + 953) + vt + b

c1k2 COS (w1t + 01) + c3k2 COS (wit + 03) + vt + b

(k)

are solutions where constants c1, c3, v must be determined by initial conditions.
The term vt obviously indicates linear motion with constant velocity. It may be shown that v is just

the velocity of the center of mass.

10.9 Normal Coordinates.
For systems of the type thus far considered, it is possible to determine a set of "normal

coordinates" g1, g2, ... , g, (each linearly related to the usual equilibrium coordinates
q1, q2, . , ql) such that when the q's are replaced by g's, T and V take the very simple forms

T = 2(b2 + g2 + + g2), V 2(W1gi + w2g2 + ... + w,,,g2)

(Advantages and uses of normal coordinates are listed in Section 10.12.)

(a) Defining the g's.
Consider, for example, a system having, only two degrees of freedom and for which

the integrated equations of motion are

c1d11 cos (tilt + 01) + C2d12 cos ()2t + 02)q1 =
(10.13)

c1d21 cos (w1t + i) + C2d22 COS (0)2t+ 02)
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As a matter of convenience in what follows, let us replace cl by c1A1 and c2 by c2A2 where
Al and A2 are now regarded as arbitrary constants and c1, c2 will later be determined to
meet certain desired conditions. We must remember that cl, c2 are now not regarded as
arbitrary.

Defining the quantities gl, g2 by gl = Al cos (,,1t +,p,) and g2 = A2 cos (wet + 01
relations (10.13) become

ql = cid11g1 + C2d12g2, q2 cjd2lgl + C2d22g2 (10.14)

Note that the quantities g1, g2 may be regarded as a new set of coordinates. Thus
(10.14) are transformation equations relating the q's and g's. As will be seen from what
follows, g1, g2 are the desired normal coordinates.

(b) Expressing T in normal coordinates and introducing "orthogonality conditions".
Differentiating (10.14) and substituting in

T = 2 (ailgl + 2a12g1g2 + a22g2)

we get T = -[ci(aiidii + 2a12d11d21 + a22d21)gI + C2(alidl2 22 + 2a12d22 + a22d22)g2

+ 2c1c2(audlidl2 + al2dlld22 + a21d12d21 + a22d21d22)glg2] (10.15)

Writing coefficients of gi, g2, blb9 , as Nll, N22, N12 respectively, it is seen that

N11
2

1 art drrdll,2
cl

rl

or in more compact form,
2

Nsk = CsCk 2, aridrsdlk (10.16)
rl

Relation (10.16) is of paramount importance because, as shown for a general case in
Section 10.10, Nsk = 0 for s k. But Nsk 0 for s = k. Moreover (see paragraph (a) above)
it is seen that by taking cs as

C

2 1/2

arldrsdls] (10.17)
rl

Nss = 1. Hence it follows (assuming for the moment the truth of the above statements)
that T = J(gi + g2).

(c) Expressing V in normal coordinates.
A general expression for V for the case under consideration is

V --(ciiq + 2c12g1g2 + e22g2)
Inserting (10.14),

V = ICi [(clidll. + C12d21)dii + (C22d21 + C12d11)d2i]gi

+ C2 [(Cildl2+ C12d22)d12 + (C22d22 + C12di2)d22]g2 (10.18)

+ 2CiC2[2(c11d12 + C12d22)d11 + 2(C22d22 + C12d12)d21]g1g2

If it is assumed that only one principal mode is excited, say wl,
}ql = C1d11A1 cos (a)1t + 01), q2 = C1d21A1 cos (w1t +

Putting these into the original differential equations of motion (which have the form of
(10.8)), it follows that

C11d11 + C12d21 wl(alldll +a12d21)

C21d11 + C22d21 = wi (a21dii + a22d21)

Likewise two more similar relations are obtained assuming
these four expressions in (10.18), we finally get

2 2

N22 = C2 1 arldr2dl2, N12 = C1C2 I arldrldl2
rl rl

w2 excited. Substituting
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2V 2(WiN11gl + 2W2N12g1g2 + 02N22g2 )

which, on applying (10.16) and (10.17), becomes V 1((02g2 + 0)2g2)

(d) The General Case.
In like manner the above steps can be carried through for n degrees of freedom when

T and V have the forms of (10.4) and (10.6) respectively. The solution corresponding to q1
may be written as ql = c1d11g1 + C2d12g2 + + cndingn, etc. Or in general,

qr Ckdrkgk (10.19)
k=1

Expressions corresponding to (10.16) and (10.17) take the forms shown below.
n

(a) Nsk CSCk ' prldrsddkl '

n
1

-1/2
(b) cs CI arldrsdls]

rl

0 for s k

1 for s = k

(a) = Orthogonality condition, (b) = Normalizing factor

N.,k is usually written as 8sk and called the Kronecker delta.

In the general case T and V have the forms
1 .2

T = 2(9'1 + g2 + ... + gn)

V = 2{W1 1 + W2g2 + ... + U,ngn)
2 2

(10.20)

(10.21)

(10.22)

The above development has been carried through assuming solutions of the form (10.12).
However, it is a theorem of algebra that when T and V have the forms (10.4) and (10.6),
suitable linear relations between the q's and g's can be found which transform T and V
to the form (10.22).

10.10 Proof of the Orthogonality Relation.
Before continuing further let'us prove the important relation (10.20).
Consider a system having n degrees of freedom. Assuming only one oscillation

excited, it is clear that

q1 = csdis cos (o)St + 0s), q2 csd2s cos (wst + 0s), etc.

Putting these into any one of the original differential equations, say the rth, we get

cd +cd + +cd (ad +ad + +ad )2
rl is r2 2s rn. ns ri is r2 2s rn ns Ws

which may be written as n n

-=
2

Crldls Ws arldls
l=1 t=1

Note that (1) represents n equations since r 1, 2, n.

Likewise assuming Wk excited,
n

Crldlk
2

wk arldlk
l=1 l=1

Ws

(1)

(2)
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Now multiplying the first of (1) by dlk, the second by d2k, etc., and adding, we obtain
n n

_ 2 r
I Crldlsdrk Ws 6rardlsdrkl,r l,r

In like manner we obtain from (2)
n n

(3)

_ 2
Crldlkdrs wk arldlkdrs (4)

1, r

But since art = al, and Cr, = clr, we may replace r by 1 and 1 by r in (3) without affecting the
value of the sum. Hence the left sides of (3) and (4) are equal. Thus

n
( 2 2 (5)

mss) aridrsdlk 0
1, r

But for k s, Wk ,.,. Hence arldrsdlk = 0 (6)

Furthermore it can be shown that for k = s the summation in (6) is not zero. Hence the
validity of (10.20) has been established.

10.11 Important Points Regarding Normal Coordinates.
(a) It follows from (10.22) that

gl + _ig, = 0, g2 + c32g2 = 0, gn + wngn = 0 (10.23)

These greatly simplified equations of motion integrate at once to give g1 =
Al cos (,o1t +,p), etc., (which are indeed just the original expressions given in Sec-
tion 10.9). Thus from (10.23) it is seen that:

(b) Principal modes of motion corresponding to 0)1, cil2, ..., are entirely independent.
That is, one mode of oscillation in no way influences or is influenced by other
oscillations. The system is reduced, mathematically speaking, to n completely unre-
lated harmonic oscillators. (But note (c) below.)

(c) If properly started, the system will oscillate with any one of the fundamental fre-
quencies alone (as previously mentioned) or in any combination. However, one must
not lose sight of the important fact that, if any one mode is excited, every component
part of the entire system will, in general, oscillate with this particular frequency.
For example, if CUS, Fig. 10-2(e), Page 205, were excited, each of the six masses and
three pulleys would oscillate with frequency f5 = (,5/2r.

(d) Inspection of (10.22) shows that D in normal coordinates (assuming n=3 for con-
venience) has the form

(10.24)

D is said to be "diagonalized".

10.12 Advantages of Normal Coordinates.
(a) A consideration of normal coordinates leads to a better understanding of the physics

as well as the mathematics of small oscillations. A more complete "picture" of what
takes place is obtained.
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(b) The treatment of systems of the above type to which external forces are applied is

(c)

considerably facilitated by the use of normal coordinates. (See Section 10.18.)

The determination of constants of integration in solutions having the form of (10.12)
is considerably simplified by use of the orthogonality condition (10.20). See Section
10.15, Page 224.

(d) Normal coordinates can be employed to considerable advantage in various theoretical
considerations without the necessity of first finding actual expressions for the g's.

(e) Normal coordinates are extensively used in the study of molecular vibrations, vibra-
tions, of atoms in crystals, etc.

However, it should be kept in mind that, except in very simple cases, actual expressions
for the g's of a given system can only be found (see Section 10.13) after having determined
wh w27 } Wn and the cofactors drs (frequently a laborious task) as outlined in Section 10.5.
Moreover, it is clear that in applied problems where the w's only may be required, normal
coordinates offer no advantages.

10.13 Finding Expressions for Normal Coordinates.
Expressions for normal coordinates may be obtained by solving (10.19) directly for

the g's in terms of the q's. However, the solution may be considerably simplified by
employing the orthogonality condition (10.20).

Multiplying (10.19) through by csadls and summing over r and 1, we have
n n n

I c,q ctrldls gk I CsCka'rldrkdlsrl k rl k

n
Hence g$ =

Cs

I grarldls'
rl

where cs is determined by (10.21).

g

(10.25)

For any particular problem in hand, numerical values of art and dls are known. Hence
specific expressions for g1, g2, ..., gn in terms of the q's can be written. (See Examples
below.)

Example 10.9. Normal coordinates for the, system shown in Fig. 10-1(a).
Referring to Example 10.3, Page 211, let us write the solutions there given as

1/l = 3c1A1 cos (8.16t + 01) - 6.25c2A2 cos (19.37t + 02)

Y2 = 5c1A1 cos (8.16t + o1) + 5c2A2 cos (19.37t + 02)

where Al and A2 are arbitrary and c1, c2 are to be determined by (10.21). Hence we write

1/l = 3c1g1 - 6.25c292, Y2 = 5c1g1 + 5c292

(1)

(2)

Now expressions for g1 and g2 may be determined either by solving (2) or applying (10.25). Note that
for this problem all = ml, a22 = m2, a12 = 0, d11 = 3, d12 = -6.25, etc., from (1). c1 = (9m1 + 25m2)-1/2,
c2 = (6.252m1 + 25m2)-112. Hence finally,

g, = 11.391/1 + 14.241/2, g2 = -16.441/1 + 9.86y2 (3)

As a check the reader may show that, differentiating (2) and substituting into T = 1(m1?t i + m2 2),
we get, as would be expected, T 2(g2 + g2) Likewise, putting. (2) into the original expression for V,
we get V = _L((02g2 + w2g22 ). See Problem 10.5, Page 229.

n
.

I gkaks

Example 10.10. Normal coordinates of the triple pendulum, Fig.. 10-4, Example 10.6, Page 213.
Equations (10.19), Page 219, may be written as



222 SMALL OSCILLATIONS ABOUT POSITIONS OF EQUILIBRIUM [CHAP. 10

91 = 2.78c1g1 0.88c292 + 2.75c3g3

e2 = -4.54c1S1 - 5.70c2g2 + 2.30c3g3

93 = -2.43c1g1 + 2.34c292 + 4.16c3g3

Applying relation (10.21), ci 1 = 694.03, c2 1 = 1309.18, c3 1 = 2478.69. Solving
more easily, applying (10.25), we finally get

g, = 126.2991 - 43.8292 - 59.2693

92 = -108.8891 - 149.4102 + 154.5893

g3 = 379.4291 + 67.7002 + 307.5993

(1) for 9V 92,93

(1)

or,

(2)

As a check the reader may show that, differentiating (1) and inserting into the original expression
for T, we get T = I(gi + g2 + g3). Likewise, V = 4((02g2 + W2g2 + w2g2) may be obtained by
inserting (1) in the original expression for V.

1 1 2 2 3 3

10.14 Amplitude and Direction of Motion of Any One Particle When a Particular Mode
of Oscillation is Excited.

By way of introduction, suppose that any one (and only one) of the six natural fre-
quencies of the system shown in Fig. 10-5, Page 214, is excited. In what direction
(along what line) and with what amplitude would, say, m1 be oscillating? The following
is a treatment of this type of problem.

Consider the relatively simple system shown in Fig. 10-8. A dumbbell, consisting of
particles 7n1 and m2 connected with a light rod, is supported by springs as shown. Its
equilibrium position is 0102. Assuming motion in a plane, displacements of m1 and m2
from. rest positions are x1, y1 and x2, y2. 'Here n=3 and we use as generalized coordinates
q1, q2, q3 where q1, q2 are rectangular coordinates of c.m. and q3 = 0. Thus x1 = x1(gl, q2, q3),
etc., which could easily be written out in explicit form.

Fig. 10-8
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Assuming small displacements, we write (see Section 10.3(b), (c)),

xi =
\(/ax11 q + ("').q2 + (ax,) q
agl0 1ag2ag30 3

or x1 = allg1 + a12g2 + a13g3 (1)

and likewise yl = `'llgl + P12g2 + P13q3

where all a's and ¢'s are known constants determined by the geometry of the system.
Now considering solutions corresponding to (10.12) and supposing only one mode, say

<or, excited,

ql = c1d11 cos (w1t + 01), q2 = cid21 COS (wlt + (p), q3 = c1d31 COS (w1t + 1}

where c1 is here determined by initial conditions, not by (10.21). Hence

xl = (alidll + a12d21 + a13d31)el COS (wit + 0)

Likewise, yl = (Rlldll + R12d21 + R13d31)cl cos (0)1t. + 41)

-or for brevity, xi= c1A11 cos (w1t + Cpi), yl = c1B11 cos (w1t + 01)

(2)

Hence it is clear that, for w1 only excited, m1 oscillates with amplitude cl (Ail + B 1)12
along a straight line through 01 having a slope of B117A11. In like manner the amplitude
and direction of motion of m1 may be found assuming w2 or w3 excited.

Considering expressions for x2, y2, motions of m2 corresponding to w1, w29 w3 may be
found in the same way.

Thus we have a detailed "picture" of the motion of each particle when any one mode
is excited.

Obviously the above treatment can be extended to a general system of p particles
having n degrees of freedom.

Note that the actual path traversed by, say, m1 when all modes are simultaneously
excited, may be drawn by inserting relations (10.12) in (1) above and plotting y1, x1 for
equal values of time.

Example 10.11.
Let us determine the line along which point p, Fig. 10-16, Page 233, oscillates when wi only is excited.
Taking xp, yp as coordinates of p, x, y those of c.m. and o the angular rotation of the rod measured

from its rest position (that is, x, y, a are convenient ' equilibrium coordinates), it is seen that

XP = x + 1 cos (8 + 80), yp = y + 1 sin (o + 80)
where 1 is half the length of the rod. Thus for small motion (retaining zero and first order terms),

xp = x + 1 cos 80 - (1 sin ep)e

yp = y + 1 sin 00 + (1 cos 60)8
Now for wl only excited,

x = eldll cos (wlt + 01), y = cid21 cos ((Olt + 01), 0 = c1d31 cos (wlt + ¢1)

Hence x, - 1 cos Bo = c1(dll - 1d31 sin eo) COS (wit + 01)

yp - 1 sin 90 = ci(d21 + 1d31 cos 80) cos (wit + 01)

XP - 1 cos eo and yp - 1 sin o0 are clearly displacements of p from its rest position. Hence
d + Id cos B

(1)

p oscillates

along a line making an angle a with X where tan a = d21

1431
and with an amplitude A

determined by 1l - 3l sin o

A = cl[(dii - 1d31 Sin 80)2 + (d21 + 1d31 Sin 00)2}112
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Of course; c1 must be found from given initial conditions.
For details of the motion of this system, for given values of the physical constants, see Problem 10.23,

Page 233.

10.15 Determination of Arbitrary Constants With the Help of
Orthogonality Conditions.

Values of the c's and (i's in (10.12), which, of course, depend on initial displacements
and velocities, can be determined as outlined in the last part of Section 10.5. Or having
replaced cl by c1A1, c2 by c2A2, etc., as in Section 10.9 (where the c's are now not arbitrary
but determined by relation (10:21)), the A's can be evaluated in the same way. However,
the following method is more advantageous.

Putting known or assumed displacements for t= 0, oq1, oq2, , oqn, into solutions
having the form of (10.12), we have

0q, = c1d11A1 cos 01 + C2d12A2 Cos 02 + + cndlnAn cos On

Oqn C1dn1`41 COS 01 + C2dn2A2 Cos 02 + + cndnnAn cos q)n

n

(10.26)

Now let us multiply the first of (10.26) through by cs aildis , the second by
n i=1

cs ai2dis , etc., where s can be any integer from 1 to n. Adding the resulting equations
i=1

and making use of (10.20), it follows that
n

As cos 0. Cs I Ograirdis
it

(10.27)

In like manner, for given values of velocity ogh 0q2, f O 1np at t = 0, it can be shown that
C

nA. sin 0s - s

1 ograirdis (10.28)
Ws it

Thus all values of A. and, os are determined by (10.2.7) and (10.28).

Note that if the system is displaced slightly and released from rest, all values of O''r = 0.
Hence all values of the phase angles are zero.

10.16 Small Oscillations With Viscous and. Conservative Forces Acting.
As background for this section the student should review Sections 10.3(d) and 10.4.

(a) Equations of motion and their solution.
Assuming as before three degrees of freedom, the equations of motion, including

viscous forces, are just (10.7), Page 209.
Solutions may be obtained by assuming

qt = Axt, q2 = Bxt, q3 = Cat

where A, B, C, , are, as yet, undetermined constants. Substitution into (10.7) gives

A(a11:t2 + b11A + C11) + B(a12A2 + b12A + C12) + C(a13A2 + b13A+ C13) = 0 (10.29)

and two more similar relations. Following the steps leading to (10.1-0), we write

D =
a11A2 + bi X + ell a12A2 + b12A + C12 a13A2 ± b13A + C13

a21A2 + b21A + C21 a22,.2 + b22x + C22 a23A2 + b23X + C23

a3 1X2 +b31A + C31 a32A2 + b32A + C32 a33A2 + b33A +,C33

0 (10.30)
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Expansion of this new form of the fundamental determinant leads to a sixth degree
equation. in X. Roots of the equation again can be found by the Graeffe or other methods.

Let us assume that the six roots A1, ,k2, ... , A6 are distinct. Inserting values of, say,
Al into (10.30), relative values of A1, B1, Cl are given (see Section 10.5) by cofactors of
the elements of any row. That is,

qi = cidilexit, q2 = cid2lek,t, q3 = cid3lexlt (10.31)

Similar solutions are obtained by introducing A2, ,13, . , A6 .

Adding the six sets of solutions, the general solution takes the form
cidiiexit + c2di2eXPt +. . . + c6di6e,\et

cid2le'"t + C2d22eX2t + + c6d26e`et

cld3lexit + c2d32e"2t + + C6d36e',t

Values of the arbitrary constants cl, c2, ..., c6 depend on initial conditions.

(b) Nature of the A's.
The roots of D may be real, complex or pure imaginary.

(10.32)

For the important case in which V is positive definite, it has been shown that under
the following additional conditions:

(1) P = 0 (no viscous forces): All roots are pure imaginary. This is the case treated
in previous sections.

(2) P 0 but viscous forces small:. Roots are complex, they occur in pairs as
A _ tL± iw, and rl is negative. That is, X1 = µl + iwi, k2 = µ1- iw1, etc.

(3) Viscous forces large: Roots are real and negative.

If 'V is not positive definite, positive real roots may occur. In this case it is seen from
solutions (10.32) that each coordinate increases indefinitely with time. Hence the assump-
tion of "small motion" is quickly invalidated. The system is "unstable".

(c) Form taken by (10.32) when the roots are complex.
This is the most important case.

Let Al = Al + iwi, A2 = µ'1 - 2('1, x3 µ2 +L2, 'A4 = µ2 - zw2, etc. Considering, for the
moment, only the first two terms of the first equation in (10.32), we write

cidliexlt + c2d12ex2t = e"1t(eiduei6lt+c2di2e-i111t) (10.33)

But d11, the cofactor of the first element of any row of (10.30), is complex. We write it
as d11 = kil + ih11, where for any specific problem in hand kip and hil are known constants.
Moreover, a little effort will show that d12 = k11- ih11. Since cl and c2 are arbitrary, we
write them as c1 = 2(b1 +ib2), C2 = 2(b1- ib2). Hence, employing the relations

eiwt = COs. wt + i sin wt, e-ic t = cos wt i sin wt

the right side of (10.33) takes the form

e"t[bi(kii cos w1t. hi;i sin w1t) - b2(k11 sin w1t + h11 cos w1t)]

which, with some manipulation, may be reduced to.
e"1t1(kii + h11)112 cos (w1t + 811 + 1) (10.34)

Here R1 and (p1 are arbitrary constants and tan 811 = h111k11.

Hence it is clear that if all roots of (10.30) are complex, the general solution for q1 is
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+ R3(k13 + h2 )1/2e1131 COS (aw3t + s13 + 4))
(10.35)

1(kil + hl,)1/2eµlt cos (0)1t + 811 + ) .+ R
2 (kl2+ h1)i/2eµ2t cos (02t + 8

12 + 02)R

with exactly similar expressions for q2 and q3. Rl, R2, R3901902103 which appear in each
of the solutions corresponding to q1, q2, q3, are the six constants of integration to be
determined by initial conditions.

The quantities µl, µ2, µ3 (which are a result of the viscous forces) are negative. Hence
solutions having the form of (10.35) indicate damped harmonic oscillations.

Considering motion corresponding to of only,

ql = Rl(k21 + hil)112 eu1t cos(W1t + 8Y1 + 01), q2 = Rl(k2, + h21)l/2 eµlt cos (01t+ 821 + 0l),

q3 = Rl(k31 + h31)1/2 eµlt cos (w1t + 831+0).Hence
these motions are not in phase (for example q1, q2, q3 do not reach their extreme

values at the same instant) since 811, 821, 831 are not equal.

10.17 Regarding Stability of Motion.
If after the masses of a system are given some small initial motions they never depart

very far from their equilibrium positions, the motion is said to be stable. As can be seen
from (10.32), positive real roots of (10.30), or complex roots with positive real parts, mean
terms in the solutions which increase indefinitely with time, hence instability. For stability,
real roots or real parts of complex roots must be negative. Pure imaginary roots mean
stability in that they indicate oscillations with constant amplitudes.

To find whether or not a given system is stable, one of the two following procedures
may be followed.

(a) Determine all roots of the fundamental determinant in the usual way. Examine the
roots to see if all real parts are negative.

(b) Apply the Routh-Hurwitz test, which does not require finding the roots. The test is
not reproduced here.

For details of the above as well as considerably more information on the subject, of
stability, the reader may consult the following references.

(1) A. Hurwitz, Math. Ann., Volume 46, 1895, Pages 273-284.

(2) R. N. Arnold and L. Maunder, Gyrodynamics and its Engineering Applications, Page
453, Academic Press, 1961.

10.18 Use of Normal Coordinates When External Forces Are Acting. (No viscous forces.)
In the treatment of conservative systems on which externally applied forces are acting,'

normal coordinates (found as in Section 10.13) offer real advantages and although it is not
our purpose to consider this long and detailed subject, we indicate below how equations
of motion in the g's may be found.

Basically the method of setting up equations' of motion is just the same as has been
used throughout. It is only that here we propose to use coordinates g1, g2, ... 1g.'

Having expressed T and V in the form of (10.22), we apply dt (i-) - L = Fg,
and obtain the following very simple equations of motion,

gr + o ,,g,, = Fgr r = 1, 2, ... , n (10.36)
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The generalized force Fgr, which involves only externally applied forces, may easily
be found as follows. Employing q1, q2, ..., q, 8Wtotai is written in the usual way (see
equation (4.12), Page 61). Now eliminating q's in favor of g's by (10.19), aWtotal can be
put in form

8Wtotal
.. ] 1891 + I ... ]2892 + ... + I ... ]nsgn (10.37)

Hence F01 = [ . ] 1, etc. The advantage of this procedure is, of course, due to the sim-
plicity of (10.36).

10.19 Use of Normal Coordinates When Viscous and External Forces Are Acting.
For this type of problem normal coordinates still offer advantages. Neglecting, for the

moment, viscous and externally applied forces, normal coordinates can be found as usual and
T and V expressed as in (10.22), Page 219. Note that the w's found above are not the natural
frequencies of the system when the viscous forces are acting.

Unfortunately the P function cannot, in general, be written as P = blb2 + b2g2 +
+ by2. However, making use of (10.19), (10.5) can easily be put in the form

1 nP = -
2

prt yr yi (10.38)
rti

Hence, applying Lagrange's equation, the equations of motion become

gr + o2gr - P1rg1 - P2rg2 - 293rg3 - pnrgn Fgr (10.39)

The generalized force Fgr, which involves external forces only, is determined exactly as
explained in Section 10.18. "Viscous coupling" still exists but, even so, equations of
motion in the g's are simpler than in the q's.

Example 10.12.
The following is a brief outline of the above method as applied to the triple pendulum of Fig. 10-4,

Example 10.6, Page 213, assuming that it is suspended in a viscous fluid; no external forces. Here we write

T = 2(b2 +'92 + g), V = 2(wigi + w2g2 + w3g3)

where wl = 18.71, w2 8.21, w3 = 5.72.

Referring to Section 10.3 and to equation (1) of Example 10.6, it follows that

P = -[(b l -{- b2 + b3)r18 i + b2r2B2 + b3r3B3 + 2b2r1r2B1B2 + 2b3rjr3B1B31

where b1, b2, b3 are coefficients of viscous drag on the bars. Now making use of B1 = 2.78c1g1 -
O.88C2g2 + 2.75C3g3, etc., (see Example 10.10), P can easily be expressed in terms of gl, g2, g3

Hence gl + w191 = uP/eyr, etc., are the equations of motion. Note that pl = 27r/w1, etc., are no
longer the periods of motion of the system. If viscous forces are not too great, oscillations are established,
and the periods of oscillation depend somewhat on the damping factors.

Example 10.13. Viscous and external forces acting.
Referring to Example 10.3, Page 211, and Fig. 10-1(a), imagine vertical forces fl = Al sin (alt +S1)

and f2 = A2 sin (a2t+ S2) acting on ml and m2 respectively. Also assume a viscous force -b1y1 acting
on m1 and -b9y2 on m2 (b1 and b2 must be known from experiment). We shall set up equations of motion
in normal coordinates. Here

T = 2(gi + g2), V = 2(wig2 + w2g2) (1)

where wl = 8.16, w2 = 19.37 and (see Example 10.9, Page 221),

yl = 3c1g1 - 6.25g2, y2 = 5e1g1 + 5C2g2

(2)

el = (9m1 + 25m2)-1'2, c2 = (6.252m1 + 25.m2)-lie
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- The P function is merely
-.-(bil/ i + b2y2) (3)

Making use of (2),
P = -I [b1(3ci9'1 - 62542)2 + b2(541 + 5c2g2)2] (4)

Writing SWtotal = fiS#1 + f2Sy2 and applying (2),

S Wtotai = c1(3f1 + 5f2)Sg1 + e2(5f2 - 6.25f1)Sg2

Hence Fgl = c1 (3f 1 + 5f2) and the final equation of motion corresponding to g1 is

(5)

91 + Wig, + 25b2)91 + c1e2(25b2 - 18.75b1)g2 = cl(3f1 + 5f2) (6)

with a similar relation corresponding to g2. The applied forces fl = A, sin (alt+ S1), etc., (or those
having any other desired form) can now be written into the equations of motion.

10.20 Suggested Experiments.
The field of "small oscillations" is replete with a wide variety of interesting and

instructive experiments. In most cases the required apparatus is easily constructed.
Nothing is very critical about values of masses, spring constants, etc., to be used. Many
of the arrangements shown in this chapter can be set up in a short time from materials
to be found in almost any laboratory.

Experimental work includes a determination of (a) the natural periods of motion,
(b) the phase relations between-various parts when a given mode is excited, and (c) relative
amplitudes of motion for a given mode. Of course, constants of the system such as masses,
spring constants, etc., must be determined by preliminary experiments. Finally (and this
is, of course, the payoff) the above results are to be compared with computed values.

Experimental results are not difficult to obtain. Any one of the natural frequencies
(if within certain limits) can easily be excited manually. Consider, for example, the
arrangement shown in Fig. 10-1(a), Page 204. For vertical motion only, this has two
natural frequencies f1 = Wl/2r, f2 = (2/27r. Let us apply with the finger an oscillatory
force to, say, the top of ml, making it as nearly simple harmonic as possible. Now if the
applied frequency is equal to or even close to either f1 or f2, the amplitude of that
particular mode builds up rapidly. When the finger is removed, the oscillation continues.
Of course, each mass oscillates with this one frequency. A -rather accurate numerical
value of the period can now be found by timing, say, 100 oscillations with a stop watch.

For either w1 or a)2
excited, the phase relation between the motions of ml and m2

(that is, whether at any instant they move in the same or opposite directions) can be
observed directly. At the same time the amplitude of oscillation of ml compared with
that of m2 can be roughly estimated.

The above technique is applicable to a wide variety of systems having two, three or
even four natural periods of oscillation. When the applied frequency is near one of the
natural frequencies, this fact becomes evident at once since the force required to cause
the oscillation to build up is noticeably small. After some practice, little difficulty is
experienced in exciting any one of the natural modes atone. With reasonable care in the
determination of the constants of the system and experimental values of the periods,
excellent agreement between computed and experimental results may be expected.-

Below are listed several systems, any one of which is quite suitable for a quantitative
experiment or for classroom demonstration.

(a) Fig. 10-1(a), (b), or (d), Page 204. Easily constructed; results excellent.

(b) Fig. 10-4, Page 213. Easily duplicated as shown. Hence all results given in Example
10.6 can be checked.
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(c) Fig. 10-10, Page 230. Easily constructed; results excellent. This makes a striking
experiment.

(d) Fig. 10-7(c), Page 216. Must use good ball bearings to reduce friction.
(e) The following systems are especially recommended for classroom demonstrations:

Fig. 10-1(b) and (d); Fig. 10-10; Fig. 10-13, Page 231; Fig. 10-16, Page 233.
Experiments of this type are very effective indeed as a means of arousing interest,

giving physical meaning to the theory and greatly broadening the student's understanding
of the subject.

Problems
A. Systems Having Two Degrees of Freedom.
10.1. In Fig. 10-1(a), Page 204, a third spring (constant k3 and unstretched length l3) is attached to the

bottom of m2 and directly down to the floor. This spring is under tension when the masses are at
rest.. Find an expression for wl, w2 of the system. Compare results with those found in Example 10.3,
Page 211.

10.2. Show that for the double pendulum, Fig. 10-1(b), co, and w2 are given by

wl, W2 {9(ml + m2)(rl + r2) ± g{(m1 + m2)(m2(r1 + r2)2 + m1(r2 - r1)2)] 1/2}1/2(2mlrlr2)-1/2

Show that for ml = m2 = m and r1= r2 = r, wl = 1.85(g/r)1/2, w2 = .77(g/r)1/2 and that normal
coordinates are

91 = 1[(4 - 2 )1/2e - (2 - Nr2_)1/2,p](mr2)1/2

92 = -1[(4 + 2V)1/2g + (2 + F2)1/20](mr2)1/2

10.3. Show that for the double torsion pendulum, Fig. 10-1(d), wl and w2 are given by

Ilb + 12a (I1b + 12a)2 - 41112c1!1/2
wl' m2 = [ 21172 J

where a = k1 + k2, b = k2 + k3, c = k1k2 ± k1k3 + k2k3.

are
91 = (01 + 02)(1/2)1/2,92 = (02 - 91)(1/2)1/2

10.4. Find wl, w2, g1, g2 for the system shown in Fig.
10-1(f) for m1 300 grams, m2 = 500 grams,
kl 3 X 104 dynes/cm, k2 = 4 X 104 dynes/cm,
R = 5 cm and I = 2000 g-cm2. Take x1, x2 as
displacements of m1, m2 respectively from rest posi-
tions. wl = 17.60, w2 = 6.41; g1 = 12.15x1-- 18-3X2-

10.5. Prove in detail the statement made at the end of
Example 10.9, Page 221.

10.6. Referring to Example 10.8, Page 217, show that
normal coordinates for the "molecule" are

//ml 1/2 ml(g1 + q3) + m2g2
91 = (q3-q1) ` 2) 12 - (m2 +27121)1/2

(q1- 2q2 + q3) mlm2 1/2
93 (m2+ 2m1)1/2

2..

Check in T and V.

10.7. The frame A, Fig. 10-9, is supported by tightly
stretched piano wires as shown. Disk D is likewise
supported in the frame. Let rci be the total tor-
sional constant of wires supporting A, and ,c2 the
corresponding constant for those supporting D.
Show that

Show that for Il 12 = I and k1 = k2 = k3 = k, m2 = 3k/I, w2 = k/I and normal coordinates

C

2

Fig. 10-9
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T 2[(11 +Ms2 + Ix cost a + Iz sing a)e
i

+. Izg2 +. 21., Sinae1 2].

)V = 2(Kle + K2022

Note that these are valid for any values of 61, e2 so long as the elastic limit of a wire is not exceeded.

Show that c1 and w2 are given by

w2

where all

a11K2 + I5K1 "! (a11K2 + Ix,KJ)2 - 4K1K2(I1 + Ms2 + Ix CQS2 a

2(I1 + Ms2 + I,, eos2a)Iz

Il + Ms2 + Ix eos2 a + Iz sin2 a.

The above arrangement, which is not difficult to construct, works out well as a quantitative
experiment and especially so since bearings and their unavoidable friction are eliminated.

10.8. In Fig. 10-7(c), Page 216, let Il = 4000 g-cm2, 72 = 3000 g-cm2, k = 105 dyne-cm/radian. Show
that w1 = 0, w2 = 7.65. What is the physical meaning of the zero root?

10,9. Show that for the system in Fig. 10-7(d), Page 216,

w1 = 0,
k(ml + m2 + I/R2)11/2

L m2 (ml + 1/R2) J

Show that y = A cos (wet + 0) + (g/2M)(m1- m2)t2 + Bt + C where A, B, C are arbitrary and M =
m1 + m2 + I/R2.

B. Systems Having Three or More Degrees of Freedom.
10.10. Referring to Fig. 10-10, the masses and spring constants (taken from an actual experiment) have

the values shown. Compute the periods and compare with the experimental values given.
The arrows in the chart to the left indicate experimentally observed directions of motion of

ml, m2, m3 corresponding to 011w2, w3. Verify these directions from the cofactors of the fundal
mental determinant.

= 3289 grams

Directions
of motion

corresponding to:

WI w2 w 3

ml
j l

i
E

m2
t I I

M3 j

Periods in seconds (experimental): 'P1 = 1.09, 'P2 = 0.54, 'P, = 0.36.

Fig. 10-10 Fig. 10-11

10.11. Show that normal coordinates for the above system are -

gl = 50:0x1 +68.3x2 +32.3x3, g2 = -57.0x1 - 30.0x2 + 45.7x3, g3 = 79.8x1 - 65.4x2 + 13.Ox3

where x1, x2, x3 represent vertical displacements of m1i m2, ms from their rest positions.
Show that when the above are introduced into equations (10.22), Page 219, the original forms

of T and V are obtained.

kl = 11.56 x 105 dynes/cm

= 11,765 grams

= 11.91 X 105 dynes/em

= 9724 grams

= 3.65 X 105 dynes/cm

10.12. The disks DI, D21 Fig. 10-11, are coupled to their respective shafts by torsional springs as indicated.
The vertical shaft is also connected to base B by a similar spring.
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Torsional constants are Kl; K2, K3. Angles 81, 82 are measured relative to the respective shafts,
03 relative to B. Write expressions for T and V. Note that exact expressions are, without
approximations, in the form of (10.4) and (10.6), Page 208.

10.13. Referring to Problem 8.7, Page 168 and Fig. 8-26, suppose besides the springs shown, rod bd is
coupled to D with a spring (torsional constant c3) just as Dl and D2 are coupled to their supporting
rods in Fig. 10-11, Page 230. (Neglect mass of bd.)

Show that T and V are given by

?'exact = [((M12 + O + (M12Ix)62 + IzI) cos2 02 + Il + I,, sin2 02) R3 + 2lzele2 in 621

Vexact [cleI
+ C20 - 82)2 + c383] + Mgl sin 62

where /3 is the value of 02 for which the c2 spring is undistorted.
Now assuming that when the system is at rest 82 = eo and writing 82 = 8 + a, show that for

small motion,
Tapprox. = J [((M12 + Ix) cos2 00 + Il + I, sin2 8);2 + (Mi2 + Ix)a2 + 1 2 + 21x;1« sin 80]

Vapprox. = '(Ci01 + C2a2 + C363)

Write out the fundamental determinant and find its roots.

10.14. Four equal masses, Fig. 10-12, connected to exactly equal springs, rest on a smooth horizontal
table. The unstretched length of each spring = lo; equilibrium length = 1. Assuming motion
along the line ab only, show that

2 2 2 2
Vexact = k(x1 + X2 + X3 + X4 - X1X2 - X2X3 - x3x4)

where x1, x2, x3, x4 are displacements of ml, etc., from rest positions.
Taking m = 300 grams and k = 2 x 104 dynes/cm, compute wl, w2, w31 W4 - Make a chart

showing the directions of motion of each mass corresponding to each m. (See Fig. 10-10.)
Making use of expression (10.25), Page 221, find the normal coordinates gl, 92, 93, 94. Show by

direct substitution into original expressions for T and V that they take the form of (10.22), Page 219.

a k -

M m

k k

x2

Fig. 10-12

10.15. (a) Write T, V for the triple torsion pendulum
shown in Fig. 10-13. Here K1, K2, K3, K4 are
torsional constants for the various sections
of piano wire. Find 91, g2, 93.

Now suppose that, due to a surrounding
fluid, viscous torques -b161, -b282, -b3;3 act
on the dumbbells respectively. Show that
P = --(b1 + b2;2 + b3e3). Show how this
can be expressed in the normal coordinates
found above.

(b) Imagine the three dumbbells replaced by n
exactly equal ones which are equally spaced
along the wire. Show that
V = K[02+02+...+02

- (8182 + 0203 + 6304 + ... + 01-161)]

10.16. Referring to the triple pendulum shown in Fig.
10-2(c), Page 205, rl and.r2 are strings support-
ing ml, m2. The rigid rod, the mass m3 and

Y Y

1...

arms c, d have a total moment of inertia I about Fig. 10-13. Triple Torsion Pendulum.
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axis ab. r3 is the distance from the c.m. of the entire system (not including m1, m2) to ab.
Show that for small motion approximate expressions for T ,and V are

Tapprox. 2[mlriB1 +m2r2 e2+ (m131 + m282+I)e3 + 2m181r1o163 + m2s2r26263]2

VaPProx. = 2 [m'Sgr16Y + M2gr2622 + g'(Mr3 +2]2131 + m2s2)62 ]

where 01,02,03 determine the angular displacements of r1, r2i r3 respectively, each measured from
a vertical line. M is the mass of the entire system, not including m1 and m2. Write out D.

The above pendulum is easily constructed (use hardened point bearings at a, b) and works out
well for demonstration or as a quantitative experiment.

10.17. Imagine viscous forces -blvl, -b2v2, -b3v3 acting on the spheres m1, m2i m3, Fig. 10-2(c), Page 205.
Making use of the results of the above problem, show that

P = -2[blri ei b2r2 e2 + (blsl + b2s2)63 + 2blslrlele3 + b2s2r26263 + b3R2e2]

where R = distance from center of m3 to axis ab.
Determine, for example, Fat first by applying Fe1 = aP/ae1 and again from SWB1 = Fe1 Sol.

Compare results.

10.18. Referring to Fig. 10-14, m1 and m2 move along smooth horizontal tracks. The two large wheels
roll, without slipping, in contact with the upper surface of ml. Show that

T = 2[(m1 + m2)x1 + (m2 + 2I1r2)42 + m3x3 - 2m2x1g2]

V 2k[xi + q2 + x2 - 2x1x5 + 2x382 - 2xtg2]

where q2 = constant - x2, m2 is the total mass of the two wheels plus that of the rods on
which they are mounted, I is the moment of inertia of each wheel about its axle.

Write D and show that it has two zero roots. Show that the one period of oscillation of the
system follows from

m3[mlm2 + (m1 + M2)(21/r2)]w2 = k[m1m2 + m1m3 + (m1 + m2 + m3)(21/r2)]

I
d.f. = 3

Fig. 10-14

10.19. Show that one root of the determinant for the system shown in Fig. 10-7(e), Page 216, is zero.
Find a general expression for the two periods of oscillation.

10.20. The five disks, Fig. 10-15 below, are geared as shown. The springs represent flexible shafts having
torsional constants xi, K2, x3. Show that

T =
V 2[(x1 + b

2
2x3)621 + (rci + x2)62

2 + \K2 +
b1K3)623 - 2x16162 - 2x26263- 2x3b1b29163]

where 64. = b163, 05.= b261

Show that for b1 = b2i one root of the determinant is zero.
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Pulleys geared at a and b and coupled
by springs: having torsional -constants

KI, Kz, x3 (springs indicate flexible shafts).

233

1-11' H,

Fig. 10-15

10.21. Referring to Problem 5.14, Page 95 and Fig. 5-20 and assuming small motion, find Vapprox. for
the entire system, including gravity. Note that gravity does not drop out of the final equations
of motion. Determine wa, w2 and compare with same in Problem 10.2.

This arrangement is easily set up, and constitutes a good experiment.

10.22. Assume the "particles", Fig. 10-12, Page 231, can move about in any manner on a horizontal
plane (see Problem 10.14). Assuming small, motion, write expressions for T and V. Assuming a
viscous drag of -bv on each mass, write P.

10.23. Data on the uniform bar and springs shown in Fig. 10-16 (taken from an actual experiment) are
as follows: ki = 2.01 X 104 dynes/cm; k2 = 1.77 X 104 dynes/cm; with springs unstretched,
lengths pd = 20.0 cm and ab 19.0 cm; with bar in its equilibrium position, pd = 32.3 cm
and ab = 44.4 cm; mass of bar = 384.8 grams; I about a line normal to by and through
c.m. = 1.2 X 104 g-cm2; length by = 25.8 cm. With rod in rest position, angles measured from
horizontal lines are oo =15.4°, of = 60.5°, 92 = 52°. Experimentally determined values of the three
periods of the system (motion in a plane only) are 'P1 =1.0, `P2 = .81, `P3 = .33 see.

Using the above data, compute the periods and check with the experimentally determined
values. Use coordinates 2, y, e, shown in Fig. 5-21 (see Problem 5.15, Page 96).

Fig. 10-16

10.24. For the system shown in Fig. 10-8, Page 222,
2+w2g2+w2 2)T = J(92+g2+P3), V = 4(02 191

2 393
where the g's and w's can be found in the usual way. Assuming viscous. forces -blvl, -b2v2 acting
on ml and nag respectively, write an expression for P in normal coordinates.

Further assuming an external force f = A sin (at + 8) applied vertically to ml, write out
equations of motion in normal coordinates.
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11

Important Preliminary Considerations.
Physical meaning of steady motion.

Consider the following three simple examples.
The pendulum bob, Fig. 11-1, properly started, will rotate in a horizontal circle

with 0 and ¢ each constant. The top, Fig. 11-2, will under certain conditions move
so that e, j, each remains constant. The arrangement shown in Fig. 11-3 may be
started in such a way that r, 0, ' do not vary.

Y

e,4,,0 = Euler angles (see Fig. 8-16).
Origin of body-fixed axes, X, Y, Z
taken at center of mass.

Conical Pendulum

Fig. 11-1 Fig. 11-2

Y,

When the above conditions prevail, each system is said to be in a state of "steady
motion". In each case certain coordinates and certain velocities remain. constant.

(b) Nature of L for systems of this type.
(In what follows the reader should refer to Examples 11.1, 11.2, .11.3.) The

Lagrangian L for the pendulum contains e, 9 but ' is absent. For the top, L
contains 8, ®, ¢, but 0 and are not present. For the system,. Fig. 11-3, L contains
r, r, 8, B, with ' missing.

A common feature of the above Examples is that certain coordinates as well as
their velocities appear in L while velocities only corresponding to others are present.
Coordinates of the first type are referred to as "non-ignorable and those of the
second as "ignorable". (This terminology stems from the fact, shown in the follow-
ing section, that ignorable coordinates can be completely eliminated from the equations

C

234
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For steady motion: B = constant,
r = constant and = constant.
But p,, =constant for any gen-
eral motion. m is here assumed
confined to the abc plane.

One ignorable (+p) and two non-ignorable (6,r) coordinates.

Fig. 11-3

of motion.) Hence we define, in accord with the examples given, a state of "steady
motion" as one in which each non-ignorable coordinate remains constant and the
velocity corresponding to each ignorable coordinate is constant.

(c) The momentum corresponding to an ignorable coordinate is constant.
Consider again Fig. 11-3, Example 11.3. Clearly ¢ is ignorable. Applying the

Lagrange equation,
d (aL) = 0 or

a
_ [m(h + r sin 0)2 + I] p = p1, = constant

That is p,,, the momentum corresponding to , is constant. (Note that oL/agr = pr
is the usual definition of momentum corresponding to qr.) p,, is constant for any
motion of the system whether or not it is steady motion. Moreover, if any existing
motion is disturbed (certain forces momentarily applied and then removed) p1, is
changed from its original constant value to a new value, also constant.

It is clear that the above remarks apply to ignorable coordinates in general. And,
of course, aL/aqr = pr is not constant for the non-ignorable coordinates.

(d) Establishment of oscillations about steady motion.
Imagine the bob of the pendulum, Fig. 11-1, tapped very lightly with a hammer

while rotating with steady motion. As soon to be shown, it now oscillates with simple
harmonic motion about its steady motion path or about a new steady motion path
close to the first one. Of course, ' is no longer constant. It now varies with time
in a manner which can be determined. After the blow p,, is constant but usually
with a value slightly different from the original one.

As a second example,. suppose the steady motion of Fig. 11-3 slightly disturbed.
In this case both 0 and r oscillate in magnitude about their steady motion values in
a manner similar to the way any two-degree-of-freedom system (see Chapter 10)
oscillates about equilibrium positions.
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11.2 Eliminating Ignorable Coordinates from the General Equations of Motion.
Method A. (Steady motion not assumed.)

Consider a system, having n degrees of freedom, the motion of which can be determined
by k non-ignorable coordinates q1, q2, . . ., qk and s ignorable coordinates Jk+1' `Jk+2' J`n
(n k + s). Thus L contains the q's, q's and the i's but the 3's are absent.

A matter of basic importance in the treatment of this subject is that, for any system
of the above type, the s ignorable coordinates can be eliminated from the k equations of
motion corresponding to the non-ignorable coordinates.

In order to make clear the various steps involved let us carry through for k = 3, s = 2,
n = 5. Assuming no moving coordinates or moving constraints, the reader can show
(see equation (2.56), /Page 27) that a general expression for T takes the following form

T = 2(A11g1g1 + A22g2g2 + A33g3g3 + 2A12g1q'2 (+ 2A13g1g3 + 2A23g2g3)

+ 34(A1461 + A2442 + A34g3) + 25(A15g1+ A2542+ A3543). (11..1)

+ 2A4534`75 + A55JJ5)

where the A's are functions of q1, q2, q3 only. Likewise V = V(q1, q2, q), not containing
J4f q5Applying

Lagrange's equations, the following relations, valid for any general type of
motion, are obtained.

(A U +A q + A
.. ..

l rl 1 r2 2 r3 q3 + `4r4 4 + Ar5 5)

aAr2 9A. aAr2 , aAr3 aA3i2 aAr3 , l+ q2 (aqt ql + aq2 q2 + aq3 q3) + q3 \ aql q1 + aq2 + aq3 q'3/

+ 4 (aq1 ql + aAr4 q2 + aAr4

q'3) + 35 (----aAr5 ql ± -hA
2
-- q2 + A5aq aq2 aq3 aqt aq aq3

q
CaArlq +

aArli2

+ aArig3
1 aql i aq2 aq3. /t-

(11.2)

aL
aq,

where r = 1, 2, 3. Note that the above contains '94, s4" q,51 35

Now since L contains no ignorable coordinates, dt Ca p = 0. That is, aL/a94

constant, aL/35 = p5 = constant. Writing these in full and rearranging, we have

A4535 = p4 - A1441 - A24g2 - A3443

A54`4 +A 5A = p5 - A15g1 A2542 - A35g3

(11.3)

It is seen that (11.3) can be solved for (94 and j,, in terms of p4, p5, q,, q2' q3. Hence

the <9's and 3 's can be eliminated from (11.2), thus leaving three equations containing
non-ignorable coordinates only. It is as if the system were now reduced to one having
only k degrees of freedom. ((94 and 35 have been "ignored.")

If the general motion of the system is desired, integrals of the above relations give
q1, q2, q3 as functions of time. Then returning to (11.3), J4 and 35 may also be found as
functions of t.

11.3 Elimination of Ignorable Coordinates Employing the Routhian Function. Method B.

Regarding L as a function of q1, q2, ' qk' ql, q2, . , qk, 3k+1' Sk+2' , a small
variation in L is expressed by
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'8L

But aLfaii = pi and pi SJi = gptiJi) - Ji Spi. Hence (11.4 may be written
n k aL k aL n

I1 Pi Ji) . _ I aq sgr + 1 aq Sqr - I A Spii=k+1
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(114)

as

(11.5)

Let us now define a "Routhian" function by

R = L pi Ji (11.6)
i=k+1

Assuming that the J's have been eliminated from R by relations having the form of
(11.3), R R(q's, q's, p's). Thus

8R = aR sq + 1 aR sq + 1 OR sp (11.7)
r=1 aqr r r=1 aqr r i= k+1 api '

Comparing (11.5) and (11.7), it is seen that
aR aL aR aL aR - Ji (11.8)
aqr

-
aqr agr

= air
api

-
Inserting the first two relations in the Lagrangian equation, we have

d aR aR = 0 r = 1, 2, ..., k (11.9)dt (aqr) - ar
which represents k equations of motion free from ignorable coordinates. Equations (11.9)
are the same as (11.2) after having eliminated the i's and J's.

Important points: (a) The above treatment applies to any motion the system may
have. It is in no way restricted to steady motion. (b) In order to obtain k equations of
motion free from ignorable coordinates, the first method requires eliminating the <7's and
J 's from each equation of (11.2), whereas by means of (11.3) the entire elimination is made
in one step merely by removing the is from (11.6).

For simple problems, Method A is about as convenient as Method B. But for general
considerations and for the solution of applied problems where k and s are large, the
R method is superior.

11.4 Conditions Required for Steady Motion.
In a state of steady motion (continuing to assume k = 3, s = 2, n = 5), q1 = constant = bl,

q2 a b2, q3=b,; gl = g2 = g3 = 0; J4 = constant, ,.= constant; J4 = JS = 0. Hence, as
can be seen from (11.2) and the second relation of (11.8), conditions to be met for steady
motion are

aqr/o
or

\agr)o
0 (11.10)

where the zero subscript indicates that steady motion values listed above are to be inserted.

11.5 Equations of Motion Assuming Steady. Motion Slightly Disturbed.
To this end we set q1 = b1 + s1, q2 = b2 + s2, q3 = b3 +s

3
where b1, b2, b3 are the steady

motion values (determined by (11.10)) of the non-ignorable coordinates and s ,2, s3 repre-
sent variable displacements from these values. Thus g1sl, etc. Substituting in the
Routhian, we have

R = R(b1 + si, b2 + s2, b3 + s3, S1, s2, s3)
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Now assuming the s's and s's small, expanding R and retaining zero, first and second order
terms, we get

M
Rapprox. = (RO) . + I a S + I S.

r aqa,/ O r r O r

k+ 1 R
Srs1

+ 1 a R.
Sr8 +

a R.
S1S2 i \aqr aql / 0 2 \aq, agl 0

rl \aq1 aqr/ r

where zero subscripts indicate that steady motion values are inserted. Note that the
coefficients of Sr' k' ss1, etc., are all constants.

Equations of motion about steady motion are thus found by applying

which gives

raR PProx.\\ _ aRaPProx.d asr asr

aR aR ) aR aR _ aR = 0
agragl+ i=1 (aq,agro s, - 1=

(aq)si
(aqr)O

(11.11)

R0.But by (11.10), (aqr)O Hence the above general form of the equations of motion

about steady motion may be written as
k

(arlsl + br1s1 - Cr1S1).. = 0 (11.12)

where art = a1r, Cr1 = C1r but br, -b1r and brr = O.

For the case we are carrying through, these equations are

aiisi - CiiS1 + ai2s2 + b12s2 - C12s2 + a13s3 + b13s3 - C13s3

a21S1 + b21s1 - C2181 + a22s2 - 62252 + a23s3 + b23s3 - C23s3

a31s1 - b31. 1 - C31S1 + a3292 + b32s2 - C3282 + a33s3 C33S3

0

0 (11.13)

0

As will be seen from Examples to follow, it frequently happens that the b's are all
zero. (The brisl are referred to as "gyroscopic terms".)

Note. (a) In the determination of all, c11, etc., (see (11.11) above), Rexact is differentiated.
Hence in the treatment of problems by this method we must first write out Rexaet

(b) If so desired equations (11.13)_ can be obtained by writing exact equations of motion,
(11.9), inserting q, = b1 + s1, etc., expanding and retaining only first order terms. (See
Examples.)

11.6 Solving the Equations of Motion.
It is seen that the above equations are very similar to (10.7), Page 209. Solutions

may be found following the same procedure outlined in Section 10.16, Page 224. Hence
only a few details will be given here.

Assuming as solutions s, = Aelt, s2 = Belt, s3 = Cext, substituting in (11.13) and fol-
lowing the steps referred to above, we write

D =
a11A2 - C11 a12A2 + b12,k C12. a13A2 + b13X - C13

a21 k2 + b21A - C21 a22A2 - C22 a23A2 + b23X - C23

a31X2 + b31X - C31 a32A2 + b32X - C32 a33X2 - C33
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Important Notes:
(a) Since as,. = an, Cir = Cri and bir = -bri, it may be shown (see E. J. Routh, Advanced

Rigid Dynamics, vol. 2, 6th ed., Macmillan, 1930, page 78) that D contains only even
powers of X. The reader should expand D in (11.14) and show that terms containing
A5, A3, automatically drop out.

(b) When T and V are each positive definite, k1 = zo)1, A2 = -2"'1, A3 = iU)2, 'A4 = -iw2, etc.,
where the o,'s are real. As will be seen, this means that the motion is stable.

Now assuming that condition (b) is met, a general solution for s1, for example, is

s1 = A1eiWit + A'e-i(J1t + A2eiW2t +A2' e-i'12t + A3eiW3t + A3e-iW3t

with similar expressions for s2 and s3. For the general case (brz 0) solutions may be
put in the form of relation (10.35), Page 226.

When gyroscopic terms (brtsi) are absent from equations (11.13), solutions take the
form of relations (10.12), Page 210, and normal coordinates can be found. When gyro-
scopic terms are present normal coordinates cannot, in general, be found.

11.7 Ignorable Coordinates as Functions of Time After the Disturbance.
From the last relation of (11.8), or solving (11.3) for we have Ji = -aR/api =

oi(q's, q's). Replacing q1 by bl + sl, j, by sl, etc., and using solutions of (11.13), we can
write Ji = fi(t). Hence

Jilt) = f ¢i(t) dt + ci (11.15)

For slight changes in J., J(t) can be found by expanding 0i(s, s), retaining zero and first
order terms.

11.8 Examples Illustrating the Above Treatment.
Example 11.1.

Properly started, the pendulum bob of Fig. 11-1 will rotate in a horizontal circle in which 0 = constant
and ' = constant. For the pendulum,

L = lm(r2e2 + r2 sin2 o 2) + mgr cos o (1)

Quantities e, 8, , but not ¢, appear in L. Thus p is ignorable.
aL = mr2 sin2 9 . = p,

Applying (11.6) and eliminating by (2),
1 1 p2

= constant (2)

R - 2 mr292 - 2 mr2 sin2 0
+ mgr cos e

Applying (11.9), the general equation (not restricted to steady motion) corresponding to 9 is

p,20 cos 9
+

q
sin a9 - m2r4 sin3 e r

(3)

(4)

(It is suggested that the reader obtain this same equation by Method A.) For steady motion, s = 9 = 0,
9 = 001 p,p = co, = ¢o = constant. Thus from (4), or just as well applying (11.10), the condition for
steady motion is

cb cos eo -
m2r4 sin3 oo - r sin Bp

9cos eo =which may be put in the form (5)
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Hence steady motion can exist at any angle a for which r,Ga > g. (Taking r 100 cm, g = 980 cm/sect,
(5) is satisfied for ¢o = 9.8 rad/sec or greater and, for example, letting ¢o = 4 rad/sec, cos 00 = 9.8/16.)

Now suppose that the bob (moving with steady motion) is very lightly tapped with a hammer.
Assume, for the moment, that the impact is such that p,1 is left unchanged. Writing 0 = e0 +a and
inserting in (4), we have

a-

Assuming that a
(6) becomes

cos (e0 + a) ca
+ sin (0 + a) = 0

m2r4 sin3 (e0 + a)

remains very small, expanding and retaining only zero and

(6)

first order terms,

C02 /1 + 2 cost e g 1 co COS e0 g
ie + sin4 00 > + r cos

Bo]
a - (m2sin30o - r sin

eo
0 (7)

(This relation can be obtained by expanding R and retaining second order terms. See Problem 11.1.)
But by (5) the last term is zero. Hence a + w2a = 0 or a A sin (wt + ¢) where A and o are arbitrary
constants. Thus the bob oscillates about the steady motion path with a period

2 l 1 /2

= 27r

[m2

(
//1

3 n4 es e0 /
+ COS 9 ]

0

Making use of (2) and (5), the period may be written as
0 r cos o0T = 27r [g (1 + 3 cost e0

1/2

The manner in which ¢ changes with time after the blow, is determined as follows (see Section 11.7):

co (' dtf
+

mr2 sin2(9o+a)

Expanding,

Hence 'Got - 2c0 cos 90 J adt + c
mr2 sin3 b0

(8)

(9)

Since a = A sin (wt + 0), the integral can be evaluated at once and we have an approximate expression
for ¢ as a function of time.

It was assumed above that the disturbance did not change the steady motion value of Suppose
now that it is changed from the constant value co to a slightly different (but also constant) value c1.
Replacing co by c1 in equation (5) above, a new steady motion value 0 = oo can be determined. Writing
0 = 90 + a and continuing as before, it is clear that the bob oscillates with a period

OS 0;

Za [g 1 +c3 cos2

so)j1/2

about the new steady motion path. Hence it is usually assumed that the disturbance does not change
the constant values of momenta.

Example 11.2.

Oscillations of the top (not vertical) about steady motion. (One non-ignorable, two ignorable coordinates.)

The top, Fig. 11-2, if set spinning above a certain speed and properly released, will move with steady
motion in which e, each remains constant. (The top precesses with constant angular velocity
without nutation.)

(a) General equations of motion and conditions for steady- motion. As previously shown (see Example
8.14, Page 159),

s sin2 0) + Ix(c + , . cos 0)2] Mgr cos e

_ 1 2 cos 00
a +

sing (00 + a) sing 00 sin3 0o

1

(1)
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It is seen that 6 is non-ignorable and ¢,.¢ ignorable. Hence

p4, = Iz(c + ¢ cos e) C1, p,U = Ix sin2 9 + Cl cos 6 C2

Here R = L - p,, p - and eliminating and by (2) we get (no approximations)

R -= 1 I.92 - 1 C2 - cl COS e)2
- Mgr cos 6

2 2 Ix sine 6

Applying (11.9), the following equation of motion is obtained:
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(2)

(3)

- Cl COS 0)2 C2 - C1 COS 6
Ix6 - (C2

Ix sine 9
Ix sin 9 cos e + t Ix sine a cl sin o - Mgr sin 6 = 0 (4)

Note that (4) is valid for any general motion the top may have. No approximations have been made.

For steady motion, (11.10) takes the form Ixg2 cos 60 cl¢o + Mgr = 0, where the zero sub-
scripts indicate steady motion values. Solving for ¢o,

cl -! ci - 4lxMgr cos 60
21x cos 9o

Hence for values of cl such that

remains constant.

(5)

ci > 4lxMgr Cos oo there are two distinct values of o for which 6

(b) Oscillations about steady motion assuming a slight disturbance such that cl and c2 remain unchanged.
Writing 6 = oo + a, inserting in (4), expanding and retaining first order terms, we finally get after
some manipulations

a+a..

IP,
(Mgr)2 2Mgr cos Bo

J
0 (6)

Hence as the top precesses, the point d, for example, oscillates with simple harmonic motion about
the steady motion path abc, with a period given by

r. / Mgr 2 2Mgr Cos eo -1/2
= 2,r k2 + ( ) -

L o \ Ix
(7)

The manner in which 0 and ¢ change with time can be determined as follows. Applying the
third relation of (11.8) or merely solving equations (2), we get

cl (02 - Cl cos e)Cos 6 C2 - C1 COS 9

Iz Ix sing 6
=

Iz sin2 6
(8)

Inserting 6 = eo + a, expanding and retaining the first two terms,

- // C2 + C2 C082 o0 - 2c1 Cos so

Ix Sir Bo
a (9)

and since a is a known function of t from (6), (9) can be integrated to give 0 as a function of t.
In like manner ,y(t) can be found.

Additional facts regarding this example: (a) Relations (2) correspond to (11.3). (b) Equation (4)
can be obtained by Method A. (c) Equation (6) can be obtained by first expanding R and then
applying (11.11); see Problem 11.2. (d) No gyroscopic terms appear in (6).

Example 11.3. One ignorable and two non-ignorable coordinates.

Referring to Fig. 11-3,

L = 1m(r2 + r262) + .[m(l1 + r sin 6)2 + I],p2 + mgr cos e - ik(r - rl)2 (1)

where r1 is the value of r when the spring is unstretched. It is seen that ¢ is ignorable while a and r
are non-ignorable.
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Applying (11.10), conditions for steady motion are

j2(l1+ ro sin 90) cos 90 = g sin oo

2 (h + ro sin e0) sin e0 = m (r0 - rl) - g cos eo
(2)

from which it follows that
g tan 900 = mg (3)

ll + rl sin 60 + k tan 90

which, for an assumed value of e0, (3) may be solved for o, or for a given value of ¢o can be solved
graphically for eo. Thus r0 may be found from (2).

Following the usual steps, R is

R =
21

M(;2 + r292) - 2c2[m(ll + r sin 9)2 + I] -1 + mgr cos 9 - _1k(r - rl)2 (4)

where pp = c. Equations of motion, with no approximations, corresponding to r and 0 are

m r - mre2 - mc2[m(h + r sin e)2 + 11-2 (h + r sin e) sin e - mg cos e + k(r - rl) = 0
mr2 e + 2m4e - mc2[m(ll + r sin 9)2 + I] -2 (ll + r sin e)r cos e + mgr sin e = 0

Note that (5) and (6) can be obtained by Method A.

Writing r r0 + s, e = 90 + a, expanding and retaining first order terms, we finally get

all s + ells + c12a = 0

C218 + a22 a + C22a = 0

3m(ll + ro sin 90)2 - I
where all = m, ell = mq sin2 e m(ll + r0 sin e0)2 + I )

C12

+ k, (see equation(11.11))

+ r0 sin 9)2 r0 sin e0 cos e0m[4m(ll

m(11 + ro sin 90)2 + I - (h 2r0 sin e0) cos eI + mg sin e0

(7)

Corresponding relations for 021, a22, 022 follow in a straightforward manner. (See Problem 11.3.) Since no
gyroscopic terms appear in (7), solutions can be obtained by assuming s = A sin (wt + 0), a B sin (wt + ¢).

For specific values (such as ml = 400 grams, g = 980 cm/sees, k = 2 X 105 dynes/cm, 11 = 20 cm,
rl = 40 - 20 + 10 = 30 cm, e0 = 300 (hence r0 = 32.26 cm), I = 2 X 105 grams X em2), 0 can be found
from (3), the constants all, cll, 012, etc., evaluated and the periods of oscillation determined.

Example 11.4. Selection of Proper Coordinates.
It sometimes happens that chosen coordinates do not contain ignorable coordinates, yet from the

physics of the system it may be evident that steady motion is possible. In this case a set containing
ignorable coordinates can usually be found by inspection.

Consider the system shown in Fig. 11-4 below. The bar, spring and mass rest on the smooth horizontal
XY plane. The bar is free to rotate about a smooth fixed vertical shaft at 0.

Choosing o, 0, r as coordinates,

L = jIe2 + Im[s292 + r2 + r2>2 + 2rs6 cos (S - e) + sere sin (s - o)] - jk(r -

Since e, 9, r, r, o, , each appears in L, neither coordinate is ignorable.

But introducing /3 = 0 - e, + e, L may be written as

L = 2mr2 + 2(I + ms2 + mr2 + 2mrs cos /3)e2 + 9mr2Q2

+ msre sin /3 + m(r2 +rs cos /3)6/3 - 4-k(r - rl)2

Hence it is seen that e is non-ignorable.
aL

(1)

(2)

ae
= pe = (I + ms2 + mr2 + 2mrs cos /3)e + m(r2,f3 + rsR cos /3 + sr sin ,Q) = c (3)

Thus a can be eliminated from the r and /3 equations of motion or, of course, an R function can be found.
Therefore, proceeding in the usual way, small oscillations about steady motion can be determined.
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Example 11.5. Small oscillations of a top about its vertical position.
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Points a, b, c, d are in a plane
parallel to the X1Z1 plane.

Fig. 11-5

Suppose the top (disk), Fig. 11-5, sleeping in a vertical position with axis Opt along Y1, e = 900 and
R 0. (The vertical is taken as shown because, if treated as in Fig. 11-2 with Z1 vertical, is inde-
terminate for e = 0.) Assuming this state of steady motion slightly disturbed, we shall find the subsequent
motion of point pl. Besides g acting in the negative direction of Y1, let us assume that four equal
springs are attached to a small smooth ring at pl. With pi at p2 the springs are unstretched and in the
horizontal plane abed, spaced at 90° intervals. As can be shown by equation (5.11), Page 89, Vsprings =
2k (x2 + z2) for small displacements of pl away from p2. x, y, z are coordinates of the end of the shaft Opl.

Hence, referring to Example 8.14, Page 159, we write

L = 27x(92 + >G2 sin2 B) + 2110 + ¢ cos 9)2 - Mgr cos S - k(x2 + z2) (1)

where r is the distance along Opt from 0 to c.m. of the disk, S is the angle pi°p2 and other symbols
have the usual meaning.

From the diagram it is seen that e + « = 90°, )p + R = 180°, cos S = cos a cos ,Q, x = l cos a sin ,Q,
z = l sin a, y = 1 cos a cos,a. Hence in the usual way we find

R = 2J («2 + 2 COS2 a) - c1R sin a - Mgr cos «cos +. kl2 cost a cost /3 (2)

where c1 = WO/ = po = constant, l = length of shaft Opl. The above expression is exact except for
the approximation in Vsprings Certain constant terms have been dropped. Note that only one coordinate,
0, is ignorable.
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Now assuming very small displacements of pi away from p2 (a and p always small), the reader may
show (see Problem 11.4) that the equations of motion are. (see equations (11.12))

Ix + c1%3 (Mgr - 2k12)a = 0

Ixa - cla - (Mgr - 2k12)/3 = 0
Note that in this case gyroscopic terms are present.

Solutions may be obtained by assuming a = Aeiwt, a = Bert. It follows in the usual way that

where E = Mgr - 2k12; and from (k),

or

It is seen that w is real for

From (5) we write

Cllw

0I =
-(Ixw2 + E)

1
(6l-21.E±cl cl-4IxE

212

±w =

(3)

(4)

21 (cl
± ci - 4IxE )

x

ci + 8Ixk12 > 4I Mgr. Also for ¢ cos a small compared with , Cl

±w

and thus

21., CIz ± Iz;2 + 8Ixkl2 - 4IrMgr) (6)

wi = ± [2I (e1 + c, - 4IE )] and ; W2 = ± [27 (c1 - ci - 4IxE )
X x

Hence solutions can be put in the form

a = hldlleiwlt + h2d12e-iw,t + h3di3eiw2t + h4d14e-iw2t

R = hld2leiwlt + h2d22e-iwit + h3d23eiw2t + h4d24e-iw2t

which, making use of the fact that

d11 = d12, d13 d14, d21 = -d22, d23 = -d24

(7) can finally be written as

a = Ri(Ixwl + E) cos (wit + el) + R2(Ixw2 + E) cos (wet+E2)

(3 = R1c1w1 sin (wlt + el) + R2C1W2 Sin (w2t+ e2)

(7)

(8)

where R1, R2, el, E2 are arbitrary constants. The reader may show that, assuming a = A cos ((at + e)
and 8 = B sin (wt + E), solutions (8) may be obtained at once.

Note that for the disk hanging down (imagine a smooth, ball joint at 0) and g, Fig. 11-5, reversed
in direction, values of (o are always real. For more details regarding this type of motion see A. G. Webster,
Dynamics, 2nd ed., Dover, 1959, pages 288-296.

Example 11.6. Two ignorable and two non-ignorable coordinates.

In Fig. 11-6 below the frame AC is free to rotate about a vertical axis as shown. The light rod ab
is hinged at a and can thus rotate about a horizontal axis through angle e. Disk D rotates about a
smooth collar s which can slide along ab. Angular velocity ¢ of the disk is measured relative to ab.

Neglecting friction and assuming that the torque on ab due to the vertical springs is k2120, (1= ab),
the Lagrangian is

L = iM(r2 + r242 + r2,,2 COS2 e) + COS2 0 + B2)

Iz( +' sin e)2 - -k1(r - l0)2 ,- 2k212e2 Mgr sin e

-(Ix(02 + E) -Clio

(1)

where Ii is the moment of inertia of the frame about the vertical axis, Ix that of D about an axis through
c.m. and parallel to a face, Iz that of D about ab, and 10 the"unstretched length' of the ki spring.
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Hinge -w

I1

Fig. 11-6

2

From (1) it is seen that 0 and ¢ are ignorable while B and r are non-ignorable.

aL
= pi = Iz( + sine) = 01

aL = pp (Mr2 cost e + 71 + Ix cost e) . + ci sin e = 02
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(2)

(3)

Eliminating and from L - cl - 4, we have Rexaet Then, if so desired, exact equations of motion
corresponding to r and 0 are obtained at once by applying (11.9), Page 237.

Equations of motion for oscillations about steady motion follow from (1-1.11), Page 238. As usual,
care must be taken in the differentiation of Rexact for the determination of all, 011, etc.

Steady motion conditions for which r, e, each remains constant are

C 'L) = (Mr2 - I. + sin 0 cos 00 - cos + k2l2oo + Mgr0 cos 60

Car) 0 = Mr0¢2 cost - kl(r0 - lo) - Mg sin 80

0 (4)

(5)

In an actual problem one could, for example, choose numerical values for the steady motion values of
r and 9. Then, assuming all physical constants known, (4) and (5) 'can be solved for numerical values of
o and o. Hence numerical values of all, ell, etc., are known and finally roots of D can be determined.
(Regarding stability, see Section 11.11, Page 248.)

Example 11.7. Three ignorable coordinates; one non-ignorable.

In Fig. 11-7 below, a top pivoted at its c.m. is mounted on a rotating table. It can be shown that

L = 4.(I + MR2),I + 1 [Ix(e2 + (fir + ¢)2 sins e) + 1,(c + cos e)2]

Since ¢l, ., appear and ¢l, o, ¢ are absent, these three coordinates are ignorable. But since both a and
are present, a is non-ignorable. (Notation same as in Fig. 8-33, Page 174.)

For further details see Problem 11.13; also see Problem .11.5.

ki



246 SMALL OSCILLATIONS ABOUT STEADY MOTION- [CHAP. 11

Three ignorable,
one non-ignorable

coordinates

R

I

8, ¢, 0 = Euler angles

Fig. 11-7

11.9 Oscillation About Steady Motion when the System Contains Moving Constraints.
The small oscillations of a system involving a moving frame of reference or moving

constraints may be quite important in certain applications. A few examples will make
clear the nature and method of treating this type of problem.
Example 11.8.

In Fig. 11-8 the bead of mass m is free to slide along a smooth rigid circular wire which is forced
to rotate with constant angular velocity w about Z. Here

L = 2m(r2e2 + r2 cos2 8,2) - mgr sin e

from which + m2 sin a cos o + 9 cos 9 0r
Hence for steady motion sin eo - g/rw2. Assuming steady motion disturbed, writing 0 = 0 + a,
expanding and retaining zero and first power terms, it easily follows (making use of the steady motion
condition) that a + a(W2 - g2/r2) = 0. Hence for w2 > g/r this represents simple harmonic motion.

Example 11.9.
Consider again the system shown in Fig. 11-3. Suppose the vertical shaft is driven at constant

speed The system now has two degrees of freedom and we write
L = Jm(r2 + r2®2) + 2m(ll + r sin 8)2cu2 + mgr cos e - 2k(r - rl)2 (1)

from which the following two equations of motion are obtained:

Fig. 11-8
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42 - w2(li + r sin e) sine - g cos e + krc (r - r1) = 0 (2)

r2 9 + 2rre - ,,2(li + r sin e)r cos e + rg sin e = 0 (3)

Steady motion conditions (e = 9 =.0, 'r = r = 0, 0 = 00, r = r0) are

w2(li + ro sin 90) sin o + g cos eo - m (ro - r1) = 0 (4)

w2(li + ro sin 00)r0 cos 9o - gro sin 90 = 0 (5)

Assuming steady motion disturbed, putting e = 9o + a, r = r0 + s into (2) and (3) we get on
expanding (retaining zero and first power terms and making use of (4), (5)) the following approximated
equations of motion

.. / \
s + s k

I m - w2 sin2 6o 1 + [g sin e0 - w2(li cos go + 2r0 sin e0 cos oo)]a = 0 (6)

+ «w2 (li + ro sin 90)x0 sin e0 - ro
gro

cos2 e0 + zw cos 80ro d

[_sino0_+ sw2 l1 cos e0 - gro sin go cos ool = 0

which can be integrated without difficulty. Note that (6) and (7) do not contain gyroscopic terms.

Example 11.10.
In Fig. 11-9, AB repre-

sents a portion of a smooth
horizontal rotating table.
Axes X1, Yi are fixed in space.
X, Y are drawn on the table.
Mass m is free to move about
on the table under the action
of the spring, one end of which
is attached at p. Let us find
the equations of small motion
about the position of steady
motion.

YiI

(7)

It is easily shown that Fig. 11-9

T = jm{z2 + y2 + [(x + r)2 + y2] e2 + 2e [(x + r)y - y!]) (1)

V = 2k( x2 + y2 - l0)2 (2)

where l0 is the length pm when the spring is unstretched. The following equations of motion are obtained
from (1) and (2), assuming a constant:

x - 2ey (x + r)92

m

1

ax y + 2ex - yet = - m
1 'V

ay (3)

Writing x = xo, y = 0 as steady motion values of x and y, we set x = x0 + s, y = y. Inserting in V,
regarding s and y as small quantities, expanding and retaining first and second order terms, we get

/
xVapprox. = 2 k s2 + 2s(xo - l0) + y2

x
( °

1°

A (4)\ o

Hence equations (3) may be written as

s - 2ey - (x0 + r + s)82 + m (s + x0 - lo) = 0 y + 29s - y92 + m y C x°
x

lot = 0 (5)
\ o //

But for steady motion, s = s = s = y = y = 0. Thus m(x0 + r)92 = k(xo - l0) and y = 0, which are
obvious from elementary considerations.

Hence final desired equations are
\ \

2ey+(k-nn-&21s = 0 +2es+ /
(m(

/x° l
x 0) )y = 0 (6)

These equations have the same form as (3) in Example 11.5 and may be solved in the same way or merely
by assuming solutions s = A cos (wt + 0), y = B sin (wt + 0). (See Problem 11.16.)

It is interesting to note that the left sides of equations (3) can be obtained at once from equations
(9.6), Page. 179.
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11.10 When the System Is Acted Upon by Dissipative Forces.
Consider again the system shown in Fig. 11-6. Assuming forces due to the springs

only, there are two non-ignorable coordinates (B, r) and two ignorable But suppose
there is a frictional and/or viscous drag at each .of the four bearings. It is obvious that,
regardless of what the initial motion of the system may be, all motion eventually stops.
It is seen that p,,, and p,, are no longer constant, and hence steady motion as defined and
treated above does not exist. (Of course, equations of motion corresponding to each of
the four coordinates can easily be found, but they are not of the type previously considered.)

However, let us assume no damping at bearing B or between D and the collar s but
that there is a viscous drag on the hinge a and a viscous force between collar s and the
rod ab. This means that there are now generalized viscous forces F', = -b19, Fr _ -b2
corresponding to 0 and r respectively, but no forces corresponding to 0 and p.

Hence L for the system is still given by (1), Example 11.6, Page 244. p
o

= c1 and
p,, = c2 as before. Thus R can be written as in (4), and equations of motion are given by

dt C ae /
- ORe = -b1B, d \ aRr /

OR
'b2

Steady motion conditions are just. those given by (4), (5). Hence the procedure from this
point on is exactly as suggested in the above example. The final equations of motion may
be integrated in the usual way and, for b1 and b2 not too large, lead to damped oscillations
about steady motion.

Certain rather general conclusions may be drawn from the above example. If general-
ized forces are zero for each of the k+1' J`k+2' , 1 `fin ignorable coordinates, then
aL/aj, = p, = c, and R can be written as usual (see Section 11.5).

Now assuming viscous forces corresponding to the non-ignorable coordinates, we write
a power function P = P(s1, s2, ..., k). Hence final equations of motion about steady
motion may be obtained exactly as outlined in Section 11.5 where the right hand side of
each is set equal to aP/asr. They may be solved by usual methods.

11.11 Stability of Steady Motion.
If, when steady motion is slightly disturbed, the particles or parts of the system never

depart widely from their steady motion paths but merely oscillate about them or, on
account of damping, slowly return to them, the motion is said to be stable. On the other
hand, if a slight disturbance causes a wide departure from steady motion, the system is
said to be unstable.

A general solution of (11.13) may be written as s1. = A1elllt + A2eX2t + + Aseset,
etc. for s2, s3. As shown below stability depends on the nature. of the A's (the roots of D,
equation (11.14)). In general the roots have the form Al = µ1 + a 1, A2 = Al - i1, etc.,
with the t,'s and w's real. However, the tt's may be positive, zero, or negative. Moreover,
it may be that the w's = 0 and thus the roots are real. Hence we note that:

(a) If the µ's are all negative and o,'s 0, the motion is damped simple harmonic. If
the X's are entirely real and negative, the disturbed system -gradually settles back to
steady motion. -In either case it is stable.

(b) If the µ's are positive with &,'s 0, or if the A's are entirely real and positive, the
displacements increase exponentially with time, at least insofar as our approximate
equations of motion are valid. Hence in this sense the motion is unstable.
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Thus when roots of D have been determined (by the Graeffe or other methods) the
condition of stability is immediately known.

For further details regarding this subject about which much has been written, see:

E. J. Routh, Advanced Rigid Dynamics, vol. 2, 6th ed., Macmillan, 1930, pages 78, 80.
Horace Lamb, Higher Mechanics, 2nd ed., Cambridge University Press, 1943, page 250.
E. H. Smart, Advanced Dynamics, vol. 2, Macmillan, 1951, pages 403, 404.
L. A. Pars, Analytical Dynamics, John Wiley and Sons, 1965, pages 143-145.
C. E. Easthope, Three Dimensional Dynamics, 2nd ed., Butterworth and Co., 1964, page 377.

Problems

11.1. Referring to Example 11.1, Page 239, show that on writing e = oo + a, expanding in (3) and
retaining second order terms, we obtain

1 _ 1 2 1 2 cost eo

Rapprox. =
2

mr2a2
[;Wcr

s( sin4 90 ) + mgr cos 90] a2

from which (7) follows at once. Why not retain first order terms in the expansion?

11.2. Referring to Example 11.2, Page 240, show that on writing e = e0 + a, expanding in (3) and
retaining second order terms, we get

PRapprox. =
2

Ixas - 2 Ixa2
o

sine e0 +
2Mgrcos e0 - )

from which (6) follows at once.

11.3. Referring to Example 11.3, Page 241, write r = ro + s, e = e0 + a, expand terms in (4), and obtain
Rapprox. from which equations (7) can be obtained directly.

11.4. Referring to Example 11.5, Page 243, verify equations (3).

11.5. Consider that the arrangement shown in Fig. 11-7, Page 246, is so altered that o remains constant
(all other angles still variable). (a) Show how this can be accomplished. (b) Prove that in this
case the system has three ignorable and no non-ignorable coordinates.

11.6. (a) Referring to Fig. 11-10 below, show that for steady motion,

(Z + r sin eo), 2 cos e0 = g sin e0

Assuming the motion of m confined to the abd plane, and writing 0 = 00 + a, show that

1 1 4mr(l + r sin eo)2 cost e0
Rapprox. = 2

mr2a2 - 2
mres L (I + m(l + r sin 8o)2)3

1 sin 90 + r (sine e0 - cost 6o)
+ (I + m(l + r sin B0)2)2 ] a2 + [mgr cos 60]x2

where c = aL/a. Write out the equation of motion and find the period of oscillation for the
following values: r = 50 cm, m = 300 grams, Z 20 cm, I = 2 ;X 104 grams X cm2, oo = 450.
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For steady motion m rotates about ab in a hori-
zontal plane with 0 constant and >G constant.

Fig. 11-10

(b) Show that the equation of motion obtained from Rapprox. above can also be found by approxi-
mating the exact equation of motion (found by either Method A or B) and retaining only first
order terms.

(c) Assuming that ab is driven at a constant speed, = m = constant, find the period of
oscillation of the pendulum about its steady motion position.

11.7. The supporting string in Fig. 11-1, Page 234, is replaced by a coil spring of constant k and
unstretched length lo. Writing 0 = 00 + a, r = ro + s, determine Rapprox. and show that equations
of motion about steady motion values are

rC2 (3 COS2 00 + sing Bo) F 2C2 Cos 60
mro « + L

r m sin4 e
+ cos oo a -+- . Lmrosins Bo + mg- sin 00 s = 0

9 0

3C2

(mro

2c2 cos 0
m s + L 4 + k+ 3 0+ mg sin 00

mro sine 80 sin3 00

where aL/ a,y = p,, = c and where ro and 90 must satisfy the relations

r0,/0 2 Cos 90 = g,

0

mro> 2 sine e0 + mg cos 00 = k(ro - lo)

11.8. The mass ml, Fig. 11-11, movel on a smooth horizontal plane. m2 moves vertically under the force
of gravity and the spring. Taking polar coordinates r, 0 for ml and 1 for m2, show that

L = m1(;2 + r292) + 2m212 + m2gl - 2k(l + r - b)2

where b is the total length of string plus the unstretched length of the spring. Show that for
steady motion

mlr09o = m2g and m29 = k(10 + r0 - b)

C 9
r

k

4

Fig. 11-11



CHAP. 11] SMALL OSCILLATIONS ABOUT STEADY MOTION

Writing r = ro + Si, 1 = to + S2i determine Rapprox. and show that

3M29
m1s1 + ( r+ k) si + ks2 = 0

\\\ o /
ksi + m2s2 + ks2 = 0

and that w11 w2 are given by

4ka }
m2

251

where m1m2 3m2gm1+m2' a= miro

Taking m1 = 300 grams, m2 = 400 grams, k = 105 dynes/cm, b = 60 cm, g = 980 cm/sec2
and assuming ro = 30 cm, show that approximate values of w are wl = 25.9, w2 = 7.1. Note
that the motion is stable and composed of two simple harmonic oscillations.

11.9. The two masses, Fig. 11-12, attached to a spring as shown are free to slide in the smooth horizontal
tube. The shaft ab, with tube attached, has a moment of inertia I. r1 = distance from c.m. of
m1 and m2 to center of shaft. r2 = distance between ml and m2.

r2

r1

LIM
C.M.

Fig. 11-12

r

Show that for steady motion, c.m. must be on the axis of rotation; that is, r1 = 0.
Writing r1 = r' + si, r2 = ro + S2, show that for slightly disturbed steady motion,

ksi -
uro

(ro - 10s, = 0
2

2 +
r o

(3/Lrk(ro -10)- 11/ +ks
/ 2 µ 2

Aro + I
s

where µ =
mim2

m1+m2 Is the motion stable? Discuss. (lo = r2 for spring unstretched.)

11.10. Referring to Fig. 11-13 below, write R, determine the steady motion values of r1, r2, c. and check
results by elementary principles.

Assuming steady motion slightly disturbed, writing r1 = l1 + si, r2 = 12 + 82, show that
approximate equations of motion are

misi +
mic2(3mil1 - m212 - I)

1 r 4c2mim21112 - k2] s2
L (I + mill + m212)3

+ k1 + k2J 81
+ L(I m111 M2122)3

= 0

rm2c2(3m212 - mill - I) 4C2m1m21112
m2s2

+ L (I + mill + m212)3
+ k2 S2 + C

(I + m11i + m212)3
- k2] sl = 0
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Particles m1 and m2 connected
with springs in a smooth hori-
zontal rotating tube.

Fig. 11-13 Fig. 11-14

11.11. The frame BC, Fig. 11-14, is free to rotate about the vertical axis AB. The bar ae, hinged at a
can rotate through angle a in the plane of the frame. Take body-fixed axes X, Y, Z with origin
at c.m. of the bar. I2, I, Ix are principal axes of inertia about X, Y, Z respectively and Ix = Is.
Writing h = Mr2 + 4, 12 = I' + I,, show that

L = 2I1B2 + .[I2 + M(R + r sin 0)2],2 + Mgr COS e - 2k( b dd cos B - l0)2

where b = h2 + s2, d = 2sh and 0 is the value of 1 when the spring is unstretched.

Now writing B = oo + a, show that (retaining first and second order terms in the expansion)

Rapprox.
jjla2 - {Mgr sin e0 + jkd sin 0 [1 - l0(b - d sin 00)-1/2]

(Mrc2(R + r sin 00) cos eo
[I2 + M(R + r sin e0)2]2)1a

{Mgr cos 00 + zkd cos e0 - Plod cos e0 (b - d cos eo)-1/2

+ 1k10d2 sing g0 (b - d COS eo)-3/2

+ 2Mrc2[2Mr(R + r sin g0)2 cos2 00 (12 + M(R + r sin e0)2)-3]

- [r cos2 00 - sin eo (R + r sin g0)] [I2 + M(R + r sin 0)2] -

Determine the condition for steady motion. Show that when steady motion is disturbed the
bar oscillates with simple harmonic motion about the oo position. Find an expression for the period.

The above is a good example of how "simple" problems may become surprisingly involved.

11.12. Employing o, 01, 02 in Fig. 11-15, write L for the system and show that none of these coordinates
is ignorable. However, using e, /31, 92, where R1 = o1 - 0, /32 02 - 0, show that

L = .&IB2 + jm1[s282 + r2 (,131 + 6)2 + 2sr1e(%31 + e) cos ,131]

+ 2m2 [$2g2 + 2 (A, + 9)2 + 2 (A2 + 9)2 + 2sr19(R1 + B) COS al

+ 2sr28(/ 2 + e) cos /32 + 2r1r2(R1 + ;02 + 9) cos 02 _J801
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and hence that o is now ignorable, /31, R2 non-ignorable. (r1 and r2 are constants.)
Prove that for steady motion ,(31 = /32 = 0 and that this is possible for any value of ®.

Y1

11.13.

Double pendulum connected to end of a

horizontal bar Oa which is free to rotate

about a smooth vertical shaft at O. All

motion of m1, m2 confined to a smooth
horizontal plane.

Referring to Example 11.7 and Fig. 11-7, Page 246, derive the given
8.24, Page 174.

Show that (dropping certain

R = 2 Ixe?

constant terms),
1 (c3 - 02 COS 0)2

2 Ix sine 0
where

Writing 0 = o + a, show that the equation of motion is
(C3 - c2 COS 00)

253

expression for L. See Problem

aL aL

_..a , C3 - ap

[CO + 2 cost 00) - c2(3 + sin2 00) cos 00Ixa + I c2 +
s 4in BX 0

11.14. The uniform disk, Fig. 11-16, is free to rotate on the smooth collar as a bearing. The collar,
attached to the spring as shown, is free to slide along the light, smooth rod. Gravity is acting
along Y1 as indicated. r measures the distance from the ball joint 0 to c.m. of the disk. All angles
are measured exactly as in Example 11.5, Page 243. Applying (11.11), Page 238, show that equa-

Fig. 11-16
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tions of motion in a, l3, s are (Ix + mro) ee + c(3 + mgroa = 0, (Ix + mro) R - c« + mgr0/3 = 0,
m s + ks = 0, where r = r0 + s.

11.15. Referring to Fig. 11-17, write r1 = r10 + sl, etc., and show that the equations of motion about
positions of steady motion are

m1s1 + (k1 + m1A¢02)s1 + m172 + m1B os2 = 0, yy+3s3 +

(m1 + -2)72 + (k2 + C o)s2 + mist + m1B¢os1 + k2s3

where A, B, C = constants. Is the motion stable?

'['GAG-

h
211

r3

rl

r

m2

Fig. 11-17

k2ss = 0,

= 0

m1

11.16. Referring to Example 11.10, Page 247, take m = 100 grams, l0 = 25 cm, k = 4 X 104 dynes/cm,
r = 20 cm, 9 = 10 radians/sec. Show that x0 = 40 cm, wl = 27.0, w2 = 4.58. Write final integrated
equations of motion.

11.17. Assuming that m, Fig. 11-9, Page 247, carries a concentrated charge Q (not affected by the table)
and that there is a uniform magnetic field normal to the table, show that (for the table stationary)
the equations of motion have the same form as (6) in Example 11.10.

11.18. The vertical shaft in Fig. 11-13, Page 252, is driven by a motor at a constant speed . Find
equations of motion of m1 and m2 about steady motion positions. Compare results with equations of
motion found in Problem 11.10.

11.19. The bead of mass m, Fig. 11-18 below, can slide along the smooth, rigid cylindrical helix of pitch p
which is attached to the frame as shown. The frame can rotate about the vertical axis AB.
Moment of inertia of the entire frame, including the helix, about AB is I. Taking o and 0 as
coordinates, show that

L = 11e2 + 2m[1282 + r2(0 + ,)2 + b2952 + 214(; +.) sin o] - mgb¢

where r = constant and b = p/2r, . Show that for steady motion, cos ¢o = gp
22,rrlOo

constant, and writing 0 = 00 + a,

show that the equation of motion of the bead about its steady motion position is a +
What is the period of oscillation?

rlw2 sin Col -
r2+b2 Ja

Now assuming the frame is free to rotate, note that 0 is ignorable. Show that

[I + m(l2 + r2 + 21r sin 95)]b + m(r2 + lr sin ¢,) = pe = c

and that the equation of motion corresponding to 0 is

(r2 + rl sin 0) s + (r2 + b2) s - rle2 cos 0 + gb = 0

Complete the Routhian R = L - cB.

0.
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Z

Smooth Rigid Cylindrical Helix

p/4

Y

p = Pitch

A

Fig. 11-18

255

11.20. In Fig. 11-19 the X, Y axes are attached to a horizontal table which rotates with constant angular
velocity e = w about a vertical axis through 0. The particles, attached to equal springs as shown,
can move about on the smooth table. With m1 at p1, etc., the springs are unstretched; that is,
OPi = P1P2 = P2P3 = P3P4 = 1 = unstretched length of each spring.

Fig. 11-19

Take x1, yl as coordinates of ml, etc. For steady motion x1 = x10, etc., and y1 = y2 = y3 = 0.
For small motion about steady motion positions, write xi = x1o s1, x. = x20 + 82, x3 = X30 + 33,
yl = S41 Y2 = S51 Y3 = S6-

Assuming steady motion slightly disturbed, set up equations of motion for the system.
Hint. Rather than write out T and apply Lagrange's equations, it is convenient to use equations
(9.6), Page 179, for a determination of the accelerations of m1, m2, m3.



CHAPTER

12
Forces of Constraint

Newtonian, Lagrangian, and Euler Methods

12.1 Preliminary Considerations.
A. Forces of constraint defined and illustrated.

Forces which are exerted on the parts of a dynamical system by physical con-
straints and which do no work for arbitrary displacements 8q1, 8q2, ...,,8q,, (St = 0)
are here referred to as "forces of constraint" or merely "reactive" forces. (See foot-
note on Page 30.) The following are a few typical examples: the normal reactive
force exerted on a particle by a smooth surface over which it is moving; forces exerted
on m1 and m2 by the rotating tubes, Fig. 4-12, Page 75; bearing forces on a smooth
shaft; the tension or compression in a rigid rod connecting two masses of a system;
tensions in the non-extensible ropes of any mass-pulley system.

It must be pointed out that frictional forces, although usually determined by a
force of constraint and a coefficient of friction, are not to be regarded as forces of
constraint. As a result of frictional forces, work is always done when sliding takes
place. Hence they must be regarded as active applied forces.

B. Regarding the Meaning and Use of Superfluous Coordinates.
The meaning of "superfluous coordinates" (the term was introduced in Section 2.4,

Page 18) may be made clear by the following simple example. Referring to Fig. 2-9,
Page 13, it is clear, that, neglecting masses of the pulleys, T may be written as

T m1y1 + -m2y2 + 2m3y3 +m4y4 (1)

However, the system has, for vertical motion only, but two degrees of freedom.
Hence (1) is said to contain two superfluous coordinates.

Employing the equations of constraint,

(2) y1 + y3 = CI (3) 2y3 y2 - y4 = C2

and regarding, say, y3 as superfluous, we can eliminate y3 from T, leaving it expressed
in terms of y1, y2, y4, hence containing only one superfluous coordinate. Of course,
as has been done in previous chapters, all superfluous coordinates can be eliminated
by equations of constraint (except the rather special case of "non-holonomic" systems).
In the example both y3 and y4, or just as well y1, y2, can be eliminated from (1) by
(2) and (3).

In the general case, where a system contains _ p particles and has n degrees of
freedom, T may be written so as to contain any number of superfluous coordinates,
s, from one to, and including, 3p-n.

For a system of N rigid bodies having n degrees of freedom, s may range from
one to, and including, 6N - n:

Superfluous coordinates play an important part in the determination of forces of
constraint, as will immediately be evident.

256
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C. An Introductory Example.
As a means of making clear certain basic

ideas on which this entire treatment is founded,
consider the reactive force on the bead, Fig.
12-1, as it moves along the smooth rigid para-
bolic wire y =bx2. - Assume gravity and an F = applied
external force F acting. force

Now regardless of the magnitude of F or its
direction (both of which may vary with time),
the motion takes place along the wire. In other
words, the reactive force automatically and con-
tinuously adjusts itself in magnitude and direc-
tion as the bead moves so that the path is
represented by y = bx2. Thus in treating this Fig. 12-1

problem we may take the point of view that the bead "knows" nothing about the
existence of the wire and that it only "feels" the forces F, mg and the reactive force.

Hence considering the force of constraint as an externally applied force, m may
be regarded as a "free particle" having two degrees of freedom. Therefore it is
evident that either of the following two methods is applicable to finding the reactive
force.

Newtonian: We write two "free particle" equations
(4) mx Fx + fx (5) my F, + f, - mg

where Fx, FY are components of F, and fx, fy components of the unknown reactive force.
Now, if the motion of the bead is known either by experiment or from a solution

of the following Lagrangian equation of motion (which contains no reactive force
components; see Example 3.2, Page 44),

mx (1 + 4b 2x2) + 4mb2xx2 = -2mgbx + Fx + 2bxFy (6)

then fx and fy are determined as functions of time by (4) and (5).
Lagrangian: Suppose, for the sake of illustration, we represent the position of

the "free particle" in polar coordinates. Thus, including one superfluous coordinate,
T = 2m(r2 + r292), and applying Lagrange's equations, regarding both r and 0 as
independent coordinates,

m'r - mrB2 = fr - mg sin 8 + F,r (7)

mr2B + 2mrr8 = rf,, - mgrcos8 + rFe (8)

where fr, fs are the unknown components of the reactive force in the direction of r and
increasing 8 respectively. Fr, FB are corresponding known components of the applied
force F.

Again for known motion, determined as mentioned above, fr and fe are determined
as functions of time by (7) and (8). From fr and f. the magnitude and direction of
the total reactive force can be found at once.

Note that, applying relation (4.10), Page 60, and making use of x = r cos 0,

y = r sin 0 from which to determine ax ay ax ay- - equations (7) and (8), now
containing f,,. and fy, may be written as

Or ' Or, ae'ae '

mr - mrB2 = (fx+Fx) cos 0 + (fy+Fy-mg) sin8 (9)

mrB + 2mr8 = -(fx+Fx) sin8 + (fy+Fy-mg) cos8 (10)

simultaneous solutions of which give expressions for fx and fy.
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Important points regarding the above solutions:
(a) The system, in reality, has only one degree of freedom. But by introducing a

superfluous coordinate and treating the reactive force as an additional applied
force, it may be regarded as having two.

(b) On this basis two Newtonian equations (4),(5) or Lagrangian equations (7), (8) or
(9), (10) have been written. In either set unknown components of the reactive
force appear. Either set can be solved for these components.

(c) Expressions for the generalized forces in (7), (8) or (9), (10) were, in principle,
determined exactly as outlined in Section 4.5, Page 61, where we consider both r
and 6 as independently variable and the reactive force as a driving force. For
example, to find the generalized force corresponding to r, equation (7), 9 is held con-
stant and r increased to r + Sr. This can only be accomplished by a slight "distor-
tion" of the constraint. Moreover, as a result of the distortion, the reactive force
does work to the extent of fr Sr. Hence it is seen that 8W1r (Fr + fr - mg sin 0)8r,
from which the right side of (7) is obtained.

(d) In order to find f.,, f,, or f,, f. as functions of time, the motion (determined as
previously mentioned) must be known.

12.2 General Procedure for Finding Forces of Constraint. (Constraints assumed smooth.)
A. Newtonian method for a system of particles.

Consider a system of p particles having n degrees of freedom. Regarding each
particle as free, we write

mixi = Fx,, + fx,,, miYi = Fyi + fyi, miZi = Fzi + fzi (12.1)

where Fxi, Fyi, Fzi are known components of the total applied force on mi and f .-Ii. f?ii, fzi
are unknown components of the force of constraint on mi.

Now suppose that Lagrange's equations in their usual form, containing no forces
of constraint, have been solved. Or perhaps the motion of the system is known by
experiment. Each of the q1, q2, ..., qn generalized coordinates is a known function of
time, that is, qr = qr(t). Hence by means of relations xi = xi(gl, q2, . . ., qn; t), etc.,'
and (12.1), the reactive components fri, etc., can each be expressed as a function of time.

B. Lagrangian Method. (Particles and/or rigid bodies.)
Consider a system having n degrees of freedom and c constraints. (For p particles

c = 3p - n; for N rigid bodies c = 6N - n.) Let us introduce s superfluous coordinates
into T, where s may be any number from one to c. Thus

T = T (ql, . . .) qn+s ; gl, ... , qn+s t) (12.2)

Careful consideration of the derivation of equation (4.9) (at this point the reader
should review Section 4.2, Page 58) will show that (as in the above example), for T
containing s superfluous coordinates, n + s Lagrangian equations may be written in
the usual way provided each of the n + s coordinates is treated as independently
variable and forces of constraint, which enter wherever necessary to make a displace-
ment Sq not in conformity with constraints, are regarded as applied forces.

For convenience we write these equations in the form
d aT
dt

(OT
aq

-
aqr

= Fr + FIr r 1, 2, ..., n + s (12.3)
r

where Fr is the part of the total generalized force due to known applied forces and
that which involves only unknown forces of constraint.

4r
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Whether dealing with a system of particles or rigid bodies, expressions for Fqr may be
found by one of the methods outlined in Section 4.5, Page 61, introducing only applied
forces and considering each of the n + s coordinates appearing in T as independently
variable. For certain coordinates this will require a "distortion of constraints", as illus-
trated in the example given above.

ax. ay. &Z,
If equation (4.10), Page- 60, is to be applied to a system of p particles, aq7 , ar , a must

be found from the following transformation equations
xi = xi(gl, qtr . . ., qn+s r t)

yi = yi(gl, qtr ... r qn+s r t) (12.1)

z. = zi(q,, qtr ... r qn+s; t)

which contain, not only q1, q2, ... , q,, but also the s superfluous coordinates.
Expressions for F are found in just the same way as those for F , regarding each

of the n + s coordinates as independently variable and introducing proper components of
the reactive forces as unknown quantities.

As previously mentioned, any number of superfluous coordinates up to a maximum
of c may be retained in T. For example, considering a_ system of two particles for which
n 2 we can, making use of equations of constraint, write T in any number of coordinates
from two (s = 0) to six (s = 4). In the determination of J'g we always, in principle, find
the work SWgr done by forces of constraint for a change of +Sqr in qr, all other coordinates
and t held fixed. Hence it is clear that reactive forces will appear in SW,, (and hence in .P )

qr

only when, on making the displacement +Sqr, one or more constraints are distorted. Thus,
for s less than c, in general, not all forces of constraint acting on the system will appear in
the n + s equations, (12.3). ("Distort" refers to an infinitesimal deformation.)

As a final step equations (12.3) are solved for the reactive forces which appear in the
Y' 's. Assuming the motion known, these forces may, be expressed as functions of time.

4r

As examples will show, the most suitable choice of superfluous coordinates and the
number to be retained in T depends on the problem in hand. It may frequently happen
that by the introduction of a single properly chosen superfluous coordinate, a desired force
of constraint can be found with little effort.

12.3 Illustrative Examples.
Example 12.1.

Let us determine expressions for the com-
ponents of reactive force exerted on the bead,
Fig. 12-2, as it moves along the smooth spiral
wire under the action of external forces F and
mg. In order to illustrate basic ideas, various
possible solutions will be given. Motion is as-
sumed known.

(a) Regarding the particle as "free" and apply-
ing (12.1), we have

my
mV = FY + f y

m z = Fz + fz - mg
Fx, Fy, Fz are known components of F and
fx, fy, fz are unknown components of the
force of constraint. Hence for known mo-
tion these components may be expressed as
functions of time.

(1)

y, z
r, ¢, z r = constant

z = bo
Applied forces:

P, mg

Fig. 12-2
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(b) Using cylindrical coordinates, two of which are superfluous, T = jm(r2 + z2). Applying
(12.3), we obtain

mr - mrp2 - Fx ax
ar

mr2 + 2mrr - Fx
ax ay _mz - Fxaz - Fya-

fxar + fyar + f=ar
- Fy aO - Fz a = fx ao + fy ao + fz

TO
(2)

OZ Ox LY az
(F, - mg) az = fx ax + fyz +

fZ
az

Relations (12.4) are x = r cos 0, y = r sin 0; and equations of constraint are r - constant = 0,
z - bo = 0. Applying the above to (2),

-mr¢2 - Fx cos o - F, sin 95 = fx cos 0 + fy sin 95

mr2 + Fxr sin 0 - Fyr cos 9 - Fzb = -fxr sin ¢ + fyr cos 95 + fzb
m, z Fz + m9 = fx

which, of course, can be solved for fx, fy, fz

(3)

(c) Again using cylindrical coordinates but introducing Fr, Fq,, F, (the r, ¢, z components of F) and
fr, fb, fz (the corresponding components of the reactive force), equation (12.3) gives

mr-mr;2-Fr = fr, mr2 +2mrr0' -rFs = rf4,, mz-Fz+mg = fz
Hence using r = constant, z = b¢, the components fr, fp fz are known at once.
Note that the above example illustrates well the meaning and necessity of "distorting constraints".

In order to obtain the generalized force corresponding to r, for example, in either (b) or (c), basically
we hold 0 and z constant and imagine r increased. to r + Sr. But clearly this requires a slight distortion
of the wire in the direction of r. Similar remarks may be made regarding generalized forces correspond-
ing too and z.

(d) Eliminating z and writing T in terms of r, r, , (that is, retaining only one superfluous coordinate),
it easily follows that

m(r2 + b2)

-mrp2 = Fr + fr
= (Fz+fz-mg)b + (F4,+f0)r

from which fr may be obtained, but not separate values of fz and f4,.

Example 12.2.
Refer to Fig. 2-10, Page 14 and equation (2.42), Page 24. Let us consider various approaches to

determine the tensions in the strings of the double pendulum, assuming r1 and r2 are inextensible strings.

(a) The tension r1 in r1: Regarding r1 only as a superfluous coordinate, (2.42) reduces to

T = Jml(*2 + r12 B2) + 1m2[r,2 + r2 e2 + r2 ;2 + 2r1r29 cos (0 - e) - 2r2r, sin ( - o)] (1)

from which, after putting rl = r2 = 0, we get

m2r27 sin (q, - e) + m2r2p2 cos (0 - o) + (m1 + m2)r192 = r1 - (ml + m2)g cos a (2)

which, for known motion, gives rl as a function of time. The reader may show that equations
corresponding to a and 0 will not contain r1.

(b) In like manner, introducing r2 as a superfluous coordinate (r1 = constant), r2, the tension in r2, can
be found at once.

Note. For "small motion", equations of motion of the double pendulum are easily integrated.
Hence rl and r2 can easily be expressed as functions of time.

(c) As a variation of the above method, one can introduce both r1 and r2 simultaneously as superfluous
coordinates and write two equations in accord with (12.3) from which expressions for r1, r2 may be
found. The reader should verify this statement.

(d) One can obviously find Tl and r2 by an application of (12.1):

(3)m1x1 = fx1, m1N1 = fy, -mfg, m2x2 fx2, m21/2 = fy2 - m29

where fxl = r2 sin o r1 sin 8.
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Example 12.3.
The rigid pendulum, Fig. 12-3, is free to swing in a vertical plane about a smooth. bearing at p. We

shall determine an expression for the torque Fa tending to change the angle ,Q between rl and r2.

Fig. 12-3

Introducing ,8 as a superfluous coordinate,

Particles rn1, m2 are rigidly
fastened to light rods rl, r2.

T 2 (m1 + m2)ri e2 + 2m2[r2 (9 + R)2 + 2rlr2 cos /3(02 + BR)]

from which F,3 = m2(r2 + r1r2 cos R) B + m2rlr2e2 sin /3 + m2gr2 sin (e +,Q)

Although this expression appears complicated, it can be verified by elementary considerations.

Example 12.4.
Referring to Problem 2.20, Fig. 2-29, Page 36, we shall determine expressions for the components

of the reactive force on m and the reactive torque exerted by the wire on the vertical shaft.
Introducing two superfluous coordinates, T may be written as

T = 2I«2 +m(r2 + r292 + z2)
where a is the angular position of the shaft and a that of m. Regarding all coordinates as independent,
we write

I'« = r + r', mr - mre2 = fr, mr2 e + 2mrro = rfo, mz = fx - mg
where r represents a known torque exerted on the shaft by, say, a motor, and T that exerted by the wire.
fr, fo, fz are components of the reactive force on m. These relations together with z = are, o = a give
fr, fe, fz as functions of t for known motion of the system.

Example 12.5.

Consider Example 9.6, Page 185. Let us determine fb and f b, Fig. 9-6, by the Lagrangian method. We
write L as

L 1 [1x(02 + ¢2 sine o) - Iz(ct + ¢i cos e)2] + 1 sine sine cos tp1

where a and say 95 are superfluous. Writing e, +Gl, 0 equations of motion in the usual way and letting
r3¢1 = -r20, e = constant, etc., we finally have

r ) (Izri + Ixr2) = -Fe = -l r3 sine cos p1 + fbr3(e equation): i
(-rl

.. r21 r 1
(¢i equation): 'Gl 72 (Ix - Ir) _ -l r3 sine sin p1 + fbr3

3

(0 equation): (---)r
3I;,

= -Fo = -fb"2

where in finding Fo, Fp1, F0, 0, ¢i, 95 were regarded as independent variables.
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62 - 02 sin 62 + 62 sin 62(COS2 a - Sing a)]

The last two equations give the equation of motion (same as (10), Page 187). Assuming this integrated,
we then have fb and fb as functions of time.

Example 12.6.
In Fig. 12-4, the rigid body is free to rotate with angular velocity e2 about be. At the same time the

entire rigid rod abc can rotate with angular velocity B1 about a vertical axis. We shall determine the
reactive moment Ta about a horizontal axis through b (normal to the abc plane) which prevents a from
changing.

Fig. 12-4

In order to clarify the following treatment imagine ab and be joined at b with a door-type hinge,
axis of hinge normal to the abe plane. Thus, regarding a as variable, and taking body-fixed axes with
origin at b, as indicated, it easily follows that

wx = B1 COS a sin B2 - a COS 02, toy = 01 COS a COS 82 + a Sin 02, wz = 01 sin a + 02

Hence, applying (8.10) and neglecting the mass of abc,

T =
2

[Ix (01 COs a sin 02 - a cos 02)2 + Iy (61 cos a COS 02 + a sin 02)2 + Iz (91 sin a + 92)2

- 21x, (91 cos a sin 02 - a COS 62)(91 cos a COS 02 + a sin 02)

- 21x,,(91 cos a sin 02 - a COS 62)(61 sin a + 02)

[CHAP. 12

(1)

- 2Iy,,(01 COS a COS 02 + a Sin 02)(61 sin a + 92)]

where Ix, Ixy, etc., are relative to the body-fixed axes. Note that we have introduced one superfluous
coordinate.

Applying (12.3) we get for the a equation, after setting a = a = 0,

(Iy - Ix) COS a[ 61 sin 62 COS 02 + 0162(COS2 02 - sing 62)]

+ Ixb2 sin a COS a sine 02 + 1y 92 sin a Cos a cost 62 - Iz(0 sin a + 62)91 COS a

+ Ixy ['W1 cos a(cos2 62 - sine 62) - 40162 COS a sin 62 COS 62 - 282 sin a COS a sin 62 COS 02]

+ Ix, [ 91 sin a COs 62 + e2 COS 62 - 29192 sin a sin

- Iyz [ 91 sin a sin 62 + 92 sin 02 + 29192 sin a COS

Ta - MgS COS a

which, for specified motion, gives Ta.

(2)

02 + 02 COS 62 + 62 cos 02(sin2 a - COS2 a)]

.If ab were driven by a motor mounted on B, and the rigid body by another light motor fastened, say,
at c, would this change the right hand side of (2)?

Note that the above expression greatly, simplifies if it is assumed that the rigid body is a uniform
disk with be normal to a face, and through the center.
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12.4 Forces of Constraint Using Euler's Equations.
As will be recalled from Chapter 9, Euler's equations (9.2), Page 177, and (9.10),

Page 182, are essentially "free body" equations. Fx, F3, Fz 'and Try, Tz in general con-
tain all applied forces as well as forces of constraint. Hence these relations, as has already
been shown in the examples of Chapter 9, may be solved for the reactive forces. Thus
each is an illustration of the Euler method.

Below are listed a few examples which demonstrate well the basic principles and tech-
niques. (The specified equations refer to those given in the pertinent examples.)

Example 9.2, Page 184. Assuming the solution of equation (2) to be known, equation (1)
gives fx and fy each as a function of time.

Example 9.5, Page 185. For known motion, all bearing forces can be found from
equations (1) through (3).

Example 9.6, Page 185. Forces of constraint f, fy, fz on the ball joint and f b, f b at the
point of contact b, are determined by equations (9.2) written in full and from (6) and (8).

Example 9.7, Page 187, also illustrates well the Euler method of finding forces of
constraint.
Example 12.7.

Referring to Example 12.6 and Fig. 12-4, let us determine Ta by the Euler method.
Referring to Section 9.7 and equation (9.16), Page 183, it is seen that

Ty sin 02 - Tx cOS B2 = Ta - Mgs cos a (1)

where Tx = Ixwx + (Iz-Iy)Wywx + Ixy(Wx(Oz-Ly) - Ixz(wx-y+Wx) + Iyz(wz-w2y) (2)

Ty = IyLy + (Ix - Iz)wxwz - Ixy("ywz+Wx) + Ixz(wx-WZ) + Iyz(Wywx-Wz) (3)

Putting in proper expressions for wx, iox, etc., (those given in Fig. 12-4), equation (1) finally, after con-
siderable tedious work, becomes exactly the same as (2) in Example 12.6.

Example 12.8.
The rigid body, Fig. 12-5, is mounted in any manner in a rigid frame, here shown supported by, say,

five points p1, p2, ..., ps. Assume that outside forces F1, F2, F3, etc., give the frame any known motion.
Let us consider the reactive forces f 1, f 2, etc., exerted by the points on the body.

Y

Fig. 12-5

So far as the body is concerned, these are just driving forces. From the known motion, expressions
for wx, wy, wz and Ax, Ay, Ax can be determined. Hence equations (9.2), Page 177 and (9.10), Page 182, give
at once Fx, F3, Fz, Tx, Ty, T, where Fx, for example, is the sum of the X components of fl, f 2, ... , fs and
Tx is the sum of the moments exerted by these same forces about X. For a given motion, Fx, Tx, etc., will
always have the same values regardless of how the body is attached to the frame. Note, however, that
if it is fastened at several points as indicated, not enough information is given to find individual values of
fl,f2, ..., fy
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12.5 Forces of Constraint and Equations of Motion When Constraints are Rough.
Frictional forces are always present when one object moves in contact with and relative

to another. The magnitude of a sliding frictional force F, is given by Ff = µf where µ is
the coefficient of friction and f the reactive force normal to the surfaces in contact. The
direction of Ff will be taken as opposite to that of the motion.

Frictional forces must be treated as externally applied driving forces since, when
sliding takes place, work is always done. Their existence usually introduces considerable
difficulties, and no general treatment of the above topic will be attempted here. However,
the following two examples may help to point out the type of problem which can arise.

Example 12.9.
Referring to Fig. 12-6, let us determine the reactive force f and the equation of motion of the bead

sliding down the rough parabolic wire.
Considering f as normal to the wire in the direction indicated and the frictional force µf tangent to

the wire, we write
m x = µf cos o - f sine + Fx, m µf sine + f cos e - mg + Fy (1)

But cos e = and sin e = Hence relations (1) become
dx2 + dye 1 + 4b2x2 1 +

4b2x2.

2bx
m x f (,Fl +.

4b2x2) + Fx (2)

f (2tbx + 1)

1 + 4b2x2 - mg + Fy (3)

Eliminating f between (2) and (3) and making use of the relation y = bx2, the following equation of
motion is obtained:

m (1 + 4b2x2) + 4mb2xx2 = .2µbmx2 + Fx + µ(mg - Fy) + 2bx(,Fx - mg + Fy)

Note that a difficult non-linear equation is obtained for this apparently simple problem.

Either (2) or (3), of course, yields an expression for the reactive force f.

Fig. 12-6

dx 1 2bx

Fig. 12-7

(4)

Example 12.10.
A uniform rod of length 21 slides in a vertical plane down the inside of a rough cylinder of radius R

as shown in Fig. 12-7. We shall find expressions for the reactive forces / i, f2 and the equation of motion.
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Pretending that the rod is free to move in a vertical plane and using r, e, a as coordinates,
T = 2M(r2 + r292) + 21x2

265

where M is the total mass of the rod and I its moment of inertia about a transverse axis through c.m.
Note that T contains two superfluous coordinates.

Applying (12.3), regarding the reactive forces f1,f2 and frictional forces µf1,µf2 as driving forces,
the following equations are obtained:

Mr92 + Mg cos e = (f1 + f2) cos R + µ(f1 - f2) sin 18 (1)

Mr2 W + Mgr sin e = ur(f 1 + f 2) cos /i + r(f 1 - f 2) sin /3 (2)

I = µl(f1+f2) sin ft - l(f1-f2) COs/3 (3)

in which we have set r = 'r = 0.
Now (1) and (2) can be solved for f1 and f2. Substituting these results, together with

(3) gives the equation of motion.

Problems

a = 9, into

12.1. A bead, acted upon by an applied force having components F, Fy is constrained to move along
a smooth rigid wire, of any given shape, in a plane. Using polar coordinates show that regardless
of the shape of the wire or the values F., and Fy, general expressions for the components of the
reactive force fx and fy are given by

fx = -F. -I- m(r - 42) cos e - m(re + 2r9) sin e

f y = -Fy + m(r - re2) sin o + m(r e + 2re) cos e

12.2. In Fig. 3-9, Page 54, the vertical shaft is made to rotate in any manner. Angular displacement
of this shaft is 0. Show that the reactive forces exerted by the rod on m are expressed by

f e = -mr,2 sine cos o - mg sin e, f,5 = Tnr sin e F + 2mr sin e
where these forces are in the direction of increasing 9 and 0 respectively. Hence for known motion,
¢(t) and r(t), each reactive force is a known function of time.

12.3. Show that the following equations are applicable to the above problem:
-mr¢2 sine cos e - mg sin e = f x cos a cos 0 + f, cos a sin
mr sin e + 2mr sin o = -fx sin 0 + fy COS 0

- fz sin e

m r - mrfp2 sine 0 + mg cos e = fx sin s cos ¢ + fy sin a sin 0 + f., cos 0
where fx, fy, fx are the rectangular components of the reactive force on m. Hence the rectangular
components may be found instead of fe and f#,.

12.4. The dumbbell, Fig. 4-3, Page 64, is moving in a vertical plane under the action of gravity. Show
that the tension T in the rod connecting ml and m2 is given by T = m + 2 192.

1 2

12.5. The two rods, Fig. 12-8, with upper ends rigidly fastened
together are free to swing as a pendulum in a vertical plane.
Show that the torque Ta tending to change the angle a is
given by

Ta = I2 ®+ M2gr2 sin (e +,e)
For small motion about the position of equilibrium, determine
e as a function of time and hence Ta as a function of t.
(r2 = distance from p to c.m. Of M2.)

12.6. A bead of mass m slides down the smooth conical spiral,
Fig. 3-5, Problem 3.5, Page 52, under the action of gravity.
Using spherical coordinates write out equations from which
the rectangular components of the reactive force f, fy, fz
may be obtained. Compare these with the equations given in
Problem 12.3.

Fig. 12-8
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12.7. A particle of mass m slides down a great circle of a smooth sphere, radius r. Assuming that it
starts from the highest point with a velocity reo (o measured from a vertical diameter downward),
show that the reactive force f, exerted by the sphere on the particle is given by f, = 3mg cos 9 -

mre2 2mg and that it leaves the sphere at an angle given by cos B =
2g + roop-

3g

12.8. The upper end of the bar, Fig. 12-9 slides down the smooth wall. The disk rolls along the floor
without slipping. Neglecting bearing and rolling friction, show that fx, the force exerted by the
wall on the end of the bar, is given by

fx = (M1 + 2M2 + 212/r2)(l a cos e - lee sin e)

Fig. 12-9

12.9. Show that tension in r1, Fig. 12-3, is f = m2r2[F sin (0 - e) + P cos (¢ - 9) + (m1 + m2)(r192 + g cos e)1.

12.10. Referring to Fig. 12-10, a particle moves in contact with the smooth surface , given by

z = A sin a sin b2! gravity acting in the negative direction of z. Using rectangular coordinates

write out equations for the fx, f',, fz components of the reactive force on m.

Fig. 12-10
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12.11. The vertical shaft supporting the smooth wire, Fig. 2-29, Problem 2.20, Page 36, is made to rotate
in any given manner e = B(t). Show that the fr, fe, fz components of force exerted by the wire on
the bead are given by

mr-mre2 fr, mre+2mre = fe, mz fz-mg (1)

Noting that SW = fr Sr + fer So + fz Sz = 0, z = are (2)

(principle of virtual work; see Section 2.13, Page 29) show that the usual r and B equations of
motion containing no forces of constraint can be obtained from (1) and (2).

12.12. A bead slides down a rough circular loop of wire, with the plane of the loop vertical. Show that,
in rectangular coordinates with origin at the center of loop, the equation of motion (before
eliminating, say, y and y) is

and in polar coordinates,
m(y + g)(x - µy) = m x (µx - y)

mre - mg sin o = µ(mr52 - mg sin o)

12.13. A particle of mass m moves over a rough spherical surface under the action of the frictional force
and gravity. Show that the normal reactive force on the particle is

fr = mg cos B - m(r92 + r sine

and that the equations of motion corresponding to 9 and 0 are
r29mre 9 - mr2 sin o cos o 2 = mgr sin 9 - µfr

mre sin2 0 + 2mr2 sin o cos 0 e = ,f, r2 sin2 0

where s2 = r2e2 + r2 sin2 a ,2. (Use spherical coordinates with origin at center of sphere.)

12.14. Referring to Fig. 8-5, Page 146, find expressions for the components of torque r ,, ry, rx along X, Y, Z
exerted by the bearing which supports D. Assume shaft ab driven by a motor at a known speed.

12.15. Referring to Fig. 8-18, Page 159, a particle of mass m is glued to the center of the rim of an
otherwise perfectly balanced gyro. Find expressions for the forces on the fixed bearings al, a2 as a
result of this.

12.16. The base, Fig. 9-14, Page 201, is at latitude 4 on the earth. The shaft supporting the rotating
table is vertical. Find expressions for the forces exerted by bearings Bi and B2 on the shaft. (See
Problem 9.19, Page 200.)
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13,
r v ng o es to

blish Known Hens

(Static Equilibrium as a Special Case)

13.1 Preliminary Considerations.
The usual dynamical problem is one in which forces are given to find consequent mo-

tions. In this chapter we treat the converse type in which motions are prescribed or
known by experiment, to find driving forces necessary to produce such motions. (See
Section 1.7, Page 5.) As will be seen, problems involving static equilibrium may be re-
garded as special cases of the above.

This branch of dynamics has many applications and, as will soon be evident, the
Lagrangian method of treatment is especially suitable.

The developments of the chapter depend primarily on the contents of Chapter 4. But,
in addition to this, special emphasis must be placed on the following facts.

(a) Each of the qj, q2, . . ., qn independent co-
ordinates can be made to vary with time
in any desired manner. The way in which
one coordinate may be forced to change
does not limit the manner in which any
other can vary. Consider Fig. 13-1. As-
sume vertical motion with ropes always
under tension. The system has two de-
grees of freedom. Suitable pairs of co-
ordinates are (Si, yi), (82,Y2), (yl, y2), etc.
By a proper application of forces each of
the two coordinates of any pair can be
made to change with time in any (within
limits) desired manner.

t tiA b ides rossume, es a on I l }(b) Prescribed motions of a system can of disks, vertical motion y2usually be attained by applying the driv- only

ing forces in any one of several ways.
Again referring to Fig. 13-1, suppose a
mechanism, A, attached to the ground
exerts a vertical force on m, while another, Fig. 13-1

B, also fastened to the ground exerts a vertical force on the left rope at point p.
Clearly these two devices can give the system (within obvious limits) any desired mo-
tions. But suppose A, now attached to the shaft of the small pulley, exerts a force on
mi while B continues to exert a force as before. These devices can again (for simplicity
neglect the mass of A) give the system any desired motions. However, the force exerted
by A in the first case will, in general, not equal the force it must exert in the second,
even though the desired motions are the same. And, of course, this is likewise true of
B. Hence, in general, there is a range of choices as to where forces are to be applied.

268
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(c) There is the important question as to how many driving forces are required. In general,
for a system of n degrees of freedom n forces, f 1, f2, . . ., f., must be applied in such a way
that a change in the value of any one of the n coordinates can be produced by at least
one (or perhaps several together) of the applied forces.

(d) As a result of (b), the first step in the solution of a problem of this type is to decide on
the exact manner in which driving forces are to be applied. Moreover, since for every
"action" there is an equal and opposite "reaction", it is important to specify the location
of each driving mechanism.

13.2 General Method.
The following general results are based on a direct application of Lagrange's equations

which for convenience and clarity we write as

d aT aT
Fqr + F' (13.1)

dt \air) aqr

where Fqr includes only the known forces already acting and Fqr contains just the unknowns
fl,f2, ...,fn.

Outline of General Procedure.
(a) Having expressed T in any n independent coordinates, n Lagrangian equations of motion

are written out in the usual way.

(b) Expressions for Fqr are found as usual, taking account of all known applied forces as
well as those due to springs, gravity, etc.

(c) Having decided on exactly how f i, f2, ... , fn are to be applied, expressions for Fqr are
written (also in the usual manner) in terms of the unknown f's.

(d) Since the motion is assumed known (that is, each coordinate is a given function of time,
ql = qi(t), etc.), the left sides of the equations of motion may be expressed in terms of
t and various constants.

(e) Simultaneous solutions of these n algebraic equations give each f in terms of t and the
constants. Hence we have the final desired results. As will be seen from some examples
below, it is sometimes easy to eliminate t and express the forces as functions of the
coordinates.

Important Note. Consider the following two simple examples. (a) A ball thrown ver-
tically upward moves, of course, along a vertical straight line. If pitched with initial
velocity at some angle less than 90° with the horizontal, the path (neglecting air resistance
and assuming g vertically downward and constant) is parabolic. Hence the actual path
depends on initial conditions. (b) A satellite of mass m moves around a uniform spherical
earth of mass M. The path is that of an ellipse if the total energy 6 = T + V is negative,
a parabola if = 0, and a hyperbola for 6 positive. But in each case the force is the
familiar gravitational pull GMm/r2. 6 depends on initial values of position and velocity.
Hence again the actual path depends on initial conditions.

Returning to the general problem, it is evident that in order to establish specific motions
of a system (those originally specified by ql = ql(t), etc., in which definite initial conditions
are included) we not only apply fl, f2, .. , f., determined as outlined above, but at the instant
of application the system must have the specified initial conditions.
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13.3 Illustrative Examples.
Example 13.1.

Certain basic principles are well illustrated by a con-
sideration of the simple system shown in Fig, 13-2. For this
reason we sketch here three solutions to the same problem.
(Note. Throughout this example we assume that the rope is
always under tension.)

(a) Using coordinates yl and y2, it follows without difficulty
that

(m1 + m2 + I/R2) yl - -2U2 + (m2 ` m1)9 = Fyl (1)

m2(7'2 -yl) - m29 + k(y2 - l0) = Fy2 (2)

where to is the unstretched length of the spring. These
relations must hold regardless of what motion may be
assumed. Moreover, they are valid regardless of how
driving forces are applied provided, of course, Fy and
Fy2 are expressed properly in each case. 1

3 }

Fig. 13-2

Let us now assume that a mechanism attached to pl exerts a vertical force f 1 of unknown mag-
nitude on ml and likewise another (massless) attached to the rope at p2 exerts a force f2 on m2. By
inspection Fyl = f 1, Fy2 = f2. Hence (1) and (2) give directly the magnitudes of f1 and f2 in terms of
yl and y2 and constants.

When the desired motion is specified, as for example yl = Yo + vt, y2 = to + A sin (wt + S) where
yo, v, lo, A, w, a are assumed to have known values, it follows at once that the required forces are

f1 = m2Aw2 sin (wt + S) + (rn2 - ml)g, f2 = A (k - m2w2) sin (wt + S) - m2g

Note that in this case fl and f2 can be expressed as functions of y2.

(b) Let us again determine fl and f2, making use of coordinates yl and y3. Applying (13.1),

(m1 + I/R2) yl - m19 + k(yl - y3 - c) = Fyl
M2 y3 + m29 - k(y1- y3 - c) = Fy3 I

where yl - y2 - y3 = b = constant.
Assuming driving forces applied as in (a), Fy1 = fl + f2 and F113 = -f2 (note that Fy1 is not

the same as before). Putting these relations into (3) and (4) and solving simultaneously, we obtain
the previously determined general expressions for f1 and f 2.

(c) Finally let us determine fl and f2, assuming fl applied as before but that f2 is exerted by a mechanism
attached to the ground.

For this purpose it is important to note that use may be made of either (1) and (2) or (3) and (4).
Choosing (3) and (4), Fy1 = fl, Fy3 = f2 and finally, for the same motion assumed in (a),

fl = k(112 - lo) - m19, f2 = (m2w2 - k)(y2 - lo) + m29

The reader should show that the same expressions may be obtained employing (1) and (2).
The fact that these expressions for f1 and f2 are not the same as in (a), even though the assumed

motions may be equal, is of course due to the change in the way of applying f 2.

Example 13-2. Forces required to give the dumbbell, shown in Fig, 13-3 below, any motion in a vertical plane.

Using coordinates x, y, o, (13.1) gives

M Fx, M y+ Mg = Fy, IV = F'
where M = ml + m2.

Suppose forces fxl, fyl are
the direction of 112. Thus

applied to ml in the directions of xl and yl respectively, and fy2 to

Fx = fxl, FY = fyl + f12 FB = (x111 sin 6 + (15212 - fylll) Cos 0

m2

(1)

in

(2)
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Dumbbell free to move in vertical plane under action
of gravity and externally applied forces.

Fig. 13-3

From (1) and (2), f. = M7,

fy2

M(y+9)12cose - Ie + M711 sin o
(l1 + 12) COS 8

.M(y + g)l1 cos e + I W - Mxl1 sin e
(l1 + 12) COS 0
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(3)

(4)

Hence for any assumed motions the required forces are readily obtained as functions of time.
Consider another possibility as regards the application of forces. Suppose fx and fy are applied at the

point c.m. and that two equal and oppositely directed forces f are applied normal to the rod at equal
distances s/2 from c.m. Then

Fx = fx, FY = f, F0 = sf (5)

Hence (1) and (5) give, at once, general expressions for the required driving forces for any desired motions.

Example 13.3.
The force f, Fig. 4-11, Page 74, is such that the cart oscillates according to the relation x = x0 +

A sin (w1t + S1). A light mechanism attached to the lower portion of the incline exerts a force fq in the
direction of q, causing m to oscillate as q = q0 + B sin (wet + 82). We shall find required expressions
for f and fq.

For this system,
T = 2(M1 + 4M + 4I/r2 + m)12 + 1m(g2 - 2x4 cos o)

Hence

(M1+4M+47/r2+m)x - mg cos 9 Fy = f, m(q - x cos e) + k(q - q0) - mg sin e

For the assumed motions, x = -o x, q = -w2 q. Thus finally,

f = -W2(M1 + 4M + 47/r2 + m)x + mw2q cog e

f q = m(Wlx cos e - o2 q) + k(q - q0) - mg sin e

Of course, f and fq can be written as functions of time.

Example 13.4.
In Fig. 13-4 a mass is free to slide

along a smooth inclined rod supported
rigidly on a cart, the total mass of which
is M. The cart is free to move along a
straight horizontal track. By applying
proper forces the cart can be given any
desired horizontal motion at the same
time that m is made to move in any man-
ner along the rod. The system has two
degrees of freedom and hence two inde-
pendently controlled forces are required.
Some of the possible ways of applying

DRIVING FORCES REQUIRED TO ESTABLISH KNOWN MOTIONS

Fig. 13-4

F'
q

X
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driving forces are indicated by f 1, f2, f3. In the figure a circle attached to the tail of a force arrow indicates
the location of the corresponding driving mechanism.

Note that any prescribed motion can be produced by proper values of any one of the pairs of forces
(f1, f2), (f1, f3), (f2, f3); and in the process of finding expressions for the forces any one of the sets of co-
ordinates (x1, s), (x1, x), (x, s) may be employed.

Choosing coordinates (x, s),
T = 2 (M + b2m);2 + ym(1 + b2)x2 - mb2x;

where, as seen from the figure, b = ylxl = tan e. Applying (13.1) we find

(M + b2m) s - mb2 x - mgb = F' (1)

m(1 + b2) x - mb2 s + mgb = F' (2)

which are applicable regardless of the pair of forces we choose or what the assumed motion may be.
For f1 and f2 acting, F' = f1 - f2 (note that the mechanism exerting the force f2 pushes forward on

m and backwards on the cart) and F' f2. Hence from (1) and (2),

f1 = M s + m x - - - (3)

f2 = m(1 + b2); - mb2 s + mgb (4)

Up to this point no specific motions have been stated. But clearly (3) and (4) will give f1 and f2 as
functions of time for any motion we may wish to assume. If it is assumed that fl, f2 and f3 are all acting,
there are insufficient equations for finding a separate value of each. However, the three will appear in
Fs and F' of (1) and (2). Thus if any one is specified, the other two can be found.

Example 13.5.
Consider the forces required to produce any desiredmotion of m, Fig. 2-21, Page 22, relative to the

X2, Y2 frame for any assumed rotations of D1 and D2.

From equation (2.31) it follows that

T = 2m{r2 + r2a2 + [2s61 sin (02 + a)]r + [2r2(61 + 62) + 2s61r cos (B2 + a)]«

+ [r2(81+ 02)2 + 257'61(61 + 82)cos (02 + a) + s2e1 } (1)

Now for any specified rotations of D1 and D2, 61 and 62 can be replaced by functions of t. (For example,
assuming 01 = 60t +

2
at2, 82 = A sin (wt + S), we have 61. = ;0 + at, B2 = Aw cos (wt + s).) Hence it is evi-

dent, without going into further detail, that an application of (13.1) leads at once to expressions for the
forces (say f, applied in the direction of r and fa in the direction of increasing a) required to give m any
desired motion relative to X2, Y2. See Problem 13.5, Page 278.

Notice how this method so easily takes full account of the rotations of D1 and D2 in expressions for
required forces. It is clear that an extension of the procedure outlined above will lead to expressions for
the forces required to cause the particles or rigid bodies of a very complex system to move in any manner
relative to X2, Y2, Z2 axes attached to D2.

13.4 Equilibrium of a System.
(Special case of the general problem treated in Section 13.2.)

The subject of equilibrium deals with the forces required to maintain objects at rest,
usually with respect to a stationary frame of reference but frequently relative to a moving
frame or moving constraints. The subject is obviously a special case of the one just con-
cluded in which all or certain motions are permanently zero. Two general types of problems
may arise: (a) given the forces acting on a system, to determine whether they will hold it in
equilibrium and, if so, to find values of the coordinates at which equilibrium occurs; (b) to
find forces required to hold the masses of the system at given positions. Moreover, in either
case, one may wish to determine forces of constraint.

Lagrange's equations when static conditions are imposed: Assuming moving coordinates
and/or moving constraints, T has the form (see equation (2.55), Page 27)
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n

Aklgk i +

Thus OT

aqr

I Bkgk + C
k=1

2 1 Arig1 + Br and
1=1

dt (Br)dt aq 2 1
dt (Ar1)g1 + 2 `4r1g1 +

d

Since in general Br = Br(g1, q2, . . ., qn; t),

d _ aBr . aBr .

dt (Br) a q1 + a q2
q1 qs

Also,
aT

aqr

aBr . 0,+ + aq qn + at
n n /aAk11

n
1/\ aqr /) M1 +k=1 1=1 k=1

n

CaBk aC
aqr qk + aqr
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(1)

(2)

Now if it is assumed that all values of q and q are zero, it follows from (1), (2), (3) that
(13.1) reduces to Or ali = F Qr + F9rat aqT

which, since r = 1, 2, ... , n, represents n equations.

(13.2)

Relation (13.2) is a very general and powerful tool. It wraps up almost the entire field
of equilibrium ("Statics") in one tiny package. The equation is, of course, valid when the
frame of reference and/or constraints are in motion. Coordinates of any type may be em-
ployed. Most of the usual "elementary" principles and methods of statics, frequently
given considerable space in intermediate texts, are automatically accounted for by (13.2).
Moreover, it is simple to apply.

Important points regarding the application of (13.2):
(a) In any expression for T, terms Br and C are easily recognized. (They are zero if there

are no moving coordinates or constraints; see expression (1), Example 13.5.)

(b) Fqr and Fqr are just the generalized forces with which we are familiar and are treated
in exactly the same way as in previous examples of this chapter.

(c) Br and C (and thus aBr/at and aC/aq,) are, in general, functions of coordinates and t.
(See derivation of relation (2.55), Page 27.) Hence it is clear that solutions of (13.2),
regarded as algebraic equations, give the unknown forces fl, f2, ... , f. in terms of the
q's and t.

(d) If neither the frame of reference nor constraints are in. motion, Br = 0, C = 0. Hence
(13.2) becomes

Fqr+FQr = 0
In this case no notice need be taken of T.

(13.3)

(e) By introducing superfluous coordinates and following exactly the procedure outlined
in Chapter 12, forces of constraint which now enter Fqr can be solved for.

13.5 Examples Illustrating Problems in Static Equilibrium.
Example 13.6.

Just for the sake of easily demonstrating a basic idea, note that on setting x = y = B = 0 in Example
13.2, equations (3) and (4) give at once the forces

fx1 = 0,
Mp12 Mg11

fy1 = 11+12'
_

11+12

required to hold the dumbbell in equilibrium.
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Note that each of Examples 13.1 to 13.5 becomes a good example in statics by setting accelerations
and velocities equal to zero.

Example 13.7.
A uniform rod of length 21 and total mass M is free to slide in contact with the fixed smooth semi-

circular wire as shown in Fig. 13-5, under the action of gravity. Let us find the angle a at which the rod
would remain at rest. FB = 0 and as can be seen

V = -Mgy = -Mg[(2R cos 0 - 1) sin 0]
Thus, applying (13.2),

F0 = -- = Mg [2R(2 cos2 e - 1) -.l cos e] = 0

Is there a limitation on the. value of l/R? (l/R 2)

Fig. 13-5

1 + l2 + 32R2

8R

r = 2R cos e
y = (2R cos e - 1) sin e
x = (2R cos e - l) cos 9

sin a = 1 - 2 cos2 e
cos a = 2 sine cos e

As an extension of this suppose that the semicircular wire is moving with constant acceleration
the positive direction of X; to find the equilibrium value of e. For this case write

z = xo + vxt +
2

axt2 + (2R cos e - l) cos e, ft = (2R cos e - l) sin e
Hence

a5 in

T 2M[(vx + axt - 4R8 sine cos 0 + le sin 0)2 +, (2R8 - 4R8 sine - le cos e)2] + j j;2

from which it may be seen that

B0 = M[(vx + axt)(l sin e - 4R sine cos e)], Co = 4-M(vx`+ axt)2

Applying (13.2), it follows that (ax sin e + g cos e)(4R COs' e - 1) 2gR from which a can be determined
graphically. Note that for ax = 0 this gives the same expression for cos a as found above,

The reader may show that, if the rod is to be held at a given angle a by a force f applied to its lower
end in a clockwise direction tangent to the circle, f is given by

M(ax sin e + g cos e)(l - 4R cos e) + 2MgR 2Rf

Note. Care must be used in writing S WO.

Example 13.8.
A particle is free to move under the action of gravity on the inside of a smooth hemispherical bowl

of radius R, Fig. 13-6 below. The bowl, fastened to a rigid arm of length -1, is made to rotate with angular
velocity a about a vertical axis ab. Let us find the equilibrium position of the particle assuming that
a = to = constant.

Axes X1, Y1, Z1 are stationary. X2, Y2, Z2 are attached to the arm. By inspection,

xl l cos a + R sin 6 cos (a + 0), yj = l sin a + R sine sin (a + ¢), z1 = R - R cos e

from which
or

T = 2m[R2®2 + (R2 sin2 (2lR« cos a sin 0)e

+ 2Rce(R sin2 6 + l sine cos o)¢ + (12 + R2 sin2 e + 21R sine cos 0)«2]

from which cos 0

(1)
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Fig. 13-6

From this it is seen that

BB = mlR« cos a sin 0, B0 = mRa(R sine 0 + 1 sin a cos 0), C = 2m(l2 + R2 sin2 e + 21R sin a cos 0)«2

For constant, aBelat = aB41/at = 0. But

ae = m(R2 sin a cos o + 1R cos 0. cos 95)«2, ac = (-mlR sin 0 sin 0)«2

Applying (13.2), -m(R2 sin a cos e + lR cos a cos 0);2 = -mgR sin 0 (2)

mlR sine sin 0 a2 = 0 (3)

For sin 0 # 0, sin 0 = 0 by (3). Now putting cos ¢ = 1, (2) finally gives g tan 0 = n2(R sin 0 + 1)
which can readily be solved graphically for 0.

Example 13.9.
Referring to Fig. 2-21, Page 22, let us determine the forces necessary to hold a particle stationary with

respect to D2. From the general expression for T given in Example 13.5, it is seen that

Br = mse1 sin (e2 + a) (1)

Ba = mr2(01 + 92) + ms61r cos (02 + a) (2)

C = 4-m[r2(el + 02)2 + 2s91(91 + e2)r cos (02 + a) + 82e1] (3)

For any specified rotations, B11 92, 92 can be replaced in (1), (2), (3) by specific functions of t. Now assuming,
for example, that forces fr and fa are acting on m in the direction of r and increasing a respectively, it is
clear that

aBr aC a
(4)fr,at ar = at as = rfa

give these forces in terms of r, a and t.

Assuming that el = alt + 2 bite and 02 = alt + .-b2t2, find expressions for fr and fa as functions of
time for a = 301.

Example 13.10.
Reactive forces on the rod, Example 13.7, Fig. 13-5. We shall assume that a reactive force fr acts on

the rod at pl toward the center of the circle and that another f 1 acts normal to the rod at p2. Regarding
the rod as "free" to move in the XY plane,

aB ac

T = 2M(x2 + y2) + 11e2
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which contains two superfluous coordinates. Equations of motion are merely

MXIT Fx, M y= Fs, I = FB

By inspection generalized forces are seen to be

F'x = f 1 sin 9 + f, sin a, Fy = Mg - f 1 cos e - f,. cos a, F0 = f 1(2R cos e - l) - f,a sin B

Thus assuming the bar at rest we get

fr = Mg tan e, fl = Mg C 2 co
os e- 1> and cos o =

l +
S +

3282

as previously found.

Problems

13.1. Motion is imparted to the system shown in Fig. 13-7 by a force fx applied to the truck (resting on a
smooth horizontal track) and a torque fe exerted by the armature of the motor. Show that for any
assumed motions, fx and f9 are given by

fx = Mx - mr9 sin e - mre2 cos e
fe = I W - mrx sine + mgr cos e - mrxe cos b

where M is the mass of the entire system, I the total moment of inertia of the armature and arm
about the axis of rotation, m is the mass of the arm and r is the distance from the axis of rotation
to the center of mass of the arm.

Assuming constant speed w of the motor and that the cart is moved with constant acceleration
a in the direction of x, find expressions for fx and f 0. Repeat for x = A sin (w1t + 8), e = w.

Fig. 13-7

13.2. (a) Assuming f1 and f3 only acting on the system discussed in Example 13.4, Page 271, find general
expressions for these forces for any given motions. (Answer. Equations (1) and (2), Example
13.4, with F$ = fi and Fx = f3.)

(b) Repeat (a) for f2 and f3 acting. (Answer. As above, with Fs = -f2, Fx = f2 + fe.)

(c) Repeat (a) and (b) using coordinates (xi, s). Show that results are the same as obtained above.



CHAP. 13] DRIVING FORCES REQUIRED TO ESTABLISH KNOWN MOTIONS 277

13.3. (a) A mechanism attached to ml;, Fig. 6-5, (see Example. 6.14, Page 107) exerts a horizontal force
f3 on m3. By means of devices attached to the fixed plane on which m, and m2 rest, horizontal
forces f1 and f2 are exerted on m1 and m2 respectively. Assuming that dissipative forces due to
the dashpots and contacts of m1 and m2 with the plane are all viscous, show that for any as-
sumed motion of the system, /, f 2, f3 are determined by

(m1 + m3) Z + m3g2 + b1x1 + a2(xl + q2 - x2) _ fl
m2 x2 + b2x2 + a2(x2 - x1 q2) f2

m3(x1 + q2) + a1 2 + a2(x1 + q2- x2) = fa
where a1, a2 are the coefficients of viscous drag on the pistons and bl, b2 are corresponding
coefficients for the bottoms of m1 and m2 respectively. Note that the springs shown have

A + B sin .,t, show that

been neglected.

(b) Assuming that m1 and m2 move with equal uniform velocity to the right and that

f1 = -m3w2B sin wt + a2wB cos wt + b1x1
f2 = -a2wB COS wt + b2x2

(c)

f 3 = -m3w2B sin wt + (a1 + a2)wB COS wt

q2 =

Show that, if the mechanism producing f2 is attached to m1, f1 on the right side of the first
equation above must ber_replaced by f1 - f2 and that the other equations remain unchanged.

13.4. The uniform disk D, Fig. 13-8, with an unbalancing particle of mass m glued to its periphery as
shown, can be made to rotate about the horizontal shaft cd by a motor (not shown). Torque applied
by the motor = Tq,. At the same time the vertical shaft can be rotated by a force F (torque rq,) ap-
plied to the crank C.

Zi F
s

F

Torque ro = F X s

Fig. 13-8

Neglecting the motor, show that L for the system is given by
L =

2
[I12 2 + m(R2 + r2 cos2 $)¢2 + 2Rr sin 95 + (I2 + 9nr2),2] - mgr sin 0

where 11 is the moment of inertia of the entire system (not including m) about the vertical axis AB
and 12 is the moment of inertia of D about axis cd.

Write expressions for finding r o and r,p for any desired motions.
Assuming that 0 = w1t + 00, 0 = ko sin ((0et + S), where w1, 00, 00, w2, S are constants, find

expressions for 7,0 and r,,.
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13.5. The particle m, Fig. 2-21, Page 22, is made to move in a circle of radius r with constant angular
velocity « = w3. Assuming ex = w1 and e2 = w2 are each constant, show that the required forces
are (see Example 13.5)

f,. _ -mr(wl + (02 + w3)2 - m.sd COS (w2 + w3) t, fa = msrwi sin (w2 + w3)t

13.6. A flat board, total mass M and moment of inertia I about an axis normal to its surface and passing
through c.m., is free to slide in contact with the X2Y2 plane, Fig. 2-21, Page 22. Show that its
kinetic energy is given by T = T1 + 2I(01 + 02 + 03)2 where T1 is just the expression given in
Example 13.5, Page 272, with m replaced by M. Here r, a locate c.m. and 03 is the angular displace-
ment of the board relative to X2.

Show that the force required to give c.m. any motion is just the same as required for a single
particle of mass M. Show that for 01 and 02 each constant, the torque required to give the board
any angular acceleration e3 is merely 171.

13.7. A dumbbell is to be given any motion relative to the X1, Y1i Z1 frame, Fig. 14-2, Page 286. Outline
briefly the steps required to find necessary forces, taking account of the earth's daily rotation.
(See Section 14.8, Page 290.)

13.8. The base supporting disks D1 and D2, Fig. 2-21, Page 22, is located at the origin of coordinates,
Fig. 14-2, Page 286. The particle is to be given any motion relative to the X2, Y2 axes shown on
D2. Outline briefly the steps required for finding the necessary forces fr,fa, taking account of the
daily rotation of the earth as, well as the rotations of D1 and D2-

13.9. Referring to Fig. 2-29, Page 36 (see Problem 2.20), show that for 0 having any constant value, a
force fz = mg - m02/2a applied to m in a direction parallel to Z will hold it at rest relative to the
wire at any point on the wire. Note that for 0 = v2ga, fz = 0.

Show that if the force is applied in the direction of r; f,. = 2mgar mr02.

13.10. Referring to Example 13.8, Page 274 and Fig. 13-6, forces fe and f, are applied to m in the direc-
tions of increasing a qnd 0 respectively. Show that expressions for fo and ft required to hold m at
rest relative to the bowl for any position (o, 0) are

fo = mg sin 0 - m(R sin a cos 6 + l cos a cos 95)a2, f o = mla2 sin 0

13.11. Show that for constant angular velocity w of the vertical shaft, Fig. 3-9, Page 54 (see Problem
k(l - lo) - mg cos o

3.14), the equilibrium position of m is given by r = k - mw2 Sin2 0

13.12. Forces fx, fy, fz are applied to the particle in Fig. 3-16, Page 56 (see Problem 3.27). Show for this
system that C (the third term in the general expression for T) is given by (see equation (14.15),
Page 287)

C = 2mw2[X2 + y2 sin2 ¢ + (r + z)2 cos2 ¢ - 2y(r + z) sin 0 cos o]

and hence that, in order to hold the particle at rest relative to the X2, Y2, Z2 frame (gravity

neglected),
fx = -mW2x, f, _ -mw2[y sin2 0 - (r + z) sin q, cos $], fx = -mw2[(r + z) cos2 0 - y sin 95 cos 95]

13.13. A board (total mass M, moment of
inertia I about an axis through c.m.)
is placed on a rough cylinder of ra-
dius R, Fig. 13-9. Show that T =
2MR2(e - 0,))262 + 2192 (where oo is
the value of o when c.m. is in contact
with the cylinder). Show that poten-
tial energy is given by

V = MgR[sin 0 - (0 - 0,)) cos e]
and finally, assuming no slipping,
show that e,) is the equilibrium angu-
lar position. Fig. 13-9
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13.14. Two uniform bars having masses and lengths (M1, 211) and (M2i 212) respectively are hinged at one
end and free to slide in contact with a smooth semicircular rod as shown in Fig. 13-10. Show that

V = M1g11 sin B + M2g12 cos B - 2(M1 + M2)gR sin o cos 0

and that the angle o at which equilibrium occurs is determined by
2(M1 + M2)R cos 9 - M111

tan e = 2(M1 + M2)R sin 9 - M212
How can o be evaluated?

Fig. 13-10 Fig. 13-11

13.15. Two rods having total lengths and masses (L1, Ml) and (L2, M2) respectively are pivoted at p3 as
shown in Fig. 13-11. m1 and m2 are suspended from a cord which passes over the small pulleys
pl and p2. Length 11 = p1P3, 12 = P2P3 and p3a = p3b. The spring (unstretched length ro)
and gravity act on the system. "Feet" a, b remain in contact with smooth floor. P3 moves in a
smooth vertical guide. Show that

V = (M181 + M282 + m1L1 + m2L2)g cos e + (m2 - m1)gy

where c = constant.
+ m2g(11 + 12 + 21112 - 41112 COS2 0)1/2 + .-k[(L1 - 11) cos e - C]2

Write out the two equations which determine the equilibrium of the system. Is equilibrium pos-
sible for m1 m2?

Given numerical values for all constants of the system, how can the equilibrium value of 0 be
found?

13.16. Regarding p, Fig. 4-13, Page 75, as a smooth ball joint, imagine the arrangement swinging in space
around the vertical dotted line. Neglecting the mass of the rod and regarding ml and m2 as particles,
show that in spherical coordinates,

T = 2m1(r1s2 + ri sin2 e2) + 2m2(r2 + r292,+ r2 sin2 9 2)

Now assuming a state of "steady motion" in which 0 = constant, r2 = constant and ' = con-
stant, show that steady motion values of r2, 0, are determined by the following relations

m2r2 sin2 e,2 = k(r2 - ro) - m29 cos 0 (1)

(m1r1 + m2r2) cos 6,2 = (m1r1 + m2r2)g (2)

(m1r1 + m2r2) sin2 9 = P,5 = constant (3)

where P0 is the angular momentum corresponding to 0.
Note that for an assumed value of , (which by (2) must exceed a certain minimum value),

(1) and (2) can be solved for the steady motion values of a and r2.
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13.17. In Fig. 13-12 the "particle" of mass m is moving in the XY plane about the fixed mass M, under
a "central force" f, directed along r. fr is some function of r (not necessarily an inverse square
force) and it is assumed that no other force is acting. Equations of motion are

(1) mr - mre2 = fr (2) Pe = mr2e = constant
where P. is the angular momentum corresponding to o.

Central Force Problem
f, = fi(r), fo = 0

Y f, may be positive (repulsion)
or negative (attraction).

Fig. 13-12

d _do d_Po d
(a) Eliminating a from (1) with (2), writing dt dt de mr2 de and finally substituting u = 1/r,

show that the differential equation of the path is

mfr
PBu2

(3)

(b) Assuming that the path is a conic section r = 1 - Acos e , where e = eccentricity, A = con-
stant which depends on constants of the system and initial conditions, show that fr = -4,/mAr2.
(Whether the path is an ellipse, parabola or hyperbola depends on initial conditions; in each
case fr is proportional to 1/r2.)

Per
(c) If the path is a rectangular hyperbola xy = C, show that fr = +4MC

2

(d) Given that the path described by m is a cardioid r = a(l + cos o). Show that
Sketch the orbit.

(e) Show that for the circle r = 2a cos 9, fr = 2p2

a/mr4.fr = -3P2

13.18. Referring to Example 13.8, Page 274 and assuming = bt (b = constant), find force components
required to hold m in the bowl at a point for which o = 45° and 0 = 30°.



CHAPTER

14

14.1 Introductory Remarks.
An accurate treatment of the motion of a particle or rigid body relative to the surface

of the earth requires careful consideration of the following matters.

(a) Due to the earth's annual rotation around the sun, its daily rotation about the polar
axis and slight motions of this axis, a frame of reference attached to the surface of the
earth is not inertial.

(b) The earth is not spherical, as frequently assumed, but slightly flattened at the poles.
Its "sea-level" surface closely approximates an ellipsoid of revolution about the polar
axis. See Fig. 14-1.

Note: Since a is very small, g in
reality points between Rt and R.

Plumb-bob determines
direction of g' which
is along an extension
of R.

Geocentric

Latitude

Geographic Radius

In &ci7t'j

"International" or Reference Ellipsoid

Fig. 14-1

(c) As a result of this shape the true acceleration of gravity, g, (due only to the attraction of
the earth) varies both in magnitude and direction with latitude. But since the earth is
very nearly symmetrical about the polar axis, g is usually regarded as independent of
longitude. In certain localities the value of g is affected by mountain ranges, non-
uniformities in the density of the earth's crust, etc. These gravitational "anomalies"
are in some cases important.
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(d) Due to the earth's rotation and the consequent centrifugal force on all objects, the
pendulum and plumb-line give a fictitious value of gravity, g', which except at the poles
is slightly different in direction and less in magnitude than g.

(e) The ellipsoidal shape of the earth makes it desirable, though not necessary, to employ
geographic values of latitude and radius rather than corresponding geocentric quan-
tities. (These terms are defined and discussed in Section 14.2.)

(f) As will soon be evident, expressions for kinetic energy are in no way affected by the
shape of the earth or its gravitational field. Assuming the frame of reference attached
to the earth, the particular form taken by T. depends on )e (the angular velocity of the
earth) and on the orientation of the frame but not on the earth's shape.

(g) It is important to remember that in the determination of generalized forces which in-
volve gravity the true g and not g' must be employed. (See Section 4.5, Page 61.)

(h) The annual rotation of the earth around the sun is usually neglected except in the treat-
ment of satellites. The motion of the polar axis is entirely negligible. Gravitational
anomalies depend on local conditions and must be determined experimentally on the
spot. Hence no further discussion of these matters is given. Moreover, no attempt
is made to treat the effects of a "pear shaped" earth or other slight deviations from an
ellipsoid of revolution. Such distortions may exist but if so they are very small. In.
Section 14.5, see Page 79 of reference (1) and Page 286 of reference (12).

14.2 Regarding the Earth's Figure. Geocentric and Geographic
Latitude and Radius.

The combined action of gravity and centrifugal force have, throughout the ages, given
the earth its very nearly ellipsoidal shape. Accurate measurements as well as theoretical
considerations show that the mean sea level surface of the earth very closely approximates
an ellipsoid of revolution (called the reference ellipsoid or reference spheroid) generated by
rotating the ellipse R, = b(1- E2 cost 4)1)-112 (see Fig. 14-1) about the polar axis, where
E2 = (a2 - b2)/a2, a = equatorial radius, b = polar radius and R1, 4)1, measured as shown,
are referred to as geocentric radius and latitude respectively.

For the treatment of many problems (but not all) the X1, Y,, Z1 frame attached to the
earth, as shown in Fig. 14-1 or Fig. 14-2, is quite convenient. Y1 is tangent to a meridian
line at O, and if extended would intersect the polar axis. Z1 is normal to the surface
(normal to a still pool of water) at 01. Extended backward, Z, intersects the polar axis at
02. X1 is normal to the Y1Z1 plane and points eastward.

Now R, defined by the line 0201 is called the geographic radius and 4), measured as in-
dicated, is the geographic latitude. (The term geodetic is sometimes used instead of geo-
graphic.) It is seen that at the equator 1 = and R1 = R, but in general there is a
significant difference between geocentric and geographic values. Relations between them
are given in Section 14.4. See Table 14.1.

14.3 Acceleration of Gravity on or Near the Earth's Surface.
As previously mentioned, it is convenient to treat two distinct values of gravity, each

of which varies in magnitude and direction with latitude and is independent of longitude:
(a) the "true" g due only to the gravitational pull of the earth (the value which would be
determined by a pendulum and plumb-line if the earth were not rotating) and (b) a fictitious
value g' which is the vector sum of g and the centrifugal force per unit mass ((02,R cos 4') due
to the earth's rotation. It is g' which is measured in the laboratory with, say, a simple
pendulum and plumb-line.
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Now it is a fact of importance that, neglecting anomalies, g' is normal to the surface of
the reference ellipsoid (normal to the surface of a still pool of water) and along the Z, axis,
Fig. 14-1, while g tilts slightly northward in the northern hemisphere at an angle a with
respect to Z1. Assuming the earth symmetrical about the polar axis, both g and g' are in
the Y,Z, plane (the plane of a meridian). As will be seen, expressions (11.11) relating g
and g' are easily derived.

14.4 Computational Formulas and Certain Constants.
For convenience in the treatment of specific problems the following constants and com-

putational formulas are given. They are taken from references listed in Section 14.5, Page
285. Specific references and corresponding page numbers are indicated in each case.
Notation used below is in accord with Fig. 14-1 and 14-2.

Equatorial radius, a = 6,378,388 meters. References: (2), page 334; (5), page 2.
Polar radius, b = 6,356,912 meters.
Flattening (or "ellipticity"), f = (a - b)/a. f = 1/297.0 = .0033670. References: (1),

page 52; (5), page 25.
Angular velocity of earth relative to fixed stars, we = 7.29211 x 10-1 rad/sec. Ref-

erence: (11), page 132. We = 5.3175 x 10-9, .2a = 3.392 cm/sect.
Reference ellipsoid may be written in terms of geocentric values as

R1 = b(1 - E2 cos24,1)-112 (14.1)

where the square of eccentricity is E2 = (a2 - b2)/a2 = 0.00672267. Reference: (5), page 3.
Note that 1 - E2 = b2/a2 = 0.99327733.

Geocentric radius R1 in terms of geographic latitude 4, is

R1 = 6,378,388(1 - 0.003367003 sin213 + 0.000007085 sine 243) meters (14.2)

Reference: (1), page 53, equation (3.53a). (14.2) is called the International ellipsoid.

Another expression for R1 is

R, = 6,378,388(0.998320047 + 0.001683494 cos 2c - 0.000003549 cos 4(D + ) meters

Reference: (4), part IL
Geographic radius R in terms of geographic latitude is

(14.3)

R = a(l - E2 sin2)-112 (14.4)

Reference: (8), page 101, equation (90). In expanded form,
R = all + 2E2 sin24, + $E4 sin4 +

Using the relation sin4 (D = sin2 c - 1 sin2 2,P and substituting numerical values,

R = 6,378,388(1 + 0.003378283 sin2c 0.000004237 sin2 2(P) meters (14.5)

Relation between c and b1. Reference: (8), page 98, equation (82).
2tan ( = b2 tan 431 (14.6)

The difference - D1, in seconds, in terms of is

- (D, = 695.6635 sin 2c - 1.1731 in 443 + 0.0026 sin 6D (14.7)

Reference: (5), page 26, formula (20). Or, in terms of (P1,

695.6635 sin 2c1 + 1.1731 sin 4 1 + 0.0026 sin 64-, (148)

Reference: (5), page 26, formula (23).
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Gravity g' (as determined by a pendulum at the surface of the reference ellipsoid) in
terms of geographic latitude 4 is

g' = 978.049(1 + 0.0052884 sine 4, - 0.0000059 sin2 2(D) (14.9)

Here 978.049 = sea level value of g' at the equator in cm/sect or gals. (14.9) is the Inter-
national gravity formula. Reference: (1), page 53, equation (3.53b); also (11), page 132,
equation (15).

Gravity gh at some small height h above the reference ellipsoid is

g, = g' - (0.30855 + 0.00022 cos 2(D - 0.000072h)h (14.10)

where g', given by (14.9), is in gals and h in kilometers. Reference (4), part II; also (3),
page 105, equation (5.13).

True gravity g in terms of g' on the surface of the earth. Note that g' may be regarded
as the vector sum of g and the centrifugal term &,2R cos 4'. Hence from Fig. 14-1 it follows
that

g sin a = o,2R sin c cos 4,, g cos a = g' + 02R COs' 4 (14.11)

where a is the angle between g and g'.

tan =

Thus (see Problem 14.33, Page 301)
sin 24)

e R )) (14 12)a 2to (g' + WQ R cos
.

Also, g2 = (g' + o,QR cos2 4,)2 + (W 2R sin 4 cos 4,)2 or
g2 = g'2 + WQR cos2 (D(2g' + weR) (14.13)

At Equator, 300 450 600
At Poles,

4> = 00 4, = 900

R1 6,378,388 = a 6,373,053 6,367,695 6,362,315 6,356,912 = b
in meters

R 6,378,388 6,383,755 6,389,135 6,394,529 6,399,936
in meters

g' in gals 978.049 979.338 980.629 981.924 983.221
or cm/sect

g 981.441 981.883 982.326 982.773 983.221
in gals

g - g' 3.392 2.545 1.697 0.849 0
in gals

0 5.15 5.95 5.15 0
in m mutes

4, 4>I
0 601.4463 695.6609 603.4782 0

in seconds

R - Rl
0 10,702 21,430 32,214 43,024

in meters

a - Rl
0 5,335 '10,693 16,073 21,476

in meters

Important Quantities for the Accurate Treatment of
Motion Near the Surface of the Earth.

Table 14.1
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14.6 Kinetic Energy and Equations of Motion of a Particle in Various
Coordinates. Frame of Reference Attached to Earth's Surface.

The following derivations illustrate well certain basic principles of dynamics, and the
resulting expressions are convenient for the solution of a wide range of problems.

A. Consider the X1Y1Z1 frame, Fig. 14-2, rigidly fastened to the earth with origin at 01.
Yi is tangent to a meridian, Z1 is an extension of the geographic radius R (Z1 is normal
to the surface of the reference ellipsoid at 01), X1 is normal to the Y1Z1 plane and points
eastward. Axes X2, Y2, Z2, with origin attached to the axis of the earth at 02, do not
rotate but point always toward the same fixed stars. We shall regard X2, Y2, Z2 as
inertial. Note that wet represents the angular rotation of the earth in time t. From the
diagram it can be seen that (3111 f312, R13, the direction cosines of X1 relative to X2, Y2, Z2,
etc., are given by

a

/ 21

1 31

- sin wet,

- S" "D COS wet,

COS 'b COS wet,

912 = COS wet,

#22 = - Sin $ Sin wet,

/ 32 = COS $ sin wet,

Fig. 14-2

Note that the orientation of X1, Y1, ZI relative to X2, Y2, Z2 can be expressed in Euler
angles (see Fig. 8-16, Page 156) where wet = - 90°, B = 90° - (P and ¢ = 0.
Hence expressions for the /3's can be checked at once by Table 8.2, Page 158.

It is also seen that xo = R cos I' cos wet, yo R cos sin wet, zo = R sin E. Hence
transformation equations relating the x2, y2, z2 and xi, yi, zl coordinates of particle m are

x = R cos 4, COS wet - x1 sin wet - Y1 sin tI? COS wet + -zl cos 4 cos wet

with similar expressions for y2 and z2. Since X2, Y2, Z2 are regarded as inertial,
T = 2m(x2 + y2 + z2).
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Differentiating relations for x2, y2, z2 and substituting in the above expression, we
finally get

T = 2m(xi + y2 + zi) + mwe[(x1y sin 4) + (Rx1 + z1x 1- xlzl) COs ]

(14.14)
+ 2mwe [xi + y sine 4' + (R + zl)2 cost 4' - 2y1(R + z) sin 4) cos 4']

Applying Lagrange's equations, the following equations of motion are obtained.
m[x1 + 2we(zl COS 4) - y1 Sin $) - .ex1] = Fxl

m[yl + 2wex1 sin P + we sin 4'((R +z1) cos - y1 sin (D)] = Fyl (14.15)

m[ z1 - 2wex1 cos 4, - we cos 4'((R + z1) cos 1 - y1 sin (D)] = F
1

Important points regarding (14.14) and (14.15).
(a) Expression (14.14) in no way depends on the shape of the earth. The form of T

depends only on we and the location and orientation of X1, Y1, Z1.
(b) Expressions (14.15) take complete account of the earth's rotation. Since

we = 7.29211 x 10-5 rad/sec, terms containing 02 can frequently be neglected. How-
ever, R is about 6.4 x 10$ cm and Rwe is roughly 3.4 cm/sect. As will be seen, this
term usually cancels out after introducing'g'.

(c) Assuming, for example, that gravity is the only force on m, generalized forces in
(14.15) are just Fxl = mgx1, Fyl = mgyl, Fz1 = mg-I where gx1, gyl, gzl

are the X1, Y1, Z1

components of true gravity g (not g'). Neglecting anomalies, g is in the Y1Z1 plane.
Hence Fx1 = 0. Referring to Fig. 14-1 it is seen that Fy1 = g sin a and
Fz1 = -g cos a. Hence by (14.11),

Fyl = weR sin cos c and Fz1 = -(g' + weR cos24')

Note. We have tacitly assumed that g and g' are constant in magnitude and di-
rection for any values of x1, yi, z1. Strictly speaking they are functions of x1, yl, zl
and could be so expressed if this degree of accuracy were required. See expression
(14.10). Thus (14.15) reduce to

x1 + 2we(z1 cos .13 - yl sin D) - we x1 = 0

yl + 2wex1 sin + We sin 4'(z1 cos 4' - y1 sin 4') = 0 (14.16)

zl - 2we xl cos 4' - we cos'(z1 cps 4' - y1 sin 4') = -g'
Terms containing w2R automatically cancel and R no longer appears in the equations.
For a stated value of (b, g' is given by (14.9).

(d) Expression (14.14), found above by means of transformation equations, can more
easily be obtained by an application of relations (8.4), Page 143. (See Problem 14.7.)

(e) Writing a as the total acceleration of m relative to inertial space, the quantities in
the brackets of (14.15) are just the components ax, ay, az of a along the instantaneous
directions of Xi, Y1, Zl respectively. (See Section 3.9, Page 48.) Moreover, note that
equations (14.15) can be written down at once from relations (9.6), Page 179. See
Problem 14.8.

(f) Components of centripetal and Coriolis acceleration as 01R and 2wex1 respectively
are automatically taken account of in equations (14.15).

(g) If the particle m is constrained in some known manner, T can easily be modified to
take account of this. See Example 14.2, Page 292.

(h) Relation (14.14) expresses T for a single free unconstrained particle. T for several
particles is obtained merely by summing this relation; and if the particles are con-
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strained in some manner, superfluous coordinates can be eliminated from T in the
usual way by means of equations of constraint (assuming holonomic constraints).
Moreover, any convenient coordinates other than rectangular can be introduced by
proper transformation equations as shown in B, C, D below.

B. Consider cylindrical coordinates p,,p, z, with origin at O1, Fig. 14-2. Writing x1 = p cos 0,
yl = p sin c and zl = z, the reader can show that (14.14) may be put in the form,

T = 1 z2)2

+ mwe[p2 i sine + (R + z)(p cos q) - p sin q)) COS (D - pz COS q) COS

2mwe [p2(cos2 + sine sine (D) + (R + z)2 cos2 cJ - 2p(R + z) sin 0 sin 4) COS I ]

(14.17)

Equations of motion in p, (p, z follow at once and basic expressions for generalized forces
(assuming gravity only acting) are

F, = mg sin a sin 0, F(p = mgp sin a cos cp, Fz = -mg cos a

which if desired can be written in terms of g', etc.
Following the same procedure it is easy to write T in spherical or other coordinates.

See Problems 14.9 and 14.10.

C. Consider an X', Y', Z' frame (not shown) with origin at 01, Fig. 14-2, where Z' is an
upward extension of the geocentric radius R1, Y' extended intersects the polar axis and
X', normal to the Y'Z' plane, points eastward. Note that the X'Y' plane is not tangent
to the earth at O1 and g' is not along Z'.

Using geocentric values, T and the equations of motion have exactly the same form
as (14.14) and (14.15) respectively where R1, 'I replace R, ( and, x', y', z' replace xi, yl, zl.
Again, for example, assuming gravity only acting on the particle,

Fx, = 0, Fy, _ -mg sin ((D - 431 - a), F., -mg cos ((- 4)1- a),

4,1,But g sin (I - 01- a) = g' sin (4 - 4) 1) - weRl sin i cos

g COS ((D - o1 - a) = g' COS ($ - $1) + t62R, COS2 (D1

Thus the equations of motion finally take the form

+ 2me(z' cos 4,1 - y' Sin 4 ) we x' = 0

431(z' COS D1 - y' sin $1) _ -g' sin ((D - 4)) (14.18)+ 2wex' Sin 4, + we Sin

z' - 2wex' cos $1 we COS $1(z' COS $1 - y' Sin $1) = -g' COS ($ - (P1)

Note that again terms containing )2R1 automatically drop out.
It is important to remember that for any and all types of forces acting, generalized

forces are determined in the usual way disregarding the rotation of the earth. See Sec-
tion 4.5, Page 61.

D. Consider the X1, Y1, Z1 frame, Fig. 14-3 below. Here Z1 is taken parallel to Z2 (the
polar axis), X1 in the plane of the meridian and Y1 perpendicular to the X1Z1 plane as
shown. In terms of xi, yl, zl relative to this frame, T for a single particle is given
(dropping a constant term) by

T = 2n4 + j1 + z1 + (x1 + y1 )we + 2we(x1y1 - ylxl) + 2Rwe(xlwe + yl) cos 43] (14.19)
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The reader should show that (14.19) can be obtained by applying relations (8.4), Page 143.

Equations of motion of m are,

m(xt - xt',e - 2i 1(oc - Ro)e cos 4)) = Fx
m(yl - y1o + 2toex) = F1,1

mz1=Fx1

(14.20)

Fxl, F,,1, F 1 are determined by gravity and whatever other forces may be applied to M.
But, as before, g (making an angle a with. R) must be employed. (See Problem 14.25.)
The reader should show that (14.20) follow directly from relations (9.6), Page 179.

E. Spherical coordinates with origin at the center of the earth. Axes X1, Yi, Z1, Fig. 14-4,
with origin at 02, are fastened to the earth. Employing spherical coordinates r, 0, 0
measured as shown and noting that 0 + 4)1 = 900, it follows that

T = 2m r2$tl + r2( + .,)2 cost 1] (14.21)

direction

fixed in IXt X1,Y1,Z1 rigidly
attached to earth

Fig. 14-4
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which is applicable to motion near the surface of the earth, or to long range projectiles.
Note that g is not parallel to r and decreases with height above the earth's surface.
See equations (14.9), (14.10), (14.11).

Relation (14.21) is also applicable to the motion of satellites. However, in this case
generalized forces Fr, Fq,1, F6 must be determined from accurate expressions for the
components of g at relatively great distances from the earth. (See Example 14.12,
Page 297.)

14.7 T for a Particle, Frame of Reference in Motion Relative to Earth's Surface.

The following examples illustrate the general technique.
(a) A railroad car moves in the X,Y, plane of Fig. 14-2, along a straight track which makes

an angle /3 with respect to Xi. A rectangular frame X, Y, Z is attached to the car with
X parallel to the track and Z parallel to Z,. Letting S represent the distance from 01
to the coach, relations between x,, yi, zi and x, y, z are

x, = S cos /3 + x cos /3 - y sin /3, y, = S sin (3 + x sin /3 + y cos /3, z1 = z

Eliminating x,, x1, etc., from (14.14) we obtain

T = 2m[(S + x)2 + y2 + z2] + mwe[y(S + x) sin 4) - y(S + x) sin 4,

+ cos 4((R + z)(S cos /3 + x cos /3 - y sin /3) - (S cos /3 + x cos /3 - y sin /3)z)]

+ 2mwe [(S cos /3 +x cos /3 -y sin /3)2 + (S sin /3 + x sin /3 + y cos /3)2 sine .p

- 2(S sin /3 + x sin /3 + y cos /3)(R + z) sin D cos + (R + z)2 cos2 ']

(14.22)

S may be assumed to vary in any manner. Lagrangian equations of motion, of course,
take complete account of the rotation of the earth as well as the motion of the coach.
(Note that the assumed motion of the coach is in the X,Y1 plane and not along the earth's
surface.)

(b) Consider an expression for T in coordinates relative to a rotating table placed at 01,
Fig. 14-2, with axis of rotation along Z1. An X, Y, Z frame with Z along Z1 is attached
to the table. Its angular displacement /3 is measured between X, and X. Then

x, = xcos/3-ysin/3, y1 = xsin/3+ycos/3, zi = z
Now eliminating from (14.14), T expressed in terms of etc.,
can be found.

However, employing relations (8.2), Page 140, we can write at once

T = 2m[(vx0 + x + t0yx - c,zy)2 + (vy0 + y + mzx - ilxz)2 + (vz0 + z + wXy - -yx)2] (14.23)

where the reader may show that

vox = R.e cos /3 cos (P, voy = sin /3 cos 4, v0

(oe sin /3 cos 1, coy = cile cos /3 cos (D, a)z = /3 + )e sin

This method is considerably less tedious than the one suggested above.

14.8 Motion of a Rigid Body Near the Surface of the Earth.
In outlining this problem we shall follow the notation and method presented in Section

8.10, Page 162. The reader would do well to review. this section. Indeed, the following
treatment is merely a special case of the more general treatment referred to above.
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Referring to Fig. 14-5, X1, Y1, Z1 represent just the X1, Y1, Z1. axes of Fig. 14-2. Here
we corresponds to 1Z1 in Fig. 8-21, Page 163. Hence it can be seen that O1x = 0, (l1,, = W COS (D,

Qlz = We
sin I'. Also f2x = ' sin 8 sin ¢ + 8 cos 0, etc. (See relations (8.11), Page 157.)

Hence components of the total inertial space angular velocity, ftotal, of the body along the
body-fixed X, Y, Z axes are given by (see (8.14), Page 163)

mx =

Wy =

4' sin 8 sin 0 +

>[i sin 8 COs 4, -

8 COS 4) + a120e COS +

8 sin 4, + a22tye COS 4) +

a13o,e sin 43

a23we
sin cJ (14.24)

Wz 4 + ' COS 8 + a320)e
COS 4 + a33aoe sin $

where al , a12, a13 are direction cosines of the body-fixed X axis relative to Xi, Yi, Zi, etc.
These may be written in terms of Euler angles 8, p, 0 by Table 8.2, Page 158.

total = total ang. velocity of body rela-
tive to inertial space. w., w, , x = com-
ponents of 0toh1 along instantaneous
positions of the body-fixed X, Y, Z axes.

North.

COS $ X1, Y1, Z1 fixed to surface of earth at latitude 4).V X', Y', Z' remain parallel to X1, Y1, Z1.
yl

Motion of Rigid Body Near Surface of Earth

Fig. 14-5

Following equations (8.4), Page 143, we find (see equations (8.15), Page 163) that

771 = Ro,e COS + x1 + wezl COS $ oeyl sin 43,

V
2 = y1 + aexl Sin $, 713 = 1 - wex1 COS

(14.25)

Now assuming for simplicity that 0 is at c.m. and inserting (14.24) and (14.25) into
(8.10), Page 148, we have the proper expression for T, from which equations of motion fol-
low at once. Generalized forces arising from gravity and any given applied forces are
obtained in the usual way.

14.9 Specific Illustrative Examples.
In each of the following examples, unless otherwise stated, we shall assume that g and

g' remain constant in magnitude and direction throughout the region traversed by the
particle and equal to values computed at the origin of axes. Strictly speaking this is not
quite true but if in any case accuracy requires it, corrections can be made. (See equations
(14.9) and (14.10).)
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Example 14.1. Determination of the direction of a plumb-line.

Assuming the bob at rest at 01, Fig. 14-1, we set x1 = xl = xl = 0, etc.; in (14.15) and find

Fx1 = 0, Fy1 = mweR sin 4' cos 4', -mw eR cos24'F,1

Regarding the bob as a free particle,

F.,1 = 0, Fyl = Ing sin a, Fz1 = r - mg cos a (2)

where a is the unknown angle between g and the plumb-line and r is the tension in the string. But T = Ing'
defines g'. Hence from (1) and (2),

g sin a = w 2 R sin 4' cos 4', g Cos a g' + ( 0 2 cost 4

which are just relations (14.11). Hence a, determined by (14.12), is the angle through which the plumb-
line is tilted as a result of the earth's rotation.

Example 14.2. Motion of a bead on a smooth parabolic wire.
A bead of mass m is free to slide along a smooth parabolic wire z1 = bxi (wire in the X1Z1 plane, Fig.

14-2) under the action of gravity. Making use of the above relation and yl = 0, relation (14.14) for T
can be put in proper form at once. The reader may show that the equation of motion finally takes the form

m(1 + 4b2xi) x1 + 4mb2x1xi - moue (2b2x1 cost 4' + x1) _ -2',ng'x1b

Compare this with the equation of motion given in Example 3.2, Page 44.

Example 14.3. Motion of a simple pendulum in the XZ plane.

A pendulum of length l is suspended from a point on the Z1 axis, Fig. 14-2, so that its rest position is
at 01. We shall assume that it is confined to swing without friction in the X1Z1 plane. Indicating the angu-
lar position of the pendulum by o, relation (14.14) reduces to

T = 2m12e2 + (mwelR cos 4,)e cos o - (mwel2 cos 4')(1 - cos 9)9

+ 2mwe [l2 singe + (R + l - l cos o)2 cos2 4']

The generalized force Fe = -mgl sin a cos a. Applying Lagrange's equation and assuming o small, we
finally get 9 = -(g'/l)e, which shows that, of course, the pendulum measurements give g' rather than g.

If the pendulum is allowed to swing in the YZ plane,

T = im12e2 + jmwe [12 sing a sine 4' + (R + l(1 - cos 9))2 cost 4'

- 21 sin e(R + l(1 - cos e)) sin cos 4']

Fe = -mgl sin (e - a) = -ml sin e(g cos a) + ml cos e(g sin a)

and, for a small, the equation of motion, as the reader should show, again reduces to -(g'/l)o.

Example 14.4. Rectangular components of force fx1, fy1, fx1 exerted by train tracks on a coach of mass
M moving north along Yi with uniform velocity y1.

Regarding the coach as a "free particle" and setting x1 = zl = z1 = 0, etc., in (14.15) we get

fx1 = -2Mweyi sin 4', fy1 = 0, fx1 = -Mg'

Thus the track exerts a force of -2Mweg1 sin 4' in the negative direction of X1. The vertical force fz1
exerted by the track merely supports the weight Mg', (not Mg).

The reader may show that, for the train moving east along X with constant velocity z1,

fx1 = 0, fy1 = 2Mwex1 sin 4', f x1 = Mg' - 2Mwex1 cos 4'

Note that the coach "weighs" less to the extent of 2Mwex1 cos 4'. If moving west it would weigh more. For
xl = 60 miles/hr., M = 100 tons and 4' = 45°, the loss. (or gain) in weight is about 56 pounds. (See
Problem 14.14.)
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Example 14.5. Motion of a short-range projectile, neglecting atmospheric drag.
Assuming no air resistance, no gravitational anomalies and that g' remains constant in magnitude and

direction throughout the space traversed, equations (14.16) are directly applicable. Dropping terms con-
taining we, we write

xl + 2we(zi cop 4 - yl sin 4') = 0

Jl + 2wexl sin 4' = 0

zl - 2wex1 CoS 4' -gr

(1)

(2)

(3)

Integrating equation (1) once, substituting for x in (2) and (3), dropping terms containing weyl and
we z1, the last two equations integrate at once. Putting these values back into (1) and again neglecting terms
containing we, this equation can be integrated. After evaluating the constants of integration, the final
approximate solutions are

x1

yl

zl

x0 + xot + we(yo sin 4' - 20 cos 4')t2 + 3weg't3 cos

Yo + yot - wexot2 sin 4)

zo + zot + 1(2wexo cos 4' - g')t2

(4)

(5)

(6)

where quantities with zero subscript indicate initial values. These equations have the usual simple form
except for terms containing we.

One should note that, aside from approximations made, (4), (5) and (6) are based on the incorrect
assumption that g' remains parallel to Zl for all values of the coordinates. Moreover, values of x1, yl, z1
given by these equations are to be measured relative to the X1, Y1, Z1 frame, whereas in actual practice
the height of a projectile at any time and the final range are measured relative to the curved surface of the
earth. Hence a more accurate and realistic treatment would involve several considerations not included
above.

As a possible means of eliminating some of the above difficulties, the reader may consider the follow-
ing. Take a reference point p on the surface of the ellipsoidal earth having a geographical latitude 4,0.
Indicate geographical latitude measured from this point by /l; that is, 4' = `bo + /3. Let longitude, qc, be
measured from a meridian passing through p. Let h, measured along an extension of the geographic R,
be the vertical height of a particle above the ellipsoidal surface of the earth. It now follows without
difficulty that

T = 2m[(R + h)2 + (R + h)2/32 + (R + h)2 (, + we)2 cost (d)o + R)]

Noting that R is a function of 4' (and thus of /3) by relation (14.4) or (14.5), equations of motion correspond-
ing to /3, h, 0 can be written at once. The acceleration g' (for h not very great) is given by (14.10) and is
always along h. Each of the quantities /3, h, 0 can be measured relative to the ellipsoidal surface of the
earth.

Example 14.6. Pendulum with sliding support. (See Example 4.4, Page 64.)
Let ml be free to slide along X1, Fig. 14-2. Assuming motion of pendulum confined to the X1Z1 plane,

it follows, applying (14.14) to ml and m2, that

T = 2rn1(xi + 2wex1R cos 4' + wexi) + 2m2(xi + r292 + 2x19r cos e)

+ m2we[(R - r cos e)(xl + r8 cos 6) - (xl + r sin e)r8 sin e] cos 4' (14.26)

+ 2m2we [(xl + r sin e)2 + (R - r cos 0)2 cost 4h1

from which (ml + m2) xl + mere cos e - m2re2 sin e - mlWexl

+ 2m2were sin e cos `' - m2we(xl + r sin 0) _ 0

m2 x1 r cos o + m2r2 e - 2m2wexlr sine cos 4'

- m2we (xl + r sin 9)r cos o -m2we (R - r cos 9)r sine cost 4'

F0 = -m2g'r sin 9 - m2weRr sin a cost 4'

(1)

The reader should compare these with corresponding equations of motion, assuming no rotation of the
earth. (See bottom of Page 64.)

Example 14.7. The Foucault Pendulum.
A mathematical analysis of the motion of a spherical pendulum, Fig. 14-6 below, the displacement of

which from 01 is always very small compared with the length l of the supporting string, shows that
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(a) relative to the earth (to the X1Y1 plane) the bob
describes a rotating elliptical path (precessing el-
lipse) and (b) relative to a horizontal XY plane
through 01 rotating with angular velocity -we sin 4'
about Ols thepath described is a closed ellipse with
its center at O.

Such an analysis will now ' be given. When
justifiable assumptions are made the mathematics
involved is quite simple.

Regarding m as "free", equations (14.15) ap-
ply directly and generalized forces are given by

F,.l - -Txl/l

FYI = mg sin a - Tyl/l (1)

F,l = -mg cos a+ T(l - zl)/l

-where T is the tension in the supporting string.
Substituting in (14.15), eliminating g sin a and
g cos a with (14.11) and neglecting terms contain-
ing we 2 (terms containing Rwe cancel), we get

Xi, Yi, Zi fixed to
earth as in Fig. 14-2

The Foucault Pendulum

Fig. 14-6

xl + 2wez1 cos 4' - 2weyl sin fi -T x l/ml (2)

yl + 2wexl sin 4) _ -Tyl/ml (3)

71 - 2wezl cos 4' _ -g' + T(l - zl)/ml (4)

We now assume that 1 is so large compared with the amplitude of motion that, to a good approxima-
tion, the bob moves in the X1Yl plane. Hence writing zl = zl = zl = 0 and neglecting 2wexl cos 4', (4) gives
T = mg'. Thus (2) and (3) become

(5), xl - 2wlyl = -g'xl/l (6) 2Ji + 2w1x1 = -g'yl/l

where wl = we sin 4,. These equations may be simplified by referring the motion to axes X', Y' which are
rotating in a clockwise direction (looking down) with angular velocity wl relative to X1, Y1. Substituting
equations

xl = x' cos colt + y' sin colt, yl = -x' sin wit + y' cos colt (7)

into (5) and (6), multiplying (5) through by sin colt and (6) by cos colt and adding, we get (8) below (after
neglecting wi as very small compared with g'/l). Likewise multiplying (5) by cos colt and (6) by sin colt and
subtracting, we obtain (9).

(8) y' + g'y'/l = 0

These integrate at once to give

x' = A sin ( g'/l t + S1), y' = B sin (VF/1 t + 82)

(9) x' + g'x'/l = 0

(10)

where A, B, 81, &2 are constants determined entirely by initial conditions. Hence the motion referred to the
rotating axes is simple harmonic along each axis with a period p = 27rV1_1;7 in each case. Thus the path
is an ellipse with center at 01.

An observer riding the rotating frame sees the above ellipse. But to an observer stationary with
respect to the earth's surface the elliptic path rotates with period 27r/wl or 27r/(we sin 4') = 24/(sin 4,) hours.
At either pole the period is 24 hours and at the equator there is no rotation. In the northern hemisphere
the rotation is from N - E - S - W, and opposite to this in the southern.

For good experimental results, care must be given to the type of support, s, used. Various types are
described in the literature. The supporting string should be long, and theory (not included here) shows
that motion should be started in such a way that the area of the ellipse is as small as possible. See example
below.



CHAP. 14] EFFECTS OF EARTH'S FIGURE AND DAILY ROTATION 295

Example 14.8. Starting the Foucault Pendulum.
If the bob is pulled aside and released from rest relative to the earth, the motion referred to the

rotating axes is very nearly along a line.
To show this, suppose that at t = 0, xi = xi = yi = 0 and yj = yo (bob displaced a distance yo

directly. north and released from rest relative to the earth). Putting these conditions into (7) in order to
find initial conditions relative to the rotating axes and finally substituting the results into equations (10),
it is found that

y' = yo cos ( g'/l t), x' _ -yo(p/Pl) sin ( g'/l t) (11)

where p = 27r l/g' and P1 = the period of the earth (24 hours). Since p is so small compared with Pi,
x' is always very small. Hence the area of the ellipse is quite small, motion being very nearly along the
Yi axis.

Example 14.9. Motion of a rod in the X1Y1 plane, Fig. 14-3, Page 289.
As a simple example involving the motion of a rigid body relative to the earth, consider the motion

of a thin uniform rod of mass M and moment of inertia I about an axis normal to the rod through its
center of mass.

We shall first determine its kinetic energy by a direct approach. Let x1, yj locate c.m. and o, measured
relative to X1, its angular position. Imagine the rod divided into a large number of small pieces each hav-
ing coordinates xi, yi and mass mi. Referring to expression (14.19), it is seen that

T = ? m[x? + + w2(X + y2) + 2w x,j 2R cosh]
2 i

e i yi e e(yi - yi e e yi

But xi = xi + li cos o, yj = yj + li sin e, where li = distance measured along the rod from c.m. to mi. Hence
xi = xi - lib sin o, j1i yi + lie cos 8. Eliminating xi, yi, xi, yi from T, performing the summation and
remembering that I, mil? = I, we obtain

T = 2M[(+) + we (xi + yi) + 2We(xiyi - yixi) + 2weR(xiwe + y1) cos `1'] + 2I(e + we)2

The reader should show that this expression follows at once from (8.10), Page 148.

Assuming only gravity acting on the rod, it is seen, Fig. 14-3, that
Fxi = -Mg cos (4' - a), Fy1 = 0, Fe = 0

Applying Lagrange's equations and relations (14.11) the equations of motion finally become, after
dropping terms xiwe, y1we,

xi - 2yiwe + g' cos `, = 0, yi + 2wexi = 0, I W = 0

Example 14.10. Equations of Motion of a top at a fixed point on the earth's surface.
The following example merits careful consideration since it illustrates well the basic principles of a

very general type of problem (see Probldm 8.24, Fig. 8-33, Page 174).

g and g' in plane, parallel to Z1Y1
plane with g' parallel to Z1.

x1 = r sin 9 sin Si'
yj = -r sin 9 cos ¢
zi = r cos 9
6,,p, o = Euler angles
See Figs. 8-21 and 14-5.

Xl - - -y1

Spinning Top with Tip "Fixed at 1 on Surface of Earth

Fig. 14-7
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Consider the top, Fig. 14-7 above, with tip fixed at 01 on the earth. Following the notation employed
in Section 8.10, Page 162, and in Section 14.8, Page 290, we shall outline steps for setting up equations of
motion, first employing body-fixed axes with origin at 01 and again using body-fixed axes with origin at
c.m. (Note that X1, Y1, Z1 of Fig. 14-7 correspond exactly to X1, Y1, Z1 of Fig. 14-2.)

(a) Take body-fixed axes X, Y, Z with origin at 01 (the tip) and Z along the axis of symmetry as shown.
It is seen that x = y = 0, z = r. Hence the last term in (8.10), Page 148, reduces to M(voxwy - voywx)r,
where vo = RwP cos 4, along X1. Thus vox = Rweail cos 4', voy = Rwea21 cos 4'. Also Ixy = Ixz =
lyz = 0, IP = Iy. &)X, wy, w,z are given by relations (14.24) and all, etc., by Table 8.2, Page 158. Then
by (8.10),

T = zMR2we cost 4'

Note that the first term is constant.

+ 1IP(w2 + w2) + 2IPwz + M(v0xwy - voywx)r (14.27)

The potential energy due to gravity is given by
V = Mr cos 9(g cos a) + Mr sin 9(g sin a) cos ¢

= Mr[cos 9(g' + 02R cost 4') + sin 9(weR sin 4' cos (D) cos ¢]

Hence equations of motion follow at once.

(14.28)

(b) Now let us take body-fixed axes as above except with the origin at c.m. In this case x = 9 = z = 0
and the last term in (8.10) drops out. wx, wy, wz are the same as above. Ixy = Ixz = lyz = 0 and
If = Iy . vo is now the inertial space velocity of c.m. and is considerably more difficult to express than
in (a). Making use of x1 = r sin o sin ¢, etc., and equations (14.25), Page 291, the -reader may show
that components of vo along X1, Y1, Z1 (not along X, Y, Z) are given by

vxl = Rwe cos 4' + re cos 9 sin V, +. rpi sin 9 cos .,t + wer cos 9 cos 4' + wer sin 9 cos ¢ sin 4'

vyl = r sin 0 sin ¢ - re cos 9 cos + wer sin 9 sin p sin 4' (14.29)

vzl = -r9 sin 9 - wer sin 9 sin p cos 4'

Thus vo = vxl + vyl + vzl can be written in full.

T = 2Mv0 + Z1P(w +y) + ,t1IPwz

The expression for V is the same as in (a). Hence equations of motion follow at once.

Example 14.11. Bearing forces due to rotation of the Earth. (See Fig. 9-7 and Section 9.12, Page 193.)

Consider a rotor mounted on the earth at latitude 4' as shown in Fig. 14-8. Note details given on this
diagram. The rotor is statically and dynamically balanced for X1, Y1, Z1 inertial. However, this is not
the case and we will determine bearing forces taking account of the earth's rotation.

X, Y, Z are body-fixed. Z taken along Y1.
Axes X, Y remain in X1Z1 plane.
Euler angles o = 90°, = 180°.

(fl=, f2=), (ft,. fey) = bearing forces
parallel to X and Y respectively.

X1, Y1, Z1 attached to surface of earth with 01 at latitude 4'
(same as X1, Y1, Z1 of Fig. 14-2).

Fig. 14-8
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Notation here used is exactly as in Fig. 9-7. Euler angles oi1L, 0 locate the rotor relative to X1, Y1, Z1
where e = 90° and P = 180°. Note that X, Y, Z are principal axes of inertia through c.m. and

J=z=0.
Inspection shows that components of the inertial-space angular velocity of the rotor along X, Y, Z are

wx = we sin 4' sin 0, wy = we sin 4' cos 0, wz = we Cos 4' +

Total X, Y, Z components of the forces are

Fx f lx + f 2x - Mg Cos a sin 95, Fy = fly + f2y - Mg cos a cos 95, Fz = fz + Mg sin a

Components of the inertial-space acceleration of c.m. (the origin O1) are

(1)

(2)

Ax = -weR cost sin 95, Ay = -weR cost cos 95, Az = weR sin 4' cos 4' (3)

Equations (9.2), Page 177, are then -MweR cost sin = f lx +f2x - Mg cos a sin 0, etc., which after
eliminating g in favor of g' (see equations (14.11), Page 284) become

fix + f2. = Mg' sin 0 (4)

fly + f 2y = Mg' cos 0 (5)

fx = 0 (6)

Applying relations (9.10), Page 182, we have

Ixwe' sin 4' Cos ' + (Iz - Iy)we sin 4, cos ¢(we cos 4' +

Iywe0 sin 4' sin 0 + (Iz - Ix)we sin sin 95("e cos +

(Iy - Ix)we sing sin cos = T ,

Solving (4) and (8) for fix we get

fix
sin o

fey 12

f2x12

11 + 12 [Mg'12 + Iz - Iy) sin 4' + we (Ix - Iz) sin `' cos 4,]

(7)

(8)

(9)

(10)

Note that the term 12l + l Mg' sin 95 is due to the weight of the "rotor while the remaining terms are a
1 2

result of the earth's rotation. Neglecting the term containing we and assuming Ix = Iy, the above reduces
to

f lx =
sin
l + l

95

(Mg 12 - &),¢I, sin 4))
1 2

(11)

If and Iz are each quite large, the second term can be appreciable. Hence even though the rotor is
statically and dynamically balanced on a "stationary" earth it is somewhat unbalanced on the rotating
earth.

Expressions for the remaining bearing forces f2x, fly, f2y follow at once.

Example 14.12. Motion of a satellite or long range projectile relative to axes X1, Y1, Z1, Fig. 14-4.
It is not the purpose of this chapter to discuss satellite motion. However, the following rather general

example is given in order to point out some of the difficulties encountered in a detailed treatment.

Assuming X2, Y21 Z2 inertial and applying Lagrange's equations to (14.21), Page 289, we get

m r - mr i 1 - mr(c + We)2 cost 4'1 = Fr
mA1 + 2mrr41 + mr2(, + we)2 sin `b1 cos 4'1 (14.31)

dt [mr2( + we) cost 4' ] = F0
solutions of which give the motion of the satellite (or long range projectile) relative to X1, Y1, Z1. 4)1 is the
geocentric latitude and 0 is a measure of longitude from any given meridian. Hence the motion is deter-
mined relative to the surface of the earth.

However, it is impossible to determine exact expressions for the generalized forces Fr, Fe1, F(,* They
depend on (a) the magnitude and direction of g at any distance r from O1, (b) a drag due to the atmosphere
(very attenuated at some distance above the earth's surface), (c) the attraction of the sun, moon and
planets, (d) the pressure of the sun's rays.
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If the exact mass distribution of the earth were known, g could be accurately evaluated. However,
this is not the case. The drag of the atmosphere must be determined largely from empirical results. The
gravitational pull of the sun, moon, etc., can be evaluated. The pressure of sunlight on a satellite can be
estimated with some accuracy.

Another important point to consider is the following. In the determination of (14.31) it was assumed
that X2, Y2, Z2 are inertial, which is not entirely true. For more accurate results T should be referred to
non-rotating axes with origin attached to the center of the sun.

Problems
14.1. Verify values of R1 and g' given in the 45° column of Table 14.1, Page 284.

14.2. Determine from Graph 14.1, Page 285, values of g and g' at Washington, Helsinki, Buenos Aires,
Wellington. Determine the value of a at each point.

14.3. Find the difference between 4' and `t1 and the value of a at Cincinnati, Ohio; at El Paso, Texas.

14.4. Determine the difference between R and R1 at Helsinki.

14.5. A simple pendulum has a length of 10 meters. Compute its period on the equator and at Seward,
Alaska. Find the precessional period of a Foucault pendulum at each point.

14.6. Enclose the ellipsoidal earth in an imaginary sphere of radius a (the equatorial radius of the ref-
erence ellipsoid). At 4,1 = 45° show that the distance, measured along an extension of R1, between
the surface of the ellipsoid and that of the sphere is 10,693 meters.

14.7. Obtain expression (14.14), Page 287, for T making use of relations (8.4), Page 143.

14.8. Write out equations (14.15), Page 287, by a direct application of relations (9.6), Page 179.

14.9. (a) Verify expression (14.17), Page 288.
(b) Repeat the above making use of expressions (8.4), Page 143.

14.10. Measuring cylindrical coordinates p, 0, z relative to X1, Y1, Z1, Fig. 14-3, show that for a particle

T = 2m[p2 + z2 + 2p2we¢ + p2we + 2Rwep sin o cos 4' + 2Rpwe(we+ ) cos 0 cos 4)]

Write out equations of motion. Obtain these same equations by an application of (9.6), Page 179.
Assuming gravity only acting, show that generalized forces are given by

FP = -mg sin 0 cos ((b - a), F,, = -mgp cos 0 cos (4' - a), F,z = -mg sin (`' - a)

Write out equations of motion. Introduce g' instead of g.

14.11. Referring the usual spherical coordinates r, 6, 0 to X1, Y1, Z1, Fig. 14-2, Page 286, verify the fol-
lowing expression for T applying equations (8.4), Page 143.

T = 2m(;2 + r2b2 + r2¢2 sine 6) + mwe[r2 sine 6 sin

+ (R + r cos 6)(r sin o cos 95 + re cos 6 cos 0 - r sin 6 sin 0) cos

- r sin 6 cos sb(r cos o - rb sin o) cos 4'] + 2mwe [r2 sin2 6(cos2 $ + sine ¢ sine 4')

+ (R + r cos 6)2 cost 4' - 2r sin 0 sin O(R + r cos 6) sin 4' cos 4']
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14.12. A small sphere is suspended in a viscous oil from a string having a length of 10 meters. It is held
in the rest position it would occupy were the earth not rotating. When released, show that the sphere
finally comes to rest at a point directly, south a distance of about 1.7 cm where 4. 45°.

14.13. A ball is dropped from a point zo on the Z1 axis, Fig. 14-2§ Page 286. zo 100 meters, 4' = 45°.
Show that it strikes the ground in t = (2zo/g')112 at a point x1 = 1.6 cm approximately and
yl = 0. (Ball dropped from rest, air resistance neglected.)

14.14. An elevator has an upward velocity along Z1, Fig. 14-2, of 30 mi/hr., measured relative to the
building. Mass of elevator = 3000 pounds, 43 = 45°. Show that the X1 and Y1 components of
side thrust on the elevator are fxl = 13.6 poundals, and at z1 = 0, fy1 = 0. (Why is it that
f , mweR sin 4' cos 4'?)

14.15. In Example 14.3, Page 292, verify expressions for T and the generalized forces in each case treated.

14.16. One edge of a smooth rectangular board remains in contact with the X1 axis, Fig. 14-2. The op-
posite end is lifted up so that the board makes an angle e with the X1Y1 plane. A particle is free to
move in contact with this smooth inclined plane under the action of gravity. Verify the following
equations of motion

m z1 - 2mwes sin (4) - e) - mwe x1 = 0
M s + mwe sin (-D - o) [2z1 - wes sin (4' - e)] = -mg' sin o

where s is measured up the incline. z1 = s sin e, y1 = s cos 0 Care must be used in the determina-
tion of F.

14.17. When a mass m is placed on platform scales S (S located at some point on the equator) the dial
reads a "weight" of mg'. S is now made to move eastward along the circular equator with uniform
tangential velocity v relative to the earth's surface. Show that m loses weight to the extent of
m(v2/R + 2wev); that is, the scales now read mg' m(v2/R + 2wev).

Will a ship moving eastward displace the same amount of water as when at rest in the water?
Consider the case for westward motion. (Repeat for motion north along great circle.)

14.18. Liquid is flowing due north in an open channel along the Y1 axis, Fig. 14-2. Assuming that the
entire liquid has a uniform velocity 311 and taking x1 = y1 = z1 = 0, show that the surface of the
liquid is tilted at an angle ,6 from the horizontal, where tan /3 = 2we?f1 sin 4,1g'. (Which way?)

14.19. Imagine the earth rotating at a speed such that an object at the equator has no weight. Prove
that for a homogeneous spherical earth the plumb line at any point on the earth is parallel to the
polar axis. Show that g' = w2R sin 4'.

14.20. A Foucault pendulum having, a length of 20 meters is suspended on the earth at 4' = 30°. Show
that its period of oscillation is 8.98 seconds and that the precessional period is 48 hours.

14.21. Determine final expressions for T by each method suggested in Section 14.7, paragraph (b), Page
290, and compare results obtained.

14.22. Referring to Problem 3.5, Page 52, the conical spiral, Fig. 3-5, is placed so that X, Y, Z coincide
with X1, Y1, Z, of Fig. 14-2. Taking full account of the earth's rotation, show that T is given by

T = 2m[a2(1 + b2z2) + 1]z2 - mweaz[abz2 sin 4' - (R + z)(cos (bz) - bz sin (bz)) cos 4'

+ z cos (bz) cos 4'] + 2mwe [a2z2(cos2 (bz) + sin2 (bz) sin2 4') + (R + z)2 cos2

+ 2az(R + z) sin (bz) sin 4' cos 4']

Set up equations of motion and finally replace g by g'. (See equation (14.17), Page 288.)

14.23. Referring to Problem 3.14, Page 54, suppose the vertical shaft, Fig. 3-9, is mounted along Z1, Fig.
14-2. Set up the equation of motion for m, taking account of the earth's rotation. Note that g is
now not in the direction indicated in Fig. 3-9. (See Problem 14.11.)

m mrw2 sin2 0 + 2wewrm sin 0 (cos a sin 95 cos 4' - sin 0 sin 4')

- mwe r[(cos 0 cos (P sin 0 sin 0 sin 4>)2 + sin2 0 cos2 0] = k(l - to - r) - mg' cos 8
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14.24. Applying Lagrange's equations to (14.17), Page 288. Show: that the equations of motion correspond-
ing to p, 95, z are

m p - mp¢2 + mwe(2z cos 0 cos 4' - 2p sin 4') + mwe [z sin 0 sin' cos 4'
p(cos2 q, + sine 0 sin2 4')] = 0

mp ¢ + 2mp + 2mwe(p sin 4' z sin 0 cos 4') + mwe cos 0 cos ((p sin 95 cos 4' + z sin 4')

m z + 2rnwe cos 4'(p sin 0 - P cos 0) + mwe cos 4'(p Sin $ sin 4' - z cos'!') = -mg'
= 0

14.25. Assuming gravity only acting, show that in equations (14.20), Page 289,

Fxl = -mg' cos 4' - mweR cos 4', F,,l = 0, F,1 = -mg' sin 4'

Note that in the first of these equations mweR cos 4' cancels out.

14.26. Equations of motion of m, Fig. 2-21, Page 22, are to be found relative to D2, taking account of the
earth's rotation. Assuming the bearing supporting D1 is rigidly fastened to the earth at O1, Fig.
14-2, Page 286, and that faces of D1 and D2 remain horizontal, show that T expressed in polar
coordinates r, a is given by [Let X1, Y1 of Fig. 2-21 correspond to X1, Yj of Fig. 14-2.]

T = 2m[sei + r2 + r2(B1 + e2 + a)2 + 24,; sin (02 + a) + 2s91r(91 + 82 + a) cos (02 + a)]

+ mwe[s291 + r2(e1 + e2 + a) + sr sin (e2 + a) + sr(291 + B2 + «)] sin 4'

+ mwe[. cos (91 + 02 + a) - s91 sin 61 - r(91 + e2 + a) sin (91 + e2 + a)]R cos 4'

- mw2R[s sin 61 + r sin (91 + 02 + a)] sin 4' cos 4'

+ zmwe {[s cos al + r cos (61 + 62 + a)]2 + [s sin 01 + r sin (01 + 92+ a)] 2 sin2 q')

e1, 02 are assumed to be any known functions of time. Note that for we = 0 this reduces to (2.46),
Page 25.

14.27. The base B, Fig. 13-10 (see Problem 13.14, Page 279) is placed on the surface of the earth at 01,
Fig. 14-2, Page 286. Assume that the plane of the semicircular rod is in the Y1Z1 plane and that
the dotted line ab is horizontal. Note that g' and not g is now normal to ab. Write an expression
for T and find the equilibrium value of o.

14.28. The support B, Fig. 8-12, Page 153, is attached to the earth at 01, Fig. 14-2. Regard X1, Y1, Z1 of
Fig. 8-12 as X1, Y1, Z1 in Fig. 14-2, with c.m. at 0. Assuming the disk is replaced by a body of any
shape with c.m. at 0, show that T is given by (See equations (8.14), etc., Page 163.)

T = 2MweR2 + 2(Ixwe+Iywy+Izwz - 21x,,wxwy - 21xwxwz - 2lyzwywz)

where wx = ¢ sine sin o + we(cos o sin o + sin o cos p cos 6) cos 4' + we sine sin 0 sin 4,

ws = sine cos ¢ + we(cos 0 cos ¢ cos e - sin 0 sin ¢) cos 4' + we sine cos 0 sin 4'

wz = + cos 8 - we sin 0 cos p cos 4' + we COS 0 sin 4'

Note that the first term in T is constant and can thus be eliminated. Since Euler angles are here
measured relative to the earth, equations of motion obtained from T above give the motion of the
body relative to the earth.

14.29. Verify relations (14.29), Page 296.

14.30. The disk D of Fig. 8-5, Page 146, is mounted on the earth with point b at the origin of the. X1, Y1, Z,
axes of Fig. 14-2. Axis ab is vertical along Z1. Write an expression for T of the disk, taking
account of the earth's rotation. Care must be used in getting the velocity of c.m. of D. (See Prob-
lem 14.28.) (See equations (8.4), Page 143.)

14.31. The gyroscope, Fig. 8-18, Page 159, is mounted on the earth at 01 with X1, Y1, Zl of Fig. 8-18
superimposed on X1, Y1, Z1 of Fig. 14-2. Show that (see Example 8.16, Page 159),

e ¢ + we (sin sin a +cos 4' cos cos e)2 + e2T = 2MR20e cost 4' + 21x [we cost sin

+ (' + 2we sin 4')¢ sin2 e + 2we cos 4'(9 sin p + ¢ cos ¢ sine cos 9)]

+ 27z [(V' + we sin's) cos e + - we cos'!' COS ¢ sin 6]2

Set up equations of motion (a) by the Lagrangian method, (b) by the Euler method.
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14.32. A rotating table is located with its center at 01, Fig. 14-2, and its axis of rotation along Z1. The
supporting base A, Fig. 8-5, Page 146, is mounted on the table at a distance r measured along a
radial line from 01 to the center of base A. The table is made to rotate with angular velocity « (not
necessarily constant) where a is measured from the X1 axis of Fig. 14-2 to the radial line r. Angles
e and 0 are measured as indicated on Fig. 8-5. Indicating the angle between an extension of r and
the projection of bZ (Fig. 8-5) on the X1Y1 plane as ;Q, we define p (in keeping with the definition of
Euler angles) by ¢ = ,8 + 90°.

Show that components of the angular velocity of the disk (measured relative to inertial space)
along the body-fixed X, Y, Z axes are given by

w,, = [(we sin 4, + « + ¢) sine +we cos 4) cos (a + ¢) cos o} sin 0 + we cos 4' sin (a +'p) cos 0

wy =

wz =
[(we sin D + « +

+ (we sin (D +

sine + we cos 4' cos (a + ¢) cos o] cos 0

+ ¢) cos 0 - we cos 4' cos (a + ¢) sin 0

- we cos 4' sin (a + ¢) sin 0

Show that the X, Y, Z components of the inertial-space velocity of c.m. are given by

vox = v1(cos 0 cos p - sin gi sin ¢ cos o) + v2(cos 0 sin'p + sin o cos 'p cos o)

etc. for voy, v0z, where

vl = weR cos 4> cos a + l' sin o cos 1', « - weR cos 4' sin a + l¢ sin 0 sin ¢, v3 = 0
and l is the distance bO, Fig. 8-5. Note that T can now be written and equations of motion of the
disk found at once.

14.33. Inserting the expanded form of R given directly below (14.4), Page 283, into the first relation of
(14.11), Page 284, show that after introducing proper numerical values, a in minutes of arc is
closely approximated by

3437.75a =
B

(3.392 + 1.14 X 10-2 sine 4') sin cos

This is a useful computational formula.

14.34. Taking account of the annual rotation of the earth about the sun, write T for the particle shown in
Fig. 14-2 in terms of x1, yl, z1. Regard non-rotating axes with origin attached to the center of the
sun as inertial. Also, for simplicity, assume that the earth rotates with constant angular velocity
in a circular path of radius Re = 93X 106 miles. Set up equations of motion and compare with
(14.15), Page 287. Note that the earth's polar axis makes a constant angle of about 23.5° with a
normal to the plane of the earth's orbit.
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15.1 Preliminary Remarks.
Lagrange's equations are directly applicable to a wide variety of electrical and electro-

mechanical systems. As will soon be evident, they are especially advantageous in treating
the latter.

Generalized coordinates, velocities, kinetic energy, potential energy, the power function,
equations of constraint, degrees of freedom and generalized forces, so familiar in mechanics,
each has its counterpart in many types of electrical systems. Hence with suitably selected
coordinates and T, V, etc., properly expressed, the Lagrangian equations for electrical or
electromechanical systems have exactly the same form as equation (4.9), Page 60.

Since a detailed treatment of the many possibilities and ramifications into which this
topic could lead would require several chapters, this discussion is limited to an outline of
some of the more important phases of the subject.

15.2 Expressions for T, V, P, FQ and Lagrange's Equations for Electrical Circuits.

A. Suitable Coordinates. .

Referring to Fig. 15-1, the charges Q1, Q2,
etc., which have flowed through the various
branches of the network after a given instant
of time, say t = 0, constitute suitable "coordi-
nates". Thus the current i = dQ/dt = Q cor-
responds to a "velocity" and likewise Q to an
"acceleration". As in the usual treatment of
circuits, a positive direction of flow (direction
of the current) must arbitrarily be assigned to
each charge, as indicated in the figure. This
amounts to choosing a positive direction for
the coordinate. Fig. 15-1

B. Equations of Constraint and Degrees of Freedom.
Not all charges flowing through a network are independent. At any junction the

algebraic sum of all charges flowing to the junction must be zero (Kirchhoff's law).
Hence the number of independent junction equations represents just that many equa-
tions of constraint. For example, there are six charges flowing (six currents) in the six
branches of the Wheatstone bridge, Fig. 15-1. At each of the junctions a, b, c, d, rela-
tions 66 = 61 + 62 (or Qs = Q1 + Q2), etc., can be written. But only three of these
are independent. That is, taking, say, Q6 = Q1 + Q2, Q2 + Q5 = Q4 and Q1 = Q3 + Q5
as independent, the fourth equation can be obtained from these three. Thus since there
are six coordinates (charges) and three equations of constraint, the bridge has only three
degrees of freedom.

302
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C. Kinetic Energy.

303

The magnetic energy S of a single coil of constant inductance M is 46 = 2MQ2. Com-
paring this with T = 2mv2, the kinetic energy of a particle, M corresponds to mass and
Q to v.

The energy of two coils with self inductances M11, M22 and mutual inductance M12 is

= 2(M11Q1 + 2M12Q1Q2 + M22Q2)

which again has the familiar form of kinetic energy. In the more general case of a
network containing s coils, the electrical kinetic energy is given by

TEI = 2 1 MirQiQr
it

(15.1)

where it is seen that Mir correspond to Air in equation (2.56), Page 27. Superfluous Q's
should be eliminated from TEI by means of equations of constraint. -

Important notes. (a) Consider, for example, two coaxial coils (1) and (2) in which
fluxes 01 and 0, are established by currents i1 and i2. If there is mutual inductance
between them, part of p1 threads (2) and part of ¢2 threads (1). Now if for positively
chosen directions of i1 and i2, , threads (2) in the direction which p2 has in (2) (likewise
02 will thread (1) in the direction of 01), then M12 is positive; otherwise it must be taken
negative. Hence Mir can be either a positive or negative quantity.

(b) In the discussion leading to (15.1) we have tacitly assumed that all inductances
are constant. But if, for example, the coils have iron cores, then M11, M12, etc., depend
in a rather complicated manner on the currents. In this case Lagrange's equations,
in the usual form, are not applicable. Moreover, iron cores introduce the complex
phenomenon of hysteresis losses. Hence we shall assume in what follows that in-
ductances do not depend on the currents. Mutual inductances may, however, depend
on space coordinates.

D. Potential Energy.
The potential energy of a network may conveniently be regarded as composed of

two parts: the energy of sources (batteries, generators, etc.) and the energy stored in
condensers.

A source of constant terminal voltage E supplies energy EQ to the system, where Q
is the charge "delivered by the source" in the direction of E. Hence. referring potential
energy to the "point" Q = 0, we write Vsource = -EQ where Q is assumed. to flow in
the positive direction of E. Note that this is entirely analogous, to the simple relation
V = -mgy for the potential energy of mass m due to gravity, with y taken positive
vertically upward. The above relation is still valid even though E may vary with time,
as E = Eo sin , t, because in finding generalized forces t is held fixed.

The energy of an isolated charged condenser of capacity C may be written as
S = 2Q2/C which corresponds exactly to the energy of a coil 'spring, (1/C corresponds
to k). Hence the potential energy of a network containing several sources and isolated
condensers is given by

Vl l = 2 I Q2/CI - L'', Q,
t

(15.2)

from which, as in the case of TEI, superfluous coordinates should be eliminated.

If at t = 0, condensers have initial charges Qo1, Qo2, etc., the corresponding energy
is written as 2 (Ql + Q01)2/C1, etc. And if current Qs flows opposite to the positive di-
rection of E, then ESQ, must be taken positive.
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E. Generalized Forces,. FQr.
The basic "forces" acting on an electrical net-

work may be illustrated by reference to the simple
circuit shown in Fig. 15-2. Applying here
Kirchhoff's laws, we write

R C M

->E
17

MQ = E-QIC-RQ Fig. 15-2

from which it is seen that MQ corresponds to an "inertial force" (as mx), Q/C cor-
responds to the force exerted by a spring (compare with kx), E is the "force" applied by
the battery and -RQ corresponds `exactly with a viscous force as -ax. (Note that RQ
is a dissipative force.)

FQ,, the total generalized force corresponding to Q,, may conveniently be regarded
as made up of (F(,,r)c due to conservative forces and (FQ,)R due to resistances. Clearly
(FQ,)C = -avlaQ,.

Expressions for (FQr)R may be obtained as follows. When charge SQi flows through
Ri, the work involved (energy dissipated) is 8Wi = -RiQi8Qi. Hence for a system con-
taining any number of resistances,

8 Wtotat = -(RlQl 3Q1 + R2Q2 SQ2 + . . . ) (15.3)

After eliminating superfluous currents and charges and collecting terms, the (FQ,)R can
be read directly from (15.3). These forces may also be found from (15.4a) below.

The total generalized force is, of course, given by
FQ, _ -aV/aQr + (FQ,)R

F. Use of the Power Function.
The following forms are useful in many problems:

(a) P = -2 1 RiQ? and (b) P = -
b A+i l Qb+i (15.4)

The first (a special case of the second) is applicable in all cases where, for each re-
sistance, SW = -RQ SQ. The second applies when the "voltage drop" across a
resistance is given by E = AQb, that is, 8W = -AQb 8Q. (See Example 15.2 below.) In
either form superfluous currents must be eliminated.

G. Lagrange's Equations for Electrical Circuits.
(No moving parts considered at this point.)

The following form is applicable to. electrical. systems consisting of a finite number
of "lumped" (not distributed) inductances, condensers, resistances and voltage supplies:

d
dt

(PLE9 - aLE1 = FQ, (15.5)
aQ, Qr

where the Lagrangian LEt = TEL - VEt, and FQr = (FQr)R, found from (15.3) or
(15.4), is due to dissipative forces only. Conservative forces are of course automatically
accounted for.

15.3 Illustrative Examples (purely electrical systems; no moving parts).
In what follows specific units are not introduced.

Example 15.1.
Consider the simple circuit shown in Fig. 15-3 below. The system has only two degrees of freedom,

the one equation of constraint being
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Assume mutual inductance between all coils.

Fig. 15-3
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Q1 = Q2 + Q3 - (1)

Assuming mutual inductance between all coils,
- 1 2 2 2

T = 2 [M11Q1 + M22Q2 + M33Q3 + 2M12Q1Q2 + 2M13Q1Q3 + 2M23Q2Q3] (2)

Eliminating say Q3 from (2) by (1), the final form is

T 2 [M11Q1 + M22Q2 + M301 - Q2)2 + 2M12Q12 + 2M13Q1(Q1 - 62) + 2M232(Q1 - Q2)] (3)

It follows at once, after eliminating Q3, that
2 2V rQl + Q2 + (Ql C Q)2 E1Q1 + E2Q2 + E3(Q1 - Q2) (4)

L 1 2

Applying Lagrange's equations in the usual way, differential equations corresponding to Q1 and
Q2 are

- E1 + E3 = FQ1

(M22 + M33 - 2M23) Q2 + (M12 - M33 M

ES -

Ql

C3
+ E2 - E3 = FQ2

From the diagram it is seen that work SW = -R1Q1 SQ1 - R2Q2 SQ2 - R3Q3 SQ3i and eliminating
Q3 and 8Q3 by (1),

SW = [R3Q2 - (R1 + R3)Q1] SQ1 + [R3Q1 - (R2 + R3)Q2] SQ2

Hence FQ1 = R3Q2 - (R1 + R3)Q1, FQ2 R3Q1 -. (R2 + R3)Q2. Note that these generalized forces are
also given by FQ1 = aP/aQ1, FQ2 = aP/aQ2 where (see equation (15.4a))

P = -j[R1Q1+ R2Q2 + R3(Ql - Q2)2]

Example 15.2.
The circuit of Fig. 15-4 contains two identical two-element tubes connected as shown. We shall assume

that E3 is given by AQ3 where A and b are constants, or E3 = A 1Q3-11 63 Where IQs-11 indicates ab-
solute values. An external voltage E2 = E0 sin wt is applied as shown. The Lagrangian for the system,
eliminating Q3 and Q3, is

Fig 15-1



306 ELECTRICAL AND ELECTROMECHANICAL SYSTEMS [CHAP. 15

1

.2 2
2L = 2 [M11Q1 + M22Q2 + M33(Q2 - Q1) + 2M121Q2

+ 2M13Q1(Q2 - 61) + 2M23Q2(Q2 - Q1)1 2Q21C + E1Q1 + Q2E0 sin wt

from which equations of motion follow at once. Expressions for FQ1 and F02 may be found from
77Sly _ -[R1Q1 SQ1 + R2Q2 SQ2 + R3(Q2 - Q1)(SQ2 - SQ1) + AI(Q2 - Q1)b-1I (Q2 - Q1)(SQ2 - SQ1)1

The reader should show that the same expressions for the generalized forces may be obtained from a
P function obtained by taking the sum of (15.4a) and (15.4b).

15.4 Electromechanical Systems: The Appropriate Lagrangian;
Determination of Generalized Forces.

An electromechanical system is one in which the energy associated with it is in part
electrical, magnetic and mechanical. An ordinary moving coil galvanometer is a simple
example. The coil and its suspension have "mechanical" kinetic and potential energy. The
coil and circuit to which it may be connected have "electrical" energy. As the coil moves,
the torque acting on it and its angular velocity, displacement and acceleration are dependent
on the electrical quantities of the system, and vice versa. Because of this interrelation, the
mechanical motion and electrical performance cannot be treated separately. The system
must be regarded as a whole.

The Lagrangian for an electromechanical system may be written as

L = TEI --VEI +TMe - VMe (15.6)

where TEI and VEI are written out as illustrated above. TMe and VMe represent the mechanical
kinetic and potential energies respectively, expressed as usual in any convenient generalized
space coordinates q1, q2, . . ., qnl. If, besides these ni space coordinates, n2 independent
charges are to be accounted for, the system may be said to have n = nl + n2 degrees of
freedom. An application of Lagrange's equations to (15.6) leads at once to ni + n2 equa-
tions of motion.

In writing (15.6) for any specific problem, care must be used in the selection of units
so that all terms in L are expressed in the same energy units. As previously mentioned,
no specific units are introduced in this chapter. Generalized forces (not taken account of
by potential energy terms in L) for both electrical and space coordinates are found in the
usual way, as will be seen from examples which follow.

Example 15.3.
Consider the system shown in Fig. 15-5. The upper plate of condenser C, having mass m, is suspended

from a coil spring of constant k. It is free to move vertically under the action of gravity, the spring and
the electrical field between the plates. An unusual feature of the system is, of course, the variable
capacitance C.

Fig. 15-5
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Let the dotted line represent the rest position of the plate with condenser uncharged. Assuming air
between plates we write, for convenience, C = A/(s - x) where A is a constant the value of which depends
on the area of the plate and the units employed, and s is the distance indicated. Hence the Lagrangian for
the system is

L = 1 MQ2 + 2mx2 + QEp sin wt - Z Q2(s - x)/A - 1 kx2

(A term containing mg cancels out.) The system has two degrees of freedom, the two coordinates being
Q and x. Applying Lagrange's equations we get

MQ + Q(s - x)/A - Eo sin cot = -RQ, m x + kx - 2IQ2/A = 0

Note that the voltage of self inductance MQ, the voltage across the condenser Q(s - x)/A, and the
force of attraction between plates -Q2/A, have been automatically taken account of in the Lagrangian
equations.

Example 15.4.

Coil (1), N1 turns per unit length
000000000000000000000000000 nn-onna-0000000

,-- Small circular coil (2).
N2 turns. Q2 out of paper.

Rotating coil (2) mounted in
long solenoid, coil (1)

0 0 o0oa
EZ = Eo sin mt

P1 P2o-
P2 + for t slightly greater than zero.

Fig. 15-6

A small shaft normal to the paper and passing through p, Fig. 15-6, is mounted on smooth bearings
(not shown) and supports the small coil (2) inside a long stationary coil (1). Fastened to (2) is a spiral
pancake spring, as shown, having a torsional constant k. The coils are connected to separate circuits as
indicated to the right. Assuming (1) quite long, it may be shown without difficulty that the mutual in-
ductance of (1) and (2) is given by

M12 = b(r, r2)N1N2 sin 0

where r = radius of coil (2), N1 = turns per unit length on (1), N2 = total turns on (2), and b is a con-
stant depending on the specific units used. Hence replacing b(rr2)N1N2 by A, we have

2L = 2M11Q1 + 2M22
Q22 + 2182 + AQ1Q2 in o + E1Q1 + Q2Eo sin wt - 2ko2

where M11, M22 are self inductances (assumed known) of (1) and (2) respectively, and I is the moment of
inertia of coil (2) about the axis on which it is mounted. It is assumed that for o = 0 the pancake coil is
undistorted.

Applying Lagrange's
obtained:

equations the following differential equations corresponding to

M11Q1 + AQ2 sine + AeQ2 cos e - E1 = -R1Q1
M22Q2 + A Q1 sin 0 + ABQ1 cos o - E0 sin wt = -R2Q2

I; - AQ1Q2 cos o + ko = 0

Q1, Q2, a are

Note, for example, that the term ABQ1 cos e represents an induced voltage in coil (2) due to its ro-
tational velocity a in the magnetic field established in (1) by current Q1. The term BQ1Q2 cos a is a torque
on (2). The significance of all other terms should be examined.

15.5 Oscillations of Electrical and Electromechanical Systems.
The results of Chapter 10 are frequently applicable to the determination of the natural

frequencies of oscillation of electrical or electromechanical systems, as shown by the follow-
ing examples.
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Example 15.5.
Consider again the circuit of Fig. 15-3. Equations corresponding to Q1 and Q2 may be written as

(M11 + M33 + 2M13) Q1 + (R1 + R3)Q1 + (C' 1 + 3 Q1

Q2
+ (M12 + M23 - M33 - M13) Q2 - R3Q2 - G,3 = E1 - E3

Q1
(M12 + M23 - M33 - M13) Q1 - R3Q1 G.

3 / \
+ (M22 - 2M23 + M33) Q2 + (R2 + R3)Q2 + ( G,2 +

C3 J
Q2 = E3 - E2

`Using "equilibrium coordinates" (see Problem 15.2, Page 312) these equations take exactly the form
of equations (10.7), Page 209. They can, of course, be solved by the same methods.

Example 15.6.
Consider again the system shown in Fig. 15-5 and treated in Example 15.3. For simplicity assume the

variable voltage replaced by a constant voltage E. It is clear that at some time after switching on the
battery, for even the slightest damping of the upper plate, x and Q reach constant values x0, Q0. Measuring
displacements from these equilibrium values, that is, writing x = x0 + x1 and Q = Q0 + Q1,

V = -E(Q0 + Q1) + 2 (Q0 + Q1)2 (s - x0 - xl)IA + 2k(x0 + x1)2

From (aV/0Q1)0 = 0 and (aV/axl)o = 0 it follows that x0 = 2Q02/Ak, Q0 = AE/(s - x0).
Now assuming Ql and x1 always small, we/ obtain

1/after

applying (10.6), Page 207,

Vapprox. Ql Q1x1 + kX22\S Ax0/ 2 - AO ]
1 2 1 .2 1 r s- x01 2Qo

Thus L =
2

MQ1 + mxl
2

I ( A Ql - A Qlxl + kxll

from which . MQl + ($ Axo ) Ql - Qo

xl = -RQ1i m x1 + kxl - Qo Ql = 0
which have the same form as (10.7), Page 209, and can be solved in the same way.

15.6 Forces and Voltages Required to Produce Given Motions and Currents
in an Electromechanical System.

The results of Chapter 13 can be applied to electromechanical systems, as illustrated
by the following examples.
Example 15.7.

Imagine a force fx applied to the moving plate, Fig. 15-5, Page 306, and that E0 sin wt is replaced by an
unknown voltage, the nature of which is to be determined. The general equations of the system are now
(see Example 15.3) ,

Q + Q(s - x)/A + RQ = E, m x + kx - Q2/2A = f x (1)

If the manner in which Q and x vary with time is given for each, corresponding expressions for E and fx
as functions of time can be found. Consider the following cases.

(a) Assume that Q = Q0 = constant, x = xo = constant. Then from (1),

E = Q0(s - x0)/A, fx = kxo - Qo/2A

(b) If it is assumed that x = xo = constant and Q = Q0t,
E = RQo + Qot(s - x0)/A, fx = kxo - Qo t2/2A

e

(c) Letting Q = Qo sin (wlt + 01), x = xo sin (t42t + 02), we obtain

E = MQ0w1 cos (,1t + 01) - Am cos (cslt + 01)[s - x0 sin (wet + 02)] + RQ0 sin (w1t + 01)

fx = -mxow2 sin (colt + 02) + kxo sin (w2t + 02) - T,_1 __2 cost (W It + 01)

1

Such a voltage and force might, of course, be difficult to apply. Moreover, if fx and E are applied at ran-
dom, certain transient effects may exist, which in any actual case would eventually be damped of by
resistance and frictional drag on the plate. (See note at bottom of Page 269.)



CHAP. 15] ELECTRICAL AND ELECTROMECHANICAL SYSTEMS 309

Example 15.8.
In Fig. 15-3, Page 305, let us regard El and E2 as unknown applied voltages. Writing equations of

motion in terms of Ql, Q3 and assuming that Ql = 901 = constant, Q3 = Q03 = constant, the reader may
show that El and E2 must have the values

E1 = E3 + Q01 + Q03, E2 - E3 + Q03 - 901 + 903

C1 C3 C2 C3

Likewise for Q1 = Al sin (wit + 01) and Q2 = A2 sin(w2t + 02), El and E2 can be found at once as
functions of time.`

15.7 Analogous Electrical and Mechanical Systems.
It frequently happens that, for a given electrical system, there exists a mechanical one

which is its exact counterpart in the sense that the differential equations for the two (by
proper choice of coordinates) can be written in just the same form. This is illustrated by
the following simple examples.

Example 15.9.
In Fig. 15-7(a) a sphere of mass m is suspended in a viscous liquid from a coil spring. to = unstretched

length of spring, yo = elongation of spring with m at rest, y = general displacement from rest position.
We assume that the only effect of the liquid is to exert a viscous drag -ay. Fig. 15-7(b) represents a simple
series electrical circuit. Lagrangian functions for (a) and (b) respectively are

LMe = 2my2 - 2k(y + yo)2 + mgy, LEI = IMQ2 - Q2/C + EQ

Fig. 15-7

Since nag = kyo, the equations of motion are

Inductance

F-ru M

(b)

m y + ky = -ay, MQ + QIC = -RQ
Hence the two systems are "equivalent".

Example 15.10.
Consider the three systems shown in Fig. 15-8 below: In (a), E is a constant applied voltage and we

assume no mutual inductance between the coils. In (b), F is a constant externally applied force and. each
block is acted upon by a viscous force -alxl, etc. In (c), T is a constant externally applied torque and a
brake exerts a viscous torque, -b1r191, etc., on each disk. Lagrangian functions for the three systems may
be written as

La = 1 (M191 + M2Q2 + M3Q3) -
(Qi2CQ2)2 (Q22CQ3)2

+ EQ1

Lb =
2

(m1x1 + M-14 + m3x3) 2k1(x2 -1 - lio)2 - k2(x3 - x2 - l20)2

Le = 2(I1B1 + I2;2 + 1303) - 1 k1(o1 - 02)2 - 2k2(02 - 03)2

(1)
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(a)

(b)

(c)

Fig. 15-8

Final equations of motion for (a) are

M1Q1 +
Q1 - Q2 = E - R1Q1
Cl C2

Q1

+' Q2
(1 1)-Q3

M2 Q 2 - Cl C1 + t2l C2

Q2 Q3 _
M3Q3 - C2 + G+2. = -R3Q3

-R2Q2

Equations having exactly the same form (except for constant terms) follow at once for (b) and (c).
Here inductance corresponds to a mass in (b) and moment of inertia in (c). Electrical resistance R1 cor-
responds to the coefficient of viscous drag a1 in (b) and to br1 in (c), etc. 1/C corresponds to a spring con-
stant in each case. Note that in the above example coordinates were carefully chosen so that all three sets
of equations have the same form. If, for example, equations of motion for (b) were written in coordinates
x1, q1, q2 where q1 = x2 - x1 and q2 = x3 - x2, it would not be immediately evident that (b) is equivalent
to (a) and (c). Note. In Lb, x1 + 110 and x2 + 120 can be replaced by single variables.

For any given mechanical system, it is not always easy to find its exact electrical counterpart. Rather
complex analog circuits may be required.

Example 15.11.
The mechanical and electrical systems shown in Fig. 15-9(a) and (b) below are strikingly similar in

general appearance and, for (a) properly idealized, their physical characteristics are the same.
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Crushed Material

B

Leaf Springs

End on view

S1

S2

r

2

R2

2

C2

qs

Smooth Pistons
Mil

ZOElo-1

Fig. 15-9

Q1

311

In (a) the mass M and leaf springs Sl and S2 (end view shown) are coupled by a "massless" liquid in
smooth tubes. Sections A and B are filled with some crushed material which offers a viscous drag to the
flow of the liquid, -R'1 x (velocity of liquid); etc. An external force fl can be applied to M and another, f2,
directly to the liquid. The pistons shown are assumed smooth and massless.

Let ql represent the horizontal displacement of M from some fixed point and q2, q3 displacements of
Sl and S2 respectively. The reader should write out equations of motion for the two systems and show
that, mathematically, they are equivalent where M corresponds to M11; k1, k2 to 1/Cl, l/C2; R', R2 to R1, R2;
fl, f2 to El, E2.

As seen from previous examples, analogous systems are usually not at all similar in general appearance.

15.8 References.
For more details regarding the application of Lagrange's equations to electromechanical

systems and concerning the matter of electrical-mechanical analogs, the reader may con-
sult the following references:

H. F. Olson, Dynamical Analogies, Van Nostrand, 1943

W. P. Mason, Electromechanical Transducers and Wave Filters, Van Nostrand, Second
ed., 1948

R. M. Fano, L. J. Chu, R. B. Adler, Electromagnetic Fields, Energy, and Forces, John
Wiley, 1960

D. C. White, and H. H. Woodson, Electromechanical Energy Conversion, John Wiley, 1959

J. R. Barker, Mechanical and Electrical Vibrations, John Wiley, 1964

G. W. Van Santen, Mechanical Vibration, N. V. Philips, Eindhoven, Holland, 1953
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Problems
In the following problems specific units are not introduced.

15.1. Show that the Lagrangian and equations of motion for the circuit shown in Fig. 15-10, assuming no
mutual inductance between M33 and remaining inductances, are

L =
2 [M11Q1 + M121Q2 + (M22 + M33)Q2] + Q1E0 sin wt - 21 Q2/C

M11Q1 + M12Q2 - E0 sin wt = -R1Q1

(M22 + M33) Q2 + M12Q1 + Q2/C = -R2Q2

Fig. 15-10 Fig. 15-11

15.2. Referring to Example 15.5 and Fig. 15-3, Page 305, it is seen that after some time 61 = 62 = Q3 = 0
and we write Q1 = Q01, Q2 = Q02 Q3 - Q03. Find expressions for these "equilibrium" charges.
Now setting Q1 = Q01 + a1, Q2 = Q02 + a2, Q3 = Q03 + a3, write L for the system and show that
the equations of motion are

(M11 + M33 + 2M,,)*;, + (R1 + R3)a1 + (1/C1 + 1/C3)-1

+ (M12.+ M23 - M13 - M33) a2 - R3a2 - a2/C3 = 0

(M12±M23-M13-M33)1 - R3a1 - al/C3
+ (M22 - 2M23 + M33) a2 + (R2 + R3)a2 + (1/C2 + 1/C3)a2 = 0

15.3. The inside half-cylinder A, Fig. 15-11, supported in a vertical position by a thin elastic rod (torsional
constant k) fastened along its axis at 0, can rotate within B. Assuming that the capacity of this
variable condenser is given by C = CO(1 - Or) and that the rod is undistorted for e = el, show
that the proper Lagrangian and equations of motion are

L = 1.Q2 + 2182 + EQ - 2C0(
Q2

e/rr) 2k(e1- e)2

+ Q
CO(1 - 017r) - E _ -RQ

I e +
° 27Co(1Q2 e17r)2 - k(e1- e) = 0

15.4. The coils in Fig. 15-6, Page 307, are connected in series and to an external source of voltage
E0 sin wt. (See Example 15.4.) Show that the equations of motion are

(M11 + M22) Q + 2B(Q cos o - Qe sin e) - E0 sin wt = -RQ

I B + B(Q2 sin e) + ke = 0

15.5. Coil (1), Fig. 15-6, is replaced by a permanent magnet. Assuming that the magnetic field is uniform
and constant and that the moving coil is connected as indicated on the diagram, write out L and
show that the equations of motion are

M22Q2 + NA; cos 0 Eo sin wt = -R2Q2, . 1 - N24'Q2 cose + Ice = 0
where 4) is the total flux threading the coil for 0 = 900.'

15.6. Two permanent-magnet wall type galvanometers are connected as shown in Fig. 15-12 below. As-
suming radial magnetic fields, show that the proper Lagrangian for the system is given by
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L = 2(M11Q1 + 2M12Q1Q2+, .22Q2) + 1
-ff + 212;2 + N14'1Q1;1

+ N24'2Q2;2 + (Q1 + Q2)I!1- 2(Q1+ Q2)2/C - 1k1;2 - 2k2;2

where it is assumed that M11 and M22 include the self inductance of galvanometer coils (1) and (2)
respectively. Write out equations of motion.

Permanent-magnet Wall Galvanometers

Fig. 15-12

15.7. Each plate of the variable condenser, Fig. 15-13, is free to move along a line ab without rotation,

under the action of a spring and the electric field between them. Show that the Lagrangian for the
system is

L = 2 (m1x1 + m2x2 + MQ2) - 2 (k1x1 + k2x2) + EQ - 2 Q2(s - x1 - x2)/A

where A is a constant. Write out equations of motion.

Fig. 15-13

15.8. The variable condenser and wall galvanometer are connected as in Fig. 15-14 below. Show that L
for the system is

L 2 (I;2 + ;2 + M11Q1 + M22Q2) + E1Q1 -' E2(Q1 - Q2)

+ N4,Q1o . -[kx2 + (Q1 - Q2)2 (s - x)/A + ke2] + mgx

Write out equations of motion and from them determine steady values of Q1, Q2 and equilibrium
values of 9,x and Q3. Check relations by elementary principles.
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Fig. 15-14

15.9. Referring to Problem 15.3, Fig. 15-11, show that equilibrium values of a and Q are given by
eo = 91 - C0E2/27rk, Q0 = CO(1 - e0/7r)E. It can be seen from the physics involved that when the
condenser is charged, 01 > 0.

Writing 0 = eo + al and Q = Qo + a2, find equations of motion which determine the oscil-
lations of 0 and Q about equilibrium values.

15.10. Set up equations for the determination of the oscillatory motions of the system shown in Fig. 15-12
about equilibrium values. See Problem 15.6.

15.11. Referring to Fig. 15-12, 01, 02, Q1, Q3 are each to be made to vary in a given manner with time.
Torques -r1(t), -r2(t) are applied to the moving coils respectively. Replace the battery with an unknown
source of voltage E1 = E1(t). Insert another voltage E2 E2(t) in the left leg of the circuit.
Find expressions for r1, 7-2, E1, E2 which meet the stated conditions.

15.12. Set up equations of motion for systems (a) and (b), Fig. 15-15, and show that they are equivalent.
Assume viscous forces acting on bases of m1 and m2. Also regard the dashpot as exerting a viscous
force.

F = Fo sin mt

kl
m

x1

k3

al

(a)

Fig. 15-15

(b)

15.13. The double pendulum, Fig. 15-16(a) (see equations (10.2), Page 206), consists of a heavy uniform bar
(length r1, mass M) and a slender light rod of length r2 with the "particle" m attached. The upper
bearing b1 exerts a damping torque proportional to 9 and the lower bearing b2 exerts another torque
proportional to - B. The spiral pancake spring (with one end attached to the bar, the other to
the rod) is undistorted for o = 0. In Fig. 15-16(b) the two coils have mutual inductance M12.

Assuming a and 0 are small, show that equations of motion for these coordinates are exactly
analogous to those corresponding to Q1 and Q2 (except for a constant term E).

M12 ,

(a)

,-Dashpot
lq,a

X2F-"-k2
a2

Q1

Fig. 15-16

M11 -

Q3

(b)

M22 Q2
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15.14. In Fig. 15-17 the disk is mounted at the center of an elastic rod, the ends of which are rigidly fixed.
Torsional constant of the rod and elastic constant of the coil spring are ki and k2 respectively.
Metal cylinders (masses ml and m2), suspended from an insulating cord as shown, can move ver-
tically in the fixed metal cylinders. Each rod and cylinder constitutes a variable condenser C1 and
C2 respectively. Mll, R1i El, Cl and M22, R2, E2, C2 are independent electrical circuits except that
they are coupled by the mutual inductance M12. Show that T and V for this electromechanical
system are given by

T = 2(mly1 + m2y22 2+ Iy2 /r2) +
2

(M1161 + 2M12Q1Q2 + M22Q2 )
2

F

l1Q1
2

J
1 2Q2 - Q1E0 sin wt - E2Q2

-foul - yl)
+ 1

C02(12 - y2)

2

/y2 y' b2\2
+ kl 1/\ /1)' + k2(bl - yl - X2)2 + m29y2

where C1 = C01(1 - yl/ll), C2 = C02(1 - y2/12), y1 +Y2 + l = b1 = constant, re + b2 = Y2. Write
out equations of motion corresponding to y1, y2, Q1, Q2.

- Elastic Rod,
Torsional const. = k

I v I
E2

- Flexible

Connection

El = E0 sin wt

Q2

Fig. 15-17

15.15. Assuming E0 sin wt. in the above problem replaced by a constant voltage, determine equilibrium
values of yi, y2, Q1, Q2. Expanding V, (see (10.6), Page 207) about these values, set up equations of
motion for small oscillations of the system.



CHAPTER

16
1 1 t 's q> ons o A Motion

16.1 General Remarks.
Hamilton's "canonical equations" constitute another way of expressing dynamical equa-

tions of motion and it will soon be seen that for a system having n degrees of freedom there
are 2n first order Hamiltonian equations as compared with n second order Lagrangian
equations.

As a means of treating most applied problems the Hamiltonian method is less con-
venient than the Lagrangian. However, in certain fields of physics (listed and discussed
briefly at the end of this chapter) Hamilton's equations and the Hamiltonian point of view
have been of great service.

16.2 A Word About "Generalized Momentum". '
The quantity aL/aqr is defined as the generalized momentum p, corresponding to the

generalized coordinate q, that is, aL/aqr = Pr. (Note that if q's occur only in T,
aL/aqr aT/agr = pr.) The following examples will show that for certain simple cases
pr, as defined above, is a momentum in the elementary and familiar sense of the word.

For a projectile, L may be written as L = 2m(x2 + 2 + z2) - mgz from which aL/ax =
mx = px, py = my, pz = mi. Hence px, py, pz are just the familiar components of linear
momentum.

Referring to Example 5.7, Fig. 5-9, Page 88,

aL/axl = Mx = px, aL/ar' = µr = p,., aL/ae = µr28 = pe, aL/a = µr2 sine B = p"

where px and pr are linear momenta while pe and pO are angular momenta.

16.3 Derivation of Hamilton's Equations.
The Lagrangian

Thus we can write
L = T - V is in general a function of q1, q2, ..., q,,,; q1, q2, ..., qn; t.

dL = (-dqr+&r)
r=1 aqr , aqr

(16.1)

aL FQr (where Fqr is determined in the usual wayBut Pr = . , and from d ( aL l - =dt \ air/ aqr

from all forces not taken account of by V) it is seen that aL/aqr = pr - Fqr. Hence (16.1)
becomes

dL = rI [(pr - Fqr) dqr + pr dqr] + at d (16.2)

316
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Next, eliminating pr dqr from above by the relation d(prgr) = pr dqr + qr dpr and rearrang-
ing terms, (16.2) may be written as

d [ -i
prgr L] _ [(F9r - pr) dqr + qr dpr] - at dt (16.3)

r r=1

At this point it is important to note that Pr = aL/aqr is, in general, a function of the q's, q's
and t. (For any particular case this takes the form of an algebraic equation. For example,
as previously given, aL/a pq, = mr2 sin2 B ). By means of these n relations all veloci-

n

ties q1, q2, ..., qn can be eliminated from I prgr - L in favor of the p's and q's. Assuming
r=1

that this has been done, the Hamiltonian Function, H, is defined as
n

H = I prgr - L
r=1

Now since this is a function of the p's, q's and t,

dH (qr
+ aH

dpr) +
at

dt

Comparing terms on the right of (16.3) with those of (16.5) it is seen that

OH aH
apr - qr, aqr =

(16.4)

(16.5)

(16.6)

The first two relations in (16.6) represent 2n first order differential equations. They are
referred to as Hamilton's canonical equations of motion. Solutions of these, with properly
evaluated constants of integration, give each coordinate and each momentum as a function
of time; that is, they determine the complete dynamical behavior of the system. (For a
good discussion of appropriate expressions for L and H when forces due to electric and
magnetic fields exist, see: D. H. Menzel, Mathematical Physics, Dover, 1961, pages 359-360.)

It is well to note that H can usually be expressed in another and sometimes more con-
venient form. Let us write (2.55), Page 27, as

n n n

T = 1 ArstlrQs + I Bsgs + C ° T1 + T2 + T3 (16.7)
r=1 s=1 s=1

(As a specific example of this form of T note that expression..(2.50), Page 27,, can be
written as

T = Jm[gi + q2 + 2q1 q2 cos (/i - a)] + m{ [(vr + art) cos a + (v, + ayt) sin a] q1

+ [(vr + art) cos /3 + (vy + ayt) sin /3] q2}

+ m[2(vxar + vya,)t + (a,2 + ay)t2 + V2 + vy ]

Clearly the first, second and third terms are T1, T2, T3 respectively. In any particular case,
when T is written out in full, T1, T2, T3 can be recognized by inspection.) Hence, assuming
aL/aqr = aT/aqr, we have

r 2 1 Arsgs + B,
s=1

aT/aqr =

n n n

and so I pr qr = 2 1 Y Ars gr qs + I Br gr = 2T 1 +. T2
r=1 r=1 s=1 r=1
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Thus (16.4) may be written as H = 2T1 + T2 - (Ti + T2 + T3 - V) or
H = T1-T3+V (16.8)

If t does not enter transformation equations, (see (2.21), Page 19), T2 = T3 = 0 and
H = T + V = 6 = energy of the system

For convenience, the most important relations are summarized below.
n

(a) H = I prgr - L (16.4)
r=1

(b) H = T1 - T3 + V (16.8)

(c) ap = qr, aq Fqr - Pr (16.6)

These relations are correct even though external and dissipative forces may be acting.

16.4 Procedure for Setting Up H and Writing Hamiltonian Equations.
(a) Write out L = T - V. Express T and V in the usual way just as if Lagrange's equa-

tions were to be applied.

(b) Obtain, by carrying out the differentiations p1 = aL/aq1, P2 = aL/aq2, etc., n algebraic
equations. These relations express the p's as functions of the q's, q's, t.

(c) Solve these equations simultaneously for each q in terms of the p's, q's, t and eliminate
the i's from (16.4) or (16.8). This gives H expressed as a function of the p's, q's, t only.

(d) To obtain the Hamiltonian equations of motion perform the differentiations aH/ap1,
aH/ap2, . . ., aH/ap, and in each case the result is set equal to q1, q2, ... , qn. respectively.
Likewise perform the differentiation aH/aq1, set the result equal to Fq1- p1, etc. We
thus have 2n first order equations. Fq1, Fq2, etc., are just the familiar generalized forces,
found in the usual way except that conservative forces, as previously explained, are
not included.

16.5 Special Cases of H.
(a) When conservative forces only, including those for which a potential energy function

involving t can be written (see Section 5.11, Page 90), are acting, Fqr = 0. Hence

OH
apr -1 aqr r

(16.9)

These are extensively used in many branches of dynamics.

(b) If the system is a "natural" one in which there are no moving coordinates or constraints
(t does not enter transformation equations), T2 = T3 = 0 [see (2.56), Page 27]. Hence
T = T1 and by (16.8),

H = T + V = cocat (16.10)

That is, under these conditions, H is the total energy of the system. However, in gen-
eral, H is not total energy.

16.6 Important Energy and Power Relations.

From (16.5), dH = ri aq qr +
OH pr) + as . Applying (16.6),



CHAP. 161 HAMILTON'S EQUATIONS OF MOTION

dH
-_ Fqr qr +

all

from which the following important conclusions may be drawn.
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(a) If the system is natural all/at - 0; and if no forces other than conservative are acting,
Fqr = 0. So, as shown above, H = T + V = 6tota,. ' Thus

dH _ ddtota,
0 or Stota, = constant (16.12)dt dt

That is, the total energy of the system, T + V, remains constant. (See Section 5.13,
Page 91.) (16.12) expresses the law of conservation of energy for such systems.

(b) If the system is natural and forces other than} conservative are acting, (16.10) and
(16.11) give

dt dt (T + V) _ Fgrgr (16.13)
n

But Fgrgr is just the rate at which all forces (not including those which are con-
servative) do work on the system. Hence the time rate of change of etotat is equal to the
power delivered by these forces.

16.7 Examples. The Hamiltonian and Hamiltonian Equations of Motion.
No moving coordinates or moving constraints.

Example 16.1. The projectile.

Regarding a projectile as a particle and axes attached to the earth as inertial,

L = 1m(;2 + y2 + ;2) - mgz

from which Wax = mx = px, py = my, pz = mz

Hence, following Section 16.4, H = 2m (p2+ py+ pz) + mgz

(1)

(2)

Applying (16.6) and neglecting air resistance,

aH/apx = px/m = x, aH/apy = pylm = y, aH/apz = pz/m (3)

aHlax = 0 = -px, all/ay = 0 = aHlaz = mg = -pz (4)

(Note that in the above, T = T1 (T2 = T3 = 0); hence H = T + V = S.) Relations (3) and (4) are the
2n (six in this case) Hamiltonian equations.

Differentiating (3) with respect to time and eliminating px, py, pz from (4), we have the usual equations
of motion:

m x= 0, my= o, m z= -mg (5)

Having integrated these we can, returning to (3), determine how the momenta vary with time.
Note that relations (1) and (3) are exactly the same. Moreover, (5) are just the relations found by a

direct application of Newton's or Lagrange's equations. Hence it is evident that Hamilton's equations are
of no advantage in this problem.

Example 16.2. A pendulum bob suspended from a coil spring and allowed to swing in a vertical plane.

In the usual r, a coordinates;
L = 2 m(Y2.+ r2e2) + mgr cos e - 2 k(r - ro)2

Hence aL/ar = pr = mr, aLla; = pe = mr2B (1)

Thus by (16.4) or (16.8),

= 2m ( yr + r pe) - mgr cos e + Jk(r - ro)2 (2)
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Applying (16.6), all/Op,. = p,./m = r, aH/ape = pe/mr2 = B

aH/ar = pe/mr3 - mg cos e + k(r - ro) _ -pr
aH/ao = mgr sin o = -j8

Equations (3) to (5) are the Hamiltonian equations. Eliminating Y r and pe from
pe from (5) by (3), we obtain

m r - mre2 - mg cos 6 + k(r - re) = 0

mr2 B + 2m49 + mgr sin o = 0

[CHAP. 16

(3)

(4)

(5)

(4) by means of (3), and

(6).

(7)

A simultaneous solution of (6) and (7) gives each coordinate as a function of time.

Note that (6) and (7) can be obtained with considerably less effort by a direct application of the
Lagrangian equations.

Example 16.3. The Hamiltonian for a central force problem.
Two uniform spheres, Fig. 16-1, of masses m1, m2 are free to move in space under the action of their

gravitational attraction; no external forces are applied. Treating the spheres as particles, the. reader may
show without difficulty that

L = (m1 + m2) (x2 + y2 + z2) + 2 µ(r2 + r202 + sine e) + Gmlm2/r (1)

where 2,,P, z are inertial coordinates of c.m., r, 9, 95 are spherical coordinates measured relative to the non-
rotating X'Y'Z' frame, r = r1 + r2 is the distance between centers of the spheres, G is the gravitational
constant, and the "reduced mass" it = mime/(ml + m2).

X', Y', Z' with origin at c.m. remain
parallel to the inertial X1, Y1, Z1 axes

Applying (16.8), the Hamiltonian is

Particles m1 and m2 are free to move in space under
the action of an attractive inverse square force.

Fig. 16-1

Yl

/ 2 2 \ Gm m
H

2(m1 + m2) (p + py + Pz) + 2µ ( pr + p2 + r2 sin2 9 ) - r 2 (2)

and applying (16.6) the twelve Hamiltonian equations follow at. once. It is suggested that from these
twelve the reader eliminate the p's, determine the six equations of motion and compare with those obtained
by a direct application of Lagrange's equations to L. (It is seen that for this example T2 = T3 = 0; thus
H = T = S.)

Example 16.4. Hamiltonian for the double pendulum shown in Fig. 2-10, Page 14.
The following example illustrates well the general form taken by the p's and the fact that finding an

expression for H is not always as simple as previous examples might lead one to believe.
For the double pendulum with masses suspended from light coil springs having constants k1, k2 and

motion confined to a plane (see equation (2.42), Page 24),
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+ m2)( + ris2) + 2m2[ + r2 2 + 2(7172 + cos (¢ - e)

+ 2('r172; - sin (0 - o)]. + (ml + m2)grl cos a (1)

+ m2gr2 cos 0 - 2k1(r1- l1)2 2k2(r2 - l2)2

where h and 12 are unstretched lengths of the springs. Hence we have the following expressions for the
momentum corresponding to r1, r2, 8, 0 respectively.

aL/a71 = (m1 + m2)71 + m2r2 cos (0 - e) - m2r2 sin (o - e) = prl
aL/6r'2 = m272 + m271 cos (0 - e) + m2r1; sin (.p - o) = p,2

aL/as = (ml + m2)rie + m2rlr2 cos ( - e) + m9r172 sin (0 - e) pe

aL/a = m2r2, + m2r1r28 cos (95 - e) - m2r271 sin (0 - e) = po

Note that p,.,, for example, contains 71i 72, ; etc. Hence in order to find H we must solve
four equations simultaneously for r1i r2, 9, , each in terms of the p's and coordinates. Having done this,
these velocities can be eliminated from (16.8) giving, finally, the proper expression for H. Hence in. certain
cases the matter of finding H becomes a bit involved. No further details need be given.

Example 16.5. The Hamiltonian for a Top.
As shown in Example 8.14, Page 159, the Lagrangian for a top with tip stationary is

L = 2[7x(;2 + .' sine B) + I,z( + cos 6)2] - Mgr cos e (1)
from which

pe = Ixo p, = Iz(¢ + >G cos o), p, = Ix , sine o + J,( + t' cos e) cos 0 (2)

Eliminating from T + V by (2), we have

1 p2 (p,, - py cos 9)2 p2
H = 2 eI + I sine e + I + Mgr cos 9 (3)Lx- x z

Applying relations (16.6), the Hamiltonian equations follow at once.

Note that in this case, p(b = 0, j4, = 0; hence p4, = constant, p,,, = constant. (The same results fol-
low at once by applying Lagrange's equations to L.)

Example 16.6. Hamiltonian equations for the pendulum of Example 16.2, Page 319, assuming a viscous
drag on the bob.

For this problem H is exactly as given by (2), Example 16.2. The power function can be written at
once (see Section 6.9, Page 105) as P 2a(;2 + r2e2) where a is the coefficient of viscous drag on the bob.
Hence applying (16.6),

aH/ap,. = Pr/m = r, all/ape = pa/mr2 = ;
(as before) and

aH/ar = -pe/mr3 - mg cos e + k(r - re) = ar - aH/ao = mgr sin e = are; - pe

16.8 Examples of H for System in which There Are Moving Coordinates
and/or Moving Constraints.

Example 16.7.
Referring to Problem.2.20, Fig. 2-29, Page 36, let us assume that the vertical shaft has constant

angular acceleration, so that a = eo + wt + 2at2. The kinetic energy of the bead is

T = 2m[(1 + 4a2r2)r2 + r2(w + at)2], and V = mgar2

(Note that T = T1 + T3, T2 = 0.) From the above, aT/ar = p, = m(1 + 4a2r2)r. Thus we can write
2

H = T - T, + V = pr - 2mr2(w + at)2 + mgar2
1

3 2m(1 + 4a2r2) 2

The same expression for H can, of course, be found from equation (16.4).
In all previous examples of this chapter, H = T + V = 6. However, here H 6 since t enters

explicitly into transformation equations of the form (2.21), Page 19.
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Example 16.8.
Referring to the example given on Page 27, note that expression (2.50) can be grouped at once in the

form T = Tl + T2 + T3, from which

aT/aql = m[qi +. q2 cos ((3 - a)] + m[(v. + art) cos a + (vy + ayt) sin a] = pq
i

with a similar expression for pq2. Eliminating ql and q2 from T, - T3 + V, we have the Hamiltonian H.
The form of H is not simple, but the above demonstrates well the general basic techniques. The reader

can show that the same expression for H can be obtained from (16.4), and that H , T + V.

16.9 Fields in which the Hamiltonian Method is Employed.
As previously stated and as can now be seen from the various examples, this method

of treating most applied problems is considerably less convenient than the Lagrangian.
However, the Hamiltonian approach is used to great advantage in various other fields.
As a matter of general information, the most important of these are listed below with
brief comments and certain selected references.

(a) Transformation Theory.
The simplicity of equations of motion and ease with which they can be integrated

depend to a large extent on the, coordinates employed. It is sometimes possible to select
by insight, intuition or trial and error a set of coordinates which render the integration
less complex. General transformation theory, in which the Hamiltonian equations play
the leading role, treats of a systematic method of making such transformations. See:
C. Lanczos, The Variational Principles of Mechanics, U. of Toronto Press, 1949, chap-

ters 7 and 8.
H. Goldstein, Classical Mechanics, Addison-Wesley, 1950, chapters 8 and 9.
E. T. Whittaker, A Treatise on Analytical Dynamics of Particles and Rigid Bodies,

Dover, 1944, chapter 11.

(b) Celestial Mechanics.
An exact determination of the motion of planets about the sun or of artificial satel-

lites about the earth cannot be obtained because of difficulties in solving the equations
of motion. Hence specialists in celestial mechanics are greatly concerned with perturba-
tion methods of finding approximate, yet acceptable, solutions. Perturbation theory
is closely related to the transformation theory mentioned under (a). See:

T. E. Sterne, An Introduction to Celestial Mechanics, Interscience, 1960, chapters 4 and 5.

H. C. Corben and P. Stehle, Classical Mechanics, John Wiley, 1950, pages 306-312.
0. Dziobek, Mathematical Theories of Planetary Motion, Dover.
D. Ter Haar, Elements of Hamiltonian Mechanics, North Holland, 1961, pages 146-166.

(c) Statistical Mechanics.
Since a general solution has not been found for even the relatively simple "problem

of three bodies" (see above reference to E. T. Whittaker, chapter 13), it is clear that a
determination of the exact motion of every individual molecule in a gas composed of
say 1023 "elastic golf balls", is completely out of the question. Nevertheless, statistical
methods in which Hamiltonian dynamics plays an important part have been used
extensively for the determination of certain "average" properties. See:

R. C. Tolman, The Principles of Statistical Mechanics, Oxford U. Press, 1938.
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(d) Quantum Mechanics.
Hamiltonian dynamics plays a very important role in the development of quantum

mechanics. Indeed, it is a necessary prerequisite to a study of this subject. Excellent
introductory treatments of the basic principles and methods of quantum mechanics
are given in the following references:
C. W. Sherwin, Introduction to Quantum Mechanics, Henry Holt, 1959.
P. Fong, Elementary Quantum Mechanics, Addison-Wesley, 1962.
R. H. Dicke and J. P. Wittke, Introduction to Quantum Mechanics, Addison-Wesley,
1960.

Problems
A. Problems in which t does not enter the transformation equations.

16.1. Show that the Hamiltonian for the simple spring-
mass arrangement, Fig. 16-2, is H =

2
px/m +

2
kx2.

Write out the Hamiltonian equations.

16.2. . Referring to Example 3.3, Page 45, show that H
for the mass m, Fig. 3-1, is

H = (p2+pB/r2)Im + 2kr2

16.3. Show that H for the bead, Problem 3.5, Fig. 3-5, Page 52, is given by

2= 1 P + mgzH
2m [1 + a2(1 + b2z2)I

Fig. 16-2

For x = 0, spring
unstretched

Smooth

16.4. Show that the Hamiltonian for the two masses in Fig. 2-8, Page 13, employing coordinates
Y31 is

(py + py )2 pyH = 1
3 + - + m19y1 + m29(y1 - y3) + 2k(y3 l0)2

2m1 ZrYl2

Write out the Hamiltonian equations.

Y1 and

16.5. Show that H for the pulley system, Example 5.3, Page 87, Fig. 5-6, is
Bpy2 + 2Cpyl py2 + Apy

H
- 2(AB - C2) + m19y1 + m29y2 + 2k1(C1 v y2 - l1)2 + 2k2(2y2 - y1 - C2 - l2)2

where A = m1 + 72/R2, B M2 + I1/R1 + I2/R2, C = I2/R2; C1 and C2 are constants; l1 and l2
are unstretched spring lengths. Write out the Hamiltonian equations.

16.6. Referring to Example 5.5, Fig. 5-7, Page 88, show that H for the three masses, motion confined
to a plane, is (V not approximated)

3 py 4
fH = 2zI1 m2g

+
2 ,I k5l [(yy - y,_ 1)2 + 84111/2 -

s1}2 (y4 = y0 = 0)

16.7. Show that H for the pendulum, Problem 4.10, Fig. 4-13, Page 75, is given by
2 P2

H
2(mlr2, + m2r2) + 2mr2 + 2 k(r2 - l0)2 (m1r1 + m2r2)g cos e

Show that the equations of motion given in Problem 4.10 can be obtained from the Hamiltonian
equations.
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16.8. The three masses (spheres), Example 4.5, Fig. 4-5, Page 65, are allowed to fall freely through a
viscous liquid. Coefficients of drag on the spheres are al, a2i a3 respectively. Neglecting drag on
the springs, buoyant effects and virtual mass due to liquid, show that H in coordinates y, q1, q2 is
given by

H =
py Cpgl + 2Dpgl pq2 + Bpg2

m + 2(BC - D2) + Mgy + 2k1(g1 + qe - l1)2

m1 m2 + ms1+2k2[;;:-i - m3/q2-12
-12

where B = m1(m1 + m2)/m3, C = m2(m2 + m3)/m3, D = m1m2/m3. Write out the power func-
tion P power and the Hamiltonian equations of motion.

16.9. Set up H and write the Hamiltonian equations of motion for the system shown in Fig. 8-5, Page
146. Note that 0.

(po - p, cos 8)2 p¢H = +
2_[J_+ (Ix +. Ms2) sine e] 24

16.10. Assuming viscous drags -b1x1, -b2x2 on m1 and m2 respectively, Fig. 16-3, write the Lagrangian
equations of motion. Determine H, write Hamiltonian equations and show that from them, equations
can be found which are the same as those obtained by the Lagrangian. method.

H = p21/2m1 + pz2/2m2 + 2k1x1 2 + 2k2(x2-x1)2, P 2(blx1 +b 2x22 )

x2

k1 k2

bl

For x1 = x2 = 0, springs unstretched

Fig. 16-3

11

B. Problems in which moving coordinates and/or moving constraints are assumed.

16.11. Referring to Example 3.6, Page 48, Fig. 3-4, and assuming that the table and rod are moving as
indicated in obtaining the second expression for T, show that the Hamiltonian for in is

H = p,2./2m - jmr2920 cos2 wet - I mwl [s + r sin (00 sin W2012 + mgr cos (90 sin wet)

Show that H # S.

16.12. Determine H for the pendulum, Problem 3.17, Page 54, Fig. 3-11. Write the Hamiltonian equations.

[pa + m(l - A sin wt)Aw cos wt sin 0]2
- mA2w2 cos2 wt(1 -cos s)H - A sin wt)22m(l

- mg[Aw cos wt + (1 - A sin wt) cos 0]

py = rA2w2 cos2 wt sin 6(1 - cos 9) -
p9Aw cos wt cos 9

- mg(l - A sin wt) sin s(l - A sin wt)

9 =
pe'+ m(l - A sin wt)Aw cos wt sin s

m(l - A sin wt)2

16.13. Write H for the pendulum shown in Fig. 4-19 (1), Page 79, in terms of coordinate o. Show that
H 9& 8total-

2

H = - -m(vo + at)2 - mgr cos o2m(ro -
vt
vt - jat2)2
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16.14. Determine H for the pendulum, Problem 3.23, Fig. 3-14, Page 55. Is it true that H St-tai?
(p« + po)r sine + (po cos. + ps sine cos a sin ¢)s 2

mr2 pe + s cos a sin
-21 I mr2 L mr2 sin3 e(2r2 + s2 sin2 0) 1
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(p,, sin2 e (pa +.p(p)r sine + (pd, COS 0 + pe sin 9 cos 0 sin O)s 2

+ 2mr2 17mr2 (s cos ¢ + r sin ¢) I
mr2(2r2 + s2 sin2 0)

- .m(s2 + r2 sin2 e + 2sr sine cos ¢)
p)r sine + (pd, cos + psine cos a sin[(Pa

mr sin3 o(2r2 + S2 sin2 0) 1

- mgr cos 0

16.15. Referring to Fig. 14-2 and expression (144), Page 283, show that, taking account of the earth's
rotation, H is given by

H = 2m{ [px + mwe(y sin 4, - z cos 4') - mweR]2 + (py - mwex sin 4,)2 + (pz + mwex cos +)2)

+ 2mwe[x2 + y2 sin2 + (R + z)2 cos2 - 2y(R + z) sin 4> cos 4>] + V(x, y, z)

px + mwe(y sine - z cos 4') - mweR
x = etc.m

(py sin 4' - pz cos 4')we - 2mw2 x - aVlax, etc.

16.16. Starting with the expression given for T in Example 4.8, Page 67, Fig. 4-6, show that
H = I prq,r - L = T1 - T3 + V and that H A 46totai

16.17. Assuming that the hydrogen atom, Fig. 16-4, is in field-free space, set up the classical Hamiltonian.
Write out the Hamiltonian equations of motion. See Example 16.3, Page 320.

Fig. 16-4

16.18. Show that the Hamiltonian for the system of Problem 15.7, Page 313, is

H = 2 (pxi/ml + pX2/m2 + pg/M) + 112 2(klxi + k2x2) - EQ + 2Q2(s - x1- x2)/A

16.19. Applying the relation H = P,4,. - L, show that H for the electromechanical system of Problem
15.8, Page 313, is

H = 2[p9/I + py/m + (pel - N4'o)2/M11 + p0 2/M22] + V (X, e, Q1, Q2)
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17.1 Preliminary Statement.
With the hope of making clear the mathematical as well as physical basis on -which

Hamilton's principle rests, the following material is included: (a) A statement of certain
illustrative problems; (b) a brief treatment of some necessary techniques in the calculus
of variations; (c) solutions to problems proposed in (a); (d) derivation of Hamilton's prin-
ciple by the calculus of variations method and again from D'Alembert's equation; (e) various
specific examples illustrating principles of the calculus of variations and -Hamilton's
principle.

In order that the reader may have a broader view of the usefulness of Hamilton's prin-
ciple, a brief discussion of this topic together with a list of suitable references are included.

17.2 Introductory Problems.
As a means of introducing important preliminary ideas let us first consider, in so far

as we can at the moment, the following specific examples.

Example 17.1.

Referring to Fig. 17-1, suppose that co-
ordinates xi, yi and x2, y2 of points pi and
p2 respectively are given, to find the equation
of the shortest line passing through these
points. As indicated on the diagram, an
element of length ds of any line, regardless
of its shape, is given by ds = (dx2 + dy2)1/2
[1 + (dy/dx)2] 1/2 dx. Hence 1, the length of
any line from pi to p2, is given by

f x2 [I + (dy/dx)2]1/2dx
x1

(1)

But what is the shortest line connecting these
points? The problem reduces to one of find-
ing a relation between y and x, y = y(x),
such that (1) is a minimum.

Y

0

ds = (dx2 + dy2)v2 = [l + (dyldx)2]112 dx

Fig. 17-1

Example 17.2.
In Fig. 17-2 below a bead of mass m is free to slide down a smooth rigid wire under the action of

gravity. What shape must the wire have [what is the relation between y and x, y = y(x)] such that the
time required to slide from a given point pi(xi,yi) to p2(x2,Y2) is a minimum?

Note that for an
= (p2 ds

y path connecting these points, the time interval is given by t J v where
p1

ds = (dx2 + dy2)1/2 and v is the instantaneous velocity of the bead. Since here energy 6 is conserved,

6 = lmv2 + mgy = 2mv + mgyi = constant

326
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Thus v = [v2 - 2g(y - y1)]112 where vl and yl are known values at point pl. Hence we may write

('52 r 1 + (dx/dy)2 11/2
t = J L dy

,, vl - 2g(y - yl)

The problem now is, of course, to find a relation between y and x such that (2) is a minimum.

Y

Bead m released with velocity vl at pl
xl, yl given slides down a smooth rigid wire to

Ing

point p2. To find the shape of the
wire, y= y(x), for which the time of
descent is a minimum.

Fig. 17-2

X

Fig. 17-3

327

(2)

Example 17.3.

Referring to Fig. 17-3, the ball is thrown upward with initial velocity v at an angle e. As shown by
elementary principles, it takes a path determined by

x = VA y = vyt - 2gt2 (3)

where vx and v , are components of v.

Looking ahead at what is to follow, we ask ourselves: what are the relations x x(t), y = y(t) such
that the following integral

J t2 L dt = f t2 [ 27n(x2 + y2) - mgy] dt (4)
tl tl

has a maximum or minimum value, where L is the usual Lagrangian?

As will soon be shown and as doubtless the reader has already guessed, relations (3) are just the
required expressions.

Completion of the above three examples requires certain methods of the calculus of
variations. We shall return to them at the end of the following section.

17.3 Certain Techniques in the Calculus of Variations.
Consider the more general type of problem in which some function c(x, y, dy/dx) is given,

to find a relation between y and x, y = y(x), such that the following definite integral

x
f x2O(x, y, dy/dx) dx (5)=

has an extreme value (maximum or minimum).

Referring to Fig. 17-4 below, suppose that the solid line, y = y(x), represents the de-
sired relation. Let the dotted line represent a slightly "varied path" where for every point
p(x, y) on the solid line there is a "corresponding point" p(x, on the varied path. Co-
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Y
Y,; = ordinate of point

on varied path
Y = y+<f(x)

1\
Slightly varied path

Yu = y + -f(X)

K

0

Solid line, y = y(x), assumed to be the one
b

for which f O(x, y, y') dx has extreme value.
a

x

Fig. 17-4

ordinate x is not varied and yv = y + Sy as shown. As a means of representing the varied
path let

yv = y(x) + Ef(x) (6)

where e is an arbitrary small quantity (an "infinitesimal parameter") and f (x) is an arbitrary
differentiable function of x which, for reasons to follow, is assumed to vanish at points a
and b. To illustrate the above important procedure suppose E is a small number, say 10-6,
and that f (x), meeting the above requirements, never reaches values large compared with
y(x). It is then clear that (6) represents a line very close to the solid line. Indeed if c is
taken sufficiently small, (6) is "close" to y(x) regardless of what finite values f (x) may assume.

It is here important to note that by assigning various values to e, for a given f (x), (6)
represents a family of curves in the neighborhood of y = y(x).

Now suppose an integral corresponding to (5) be taken along the varied path. That is,
Sg

Jv = f1 O(x, yv, dx (7)

where yv is given by (6). For convenience in what follows, we write

Sy = yo - y(x) = Ef(x) (8)

and dy,zldx = yv = y'(x) + E f'(x) (9)

where y'(x) = dy/dx and f'.(x) = df'/dx:

The definite integral (7) is a function of e only; and the condition that (5) have an
extreme value is that, regarding E as- variable,

dSoldc = 0 for E = 0 (10)

Differentiating (7) under the integral sign,

d9v f xz rafi ayv + ao ayvj dx (11)
de 1 Lay,,, ar ayv aE

But for E = 0, ao a ; and in any case,
ayv

= f (x), ayv = fl (x). Hence (10)
ayv ay, ayv ayv aE aE

may be written as



CHAP. 17],

Noting that

HAMILTON'S PRINCIPLE 329

Jx, I

ay f(x) + ay f'(x) J dx _ 0 (12)
X2 a

ay f'(x> ay' dx [f(x)] dx
[-f(x)] __

f(x) dx (ay') (13)

(12) can be put in the form

FOO 1,1 d
Lay f(x)]xl + JS12 Lay dx (ay)] f(x) dx = 0

(14)

Assuming f (x) so chosen that it is zero at a and b, the first of (1.4) is zero. Then for
convenience we multiply (14) by E, apply (8) and write

ay]
Syj dx = 0 (15)

JZ12 d (ay j - (15)

Here Sy is arbitrary for all values of x from x1 to x2. For example, Sy may be chosen
positive over any one or more regions and negative over the remainder. Hence (assuming
for the moment that the expression in brackets in (15) is not zero), if we choose Sy positive
where the expression in brackets is positive and negative where it is negative, integral (15)
is not zero. Therefore (15) can be zero for all possible choices of Sy only under the con-
dition that

d (a 1 _ a

dx ay' / ay = (16)

This then is a differential equation, the solution of which furnishes a relation between
y and x, y = y(x), such that when substituted in (5) gives this integral an extreme value.
(Note the resemblance to Lagrange's equation.)

Integral (15) can be put into another useful form as follows Multiplying (12) through
by the infinitesimal quantity e and writing

aj9

aE
83, Sy = E f (x), 8y' = E fl(x)

we have 8,q =

which can be written as

f i (ay Sy + y Sy') dx =

fx'8[O(x,y,y')jdx
,

(17)

Specific examples to follow will give more meaning to (15) and (17).
The above results may be extended to the case of n. dependent variables yl, y2, .. yn

and an independent variable x. (Details are not given.) That is, considering the function.

0 = On (y1, y2, ... yam; yl, y2, ..., t) (17.1)

the condition that fx2 0n dx have an extreme value is
l

d a11n

dx \ ay' l ayz

or, what amounts to the same thing,

S3 = f S(on) dx =

(17.2)

(17.3)
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'17.4 Solutions to Previously Proposed Examples.

We are now in a position to complete Examples 17.1, 17.2 and 17.3.

[CHAP. I7

Solution to Example 17.1.
Comparing equations (1) and (5) it is seen that ¢ (1 + y''2)1/2(a rather special case since it contains

only y'). Applying relation (12) and noting that

ay

= 0, dx (4) = 0 or ac/ay' = cl = constant. Thus

a0/ay' = (1 + y'2) 1/2y` = Cl from which y` = dy/dx = c1/ 1 - ci = c2. Integrating this we obtain
y = c2x + c3i the equation of a straight line which, for properly chosen values of c2 and c3, will pass
through the selected points a and b of Fig. 17-1. (For finding the shortest distance between two points on a
cylinder see Example 17.4.)

Solution to Example 17.2.
r 1 + xr2

1/2

As seen from (2), = v2 - 2g(y - y1)[ 1 where x' = dx/dy. We shall here regard y as the in-

=dependent variable. Thus dy C ax ax = 0. Now since ax = 0, we have dy \ ax ) = 0 or ax = Cl
constant. But

aq, x'
ax'

-
((1 + x'2) [v1 + 2g(y1- y)] }1/2

/21/ vl/2g + y1 - yfrom which x' 1\ l1/2gc1 - vi /2g - yl + y

X/ (18)
dx

Cl

Now writing c2 = 2g + yl, c3 = 21

c2
- e

dy
=

c2 - y 1/2

(cs + y/

which is the differential equation relating x and y. In order to integrate (18) we make the following change
of variable:

C2 - y = R(1 -cos a) (19)

where R = (02 + 03)/2, from which c3 + y = R(1 + cos a) and dy = - R sin a da. Putting these results
into (18), we obtain

dx
1 -cos

\ 1/2

-R(1+cosa sinada = +R(1-cosa)da

which integrates at once to give

x = x0 + R(a - sin a) where x0 = constant

Hence the parametric equations of the path of most rapid descent are

x = x0 + R(a - sin a), y = yo - R(1 - cos a
where yo = c2 = V2

112y + y1.

(20)

7TR -'

Vo, yo b

Disk D rolls without slipping along ab.
Point p' attached to disk traces the cy-
cloid ABC, expressed by

Y = yo - R(1 -Cos.)

d h lp1(x y,) an p2(x2,y2) are t e se ected points:

Fig. 17-5
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The reader may show that the curve ABC, Fig. 17-5 above, traced by point p' attached to the disk, as
the disk rolls without slipping along line ab, is represented by equations (21). Hence the "brachistochrone"
(path of shortest time) is here a cycloid.

For any specific problem (one for which values of vi; xl, yl; x2, y2 are given), R and x0 (yo = C2 =
vi/2g + yl is not arbitrary) must be so chosen that the cycloid passes through pl(xl, yi) and p2(x2, y2).
That this can be done and that the path is unique is shown by: W. D. Macmillan, Statics and Dynamics of
a Particle, Dover, 1958, Page 328.

Solution to Example 17.3.
Comparing expressions (4) and (5), we write

95 = L(x, y, t) = 2m(x2 + y2) - mgy
where t is taken as the independent variable. Applying (17.2),

d
d (ax) ax = e' d

td
ay) ay - 0 (22)

(which are obviously Lagrange's equations). These give m x = 0, m y + mg = 0 and finally, by integra-
tion, x = vxt, y = vyt - 2gt2 which are just relations (3). That is, the relations between x and t and y

and t which make L dt an extreme value or

J
SL dt = 0, are determined by Lagrange's equations.

tl t,

17.5 Hamilton's Principle from the Calculus of Variations.
Notice that the general type of Lagrangian L = L(ql, ..., qn; ql, ..., in; t) has just the

form of 0 in equation (17.1) where ql corresponds to yl, etc., ql to y,', etc., and t to the in-
dependent variable x. Hence it follows that

ft

t2 t2

J = t

2

L(ql, ..., qn; ill ..., Q'n; t) dt = ft 2 (T - V) dt (17.4)
l l

has' an extreme value or

fl
provided

t2

8 [L(ql, ... , qn; ill ... , qn; t)] dt = 0 (17.5)

d aL aL =
0 r = 1, 2, ..., n (17.6)d a4T) - aqr

That is to say, when solutions of (17.6), ql = ql(t), q2 = q2(t), etc., are substituted into (17.4)
this integral has a maximum or minimum value. But (17.6) is just a familiar form of
Lagrange's equations. Hence it can be said that the motion of a system, determined by
Lagrange's equations, is such that the integral (174) has an extreme value or that (17.5)
is zero.

Relation (17.5) is one form (not the most general) of Hamilton's principle.
In the following section we shall derive Hamilton's principle, in a more general form,

making use of D'Alembert's equation.

17.6 Hamilton's Principle from D'Alembert's Equation.
A considerably better understanding of the physics involved in the steps leading to

Hamilton's principle may be gained from the following derivation than from the one just
completed. However, each approach makes a worthwhile contribution to a general under-
standing of the principle.

For the sake of clarity the derivation is divided into the following steps.

(a) Consider a system of p particles having n degrees of freedom and moving through space
under the action of various types of forcest. Following exactly the ideas expressed in
Section 4.2, Page 58, (which should be reviewed) we copy below equation (4.2):
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..i
8xi + y

..i
Syi + z

..i
8zi) = Fxi8x + Fyi8yi+Fz sSzi) = S Wtotal (17.7)mi(x ;(

i=1 i=1

where, insofar as the validity of (17.7) is concerned, the "virtual displacements" 8xi, 8yi,
8zi are completely arbitrary. However, just as in the derivation of Lagrange's equations,
we shall assume that Sxi, 8yi, 8zi are displacements in which t does not vary. See Example
3.5, Fig. 3-3, Page 47.

(b) Suppose that at time to one of the particles mi is at point A, Fig. 17-6. At a later time,
moving in accord with Newton's laws, it arrives at C along an "actual path" ABC. All
other particles of the system follow their own paths during this interval, but attention
need be given to mi only.

Fig. 17-6

Now regard ABC as divided into infinitesimal intervals by points p1, P2, .... As-
suming mi at p1 at time t1, imagine it given an arbitrary infinitesimal displacement Ss
from pi to the "varied point" pi. Components of 8s, as shown on the diagram are
Sx, 8y, 8z. For every point on ABC we locate in this manner a varied point. The path
AB'C determined by the varied points pi, p2, ... is referred to as the "varied path". It
should be remembered that 8x, Sy, 8z have exactly the same meaning as the virtual dis-
placements used in the derivations of Lagrange's equations in Chapters 3 and 4.

(c) Just as in Section 17.3, [see equation (6)], we write

xv = x + e1 fl (X)l yv = y + e2 f 2(y), zv = z + E3 f3 (z) (23)

where xv, Yv, zv are coordinates of a point on the varied path and x, y, z those of a cor-
responding point on the actual path. E1, E2, e3 are again infinitesimal quantities, here re-
garded as constants. f 1(x), f2 (y), f3 (z) are arbitrary differentiable functions of x, y, z
respectively but so chosen that at A and C, 8x = 8y = Sz = 0.

We now define the following variations,

Sx = x - x, 8(dx) = dx,; - dx, S& = xv - x (24)

where .x = dxldt, xv = dxv/dt, dx,, = dx +E1 d{f1(x)]. Hence from (23) and (24) it follows
that

Elf 1(x), 8(dx) = e1 d [f1 (x)]f 8x = e1 dt [f 1 (x)] Wt (ax) (25)

and corresponding relations are of course valid for Sy, Sz, etc. Note that the above are
true for arbitrary differentiable functions f1(x) etc.
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(d) Next let us consider the first term of (17.7). By the product rule of differentiation this
can be Written as

sxi(mixi) - 7f (mixi Sxi) - mixi dt (Sxi)

d 1 .2
But by (25), dt (8xi) = 8x. Then mixi

u,

at (8xi) = mixi 8xi = 2mi 8xi and

Similar expressions follow for miyi 8yi and mini 8zi.

Thus on eliminating mixi Sxi, etc., from (17.7) and rearranging terms, we have

(26)

(27)

P d
8 [ mi(x2 + y2 + ?)J + 8 Wtotal = dt rnti(xi Sxi + yi 8yi + Zi 8Z)

J
(28)

i=1

Multiplying through by dt and integrating between the limits of to and tt (the time to go
from A to C), (28) becomes

[8T +8 Wt.lal] dt
fto"

mi(xi Sxi + yi 8yi -+ zi 8z)
A

(29)

(e) Hamilton's Principle. Assuming as above mentioned that at A and C, 8xi= 8yi = 8zi = 0,
the term on the right of (29) is zero. Thus

f f (ST + Fg18g1 + Fq2 8q2 + +. Fq,z 8gri) dt = 0 (17.8)
to

which is a very general form of Hamilton's principle. Far are the usual generalized
forces due to any type of applied forces, They may, if superfluous coordinates are in-
troduced into T as described in Chapter 12, include forces of constraint.

If all forces are conservative, 8 Wtotal = - 8V and

t
f i,

8(T - V) dt
t,

SL dt = 0 (17.9)
o to

which is just the form (17.5) previously obtained.

17.7 Lagrange's Equations from Hamilton's Principle.

Note that, holding t constant,

8T = IT 8qr + I IT
8qr (30)

r=1 aqr r=1 air

Eliminating aqr from the second term by Sqr = dt (Sqr) and integrating the second term of
(30) by parts, we get

S
`' IT d(8gr) - I IT sqr

f tf L

d (IT) dt (31)
, r=1 aqr r=1 air A to Lr=1 dt aqr)

n IT)(-.
But i 1

aqr
Sqr

can be written as

C

= 0 since all variations at A and C are assumed zero. Hence (17.8)
A - :.
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t0 ri (at 37q aq, )
Sqr] dt = 0

[CHAP. 17

,(17.10)

This integral must be zero for completely arbitrary values of Sqi, Sq2, . . ., Sqn along the
paths. Hence suppose that all Sq's except say Sqr are set equal to zero. Then, in accord
with the argument given before equation (16), Page 329, it follows that the coefficient of
Sqr must be zero. Hence in general,

d aT _ aT _ F,,dt (a4r) aq,

Similarly, the form dt (aq ) - aq = 0 follows at once from (17.9).

From the above it is clear that, given Hamilton's principle, together with an under-
standing of T, V and F0 , Lagrange's equations, Newton's second law equation, etc., can be
derived. Hence, if so desired, Hamilton's principle may in this sense be considered the basis
of analytical dynamics. See references on Page 336.

17.8 Specific Examples Illustrating the Results of this Chapter.
Example 17.4.

Let us show that the shortest line between any two points p, and p2 on a cylinder is a helix.
The length s of any line on the cylinder between p, and p2 is given by

P2

[1 + r2(de/dz)2]112 dz
7,t

where r, e, z are the usual cylindrical coordinates with r = constant. A relation between o and z which will
give this integral an extreme value is determined by

d (a o) - 80
6

- 0
dz ae'

where o _ [1 + r26'2] 1/2 and 6' = do/dz. But since 095106=0,
0010B' = (1 + r20'2)-1/2 r2o' = c, = constant

From this, re' = c2. Hence re = c2z + c3, which is the equation of a helix.
Suppose that at p, we have e = 0, z 0; thus c3 = 0. At P2 let

c2 = re2/z2, and ro = (r02/z2)z is the final equation.
6=62 and z = z2; hence

Example 17.5.
Referring to Fig. 17-3, Example 17.3, let us evaluate integral (5) along the actual path, determined by

x = vxt, y = vyt - 2gt2 between the limits t = 0 and t = tf = 2v,y/g = time of flight, and integral (7)
along a varied path determined by x = vxt, y = h sin (7rvxt/R) between the same limits, and compare the
results.

Let h = v2yl2g = maximum height, and R = 2vxvylg = range of projectile. Note that the real and
varied paths intersect at x = 0 and x = R. Hence Sx = Sy = 0 at these points. (Show that at
t = t f/4, y - y = 0.707 - 0.75.) Integral (5) becomes

= 2m[vy + vy - 4vygt + 2g2t2] dtJ tf0

Equation (7) may be written as

and finally

JV =
£t/

0

2mh(vi/vy - Ivy)

2m[v + (h2r,2vz/R2) cos2 (7vxt/R) - 2gh sin (rvxt/R)] dt

2mh(vzlvy - cvy)

where c = (2/7r - 7x2/32) = 0.329. Note that J is slightly less than &, as expected.

Example 17.6.
For a pendulum bob suspended from a spring, find the equations of motion by a direct application of

Hamilton's principle.
For the pendulum shown in Fig. 17-7 below,

L = 2m(r2 + r292) + mgr cos e 2 k(r - r0)2
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Hence

f t2 SL dt
t1

f12

[m(r Sr + roe Sr + r28 Se) + mg Sr cos e - mgr So sin o - k(
tl

Following equation (25),

Likewise,

mr Sr dt = mr d(Sr) = d(mr Sr) m Sr r dt

mr2o So dt = d(mr2e So) - Sod(dt2o) dt

d(mr2e Se) 80(mr2 e + 2mrre) dt

Hence we write the above integral as

- r0) Sr] dt

[{m r - mre2 - mg cos e + k(r - ro)} Sr + {mr2 B + 2mrr8 + mgr sine} Se] dtft2
f t2

[d(mr Sr) + d(mr2e Se)] = 0
tt

Assuming Sr and So are each zero at t, and t2, the second integral is clearly zero. Since Sr and so are
(except as stated above) completely independent, the first integral can be zero only if

m r - mre2 - mg cos e + k(r - ro) = 0 and mr2 e + 2mr;; + mgr sin o 0

But these are the equations of motion of the system. It is evident that they are just the relations that would
be obtained by a direct application of D'Alembert's principle or Lagrange's equations.

%//T/Tl%7//lT/,
XY frame moves to right with

constant acceleration a.

Fig. 17-7 Fig. 17-8

Example 17.7:

Suppose that the entire XY frame, Fig. 17-8, is made to move in the positive direction of X so that the
distance s of 0 from a fixed point is given by s = vt + 2at2. Let us also assume a viscous drag f on m
given by f = -bx. From (17.8) we have

c
where t is not varied.

[SL + f Sx] dt =
f12

[S{2m(v+at+x)2 - 2kx2} bx Sx] dt
t,

[m(v + at + x) Sx - kx Sx - bx Sx] dtft2t,

Writing m(v + at + z) Sx = d[m(v + at + x) Sx] - m(a + x) Sx dt

the above integral becomes

ft2 [{m(a+x)+bx+kx}Sx]dt - ft2

d[m(v+at+x)Sx]
tt t,

The second integral is zero and from the first, m(a + x) + bx + kx = 0, which is just the equation of
motion obtained by applying Lagrange's equation in the usual way.

The above is another example of how equations of motion may be obtained by a direct application of
Hamilton's principle.
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17.9 Applications of Hamilton's Principle.
As illustrated by Examples 17.6 and 17.7, the equations of motion of a system may be

obtained directly from Hamilton's principle. However, as is evident, the procedure is less
convenient than the usual Lagrangian method.

Of course it may be said that, since Lagrange's equations are obtainable from Hamilton's
principle, their use is equivalent to an application of the principle. However, it must be
remembered that a derivation of Lagrange's equations, which in no way depends on Ham-
ilton's principle, follows at once from D'Alembert's equation. Moreover, the route to
Lagrange's equations via Hamilton's principle leaves much to be desired as regards clari-
fication of basic physical principles. (Compare the derivation of Section 17.7 with that
given on Pages 58-60.)

However, this principle represents a distinct and interesting point of view. Also, it has
been the forerunner of the application of variational methods to many branches of theoreti-
cal physics. Within relatively recent years variational methods have proven quite useful in
the development of the dynamics of continuous systems, relativity, quantum mechanics and
quantum electrodynamics.

For further study of Hamilton's principle, general variational methods and other
related topics the reader may consult the following references.

Cornelius Lanczos, Variational Principles of Mechanics, University of Toronto Press,
1949, 1966. This book is highly recommended not only as a reference on variational prin-
ciples, but as a valuable source of information regarding the basic principles and ideas
throughout the field of dynamics. No effort has been spared to lay bare the foundation
stones and supporting framework around which the science of analytical dynamics is con-
structed. The language is clear and unencumbered with abstruse expressions. Seeking
only to present basic truths in an understandable and unveiled manner, no attempt is made
to present the material in its most "compact", "elegant" or fashionable form. Furthermore,
the author makes quite clear certain very important points regarding the vectorial as com-
pared with the analytical methods of dynamics. Finally, in referring to this book, do not
fail to read both the preface and introduction.

Clive W. Kilmister, Hamiltonian Dynamics, John Wiley, 1964, Pages 34, 49, 50. Note the
author's views regarding Hamilton's principle, Page 34.

Herbert Goldstein, Classical Mechanics, Addison-Wesley, 1950, Pages 30-37, 225-235.
For a derivation of Hamilton's equations of motion from Hamilton's principle, see Pages
225-227. For an important statement regarding variational principles and their uses,
see Page 235.

J. C. Coe, Theoretical Mechanics, Macmillan, 1938, Pages 412-417.
Robert Weinstock, Calculus of Variations, McGraw-Hill, 1952, Pages 16-48, 95-98, 261-294.

This book includes many applications of variational methods.
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Problems

337

17.1. Show that the shortest (or longest) line connecting two points on a sphere is a segment of a great
circle.

17.2. A line y = y(x) passing through two given points pi(xl, yi) and p2(x2, y2) is rotated about the
X axis. Show that the surface area A generated by the line is given by

A 2;rf y ds 27r f y[1 + (dy/dx)2]112 dx
P1 X1

Show that the equation of the line which generates a minimum surface is given by
dy/dx = (y2/c1 - 1)1/2 or y = cl cosh (x/CI + c2)

where ci and c2 are constants to be determined so that the line passes through the two given points
pz and p2. Details of how this may be accomplished are given in: R. Weinstock, Calculus of Varia-
tions, McGraw-Hill, 1952, Page 30. The above curve is referred to as a catenary.

17.3. A mass m attached to a coil spring having a constant k, oscillates along a smooth horizontal line
with a motion given by x = A sin wt where w = k/m. Assuming a varied path represented by
x = A sin wt + a sin 2Wt, where a is a small constant quantity, show that for the actual path taken

t=7rr2o
over the interval t = 0 to t = 7r/2w (one fourth of a complete oscillation), f SL dt = 0; and
that for the varied path this integral is equal to *m7re.e2. t=a

17.4. Coefficients in a Fourier sine series development of the parabolic path, Example 17.5, Fig. 17-3,
are given by a _ (16h/n3,r3)(1 cos n7r), n = 1, 2, 3, .. .
(see any introductory treatment of Fourier series). Hence (retaining the first and third terms) the
parabola is approximated by

32h 32h,rx 37x+
sin siny 3 R 27r3 R

(Note that a2 = 0.) Taking the above as a varied path, show that the integral w for this path is

19V f tf

L dt = 2mh(vx2/vy + cvy) where c (32 X 82/81vr4) = .333Jt_o
Lf

Show that f L dt over the actual path is slightly less than f,,.
t=o

17.5. Referring to the above problem write y, _ y + e sin wt as a varied path, where y = v,t - 2gt2,
e some small number, m =. n7r/tf, n = an integer. (Note that the varied path goes through the
points x = 0, x = x2i Fig. 17-3.)

tf
Again show that the integral f L dt is greater for the varied than for the actual path.

t=o

17.6. The ball, Fig. 17-9, is thrown horizontally from p1 with an initial velocity of vx. Falling freely
under gravity, its actual path is determined by x = vxt, y = 2gt2.

Actual motion x = vxt, y = _1#t2.
Assumed varied motion passing through p, and p_,,

x = vxt, y =
e

(axis: - 1)

Fig. 17-9
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Let us assume the followin varied
/ Y2

g path x = vxt, y = ( e _ 1 (ex/x2 - 1) which passes through
points pl and P2. Show that for the actual path,

('t2=z2/vx

tl=o

and for the varied path,

L dt = mvxx2 + mg2x2 mvxx2 + 2 m9x2y2
2 3v3 2 3 vx

f t2=x2/viJ Ldt
t,=o

mvxx2 m9x2y2

2
+ 0.689 vx

17.7. Referring to Fig. 2-8, Page 13, find equations of motion of the system by a direct application of
Hamilton's principle as was done in Example 17.6. Use coordinates ql, y; see (2.44), Page 25, for
T. Check results by the Lagrange method.

17.8. Referring to Problem 3.21, Fig. 3-13, Page 55, set up the r equation of motion by a direct applica-
tion of Hamilton's principle.

17.9. Referring to Example 4.6, Page 66, set up the equations of motion of the double pendulum by a
direct application of Hamilton's principle.

17.10. The pendulum shown in Fig. 17-7 and discussed in Example 17.6 is now allowed to swing in space.
In spherical coordinates,

L =
21
M(;2 + r292 + r2 sin e ;2) + mgr cos o - 2k(r - ro)2

Assuming a viscous drag on the bob, the power function P is

P lb(r2 + r292 + r2 sin2 a ,2)
t2

Show that 5 (ST + SW) dt reduces to
t,

f
t2

[(m7 - mre2 - mr sin2 B2 + k(r - ro) - mgr cos e + br) Sr
tt

+ (mr2 e + 2mrre - mr2 sine cos a 2 + br29 + mgr sin o) Be

+ (mr2 sin2 e + 2mrr sin2 e + 2m.r28 sin a cos e + br2 sin2 a .) 8,51 dt = 0

from which the equations of motion may be read off at once.

17.11. Referring to Example 4.8, Fig. 4-6, Page 67, set up equations of motion of ml and m2 by a direct
application of Hamilton's principle. Is t allowed to vary? Compare results with those given.

17.12. Set up equations (14.15), Page 287, by a direct application of Hamilton's principle.
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i sect: and Tensor ota

The Lagrangian method of dynamics is largely based on the scalar quantities T, V, P,
SW each of which can, for holonomic systems, easily be expressed in terms of any suitable
generalized coordinates. Though the vector nature of force, velocity, acceleration, etc., is
of basic importance, formal vector and tensor methods are usually of little or no use in
obtaining proper expressions for the above quantities. On applying Lagrange's equations,
equations of motion are obtained directly in just the desired coordinates. Moreover, coin-
plete account is automatically taken of vector quantities without the use of intervening
formal vector relations, as shown in Section 3.10, Page 50. Hence the very general and
easily applied Lagrangian procedure does not, require or greatly benefit from formal vector
and tensor methods. In all except relatively simple cases it is far easier and less time-
consuming to write the Lagrangian equations of motion than to first determine appropriate
vector relations and then translate into desired coordinates, to say nothing of the problem
of eliminating forces of constraint.

However, vector and tensor notation and procedures have been introduced extensively
in many branches of science and technology, and in various fields they offer decided advan-
tages. Hence the following list of the most important relations of dynamics, expressed in
the above notation, should be of interest and value to the reader (a) in developing a better
understanding of this language and how it is related to Lagrangian methods, (b) as a back-
ground for reading many references. It will also serve to make more complete all points of
view on this subject.

Following each relation given below is the number and page of the corresponding form
in the text.

1. Position vector r and transformation equations.

r = xi+yj+zk
where i, j, k are unit vectors along rectangular orthogonal X, Y, Z axes. Or,

r = x111 + x212 + x313
k=1

where i1, i2, i3 correspond to the unit vectors above and X1, X2, X3 replace X, Y, Z.

x; = xi(g1, q2, . . ., q,, t), etc., = reduced transformation equations. See (2.51), Page 27.

2. Velocity i.
velocity = ri = xi+yj+zk

I ari qk + arti (2.52), Page 27r; -
k=1 aqk at

339
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. v = vo + r + to x r = inertial space velocity of a particle, where to = angular velocity
of frame of reference, vo = inertial space velocity of origin of frame, r = position vec-
tor of particle measured relative to moving frame. See (8.4), Page 143.

v = vo + w x r = velocity of typical particle in a rigid body. See (8.3), Page 142.

3. Acceleration a.
a = r = xi+yj+zk (2.59), Page 29

Components aqi, aq2, aq3 of a along coordinate lines of the generalized coordinates
qi, q2, q3

aqr

T =

a

where a = inertial space acceleration of a typical particle in a rigid body.

4. Force F, displacement dr. and work W.

F = Fx i + Fy j + F, k

dri dxii + dyij + dzik

(a
hr

[d
/
-

agrJ
(3.24), Page 49

ro + u,xr + cex(taxr) (9.7), Page 180

W = f F dr (2.36), Page 23

Kinetic energy T.
For a single particle, T = 1m; r. For a system of p particles having n degrees

of freedom,

where
miri ri

i=1

=
1 ari art

Ars
2

mi
i=1 agr aqs

See (2.54), Page 27.

6. D'Alembert's equation.

or

n

.. ari
dqk

k=1
aqk

n

Arsgrgs + Brgr +' C (2.55), Page 27
rs r=1

Br - P

mi
ari ari

( at at agrll
1 P ari ariC-2 Imi(at'at

P /q p f[Fi - mi(xii + yij + zik)] ' (Sxii + Syij + Szik)
i=1

P d
(Fi - pi) Sri = 0 where pi = dt (miri) (4.6), Page 60

{=1

To express in generalized coordinates, write Sri = ari(-- Sgk.
k=1 aqk

7. Lagrange's equations and generalized forces.

r
P a r1 P

dt aqr L2 mi(r1 r1)J C)qr L2 m`(r` ' r) J

SWgrP ari =Fi
i=1 aqr 8qr

(4.8), (.4.9), Page 60

(4.10), Page 60

See Section 4.8, Page 69.
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Potential energy V, power function P.

-V = f Fi dri where Fi are conservative (5.4), Page 82

Fi = - grad V, FQ,. - aq (5.7), Page 85

For viscous* forces,
.'.

P ari ariP = 2 b,.,M,, where brs = bi (aq, (6.16), Page 105
aqs

9. The inertia tensor I, (momental dyadic).

I = mi[r2(ii + jj + kk) - rr]

I = W. + jjIyy + W. - Ixy(ij + ji)
- Ixz(ik + ki) - Iyz(jk + kj) (7.11), Page 119

where Ixx = mi(y2 + z2), Ixy = mixy, etc.

For X, Y, Z principal axes of inertia,

I = iily + jjI y + kkIy

10. Moment of inertia Ioa about any line Oa having direction cosines 1, m, n

IOa =
where e = it + jm + kn.

(7.2), Page 118

11. Kinetic energy of a rigid body.

T = 2 miv? = 2 Xr)

2 mi[vo + (o x r) (w x r) + 2vo (w X r)] (8.10), Page 148

For one point of body fixed, origin at this point,

T = 2tlxwx+Iywy2+ Iz zw2-2I ywxwy - 2Ixzwxwz -2Iyzwywz)x

12. Angular momentum P about point O1 fixed in space. Corresponding Euler equations,
body moving in any manner, not fixed to 01.

P = mi(r x Section 9.13, Page 195

where r = position vector of mi.

Torque about 01, T r, x FS Section 8.2F, Page 147

where F, = externally applied force, r, = position vector of point of application of F.

Euler's equation,
-r = dt P (9.28), Page 196

13. Torque -ro and relative angular momentum P0 about point 0 moving with inertial-space
velocity vo.
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To = I miri X Ri = L miri X (v0 + r)

where Ri = position vector of mi measured from fixed point 01.

To = l miri X ri - Vo X I miri

= dt miri x ri - Mvo X r, (9.30), Page 196

where r, = position vector of center of mass relative to 0.

Defining Po = Y miri X i, as relative momentum, the Euler equation in vector
form may be written as

To = P
0
- MvoXr,

14. The metric tensor.
Write transformation equations as

xi = xi(g1, q2, , qn), etc. (t not entering)

axi dql + axi dq2 + ... + ax' dqndxi = aq1 aq2 9qn

(9.31), Page 196

n

I aik dqk
k=1

Define the "element of length" ds in n-dimensional (Riemannian) space by
P

ds2 = (dxi + dyi + dz?)
i=1

n n

[1:

P

ds2 (aikaii + bikbil + CikCil)J dqk dql
k=11=1 J

n n

or ds2 = I I gki dqk dql
k=1 1=1

where gki are components of the "metric tensor;" See, for example, (2.5i), Page 27.
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The relations given below are indispensable tools in the field of analytical dynamics as
well as in many other branches of mathematical physics. This summary is intended as a
convenient reference. Most of the relations have been used extensively throughout this text.

A.1 Relations between all, a12, a3, etc., Fig. A-1.

Direction cosines 1, m, n relative to

X, Y, Z and li, mi, ni relative to X1, Y1, Z1.

Fig. A-1

Here all, a12, a13, for example, represent cosines of the angles Oil, 012, 013 between X and
Xi, Y1, Zi, respectively. That is, all = cos 011, etc.

ail+ai2+a13 =
ail + a21 -{- 21 =

1,

1,

1,

1,

a31 + a32 + 3

2 2 2
a13 + a23 + a33

1

1

a21 + a22 + a23 =

ail + a22 + a32

a11a21 + a12a22 + a13a23 - 0,

a11a31 + a12a32 + a13a33 = 0,

a21a31 + a22a32 + a23a33 0,

In compact form (1) and (2) are given by

A airaisA

allal2 + a21a22

a11a13 + a21a23

a12a13 + a22a23

1 for r=s
0 for r s S rs

+a a = 0
1 32

+a
31

a
33

= 0

+a32a33 = 0

= Kronecker delta

all = a22a33 - a23a32, a21 - a32a13 - a12a33,

a12 = a23a31 - a33a21, a22 = a33a11 - a13a31,

a13 _ a23a32 - a31a22, a23 = a31a12 - alla32?

a31 = a12a23 - a22a13

a32 = a13a21 - a23a11

a33 = a11a22 - a12a21

(1)

(2)

(3)

(4)

343
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A.2 Relations between Direction Cosines l1, ml, nj and 1, m, n of Line Oa, Fig. A-1.
Note that 11, ml, nl are relative to X1, Y1,'Z1 and 1, m, n are relative to X, Y, Z. Consider

any point p(x, y, z; xi, yi, zi) on line Oa. Dividing the transformation equation
ya21 +za31 by r = Op we have xl/r = (x/r)a11 + (y/r)a21 + (z/r)a31. But x1/r = 1l,
Hence

11 = lall + ma21 + na31

M, la12 + ma22 + na32

nl = la13 + Ma23 + na33

Likewise it follows that
l = 11"11 + m1a12 + n1a13

M 11a21 + m1a22 + n1a23

n = 11a31 + m1a32 + n1a33

(5)

(6)

It is usually convenient to express the a's in terms of Euler angles as in Table 8.2,
Page 158 or Table A.1 which follows.

A.3 Direction Cosines Expressed in Specific Coordinates.
In the solution of almost any actual problem, direction cosines must eventually be ex-

pressed in terms of specific coordinates. This is not difficult. The following examples
are typical.

(a) Rectangular coordinates.
Consider line Oa, Fig. A-2. Let x, y, z be the rectangular coordinates of any point

p on Oa. Hence direction cosines 1, m, n of Oa are

l= x/r, m = y/r, n = z/r (7)

where r = (x2 + y2 + z2)1"2.

x,y,z, rectangular

p, O, z cylindrical
y; s,', spherical

Direction cosines 1, m, n can be expressed
in rectangular, cylindrical, spherical or

other coordinates.

Fig. A-2

(b) Cylindrical coordinates.
Letting p, ¢, z be cylindrical coordinates of p, Fig. A-2,

1 = p cos 0/r, m = p sin 4/r, n z/r
where r = (p2 + Z2)1/2

(c) Spherical coordinates.
Letting r, 0, 4, be spherical coordinates of p, Fig. A-2,

1 = sin 0 cos 0, m = sin 8 sin 0, n = cos 0

xl = xall +
xlr = 1, etc.

(8)

(9)
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(d) Direction cosines of the X, Y, Z coordinates, Fig. 8-16, Page 156, (or Fig. A-1) in terms
of Euler angles.

Euler angles are described in Section 8.7, Page 156, and illustrated in Fig. 8-16.
Direction cosines aW a12, a13 of X, etc., are given in Table 8.2, Page 158. For convenience
the table is repeated below. These expressions are easily verified with the help of
a simple model.

X Y Z

A
1

all = cos Ocos '
- sin 0 sin ¢ cos e

a21 = - sin o cos p
- cos 0 sin V, cos e a3l sine sin31

Y,
1

a12 = COS 0 sin
+ sin 0 cos ¢ cos e

a22 _ - Sin 0 sin ¢

+ cos 0 cos ' cos 9
a - sin 9 Cos32 = G

Z1 a13 = sin 9 sin o a23 = Sin a COS o a33 = COS 6

Table A.1

The above relations are very important in the treatment of rigid body dynamics as
well as in other fields.

A.4 Coordinates of Point P, Fig. A-3 (or m', Fig. 8-16) in Terms of Euler
Angles ', 0, 0 and Other Coordinates.

Coordinates of p are: x, y, z; x1, y1, z1; r, 91, ¢I (r, 6', 0' =
spherical coordinates measured relative to X, Y, Z.) Euler
angles p, 0, a orient the X, Y, Z frame relative to X1, Y1, Z1.
To find x1, y1, z1 in terms of r, el, ¢l, &, o, 9.

i1, i2, i3 = unit vectors along X1, Y1, Z1.

e1, e2, e3 = unit vectors along X, Y, Z.

Fig. A-3

Rectangular coordinates of p are xi, yi, Zi and x, y, z as indicated. Hence writing
x1 = xa11 + ya21 + za31 and eliminating the a's by Table A.1, we have

Xi = x(cos q, cos r - sin ¢ sin yr cos 0)

- y(sin ¢ cos tP + cos A sin cos 0) + z sin 0 sin

and similarly for y, and z1. Or from x = x1a11 + y1a12 + Z1a13 we obtain

x = xl(cos 0 cos y - sin q sin ' cos 0)

+ yi(cos ¢ sin i + sin 0 cos p cos 0) + z1 sin 0 sin

with similar expressions for y and z.

(10)
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Now, for example,. letting r, 0', e' represent spherical coordinates of p measured relative
to X, Y, Z, we have x ='r sin 0' cos 0', y = r sin 0' sin q' and z = r cos 0'. Eliminating
x, y, z from (10), we obtain

xl r sin 0' cos p'(cos 6 cos ¢p - sin o sin o cos 8)

- r sin 8' sin 4'(sin 4, cos 4, + cos q sin ¢ cos 8) + r cos 8' sin 0 sin 4
(12)

etc. Thus it is clear that relations of the above type can be written in terms of Euler angles
and various other coordinates.

A.5 Direction Cosines of Line Oa, Fig. A-3, in Terms of Euler Angles
gyp, , 0 and Rectangular Spherical or Other Coordinates.

The direction cosines 1, m, n of Oa, relative to X, Y, Z are just
1=x/r, m=y/r, n=z/r (13)

where x, y, z are the X, Y, Z coordinates of p. Hence the first of equations (5) may be
written as

11 = (x/r)(cos 0 cos 4, - sin 4, sin 4, cos 8)

- (y/r)(sin 0 cos 4, + cos 4, sin cos 8) + (z/r) sin 0 sin 4,
with similar relations for ml and n,, where
we have

r = (x2 + y2 + z2)1/2

(14)

Likewise, using (6)

l = (xl/r)(cos ¢ cos 4, - sir. 0 sin 4, cos 0)

+ (yl/r)(cos 0 sin 4, + sin ¢ cos ¢ cos 0) + (zi/r) sin 0 sin
where xl, yl, zl are the Xi, Y1, Z, coordinates of p.

Writing r, 0', gyp' as spherical coordinates of p relative to the X, Y, Z frame,
h = sin 8' cos 4,'(cos 4, cos ¢ - sin 4, sin 4, cos 8)

- sin 8' sin 4'(sin 0 cos 4, + cos 6 sin ¢ cos 0) + cos 8' sin 8 sin ¢
etc. for ml and ni. Likewise,

1 = sin 81 cos ¢1(cos (P cos 4, - sin 0 sin 0 cos 8)

+ sin 81 sin 41(cos 0 sin 04 sin (p cos 4, cos 0) + cos B' sin 0 sin 4,

(15)

(16)

(17)

where 01 and ¢1 are spherical coordinates of p measured relative to Xi, Y1, Z1.
Of course cylindrical or other coordinates could be introduced in the above relations

instead of the rectangular or spherical.

A.6 Components of Velocity and Acceleration.

(a) Referring to Fig. 8-3, Page 143, let v(x,, y1, il) indicate the velocity of m relative to
Xl, Yi, Zi. Then components vx, vy, vz of v along X, Y, Z are

vx = x1a11 + y1a12 + Z1a13, etc.

Or (see equations (8.4), Page 143), these components can be expressed as

vx = vox + x + Qyz - f2zy, etc.

where vox, the X component of the velocity of 0, may, for example, be written as

vox = xoall + yoa12 + zoa13, etc.

Components of v along X1, Yi, Z, can be written as

vx1 = vxa1 + vya21 + vxa31, etc.

where vx, vy, v,z can, for example, be expressed as in (19).

(18)

(19)

(20)

(21)
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(b) Let a indicate the acceleration of m relative to X1, Y1iZ1. Components -a , ay, az of a
along X, Y, Z are given by

ax = x1a11 + y1a12 + z1a13, etc. (22)

Of course x1, 51, z1 can, if so desired, be expressed in terms of spherical or other
coordinates.

But in terms of angular velocity components of the moving X, Y, Z frame (see Sec-
tion 9.4A and equations (9.6), Page 179) we have

ax = aox + x - x(Sty + S22) + y(Q 0 - z)
+ z(ci c + 6) + 2(zQy -'S2), etc.

where aox can, for example, be written as

aox = xOall + y0a12 + zoa13

It is also clear that components of a along X1, Yi, Z1 can be written as

ax, - axa11 + aya21 + axa31
where ax, ay, az are given by (23), etc.

(23)

(24)
.

(25)

A.7 Relations Between Direction Cosines and Unit Vectors.
Let i1, i2, i3 be unit vectors along X1, Y1, Z1 and e1, e2, e3 unit vectors along X, Y, Z as in-

dicated in Fig. A-3. As before, a23 = cos 023, etc.
Regarding Op as a vector r, we write

r = xe1 + ye
2 + ze3 (26)

r = + y1i2 + z1i3

x

(27)

Dividing (26) through by r (the magnitude of r), r = e1 + y e2 + -e3. Now assuming, forr r r r
example, that r is taken along Xi, we have r/r = i1, x/r = all, y/r = a21, z/r = a31. Hence

it a11e1 + a21e2 + a31e3

Likewise, from (27) it follows that

3

or is = Y arser
r=1

(28)

33

e1 = a1111 + a12i2 + a13i3 or er - G, arsis (29)
s=1

Since it is assumed that X1, Yl, Z1 and X, Y, Z are orthogonal frames, e1 ei = 1, e1 e2 = 0,
etc.; i1 i1 = 1, it i2 = 0, etc.; or in general,

er e1 = Srl, is it = Ssl (30)

From the dot product of el and the first equation of (28) we have

e1 it = a11e1 el + a21e1 e2 + a31e1 e3

which by (30) gives el i1 = all. Thus from either (28) or (29) it can be shown that

er is = ars (31)

where the subscript of e is always written as the first subscript of a.
The dot product of it and the first equation of (28) is

11.11 =

which by (30) and (31) reduces to 1 =ail + a21 + a31. Again, the dot product of i2 and the
first equation of (28) gives 0 = a11a12 + a21a22+0 3la32* In like manner all of relations (1)
and (2) may be obtained.
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In general it is seen from (28) that
3

is - it I arser ' i1r=1

Likewise from (29), e1 er

See equation (3).
arse,. is

S=1

arsar,r=1 8s1

3

arsa,s sr1
s=1

(32)

(33)

A.8 Illustrative Exercises and Problems.
(a) Proof of relations (1) and (2). Referring to Section A.2, take line Oa along X1, for

example. In this case l1 = 1, ml = n1 0; 1 = a11, m = a21, n = a31. Hence relations
(5) become

2 2 2all + a21+a31

12 + a21a22 + a31a32

a11a13 + a21a23 + a31a33

0

0

In like manner the other relations of (1) and (2) may be verified. Note that proof of
(1) and (2) constitutes a proof of (3).

(b) As an exercise the student may derive relations (4) from (1) and (2).

(c) Referring to Fig. A-1 suppose that the Euler angles, not shown on this figure, have
the values 0 = 60°, 0 = 30°, 0 = 45°. What is the angle 012, for example? See Table
A.1. Can each of the 0ir angles be evaluated?

Given a12 = a, a23 b, a33 = c. Show that each of the remaining direction cosines
can be evaluated.

(d) Making use of relations (1) and (4), show that the following determinant is equal to unity.
all a12 a13

a21 a22 a23

a31 a32 a33

(e) Referring to Section A.4, write expressions for xi, yi, zl in terms of cylindrical coor-
dinates and Euler angles.

(f) Referring to Section A.4, Fig. A-3, let r = 10, 0' 60°, 0' = 30°, ip = 25°, = 45°,
0 = 20 Compute numerical values of x1, yl, zi.

(g). Again referring to Fig. A-3, let x = 4, y = 5, z = 6, = 25°, 4, = 45°, 0 = 20
pute xi, yi, zi.

. Com-

(h) Starting with equation (10) and regarding x, y, z as variables, derive the first of rela-
tions (8.4), Page 143.

(i) Using the data given in (f), compute 11, ml, n1 of Fig. A-3.

(j) Referring to Fig. A-4 below, line Op has a length of 13. The triangle OBp has an area
of 30, and the area of the rectangle OABC is 12. Assuming xi, yi, zl are positive integers,
show that x1 = 3, y1 = 4, zi = 12; 11 = 3/13, mi = 4/13, n1 = 12/13; 1 = 5/13, m = 6/13,
n 6/13.
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Y
1, m, n relative to X, Y, Z
11, ml, n1, relative to X1, Y1, Z1

Fig. A-4

(k) Given r = xlil + y112 + z1i3 and using x1 = Xall + ya21 + Za31, etc. (see Fig. A-3), show
that r = xel + yet + ze3. Note relations (1), (2) and (.4).

(1) An orthogonal X, Y, Z coordinate frame is determined by the following three vectors:

rl i + 2i2 + i3, r2 = 4i1 - i2 - 2i3, r3 = 2i1 + bi2 + ci3

Show that b = -4, c = 6; 11 = 3/13, m1 = 4/13, n1 = 12/13; 1 = 23/s, m = -16/s,
n = 31/s where s = 13V-1-4.

(m) Referring to Fig. A-5, writing x = x1a11 + y1a12 + Z1a13, x1 = x2911 + y2912 + z2913 and
3

x = x2y11 + y2y12 + 22713' show that in general yij

al/+ a12' al3y,2,y13 ixyuj/

Q11+Q12+Q13

66ton cosines of X relative to X1, Y1, Z1.
Yti> Y12+Y13' = 'direction cosines of X relative to X2, Y21 Z2.
911, 912, P13 = direction cosines of X1 relative to X2, Y2, Z2.
To find expressions for y's in terms of a's and (3's.

Fig. A-5

X1

For a lucid discussion of matrix methods and a treatment of much of the above ma-
terial in matrix form see: J. Heading, Matrix Theory for Physicists, Longmans, Green
and Co., London, 1958.



Answers to Problems in Chapter 2
2.1: 2A = . sr2 sin a - r.2 sin a cos a, & r2 cos a) = r2 sin a'(1 - g2)112

ml
2.4. (a) yl = y + q1, t'2 = y - m q1; (b) y1 =

2

2.5. x1

yl

2.7. (a) x1

m2 ml

(m1+m2 t'3, t'2 = y - (MI + m2

2a,t2 + S COS 61 + x2 COS (81 + 02) - t'2 Sin (01 + e2)

S Sin 01 + x2 sin (01 + 02) + y2 cos (01+ 02)

= (R + x2) cos R - Y2 sin /3

t'1 = (R + x2) sin,8 + t'2 COS /3, Z1 = Z2 where 0 = wt + ate/2R

(b) m x2 - 2my2(w + at/R) - myna/R - m(R + x2)(w + at/R)2 = 2

m t'2 + 2mx2(w + at/R) + m(R + x2)a/R - m(R + x2)(W + at/R)2 = Fy2, m z2 = Fzz

No.

2.9. See bottom of Page 286.

2.10. (a) 1, (b) 7

2.11. (a) 9, (b) 6

2.12. (a) 5, (b) 10

2.13. Degrees of freedom = 1; T = 2M1282, where a is the angle made by the rod with the X axis.

2.16. (a) Degrees of freedom = 3
(b) Equation of constraint: (x2 - x1)2 + (t'2 - yl)2 = 12, where x1, y1 and x2, Y2 are the coordi-

nates of m1 and m2 respectively, 1 = length of rod.
(c) T = 2(m1 + m2)(r2 + r22) + 12M2 [12;2 - 21rc sin (95 - 8) + 21re cos (o - e)]

T = 2(m1 + m2)(x2 + l2) + 212

2.17. T = 2M1(x1 + yi) + 21101 + 2M2(x2 + t'2) + 21282 + 2M3(x3 + t'3) + 21303
X2 = XI + Ill COS 01 + 212 COS 62, etc.

Four superfluous coordinates in T. No.

2.18. (a) x2 = x + (a - s) cos e, t'2 = y + (a - s) sin e, where a = mil/(ml + m3)

(b) T = 2(m1 + m2 + m3)(x2 + t'2) +
2182

+ 2m2[S2 + (a - 3)292 + 26(a - s)(y COS 8 - x sin e) 2S(y sin 6 + x COS 0)]

2.19. Four degrees of freedom.
T = 2miyi + 2m2y2 + 2(11/Ri + m3)S3 + 2m4(S3 + R20)2 + 21282

where I1 and 12 are moments of inertia of the upper and lower pulleys and a is the angular velocity
of the lower pulley.

2.20. (a) T = 2m(;2 + r2e2 + 4a2r2r2) + 2192; (b) T = .m(r2 + r2w2 + 4a2r2r2) + constant

2.21. T = 21M2s1 + 211253/R2 + ..m3(S1 + 33)2 + . M1(S1 + 82)2 + 271st'/Ri

+ 2m2(S1 + 32 + 34)2 + 2m1(;1 + S2 - S4)2

2.22. T = 2M;1 + 2M3 02 + y3)2 + 2M (mly2 + m3y3 )

2.23. T = 2m1[12a2 + r,61 - 2r1lael sin (e1- a)] + 2m2[12a2 +r2e2 + 2r11a92 sin (92 - a)] + 21x2

2.27. T = m
R2(1 + cos 61)4 2Rl(1 + cos 61)2 2 COS2 61 + cos 01 2

sin4 61 sin 61 + l2J 61 + 2(I2
MR2)

sin2 61
ei + 2 '2
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Acceleration, 28, 346
along moving axes, 178, 179
in generalized coordinates, 29
in spherical coordinates, 29
using Lagrange's equations, 48, 49

Amplitude and direction of motion, 222
Analogous electrical and mechanical

systems, 309, 311
Angles, Euler, 156
Angular momentum, 195, 342
Angular velocity as vector, 139
Approximations of T, P, V, 207
Arbitrary constants, 6, 210, 224
Are length, 326, 342
Atom, hydrogen, 325
Axes,

body-fixed, 143-147, 150-155
direction-fixed, 161
of inertia, 119
principal, 119

Bearing forces, 187, 192, 296
Body-fixed axes, 143-147, 150-155
Brachistochrone, 331

Calculus of variations, 327
Canonical equations, 317
Center of mass,

motion of, 177
theorem, 26

Central force, 88, 280, 320, 325
Classical dynamics, 1
Cofactors, 210
Computational formulas, 283, 284
Concepts, basic, 2
Conservative systems, 81-98

basic principles, 81
forces, 82
partly, 86
potential energy, 82

Constants, arbitrary, 6, 210, 224
Constraints, 18

and virtual work, 30, 31
degrees of, 18
forces of, 256-267
holonomic, 193
moving, 18, 46
non-holonomic, 193
rough, 264

Coordinate systems, 10-15
Coordinates,

cylindrical, 11
equilibrium, 206
generalized, 15

Coordinates (cont.)
ignorable (see Ignorable coordinates)
independent, 18
moving, 2, 14, 21, 46
non-inertial, 2, 3, 25
normal (see Normal coordinates)
of point in terms of Euler angles, 345
spherical, 11

Cosines, direction (see Direction cosines)
Cylinder, rotating, 110
D'Alembert's equation, 40, 58, 181, 331
D'Alembert's principle, 1, 39, 58, 59
Damped oscillations, 224
Degrees of constraint, 18
Degrees of freedom, 15
Delta, Kronecker, 219, 343
Determinant, fundamental, 209, 215
Diagonal, principal, 220
Differential equations of motion, 6, 42
Differential, exact, 81, 105
Direction cosines, 23, 343, 346

and unit vectors, 347
in terms of Euler angles, 1.56, 345
in various coordinates, 344
relations between, 343

Direction-fixed axes, 161
Double pendulum, 13, 20, 24
Driving forces, 268-280
Dynamical problems, types, treatment, 5
Dynamically equivalent bodies, 131
Dynamics, classical, 1
Dynamics, rigid body (see Rigid body dynamics)

Earth,
angularvelocity of, 283
equations of motion on, 287, 291
equatorial and polar radii of, 283, 291
figure of, 281
frames of reference, 283, 291
geocentric, geographic latitudes, 281, 282
gravity g, g', 282
motion relative to, 287-298
moving frames on, 290
rigid body near surface of, 290, 291

Elastic springs, 89
Electrical systems,

kinetic energy for, 303
Lagrange's equations for, 304
potential energy for, 304
power function for, 304

Electromechanical systems, 306-311
Ellipsoid of inertia, 118

experimental project, 133
Ellipsoid of revolution, 281
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Energy integral, 91, 319
Energy, kinetic (see Kinetic energy)
Energy, potential (see Potential energy)
Equations, of constraint, 18

of motion, 6, 44
Equilibrium, general treatment, 272, 273
Equilibrium coordinates, 206
Equivalent bodies, dynamically, 131
Euler and Lagrange methods, comparison of, 197
Euler angles, 156, 157
Euler equations, 182, 195

vector form of, 183
Exact differential, 81, 105
Experiments, suggested, 50, 71, 92, 110, 132,

167, 228

Figure of earth, 281, 282
Forces,

bearing, 187, 192, 296
central, 88, 280, 320, 325
constraint, 30, 59, 256-267
dissipative, 99-116, 248
driving, required, 268-280
equilibrium, 272, 273
frictional, 100
generalized (see Generalized forces)
inertial, 2, 43
not parallel to motion, 107
power series for, 103
viscous, 102

Forces and voltages in electromechanical
systems, 308

Formulas, computational, 283, 284
Foucault pendulum, 293, 294
Frames, moving, 2, 14, 21, 46, 162, 178
Freedom, degrees of, 15
Freely falling body, 293
Frequencies in small oscillations, 210
Frictional forces, 100
Fundamental determinant, 209, 215
Fundamental frequencies, 210

Generalized coordinates, 15
Generalized forces, 42, 43, 60, 61, 85, 100

as derivatives of V, 85
physical meaning, 60

Generalized momentum, 316
Generalized velocities, 19
Geocentric latitude, 282
Geographic latitude, 282
Gravity equation, 284
Gravity g and g', 282, 284
Gyroscopes, 159, 190
Gyroscopic terms, 238

Hamiltonian,
for central forces, 320
for moving coordinates, 321
general form of, 318
special cases of, 318

Hamilton's equations, 1, 316, 318
derivations of, 316
uses of, 322

INDEX

Hamilton's principle, 326-338
applications of, 336
from calculus of variations, 331
from D'Alembert's equation, 331
Lagrange's equations from, 333, 334

Holonomic systems, 59, 193
Hooke's law, 81
Hydrogen atom, 325

Ignorable coordinates, 234, 235
as functions of time, 239
elimination of, 236

using the Routhian function, 236, 237
selecting proper, 242

Inertia, ellipsoid of (see Ellipsoid of inertia)
Inertia, moments of (see Moments of inertia)
Inertia, principal axes, 119
Inertia, products of (see Products of inertia)
Inertial coordinates (frame), 2, 3, 4, 60
Inertial force, 4, 43
International gravity equation., 284

Kinetic energy,
basic relation of, 23
electrical, 303
for p particles, 26
for small oscillations, 207
general expression, 25, 27, 46
in earth-fixed coordinates, 286-289
in non-inertial coordinates, 25
in normal coordinates, 218
of rigid body, 148, 149
using direction-fixed axes, 161

Kronecker delta, 219, 343

Lagrange's equations, 1
for conservative systems, 86
for electrical circuits, 304
for electromechanical systems, 306
for single particle, 39, 42
for system of particles, 58, 80
from Hamilton's principle, 333
physical meaning, 50, 69

Lagrangian function L, 86, 306
Latitudes, 282

Mass,
center of, 26
reduced,320

Metric tensor, 342
Models, 156
Modes of oscillation, 210
Moment of force (torque), 147
Momental ellipsoid, 118
Moments of inertia, 117-138

experimentally determined, 182, 133
principal, 119
relative to parallel axes, 120, 121
relative to rotated frame, 122

Momentum,
angular, 195, 342
corresponding to an ignorable coordinate, 235
generalized, 316



Motion of rigid body, 148, 149, 182
relative to moving frame, 162, 163

Motion, stability of, 226, 248
Moving constraints, 18, 46
Moving frames, 2, 14, 21,46, 162, 178

Newton's laws, 1
validity of, 2

Non-conservative systems, partly, 86
Non-holonomic systems, 193, 194
Non-inertial coordinates, 2, 3, 25
Normal coordinates, 217, 228

with external forces acting, 226
with viscous forces acting, 227

Normal modes, 210
Notation, vector and tensor, 339-342

Orthogonality conditions, 219
Oscillations, small (see Small oscillations)

Parallel axis theorem, 120, 121
Particle, acceleration of, 178
Particle on moving spiral, 255
Phase angles, 210, 224
Pendulum,

double, 14, 20
Foucault, 293, 294
simple, 292

Period of oscillation, 210
Polar coordinates, 10
Potential energy, 82, 83, 303

approximate form of, 208
for small oscillations, 207
general expression, 82
in normal coordinates, 218
of springs, 89
varying with time, 90

Power function P, 104-106, 207, 304
special form of, 105

Principal axes of inertia, 119
Principal diagonal, 220
Products of inertia, 118

physical meaning, 293
Projectile, 293

Reactive forces, 256, 263
Reduced equations, 19, 40, 59
Reduced mass, 320
Rigid body dynamics, 139-175

equations of motion, 149
Euler equations, 182
expression for kinetic energy, 148

Roots, 215
Rotating coordinates, 4, 14
Rotation of earth, 283
Rough constraints, 264
Routhian function, 236, 237

INDEX 353

Satellites, 297
Scalar functions T, V, P, .339
Small oscillations,

about equilibrium positions, 203-233
about steady motion, 234-255
forced, 226, 227
general examples of, 204, 205
in electrical and electromechanical systems, 307
with viscous damping, 224

Space ship, object inside, 166, 191
Spiral, motion on, 52
Springs, elastic, 89

potential energy in, 89
Stability of motion, 226, 248

Taylor's expansion, 206
Tension as force of constraint, 30
Tensor, metric, 342
Tensor notation, 339-342
Top,

on earth, 295
on rotating support, 174, 295
oscillating, 159, 234, 240, 243

Torque, vector quantity, 147
Torsional constant, 133
Transformation equations, 10-15

reduced, 19
Transformation theory, 322
Two-body problem, 320

Unit vectors, 347
Universal gravity, 281, 282, 284

Variational calculus, 327
Vector notation, 339-342
Vector potential function, 91
Vectors, unit, 347
Velocity,

in generalized coordinates, 19
in moving coordinates, 21
in spherical coordinates, 20
of free particle, 142
of particle in rigid body, 141
using transformation equations, 21

Vibrating systems, 203-233
Virtual displacements, 29, 30

with time varied, 31, 46
Virtual work, 29, 30, 59
Viscous forces, 102
Voltages and forces in electromechanical

systems, 308

Work, 22, 23
related to kinetic energy, 22, 23
related to potential energy, 82
virtual, 8W, 30
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