PROOF, LOGIC, AND CONJECTURE:

THE MATHEMATICIAN’S TOOLBOX

Robert S. Wolf



© 2008 by Robert S. Wolf. All rights reserved.

Reproduced by permission of the author and copyright
holder, Robert S. Wolf, exclusively for use during the
2009-2010 academic year by students of Daniel Goroff.

No part of this book may be reproduced by any
mechanical, photographic, or electronic process, or in
the form of a phonographic recording, nor may it be
stored in a retrieval system, transmitted, or otherwise
copied for public or private use, without written
permission from the author.

Printed in the United States of America

Robert S. Wolf, Ph.D.
279 Hermosa Way
San Luis Obispo CA 93405, U.S.A.



Contents

Asterisks (*) denote optional sections.

Preface

Chapter 1

1.1
1.2

Chapter 2

2.1
22
23

Chapter 3

3.1
32
33
34

Chapter 4

4.1
4.2

Note to the Student
Thanks

Unit1 Logic and Proofs
Introduction

Knowledge and Proof

Proofs in Mathematics
Propositional Logic

The Basics of Propositional Logic
Conditionals and Biconditionals

Propositional Consequence; Introduction to Proofs
Predicate Logic

The Language and Grammar of Mathematics
Quantifiers

Working with Quantifiers

The Equality Relation; Uniqueness

Mathematical Proofs

Different Types of Proofs

The Use of Propositional Logic in Proofs

v

xii

Xiv

16
27
35

45
48
57
66

72
78

16

45

72



vi

43
44
4.5
4.6

Chapter 5

5.1
5.2
5.3

Chapter 6

6.1
6.2
*6.3

Chapter 7
7.1

7.2

7.3
7.4
7.5
7.6
*7.7

Chapter 8

8.1

The Use of Quantifiers in Proofs
The Use of Equations in Proofs
Mathematical Induction

Hints for Finding Proofs

Unit2 Sets, Relations and Functions
Sets

Naive Set Theory and Russell’s Paradox
Basic Set Operations
More Advanced Set Operations

Relations

Ordered Pairs, Cartesian Products, and Relations
Equivalence Relations

Ordering Relations
Functions

Functions and Function Notation

One-to-One and "Onto" Functions; Inverse
Functions and Compositions

Proofs Involving Functions
Sequences and Inductive Definitions
Cardinality
Counting and Combinatorics
The Axiom of Choice and
the Continuum Hypothesis
Unit3 Number Systems
The Integers and the Rationals

The Ring Z and the Field Q

92
107
114
126

133
142
153

164
174
183

193

204
215
223
230
245

252

261

Contents

133

164

193

261



Contents

8.2
*8.3
*8.4

Chapter 9

9.1
9.2
9.3
*9.4
*9.5

Introduction to Number Theory
More Examples of Rings and Fields

Isomorphisms
The Real Number System

The Completeness Axiom

Limits of Sequences and Sums of Series
Limits of Functions and Continuity
Topology of the Real Line

The Construction of the Real Numbers

Chapter 10 The Complex Number System

10.1

Complex Numbers

*10.2 Additional Algebraic Properties of C

269
282
291

297
304
314
328
339

352
363

Appendix 1 A General-Purpose Axiom System for Mathematics

Appendix 2 Elementary Results About Fields and Ordered Fields

Appendix 3 Some of the More Useful Tautologies

Solutions and Hints to Selected Exercises

References

List of Symbols and Notation

Index

vii

297

352

372

371

387

389

409

412

415



Preface

Almost all mathematicians will attest to the difficulty of making the transition from the
lower division calculus sequence to upper division mathematics courses like abstract
algebra and real analysis. One primary reason is that in a typical calculus course, where
most of the students are not mathematics majors, the emphasis is on applications rather
than theory. As a result, students barely encounter deductive methods and proofs in
these courses. Moving from problem solving to the proofs in higher mathematics is so
difficult that many students, even some quite talented ones, quit mathematics.

Until the 1970s, very few colleges or universities had a course designed to soften
this transition. There seemed to be a sink-or-swim attitude, a belief that the students who
really should be math majors would be able to handle the transition and learn how to
read and write proofs while they leamned the material in more advanced courses. This
system may work well at some elite universities, but it has obvious drawbacks at
colleges and universities that want to make higher mathematics accessible to more than
a narrow audience, possibly even including students who are not mathematics majors.
The “transition course” or “bridge course,” now fairly common, is designed to bridge
the gap.

I believe the jump from calculus to higher mathematics is as hard as it is because
two things occur simultaneously. First, the material and the concepts being taught
become more and more difficult and abstract. Second, since students are expected to
read and write proofs in upper-division courses, these courses are methodologically
much harder than calculus. Therefore, I believe that the most important role of the
bridge course is methodological. Simply put, it should be more of a “how” course than
a “what” course. This is perhaps what most sets this course apart from other
mathematics courses.

About This Book
The Approach

In content, this book is similar to most of the other textbooks designed for this course;
it differs in emphasis and method. Chapter 1 familiarizes the reader with the three main
processes of mathematical activity: discovery, conjecture, and proof. While the main
goal of the course is to learn to read and write proofs, this book views the understanding
of the role of discovery and conjecture in mathematics as an important secondary goal
and illustrates these processes with examples and exercises throughout. Chapter 1 also
includes brief discussions of the way proofs are done in science and in law for the
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X Preface

purpose of contrasting these methods with the special meaning the word “proof” has in
mathematics.

Chapters 2 and 3 cover the basics of mathematical logic. These chapters emphasize
the vital role that logic plays in proofs, and they include numerous proof previews that
demonstrate the use of particular logical principles in proofs. These chapters also stress
the need to pay attention to mathematical language and grammar. Many of the
examples and exercises in these chapters involve analyzing the logical structure of
complex English statements (with mathematical or nonmathematical content) and
translating them into symbolic language (and vice versa). Unlike many texts that have
just one short section on quantifiers, Chapter 3 provides a full explanation of how to
understand and work with quantifiers; it includes many examples of alternations of
quantifiers and negations of quantified statements. Without studying this material,
students can get the impression that constructing truth tables is the main logic-based
skill that is important for reading and writing proofs. Clearly, this impression can lead
to frustration and failure down the road.

Chapter 4, the last chapter of Unit 1, is a thorough discussion of proofs in
mathematics. It carefully explains and illustrates all the standard methods of proof that
have a basis in logic, plus mathematical induction. In addition, there are discussions of
the meaning of style in proofs, including the importance of learning how to find a good
balance between formality and informality; the connection between solving equations
and doing proofs; and hints for finding proofs, including useful strategies such as
examining examples and special cases before tackling the general case of a proof.

The remainder of the book is not directly about proofs. Rather, it covers the most
basic subject matter of higher mathematics while providing practice at reading and
writing proofs. Unit 2 covers the essentials of sets, relations, and functions, including
many important special topics such as equivalence relations, sequences and inductive
definitions, cardinality, and elementary combinatorics.

Unit 3 discusses the standard number systems of mathematics—the integers, the
rationals, the reals and the complex numbers. This unit also includes introductions to
abstract algebra (primarily in terms of rings and fields rather than groups) and real
analysis. The material and the treatment in this unit are intentionally more sophisticated
than the earlier parts of the book. In fact, nearly half of the sections of this unit are
designated “optional.” In a one-semester course, it is unlikely that most of this material
can be covered; naturally, the intention is to give instructors the opportunity to pick and
choose. On the other hand, instructors with the luxury of a one-year course will find that
most or all of Unit 3 can be covered, as their students gain more and more confidence
with abstract mathematics and proofs.

Unique Features

I would single out user-friendliness and flexibility as the main features that distinguish
this book from the other available bridge course books. User-friendliness could also be
called readability. One hears continually that reading is a lost art, that students (as well
as the general population) don’t read any more. I believe people will read books they
find enjoyable to read. Every effort has been made to make this book engaging, witty,
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and thought-provoking. The tone is conversational without being imprecise. New
concepts are explained thoroughly from scratch, and complex ideas are often explained
in more than one way, with plenty of helpful remarks and pointers. There are abundant
examples and exercises, not only mathematical ones but also ones from the real world
that show the roles logic and deductive reasoning play in everyday life.

The flexibility of this text is a response to the different approaches to teaching the
bridge course. In this course, probably the most important decision the instructor must
make is how much emphasis to put on logic and axiomatics. Mathematicians would
generally agree that proofs proceed from axioms and that the methods we use in proofs
are based on principles of logic. Mathematicians would also generally agree that
learning to prove things in mathematics involves much more than learning to follow a
set of rules. Constructing proofs is a skill that depends to a great extent on commonsense
reasoning, and the formal rules involved must become so ingrained that one is barely
aware of them. Different instructors have very different solutions to this dichotomy.
Some believe it is necessary to give their students a thorough introduction to logic and
to teach the major methods of proof explicitly before this knowledge can be internalized.
Others believe the exact opposite—that much coverage of these topics is a waste of time
and perhaps even counterproductive to the real purpose of the course. These instructors
prefer to start showing their students proofs right away and to discuss logic and rules
primarily when questions arise. They believe that reading and writing proofs is a natural
skill that, like speech and walking, is best acquired by practice rather than by formal
instruction.

I readily admit to being closer to the first point of view. Twenty years of teaching
and thinking about this course has convinced me that, while some students are capable
of leaming how to read and write proofs by osmosis, many other good students are not
quite able to do this. Also, if students never see the structure and rules that govern
proofs, they might get the impression that writing proofs is a mystical or magical
activity or that the correctness of proofs is based solely on the authority of the instructor.
Therefore, this text carefully covers the essentials of mathematical logic, the role of
logic in proofs, and the axiomatic method. Furthermore, this book is the only one that
includes, as an appendix, a mathematically complete axiom system that is meant to be
an important reference for students.

At the same time, this text is also an appropriate choice for instructors who prefer
not to spend much time discussing logic and its relationship to proofs. Many of the
sections in Unit 1 can be skimmed if desired, enabling instructors to spend most of the
course teaching (and proving things) about sets, relations, functions, and number
systems. The axiom system in Appendix 1 does not need to be covered.

Appendix 2 deserves special mention. It contains many basic results about the real
numbers proved from scratch, using the ordered field axioms. If the unit on logic and
proofs is covered thoroughly, it is natural to study this appendix in conjunction with the
chapter on proofs. It is also possible instead to delay this appendix until the unit on
number systems. But an interesting alternative for instructors who prefer to introduce
proofs early is to start the course with Appendix 2! The rationale is that all students
understand the basic algebraic properties of real numbers, which means that they are
familiar with the ordered field axioms even if they do not know them by that name.
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Furthermore, many of these proofs, especially those that do not involve inequalities,
require very little logic. So Appendix 2 provides an ideal context for introducing
students to proofs gently, without needing to explain any abstract concepts or
complicated use of logic.

The exercises in this text enhance its flexibility. For one thing, they vary greatly
in difficulty. In almost every section, there are some very easy problems and some rather
difficult ones (marked with asterisks). There are also many types of exercises. Some
problems are straightforward computations. Quite a few problems are intended to
encourage the discovery process by asking the student to investigate a situation and then
make a conjecture (with or without proof). Since the goal of the bridge course is to teach
students to read proofs as well as write them, almost every section (starting with Chapter
4) has exercises that ask the student to critique purported proofs. Of course, in a text of
this type, most of the exercises ask the student to prove something or perhaps complete
a proof started in the text. The Solutions and Hints to Selected Exercises at the end of
the book include a few complete proofs, but they more often provide hints or outlines
to help students get started with their proofs. Additional complete proofs and teaching
suggestions are provided in the Instructor’s Manual.

Every chapter ends with Suggestions for Further Reading that point out several
possibilities in the reference list at the end of the book. These suggestions are intended
both for students who might be helped by seeing more than one approach to basic
material and for students who are interested in pursuing a topic in more depth.

It is my sincere hope that students and instructors will find this text an enjoyable
and valuable introduction to higher mathematics and its methodology. I am always
interested in any type of honest feedback, including corrections and criticisms. I can be

contacted by email at meti@enipetyredn. cobertswe|f Y ahoo. com.
Note to the Student

If you are using this book, then I presume that you are a student who has completed
most or all of the undergraduate calculus sequence and that your experience in
mathematics so far has been satisfying enough that you are now planning to study some
“higher” mathematics. This text and the course for which it is written are designed to
provide you with a smooth introduction to higher mathematics. The existence of such
books and courses should be viewed as a genuine attempt to make abstract mathematics
more accessible than ever before. A thorough discussion of this point is found in the
preface. (If you have not read the preface, please do so. It outlines the objectives of this
course and the approach this textbook takes.)

Based on many years of teaching this course, I have one primary piece of advice
for you: approach your study of higher mathematics with a positive and active attitude!
You have almost certainly heard that post-calculus mathematics is difficult. I would not
contradict that opinion. Higher mathematics is not simple. Much of it is abstract and
complex and challenging to most students. If you are looking for an easy subject to
study, there are better choices. But mathematics is fascinating (in fact, most
mathematicians consider it “beautiful”), and leaming it can be extremely rewarding. If
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you have been reasonably successful in mathematics so far, it is likely that you are
capable of learning and appreciating much of post-calculus mathematics.

However, your chances of succeeding in higher mathematics are very slim if you
wait for it to happen to you. Unfortunately, many students enter a course like this one
with an attitude that can only be described as passive, even fearful. They listen passively
to lectures and take notes unquestioningly, they wait until assignments are given out
before attempting problems from the text, and they wait until just before quizzes and
exams to actually read the text. Even if you are somewhat apprehensive about studying
abstract mathematics, you will benefit greatly if you can go into it assertively.

» Ifyou find something in the text or in a lecture confusing, you may or may not
choose to ask your instructor about it right away. But you will probably benefit most if
you tackle the point yourself—by thinking about it, reading the text and your notes to
try to understand the rationale for it, and by thinking about examples that might clarify
it.

* Specific, concrete examples are one of the major keys to understanding abstract
mathematical concepts. The many examples in this book will help you. But you will
benefit even more if you try to construct your own examples. When something seems
difficult to understand, ask yourself, “Can I come up with an easier version of this or a
simple instance or situation that might illustrate this concept?”

*  Similarly, you will benefit if you do the homework that is assigned in this
course thoughtfully and thoroughly. But you will benefit even more if you view the
assigned problems not just as a task to get through quickly but as investigations or
stepping-stones to discovery. What is the purpose of this problem? What points does it
illustrate? Why is it worded the way it is? Are the restrictions in it necessary, or could
it still be solved with some restrictions loosened? What further questions does it raise?
Asking such questions makes a successful mathematics student.

These are a few suggestions that could help you take control of your study of
higher mathematics rather than the other way around. Am I simply suggesting that you
spend lots of time studying? No, not really. In the short term, it is true that approaching
mathematics actively takes more time than being passive. But in the long term, an
active, inquisitive attitude will actually save you time, because you will develop tools
and habits that enable you to study efficiently and get to the core of concepts and
problems quickly.

One last piece of advice: in spite of your positive attitude, you should expect some
failures. In this course, besides learning some abstract concepts, you will be learning a
very special way of gaining knowledge. Unless you worked with proofs in high school
or in your calculus courses, you probably have very little experience reading or writing
them. Almost no one learns these skills quickly and painlessly. Just as in learing to
walk, everyone has to fall down many times and struggle through many halting little
steps before mastering proofs. Eventually, a skill that was a major challenge can become
so much second nature that it’s impossible to remember that it was ever difficult. With
work, perseverance and a positive attitude, the ideas of higher mathematics and the
language of proofs can become comfortable and familiar to you.
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Chapter 1

Introduction

1.1 Knowledge and Proof

The purpose of many professions and subjects is to gain knowledge about some aspect
of reality. Mathematics and science would seem to fit this description. (You might try
to think of subjects you have studied that are not in this category. For example, do you
think that the main goal of learning to paint or to play tennis is to gain knowledge?) At
some point, if you want to become proficient in such a subject, you have to understand
how knowledge can be acquired in it. In other words, you have to understand what you
mean when you say you “know” something, in a technical subject like mathematics or
even in ordinary life.

What do you mean when you say you “know” something? Do you just mean that
you believe it or think that it’s true? No; clearly, to know something is stronger than just
to believe or have an opinion. Somehow, there’s more certainty involved when you say
you know something, and usually you can also provide some kind of reasons and/or
justification for how you know something. How do you acquire enough grounds and/or
certainty to say you know something?

Here is a random sample of facts I would say I know:

I like chocolate chip cookies.

Paper bumns more easily than steel.

The world’s highest mountain is in Nepal.

Mars has two moons.

The Bastille was overrun on July 14, 17895.
If you examine this list, you’ll see that there seem to be two obvious sources of this
knowledge. One source is firsthand experience; consider the first two statements. The
other source is things read in books or heard from other people, such as the last three
statements. But how reliable are these sources of knowledge? No one has ever been to
Mars. From what I've read, everyone who has ever observed Mars carefully through a

good telescope has concluded that it has two moons, and so I confidently believe it. But
do I really know it? Would I stake my life on it? Would I be completely devastated and
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disillusioned if someone announced that a third moon had been discovered or that the
storming of the Bastille actually occurred early in the morning of July 15?7 Regarding
the statement about buming, all my experience (and perhaps even some understanding
of physics and chemistry) indicates that this statement is true. But do I really know it in
any general or universal sense? Do I know that paper burns more easily than steel in
subzero temperatures? At altitudes over two miles? Or even on February 297

A branch of philosophy called epistemology studies questions like these. It can be
defined as the study of knowledge and how it is acquired. In a sense, this book is about
the epistemology of mathematics, but it concentrates on mathematical methods rather
than on philosophical issues. The purpose of this chapter is simply to start you thinking
about what you mean when you say that you know something, especially in
mathematics.

Mathematics is a subject that is supposed to be very exact and certain. Over
thousands of years, mathematicians have learned to be extremely careful about what they
accept as an established fact. There are several reasons for this. The most obvious is that
much of mathematics is very abstract and even the most talented mathematician’s intuition
can be led astray. As a result, mathematics has evolved into a discipline where nothing is
considered to be known unless it has been “proved.” In other words, any serious work in
mathematics must involve reading and writing mathematical proofs, since they are the only
accepted way of definitively establishing new knowledge in the field.

Before we begin our study of proofs in mathematics, let’s take a look at what the
word “proof” means in some other subjects besides mathematics. There are many other
subjects in which people talk about proving things. These include all the natural sciences
such as physics, chemistry, biology, and astronomy; disciplines based on the application
of science such as medicine and engineering; social sciences like anthropology and
sociology; and various other fields such as philosophy and law.

In every subject we can expect to find slightly different criteria for what constitutes
a proof. However, it turns out that all of the sciences have a pretty similar standard of
what a proof is. So we begin by discussing briefly what proofs are supposed to be in
science, since they are quite different from proofs in mathematics. Then we also take a
look at what a proof is in law, since it provides a sharp contrast to both mathematical
proof and scientific proof.

Proofs in Science

We all have some idea of what scientists do to prove things. When a scientist wants to
prove a certain hypothesis (an assertion or theory whose truth has not yet been proved),
she will usually design some sort of experiment to test the hypothesis. The experiment
might consist primarily of observing certain phenomena as they occur naturally, or it
might involve a very contrived laboratory setting. In either case, the experiment is used
to obtain data—factual results observed in the experiment. (In recent years, the word
“data” has been borrowed and popularized by the computer industry, which uses the
word to refer to any numerical or symbolic information. This is somewhat different from
the scientific meaning.) Then comes a process, usually very difficult and sometimes
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hotly disputed, of trying to determine whether the data support the hypothesis under
investigation.

This description of what a scientist does is so oversimplified that it leaves many
more questions unanswered than it answers. How do scientists arrive at hypotheses to
test in the first place? How do they design an experiment to test a hypothesis? Does it
make sense to conduct an experiment without having a particular hypothesis that you’re
trying to prove? How well do the data from an experiment have to fit a hypothesis in
order to prove the hypothesis? Do scientists have to have a logical explanation, as well
as supporting experiments, for why their hypotheses are true? And how do scientists
handle apparently contradictory experimental results, in which one experiment seems
to prove a hypothesis and another seems just as clearly to disprove it?

These are just a few of the difficult questions we could ask about proofs in science.
But without straining ourselves to such an extent, we can certainly draw some obvious
conclusions. First of all, there is general agreement among scientists that the most
important test of a hypothesis is whether it fits real-world events. Therefore, the most
common and trusted way to prove something in science is to gather enough supporting
data to convince people that this agreement exists. This method of establishing general
laws by experimentation and observation is known as the scientific method or the
empirical method. It normally involves inductive reasoning, which usually refers to
the mental process of “jumping” from the specific to the general, that is, using a number
of observations in particular situations to conclude some sort of universal law.

Does pure thought, not connected with observing real-world events, have a role in
science? It definitely does. Can you prove something in science by logic or deduction
or calculations made on paper without experimental evidence? Well, these methods are
definitely important in science, and some of the most important discoveries in science
have been brilliantly predicted on paper long before they could be observed. In fields
like astronomy, nuclear physics, and microbiology, it’s getting so difficult to observe
things in a direct, uncomplicated way that the use of theoretical arguments to prove
hypotheses is becoming more and more acceptable. An interesting contemporary
example in astronomy concems the existence of black holes in space. These were
predicted by very convincing reasoning decades ago, but no one has observed one. Most
astronomers are quite sure that black holes exist, but they would probably hesitate to say
that their existence has been proven, no matter how ironclad the arguments seem. With
few exceptions, scientific theories derived mentally are not considered proved until they
are verified empirically. We will see that this type of attitude is very different from what
goes on in mathematics.

Proofs in Law

Everyone also has some idea of what it means to prove something in law. First of all,
note that a proof in a court of law is a much less objective and permanent thing than a
proof in mathematics or science. A proof in mathematics or science must stand the test
of time: if it does not stand up under continual scrutiny and criticism by experts in the
field, it can be rejected at any time in the future. In contrast, to prove something in a jury
trial in a court of law, all you have to do (barring appeals and certain other
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complications) is convince one particular set of twelve people, just for a little while. The
jurors aren’t experts in any sense. In fact, they aren’t even allowed to know very much
in advance about what’s going on; and you even have some say in who they are.
Furthermore, it doesn’t even matter if they change their minds later on!

Now let’s consider what kinds of methods are allowable in law proofs. Can a
lawyer use the scientific method to convince the jury? In a loose sense, the answer to
this is definitely yes. That is, he can certainly present evidence to the jury, and evidence
usually consists of facts and observations of actual events. A lawyer may also conduct
simple experiments, try to convince the jury to make an inductive conclusion, and use
various other methods that are similar to what a scientist does. Of course, lawyers are
rarely as rigorous as scientists in their argumentation. But at least we can say that most
proof methods that are scientifically acceptable would also be allowed in a court of law.

What other methods of proof are available to lawyers? Well, they can certainly use
logic and deductive reasoning to sway the jury. As we will see, these are the main tools
of the mathematician. Lawyers can also appeal to precedent (previous legal decisions)
or to the law itself, although such appeals are generally made to the judge, not the jury.
This is analogous to the practice in science or mathematics of using a previously
established result to prove something new.

Are there any methods of persuasion available to a lawyer that are totally different
from scientific and mathematical methods? Again, the answer is yes. A lawyer can use a
variety of psychological and emotional tricks that would be completely improper in
science or mathematics. The only time that a lawyer can use these psychological tools
freely is during opening and closing statements (“Ladies and gentlemen of the jury, look
at my client’s face. How could this sweet old lady have committed these seventeen
grisly...”). However, many psychological ploys can also be used with witnesses, as long
as they are used subtly. These include leading questions, attempts to confuse or badger
witnesses, clever tricks with words, gestures, facial expressions and tones of voice used
to create a mood or impression, and so on. Without going into greater detail, we can see
that the guidelines for proofs in law are very broad and freewheeling, for they include
almost everything that the scientist and the mathematician can use plus a good deal more.

Exercises 1.1

(1) List six statements that you would say that you know, and explain how you
know each one. Pick statements with as much variety as possible.

(2) (a) Briefly discuss the differences (in your own mind) among believing that

something is true, thinking that something is true, and knowing that something is true.

(b) Which combinations of these conditions do you think are possible? For
example, is it possible to know something is true without believing it is?

(3) Briefly discuss under what circumstances you think it’s appropriate to use the
inductive method of drawing a general conclusion from a number of specific instances.
For example, if someone is chewing gum the first three times you meet him, would you
be tempted to say he “always chews gum”?
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(4) Mention a few ways in which a lawyer can try to convince a jury to believe
something that is not true. Give some specific examples, either made up or from actual
cases you have heard about.

1.2 Proofs in Mathematics

The preceding discussions of proofs in science and proofs in law were included
primarily to provide a contrast to the main subject of this book. In this section we begin
to look at the very special meaning that the word “proof” has in mathematics.

How do we prove something in mathematics? That is, how do we establish the
correctness of a mathematical statement? This question was first answered by various
Greek scholars well over two thousand years ago. Interestingly, their basic idea of what
a mathematical proof should be has been accepted, with relatively minor modifications,
right up until this day. This is in sharp contrast to the situation in science, where even
in the last three hundred years there have been tremendous changes, advances, and
controversy about what constitutes a proof. In part, this is because the range of methods
allowed in mathematical proofs is quite a bit more specific and narrow than in other
fields.

Basically, almost every mathematician who has ever addressed this issue has
agreed that the main mechanism for proving mathematical statements must be logic and
deductive reasoning. That is, the reasoning that leads from previously accepted
statements to new results in mathematics must be airtight, so that there is no doubt about
the conclusion. Inductive reasoning, which is the mainstay of the sciences but by its very
nature is not totally certain, is simply never allowed in mathematical proofs.

There are examples that dramatically illustrate this point. In number theory (the
branch of mathematics that studies whole numbers) there are some very famous
conjectures. (Like a hypothesis, a conjecture is a statement that has not been proved,
although there is usually evidence for believing it. The word “conjecture” is generally
preferred by mathematicians.) One of these is Goldbach’s conjecture, which claims
that every even number greater than 2 can be written as the sum of two prime numbers.
In a few minutes, you can easily verify this for numbers up to 100 or so. In fact, it has
been verified by computer up into the #rillions. Yet no finite number of examples can
possibly constitute a mathematical proof of this statement, and in fact it is considered
unproved! Now imagine such a situation in science, where a proposed law turns out to
be true in millions of test cases, without a single failure. It is extremely unlikely that
scientists would consider the law unproved, with such overwhelming evidence for it.
(By the way, number theory is full of interesting conjectures that have remained
unproved for centuries. We encounter more of these in Section 8.2.)

Thus the scientist’s most valuable proof method is not considered trustworthy in
mathematics. And, as we saw in the previous section, the mathematician’s most valuable
proof method—deduction—is of only limited use in science. For these reasons, most
specialists in the foundations of mathematics do not think that mathematics should be
classified as a science. There are some respected scholars who do call it an exact
science, but then they are careful to distinguish it from the empirical sciences.
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Discovery and Conjecture in Mathematics

Can we say that the scientific method—observation, experimentation, and the formation
of conclusions from data—has no place in mathematics? No, that would be going too
far. Even if empirical methods may not be used to prove a mathematical statement, they
are used all the time to enable mathematicians to figure out whether a statement is likely
to be provable in the first place. This process of discovery in mathematics often has a
very different flavor from the process of proof. Higher mathematics can be very
intimidating, and one of the reasons is that many proofs in mathematics seem extremely
sophisticated, abstract, and nonintuitive. Often, this is because most of the real work is
hidden from the reader. That five-line, slick proof might well be the result of months or
even years of trial and error, guesswork, and dead ends, achieved finally through
patience and a little bit of luck. After that it might have been refined many times to get
it down from ten pages of grubby steps to five elegant lines. This point is worth
remembering when your self-confidence begins to fail. Thomas Edison’s famous
remark— “Genius is 1 percent inspiration and 99 percent perspiration”—is more true
of mathematics than most people realize.

Although the main goal of this book is to help you learn to read and write
mathematical proofs, a secondary goal is to acquaint you with how mathematicians
investigate problems and formulate conjectures. Examples and exercises relating to
discovery and conjecture appear throughout the text. The last seven exercises in this
chapter are of this sort.

The process of discovering mathematical truths is sometimes very different from
the process of proving them. In many cases, the discovery method is completely useless
as a proof method, and vice versa. On the other hand, in many cases these two processes
are intimately related. An investigation into whether a certain statement is true often
leads to an understanding of why it is or isn’t true. That understanding in turn should
normally form the basis for proving that the statement is or isn’t true.

There is another important use of empirical methods in mathematics. It was stated
previously that deduction is the only way to prove new things from old in mathematics.
But this raises a big question: Where do you start? How do you prove the “first thing”?
Classical Greek scholars such as Eudoxus, Euclid, and Archimedes provided the answer
to this question. Since you can’t prove things deductively out of thin air, the study of
every branch of mathematics must begin by accepting some statements without proof.
The idea was to single out a few simple, “obviously true” statements applicable to any
given area of mathematics and to state clearly that these statements are assumed without
proof. In the great works of Euclid and his contemporaries, some of these assumed
statements were called axioms and others were called postulates. (Axioms were more
universal, whereas postulates pertained more to the particular subject.) Today both types
are usually called axioms, and this approach is called the axiomatic method.

When a new branch of mathematics is developed, it is important to work out the
exact list of axioms that will be used for that subject. Once that is done, there should not
be any controversy about what constitutes a proof in that system: a proof must be a
sequence of irrefutable, logical steps that proceed from axioms and previously proved
statements.
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Euclid was one of the most important mathematicians of ancient
Greece, and yet very little is known of his life. Not even the years of
his birth and death or his birthplace are known. As a young man, he
probably studied geometry at Plato’s academy in Athens. It is known
that he spent much of his life in Alexandria and reached his creative
prime there around 300 B.c. He is most famous for his Elements, a
monumental work consisting of thirteen books, most of which deal
with geometry.

The Elements are the oldest surviving work in which mathematical
subjects were developed from scratch in a thorough, rigorous, and
axiomatic way. However, the great majority of the results in Euclid’s
Elements were first proved by someone other than Euclid. Euclid is
remembered less for his original contributions to geometry than for the
impressive organization and rigor of his work. The Elements was
viewed as the model of mathematical rigor for over two thousand
years and is still used as a geometry textbook in some places.
Although it became clear in the last century that many of Euclid’s
definitions and proofs are flawed by modem standards, this does not
diminish the importance of his achievement.

How are the axioms for any branch of mathematics determined? Here is where
empirical methods come in. Since the axioms are not expected to be proved deductively,
the only way to verify that they are true is by intuition and common sense, experience
and lots of examples—just the sorts of things a scientist is supposed to use. For
example, in the study of the ordinary algebra of the real numbers, two of the usual
axioms are the commutative laws:

x+y=y+x and xy=yx, forall numbersxandy

These are good choices for axioms, for they are extremely simple statements that
virtually everyone over the age of eight would agree are clearly true, so clearly true that
it would seem pointless even to try to prove them.

The choice of axioms in mathematics is not always such a smooth and
uncontroversial affair. There have been cases in which the developers of a subject split
into two camps over whether a particular statement should be accepted as an axiom, and
in which the disagreement went on for many years. There is usually no single correct
answer to such an issue.

The theory of the axiomatic method has been liberalized somewhat in the last two
centuries. The classical Greek idea was that the axioms and postulates must be true.
Modern mathematics realizes that the idea of truth is often dependent on one’s
interpretation and that any axiom system that at least fits some consistent interpretation,
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or model, should be an allowable area of study. The most famous example of this
liberalization pertains to the parallel postulate of Euclid’s geometry, which implies the
existence of straight lines in a plane that don’t meet. This seems to be obviously true;
but early in the nineteenth century, it was noted that this postulate is false on the surface
of a sphere (with straight lines interpreted as great circles, since arcs of great circles are
the shortest paths between points on the surface of a sphere). Any two great circles on
a sphere must cross (see Figure 1.1). So if one wants to study the important subject of
spherical geometry, this postulate must be rejected and replaced with one that is false
in the plane. The subject of non-Euclidean geometry may have seemed like a strange
curiosity when it was first introduced, but it took on added significance in the twentieth
century when Albert Einstein’s general theory of relativity showed that our physical
universe is actually non-Euclidean.

As another example, consider the equations 1 +1=1and 1 + 1 = 0. At first glance,
these are just wrong equations, and it would seem ridiculous to call them axioms. But they
are wrong only in our ordinary number systems. They are true (separately, not
simultaneously) in some less familiar systems of algebra, in which addition has a different
meaning. In fact, the first equation is an axiom of boolean algebra, and the second is an
axiom in the theory of fields of characteristic 2. Both of these subjects are related to the
binary arithmetic that is used in designing computer circuits. So it can be very fruitful to
have strange-looking statements be axioms in a specialized branch of mathematics. One
twentieth-century school of thought, called formalism, holds that mathematicians should
not worry at all about whether their axioms are “true” or whether the things they study
have any relationship at all to the “real world.” However, most modem mathematicians
would not go quite so far in their loosening of the ancient Greek viewpoint.

Figure 1.1  On a sphere, “straight lines” (great circles) are never parallel
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Organization of the Text

The main goal of this book is to teach you about mathematical proofs—how to read,
understand, and write them. The rest of Unit 1 includes two chapters on logic, which are
intended to provide enough of an understanding of logic to form a foundation for the
material on proofs that follows them. The last chapter of this unit is devoted to
mathematical proofs. It is perhaps the most important chapter of the book.

Since it has been pointed out that logic and deduction are the only mechanisms for
proving new things in mathematics, you might expect this whole book to be about logic.
But if you look at the table of contents, you will see that only the first unit is directly
devoted to logic and proofs. This is because certain other subject matter is so basic and
important in mathematics that you can’t understand any branch of mathematics (let
alone do proofs in it) unless you understand this core material. This material is covered
in the book’s two other units.

Unit 2 is about sets, relations, and functions. These are all relatively new concepts
in the development of mathematics. The idea of a function is only two or three centuries
old, and yet in that time it has become an essential part of just about every branch of
mathematics, a concept almost as basic to modern mathematics as the concept of a
number. The idea of sets (including relations) and their use in mathematics is only about
a hundred years old, and yet this concept has also become indispensable in most parts
of contemporary mathematics. Chapter 7, on functions, includes several other important
topics such as sequences, cardinality, and counting principles.

Unit 3 is about number systems. The use of numbers and counting is almost
certainly the oldest form of mathematics and the one that we all learn first as children.
So it should come as no surprise to you that number systems like the integers and the
real numbers play an important role in every branch of mathematics, from geometry and
calculus to the most advanced and abstract subjects. This unit discusses the most
important properties of the natural numbers, the integers, the rational numbers, the real
numbers, and the complex numbers. At the same time, it introduces some of the major
concepts of abstract algebra, real analysis and topology.

So that’s what you will learn about in this book: logic and proofs; sets, relations,
and functions; and number systems. I like to think of these three topics as the building
blocks or essential tools of mathematical proofs. The viewpoint of this book is that if
(and only if!) you learn to understand and use these basic tools will you be well on your
way to success in the realm of higher mathematics.

Exercises 1.2

Throughout this text, particularly challenging exercises are marked with asterisks.
For the first three problems, you will probably find it helpful to have a list of all
prime numbers up to 200 or so. The most efficient way to get such a list is by a
technique called the sieve of Eratosthenes: first list all integers (whole numbers) from
2 up to wherever you want to stop, say 200. Now, 2 is the smallest number in the list,
so circle it and cross out all larger multiples of 2. Then 3 is the smallest remaining
number in the list, so circle it and cross out all larger multiples of 3. Then circle 5 and
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cross out all larger multiples of 5. Continue in this manner. When you’re done, the
circled numbers are all the prime numbers up to 200. (If your table goes up to 200, the
largest number whose multiples you need to cross out is 13. Can you see why? See
Exercise 8.)

(1) (a) Consider the expression n* - n + 41. Substitute at least a half dozen small
nonnegative integers for the variable » in this expression, and in each case test whether
the value of the expression turns out to be a prime number. Does it seem plausible that
this expression yields a prime number for every nonnegative integer n?

(b) Now find a positive integer value of n for which this expression is not a
prime number. Hint: You probably won’t find the right n by trial and error. Instead, try
to think the problem through.

(2) Verify Goldbach’s conjecture for all the even numbers from 4 to 20 and from
100 to 110.

(3) An interesting variant of Goldbach’s conjecture, known as de Polignac’s
conjecture, is the claim that every positive even number can be written as the difference
of two prime numbers. As with Goldbach’s conjecture, it is not known whether this
statement is true or false.

(a) Verify de Polignac’s conjecture for each positive even number up to 12.

*(b) In the unlikely event that one or both of these conjectures is actually false,

de Polignac’s conjecture would probably be much more difficult to disprove than
Goldbach’s conjecture. Can you explain why?

*(4) Try to prove each of the following statements. Since we have not begun our
study of axiomatic mathematics, the word “prove” is being used here in an informal
sense. That is, you should try to come up with what you think are convincing arguments
or explanations for why these statements are true. Perhaps you can succeed with pictures
and/or words. Or, you might need to resort to more sophisticated methods, such as
algebra or even calculus. (Don’t worry if you feel as if you’re groping in the dark in this
problem. When we get to Chapter 4, we get much more exact and technical about what
constitutes a proof.)

(a) A negative number times a negative number always equals a positive
number. (You may assume that the product of two positive numbers is always positive,
as well as basic algebraic rules for manipulating minus signs.)

(b) If you add a positive number to its reciprocal, the sum must be at least 2.

(c) The area of a rectangle equals its length times its width. (You may assume
that the area of a one-by-one square is one, but this problem is still not easy.)

(d) A straight line and a circle meet in at most two points.

The remaining exercises have to do with the process of discovery in mathematics; as we
have discussed, this often precedes proof but is no less important.
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(5) (a) Complete the last three equations:

1 =

1+3 = 4
1+3+5 =9
1+3+5+7 =7

1+3+5+7+9 = 2

(b) On the basis of the equations in part (a), make a conjecture about the sum
of the first n odd numbers, where » can be any positive integer.

(c) Test your conjecture for at least four other values of n, including two values
that are greater than 10.

(6) Consider the following equations:

12 =1 =1
1°+2° =9 = (1+2)
P+2%3 =36=(1+2+3)

(2) On the basis of these equations, make a conjecture.
(b) Test your conjecture for at least two other cases.

(7) (a) Carefully draw three triangles. Make their shapes quite different from each
other.
(b) Ineach triangle, carefully draw all three medians. (A median is a line from
a vertex of a triangle to the midpoint of the opposite side. Use a ruler to find these
midpoints, unless you prefer to use an exact geometric construction!)
(c) On the basis of your figures, make a conjecture about the medians of any
triangle.
*(d) After making some careful measurements with a ruler, make a conjecture
about how any median of a triangle is cut by the other medians.

(8) (a) If you haven’t already done so, construct the sieve of Eratosthenes for
numbers up to 200, as described before Exercise 1.

(b) By trial and error, fill in each of the following blanks with the smallest
number that makes the statement correct:
(i) Every nonprime number less than 100 has a prime factor lessthan .
(i) Every nonprime number less than 150 has a prime factor lessthan
(iii) Every nonprime number less than 200 has a prime factor lessthan .
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(c) Using your results from part (b), additional investigation if you need it, and
some logical analysis of the situation, fill in the following blank with the expression that
you think yields the smallest number that makes your conjecture correct:

Every nonprime number # has a prime factor equal to or less than

(9) The numbers 3, 4, and 5 can be the sides of a right-angled triangle, since they
satisfy Pythagoras’s theorem (the familiar a® + b* = ¢?). Positive integers with this
property are called Pythagorean triples. The triple 3, 4, 5 also has the property that the
largest number of the triple (the hypotenuse) is only one more than the middle number.

(a) Find two more Pythagorean triples with this property.
(b) Could the smallest member of a Pythagorean triple with this property be
an even number? Why or why not?
*(c) Try to find a general formula or rule that can be used to list all Pythagorean
triples of this type
(d) Can two of the numbers in a Pythagorean triple be equal? Why or why not?
(You may use the fact that J/2 is not equal to any fraction.)

(10) Starting with any positive integer, it is possible to generate a sequence of
numbers by these rules: If the current number is even, the next number is half the
current number. If the current number is odd, the next number is 1 more than 3 times the
current number. For example, one such sequence begins 26, 13, 40, 20, 10, 5, 16, ... .

(a) Choose three or four starting numbers, and for each of them generate the
sequence just described. Keep going until the sequence stabilizes in a clear-cut way. (A
good range for most of your starting numbers would be between 20 and 50.)

(b) On the basis of your results in part (a), make a conjecture about what
happens to these sequences, for any starting number. It tumns out that a general law does
hold here; that is, all such sequences end in exactly the same pattern. However, it is
quite difficult to prove this theorem, or even understand intuitively why it should be
true.

(11) The ancient game of Nim is very simple to play (in terms of both equipment
and rules) but is quite entertaining and challenging. It is also a good setting for learning
about the mathematical theory of games. Here are the rules:

Nim is a competitive game between two players. To start the game, the players
create two or more piles of match sticks, not necessarily equal in number. One classic
starting configuration uses piles of three, four, and five, but the players can agree to any
starting configuration (see Figure 1.2).

After the setup, the players take turns. When it is his or her tum, a player must
remove at least one match stick from one pile. For instance, a player may remove an
entire pile at one turn; but a player may not remove parts of more than one pile at one
turn. The player who removes the last match stick wins the game.

Once the starting configuration is determined, Nim becomes a “finite two-person
win-lose game of perfect information.” The most important mathematical result about
such a game is that one player (either the one who plays first or the one who plays
second) has a strategy that always wins for that player.
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Figure 1.2 One typical starting configuration for Nim

(@) Play several games of Nim (by yourself or with someone else) using only
two piles of sticks but of various sizes. On the basis of your experience, devise a rule
for determining which player has the winning strategy for which games of this type, and
what that strategy is. You will be asked to prove your conjecture in Section 8.2.

(b) Analternate version of Nim states that the one who removes the last match
stick loses. Repeat part (a) with this altemnate rule.

*(c) Repeat part (a), now starting with three piles of sticks but with one of the
piles having only one stick.
*(d) Repeat part (c) using the alternate rule of part (b).

Suggestions for Further Reading: Literally thousands of fine books have been
written about the subjects touched on in this chapter, including inductive and deductive
reasoning, the processes of discovery and proof in science and mathematics, and the
history of the axiomatic method. A few of these appear in the References at the end of
this text: Davis and Hersh (1980 and 1986), Eves (1995), Kline (1959 and 1980),
Lakatos (1976), Polya (1954), and Stabler (1953). For a witty and informative
discussion of Goldbach’s conjecture and related problems of number theory, see
Hofstadter (1989).
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Chapter 2

Propositional Logic

2.1 The Basics of Propositional Logic

What is logic? Dictionaries define it to be the study of pure reasoning or the study of
valid principles of making inferences and drawing conclusions. As Chapter 1
emphasized, logic plays an extremely important role in mathematics, more so than in the
sciences or perhaps in any other subject or profession. The field of mathematical logic
is divided into the branches of propositional logic and predicate logic.

This chapter is about propositional logic. This is a very old subject, first developed
systematically by the Greek philosopher Aristotle. It has various other names, including
the propositional calculus, sentential logic, and the sentential calculus. Basically,
propositional logic studies the meaning of various simple words like “and,” “or,” and
“not” and how these words are used in reasoning. Although it is possible to carry out
this study without any special terminology or symbols, it’s convenient to introduce
some.

Definition: A proposition is any declarative sentence (including mathematical
sentences such as equations) that is true or false.

Example 1: (a) “Snow is white” is a typical example of a proposition. Most
people would agree that it’s a true one, but in the real world few things are absolute: city
dwellers will tell you that snow can be grey, black, or yellow.

(b) “3 +2=15"is a simple mathematical proposition. Under the most common
interpretation of the symbols in it, it is of course true.

(c) “3+2=7"isalso aproposition, even though it is false in the standard number
system. Nothing says a proposition can’t be false. Also, this equation could be true (and
the previous one false) in a nonstandard number system.

(d) “Is anybody home?” is not a proposition; questions are not declarative
sentences.

(e) “Shut the door!” and “Wow!” are also not propositions, because commands
and exclamations are not declarative sentences.

() “Ludwig van Beethoven sneezed at least 400 times in the year 1800” is a
sentence whose truth is presumably hopeless to verify or refute. Nonetheless, such
sentences are generally considered to be propositions.

16
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Aristotle (384322 B.C ), like his teacher Plato, was a philosopher
who was very interested in mathematics but did not work in
mathematics to any extent. Aristotle was apparently the first person to
develop formal logic in a systematic way. His treatment of
propositional logic does not differ greatly from the modem approach
to the subject, and the study of logic based on truth conditions is still
called Aristotelian logic.

Besides writing extensively on other humanistic subjects such as
ethics and political science, Aristotle also produced the first important
works on physics, astronomy, and biology. Some of his claims were
rather crude by modern standards and others were simply wrong. For
example, Aristotle asserted that heavy objects fall faster than light
ones, a belief that was not refuted until the sixteenth century, by
Galileo. Still, his scientific work was the starting point of much of
modem science. Very few people in the history of humanity have
contributed to as many fields as Aristotle.

(g) “x > 5 is a mathematical inequality whose truth clearly depends on more
information, namely what value is given to the variable x. In a sense, the truth or falsity
of this example is much easier to determine than that of example f. Even so, we follow
standard practice and call such sentences predicates rather than propositions.

(h) “Diane has beautiful eyes” is a sentence whose truth depends not only on
getting more information (which Diane is being referred to?) but also on a value
judgment about beauty. Most logicians would say that a sentence whose truth involves
a value judgment cannot be a proposition.

We use the word statement as a more all-encompassing term that includes
propositions as well as sentences like the last two examples. Section 3.2 clarifies this
terminology further.

(1) “23 is a purple number” has more serious flaws than examples (g) and (h).
Neither more information nor a value judgment determines its truth or falsehood. Most
people would say this sentence is meaningless and therefore not a statement.

(j) “This sentence is false” is a simple example of a paradox. If it’s true, then it
must be false, and vice versa. So there is no way it could sensibly be called true or false,
and therefore it is not a statement.

Notation: We use the letters P, Q, R, ... as propositional variables. That is, we
let these letters stand for or represent statements, in much the same way that a
mathematical variable like x represents a number.
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Notation: Five symbols, called connectives, are used to stand for the following
words:

. A for “and”

. vV for “or”

. ~ for “not”

. — for “implies” or “if ... then”
. « for “if and only if”

The words themselves, as well as the symbols, may be called connectives. Using
the connectives, we can build new statements from simpler ones. Specifically, if P and
Q are any two statements, then

PAQ, PVQ, ~P, P—Q, and P+ Q

are also statements.

Definitions: A statement that is #ot built up from simpler ones by connectives
and/or quantifiers is called atomic or simple. (Quantifiers are introduced in Chapter 3.)
A statement that is built up from simpler ones is called compound.

Example 2: “I am not cold,” “Roses are red and violets are blue,” and “If a
function is continuous, then it’s integrable” are compound statements because they
contain connectives. On the other hand, the statements in Example 1 are all atomic.

Remarks: That’s pretty much all there is to the grammar of propositional logic.
However, there are a few other details and subtleties that ought to be mentioned.

(1) Notice that each connective is represented by both a symbol and a word (or
phrase). The symbols are handy abbreviations that are useful when studying logic or
learning about proofs. Otherwise, the usual practice in mathematics is to use the words
rather than the symbols. Similarly, propositional variables are seldom used except
when studying logic.

(2) Why do we use these particular five connectives? Is there something special
about them or the number five? Not at all. It would be possible to have dozens of
connectives. Or we could have fewer than five connectives—even just one—and still
keep the full “power” of propositional logic. (This type of reduction is discussed in the
exercises for Section 2.3.) But it’s pretty standard to use these five, because five seems
like a good compromise numerically and because all these connectives correspond to
familiar thought processes or words.
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(3) When connectives are used to build up symbolic statements, parentheses are
often needed to show the order of operations, just as in algebra. For example, it’s
confusing to write P A Q V R, since this could mean either PA (Q VR) or (PAQ) VR.

However, just as in algebra, we give the connectives a priority ordering that
resolves such ambiguities when parentheses are omitted. The priority of the
connectives, from highest to lowest, is ~, A,V , =, +> . (This order is standard, except
that some books give A and V equal priority.)

How is a statement interpreted when the same connective is repeated and there are
no parentheses? In the case of A or V, this is never a problem. The statement (P A Q) AR
has the same meaning as P A (Q A R), so it’s perfectly unambiguous and acceptable to
write P A Q A R; and the same holds for V. (Note that this is completely analogous to
the fact that we don’t need to put parentheses in algebraic expressions of the form
a + b + ¢ and abc.) On the other hand, repeating — or «> can create ambiguity. In
practice, when a mathematician writes a statement with the logical form P - Q = R,
the intended meaning is probably (P — Q) A (Q — R), rather than (P = Q) @ R or
P — (Q — R.) A similar convention holds for «* . This is analogous to the meaning
attached to extended equations and inequalities of the forms x =y =z, x <y <z, and so
on. But it’s often important to use parentheses or words to clarify the meaning of
compound statements.

Example 3

PVQAR means PV (QAR)
P—=Q«~Q—~P means P> Q) < [(~Q = (~P)]

Terminology: Each of the connectives has a more formal name than the word it
stands for, and there are situations in which this formal terminology is useful.

Specifically, the connective A (“and”) is also called conjunction. A statement of
the form P A Q is called the conjunction of P and Q, and the separate statements P and
Q are called the conjuncts of this compound statement.

Similarly, the connective V (“or”) is called disjunction, and a statement P V Q is
called the disjunction of the two disjuncts P and Q.

The connectives ~ , —, and +* are called negation, conditional (or implication),
and biconditional (or equivalence), respectively.

Now it’s time to talk about what these connectives mean and what can be done
with them. In propositional logic, we are primarily interested in determining when
statements are true and when they are false. The main tool for doing this is the
following.

Definition: The truth functions of the connectives are defined as follows:

. P A Q is true provided P and Q are both true.
. PV Q is true provided at least one of the statements P and Q is true.
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. ~ P is true provided P is false.
. P — Q is true provided P is false, or Q is true (or both).
. P < Q is true provided P and Q are both true or both false.

Note that these truth functions really are functions except that, instead of using
numbers for inputs and outputs, they use “truth values,” namely “true” and “false.” (If
you are not very familiar with functions, don’t be concerned; we study them from
scratch and in depth in Chapter 7.) We usually abbreviate these truth values as T and F.

Since the domain of each truth function is a finite set of combinations of Ts and Fs,
we can show the complete definition of each truth function in a truth table, similar to
the addition and multiplication tables you used in elementary school. The truth tables
for the five basic connectives are shown in Table 2.1.

Table 2.1 Truth tables of the connectives

P Q | PAQ P Q | PvQ P|~pP
T T T T T T| F
T F F T F T F| T
F T F F T T
F F F F F F

P Q | P=Q P Q| PeQ

T T T T T T

T F F T F F

F T T F T F

F F T F F T

It is important to understand how the truth functions of the connectives relate to
their normal English meanings. In the cases of ~ and A, the relationship is very clear, but
it is less so with the others. For example, the truth function for V might not correspond
to the most common English meaning of the word “or.” Consider the statement,
“Tonight I’11 go to the volleyball game or I'll see that movie.” Most likely, this means
I will do one of these activities but not both. This use of the word “or,” which excludes
the possibility of both disjuncts being true, is called the exclusive or. The truth function
we have defined for V makes it the inclusive or, corresponding to “and/or.” In English,
the word “or” can be used inclusively or exclusively; this can lead to ambiguity. For
instance, suppose someone said, “I’'m going to take some aspirin or call the doctor.”
Does this statement leave open the possibility that the person takes aspirin and calls the
doctor? It may or may not. In mathematics, the word “or” is generally used inclusively.
If you want to express an exclusive or in a mathematical statement, you must use extra
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words, such as “Either P or Q is true, but not both” or “Exactly one of the conditions P
and Q is true” (see Exercise 8).

There are enough subtleties involving the connectives — and > that the entire next
section is devoted to them.

Using the five basic truth functions repeatedly, it’s simple to work out the truth
function or truth table of any symbolic statement. (If you have studied composition of
functions, perhaps you can see that the truth function of any statement must be a
composition of the five basic truth functions.) Some examples are shown in Table 2.2.
Note how systematically these truth tables are constructed. If there are n propositional
variables, there must be 2” lines in the truth table, since this is the number of different
ordered n-tuples that can be chosen from a two-element set (Exercise 11). So a truth
table with more than four or five variables would get quite cumbersome. Notice that
these tables use a simple pattern to achieve all possible combinations of the
propositional variables. Also, note that before we can evaluate the output truth values
of the entire statement, we have to figure out the truth values of each of its
substatements.

We can now define some useful concepts.

Definitions: A tautology, or a law of propositional logic, is a statement whose
truth function has all Ts as outputs.

A contradiction is a statement whose truth function has all Fs as outputs (in other
words, it’s a statement whose negation is a tautology).

Two statements are called propositionally equivalent if a tautology results when
the connective +* is put between them. (Exercise 7 provides an alternate definition of
this concept.)

Example 4: One simple tautology is the symbolic statement P — P. This could
represent an English sentence like “If I don’t finish, then I don’t finish.” Note that this
sentence is obviously true, but it doesn’t convey any information. This is typically the
case with such simple tautologies.

One of the simplest and most important contradictions is the statement P A ~P. An
English example would be “I love you and I don’t love you.” Although this statement
might make sense in a psychological or emotional context, it is still a contradiction. That
is, from a logical standpoint it cannot be true.

The statement ~ P — Q is propositionally equivalent to P V Q, as you can easily
verify with tables. For instance, if I say, “If I don’t finish this chapter this week, I’'m in
trouble,” this is equivalent to saying (and so has essentially the same meaning as), “I
(must) finish this chapter this week or I’'m in trouble.”

For the rest of this chapter, we use “equivalent” for the longer “propositionally
equivalent.” Note that statements can be equivalent even if they don’t have the same set of
propositional variables. For example, P — (Q A ~ Q) is equivalent to ~ P, as you can
easily verify with truth tables.
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Table 2.2 Truth tables of three symbolic statements

Truth Table of (PAQ)V ~P

P Q PAQ ~P (PAQ)V~P

T T T F T

T F F F F

F T F T T

F F F T T

Truth Tableof P—=[Q — (P A Q)]

P Q PAQ Q—(PAQ) P2 [Q—=@AQ)]
T T T T T
T F F T T
F T F F T
F F F T T

Truth Table of (P > Q) <> (RAP)

P Q R P-Q RAP (P—Q) < (RAP)
T T T T T T
T T F T F F
T F T F T F
T F F F F T
F T T T F F
F T F T F F
F F T T F F
F F F T F F

The ideas we have been discussing are quite straightforward as long as we restrict
ourselves to symbolic statements. They become more challenging when they are applied
to English or mathematical statements. Since logic is such a vital part of mathematics,
every mathematics student should leam to recognize the logical structure of English and
mathematical statements and translate them into symbolic statements. With English
statements, there is often more than one reasonable interpretation of their logical
structure, but with mathematical statements there rarely is. Here are some examples of
how this is done.

Example 5: For each of the following statements, introduce a propositional
variable for each of its atomic substatements, and then use these variables and
connectives to write the most accurate symbolic translation of the original statement.

(a) Ilike milk and cheese but not yogurt.
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(b) Rain means no soccer practice.
(c) The only number that is neither positive nor negative is zero.
(@ 2+2=4.

Solution: (a) Don’t be fooled by a phrase like “milk and cheese.” Connectives
must connect statements, and a noun like “milk” is certainly not a statement. To
understand its logical structure, the given statement should be viewed as an abbreviation
for “I like milk and I like cheese, but I don’t like yogurt.” So we introduce the following
propositional variables:

P for “Ilike milk.”
Q for “Ilike cheese.”
R for “Ilike yogurt.”

The only remaining difficulty is how to deal with the word “but.” This word
conveys a different emphasis or mood from the word “and,” but the basic logical
meaning of the two words is the same. In other words, in statements where the word
“but” could be replaced by “and” and still make sense grammatically, the right

connective for it is A . So the best symbolic representation of the original statement is
PAQA~R.

(b) Once again, connectives must connect entire statements, not single words or
noun phrases. So we write:
P for “Itisraining.”
Q for “There is soccer practice.”
How should we interpret the word “means”? Although it would be plausible to think of

it as “if and only if,” the most sensible interpretation is that if it rains, there’s no soccer
practice. So we represent the given English statementas P = ~ Q.

(c) Since this statement involves an unspecified number, we can use a
mathematical variable like x to represent it. (It is possible to do this problem without
using a letter to stand for the unspecified number, but the wording gets a bit awkward.)
So we write:

P for “xis positive.”
Q for “xisnegative.”
R for “xis zero.”

Now we must interpret various words. A bit of thought should convince you that
“neither P nor Q” has the logical meaning ~ (P V Q) or its propositional equivalent
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~P A ~ Q. The words “the only” in this statement require a quantifier to interpret
precisely, but the gist of the statement seems to be that a number is neither positive nor
negative if and only if the number is zero. So the statement can be represented
symbolically as (~P A~ Q) «* R.

If we allow ourselves mathematical symbols as well as connectives, we would
probably prefer to represent the statement in the form

[~E>0)A~(x<0)]x=0
or shorter still
(x*0Ax¢0)<x=0

(We use the standard convention that a slash through an equal sign, an inequality
symbol, and so on, can be used instead of a negation symbol.)

It should be noted that quantifiers are required for a totally accurate translation of
this statement.

(d) This is sort of a trick question. The statement contains no connectives, so it is
atomic. Therefore, the only way to represent it symbolically is simply P, where P
represents the whole statement!

It is very tempting just to assume that this simple equation is a tautology. But since
its logical form is P, it’s not. It’s certainly a true statement of arithmetic, and you might
even claim that it’s a law of arithmetic, but it’s not a law of propositional logic. Even
a statement like 1 = 1 is technically not a tautology!

Exercises 2.1

(1) Construct the truth tables of the following statements:
(@ ~PAQ)
®) P~ (®VQ
(c) P—»~P
(d P<~>~P
(&) P2Q—(PAQ)
&) ~PAQ—>(~PA~Q)
(g PA(QAR) < (PAQ)AR
() [(PVQ —R] « [(P*R)AQ—R)]
i PAQ)V(~PAR)

(2) For each of the following, state whether it is a proposition, with a brief
explanation. If you believe that a particular case is borderline, provide brief pros and
cons for whether it should be considered a proposition. For those which are
propositions, determine which are true and which are false, if possible.

(a) 10 is a prime number.
(b) Are there any even prime numbers?
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(c) Tum off that music or I’ll scream.

(d) Life is good.

(e) 3+5.

(f) The number 7 is bigger than 4.

(g) Benjamin Franklin had many friends.

(h) The Chicago Cubs will win the World Series in the year 2106.
(i) 1like olives but not very much.

(j) Goldbach’s conjecture is true. (This was described in Chapter 1.)

(3) Determine whether each of the following is a tautology, a contradiction, or
neither. If you can determine answers by commonsense logic, do so; otherwise,
construct truth tables.

(@ ~PAQ = ~PA~Q

(b) ~PA~Q = ~(PNQ)

) P<Q < Q<P

@ P-Q < QP

() (PVQVR] « [PV(QVR)]
(f) [(PVQAR] < [PV(QAR)]

(4) Determine whether each of the following pairs of statements are propositionally
equivalent to each other. If you can determine answers by commonsense logic, do so;
otherwise, construct truth tables.

(@ PAQ and QAP

(b) P and ~~P

() ~PVQ)and ~PV~Q

d ~®PVQ) and ~PA~Q

(&) P»Qand QP

(f) ~P—Q) and ~P—~~Q

(& P<Qand PAQV~(PVQ)

(h) PA(QVR) and PAQ) VR

(@ PA(QAR) and PAQ)AR

G) P (Q—R) and QR
k) P2 Q<+ R)and P Q<R

(5) Match each statement on the left with a propositionally equivalent one on the
right. As with the previous problem, see if you can do this without writing out truth
tables.

(@ P—~Q (i) PA~P
() P~ (PAQ (i) P—Q
(0 PVQA~FPAQ) (iii) ~(PAQ)
(d P—~P (iv) Q—P
(&) PVQ+ (PAQ) v) P<~Q
(vi) ~P
(vii) P < Q

(vii)) Q A~P
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(6) For each of the following, replace the symbol # with a connective so that the
resulting symbolic statement is a tautology. If you can, figure these out without using
truth tables.

(@ [~P#Q] < [PA~Q]

®) [P Q#R)] < [P~ QAP —R)]
() [(P#Q)—R] < [(P > R)A(Q—R)]
@ [PAQ <Pl [P#Q]

() [P#Q)—*R] <[P (Q—R)]

(7) Show, using a commonsense argument, that for two symbolic statements to be
propositionally equivalent means precisely that they have the same truth value (both true
or both false) for any truth values of the propositional variables in them.

(8) Recall the discussion of the inclusive or and the exclusive or. Let the symbol

V represent the latter.

(a) Construct the truth table for P ¥ Q.

(b) Write a statement using our five basic connectives that is equivalent to
PVYQ.

(c) Write a statement using only the connectives ~, /A, and ¥ that is equivalent
toPV Q.

(d) Make up an English sentence in which you feel the word “or” should be
interpreted inclusively.

(e) Make up an English sentence in which you feel the word “or” should be
interpreted exclusively.

(f) Make up an English sentence in which you feel the word “or” can be
interpreted either way.

(9) LetP, Q, and R stand for “Pigs are fish,” “2 + 2 =4,” and “Canada is in Asia,”
respectively. Translate the following symbolic statements into reasonable-sounding
English. Also, determine whether each of them is true or false.

(@ PV~Q (b) Q< ~R
() ~ Q> RA~P) @ P—~P

(10) For each of the following statements, introduce a propositional variable for each
of its atomic substatements, and then use these variables and connectives to write the
most accurate symbolic translation of the original statement.

(a) Ineed to go to Oxnard and Lompoc.

(b) If a number is even and bigger than 2, it’s not prime.

(¢) You’re damned if you do and damned if you don’t.

(d) Ifyou order from the dinner menu, you get a soup or a salad, an entree, and
a beverage or a dessert. (Be careful with the word “or” in this one.)

(e) Ifit doesn’t rain in the next week, we won’t have vegetables or flowers, but
if it does, we’ll at least have flowers.
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(f) No shoes, no shirt, no service. (Of course, this is a highly abbreviated
sentence. You have to interpret it properly.)
(2) Men or women may apply for this job. (Be careful; this one’s a bit tricky.)

(11) (a) If a symbolic statement has just one propositional variable (say P), how
many lines are in its truth table?
(b) How many different possible truth functions are there for such a statement?
That is, in how many ways can the output column of such a truth table be filled in?
Explain.
*(c) Repeat parts (a) and (b) for a symbolic statement with two propositional
variables P and Q. Explain.
*(d) On the basis of the previous parts of this problem, make conjectures that
generalize them to a symbolic statement with an arbitrary number n of propositional
variables.

2.2 Conditionals and Biconditionals

The connectives — and «* are not only the most subtle of the five connectives; they are
also the two most important ones in mathematical work. So it is worthwhile for us to
discuss them at some length. We begin this section by considering the meaning of
conditional statements.

In the previous section, we linked the connective — to the word “implies,” but in
ordinary language this word is not used very frequently. Probably the most common
way of expressing conditionals in English is with the words “If ... then ... .” As we see
shortly, there are several other words or combinations of words that also express
conditionals.

Conditional and biconditional statements are often called implications and
equivalences, respectively. However, there is a tendency to reserve these latter words
for statements that are known to be true. For instance, “2 + 3 = 5 if and only if pigs can
fly” is a biconditional statement. But many mathematicians would not call it an
equivalence, since it is false.

Regardless of what words are used to represent conditionals, it takes some thought
to understand the truth function for this connective. Refer back to Table 2.1 and note
that the statement P — Q is false in only one of the four cases, specifically when P is
true and Q 1is false.

Example 1: The best way to understand why this makes sense is to think of a
conditional as a promise. Not every conditional can be thought of in this way, but many
can. So let’s pick one at random, like “If you rub my back today, I'll buy you dinner
tonight.” This is certainly a conditional; it can be represented as P — Q, where P is
“You rub my back today” and Q is “I'll buy you dinner tonight.” Under what
circumstances is or is not this promise kept?
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Two of the four entries in the truth table are clear-cut. If you rub my back and I buy
you dinner, I’ve obviously kept the promise, so the whole conditional is true. On the
other hand, if you rub my back and I don’t buy you dinner, I’ve obviously broken my
promise and the conditional must be considered false. It requires more thought to
understand the two truth table entries for which P is false. Suppose you don’t rub my
back and I don’t take you to dinner. Even though I haven’t done anything, no one could
say I've broken my promise. Therefore, we define P — Q to be true if both P and Q are
false.

Finally, we get to the least intuitive case. Suppose you don’t rub my back but I go
ahead and buy you dinner anyway. Have I broken my promise? If you reflect on this
question, you will probably conclude that, although it’s unexpected for me to buy you
dinner after you didn’t rub my back, it’s not breaking my promise. To put it another
way, although my promise might lead most people to assume that if you don’t rub my
back, I won’t buy you dinner, my statement doesn’t say anything about what I’ll do if
you don’t rub my back. It is with these considerations in mind that the third entry in the
truth table is also a T. A good way to understand these last two cases is to admit that if
you don’t rub my back, my promise is true by default, because you haven’t done
anything to obligate me to act one way or the other regarding dinner.

Now here’s some useful terminology.

Definitions: In any conditional P — Q, the statement P is called the hypothesis
or antecedent and Q is called the conclusion or consequent of the conditional.

Definitions: Given any conditional P — Q,

» the statement Q — P is called its converse.
o the statement ~P — ~ Q is called its inverse.

e the statement ~Q — ~ P is called its contrapositive.

We now come to the first result in this text that is labeled a “theorem.” Since our
serious study of proofs does not begin until Chapter 4, many of the theorems in this
chapter and the next are presented in a very nonrigorous way. In other words, the proofs
given for some of these theorems have more of the flavor of intuitive explanations than
of mathematical proofs.

Theorem 2.1: (a) Every conditional is equivalent to its own contrapositive.
(b) A conditional is not necessarily equivalent to its converse or its inverse.
(c) However, the converse and the inverse of any conditional are equivalent to
each other.
(d) The conjunction of any conditional P — Q and its converse is equivalent
to the biconditional P +* Q.
Proof: This theorem is so elementary that we can prove it rigorously at this point.
The proof simply requires constructing several truth tables. For instance, to prove part
(a) we only need to show that (P — Q) <> (~ Q = ~ P) is a tautology (Exercise 10). m
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Example 2: Consider the conditional “If you live in California, you live in
America.” This statement is true for all persons. Its converse is “If you live in America,
you live in California”; its inverse is “If you don’t live in California, you don’t live in
America.” These two statements are not true in general, so they are not equivalent to the
original. However, they are equivalent to each other. The contrapositive of the original
statement is “If you don’t live in America, you don’t live in California,” which has the
same meaning as the original and is always true.

By the way, it’s worth bearing in mind that implication is the only connective
whose meaning changes when the two substatements being connected are switched.
That is, P A Q is equivalent to Q A P, and so on.

Let’s elaborate a bit on our earlier discussion of conditionals as promises. When
someone says “If you rub my back today, I'll buy you dinner tonight,” many people
would automatically read into it “And if you don’t rub my back, I won’t buy you
dinner.” Note that this other promise is just the inverse of the original one. Now, there
is no doubt that in ordinary language, when a person states a conditional, the inverse is
sometimes also intended. And then again, sometimes it is not. This kind of fuzziness is
a normal feature of spoken language, as we have already mentioned regarding the
ambiguity of the word “or” (inclusive versus exclusive). But in mathematics and logic,
connectives must have precise meanings. The most useful decision is to agree that
conditionals in general should not include their own inverses, for the simple reason that
if they did, there would be no difference between conditionals and biconditionals (by
Theorem 2.1 (c) and (d)).

In spoken language, conditionals aren’t always promises, but they almost always
at least convey some kind of causal connection between the antecedent and the
consequent. When we say “P implies Q” or even “If P then Q,” we normally mean that
the statement P, if true, somehow causes or forces the statement Q to be true. In
mathematics, most conditionals convey this kind of causality, but it is nof a requirement.
In logic (and therefore in mathematics), the truth or falsity of a conditional is based
strictly on truth values.

Example 3: The following three statements, although they may seem silly or even
wrong, must be considered true:
If 2 + 2 =4, then ice is cold.
If 2+ 2 =3, then ice is cold.
If 2+ 2 =3, thenice is hot.

On the other hand, the statement “If 2 + 2 = 4, then ice is hot” is certainly false.
There are quite a few ways of expressing conditionals in words, especially in

mathematics. It is quite important to be familiar with all of them, so let’s talk about them
for a bit. You will find the most common ones listed in Table 2.3.
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Table 2.3 The most common ways to express a conditional P — Q in words

(1) P implies Q.

(2) If P then Q.

3) IfPp, Q.

4 QifP.

(5) P onlyif Q.

(6) P is sufficient for Q.
(7) Q isnecessary for P.
(8) Whenever P, Q.

(9) Q whenever P.

Note that statements 14 of Table 2.3 contain nothing new—but pay attention to
the word order in statement 4. For example, in the sentence “I’ll buy you dinner if you
rub my back,” the hypothesis consists of the last four words and the conclusion is the
first four words.

Now consider statement 5. An example of this construction is “You’ll see the
comet only if you look in the right spot.” What is this saying? The answer is open to
debate, but the most likely meaning is “If you don 't look in the right spot, you won’t (or
can't) see the comet,” which is the contrapositive of “If you (expect to) see the comet,
you (have to) look in the right spot.” (The words in parentheses have been added to
make the sentence read better.) And this is what statement 5 says this sentence should
mean. On the other hand, it’s possible to believe that the sentence might also be saying,
“If you do look in the right spot, you’ll see the comet.” But we reject this interpretation
because it would mean that “only if ” would be a synonym for “if and only if.” We
therefore follow the standard convention that “P only if Q” is the converse of “P if Q,”
and neither of these means the same as “P if and only if Q.”

The pair of words “sufficient” and “necessary,” like the words “if ” and “only if,”
express conditionals in the opposite order from each other. Suppose you are told,
“Passing the midterm and the final is sufficient to pass this course.” This appears to
mean that if you pass these exams, you will pass the course. But does it also mean that
if you don’t pass both these exams, you can’t pass the course? Again, that interpretation
is possible, but the word “sufficient” seems to allow the possibility that there might be
other ways to pass the course. So, as with the words “if” and “only if,” we reject this
other interpretation so that the word “sufficient” conveys the meaning of a conditional,
not a biconditional.

Now, suppose instead that you are told “Passing the midterm and the final is
necessary to pass the course.” With only one word changed, this sentence has a
completely different emphasis from the previous one. This sentence certainly does not
say that passing the exams is any sort of guarantee of passing the course. Instead, it



2.2 Conditionals and Biconditionals 31

appears to say that you must pass the exams to even have a chance of passing the course,
or, more directly, if you don 't pass the exams, you definitely won 't pass the course. So,
as statements 6 and 7 of Table 2.3 indicate, the word “necessary” is generally
considered to express the converse of the word “sufficient.”

Statements 8 and 9 indicate that the word “whenever” often expresses a
conditional. In the sentence “Whenever a function is continuous, it’s integrable,” the
word “whenever” is essentially a synonym for “if.”

English (and all spoken languages) has many ways of expressing the same thought,
and even Table 2.3 does not include all the reasonable ways of expressing conditionals.
It should also be pointed out that many statements that seem to have no connective in
them are really conditionals. For instance, the important theorem, “A differentiable
function is continuous,” is really saying that if a function is differentiable, it’s
continuous. “Hidden connectives” are also often conveyed by quantifiers, as Section 3.2
demonstrates.

I Without any doubt, the most frequent logical error made by mathematics
students at all levels is confusing a conditional with its converse (or inverse) or
assuming that if a conditional is true, its converse must also be true. Learn to avoid this
confusion like the plague, and you will spare yourself much grief!

Biconditionals

There are various ways to think of biconditionals, one of which was stated in Theorem
2.1(d): P «> Q is equivalent to (P = Q) A (Q — P). That is, when you assert both a
conditional and its converse, you’re stating a biconditional. That’s why the symbol for
a biconditional is a double arrow. That’s also why we use the phrase “if and only if” for
biconditionals. (By the way, mathematicians often use the abbreviation “iff”” for “if and
only if.”’) Table 2.4 shows this and other ways of expressing biconditionals.

We have seen that the words “necessary” and “sufficient” also have converse
meanings, and so the phrase “necessary and sufficient” is often used to express
biconditionals. For example, if you read that “a necessary and sufficient condition for
a number to be rational is that its decimal expansion terminates or repeats,” that means
that a number is rational if and only if its decimal expansion terminates or repeats. (The
noun “condition” is often used in this way with the words “necessary” and/or
“sufficient.”) Another common way of expressing biconditionals in mathematics is with
the word “equivalent.” For example, an alternate way of stating the same fact about
numbers that was just given would be “Rationality is equivalent to having a decimal
expansion that either terminates or repeats.” (When mathematicians say that two
statements are equivalent, it does not necessarily mean that they are propositionally
equivalent. It just means that they can be proved to imply each other, using whatever
axioms and previously proved theorems are available in the situation.)

Finally, Table 2.4 indicates that the words “just in case” can also convey a
biconditional, as in “A number is rational just in case its decimal expansion either
terminates or repeats.”
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Table 2.4 The most common ways to express a biconditional P +> Q in words

(1) P ifandonlyif Q.

(2) P isnecessary and sufficient for Q.
(3) P isequivalentto Q.

(4) P and Q are equivalent.

(5) P (istrue) justin case Q (is).

We have already mentioned that, in ordinary speech, statements that on the surface
are just one-way conditionals are often understood to be biconditionals. This is partly
because there are no fluid-sounding ways of expressing biconditionals in English. All
the phrases in Table 2.4 sound fine to a mathematician, but they are somewhat awkward
when used in ordinary conversation. If I say “You’ll pass this course if and only if you
pass the midterm and the final,” I'm clearly stating a biconditional, but it sounds strange.
Since people are not used to hearing the phrase “if and only if,” they might take this
statement to mean a biconditional even if the words “if and” are left out. This
interpretation could lead to some serious disappointment, since with these two words
omitted I would only be stating a conditional.

There are several useful ways of thinking of biconditionals. Most directly, a
biconditional represents a two-way conditional. Another way of looking at a
biconditional P <> Q is that if either P or Q is true, they both are. That is, either they’re
both true, or they’re both false. So a biconditional between two statements says that they
have the same truth values. For this reason, the biconditional connective is very similar
to an equal sign, except that it is applied to statements rather than to mathematical
quantities. To put it even more strongly, when mathematicians assert that two (or more)
statements are equivalent, they are more or less saying that these statements are different
ways of saying the same thing.

We conclude this section with our first proof preview. These are called “previews”
because they occur before our in-depth study of proofs. Thus they are not axiomatic or
rigorous proofs. But each of them illustrates at least one important proof technique, and
we see later that each of them can be fleshed out to a more complete, rigorous proof.
Furthermore, the relatively informal style of these proof previews is typical of the way
mathematicians write proofs in practice.

In these proof previews, and occasionally elsewhere in proofs in this book,
comments in brackets and italics are explanations to the reader that would probably not
be included under normal circumstances.

Proof Preview 1
Theorem: (a) An integer n is even if and only if n + 1 is odd.
(b) Similarly, # is odd if and only if n + 1 is even.
Proof: (a) [We are asked to prove a biconditional. By Theorem 2.1(d), one way
to do this—in fact, the most natural and common way—is to prove two conditional
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statements: a forward direction, and a reverse (or converse) direction. Now, how should
we try to prove a conditional statement? Well, a conditional statement has the form “If
P, then Q.” That is, if P is true, Q is supposed to be true too. Therefore, the logical way
to prove such a statement is to assume that P is true, and use this to derive the
conclusion that Q is also true.]

For the forward direction, assume that » is even. By definition of the word “even,”
that means that n is of the form 2m, for some integer m. But from the equation n = 2m,
we can add 1 to both sides and obtain n + 1 = 2m + 1. Thus, n + 1 is odd /by the
analogous definition of what it means to be odd].

Conversely, assume that n + 1 is odd. That means » + 1 is of the form 2m + 1, and
by subtracting 1 from both sides of the equation n + 1 =2m + 1, we obtain n = 2m. So
n is even. [Biconditional (a) is now proved because we have proved both directions of

it.]

(b) For the forward direction, assume that n is odd. So n=2m + 1, for some integer
m. From this equation, we get n + 1 =2m + 2 = 2(m + 1). Therefore, n + 1 is even,
because it equals 2 times an integer. The reverse direction is left for Exercise 11. =

The only nonrigorous feature of the previous proof is that it does not properly deal
with quantifiers (see Exercise 2 of Section 4.3). The proof is straightforward because
of the definition of the word “odd” it uses. If “odd” is defined to mean “not even,” this
theorem becomes somewhat harder to prove. Exercise 12 covers a slightly different
approach to this result.

Exercises 2.2

(1) Consider a conditional statement P — Q. Write the following symbolic
statements. (Whenever you obtain two consecutive negation symbols, delete them).
(a) The converse of the converse of the original statement
(b) The contrapositive of the contrapositive of the original statement
(c) The inverse of the contrapositive of the original statement

(2) Restate each of the following statements in the form of an implication (using

the words “If ... then ... ”):

(a) Whenever a function is differentiable, it’s continuous.

(b) A continuous function must be integrable.

(c) A prime number greater than 2 can’t be even.

(d) A nonnegative number necessarily has a square root.

(e) Being nonnegative is a necessary condition for a number to have a square
root.

(f) A one-to-one function has an inverse function.

(3) Write the contrapositive of the following statements. (Replace any substatement
of the form ~ ~ P with P.)
(a) If John’s happy, Mary’s happy.
(b) If Mary’s not happy, John’s happy.
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(c) John’s not happy only if Mary’s not happy.
(d) Mary’s lack of happiness is necessary for John’s happiness.

(4) Write each of the following conditionals and its converse in the indicated forms
from Table 2.3. Some answers might be difficult to express in sensible English, but do
your best. For instance, statement () in form 9 could be “Whenever I read a good book,
I’m happy all day,” and its converse in that form could be “Whenever I'm happy all day,
I must be reading a good book.”

(a) Reading a good book is sufficient to keep me happy all day. (Forms 3, 5 and 7)

(b) Iwill pay you if you apologize. (Forms 1, 3, and 5)

(¢) It’s necessary to give a baby nourishing food in order for it to grow up
healthy. (Forms 2, 6, and 8)

(5) Write each of the following biconditionals in the indicated forms from Table
2.4. Some answers might be difficult to express in sensible English, but do your best.
(@) A triangle is isosceles if and only if it has two equal angles. (Forms 2
and 3)
(b) I'll go for a hike today just in case I finish my paper this morming. (Forms
1 and 4)
(c) The Axiom of Choice is equivalent to Zorn’s lemma. (Forms 1 and 5)
(d) Being rich is a necessary and sufficient condition to be allowed in that
country club. (Forms 4 and 5)

(6) Restate each of the following statements in the form of a conditional (with the
words “If ... then ... ), a biconditional, or the negation of a conditional. If you think
there’s more than one reasonable interpretation for a statement, you may give more than
one answer.

(a) Stop that right now or I’ll call the police.

(b) If you clean your room, you can watch TV; otherwise you can’t.

(¢) You can’t have your cake and eat it too.

(d) Thanksgiving must fall on a Thursday.

(e) You can’t get what you want unless you ask for it.

*(f) This dog is fat but not lazy.

(g) An integer is odd or even, but not both.

(h) In order to become president, it’s necessary to have a good publicity firm.
(i) A person can become a professional tennis player only by hard work.
(j) Iwon’tpay you if you don’t apologize.

(k) Math professors aren’t boring.

(7) Give an example of each of the following if possible:
(a) A true (that is, necessarily true) conditional statement whose converse is
false (that is, not necessarily true)
(b) A false conditional statement whose contrapositive is true
(c) A false conditional statement whose inverse is true
(d) A false conditional statement whose converse is false
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(8) Classify each of the following conditionals as necessarily true, necessarily false,
or sometimes true and sometimes false (depending on which number or which person
is being referred to). Also, do the same for the converse of each statement. Explain.

(a) Ificeiscold, then2+2=3.
(b) If a number is divisible by 2, it’s divisible by 6.
(c) If a person lives in Europe, then he or she lives in France.
*(d) If a person lives in Europe, then he or she lives in Brazil.
(e) Ifx>0,thenx>0or2+2=3.
*(f) Ifx>0,thenx>0and2+2=3.

(9) Construct a truth table that you think best captures of the meaning of
«p unless Q.” There may be more than one reasonable way to do this. To help you, you
might want to consider a couple of specific examples, like “You can go swimming
tomorrow unless you have a temperature.” Do you think that the word “unless” usually
has the same meaning as the exclusive or?

(10) Prove Theorem 2.1, in the manner indicated in the text.
(11) Prove the converse of part (b) of the theorem in Proof Preview 1.

(12) Proof Preview 1 uses the definition that a number is odd iff it is of the form
2m + 1. Tt is just as correct to say that a number is odd iff it is of the form 2m - 1. Prove
the same result, using this alternate definition.

(13) Prove the following, in the manner of Proof Preview 1. Hint: You will need
to use four variables, not just two, in each of these proofs.
(a) The sum of two even numbers must be even.
(b) The sum of two odd numbers must be even.
(c) The product of two odd numbers must be odd.

(14) By experimentation, fill in each blank with a number that you believe yields a
correct conjecture. Then prove the conjecture, in the manner of Proof Preview 1.

(@) Ifnis or more than a multiple of 10, then »* is 1 less than a
multiple of 10.
() Ifnis 5 , or more than a multiple of 6, then there is no

number m such that mn is 1 more than a multiple of 6.
2.3 Propositional Consequence; Introduction to Proofs

In Section 2.1 we defined the concepts of tautology and propositional equivalence. Now
that we have discussed the various connectives individually, it’s time to examine these
concepts in more detail.

Why are these notions important? Recall that a tautology is a statement that is
always true because of the relationship or pattern of its connectives. Also recall that it’s
very easy to tell whether a given statement is a tautology; all that’s required is a truth
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table. In other words, tautologies are absolute truths that are easily identifiable. So there
is almost universal agreement that all tautologies can be considered axioms in
mathematical work.

As far as propositional equivalence is concerned, we have mentioned that if two
statements are equivalent, they are essentially two different ways of saying the same
thing. If that’s so, we should expect equivalent statements to be interchangeable; and in
fact one simple but important tool in proofs is to replace one statement with another
equivalent one.

Table 2.5 shows some of the more common and useful tautologies. It is certainly
not a complete list. In fact there’s no such thing: there are an infinite number of
tautologies. At the same time, it’s important to realize that even Table 2.5 shows an
infinite set of tautologies, in a certain sense; remember that our propositional variables
can stand for any statement. So a single tautology like the law of the excluded middle
actually comprises an infinite number of statements, including purely symbolic ones like
(Q = ~R)V~ (Q — ~R), mathematical ones like “x+y=3 orx+y # 3,” and English
ones like “Either I'll finish or I won’t.”

To what extent should you know this list? Well, if there were only thirty
tautologies in existence, it might be worthwhile to memorize them. But since there are
an infinite number of them, there’s not much reason to memorize some finite list. It
might be fruitful for you to go through Table 2.5 and try to see (without truth tables, as
much as possible) why all the statements in it are tautologies. This would be one way
to become familiar with these tautologies for future reference. Some of the statements
in Table 2.5, such as the law of the excluded middle and the law of double negation, are
very simple to understand. Others, like numbers 26 and 27, are somewhat more
complex, and it might take some thought to realize that they are tautologies.

Notice the groupings of the entries in Table 2.5. Most useful tautologies are either
implications or equivalences. Remember that an implication is a one-way street that says
that if the left side is true, the right side must also be. The usefulness of implications in
proofs is based on this fact. For example, tautology number 3 seems to indicate that if
we have proved a statement P A Q, we should then be allowed to assert the individual
statement P. We will see that this type of reasoning is certainly allowed in proofs. (By
the way, note that several of the tautologies in Table 2.5 are labeled “Basis for ... .”
These tautologies are used to justify specific proof methods discussed in Chapter 4.)

Equivalences are two-way streets asserting that if either side is true, the other must
be. So the standard way that equivalences are used in proofs is to replace either side
* with the other. De Morgan’s laws are particularly useful. For example, if you want to
prove that a disjunction is false, tautology 18 says that you can do this by proving both
the disjuncts false. Also, tautology 19 provides the most useful way of proving that a
conditional statement is false. In general, knowing how to rewrite or simplify the
negation of a statement is a very important skill (see Exercise 2).

In Section 2.1 it was mentioned that it’s not necessary to have five connectives.
More precisely, there’s quite a bit of redundancy among the standard connectives. For
example, tautologies 20 and 22 provide ways of rewriting conditionals and
biconditionals in terms of the other three connectives. Also, more equivalences of this
sort can be obtained by negating both sides of tautologies 17 through 19. For example,
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Table 2.5 Some of the more useful tautologies

(1) PV~P Law of the excluded middle
2) ~PA~P) Law of noncontradiction

Some implications

(3) ®PAQ)—P Basis for simplification
4 PAQ—Q Basis for simplification
G P>PVQ Basis for addition
©6) Q= PVQ Basis for addition

7N Q= ®—Q)

@) ~P—>(P—Q

Q) PAP—Q]I—Q Basis for modus ponens
(10) [FQAP—Q]—>~P Basis for modus tollens
(1) [~PARPVQ]—Q
(12) P~ [Q— (PAQ)]
13) [P QAQ—R] (P —R) Transitivity of implication
(14) @~ Q—[PVR)—(QVR)]
(15) = Q) [(PAR) = (QAR)]
16) [P QA Q<+« R)]—(P+<R) Transitivity of equivalence

Equivalences for rewriting negations

(7)) ~PAQ) <« ~PV~Q De Morgan’s law
(18) ~PVQ) <« ~PA~Q De Morgan’s law
(19) ~P—Q) < PA~Q

Equivalences for replacing connectives

(20) P—Q) < (~PVQ)
Q1) P Q) <« [P QAQ—P)]
(22) P< Q) <« [PAQV(~PA~Q)]

Other equivalences

(23) ~~P < P Law of double negation
24) P—Q < (~Q—~P) Law of contraposition
@25 [P~ QA P—R)] < [P>(QAR)]

(26) [P R)A(Q—R)] < [(PVQ)—R] Basis for proof by cases
@27) [P—(Q—R)] < [PAQ—R]

28) [P~ (QA~Q)] <> ~P Basis for indirect proof
(29) [PA(QVR)] < [PAQV (PAR)]  Distributive law

(30) [PV(QAR)] < [PVQA(PVR)]  Distributive law
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from the first De Morgan’s law we can construct the related equivalence (P A Q) «
~(~P V ~ Q). In other words, any conjunction can be rewritten in terms of negation and
disjunction. In general, knowing when and how to rewrite a connective in terms of
specific other ones is a very valuable skill in mathematics. It is also often very useful to
rewrite the negation of a given statement; tautologies 17-19 show how this is done.

Exercises 11 through 17 are concemed with rewriting connectives and reducing the
number of connectives.

For the remainder of this book, references to “tautology number ... ” refer to Table
2.5. For convenient reference, Table 2.5 is repeated as Appendix 3 at the end of the
book.

To conclude this chapter, we discuss a method that can be used to analyze
everyday, nontechnical arguments for logical correctness. This method is really a simple
(but incomplete) framework for doing proofs, so studying it will provide a good preview
of Chapter 4.

Definitions: A statement Q is said to be a propositional consequence of
statements P,, P,, ... , P, iff the single statement (P, AP, A ... AP,) = Q is a tautology.
(In this section, the word “propositional” may be dropped when discussing this notion.)

The assertion that a statement Q is a consequence of some list of statements is
called an argument. The statements in the list are called the premises or hypotheses
or givens of the argument, and Q is called the conclusion of the argument. If Q really
is a consequence of the list of statements, the argument is said to be valid.

Recall that if a conditional is a tautology, then whenever the hypothesis of that
conditional is true, the conclusion must also be true. So the significance of having a
valid argument is that whenever the premises are true, the conclusion must be too.

In the definition of propositional consequence, it is possible thatn=1.So Qisa
propositional consequence of P if P — Q is a tautology. With this in mind, note that two
statements are equivalent if and only if each is a consequence of the other.

Example 1: Determine whether each of the following arguments is valid:
() Premises: P-—Q

~R—~Q
~R

Conclusion: ~P

By the way, this sort of diagram is commonly used for logical arguments,
especially ones in which the statements involved are purely symbolic.

(b) Premises: If I'm right, you’re wrong. If you’re right, I’'m wrong.
Conclusion: Therefore, at least one of us is right.
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(c) If Al shows up, Betty won’t. If Al and Cathy show up, then so will Dave.
Betty or Cathy (or both) will show up. But Al and Dave won’t both show up. Therefore,
Al won’t show up.

Solution: (a) To determine whether this argument is valid, we just need to test
whether [(P = Q) A (~ R = ~ Q) A ~R] = ~ P is a tautology. We leave it to you
(Exercise 3) to verify that it is, so the argument is valid.

(b) It’s not absolutely required, but such arguments are usually easier to analyze
if they are translated into symbolic form. So let P stand for “I’m right” and Q stand for
“You’re right.” Let’s also make the reasonable interpretation that “wrong” means “not
right.” The argument then has the form

Premises: P —~Q
Q—~P

Conclusion: PV Q

The conditional [(P = ~ Q) A (Q — ~P)] = (P V Q) is not a tautology (Exercise 3), so
this argument is not valid.

By the way, this is an argument that I actually heard used in a real-life situation.
Can you explain why the argument fails? The simplest explanation involves the
relationship between the two premises.

(c) As in part (b), let’s introduce propositional variables: A for “Al will show up”
and similarly B, C, and D, for Betty’s, Cathy’s and Dave’s showing up. It turns out that

[(A—~B)A(AAC—D)A(BVC)A~(AAD)] = ~A

is a tautology (Exercise 3), so this argument is valid.

Since this argument involves four propositional variables, the truth table required
to validate it contains sixteen lines, which makes it somewhat unwieldy and tedious to
construct. So we now introduce a “nicer” method for validating such arguments:

Theorem 2.2: Suppose the statement R is a consequence of premises P, P, ...,
P,, and another statement Q is a consequence of P\, P,, ... , P, and R. Then Q is a
consequence of just P, P,, ..., P,.

Proof: Let P be an abbreviation for (P, AP, A ... AP,). So we are told that P —+ R
and (P A R) — Q are both tautologies. Now consider what the truth table of P — Q must
look like. In every row where P is true, R must be too, since P — R is always true. But
since (P A R) = Q is also always true, this guarantees that in every row where P is true,
Q must be true too. And remember that when P is false, P — Q is true by definition. In
other words, P — Q must be a tautology; this is what we wanted to show. =
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The practical significance of this theorem is that you can use intermediate steps to
show an argument is valid. In other words, if you want to show a statement is a
consequence of some premises, you don’t have to test whether the entire conditional is
a tautology. Instead, if you prefer, you can begin listing statements that are obvious
consequences of some or all of the premises. Each time you find such a statement you
can use it as a new premise to find more consequences. This method can lead easily to
the desired conclusion. (Unfortunately, it also can lead you nowhere, even if the
argument is valid.)

We now give alternate solutions to Examples 1(a) and 1(c), using this method of
intermediate steps. If you have any experience with formal proofs (from high school
geometry, for example), you will recognize the similarity. In fact, the derivations that
follow are perfectly good mathematical proofs, and except for the need to include
principles involving quantifiers, mathematical proofs could be based entirely on
propositional consequence.

Alternate Solution: Our solutions consist of a sequence of statements, numbered
for easy reference, beginning with the premises and ending with the desired conclusion.
Each statement in the derivation, after the premises, is a consequence of the previous
lines. Since constructing truth tables is so straightforward, there’s no need to explain or
justify the steps in these derivations any further. But to help you develop the habit of
good proof-writing, we explain each step.

Formal solution to Example 1(a):

() P—Q Premise

2 ~R—~Q Premise

3) ~R Premise

@ ~Q From steps 2 and 3, by tautology 9
) ~P From steps 1 and 4, by tautology 10

Formal solution to Example 1(c):

(1) A—~B Premise

2 (ANC)—D Premise

3)BVC Premise

4 ~(AAD) Premise

6S)~B—~C From step 3, by tautology 20, essentially
6) A—»C From steps 1 and 5, by tautology 13

(7) A= (ANC) From step 6

8 A—D From steps 7 and 2, by tautology 13

9 A—~D From step 4, by tautology 19, essentially

(10) A= (DA~D) From steps 8 and 9, by tautology 25
(11) ~A From step 10, by tautology 28
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Which is the easier solution to this problem: the sixteen-line truth table or the
derivation just given? It’s hard to say, but there’s no doubt that the derivation is more
informative and better practice for learming how to do proofs.

On the other hand, neither a sixteen-line truth table nor an eleven-step formal proof
is particularly readable. One of the main themes of Chapter 4 is that formal proofs,
although having the advantage of encouraging thoroughness and correctness in
proofwriting, are cumbersome to write and to read. Mathematicians almost always
prefer to write less formal proofs that communicate an outline or synopsis of the full
formal proof. With that in mind, here is an informal solution to Example 1(c). Exercise
6 asks you to do the same for Example 1(a).

Informal Solution to Example 1(c): We are given that Al and Dave won’t both
show up. Therefore, if Al shows up, Dave won’t (using tautology 19).

Now, let’s assume Al shows up. Then we are told that Betty will not show up. But
we also know that Betty or Cathy will show up. Therefore, Cathy must show up. But
that means Al and Cathy show up, and we are told that if they both show up, then Dave
must show up. So we have shown that if Al shows up, then Dave shows up.

Putting both previous paragraphs together, we have shown that if Al shows up,
then Dave will show up and Dave won’t show up. That is, if Al shows up, something
impossible occurs. Therefore, Al cannot show up (tautology 28).

We close this chapter with two more proof previews. These are also written in an
informal style but would not be difficult to turn into formal proofs. Each of them is
based on one or two key tautologies from Table 2.5.

Proof Preview 2

Theorem: Given sets 4, B, and C, if 4 c Band B < C, then 4 c C. [The symbol
c is read “is a subset of.” This notion is defined and discussed in Section 5.2, but we
need to use its definition here to carry out this proof.]

Proof: [As in Proof Preview I at the end of Section 2.2, we are asked to prove a
conditional statement. So, once again, we begin our proof by making an assumption. In
the terminology of this section, we could say that A < B and B < C are the premises of
this proof.] Assume that 4 ¢ B and B c C. By the definition of ¢, this means that for any
object x, x € 4 implies x € B, and x € B implies x € C. Therefore, x € 4 impliesx € C
[because, by tautology 13, this latter conditional statement is a consequence of the two
in the previous sentence]. And this is exactly what 4 ¢ C means. ®

As with Proof Preview 1, this proof glosses over some points involving quantifiers
(see Exercise 1 of Section 4.3).

Proof Preview 3

Theorem: For any real number x, |x| > x.

Proof: Let the propositional variables Q, R, and P stand for x > 0, x < 0, and
|x| > x, respectively. [Mathematicians would rarely introduce explicit propositional
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variables in this manner, but it can’t hurt to do so.] We know that x must be positive,
zero, or negative; that is, we know Q V R. If x > 0, we know that |x| = x (by definition
of absolute value), which implies |x| > x. In other words, Q implies P. On the other
hand, if x < 0, then |x| > 0 > x, so we still can conclude |x| > x. In other words, R
implies P. So we have shown that Q implies P, and R implies P. By tautology 26, we
can conclude the equivalent statement (Q or R) implies P. But since we also know
(Q or R), we obtain (by tautology 9) P; that is, |x| > x. ®

The argument in Proof Preview 3 is a proof by cases, as we see in Section 4.2.
Exercises 2.3

(1) Replace each of the following statements by an equivalent statement that is as
short as possible (in number of symbols). In some cases, the answer may be the given
statement.

(a) PAP

® ~P—~Q

(c) QANQ—P)

(d p—=~P

& ®AQVPAR)
(f) PVQVR

@ @—Q < Q—P)
(h) P—(@Q—~P)

(2) For each of the following statements, express its negation in as short and simple

a way as possible. You will probably want to use tautologies number 17 through 19 (and
possibly others) from Table 2.5.

(a) This function is continuous but not increasing.

(b) Pigs are not blue or dogs are not green.

(c) Ifis positive, then x is positive.

(d) Pigs are blue if and only if dogs are not green.

(e) Ifset A is finite, then set B is finite and not empty.

(3) Construct the truth tables necessary to test the validity of the three arguments
in Example 1.

(4) Test each of the following arguments for validity, by directly applying the
definition of propositional consequence. In other words, construct just one truth table
for each argument.

(a) Premises: P — Q,P - ~R, Q «> R. Conclusion: ~ P.

(b) Premises: PV Q +> ~P AR, R — P. Conclusion: ~ (P V Q VR).

(c) Premises: PV Q,QV R «*~P. Conclusion: RV~Q.

(d) If Alice is wrong, then Bill is wrong. If Bill is wrong, then Connie is
wrong. Connie is wrong. Therefore, Alice is wrong.
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(e) Ifturtles can sing, then artichokes can fly. If artichokes can fly, then turtles
can sing and dogs can’t play chess. Dogs can play chess if and only if turtles can sing.
Therefore, turtles can’t sing.

(5) Show that each of the following arguments is valid, using the method employed
in the alternate solutions given previously. Do not use any tautologies with more than
three propositional variables. Consult your instructor about whether to write formal or
informal solutions.

(a) Premises: Q *R,RVS—P,QVS. Conclusion: P.
*(b) Premises: P—(Q <*~R),PV~8,R—§,~Q—=~R. Conclusion: ~R..
(c) Premises: Babies are illogical. A person who can manage a crocodile is not
despised. Illogical persons are not despised. Therefore, babies cannot manage
crocodiles. (This example was created by Lewis Carroll.)
*(d) If I oversleep, I will miss the bus. If I miss the bus, I’ll be late for work
unless Sue gives me a ride. If Sue’s car is not working, she won’t give me a ride. If 'm
late for work, I’ll lose my job unless the boss is away. Sue’s car is not working. The
boss is not away. Therefore, if I oversleep, I'll lose my job.

(6) Turn the formal alternate solution to Example 1(a) into an informal proof,
similar to that given for Example 1(c).

(7) Two sets 4 and B are defined to be equal if they have exactly the same
members, that is, if x € 4 is equivalent to x € B, for any object x. Prove that A = B if and
only if (4 < B and B ¢ 4).You may want to refer to Proof Preview 2 in this section, as
well as Proof Preview 1 in Section 2.2, to review how biconditionals are normally
proved. But don’t make this proof harder than it needs to be; there really isn’t much to
it.

(8) Prove that for any real number x, |x| > -x.

(9) Prove that if n is an integer, then n* + n must be even. Hint: You may assume
that an integer must be even or odd. Then use the technique used in Proof Preview 3.

(10) Prove that if n is an integer which is not a multiple of 3, then n* is 1 more than
a multiple of 3. Hint: To do this, you need to find a disjunction that is equivalent to the
condition that » is not a multiple of 3. Do not try to prove this equivalence; you may
assume it.

Exercises 11 through 17 are rather technical and are concerned with material that has
not been directly discussed in the text.

*(11) A set of connectives is called complete if every truth function can be
represented by it; that is, given any truth function, there is a symbolic statement that uses
only connectives in the set and has that truth function.
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Show that the connectives A, V, and ~ together form a complete set of connectives.
Hint: First consider a truth function with exactly one T in its final output column. Show
that any such truth function can be represented by a conjunction of propositional
variables and their negations. Then, any truth function at all can be represented by a
disjunction of such conjunctions. The resulting statement is called the disjunctive
normal form of the given truth function. Don’t try to make this a very rigorous proof.

(12) Find the disjunctive normal form for each of the following statements:
(@ PQ
() ~PAQ
() P~ (Q—~R)
(d ~PAQ—R)

(13) Show that A and ~ together form a complete set of connectives.
(14) Show that V and ~ together form a complete set of connectives.

*(15) Show that — and ~ form a complete set of connectives.

*(16) Show that A, V, —, and <> do not form a complete set of connectives.

*(17) Define a connective |, called the Sheffer stroke, based on the words “not both.”
That is, P|Q is true except when both P and Q are true. Show that the single connective
| forms a complete set of connectives.

Suggestions for Further Reading: For a more thorough treatment of mathe-
matical logic at a level that is not much higher than the level of this text, see Copi and

Cohen (1997), Hamilton (1988), or Mendelson (1987). For a more advanced treatment,
see Enderton (1972) or Shoenfield (1967).



Chapter 3

Predicate Logic

3.1 The Language and Grammar of Mathematics

Propositional logic is important in mathematics, but it is much too limited to capture the
full power of mathematical language or reasoning. For one thing, although propositional
logic deals with connectives and how they are used to build up statements, it does not
concem itself with the structure of atomic statements. Remember that we call a
statement atomic if it is not built up from any shorter statements. The goal of this section
is to examine what atomic statements look like in mathematical language.

Example 1: One important category of atomic mathematical statements are
equations such as x +y = 3. As discussed in Section 2.1, a statement of this sort is called
a predicate, since its truth depends on the values of variables. It may also be called an
open statement. You can see that it contains no connectives. Quantifiers are words like
“all,” “every,” and “some” or symbols standing for those words; so our equation
contains none of those either. And that makes it atomic.

It’s important to see why neither x + y nor y = 3 can be considered a substatement
of x + y = 3. The expression x + y isn’t even a sentence; it has no verb. The expression
y = 3 is a perfectly good sentence, but it makes no sense to say that the equation
x +y = 3 is built up grammatically from the equation y = 3. So this equation, and in fact
any equation, is atomic. In many branches of mathematics, equations and inequalities
account for virtually all the atomic statements.

In the equation we’ve been using as an example, the letters x and y are, of course,
variables.

Definitions: A mathematical variable is a symbol (or combination of symbols
like x,) that stands for an unspecified number or other object.

The collection of objects from which any particular variable can take its values is
called the domain or the universe of that variable. Variables with the same domain are
said to be of the same sort. (It’s generally assumed that the domain of a variable must
be nonempty.)

45
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You have undoubtedly been using variables to stand for numbers since junior high
school, and you have probably also encountered variables representing functions, sets,
points, vectors, and so on. These are all mathematical variables.

Example 2: If you saw the equation f(x) = 3, you would probably read this as “f
of x equals 3,” because you recognize this as an example of function notation. You
would probably also think of x as the only variable in this equation. But strictly
speaking, this equation contains two variables: x, presumably standing for a number, and
£, presumably standing for a function.

There is nothing that says what letters must be used to stand for what in
mathematics, but there are certain conventions or traditions that most people stick to
avoid unnecessary confusion. In algebra and calculus, for example, the letters x, y, and
z almost always stand for real numbers, whereas the letters f'and g stand for functions.
The fact that almost everyone automatically interprets the equation f(x) = 3 in the same
way shows how strong a cue is associated with certain letters. On the other hand, if
someone wanted to let the letter O represent an arbitrary triangle, it would be best to
inform the reader of this unusual usage.

In Chapter 2 we introduced the idea of a propositional variable—a letter used to
stand for a statement. Propositional variables are not normally used in mathematics.
They are used primarily in the study of logic.

¥ The difference between propositional variables and mathematical variables
is very important, and you should be careful not to confuse them. A propositional
variable always stands for a statement—spoken, written, mathematical, English,
Swedish, or whatever—that could take on a value of true or false. A mathematical
variable can stand for almost any type of quantity or object except a statement.

Not every letter that stands for something in mathematics is a variable.

Definition: A symbol (or a combination of symbols) that stands for a fixed number
or other object is called a constant symbol or simply a constant.

Example 3: The symbols 7 and e are constant symbols, not variables, since they
stand for specific numbers, not unknown numbers. Constant symbols need not be letters:
numerals like 2, 73, and 5.3 are also constants.

Starting with variables and constants, mathematicians use a variety of other
symbols to build up mathematical expressions and statements. It is possible to describe
the structure of mathematical language in great detail. Rather than do that, let’s just
make one vital point. We’ve already mentioned that equations and inequalities are two
very common types of mathematical statements. Expressions like x + y and cos 3z, on
the other hand, are not statements at all because they take on numerical values, not truth
values, when we substitute numbers for the mathematical variables in them. We call this
kind of mathematical expression, which represents a mathematical value or object, a
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term. (Throughout this book, our use of the word “term” is more general than its usual
meaning in high school algebra.) The simplest kind of term is a single variable or
constant.

The distinction between statements and terms can be made more clear by drawing
an analogy to English grammar. One of the first things taught in grammar is that a
sentence must have a verb. This is just as true in mathematics as it is in English. The
word “equals” is a verb, and the word group “is less than” includes the verb “is” and
functions as a verb. So if we say that one quantity equals another or is less than another,
we have a complete sentence or statement. Therefore, = and < should be regarded as
mathematical verbs that can be used to create symbolic statements. The technical name
for such verb symbols is predicate symbols. In contrast, the word “plus” is not a verb
and so cannot be used to form a statement. Since x + y stands for an object (specifically,
a number), it’s essentially a mathematical noun. It’s no more a complete statement than
the phrase “frogs and toads” is a complete English sentence. The technical name for
mathematical symbols like +, -, and v , which are used to form terms that denote
objects, is function symbols or operator symbols.

Example 4: Let’s consider what could be the elements of a symbolic language for
high school algebra. There would have to be at least two sorts of variables: real
variables, that is, variables whose domain is the set of all real numbers, and function
variables, that is, variables whose domain is the set of all real-valued functions. It might
also be convenient to have variables whose domain is the set of all integers. In addition,
it is normal to have an infinite number of constant symbols (including numerals)
representing particular real numbers.

The most basic operator symbols of algebra are the symbols +, -, x, and / . The
minus sign can be used syntactically in two different ways: it can be put in front of a
single term to make a new term, or it can be put between two terms to make a new term.
Technically, there should be two different symbols for these two different operations,
but it is standard to use the same one. Some other important operator symbols of algebra
are the absolute value and radical symbols.

Exponentiation represents a rather special case in the grammar of algebra. An
expression like x” is certainly a term, built up from two simpler terms. But instead of
using a symbol to show exponentiation, we show it by writing the second term to the
upper right of the first term. It would perhaps be better to have a specific symbol for
exponentiation, but traditionally there isn’t one. However, note that most calculators and
computer languages do have a specific key or symbol for exponentiation.

For more advanced work, one might want many other operator symbols, for things
like logarithms, function inverses and compositions, trigonometric functions, and so on.

It is much easier to list all the predicate symbols of algebra than all the operator
symbols. The only atomic predicate symbols are =, <, and > . There are two other
standard inequality symbols, < and >, but they are not atomic (their meaning includes
an “or”). Also since x > y means the same thing as y <x, it is necessary to have only two
atomic predicate symbols.

We have just described the sorts of variables and the constant symbols, operator
symbols, and predicate symbols required for a symbolic language in which high school
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algebra can be done. These are the basic ingredients of what is called a first-order
language.

Example 5: Now let’s describe a first-order language for the subject of plane
geometry. In the traditional Euclidean approach to this subject, there are three basic,
undefined types of objects: points, lines, and “magnitudes” (positive real numbers). So
there should be at least these three sorts of variables.

Since some use of arithmetic and algebra is necessary to study geometry, this
language should contain numerals and most of the operator and predicate symbols
mentioned in the previous example. There should also be a few more operator symbols.
Typically, 4B denotes the line segment between points A and B (and then |4B| means
the length of that line segment). The symbol £_ represents the angle formed by any three
distinct points. Two other notions for which there is no standard operator symbol but for
which symbols might be useful are the (two-directional) line formed by two points, and
the (one-directional) ray from one point through another point.

In addition, geometry requires one more predicate symbol, used to mean that a
certain point is on a certain line. There is no standard symbol for this, and it’s not
particularly important what symbol is used. We could just as well use the symbol “On.”
That is, the notation On(4, L) would mean that point 4 is on line L. This single predicate
symbol is all that’s needed to talk about parallel lines, triangles, rectangles, and so on
(see Exercise 8 of Section 3.4). _

Note that operator symbols and even predicate symbols can mix sorts. For
example, the angle symbol uses three terms representing points to form a term
representing a number. The On symbol uses one term for a point and another term for
a line to form an atomic sentence.

By the way, have you ever heard it said that mathematics is a language? If you
never thought about this before, now would be a good time to do so. Mathematics
definitely includes its own language with its own grammar. When studying
mathematical logic or almost any part of higher mathematics, it’s essential to understand
and respect this grammar!

3.2 Quantifiers

Section 3.1 discussed some of the specifics of how symbolic mathematical language is
structured. Now it’s time to go one more step beyond propositional logic by introducing
the concept of quantifiers. The study of quantifiers, together with connectives and the
concepts discussed in the previous section, is called predicate logic, quantifier logic,
first-order logic, or the predicate calculus.

Notation: Two symbols, called quantifiers, stand for the following words:

. v for “for all” or “for every” or “for any”

. 3 for “there exists” or “there is” or “for some”
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V is called the universal quantifier; 3 is called the existential quantifier.

The quantifiers are used in symbolic mathematical language as follows: if P is any
statement, and x is any mathematical variable (not necessarily a real number variable),
then Vx P and 3 x P are also statements.

Example 1: Quantifiers are used in ordinary life as well as in mathematics. For
example, consider the argument: “Susan has to show up at the station some day this
week at noon to get the key. So if I go there every day at noon, I'm bound to meet her.”
The logical reasoning involved in this conclusion is simple enough, but it has nothing
to do with connectives. Rather, it is an example of a deduction based on quantifier logic
(see Exercise 3 of Section 4.3).

When using these symbols, it’s important to stick to the rule given previously for
how they are used. Note that a quantifier must be followed immediately by a
mathematical variable, which in turn must be followed by a statement.

Example 2: Quantifiers often occur in sequence, and this is both legitimate and
useful. For instance, consider the statement, “For any numbers x and y, there’s a number
z that, when added to x, gives a sum equal to y.” This would be written symbolically as
Vx Vy 3z (x + z=y). This is a perfectly well-formed symbolic statement, because each
quantifier is followed by a mathematical variable, which is in turn followed by a
statement. Note that the word “and” in the English statement is misleading; there’s
really no conjunction in it. A symbolic statement may never begin “Vx A ...” or
“Jx A ...."” (By the way, if all the variables have the set of real numbers as their domain,
can you tell whether this statement is true or false?)

Notation: When a statement contains a sequence of two or more quantifiers of the
same type (V or 3), it’s permissible to write the quantifier just once and then separate
the variables by commas. So the above statement Vx Vy 3z (...) can also be written
\x,y 3z (...). This should be viewed as merely an abbreviation for the complete form.

Just as in propositional logic, parentheses are often needed in quantifier logic to
make it clear what the scope of a quantifier is. For example, Vx (P A Q) has a different
meaning from (¥x P) A Q. If parentheses are omitted, the usual convention is that a
quantifier has higher priority than any connective. So ¥x P A Q would be interpreted as
(VxP)AQ.

The most common English words for both quantifiers have already been given.
When you read a quantified statement in English it is usually necessary to follow each
instance of the existential quantifier with the words “such that.” For example,
Jx Vy (y + x = y) should be read “There is an x such that, for every y, y + x = y.” It
doesn’t make sense to read it “There is an x for every y, y + x = ».” To the
nonmathematician, the words “such that” sound awkward. But there’s no adequate
substitute for them in many cases.
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Definitions: A mathematical variable occurring in a symbolic statement is called
free if it is unquantified and bound if it is quantified. If a statement has no free variables
it’s called closed. Otherwise it’s called a predicate, an open sentence, an open
statement, or a propositional function.

Example 3: In the statement Vx (* > 0), the variable x is bound, so the statement
is closed. In the statement Vx 3y (x - y = 2z), x and y are bound whereas z is free. So this
statement is open; it is a propositional function of z.

Example 4: Strictly speaking, it’s “legal” for the same variable to occur both
bound and free in the same statement. Consider x =y V 3x (2x = z). Then x is free in the
first disjunct and bound in the second. But most people consider it very awkward and
confusing to have the same variable bound and free in a single statement. Furthermore,
this awkwardness can always be avoided, because a bound variable can be replaced by
any new variable of the same sort, without changing the meaning of the statement. In
the above example, the rewritten statement x =y V Ju (2u = z) would be more readable
and would have the same meaning as the original, as long as u and x have the same
domain.

Convention: This text follows the convention that the same variable should not
occur both bound and free in the same statement. You should, too.

I [t is important to develop an understanding of the difference between free
and bound variables. A free variable represents a genuine unknown quantity—one
whose value you probably need to know to tell whether the statement is true or false.
For example, given a simple statement like “5 + x = 3,” you can’t determine whether it’s
true or false until you know the value of the free variable x. But a bound variable is
quantified; this means that the statement is not talking about a single value of that
variable. If you are asked whether the statement “Ix (5 + x = 3)” is true, it wouldn’t
make sense to ask what the value of x is; instead, it would make sense to ask what the
domain of x is. (If the domain were all real numbers, the statement would be true; but
if it were just the set of all positive numbers, the statement would be false.) In this way,
a bound variable is similar to a dummy variable, like the variable inside a definite
integral: it doesn’t represent a particular unknown value.

Notation: IfP is any propositional variable, it is permissible and often helpful to
the reader to show some or all of its free (unquantified) mathematical variables in
parentheses. So the notation P(x) (read “P of x”’) would imply that the variable x is free
in P, whereas the notation P(x, y) would imply that both x and y are free in P. Some
mathematicians follow the convention that all the free variables of a statement must be
shown in parentheses in this manner, but we don’t. So, for example, when we write P(x),
there could be other free variables besides x in P.

You may notice that this notation strongly resembles function notation f(x). The
resemblance is deliberate. An open sentence does define a function of its free variables,
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namely a truth-valued function. This is why open sentences are also called
“propositional functions.” (On the other hand, it’s important to distinguish between an
open sentence and a mathematical function; the latter is a mathematical object, not a
statement.)

Another way that this new notation is similar to ordinary function notation involves
substituting or “plugging in” for free variables. Suppose we introduce the notation P(x)
for some statement. If we then write P(y) or P(2) or P(sin 3u), this means that the term
in parentheses is substituted for the free variable x throughout the statement P.

Enough technicalities for now. It’s time to talk about the meaning of the quantifiers
and then look at some examples of how to use quantifier logic to represent English
words and statements symbolically.

Definition: A statement of the form Vx P(x) is defined to be true provided P(x) is
true for each particular value of x from its domain. Similarly, 3x P(x) is defined to be
true provided P(x) is true for at least one value of x from that domain.

Perhaps you object to these definitions on the grounds that they are circular or just
don’t say anything very useful. In a sense, this objection is valid, but there is no simpler
method (such as truth tables) to define or determine the truth of quantified statements.

Note that this definition of the existential quantifier gives it the meaning of “there
is at least one.” There are also situations in which you want to say things like “There is
exactly one real number such that ... .” It would be possible to introduce a third
quantifier corresponding to these words, but it’s not needed. Section 3.4 explains why.

Also note that our interpretation of 3 is analogous to our interpretation of V as the
inclusive or, since that connective means at least one disjunct is true, rather than exactly
one disjunct is true. It is reasonable and often helpful to think of the existential and
universal quantifiers as being closely related to disjunction and conjunction,
respectively.

Section 2.1 ended with a few examples of how to translate English statements into
symbolic statements of propositional logic. When quantifiers are involved, these
translations can be somewhat tricky to do correctly, but every mathematician needs to
learn this skill. As in the earlier examples, the first step in these translations is to
determine the atomic substatements of the given statement and then to assign a
propositional variable to each of them. But when quantifiers are involved, it also
becomes very important to identify and show the free mathematical variables present.

This process is much easier if you remember some of the grammatical issues we’ve
talked about: propositional variables stand for whole statements, each of which must
contain a verb. The free mathematical variables of a given propositional variable should
correspond to nouns or pronouns that appear in that statement. For instance, if you
wanted to symbolize a statement that talked about people liking each other, it would be
reasonable to use a propositional variable L(x, y) to stand for the sentence “x likes y,”
where it is understood that x and y represent people. The verb “likes” involves two
nouns, so there are two free variables.
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¥ The following rule of thumb is also helpful: The symbolic translation of a
statement must have the same free variables as the original statement.

Example 5: For each of the following, write a completely symbolic statement of

predicate logic that captures its meaning.

(a) All gorillas are mammals.

(b) Some lawyers are reasonable.

(c) No artichokes are blue.

(d) Everybody has a father and a mother.

(e) Some teachers are never satisfied.

(f) (The number) x has a cube root.

(g) For any integer greater than 1, there’s a prime number strictly between it
and its double.

Solution: (a) Certainly, the word “all” indicates a universal quantifier. But if you
have never done such problems before, it might not be clear to you how to proceed. The
key is to realize that what this proposition says is that if something is a gorilla, it must
be a mammal. So within the universal quantifier, what we have is an implication. The
logical structure of the statement is therefore

Wx (x is a gorilla — x is a mammal)

Of course, this is not a completely symbolic rendition of the original statement. If
we want to make it completely symbolic, we have to introduce propositional variables
for the atomic substatements. Let G(x) mean “x is a gorilla” and let M(x) mean “x is a
mammal.” Then the original statement can be represented symbolically as
Vx (G(x) = M(x)).

We have not specified the domain of the variable x in this solution. This is because
we don’t want any particular limitations on it. Since the implication inside the quantifier
limits things to gorillas anyway, we might as well assume x can stand for any thing
whatsoever, or perhaps any animal. It’s not uncommon to use a variable whose domain
might as well be unlimited.

Note that the given English statement has no free variables, and therefore neither
does its symbolic translation. This is true for all the parts of this example except part (f).

Perhaps you see a shorter way of translating the given statement into symbols. Why
not specify that the variable x stands for any gorilla, as opposed to a larger set like all
animals? Then it appears that the given statement can be represented as

Vx (x is a mammal) or Vx M(x)
There is nothing wrong with this approach to the problem, and it does yield a shorter,

simpler-looking answer. However, it’s not necessarily helpful in mathematics to
introduce variables with any old domain that’s considered convenient at the time.
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Therefore, you should know the long way of doing this problem and especially that this
type of wording translates into an implication.

(b) This time, because of the word “some,” the solution requires an existential
quantifier. Notice that, except for replacing the word “all” by the word “some,” the
structure of this statement seems the same as the structure of the previous statement. So
you might automatically think that an implication is involved here too. But if you give
it some thought, you’ll realize that this statement says that there is a person who is a
lawyer and is reasonable. So it’s a conjunction, not an implication. With propositional
variables L(x) and R(x) standing for “x is a lawyer” and “x is reasonable,” the correct
symbolic translation is 3x (L(x) A R(x)). The same shortcut that was mentioned in part
(a)y—using a more specific variable—could also be applied to this problem.

" Pay close attention to the contrast between parts (a) and (b). Again, the
deceptive thing is that the words seem to indicate that the only logical difference
between the two is the quantifier. Yet the “hidden connective” turns out to be different
too. In general, the words “All ...s are ...s” always represent an implication, whereas
“Some ...s are ...s” always translates to a conjunction.

(c) Here we encounter the word “no,” which would seem to indicate a negation,
perhaps combined with a quantifier. At first thought, it might seem that “No artichokes
are blue” is the negation of “All artichokes are blue.” But remember that the negation
of a statement means that the statement is not true. And “No artichokes are blue” surely
does not mean “It’s not true that all artichokes are blue.” Rather, it means “It’s not true
that some artichokes are blue.” So one way to symbolize this statement is to first
symbolize “Some artichokes are blue,” as in part (b), and then to stick ~ in front of it.
Another correct approach, perhaps less obvious, is to realize that the given statement
means the same thing as “All artichokes are nonblue” and to go from there. The details
are left for Exercise 2.

This example illustrates some of the subtleties and ambiguities of English. “No
artichokes are blue” definitely has a different meaning from “Not all artichokes are
blue.” How about “All artichokes are not blue™? Do you think the meaning of this is
clear, or is it ambiguous?

(d) We can see that “everybody” means “every person.” So the symbolic form of
this statement should begin with a universal quantifier, and it is convenient to use a
variable whose domain is the set of all people. If we then write M(x) and F(x) to
represent, respectively, “x has a mother” and “x has a father,” we can translate the given
statement as

Vx M(x) A F(x))

This solution isn’t wrong, but it can be criticized as incomplete. A statement like
“y has a mother” should not be considered atomic, because it contains a hidden
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quantifier. That is, it real_ly means “There is somebody who is x’s mother.” So a better
representation of the statement is obtained as follows: Let M(x, y) mean “y is x’s
mother” and F(x, y) mean “y is x’s father.” Then the statement can be symbolized as

Vx (Jy M(x, y) A 3z F(x, z))

where x, y, and z are people variables. Note that there is a variable for each person under
consideration—person x, mother y, and father z. But they are all bound variables.

(e) As before, let x be a variable whose domain is the set of all people. Recall from
part (b) that “Some teachers are ...” should be thought of as “There exists someone who
is a teacher and who is ... .” But how do we say someone is never satisfied? This means
that there is no time at which the person is satisfied. So we also need a variable ¢ whose
domain is the set of all possible times. Let’s define T(x) to mean “x is a teacher” and
S(x, #) to mean “x is satisfied at time 2.” With this notation, the given statement can be
represented as

Jx (T(x) A~ 3t S(x, 1)

(f) Inpart (c) we saw that words like “has a cube root” include a hidden quantifier.
To say that a number has a cube root is to say that there is a number whose cube is the
given number. So what we want is

3
Fy yy=x or Iy(y’=x) or Iy (y=1k)
Note that, in all of these solutions as well as in the original, x is free whereas y is not.

(g) Let m and n be variables whose domain is the set of all natural numbers (the
positive integers 1, 2, 3, and so on). Then if we write P(n) for “n is a prime number,” we
can translate the given statement as

VYm [m>1— 3n(m<n<2mAPn))]

If you wanted to be technical, you could point out that an extended inequality is not
really atomic, and so the solution should have m <n A n < 2m instead of m <n <2m.
A more substantial objection would be that the sentence “z is a prime number” is not
atomic; it can be written symbolically with quantifiers and connectives (see Exercise
3(d)).

By the way, this statement is true. It is a famous result of number theory, known
as Bertrand’s postulate. See Section 8.2 for additional discussion.

Exercises 3.2

(1) For each of the following, determine whether it is a grammatically correct
symbolic statement. (As usual, P, Q, and R are propositional variables, and x, y, and z
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are mathematical variables.) For each one that’s not grammatically correct, explain
briefly why not. For each one that is grammatically correct, list its free and bound
mathematical variables.

(@) VxP(x,2) < 3zQ(, 2)

® I@xAY E>0Ay<0)

(c) VxP(x)—3x

d) ~Vx~Vy~Vz2+2=u)

() Vx[P(x) =3Iz (Q@) — Yy R(x, )]

(2) Write out both of the symbolic answers described in the solution to Example

5(c).

(3) Translate each of the following into purely symbolic form. For the sake of
uniformity, use the variables x, y, and z to stand for real numbers, and m, n, and £ for
integers. Initially, you may use only equations and inequalities as atomic statements. For
instance, to express “n is a multiple of 10” symbolically, you could write
“Im (n = 10m).” Then you can introduce new propositional variables as abbreviations
for statements that you have written in symbolic form. For example, affer you do part
(d), you can define a propositional variable, perhaps P(n), to stand for your answer to
part (d) when you do parts (e) and (f).

(a) 1 is the smallest positive integer.
(b) There is no largest integer.
(c) m is an odd number.
*(d) nis a prime number.
(e) Every prime number except 2 is odd.
(f) There are an infinite number of prime numbers. Hint: There’s no simple
way to express this literally. Instead, say that there’s no largest prime number.
*(g) For any nonwhole real number x, there’s an integer strictly between x and
x + 1. Hint: The difficult part of this problem is that you may not use a variable whose
domain is precisely the set of nonwhole real numbers. How can you express
symbolically that x is not a whole number?
(h) Between any two (different) real numbers there’s another one.

(4) (a) Which of the statements in Exercise 3 are closed?
(b) Name at least three of these closed statements that are true.

(5) As before, in the following statements, x, y, and z denote real numbers, and m,

n, and k denote integers. For each statement, first identify its free variable(s); then find
one set of values for its free variable(s) that makes the statement true and one set that
makes the statement false. (Example: the statement 31 (m = n?) has only m as a free
variable. The statement is true for m =9, and false for m = 7.) Justify your answers.

@ In(m>5Am*+k*=n?

(b) Vx,y(x<y <> xz>yz)

(©) VxTyxz=yAyz=xA(x=0—y=+Xx))]

(d) Vx(x*-x2m)
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(6) The following symbolic statements are true in the real number system. Rewrite
each of them in reasonable-sounding English.
(@) Vx[x>0—3y(*=x)]
(b) Vx[x<0—~3y(y=logx)]
(©) IxVy(y=y)
(d) Va,bla+0—3x(ax+b=0))

(7) Represent each of the following statements symbolically, starting with only the
following atomic statements: P(x, y) for “x is a parent of y,” W(x) for “x is female,” and
x =y (meaning x and y are the same person). All your variables should have the set of
all people as their domain. As in Exercise 3, you may introduce new propositional
variables for statements that you have already written symbolically. Remember that it
is OK to substitute for the free variables of a statement. For example, W(z) would mean
that z is female.

(a) xismale.

(b) xisy’s father.

(c) xisy’s grandmother.

(d) xisy’s sibling. (This means that x and y have the same mother and father,
but they are not the same person.)

(e) xis an only child. (That is, x has no siblings).

(f) xisy’s first cousin.

(g) x has no uncles.

(h) Some people have brothers but no sisters.

(8) For each of the following statements, introduce a propositional variable (with
free variables indicated) for each of its atomic substatements, and then write a totally
symbolic translation of the given statement. You can define variables with any domain
you want. For instance, for part (a), you might let one of your propositional variables
be S(x), meaning “x likes spinach” (where x can be any person).

(a) Not everyone likes spinach, and no one likes asparagus.

(b) All crows are black, but not all black things are crows.

(c) If someone kisses the frog, everyone will benefit.

(d) There are people who like all vegetables.

(e) It's possible to fool all of the people some of the time and some of the
people all of the time, but not all of the people all of the time.

(f) If everybody bothers me, I can't help anybody.

(g) Anybody who bothers me won’t be helped by me.

(h) Every problem in this section is harder than every problem in Chapter 2.

(i) No one is happy all the time.

(j) Everybody loves somebody sometime.

(k) It's not true in all cases that if one person likes another, the second likes the
first.

(1) There are days when everyone in my dorm cuts at least one class.
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3.3 Working with Quantifiers

In this section we examine some of the methods that mathematicians use to understand
and simplify quantified statements. It was mentioned in Section 3.2 that quantifiers often
occur in sequence. Usually, quantifiers of the same type (all 3s or all Vs) occurring in
sequence are not difficult to understand or to work with, but alternations of quantifiers
between 3 and V (in either order) can make statements confusing. In more advanced
studies of the foundations of mathematics, the complexity of statements is measured by
how many alternations of quantifiers they contain. (One well-known mathematical
logician has expressed the opinion that three or four is the maximum number of
alternations of quantifiers that the human brain can deal with.) Let’s begin this section
by looking at sequences of quantifiers, paying particular attention to statements with a
single alternation.

Example 1: Let’s assume that x and y are real variables and consider a simple
atomic statement like x + y = 0. One simple way to quantify this, with no alternations,
is 3x Jy (x + y = 0). What does this quantified statement say, and is it true or false?
Technically, the statement says that there is a value of x for which Jy (x +y = 0) is true.
But there’s no need to split up the quantifiers in this way. In Section 3.2 it was
mentioned that this statement can be written as 3x,y (x +y = 0), which would be read
“There exist x and y such that x + y = 0.” The point is that the statement simply says that
there is some choice of values for the two variables that makes the equationx +y =0
hold. Clearly, this is true; for example, we could take x = 3 and y = -3. A consequence
of this analysis is that there is no difference in meaning between 3x,y (x +y = 0) and
Jy,x (x +y=0).

Example 2: Similarly, consider the statement ¥x Vy (x + y = 0). Again, this can
be rewritten as Vx,y (x + y = 0), with the practical consequence that the two quantifiers
can be considered together. So this statement says that for all choices of values for x and
y, x + y = 0. This is blatantly false; for example, it fails when x =y = 29. As in the
previous paragraph, there is no difference in meaning between vx,y (x +y = 0) and
Wy, x (x +y = 0). This is a general fact: the order of the variables in a sequence of like
quantifiers is unimportant.

Example 3: Now let’s look at the more interesting cases with alternations of
quantifiers. First, consider Vx 3y (x + y = 0). This says that for every value of x, the
statement Jy (x +y = 0) holds. That is, for every choice of a value for x, there must be
a value for y that makes the equation hold. You can see that this is always so. When
x =7, y would be -7; when x = -2.68, y would be 2.68, and so on. Clearly, the correct
choice of y can be described in terms of x by the simple formula y = -x. This example
also illustrates a general situation: for a statement of the form Vx Jy P(x, ) to be true,
it must be possible to choose y in ferms of x (that is, as a function of x) so that the inner
statement holds for all values of x when y is chosen according to that function.



58 Chapter 3 Predicate Logic

Example 4: Now let’s reverse the quantifiers and consider 3y Vx (x +y = 0). This
says that there is a value for y that makes the statement Vx (x +y = 0) hold. That is, there
would have to exist a single value of y, chosen independently of x, that makes the inner
equation work for all values of x. In this situation, it’s not enough to define y in terms
of x. You can see that there is no such value of y, and so the whole statement is false.

These examples illustrate several points. For one, they show that the order of
quantifiers does matter when they are of opposite types. Also, in general, a statement
of the form 3y Vx P(x, y) is harder to satisfy (that is, less likely to be true) than the
corresponding statement Vx 3y P(x, ). Additionally, the previous paragraph clarifies
why the words “such that” are usually needed after an existential quantifier. If the
statement 3y Vx (x + y = 0) were read “There is a y for every x ... ,” it would seem to
have the same meaning as “For every x there isa y ... ,” which it doesn’t. The wording
“There is a y such that, for every x, ...” helps reinforce the difference in meaning.

The next theorem generalizes the previous examples of how to decipher statements
with alternating quantifiers. We omit the proof, since it is quite technical (but see
Exercise 11).

Theorem 3.1: Suppose a statement begins with a sequence of quantifiers,
followed by some inner statement with no quantifiers. Then the statement is true
provided each existentially quantified variable is definable as a function of some or all
of the universally quantified variables to the left of it, in a way that makes the inner
statement always true. (A function of no variables means a single, constant value. The
words “as a function of” in this theorem could be replaced by “in terms of.”)

We just saw how this theorem applies to statements of the form Vx 3y P(x, y) and
Jy Vx P(x, y). It can also help decipher statements with more alternations of quantifiers.

Example 5: Suppose we had to work with a monster like Ju Vv 3w Vx,y 3z (...).
Our rule says that, to satisfy this, there must be a single value of , a function defining
w in terms of v, and a function defining z in terms of v, x, and y that guarantee that the
inner statement is true. Knowing this probably won’t make the problem simple, but it
ought to help.

Proof Preview 4

Theorem: For any two real numbers, there is a real number greater than both of
them.

Proof: In symbols, what we want to prove is Vx,y 3z (z>x A z > y). By Theorem
3.1, to prove this is true, we must appropriately define z in terms of x and y. One concise
way to do this is to let z = |x| + |y| + 1. We must then show that this makes the
conjunction in parentheses true. [The rest of the proof uses numerous results from high
school algebra, including basic properties of the absolute-value function. Most of these
are proved in Appendix 2.] We know that |x| > x and |y| 2 0. Therefore |x| + |y| >
x+0=x,andso |x| + |y| + 1> x. Similarly, |x| + |y| + 1> y. [Mathematicians usually
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omit part of a proof that is nearly identical to a previous part and instead make a
comment like the previous sentence.] This completes the proof, m

Now let’s apply these ideas to determine the truth or falsity of various statements
in various number systems.,

Example 6: For each statement, determine whether it’s true in each of these
number systems: the set of all natural numbers (positive integers) N, the set of all
integers Z, the set of all real numbers R, and the set of all complex numbers C.

(@) Vx,ydz(x+z=y)
(b) 3xVy (x<y)
(c) IxVyIz(x=yVyz=1)

Solution: (a) For this statement to be true, it must be possible to define z as a
function of x and y so that the equation inside the quantifiers is always true. To
accomplish this, let’s solve the equation x + z = y for z: it becomes z = y + (-x), or
simply z = y - x. Now, in the system of natural numbers, subtraction does not
necessarily yield an answer in that system, so the statement is false. But in the other
three number systems, subtraction is always possible, so the statement is true.

(b) This statement begins with 3x, so we want to know if there’s a single value
of x that makes the inequality true, whatever y is. The statement says that there is an x
that is less than every y, which at first glance might seem to be saying that there is a
smallest number in the domain. So we might expect this statement to be true in N, with
x = 1. But let’s be careful! If x = 1, then the statement Vy (x < y) is still false in N,
because if y = 1, the inequality 1 < 1 is false. What the statement really says is that there
is a value of x that is less than every possible value of y, including whatever value x has.
And this is false in all standard number systems, because a number is never less than
itself. The lesson here is that two different variables are allowed to have the same value.
So if we want a symbolic statement to say that there is a smallest number, we can’t have
it say that there is an x that is smaller than every y. Rather, it should say that there is an
x that is smaller than every other y. This could be symbolized as Ax Vy (y # x = x <y)
or, more simply, as Jx Vy (x < y). This modified statement is true in N but false in R.
Inequalities between complex numbers are not even defined, so it is best to say that this
statement (either version) is meaningless in C.

(c) This statement has two alternations of quantifiers, which makes it more
complex than the previous examples. To make it true, we’d have to find a single value
of x, plus a function defining z in terms of y, so that the inner statement must be true. It’s
probably easiest to consider the relationship of z to y before considering the value of x.
The inner statement is a disjunction, one of whose disjuncts is yz = 1. This equation is
equivalent to z = 1/y, so it looks like that’s how z should be defined from y. Butin N
and Z, most numbers don’t have reciprocals. Even in R and C, not all numbers have
reciprocals; zero doesn’t. Where does this leave us?
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Well, let’s consider the role of x. The statement says that there’s some particular
value of x such that every value of y either equals x or has a reciprocal. It should be clear
that we want to take x = 0. Then, if y = 0, the inner statement is automatically true (so
we can pick any value for z that we want). On the other hand, if y # 0, the inner
statement is true provided z = 1/y. Therefore, the given statement is true in R and in C,
where every nonzero number has a reciprocal. The given statement is false in IN and in
Z, however, for whatever value is chosen for x, every other value of y would have to
have a reciprocal. This just isn’t true in these two number systems.

By the way, this statement has a name. It’s the multiplicative inverse property,
although not in its most common form. It is generally included as an axiom for the real
number system.

Definitions: A law of logic is a symbolic statement that is true for all possible
interpretations of the variables, constants, predicate symbols, and operator symbols
occurring in it. That is, it must be true no matter what domains are chosen for its bound
variables, no matter what values are chosen for its constants and free variables, and so
on. (Only the connectives, the quantifiers, and the equal sign are not subject to
reinterpretation.)

A statement Q is said to be a logical consequence of a finite list of statements
P, P,, ..., P, iff the single statement (P, AP, A ... AP,) = Q is a law of logic.

Two symbolic statements are called logically equivalent provided that each of
them is a logical consequence of the other.

These definitions are direct parallels to the definitions of the terms “law of
propositional logic,” “propositional consequence,” and “propositionally equivalent” in
Chapter 2. It follows directly from the definitions that every tautology is a law of logic
(but not the other way around). To distinguish them from tautologies, laws of logic are
sometimes referred to as laws of predicate logic. In the rest of this chapter, “equivalent”
always means “logically equivalent.”

Although the preceding definitions are analogous to concepts defined in Chapter
2, there is a vast practical difference. Although it is always straightforward (using truth
tables) to test for tautologies, contradictions, propositional equivalence and propositional
consequence, there is absolutely no simple or computational way to decide whether a
statement with quantifiers is a law of logic, whether two statements are equivalent, and
SO on.

Incidentally, all mathematical statements can be represented in predicate logic (but
not in propositional logic). So, in effect, what’s being said here is that there’s no way
to write a computer program that will correctly answer all mathematical questions. Of
course, if there were such a computer program, the life of a mathematician would be
greatly simplified—maybe even downright boring!

Example 7: Determine which of the following statements are laws of logic and
explain why.
(a) 2+2=4
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() vxIy (>x)

(c) fx<yandy<zthenx<z.
(d) fx=yandy=zthenx=z
(e) Vx P(x) implies 3x P(x).

Solution: (a) This example was used in Chapter 2, where we said it was not a
tautology. Neither is it a law of logic. It’s a true statement of ordinary arithmetic, only
because of the particular interpretation given to the symbols 2, +, and 4, not because of
its logical structure.

(b) This says that for every number, it’s possible to find a bigger one. This is
certainly true in most common number systems, including the real numbers; for
example, we could take y = x + 1. But it’s not a law of logic. For one thing, it depends
on the interpretation of the symbol >. And even if this symbol is given its usual
meaning, the statement is false in a domain with a largest number, like the set of
negative integers.

(c) Even this isn’t a law of logic; it still depends on how the symbol < is
interpreted!

(d) The definition says that the symbol = must be given its standard interpretation.
Therefore, this statement is a law of logic: if x and y have the same value, and so do y
and z, then clearly x and z must also. This statement is called the transitive property
of equality and is usually taken as an axiom of mathematics. By the way, this statement
is not a tautology.

(¢) This statement says that if a certain condition is true for all objects in a certain
domain, it’s true for at least one. Clearly, such an implication must always be true (see
Exercise 1). So this is a law of logic (but not a tautology).

In Chapter 4, with an axiom system at our disposal, we are able to solve more
complex problems of this type. In the meantime, you are welcome to peek ahead at
Table 4.2, which lists some of the more useful laws of logic.

Negations of Statements with Quantifiers

We have just discussed at some length what has to happen in order for a quantified
statement to be true. We have not talked about what has to happen for a quantified
statement to be false. It may not seem that this should require a separate treatment, but
it does. Suppose that P is a statement that begins with a sequence of quantifiers. We’ve
said that P is true provided that certain functions and/or constants (corresponding to the
existential quantifiers of P) exist. So we could say that P is false provided that not all
these functions and/or constants exist. However, often this view of the situation doesn’t
help to figure out whether the statement is false.
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To say that P is false is of course to say that ~ P is true. The statement ~ P begins
with a negation sign, followed by a sequence of quantifiers. It turns out to be useful to
be able to move the negation sign from outside the quantifiers (that is, in front of them)
to inside the quantifiers. The key to doing this is the following theorem, for which we
just provide an informal, commonsense proof.

Theorem 3.2: For any statement P(x):
(@) ~ Vx P(x) is logically equivalent to 3x ~ P(x).
(b) ~3x P(x) is logically equivalent to Vx ~ P(x).

Proof: (a) The statement ~ Vx P(x) says that it’s not true that P(x) holds for every
value of x in its domain. But this means that P(x) is false for at least one value of x,
which is precisely what 3x ~ P(x) says.

(b) This argument is similar and is left for Exercise 2. ®

Theorem 3.2 can be thought of as a direct parallel to De Morgan’s laws. Recall that
those tautologies say that you can distribute a negation into (or factor a negation out of)
a conjunction or disjunction, but in doing so you have to change the inner connective
from A to V, or vice versa. Similarly, Theorem 3.2 says you can move a negation across
a quantifier, in either direction, provided you reverse the quantifier from ¥ to 3, or vice
versa. I like to call these quantifier equivalences De Morgan’s laws for quantifiers.

Example 8: Simplify each of the following statements by moving negation signs
inward as much as possible.
@ ~3Ix,yVz~JuvYwP
(b) ~3xVel[e>0—3d(d>0AVu(x - ul<d—|f(x) - f(u)| <e))]

Solution: (a) By applying Theorem 3.2 three times to the outer negation sign, we
get the logically equivalent statement Vx,y 3z ~ ~ Ju Vw P. But we know from Chapter
2 that ~ ~ Q is always equivalent to Q, and therefore the given statement is logically
equivalent to the shorter one Vx,y 3z,u Yw P. We could also have achieved this answer
by moving the inner negation sign outward.

(b) This is a much more complex example than the previous one, and simplifying
it requires both Theorem 3.2 and a couple of tautologies. Here are the steps required (but
not the result of each step; see Exercise 4):

(1) Use Theorem 3.2 to move the negation sign through the outer pair of
quantifiers.

(2) Now the statement inside the outer two quantifiers has the form ~ (P = Q).
So we can use tautology 19 to change this to the equivalent form P A ~ Q.

(3) Now the negation sign can be moved inside the quantifier 3d, using
Theorem 3.2 again.

(4) Now the negation sign is in front of a conjunction. Apply the appropriate
De Morgan’s law to it.
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(5) Use Theorem 3.2 for the last time to move the negation sign inside the last
quantifier.
(6) Finally, use the same propositional equivalence as in step 2 to move the
negation sign inside the innermost implication.
Exercise 4 asks you to write out the results of each step of this transformation. For
now, here is the final form after step 6:

vxJde[e>0AVd(~d>0V Ju(x - ul <dA~|f(x) - f(u)| <e))]

This simplified statement is no shorter than the original, but having the negation
symbols inside the quantifiers is an important advantage for most purposes. The two
remaining negation symbols in the rewritten statement can be eliminated. First, use
tautology 20 to rewrite the disjunction~d >0V ...asd>0 — .... And if we are also
permitted to use basic facts about the real number system, the statement
~ |f(x) - f(u)| < e can be shortened to | f(x) - f(u)| = e. With this last change, we geta
statement that is strictly speaking not logically equivalent to the original but is
equivalent to it for all practical purposes.

Incidentally, this example is not some random concoction. With the beginning
symbols ~ Jx dropped, the given statement is precisely the definition of what it means
for the function fto be continuous at the number x. So the statement says that fis not
continuous at any point. Believe it or not, such functions do exist. A standard example
is given in Section 9.3.

Example 9: Consider the statement “Everybody has a friend who is always
honest.”
(a) Write a symbolic translation of this statement.
(b) Write the negation of this symbolic statement and then simplify it as in the
previous examples.
(¢) Translate your answer to part (b) back into reasonable-sounding English.

Solution: (a) Since the word “a” in this statement means “at least one,” our
symbolic translation has to contain three quantifiers based on the words “Everybody,”
“3” and “always.” Two of these involve people, and one involves time; so we need
variables for both. Let’s use x and y as people variables and ¢ as a time variable. Let’s
write F(x, ) as a propositional variable standing for “x is a friend of y.” It’s tempting to
introduce a propositional variable that stands for “x is honest,” but note that the given
statement indicates that a person’s honesty may vary over time. So we write H(x, ¢) to
stand for “x is honest at time ¢ With this notation, the given statement can be
represented as Vx 3y (F(y, x) A Vt H(y, 1)).

(b) If we start with the negation of the solution to part (a) and apply Theorem
3.2 repeatedly and then tautology 19, we finally arrive at the statement
3x Vy (F(y, x) = 3t~ H@, 1)).

(c) It’s not easy to put the solution to part (b) into smooth-sounding English,
but the best try might be, “There are some people, all of whose friends are sometimes
dishonest.” Perhaps you can do better than this. Of course, the original statement can
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easily be negated in words as “Not everybody has a friend who is always honest.” But
that’s not what the problem asks us to do.

Proof Preview 5

Theorem: There is no smallest positive real number.

Proof: -For convenience, let x and y be variables whose domain consists of all
positive real numbers. [This is perfectly legitimate!] In symbols, the statement that there
is a smallest positive real number would be 3x Vy (x < y). So what we want to prove is
~ 3x Vy (x < y). Now, by applying Theorem 3.2 to this, we can change it to
Vx Jy ~ (x < y), or more simply, Vx 3y (y <x). To verify that this last statement is true, we
recall Theorem 3.1: we must define y as a function of x in such a way that the inequality
y <x must be true. [Before reading further, can you see how to do this?] Let y = x/2. Since
x is positive, so is x/2. And since x is positive and 1/2 <1, we can multiply both sides of
this inequality by x to obtain x/2 < x. This completes the proof. ®

Some Abbreviations for Restricted Quantifiers

We conclude this section with a few useful abbreviations, or shorthand notations,
involving quantifiers. Recall from the previous section that a sentence of the form “All
..§ are ...s” is an implication, whereas “Some ...s are ...s” generally represents a
conjunction. So, for example, “Every nonnegative number has a square root” becomes,
in predicate logic, ¥x (x > 0 — 3y (% = x)). Statements like this, in which the scope of
a quantified real variable is restricted by an inequality, are so common that it’s worth
having shorter ways of writing them.

Notation: Let P be any statement, x any variable whose domain has an ordering
(for example, real numbers, integers, and so on), and t any term denoting a member of
that domain. (So x has to be a single letter, but t could be a single letter, a constant like
-4, or a more complicated expression like 3y + 7.) Then

. ¥x<tP isan abbreviation for Vx (x <t—P).

. Jx<tP isan abbreviation for Ix (x <tAP).

Similar abbreviations are used with the symbol < replaced by any of the three
symbols >, <, or 2.

Even though sets are not discussed in detail until Chapter 5, let’s introduce some
abbreviations for a variable that is restricted to a set, since this notation is very similar
to the notation just introduced.

Notation: Let P be any statement, x any mathematical variable, and t any term that
denotes a set. (So t could be a single letter standing for a set, or a more complicated
expression like 4 U B.) Then
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. Vx€etP isan abbreviation for Vx (x €t — P).

. JxetP isanabbreviation for Ix (x € t A P).

Example 10: Write the following statements in symbolic form, using the
abbreviations that have just been defined:
(a) Every positive number has a positive cube root, and every negative number
has a negative cube root.
(b) For every nonnegative number x, there’s an element of set B strictly
between x and x + 1.

Solution: (a) Vx>0 3y>0 ()’ =x) A Vx<03y<0 ()’ =x)
(b) ¥x>0JyeB(x<y<x+1)

Here are some useful equivalences that are similar to Theorem 3.2 but adapted to
restricted-quantifier notation. Their proofs are left for Exercise 3.

Theorem 3.3: (a) ~ Ix<tP is logically equivalent to Vx<t ~ P.
(b) ~Vx<tP is logically equivalent to 3x<t~P.
Furthermore, both of these equivalences still hold with the symbol < replaced by
>, <, 2,0l E.

Exercises 3.3

(1) What assumption must be made about the domain of the variable x for Example
7(e) to be correct? Has this assumption about domains been made in this chapter?

(2) Prove Theorem 3.2(b).

(3) Prove Theorem 3.3. Instead of doing this by mimicking the proof of Theorem
3.2, use the result of that theorem, the definitions of restricted quantifiers, and some
tautologies to provide a more rigorous proof.

(4) Write out each step of the transformation described in Example 8(b).

(5) Determine whether each of the following statements is true or false if all
variables have the set of real numbers as their domain. Explain briefly.
(@ vx3y@=y)
(b) Vy3Ix(x’'=y)
() IxVyx+5=y)
(d VxVy3dzVu(x+z=y+u)
(e) VxWy3z (P +y*=2)
() 3x[vy o’ =y) A~Yy (x=y)]
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(6) Repeat Exercise 5 with all variables having the set of nonnegative integers as
their domain.

*(7) Determine whether the following statements are laws of logic. Explain.
(@) 3xPx)— Vx P(x)
() [3xVy P(x, y)] = [y 3x P(x, y)]
(c) [vy IxP(x,y)] = [3x Vy P(x, y)]
@) [B3x @)V Q)] «* [BxP(x)VIx Q)]
(e) [Bx (P(x) A Q)] < [3x P(x) A 3x Q(x)]
) Vx,yzu[x=yANz=u— (P(x,z) < P(y, )]

(8) Simplify each of the following statements by moving negation signs inward as
much as possible.
@ ~Vxy3z(PV~VuQ)
(®) ~(~3xP—=Vy~Q)
(c) ~Vx~Ty~VzPA~Q)

(9) Write each of the following statements in symbolic form, using the restricted
quantifier notation introduced in this section.
() Every number in set 4 has a positive square root.
(b) Given any real number, there are integers bigger than it and integers
smaller than it.
(c) Every member of a member of 4 is a member of 4.
(d) No positive number equals any negative number.

(10) Prove the following. Your proofs can be based on the proof previews in this
section.
(a) For any real number x, there’s a number that is larger than both x and x*.
(b) Given any two unequal real numbers, there’s a number between them.
(c) There is no largest real number.
(d) There is no largest negative real number.

*(11) Prove Theorem 3.1 for the special case of statements with only one existential
quantifier. Since we haven’t studied functions yet, don’t expect to do this very
rigorously. Just try to give a commonsense argument.

3.4 The Equality Relation; Uniqueness

In Section 3.1, the idea of predicate symbols was introduced. Recall that these are
symbols that act as mathematical verbs and are used to form atomic statements in
predicate logic. Of course, different branches of mathematics require different predicate
symbols. However, whatever differences may exist in the languages of different
branches of mathematics, there is one predicate symbol common to all of them, and that
is the equal sign. In other words, every branch of mathematics (as well as all of science
and many other subjects) makes use of equations. Furthermore, the rules for working
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with equations do not change between different areas of mathematics and science.
Because of this universality of the use of equations, the principles involved are usually
included in the study of predicate logic.

You are familiar with equationis and how to use them, and there will be no new
tricks unleashed on you regarding them. In the next chapter, we begin using the axiom
system contained in Appendix 1. But it won’t hurt to take a look now at the standard
axioms pertaining to equations, which are group III of the axioms. You can see that
there are only four of them, and they are all very straightforward. The first one,
reflexivity, says that anything equals itself. The second, symmetry, says that equations
are reversible. (Symmetry is normally stated as a conditional, but it can be thought of
as a biconditional. You might want to think about why this must be so.) The third,
transitivity, says that “two things equal to a third thing are equal to each other.” It is this
axiom that allows you to write a long sequence of equations and then conclude that the
first expression in the whole sequence equals the last one. The last axiom, substitution
of equals, is a bit more involved. What it says is that if two things are equal, then they
are completely interchangeable. It is this axiom that also implies that it’s OK to change
both sides of an equation, as long as the same thing is done to both sides. A more
thorough discussion of these axioms and how to use them appears in Section 4.4.

Uniqueness

Recall that the existential quantifier has the meaning “there is at least one,” which
makes it analogous to the “inclusive-or” meaning of the disjunction connective. In
mathematics we often want to say that there is exactly one number (or other object)
satisfying a certain condition. In mathematics, the word “unique™ is used to mean
“exactly one.” Should we introduce a third quantifier with this meaning? There is
nothing wrong with doing so, but it’s important to realize that this meaning can be
captured with the symbols already defined, just as the exclusive or can be defined or
written in terms of the other connectives.

There are several different-looking but equivalent ways to say that there’s a unique
object satisfying a certain condition. All these versions use the equality symbol; in fact,
the desired meaning cannot be captured without it. For example, one way to express
uniqueness is to say “There’s an object that satisfies the condition and that equals every
object that satisfies the same condition.” Another way is “There’s an object that satisfies
the condition, and there are not two different ones satisfying it.”” A third way, closely
related to the previous one, is “There’s an object that satisfies the condition, and if any
two objects satisfy it, they must be equal.” Finally, a very concise way is “There’s an
object such that satisfying the condition is equivalent to being that object.” Let’s state
the content of this paragraph more formally.

Theorem 3.4: The following four statements are equivalent, for any statement
P(x) and any mathematical variables x and y.
(@) 3x (PX)AVy (P() 2 x=y))
(b) IxPE)A~3x,y (PX)APG)Ax #y)
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(c) IxP(x) AVx,y (P(x) AP(y) 2 x=y)
(d) IxVy (PO) —y=x)

Proof: We give a relatively informal proof of this theorem that is still rigorous
enough to illustrate several of the proof methods that are introduced in the next chapter.
To prove that three or more statements are equivalent, the most common procedure is
to prove a cycle of implications. So we show that statement (a) implies statement (b),
then that (b) implies (c), that (c) implies (d), and finally that (d) implies (a).

(2) implies (b): Assume that statement (a) is true. Since there exists an x satisfying
the statement after the first quantifier, let’s say (for “definiteness™) that k is an object
satisfying it. Then P(k) is true; this implies that the first conjunct of statement (b) holds.
Also, for any x and y, if P(x) and P(y) both hold, then we know that x = kand y=*k. By
transitivity, this implies x = y. So there cannot be two different objects satisfying P, and
that is what the second conjunct of (b) says.

(b) implies (¢): See Exercise 1.

(c) implies (d): Assume statement (c) is true. Since Jx P(x) holds, let’s say that &
is an object satisfying P(k). We are done if we can show that, for this &, Vy (P(y) <«
y=k). Consider any y. If y = k, then P( ) holds, since we know P(k). Conversely, if P(y)
holds, then we have both P(k) and P(y), and so by the second part of statement ©),y=k
So we have established that P(y) «* y = k, and since this is for any y, we are done.

(d) implies (a): See Exercise 1. ®

Notation: For any statement P and any mathematical variable x, we write 3!x P,
read “There is a unique x such that P,” to stand for any one of the equivalent statements
of Theorem 3.4.

It is important to keep in mind that this notation, like the restricted-quantifier
notation defined in Section 3.3, is just an abbreviation for a longer form. In particular,
when you want to prove that there is a unique object satisfying some condition, you
must prove one of the forms listed in Theorem 3.4. Form (c) tends to be the easiest to
work with.

Proof Preview 6

Theorem: If a and b are real numbers with a # 0, then the equation ax + b =0 has
a unique solution.

Proof: Assume that g and b are real numbers and a # 0. We must show that the
equation ax + b = 0 has a unique solution. /[We work with form (c) as given in Theorem
3.4. Think of P(x) as the equation ax + b = 0.] First we must prove existence—that there
is at least one solution. Let x = -b/a. [Note that we do need the condition that a = 0.]
A little elementary algebra makes it clear that this value satisfies the equation. Now we
must prove uniqueness—that if there are two solutions, they must be equal. So assume
that x and y are both solutions. But if ax + b =0 and ay + b =0, then ax + b=ay+b,
by the transitive property of equality. Subtracting b from both sides yields ax = ay, and
then dividing both sides by a gives x = y. This completes the proof. ®
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Uniqueness plays an important role with respect to definitions in mathematics.
Normally, it makes no sense to define something in a permanent way unless we know
the object being defined is unique.

Example 1: To illustrate this, suppose we know that for every real number x, there
is a larger number. It would be silly to write a definition that says, “Given x, let y be the
number that is larger than x,” because there are many such numbers. It would make
more sense to say “Given x, let y be some number that is larger than x.” This is fine as
a temporary definition within a proof; in Chapter 4 we call this type of naming
existential specification. But it’s not appropriate as a permanent definition.

On the other hand, suppose we know that for every real number x, there is a unique
number y such that x +y = 0. (Theorem A-3 in Appendix 2 proves this.) Then it makes
sense to have a permanent definition saying “Given x, let -x be the number such that
x + (-x) = 0.” Note that having the variable x appear in the notation -x conveys the fact
that this number depends on x.

Exercises 3.4

(1) (a) Prove the (b) implies (c) part of Theorem 3.4.
(b) Prove the (d) implies (a) part of Theorem 3.4.

(2) Write symbolic statements that say:
(a) There are at least two objects such that P(x).
(b) There are at least three objects such that P(x).
*(c) There are at least n objects such that P(x). Here, n is any unspecified
positive integer. Since you don’t know its value, you need to use at least one “...” in
your answer.

(3) Write symbolic statements that say:
(a) There are exactly two objects such that P(x).
(b) There are exactly three objects such that P(x).
*(c) There are exactly » objects such that P(x) (see the comments for Exercise

2(c)).

*(4) Using the method of Exercise 2, do you think it’s possible to write a single
symbolic statement that says that there are an infinite number of objects such that P(x)?

(5) Redo Exercise 5 of Section 3.3 replacing every 3 with 3!

(6) Redo Exercise 6 of Section 3.3 replacing every 3 with 3!

(7) Translate each of the following into symbolic form, using the instructions for
Exercise 7 of Section 3.2. You can use the abbreviation 3!; in fact you should use this

quantifier (as opposed to 3) whenever you think it’s the intended meaning of the
statement.
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(a) Everybody has a father and a mother.
(b) Not everybody has a sister.
(c) Nobody has more than two grandmothers.
(d) Some people are only children.
(¢) Some people have only one uncle.
*(f) Two people can have a common cousin without being cousins.

(8) This exercise relates to Example 5 of Section 3.1. Translate each of the
following into symbolic form, following the instructions of Exercise 7. You need to
make frequent use the predicate symbol On. For uniformity, use the variables 4, B, and
C to represent points and L, M, and N to represent lines.

(a) Lines L and M are parallel (that is, they have no point in common).

(b) Any two distinct lines meet in at most one point.

(c) Given any two distinct points, there’s a unique line that they’re both on.

(d) Iflines L and M are parallel, then any line that is parallel to L (except for
M) is also parallel to M.

(¢) Pythagoras’s theorem (use the symbols for angle and distance referred to
in Section 3.1).

(f) Given any line and any point not on that line, there’s a unique line through
that point that is parallel to the given line. (This is one version of the famous Parallel
Postulate of plane geometry.)

(g) Points 4, B, and C are collinear, and B is between 4 and C.

(h) C is the midpoint of the line segment 4B.

(9) (a) Which of the equality axioms remain true if the symbol = is replaced
throughout with the symbol < (and all variables are assumed to represent real numbers)?
(b) Repeat part (a) using the symbol <.

(10) Which of the equality axioms remain true if all the variables are assumed to
represent triangles, and the symbol = is replaced by the words “is similar to.” Recall that
two triangles are called similar if they have the same angles.

(11) Prove:
(a) If x and y are real numbers, there is a unique number z such that z - x =
y-2z
*(b) If x and y are unequal real numbers, there is a unique number z such that
|z - x| = |z - yl.
*(c) If m and n are unequal odd integers, there is a unique integer & such that
|k - m|=|k-n|.
In parts (b) and (c), proving uniqueness requires extra care because of the absolute
value signs. A picture might help you to see what’s going on.

(12) Prove the following. You need to use some standard results from first-year
calculus. You also need to analyze the quantifier structure of the statement you are
proving.
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(a) Every graph of the form y = ax’ + bx + ¢, with a > 0, has a unique
minimum point.

(b) Every graph of the form y = ax® + bx” + cx + d, with a # 0, has a unique
point of inflection.

Suggestions for Further Reading: The same references that were suggested at
the end of Chapter 2 apply to this chapter as well.



Chapter 4

Mathematical Proofs

4.1 Different Types of Proofs

Now that we have looked at the basics of propositional and quantifier logic, we are
ready to study mathematical proofs in depth. Recall, from Section 1.2, that the primary
means for establishing new results in mathematics is called the axiomatic method.
Certain statements are taken as axioms; this means that they are accepted without proof.
A statement may be included as an axiom because it is obviously true and quite simple
or (in more specialized studies) because one or more mathematicians think it may have
interesting consequences.

In this book we do not use any specialized axioms. Rather, we confine ourselves
to standard, “obviously true” ones, that is, axioms almost all mathematicians and you
would agree are correct. Axioms fall into two categories. Those based on logic are
called logical axioms. Axioms based on properties of a particular type of mathematical
object (integers, real numbers, sets, and so on) rather than on logic are called proper
axioms; in Euclid’s day they were called postulates.

Recall also that logical deduction is the only acceptable way to prove new things
in mathematics. Traditionally, mathematicians have not spelled out exactly what types
of reasoning should be allowed in proofs. It was generally assumed that everyone doing
mathematics would have a feel for this that would be consistent with everyone else’s.
But in the past only a very small percentage of the population came into contact with
advanced mathematics. In today’s technological society, it’s considered valuable to
make mathematics comprehensible to a wider audience than ever before. Furthermore,
for various kinds of theoretical studies, including those involving the use of computers
to do mathematics, it’s important to have an exact definition of what constitutes a proof.

Accordingly, this book not only presents a set of axioms but also explains
aumerous rules of inference that are commonly used in mathematics. A rule of
inference is a precise rule that describes how a new statement may be asserted in a
proof on the basis of its relationship to previous statements in the proof. Usually, when
mathematicians refer to a proof method, they mean a rule of inference.

Example 1: Here is a rule of inference that we call the conjunction rule: if two
statements P and Q appear as separate steps in a proof, then it’s allowable to conclude

72
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the single statement P A Q in the proof. This is a particularly simple and obvious rule
of inference, but many of the ones we introduce are not much more complex than this.

Formal Proofs

Definition: An axiom system consists of two parts: a list of statements that are
to be considered axioms, and a list of rules of inference.

The lists mentioned in this definition may be finite or infinite. But in either case,
the axioms and rules of inference must be clearly and unambiguously defined, so that
it’s always possible to determine whether any given statement is an axiom or follows
from certain other statements by a rule of inference.

In the next three definitions, we assume that we have a particular axiom system in
mind.

Definition: A formal proof is a finite sequence of statements in which every
statement (or step) is either (1) an axiom, (2) a previously proven statement, (3) a
definition, or (4) the result of applying a rule of inference to previous steps in the
proof.

Definition: A theorem is a statement that can be formally proved. That is, it’s a
statement for which there’s a formal proof whose last step is that statement.

Remarks: (1) There are several other words with more or less the same meaning.
A relatively simple theorem may be called a proposition. (This usage of this word is
clearly quite different from the meaning we defined for it in Chapter 2.) A theorem that
is not considered very important on its own but is useful for proving a more important
result is usually called a lemma. And a theorem that is easily proved from another
theorem is usually called a corollary to the other theorem. There are no hard-and-fast
rules for which of these words to apply to a given result. Some important results in
mathematics have been labeled propositions or lemmas, perhaps because their authors
were on the modest side.

(2) Sometimes it is appropriate to begin a proof with one or more assumptions
(also called hypotheses or premises or givens. This usage of the word “hypotheses”
is very different from its usage in the sciences, as described in Chapter 1). It is important
to understand the distinction between an axiom and an assumption. An axiom is a
statement that is agreed on and available for use in proofs permanently, at least within
a particular subject. An assumption is a statement that is available for use only in the
proof being attempted. Assumptions were made in several of the proof previews in
Chapters 2 and 3, in which the goal was to prove an implication. In this chapter, we see
that there are only a handful of situations in which it’s legitimate to make assumptions
in proofs. In fact, proving implications is essentially the only situation that justifies
assumptions in mathematical proofs. It is extremely important to learn when it is
appropriate to use the word “assume” and when it is not.
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Example 2: In Section 2.3, whenever we verified that an argument was valid, we
were essentially doing proofs from premises in an axiom system. This axiom system is
very simple, having just one rule of inference: you may assert any statement that is a
propositional consequence of the previous statements in the proof. Technically, this
axiom system has no axioms, but practically speaking all tautologies are axioms, since
every tautology is a propositional consequence of any set of statements.

Remarks: (1) Our definition of a formal proof allows four types of steps. Two
of those—previously proven statements and definitions—are never needed to prove
anything. Quoting a previously proven theorem in a proof just saves the trouble of
reproving it, so while it can be a substantial time-saver, it never allows you to prove
anything that you couldn’t prove without quoting it. Unless specifically disallowed
(which could occur on test or homework problems), it’s acceptable to save time in this
way when doing proofs in mathematics.

The role of definitions is more subtle, but a definition just introduces a shorthand
or abbreviated way of saying something. So definitions also save time and can be very
enlightening, but they don’t allow you to prove anything you couldn’t prove without
them. You can use two sorts of definitions in proofs. You can make your own
definitions, which create abbreviations (temporary or permanent) for your own
convenience. But you can also quote any definition that has been given (for example,
in whatever text you are using), as if it were an axiom. So if we wanted to give a
bare-bones definition of what a formal proof is, we could have limited the possibilities
to parts 1 and 4 of the definition.

(2) It is important to understand the difference between an axiom and a rule of
inference. An axiom is a single statement that we agree to accept without proof and
therefore may be asserted at any step in a proof. A rule of inference is never a single
statement; rather, it describes some procedure for going from old statements to new
ones. However, in the less formal proofs that mathematicians normally write, this
distinction often gets blurred, as we soon see.

Except for very specialized and unusual systems, rules of inference are always
based on logic. The ones in this book are all based on logic and, like our axioms, are
quite standard.

A General-Purpose Axiom System for Mathematics

Appendix 1 consists of a detailed axiom system that we refer to throughout this book.
The first part of it (all the rules of inference and groups I, II, and III of axioms) is based
on logic and is logically complete and sound, meaning that its power to prove
statements corresponds exactly to logical consequence. The rest of the axiom system
consists of the generally accepted axioms about sets, the real numbers, and the natural
numbers. Taken as a whole, our axiom system is powerful enough to derive all currently
accepted theorems of mathematics, even in the most advanced subjects.

You might be surprised that it’s possible to write an axiom system that
encompasses all of mathematics but that is only three or four pages long. In fact, the
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axioms for logic and set theory alone are sufficient for the development of all of
mathematics. So if I wanted to be very economical, I could have omitted the entire
sections of real number axioms and natural number axioms, and Appendix 1 would still
encompass all of mathematics. These extra axioms have been included to make the
system easier to use, since it is rather difficult to develop the theory of these number
systems from logic and set theory alone.

You might also wonder whether this system is at all standard or if it’s just a
personal creation of one author. As an experiment, you might ask your favorite
mathematics professor what axioms she uses in her work. Her response will probably
be a smile or a puzzled expression, with words to the effect, “I don’t use axioms when
I do mathematics. I just use intuition and deductive reasoning, plus a few well-known
principles.” This type of response is probably honest, but don’t let it mislead you. By
the time someone becomes a professional mathematician, she has had so much
experience with the usual axioms and rules of inference of mathematics that they have
become second nature to her. Even if she has never had a course like this one, she is just
about as comfortable using the principles discussed in this book as most people are
driving a car or reciting the alphabet. Furthermore, just as these basic skills become
unconscious for all of us, an experienced mathematician may not even be aware that she
uses a particular set of principles that has been subtly taught to her and is quite
universal. But if you were to go beyond that first response and ask her to think in detail
about how she does proofs, it would almost certainly turn out that she uses a
combination of principles that are exactly equivalent to the list presented here.

Informal Proofs

One major reason why this book discusses formal proofs is to help you understand that
there is nothing mysterious or magical about what constitutes a proof in mathematics.
It may take a great deal of ingenuity to find a formal proof of a given statement, but
once one is produced and written down, there would normally not be a controversy
about whether it’s correct. Any reasonable person who is willing to be very careful and
take enough time ought to be able to check a formal proof for correctness. Better yet,
computer programs can be written to check them. When mathematics is done formally,
it becomes a sort of a game, with exact rules like chess or tic-tac-toe. However, although
the rules of a game like chess are arbitrary and so must be leamed specifically, the rules
of mathematics are directly based on logic and common sense, so that it should be a
natural process to become fluent with them.

Now here comes the catch. In spite of the order and precision that could be brought
to mathematics by sticking to formal proofs, this type of proof is almost never used by
mathematicians. If you randomly went through a dozen mathematics books, you would
probably not find a single formal proof. We’ll soon see some formal proofs, and you’ll
easily see why they are avoided. They are often extremely long and tedious to write and
even worse to read. A complete formal proof usually consists of pages of symbols, even
if it is based on just one or two simple ideas.

So if mathematicians don’t write formal proofs, what do they write? Naturally, we
may say that they write informal proofs. Unfortunately, it’s not possible to say exactly
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what is meant by an informal proof. Furthermore, it’s inaccurate to think of formal
proofs and informal proofs as two, clearly separate categories. The true situation is more
like a whole spectrum. On one extreme are strictly formal proofs, On the other extreme
are completely informal proofs. Informal proofs are not based on any specific axiom
system, generally use English more than mathematical notation, skip and/or lump
together many steps, and base most of their logical assertions on commonsense
reasoning. They often are laced with words like “obviously,” “clearly,” “it is easily seen
that ... ,” and in the case of one well-known mathematician, “it is intuitively obvious to
the most casual observer that ... .”

Informal proofs are much easier to write and read than formal ones, and a
well-written informal proof conveys information better than any formal one can. The
problem with completely informal proofs, especially when used by less experienced
proof writers, is that they open the door to sloppy thinking and errors.

To make all this clearer, here is a list of some of the ways in which most of the
proofs written by mathematicians do not fit the definition of a formal proof:

(1) Use of English: Normally, when an axiom system is precisely defined, the
axioms and rules of inference are stated in symbols (that is, mathematical and logical
notation). It would then follow that a formal proof in that system would consist of
symbolic statements, not English ones. But most mathematics proofs flow better if there
are words as well as symbols, and so most mathematicians use a liberal mixture of
words and symbols in their proofs. As long as these words strictly correspond to the
axioms and valid logical principles, the use of English in a proof does not make the
proof informal. But often, words are used to gloss over gaps in a proof, and in that case
the proof must be considered informal.

(2) Lack of an Axiom System: We have already mentioned that most mathema-
ticians do not consciously have an axiom system in mind when they write proofs; but
unconsciously, almost all of them do follow a system that is equivalent to the one given
in Appendix 1. However, a mathematician may occasionally write a proof that is not
based, even unconsciously, on a clear-cut list of axioms. Such a proof would have to be
called informal. On the other hand, many mathematicians would say that a nonaxiomatic
proof cannot be a correct mathematical proof.

(3) Skipping Steps: Almost all mathematicians simply skip whatever steps they
deem to be obvious. This is acceptable if the skipped steps really are obvious to
whomever reads the proof. But this gets tricky: when you write a proof, how do you
know who will be reading it and what will be obvious to whom? Something that would
be obvious to most professional mathematicians would not necessarily be obvious to
others. In practice, proofs are written differently for different audiences.

How should you handle this subtle point? Under what circumstances and to what
extent should you leave out obvious steps? There is no pat answer to this question. Your
instructor and the remainder of this text will constantly try to give you a feel for this. In
the meantime, here is a good rule of thumb:
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I¥" Do not omit any steps in a proof unless you can see clearly how to Sfillin
all the gaps completely. Nothing gets you into trouble more surely than skipping steps
and calling them obvious, without knowing precisely how to carry out all the omitted
steps.

(4) Combining Steps: This is a variant of skipping steps. Mathematicians often
lump several easy steps into a single sentence, glossing over them rather than leaving
them out entirely. The same guidelines that were described for skipping steps also apply
to this practice.

(5) Reverse Proofs: This is a fairly common practice among mathematicians and
one that can confuse the inexperienced reader. Technically speaking, when you prove
a statement in mathematics, the statement you are proving should be the last step in the
proof. That is, you start with things you are given (axioms and/or assumptions) and try
to get to what you want. But sometimes the easiest way to figure out how to prove
something is to do it in reverse, starting with what you want to prove, then looking for
some statement that implies what you want, then looking for some statement that
implies that statement, and finally reaching a known statement. A correct reverse proof
can always be turned into a formal proof by writing the steps in the standard, forward
order. But often a mathematician decides that a proof reads better in reverse and so
keeps the final version that way. There is no harm in this informality if done properly.
But whenever you do a proof in reverse, make sure it works forward; otherwise, you’re
probably proving the converse of what you should be proving.

This technique is discussed further in Section 4.6 under the heading “Reverse
Reasoning,” and we will see many examples of this important idea.

Good Proofs

How formal or informal should your proofs be? There is no pat answer to this. The
dangers of both extremes have already been pointed out. While you are learning to write
proofs, it is probably better to play it safe by keeping your proofs relatively complete.
As you start to gain confidence, you can start to write more informally and skip a bit
more. You should feel free to ask for guidance from your instructor and other
experienced mathematicians regarding these issues, since it’s quite hard to learn good
proof writing without frequent feedback.

Here’s another rule of thumb: A4 good proof should be a clearly written outline or
summary of a formal proof. This means that when you write a proof, each statement you
write (especially if it’s an English sentence) should describe or indicate one or more
steps that you would include in a formal proof if you were writing a formal proof. You
can’t do this unless you see how the formal proof should go. Once you’ve done that, you
need to outline the formal proof in such a way that any reasonably intelligent reader,
including yourself, should be able to understand the outline well enough to reconstruct
the formal proof from it. This outlining process can require considerable thought and is
what is meant by style in mathematics.
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We have already encountered two very different styles of proofs. In the “Alternate
Solutions™ to Example 1 of Section 2.3, formal proofs were given for parts (a) and (c).
For contrast, a less formal proof of part (c) was also included. All the proof previews in
Chapters 2 and 3 are also written in good, nonformal style, as are the great majority of
proofs from this point on. Occasionally we give a formal proof in the text, and there are
several of them in Appendix 2. When you encounter these formal proofs, you should
find it easy to understand their main advantage (that they encourage clear, correct step-
by-step thinking) and their main disadvantage (that they are unwieldy, both to write and
to read).

We occasionally use the term semiformal to describe a proof that directly parallels
and summarizes a particular formal proof.

4.2 The Use of Propositional Logic in Proofs

Example 2 of Section 4.1 explained that the notion of propositional consequence
introduced in Section 2.3 provides the basis for an important rule of inference. In fact,
this one rule of inference is completely general with respect to propositional logic, in the
sense that it includes every valid proof method based on propositional logic. Therefore,
we discuss this rule of inference first and view it as the basis for all the material in this
section.

Rule of Inference: Propositional Consequence

In a proof, you may assert any statement that is a propositional
consequence of previous steps in the proof,

We sometimes shorten “propositional consequence” to “prop. cons.” or simply “PC.”
Equivalently, we often just say that a step in a proof follows from previous steps “by
propositional logic.”

Example 1: Suppose we are talking about a real number x. We know (from axiom
V-15) that either x > 0, x = 0, or x < 0. Suppose we also know, somehow, that x is
nonzero. Then PC allows us to conclude that x > 0 or x < 0. This use of PC is based on
the tautology [(P V Q VR) A~ Q] — (P V R). This exact tautology does not appear in
Appendix 3, but it is quite close to tautology 11. At any rate, you should try to reach a
point where you don’t need to refer to Appendix 3 very often to check conclusions of
this sort, because your own feel for logic makes it unnecessary.
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Example 2: It is a theorem of calculus that if a function is differentiable, it is
continuous. Suppose that we know this result, and we want to assert its contrapositive
in a proof; that is, if a function is not continuous, then it is not differentiable. The rule
PC allows us to do this, using the simple tautology (P = Q) <> (~Q = ~P).

For some more substantial examples of proofs based on propositional consequence,
refer back to the examples and proof previews in Section 2.3.

As we mentioned in the previous section, having the rule of inference PC
essentially makes all tautologies axioms. We now make this explicit.

All tautologies are axioms.

Note that a tautology is, by definition, always true and it’s also straightforward to
determine whether a given statement is a tautology. These are ideal characteristics of
axioms.

Example 3: Suppose that we are trying to prove something about a real number
x. If we want to, we can assert the statement that either x = 0 or x # 0, since this is of the
form P V ~ P (tautology 1, the law of the excluded middle). It might seem pointless to
assert this disjunction, but this step might be used to set up a proof by cases, which
could substantially simplify the proof.

On the basis of what we said at the beginning of this section—that propositional
consequence includes all valid proof methods based on propositional logic—we could
technically end this section at this point. However, PC is too general to be very
convenient in most situations. Instead, mathematicians commonly use at least a half
dozen more specific rules of inference. So let’s now examine some of the most
important of these so-called derived rules of inference.

Rule of Inference: Modus Ponens

If you have a step P and another step of the form P — Q, you may then
conclude the statement Q.

This rule of inference can be diagrammed (in the style of Section 2.3) as follows:
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P—-Q
Q

Despite the Latin name (which means “method of affirming”), this is a very simple
rule of inference. Hopefully, you can see that modus ponens is logically correct: if you
know P and also that P implies Q, then Q must follow. This is more or less the definition
of implication.

A bit more formally, it is tautology 9 that justifies modus ponens. Exercise 8 asks
you to derive modus ponens from propositional consequence.

Example 4: One important theorem of calculus is that if a function is
differentiable, it must be continuous. Another basic result is the derivative formula for
polynomials, which guarantees that polynomial functions are differentiable. Applying
modus ponens to these steps yields that any given polynomial function, such as
3x? - 6x + 2, must be continuous.

Starting with the next example, we occasionally illustrate a method of proof by
referring to a proof of a theorem in Appendix 2 at the end of this book. Even though we
have not discussed Appendix 2, you need not be intimidated by these references,
because the proofs in Appendix 2 are based on the standard properties of the real
number system, which are quite familiar to you from high school algebra.

Example 5: Every proof in Appendix 2 contains uses of modus ponens. A typical
instance, although it’s not specifically mentioned, occurs in the proof of Theorem A-7.
In that proof, we have the step z # 0, since it’s an assumption in the proof. We also have,
from axiom V-11, the implication z # 0 — zz™' = 1. Modus ponens applied to these two
statements yields the step zz™' = 1.

Example 6: Let’s redo Example 1(a) of Section 2.3, using a formal proof from
hypotheses, with tautologies as our only axioms and modus ponens as our only rule of
inference:

(1) P—Q Premise

2 ~R—~Q Premise

3) ~R Premise

4 ~Q Modus ponens applied to steps 3 and 2
() P>Q—(~Q—~P)  Tautology

©6) ~Q—-~P Modus ponens applied to steps 1 and 5

7 ~P Modus ponens applied to steps 4 and 6
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Rule of Inference: Conditional Proof

If you can produce a proof of Q from the assumption P, you may
conclude the single statement P — Q (without considering P an
assumption of the proof'!).

We have been using conditional proof, without calling it that, ever since our first proof
preview in Chapter 2. As we mentioned then, this is by far the most common and natural
way to prove implications: to prove any statement of the form P — Q, start by assuming
P and try to prove Q. If you succeed, you’ve also succeeded in proving the conditional.

Even though conditional proof is derivable from propositional consequence, it is
so important that we have included it separately in our axiom system. Conditional proofs
are often referred to as direct proofs of implications. The diagram for conditional proof
looks like this:

Assume P
[Some correct intermediate steps]

Q

P—Q

Remarks: (1) Technically speaking, conditional proof is not a rule of inference
as we have defined it. A rule of inference is supposed to say that if you have certain
steps in a proof, you can conclude some statement. Conditional proof says that if you
can produce a certain proof, you can conclude some statement. This may sound like a
minor distinction, but you should be aware that conditional proof has a very different
flavor from normal rules of inference.

(2) Many students initially confuse modus ponens with conditional proof. The best
way to keep them apart in your mind is to realize that they are essentially opposites.
Modus ponens gives you a way of using an implication: it says that if you know P — Q,
then you can go from P to Q. Conditional proof gives you a way of proving an
implication: it says if you can show how to go from P to Q, you can conclude P — Q.

(3) When writing a conditional proof, you need to be clear about what
assumption(s) are in effect at each point in your proof. If you decide, in the middle of
a proof, to prove an implication by conditional proof, you have to do a certain proof
from an assumption, which may be regarded as a subproof of the main proof. As long
as you’re within the subproof, there’s an assumption being made, but when the subproof
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is finished, you assert the implication and go back to the main proof without the
assumption. This is not particularly confusing as long as there’s only one use of
conditional proof at a time in the proof, but it gets more involved if there are nested uses
of conditional proof, which can occur.

Example 7: Here is an example of nested uses of conditional proof. Suppose we
want to prove that if a certain statement P holds, then some set 4 is a subset of some set
B. So we would begin by assuming P, since P is the hypothesis of the implication we
are trying to prove. From this assumption, we then need to prove that 4 ¢ B. But to
prove this, we need to show that any member of 4 must also be a member of B.
Therefore, the second line of our proof would probably be “Assume x is any member
of A.” This begins another conditional proof within the outer one. The goal of the whole
proof is then to prove that x is a member of B, using both assumptions.

Rule of Inference: Indirect Proof

If you can produce a proof of any contradiction from the assumption
~ P, you may conclude P.

The diagram for this rule of inference is

Assume ~P
[Some correct intermediate steps]
Any contradiction

~ P

Indirect proof is sometimes called proof by contradiction or reductio ad absurdum
(“reduction to the impossible”).

Remarks: (1) Section 4.1 cautioned you against overusing the word “assume”
in proofs. Conditional proof and indirect proof are among the few proof methods in
mathematics in which it’s appropriate to assume something. We see below that indirect
proof is really an offshoot of conditional proof, and it can be argued that the only
situations in mathematics in which assumptions are permitted are those using
conditional proof and its offshoots.
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(2) You can try to prove any statement by indirect proof, no matter what its logical
form is. But indirect proof is a particularly good proof method to try when the statement
you’re attempting to prove is a negation. If you want to prove ~ P by indirect proof, you
assume P and try to derive a contradiction.

(3) The most common form of contradiction is a statement of the form Q A ~ Q,
but any contradiction will do. The contradiction derived need not involve the original
statement P. On the other hand, you may find that from the assumption of ~ P, you are
able to prove P. This constitutes a successful indirect proof of P, because the next step
can be the contradiction P A ~ P.

Example 8: Theorem A-8 in Appendix 2 is a typical example of an indirect proof.
We want to prove the statement ~ (x < y A y < x), which is in the form of a negation.
This is the ideal type of statement to prove indirectly. So we assume x <y Ay <x. Using
the transitivity of < (axiom V-14) plus modus ponens, this yields x < x, which produces
a contradiction in conjunction with the axiom x ¢ x (V-13).

Example 9: Indirect proof is the most efficient way to prove that the sum of a
rational number and an irrational number must be irrational. (Recall that a rational
number is one that can be written as a fraction of integers.) Here is a proof:

Assume the claim is false. Then we have a + b = ¢, for some numbers a, b, and c,
with a and c rational and b irrational. Simply subtract @ from both sides to obtain
b = ¢ - a. Since the difference of two fractions can always be written as a single
fraction, this makes b rational, a contradiction.

We have been emphasizing that almost all the rules of inference in this section are
derivable from propositional consequence, without going into much detail. Here is a
proof of a similar fact.

Theorem 4.1: The inference rule of indirect proof is derivable from the rules in
our axiom system, namely propositional consequence and conditional proof. That is,
anything that can be proved using indirect proof (and perhaps the other two rules as
well) can be proved with just those other two rules.

Proof: Suppose we have proved statement P by indirect proof. That means we
have a proof that begins with the step “Assume ~ P” and, after a certain number of
correct steps, reaches a contradiction. Then simply take this proof and add two more
steps:

Therefore, ~P — some contradiction (conditional proof).

Therefore, P (from the previous step, by propositional logic). ®

Again, it doesn’t matter what form of contradiction is obtained in Theorem 4.1; the
statements ~ P — some contradiction and P must be propositionally equivalent. One
way of interpreting this theorem is that indirect proof is a special type or offshoot of
conditional proof.
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Rule of Inference: Proof by Cases

If you have a step of the form Q V R and the two implications Q — P
and R — P, you may conclude the statement P.

In practice, the usual format of a proof by cases is as follows: first you establish a
disjunction that you think divides the problem up into cases that are easier to handle
than the whole problem at once. Often this disjunction is very simple, perhaps a
tautology or other axiom, and is not explicitly stated. Then you must show that each
disjunct, or case, implies the statement that is to be proved; this is normally done by
conditional proof. To keep the reader clear about what’s going on, you might say “Case
1: Assume Q” and derive P, and then say “Case 2: Assume R” and derive P from that
assumption. This rule of inference can be diagrammed as follows:

QVR (Proved somehow)
Case 1: Assume Q

[Some correct intermediate steps]

P (End of Case 1)
Case 2: Assume R

[Some correct intermediate steps]

P (End of Case 2)

A

Specifically, this is the diagram for proof by cases with fwo cases. It’s fine to have
more than two cases. For example, if you want to use a disjunction Q V R V S to prove
P by cases, you have to show that each of the three cases (Q, R, and S) implies P.

Derivation of proof by cases: Proof by cases is a special case of the rule PC,
because P is a propositional consequence of the three statements Q V R, Q — P, and
R — P. To see this without constructing a truth table, notice that the two implications
Q — P and R — P are together equivalent to the single implication (Q V R) — P, by
tautology 26. Using the last implication, we can assert P by modus ponens. A similar
derivation can be used to justify proofs by three or more cases (see Exercise 6).

A proof by cases using tautology 26 and propositional consequence was done in
Proof Preview 3 in Section 2.3 (see Exercise 7). Proofs by cases in which the cases
involve the sign of a real number are extremely common. Here is another example.
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Example 10: Theorem A-11 of Appendix 2 shows a very common type of proof
by cases. The goal is to prove the inequality x* > 0, for an arbitrary real number x. It is
not easy to do this all at once. But if we look separately at the three cases x =0, x > 0,
and x < 0, it is pretty easy to show the desired conclusion holds in each case. (The
disjunction of the three cases, which is a necessary part of the proof, is based on axiom
V-15.)

Example 11: Let’s consider a real-life example. Imagine that your girlfriend has
told you that she doesn’t want to see you tonight because she needs to stay home and
study all evening. You want to believe but you’re suspicious, so you’re tempted to
phone. Suppose you reason: “Well, either she’s home or she’s not. If she is, I’ll be better
off if I call because I'll be reassured. If she’s not, I'll also be better off if I call because
at least I'll know the score. So I should call.” You are using proof by cases. The
disjunction being used to define the two cases is an instance of the law of the excluded
middle, Q V ~ Q, with Q representing “She’s home.”

Rule of Inference: Biconditional Rule

If you have implications P = Q and Q — P, you may conclude the
biconditional P <+ Q.

The biconditional rule can be diagrammed

P—Q
Q—P

. PeQ

In practice, this is by far the most common way to prove a biconditional, as we did
in Proof Preview 1 in Section 2.2. A proof by this rule has two separate parts, or
directions, which should not be called “cases” since that term is best reserved for proofs
by cases. Each direction is an implication, which of course can be proved by conditional
proof.

Some mathematicians use arrows to indicate the directions in this type of proof. So
a proof of some statement P <> Q could begin “— : Assume P” and derive Q. It would
then say “+ : Assume Q” and derive P.
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Example 12: Theorem A-13 of Appendix 2 illustrates the typical use of this rule.
We want to prove a biconditional: a number is positive iff its reciprocal is positive. So
for the forward direction, we must prove x' > 0 from the assumption x > 0; for the
reverse direction, we must prove x > 0 from the assumption x™' > 0.

In simple proofs of this type, it may be obvious that the two directions of the proof
are exactly the reverse of each other, step by step. In this situation, it’s considered fine
to show just one direction and to mention that the reverse direction can be proved by
exactly the reverse sequence of steps. What this means is that you’ve established a
sequence of iffs between the two statements whose biconditional you are trying to
prove. We use this shortcut frequently, notably in Section 5.2.

Before we state our next rule of inference, we need some explanation and a bit of
notation. Suppose that in a proof we have a step of the form P <> Q. This says that P and
Q are equivalent, which ought to mean that P and Q are inferchangeable. So suppose
we also have some long statement that contains P as a substatement, such as one of the
form (R = (~ SAP)) V (P — T). Should we be allowed to conclude the same statement
with one or both of the occurrences of P replaced by Q? Intuitively, we should be. Can
this conclusion be justified by propositional consequence? Yes, it certainly can. But note
that to do so would require a 32-line truth table! The next rule of inference lets you draw
such conclusions without having to construct a truth table.

Notation: The notation S[P] denotes a statement S that contains some statement
P as a substatement (which could be the whole statement S).

The notation S[P/Q] denotes a statement that results from S[P] by replacing one
or more of the occurrences of the statement P within S[P] by the statement Q.

Rule of Inference: Substitution

From statements P <> Q and S[P], you may conclude S[P/Q] as long
as no free variable of P or Q becomes quantified in S[P] or S{P/Q].

The diagram for substitution is

P Q
S[P]

- S[P/Q]




4.2 The Use of Propositional Logic in Proofs 87

Remarks: (1) The restriction on quantifiers in the use of substitution is meant
to guarantee that S[P] is built up from P using connectives only, not quantifiers (or at
least not quantifiers that matter). In practice, it is not necessary to worry about this
restriction very often. For a specific example, see Exercise 18 of Section 4.3.

(2) There is some deliberate ambiguity in the notation introduced here. Even when
S, P, and Q are known, there may be more than one possibility for what statement
S[P/Q] represents, for if P occurs within S more than once, then there’s a choice as to
which occurrence(s) of P within S are to be replaced by Q. The example in the
paragraph before the definition of substitution illustrates this.

(3) Why is the notation S[P], rather that S(P), being used here? The reason is that
P is not a mathematical variable appearing in the statement S. It’s a substatement of S,
which is totally different. To emphasize this, it makes sense to introduce a
different-looking notation.

(4) Do not confuse substitution with the familiar principle of substitution of
equals, which says that if two numbers or other mathematical quantities are equal, then
they are interchangeable. This principle appears in our axiom system as axiom III-4. In
flavor, it is certainly very similar to substitution. The main difference between them is
what they talk about: Substitution is about the interchangeability of statements, whereas
Axiom III-4 is about the interchangeability of numbers or other mathematical objects.

As we show in Section 4.4, the principle of substitution of equals is what allows
us to do the same thing to both sides of an equation. Similarly, with the rule of inference
substitution, it becomes permissible in most situations to do the same thing to both sides
of an equivalence.

Example 13: Here is a simple example of substitution from real life. Suppose you
say, “If Harry shows up at my party, I’ll call the police.” Then your friend says, “But
Harry and your boss do everything together; if one shows up, so will the other.” Then
you say, “Well, I guess that means that if my boss shows up, I'll call the police.” You
have just used substitution, because the second part of your friend’s statement means,
“Harry will show up if and only if your boss does.”

Example 14: Suppose we know some biconditional P +> Q. Then, if we also
know P, we can use substitution to conclude Q. On the other hand, if we know ~ P, we
can conclude ~ Q. If we know a conjunction P A R, we can conclude Q A R. If we know
PVR,P —=R,R—P,orP + R, we can conclude, respectively, QVR,Q =+ R,R = Q,
or Q <> R. Of course, these conclusions also follow by propositional logic (see
Exercise 1).

We have now discussed all the important propositional rules of inference. Here are
a few more rules, all of which are pretty obvious and follow easily from the ones we
have listed so far. We won’t give derivations or examples of these because of their
simplicity.
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Rule of Inference: Conjunction

If you have, as separate steps, any two statements P and Q, you may
conclude the single statement P A Q.

This rule of inference follows trivially from propositional consequence. See Exercise
9(a) for a related and not-so-easy problem.

Rule of Inference: Modus Tollens

If you have a step of the form P = Q and also have ~ Q, you may
assert ~ P,

“Modus tollens” is Latin for “method of denying.” It is based on tautology 10, but it can
also be thought of as an offshoot of modus ponens, based on the equivalence of P —+ Q
and its contrapositive ~ Q — ~ P. Similarly, the next rule is a straightforward
contrapositive offshoot of conditional proof.

Rule of Inference: Contrapositive Conditional Proof

If you can produce a proof of ~ P from the assumption ~ Q, you may
conclude the single statement P — Q.

I We have now discussed two ways to prove an implication P — Q, but there
are at least three common ways:
(1) Direct conditional proof: Assume P, and derive Q.
(2) Contrapositive conditional proof: Assume ~ Q, and derive ~ P

(3) Indirect proof: Assume ~ (P — Q), or equivalently assume P A ~ Q, and
derive a contradiction.
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Table 4.1 Summary of propositional proof methods
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Statement Way(s) to Prove Way(s) to Use
A negation Indirectly: Assume P, and derive a Move negation sign
~P contradiction, inward.
A conjunction Conjunction rule: Prove P and also Assert P and/or Q,
PAQ prove Q. separately.

A disjunction

(1) Prove P or prove Q.

Proof by cases.

PVQ (2) Indirectly, by De Morgan’s laws:
Assume ~ P A ~ Q, and derive a

contradiction.

A conditional Three methods, listed on Page 88 . (1) Modus ponens.

P—Q (2) Modus tollens.
A biconditional | Biconditional rule: Prove P — Q and | Substitution.
P—Q prove Q — P,

In a sense, the last method is the most powerful, because it lets you begin with two
assumptions instead of one,

We conclude this section with a chart summarizing the most important
propositional proof methods (see Table 4.1). This chart shows the most natural ways to
prove and to use each type of statement (with type based on the connective). Table 4.1
is meant to help you when doing proofs, and you are urged to study it carefully. At the
same time, don’t fall into the trap of thinking that any single chart can teach you
everything there is to know about proofs in mathematics or even everything about the
proof methods based on propositional logic. There may be only a finite number of rules
of inference in common use, but there are literally an infinite number of different ways
to apply them.

Exercises 4.2

(1) Show that each of the conclusions in the first paragraph of Example 14 could
have been made using propositional consequence instead of substitution.

(2) Suppose that we have proved steps of the form P <> Q and (P AR) V (~P AS)
in a proof. State the three different conclusions that may be made from these two steps
using substitution.

(3) Redo Exercise 5 of Section 2.3 as formal proofs from hypotheses. You may use
all tautologies as axioms, and you may use all the rules of inference discussed in this
section, except propositional consequence.
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(4) For each of the following, state what seems to be the logical conclusion and
also state which rule of inference (other than propositional consequence) could be used
to reach that conclusion:

(a) To make you happy today, I'd have to be in two places at once, which is
impossible. Therefore, ... .

(b) Ifit’s Saturday, I don’t go to school. If I don’t go to school, I’'m very sad.
It’s Saturday. Therefore, ... .

(c) If the Mets win, I'll come out ahead in my bets. If the Mets don’t win, I’ll
also come out ahead in my bets. Therefore, ... .

(d) Ifa function is continuous, it’s integrable. This function is not integrable.
Therefore, ... .

(5) Turn each of the arguments in Exercise 4 into formal proofs. To do this, you
should introduce propositional variables for the atomic substatements and rewrite each
given statement symbolically, as in Section 2.1. Then write formal proofs to prove each
conclusion from the givens.

(6) Precisely state the inference rule of proof by cases with three cases, and derive
this rule from propositional consequence.

(7) Redo Proof Preview 3 (Section 2.3), explicitly using the method of proof by
cases.

(8) Derive the rule modus ponens from propositional consequence.

*(9) In the text, we have shown that all tautologies and the modus ponens rule of
inference are derivable from the propositional consequence rule. This exercise
establishes the converse result that propositional consequence is derivable from all
tautologies and modus ponens. Consider an axiom system that has modus ponens as a
rule of inference instead of propositional consequence and has all tautologies as axioms.

(a) Show that the conjunction rule of inference is derivable from this axiom
system. (You must formally prove P A Q from the two assumptions P and Q. This can
be done in very few steps, but it’s tricky to find the proof.)

(b) Using the result of part (a), whether or not you were able to show it, show
that propositional consequence is derivable from this axiom system.

Exercises 10 through 12 ask you to prove various results. Since we have not yet
discussed methods of proof involving quantifiers, do not attempt to make these proofs
rigorous or formal. For the most part, you may assume familiar results from high school
algebra about integers, equations and inequalities. However, where real numbers are
involved, you should not assume anything beyond the axioms in group V of our axiom
system, unless instructed to do so.

(10) Prove: If n is any integer, then #n* - 3n must be even.
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(11) Prove: For any real numbers x, y, and z, if x <y and y < z, thenx < z.

(12) Prove: For any positive real number x, x + 1/x > 2. It might be tempting to use
calculus to prove this, but you may not do so; use information from high school algebra
only. Hint: You might try a reverse proof, as explained in the previous section. That s,
start with the inequality you’re trying to prove and try to transform it into something that
you know to be true. But then you have to make sure you can turn this into a forward
proof. You may assume, without proof, that the square of any real number is at least 0.
By the way, is there any point in your proof where you need to know that x is positive?

The rest of the exercises in this section are of a type that occurs frequently
throughout the rest of this book. These problems ask you to “critique the following
proof,” and then give a supposed theorem and proof. To do such an exercise, you should
carefully read and consider the given proof and come to one of four conclusions:

(i) The theorem and its proof are correct (and the proof has no major omissions).

(ii) The theorem is correct; the proof has no mistakes but does omit one or more
substantial step(s). In this situation, you should supply the missing step(s) in the proof.

(iii) The theorem is true, but the proof is substantially flawed. In this situation, you
should point out the error(s) in the given proof and provide a correct proof of the
theorem.

(iv) The stated theorem is false. In this situation, you should point out the error(s)
in the given proof and, if appropriate, provide a concrete example to show that the
claimed theorem is in fact false. (Such examples are called counterexamples; see
Section 4.3.)

There may be problems of this type that you believe to be borderline between two
of the four choices, for example, between (i) and (ii). If that occurs, feel free to say so.

Critique the proofs in Exercises 13 through 17.

(13) Theorem: Ifx is any real number, then x* > x.
Proof: Assume x is any real number. We proceed by cases:
Case 1: Assume x < 0. Then x* > 0, while x < 0. Therefore, x* > x.
Case 2: Assume x > 1. Then multiply both sides of this inequality by x to obtain
x* 2 x. Since both possible cases lead to the desired conclusion, we have proved it.

(14) Theorem: For any real numbers x and y, x < y implies x* < *.
Proof: We use conditional proof. So assume that x < y. Then simply square
both sides of the inequality. This gives us the desired conclusion x* <7,

(15) Theorem: For any real number x, if x* = 0 then x = 0.

Proof: We use indirect proof. Assume the entire implication is false. By
tautology 19, that means x* = 0 and x # 0. Then we can multiply both sides of the
equation x* = 0 by 1/x. The left side becomes x*(1/x), which equals x; and the right side
becomes 0(1/x), which equals 0. Thus x = 0. This contradicts our assumption that x # 0,
and so we are done.
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(16) Theorem: For any integer n, if n is even, so is n’.

Proof: We use indirect proof. Assume # is not even; from this we must prove
that n” is not even either. To say that n is not even means that it is odd. So we have
n = 2m + 1, for some integer m. Therefore, n* = 2m + )?=4m *+ 4m + 1 =
2(2m* + 2m) + 1, which by definition is an odd number.

*(17) Theorem: For any positive integer n, if 2" - 1 is prime, then so is .
Proof: We use contrapositive conditional proof. That is, we begin by assuming

that » is not prime.

Case 1: Assume n =1, Then 2" - 1 =2' - 1 = 1, which is not prime.

Case 2: Assume n > 1. Then » must be a composite number, so #n = ab, where a and
b are both integers greater than 1. Letm =2%,S02"- 1 =2%- 1=(29" - 1=m’ - 1.
From algebra, m® - 1 is divisible by m - 1. (Specifically, a simple computation shows
thatm? - 1=(m - D(1 + m+m*+m®+ ... + m*").) Now, since @ > 1, 2° > 2, and thus
m- 1> 1. Also, since m>1and b> 1, m - 1 is certainly less than m® - 1. Therefore,
2" - 1 (which equals m”® - 1) has a factor strictly between itself and 1, and so it is not
prime. This completes the proof.

4.3 The Use of Quantifiers in Proofs

Recall that we have emphasized propositional consequence as the most important rule
of inference for propositional logic; in fact, we said it could be viewed as the only
propositional rule of inference. Why don’t we do the same thing for quantifier logic?
That is, why not have a rule of inference that says you may assert any statement that is
a logical consequence of previous steps in the proof? This question was answered in
Section 3.3. There is no simple, mechanical procedure (like truth tables) for testing
whether a given statement is a logical consequence of certain other statements.
Therefore, the abstract concept of logical consequence cannot be used to define axioms
or rules of inference.

Before proceeding to specific axioms and rules of inference, we need to state an
important convention that is standard throughout all of mathematics.

¥  Convention: Whenever an axiom or theorem contains free mathematical
variables, the statement is understood to begin with universal quantifiers for those
variables. (This convention applies to axioms and theorems only. It does not apply to
definitions or to steps within a proof.)

Axioms: De Morgan’s Laws for Quantifiers

~Vx P(x) < 2x ~P(x)
~ 3x P(x) «* Vx ~P(x)
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These important equivalences appeared earlier as Theorem 3.2, but that was in an
informal setting. Now, we more rigorously classify them as axioms. As we will soon see
(Theorem 4.2 and Exercise 15), either of them can be proved from the other, so only one
of them needs to be an axiom.

Examples showing why these quantifier laws are useful and how to use them were
also given in Chapter 3, so we won’t give more examples here. Remember that it’s
useful to be able to move negation signs through quantifiers, especially from outside to
inside, but such a move must be accompanied by changing every quantifier through
which the negation sign is moved.

De Morgan’s laws for quantifiers can be useful for indirect proofs of quantified
statements. For instance, if you want to prove a statement of the form 3x P(x), you can
assume Vx ~ P(x) and derive a contradiction. However, indirect methods are considered
a bit less attractive than the more direct methods (UG and EG) to be discussed shortly,
especially in the case of statements of the form Jx P(x).

Our next axiom is an obvious enough principle. If we know a statement is true for
all members of a certain domain (real numbers, integers, functions, sets, and so on), then
it’s true for any particular one. This is a direct consequence of what the universal
quantifier means.

Axiom: Universal Specification or US
Vx P(x) — P(t)

where the letter t here denotes any term or expression (nof necessarily
a single letter like a variable or constant) that represents an object in
the domain of the variable x.

5" Mathematicians rarely use the terminology “universal specification” and
the similar names for the next three proof methods (as well as some of the terminology
in Section 4.2). In fact, many fine mathematicians probably don’t even know some of
these terms. However, all mathematicians understand these proof methods and how to
use them extremely well. The reason we introduce this terminology is to help you keep
these proof methods straight while you are first learning about them. But it is vital that
you concentrate on the content of these methods, not the words we use to classify them!

Remarks: (1) US allows plenty of freedom in the choice of the term t. It could
be a variable, either the same one as in the quantifier or a different one. It could be a
constant. Or it could be a more complicated expression.
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(2) Technically, there is another restriction in the use of US: no free variable of
t may become bound when P(t) is formed. This situation occurs so rarely that we didn’t
mention it in the definition of US above (see Example 4).

(3) You may wonder why some principles are stated as axioms and others as rules
of inference. In some cases the distinction is less important than in others. In particular,
any axiom that is an implication can also be viewed (in combination with modus
ponens) as a rule of inference. For example, US is primarily used as a rule of inference:
if you have a step of the form Vx P(x), you may then assert P(t), where t is any ... .
Usually, if a principle can be considered either an axiom or a rule of inference, we set
it up as an axiom.

Example 1: You have been using US ever since you first studied algebra, even
if you didn’t have a name for it. For instance, consider a typical algebra formula such
as (x + y)* =x* + 2xy + )~ By the convention stated at the beginning of this section, the
variables x and y in this formula are assumed to be universally quantified. So when you
leamned this formula in high school, you learned that it was true for all numbers, and that
therefore you could substitute any expression for x and/or y. So you knew that you could
write

(3a+27=94*+12a+4
(xZ +y3)2=x4+2x2y3 +y6

(sin x + cos x)*= sin’ + 2 sin x cos x + cos’x, and so on.

Every time you make this type of substitution for a variable, you are using US (plus
modus ponens).

Example 2: Just about every proof in Appendix 2 uses US. A typical but clever
use occurs in the proof of Theorem A-1. In the uniqueness part of that proof, we get to
assume Vx (x + y = x) and Vx (x + z =x). To use these assumptions to prove that y = z,
the trick is to specify the first quantified x to be z, and the second one to be y.

Example 3: Here is a simple instance of the necessity to have t be of the same sort
as x in the use of US. Suppose we know the formula Vx (x* > 0), where x is a real
variable. Then we cannot conclude that i# > 0, where i is the imaginary unit, since i is
not a real number. In fact, i> = -1, so the conclusion would be false.

Example 4: Here is an example of why the other restriction on t (mentioned in
Remark 2) is necessary. Suppose we have proved the true statement (about real
numbers) that Vx 3y (y > x). Without the restriction we could substitute the term “y + 17
for x and derive the false conclusion Jy (y >y + 1).

Our next rule of inference is by far the most common way to prove a “For all ... ”
statement. You may well be familiar with it and know how to use it, even if you don’t
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know its name. Here’s what it says: Suppose you want to prove a statement of the form
Vx P(x). Then it is sufficient to prove the simpler statement P(x), where x is just a
variable representing an arbitrary member of the domain in question. It is important that
no assumptions are made about x except that it is a member of that domain. If you can
produce such a proof of P(x), you may conclude Vx P(x).

Rule of Inference: Universal Generalization or UG

If you can produce a proof of P(x), where x is a free variable
representing an arbitrary member of a certain domain, you may then
conclude Vx P(x).

Universal generalization can be diagrammed as follows:

[Proof with no assumptions about x]
P(x)

Vx P(x)

Remarks: (1) Although it is not required, it is helpful to let the reader know that
you are intending to use UG by saying something like “Let x be any ...” or “Let x be an
arbitrary ...” or “Let a ... x be given” at the beginning of the proof.

(2) People sometimes think that the logical way to prove that something is true for
all members of some domain is to prove it for each member individually. That works
fine if the domain happens to be finite and small but it’s impossible if the domain is
infinite. Unfortunately, most mathematical variables have infinite domains, such as the
set of all real numbers.

(3) UG is used in the vast majority of theorems in mathematics, although it is
almost never mentioned. By the convention stated at the beginning of this section, free
variables in theorems are always understood to be universally quantified. In the proofs
of such theorems, neither those quantifiers nor the use of UG are likely to be explicitly
mentioned. The practical meaning of UG is that if you want to prove a statement that
begins with one or more universal quantifiers, you can essentially ignore those
quantifiers. This is a handy thing to know!

Example 5: Recall Proof Preview 1 in Section 2.2. There is nothing in the proof
about quantifiers or UG. But the variable 7 is free, so the theorem must be about all
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integers. The proof is carried out for an arbitrary integer n, and by UG, this establishes
the result for all integers. Similarly, in Proof Preview 2 in Section 2.3, the set variables
A, B, and C are free. So this theorem is technically about all sets 4, B and C, and the
proof may be viewed as including an implicit use of UG to quantify these variables. To
be fully rigorous, Proof Preview 2 should also have dealt with the quantification of the
variable x (see Exercise 1).

Example 6: Suppose we want to prove the important theorem that every
nonnegative real number has a square root. We would probably begin the proof with the
words “Let x be an arbitrary nonnegative real number.” This tells the reader that we
intend to prove that this one unspecified x has a square root, which by UG establishes
that every such number has one.

It may seem to you that the use of UG in Example 6 is pretty similar to conditional
proof and that what’s really being proved is the implication “If x is a nonnegative real
number, then x has a square root.” Conditional proof and UG are in fact related, and
many mathematicians mix them and blur the distinction between them. They might start
the above proof with the words “Assume x > 0,” as if it were a conditional proof.

Here is the source of the relationship between conditional proof and UG: If a
mathematical variable x has some set D as its domain, then the statement Vx P(x) really
means Vx € D P(x). But in Section 3.3 we noted that Vx € D P(x) is an abbreviation for
Vx (x € D = P(x)). In other words, just about every statement that begins with a
universal quantifier also contains an implication; so when UG is used, conditional proof
is usually used with it. The only exceptions would be when the variable x can denote
any object whatsoever, so that it is not restricted to any domain.

In spite of this closeness between conditional proof and UG, they are different and
should not be confused. Conditional proof is a rule of inference that involves
implications, not quantifiers; UG is a rule of inference that is about universal quantifiers,
even though it indirectly involves implications too. Another difference is that when you
set up a conditional proof, the assumption made can be any type of statement, even a
false one. But when you set up a UG proof, the only thing you get to assume is that
some variable is a member of some domain. I usually say “Let x be a ... ,” rather than
“Assume x is a ... ,” when I start a UG proof, because I’m not really assuming anything;
I’m just specifying how I'm going to use a certain letter. But as I said above, most
mathematicians ignore this distinction, and doing so normally creates no problems.

This discussion is related to the comments made in Section 2.2 about the word
“whenever.” This word is very close to the word “if” in mathematics, but there is a
difference, namely that the word “whenever” actually combines an implication with a
universal quantifier. For instance, the words “Whenever a function is continuous, it’s
integrable” should be interpreted as meaning “every continuous function is integrable,”
which can be written “Vf(fis a continuous function — fis integrable).” To be sure, a
theorem that says “If a function is continuous, it’s integrable” should be interpreted the
same way, because of the convention stated earlier in this section. But the word “if”
conveys a universal quantifier only some of the time, whereas the word *“whenever”
always does.
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Example 7: Here is a simple example of incorrect and correct uses of UG.
Suppose that we start a proof by assuming that x > 7, and from this we prove that x > 0.
Can we now apply UG to get the step Vx (x > 0), followed by conditional proof to reach
the conclusion x > 7 — Vx (x > 0)? Definitely not! The rule UG may not be applied to
the step x > 0 because there is an assumption about x in effect at that point in the proof.
Furthermore, the conclusion obtained can’t be right, since it would be nonsense to claim
that information about one number implies an incorrect general statement about all
numbers. Instead, after the step x > 0, we can assert x > 7 — x > 0 by conditional proof
and then apply UG to reach the correct conclusion Vx (x > 7 — x > 0).

Let us now turn to proof methods involving the existential quantifier. One very
important one is based on the following idea. Suppose we know that some object exists.
In other words suppose that, in a proof, we have a step of the form 3x P(x). If we don’t
know a specific value of x that makes P(x) true, it’s convenient (and harmless) to
introduce a temporary name for some unknown object satisfying P(x).

Rule of Inference: Existential Specification or ES

If you have a step of the form 3x P(x), you may assert P(c), where ¢
is a new, temporary constant symbol.

Remarks: (1) It is important to understand the conditions required for the correct
use of this rule. The name ¢ introduced for the unknown object represents one particular
object. Therefore, it must be a constant, not a variable; it cannot be quantified. Since we
don’t know anything else about this object except that it satisfies P(x), it must be a new
symbol; that is, it may not appear earlier in the proof. Finally, this rule is meant to be a
temporary convenience; the new symbol should not appear in the final conclusion of the
proof.

To view it another way, a constant introduced by ES may be viewed as a temporary
definition. Section 3.4 pointed out that mathematicians normally make a permanent
definition only when they know that some object exists uniquely. The rule ES provides
us with a more limited course of action we can take when the uniqueness condition is
lacking.

(2) Mathematicians often seem to violate the restrictions on ES. They go from
Ax P(x) to P(x), using the same letter (apparently a variable and not a new symbol) that
appeared in the quantifier when they apply ES. However, if you carefully examine these
proofs, you see that after they apply ES in this way, they treat x as though it was a
constant, not a variable. This avoids any danger of faulty logic, but it takes some
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experience to do it this way and keep things straight. Until you are very familiar with
doing proofs, I suggest that you always use a new letter whenever you apply ES.

(3) By now you have perhaps figured out the terminology being used for these
quantifier proof methods. Specification (also called instantiation) means using a known
quantified statement to assert a statement with the quantifier removed. Generalization
means proving a quantified statement from a known unquantified statement.

Example 8: Refer to Proof Preview 1 in Section 2.2. The rigorous definition of
“n is even” is Im (n = 2m), where m also stands for an integer. So a more rigorous
version of that proof would have used ES to go from this quantified statement to the
unquantified statement # = 2m or, more correctly, n = 2c (see Exercise 2).

Many important theorems are so-called existence theorems, which means that they
say that something exists without telling you how to find it. The rule ES is the main tool
for making use of an existence theorem.

Example 9: An existence theorem that is extremely important in calculus is the
mean value theorem for derivatives. It says that if a function f'is continuous on the
closed interval [a, b] and differentiable on the open interval (a, b), then there is a
number x strictly between a and b such that f'(x) = [ f(b) - f(a)]/(b - a). Let’s see how
this might be applied in practice. First of all, the unquantified variables a, b, and fare
understood to be universally quantified. Therefore, by applying US, we can give them
any particular values we want. For instance, we could let a = 0, b = 7, and
f(x) =x*+ cos x. (Note how a function is specified by giving a defining equation for it,
rather than a numerical value.) This function is differentiable (and therefore continuous)
on the whole real line. So by modus ponens, we get 3x (0 <x < wand f'(x) = 7 - 2/7).
By taking the derivative of f(x), we obtain 3x (0 <x < 7and 2x - sinx = 7 ~ 2/7).

If you try to solve this equation for x, you quickly run out of things to do; it’s
essentially impossible to solve. (One could use Newton’s method or some other
approximation technique to compute a solution to as many decimal places as desired,
but that is not our purpose here.) So the only way to eliminate the existential quantifier
is to use ES; we can say “Let ¢ be a number such that 0 < ¢ < wand 2¢ - sinc =
7 - 2/7.” (The use of ES is usually accompanied by the word “let” in this manner.)
Then, even though we don’t know the exact value of ¢, we have a convenient temporary
symbol that denotes a solution to this equation between 0 and 7.

Example 10: Here is an incorrect use of ES. Suppose we have a step of the form
Jx P(x). Consider this proof:

(1) ZxP) [Proved somehow]
2) P(x) ES on step 1
(3) vxP(X) UG on step 2
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Of course, the mistake here is that the letter x in step 2 gets treated as a variable in
step 3, but after the use of ES it has to be treated as a constant. Note that if the above
proof were correct, it would (by conditional proof) yield an absurd conclusion: that if
there’s one object with a certain property, then all objects have that property.

Example 11: Here is another, more subtle, error to watch out for when using ES.
Suppose that we have a step of the form 3x (P(x) A Q(x)). Then we can certainly apply
ES to get P(c) A Q(c). But suppose instead that we have the step 3x P(x) A 3x Q(x). Can
we still apply ES to obtain P(c) A Q(c)? No, this is not allowed! The rule ES can only
be applied to one quantifier at a time. To eliminate the quantifiers from this latter
statement, we must break it up as follows:

(1) xPx)AIxQ(x) [Proved somehow]

(2) A P(x) From step 1

3) P(o) ES on step 2

4) FIxQ(x) From step 1

6 QB ES on step 4

(6) P(c) AQ(b) Conjunction on steps 3 and 5

Note that we can’t write Q(c) at step 5 because ¢ would not be a new constant
symbol. In fact, there is no way to prove P(c) A Q(c) from step 1, because step 1 does
not say that there is a single object that satisfies both P and Q simultaneously (even
though the same variable x is used in both conjuncts of step 1). To make this more
concrete, let P(x) be “x > 0” and let Q(x) be “x < 0.” Then step 1 of the above argument
is true in the real number system, but ¢ > 0 A ¢ < 0 cannot be true.

We have one more important quantifier proof method to discuss.

Axiom: Existential Generalization or EG
P(t) = 3Ix P(x)

where t is a term with the same restrictions as in the rule US.

It is no accident that US and EG both mention a term t with exactly the same
restrictions. In fact, either of them can be derived from the other (see Theorem 4.3 and
Exercise 16).

Since EG is an implication, it can be combined with modus ponens to form a new
rule of inference. In this form, it is by far the most natural and common way to prove
an existential statement. A more down-to-earth name for this proof method would be
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proof by example, since what it says is that if you want to prove that something exists,
it suffices to find one actual example of whatever it is. For instance, if you want to show
there’s a real number with a certain property, the cleanest way by far is to find a specific
number with that property.

However, recall Theorem 3.1, which said that existential quantifiers normally
describe functions of the universally quantified variables to the outside of them. For this
reason, the example you find in a proof by example won’t necessarily be a constant; it
might have to depend on some variables. That is why EG refers to a term or expression
t, rather than a constant. In a sense, EG is just a restatement of Theorem 3.1.

Example 12: Proof Preview 4 (in Section 3.3) provides a typical example of the
use of EG. We want to prove Vx,y 3z (z > x A z > y), with all three variables being real
variables. We could begin the proof with the words “Let x and y be given,” reflecting
the fact that we can ignore the universal quantifiers, by UG. Then we need to prove the
statement 3z (z > x A z > y). To prove this by EG, we must find a term or expression that
works when substituted for the variable z, and this term may involve x and y. As we
showed in Proof Preview 4, the term z = |x| + |y| + 1 works. In standard mathematical
writing, the second sentence of this proof would probably be simply “Let
z=|x| + |y| + 1.” (In practice mathematicians don’t use the letter t to represent a term
in such proofs, any more than they use the letter P to represent a statement.)

Another way to prove this statement is by cases (see Exercise 4).

Example 13: Let’s prove, assuming basic results from calculus, that given any
number, there’s a real-valued function (other than the zero function) whose derivative
is that (constant) number times itself. The statement to be proved has the form
Yk 3f(f#* 0 Af" = kf). Note that, in terms of the logical structure of this statement, both
k and f are mathematical variables, even though & has been called a constant (because
it’s not a variable of the function f), and frepresents a function, not a number. So let &
be any real number. By EG, we just need to find a nonzero function f(x), which can
depend on £, with the desired property. Perhaps you’ve already figured out that we
should let f(x) = €. It can then be easily be verified by differentiation that f”(x) = kf(x).

Most of the time, when one uses EG or Theorem 3.1, the term found for the
existentially quantified variable must involve all the universally quantified variables to
the left of it. So, in Example 12, it’s not possible to find an expression for z that does not
involve both x and y. Similarly, in Example 13, the expression we find for f must
involve k. But it’s permissible to omit a variable, as the next example shows.

Example 14: Suppose we want to prove Vx 3y (x + y = x), where x and y are real
variables. The simplest expression that works for y in the equation x +y = x is 0. This
certainly satisfies the requirement of Theorem 3.1. So, assuming that we know that
x + 0 =x, we can consider this result proved, by EG and UG. The fact that we could find
an expression for y that does not involve x tells us that we could just as easily prove the
stronger (that is, better) result 3y Vx (x +y = x).
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Counterexamples

The words (as opposed to the methods) “existential generalization” and “proof by
example” are rarely used by mathematicians. In contrast, mathematicians frequently talk
about counterexamples, primarily as a method of disproving statements. This method
is just a special case of EG, but it is used so often that it deserves separate discussion.

One standard type of mathematics problem asks the reader to prove or disprove
some statement. This often involves more work than a problem that just asks the reader
to prove a statement: first you have to determine (or at least guess) whether the
statement is true or false; then you must prove the statement or its negation.

Now, imagine that you are asked to prove or disprove a statement of the form
Vx P(x). If you think the statement is true, you probably try to prove it by UG. But if you
think it’s false, how do you disprove it? Well, disproving Vx P(x) means proving
~ Vx P(x), which is equivalent to 3x ~ P(x). And by EG, we know we can prove this if
we can find a term t such that ~ P(t) holds. That is, we want to find a specific example
of an object for which P is false. Such an example is called a counterexample to the
statement Vx P(x).

When a statement of the form Vx P(x) is involved, the words “prove or find a
counterexample” are more commonly used than “prove or disprove.”

Example 15: Suppose we are asked to prove or disprove that n* - n + 41 is prime
for every nonnegative integer n (recall Exercise 5 of Section 1.3). If this were true, it
might be very difficult to prove. But it’s not true, and all it takes to show this is a single
counterexample. Interestingly, n* - n + 41 is prime for all integers from 0 to 40, but 41
is obviously (in retrospect, anyway) a counterexample.

Example 16: Chapter 1 discussed Goldbach’s conjecture and de Polignac’s
conjecture. Both of these are almost certainly true, but neither has been proved. What
would it take to disprove these conjectures? A counterexample to Goldbach’s conjecture
would be a positive even number (greater than 2) that is not the sum of any two prime
numbers. Since there are only a finite number of ways to express a given integer as a
sum of two positive integers, a counterexample to Goldbach’s conjecture, if it exists,
could be identified by simple arithmetic (but lots of it! A powerful computer would
probably be required).

Similarly, a counterexample to de Polignac’s conjecture would be an even number
that is not the difference of any two prime numbers. But there are an infinite number of
ways to express a given integer as a difference of two integers, and there are also an
infinite number of primes. So there would be no way to verify that a given number was
a counterexample merely by arithmetic computation. For instance, suppose that you
believed that 6 was not the difference between any two prime numbers. How would you
attempt to verify this, even with a powerful computer?

We conclude the main part of this section with two tables that you should look
through now and refer to as needed in the future. Table 4.2 contains a list of some laws
of logic, analogous to the list of tautologies in Appendix 3. All these are provable from



102 Chapter 4 Mathematical Proofs

Table 4.2 Some useful laws of logic

In the following statements, it is always assumed that the proposition R does not contain
the variable x. The propositions P and Q may be assumed to contain, as free variables,
the variables in the quantifiers that precede them. The restrictions on the term t are as
described previously in the definition of universal specification.

(1) vxP—==xP

2) xVyP < VyvxP

(3) xIyP«>JyxP

4 xVyP—2VyIxP

(5) xR+ R

6) xR+~ R

(7) VxP(x) = P(t) (Universal specification)
(8) P(t) — 3Ix P(x) (Existential generalization)

De Morgan’s laws for quantifiers

(9) ~VxP e Ix~P
(10) ~3xP <> Vx~P

Replacement of one quantifier by the other

(11) VxP > ~3x~P
(12) ZxP <> ~Vx~P

Distributing quantifiers over connectives

(13) Vx (PAQ) < (Vx P AVx Q)
(14) L (PV Q) < (I PV Kk Q)
(15) (Vx PV Vx Q)= Vx (PV Q)
(16) XPAQ = (ZPAKQ)
(17) Vx (P VR) <> (VxPVR)
(18) Ix (PAR) <> (AxPAR)
19) kP~ Q< (xP—IxQ)
(20) x R2 Q< R—=VVxQ)
1) Vx (P> R) <> (Ix P~ R)
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Table 4.3 Summary of quantifier proof methods

Statement Ways to Prove Ways to Use
A universally UG: Prove P(x), for an arbitrary x. US: Assert P(t), for
quantified Indirectly: Assume 3x ~ P(x) and any appropriate
statement Vx P(x) | derive a contradiction. term t.
An existentially EG: Prove P(t), for some ES: Assert P(c) for a
quantified appropriate term t. new constant c.
statement 3x P(x) | Indirectly: Assume Vx ~ P(x), and

derive a contradiction.

our axiom system, and the exercises ask you to prove a few of them. Better yet, look
through the list yourself, pick a couple of statements in the list that look the least
obvious to you, and see if you can prove them.

Even though most of the laws of logic in Table 4.2 are not included as axioms in
our system, you should feel free to consider them as known results or theorems, unless,
of course, you’re asked to do a proof using only what’s in the axiom system. Pay
particular attention to the laws in Table 4.2 that involve the propositional variable R. It
is specified that, in these laws, R does not contain x as a free variable, and this
restriction allows steps that otherwise would not be correct.

Example 17: An important feature of the real number system is that between any
two distinct real numbers there’s another one. Suppose we want to prove this. The
statement can be symbolized, a bit loosely, as Vx,y (x <y = 3z (x <z <y)).

It is not difficult to prove this statement as it stands, using methods of proof from
this section and the previous one. But a slightly different approach is to note that the
variable z does not occur in the inequality x < y. This means we can use laws 5 and 19
of Table 4.2 to rewrite (x <y — 3z (x < z <)) in the equivalent form 3z (x <y —
x <z <y). So the statement we want to prove becomes Vx,y Iz (x <y = x <z <y). The
point is that this revised statement fits the conditions needed to apply Theorem 3.1,
which provides a straightforward way of completing the proof (see Exercise 10).

Table 4.3 is a quantifier version of Table 4.1 in the previous section. Since there
are only two quantifiers as compared to five connectives, Table 4.3 is shorter and
simpler than Table 4.1. Probably the most important thing to get from Table 4.3 is what
the roles of the four principles US, UG, ES, and EG are.

Some Theorems Involving Quantifiers (Optional Material)

We now prove some simple theorems or laws of logic, all of which appear in Table 4.2.
The first two provide the derivations of the two asterisked quantifier axioms, and the
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next two prove extremely simple laws of logic. Theorem 4.6 is probably the most useful
of these results, since it clarifies some of the subtleties involved when quantifiers are
combined with connectives. The fact that the content of these theorems is pure logic
gives their proofs a rather artificial, nonmathematical flavor.

Theorem 4.2: Quantifier axiom II-3, ~ 2x P(x) <> Vx ~ P(x), is derivable from the
nonasterisked portion of our axiom system.

Proof: For the forward direction, assume ~ =x P(x). Using tautology 23 (and
substitution), we can replace P(x) by ~ ~ P(x). This gives us the step ~ 3x ~ ~ P(x). But
this step contains a substatement of the form 3x ~ ... . Therefore, we can apply axiom
I1-2, plus substitution, to yield the step ~ ~ Vx ~ P(x). Applying tautology 23 again lets
us delete the double not in front of this statement and gives us Vx ~ P(x). This completes
the conditional proof of the implication ~ Jx P(x) = Vx ~ P(x).

For the reverse direction, assume Vx ~ P(x). Again applying tautology 23 plus
substitution, we get ~ ~ Vx ~ P(x). Then by applying axiom II-2 plus substitution to the
substatement ~ Vx ... , we get the step ~ Ix ~ ~ P(x). With tautology 23 plus substitution
used one final time, we obtain ~ 3x P(x). Therefore, by conditional proof, the reverse
implication is also established. By the biconditional rule, we conclude ~ 3x P(x) <
Vx ~ P(x). (See Exercise 15 for the converse of this theorem.) ®

Theorem 4.3: Existential Generalization, P(t) = 3x P(x), is derivable from the
nonasterisked portion of our axiom system.

Proof: We prove the contrapositive of the desired statement. So assume ~ 3x P(x).
By Theorem 4.2, this gives us Vx ~ P(x). By US, this implies ~ P(t), which is what we
want. (See Exercise 16 for the converse result.) ®

Theorem 4.4: For any statement P(x),
(a) Vx P(x) <> ~Ix ~P(x)
(b) 3x P(x) <> ~Vx ~P(x)
Proof: These statements are just the result of negating both sides of De Morgan’s
Laws for quantifiers (see Exercise 11). ®

Theorem 4.5: (a) For any statement P(x), Vx P(x) = 3x P(x).
(b) For any statement P(x,y), 3x Vy P(x,y) — Vy 3x P(x, ).
Proof: (a) Assume Vx P(x). By US, P(x). Then by EG, dx P(x). By conditional
proof, we are done.
(b) Assume 3x Vy P(x,y). Then by ES, let ¢ be an object satisfying Vy P(c, y).
To prove the right side of the implication, let y be given. By US applied to Vy P(c,y),
we have P(c,y). Then we can use EG to get 3x P(x, ). Finally, since y was arbitrary, we
can apply UG to get Vy 3x P(x,y). ®

You might get more out of the proof of Theorem 4.5(b) if you try to use similar
logic to prove its converse. Recall from Section 3.3 that the converse of this statement
is not true in general, and so of course it can’t be proved.
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Example 18: In the real number system, 3x Vy (x + y = y) is true, since the
constant value 0 works for x. So, by Theorem 4.5(b), ¥y Ix (x + y = y) must also be true.

In the real number system, the statement Vx Jy (x +y = 0) is also true, since for any
x we can let y = -x. But since this value of y depends on x and there is no constant value
of y that works for all x, the statement 3y Vx (x + y = 0) is false.

Theorem 4.6: For any statements P(x) and Q(x):
(a) Vx P(x) A Vx Q(x) <> Vx [P(x) A Q(x)]
(b) Vx P(x) V Vx Q(x) = ¥x [P(x) V Q)]
(c) Zx P(x) V 3r Q(x) «> Zx [P(x) V Q)]
(d) ¢ [P() A Q)] = Zx P(x) A 3x Q)
Proof: (a) See Exercise 12.
(b) Assume the left side. Since this is a disjunction, we can do a proof by cases.
Case 1: Assume Vx P(x). Let x be given. By US, we have P(x). By propositional logic,
we then get P(x) A Q(x). Finally, UG yields Vx [P(x) A Q(x)]. Case 2: Assume Vx Q(x).
The argument for this case is almost identical to the other case and so we omit it. (It is
common practice to say something like this instead of practically repeating a proof.)
(c) See Exercise 13.
(d) Assume the left side. Using ES, we can write P(c) A Q(c). By propositional
logic, we then get P(c). Then EG yields 3x P(x). An almost identical argument proves
3x Q(x). Finally, the conjunction rule yields the desired statement. ®

Note that Theorem 4.6(b) and (d) are just conditionals, not biconditionals. Exercise
14 asks you to show that the converses of these conditionals are not valid.

Exercises 4.3

(1) The rigorous definition of 4 < B is Vx (x € A — x € B). Using this definition,
write a more correct version of the proof in Proof Preview 2 (Section 2.3), dealing
properly with the quantification of x as well as that of 4, B, and C.

(2) Write a more rigorous version of the proof in Proof Preview 1 (Section 2.2).
Use the definition of “n is even” given in Example 8 of this section, and write a similar
definition of “n is 0dd.” Because of the existential quantifiers involved, you need to use
ES and EG in your proof.

(3) Carefully prove the argument given in Example 1 of Section 3.2.

(4) Prove the result discussed in Example 12, using cases that are based on the
relationship between x and y.

(5) Inthis exercise, n and k denote integers.
(a) Write a symbolic statement that captures the meaning of “n is divisible by
k,” or, equivalently, “» is a multiple of k.” Your solution should include a quantifier and
should mention multiplication rather than division or fractions.
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(b) Prove that if # is a multiple of &, then so is n°. Make sure to treat quantifiers
rigorously.

(c) Prove that if n is one greater than a multiple of %, then so is n*. (Same
warning as in part (b).)

(d) Prove or find a counterexample to the converse of part (b).

(6) Redo the argument of Example 4 of the previous section, carefully including
all the implicit quantifiers and the reasoning needed to deal with them.

7) Give a more rigorous, axiomatic proof of Theorem 3.4 than was given on
p g8
page 68.

*(8) Make up at least three symbolic statements, nof already in Table 4.2 and not
tautologies, that you believe are laws of logic. Then prove them from our axiom system.

(9) Prove the following laws from Table 4.2: 2, 19, and 20. Do not make these
informal proofs; rather, make them axiomatic and quite formal. You may use any
theorems in your proofs, but you may not use any of the laws in Table 4.2.

(10) (a) Prove the result discussed in Example 17 by the first method outlined in

that example (without directly referring to any of the laws in Table 4.2).
(b) Prove this result by the second method outlined in Example 17 (using laws

5 and 19 of Table 4.2, and Theorem 3.1). Don’t try to make this proof very rigorous.
Exercises 11 through 16 pertain to the optional material at the end of this section.

(11) Prove Theorem 4.4.

(12) Prove Theorem 4.6(a).

(13) Prove Theorem 4.6(c).

(14) Give examples to show that the converses of Theorem 4.6(b) and (d) are not
laws of logic. An example in this situation should consist of a specific domain for the

variable x and specific statements for P and Q.

(15) Prove the converse of Theorem 4.2. In other words, derive axiom II-2 from the
rest of the axiom system, including axiom II-3.

(16) Prove the converse of Theorem 4.3. In other words, derive axiom II-1 from the
rest of the axiom system, including axiom II-4.

Critique the following proofs. (If necessary, review the instructions for such problems
in Exercises 4.2.)



4.4 The Use of Equations in Proofs 107

(17) Theorem: In the real number system, Jx Vy (y +x = 3).

Proof: Let y be any real number. We know from basic algebra that
¥+ (3 - y) =3, and by UG we can conclude that Vy (y + (3 - y) = 3). Now, the
expression 3 - y certainly denotes a real number, so we can apply EG to obtain
Ix Vy (y + x = 3). (Technically, we are applying EG with P(x) being Vy (y + x = 3) and
the term t being 3 - y.)

(18) The purpose of this problem is to illustrate the quantifier-related restriction in
the definition of the substitution rule of inference.
Theorem: If x is a positive real number, then all real numbers are positive.
Proof: Assume x > (. We also know that 1 > 0, and therefore x > 0 iff 1 > 0.
By substitution, we can do the same thing to both sides of this equivalence; in particular,
we can say Vx (x > 0) iff Vx (1 > 0). But the inequality 1 > 0 is true for every value of
x, so Vx (1 > 0) is true. Therefore, we can conclude Vx (x > 0).

4.4 The Use of Equations in Proofs

The last logic-based part of our axiom system consists of the equality axioms. These
were discussed briefly in Section 3.4. Now we examine them, and their use in proofs,
in detail. Axioms III-1 and III-2 (the reflexive and symmetric properties of equality) are
so simple that they are not often used overtly in proofs, and there isn’t a whole lot to say
about them. Here is a small point involving symmetry. Remember that every equation
in mathematics is a two-way street (the same phrase that we applied to biconditionals)
and that even if a particular equation is usually applied in one direction, it must be
allowable to apply it in the other direction as well.

Example 1: An equation that is frequently used in both directions is the
distributive law for real numbers: x(y + z) = xy + xz. When you see an algebraic law like
this, it’s natural to think that the equation is usually used to change expressions that look
like the left side into expressions that look like the right side. In this direction, the
distributive law provides the main rule for multiplying out algebraic expressions. But
the distributive law is equally important when used from right to left, for in that
direction it provides the main rule for factoring algebraic expressions.

The transitive property of equality, axiom III-3, is more substantial than the
previous two axioms. It is this axiom that allows you to write an extended equation and
then conclude that the first expression equals the last expression. This technique is used
in proofs as well as in problem solving, as the following example illustrates.

Example 2: Suppose you want to factor the expression x* - 6a* - 2ax? + 3ax, and
you decide to try factoring by grouping. Then you might write

X - 6a® - 2ax* + 3ax = x* - 2ax* + 3ax - 64
=x*(x - 2a) + 3a(x - 2a)
= (x* + 3a)(x - 2a)
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Of course, when you write this, you mean to say that the final, factored expression
is equal to the original expression, and almost anyone reading it would interpret it in that
way. But how can this conclusion be proved rigorously? Let’s take a look.

The extended equation above has the structure 4 = B = C = D, where 4, B, C, and
D are particular expressions. To tum this into a formal proof, we would first need to
prove the three separate equations 4 = B, B = C, and C'= D. For now, we won’t concern
ourselves with how to prove these separate equations (see Exercise 3). From the two
separate equations A = B and B = C, we can use transitivity (plus propositional logic)
to get A = C. From 4 = C and C = D, we can then prove 4 = D in a similar manner.

By the way, this example illustrates another point. Many people think of doing
proofs in mathematics as a very different (and much harder) activity from ordinary
problem solving. But it’s really a false distinction. Every time you solve a problem in
mathematics, you must have some justification or rationale for your steps; this means
that you must have some sort of proof for your solution. Realizing this may help you to
see that writing proofs is not such a strange activity.

To illustrate this, suppose you were given the task to find the value of
such-and-such. You would probably view this as a problem, as opposed to a proof, and
would use whatever means you could think of to simplify or evaluate the given
expression. But suppose instead that you were asked to prove that such-and-such equals
2. You would probably think of this as a proof, and thus harder than an ordinary
problem. The irony of this is that the second version should be easier than the first,
because it tells you what the answer is.

Example 3: The transitive property of equality is used in just about every proof
in Appendix 2. A typical example occurs in Theorem A-5. Step 2 of the formal proof
is the equation x(x + 0) = x'x, and step 3 says that x(x + 0) = xx + x-0. By transitivity of
equality (plus axiom III-2 and a bit of propositional logic), this enables us to assert that
xx+x0=xx.

The last equality axiom, substitution of equals, has already been discussed a bit.
Very simply, if two things are equal, then they are interchangeable. Remember that this
axiom and the propositional rule of inference substitution (described in Section 4.2) are
based on a similar idea, but they are grammatically very different.

Example 4: Suppose we start with the known fact that sin x < 1, for any number
x. Then, by using US, we can derive sin (x + y) < 1. Now, we also have the
trigonometric formula

sin (x + y) =sinx cos y + cos x siny

Then we can use axiom III-4 to replace the expression sin (x + y) with the right side of
this equation, to obtain

sinxcosy+cosxsiny < 1
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Since x and y were arbitrary in this derivation, this inequality can be concluded for all
real numbers x and y.

The following theorem often gives us a more usable form of axiom III-4.

Theorem 4.7: Let t(x) be an expression or term containing the free variable x, and
let t(y) denote the same term with some or all of the occurrences of x replaced with the
variable y. Then x =y implies t(x) = t(y).

Proof: See Exercise4. ®

A term or expression in mathematics may be undefined, in the sense that it can’t
denote an actual value or object. The most common examples of this are fractions with
denominator 0. The implication in Theorem 4.7 makes no sense if the terms t(x) and t(y)
are undefined (unless we want to say that two undefined things equal each other, which
is a consistent viewpoint but best avoided since it can create confusion). Therefore, the
usual convention is that Theorem 4.7 applies only when the expressions on the right side
of the implication are defined. The significance of this restriction becomes apparent in
Example 11 at the end of this section.

Doing the Same Thing to Both Sides of an Equation

As it’s stated, it’s hard to see just how powerful Theorem 4.7 is. But in fact it is the basis
of the fundamental rule that you can do just about anything to both sides of an equation,
provided that you do precisely the same thing to both sides. To see how Theorem 4.7
says this, remember that the variables x and y in it are universally quantified. Therefore,
using US, they can be replaced by any expressions whatsoever. So the practical
significance of Theorem 4.7 is that whenever we know any equation, we can conclude
any other equation in which the two sides of the original equation appear in the same
way within the two sides of the new equation. The next few examples illustrate how this
works.

Example 5: Let t(x) be the expression “x + z,” so that t(y) is the expression
“y +z.” Then the theorem for this t reads: x =y — x + z=y + z. Since x, y, and z are all
understood to be universally quantified, this implication holds with any three
expressions in their place. In other words, an immediate corollary of Theorem 4.7 is that
you can add any expression you want to both sides of an equation. If the original
equation is true, the new one must be also. Similar reasoning shows that you can
subtract, multiply, or divide both sides of an equation by the same thing.

Example 6: Let t(x) be the expression x*. Then Theorem 4.7, with this particular
t, becomes x =y — x> = y*. In other words, you can square both sides of an equation.

Example 7: Now let’s use the variables 4, B, and C to stand for sets. We can let
t(4) be the expression 4 U C, and t(B) be the expression B U C. Theorem 4.7 then yields



110 Chapter 4 Mathematical Proofs

the implication 4 =B —+ AU C=BU C. In words, you can form the union of both sides
of an equation between sets, with the same set.

Example 8: There are places in Appendix 2 where axiom III-4 is stated as a
reason for a step, but it might be more to the point to use Theorem 4.7 as the
justification. For instance, step 2 of the formal proof of Theorem A-5 is obtained by
multiplying both sides of step 1 by x.

Reversibility

Our discussion so far has indicated that you can do anything you want to both sides of
an equation, but there are some subtleties involved with this rule. You may remember
these subtleties from precalculus algebra. They have to do with reversibility of steps
used in solving or simplifying an equation.

Not all steps allowed by Theorem 4.7 are reversible; sometimes that matters, and
sometimes it doesn’t. Let’s clarify this with some examples.

Example 9: Suppose we want to solve the equation x + 2 =8 - 2x. Our solution
might look like this:

x+2=8-2x
2x+x+2=8 Adding 2x to both sides
3x+2=8 Combining terms

3x=8-2=6  Subtracting 2 from both sides
x=6/3=2 Dividing both sides by 3

So we would say that x = 2 is the solution of the equation. But if we view the above
solution as a sort of proof, then what exactly have we proved? Have we proved that if
a number x satisfies the given equation, then x = 2? Or have we proved the converse,
that if x = 2, then x satisfies the given equation? Or have we proved both directions, that
is, a biconditional: x satisfies the equation if and only if x = 2?

Whenever you solve an equation, your solution should establish a biconditional if
possible. In other words, to solve an equation (in one variable) means to find a set of
numbers (the solution set) such that any number in that set satisfies the equation, and
no other numbers do. In the above example, we're not just saying that 2 works in the
equation; we’re also saying that no others work.

Thus, when solving or simplifying an equation, in a sense more care is required
than when doing an ordinary proof: you have to make sure your steps are reversible. In
the above example, the steps are definitely reversible: adding something to both sides
can be reversed by subtracting that thing from both sides, dividing both sides by 3 can
be reversed by tripling both sides, and so on. So the solution shown establishes a
biconditional, as it should.

What sorts of steps used to solve equations would not be reversible? Two standard
ones are squaring both sides and multiplying both sides by an expression that could
equal zero, as the next two examples illustrate.
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Example 10: Suppose we want to solve the equation /x + 3 +x = 3, The obvious
steps to solve this equation are as follows:

yx+3 +x=3

yx+3=3-x Subtracting x from both sides
x+3=9-6x+x Squaring both sides
0=x*-7x+6 Subtracting x + 3 from both sides
O0=(x-1x-6) Factoring
x=1 or x=6 See Exercise 12

But on checking these numbers in the original equation, we find that x = 1 works,
but x = 6 doesn’t. (The value x = 6 works if we set ‘/5 = -3, but that’s not how the
symbol /" is normally used.) You might remember that 6 is called an extraneous
solution to this equation; but why does a “wrong solution” crop up here?

The reason that our solution method to this equation can lead to extraneous
solutions is that squaring both sides of an equation is not reversible. It might seem that
the reverse of squaring both sides would be taking the square root of both sides; but it’s
not, because if you start with a negative number, square it, and then take the square root
of that number, you don’t get the original number back. To put it another way, if the
equation 4% = B? is true, we can’t conclude that 4 = B. We can only conclude that
|4| = |B|,or4=%£B.

Because one step is not reversible, the above solution to this equation only shows
a forward implication, not a biconditional. So if a number satisfies the equation, it must
be either 1 or 6. But we can’t conclude from the steps shown that 1 and 6 do satisfy the
equation. Note that this is not such a terrible situation: it just means we need to check
for extraneous solutions. On the other hand, a solution to an equation that represented
a reverse implication but not a forward one would be useless, since it would mean that
you might not have found all the correct solutions.

For example, if you try to solve the equation x* = 4 by taking the square root of
both sides to yield x = 2, you’ve made a mistake. The correct solution is x =+ 2. In
general, while squaring both sides of an equation is OK (provided you remember to
check for extraneous solutions), taking the square root of both sides of an equation is a
step that can lead to trouble. By the way, none of this complication would occur with
cubing or taking the cube root of both sides of an equation, since these operations are
truly the reverse (or inverse) of each other.

Example 11: Suppose you were asked to solve the equation (sin x)/x = 1. You
would probably multiply both sides by x and obtain sin x = x. It can be shown that the
only number satisfying this latter equation is 0. But you can’t have a denominator of 0,
so 0 is an extraneous solution, and the given equation has no solution.

Why does an extraneous solution occur here? The reason is that, in our solution,
we multiplied both sides by an expression that turns out to be zero. This step is not
reversible, since division by zero is impossible. (Remember the remark after Theorem
4.7, which said that what you do to both sides of an equation must keep both sides
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defined.) Therefore, a solution that includes multiplying both sides of an equation by an
expression that could be zero is only a forward implication, and extraneous solutions can
appear.

Like squaring both sides of an equation, multiplying both sides by an expression
that could be zero is fine, provided you check for extraneous solutions at the end. But
dividing both sides by such an expression is dangerous and should be avoided if
possible. For example, it’s wrong to try to solve the equation x* = 5x by dividing both
sides by x. The correct method is to put everything on one side and then factor.

We conclude this section by justifying the fact that axioms III-2 and III-3 are
marked with asterisks.

Theorem 4.8: Axioms III-2 and III-3 are superfluous; that is, they can be proved
from the rest of the axiom system.

Proof: First let’s prove symmetry: assume x = y. Applying axiom III-4 with S(x)
being the statement x = x, we get x = x «<* y = x. But we know x = x (from axiom III-1
and US), and so y = x follows by propositional logic. Thus we have proved that x =y
impliesy=x. ®
Exercises 4.4

(1) Complete the proof of Theorem 4.8, by proving axiom III-3, transitivity, from
the rest of our axiom system.

(2) Prove:ifx=yandu=v,thenx+u=y+wv.

(3) Prove the three separate equations involved in Example 2. You may use any of
the results of Appendix 2, as well as what’s in the axiom system.

(4) Prove Theorem 4.7.

The remaining exercises of this section do not pertain specifically to the equality
axioms. Rather, they involve the material in Appendix 2 and are intended to give you
practice with all the proof methods that have been discussed in this chapter.

(5) Prove Theorem A-2.
(6) Prove Theorem A-4.

(7) Redo the formal proof given for Theorem A-8 in good, nonformal style.

(8) Redo the formal proof given for the forward direction of Theorem A-13 in
good, nonformal style.

(9) Identify the omissions in the proof of Theorem A-7, and complete the proof by
filling in the gaps.
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In Exercises 10 through 17, prove the statement from the field axioms. (When such
a statement is made, it is understood that you may also use all rules of inference and all
axioms that are based on logic and equality.) You may also use any results in Appendix
2, unless stated otherwise. Also remember that all free variables in these statements are
understood to be universally quantified. Consult your instructor if you have questions
about style, format, or how much detail to show.

(10) The number O has no multiplicative inverse. (First write the statement in
symbols.)

(11) (-Ix=-x

(12) xy=0iff(x=0o0ry=0)

(13) x#0iffx" #0

(14) Ifx #0andy # 0, then (xy) ' =y 'x™'

(15) Ifx #0andy # 0, then w/x + v/y = (uy + vx)/xy

(16) Vx,yIZ(x+z=y)

A7) (+yP=2+2y+y

(18) Replace field axiom V-12 with the statement that 0 = 1, and prove from this
alternate set of axioms that there is only one number.

(19) Prove Theorem A-10(b).

(20) Prove Theorem A-10(c).

(21) Prove the last case (x < 0) of Theorem A-11.
(22) Prove Corollary A-12.

(23) Prove the right-to-left implication of Theorem A-13. Your proof may be formal,
but it doesn’t have to be.

(24) (a) Fill in the details of the proof of Theorem A-15(a). In particular, show that
the cases used in that proof really do cover all possible cases.
(b) Prove Theorem A-15(b).
(c) Prove Theorem A-15(c).

*(25) Fill in the missing details in the proof of Theorem A-16.
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The instructions for Exercises 26 through 31 are the same as those for Exercises
10 through 17, except that now you may use all the ordered field axioms.

(26) Ifx s yandy < x, then x = y. This is called the antisymmetry property of <.

Q27) (@ x<yiff-x>-y
() x>0iff -x<0

(28) Ifx <yandz<0, thenxz> yz. Note that this is the usual rule about multiplying
both sides of an inequality by a negative number.

(29) 1+1#0.
(30) If0 <x<y,thenx’ <)% (0 <x <y is an abbreviation for 0 <x and x <y.)
*(31) Ifx <y, thenx’ <)’

(32) Rewrite axioms V-13 through V-17 and the definitions that follow them, so that
the only inequality symbol mentioned in the axioms is 2, and the other three symbols
are defined in terms of this one. Of course, make sure all your axioms and definitions
are correct.

(33) Critique the following proof. If necessary, review the instructions for such
problems in Exercises 4.2.

Theorem: 1+1 #0.

Proof: Assume, on the contrary that 1 +1 =0, thatis, 2 = 0. By Theorem 4.7,
we can multiply both sides of this equation by 1/2 to obtain 2(1/2) = 0(1/2). The left side
equals 1, by axiom V-11; and the right side equals 0, by Theorem A-S. Therefore, 1 =0.
But this is a contradiction (in conjunction with axiom V-12), so we are done, by indirect
proof.

4.5 Mathematical Induction

This section is devoted to a single method of proof, known as the principle of
mathematical induction (PMI), or simply induction. Induction is undoubtedly one of the
most important proof techniques in mathematics. Mathematical induction is quite
different from the axioms and rules of inference described in the previous three sections.
It is not based on logic. Technically, it is an axiom for just one particular number
system, the natural numbers. This would presumably make it less useful than very
general methods like conditional proof, indirect proof, and so on, but natural numbers
occur so universally in mathematics that proofs by induction are a vital part of every
branch of the subject.

The term natural numbers refers to the numbers we all study first in grade school:
1,2, 3, and so on. These, the positive integers, are the simplest type of number. (Some
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books, particularly older ones, include 0 as a natural number and use the term counting
numbers to denote the positive integers.)

Notation: The letter IN denotes the set of all natural numbers. For now, we use the
letters m, n, k, and j as natural number variables, that is, variables whose domain is IN.
(Later, we may use one or more of these letters to stand for any integer, not necessarily
a positive one.)

Neither the notation just introduced nor the paragraph preceding it constitutes a
mathematical definition of the set of natural numbers. Therefore, this notation and
discussion may not be used to prove things about IN. The only basis for proving things
about the natural numbers is the axioms pertaining to them. For example, to prove even
the “obvious” fact that every natural number is positive, induction is required. You can’t
prove it “by definition” because no definition has been given.

Axioms for the Natural Numbers

Our axioms for N comprise group VI of Appendix 1. There are only three axioms in this
group, and the first two are extremely simple. Axiom VI-1 just says that the number 1
is a natural number, Axiom VI-2 says that if you add 1 to any natural number, the result
is still a natural number. These two axioms, taken together, can be thought of as
describing how NN is generated.

The principle of mathematical induction can be stated in two equivalent forms, the
set form and the statement form. In the axiom system, we have listed both. Since we
have not studied sets yet, this section concentrates on the statement form.

Definition: The principle of mathematical induction (statement form) consists
of all statements of the form

[PQQ) AVn (P(n) = P(n + 1))] = Vn P(n)
where P(n) is any statement containing a free natural number variable n.
The Meaning of Mathematical Induction

Some people learn only the method of induction proofs without ever learning the
reasoning behind induction. This approach can be successful with straightforward
induction proofs, but it falls apart when the problems get more involved. So let’s spend
some effort now to analyze the content of this principle.

To visualize what induction says, imagine that the natural numbers 1, 2, 3, ... are
arranged vertically, in a sort of infinite ladder (see Figure 4.1). Let P(n) be the statement
that it’s possible to reach the nth step of the ladder. Then what does induction claim
with this P(n)? Well, P(1) says it’s possible to reach the first step, and
Vn (P(n) = P(n + 1)) says that, for any n, if you can reach the nth step, you can also
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Figure 4.1 Ladder image for mathematical induction

reach the (n + 1)-th step. In other words, it says that it is always possible to go one step
higher than you already are. So the entire implication can be paraphrased as follows: if
you can get to the first step of the ladder and you can always take one more step, then
you can go as high as you want.

PMI can also be illustrated nicely with a horizontal image instead of a vertical one.
Imagine an infinite row of standing dominos, as in Figure 4.2. Let P(n) be the statement
that the nth domino falls. Suppose we know that the first domino will be knocked over
and that each domino is close enough to the next one so that, when it falls, the next one
will also fall. Then induction, applied to this situation, states that every domino will
fall—a fact that even most young children are aware of.

Now let’s see what PMI says for an arbitrary statement P(n). The hypothesis of
induction says two things: first, it says that P is true for the particular number 1. Second,
it says that whenever P is true for a number 7, it must also be true for n + 1. Induction
says that if these two things both hold, then P must be true for every natural number ».
To see that this is valid, assume the hypothesis is true, and let’s start listing numbers for
which P must be true. It must be true for 1, because that’s specifically stated. But then,
since it’s true for 1, it must be true for 2. Then, since it’s true for 2, it must be true for
3, and so on. Continuing in this way, we see that P must be true for every value of n.

Remember that mathematical induction is an axiom based on the particular way
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that the natural numbers are structured. It holds only because IN consists of a single
infinite sequence of numbers. For example, there’s no such thing as a direct induction
proof on the set of all real numbers.

1t is instructive to think about the relationship between induction and the other
natural number axioms. It is similar to the relationship between modus ponens and
conditional proof: induction is essentially the converse of axioms VI-1 and VI-2.
Axioms VI-1 and VI-2 say that if you start at 1 and count by ones, you stay within IN.
Induction says that if you start at 1 and count by ones, you eventually reach every
member of IN.

This distinction can be made even clearer by referring to sets. Let 4 denote the set
of all numbers that can be reached by starting at 1 and counting by ones. Then axioms
VI-1 and VI-2 together say that 4 is a subset of IN, whereas PMI says that IN is a subset
of A. The combined meaning of all the natural number axioms is that IN = 4. This makes
sense, because the way we defined the set 4 is the most sensible way to describe the
natural numbers rigorously.

While we're at it, let’s clarify another potential source of confusion. In Chapter 1,
we talked about inductive reasoning (or the inductive method), which is the main tool
for acquiring knowledge in science. What is the relationship between inductive
reasoning and mathematical induction? The answer is simple: There is no connection
between inductive reasoning and mathematical induction. It’s best to view the similarity
in wording as an historical accident and leave it at that. When mathematicians use the
term “induction,” they almost always mean mathematical induction, not inductive
reasoning.

Figure 4.2 Domino image for mathematical induction
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The Structure of Proofs by Mathematical Induction

In a proof by induction, the goal is to prove a statement of the form Vn P(n). By PMI
and modus ponens, it suffices to prove P(1) and Vn (P(n) — P(n + 1)). So the first part
of an induction proof is usually to prove P(1). This is often a very short, obvious step.
The second and major part is to prove Vn (P(n) — P(n + 1)); this is called the induction
step of the proof. As usual, to prove this quantified statement, it suffices to prove the
unquantified implication P(n) — P(n + 1). And this will usually be proved by
conditional proof, which means the induction step starts with assuming P(n). (This
assumption of P(n) is sometimes called the induction hypothesis of the proof). It is then
required to prove P(n + 1) from this assumption. If these two parts can be done, then the
desired statement can be asserted.

People sometimes are surprised by the fact that, in an induction proof, you get to
assume P(n), which is very similar to what you are trying to prove. But note that the
statement to be proved is Vn P(n), whereas the induction hypothesis is just P(n). It’s vital
that you don 't put the quantifier ¥z in your assumption for the induction step. Still, what
you get to assume is quite close to what you are trying to prove; there is no other type
of proof in mathematics where you can assume something so close to what you are
trying to prove. But, as has already been pointed out, mathematical induction is a very
special axiom, based on the particular arrangement of IN. If you understand the logic
behind PMI, then there should be nothing surprising about how induction proofs are
structured.

Now let’s look at some examples of theorems proved by mathematical induction.

Theorem 4.9: Every natural number is a real number; that is, IN is a subset of R.

Proof: We want to prove the statement Van (n € R). [Remember that n
automatically denotes a natural number.] We prove this by induction, with P(n) being
“ne R

We first must prove 1 € R, This is implied by axiom V-9.

To prove the induction step, assume n € R. We already know that 1 € R, and so
by axiom V-1 (plus US),n+1eR. m

Theorem 4.10: The set N is closed under addition; that is, Ym,n (m + n € IN).

[We’ve said that induction is used to prove statements of the form vh P(n). But now
we are asked to prove a statement that begins with two universally quantified natural
number variables. How should we approach that? Do we have to do a separate
induction proof for each of the variables m and n? There are proofs in which it is
necessary to do a double induction; but this is a complicated technique that is not
required very often. Even with more than one variable present, it is permissible to use
induction on just one of them. This simple approach works quite often, and we use it
here.]

Proof: Letm be any natural number. We do induction on # only, with P(n) being
the statement “m + n € IN.” (So m is viewed as fixed.)

P(1) is just a special case of axiom VI-2, so it holds.
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To prove the induction step, assume m + n € IN. We want to show that m + (n + 1)
is also a natural number. But note that m, n, and 1 are all real numbers, by Theorem 4.9.
Therefore m + (n + 1) = (m + n) + 1 by axiom V-3 (associativity). It follows, by axiom
VI-2 (and axiom III-4) that m + (# + 1) is a natural number.

So we have Vn (m + n € N), by induction. Since m was arbitrary, we can use UG
to conclude Vm,n (m + n € IN), as desired. ®

Several of the exercises in this section are related to Theorem 4.10. Exercise 3 asks
you to prove that N is closed under multiplication, a proof very similar to Theorem
4.10’s. And Exercise 22 asks you to critique an alternative proof of Theorem 4.10.

In our proof of Theorem 4.10, we used induction on » for any one given value of
m; so m was unquantified in the statement P(n). It is possible to take a different
approach, in which P(n) is Vm (m + n € N). Exercise 2 asks you to do this. Usually, it
doesn’t matter whether P(#) contains universal quantifiers of variables besides #, but
occasionally an induction proof becomes much easier if an extra universal quantifier is
included in P(n).

Mathematical induction is the main tool used to prove formulas for sums and
products of sequences of numbers. We turn now to several examples of this. A rigorous
treatment of this material requires the use of functions. For now we instead use the
familiar ellipsis notation (three dots), which most mathematicians consider rigorous
enough.

Theorem 4.11: 1+2+3+ .. +n=n(n+1)2 (thatis, Y i= n(n+1)2)
i=1

Proof: Since the variable # is unquantified in the statement of this theorem, we’re
supposed to prove it for all n, and we do so by induction.

For n = 1, the left side equals 1. [You have to be sensible about how you read
something like 1 + 2 + 3 + ... + 1. The numbers to be added only go up to n, so the 2
and the 3 would not be included here.] And the right side equals 1(1 + 1)/2, which also
equals 1, so the equation holds.

For the induction step, assume

1+2+3+..+n=nn+1)2
Now add n + 1 to both sides, as Theorem 4.7 allows:
1+2+3+..+tm)+n+l=nn+1)2+n+1

The left side of this is just 1 + 2 + 3 + ... + (n + 1), while the right side is easily
simplified (by a couple of high school algebra steps)to (n + 1)[(n + 1) + 1}/2. =

To prove the next theorem, we need to assume some basic properties of exponents,
which are proved in Chapter 7.
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Theorem4.12: 1+2+4+ .. 4+2"'=2"-1

Proof: We proceed by induction on . For n = 1, the statement says 1 = 1, so it’s
true. For the induction step, assume 1 +2 +4 + ...+ 2" ' =2" - 1. Now add 2" to both
sides, and obtain

142+4+..+2"=2"—1+2"
=202") - 1
=om 1

as desired. ®

Theorems 4.11 and 4.12 are particular cases of the formulas for the sum of
arithmetic and geometric series. Here are the general formulas, with the proofs left as
exercises.

Theorem 4.13 (arithmetic series formula): For any real numbers a and d and
any natural number n,

at(a+d)+(@+2d+..+@+@m-Dd)=n[2a+ (- 1)d)/2

(Note that Theorem 4.11 is this formula witha=d =1.)
Proof: See Exercise 4. ®

Theorem 4.14 (geometric series formula): For any real numbers a and r
(provided » # 1) and any natural number »n,

atartar’+ .. +tar"'=a(l-rv/Q1 -7

(Note that Theorem 4.12 is this formula witha =1 and r = 2.)
Proof: See Exercise 8. ®

In Theorems 4.13 and 4.14, d stands for “difference” and » stands for “ratio.” An
arithmetic sequence is one in which the difference between successive terms is constant,
whereas a geometric sequence has a constant ratio between successive terms. Note that
in both theorems, the formula given is for the sum of » terms of a sequence. (The word
“series” always means a sum of terms.)

We turn now to a special case of the division algorithm, one of the most important
basic results in number theory, We prove the general form of the division algorithm in
Section 8.2. (We have occasionally referred to odd and even integers. When natural
numbers are being discussed, it is best to define # to be even iff it is of the form 2m and
odd iff it is of the form 2m - 1, where m must also be a natural number in both cases.
Do you see why this is preferable to saying an odd number is of the form 2m + 1?)
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Theorem 4.15: Every natural number is either even or odd.

Proof: By induction on n: for n = 1, note that 1 =2(1) - 1, so 1 is odd, by EG. Of
course, this makes it even or odd. Now assume that n is even or odd. We use proof by
cases. Case 1: Assume 7 is even. That means n = 2m, for some m € N, Thenn + 1 =
2m+ 1= 2(m+ 1) - 1,s0n+ 1 1is odd. Case 2: Assume n is odd. That means
n=2m- 1,forsomeme N. Thenn+1=2m,son+1iseven. B

Compare this proof to Proof Preview 1 (Section 2.2). Exercise 11 asks you to prove
that the “or” in this theorem is actually exclusive.

Theorem 4.16 proves a few important facts about natural numbers. It is tempting
to just assume these “obvious” facts without proof, but that would be sloppy
mathematical practice.

Theorem 4.16: (a) Every natural number is equal to or greater than 1.
(b) Ifn>1,thenn - 1isin N (and so n > 2).
(c) There is no natural number (strictly) between n and n + 1.
Proof: (a) and (b): These straightforward inductions are left for Exercise 12.
(c) We proceed by induction on n. For n = 1, we must prove that there is no
natural number between 1 and 2. But part (b) says that any natural number greater than
1 is at least 2, so we are done.

For the induction step, assume there is no natural number between n and n + 1; we
must show there is none between # + 1 and n + 2. We proceed by cases on an arbitrary
natural number m. If m = 1, then m is not between » + 1 and » + 2, because part (a)
guarantees that n + 1 is at least 2. On the other hand, if m > 1 and we assume that
n+1<m<n+2,thenm - 1 would be strictly betweennandn+ 1,andm - lisa
natural number by part (b). This would violate the induction hypothesis, and so it is
impossible. ®

It takes a while to learn just how powerful and versatile mathematical induction is
and how often it can be used. As a rule of thumb, when you are asked to prove a
statement for all values of a variable and that variable can only be a natural number, you
should consider using induction. Note that Theorems 4.11 through 4.15 all fall into this
category, in that n has to be a positive integer for these statements to make sense. For
example, an expression like 1 + 2 + 3 + ... + 8.32 is meaningless.

But there are also many theorems in mathematics for which it’s much harder to see
that induction must be used. There are also several variants of mathematical induction,
and it is not always obvious that one of these is required. Numerous such situations are
encountered later in this book, and it seems appropriate to list some of them here, for
future reference:

(1) The well-ordering property of IN (Theorem 5.6) and results whose proofs
use this property instead of ordinary induction (for example, Theorems 8.14 and 10.10).

(2) Theorems that seem to be about objects other than natural numbers, such
as sets or polynomials, but that can somehow be classified in terms of a natural number
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variable, and proved by induction (for example, Theorems 5.8 and 6.1). This important
method is discussed further before Theorem 5.8.

(3) Induction proofs that begin at 0 or some other integer, instead of at 1. The
induction proofs for the theorems mentioned in item 2 begin at 0. See also Exercises 12
and 13 of Section 5.3.

(4) Definitions by induction (Section 7.4).
(5) Double induction (Exercise 20 of Section 8.2).
(6) Complete induction (Lemma 8.20 and Theorem 8.21).

Mathematical Discovery Revisited

In Section 1.2 we discussed the important ideas of discovery and conjecture in
mathematics. It was mentioned that in some situations the discovery process and the
proof process are very closely linked, and in other situations they are totally separate.
Induction is an excellent example of the latter situation. Because of the way induction
proofs must be structured, it is impossible to begin an induction proof without already
knowing what it is that you are trying to prove. Therefore, in most situations induction
is not helpful as a discovery tool.

With this in mind, it is reasonable to ask what sorts of methods are used to discover
new information about natural numbers. This is too complex a question to tackle in
depth, but it is worth considering briefly. Note that Theorems 4.11 through 4.14 state
formulas for the sums of various series. Mathematicians have many techniques, some
of which are viewed as tricks (in a positive sense), for discovering such formulas.

Probably the most famous such trick relates to Theorems 4.11 and 4.13.
Supposedly, when Carl Friedrich Gauss was about nine years old, his teacher was
annoyed with the class and ordered everyone to add up all the numbers from 1 to 100.
While the rest of the students toiled away, Gauss found the answer in a few seconds,
without knowing Theorem 4.11. How? Quite simply (but ingeniously), he regrouped the
numbers in the series, writing them in pairs as follows:

(1 +100) + (2 + 99) + (3 + 98) + ... + (49 + 52) + (50 + 51)

It then becomes a simple matter to compute the sum of these hundred numbers, and the
same trick can be used to prove Theorem 4.13, the formula for the sum of an arbitrary
arithmetic series (see Exercise 6). Other exercises in this section guide you through the
discovery process for various sum formulas, including Theorem 4,14,

Does it seem to you that Gauss’s computation should be considered a proof of
Theorem 4.11?7 Most mathematicians would agree that it is a somewhat informal but
essentially correct proof. However, they still usually prefer to write induction proofs for
these sorts of formulas, even when the formula has already been derived by
manipulating the terms of the series.
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Carl Friedrich Gauss (1777-1855) was one of the greatest
mathematicians of all time and also one of the most brilliant child
prodigies in the history of the subject. One story has it that he found
a mistake in his father’s ledger book when he was three. Gauss’s
genius was recognized early; this enabled him to accelerate his
education and be sponsored by the Duke of Brunswick.

Gauss’s first important mathematical result, at the age of nineteen,
was a proof that a regular 17-sided polygon can be constructed with
straightedge and compass. This problem had evaded solution for over
two thousand years. Five years later he completed his doctoral
dissertation, the “Fundamental Theorem of Algebra.” During his
career he contributed to many branches of mathematics, notably
differential geometry, number theory, and probability theory. His
name is attached to many important concepts, such as gaussian
curvature and the gaussian distribution.

Gauss chose to publish only the most significant of his results and
only when they were quite complete, rigorous, and polished. The
motto on his seal was “Pauca sed matura” (“Few but ripe”). But he left
behind an enormous amount of valuable mathematical writing, in
twelve volumes of diaries.

Gauss did important work in fields other than mathematics, notably
astronomy and physics. He was one of the founders of the modem
theory of electromagnetism, and the standard (metric) unit of magnetic
strength bears his name. Many people would name Gauss as the last
person to reach the very highest ranks of research in both mathematics
and physics.

Exercises 4.5

(1) Evaluate by the formulas given in Theorems 4.13 and 4.14:
(@ 1+3+5+7+...+399
(b) 2+5+8+11+..+200
() 1+2+4+8+..+1024
(d 27+9+3+1+..+1/81

(2) Write an induction proof of Theorem 4.10 in which P(n) is Vm (m + n € IN)
instead of just m + n e IN.

(3) Prove that N is closed under multiplication, that is, Vm, n (mn € ). You may
assume Theorem 4.10.
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(4) (a) Prove Theorem 4.13 by induction.
(b) The content of Theorem 4.13 can be expressed simply in words, as “The
sum of an arithmetic series equals ... ,” where the “...” is an expression built up from the
first term of the series, the last term, and the number of terms. Complete this statement.

(5) Restate Theorems 4.12 through 4.14 in sigma notation.

(6) (a) Complete Gauss’s derivation of the formula in Theorem 4.11, as discussed
at the end of the section.
(b) Generalize part (a) to derive Theorem 4.13. Make sure to include the
possibility that the series has an odd number of terms.

(7) (a) Noting that the first positive odd number is 1, and odd numbers differ by
2, find a formula for the nth positive odd number.
(b) Use induction to prove this formula.
(c) Derive a formula for the sum of the first n positive odd numbers.

(8) Prove Theorem 4.14 by induction.

(9) Here is the classic trick that can be used to derive Theorem 4.14 without
induction:

(a) Start by writing S=a + ar +ar* + ... + ar™'. We want to find a concise
expression for S. What quantity could be multiplied by both sides of this equation so that
all terms on the right side of the new equation, except one, would be the same as in the
original equation?

(b) Now carry out the step determined in part (a), subtract the new equation
from the original one, and solve for S.

(10) In the geometric series formula of Theorem 4.14, if |r| <1 and n gets large,
what happens to the term r"? From this, make a conjecture about the formula for the
sum of an infinite geometric series with |r| < 1.

(11) Prove that the “or” in Theorem 4.15 is exclusive; that is, no natural number is
both odd and even. (Don’t just assume that 1 is not even or that 1/2 is not in N; prove
these things)

(12) Prove parts (a) and (b) of Theorem 4.16.

(13) Consider the series 1/2+ 1/6 + 1/12 + ... + 1/n(n + 1).
(a) Directly evaluate the sum of this series for several small values of n, and
use these results to form a conjecture for the sum of this series in general.
(b) Using the fact that 1/n(n + 1) = 1/n ~ 1/(n + 1), find a trick for deriving the
sum of this series without induction.
(¢) Use induction to prove the formula for the sum of this series.
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(14) Prove the surprising result (predicted in Exercise 6 of Section 1.2) that the sum
of the cubes of the first n natural numbers equals the square of the sum of these
numbers; that is,

n n 2
P+2°+..+n’=(1+2+..+n) (thatis, Y i° = ( Ei) )
i=1

1=1
You may use Theorem 4.11.

(15) (a) Consider Theorem 4.11. If the right side of this formula is expanded, what
is its leading (highest power) term?
(b) Repeat part (a) for the formula in Exercise 14, after using Theorem 4.11 to
write the right side of that formula in closed form.
(¢) On the basis of parts (a) and (b), complete this conjecture: For any natural
numbers k and n, the sum 1* + 2%+ ... + n* equals a polynomial in # whose leading term
is

*(16) The goal of this problem is to derive the formula for 12+ 2% + 32 + ... + 2,

(a) Applying Exercise 15(c) to this series, write a polynomial with unknown
coefficients for its sum. How many unknown coefficients must be included?

(b) Now substitute four small values of » into the result of part (a), to get a
system of linear equations whose variables are the unknown coefficients. Surprisingly,
it’s OK and in fact advisable to use 0 as one of your values for n.

(c) Solve this system of equations to determine the exact polynomial that
represents the sum of this series.

(d) Show that this polynomial equals n(n + 1)(2n + 1)/6.

(¢) Now use induction to prove that 12+ 2>+ 3>+ ... + n> = n(n + 1)(2n + 1)/6.

(17) Prove that n <2”, for any natural number 7. You may assume basic facts about
the algebra of exponents, as was done in the proof of Theorem 4.12.

(18) Provethat1+1/4+1/9+ ..+ 1/n*<2 - 1/n.

The next two problems provide examples of the fundamental counting principle,
which is discussed further in Sections 6.1 and 7.6

(19) (a) At meetings of the Oxnard Pataphysics Club, every person present is
required to say hello to every other person there, exactly once. Use trial and error and/or
common sense to arrive at a conjecture about how many hellos are spoken at a meeting
with n people present.

(b) Use induction to prove this conjecture.

(20) The English alphabet has 26 letters. Prove by induction that, for any », there are
26" n-letter words, where a “word” just means any sequence of letters.
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(21) Prove the following calculus formulas, where n is any natural number. Use
induction and the indicated formulas for each one:

(a) % xM=nx"" Use the product rule and the derivative of x.
®) d (e™=k"e" Use the chain rule, the derivative of e*, and the
dx n
derivative formula for a constant multiple of a function.
©) 2 (xe?)=(x+n)e®™ Use the product rule and the derivative of e*.

dxll

(22) Critique the following proof of Theorem 4.10. (If necessary, review the
instructions for this type of problem in Exercises 4.2.)

Proof: First we must prove the theorem for 1. To do this, note that 1 + 1 € N,
because 1 € N (by axiom VI-1), and thus, so is 1 + 1 (by axiom VI-2). Now assume the
theorem is true for n; that is, n + n € N. Then we must prove that (n + 1) + (n + 1) e N.
But(n+ 1)+ (n+ 1)=[(n+ n) + 1] + 1, by the commutative and associative laws of
addition. So the desired result follows by two applications of axiom VI-2.

(23) Critique the following proof.
Theorem: For every nonnegative integer n, sin n + cos n = 2".
Proof: For n = 0, the statement sin 0 + cos 0 = 2°, which is true. For the
induction step, assume sin n + cos n = 2". By substituting (that is, specifying) the
expression n + 1 for the variable n, we get sin (n + 1) + cos (n + 1) = 2™, as desired.

4.6 Hints for Finding Proofs

With the exception of Section 4.1, which dealt with different styles of proofs, the
purpose of this chapter has been to explain the axioms and rules of inference that are
commonly used in mathematical proofs. But we haven’t said much about how to find
proofs of statements. This section discusses how mathematicians go about proving
things. It is as if we have just explained the rules of some game, like chess; this section
starts to explain how to play the game competently.

Section 4.1 urged you to try to write proofs that are outlines or summaries of
formal proofs. But most mathematicians write clear, logical proofs without ever
consciously considering formal proofs. How is that done?

Here is another rule of thumb, based on a somewhat different (but not conflicting)
perspective from that presented in Section 4.1: 4 good proof of a statement should be
a clear explanation of why the statement must follow from what you already know. In
other words, if you have a clear understanding of why a statement must be true, then
you should be able to convert that understanding into a good proof of that statement. But
to make that conversion requires careful analysis of your own understanding, and the
ability to explain the sources of that understanding. Understanding why something is
true entails more than merely seeing that it’s true.
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Is your understanding based in part on logic and common sense? Then the
corresponding part of your written proof will use logical axioms and/or rules of
inference. Is your understanding based in part on things you know about the subject
matter of the statement? Then the corresponding part of your written proof will use
proper axioms and/or previous theorems. Is your understanding based in part on
knowing what certain words or symbols mean? Then your written proof will probably
need to use the definitions of those words or symbols. Is your understanding of why the
statement is true based on some reason why it couldn 't be false? Then you will want to
use indirect proof to prove the statement. And so on.

It is not always easy to analyze your own understanding in this way. But although
mathematicians sometimes come up with proofs of difficult theorems without being
consciously aware of how they did it, most would agree that proofs are based on
understanding, and with enough analysis you can usually turn your understanding into
a proof.

Gaining Insight into a Proof

We’ve been discussing how to convert your understanding of why a statement is true
into a proof of that statement. But what if you are trying to prove something and you
don’t see why it’s true? In fact, you may barely understand what the statement is saying,
let alone that it’s a true statement, let alone why it’s true. Believe it or not, this happens
frequently to all mathematicians, even the best. How are you supposed to prove
something when you don’t see what’s going on?

Writing proofs when you have insight into the problem can already be hard; it is
not something anyone can learn completely from one book or one course or in one year.
Leaming how to find proofs when you don’t have that insight or understanding is that
much harder, and it would be absurd to pretend that it’s possible to learn this skill
quickly. Nonetheless, it’s possible to give some hints or guidelines for tackling proofs.
Here are some of the more useful ones:

(1) Analysis of the Structure of the Statement: What is the logical structure (in
terms of comnectives and quantifiers) of the statement you are trying to prove?
Answering this is not something that usually provides much mathematical
understanding, but it may help you choose the right proof technique. Is the statement an
implication? Then you almost certainly want to try conditional proof. Is it a negation?
Then indirect proof might be a good try. Does the statement begin with one or more
quantifiers? Then you probably need universal and/or existential generalization,
remembering that existentially quantified variables are to be chosen as functions of the
outer universal quantifiers. Tables 4.1 and 4.3 are meant to help you with this process.

(2) Forward Reasoning: This term refers to attempting to write a forward proof,
perhaps more or less by trial and error. First you must start somewhere. How to start?
If you are trying to prove an implication, conditional proof provides you with an
assumption to start with. If not, you can try indirect proof, which also provides you with
a starting assumption. If that seems inappropriate, you need to start with an axiom or
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theorem. Which one? Obviously, you need to find an axiom or theorem that somehow
is relevant to what you’re trying to prove, but it can take some luck to find the most
appropriate one.

Once you have one or more steps to start with, you have to go forward. How? One
procedure is to look for an axiom or theorem that says that what you already have
implies some other statement. Then you can use modus ponens to get a new step.
Another procedure is to look for a rule of inference that would use one or more of the
steps you have so far to get a new step. Of course, it is important not to be too random
in generating new steps; rather, you need to constantly remember what you are trying
to prove and try to keep getting closer to it.

(3) Reverse Reasoning: We discussed reverse proofs in Section 4.1, and this is
another term for the same technique. If you can’t see how to start your proof forward,
start at the end and work in reverse. But, as was emphasized in our earlier discussion,
you have to be careful when you do this. It’s useless to find a new statement that is
implied by the statement you want to prove; you need to find a new statement that
implies the statement you are trying to prove. In other words, when trying a proof in
reverse, you’re always looking for statements that are sufficient for something you’ve
already stated. Except for this one important difference, reverse reasoning is similar to
forward reasoning.

Sometimes you can attempt a proof by a combination of forward and reverse
reasoning. If you are fortunate, your two partial proofs will meet in the middle, and then
you have a complete proof.

By the way, do not confuse the idea of reverse proofs with the method of indirect
proof. Indirect proof is a valid rule of inference in which you assume the negation of
what you’re trying to prove. In a reverse proof, you start with the statement you’re
trying to prove, but you certainly are not assuming this statement!

(4) Definition Unraveling: This is a fairly simple process that can sometimes
make a difficult-looking proof very easy. When the statement you are trying to prove
involves defined words or symbols, it’s always legitimate to replace them with whatever
they are defined to mean. This usually makes the statement longer but may make it
easier to understand, since you have replaced some words or symbols with simpler ones.
Sometimes, you may be able to repeat this process two or more times, until the original
statement has been unraveled into one involving only very basic symbols. At that point,
you may see that the statement is one that is easy to prove; it may even be a tautology.
Note that unraveling the statement you want to prove is a type of reverse reasoning.
Unraveling statements that you are using in a proof—assumptions, axioms, previous
theorems, and so on—is a type of forward reasoning. Both processes are quite legal.

As we see in Chapter 5, this procedure is very useful in basic set theory, a subject
in which definitions tend to be used more than axioms. Often, in order to prove a
biconditional involving sets, all you need to do is unravel all the defined symbols on
both sides of the biconditional, and it then turns out that the two sides are logically
equivalent.
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(5) Trying Special Cases: This is an extremely important technique used by all
successful mathematicians when they get stuck on a proof or problem of any sort. Most
students do not realize how important it is; the sooner you learn to appreciate it and use
it fully, the better off you will be. The idea is that most statements that are to be proved
begin with at least one universal quantifier (even if it’s not explicitly stated). So if you
don’t see how to prove the statement for an arbitrary value of whatever variable, first
try to do it for one or more particular values. Although this can’t constitute a complete
proof, it’s amazing how often doing some simple special cases provides enough insight
to enable you to do the problem in full generality.

Example 1: Suppose you are asked to prove a statement of the form “Given any
point in the domain of a real-valued function of several variables, ... .” This statement
contains at least three variables (f for a function, # for the number of variables of f, and
¢ for a point in the domain of f), which are understood to be universally quantified. If
you don’t see how to prove the statement, it may be because it’s hard to visualize things
in higher dimensions. So perhaps you should first try to prove it when n =1, the
simplest possible special case. If that works, you might then try » = 2, and if that works
also, perhaps you can see how to do it for arbitrary n. What if you can’t do it for n=1?
Don’t panic; there are other variables to specify. Within the special case n = 1, you
might try the proof for a simple particular function like f(x) = ¥%, f(x) = x, or even
f(x) = c. You might even want to choose a specific number for c.

Example 2: Suppose you are asked to prove some geometric statement involving
an arbitrary triangle. Geometry problems can be very difficult. Instead of beating your
brains out over the full problem, why not try it for a few very special triangles, like
equilateral ones and isosceles right triangles. If you succeed with those, you might then
try it for all right triangles and/or all isosceles triangles, or you might tackle the general
problem.

Typically, when you succeed with one special case, you then try a more general
or a harder special case (or the whole problem). But when you can’t do one, you then
try a more specific or a simpler special case.

No serious mathematician ever gives up on a problem or proof without trying at
least one or two special cases, where applicable. The limitation “where applicable™ is
necessary because some statements have no variables from which to form special cases;
but these statements are a minority. A mathematics instructor can do his students a
service by refusing to help them with proofs until they have at least looked at a couple
of special cases. But why lay this responsibility on your teacher? Establish this practice
on your own!

(6) Trying a Simpler Problem: This is related to the trying special cases, but can
be quite different. Suppose you are asked to prove something about any 3 by 3 matrix.
If you first try it for some particular 3 by 3 matrix, that’s a special case. But what if you
first try it for some particular 2 by 2 matrix or perhaps all 2 by 2 matrices? This could
not be called a special case of the problem, because 2 is not in any sense a special case
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of 3. (That is, 3 is not a variable.) It’s just a different problem. What you are asked to
prove may not be true for or even apply to 2 by 2 matrices. But if it does, you might find
it’s much easier to see what’s going on with 2 by 2 matrices, and solve the problem for
those. Then the insight gained from that may help you do the 3 by 3 version. This
technique is not quite as powerful as the use of special cases, but it’s still useful.

Suggestions for Further Reading: The references listed at the end of Chapter 2
all include some coverage of the major ideas of this chapter: formal systems, proofs,
rules of inference, and so on. So do Stoll (1979) and Wilder (1965). For an in-depth
treatment of the method of mathematical induction, see Sominskii (1961). For
elaboration of the discussion in Section 4.6, you are encouraged to read the lucid
observations on mathematical insight in the classic works by Polya (1945, 1954, and
1965).
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Chapter 5

Sets

5.1 Naive Set Theory and Russell’s Paradox

It can be a challenge to convince people that set theory is a profound and important
branch of mathematics. That’s because most students get a taste of sets in high school
or even earlier, and at that level what’s done can seem simpleminded and pointless.
Don’t be fooled. Set theory (like algebra, another subject that many people think is
limited to the high school level) is full of fascinating and deep problems that have
stumped many of the world’s greatest mathematicians.

Naive Set Theory

The concept of sets in mathematics is quite recent, dating back only to about 1870. The
essential idea of set theory is that any collection of objects of any sort that you can list
or clearly describe may be considered to form a set. This principle is usually called the
axiom of comprehension.

The other elementary principle of set theory is that a set has no other characteristics
than being a collection of things. In other words, if two sets have exactly the same
members, then they must be equal because there’s nothing else that could distinguish
them. This is called the axiom of extensionality.

Notation: You have probably already seen most of the basic notation for
describing sets, but let’s go over it anyway.

If an object x is in a set 4, we say that x is an element or a member of 4, which
is written x € A. (The symbol for set membership is a modified Greek epsilon.)

We use capital letters, usually from the beginning of the alphabet, to denote sets.
Note that the expression on the right side of a membership statement must always
denote a set, but the expression on the left side can denote any type of object.

The standard way of denoting a set is to show its members in braces: { ... }. If we
want to define a set that consists of a small, finite number of members, we can just list
them inside the braces. This is called the roster method of denoting a set.

Example 1: {1,3,5,7,9} denotes the set of all odd natural numbers less than 10.

133
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A variant of the roster method can be used when a set has many elements. If we
wanted to denote the set of all odd natural numbers up to 999, it would be absurd to list
all those numbers. But if we write {1, 3, 5, 7, ... , 999}, the meaning is clear enough.
This type of notation is acceptable. Furthermore, we could write {1,3,5,7, ..} asa
perfectly clear notation for the set of a// odd natural numbers. Thus even infinite sets can
be shown with the roster method, provided that the meaning of the ellipsis is clear.

Note the reference to infinite sets. A rigorous definition of the words “finite” and
“infinite” must wait until Section 7.5. In the meantime, a working definition may be
helpful. Informally, we can say that a finite set is one that can be defined by the roster
method, with no ellipsis. Alternatively, a finite set is one with no elements, or with n
elements for some natural number #. “Infinite” simply means “not finite.”

In the other method of denoting a set with braces, called set-builder notation, the
elements are described instead of listed. The usual way to do this is to show a variable
followed by a vertical line or a colon and then a proposition that shows what has to be
true for something to be in the set.

. Example 2: To denote the set of all odd natural numbers by the set-builder
method, we can write

{x | x is an odd natural number} or

{x|ImeNx=2n-1)}

We read the first notation “the set of all x such that x is an odd natural number.” The
second can be read “the set of all x such that x =2n - 1, for some n inN.”

Set-builder notation can sometimes be shortened by restricting the variable to a set.
So another way to write this same set would be

{x € N'| x is odd}

Of course, if we maintain our convention that the letter n is restricted to natural
numbers, then the same set can be written simply as {n | n is odd}.

Also, it’s sometimes very convenient to use set-builder notation with the vertical
line or colon preceded by an expression, rather than just a single letter. For example, the
shortest and “neatest” notation for the set of all squares of natural numbers is

{n*|neN}
Technically, this is an abbreviation for the more cumbersome notation
{x|3IneN (x=n?)}

Every finite set can be described by either the roster method or set-builder notation.
But for infinite sets, set-builder notation is more useful than the roster method. By the
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way, it’s only in set-builder notation that a vertical line or colon is used as an
abbreviation for “such that.” Some mathematicians use the symbol 3 as an abbreviation
for these words in other contexts.

0"  Here is a crucial thing to learn about set-builder notation: suppose that a
set has been defined by set-builder notation, say 4 = {x | P(x)}. Then for any x, it
follows that x € 4 iff P(x). This is simply the definition of this notation, and you don’t
need any theorems to justify this biconditional. Similarly, if A = {xeB | P(x)}, then it’s
understood that x € A iff x € B and P(x), for any x.

Example 3: Suppose that 4 = {x € R | tan x > 5}, and we know that some number
u is in A. Of course, we can then write # € {x € R | tan x > 5}, but this is rather
cumbersome and can be stated much more simply by saying tan > 5. You should leam
to make this translation automatically.

In the notation {x | P(x)}, the variable x should be considered bound, not free. That
means it can be replaced by any other letter, so {x | P(x)} = {u | P(4)}, and so on. Such
a replacement is often necessary to avoid having the same variable be free and bound
at the same time.

Example 4: Suppose that for any real number y, we define 4, to be {x jx<y-2}.
So A, = {x|x< 1}, and so on. But what if we are considering a real number x? We can’t
say that 4, = {x | x <x - 2}. Rather, we have to change the dummy variable x; for
example, we could write 4, = {z |z <x - 2}.

When set theory was invented, it was based completely on the axioms of
comprehension and extensionality, and it’s still based intuitively on the same two
principles. However, as we soon see, this simple approach had some severe problems.
For this reason, this early form of set theory is now called naive set theory. Here are
the axioms of naive set theory, in symbols.

Extensionality: A=B «* Vx(x€ A <> x€ B)

Comprehension: For any proposition P(x), the set {x | P(x)} exists.

Remarks: (1) In these axioms, and in this unit generally, the variables x, y, and
2 are not assumed to be restricted to real numbers; they can have any domain. In the
extensionality axiom, x should be considered an unrestricted variable, ranging over all
possible objects.

(2) Some authors call our extensionality axiom the definition of set equality.
There’s nothing wrong with this approach, and it does not differ from ours in any
essential way.
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(3) The comprehension axiom establishes the existence of any set of the form
{x € 4| P(x)}, since that’s the same as {x|x € 4 and P(x)}. This limited version of the
comprehension axiom, in which the variable x must be restricted to a set, is called the
axiom of separation.

Here are three definitions that illustrate the use of set-builder notation. The first
two define important number systems that are intermediate between the systems N and
R. Note that we have not defined N and R. Instead, we have taken them to be primitive
and included axioms for them; this automatically means they must be undefined. Other
approaches to the development of number systems are considered in Chapter 9.

Definition: A real number is called an integer iff it can be written as the
difference of two natural numbers. The set of all integers is denoted Z. In symbols,

Z={n-m|mneN}
An alternate way of describing Z is given in Exercise 13.

Definition: A real number is called rational if it can be written as a quotient of
two integers. The set of all rational numbers is denoted Q. In symbols,

Q={a/b|a,beZand b * 0}

Note that the last two definitions illustrate the use of set-builder notation with an
expression other than a variable before the vertical line, as discussed earlier in this
section.

Definitions (intervals): In what follows, the letters a and b denote specific real

numbers (normally with a < b), and x also stands for a real number:

(a,b) = {x|a<x<b}

[a,b] = {x|asx<b}

(a,b] = {x|a<x<b}

[a,b) = {x|a<x<b}
The first type of set is called an open interval, the second a closed interval, and the last
two half-open intervals (less frequently, half-closed intervals). When it is important
to make a distinction between intervals of the forms (a, b] and [a, b), the terms open-
closed interval and closed-open interval are sometimes used.

The following notations are used to describe what are called unbounded intervals
or rays (open or closed):

(@) = {x|x>a}
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[a,») = {x[x2a}
(- b) = {x|x<b)
(-, 0] = {x|x< b}

When using this notation, it is important to bear in mind that « and -< do not denote
real numbers. The fact that these symbols always appear next to a parenthesis, never a
square bracket, is intended to emphasize this fact. These symbols simply indicate that
a certain set of real numbers has no end, either in the positive or the negative direction.
The notation (-, «) is also used occasionally. But since this is just another way of
denoting R, it is not particularly useful.

Usually, intervals and interval notation refer to sets of real numbers. But they can
be considered in any context where the inequality symbols have meaning.

The Paradoxes of Set Theory

What went wrong with naive set theory? You might guess that such a simpleminded
theory, with these two very trivial-looking axioms, might have the drawback of not
being powerful enough in the sense that it might not be possible to prove any interesting
theorems from them. Surprisingly, the opposite is true. Naive set theory is foo powerful;
in fact it’s inconsistent, meaning that it leads to contradictions. Several people
discovered this about 1900, when the new subject was only a couple of decades old. The
various forms of this contradiction in set theory are called paradoxes, but this word
doesn’t really convey the severity of the situation. A paradox usually refers to an
apparent contradiction that can be straightened out with careful thought. The paradoxes
of naive set theory have no solution, except to change the theory substantiaily.

Here is the simplest and most blatant paradox of set theory, usually credited to the
great English philosopher and logician Bertrand Russell.

Theorem 5.1 (Russell’s Paradox): Naive set theory is inconsistent; that is, it
leads to a contradiction.

Proof: The proof is amazingly short; the core of it is a single use of the
comprehension axiom, to form the set of all sets that are not members of themselves. In
symbols, let

A={B|B¢B}

Then we simply ask whether 4 is a member of itself! If A € A, then by the
definition of 4, 4 ¢ A. On the other hand, if 4 ¢ 4, then since 4 is a set, we must have
A € A. So we have proved 4 € 4 <> 4 ¢ A, which is a contradiction. ®

A popularized version of Russell’s paradox is known as the Barber’s paradox.
In a certain town there is a single barber, who is a man. The barber shaves all men in the
town who do not shave themselves, and only those men. This sounds plausible, but the
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question is: Does the barber shave himself? There is no consistent answer to this
question. If he does, he doesn’t, and if he doesn’t, he does.

The discovery of the paradoxes of naive set theory threw the foundations of
mathematics for a loop. A mathematical theory that leads to contradictions is of no use.
If a subject as simple looking as this could be inconsistent, what assurance is there that
other branches of mathematics are consistent? And if there is no such assurance, who
can guarantee the soundness of conclusions made in science and engineering on the
basis of mathematics?

As a reaction to this development, many scholars in the early part of this century
attempted to fix set theory, reformulating its axioms to achieve a consistent theory that
would still be productive. A careful examination of the paradoxes of set theory leads to

Bertrand Russell (1872—-1970) was not primarily a mathematician
but continued an ancient tradition of philosophers making important
contributions to the foundations of mathematics. He was born into a
wealthy liberal family, orphaned by the age of four, and then raised by
his grandmother and tutored privately.

There are two mathematical contributions for which Russell is
remembered. One was his discovery of the inconsistency of naive set
theory, as discussed in this section. The other was a monumental task
that occupied him for over a decade: the three-volume Principia
Mathematica, written with his former professor, Alfred North
Whitehead, and completed in 1913, This work was the manifesto of
the logicist school of thought, one response to the crisis in the
foundations of mathematics that was precipitated by the paradoxes of
set theory.

As a philosopher, Russell is considered one of the major figures in
the modem analytical school. He was a prolific writer and wrote many
books intended for the general public, notably the best-selling 4
History of Western Philosophy (1950), for which he won the Nobel
Prize in Literature.

Outside academic circles, Russell is probably best known for his
political and social activism. During World War , his pacifism led to
his dismissal from Trinity College and a six-month prison sentence.
Many decades later, he vehemently opposed nuclear weapons, racial
segregation, and the U. S. involvement in Vietnam. He advocated trial
marriages and sexual freedom as early as the 1930s, a position that
caused a court of law to nullify a faculty position that he had been
offered by the City College of New York in 1940.
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the conclusion that the full comprehension axiom is the culprit because it is just too
general. Therefore, the revised set theory that is currently used keeps the original
extensionality axiom, but replaces the comprehension axiom with about a half dozen
more specific rules postulating the existence of various sets. The most widely used
version of modern set theory was developed by Emst Zermelo (1871-1953) and
Abraham Fraenkel (1891-1965) and is called Zermelo-Fraenkel (ZF) set theory. We
will not be discussing ZF set theory in this book. However, our set axioms (group IV
in Appendix 1) are essentially the axioms of ZFC set theory (Zermelo-Fraenkel set
theory plus the important axiom of choice, which is discussed in Section 7.7).

Did Zermelo and Fraenkel achieve their goal of creating a consistent version of set
theory? Surprisingly, the answer to this is not known, and in a certain sense can never
be known for sure! One of the reasons that set theory is important is that, with some
esoteric possible exceptions, all of current mathematics can be carried out within the
framework of ZFC set theory. Therefore, knowing the consistency of set theory would
essentially be the same as knowing the consistency of mathematics. However, one of
the most amazing and significant discoveries in the history of mathematics, known as
Godel’s incompleteness theorem, states that the consistency of a “reasonable”
mathematical theory cannot be proved without using postulates that go beyond that
theory. Therefore, the consistency of set theory simply can’t be proved using standard
mathematical principles. The best that can be said is that nearly a century of experience
with ZFC set theory has not produced any contradictions, and there is every reason to
believe that it provides a consistent framework for mathematics.

Exercises 5.1

(1) Rewrite the following sets using the roster method.
(@) {neN|n*<36}
(b) {r*|neNandn<6}
() {xeR|sinx=x}
(d) {s|sisaNew England state}
(e) {x€ Z | Ix|is prime and even}

(2) Rewrite the following sets using set-builder notation.
(@ {1,4,9,16,25,..., 10,000}
®) {1,4,9,16,25,...}
(c) {-2,4,-8,16,..}
(d) {a,e,i,0,u,y}
(e) {6,17,92}

(3) Which of the following sets are equal to each other?
(@ {1,2,3}
® {3,2,1}
© {1,2,3,1.0}
(@ {xeR|1<x<3}
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(e) {neZ|n*=1lorn*=4orn’=9}
H {(neN|n+7<11}

@ {V1.v4,/9)

(4) Let A={2"|xeRandx’-x=17}.
(a) Rewrite 4 inthe form {y|...}.
(b) Rewrite 4 in the form {x|...}.
(c) Rewrite {2°|x € Rand x* - x = 0} using the roster method.

(5) Let A = {x + 3| x is a real number that equals its tangent}. Which of the
following statements are true, if any? Explain your assertion.
(@) ForanyxinR,x€ 4 iff x=tanx.
(b) ForanyxinR,xe 4 iff x+3 =tan (x+3).
(c) ForanyxinR,xe 4 iff x - 3 =tan (x - 3).

(6) Rewrite the following sets in interval notation:
(@ {xeRlx<17}
® {xeR|x>-2andx<-1}
() xeR|x250r-x<-2}
(d) {xeR|x*<9}
(e) {xeR||x+3| <4}

(7) Rewrite the following sets using set-builder notation or the roster method:

@ (-1,7) ®) (-=0) © [5,5]

(8) True or false (with brief explanation):
(@ 3€[3,7] (®)3€(3,7)
(©) 3¢€[5,2] (d) 3€[3,3)
(e) -~ € (-=,127) (f) o0 € [, 127]

(9) For each of the following statements, determine whether it’s true or false in
@) N, (i) Z, (i) Q,and (iv) R. Give brief explanations. (All in all, this exercise has
twelve true/false questions. For some guidelines for this type of problem, refer back to
Example 6 of Section 3.3.)
@) Vx,yIz(x-y=y'-2)
(b) Vx,y[x2yorIz(x<z<y)]
© Fwy@E-y'=2)

(10) Using the extensionality axiom, prove that set equality satisfies axioms III-1,
I11-2, and I11-3 (with the variables in those three axioms changed to set variables).

(11) Prove that the set form and the statement form of mathematical induction are
equivalent to each other. You may use the axioms of naive set theory as well as all logic
and equality axioms.
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*(12) Here is an example of a “semantic paradox” known as Berry’s paradox. Let 4
be the set of natural numbers that can be defined by English phrases less than sixty
syllables long. (Examples of such phrases that define natural numbers are “the fifth
smallest prime number,” “the number of days in a week,” and so on.) Since there are
only a finite number of such phrases in English, 4 is finite. Therefore there are natural
numbers that are not in 4. Let n be the smallest natural number not in 4.

Now consider the phrase “the smallest number that cannot be defined by an
English phrase of fewer than sixty syllables.” This phrase has fewer than sixty syllables
and defines the number n. Therefore, n € 4, which is a contradiction.

Try to explain this paradox. That is, try to explain the flaw in the argument; there
should be one since it should not be possible to prove a contradiction from scratch. The
explanation is based on subtle philosophical considerations, rather than a technical point
or trick. By the way, the problem does not lie with the last sentence of the first
paragraph. As we will soon see (Theorem 5.6), if there is a natural number with a certain
property, then there is a least one.

*(13) (a) Define the set Z' to consist of all natural numbers, negatives of natural
numbers, and zero. In symbols,

Z'={xeR|xeNor(-x) e Norx=0}

Prove that Z’ = Z. Therefore, this is a correct alternate way of defining integers.
(b) Using part (a), deduce that IN is the set of all positive integers.

(14) Let P(n) be a statement with a free integer variable n. Suppose that we are able
to prove P(0) and Vn [P(n) implies P(n + 1) and P(n - 1)]. What would be the logical
thing to conclude from this? Prove your claim. You may use the result of the previous
exercise.

Critique the proofs in the remaining exercises. (If necessary, review the instructions
for this type of problem in Exercises 4.2.)

(15) Theorem: If a, b, ¢ and d are real numbers with a < b and ¢ < d, then
[a,b]=[c,d] iff a=candb=d.
Proof: Assumea, b,c,dc R, a<b,andc<d.

For the forward direction, assume [a, b] = [¢, d]. Since a < a < b, the definition of
intervals tells us that a € [a, b]. So, by extensionality, a € [c, d]. By definition of
intervals, this implies that ¢ < a. Similarly, we know that c € [c, d}, hence ¢ € [a, b], and
therefore a < c. From the inequalities ¢ < a and a < ¢, it follows (as in Exercise 26,
Section 4.4) that a = c.

A nearly identical argument shows that b = d.

For the reverse direction, assume a = ¢ and b = d. By Theorem 4.7 applied to a =,
we get [a, b] = [c, b]. The same theorem applied to b = d yields [c, b] = [c, d].
Therefore, by transitivity of equality (axiom III-3), [a, b] = [c, d].
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(16) Theorem: Let 4 and B be any sets, P(x) any proposition, C = {x € 4 | P(x)}
and D= {x € B|P(x)}. Then, 4 =B iff C=D.
Proof: Assume A = B. Then Theorem 4.7 immediately implies that C= D. By
the same reasoning, if C = D, then 4 = B.

5.2 Basic Set Operations

Despite the fact that naive set theory is inconsistent, it turns out that as long as you avoid
defining sets that are too big, naive set theory works quite well and does not seem to
lead to any contradictions. And the more correct modern axiomatic set theory is much
more complicated. So most mathematicians use naive set theory unless they are trying
to be extremely careful and/or formal; they leam through experience how to use it
safely. We take this approach, and you should feel free to do the same for most of your
dealings with set theory.

It’s impossible to give an ironclad set of guidelines for what to avoid when using
naive set theory, but here is the most important one.

Rule of Thumb (When Using Naive Set Theory): Do not try to define the set
of all sets or a set that involves all sets in its definition (such as the set defined in the
proof of Russell’s paradox). Any such definition will probably lead to a contradiction.

At times it is convenient to talk about the “class” of all sets. As long as classes of
this sort are not allowed to be members of sets, paradoxes do not seem to arise. In
contrast, there is no difficulty in defining the set of all real numbers, the set of all sets
of real numbers, the set of all people who have ever lived, the set of all particles in the
universe, and many other sets that might seem very big. If this restriction seems strange
and esoteric, don’t be concemed; it’s not something you have to worry about very often.
Instead, let’s spend the rest of this section on some simple and familiar operations
involving sets, which are shown in standard Venn diagram form in Figure 5.1.

Definitions: (a) The union of any two sets A and B, denoted 4 U B, is the set
{x|xeAorxeB}

(b) The intersection of any two sets A and B, denoted 4 N B, is the set
{x|x€Aandx € B}

(¢) The relative complement of 4 in B (or the complement of 4 relative to B),
denoted B - 4, is the set

{x|xe Bandx ¢ 4}
(d) The empty set or null set, denoted @, is the set with no members.

(e) Two sets are called disjoint if their intersection is empty.
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Figure 5.1 Venn diagrams illustrating basic set operations

Remarks: (1) The idea of a set with no members may seem odd at first, but it’s
a harmless and very useful concept. Also, unless we want to restrict the axioms further,
there must be such a set. For example, {n € IN | n <n} is empty. Note that extensionality
guarantees that any two empty sets are equal. In other words, there’s only one of them,
so mathematicians normally refer to the empty set.

(2) Notice that we’ve defined relative complement as opposed to just complement.
That’s because when people talk about the complement of a set, they always mean a
relative complement—relative to some set that’s understood. For example, suppose
A=[1,3]={x| 1 s x < 3}, which is an interval on the real number line. If you then see
a reference to the complement of 4, it almost certainly means the complement of 4
relative to R, whichis {x|x <1 orx > 3}.

But now suppose there were a reference to the complement of the set {2, 17, 984}.
Would that mean the complement of this set relative to N? To Z? To R? Or perhaps
relative to some other set? Unless the context made things clear, the reference would be
quite ambiguous. Worse yet, suppose we were considering a set like {6, -2.7,
Shakespeare, Canada}. Would it make sense to talk about the complement of this set
without saying what it is relative to? Not at all.

Y ou might wonder why we can’t define the absolute complement of a set, meaning
simply the set of all objects (with no restriction) that are not in the set. The reason is that
doing so quickly leads to a contradiction similar to Russell’s paradox. In particular, the
absolute complement of the null set would have to contain all sets. With these
considerations in mind, we establish the following convention.

Convention: Suppose that, during a certain discussion, it is understood that all
sets being considered are contained in some particular set U. Then it’s permissible to
write A’ or 4 (called the complement of 4 or 4 complement) as an abbreviation for
U - A (see Figure 5.2). The set U may be called the universal set for the purposes of
the discussion. But remember that the idea of a universal set is just a temporary
convenience. There is no such thing as the universal set.
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Figure 5.2 Venn diagram illustrating the complement of a set 4

Here is a sample of the many elementary results that hold for these basic operations
on sets. This subject is sometimes called the algebra of sets.

Theorem 5.2: For any sets 4, B, C, and D,
(@) AUB=BUA4
() ANB=BNA4
(c) AUBUC)=(4UBUC
d ANBNC)=ANBNC
(e) AUBNC)=(4UBNUUC)
6 ANBUC)=ANBUUNC)
(® A-BNC)=1-BUU-C)
h) A-BUC)=A-B)NMA-C)
(i) ANB-C)=ANB)-(ANC)
Proof: We just prove a couple of parts here. The rest are very similar and are left
for the exercises.
(@) The usual way to prove two sets are equal is via the extensionality axiom. So
we want to show

vx(xe AUB © xe BUA)

To start, assume x € 4 U B. By the definition of union, that means x € 4 or x € B.
But this is equivalent to x € B or x € A. So, by the definition of union, x € B U4. We
have thus proved x € 4 UB — x € BU 4. The proof of the converse is similar. Since x
is arbitrary, extensionality yields that A UB =B U 4.

(e) As with part (a), the main step here is to prove a certain biconditional. But
instead of doing that as two separate implications, let’s do it as a single proof, a shortcut
that was mentioned in the discussion of the biconditional rule:
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xeAUBNC) & xedorxe BNC Definition of U
> xcdor(xe Bandxe C) Definition of N
> (xedorxeB)and(xe Aorx € C) Tautology 30
—+ xedUBandxe 4UC Definition of U
> xeUBNEUUC) Definition of N

SoxedUBNC) « xeAUB)N (U C). Again applying UG and
extensionality, the two sets must be equal. ®

The result of Theorem 5.2(e) is also illustrated in Figure 5.3. Although a picture
can never constitute a rigorous proof, a careful Venn diagram can be a pretty reliable
way to determine whether a statement of elementary set algebra is necessarily true.

The first six parts of Theorem 5.2 strongly resemble various field axioms (group
V in our axiom system). Parts (a) and (b) say that U and 1 are commutative, (c) and (d)
say that these set operations are associative, and (e) and (f) are distributive laws.
Although there is some connection between set algebra and real number algebra, set
algebra is more closely connected with propositional logic. The following theorem
illustrates this connection further.

Theorem 5.3: Assume that 4 and B are both contained in some particular set U,
and let 4’ and B’ be abbreviations for U - 4 and U - B. Then
(@) AN4'=0
() AUA4'=U
(c) 4UB)' =4'NB" (DeMorgan’s law for sets)
(d) ANB) =4'"UB' (De Morgan’s law for sets)
() A-B=4ANB’
(f) A'-B'=B-4
(g) ) =4
Proof: We just prove part (c), leaving the rest for the exercises. Our proof'is very
similar to the proof of Theorem 5.2(e), except that we now let the variable x have the
set U as its domain.

xe(AUB)Y <> xeAUB Definition of
> ~(xeAdorxeB) Definition of U
« x¢A and x¢B De Morgan’s law
«— x€Ad' and xeB' Definition of ’
« xe A'NB’ Definition of N

Applying UG and extensionality to this yields (4UB)' =4'NB'". ®

Remarks: (1) By now, you should be getting the idea of how to prove two sets
are equal. In general, if you want to prove A = B using the extensionality axiom, you
must prove x € A <> x € B (where x is arbitrary). In simple cases, this biconditional can
often be proved without splitting it up, as we’ve done in the previous two cases (and



146 Chapter 5 Sets

Figure 5.3 Venn diagrams illustrating Theorem S.2(e)

could have done in Theorem 5.2(a)). In more complex cases, it’s often necessary to split
the biconditional up into two implications and prove each one separately.

(2) The proofs in this section don’t have much content; they could be described
as mostly definition unraveling, as discussed in Section 4.6. That is, if you look at the
proofs so far in this section, each one simply rewrites the symbols U,N, - ,and "’ in
terms of their definitions, and then uses one tautology to establish the desired
biconditional. Of course, the extensionality axiom is also used, and in an indirect sense
so is the comprehension axiom. But it’s typical of basic set algebra that the proofs
involve mostly definitions and propositional logic. The connection between set algebra
and propositional logic can be made a bit more precise, as follows: every theorem of set
algebra stating that two sets must be equal is, after unraveling the definitions of the set
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symbols, equivalent to some tautology. This connection is the basis of a branch of
mathematics called boolean algebra (see Exercise 16).

(3) Also, you may have noticed that many parts of Theorems 5.2 and 5.3 occur in
pairs of similar-looking statements. This duality, as it’s called, is also a basic aspect of
boolean algebra (see Exercise 17).

Subsets, Proper and Otherwise

Definitions: We say that 4 is a subset of B (in symbols, 4 < B) iff every element
of A is in B. Also, 4 is a proper subset of B (4 c B) iff Ac Band 4 # B.

It is permissible to write B2 4 and B > A to mean 4 c B and 4 < B, respectively.
Normally, these reversed symbols and the associated word “superset” are used only
when there is some specific reason to do so. For instance, it is simpler to say “every
superset of A than “every set of which A is a subset.”

Here are a few simple results involving these concepts.

Theorem 5.4;: (a) Ac A4
b) A« A4
(¢) oc4
d ocd «>A4+0
() AcBandBcC = AcC
() A=B «> AcBandBc A
(g A#B < A-B)UB-4)+*0
(h) AcB <> AcBandB¢ A4
Proof: Again, we prove only two parts and leave the rest for the exercises.
(¢) By definition, @ < 4 means Vx (x € @ —* x € A). Let x be arbitrary. By

definition of @, x € @ is automatically false, and therefore the conditionalx € @ = x € 4
is automatically true.

(¢) This has already been proved in Proof Preview 2 (Section 2.3), so we do not
repeat the argument. ®

The word “subset” might give the impression that a set would not be a subset of
itself. But as you can see, the definition is written in such a way that every set is a subset
of itself.On the other hand, no set is a proper subset of itself. For emphasis,
mathematicians may say that every set is an improper subset of itself.

Be careful to keep the grammar of these symbols straight. The symbols € and c are
predicate symbols; that means that x € A and 4 ¢ B are complete statements that can
stand alone or be combined using connectives and quantifiers. On the other hand, U, N,
-, and ' are operator symbols. So expressions like 4 UB, 4 1 (B - C), and so on, are
terms denoting sets, nof statements. For example, it is grammatically impossible to have
a line in a proof that just says 4 U B. Exercise 1 tests your understanding of the grammar
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of set theory. Also, proving some of the parts of Theorem 5.5 should provide good
practice with these symbols.

Phrases like “contains” and “is contained in” are used ambiguously by
mathematicians. We have already used the latter phrase to mean <, and this is probably
how it is used most frequently. But it can also be used to mean €. Fortunately, the
ambiguity is not too serious because the context almost always makes it clear which
meaning is intended.

Theorem 5.5: (a) A< AUB
() A=AUB < Bc 4
(c) ANBc A
(d A=4ANB < AcB
(e ANB=AUB < 4=B
() AcBNC <> AcBand4dcC
(8) AUBcC < AcCandBcC
Proof: (b) For the forward direction, assume 4 = A4 U B. We want B c 4, so
assume x € B. (Note we’re doing a conditional proof within a conditional proof.)
Therefore, x € A or x € B, by propositional logic. So x € 4 U B, by definition of U. Thus
x € A, by the first assumption. Since x was arbitrary, we’ve shown that B < 4, as desired.
For the reverse direction, assume B = 4. We want 4 =4 U B, which by Theorem
5.4(f) says A< AUBand 4 UB c A. We have just shown 4 c 4 U B in part (a). For the
other part, assume x € 4 UB.SoxcAdorxeB.Butsince Bc 4,ifx € B, thenx € 4.
Therefore we can conclude that x € A. Since x was arbitrary, we’ve shown 4 UBcA4,
and so we obtain 4 = AU B.
The proofs of the other parts are left for the exercises. ®

Now that we know more about sets, we can prove an important consequence of
mathematical induction.

Theorem 5.6 : Every nonempty set of natural numbers has a /east element.

Proof: We prove this by induction, but we must carefully phrase what we are
proving. Let P(n) be the statement “Every set that contains a natural number less than
or equal to n contains a least natural number.” Note that P has a quantified set variable,
but the natural number variable 7 is free in it. We wish to prove Va P(n), by induction.

Let n = 1. By Theorem 4.16(a), 1 is the least natural number. So if a set contains
a natural number less than or equal to 1, it contains 1, which is the least natural number
in the set.

Now assume P(n), and let 4 be any set that contains a natural number less than or
equal to n + 1. We must show that 4 contains a least natural number. In the case that
n + 1 is the least number in A, we are of course done. If not,let B={meAd|m<n+1}.
The set B contains natural numbers that are less than n + 1, and therefore, by Theorem
4.16(c), equal to or less than n. Thus we can apply the induction hypothesis to B; so B
contains a least natural number, which is also the least natural number in 4.
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This completes the proof of Vn P(n). The theorem easily follows: if 4 is a
nonempty subset of N, then there is some natural number in 4. Let n be such a number
(by ES). Using P(n), we conclude that 4 contains a least natural number. ®

Theorem 5.6 can be used in conjunction with indirect proof to prove statements by
what is sometimes called the “no least counterexample” method (see Exercise 8).

Theorem 5.6 states an important property of IN that fails for many other number
systems and ordered structures. In particular, it fails with the word “natural” replaced
by “real.” (For instance, Z is a nonempty subset of R with no least member; so is R
itself.) An ordering relation with the property described in this theorem is called a
well-ordering. In other words, the theorem asserts that N is well ordered and is
sometimes called the well-ordering property of N (see Exercises 16 through 18 of
Section 6.3). Assuming a few basic properties of N, the well-ordering property of N
is equivalent to mathematical induction, and is sometimes used as an axiom instead of
induction.

The Sum Rule for Counting

Set theory can be extremely abstract, but it also deals with many problems that are very
concrete. In particular, the study of finite sets is closely related to counting problems,
problems whose goal is to determine the number of members in some finite set. The
following counting formula is quite simple to understand (though not to prove
rigorously), and yet is surprisingly useful.

Theorem 5.7 (Sum rule for counting): Let 4 and B be finite sets, with m and n
members, respectively.
(a) If A and B are disjoint, then 4 U B has m + n members.
(b) More generally, if 4 N B has k members, then 4 U B has m +n - k
members.
Proof: Rather than providing an extremely informal proof of this result now, we
prove it rigorously in Section 7.6, where we examine counting problems in depth, ®

Clearly, part (b) of this theorem makes part (2) superfluous. We state part (a)
separately because it is such an important special case. Part (a) easily generalizes to
three or more sets. It is more complicated to generalize part (b), as the next example
illustrates.

Example 1: Mudville High has three varsity teams. The table tennis team has 13
members, the Ultimate Frisbee team has 21 members, and the boomerang team has 16
members. How many varsity athletes are there? The obvious answer is 50, but this is
wrong if there is duplication on the teams. Suppose there are 11 students who are on
more than one team. Can we conclude that there are 39 athletes? This would also be
wrong if there are people who play on all three teams. Exercise 12 asks you to
investigate this further and find the correct formula.
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We conclude this section with an overview of the most direct ways to prove basic
relationships between sets.

Table 5.1 Summary of How to Prove Statements about Sets
(1) To prove a statement of the form 4 c B, assume that x € 4 (where x is
arbitrary) and show that x € B.
(2) To prove a statement of the form 4 = B, prove both 4 ¢ Band B c 4.
(3) To prove a statement of the form 4 ¢ B, find a member of 4 that is not in B.
(4) To prove a statement of the form 4 < B, prove 4 ¢ Band B ¢ 4.

(5) To prove a statement of the form 4 # B, prove 4 ¢ B or B ¢ A. That is, find an
element of either set that is not in the other one.

Exercises 5.2

(1) Classify each of the following expressions as either (i) a grammatically correct
statement, (ii) a grammatically correct expression denoting a set, or (iii) grammatically
incorrect and therefore meaningless. Assume that 4, B, and C are set variables and P and
Q are propositional variables.

(@ AUBcC () AUBc )

() A< B (@ @UB)=P

(e) PUQ—P ) xeA)U(xeB)

(& PNAUBcC (h) {xed|BU{x}<CINC

(i AUBedANC
(2) Prove any two parts of Theorem 5.2 that were not proved in the text.
(3) Prove any two parts of Theorem 5.3 that were not proved in the text.
(4) Prove any two parts of Theorem 5.4 that were not proved in the text.
(5) Prove any two parts of Theorem 5.5 that were not proved in the text.

(6) For each of the following statements, either prove that it is true for all sets or
find a counterexample to show that it is not. Also, in parts (a) and (b), if the statement
is not always true, at least try to prove that one side must be a subset of the other side.

(@) AUB-C)=AUB)-(4UC)  (Note this resembles Theorem 5.2(i)).
b U-BUU-C)=4-BUC)

(c) AcBiff 4-B)=0

(d A4cBUC) iff AcBordcC
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(7) True or false (with brief explanations):
@ RU[3,7 <R
®) [1,4U@3,61=[1,9)N[2,6]
(C) [13 6] - [2" 5] . [15 2] U [5’ 6]
(@ [3,61U[6,8]=[3,8]
(e) 3,6)U(6,8)=(3,8)
® R-Q-N)=RUN)-Q

(8) Suppose we want to prove a statement of the form Vn P(n). If we want to use
indirect proof, what do we assume? From that assumption, what can we assert to exist?
Then, using Theorem 5.6, how can we strengthen this assertion? Often, this last
assertion easily leads to a contradiction.

(9) Reprove Theorem 4.9 by the method outlined in Exercise 8. You may use
Theorem 4.16, which does not require Theorem 4.9 in its proof.

(10) (a) Prove that N c Z.
*(b) Prove that Z ¢ Q. Hint: Show that 1/2 is not in Z.

(11) Ata meeting of the Swampscott Phrenology Club, 37 members are present. Of
these, 13 are wearing glasses, 8 are wearing sandals, and 20 are wearing neither glasses
nor sandals. According to the sum rule, how many must be wearing both glasses and
sandals?

(12) (a) Investigate the situation described in Example 1. If you wish, stick to the
numbers in that example, but try various possibilities for the number of athletes on each
pair of teams and the number on all three teams. On the basis of your results, conjecture
a formula for the total number of athletes in terms of the number on the individual
teams, the number who are on more than one team, and the number who are on all three
teams. You might find Venn diagrams helpful for your investigation.

(b) Assuming your formula from part (a) is correct, derive a formula for the
number of elements in the union of any three finite sets 4, B, and C, in terms of the
number of membersin4, B, C,ANB,ANC,BNC,and ANBNC.

*(c) Carefully compare Theorem 5.7(b) and the formula you found in part (b)
of this problem. Then try to describe (in words) how to calculate the number of elements
in the union of four or more finite sets, in terms of the number of elements in the
individual sets and the number of elements in the intersections of combinations of those
sets.

Critique the proofs in Exercises 13 and 14. (If necessary, review the instructions
for this type of problem in Exercises 4.2.)

(13) Theorem: Let a, b, and ¢ be real numbers with a < b < c. Then

(@, H)U (b, ¢)=(a, ).
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Proof: For the forward direction, assume x is any member of (a, b) U (b, c).
Then x is either in (a, b) or in (b, ¢), and we may proceed by cases. Case 1: Assume
x € (a, b). That means a < x < b. But from x < b and b < ¢ we obtain x < ¢, by
transitivity. Therefore, a <x < c; this says that x € (a, ¢). Case 2: Assume x € (b, ¢). That
means b < x < ¢. But from » < x and a < b, we obtain a <x. Thus, a <x <ec.

For the reverse direction, assume x is any member of (@, c¢). We again proceed by
cases. Case 1: Assume x < b. Since x € (g, ¢), we also have a < x. Thus a <x < b; so
x € (a, b). This implies that x € (a, b) U (b, c). Case 2: Assume x > b. We also have
x < c. Thus b < x < ¢; s0 x € (b, ¢). This implies x € (a, b) U (b, ¢).

(14) Theorem: If4 c B and B c C, then4 c C.
Proof: Assume A c B and B c C. By the definitionof ¢, 4 c Band 4 * B.
From 4 c B and B ¢ C, we have 4 < C, by Theorem 5.4(¢). We must also show 4 # C.
So assume, on the contrary, that 4 = C. Then B c C becomes B 4. So we have 4 ¢ B
and B c 4, which yield 4 = B, by Theorem 5.4(f). This contradicts the fact that 4 » B.

(15) For any sets 4 and B, define 4 A B, the symmetric difference of 4 and B, to
be the set (4 - B) U (B - 4). Prove.
(a) Commutativity of A: AAB=BAA
(b) Associativity of A: A A (BA C)=(4 A B) AC
(c) The empty set is an identity for A: AA@=4

(d) Eachsetis its owninverse forA: AA4=0
(e) Ndistributes over A: ANBAC)=ANB)AANC)

*(16) Remark 2 after Theorem 5.3 mentions a strong connection between set algebra
and propositional logic. We now make this more precise. Consider any statement of set
algebra that does not contain quantifiers or the symbols €, -, or c. (Most of the results
in Theorems 5.2 through 5.5 fit this description.) Turn the statement into a statement of
pure logic by making the following replacements: change UtoV,Nto A,=to <>, c to

—, @ to any contradiction, U (the universal set if one is being used) to any tautology,
o ~, and finally, every set variable to a propositional variable. You might also need
to put in some parentheses to keep things grouped the way they were originally. Then,
the original statement is a valid theorem of set algebra iff the new statement is a
tautology.

(a) Transform each of the following results in the manner just described, and
verify that the new statement is a tautology: parts (a) and (f) of Theorem 5.2; parts (a),
(b), and (d) of Theorem 5.3; parts (c), (¢), and () of Theorem 5.4; and parts (b), (c), and
(f) of Theorem 5.5.

(b) Using our list of tautologies (Appendix 3) and the transformation process
of part (a) in reverse, find at least two correct theorems of set algebra that have not been
given in Theorems 5.2 through 5.5. Be careful, because not every tautology corresponds
to a grammatically meaningful statement of set algebra; for example, tautology 12 does
not.
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(c) Figure out how to extend the above transformation process to include
statements of set algebra that also contain the symbols - and c.

*(17) Remark 3 after Theorem 5.3 mentions the duality principle of Boolean Algebra.
For set algebra, this may be stated as follows. Consider any statement of set algebra of
the type described in Exercise 16, except that it may also contain the symbol <. Form
a new statement of set algebra in this way: change every U to [ and vice versa; change
every @ to U and vice versa; and wherever a ¢ or < occurs, switch the expressions on
the left and right sides of the symbol. The new statement is called the dual of the
original. Then the original is a valid theorem iff its dual is valid.

(a) Explain why the dual of the dual of any statement is the original statement.
In other words, if Q is the dual of P, then P is the dual of Q.

(b) Identify at least five dual pairs of statements in Theorems 5.2 through 5.5.

(c) Itis possible for a statement to be its own dual. Find three such statements.

(d) Using the ideas of this exercise and the previous one, describe how to
define the dual of any statement of propositional logic.

5.3 More Advanced Set Operations

Set theory gets much more complicated when it starts dealing with sets of sets. A set
of sets is often called a collection or a family of sets. Collections of sets are the main
topic of this section. One simple way to define a set of sets is to start with any set and
then consider the set of all the subsets of the original set. This process is so important
that it deserves a name:

Definition: The power set of any set A is the set of all subsets of 4, denoted ©(4).
In symbols,

P(4)={B|BcA}.

Note that ©(4) is automatically a set of sets, no matter what kind of set 4 is. Working
with power sets can take some care, as the following examples illustrate.

Example 1: Let’s figure out the members of £(4), where 4 = {4, 7}. Clearly, 4
has one subset with two elements (itself), two subsets with one element, and one subset

with no elements. Therefore, ©(4) = {@, {4}, {7}, {4, 7} } (see Figure 5.4).

Braces within braces are tricky at first, but with some practice you will find them
familiar and easy to work with.

Example 2: What would ©(@) be? Well, what are the subsets of @? Does it have
any subsets? Yes, it has one—itself. Therefore, £(@) = {@}. It’s important to see that
{@} is not the same as @. The set @ has no members, while {@} has one member.
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Figure 5.4 A simple set and its power set

Example 3: To carry this a step further, let’s find the elements of £(©(2)). By
Example 2, that has to be ©({@}). So what are the subsets of {@}? Well, this is a set
with one element, so it must have two subsets: @ and the whole set. In other words,

P(P(2)) = {2, {2}}-

The following theorem is helpful for keeping track of the number of elements in
a power set and explains the origin of this term. It is also the first instance in this book
of an induction proof that begins at n = 0 instead of » = 1. We mentioned in Section 4.5
that this is allowed, and Exercise 14 asks you to justify it.

Another complicating feature of this induction proof is that the theorem seems to
be about sets more than it is about integers or natural numbers. Integers are mentioned
in the statement of the theorem only to measure the number of elements in a set. It is
fine to try to prove such a statement by induction, but it is usually necessary to have P(n)
be the statement that the theorem is true for all sets with n elements. That will be our
approach here. To put it another way, these theorems are basically about all finite sets.
But rather than try to prove them for all finite sets at once, we prove them by induction
on the number of elements in the set.

Theorem 5.8: If a set 4 has n elements, where # is any nonnegative integer, then
£(4) has 2" elements.

Proof: We prove this by induction on », starting at 0. For n = 0, the only set with
0 elements is @. We know that (@) = {@}, which has one element. And since 2°= 1,
the theorem holds for n=0.

For the induction step, assume the theorem holds for every set with # elements, and
let A be any set with n + 1 elements. Pick any particular element of 4, and call it ¢. [This
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step is justified by ES.] Let B=A - {c}. Note that B has n elements. Let’s count the
subsets of 4. A subset of 4 either contains ¢ as a member or it doesn’t. The subsets of
A that don’t contain ¢ are precisely the subsets of B, and so by the induction hypothesis
there are 2" of them. Furthermore, if D is any subset of B, then D U {c} is a subset of 4
that contains c. It is also easy to see that every subset of 4 that contains c is of this form.
Therefore, there are also 2" subsets of 4 that contain c.

So the total number of subsets of 4 is 2" + 2", which equals 2" as desired. ®

Remarks: (1) This is probably the least formal proof in this book up to this point.
You could try to prove this theorem more formally, but it is difficult to do so without
using material from Chapter 7. Specifically, the argument in the third paragraph of the
proof, and in fact the rigorous notion of what it means for a set to have n elements, are
based on the concept of a one-to-one correspondence. Also, the definition of exponents
is an inductive definition. But for most purposes, our proof is fine; it certainly conveys
the main idea of why the theorem is true. A different approach to this proof is given in
Theorem 7-17(d).

(2) Note that Examples 1 through 3 are of course consistent with Theorem 5.8:
a set with 0, 1, or 2 elements must have (respectively) 1, 2, or 4 subsets.

(3) From Exercise 11 of Section 4.6, plus the fact that 0 < 2°, we know that n < 2"
for any nonnegative whole number #. It follows that for every finite set 4, £(4) has
more elements than 4 does. Theorem 7.26 shows, by a famous and ingenious argument,
that this fact also holds for all infinite sets.

Here are a few basic results involving power sets:

Theorem 5.9: For any sets 4 and B:
(a) ®ANB)=0A)NO(B)
(b) A=B < P4)=0(B)
() Ac B <« P(4)< ©(B)
(d) AcB < 0(4)cO(B)
Proof: (a) Ce ®(ANB) «» CcANB
< CcAandCc B By Theorem 5.5(f)
> CeQ(4)and Ce O(B)
« Ce PUA)NOB)

(b) If A = B, then ©(4) = ©(B) by Theorem 4.7. For the reverse direction, assume
©(4) = O(B). Since 4 ¢ 4 and thus 4 € £(4), it follows by axiom I11-4 that 4 € ©(B).
Therefore A c B. Similar reasoning shows B ¢ 4. By Theorem 5.4(f), 4 = B.

(c) and (d) See Exercise 6. ®

Indexed Families of Sets

Now let’s consider more general sets of sets than just power sets. In theory, no special
notation is needed to describe sets of sets. We could just begin a discussion or a proof
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with a statement such as “Let 4 be a collection of sets.” However, certain notation for
sets of sets has come into general use. For one thing, to distinguish them from ordinary
sets, sets of sets are usually denoted by capital script letters. For the most part, we follow
this practice.

It is also common, when describing a collection of sets, to denote the individual
sets in the collection with a subscripted variable called an index. So a mathematician
might define sets 4, for each natural number 7, and then define the collection of all these
sets A4,. In this type of situation, the set N (that is, the set over which the subscript
ranges) is referred to as an index set for the collection of sets, and the collection itself
is called an indexed family of sets.

Example 4: For each n in N, let 4, be the closed interval [n, n + 1/n]. So
A,=[1,2],4,=[2,2.5], and so on. Then we can define an indexed family of sets .7 by

o=1{d4,|neN}

It is important to see that & is not a set of real numbers. It is a set of sets of real
numbers. That is, &is not a subset of R or a member of @(R); rather it’s a subset of
P(R) and an element of ®(P(R)). You might be tempted to think of the collection ./ as
an infinite sequence of sets rather than a set of sets. This is a plausible alternative view
of the situation, and it becomes the preferable way to view indexed families when the
order of the sets in the family is important or it is desirable to allow repetition of sets
in the family. See Example 6 of Section 7.4.

N is not the only possible index set. Any set can be one. Here’s an example where
the set of real numbers is an index set.

Example 5: For each real number c, let
L={xy)|xeRandye Randy=cx}

Then we can define &/= {L. | c € R}. Graphically, you can see that L, is a straight line
of slope ¢ through the origin, in the xy plane. So &/ can be thought of as a set of lines in
the plane (see Figure 5.5).

When an unspecified set is used as an index set, the letter / or J is usually used for
the index set, and i or j (respectively) is usually used as the subscript. By the way, even
though we are restricting our attention to indexed families of sets, it is permissible to
define indexed families of any kind of mathematical object.

Unions and Intersections of Collections of Sets

We’ve discussed the familiar operations of forming the union and intersection of two
sets. By repeating these, it’s a simple matter to form the union and intersection of any
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Figure 5.5 Illustration of Example 5: a family of sets indexed by R

finite number of sets. We now define the important notions of the union and intersection
of an arbitrary (and so, possibly infinite) collection of sets.

Definitions: Let .« be any set of sets. Then the union of &7 or the union over ./,
denoted | J A or simply U7 is the set
Aey
{x|34 e A (x€ A)}

The intersection of 7 or the intersection over 5 denoted (| A or simply N
is the set Aew

{x| V4 e (xed)}

Unless there is a universal set in the discussion, & must be nonempty for the second
definition to make sense. The simple notations Us7and Mo introduced here are found
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in most set theory books but for some reason are rarely used by mathematicians other
than set theorists. The longer notations are more common.

Notation: When working with an indexed family of sets, yet another notation is
used for its union or intersection. If &/= {4, | i € I}, then the most common notation for

the union of &is | J4 , » and similarly for the intersection of .
i€l

Take the time to see that these definitions say what they ought to. The union of .o/
consists of all things that are in at least one of the sets in the collection .%/ so it consists
of all the sets in & “put together.” Similarly, the intersection of & consist of all things
that are in all the sets in the collection &

It was mentioned earlier that the quantifiers 3 and V are related to the connectives
“or” and “and,” respectively. The definitions of union and intersection of .27, together
with the definitions of ordinary unions and intersections, are a good illustration.

Example 6: Let o7 be as defined in Example 4. Then the set U/ could also be
denoted |J 4,. While 7is not a set of real numbers, U/ is; it’s a set consisting of an
neN

infinite number of intervals. The set .7 is also a set of real numbers, namely @.

Example 7: Let & be the collection defined in Example 5. Then N.&/= {(0,0)},
since the origin is the one point common to all the lines L . Exercise 5 asks you to
describe the set UsZ

Example 8: Here is the definition of the Cantor set, also known as Cantor’s
discontinuum. This set of real numbers is important in higher mathematics, and you
will almost certainly encounter it again. To define the Cantor set, start with the closed
unit interval [0, 1]. Then define sets 4, as follows:

Let 4, be the open interval (1/3, 2/3).
Let 4, = (1/9,2/9)U (7/9, 8/9).
Let 4, = (1/27, 2/27) U (7/27, 8/27) U (19/27, 20/27) U (25/27, 26/27).

To see the pattern here, note that 4, is the middle third of the original interval, 4,
consists of the two middle thirds of what’s left of the original interval after removing 4,,
and so on (see Figure 5.6). Continuing in this way, we define sets 4, for every natural
number n. (This definition can be made more algebraic and precise, if desired.) The
Cantor set is then defined to be

0,11- U4,

neN
Exercises 18 through 20 deal with some of the interesting features of the Cantor set.
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Figure 5.6 The first three or four stages in the construction of the Cantor set

Unions and intersections of infinite families of sets are sometimes called infinitary
operations, as opposed to ordinary finitary operations. Most results about the finitary
operations have infinitary analogs. Here are a few of these: see if you can figure out
which parts of Theorems 5.2 and 5.3 the results of the following theorem are related to.

Theorem 5.10: Let B be any set, and &= {4, | i € I'} any family of sets. As usual,
when we use the symbol ’, it means complement relative to some specified universal set.

(2) BU (nA,) = N®BU4)

el el
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@)Bﬂ(UAJ = U@na)

el fel

© U4 =N,

1€l el

@ (N4, =Uu)H

1€l el

(e) Foreachie I, 4,c |J4,

1154

(f) Foreachi€el, ()4, < 4,

154

Proof: (a) xe BU (ﬂA,) “+ xeBorxe (ﬂA,)
1€l 13
«+ xeB or Viel(xe4)
— Viel(xeBorxe4d) By law of logic 17 ( Figure 4.2)
> Viel(xe BUA)
~xe(1BU4)

34

(e) Leti € I be arbitrary. If x € A4, then clearly Jie I (x € 4), so x € UAi.

el

Therefore, 4,c | J4 .

1el

The proofs of the other parts are left for the exercises. ®

We have called parts (c) and (d) of Theorem 5.3 De Morgan'’s laws for sets. Similarly,
parts (c) and (d) of Theorem 5.10 may be viewed as set versions of De Morgan’s laws for
quantifiers.

Exercises 5.3

(1) List all the members of:
(@ f({1,2,3}) (d) ({2, {2}})
() O(P({e})) (@) 0({1,3,51)Ne({56,7})
(&) P({1,2,3}) - ©({1,3})

(2) True or false, with brief explanation:
() 3eb@) (b) {3} e 6()
() {31 (@) {2} € &({{e}})
(e) ®(ZN(Q2,4)={o, {3}}
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(3) Characterize each of the following statements as always true, always false, or
sometimes true and sometimes false. Explain briefly.

(a) A€ O(A) (b) 4 c O(4)
(c) ANBe®UAUB) (d) ©(4) - ©(B)=B - 4
(e) O(P(4)) € P(O(P(4))) (H) ©(4 - B)NOB - 4)={o}

(4) Prove whichever of the following equations are true for all sets. For each one that’s
not always true, try to prove that one side is a subset of the other, and give a counterexample
to the other direction. If neither side must be a subset of the other, give a counterexample
to both directions.

(@) PAUB)=0)US(B)  (Compare with Theorem 5.9(a).)
(b) ©(4 - B)=0(4) - ©(B)

(c) UoU)=4

@ eUw)=w

(5) Referring to Examples 5 and 7, give a simple geometric description of U/
(6) Prove parts (c) and (d) of Theorem 5.9.
(7) Prove Theorem 5.10(b).
(8) Prove Theorem 5.10(c).
(9) Prove Theorem 5.10(d).
(10) Prove Theorem 5.10(f).

(11) For eachn € N, let 4, be the interval [2™, 2'™"). Give a simple description of the
set [0, 1] - |J 4, . Explain briefly.

neN

(12) LetB= {(x,y) |y =x}, where x and y are real variables. For each real number r,
let 4, = {(x,y) | ¥ +y*=r"}. Then {4, | r € R} is a family of circles indexed by R.

(a) Note that using R as the index set causes most of the circles in this indexed
family to be repeated. This is allowed but may cause needless confusion. Name two smaller
index sets that can be used to define the same collection of circles without any repetition. On
the other hand, it is occasionally useful to allow repetition of sets in an indexed family.

(b) What is the union of all the 4,s?

(c) Describe BN 4,.

(d) Verify that Theorem 5.10(b) holds in this case.

(13) Let 4 =(0, 1) and B = (0, 1]. Forany C < Randy € R, let C + y be the set
{x +y|x € C}. Thatis, C + y is the set C shifted or translated y units. Describe the
following sets in words or in more concise mathematical notation.

(a) U 4+n) b) U (B+n)

neN neN
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© U@+x @ U@+

x€A x€B

(14) (a) Justify the use of induction proofs that start at 0 instead of at 1, as in Theorem
5.8. That is, prove

[P(0) A Vn 20 (P(n) = P(n + 1))] = VYn=0P(n)

where 7 is an integer variable.
*(b) Generalizing part (a), show that an induction proof can start at any integer .
That is, prove

[P(k) AVn 2k (P(n) = P(n+1))] = Vn2kP(n)

where n and k are both integer variables. Hint: Let Q(n) be the statement P(z + 1 - k). Also,
you may use the result of Exercise 13 of Section 5.1.

(15) This problem illustrates a natural situation where you might do an induction proof
beginning at a number other than 0 or 1: suppose that you want to prove that some property
holds for all polygons. It might be natural to attempt this by induction on the number of
sides.

(@) In such a proof, what would be the initial value of n (represented by £ in
Exercise 12(b))?

(b) For what class of polygons would you first have to show the result?

(c) State carefully what the induction step would be.

(16) Mathematicians often say things like “Let & be a collection of nonempty disjoint
sets.” From this, which of the following can you conclude?
(a) Each set in &7is nonempty.
(b) Each set in &is disjoint.
Carefully explain the difference between parts (a) and (b). To avoid this subtle linguistic
confusion, it is more precise to say, “Let & be a collection of nonempty, pairwise disjoint
sets.”

(17) Critique the following well-known and entertaining proof. It is included here
because it is similar to the proof of Theorem 5.8. (If necessary, review the instructions for
this type of problem in Exercises 4.2.)

Theorem: All horses are the same color.

Proof: By induction on n, we prove that, given any set of n horses, they are all
the same color. Clearly, this implies all horses are the same color. For n =1 (or n =0 if we
choose to start there), the statement is trivial. So assume the statement holds for n, and let
A be any set of n + 1 horses. Let ¢ be any horse in 4. By the induction hypothesis, all the
horses in 4 — {c} are the same color. Let k be any other horse in 4. Again, all the horses in
A - {k} are the same color. So ¢ and  are both the same color as all the other horses in 4.
Therefore, all the horses in 4 are the same color, as desired.
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*(18) Prove that the Cantor set (Example 8) consists of all numbers in [0,1] that have a
base 3 expansion with no 1’s.

*(19) Prove that the Cantor set contains no intervals. You may use the result of Exercise
18.

*(20) Prove that the Cantor set contains no isolated points. (A number x is an isolated
point of a set 4 of real numbers if x € 4 and for some ¢ > 0, no other number between x - ¢
andx+cisin4.)

Suggestions for Further Reading: For a more complete treatment of basic set
theory, see Stoll (1979), Suppes (1960), or Vaught (1995). Devlin (1993) is a good text
at a somewhat higher level. Most logic and set theory books discuss paradoxes,
including the paradoxes of set theory; Kline (1982) does so in more detail than most.
Many authors have attempted to capture the brilliant essence of Godel’s incompleteness
theorem, including Nagel and Newman (1958), Hofstadter (1989), and Smullyan (1992).
For more information about the subject of boolean algebra, see Pfleeger and Straight
(1985), Rueff and Jeger (1970), or Stoll (1979). The first two of these cover important
applications of boolean algebra such as switching theory.



Chapter 6

Relations

6.1 Ordered Pairs, Cartesian Products, and Relations

In this chapter, we study the important subject of binary relations. This section is
devoted primarily to definitions of basic concepts, and Sections 6.2 and 6.3 discuss two
useful types of relations. The single most important type of relation, functions, is
covered in Chapter 7.

In Chapters 6 and 7, several concepts are defined in two different ways. The first
version is always a rather nontechnical or intuitive one, and the second is a more
rigorous one involving sets. Some books give only one of the two definitions in each
case, but it’s more educational to see both approaches.

Section 5.1 mentions that virtually all mathematical concepts can be defined and
developed in terms of set theory. Even numbers (including natural numbers, rational
numbers, real numbers, and so on) can be defined as special types of sets. All
mathematicians are aware of this set-theoretic approach to mathematics but generally
find it artificial and prefer not to think of relations and functions (let alone numbers!)
as types of sets. Also, remember that set theory is only a hundred years old, whereas the
study of numbers and functions is much older. So most of the fundamental ideas of
mathematics are not based on set theory. On the other hand, the set-theoretic approach
is very useful for proofs and theoretical work. So you can see why you should learn both
approaches to these basic concepts.

Definition (intuitive): For any two objects a and b, the ordered pair (a, b) is a
notation specifying the two objects a and b, in that order.

Definition (set-theoretic): For any two objects a and b, the ordered pair (g, b)
is defined to be the set {{a}, {a, b}}.

Perhaps you can see why neither definition of ordered pairs is totally satisfactory.
The intuitive definition is not a rigorous mathematical definition, any more than it would
be to define a natural number as a sequence of digits. That sounds fine at first, but a
number is definitely not the same thing as the numeral used to denote it. On the other
hand, the set-theoretic definition is very strange looking and conveys none of the

164
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intuitive meaning of what an ordered pair is. For these reasons, many mathematicians
view the concept of ordered pairs as an undefined, primitive notion.

There are just two important properties of ordered pairs. The first is that you can
form the ordered pair of any two objects whatsoever. The second is the familiar
condition for equality of ordered pairs:

(a,b)=(c,d) iff a=candb=d
These properties appear as set axioms IV-4 and IV-5 in Appendix 1. However, if the
set-theoretic definition of ordered pairs is used, these axioms are provable and therefore

superfluous (see Exercise 7).

Definition: For any two sets 4 and B, their cartesian product is the set of all
ordered pairs whose first member is in 4 and whose second member is in B; in symbols,

AxB={(x,y)|xeAandy € B}

René Descartes (1596-1650), from whose name the word
“cartesian” is derived, was an extremely important figure in the
development of modern mathematics and philosophy. As a child his
health was poor, and he developed a lifelong habit of spending his
momings in bed, thinking and writing. At the age of eighteen his life
entered a less intellectual phase, including a short period of heavy
gambling and several years of intermittent military service.
Fortunately, inspired in part by three vivid dreams in 1619, Descartes
quit the military and devoted the rest of his life to academic pursuits.

Descartes’s major mathematical achievement was the invention of
analytic geometry: the system whereby equations can be graphed and,
conversely, geometric figures can be analyzed algebraically. The
importance of this contribution to mathematics—a two-way link
between symbolic entities (equations and inequalities) and pictorial
entities (straight lines, circles, parabolas, and so on)—would be
difficult to overestimate. This achievement also strongly influenced his
philosophical views, notably that “pure reason,” of a mathematical
sort, was the correct path to truth and knowledge. His famous
conclusion, “Cogito, ergo sum” (“I think, therefore I am”), also
emphasized the importance of the individual and rationality.

Descartes was deeply religious, but his emphasis on the individual
and reason was not consistent with the views of the Catholic Church.
For this and other reasons, he spent the second half of his life away
from his native France, mostly in Holland.
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Figure 6.1 = A simple cartesian product

You have been using cartesian products since eighth or ninth grade, whether or not
you have called them that. Every time you draw a graph in an ordinary two-dimensional
rectangular coordinate system, the coordinate system allows you to represent ordered
pairs of real numbers on paper. In other words, the coordinate system turns your piece
of paper into a picture of the cartesian product R x R.

In the notation 4 X B, the % is normally pronounced “cross” (not “times” or “ex”),
and a cartesian product may also be called a cross product. But there is absolutely no
connection between this notion and vector cross product. However, there is a definite
connection between cartesian products and ordinary multiplication, as we now see.

Theorem 6.1: If 4 and B are sets, with m and » members respectively (m, n 2 0),
then A x B has mn members.

Proof: This proof can be done by a straightforward induction on either m or n
(starting at 0), and we leave it for Exercise 9. ®

Example 1: Let 4= {1, 2,3} and B= {7, 2}. Then 4 x B is the set {(1, 7), (1, 2),
2,7),(2,2),3,7), (3, 2)}. Note that 4 x B has six ordered pairs and that we have listed
them in a systematic manner (see Figure 6.1).

Example 2: Suppose a certain T-shirt comes in sizes small, medium, large, and
extra large and in colors red, blue, green, orange, and purple. If we write
A4={S,M, L, X}and B={R, B, G, O, P}, then 4 x B consists of 20 ordered pairs.
These ordered pairs may be viewed as representing all the possible choices of size and
color for this type of shirt. Figure 6.2 is a tree diagram illustrating this situation.
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Figure 6.2 Tree diagram for Example 2

Is cartesian product a commutative operation? In other words, does 4 * B=B x 4
in general? It’s pretty clear that the answer is no. For instance, in Example 1, 4 x B
contains (2, 7) but not (7, 2), whereas B x 4 contains (7, 2) but not (2, 7). And we know
that (2, 7) # (7, 2). So A x B and B x A are different as sets of ordered pairs. On the
other hand, Theorem 6.1 at least guarantees that if 4 and B are finite sets, then 4 x B and
B x 4 must have the same number of elements.

Is cartesian product an associative operation? In other words, does
(4 x B) x C=A x (B x C), in general? Once again, the answer is no, but in this case the
difference between the two cartesian products is often insignificant. For instance, let
A=B=C=N. Then (4 x B) x C contains ((2, 7), 9), while 4 x (B x C) contains
(2,(7,9)). Does (2, 7), 9) = (2, (7, 9)) ? Technically, no, but in many situations, it might
as well. This discussion leads us to the concepts of ordered triples, ordered n-tuples, and
cartesian products of more than two sets.

Definitions: For any three objects a, b, and c, the ordered triple (a, b, ¢) is
defined to be ((a, b), ¢).
For any sets 4, B,and C,4 x Bx C={(a,b,c)|a€ 4, be B,andc € C}.

Remarks: (1) These definitions represent a somewhat arbitrary choice:
technically, (a, b, ¢) means ((a, ), c), not (a, (b, ¢)). And 4 X B x C means (4 x B) x C,
not A x (B x C). But as the previous discussion indicates, this distinction can often be
ignored.

(2) These definitions can be extended to define ordered n-tuples and cartesian
products of any number of sets. These would be so-called inductive definitions. In other
words, if we have already defined what (a,, a,, ..., a,) means, then we can define
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(a,, ay, ..., a,,) to be ((a, a,, ..., a,), a,,). And if we have already defined what
A, x A, % ... x 4, means, we can then define the cartesian product 4, X 4, X ... X 4,,, to
be (4, X 4, % ... x 4,) * A,,,. Inductive definitions are studied in Chapter 7. (One often
writes A% for 4 x A, A> for A x A x A, and so on.) Theorem 6.1 generalizes to cartesian

products of three or more sets (see Exercise 10).

(3) Theorem 6.1 is the basis for an extremely useful formula called the
fundamental counting principle or the product rule for counting. Recall Example
2. In that situation, there are four possibilities for the size of a shirt and five possibilities
for the color. To select a shirt, a person must decide on both size and color. Theorem 6.1
says that the number of possible ways to make this sequence of decisions is 4 x 5, or 20.
Like Theorem 6.1, this formula can be extended to a sequence of three or more
decisions. In its general form, the product rule may be stated as follows:

U™ Suppose that it is required to make a sequence of k decisions. If there are
n, possible choices for the first decision, n, possible choices for the second decision, and
so on, then the number of possible ways to make the whole sequence of decisions is
mn,... N,

Relations

We’re now ready to define the major concept of this chapter. Once again, we give two
definitions, one intuitive and one set-theoretic. Neither one is particularly complicated.

Definition (intuitive): A binary relation is a statement with two free variables
(which are usually assumed to have specific sets as their domains, although the variables
may be unrestricted).

Definition (set-theoretic): A binary relation is a set of ordered pairs.

The word “binary” means “pertaining to the number two”; in the term “binary
relation” it refers to the fact that there are two free variables. Similarly, a ternary
relation is a statement with three free variables, or a set of ordered triples. In general,
an n-ary relation is a statement with » free variables or a set of ordered n-tuples. Also,
the term unary relation is occasionally used, but this is essentially just a fancy term for
a set or a subset of a specified universal set. Our primary interest is in binary relations,
and so we normally omit the word “binary” when discussing them. Another (equivalent)
way to give the set-theoretic definition of a relation is to say that it’s a subset of some
cartesian product.

Example 3: The intuitive definition of a binary relation describes what most
people would call a relationship between two things. For example, the statement that
one number is less than another is a binary relation. The statement that two numbers add
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up to 74 is a binary relation. The statement that one person is the father of another is a
binary relation.

You can see that both forms of the definition of binary relations are quite simple.
But it’s not so easy to see the connection between the two or why they are two
definitions of the same concept. Here is an example of how the two are connected.

Example 4: Let x and y be real variables. Then one simple type of relation (in the
intuitive sense) would be an equation, like x* + y* = 25. The set-theoretic counterpart of
this relation is then the set of all ordered pairs that satisfy the equation, or
{(x, ) | ¥* +y* = 25}. So it would include ordered pairs such as (0, 5), (-5, 0), (4, -3),
and so on. So when you graph an equation, you are really drawing a picture of the set
of ordered pairs corresponding to that equation. Some mathematicians prefer to say that
the equation is the relation, and the set of ordered pairs you get is not the relation but
rather the graph of the relation.

Given any statement with two free variables, it’s easy to form a set of ordered pairs
in this manner. (You might have to make an arbitrary choice of which variable will be
first and which second in the ordered pairs.)

Definitions: A subset of A x B is called a relation between 4 and B. Also, a
subset of 4 x 4 is called a relation on A.

Notation: The letters R, S, and T denote binary relations. We sometimes write xRy
as a shorthand for (x, y) € R.

Definitions: Given a relation R, the domain (respectively, range) of R is the set
of all objects that occur as a first (respectively, second) member of some ordered pair
in R. In symbols,

Dom(R) = {x | 3y (xRy)}
Rng(R) = {y | 3x (xRy)}

Note that the concept of the domain of a relation is somewhat different from the
concept of the domain of a variable, which we have been using since Chapter 3.

Example 5: Let R = {(3, 6), (8, 2), (1, 2), (0, 0), (-5, 3)}. Then R is clearly a
relation, that is, a set of ordered pairs. By inspection, Dom(R) = {3, 8, 1, 0, -5}, while
Rng(R) = {6, 2, 0, 3}.

Example 6: Again consider the relation on R defined by the equation x* +3* = 25,
Whether we consider this relation to be an equation or a set of ordered pairs, its domain
and range are both the interval [-5, 5]. How do we know this? The standard algebraic
method is to solve the equation for each of the variables. If this equation is solved for
y, it becomes y = % /25 - x2. Since negative numbers do not have square roots, this is
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possible if and only if x* < 25, which in turn means -5 < x < 5, or x € [-5, 5]. (Here we
are assuming that every nonnegative number has a square root.) Exercise 12 asks you
to show this more rigorously.

Example 7: Consider the “less than” relation on R, that is, {(x,y) | x,y € R and
x < y}. Its domain and range are both R. What does the graph of this relation look like?

Example 8: Let 4 be the set of all people who have ever lived, and let R be the
“parenthood” relation on 4; that is, R = {(4, v) | 4, v € A and u is a parent of v}. Then
Dom(R) is the set of all people who have ever had a child, while Rng(R) might be 4—
might be because whether one believes in evolution or in divine creation, there is some
question about whether the first humans are in Rng(R).

Inverse Relations

We conclude this section with a brief discussion of one of the most important ways of
forming new relations. This concept is of primary importance in Chapter 7.

Definition: If R is any binary relation, the inverse of R, denoted R™' and read
R inverse, is the relation obtained by reversing the order of all the ordered pairs in R. In
symbols,

R'={0, %) 1) €R)

This definition is given in terms of ordered pairs. If we are thinking of relations as
propositions, we can pretty much say that “inverse” means “reverse,” as the following
examples illustrate.

Example 9: Recalling Example 7, the inverse of the “less than” relation is
{® %) | », x € R and x < y}, which is the same as {(x, y) | x,y € R and x > y}. In other
words, the inverse of the “less than” relation is the “greater than” relation.

Example 10: Similarly, the inverse of the relation in Example 8 is {(, v) |u, v e 4
and u is a child of v}. Thus, the inverse of the “parent of ” relation is the “child of”
relation.

Example 11: Figure 6.3 shows several pairs of graphs of relations and their
inverses, involving real variables. Note that in each case the equation or other algebraic
statement for the inverse relation is obtained simply by switching the variables.
However, people often like to see graphs of equations solved for y, not x. For instance,
it might be preferable to transform the first inverse equation in Figure 6.3 into the
equivalent form y =+ yx + 5, using elementary algebra.
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Figure 6.3  Graphs of several relations and their inverses
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Observe (from Figure 6.3) that there is a basic geometric similarity between the
graphs of R and R™': For any relation R on R, the graph of R™! is obtained from the
graph of R by reflecting it across the line y = x. Note that we don’t get the inverse graph
from the original by a rotation; an actual reflection, or flip, is required.

Example 12: A relation can be its own inverse. Refer to Example 4.
We conclude this section with some simple facts:

Theorem 6.2: For any relation R:
(@ RY'=R
(b) Dom(R™") = Rng(R)
(c) Rng(R™") = Dom(R)
Proof: See Exercise 11. m

Another way of putting part (a) of Theorem 6.2 is that if S is the inverse of R, then
R s also the inverse of S. In other words, the property that one relation is the inverse of
the other is symmetric. So it is common to say simply, “R and S are inverses.”

Exercises 6.1

(1) LetR={(8,4),(-3,4), (2, 1)} and S= {(8,2), (2, 3), (8, 4), (=, 7)}. Find:

(a) Dom(R) (b) Rng(R)
(¢) Dom(S) (d) Rng(S)
© R ) RUS"
() Dom(RNS) (h) Dom(R) N Dom(S)
(i) Dom(RUS) () Dom(R) UDom(S)

(2) Graph the following subsets of RXR.
(a) The relation R of Exercise 1
(b) The relation S of Exercise 1
© {(y)|y=xorx=y%
@ {tx,y)|y=x"andx=y"}
© {x»)|y22xandx <3y+2}
® {C,»)|y=22xorx<3y+2}
(8 {(xy)|y=xandy »x}
h) {G,y)] [x] - Iy| =5}
(i) ny=3Inx
G {»|x*+y=4 or X+y*=0 or (x- 122+ -1?=0 or
(x+1/2*+(-12=0 or y = —y/1 - x?}. Hint: Have a nice day!

(3) Find the domain and range of each of the following relations on R. (The
variables x and y denote real numbers). As much as possible, use the method shown in
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Example 6. But you may need to resort to graphing or calculus. Justify your answers
with more than a graph.

(@ ¥+y'=7 ®) xy=1
(© |x|+1y[=5 @) |x+y|=5
(e) y=sinx+cosx @ £+e=0
(4) Let4={1,2,3} and B = {2, 5}. How many elements are there in these sets?
(a) ©(4xB) (b) O(4) x ©(B)
() UxB)-(4UB) (d) 4UB)- U UB)

(e) BxBxBXB

(5) Inthe country of Tannu Tuva, a valid license plate consists of any digit except
0, followed by any two letters of the alphabet, followed by any two digits.
(a) Let D be the set of all digits and L the set of all letters. With this notation,
write the set of all possible license plates as a cartesian product.
(b) How many possible license plates are there?

(6) The Fishskill Numismatics Club has 10 members. The club must choose a slate
of officers: president, treasurer, and secretary. How many possible slates are there, given
that:

(a) Two or more positions may be filled by the same person.
(b) The officers must be three different people.

(7) Using the set-theoretic definition of ordered pairs (and naive set theory), derive
axiom IV-5, the condition for the equality of ordered pairs.

(8) (a) Using the definition of ordered triples and the condition for the equality of
ordered pairs, prove that (x, y, z) = (4, v, w) iff x=u,y=v,andz=w.
(b) By induction, extend part (a) to the obvious condition for equality of two
ordered n-tuples (a,, a,, ..., a,) and (,, b,, ..., b,).

(9) Prove Theorem 6.1. Do not try to make the proof of the induction step very
rigorous; just make sure you do a careful count. Hint: You may want to refer to the
proof of Theorem 5.8, which has a similar flavor.

(10) Using Theorem 6.1 and induction, state and prove a generalization of Theorem
6.1 to cartesian products of any number of sets.

(11) Prove Theorem 6.2.

(12) Prove rigorously that the range of the relation {(x, y) | x, y € R and x* + y* =25}
is [-5, 5]. You may use the discussion in Example 6 as a starting point, and you may
assume without proof that every nonnegative real number has a square root. You may
also use Theorem A-11 of Appendix 2.
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(13) Prove that for any relations R and S:
(a) Dom(RU S)=Dom(R) UDom(S)
(b) Rng(RUS)=Rng(R) URng(S)

(14) Prove or disprove: for all relations R and S,
(@) Dom(R N S)=Dom(R) N Dom(S)
(b) Rng(RNS)=Rng(R) NRng(S)
(¢) Dom(R - S)=Dom(R) - Dom(S)
(d) Rng(R - §)=Rng(R) - Rng(S)
For any part that isn’t true, try to prove that one side is a subset of the other.

(15) Prove or disprove: VA,B,C (AxB=AxC iff B=C)

Critique the proofs in the remaining exercises in this section. (If necessary, refer
to Exercises 4.2 for the instructions for this type of problem).

(16) Theorem: For any sets 4 and B, Dom(4 x B) = 4 and Rng(4 x B) =B.
Proof: Let’s first show Dom(4 x B) = A. To do this, we must show each side
is a subset of the other. So first assume x € Dom(4 x B). Then, for some y, (x, y) is in
A x B. Thus x € 4. Conversely, assume x € 4. Then, for any y € B, we have that (x, y)
is in A x B. Therefore, x € Dom(A % B). This completes the proof that Dom(4 x B) = 4.
The proof that Rng(4 * B) = B is almost identical.

(17) Theorem: For any relations R and S:

(@ RUS)Y'=R'US"

® RNS)'=R'NS!

() R-8)'=R"'-8"

Proof: (a) For any objects x and y,

(x,y) e RUS)! iff (y,x) e RUS)
iff ), x)eRor(y,x)e S
iff (x,y)eR'or(x,y)e S
iff (x,y)eR'US™

By extensionality, we are done.
(b) and (¢) These arguments are almost identical to the argument for part (a).

6.2 Equivalence Relations

Definitions: A relation R is called

. reflexive on 4 iff Vx€ 4, xRx.
. symmetric iff Vx, y (xRy implies yRx).
. transitive iff Vx, y,z (xRy and yRz implies xRz).
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An equivalence relation on A is a relation on 4 that is reflexive on 4, symmetric,
and transitive.

It would be a good idea for you to take note of exactly where the phrase “on 4”
appears in these definitions and to try to see why it appears where it does. None of the
instances of this phrase can be casually deleted. On the other hand, mathematicians
sometimes call a relation R reflexive, with no reference to a set 4. Technically, this
means that R is reflexive on the set Dom(R) U Rng(R). Similarly, if we simply say that
R is an equivalence relation, we mean that R is an equivalence relation on Dom(R).
Exercises 5 and 6 are intended to clarify some subtleties in the above terminology, as
is the following:

Theorem 6.3: (a) R is reflexive iff, whenever (x, y) is in R, so are (x, x) and (y, y).
(b) If R is symmetric, then Dom(R) = Rng(R).
(c) If R is symmetric and transitive, then R is an equivalence relation (on the
set Dom(R)).
Proof: (a) and (b) See Exercise 10.
(c) Assume R is symmetric and transitive. By part (b), R is a relation on
Dom(R). We also must show that R is reflexive. By part (2), we just need to show that
xRy implies xRx and yRy. This is also left for Exercise 10. ®

Theorem 6.3(c) can be a time-saver. If we just want to show that R is an
equivalence relation, with no reference to a domain, then we don’t need to prove it’s
reflexive. In practice, the more usual situation is that we know R is a relation on some
set A4, and we want to show it’s an equivalence relation on 4. Then, besides proving
symmetry and transitivity, we must also show that Dom(R) = 4.

Notation: If R is known to be an equivalence relation, it is fairly common to write
x =y, x =y, orx~y instead of xRy. In fact, mathematicians sometimes use these
symbols to name equivalence relations, for example, “Let = be an equivalence relation.”

Example 1: There’s one equivalence relation that we’ve been working with since
Chapter 3, namely the identity, or equality, relation. The first three of our equality
axioms say that the relation x = y is reflexive, symmetric, and transitive. Hopefully, it
makes sense to you that equality is one way to define how things can be equivalent; in
fact it can be argued that equality is the simplest possible equivalence relation.

The one thing that’s a bit unusual about equality as a relation is that there’s no
particular domain for it. It can be thought of as a relation whose domain consists of all
objects. Another approach is to say that given any set 4, the equality relation, if
restricted to 4 x A, is an equivalence relation on 4.

Notation: The identity relation on a set 4 is denoted id,. In symbols,

id, = {(x,x)|xeA4}
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Example 2: The relation {(1, 1), (2, 2), (2, 3), 3, 2), (3, 3), (4, 4)} is an
equivalence relation on {1, 2, 3, 4}, as is easily verified (see Exercise 7).

Example 3: Let’s find all possible equivalence relations on the set 4 = {1, 2}.
This is simpler than it sounds. To be reflexive on 4, such a relation must include (1, 1)
and (2, 2). The only other ordered pairs it could contain are (1, 2) and (2, 1). And, by
symmetry, if it contains one of these, then it contains the other. So there are only two
equivalence relations on {1, 2}: one is id, and the other is 4 x 4. Exercise 19 asks you
to carry out more investigations of this sort.

Example 4: The “siblinghood” relation on the set P of all people who have ever
lived is an equivalence relation, provided that we agree that each person is to be
considered his or her own sibling. That is, let S = {(x, ¥) | x and y have the same
parents}, where x and y are people variables. It is then quite simple to verify that S is
reflexive on P, symmetric, and transitive. Similarly, let F = {(x, ) | x and y have the
same father} and M = {(x, ) | x and y have the same mother}. Then F and M are also
equivalence relations on P.

Example 5: On the other hand, consider the “half-siblinghood” relation, that is,
{(x,y) | x and y have at least one parent in common}. This is not an equivalence relation.
Can you see why?

Example 6: Similarity is an equivalence relation on the set of all triangles. Recall
that two triangles are similar iff they have equal angles. Alternatively, two triangles are
similar iff one is a scale model of the other (with a reflection, or flip, also allowed).
Similarity is also an equivalence relation on the set of all polygons. For polygons with
more than three sides, similarity is defined by the scale model idea, not by angles. The
definition using angles would still yield an equivalence relation, but it’s not called
similarity.

Example 7: Another equivalence relation on the set of all triangles or on the set
of all polygons is congruence. Recall that two polygons are congruent iff they have the
same angles and sides, in the same order (except that one can be clockwise and the other
counterclockwise). This is the same as saying that if one of the polygons were rigidly
constructed out of sticks, you could turn it into the other one just by moving the first
polygon and/or flipping it over.

Example 8: On the set R, the relation {(x, y) | x - y is an integer} is an
equivalence relation. More generally, let ¢ be any fixed real number, and replace the
words “is an integer” in this definition with the words “is an integer multiple of ¢.” Then
for each c, this is an equivalence relation, called congruence modulo c. The usual
notation for congruence modulo ¢ is x = y (mod c¢). This type of equivalence relation,
with ¢ being an integer, is extremely important in number theory. It is discussed further
in Section 8.3. By the way, congruence modulo ¢ has nothing to do with the geometric
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notion of congruence discussed in Example 7. But in general, when mathematicians
refer to any type of congruence or similarity, it always denotes an equivalence relation.

Example 9: There are many other ways to define an equivalence relation on R.
One is |x| = |y|, which is the same as saying x = £+ y. A somewhat more complicated
one would be sin x = sin y. These equivalence relations are examples of a very general
sort, and even though we have not studied functions yet, here is the general way such
equivalence relations are formed.

Theorem 6.4: If 4 is any set, and fis any function that is defined on all the
elements of 4, then the relation {(x, y) | f(x) =f(»)} is an equivalence relation on 4.

Proof: This theorem doesn’t take much proving. Since f(x) = f(x) in all cases, the
relation is reflexive. If f(x) = f(»), then f(¥) = f(x), so the relation is symmetric.
Transitivity is equally simple to show. ®

Note that Theorem 6.4 is derived directly from the fact that equality is an
equivalence relation. It says that any function defined on a set creates an equivalence
relation on that set. It turns out that a sort of converse holds: given any equivalence
relation R on a set 4, there’s a function f defined on 4 such that, for any x, y € 4, xRy
holds if and only if /(x) = f(y). (See Exercise 9 of Section 7.1.)

~ For instance, in Example 9, the first relation corresponds to the function f(x) = ||
and the second to the function f(x) = sin x. In Example 4, F corresponds to the function
f(x) = x’s father, M corresponds to the function f(x) = x’s mother, while for the relation
S, f(x) could be the ordered pair (x’s father, x’s mother).

In Example 8 it’s somewhat harder to find the appropriate functions, but it can be
done. For the first equivalence relation, we could use f(x) = x - | x|, where | x| means the
greatest integer that is equal to or less than x. (So |5|=5,|3.27|=3,[-3.27]= -4, and
so on. Therefore, (5) =0, f(3.27) = 0.27, f(-3.27) = 0.73, and so on. For positive
numbers, f(x) is the decimal part of x, but for negative numbers, it’s a bit different.)

The point of this discussion and these examples is the following rule of thumb:

5 An equivalence relation almost always expresses some way in which two
things are the same or alike.

This follows from Theorem 6.4: To say that an equivalence relation must be
definable by a statement of the form f(x) = f(¥) is to say that the relation must express
that some characteristic or property of x and y is the same. A binary relation that does
not express some kind of alikeness is probably not an equivalence relation.

Example 10: Consider the relation on R defined by R = {(x, y) | x - y < 1}. This
is not an equivalence relation; for one thing it’s not symmetric. If we instead define
S={(x,y)] |x - y| <1}, then S is reflexive and symmetric, but not transitive. If you try
to find a function that corresponds to R or S, in the sense of Theorem 6.2, you won’t be
able to.
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Example 11: Referring to Examples 4 and 5, note that “x and y have the same
mother and father” defines an equivalence relation, whereas “x and y have the same
mother or father” does not. We just saw how to define a function that corresponds to the
former relation; there’s no way to define one for the latter relation.

This is part of a general phenomenon. The intersection of two equivalence relations
is always an equivalence relation, but their union is usually not (see Exercises 12 and
13). Here is another example of this.

Example 12: On the set of all people, let

R = {(x, y) | x and y have the same hair color}
S = {(x,y) | x and y have the same eye color}

Let’s assume (perhaps unrealistically) that hair and eye color are defined precisely
enough so that R and S are equivalence relations. Then R NS={(x,y) | x and y have the
same hair and eye color}, another equivalence relation. But R U S is the same relation
with “and” replaced by “or,” which is not transitive.

We’ve been discussing the connection between equivalence relations and
functions. There is an even more direct connection between equivalence relations and
partitions.

Definition: Let 4 be a set. A partition of 4 is a collection of nonempty sets such
that any two of them are disjoint, and the union of all of them is 4. (See Exercise 21 for
an alternative definition of partitions.)

Example 13: Let 4 = the set of all male people and B = the set of all female
people. Then {4, B} is a partition of the set of all people (assuming every person is male
or female, exclusively).

Example 14: For each integer 7, let 4, be the half-open interval [7, i + 1). Then the
collection of intervals {4, | i € Z} is a partition of R. Note that this only works with
half-open intervals. If we used closed intervals, they would not be disjoint from each
other. If we instead used open intervals, the union of all the 4;s would not be all of R
(although these open intervals would form a partition of R - Z). Of course, we would
still get a partition of R by letting 4, = (i, i + 1].

Definitions: If R is an equivalence relation on a set 4 and x € 4, the equivalence
class of x, denoted [x],, is the set {y € 4 | xRy}. The collection of all these equivalence
classes is called 4 modulo R, denoted A/R.

If there is no possibility of confusion (that is, if only one equivalence relation is
being discussed), we just write [x] instead of [x].
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Example 15: Let A be the set of all people, and let the equivalence relation R on
A be defined by “x and y are the same age (in years).” If Lucian is a nine-year-old, then
[Lucian], is the set of all nine-year-olds. Any person’s equivalence class (with respect
to R) is the “club” consisting of all people of the same age as that person. Clearly, there
is no overlap between different clubs, and each person is in exactly one of these clubs.
The following lemma and theorem generalize these observations.

Lemma 6.5: Let R be an equivalence relation on a set 4, and let x, y € 4. Then
(@) x€[x]
(b) xRy iff [x] = [y]
(c) ~ (xRy)iff [x] and [y] are disjoint.
Proof: We prove part (b) and leave the other parts for Exercise 11. For the
forward direction, assume xRy. To show [x] = [y], we need to show that, given any z,
z € x iff z € y, or equivalently, xRz iff yRz. [Note how we must introduce the new
variable z here.] So now assume xRz. Since xRy we also have yRx, by symmetry. So
YRz by transitivity. The converse is analogous. For the reverse direction, assume
[x] = [y]. Then, since y € [y] by part (a), we have y € [x]. So xRy by definition of
equivalence classes. ®

We can now prove what is probably the most important single result about
equivalence relations.

Theorem 6.6: For any equivalence relation, its equivalence classes form a
partition of its domain.

Proof: Say R is an equivalence relation on 4. By Lemma 6.5(a), each element of
A is in some equivalence class. So each equivalence class is a nonempty subset of 4, and
the union of all the equivalence classes is 4. And, by Lemma 6.5(b) and (c), any two
distinct equivalence classes are disjoint. ®

Theorem 6.6 provides yet another way of understanding equivalence relations. An
equivalence relation on a set partitions, or breaks up, the set into disjoint subsets (the
equivalence classes). Each class is formed as a set of things that are alike in whatever
sense corresponds to that equivalence relation. A converse to Theorem 6.6 holds, rather
trivially: if 5 is any partition of a set B, then the relation {(x, y) | x and y are in the same
member of &} is an equivalence relation on B (see Exercise 20).

Example 16: Consider the equality relation on any set 4. For each x, [x] = {x}. So
id, partitions 4 into one-element sets. This is called the finest possible partition on A.

Example 17: For any set 4, let R =4 *x A. So xRy holds for all x, y € 4. It follows
that R is an equivalence relation; the only equivalence class is 4 itself. This is called the
coarsest possible partition on 4.
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Example 18: Consider the “siblinghood” relation of Example 4. Then for any
person x, [x] consists of x and all his or her siblings. If x is an only child, then [x] = {x}.
So this relation partitions the set of all people who have ever lived into sibling classes.

Example 19: Referring to Example 8, consider congruence modulo 2 on the set
Z. Then if n is even, [n] consists of all the even integers, whereas if # is odd, [#]
consists of all the odd integers. So Z is partitioned into two subsets by this relation.

Exercises 6.2

(1) Let 4 be the set of all people who have ever lived. For each of the following,
state whether it’s an equivalence relation on 4 and justify your assertion. If it is an
equivalence relation, describe the equivalence classes and give an example of an
equivalence class.

(a) xand y were bom in the same year.

(b) x and y were born less than a week apart.

(c) x and y have the same maternal grandfather.

(d) x and y have the same four grandparents.

(e) x and y are first cousins or x = y.

(f) The set of all of x’s children equals the set of all of y’s children.

(2) For each of the following, state whether it’s an equivalence relation on the
specified set and justify your assertion.
(a) Therelation 4 < B, on O(N)
(b) The relation m and » have the same digit in the 100’s place, on IN
(c) The relation x and y differ by a rational number, on R
(d) The relation 4 and B are not disjoint, on (IN)
(e) The relation 4 and B have the same smallest member, on () - {2}

(f) The relation 4 and B have the same smallest member, on P(R) - {@}

(3) For each of the following relations on R, state whether it’s an equivalence
relation (on whatever its domain is) and justify your assertion. If it is, describe the
equivalence classes. In particular, describe [3] and [ 7], provided that these numbers are
in the domain of the relation.

(@ #*-5=y"-5 (b) sinx =siny

(c) tanx=tany (d) x+y is an integer.

(e) |x|-|y| is an integer. (f) x - yisirrational.

(g) x/yis an integer. *(h) x/y =2/, forsomeiec Z

*i) x-y=a+bm forsomea,be Q.

(4) Give an example of a relation R on N satisfying each of the following or
explain why it is not possible to have one.
(a) Ris reflexive on IN and symmetric but not transitive.
(b) Risreflexive on N and transitive but not symmetric.
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(¢) R is symmetric and transitive but not reflexive on N.
(d) R is reflexive on N but neither symmetric nor transitive.
(e) R is symmetric but not reflexive on N or transitive.

(f) R is transitive but not reflexive on N or symmetric.

(g) R is not reflexive on N, symmetric, or transitive.

(5) Let R be the relation {(1, 1), (2, 2), 3, 3)}.
(@) Is R reflexive?
(b) Is R an equivalence relation?
(c) Is R arelation on N?
(d) Is R reflexive on N?
(¢) Is R an equivalence relation on IN?
(f) Explain why your answers to parts (a) through (e) are not contradictory.

(6) Are the following statements true or false? If true, explain why; if not, find a
counterexample.
(@) Whenever R is reflexive on 4, then R is a relation on 4.
(b) Whenever R is a relation on A and R is reflexive, then R is reflexive on 4.
(c) An equivalence relation on 4 is precisely an equivalence relation whose
domain is 4.

(7) Show that the relation defined in Example 2 is an equivalence relation.

(8) Let A =7Z x (Z - {0}). In other words, 4 is the set of all ordered pairs of
integers in which the second integer is nonzero. Define a relation ~ on 4 by

(@, b) ~ (¢, d) iff ad=bc

Prove that ~ is an equivalence relation on 4. (The idea behind this is that the ordered
pair (a, b) may be used to represent the fraction a/b, in which case ~ becomes the
standard cross-multiplication condition for the equality of fractions. This equivalence
relation is important in the construction of the rationals from the integers; see Sections
8.3and 9.5.)

(9) Forany 4, B< R, 4 is said to be a translate of B iff there is a real number k

such that B= {x + k| x € 4}.

(a) Prove that this relation is an equivalence relation on P(R).

(b) Describe the equivalence class of the set of negative real numbers.

(c) Prove that every translate of a closed interval is also a closed interval.

(d) Find two other phrases that could replace the words “closed interval” in
part (b) and still yield a true statement. Prove these statements.

(¢) Find two other phrases that could replace the words “closed interval” in
part (b) and yield a false statement. Give counterexamples to verify that the statements
are false.
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(10) (a) Prove Theorem 6.3(a).
(b) Prove Theorem 6.3(b).
(c) Complete the proof of Theorem 6.3(c).

(11) Prove parts (a) and (c) of Lemma 6.5.

(12) (a) Prove that the intersection of any two equivalence relations on 4 is an
equivalence relation on 4.
*(b) More generally, prove that the intersection of any collection of equivalence
relations on 4 is an equivalence relation on 4.

(13) Give two examples to show that the union of two equivalence relations is not
necessarily an equivalence relation.

(14) This exercise continues ideas introduced in Examples 16 and 17. If Zand %
are two partitions of a set A, we say % is a refinement of & or a finer partition than
% iff every set in % is a subset of some set in & Prove that if R and S are equivalence
relations on 4, then the partition created by R is a refinement of the partition created by
S'if and only if Vx,y (xRy — xSy).

(15) Refer to Example 8 and Exercise 14. Let 4 be any one of the sets R, GQ, or Z.
If m and n are natural numbers, under what condition is the partition created by
congruence modulo m a refinement of the partition created by congruence modulo »?
Prove your assertion,

*(16) This exercise generalizes the ideas introduced in Example 8 and Exercise 2(c).
Let 4 be as in Exercise 15. Let B be a nonempty subset of 4 that is closed under
subtraction; that is, Vx,y € B (x - y € B). Such a set B is called a subgroup of 4 under
addition. Now define a relation R on 4 by xRy iff x - y € B, Prove that R is an
equivalence relation on 4, and describe the equivalence classes. (R is called congruence
modulo B.)

(17) How many equivalence classes are there under the congruence modulo 3
relation on Z? Describe them.

(18) LetR= {(m,n)|m,n € Z and 3m + 4n is a multiple of 7}.
(a) Is R an equivalence relation on Z? Prove your claim.
*(b) R is a relation of the type discussed in Example 8. By experimentation,
determine exactly which relation R is. You needn’t prove your conclusion.

(19) (a) Find all equivalence relations on the set {1, 2, 3}.
*(b) Find all equivalence relations on the set {1, 2, 3, 4}.

(20) Prove the converse of Theorem 6.6 mentioned in the text.
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(21) Suppose 4 is a set and F'is a collection of sets. Prove that % is a partition of
A iff & is a collection of nonempty subsets of 4 and every member of 4 is in exactly
one member of %.

*6.3 Ordering Relations

Ordering relations are just about as important in mathematics as equivalence relations.
They are also a good deal more familiar to most students than equivalence relations, and
so you will probably find this section conceptually simpler than the previous one. On
the other hand, there are more details and minor variations involved with ordering
relations than with equivalence relations, so you have to be careful to keep things
straight.

There are two general types of orderings. This section is primarily devoted to
reflexive orderings. At the end of the section we briefly discuss irreflexive orderings and
show the simple, close connection between these two types of orderings. Irreflexive
orderings are also used in Appendices 1 and 2.

Definitions: A relation R is antisymmetric iff whenever xRy and yRx, then x =y.

A partial ordering is a relation that is reflexive, antisymmetric, and transitive.

A total ordering is a partial ordering R in which xRy or yRx holds for every x and
y in the domain of R.

As with equivalence relations, when we refer to an ordering (partial or total) on a
set 4, we mean an ordering whose domain is 4.

Note that the only difference between the definitions of equivalence relations and
partial orderings is symmetry versus antisymmetry. But this is a crucial difference.
Whereas an equivalence relation expresses some sort of alikeness of elements and
groups them together (in equivalence classes), an ordering sets elements apart by putting
them in a hierarchy, or order.

If R is an ordering on 4, we also say that 4 is partially (or totally) ordered by R.
Total orderings may also be called linear orderings or simple orderings.

Notation: If R is an ordering, we may use the more common notation x < y or
x > y to mean xRy. When this is done, standard abbreviations are automatically assumed:
x > ymeans the same asy < x,and x <y means x < yand x # y (as does y > x).

Example 1: The set of real numbers R has a standard ordering on it. Both < and
> are total orderings on R (and therefore also on any subset of R, such as N, Z, or Q).
The relations < and > on R are not total orderings in the sense defined here, since they
are not reflexive. They are irreflexive total orderings.

Example 2: It’s instructive to consider some orderings on small sets. Let
A={1,2,3}. Asasubset of R, 4 inherits a total ordering, as mentioned in the previous
example. If we use < as the basis of this relation, what ordered pairs would it contain?
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It can’t contain just (1, 2) and (2, 3), because this set of ordered pairs is neither reflexive
nor transitive. Exercises 1 and 9 ask you to answer this question and some similar ones.
There are many ways to totally order this set or almost any set.

Definition: If R is a partial ordering, x and y are called comparable (with respect
to R) iff xRy or yRx holds. If x and y are in Dom(R) but are not comparable, then they
are called incomparable.

So a partial ordering is total iff it has no incomparable pairs of elements.

Example 3: Many important orderings are not total. Let % be any collection of
sets. It is simple to show that the relation 4 ¢ B is a partial ordering on &/ In fact, all
three of the conditions for this are proved in Chapter 5. This relation is often considered
with &/ = ©(C), for some set C. Choose some small set for C. Is the relation ¢ on &/
total? (See Exercise 5.)

Example 4: Let C=R x R. We can use the total ordering on R to define a partial
ordering on C, as follows: let’s say that one ordered pair is related to another if the first
pair < the second in both coordinates. That is, define the relation S on C by

(a,b) S(c,d) iff a<cand b<d

It’s not hard to show that S is a partial ordering on C. It’s also clear that S is not total.
For example, consider (3, 7) and (9, 4). You can see that these ordered pairs are
incomparable.

This example is a specific case of the following definition.

Definition: Let R and S be partial orderings on sets 4 and B, respectively. Then
the product ordering R x S is the relation on 4 x B defined by

R x S§={((a, b), (a', b")) | aRa' and bSh'}

This definition may seem confusing at first because it involves ordered pairs of
ordered pairs. But if you understand Example 4, you should see that this definition just
formalizes the idea of that example. By the way, this notation is somewhat sloppy, in
that R x § is not literally the cartesian product of R and S.

Theorem 6.7: Let R and S be partial orderings on sets 4 and B, respectively. Then
the product ordering R x S is a partial ordering on A x B. However, if both 4 and B have
more than one element, then R x § is not total.

Proof: The proof that R x S is a partial ordering is left for Exercise 3(a). To prove
the second claim, assume that a and a’ are distinct elements of 4, and b and b’ are
distinct elements of B. By antisymmetry, we can’t have both aRa’ and a'Ra, so without
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loss of generality let’s say ~ (aRa’). (So either a’Ra, or a and a’ are incomparable—it
doesn’t matter.) Similarly, without loss of generality let’s say ~ (bRb’).

Now consider the ordered pairs (a, b') and (a’, b). It’s a simple matter to show that
these are incomparable in the ordering R x S (see Exercise 3(b)). ™

Example 5: Here’s another example of product orderings. Suppose we want to
rank mixed-doubles tennis teams (that is, teams of one male and one female player). Let
M be the set of all male tennis players and F the set of all female ones. On each of these
sets, we have the ordering defined by one player’s being at least as good as another. For
simplicity, let’s assume these orderings are total; this means that for any two players,
it’s possible to say which one is better. (This assumption is somewhat unrealistic in
tennis and most other sports, but let’s not worry about that.)

We can then define the product ordering on M x F, the set of all possible
mixed-doubles teams. Under the product ordering, one team is at least as good as
another iff its male and female players are both at least as good as the corresponding
players of the other team. But this is not a total ordering. For example, since Pete
Sampras is at least as good as Bob Wolf and Martina Hingis is at least as good as
Roseanne Barr, the product ordering would say the team of Sampras and Hingis is at
least as good as the team of Wolf and Barr. But the product ordering would not settle
which is better, Sampras-Barr or Wolf-Hingis. These two teams would be incomparable
under the product ordering.

Product orderings have some practical value. But, as you can imagine, they’re not
likely to be completely accurate in a situation like the ranking of sports teams.

Orderings (especially nontotal ones) on small sets can often be clearly shown using
lattice diagrams. In a lattice diagram for a relation R, each point of the domain is
represented as a dot, and the fact that aRb is represented by an upward (but not
necessarily vertical) path from a to b. Such a path from a to b may pass through other
points; transitivity requires us to interpret things this way. A lattice diagram for a total
ordering is a single line, or chain, so it isn’t very interesting. Figure 6.4 shows some
lattice diagrams, and Exercise 4 asks you to construct several others.

Example 6: This example is not of a product ordering, but it illustrates a related
idea. Let 4 be the set of all people. For simplicity, let’s assume that it’s possible to
accurately measure everyone’s height and weight and that no two people have exactly
the same height or weight. Then we get two different fotal orderings on 4, defined by
height and weight, respectively. That is, let

R={(a,b)| a, b€ Aandais at least as tall as b}
S={(a, b)| a,be Aand ais at least as heavy as b}
A simple way to use these two orderings to form a new one is to take their intersection

RN S as sets of ordered pairs. Since intersection is defined by the word “and,” it’s easy
to understand R N S: it consists of all ordered pairs (a, b) such that a is taller and heavier
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Figure 6.4 Lattice diagrams for three partial orderings

than b. This new relation must still be a partial ordering (see Exercise 6), but it’s not
total, since one person could be shorter and heavier than another. Two such people
would be incomparable in the intersection ordering.

What makes intersections of orderings similar to product orderings? The simplest
way to answer that is to say that both are defined with the word “and.” This simple
logical similarity is the reason why both products and intersections of partial orderings
must be partial orderings, but they are rarely total.

Example 7: In the previous example, what would happen if we looked at RU §
instead of R S? This union would consist of all ordered pairs (e, b) of people such that
a is at least as tall or at least as heavy as b. This is not even a partial ordering (see
Exercise 7). Compare this to Exercises 12 and 13 of Section 6.2.

Example 8: Let’s reconsider Example 5. Recall that the product ordering on
mixed-doubles teams is not total. Is there a way to set up a fotal ordering on M x F,
defined directly in terms of the separate orderings on M and F?

There are actually several ways to do this. Perhaps the simplest way is to give one
sex or the other precedence for ranking teams. For example, it could be decided to give
precedence to male players; this would mean that if one team had a better male player
than another, that team would be automatically ranked higher than the other, no matter
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how the two female players stacked up. Only if two teams had the same male player (or,
in a more practical setting, male players of equal ability) would the relative abilities of
the teams’ female players be taken into account.

Like some of our previous examples, this one is not completely realistic. If one
team has a slightly better male player than another but a vastly inferior female player,
it is unlikely that the first team should be considered the better one. But the way we are
defining this ordering of teams, it would be ranked as the better one.

Let’s now formalize this example and give it a name.

Definition: Let R and S be partial orderings on sets 4 and B, respectively. Then
the lexicographic ordering on 4 x B (associated with R and §) is

{((a, b), (@', b")) | (aRa’ and a #a’) or (a = a'and bSh')}

That is, the first coordinates take precedence for ordering ordered pairs. Only in the case
that the first coordinates are equal are the second coordinates used.

It would also be possible to define a type of lexicographic ordering that favors the
second coordinate instead of the first, and this would give a very different ordering on
A x B from the one defined above (see Exercise 10(c)). In contrast, there’s only one way
to define a product ordering R x S, since that notion does not involve choosing which
coordinate to give precedence.

Theorem 6.8: (a) If R and S are partial orderings on sets 4 and B, then the
associated lexicographic ordering is a partial ordering on 4 x B.

(b) If, in addition, R and S are total, then the associated lexicographic ordering is
also total.

Proof: (a) Let L be the lexicographic ordering on 4 x B. We must show L is
reflexive on 4 x B, antisymmetric, and transitive. To prove reflexivity, let (a, b) € 4 x B,
We know that @ = a, and bSbh because S is reflexive. Therefore, ((a, b), (a, b)) isin L,
because it satisfies the second disjunct in the definition of lexicographic order.

To prove antisymmetry, assume (a, b) L (a’, b") and (a’, b’) L (a, b). Both these
assumptions are disjunctions, so there are four possible ways to make them both true.
Three of these directly say that a = a, and the fourth requires that aRa’, a # a’, and
a'Ra, which violates the antisymmetry of R. So a = a’. But in that case, the two
assumptions require, respectively, that bSb’ and 5'Sh. But then b = &', by the
antisymmetry of S. So we have shown that (a, b) = (a’, b"), as desired.

Exercise 11 asks you to prove the transitivity of L, as well as part (b). ®

Preorderings
We have seen several examples of orderings that are not total because they have

incomparable pairs of elements. The next two examples illustrate another phenomenon
that prevents some relations from being even partial orderings.
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Example 9: For integers m and n, we say m divides n, denoted m|n, iff for some
integer k, n = km. It is not difficult to show that | is a partial ordering on N (see Exercise
12). (Specifically, this means that m and » are restricted to be positive; it doesn’t matter
whether £ is similarly restricted.) This ordering is certainly not total; for instance, 2 and
3 are incomparable.

Does | define a partial ordering on Z? Perhaps surprisingly, it does not, because it’s
not antisymmetric. For example, 5|(-5) and (-5)|5, but 5 # -5. Note that this is very
different from saying that S and -5 are incomparable. Relations like this fall into a
different category called preorderings. The relation | is discussed further in Section 8.2.

Definition: A preordering is a relation that is reflexive and transitive.

Obviously, every partial ordering is a preordering. Example 9 shows that the
converse of this does not hold. However, every preordering naturally gives rise to both
an equivalence relation and a partial ordering (see Exercise 13). Here is a simple relation
from real life that can be viewed as a preordering.

Example 10: As in Example 6, let R be the height relation on the set of all people.
Again, if we assume that no two people are exactly the same height, then R is a total
ordering. But what if there are people of the same height? (Or we could guarantee this
by letting xRy mean that y is at least as tall as x, with height measured to the nearest
centimeter.) If x and y are two people of the same height, then xRy and yRx, so R is not
antisymmetric. It would make sense to say that such people are tied in this relation. Note
that all people are comparable in height, so R may be called a total preordering. In
contrast, the relation | on Z has both incomparable elements (such as 2 and 3) and tied
elements (such as 5 and -5).

Irreflexive Orderings

We conclude this section by showing that the difference between reflexive orderings
and irreflexive orderings is not very profound. The definition and some simple results
involving irreflexive orderings appear in Appendices 1 and 2, because the order axioms
of R are usually stated in terms of < rather than <,

Recall thatid, = {(x, x) | x € 4}.

Definitions: A relation R is called irreflexive iff xRx is not true for any x.

A relation that is irreflexive and transitive is called an irreflexive partial ordering.

An irreflexive total ordering is an irreflexive partial ordering that also satisfies
trichotomy: for every x and y in the domain of R, xRy, yRx, orx =y,

Note that “irreflexive” means more than merely “not reflexive,” just as
“antisymmetric” means more than merely “not symmetric.” Also note that, in the
context of irreflexivity, we must add the disjunct x =y to the condition for being total.
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Antisymmetry does not need to be included in the definition of an irreflexive
partial ordering because it follows from the other two conditions. Furthermore, if R is
irreflexive, then xRy, yRx, and x = y cannot all be true. Therefore, an irreflexive partial
ordering must satisfy strong antisymmetry: (xRy and yRx) is always false. This
conclusion is proved as Theorem A-8 of Appendix 2.

The standard symbols < and > are typically used to denote irreflexive orderings.
If < is an irreflexive ordering, it would seem sensible that we could obtain a reflexive
ordering < by defining x < y to mean x <y or x = y, as usual. Conversely, if < is a
reflexive ordering, it would seem sensible that we could obtain an irreflexive ordering
< by defining x <y tomean x < y and x # y. This is indeed the simple link between the
two types of orderings and is stated more precisely in the following result.

Theorem 6.9: (a) Let R be an irreflexive partial ordering on a subset of 4. Then
RUid, is a reflexive partial ordering on A. The ordering R is total on 4 iff R Uid, is.

(b) Let S be a reflexive partial ordering on a set 4. Then S - id, is an irreflexive
partial ordering on a subset of 4. The ordering S is total on 4 iff § - id, is.

Proof: (a) Assume R is as described, and let S= R U id,. Since the domain and
range of R are subsets of 4, the domain and range of S are both equal to 4. Since id, is
reflexive on 4, so is S. To show that S is transitive, assume aSh and bSc. Then either
aRb or a = b; similarly, either bRc or b= c. We get a total of four possible cases, all of
which imply that aSc. We also need to show that § is antisymmetric. So assume aSb and
bSa. We need to show a = b. But a * b would imply aRb and bRa, which would
contradict the strong antisymmetry of R.

To prove the second statement, note that

Ris total on 4 iff (xRy or yRx orx=y), forallx,yin 4
iff [(xRy orx =) or (yRx or y =x)],forall x,y in 4
iff (xSy or ySx), forallx, yin 4
iff Sistotal on A

The proof of part (b) is similar and is left for Exercise 14. ®
Exercises 6.3

(1) (a) As discussed in Example 2, list all the ordered pairs in the ordering < on
the set {1, 2, 3}. How many ordered pairs are in this relation?
(b) Repeat part (a) for the sets {1}, {1, 2} and {1, 2, 3, 4}.

(2) Draw the cartesian plane R x R, and choose an arbitrary point (a, b). Now
consider the product ordering on R x R discussed in Example 4.
(@) Relative to (a, b), where are the points that are greater than it?
(b) Relative to (a, b), where are the points that are less than it?
(c) Relative to (a, b), where are the points that are incomparable to it?
(d) Repeat parts (a) and (b) for the lexicographic ordering on R x R.
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(3) (a) Prove the first part of Theorem 6.7.
(b) Complete the proof of the second part of Theorem 6.7.

(4) (a) Draw a lattice diagram for the product ordering on {1, 2, 3} x {1, 2, 3}.
(b) Draw a lattice diagram for the ordering < on ©({1, 3, 8}). (This can not be
done without having paths cross each other.)
(c) Pick at least a half dozen people you know, and for this set of people, draw
a lattice diagram for the ordering of Example 6.

(5) Find and prove a necessary and sufficient condition on a set 4 for the ordering
c on £(4), discussed in Example 3, to be total.

(6) Prove that the intersection of two partial orderings on A4 is again a partial
ordering on 4, as stated in Example 6.

(7) Show that the relation R U S defined in Example 7 is not a partial ordering.
(8) Prove that R is a partial (respectively, total) ordering on A iff R is.

(9) (a) On the basis of Exercise 1, make a conjecture of the form “The number of
ordered pairs in a total ordering on an (n + 1) element setis ____ more than the number
of ordered pairs in a total ordering on an # element set.”

(b) By induction (and not too formally), prove your conjecture from part (a).
*(c) Find and prove a formula for the number of ordered pairs in any total
ordering on a set with »n elements.

(10) (a) Look up “lexicographic” in a dictionary, and then explain our use of the
term “lexicographic ordering.”

(b) Draw a graph showing the elements of N x I, as a subset of R x R. Then
give a simple pictorial description of the lexicographic ordering on IN x IN that is based
on the standard ordering on N.

(c) Give a precise definition of the lexicographic ordering on 4 x B, associated
with R and S, in which the second coordinate takes precedence.

(d) Give a precise definition of the lexicographic ordering on 4 x B x C,
associated with partial orderings R, S, and T (on 4, B, and C, respectively).

*(e) A language such as English does not consist of just two-letter words or
three-letter words. The ordering of words in a dictionary must allow words of any
length. In analogy to this, give an informal but clear definition of the lexicographic
ordering on the set of all finite sequences of elements of a set 4, based on an ordering
RonA.

(11) (a) Complete the proof of Theorem 6.9(a).
(b) Prove Theorem 6.9(b).
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(12) Prove that the relation | , defined in Example 9, defines a partial ordering on IN.

(13) (a) Prove thatif R is a preordering on 4, then R N R is an equivalence relation
on 4.
(b) Applying part (2) to Example 10, describe the equivalence classes.
(c) A corollary to part (a) states that the original preordering R defines a
“natural” partial ordering whose domain is the set of equivalence classes of RNR™.
Explain this in the context of Example 10.

(14) Prove Theorem 6.9(b).

(15) Let A be any set with one element, perhaps {5}.
(a) How many reflexive orderings are there on A? Describe all of them.
(b) Are there any irreflexive orderings whose domain is A?
(c) Does this situation contradict Theorem 6.97 Explain.

The next three exercises concern topics introduced after Theorem 5.6.

(16) Say we have a partially ordered set 4. On the basis of the last part of this
section, it doesn’t matter whether this ordering is reflexive or irreflexive. For any x € 4,
we say x is:

Minimal iff ~ Jye 4 (y <x)
Maximal iff ~ ye 4 (y > x)

A least element iff Vye 4 (x < y)

A greatest element iff Vy€ 4 (x 2 y)

Prove: (a) There cannot be more than one least element or more than one greatest
element. (Hence, one usually refers to the least and the greatest element, if they exist.)
(b) A least (respectively, greatest) element must be minimal (respectively,
maximal).
(c) There can be more than one minimal (respectively, maximal) element.
Therefore, the converses of part (b) fail.

(17) A partial ordering on 4 is called a well-ordering on A iff every nonempty
subset of A has a least element. A set with a well-ordering defined on it is said to be well
ordered. Prove:

(@) A well-ordering on 4 must be total.

(b) Every subset of a well-ordered set is well ordered.

(c) Every subset of IN is well ordered by <. (Recall Theorem 5.6.)
(d) The sets Z, Q, and {x € R | x 2 0} are not well ordered by <.
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(18) By induction on n, prove that every subset of R with n members is well
ordered. (You may begin this proof with either n = 1 or n =0, as you wish. Essentially,
what you are proving is that every finite subset of R is well ordered.)

(19) Prove or find a counterexample: if R is a partial ordering on 4 and S is a partial
ordering on B, then RU S is a partial ordering on 4 U B.

Critique the proofs in the remaining exercises in this section. (If necessary, refer
to Exercises 4.2 for the instructions for this type of problem.)

(20) Theorem: If R is a partial ordering on 4 and S is a partial ordering on B, where
A and B are disjoint sets, then R U S is a partial ordering on 4 UB.

Proof: First, assume x € AU B. If x € 4, then xRx. If x € B, then xSx. In either
case, (x, ¥) € RU S, so R U § is reflexive. To prove antisymmetry, assume (x, y) and
(y, x) are both in R U S. If they are both in R, then x = y, by the antisymmetry of R. If
they are both in S, we similarly have x = y. And it’s not possible that (x, y) € R and
(y, x) € S, because 4 and B are disjoint. To prove transitivity, assume (x, yyand (y, z)
are both in R U S. Again using the disjointness of 4 and B, the only way this can occur
is that (xRy and yRz) or (xSy and ySz). This implies xRz or xSz, as desired.

(21) Theorem: If R is a total ordering on 4 and S is a total ordering on B, where A
and B are disjoint sets, then R U S is a total ordering on 4 U B.
Proof: Assume the givens. The proof that R U S is a partial ordering onAUB
is as in the previous problem. And since R is total on 4 and S is total on B, R U S is total
onAUB.

Suggestions for Further Reading: The material in this chapter is covered in most
books on set theory, such as the first four references given at the end of Chapter 5. See
also Feferman (1989), Pfleeger and Straight (1985), or Ross and Wright (1985).
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Functions

7.1 Functions and Function Notation

All mathematicians would agree that functions and their use are vital to the
understanding of mathematics. It is fairly safe to say that the three most important
concepts in mathematics are the concepts of numbers, functions, and sets. Let’s get right
to the definition of functions. As in Chapter 6, some concepts are given both an intuitive
definition and a set-theoretic one.

Definitions (intuitive): A function from A to B is a rule (or procedure or set of
instructions) that assigns, to each member of set 4, exactly one member of set B.

A is called the domain of the function, and B is called its codomain. The set of all
members of B that are actually assigned to some member of 4 is called the range of the
function.

Definitions (set-theoretic): A function from A to B is a relation between 4 and
B (that is, a subset of 4 x B) that pairs each member of 4 with exactly one member of B.

Again, B is called the codomain of the function. The domain and range are defined
as in Chapter 6; this guarantees that the domain is 4 and the range is a subset of B.

A function from 4 to itself is called a function on A. If we simply say that fis a
function, we mean that it’s a function from some set A to some set B, or, equivalently,
that it’s a function from Dom( ') to Rng( ).

Functions are sometimes called mappings, maps, transformations, operators,
or operations. These words can have more specialized meanings in particular branches
of mathematics. But, for the most part, they are synonyms for the word “function.”

Notation: (a) The letters f; g, F, and G almost always denote functions.
(b) The statement that fis a function from 4 to B is abbreviated f* 4 — B. (The
arrow in this notation has no connection with implications.)

It is worthwhile to compare the intuitive definitions of the concepts “relation”

(Section 6.1) and “function.” A relation is simply a statement with two free variables.
This definition has a deliberately passive feel and makes no distinction between the
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variables. A function, on the other hand, is a rule that assigns some things to other
things. These words connote a certain activity; a function is supposed to do something.
We think of the domain of a function as the set of inputs, and the range as the set of
outputs. In fact, it is often helpful to think of a function as a sort of computer or input-
output machine. As long as the computer is fed a legal input, it performs some sort of
calculation and spits out exactly one answer or output (see Figure 7.1). This image may
seem too simple to be useful, but it can be an instructive way to illustrate concepts
involving combinations of functions.

In the intuitive definition, we call a function a type of rule, procedure, or set of
instructions. Other words that are sometimes used here include “algorithm” and
“correspondence.” These words are all deliberately imprecise, because it is important
1ot to be too restrictive about what constitutes a function. Later in this section we give
several examples to show the wide variety allowed in functions. On the other hand, for
the vast majority of functions used in mathematics, the rules used to define them are
equations.

Example 1: You have undoubtedly seen statements like “Consider the function
y =x*+ 5.” In high school algebra and calculus, the usual understanding is that x and
y are real variables, x is the input variable or independent variable, and y is the output
variable or dependent variable. Since the variable y in this equation appears alone on
the left side, and the right side is an expression in x that can only have one value for any
given value of x, this equation certainly defines a function. Also, since the right side is
defined for every real number x, the domain of this function is all of R. (It could be
specifiéd to be a smaller set or even 2 bigger set like all complex numbers. But, as
indicated, the normal unwritten convention is that the domain of any function that is
defined by an equation in x and y is the set of all real values of x for which a value of
y can be found to make the equation true.) If there were any values of x for which the
right side were not defined, they would have to be excluded from the domain.

Since the domain consists of all real numbers and the output y also must be a real
number, we would probably view this as a function from R to R. How about the range
of this function? Is it all of R? Just because we’ve specified the codomain to be R
doesn’t mean the range must be R. In fact, you can see that y cannot be less than 5.
Some thought should also convince you that any value equal to or greater than 5 can be

Figure 7.1 A function as an input-output machine
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obtained for y. So the range is the set of all real numbers that are at least 5, in symbols
{y|y 2 5} or [5, =). Exercise 3 asks you to do this more rigorously. (The equations
discussed in Examples 1 through 3 are graphed in Figure 7.2.)

As with relations, it takes some thought to see the connection between the two
definitions of functions. And as with relations, it’s not hard to explain how to go from
the intuitive definition to the set-theoretic one (and we won’t worry about the other
direction). Under the intuitive definition, a function is a rule that tells you how to take
any input from some set and get exactly one output value or object. We’ve just seen how
an equation like y = x* + 5 can be viewed as establishing a rule that fits the intuitive
definition of a function. But this equation is also a statement with two free variables, so
it’s a relation (in the intuitive sense). And if we take the set of ordered pairs of real
numbers that satisfy this equation, we get a relation in the set-theoretic sense.
Furthermore, it should be clear to you that this set of ordered pairs satisfies the
set-theoretic definition of a function. Naturally, when you plot this set of ordered pairs
of real numbers, you get the graph of this function.

In the next three examples, we continue to assume that x and y are real variables
and that the given relation includes all possible ordered pairs of real numbers that work
for that relation.

Example 2: Consider the equationy = 5/(x2~ 1). On the basis of the reasoning in
Example 1, this defines a function. Since a denominator can’t be zero, the domain of this
function is not all of R. The values x = 1 and x = -1 must be excluded, since then the
expression is undefined. What’s the range? We could determine this by solving the
equation for x, but here’s another way: we know that x2- 1 can take on all values > - 1.
Since x2 - 1 takes on all possible positive values, so does 5/(x* - 1). And since x*-1
takes on all negative values > -1, 5/(x* - 1) takes on all negative values < -5. In
interval notation, the range is (-e, -5] U (0, «). Exercise 4 asks you to do this more
rigorously.

Example 3: Consider the relation x> + y* = 25, discussed in Section 6.1. Note that
this equation doesn’t have y by itself on one side, so we can’t be sure it’s a function. If
we solve it fory, we gety = +¢25 - x 2 Qo this relation is definitely not a function,
because for a single value of x, we can get two values of y. For instance, (3, 4) and
(3, -4) are both in this relation.

The graphs in Figure 7.2 illustrate a familiar fact, the vertical line test: A relation
on R is a function if and only if no vertical line intersects its graph more than once.

Function Notation
Notation: If fis any function and x is any member of the domain of £, then the

expression f'(x) denotes the unique output that f assigns to x. More concretely, an
equation of the form f{(x) = y means the same thing as (x, y) € f-
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Figure 7.2  Graphs of three relations
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If ' (x) = y, we say that y is the image of x under f, and x is a preimage of y
under f. We also say that y is the value of fat x, and fmapsxtoy.

Notice the italicized words in the preceding sentence; their intent should be clear.
By definition, a domain member can have only one image. In contrast, a range member
can have many preimages.

As you know, the usefulness of function notation is that once a function has been
defined using the notation f(x), we can then plug in any number or expression for the
variable x. Technically, this is an application of universal specification, since the
defining equation is normally understood to hold for all x in the domain.

Example 4: If we define a function f by f1 (x) = 3x - 2, then we can say things like
F(5) =13, f(-1) = -5, f(2b) = 6b - 2, f(cos 2y) = 3(cos 2y) - 2, and even
f(f(x))=9x - 8. If we also define g(x) =5 sin x, then we have f(g(x)) =15 sinx - 2,

g(f(x)) = 5 sin(3x - 2), g(f(4)) = 5 sin 10, and so on. Note that f{ g(x)) and g( f(x)) are
not the same.

Example 5: You have probably seen function notation used for so-called
functions of two (or more) variables. For example, we can consider the function
f(x,y) = 2xy — sin y, where x and y are real variables. For this function, two real
numbers have to be specified in order to compute an answer; and the graph of fis
viewed as a set of ordered triples (x, y, z), where z is the output for any given x and y.
But this seems to violate the definition of a function, which specifies that an input to a
function consists of one object, not two; and the graph of a function consists of ordered
pairs, not ordered triples.

The technical solution to this difficulty is to say that the domain of f consists of
ordered pairs (x, y); that is, Dom(f) = R % R. So the graph of fis a subset of
(R x R) x R, which, according to Chapter 6, is exactly what is meant by R x R x R. So
it is valid to think of fas being made up of either ordered pairs or ordered triples!

Similar points hold for functions of three or more variables. For instance, a
function of five variables can be thought of as a set of ordered 6-tuples or as a set of
ordered pairs in which the first members are 5-tuples. Of course, the graph of a function
of three or more real variables cannot be drawn, but mathematicians still talk about the
graphs of such functions.

Why Codomains?

We know that every relation has a domain and a range, and a function is a type of
relation. So why is the concept of a codomain introduced in connection with functions?
If the statement f: A — B requires that Dom(f) = 4, why does it require only that
Rng(f) < B, rather than Rng( /) = B? There are several answers to these questions, but
the simplest has to do with convenience. When we define a function, we usually have
a precise domain in mind, but it may not be easy to determine the exact range. It is
easier to specify a codomain, since that can be any set that contains all the outputs.
Examples 1 and 2 illustrate this. In Example 1, we have an equation in which each real
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input x yields exactly one output y, which is also a real number. This allows us to say
that we have a function from R to R, without needing to calculate the exact range.

There are also more theoretical (but no less important!) reasons for using
codomains. Generally speaking, the set of all functions from A to B is easier and more
fruitful to work with than the set of all functions with domain 4 and range B. On the
other hand, it is sometimes easier to work with functions without specifying codomains.
To that end, it is possible to define the word “function” without ever mentioning the
words “from A to B”: a function is a relation in which no domain member is paired with
more than one range member. We can state an even simpler definition.

Alternative Definition: A function is a relation in which no two ordered pairs
have the same first member. In other words, a function is a relation in which, whenever
(x,y) and (x, z) areinit, theny=2z.

This definition is equivalent to the set-theoretic one given at the beginning of the
section (see Exercise 10). Under this definition, a function does not have a predefined
codomain, although any set that contains the range may be designated as the codomain
if desired.

Most mathematicians prefer not to use the words “mapping” or “map” to describe
a function unless its domain and codomain are specified. The next three examples
illustrate the subtleties inherent in the term “codomain” and in the different ways of
viewing functions.

Example 6: Let f= {(3, 6), 8, 2), (1,2), (0, 0), (-5, 3)}. Then fis clearly a
relation in the set-theoretic sense; in fact, it is the same relation defined in Example 5
of Section 6.1. Is f'a function? Unlike all of the previous examples in this section, there
is no apparent rule relating the first and second members of the ordered pairs in f. But
fis definitely a function because it satisfies the simple condition in the above definition:
no two ordered pairs in f have the same first member. (The ordered pairs (8, 2) and
(1, 2) are in f'and have the same second member, but that doesn’t matter.)

Dom( f)={3,8,1,0, -5} and Rng(f) = {6,2, 0, 3}. If desired, we can give fa
codomain; any set that contains the range is allowed. So we can say
f{3,8,1,0,-5} = {6,2,0,3}, f {3,8,1,0,-5} = R, f: {3,8,1,0, -5} Z, and

SO OIL.

Example 7: Consider the function f(x) = %* + 1, where x is a real variable. The
range of fistheset B={y e R|y 2 1}. Therefore, we can say f* R — R. But we could
also say ff R— Corf: R— B. If we decided to restrict the domain of f'to integers
(which would technically make it a different function), we could say f* Z — Z,
fZ-R, fZ—C, fZ— N, andsoon.

Example 8: Let 4 and B be sets with 4 < B. Then there is a unique function
1+ A— B with f(x) = x for every x in 4. This function is called the inclusion map from



7.1 Functions and Function Notation 199

A to B. However, as a set of ordered pairs, fis simply id,. Thus, the idea of inclusion
maps makes sense only when codomains are specified.

Example 8 indicates that even the basic notion of equality of functions changes
depending on whether or not codomains are considered part of what constitutes a
function.

Definition: Two mappings fand g are called equal iff they have the same domain
and codomain and, for every x in this domain, f(x) = g(x).

This definition gives us the option of saying that id, and the inclusion map from
A to B are not the same mapping, provided that 4 c B. If we don’t care about
codomains, then the above definition remains valid if we simply drop the reference to
codomains. In fact, if functions are viewed as sets of ordered pairs, there is no need to
call this a definition because it is easily derivable (see Exercise 11).

Other Ways of Defining Functions

Possibly the most important way of defining a function in mathematics, other than by
a single equation, is by cases. The justification for defining functions by cases is given
in Theorem 7.6.

Example 9: An important function defined by cases is the absolute value function,
defined near the end of Appendix 2. Another typical definition of this sort, which is the
subject of Exercise 12, is:

_ x? ifx>0
50 = | ~x*  ifx<0

Example 10: Let 4 and B be sets with B < 4. The characteristic function of B

(with domain understood to be 4) is the function y;: A — {0, 1} defined by cases as

(x)={1 ifx € B
X5 0 ifx¢B

(The symbol  is the Greek letter chi, so this function is called “chi sub B.”) In order to
talk about characteristic functions, the set 4 must be understood. Often it is R.

Almost all our examples of functions so far have been very mathematical.
Specifically, they have been defined by algebraic relationships involving real numbers.
In reality, there are many other types of situations that give rise to functions. The next
several examples illustrate just a few of the many possibilities.

Example 11: Before a passenger plane takes off, each passenger is assigned a
seat. This assignment can be viewed as a function from the set of passengers on the
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plane to the set of seats on the plane, for each passenger is sent, by some procedure, to
a unique seat, even if there is no obvious formula for who gets which seat.

Example 12: Many physical situations give rise to functions; some of these can
best be understood and/or graphed using some sort of instrument. For instance, suppose
that a thermometer is placed at a particular location, from noon to 4 p.m. on a certain
day. We can then say that the thermometer is evaluating a function; the inputs of this
function are moments of time in a specific interval, while the outputs are values of
temperature. If the thermometer is hooked up to a graphing device, then the graph of this
function is supplied physically, without a mathematical formula. In the real world, time
is probably the most common independent variable for functions.

In many situations of this sort, it can be convenient to view the inputs and
outputs of the function as real numbers. In this case, we could take the domain to be the
interval [0, 4] and the range to be the numerical values of temperature (in some
agreed-on units such as Celsius or Fahrenheit).

Example 13: There are also physical situations that give rise to functions defined
by mathematical formulas. One famous example is the universal law of gravitation,
discovered by Isaac Newton. It states that the gravitational force between two objects
is given by the equation F'= Gm,m,/r*, where m, and m, are the masses of the objects,
» is the distance between them, and G is an important constant, the gravitational
constant. One way to view this formula is that it gives F as a function of three variables.
But if we have two specific objects in mind (for example, the sun and Mars), then F is
a function of the single variable r. This formula is an example of an inverse square law,
so named because of the way r appears in it.

As in Example 12, we have a choice here: we can view the inputs and outputs of
this function as physical quantities (distances and forces), or we can view them as
unitless (positive real numbers).

Example 14: Functions are also important in social sciences such as economics.
For instance, consider a factory that produces widgets (a very popular product in the
world of economics). If 7 is any nonnegative integer, it would be useful to know the
total cost for that factory to produce n widgets on a given day. It is common to denote
this cost as C(n) and say that C is the cost function for this factory.

Cost functions provide useful information. For example, C(0), the cost to produce
no widgets, is probably not zero. Rather, its value represents the daily overhead, or
fixed costs, at that factory. Also, the behavior of the cost function as n increases gives
important information about the efficiency of the factory.

Example 15: Computer programs often define functions, some of which may be
hard to fit into mathematical formulas. One amusing category is screen-saver programs.
You probably have one of these on your computer—perhaps “Flying Toasters.” There
are all sorts of functions defined by such a program. You could start the screen saver
and let f(x) be the number of toasters on the screen x minutes after the program starts
or the distance from the top of the screen to the nearest toaster at that time. If you do this
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for k minutes, then f'should be a function with domain [0, &]. Is there a mathematical
formula for f? Screen savers use a type of program called a random-number
generator, but most of these are still deterministic programs. So if the computer’s clock
is accurate, the programmer who wrote the screen saver or someone else who
understands it very well might be able to write a mathematical formula for the function.

We conclude this section with a picture that is frequently used to illustrate concepts
connected with functions. Figure 7.3 illustrates the image of a function as a collection
of arrows. If f: A — B, we know that fassigns exactly one element of B to each element
of A. If we use an arrow going from x toy whenever f(x) =y, we get a picture like the
one shown. The important thing to see in this picture is the difference between the
appearance of 4 and that of B. Since fis a function, no point in 4 can have more than
one arrow coming from it. And since Dom( f') = 4, each point in 4 has exactly one
arrow coming from it. Butin B, a point can have more than one arrow going to it. And
since the range of fneed not be all of B, it is also possible that a point in B can have no
arrows going to it. By the way, Figure 7.3 gives the impression that 4 and B are disjoint,

but they need not be.
Exercises 7.1
(1) Find the domain and range of each of the following, and determine whether it’s

a function. For some of the solutions, you may need to use methods not discussed in this
book, such as techniques involving calculus.

@ {(1,2),(2,2),4,-2)} ®) {(1,2),(2,2),2, 1)}
) {(n,2n-1)|neN} @) {@n-1,n)|neN}
(e) @ ) () |x,yeRandy=x"-2x+T7}

(@ {(y)|xyeRandy=3/("+1)}
() {(,y)|x,yeRandx=y"-4}
() {(x,y)|xyeRandx=y -y}
*G) {(x,y)|xy€Randx=y"+y}

Q) Iff(x)=3sinx, g(x) = 1/x, and h(x) = x2- 1, compute expressions for:

(@) f(h(x)) (b) g(g))
(© hx?) (d) g2/fx))
(e) [glx+2) - gz @ h(h(4))

(3) Use the method described in Example 6 of Section 6.1 (solving for x), to
determine the ranges of the functions in Example 1 of this section.

(4) Repeat the previous exercise for Example 2 of this section.

(5) Define five functions whose domains and ranges consist of objects other than
numbers.
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Figure 7.3 A function f: A — B shown by arrows

(6) LetA={1,2} and B = {2, 4, 5}. Give an example of each of the following, or
explain briefly why none can exist. For each example you provide, write it three ways:
as a set of ordered pairs, as a function defined with function notation, and as a diagram
like Figure 7.3.

(@ 4B

(b) fis a function with domain 4 and range B.

(c) B—A

(d) f* B— A and each member of Rng(f) has only one preimage.

(7) Determine whether each of these rules defines a function whose domain is the

specified set of inputs. Justify your answers.

(a) For each person who has ever lived, f(x) = x’s mother.

(b) For each person who has ever lived, f(x) = x’s brother.

(c) For each person who has ever lived, f(x) = x’s youngest brother.

(d) For each natural number, f(n) =n + 1.

(e) For each natural number, f(n)=n - 1.

(f) For each real number, f(x) = tan x.

(g) For each real number, f(x) = ¢"if x > 0, and f(x) =cos x ifx < 0.

(h) For each set of real numbers, f(4) = the smallest number in 4.

(i) For each set of natural numbers, f(4) = the smallest number in 4.

(j) For each polynomial, F(g) = the derivative of g.

(k) For each polynomial, F(g) = the maximum value of g.

(1) For each polynomial, F( g) = the maximum value of g on the interval
[2, 17].

(8) Consider Y, the characteristic function of Z (with domain R), as discussed in
Example 10.
(a) What is the image of 1.4 under X,?
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(b) List three preimages of 1 under ¥.
(c) Describe the set of all preimages of 0 under Xz.

(9) Let A be any set, R an equivalence relation on A, and B = A/R, the collection of
all equivalence classes under R. Now define f: 4 — B by f(x) = [x]. Prove:
(a) Foranyxandyin4, Sx)=f(y) iff xRy. (Therefore, fis a function that
establishes the converse of Theorem 6.4 discussed after that theorem.)
(b) Foranyxandyind,yisa preimage of [x] under " iff xRy.
(c) Forany b in B, the set of preimages of b under fis b.
The function fis called the mapping to the equivalence classes defined by R.

(10) This exercise provides the verification that the alternative definition of
functions is equivalent to the set-theoretic definition given at the beginning of the
section. Prove that for any set of ordered pairs R, the following are equivalent:

(a) Risa function in the sense defined at the beginning of the section.

(b) No member of Dom(R) is paired in R with more than one member of
Rng(R).

(c) No two ordered pairs in R have the same first member.

(d) Whenever (x,y) and (x, z)areinR, theny =z.

(11) Prove that for any functions fand g (viewed as sets of ordered pairs), f= g iff
Dom( /') = Dom(g) and, for all x in this domain, f(x) = g(x).

(12) This exercise investigates the subtleties inherent in finding the derivative of a
function defined by cases. Do not try to give rigorous justifications for your solutions
to this exercise.

(a) Graph the absolute-value function and the function g(x) defined in Example
9. Describe these graphs in words.

(b) Determine the derivative of the function |x|. You have to consider three
cases: x> 0, x <0, and x = 0. Graph your result.

(c) Repeat part (b) for the function g(x). Pay special attention to the case x = 0.
What do you notice about your answer?

(13) LetA be any set, and let & be the set of all functions from A4 to R. For any fand
g in % define two new functions f + g and fg, also in & by the rules
(f+g)x)=/(x) + g(x), and ( f2)x) =f(x)g (), forevery x in 4. These are the standard
definitions of function addition and function multiplication. The purpose of this
exercise is to see that these operations make #into a well-behaved algebraic structure.
(a) Provethatf+g=g+f, forall f, g in & (function addition is commutative).
(b) What would be the sensible definitions of /- g and -f?
(c) Which functions would serve the role of the additive identity and the
multiplicative identity in 5 as defined in group V of the axioms in Appendix 1?

(d) Under what circumstances, if any, does axiom V-11 hold in #?
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(14) Give an example of each of the following, or explain briefly why none can
exist. (Here, fand g are functions, viewed as sets of ordered pairs with no specified
codomain.)

(@) fUgis a function. ®) fU g is not a function.
(c) f'is a function. (d) £ is not a function.
(e) fNf ' isa function. (f) fNf " is not a function.

(15) This exercise introduces some basic ideas from linear algebra. Recall that R”
denotes the set of all a-tuples of real numbers, which may also be thought of as
n-dimensional real vectors. You probably know that addition and scalar multiplication
of vectors are defined coordinate by coordinate.

A function f: R" — R" is called linear iff, for all and v in its domain and all reals
¢, fu+v)= fu)+f(v)andfleu) = ¢f (). (This is a more restrictive definition of
linearity than the one usually used for functions from R to R.) Prove:

(a) Iffis linear, then f(u - v) = f(1) - f(v), for all ¥ and v in the domain.

(b) Iffis linear, then f(0) = 0, where 0 denotes 2 vector that is all zeros.

(c) Now letf: R*— R’.Prove thatfis linear iff there are constants a, b, ¢, and
d such that f(x, y) = (ax + by, ex + dy), for all reals x and y. Hint: If fis linear, use
£(1, 0) and f(0, 1) to determine the constants.

(16) Prove or find a counterexample:
(@) For any function f, Dom(f) =@ iff Rng(f)= 0.
(b) Wheneverf'4—B,A=0 iff B=0.

72  One-to-one and “Onto” Functions; Inverse Functions and Compositions

In this section we define and study some important types of functions and ways of
forming new functions. We have already discussed inverse relations; now we take up
the more specific and important concept of inverse functions. Similarly, most of the
ideas we encounter in this section pertain to relations in general, not just to functions,
and our definitions reflect that generality. The reason that some of these concepts are
not defined in Chapter 6 is that they are infrequently used with relations that are not
functions.

Recall the discussion of inverses in Section 6.1. Since every relation has an inverse,
every function has an inverse. But the inverse of a function is not necessarily a function.
This should be apparent from the first pair of graphs in Figure 6.2. The original parabola
is a function but its inverse is not, as is easily seen using the vertical line test. It is not
hard to see how this can occur. When we change from R to R° ! the roles of the axes are
reversed; this means that the roles of horizontal and vertical lines are reversed. So there
is no reason to expect R™' to be a function, unless the graph of R passes an analogous
horizontal line test. The next definition makes this notion rigorous.

For the rest of this chapter, definitions are usually phrased in terms of the
set-theoretic (set of ordered pairs) view of relations and functions.
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Definition: A relation is one-to-one iff no two ordered pairs in it have the same
second member. In other words, a relation is one-to-one iff, whenever (x, z) and (y, z)
are both in it, thenx = y.

The main thing to see about this definition is that it is exactly equivalent to the
definition of a function, except that the roles of the first and second members of ordered
pairs are switched. 1f you refer to the alternative definition of functions in Section 7.1,
you see this immediately. Here is another way to think of this: a relation is a function
iff no input is matched with more than one ouiput. A relation is one-to-one iff no output
is matched with more than one input.

Perhaps you have noticed that our definitions of functions use the words “exactly
one” instead of the more mathematical word “unique.” The reason for this is that the
way that “unique” is used in ordinary life can muddle the distinction between the
concepts of function and one-to-one. For instance, what would you conclude if your
bank sent you a letter saying that “we have given every customer a unique ID number”?
You would conclude that each customer has exactly one ID number, so there is a
function from customers to ID numbers. But you would also probably conclude that no
two customers have the same ID number, that is, that this function is one-to-one. In
mathematics it is important not to attach the second meaning to the word unique.

I°  In the case of functions, the definition of a one-to-one relation becomes
easier to state: fis one-to-one iff whenever f(x)=f(), thenx =y.

_The next result is a continuation of Theorem 6.2 and is just as simple.

Theorem 7.1: (a) If R and S are inverses, then one of them is a function if and
only if the other is one-to-one.
(b) Iffis a one-to-one function, then so is f -
Proof: See Exercisc 1. ®

Definition: A one-to-one function is called injective or an injection.

Notation: The notation f: 4 2= Bor f: 4 _i5i, B may be used to mean that f'is
a one-to-one function from A4 to B.

The notation f: 4 2 Bor fi 4 ™ B, read “f'is a function from 4 onto B,”
means that fis a function, Dom(f) = A, and Rng( /) = B.

Equivalently, f*A4 2% B means that frA— BandVyeBIxeAf(x)=y.

Definitions: If the codomain of fhas been specified and the range of fis all of its
codomain, f may be called onto or surjective or a surjection.

If fis a one-to-one function from 4 onto B, f is called a bijection or a one-to-one
correspondence between A and B. If the sets A and B are understood, we may simply
say that fis bijective. The notations f: 4 b, Band f* 4 2L Bare used.

onto
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Remarks: (1) Mathematicians are often somewhat imprecise when they call a
function onto. After all, every function is onto some set, namely its range. In other
words, it makes absolutely no sense to call a function onto, or surjective, unless some
set has been specified as the codomain. In practice, this may not be done explicitly. For
example, mathematicians often say things like “Is the function f(x) = x> + 1 onto?”
Without any other information given, you are probably supposed to assume that the
domain of f'is R (since x is usually a real variable) and that the intended codomain is
also R. Under this interpretation, the answer to the question is no.

Similarly, the terms “bijection” and “one-to-one correspondence” are sometimes
used imprecisely. Every one-to-one function is automatically a one-to-one
correspondence between its domain and its range. But when a function is called a
bijection, that means it not only is an injection but also is onto some intended codomain.

This situation is similar to the one involving the complement of a set. Recall from
Section 5.2 that mathematicians often refer to the complement of a set, but that term is
meaningless unless some universal set is understood.

(2) A good way to understand the terms “injection,” “surjection,” and “bijection”
is to refer to Figure 7.3. Remember that every point in 4 must have exactly one arrow
from it, but a point in B may have more than one arrow or no arrow going to it. But if
fhappens to be surjective (that is, onto B), then every point in B must have at least one
arrow going to it.

If fis injective, then no point in B has more than one arrow going to it. This means
that if we reverse all the arrows to form /™', we get a function (in fact a bijection) from
Rng(f) to 4. This is a consequence of Theorems 6.2 and 7.1. If fis a bijection, then
every point in B has exactly one arrow going to it. In this case, if we reverse all the
arrows, we see that f ' is a bijection from B to 4.

(3) With Figure 7.3 still in mind, let’s think a bit more about the idea of a
one-to-one correspondence between 4 and B. Note that in this case there’s exactly one
arrow leaving each point in 4, and exactly one arrow arriving at each point in B. In other
words, a bijection is sort of a perfect match-up between two sets, with no points omitted
and no duplication. To test your intuition of this concept, consider the following three
assertions:

(a) Given two finite sets, there’s a bijection between them iff they have the
same number of elements.

(b) There can’t be a bijection between a finite set and an infinite set.

(c) Given any two infinite sets, there’s a bijection between them.
Do these assertions seem to be clearly correct? Interestingly, the first two are correct,
but the third is not. Our consideration of these issues is resumed in Section 7.5.

Compositions

You’ve definitely had experience with compositions of functions, since they are
probably the most important way of forming new functions from old ones. The
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composition of two functions is the new function obtained by performing one followed
by the other.

Example 1: If f(x) = 2x + 5 and g(x) = sin x, we can set up the composition
f(g(x)) =2 sinx + 5, which denotes “g followed by /™ on any input value x. We can
also set up the composition g( f(x)) = sin(2x + 5), which denotes “f followed by g.”

The idea of compositions is implicit in function notation, as we can see in Example
1 here, and also in Example 4 of Section 7.1. To make it explicit, a composition of
functions is denoted with a small circle, which is read “circle.” So in the above example,
fogis the function defined by f© g(x) = 2 sin x + 5. Note that since f© g(x) means “f of
gofx,” fog means “g then f;” not “fthen g”’!

If all we intended to do was to define the composition of functions, the above
would be plenty of introduction. However, it’s sometimes useful to talk about the
composition of arbitrary relations, and for that a more careful analysis is required. To
that end, see Figure 7.4. This shows the composition f© g as two computers or boxes in
sequence. When a composition is being discussed, it’s often helpful to use three
variables for the inputs and outputs at various stages. Here we’ve used x for the input
of fo g, which is actually used as the input for g. We then use y to represent g(x), the
output of g, which then becomes the input for f. Finally, we use z for the output of the
whole composition, so z =f(y) = f(g(x)) = f° g(x).

Now, let’s ask what is required for an input x to be paired with an output z under
the composition fo g. Of course, we can say that what’s required is that z = f(g(x)). But
if we want to say this without function notation, we can say that what’s required is that
there is some y such that x is paired with y by g, and y is paired with z by f. In other
words, (x, 2) is in fo g iff for some y, (x, y) is in g and (», ) is in f. With this in mind, we
are led to the following.

Definition: For any relations R and S, their composition R o S is defined to be

{(x,2)| 3y [(x,y) € Sand (¥, 2) € R]}

Figure 7.4 Composition of functions viewed as linked boxes
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Example 2: Here is a concrete example to show that this definition makes sense.
Let fand g be the functions with domain R defined by f(x) = x + 3 and g(x) = 4x. Then
fo g should also have domain R and satisfy fo g(x) = f(g(x)) = f(4x) = 4x + 3. According
to the above definition,

fog={(,2)| I (xy)egand (,2) €f)}

={(x,z)| Jy(xe Randy=4xand ye Randz=y + 3)}

={(x,z)| Iy(xe Randy=4xandy € R and z=4x + 3)}
By Theorem 4.7

={(x,z)|x€e Randz=4x+3andJy (y=4xand y € R)}
By law of predicate logic 18

={(x,z)|xe Randz=4x + 3}

Since the existence of such a y is automatic

Thus the rigorous definition of fo g matches the informal one.

Example 3: Suppose that R = {(1, 3), (2, 3), (5, 7), 3,4)} and §= {(5, 7), (3, 3),
(3, 8), (4, 1)}. Then, by going through all the possibilities, we find that
SoR={(1,3),(1,8), (2, 3), (2, 8), (3, 1)}. Exercise 8 asks you to find Ro S.

Example 4: On the set of all people who have ever lived, let P be the relation “y is
a parent of x,” and let B be “y is a brother of x.” Then B o P is the “unclehood” relation.
What is P o B? (See Exercise 9.)

Inverse Functions

Theorem 7.1 tells us that only one-to-one functions have inverse relations that are
also functions. The following theorem provides more information about inverse
functions, characterizing them in terms of compositions.

Theorem 7.2: Suppose f* A — B. Then
(a) Iffis a bijection, then f~' is the unique function from B to 4 such that
flof=id, and fof ' =id,.
(b) Iffis not a bijection, then there is no function g such that go f=id, and
fog=id,

Proof: (a) Assumef: 4 28, B. We want to show f ~' o f=id,. By definition,
Dom(id,) = 4. Since Dom( 1) = 4, it is clear that Dom(f “lof) c A (see Exercise 16).
Given any x in 4, f(x) is defined. Also, if f(x) =y, then f~'(y) = x. [The fact that f is one-
to-one justifies using function notation for f~'.] Therefore f™' o f(x) = f'(f(x)) =
f ') = x. Therefore, Dom( f ‘o f) = A = Dom(id,), and for every x in 4,
f'of(x) = x = id,(x). By Exercise 11 of the previous section, we are done.

The proof that fo f~! = id, is similar and we omit it. Next we need to prove
uniqueness. Assume g: B — A, gof = id,, and fo g = id,. Let y € B. Since fis onto B,
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there’s an x such that f(x) = y. Then g(y) = g(fx)=goflx)=id,(x)=x =f"'(y). So
we have that g(y) =f'(y) for every y in B, and this implies that g=1"".

(b) Iff: A — Bbutfisnota bijection, then either f is not onto B or f'is not
one-to-one. If fis not onto B, lety € B - Rng( f). Since y is not an output of /, it can't
be an output of any composition f© g. Therefore, there is no g such that fo g = id,.

If fis not one-to-one, assume fw)=f(x)=yand u # x. If there were a function g
such that gof=id,, we would have g =g(f(w)=uandg(y)= g( f(x)) =x. Since
g is a function, this implies « = x, a contradiction. ®

Theorem 7.2 says that an inverse function really reverses or undoes the action of
the original function, in the sense that if you compose an injective function with its
inverse function (in either order), you get your original input back. With this in mind,
it is sometimes easy to figure out the inverse of a function without doing any
computation.

Example 5: For instance, the inverse of f(x) =x - 5 (subtracting 5 from any input)
must be f~'(x) = x + 5 (adding 5). The inverse of f(x) = 2x (doubling) must be
f'(x) = x/2 (halving). The inverse of f(x) = —x happens to be itself. The inverse of
f(x)=2x - 5 (doubling and then subtracting 5) must be f'(x) = (x + 5)/2 (adding 5 and
then halving). Note the reversed order of the operations in the inverse; this phenomenon
is proved in Theorem 7.3(a).

Example 6: Various important functions in mathematics are defined as inverse
functions. For instance, taking the cube root of a real number may be defined as the
inverse of cubing a number (see Figure 7.5). Note that

3\/JF=x and (yx)' =x forallx

Figure 7.5 The cube root function defined as an inverse
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Example 7: Another example of this is logarithms: the function log,x is usually
defined as the inverse of the exponential function b*, where b is any positive constant
(the base) (see Figure 7.6). Some calculus textbooks do this in the other order: they
define the natural logarithm function as an integral, then define the function e” as its
inverse, and then finally define logarithm and exponential functions with other bases.
Whichever way they’re defined, we get two important identities from Theorem 7.2:

log,() =x, forallxe R, and b%%” =x, forallx>0
Restricting the Domain of Functions

Having an inverse function is so useful in mathematics that often a sort of partial inverse
function is defined even for functions that are not one-to-one. This is done by restricting
the domain of the original function, a concept that is important enough to deserve its
own notation:

Definitions: Let fbe any function and 4 ¢ Dom( f). Then the restriction of f'to
A, denoted £, is the set of ordered pairs {(x,y) | x € 4 and f(x) =y}. If g=f|, for some
A, then g may be called a restriction of £, and fmay be called an extension of g. Note
that these statements simply say that g < f.

Tt is clear that the domain of f'|, is 4 and, for any x in 4, f(x) = f(x) (see Exercise
10). Mathematicians are sometimes a bit careless about the requirement that
A c Dom( f) in this definition. For instance, they might refer to “the restriction of the
tangent function to the positive real numbers,” even though the domain of the tangent
function does not include all positive real numbers. What is meant, of course, is the
restriction of the tangent function to the positive real numbers that are in the domain of
the tangent function.

The existence of partial inverse functions is based on the following principle: for
any function £, there is a subset 4 of the domain of f'such that f], is one-to-one and
Rng(f|,) = Rng(f). In other words, every function can be restricted to a one-to-one
function without losing any members of the range. Don’t bother trying to prove this
principle; it’s equivalent to the powerful axiom of choice (Section 7.7).

However, in most applications, it is possible not only to find a partial inverse
finction but also to have the restricted domain A4 be a relatively simple set. In the two
important examples following, 4 is an interval.

Example 8: Consider the squaring function f(x) = x*, defined on R (see Figure
7.7). This is not one-to-one, so its inverse is not a function. But if we let g = f|,, where
A is the set of all nonnegative real numbers, then g is one-to-one. The function g 'isan
important function called the principal square root function, Jx. Note that the
conditions described in Theorem 7.2, (yx)* = x and \/F = x hold true for all
nonnegative numbers. However, they fail if x < 0. Thus g is not a true inverse function
of the original function f.
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Figure 7.6 A logarithm function defined as an inverse

Example 9: As a final example of this, consider the inverse trigonometric
functions (Figure 7.8). None of the regular trigonometric functions is one-to-one.
Therefore their inverses are relations but not functions. Some mathematicians denote
these inverse relations using lowercase designations like arc sin x, sin™' x, and so on. If
we want inverse trigonometric functions, we must restrict the domains of the original
trigonometric functions. This must be done with some care: it is important that the
restricted function still hits every number in the original range but just once. For the
trigonometric functions, this is standardly done as follows: the sine function is restricted
to [~ /2, m/2), the cosine function to [0, 7], the tangent function to (- 7/2, 7/2), and so
on. Exercise 11 asks you to find appropriate restricted domains for the three other
trigonometric functions.

Exercises 7.2
(1) Prove Theorem 7.1.

(2) Letd4={1,2,3}and B = {2, 3, 6, 8}. Try to find functions from 4 to B that
are:
(a) One-to-one and onto (b) Neither one-to-one nor onto
(c) One-to-one but not onto (d) Onto but not one-to-one
If any of these functions is impossible to find, explain why (nonrigorously). You
may use this result, which is proved in Section 7.6: if fis a function whose domain is a
finite set 4, then Rng( /') cannot have more elements than 4.
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Figure 7.7 Construction of a partial inverse function to the squaring function

(3) Repeat Exercise 2 for functions from B to 4.
(4) Repeat Exercise 2 for functions from A4 to A.
(5) Repeat Exercise 2 for functions from R to R.

(6) Repeat Exercise 2 for functions from N to IN.
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Figure 7.8  Construction of a partial inverse function to the sine function

(7) In a certain town, every person lives in exactly one house. (So nobody is
homeless, and nobody has two residences.) Thus we have a function from people in the

town to houses in the town.
(a) What would it mean to say this function is one-to-one?

(b) What would it mean to say this function is onto?

(8) With R and S as defined in Example 3, find Ro S.
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(9) Let P and B be as in Example 4. Also, let M be the “motherhood” relation.
Describe these relations:

(@) PoB () PoP
(c) MoP (d) PoM
(e) P'oP (f) Pop!

(10) Let f'be any function and 4 < Dom( f). Prove that the domain of f1, is 4 and,
for any x in A4, f],(x) =f(x).

(11) Find appropriate restricted domains for the secant, cosecant, and cotangent
functions to define partial inverse functions for them (refer to Example 9). There are
many reasonable answers in each case; you need to find just one.

(12) Refer to Example 7. For fixed positive b, the function & is a bijection between
R and the set of all positive reals and satisfies the familiar properties of exponents:
by = bV, b/ = b*?, and (b*) = b”. From these and the definition of logarithms,
derive the corresponding properties of logarithms, for any positive x and y and any z:
(@) log,(xy) =log,x +log,y
(b) log,(xly)=log,x - log,y
(c) log, () =z log,x

(13) Determine whether the following functions are one-to-one. For each one that
is, find a formula for f~!, and find the domain and range of f ~'(x and y are real
variables).

(@) f(x)=@2 - 5x)/3 () f(x)=(2 - 5x)/(3x+4)
© [ =yx @) fx)=x"-x

(14) Let g(x) =x* + x, defined on R.
(a) Use calculus methods to show that g is one-to-one.
Now, without finding a formula for g™' (which is not easy to do), evaluate:
(b) &7(0) () g'(10)
@) g'(g(5) ) g(g'(-7)

(15) Letf: A = B. Prove:
(a) fis one-to-one iff no member of B has more than one preimage under f.
(b) fis onto iff every member of B has a preimage under f.

(16) (a) For any relations R, S, prove that Dom(R © §) ¢ Dom(S) and that
Rng(Ro S) c Rng(R). Show by counterexamples that < can not be strengthened to = in
either statement.

(b) Fill in the blanks to make a correct statement, and then prove it:
For any functions fand g, Dom(fog) = {x € Dom(g) | ___ € Dom(__)}.

(17) IfRis arelation on a set 4, prove :
(a) Risreflexiveond iff id, c R.
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() Ris symmetric iff R=R"".

() R is transitive iff RORC R.

(d) Ris irreflexive iffid, VR = o.

() R is antisymmetric iff RN R < id,.

(e) R is strongly antisymmetric iff RN R™' = 2.

The point of this exercise is that it provides an alternative definition or

characterization of equivalence relations and partial orderings, based on the identity
relation, inverses, and compositions.

(18) Let f'be a linear map on R?. According to Exercise 15 of Section 7.1, that
means f has the form f(x, y) = (ax + by, cx + dy), for all reals x and y. Prove that the
following are equivalent:

(a) fis one-to-one.
(b) fis onto.
(¢) ad - bc # 0. (By the way, you may recall that ad - bc is the value of the

. ab
determinant )
c d

Hint: Let f(x, y) = (ax + by, cx + dy) = (4, v), and try to solve the second equation for
(x, ) to get a formula for /™.

Critique the proofs in the remaining exercises. (If necessary, refer to the
instructions for this type of problem in Exercises 4.2.)

(19) Theorem: Forallf, 4, and B, (f1)ls=flins-

Proof: (fl)lz= {(.»)|x€BA(x,») € fli} By definition of |
= {(x,y) | xe BA(x e ANy=f(x))} By the same reason
= {(x,y)|xe ANBAy=f(x)} By definition of N
= flins By definition of |

(20) Theorem: If f(x) = l/x, where x is a real variable, then fo f'= idg.
Proof: For any x, fof(x) =f(f(x)) =f(1/x) = 1/(1/x) = x = idgp(x).

7.3 Proofs Involving Functions

In this section, we begin with some general guidelines for proving things about
functions (and about relations, to a lesser extent) and then prove a number of basic
results using these methods. Unless stated otherwise, we do not require that functions
have specified codomains.

Guidelines for Proving Things about Functions

(1) To prove that a relation R is a function, the most common approach is to
assume that (x, y) and (x, z) are both in R and show that y =z.
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(2) To prove that a relation R is one-to-one, assume that (x, z) and (y, z) are both
in R and derive that x = y. In the case that the relation is a function f; this says: assume
f(x) =z and f(y) =z, and show that x = y.

(3) To prove that f: 4 — B, prove that fis a function, Dom(f) = 4, and Rng(f) ¢ B.
The first part of this is normally proved as in guideline 1. The second and third parts
may be proved as discussed in Section 5.2.

(4) To prove that f: A 2%, B, prove guideline 3 but with the stronger condition
Rng(f) = B. That is, also show that if y € B, then there’s some x € 4 such that f(x) = y.

(5) To prove that f* A 1=4 B, combine guidelines 2 and 3.
(6) To prove thatf: A -*5, B, combine guidelines 4 and 2.

(7) To prove that two relations are equal, prove that an ordered pair is in one if
and only if it’s in the other.

(8) To prove that two functions f and g are equal, one approach is to use guideline
7. A more common method is to prove that Dom( /') = Dom(g) and that for every x in
that domain, f(x) = g(x) (as in Exercise 11 of Section 7.1).

Theorem 7.3: For any relations R, S, and T
(@) (RoS)'=S8"oR"
(b) (ReS)oT=Ro(S°T)
Proof: (a) (x,y) € (RoS)" iff (y,x)€ RoS
iff 3z Sz and zRx]
iff z[(z,y)€ S 'and (x,z)€R']
iff (x,y)eS'oR™
(Formally, we should have used ES and then EG here, but it is common to leave in
existential quantifiers in this manner.)
(b) See Exercise 1. ®

Both parts of Theorem 7.3 can be easily expressed in words. Part (a) says that to
invert a sequence of steps, you invert them one by one but in the opposite order. This
is easy to illustrate with examples from everyday life. For instance, in the morning a
person puts on socks and then shoes. In what order are these steps reversed or undone?

Part (b) says that composition is associative. This is worth noting because we have
already seen that it is not commutative. Because of this associativity, expressions like
fo go h are unambiguous, analogously to ones like x +y + z (see Exercise 2).

Theorem 7.4: (a) The composition of two functions is a function.
(b) The composition of two one-to-one relations is one-to-one.
(c) Iff A »Bandg: B — C,thengofi 4 = C.
(d) Iff* 4 2=L Bandg: B =L C, thengof: 4 =L C.
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(e) Iff: 4 ™ Bandg: B 2™, C,thengof 4 22, C.
(f) Iff: 4 i, Bandg: B -2, C,thengof 4 -2, C.

Proof: (a) Assume (x, y) and (x, z) are both in fo g, Then by the definition of
composition, there exist ¥ and v such that g (x) = » and f(¥) =y, and g (x) = v and
f(v)=y. But since g is a function, from g(x) =« and g(x) = v we get ¥ = v. But then we
have f(u) =y and f(u) = z, so since f is a function, y = z.

(b) This proof is similar to that of part (a) and is left for Exercise 3.

(c) Assume f: A = Band g: B — C. By part (2), gof'is a function. We need to
show Dom(gof) = A. So assume x € 4. Then there’s a y € B such that f(x) = y. In turn,
there’s a z € C such that g (y) =z. So gof(x) = z, and therefore x € Dom(g o f).
Conversely, assume x € Dom(g /). Then for some z, g ©f(x) = z. By the definition of
composition, there must be a y such that f(x) = y and g(y) = z. But from f(x) = y, we
have x € Dom(f ) = 4. This completes the proof that Dom(g © f') = A. Showing that
Rng(gof) < Cis also left for Exercise 3.

(d) This follows immediately from parts (b) and (c).

(e) Assume f' 4 229, Band g: B 2%, C. By part (c), all that’s left to prove is that
the range of gofis all of C. So assume z € C. Since g is onto, there is a y in B such that
g(») =z. But then since fis onto, there’s an x in 4 such that f(x) =y. So g( f(x)) =z, and
thus z € Rng(gof).

(f) This follows immediately from parts (d) and (e). =

Theorem 7.4 can be summarized as saying that many properties are preserved
under composition. Specifically, being a function, being one-to-one, being onto, and
being a bijection are preserved under composition.

Theorem 7.5: Iff: A — B, then foid, =id o f=f

Proof: By Theorem 7.4(c), foid,: A — B. So this composition has the same
domain as f'does. Also, if x € 4, then foid,(x) = f(id ,(x)) = f(x). By guideline 8, this
establishes foid, = f.

The proof that id, o f= fis left for Exercisec 4.

Definition: A bijection from a set 4 to itself is called a permutation on 4. This
term is used mostly when 4 is a finite set but may be used even when it is infinite.

Example 1: Here is an example from group theory, which is a major part of the
subject of abstract algebra: let 4 be any fixed set, and then let S be the set of all
permutations on 4. For any two permutations f'and g in S, define their product fg to be
fog. Also, define 1 in S to be id,. Now refer to the field axioms (axioms V-1 to V-12),
and note the following.

By Theorem 7.4(f), the composition of two permutations on A4 is again a
permutation on A, so axiom V-2 is true if we replace R by S and let x and y have § as
their domain.

By Theorem 7.3(c), this multiplication is associative; that is, axiom V-4 is true
(again, with the variables having S as their domain).
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By Theorem 7.5, axiom V-9 holds in S. And by Theorem 7.2(a), a version of axiom
V-11 holds in S. This version is Vf(fof ' = f~'of=1). There is no 0 in § that must be
excluded from this axiom, as there is in a field.

In summary, we have defined a sort of multiplication operation on S that satisfies
the properties of closure, associativity, identity, and inverses. This is what is meant by
saying that S, with this multiplication operator, is a group. This multiplication is not
commutative (as long as 4 has more than two elements), but that’s permissible in a
group. In fact, such permutation groups are the main example of groups that are not
commutative (see Exercise 13).

Note that in a field there are by definition two basic binary operations (called
addition and multiplication), whereas in a group there’s only one.

Next we present a simple result that justifies defining functions by cases.

Theorem 7.6: If fand g are functions whose domains are disjoint, then f Ugisa
function.
Proof: See Exercise 5. ®

What does this theorem have to do with definitions by cases? Well, a typical such
definition has the form

_ [ gx) if P(x)
f) = { hx)  if Q(x)

Here it is understood that x is restricted to some set 4; that {x € 4 | P(x)} < Dom(g); that
{x € 4| Q(x)} < Dom(h); and finally, that there is no x in A4 such that P(x) and Q(x) are
both true. The last assumption is necessary to guarantee that Dom(g) and Dom(#) are
disjoint. Then the function fis simply g U A.

The next two theorems are more sophisticated than the ones in this section so far.
The proof of the next theorem might be easier to follow with a diagram like Figure 7.3.

Theorem 7.7: Say f* A — B. Then fis one-to-one iff for all functions g and # with
codomain 4, (fo g =fo h implies g = h).

Proof: For the forward direction, assume f* 4 =% B, and let g and % be functions
with codomain 4. We must prove the conditional in parentheses. So assume fo g = fo h.
To show g = h, we follow guideline 8. First we show Dom(g) = Dom(#). Let
Dom(g) = C, and assume x € C. We have g: C > 4 and f: 4 = B, and so by Theorem
7.4(c), fog: C— B. So x € Dom( f°g), and by Theorem 4.7 again, x € Dom( fo k). But
if f(h(x)) is defined, we must have h(x) defined, so x € Dom(#). We have just shown that
Dom(g)  Dom(h). The proof of the other direction is similar and we omit it. Thus we
have Dom(g) = Dom(h). Finally, let x € Dom(g). We want g(x) = h(x). Since fog =f°h,
we know that f(g(x)) = f((x)). But f'is one-to-one. Therefore, g(x) = h(x).

For the reverse direction, we use indirect proof. Assume that the conditional in
parentheses holds for all g and A with codomain 4, and assume that f'is not one-to-one.
Then we have some x and y in A with f(x) = f(y). Now define functions g and 4 from
{1} to Aby g = {(1,%)} and &= {(1, y)}. (Since the domain of these two functions has
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only one member, each function consists of just one ordered pair.) Note that g # h, but
since f(g(1)) =f(x) =f ) = f(h(1)), we have that fo g = fo h. This contradicts the
assumption. M

Theorem 7.8: Iff* 4 — B, then fis onto if and only if for all g and 4 with domain
B, gof= hofimplies g = h.
Proof: This proof is similar to that of Theorem 7.7 (see Exercise 11). ®

Induced Set Operations

The rest of this section is devoted to some concepts and notation that provide an
important tool for understanding and working with functions.

Definition: Letf* 4 — B be a function. Then, for any C < 4, the set {f(x) |x € C}
is called the image of C under f, denoted f(C).

Note that, for any C < 4, f(C) < B. In other words, we have defined a new function
from ©(A) to ©(B), which is called the forward set operation induced by f. Since it is
a new function, it should technically be named with a different symbol. Some authors
use F or f* to denote this function. But the most common practice is to use the same
letter for the new function as for the original. So we write both f(x) and f(C), x being
an element of the domain, and C a subset. The confusion can be compounded by the fact
that the word “image” may be used in both cases. But the idea is simple enough, as
shown in Figure 7.9, and the context usually makes it clear which type of image is
meant.

Example 2: Let f(x) = x’, on the domain R. Then we can write f(3) = 9 and say
that the image of 3 under fis 9. But we can also write things like f(IN) = {1, 4,9, ...},
f({-3,3}) = {9}, and even f({3}) = {9}, with corresponding uses of the word “image.”

Here are some simple facts involving this new notion.

Theorem 7.9: Letf: A = B,and C, D c A. Then
(2) £(C) =Rng(f|0)
(b) f is onto iff f(4) = B.
(c) Vxed, f({x}) = {/()}
@ f(cUD)=(C)Uf(D)
(e) A(CND)= f(C)NfD)
(f) fis one-to-one iff VC [f(4 - C)=f(4) - f(O)].
Proof: Parts (a) through (c) are extremely simple, so we omit their proofs. We
prove part (d) and leave parts () and (f) for Exercise 15.
(d) Assume y € f(C U D). By definition, that says y = f(x), for some x € cUbD.
So x € C or x € D; this means y € f(C) or y € f(D). Therefore, y € f(C) U f(D). For the
converse, just reverse these steps. ®
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Inverse Images

Inverse images are just like forward images but in reverse. The idea is no more difficult,
but the notation is even more ambiguous than in the forward case. As before, let
f: A— B. Recall that ' automatically exists as a relation and that it’s a function if and
only if fis one-to-one. In that case the notation f ~!(b), where b € B, would have its usual
meaning based on function notation. But whether or not f'is one-to-one, we have the
following.

Definitions: Let /> 4 — B. For any C c B, the set {x€ 4 | f(x) € C} is called the
inverse image of C under f and is denoted f~'(C).

Note that f(C) c 4, so we have defined a new function from ©(B) to £(4), called
the inverse set operation induced by f. As before, there should technically be a new
symbol for this function, but it is almost always simply denoted / B

Whenever f denotes a function from 4 to B, the same letter denotes the induced
forward set operation from ©(4) to ©(B), so it is a bit overworked. But now we see that
the symbol /' is even more overworked. It always denotes a relation, it may denote a
function from Rng(f) to 4, and it is used to denote the inverse set operation just defined.
Most of the time, the context makes the meaning clear; but you have to do your part by
paying careful attention. It is also probably helpful that different words are used; we
refer to preimages of a member of B, as opposed to the inverse image. Figure 7.9
illustrates inverse images.

Example 3: With f as in Example 2, we have (4, 9)) = {2, -2, 3, -3},
179, 16 = [3,4]1U[-4, -3], and f'(R) =R. Also, /'({9}) = {3, -3}, S '({-4}) = o,
and £ 7'({0}) = {0}. Note that the last equation is not saying that f~'(0) = 0, which
would be incorrect in this situation since f'is not one-to-one.

Example 4: Define g: R — R by g(x) = e”. This function is one-to-one, so we can
write equations like g"'(1) = 0 and g"'(e) = 1. Here ' is the usual inverse function. But
now we can also use inverse image notation and say g'({1}) = {0} and g"'({e}) = {1},
aswellas g '({0}) =@, g"'({1, e}) = {0, 1}, g '((1, €']) = [0, 3], and s0 on.

Theorem 7.10: Supposef A — B,y € B,and C, D c B. Then

(a) fis onto iff, for every y, f'({y}) * @.
(b) fis one-to-one iff, for every y, f~'({y}) has at most one member.
© f(cUDy=r(CHUf (D)
@ ' (CND)=f(CYNS'(D)
() f(f(C)eC
(f) Forany E c 4, E c f'(f(E))
Proof: We prove part (c) only and leave some of the other parts for Exercise 16.
(c) xef(CUD) iff f(x)e CUD
iff f(x)e Corf(x)eD
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Figure 7.9 Some simple examples of forward and inverse images

iff xef'(C)orxef (D)
iff xe (U I(D). m

Exercises 7.3

(1) Prove Theorem 7.3(b).

(2) In the following, verify the associativity of composition (Theorem 7.3(b)), by
computing fo g, (feg)°h, go h and fo (go h). Make sure to specify the domain of each
function.

(@) f(x)=x+3, gx)=x"-5, h(x)=1-2x
() f(x)=x*-2x, gx)=2+ l/x, h(x)=x - 3/x

(3) (a) Prove Theorem 7.4(b).
(b) Complete the proof of Theorem 7.4(c).

(4) Complete the proof of Theorem 7.5.
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(5) Prove Theorem 7.6.

(6) On the basis of the discussion after Theorem 7.6, describe the general setting
necessary to define a function by three cases.

(7) (a) Is it possible for the union of two functions to be a function even if their
domains are not disjoint?
(b) State a more general version of Theorem 7.6 that begins, “For any
functions fand g, fU g is a function iff ... .”
(c) Prove this new version of Theorem 7.6.

(8) Define three functions by cases in which the domains do not consist of
numbers.

(9) This problem illustrates part of Theorem 7.7. Let f: R — R be defined by
f(x) = x*. Note that f'is not one-to-one. Find functions g and h with codomain R such
that fog=fohbutg # h.

(10) This problem illustrates part of Theorem 7.8. Let fbe as in Exercise 9. Note that
fis not onto. Find functions g and 4 with domain R suchthatgof=hofbutg # h.

*(11) Prove Theorem 7.8.

(12) (a) List all the permutations on each of these sets.
0 o (i) {1} (iii) {1,2) (iv) {1,2,3}
(b) Using your answers to part (2) and the fundamental counting principle,
conjecture a formula for the number of permutations on a set with n elements, and then
show that your conjecture is correct.

(13) Referring to Example 1, show that multiplication (composition) is commutative
in the group of all permutations on {1, 2} but not in the group of all permutations on
{1, 2, 3}.

(14) Given any two functions f: A — B and g: C = D, define a new function
h: A x C— B x Dby h(x, y) = ( f(x), g(»)). (This new function may be denoted f % g,
although it is not literally the cartesian product of f and g.)

(a) Prove that if both fand g are one-to-one, so is h.

(b) Prove that if both fand g are onto, so is A.

(c) Show by counterexamples that the converses of parts (a) and (b) do not
hold in general. What additional assumptions are needed to make these converses true?

(15) Prove parts (¢) and (f) of Theorem 7.9.

(16) Prove parts (d), (e), and (f) of Theorem 7.10.
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(17) Theorems 7.9(e) and 7.10(e) and (f) make assertions using the symbol <. Show
by counterexamples that these cannot be strengthened to equalities.

(18) For each of the three assertions mentioned in Exercise 17, find a simple
additional condition on the function fthat allows it to be strengthened to an equality.
Prove these results.

(19) Letf:R — R be the absolute value function. Determine

@ f(-3,2) ®) /(Z)

() /({21 @ ')

© (-5 ) f'({3,-4,5, )
(20) Letg:R — R be the cosine function. Determine

(@) gR) (®) g([(7/2, 57/4))

© g'{1, 5D (d) g'({-0.5})

(21) Consider these rectangles in R*: 4 =[0, 1] x [0, 1], B=[1, 2] x [0, 2], and
C=1[-1,0] x [1,2]. Find the image and inverse image of these rectangles under the
following mappings on R% You need not prove your results.

@) fCx,y)=(2x,2y) ®) fGx,)=x+y,»)
© fey)=(Cyx) @ fe,»)=(xy)

(&) f(x,»)=(0,y) ® fCx, )= /3, y/3)
@) fl,y)=(x+3,y-4) () fO,y)=(-x,-y)

(i) All but one of these mappings is linear. Which is not?

(j) Match the mappings in parts (a) through (h) with the following
descriptions: translation, reflection about a line, contraction, expansion, shear, 90°
rotation, projection onto the Y axis, and reflection about a point.

(22) Let f: 4 — Band g: B— C. Prove or find a counterexample:
(a) ForanyD < 4,g(f(D))=(g°f)D).
(b) Forany Ec C,f'(g”'(E)) = (fog) ' (E).

7.4 Sequences and Inductive Definitions

Definition: An infinite sequence is a function whose domain is IN. Finite
sequences are not discussed much in this text, so we usually drop the word “infinite.”

We include 0 in the domain of a sequence whenever it’s convenient to do so. This
should not be viewed as a matter of much significance. Most of our examples are
sequences of real numbers; that is, the range of the sequence is a subset of R. But this
is certainly not a requirement.

Notation: Even though a sequence is technically a function, the usual function
notation is rarely used for sequences. First of all, the letters £, g, and 4 are not usually
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used to denote sequences; instead, the letters a, b, and c are typically used. Furthermore,
instead of denoting the value of the sequence a at the input n by a(n), we denote it by
a, and call it the nth term of the sequence. Finally, instead of writing “the sequence a,”
mathematicians usually write “the sequence (a,)” or “the sequence (a,, a,, a;, ...).” The
idea behind this is that we usually don’t think of a sequence as a set of ordered pairs;
rather, we think of it as an infinite list, consisting of all the outputs written in order.

At the same time, it’s important not to confuse the sequence (a,, a,, a,, ...) with the
set {a,, a,, as, ...}. Remember that order does not matter in a set, whereas it certainly
matters in a sequence. Also, repetition is allowed in a sequence.

Example 1: Consider the sequence a defined by a,= 3n + 1. Technically, a is the
set of ordered pairs {(1, 4), (2, 7), (3, 10), ...}. But it is more natural to think of this
sequence as the infinite list (4, 7, 10, 13, )

Example 2: The formula a, = 6 defines the sequence (6, 6, 6, ...). This simple type
of sequence is called a constant sequence.

Example 3: The formula a, = (-1)" defines the sequence (-1, 1, -1, 1, ...). This
is an example of an oscillating sequence.

Note that the ranges of the sequences in the last two examples are, respectively,
{6} and {-1, 1}. This should highlight the fact that an infinite sequence is not the same
as an infinite set.

Example 4: Let a, be the digit in the nth decimal place of the number 7. Since
7 is irrational, it is known that the terms of this sequence never go into a permanent
repeating pattern.

Example 5: Let a, be the nth derivative of the function e”. The terms of this
sequence are functions rather than numbers. In this case, it’s not hard to write down a
general formula for a,. If we let b, be the nth derivative of the tangent function, it is no
longer simple to find a formula for the nth term of the sequence (see Exercise 6).

Example 6: Let (4,) be the sequence of closed intervals defined by
A, =[n, n+ 1/n]. We have encountered this sequence before in the guise of an indexed
family of intervals, as Example 4 of Section 5.3. There are two ways to interpret an
indexed family of sets. Most of the time, it’s just viewed as a convenient notation for a
set of sets. But in other situations, such as when the sets are supposed to be in a certain
order, a family of sets indexed by / may be viewed as a function that maps each iinJ
to the set A, Note that if the index set is IN, this is precisely what is meant by an infinite
sequence of sets.
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Definitions by Induction

We have talked quite a bit about mathematical induction, but only as a way of proving
things. Certainly, induction is primarily a principle of proof. But induction is also very
important as a means of defining sequences.

Example 7: A typical example of a sequence defined by induction (or by
recursion, a term commonly used in computer science) is the factorial function,
f(n) = n!. The standard definition of this sequence is

0!l =1
(n+DI=@Hn+1)

What makes this an inductive definition? The main feature is that f(n + 1) is
defined in terms of f(n). In fact, the structure of this definition is completely parallel to
a standard proof by induction. First, /(0) is defined directly, as a specific number. (As
with proofs by induction, definitions by induction need not begin at n = 1.) Then fof
any larger number is defined in terms of fof the previous number, just as in a proof by
induction P(n + 1) is proved using P(n) as an assumption.

You might think that the sequence n! does not need to be defined by induction,
because it could be defined instead by therulen! =1 x 2 x ... x n (except that 0!
must be defined separately). However, use of an ellipsis in a mathematical definition is
not rigorous. In fact, using an ellipsis to define the output of a function is always an
abbreviated way of describing an inductive definition.

Example 8: The intuitive definition of the exponential expression x” is x-x'x ... X,
with 7 x’s being multiplied. But the rigorous definition requires induction:

¥=1

x™ = xx"

As in the previous example, the inductive definition has the advantage that it can
start at # = 0, but the intuitive definition makes no sense with n=0.

Both x and # are variables in this expression, so we are defining a function of two
variables here. But the induction is on n only. The other variable x need not even be a
natural number. Recall the similar situation for proofs by induction, in which a proof
typically uses induction on only one variable even though a statement with two or more
free variables is being proved.

Example 9: The inductive definition ¢, = 1 and a,,, = 2a, + 1, defines the
sequence 1, 3, 7, 15, ... . Exercise 3 asks you to show that this sequence can also be
defined by the direct (noninductive) rule a, = 2" - 1. The latter equation may also be
referred to as a closed formula for this sequence. Closed formulas have an obvious
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advantage over inductive definitions: if you want to evaluate the thousandth term of a
sequence, a closed formula lets you do so without first evaluating terms 1 through 999.

Of course, since the previous example shows that exponents are technically defined
inductively, this closed formula is only apparently noninductive. This is often the case
with closed formulas for sequences.

Justification of Inductive Definitions (Optional Material)

We now prove the important result that justifies the most common type of definition by
induction. For the rest of this section, we usually use function notation rather than
sequence notation for the sequences under discussion.

To motivate this theorem, consider the most straightforward way of inductively
defining a sequence of elements of some set A. The first term in the sequence is directly
defined to be some specific member of 4. Then, after m terms have been defined, the
next term is usually defined in terms of the mth term and the number m. That means that
there must be a function from N x A4 to 4 that is used to determine the next term.

Theorem 7.11;: LetAbeaset,ce 4, andg:Nx4 — A. Then there is a unique
function f* N — 4 such that f(1) = cand f(m + 1) = g(m, f(m)) for every m in N.

Proof: We give the proof but not every detail. We need to prove the existence
(and uniqueness) of a certain function with domain M. To do this, we first show that
there exist similar functions with finite domains. Specifically, we show that for every
n, there’s a unique function f, from {1, 2, ... , n} to 4, such that f,(1) = ¢ and
fi(m + 1) = g(m, f,(m)) for every m <n. We do this by induction on n.

For n = 1, we want a function f; from {1} to 4 such that £,(1) = c. (The second
condition is automatically true since the condition m < 1 cannot occur.) So let
£ ={(1, ©)}. It is clear that this is the unique possibility for f,.

For the induction step, assume there is a unique function f, with the properties
described above. To define f,,,, all we do is extend f, to one more domain member; that
is, let £,, = f, U {(n + 1, gln, f,(n)}. This is clearly a function with domain
{1,2, ..., n,n+ 1}, satisfying the required properties. We must also show it’s unique.
For this, assume # is any function with domain {1, 2, ..., n, n+ 1}, satisfying the same
properties required of f,.,. By the uniqueness of f,, h must equal f;,, on all inputs from
1 to n, or else k restricted to {1, 2, ..., n} would be another function satisfying the
definition of f,. But then we also have h(n + 1) = g(n, h(n)) = g(n, f,(n)) = £,(i1). So this
yields that & =f,,,, as desired.

This completes the proof of the existence and uniqueness of the f,’s. The proof also
shows that, for all n, f,,, is an extension of f, (that is, f, € f,s1)- From this and the
transitivity of ¢ (Theorem 5.4(e)), it follows easily (see Exercise 12) that f, < f,
whenever m < n. Therefore, for any m, n, and k, if f, (k) and f,(k) are both defined, they
are equal. We can think of this as saying that the f,’s are all consistent with each other.

We are now ready to define f¢ simply let it be the union of all the f’s defined
above. It is obvious that Dom( f) = N and Rng(f) < 4. The fact that fis a function
follows immediately from the last sentence of the previous paragraph. And since fis
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constructed directly from the f.’s, we certainly have f(1) = ¢, and the other desired
condition. So we have shown the existence of the f claimed by the theorem.

Finally, we need to show the uniqueness of f. So assume # is another function
meeting the same requirements. If /' # A, then there must be an n such that f(n) # h(n).
But then restricting both f'and 4 to the domain {1, 2, ... , n} would give us two different
functions that fit the definition of £,. This contradicts what we just proved. This indirect
proof establishes the uniqueness of . ®

This theorem does not deal with inductive definitions in their most general form.
There are at least three ways to make the theorem more general, all of which have
already been encountered. One way is to have the initial domain value be a number
other than 1, as in the definition of n!.

A second generalization is to allow additional variables in the function being
defined, as in Example 8. There, we defined a function f(#, x) or x" by induction on .
In this situation, the extra variable x may have any domain whatsoever, and the function
g mentioned in Theorem 7.11 should also be allowed to depend on x. That is, it has the
general form g(n, f(n), x) instead of just g(n, f(n)). (In Example 8, g(n, f(n), x) = xf(n),
so x is involved although 7 is not.) Furthermore, the constant ¢ should also be allowed
to depend on x; that is, it becomes a function too, which we might denote A(x). (In
Example 8, the definition starts with f(1, x) = x, so we could say that h(x) = x. If we
started the definition at n = 0, we’d have £(0, x) = x° = 1, and so the initial values would
be constant, independent of x. But normally the initial values can depend on the extra
variable(s).)

The third important way to generalize the theorem is to note that, in the inductive
definition of a function, the formula for f(» + 1) may involve one or more values of f(k)
with k < n. Intuitively, this is quite legitimate, since if we are defining the values of /
sequentially, at the point where we define f{n + 1) we must have already defined not just
£(n) but also all values f(k) for k < n. In Chapter 8, we discuss proofs by complete
induction, which are based on the same idea.

Exercise 13 asks you to state (but not prove) the first two generalizations of
Theorem 7.11 just discussed. Here is a rigorous statement of the third one.

Corollary 7.12: Let A beasetand h: B — 4, where B is the collection of all
functions from a set of the form {k | k < n} into 4. Then there is a unique function
£+ N — 4 such that, for every n, f(n) = h(f| | k<n) -

Proof: This proof does not differ significantly from that of Theorem 7.11. We
leave it for Exercise 9. ®

It takes some thought to see that Corollary 7.12 says what it should. The point is
that whenever f has been defined for all natural numbers less than n, we can plug that
partial function into 4 to get a new member of 4 to be used for f(n). Note that this even
applies to the initial value of f: when n = 1, we obtain /(1) = h(@). Thus, in contrast to
ordinary inductive definitions, we don’t need to specify f(1) separately.
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Example 10: The Fibonacci sequence is defined by a more complicated
induction than the ones given so far, in that terms are calculated from fwo previous
terms, not just one: a, = a, = 1 and, for subsequent terms, a,,, = a, + a,.,. Let’s see how
Corollary 7.12 can be used to define the Fibonacci sequence. First of all, we let4=N.

Since we want f(1) = 1, define A(@) to be 1. Similarly, to obtain f(2) = 1, we must
define h({(1, 1)}) to be 1. Finally, for any g € B whose domain is of the form
(1,2, ..., k} with k > 2, let h(g) = g(k) + g(k - 1).

Note that we have not specified the values of 4 on all of B. But it does not matter
how 4 is defined on functions of the form {(1, m)}, withm # 1.

Exercises 7.4

(1) Write the first six terms of the sequences defined by each of the following
formulas for a,.
(@) n*- n+sinzwn ®) (-2)"
(c) n"* d) [(n+ 1)! - n!)/n!

(2) For each of the following sequences, the first five terms are given,; find a closed
formula for a, that fits the terms.
@ 1,5,9,13,17,.. ®) -1,5,-9,13,-17, ...
(c) 1,3,6,10,15,.. @ 1,0,-1,0,1,...

(3) Use induction to prove the claim made in Example 9.

(4) For each of the following inductively defined sequences, write out the first five
terms, find a closed formula for a, (as in Example 9), and prove that your formula
defines the same sequence as the given one.

(@ a,=2a,,=a," 3 ®) a,=1;a,, =2a,
© a=4a,,=-a, @ a,=2;a,, = ()
() a,=l;a,,=1+a+a,+..+a, (B a=4a,=a,+ 1/(n* + n).

(5) (@) Write the first ten terms of the sequence defined inductively by a, =0,
a, = 1, and thereafter a,,, = a,,, ~ @
(b) Evaluate a,. Explain.

n"

(6) (a) Find a formula for a, in Example 5.
(b) Find b,, b,, and b, in Example 5.

(7) For each of the following functions, find a formula for its nth derivative f @, In
most cases, your answer will need to involve cases and/or factorials.
(a) f(x)=sinx (b) f(x)=sin3x
(©) f=1/x *d) f) =y
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(8) Using the inductive definition in Example 8, prove these well-known laws of
exponents (assuming m, n € N U {0}):
@) x"x=x"" (b) ") =x"

*(9) Ifx # 0, the definition of x” can be extended to all integer values of n, using a
definition by cases: if n > 0, ¥ has already been defined, and if n <0, x" is 1/(x"). (Note
that in this definition, the value of the function in the second case is based on some
value from the first case. This is fine.) Prove the same laws of exponents as in the
previous exercise, but now assuming m and n € Z.

(c) Also prove the law: x"/x"=x"", provided x # 0
Hint: Since the definition of integer exponents involves both induction and cases, your
proofs should use both these methods.

(10) (a) Write out the first ten terms of the Fibonacci sequence (Example 10).
(b) Prove thata,<a,, <2a,forallnz3.

(11) Prove by induction:
(@) Foreveryn>0,(n+1)! - n!=n(n!)
(b) Foreveryn=4,n!>2"
(c) Foreveryn=7,n!>3"
*(d) Forevery n > 4,n!>n’

(e) Foreveryn>1, Y k(k)=@+1)!-1
k=1

The remaining problems pertain to the optional material at the end of this section.

(12) This exercise fills in some steps required in the proof of Theorem 7.11.
(a) If (4,) is a sequence of sets and 4, < 4, for every n, prove that 4, c A4,
whenever m <n.
(b) Using part (a), prove that if ( f,) is a sequence of functions and f, < f,,, for

every n, then U 7, is a function.
neN

(c) State and prove an equation of the form Dom( U f)=...
neN

(13) State rigorously the first two generalizations of Theorem 7.11 mentioned in the
discussion after it.

*(14) State a version of Theorem 7.11 encompassing all three of the ways mentioned
to generalize it.

(15) Prove Corollary 7.12. For any part of your proof that’s the same as the
corresponding part of the proof of Theorem 7.11, say so rather than repeating the
argument.
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(16) Show that Corollary 7.12 really does provide a generalization of Theorem 7.11,
in the sense that any function f'that can be defined via the theorem could also be defined
via the corollary.

(17) Apply Theorem 7.11, using ¢ = 3, and g(n, k) = 3k. What function fis obtained?
Prove your answer.

*(18) Repeat Exercise 17 using ¢ = -2 and g(n, k) = n + k. Hint: In this problem, it
is much harder to determine the formula for f(r). Here is one approach: compute at least
a half-dozen values of £, and notice the simple formula that apparently fits the value of
f(n+ 1) - f(n). It can be shown that f(n) must be a polynomial in #, of degree one
higher than that of f(n + 1) - /(). Now use some of the specific values of f'to solve for
the coefficients of this polynomial.

(19) IfRis any finite set of ordered pairs of real numbers, define A(R) to be the sum
of all the individual first and second members of the ordered pairs in R. For instance,
h({(3, 2), (3, -4), (1, 3)}) = 8. Apply Corollary 7.12 with this 4.

(a) Write out the first six values of the function f obtained.
(b) Prove by induction that f(n + 1) - f(n) =2"-1, for all n.
(c) Prove by induction that f(n)=2" - n - 1, forall .

7.5 Cardinality

As opposed to algebraic structures like fields and groups, which by definition have
algebraic operations defined on them, a set does not have any structure in and of itself.
It is just a collection of objects. Aside from the question of what particular objects are
in a set, the most obvious question to ask about a set is how many elements are in it.

At first glance, it might seem that this question could not be very fruitful. A set
cither has some finite number of elements, like 7 or 354, or else it is infinite, in which
case there might seem to be nothing more worth saying. But it tuns out there are
different sizes of infinity among sets, and learning how to compare them is a vital part
of higher mathematics.

Definition: For any sets 4 and B, 4 ~ B means there is a bijection between 4
and B.

The statement 4 ~ B is usually read “4 and B are equivalent,” “4 and B are in one-
to-one correspondence,” or “4 and B have the same cardinality.” The intended
meaning of this is that 4 and B have the same size or the same number of elements.
Essentially, “cardinality” is the technical term for the size of a set.

Example 1: Let 4= {5, 7, 18} and B= {Rome, 19, Jodie Foster}. Note that each
of these sets has three elements, so they certainly should have the same size. In fact they
do. For example, {(5, Rome), (7, Jodie Foster), (18, 19)} is a bijection between 4 and
B. Therefore A ~ B. Note that it’s not necessary to give an explicit rule for the bijection.
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Example 2;: Let A= {1,2} and B = {3,4,5}. Since 4 has fewer members than B,
it would seem that these sets should not have the same cardinality, and in fact they
don’t. A bit of trial and error will convince you that there is no bijection between 4 and
B. Soon we prove this.

Example 3: Is the set {1, 2, 3, ... , 1000} the same size as N? Informally, we
know that the first set is finite and the second one is infinite, so presumably the answer
is no. This is also proved later in this section.

Example 4: s the set E = {2, 4, 6, 8, ...} the same size as IN? Since E is a proper
subset of N, it might appear that the answer must be no. But the simple function
F(n) = n/2 defines a bijection from E to N, so £ ~ IN! As we soon see, this strange
situation is characteristic of infinite sets.

Tt is natural to think of ~ as a relation between sets. Technically, its domain is the
class of all sets, as mentioned in Section 5.2.

Theorem 7.13: The relation ~ is an equivalence relation.

Proof: For any set 4, id, is a bijection from 4 to itself. So ~ is reflexive. To show
it’s symmetric, assume 4 ~ B. That means there’s a bijection f from 4 to B. Then, by
Theorem 7.1, ! is a bijection from B to 4, so B ~ 4. For transitivity, assume 4 ~ B and
B ~ C. Then there are bijections f* 4 —B and g: B — C. It follows by Theorem 7.4()
that A~C. ®

Theorem 7.13 should come as no surprise, since 4 ~ B is supposed to mean that 4
and B have the same size, and a binary relation that expresses some way in which two
things are alike is generally an equivalence relation. An equivalence class of sets under
~ is sometimes called a cardinal. This usage is a bit imprecise, for the reason mentioned
before Theorem 7.13. Still, it is a useful concept.

Besides talking about sets having the same size, we also need to compare their
sizes. This is done using the following relations.

Definitions: We write 4 < B (or B = 4) to mean that there is a one-to-one function
from A to B. And 4 < B (or B > A) means that 4 < Bbut 4 + B.

The definition of < is a bit complex, and it’s important to give it some thought. One
good way to think of what 4 < B means is that there are one-to-one functions from 4 to
B but none of these is onto B. On the other hand, it is easier to come up with good words
for < than for <. We read 4 < B as “A has smaller cardinality than B” or simply “4 is
smaller than B.”

Proposition 7.14: (a) 4 < B iff A has the same cardinality as some subset of B.
(b) A c Bimplies 4 < B.
Proof: See Exercise 1. ®
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Theorem 7.15: The relation < is reflexive and transitive.
Proof: This proof is similar to that of Theorem 7.13 and is left for Exercise 2. ®

In the terminology of Section 6.3, Theorem 7.15 says that < is a preordering, again
on the class of all sets. We now turn our attention to the classification of sizes of sets.

Finite and Infinite Sets

Notation: For each nonnegative integer k, N, = {n e N |n < k} .
SoN,=2, N, = {1}, N, = {1, 2}, and s0 on.

Theorem 7.16: (a) Ifk<m, then N, <IN,
(b) For any k, N, < N.

(Note that in the statement of this theorem, the first < is ordinary “less than,” whereas
the symbol < pertains to cardinality.)

Proof: (a) By induction on k, we prove Vk P(k), where P(k) is the statement
Vm >k (N, < N,). First we must prove P(0). For any nonempty set 4, there’s exactly
one function from @ to 4, namely the empty function (with no ordered pairs). This
function is one-to-one but not onto 4, so @ < 4. If m > 0, then IN,, is nonempty, so
@ < N_. For the induction step, assume P(k) and let m > k + 1. We must show
N,,, < N, First note that N ,,,c N , and so N ,..x N , by the function f(x) = x. It
remains to show N,,, + N_, which we do indirectly: assume g: N, Zbii, N . We use
g to construct a bijection & from N, to N,,. If gk + 1) = m, simply let
h=g - {(k+ 1, m)}. Otherwise, say g(k + 1) =. Since g is onto N,,, there must also be
an n such that g(n) = m. Then let h =g ~ {(k+ L, ), (n, m)} U {(n, )}. In either case,
h:IN, 28, N, _,. (Exercise 5 asks you to prove this in more detail.) But since m >k + 1,
m - 1 > k. Therefore, having a bijection from N, to N, , violates the induction

hypothesis.
(b) See Exercise 5. ®

If m > k then, by Theorem 7.16(a), there is no one-to-one function from IN,, to IN,.
This result is known as the pigeonhole principle, often stated in the form: If k + 1 (or
more) letters are put into k mailboxes, then at least one box must receive more than one
letter. For example, the pigeonhole principle guarantees that in any group of eight
people, there must be two people born on the same day of the week. In spite of its
simplicity, the pigeonhole principle is quite useful in higher mathematics.

Definitions: A set 4 is called finite iff 4 ~IN,, for some k.
A set is called infinite iff it’s not finite.

Notation: By Theorem 7.16, if 4 is finite, then there’s a unique k such that

A ~N,; this number £ is denoted Card(4), |4], 4, or #4 and is called the cardinality
of A. This use of the term “cardinality” is consistent with its use earlier in this section.
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If Card(4) = k, we simply say that A4 has k members. Note that there is nothing to
prove here, because it’s a definition.

The next two theorems are perfect examples of “completely obvious” statements
that are tempting to just assume. As we have mentioned from time to time, it is
imperative to prove such things. Better safe than sorry!

Theorem 7.17: Every subset of a finite set is finite.

Proof: Assume B is finite and A c B. So there’s a bijection fbetween B and some
N,. Then f|, is a bijection between A and some subset of N, Therefore, since ~ is
transitive, we are done if we show that any subset of any N, is finite. We do this by
induction on k.

N, = @, whose only subset is itself, which is finite by definition. Therefore, every
subset of N, is finite.

For the induction step, assume every subset of N, is finite, and let C be any subset
of N,,,. Ifk+1¢C,thenCc 1N, by Theorem 4.16(c), so C is finite by the induction
hypothesis. On the other hand, ifk+ 1€ C,let D=C - {k+1}. Again, the induction
hypothesis tells us that D is finite. So there’s a bijection g between D and some IN;. Let
h=gU {k+1,j+ 1}. Itis then easy to show that % is a bijection between C and N,
and so C is finite (see Exercise 6). ®

Before we continue our study of finite and infinite sets, it is helpful to prove an
important theorem that shows that this whole idea of cardinality is “reasonable.” What
do we mean by such a subjective-sounding word? For one thing, consider the notation
A < B. We might read this as “4 is the same size as B or smaller.” For this to make
sense, the conjunction 4 < Band B < 4 should imply that A4 and B have the same size.
But if you try to prove this obvious-looking implication, you will find that it’s quite
difficult. The proof of this result was one of the first significant achievements in the
development of set theory.

Theorem 7.18 (Cantor-Schréder-Bernstein (CSB) theorem): If 4 < B and
B<A,thend~B.

Proof: Assume A < B and B =< 4; this means that we have one-to-one functions
fiA—Bandg:B—A.LetC= Rng(/ ) and D = Rng(g). So we can think of f: 4 — G
g: B— D, and also g”': D — B as being bij ections.

We define a function A that is a bijection from 4 to B. The function 4 is a
combination of fand g™, in the sense that for every x in A, h(x) is either f(x) or g"'(x).
Furthermore, we always let A(x) be f(x) unless there is a compelling reason that it should
be g '(x). We now make this precise by defining the set E of elements x for which
hx) =g "' ().

Let y be any fixed member of B - C. (Note that if B - C is empty, we are done,
because fis then onto B). We show that y forces an entire infinite sequence of members
of 4 to be in E. First, let x, = g(y) (see Figure 7.10). For the range of 4 to include y, we
must have A(x,) = g"'(x,), because y is not in the range of /. So there is no way we can
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have h(x) = f(x) =y, for some x in 4. And since g"' is one-to-one, x, is the only element
of 4 that g”' sends to y. So h(x,) =g '(x,) =y and x, € E.

But now consider f(x,) € B and g(f(x,)) € 4, which we call x,. We claim that x,
must also be in E, or else f(x,) would not be in the range of 4. Of course, f(x,) is in the
range of £, because fmaps x, to f(x,). But we have already established that A(x,) must
be y, which is not f(x,), since y is not in Rng( f). Therefore, since x, is the only object
that f'sends to f(x,), and x, is the only object that g"' sends to f{(x,), the only way to get
f(x,) to be in the range of 4 is to let A(x,) = g'(x,)=/(x).

Continuing in this manner (still with just one y), we define, by induction, an entire
infinite sequence (x,, X,, X3, ...), all of which must be in E. Let’s call the range of this
sequence S(y), since it depends on the choice of y. Figure 7.10 makes it clear what’s
happening. Since x, must be mapped to y by &, all the succeeding elements x,, x;, and
so on must be mapped “up” according to g”' rather than “down” according to f, in the
definition of A. (Technically, this can be proved by induction on the subscript # ofx,)

We now let E be the union of all the sets S(y), taken over all y’s in B - C. [So we
are using B - C as the index set for this generalized union. ] E is a subset of 4, in fact
a subset of D, since all the members of any of the sets S(y) are in the range of g. So we
can define the function 4: 4 — B by:

— g (x) ifx€cE
L6 { S otherwise

It remains to show that 4 is one-to-one and onto. This is left for Exercise 7. ®

Figure 7.10  Construction of the sequence (x,) in the proof of Theorem 7.18
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Georg Ferdinand Cantor (1845-1918) is generally considered to
be the main founder of the subject of set theory. Cantor’s father
wanted him to study engineering, but Georg was more interested in
philosophy, theology and mathematics. Eventually, Cantor decided to
concentrate on mathematics and received his doctorate from the
University of Berlin in 1867.

Cantor’s early research was in the fields of number theory and
trigonometric series, but his nature caused him to think more and more
about the role of the infinite in mathematics. He was also greatly
influenced by the spirit of the times, since it was during the 1860s and
1870s that mathematicians such as Weierstrass and Dedekind (and
Cantor himself) showed how to use infinite sets or sequences to
develop a rigorous theory of the real numbers. In 1874, Cantor
published the first paper that seriously considered infinite sets as
actual objects, and he devoted the rest of his career to this subject.

Cantor’s work encountered a degree of resistance that, in
retrospect, seems unfair and regrettable. Gauss, certainly the most
influential mathematician of the first half of the nineteenth century,
vehemently shared the ancient Pythagorean “horror of the infinite.”
The main advocate of this “finitist” school of thought during Cantor’s
time was Leopold Kronecker, who was often vicious in his criticisms
of other mathematicians. Kronecker’s attacks on the free use of the
infinite angered Weierstrass and Dedekind but had a more profound
effect on Cantor. Kronecker used his influence to block Cantor’s
applications for positions at Germany’s most prestigious universities;
thus Cantor spent his entire forty-four year career at the relatively
minor Halle University. Cantor became exhausted and discouraged by
the resistance to his work, and he began to have bouts of severe
depression and mental illness in 1884. Cantor did very little new
research during the last thirty years of his life and, even though his
work finally received proper recognition after the turn of the century,
he died in a mental institution in Halle.

Example 5: A nice application of the CSB theorem is the fact that the open
interval (0, 1) and the closed interval [0, 1] have the same cardinality. To apply the
theorem, we need to show that each interval can be mapped one-to-one to the other.
Since (0, 1) < [0, 1], the inclusion map f(x) = x maps the open interval one-to-one to the
closed one. To map [0, 1] one-to-one to (0, 1), the simplest way is to use a linear
function that sends both 0 and 1 to numbers in between. For example, we can use
g(x) = (x + 1)/3. So, by the CSB theorem, there is a bijection between these intervals.
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The proof of the CSB theorem is constructive, meaning it shows how to define the
desired bijection. Let’s see how that would work in this example. Following the notation
used in that proof, we have 4 = C = (0, 1), while B = [0, 1]. Therefore C - B consists
only of the numbers 0 and 1. So the set E consists of two infinite sequences of numbers.
For y = 0, we get the sequence {g(0), g( f(g(0))), g( f(g(f(g(0))))), ...}. Since fis the
identity, this simplifies to {g(0), g(g(0)), g(g(e(0))), ...}, for which the numbers are
{1/3,4/9,13/27, ...}. For y =1, we similarly find that the numbers {2/3, 5/9, 14/27, ...}
must all be in E.

For any member of E, h corresponds to g”'. This means that A(1/3) = 0,
h(4/9) = 1/3, h(13/27) = 4/9, and so on, and also h(2/3) = 1, h(5/9) = 2/3, h(14/27) = 5/9,
and so on. For all numbers in (0, 1) that are not in E, A(x) = x. It would be worthwhile
to convince yourself that A really is a bijection between (0, 1) and [0, 1]; graphing it
might help you to see this.

The same type of reasoning can be used to show that all bounded intervals on the
real line (open, closed, and half-open) have the same cardinality. Note, however, that
h is not a continuous function; that is, its graph has breaks in it. In fact, it is impossible
to have a continuous bijection between an open interval and a closed interval.

Corollary 7.19: The relation < is irreflexive and transitive. (That is, it is an
irreflexive partial ordering.)

Proof: Since A ~ A for any set, it follows that 4 « 4. So < is irreflexive. To show
it’s transitive, assume A < B and B < C. This implies that 4 < B and B < C, which yields
A < Cby Theorem 7.15. We must also show 4 + C. So assume, on the contrary, that
A~ C. Then C < A. So B < C < A; this implies B < 4. But then 4 ~ B by the CSB
theorem, and this contradicts the assumption that 4 < B. ®

Corollary 7.20: Both 4 < B and B < 4 cannot hold. (That is, the relation < is
strongly antisymmetric.)

Proof: The proof is immediate by Corollary 7.19 and the proof of Theorem A-8
(Appendix 2). Alternatively, note that this is just a thinly disguised way of stating the
CSB theorem. ®

Corollary 7.21: (a) If 4 <BandB < C, then4 < C.
) If 4 <B and B <C,then 4 <C.
Proof: See Exercise 8. ®

Note that all our corollaries to the CSB theorem are obvious looking, based on the
symbols and words that they involve. But none of them is easy to prove without the
CSB theorem.

We now have more tools for studying finite sets.

Theorem 7.22: (a) If 4 is finite and 4 c B, then 4 < B.
(b) If B is finite and 4 < B, then 4 < B.
(c) If B is finite and 4 < B, then A4 is finite.
(d) The union of a finite collection of finite sets is finite.
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(e) The cartesian product of a finite number of finite sets is finite.
() If & is a collection of sets containing at least one finite set, then N.&7is
finite.
Proof: We prove parts (a) and (d) and leave the rest for Exercise 9.
(a) Since 4 is finite, there is a bijection ffrom 4 to some N,. We also know that
B - A is nonempty, so pick any c in it (by ES), and let D = A U {c}. The relation
fU {(c, k+ 1)} is clearly a bijection between D and N,,. Theorem 7.16(a) and a couple
of applications of Corollary 7.21 yield 4 < D. But we also have D ¢ B, and so D < B.
Again using Corollary 7.21, we get 4 < B.
(d) We want to show that if & is any finite collection of sets, all of whose
members are also finite, then so is U/ We prove this by induction on Card(w): if

Card() =0, then & is empty, and thus so is U And @ is certainly finite. (Of course,
it would be no more difficult to begin this proof at 1.)

For the induction step, assume the result holds whenever Card(&/) = n and let &
be any collection of # + 1 finite sets. We can write &= {4,, Ay, ... , 4,5 4,.,}. Then
Uswr=4,U4,U..U4,U4,,= 4, U4,U..U4)U4,,,. But4, U4 U... U 4, is finite
by the induction hypothesis, so we just need to show that the union of two finite sets is
finite. We could prove this now, but it is more convenient to delay this proof until the
next section (Theorem 7.28). ®

Definition: A subset 4 of N is called bounded iff there is some natural number
that is larger than every number in 4; in symbols, iff In Vm e A (n > m).

Theorem 7.23: Assume 4 < IN. Then
(a) A isunbounded iff 4 ~IN.
(b) 4 is bounded iff A is finite iff 4 < N.
Proof: (a) If 4 is an unbounded subset of N, we can inductively define a bijection
between N and A that lists the members of 4 in increasing order (see Exercise 10). Thus
A ~N. The other direction of part (a) and part (b) are also left for Exercise 10. =

Countable and Uncountable Sets

Theorems 7.22 and 7.23 show that the behavior of finite sets and subsets of N is
pretty reasonable as far as cardinality is concerned. We now tumn to the more
challenging and fascinating study of infinite cardinalities.

Definitions: A set 4 is called:
denumerable if and only if 4 ~IN
countable if and only if 4 < N
uncountable if and only if N < 4

Simply put, a set is denumerable if and only if its member can be arranged in a single
infinite sequence with no repetitions.
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By Theorem 7.23(b), 4 is finite iff 4 < N. It follows that a set is countable iff it’s
finite or denumerable. Denumerable sets may also be called countably infinite. Some
mathematicians use “countable” as a synonym for “denumerable,” but it’s more efficient
to give these two words different meanings.

Theorem 7.24: (a) N x N~N
(b) The cartesian product of a finite number of countable sets is countable.
(¢) The union of a finite number of countable sets is countable.
Proof: (a) For any m and n in IN, let f(m, n) =2""(2n-1). Since m and n are
positive integers, so are 2m-1 and 2n- 1. Therefore, f is a function from N x IN to N.
To prove that fis a bijection, we need a basic result from number theory: every
natural number can be written in a unique way in the form 2°b, where @ > 0 and b is an
odd natural number. It follows that f'is onto, since every odd natural number is of the
form 27 - 1. But we can use the same result to show that fis one-to-one:

f(m,n)= f(j, k) iff 2" (2n-1)= 27'(2k-1)
iff m-1=j-land2n-1=2k-1 By uniqueness
iff m=jandn=k.

By the way, this number-theoretic result is proved in Chapter 8.

(b) By induction on n, we prove that every cartesian product of n countable sets
is countable. We start the proof at n = 2. [It could be started at n = 1, with the
convention that the cartesian product of one set is just that set. The n = 1 case would
then be trivial.] So we must first prove that if 4 and B are both countable, then so is
A4 x B. Assume f* A = N and g: B — N are both injections. Then we can define
h: A x B— N x Nby A(x,y) = (f(x), g(»))- By Exercise 14(b) of Section 7.3, 4 is also
one-to-one. Thus A4 x B < N x N, and it follows from part (a) that 4 x B is countable.

For the induction step, assume that every cartesian product of n countable sets is
countable and let B = 4, * A4, X .. X 4,,. By definition, this means that
B=(A4, % Ay X ..%xA4,)%A,,. So,by the induction hypothesis, B is the product of just
two countable sets and is therefore countable by the argument forn=2.

(c) We outline this proof and leave the details for Exercise 11. Again we use
induction, starting with two sets. So assume A and B are countable. Recall Example 4,
which showed that there is a bijection between N and the even natural numbers.
Similarly, there is a bijection between N and the odd natural numbers. Using these
functions, we can define a one-to-one function from 4 U B to N that maps the members
of A to even numbers and the members of B to odd numbers. The induction step is
similar to the one for part (b). ®

Remarks (1) Parts (b) and (c) of this theorem remain true if “countable” is
changed to “denumerable” throughout (see Exercise 12).

(2) Figure 7.11 illustrates an interesting alternative proof of Theorem 7.24(a). This
figure shows a path that covers all the members of N x N. Following this path arranges
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Figure 7.11 Another bijection between N x N and N

the members of N x N in a single infinite sequence; this means that N x N ~ N. There
is no simple equation for this bijection, but that doesn’t matter.

Figure 7.11 can also be used to clarify the proof of part (a) given in the text. We
can think of N x N as the union of an infinite number of copies of N, each vertical
column being one copy. The function f maps the first copy of N to the odd natural
numbers, the second copy of N to the odd multiples of 2, the third copy of N to the
odd multiples of 4, and so on.

(3) The previous remark points out that N X N can be viewed as the union of a
denumerable number of denumerable sets. Therefore, it would appear that Theorem
7.24(a) directly implies part (c), and more. In fact, part (a) can be used to prove that a
countable union of countable sets is countable, but we need to delay this proof because
it requires the axiom of choice.

(4) The methods used in the proof of Theorem 7.24 may be thought of as coding
techniques. Part (a) shows how to code, or “blend,” a pair of natural numbers into one,
without losing any information. (That is, the coding is invertible.) Part (b) shows how
to similarly code longer sequences of numbers. In practice, functions like this could be
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used to assign a number unambiguously to every possible English sentence, or to every
possible computer program in a particular programming language, and so on.

(5) The main theme of Theorem 7.24 is that countability and denumerability are
very stable properties. Specifically, two obvious attempts at creating bigger
sets—unions and cartesian products—do not succeed in forming an uncountable set
from countable ones. For a famous and amusing illustration of this phenomenon, see
Exercise 24.

Corollary 7.25: The sets Z and Q are denumerable.

Proof: We do the proof for Q first. We know N ¢ Q, so N < Q. To show Q < IN,
first note that Q is the union of the positive rationals, the negative rationals, and {0}. By
Theorem 7.24(c), it suffices to show these three sets are all countable. We do the proof
for QF, the positive rationals. The proof for the negative rationals is almost identical, and
{0} is clearly countable.

We define an injection f from Q' to N x N, which by Theorem 7.24(a) is sufficient
to prove what we want. For any positive rational number r, there are natural numbers
a and b such that » = a/b. To be specific, we can take the fraction a/b to be in lowest
terms. [As in the proof of Theorem 7.24(a), we are assuming some number theory
results here.] So let f(r) = (a, b). This fis clearly one-to-one, since f(r) = f(s) implies
r=alb=s.

Since NcZ c Qand N ~ Q, it follows that N~ Z. =

We have yet to show that there are any uncountable sets. We conclude this section
by describing the two main methods of constructing them.

Theorem 7.26 (Cantor’s theorem): For every set 4, 4 < £(4).

Proof: First of all, the function f: 4 — ©(4) defined by f(x) = {x} is one-to-one,
so A < ©(4). It remains to show that 4 + £(4). We do this by showing that a function
from A to §(4) can’t be onto. So assume g: 4 — £(4). For each x € 4, note that g(x) is
a subset of 4, so we can ask whether x € g(x). Let B= {x € 4 | x ¢ g(x)}. We claim that
B ¢ Rng(g). That is, Vx€ 4, B # g(x). To see this, note that if x € g(x), then x ¢ B, so
B # g(x). Butif x ¢ g(x), then x € B, so again B # g(x). ®

The proof of Theorem 7.26 should remind you of the reasoning used in Russell’s
paradox. In this instance, however, we don’t get an outright contradiction; we just get
the result that a certain function can’t exist.

Theorem 7.26 implies that no matter how big a set we have, we can always find
one of bigger cardinality. In other words, there’s an unbounded, or never-ending,
hierarchy of sizes of infinite sets.

As an immediate consequence of Theorem 7.26, (IN) is uncountable, so this is our
first example of an uncountable set. It also tuns out that O(IN) ~ R, so the real line is
uncountable. (Even though the proof of this is not difficult, we delay it until Exercises
9.2, where we will have more tools for proving things about R.) Surprisingly, every
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interval of real numbers has the same cardinality as R. In analogy to Theorem 7.24(b),
it can also be proved that R x R, R x R x R, and so on, are all the same size as R (see
Exercises 20 and 21). Give this some thought: in terms of cardinality, a line segment
one millimeter long is just as big as an entire infinite line. In fact, it is just as big as all
of three-dimensional space!

Before proving Theorem 7.26 in general, Cantor first proved the specific result that
N < R or, equivalently, N < §(IN). The core of the proof is that there is no function
from N onto the interval [0, 1]: If £ N — [0, 1], each member of Rng( /) is a decimal,
which is an infinite sequence of digits. Therefore, if we list the decimals f(1), 1(2), f(3),
and so on, we get an infinite square array of digits. If we then go down the diagonal of
this array and change each digit in the diagonal, we get a decimal number in [0, 1] that
cannot be in Rng(f). So fis not onto (see Exercise 22). Proofs based on this idea,
including our proof of Theorem 7.26, are called diagonalization arguments.

Here is the other standard way of creating larger infinite sets from given ones.

Notation: For any sets 4 and B, the set of all functions from A4 to B is denoted B*.

Theorem 7.27: (a) For every set 4, (4) ~ {0, 1}".

(b) If A is any set and B has more than one member, then 4 < B*.

Proof: (a) We want to define a bijection f'between ©(4) and {0, 1}*. For each
C c A, let f(C) be the characteristic function of C with domain 4. The simple
verification that fis a bijection is left for Exercise 14.

(b) By Cantor’s theorem, 4 < £(4). And if B has more than one member, then
©(4) < B by an adaptation of the proof of part (a): specifically, we replace 0 and 1 with
any two fixed members of B. Since B may have more than two members, we can no
longer prove that f'is onto, but it is still one-to-one. ®

Theorem 7.27(a) provides a generalization (to all sets, not just finite ones) of
Theorem 5.8, and Theorem 7.27(b) generalizes Exercise 17 of Section 4.5. On the basis
of Theorem 7.27(a) and the analogy to Theorem 5.8 the set (4)may be denoted 27.

Theorem 7.27 is a good example of a theorem that looks difficult because it is very
abstract. Part (a) involves a function between a set of sets and a set of functions, which
sounds very complicated. Actually, the proof of (a) is quite simple once you get past the
abstraction.

Still, the concept of B takes some getting used to. Not only does it look strange,
but it is one of our first encounters with a set of functions (as opposed to a set of ordered
pairs). The next four examples should help clarify this concept.

Example 6;: What is BY'ifA={1,2,3,4,5)} and B = {7}? In this case, there is
only one way to define a function from 4 to B, which is to map all members of the
domain to 7. Therefore, B? consists of just one function, namely {(1, 7), (2, 7), (3, 7),

4, 7,65, 7}
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Example 7: With 4 and B as in Example 6, what is A%? Now the domain has only
one member. So any member of A we choose as the image of 7 defines a function from
B to A. So A? contains five functions: {(7, )}, {(7, 2)}, {(7, 3)}, {(7,4)}, and {(7, 5)}.

Example 8: What is B*if 4 = {7, 12} and B = {1, 5}? Some trial and error with
arrow diagrams like Figure 7.3 makes it apparent that there are four functions from 4
to B. They are shown in Figure 7.12.

Example 9: The set R" is by definition the set of all infinite sequences of real
numbers. Geometrically, it can be thought of as one version of infinite-dimensional
space. Similarly, [0, 1]~ consists of all infinite sequences from the unit interval. It can
be viewed as an infinite-dimensional cube.

Exercises 7.5
(1) Prove Proposition 7.14.
(2) Prove Theorem 7.15
(3) Show that each of the following pairs of sets have the same size, by defining
a specific bijection between them:
(@) N,and N,, - N,, for any nonnegative integer k

(b) N, xN,and N, for any nonnegative integer &
(¢) N and the set of odd natural numbers

Figure 7.12  Arrow diagrams for the four functions from {7, 12} to {1, 5}
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(4) Classify each of the following sets as finite, denumerable, the same size as R,
or larger than R. Justify briefly, using any of the results of this section.

(@ QxQ () QNI1,3]
(c) NNI1,3] @R x N
(e) N ® {53*

(5) (a) Prove the indicated part of Theorem 7.16(a).
(b) Prove Theorem 7.16(b).

(6) Complete the proof of Theorem 7.17.

*(7) Complete the proof of Theorem 7.18 by showing that 4 is a bijection.
(8) Prove Corollary 7.21.

(9) (a) Prove Theorem 7.22(b).
(b) Prove Theorem 7.22(c).
(c) Prove Theorem 7.22(¢).
(d) Prove Theorem 7.22(f).

(10) (a) Prove Theorem 7.23(a).
(b) Prove Theorem 7.23(b).

(11) Fill in the details of the proof of Theorem 7.24(c).
(12) Prove Theorem 7.24(b) and (c) replacing “countable” with “denumerable.”

(13) Theorem 7.24 and the remarks after it seem to imply that the set of all finite
sequences of natural numbers is denumerable. Describe in words (so not very formally)
a bijection between this set and IN.

(14) Complete the proof of Theorem 7.27(a).

Critique the proofs in Exercises 15 through 17. (If necessary, refer to Exercises 4.2
for the instructions for this type of problem.)

(15) Theorem: If 4 ~Band C~D, then4 UC~BUD. )
_Proof: Assume A ~ B and C ~ D. Then there are functions f* 4 b, Band
g: C b, D, Pick such an fand g (by ES), and define /. 4 Uc—BUDby

_ Ax) ifxed
h(x) = { gx) ifxecC

Clearly, 4 is a bijection.
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(16) Theorem: If 4 ~Band C~D,thend x C~B x D,
Proof: If A ~ B, then, for some m, 4 and B both have m members. Similarly,
if C ~ D, then, for some n, C and D both have n members. Thus 4 x Cand C x D
both have mn members, by Theorem 6.1.

(17) Theorem: If A ~ B and C ~ D, then 4° ~ B.

Proof: Assume f;: 4 23, Band f,: C -2, D, For any & € A€, define G(h) to
be ;' o hof;. By Theorem 7.4(f) applied twice, G() € B°. Thus G: A° = B®. [Note that
we're defining a function between two sets of functions. This may require some
thought.] To show G is onto, given any ' € B®, let h=f,0 h’ of,”'. Again by Theorem
7.4(f), h € A€. And by Theorems 7.3(b) and 7.5, G(h) = h’. To show G is one-to-one,
assume G(h,) = G(h,), so ;' oh,of, =f, ' oh,of,. Then 0 (f; ' oh of)of " =
fio(fitohy,of)of, ™, and again by Theorems 7.3(b) and 7.5, this simplifies to h, = h,.

(18) Prove:If4~Band C~D,thend x C~B x D.
(19) Prove: If A ~ B, then £(4) ~ ©(B).

(20) The goal of this exercise is to show that all intervals in R have the same

cardinality. We always assume a <b and ¢ <d.

(a) Prove that any two closed intervals [a, b] and [c, d] have the same
cardinality.

(b) Prove that [a, b], (a, b), [a, b), and (a, b] all have the same cardinality. Use
the CSB theorem.

(c) Find a bijection between an open interval and R. You need not prove that
the function you find works.

(d) Conclude (with explanation) that all real intervals containing more than one
point, including unbounded ones, have the same cardinality as R.

(21) (a) Prove that @) x M) ~ @(IN). Hint: You need to find a way of coding
any two sets of natural numbers into one. The proof of Theorem 7.24(c) might help.
(b) Using part () and Exercise 18, show that [@(IN)]" ~ ©(IN), for any m in IN.
(c) From this exercise and the result (mentioned in the text) that (IN) ~ R,
prove that R ~ R xR ~ R x R x R, and so on.

(22) Cantor’s original diagonalization argument is discussed in the text after
Theorem 7.26. Make this proof more rigorous. That is, given any function ffrom IN to
[0, 1], explicitly define a number in [0, 1] - Rng( /). Because there is duplication in the
decimal representation of numbers (for example, 0.2999 ... = 0.3), it is safest not to use
any 0’s or 9’s in the number you define.

(23) Show that, for any set B and any natural number k, B* ~ B N By definition, the
set on the left is a set of k-tuples, and the set on the right is a set of functions.
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(24) You are the desk clerk at Infinity Hotel, also known as Hilbert Hotel in honor
of David Hilbert, who thought up this amusing situation. The hotel has an infinite
number of rooms (numbered 1, 2, 3, and so on), and is full.

(2) Suddenly a man comes in, desperately wanting a room. At first you tell him
that he can’t have one because the hotel is full, but then you realize you can give him
a room, provided that you are willing to move people around (but not force people to
share a room who aren’t already together). How do you do that?

(b) Later, an even bigger problem occurs. There is another Infinity Hotel across
the street, and it buns down. Suddenly a denumerable set of customers arrives, all
wanting rooms in your hotel. How can that be done?

(c) Now comes the true disaster. Across town, there is an infinite sequence of
Infinity Hotels, all full, and they all burn down. All the customers from all those hotels
appear at your desk, wanting rooms. How can you accommodate them?

7.6 Counting and Combinatorics

We now return to the study of finite sets and derive rules for calculating their sizes
exactly. Results of this type are called counting principles. Counting principles can be
very useful in proofs, sometimes providing an appealing alternative to mathematical
induction. Furthermore, counting principles have significant practical applications and
are the foundation for the subject of discrete mathematics or combinatorics.

Let’s begin by restating the fundamental counting principle, introduced in Section
6.1. We do not prove this principle, in part because it is stated so informally. But it
certainly can be stated formally and then proved mathematically, by an argument similar
to the proof of Theorem 6.1. Almost all the proofs in this section are based on this
formula and are relatively informal.

Fundamental Counting Principle, or Product Rule for Counting: Suppose that
it is required to make a sequence of k decisions. If there are , possible choices for the
first decision, n, possible choices for the second decision, and so on, then the number
of possible ways to make the whole sequence of decisions is n, n, ... 1.

The next theorem lists some important counting principles, most of which appeared
in earlier chapters but are repeated here for easy reference.

Theorem 7.28: For any finite sets 4 and B:
(a) Card(4 U B) = Card(4) + Card(B) - Card(4 N B)
(b) Card(4 x B) = Card(4) Card(B)
(c) Card(P(4)) =24
(d) Card(B*) = Card(B)**®
Proof: (a) This is a restatement of the sum rule for counting (Theorem 5.7). We
first prove it for the special case where 4 and B are disjoint. Under that assumption, let
Card(4) = k and Card(B) = m. So there are bijections g: A—{1,2,..,kand
h: B— {1, 2, ..., m}. Define a function f with domain 4 UB by
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_ | &) ifx e A
f) = { hx)+k ifx€ B

It is straightforward to verify that fis a bijection from A U B to N,,,,, and we leave the
details for Exercise 6. Therefore, Card(4 U B) =k + m, as desired.

To prove the general case, we apply the special case twice. First of all, note that
B= (4N B)U (B - A4), and the sets on the right side of this equation are disjoint.
Therefore, Card(B) = Card(4 N B) + Card(B - A), which becomes Card(B - 4) =
Card(B) - Card(4 N B).

Next, note that A U B =4 U (B - 4). Again, the sets on the right side are disjoint,
so Card(4 U B) = Card(4) + Card(B - 4) = Card(4) + Card(B) - Card(4 N B).

By the way, this argument requires Theorem 7.17. Can you see where? (See
Exercise 6.)

(b) This is a restatement of Theorem 6.1. It also follows immediately from the
fundamental counting principle.

(c) This is a restatement of Theorem 5.8. It’s also instructive to prove this using
the fundamental counting principle: given a set 4 with (say) k members, what sequence
of decisions do we have to make to select a subset of 47 Well, for each member of 4,
we have two possibilities: include it in the subset, or don’t. So we have to make a
sequence of k decisions, each of which allows two possibilities. Thus there are 2k
subsets.

(d) This also follows from the fundamental counting principle. Let 4 and B be
sets of cardinality k and m, respectively. How many functions from A to B are there? To
determine a function from 4 to B, we have to decide where to send each member of 4.
[Figure 7.3 might help you see what’s going on here.] Since A has k members, &
decisions have to be made. And since B has m members, there are m possibilities for
each decision. Thus there are m* such functions. ®

Theorem 7.28 shows some of the usefulness of the fundamental counting principle,
but we have hardly begun. Simply put, it is one of the most powerful formulas in
mathematics. Among other things, notice how much terminology and notation is directly
based on counting formulas that follow from the fundamental counting principle, for
example, the notion of a cartesian “product,” the concept of a “power” set, and the
unusual notation B*.

The next few problems illustrate some standard counting methods, using both the
product rule and the sum rule.

Example 1: Recall Exercise 5 of Section 6.1 The solution to that problem is that
there are 9 x 26 x 26 x 10 x 10, or 608,400, possible license plates in Tannu Tuva. Now
suppose Tannu Tuva needs to plan for its growing population. In addition to the old
license plates, there will be new plates consisting of any three letters followed by any
three digits. How many cars will this system accommodate?

Solution: By the product rule, there are 26° x 10%, or 17,576,000, valid new plates.
Since the sets of old and new plates are disjoint, there are 18,184,400 plates in all.
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Example 2: The Cucamonga Philately Club has ten members and must elect a
slate of three officers: president, vice president, and treasurer. How many possible slates
are there, if each of the following hold?

(a) Two or more positions may be filled by the same person.

(b) The officers must be three different people.

(c) The officers must be three different people and Jim can’t be treasurer
because of a conflict of interest.

Solution: This is a direct application of the product rule. The answer to part (a)
is 10, or 1000, and the answer to part (b) is 10 x 9 x 8, or 720. Part (c) gets quite
confusing if we consider the positions in the order given. The time-saving trick is to start
with the treasurer: there are 9 possibilities for treasurer, then there are still 9 choices for
president, and then 8 choices for vice president. So the answer is 9 X 9 x 8, or 648.

Permutations

It is worthwhile to think about the difference between parts (a) and (b) of Example 2.
In part (a), we need to count sequences of three club members, in which repetition is
allowed. The word “sequence” is meant to emphasize that order matters; the slate of
John, Mary, and Alice is not the same as the slate of Alice, John, and Mary. If the set
of club members is C, we are asking for the cardinality of C°, which is given by
Theorem 6.1. In part (b), we need to count sequences of three club members, in which
repetition is not allowed. There is no standard notation for this set, but there is a
standard notation for its cardinality.

Definition: Let # and r be integers with 0 < 7 < n. The number of sequences of »
different elements from a set with » elements is called the number of permutations of
n things taken r at a time, denoted P(n, r) or ,P,.

It is implicit in this definition (and easy enough to show) that P(n, r) depends only
on the values of # and r and not on which particular set with n elements is used. The
empty sequence is the only sequence of 0 elements, so P(n,0)=1.

Theorem 7.29: P(n,r)=n(n - 1)(n - 2)..(n - r+1)=nl/(n - r)!

Proof: Informally, the first equation is immediate by the product rule, and the
second can be seen by writing out what the fraction with factorials means and canceling
terms. (Both equations could be proved rigorously by induction,) ®

Example 3: A geneticist might need to calculate the number of sequences of 5
distinct genes from a set of 1000 genes. The most succinct expression for this number
would be P(1000, 5) or 1000!/995!. However, if we wanted to evaluate this number, we
would not evaluate these huge factorials. The answer is 1000 x 999 x 998 x 997 x 996.

In Section 7.3 the word “permutation” is used with what appears to be a very
different meaning from the one just defined. Here is the result that links these meanings.
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Theorem 7.30: Let A have n members. Then the following sets have n! members:
(a) The set of all bijections on 4 (permutations in the sense of Section 7.3)
(b) The set of all sequences of (all) the members of 4, without repetition
(c) The set of all total orderings on 4

Proof: First, note that the cardinality of set (b) is by definition P(n, n), which we
know equals #!/0!, or simply n!. The fact that the three sets have the same size is easy
to see informally. Given any sequence as in set (b), the sequence determines a total
ordering on A, in which the members are ordered in the same order they appear in the
sequence. This mapping from sequences to orderings is one-to-one (different sequences
give different orderings) and onto (every total ordering is obtained). So we have a
bijection between the sets of (b) and (c).

The set in (b) may be thought of as the set of all bijections between IN, and 4. (We
could consider this the definition of this set.) So let g be any fixed bijection between N,
and 4. Then, given any bijection f on 4, map fto the member f© g of set (b). It is
straightforward to show that this mapping is a bijection.

Exercise 7 asks you to carry out the details of this proof. ®

Among other things, Theorem 7.30 shows that the number of permutations on a set
with 7 elements, in the sense of Section 7.3, is P(n, n) in our current notation. Loosely
speaking, a permutation of a set is thought of as an arrangement of the members of 4.
Mathematically, the intended meaning is usually (a) or (b). Note that if 4 happens to be
a set of the form {1, 2, ... , n}, then (a) and (b) are the same.

Example 4: Since the word “care” has 4 letters, it has 4!, or 24, permutations. Of
these, “race” and “acre” are also words; the other 21 are not.

Combinations

Permutations may always be thought of as sequences, in which order matters by
definition. The corresponding notion for situations in which order does not matter is
combinations.

Example 5: Exercise 19 of Section 4.5 asks for the number of hellos that are
spoken if everyone in a group of # people greets everyone else exactly once. This is a
permutation problem. We can use the product rule or the formula for P(n, 2) to find the
answer. For instance, if there are 20 people, then there are 380 helios.

Now suppose everyone in this group also shakes hands exactly once with everyone
else. How many handshakes occur? At first it might seem that this is the same problem.
But note that there are two hellos spoken between each (unordered!) pair of people, but
only one handshake. So the answer is 190, half the previous answer. This problem is
asking for the number of sets of two distinct members of the group, not sequences.

Example 6: The Rego Park Conga Society has ten members. In how many ways
could this organization choose a committee of three members? A committee is not the
same as a slate of officers. Order does not matter in a committee; this new problem is
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asking about sets, not sequences. To find the answer, note that each set of three
members could be arranged to form 3!, or 6, different slates. Therefore, since there are
720 possible slates, there are 720/6, or 120, possible committees.

Definition: Let # and r be integers with 0 < » < n. The number of sets of exactly
r elements from a set with n elements is called the number of combinations of » things

taken r at a time or simply » choose r, denoted C(n, r), ,C, , or ( )

Theorem 7.31: C(n, r) = P(n, r)/r! = nl/ri(n - r)!
Proof: The idea of the proof is exactly as in Example 5. Each set of r elements
corresponds to exactly ! sequences of  elements. ®

Example 7: In how many ways can the Rego Park Conga Society choose a slate
of three different officers plus a steering committee of three other members?

Solution: By the product rule and the formula for combinations, the answer is
10 x 9 x 8 x C(7, 3) = 720 x (7 x 6 x 5)/3! = 25,200. You should verify that the answer
doesn’t change if we choose the committee first and then the officers.

Theorem 7.32: (a) C(n,r)=C(n,n-r)
(b) C(n,n)=C(n,0)=1
() If0<r<n,thenC(n,r)=C(n- 1, n+Cn-1,r-1).

(d) Binomial theorem: (x +y)"' = E Cn,ryx""y"
r=0
Proof: The proofs of (a), (b), and (c) are simple computations (see Exercise 8).
(d) We prove this by induction on n. For n = 0, the formula becomes
(x + )° = 1, which is correct. If we feel safer starting at n = 1, we have to show
(x+)' =x+y, which is also correct. For the induction step, assume the formula for n.

Then (x +y)™' =@+ )+ )= +y)i: Cln, r)x""y"= E Cln, )x" "y (x + ).

r=0 r=0
If we examine the terms inside the summation, we see all of them take the form of a
number times x“y®, where a + b=n + 1. The only term with x"" is C(n, Q)™ = 1-x™" =
C(n + 1, 0)x™". Similarly, the only term with y™' is C(n, n)y™"' = 1y"™" = C(m, m)y™".
If 0 < 7 < n + 1, then there are two terms with x ™™~y ". Their coefficients are
C(n, ) and C(n, r - 1). By part (c), these terms add to C(n + 1, r)x """, Combining
all these terms yields the desired formula forn+1. ®

Because of their role in the binomial theorem, the numbers C(n, r) are also called
binomial coefficients. The binomial theorem is an extremely useful and versatile
formula. The exercises cover some of its other versions and generalizations.

Example 8: It is easily checked that C(5, 0) = C(5, 5) = 1, C(5, 1) = C(5, 4) =5,
and C(5, 2) = C(5, 3) = 10. Therefore, (x +y)°=x"+5x'y + 106" + 100 + 5xp* + 5.
If we substitute 2y for y in this formula, we obtain
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(x+ (2y))° =x° + 10x*y + 40x %y + 80x %y > + 80xy* + 32)°

Binomial expansions of this sort can be computed even more quickly with the
well-known Pascal’s triangle, described in Exercise 9.

Exercises 7.6

(1) The Lodi Jotto Club has ten members.
(a) In how many ways can the club choose a slate of three different officers if
Fred can’t be the president and Joyce can’t be the treasurer?
(b) In how many ways can the club choose a slate of three officers in which
any two offices can be held by the same person but all three can’t?

(2) The Humptulips Chess Club has ten members.
(a) In how many ways can the club choose two disjoint committees, one with
three members and the other with two members?
(b) In how many ways can the club choose two disjoint committees, each with
two members? There are two interpretations for this problem. Explain what they are,
and give both answers.

(3) Four married couples are to be seated in a row of eight seats at a theater. In how
many ways can the seating be done if each of the following hold?
(a) There are no restrictions.
(b) Each person must sit next to his or her spouse.
(c) Sexes must alternate.
(d) The restrictions of parts (b) and (c) both apply.
(e) The two people at the ends must be a couple.

(4) (@) There are 10 contact points on a circuit board. In how many ways can they
be connected with 9 wires to form a single sequence of 10 points, with one end
designated positive and the other end negative?

(b) What is the answer to (a) without the designation of positive and negative?
(¢) Inhow many ways can the 10 points be connected with 10 wires to form
a circuit (with no specified direction)?

(5) This problem is of a type not directly discussed in the text, called permutations
with some objects alike.

() How many permutations are there of the word “gorse”?

(b) How many permutations are there of the word “goose”? The two o’s are
considered indistinguishable. In other words, switching the 0’s does not constitute a new
permutation.

(c) How many permutations are there of the word “geese”?

(d) How many permutations are there of the word “deeds”?

(6) (a) Complete the proof of Theorem 7.28(a), as indicated in the text.
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Blaise Pascal (1623-1662) was one of the most brilliant and
strange figures in the history of mathematics. Even though his father,
Etienne, was a skilled mathematician, he excluded mathematics from
his son’s education and went so far as to hide all mathematics books
from Blaise. He might have feared that mathematics would be too
taxing for his sickly and nervous son. However, at the age of 12,
Blaise was curious to know what geometry was. Even though he was
given only a vague definition of the subject, he gave up his playtime
and secretly derived much of basic geometry during the ensuing
weeks. When his father discovered this, he immediately realized that
Blaise’s mathematical talent should no longer be restrained.

Pascal was a generalist who contributed to many branches of
mathematics. His first efforts were in geometry and projective
geometry, including a remarkably fruitful result known as Pascal’s
mystic hexagram theorem, presented by him at the age of 16. Soon
thereafter, Pascal turned his efforts to inventing the first calculating
machine, which worked but was too expensive and cumbersome to be
a commercial success. Later, in the 1650s, came the correspondence
with Fermat that led to the foundations of probability theory, which in
turn stimulated Pascal to discover many interesting properties of the
“arithmetical triangle” that now bears Pascal’s name even though it
was invented much earlier. Pascal came very close to understanding
the major principles of calculus and, under different circumstances,
might well have been considered its primary inventor.

Pascal’s mathematical achievements are all the more remarkable
when one considers his short life, his poor health, and his fickle and
unstable nature. His mathematical research was confined to three
rather short periods of his life. In 1650, his poor health led him to
abandon mathematics and concentrate on religious meditation. He
resumed mathematics in 1653, only to give it up again in 1654,
supposedly because he interpreted his lucky survival of a carriage
accident to be a sign from God. His only subsequent mathematical
activity took place in 1658, after he noticed that a toothache went
away while some mathematical thoughts occurred to him; Pascal tock
this to be another sign from God.

Pascal’s enormous talent was not confined to mathematics. He did
important work in physics, and the construction of his calculating
machine required substantial engineering ability. Furthermore, he was
one of the most important religious philosophers of all time. As if all
this weren’t enough, Pascal also invented the modemn wheelbarrow
and devised the plan for the first public bus.
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(b) Where in this proof is Theorem 7.17 used?
(7) Fill in the details of the proof of Theorem 7.30.
(8) Prove Theorem 7.32 (a), (b), and (c).

(9) Pascal’s triangle may be defined as follows: (i) the mth row has m entries;

(ii) the rows are arranged in a triangle or pyramid; (iii) each row begins and ends with
a 1; and (iv) each entry of any row, except the first and last, is the sum of the two entries
diagonally above it.

(a) Construct the first seven rows of the triangle.

(b) Prove that the kth entry of the mth row of the triangle is C(m - 1,k - 1).

(c) Use Pascal’s triangle to quickly write out the binomial expansions of
& +y), (x - y)*, and (x + 2y)°.

(10) Compare parts (a) and (b) of Theorem 7.28. Note that cartesian product
corresponds perfectly to multiplication of cardinalities for finite sets, but union does not
correspond perfectly to addition. Here is a set operation that does correspond to
addition: the formal disjoint union of any sets 4 and B, denoted 4 u B, is the set
A > {1HU(B x {2}). Prove:

(a) For A and B finite, Card(4 u B) = Card(4) + Card(B).
() IfA~BandC~D,thendu C~BuD.

(11) Give counterexamples to show that both parts of Exercise 10 fail with u
replaced by U. All counterexamples for part (b) also use finite sets only.

(12) Let A=@,B={3},C={1,4}, and D= {2,3,4}. List all the members of
the following sets. (Note that the members of these sets are functions, not just single
numbers or ordered pairs.) You should use Theorem 7.28(d) to make sure you have all
the members.

(@) 4° ®) ¢’ () B° @D (e C

(13) (a) Let B, C, and D be as in Exercise 12. Using Theorem 7.28, compute the
cardinality of each of the following sets:
(i) DBYC (ii) D? x D (iii) (C x D)°
(iv) C¢ x D€ v) (€O (vi) CP*€
(b) Which answers to part (a) come out equal? Do these results remind you of
any laws of exponents? State conjectures based on these observations.
*(c) Prove these conjectures, not just for finite sets. Y our only restriction on the
sets B, C, and D should be that B and C are disjoint.

*77 The Axiom of Choice and the Continuum Hypothesis

Section 7.6 provides a solid introduction to the subject of cardinality. Let’s summarize
what we have leamed, concentrating on the ordering of sets based on size, defined by
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the relation < (or <). When discussing this ordering, it is a bit easier to think of the
things being ordered as cardinals (equivalence classes of sets under ~) rather than
individual sets. The cardinality notation that was introduced in Section 7.6 for finite sets

is often extended to infinite sets as well. Thus, for any sets 4 and B, |4| = |B|, 4=B ,
and Card(4) = Card(B) all mean that 4 ~ B. The notation |4| < |B| means that 4 < B,

whereas 4 < B means that 4 < B, and so on.

The smallest sets are the finite sets, and the finite cardinals are ordered in the
obvious way. The smallest cardinal of all is the one including only the empty set, the
next smallest cardinal consists of all sets with one element, then comes the cardinal of
all two-element sets, and so on.

Then come the infinite sets. It seems clear that the smallest infinite cardinal consists
of the denumerable sets, sets with the same size as N. This cardinal includes many
proper subsets of N, namely the unbounded ones. It also includes many sets that seem
much bigger than N, such as Qand N x Q.

We have one primary method of creating larger infinite sets, the power set
operator. Thus P(IN) is uncountable. Its cardinal includes R as well as all intervals in R.
As with the denumerable sets, unions and cartesian products of sets of this cardinality
are no bigger. However, we can get bigger and bigger sets by considering #(R),
P(P(R)), and so on.

You might think that we have pretty much settled all reasonable questions about
cardinality, but this is not true at all. There are many difficult problems in this area that
we have not even considered. For one thing, although everything stated above about
finite sets is fairly routine to prove, it is not so clear that the denumerable sets really are
the smallest infinite cardinal. (We certainly haven’t proved this.) An even more glaring
gap in our exposition is that we have not proved that the ordering on cardinals is total.
That is, we have not proved that 4 < B, 4 ~ B, or B < A must be true for all sets 4 and
B. This is another one of those deceptively “obvious” statements. Surprisingly, neither
of these simple-sounding conclusions can be proved without a special, powerful axiom.

The Axiom of Choice

In the early part of the twentieth century, mathematicians wanted to find axioms for set
theory that would avoid difficulties like Russell’s paradox without weakening the
subject significantly. The axioms developed by Zermelo and Fraenkel worked well for
the most part, but one important method of forming new sets did not seem to follow
from those axioms. Since this way of forming sets was useful and seemed intuitively
valid, people eventually added a new axiom to set theory, which states that sets defined
in this special way do exist.

By now, virtually all mathematicians believe that the axiom of choice (AC for
short) is a correct principle that should be accepted as an axiom. Yet it is still generally
viewed as special and less obvious than the other axioms. More precisely, AC is
typically used to prove the existence of a set that cannot be explicitly defined in
set-builder notation. That is, AC allows you to define sets that you can’t describe or see
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directly; this can cause a sort of vagueness which some mathematicians find
troublesome. So many mathematicians try to prove theorems without using AC
whenever possible and inform their readers when they do use this axiom.

Here’s what this axiom says: suppose .%/is a collection of nonempty sets. Then,
intuitively, we ought to be able to choose one element from each set in &/ The axiom
AC states this more mathematically by saying that there must be a function that maps
each set in ./to a member of itself.

Definition: The Axiom of Choice (AC) is the following statement:

For every collection &7 of nonempty sets, there is a function f'such that, for every
B in &, f(B) € B. Such a function is called a choice function for .«/. (For definiteness,
we can specify f* & — U« if we wish.)

In abstract mathematics, it is useful to acquire a feel for when AC is required to
define a set, and when it isn’t. Not every choosing process requires AC. For one thing,
AC is not required to prove the existence of a choice function when . is a finite
collection of nonempty sets (see Exercise 3). Also, AC is not required if a rule for a
choice function can be stated explicitly. The next three examples clarify this subtle
point.

Example 1: Suppose we want to define a choice function on P(IN) - {@}, that is,
a function that chooses a member of each nonempty subset of IN. This is no problem;
for each nonempty B c IN, let f(B) = the least number in B. Theorem 5.6 guarantees that
this f works as it should. And since fis defined explicitly, AC has not been used.

Example 2: In contrast, suppose we want a choice function on #(R) - {@}. How
can we systematically choose a member of every nonempty set of real numbers? The
above rule for f certainly doesn’t work, since many subsets of R (for instance, R itself)
do not have a least element. For fun, spend a few minutes trying to define such a
function. Don’t try too hard, because it’s impossible. Thus, if we need to work with a
choice function on this set, we need to use AC to assert that one exists (see Exercise 2).

Example 3: Here is a well-known and cute way of understanding when the axiom
of choice is required. Suppose you are a clerk at Galaxy o’ Shoes. The store contains an
infinite number of pairs of shoes. The boss comes in and says, “Quick—I need a way
of picking one shoe out of every pair.” “No problem,” you say, “Just take the right shoe
of each pair.” Mathematically, you have explicitly defined a choice function without
using AC.

Now suppose the store also contains an infinite number of pairs of socks, and the
boss makes a similar request for socks. You are stuck. Since the two socks of a pair are
generally indistinguishable, there is no way to describe how to do this other than
randomly choosing one sock from each pair. In other words, AC is required to define
this choice function.
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There are many valid ways of stating (and thinking of) the axiom of choice. If we
add the extra hypothesis that the sets in & are disjoint (two at a time, that is), we can
replace the conclusion about a choice function with the simpler conclusion that there is
a set that contains exactly one member of each set in . This alternative to AC seems
more narrow but is equivalent to AC as defined. Still, the form involving choice
functions is often more convenient to work with.

Here is a theorem, without proof, which lists some of the many interesting
statements that are equivalent to AC. The exercises ask you to prove several parts of it.

Theorem 7.33: The following are equivalent:

(a) The axiom of choice.

(b) For every collection & of nonempty, disjoint sets, there is a set consisting
of exactly one member of each set in ..

(c) Every set can be well ordered (the well-ordering principle).

(d) For every function f; there is a subset 4 of Dom( f) such that f, is
one-to-one and Rng(f|,) = Rng(f). As discussed in Section 7.2, this guarantees the
existence of partial inverse functions.

(e) The cardinality ordering on sets is total; that is, for any sets 4 and B, either
A<B,A~B,orB < A.

In addition to the fact that it postulates the existence of functions and sets that
cannot be described explicitly, another reason that the axiom of choice was originally
controversial is that it has some very strange, even wrong-looking consequences. The
most famous of these is the theorem that an ordinary solid sphere can be decomposed
into five pieces that can be reassembled into two solid spheres with the same radius as
the original sphere! This sounds impossible, but it’s a valid consequence of AC. Many
people consider this theorem, called the Banach-Tarski paradox, to be the most bizarre
result in all of mathematics.

Theorem 7.33(e) answers one of our earlier questions about cardinality. That is, the
axiom of choice is required to conclude that all sets are comparable in size. Let us now
use AC to settle some other cardinality issues.

Theorem 7.34: Let A be any set.

(a) If N < 4, then 4 is infinite.

(b) Assuming AC, the converse of part (a) also holds.

(c) N =< A4 if and only if 4 is the same size as a proper subset of itself.

Proof: (a) IfIN < 4, then the CSB theorem implies that 4 « IN.

(b) Assume AC and that A is infinite. Let g be a choice function on the
nonempty subsets of 4. We use induction to define a one-to-one function f from N to
A. Informally, let /(1) = g(4), f(2) = g4 - {f()}),f(3) =g(4 - {f(1), f(2)})- In words,
to obtain each output of f (even the first one), simply apply the choice function g to the
set of all members of 4 that have not already been used as outputs of f. This can be
turned into a rigorous definition; it is the type of inductive definition discussed at the
end of Section 7.4, in which the value of the function at a number n depends on all
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values of the function for smaller inputs. The fact that A4 is infinite guarantees that we
never run out of elements of A to use for the next output of /. Therefore, f: N — 4. And
the fact that f(n) is always chosen from the members of 4 not previously used by f
implies that f'is one-to-one.

(c) We outline the proof and leave the details for Exercise 7. For the forward
direction, assume g: N — 4 is one-to-one. So g defines a bijection between N and some
subset C of 4. We know there are bijections from N to a proper subset of itself. Using
g, we can identify C with IN and thereby get a bijection from C to a proper subset of
itself. Then simply extend this function to all of 4 by mapping all members of 4 - C to
themselves.

For the reverse direction, assume g is a bijection from 4 to a proper subset of itself.
Let ¢ be any member of 4 - Rng(g). Consider the infinite sequence (c, g(c), g(g(c)), ...)-
An infinite sequence can always be viewed as a function with domain N. In this case,
all the outputs are in 4, so we have a function from N to 4. And it is not hard to show
that this sequence has no repetition; that is, the function is one-to-one. ®

So, if we accept the axiom of choice, there are three equivalent ways to define
infinity of sets. The idea of defining an infinite set to be one which can be put in one-to-
one correspondence with a proper subset of itself is rather appealing.

Here is the strengthened version of Theorem 7.24(c) mentioned in the remarks
following that theorem.

Theorem 7.35: Assuming AC:
(@) The union of a countable number of countable sets is countable.
(b) The union of a denumerable number of denumerable sets is denumerable.

Proof: We prove part (b); the proof of (a) is very similar. Let B = U A, where
neN

each 4, is denumerable. First note that N < 4, ¢ B, so N < B. By the CSB theorem, it
suffices to also prove B < N. By definition, there is a bijection from N to 4, , for every
n. By AC, there is an infinite sequence of functions (f;, £, f; .-.) such that each £, is a
bijection from N to 4,. [This is a typical use of AC, that is, to make an infinite set of
choices. You might find it instructive to write down an acceptable codomain for the
choice function in this case.] Using this sequence, we define g: IN x N — B by
g(k, m) = f,(m). The function g needn’t be one-to-one (since the 4;’s aren’t necessarily
disjoint), but it is clearly onto. Therefore, by Theorem 7.28(b), B < N x N, Since
N x N ~ N (Theorem7.24(a)), we obtain B < N, as desired. ®

Our final application of the axiom of choice to cardinality is a generalization of
Theorem 7.24 to all infinite cardinalities. That is, unions and cartesian products can
never produce a larger infinite set than the ones you start with. The proof is too technical
to include.

Theorem 7.36: Assume AC. Let 4 be infinite and B < 4. Then:
(@) AUB~A4
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(b) If B # @, then 4 x B ~ 4. (In particular, 4 x 4 ~ 4.)

This theorem can be generalized to unions and cartesian products of any finite
number of sets.

The Continuum Hypothesis

By Cantor’s theorem (Theorem 7.26), we know that A4 < ©(4), for every set 4. If 4 is
a finite set with at least two members, then there is a set B such that 4 < B < £(4); that
is, the cardinality of ©(4) is not the next cardinality after that of 4. But if 4 is infinite,
the situation is less obvious. For example, is there a set B such that N < B < §(IN), or
equivalently, an uncountable subset of R that has smaller cardinality than R? The
conjecture that there is no such set, made by Cantor, is known as the continuum
hypothesis. The same statement, generalized from N to all infinite sets 4, is called the
generalized continuum hypothesis. (The word “continuum” refers to the set R.)

For many decades, mathematicians tried in vain to prove or disprove either of these
conjectures. Finally, in the late 1930s, Kurt Godel showed they could not be disproved
from the axioms of set theory, even using the axiom of choice. Then, in 1963, Paul
Cohen showed they could not be proved either. Taken together, these results establish
that the continuum hypothesis and the generalized continuum hypothesis are
independent from the usual axioms of mathematics; that is, they are undecidable
questions, ones that cannot be answered. Godel and Cohen also showed that the axiom
of choice is independent from the rest of the axioms of mathematics. These results of
Godel and Cohen were among the most surprising, deep, and far-reaching achievements
in the history of mathematics.

Again, almost all current mathematicians believe the axiom of choice and accept
it as an axiom. There is less of a consensus about the continuum hypothesis. There are
some very compelling reasons for accepting it, notably, the fact that no one has ever
produced a set that is between N and R in size or even found much evidence for the
existence of such a set (see Exercise 8). On the other hand, people are reluctant to accept
such a specific statement about cardinalities as a fact, without at least some compelling
informal rationale for it. The continuum hypothesis is probably the most well-known
example of a mathematical conjecture whose status is genuinely controversial.

Exercises 7.7

(1) (a) Define a choice function on the collection of all nonempty subsets of Z.
(b) Define a choice function on the collection of all nonempty subsets of Q.

(2) Make at least three attempts to explicitly define a choice function on the
collection of all nonempty subsets of R. Explain how each of your attempts fails. As the
text explains, it is not possible to do this.
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(3) Itis claimed in the text that AC js not needed to prove the existence of a chojce
function on a JSinite collection of nonempty sets. Carry out this proof,

(4) In Theorem 7.33, prove that (2) implies (b).
(5) In Theorem 7.33, prove that () implies (a).
(6) In Theorem 7.33, prove the equivalence of () and (d).

(7) Prove Theorem 7.34(¢) in more detail. In particular, write the explicit definition
of the bijection needed for the forward direction,

@) {a+byn|a,beQandn € N}
(®) R - Q, the set of irrational numbers
© ®R-QNJo, 1]

the remaining exercises, If necessary, refer back to the
Instructions for this type of problem in Exercises 4.2. Also, if a proof is correct but
requires AC, point out where AC is needed,

(9) Theorem: If there is a surjection from A4 to B, thenB < 4.

(10) Theorem: If 4 is an infinite set,thend x 4 ~ 4.
Proof: Assume 4 is infinite. Then 4 ~ ]y and4 x4 ~NxN. By Theorem
7.24(a) and the transitivity of ~, we are done,

(11) Theorem: Given well-orderings on sets 4 and B, the associated lexicographic
ordering on 4 x B is also a well-ordering,
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Chapter 8

The Integers and the Rational Numbers

8.1 The Ring Z and the Field Q

Having spent Unit II discussing concepts that are rather abstract and general, we spend
the rest of this book considering a much more concrete and familiar topic: numbers. We
have been discussing some of the most important number systems of mathematics since
Chapter 4. The purpose of this unit is to study these and other number systems in more
depth. Before moving on, you might want to review the basic algebraic properties of R
(the ordered field axioms) presented in Appendix 2, the material on N in Section 4.5,
and the brief introduction to Z and Q in Section 5.1.

Notation: Throughout this chapter, the letters @, b, ¢, 1, j, k, m, and n always stand
for integers. If we wish to restrict them further (for example, to IN), we say so.

Definitions: A ring is a number system that satisfies (at least) field axioms V-1
through V-5, V-7, V-8, and V-10, of Appendix 1. A ring that also satisfies axiom V-6
is called commutative. A ring that also satisfies axioms V-9 and V-12 is called a ring
with unity. A ring that also has an ordering relation defined on it, satisfying axioms
V-13 through V-17, is called an ordered ring.

Remarks: (1) The term “number system” is being used here rather loosely, in that
a number system in this context might be made up of objects that would not normally
be considered numbers. In the same vein, the operations called addition and
multiplication in a ring need not be anything like the standard operations of arithmetic.
Tt would be more accurate to say that a ring is a type of algebraic structure. In general,
an algebraic structure is a set with one or more operations (and possibly one or more
relations) defined on it, satisfying certain properties. The branch of mathematics that
studies algebraic structures is called abstract algebra.

(2) Rings and fields are two of the most important types of algebraic structures.
They are rather similar, in that both rings and fields must have two primary operations
defined on them, addition and multiplication. But a field must satisfy several properties
that a ring need not satisfy. It follows immediately that every field is a ring, in fact, a
commutative ring with unity.

261
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(3) Now is a good time to answer the riddle “When is an axiom not an axiom?”
For example, the commutative law of addition is a real number axiom; that means we
assume (or assert) it to be true about that particular number system, without proof. In
that context, it is a genuine axiom. But this law is also part of the above definitions of
the terms “ring” and “field.” In this context, axiom V-5 is not an axiom at all, since we
are not assuming it to be true about any particular number system(s). Rather, we are
simply specifying what conditions must be satisfied for a number system to qualify as
a ring or a field. It would be more accurate to refer to properties rather than axioms
when they occur in a definition. Whether or not it’s strictly accurate, many
mathematicians use the word “axiom” for properties that are part of a definition.

Example 1: Most of the familiar number systems that mathematicians work with
are rings, if not fields. The real number system R is an ordered field; so is Q. The
complex number system C is a field but not an ordered one. The system Z is a
commutative ring with unity but not a field because it does not satisfy the multiplicative
inverse property. The system N is not even a ring. For one thing, it has no additive
identity. If we consider N U {0}, then there is an additive identity, but this structure is
still not a ring because the additive inverse property is not satisfied.

Of the assertions made in this example, the one about R does not need to be proved
because we have assumed axioms to this effect. The claims about C are proved in
Chapter 10. The other assertions are all proved in this chapter.

Proposition 8.1: In any ring:
() The additive identity is unique.
(b) Each member’s additive inverse is unique.
(c) If there is a multiplicative identity, it is unique.
(d) If an element has a multiplicative inverse, that inverse is unique.

Proof: The proofs of parts (a) and (b) are identical to the proofs of Theorems A-1
and A-3 of Appendix 2. (That is, those results hold for all rings, not just for fields,
because only the ring axioms are used in their proofs.) Similarly, the proofs of parts (c)
and (d) are similar to those for the uniqueness proofs for Theorems A-2 and A-4. ®

Note how, in the context of rings, parts (c) and (d) must be stated as conditionals,
as opposed to Theorems A-2 and A-4.

Lemma 8.2: If m and » are natural numbers and m > n, then m - n is also a natural
number (and som > n + 1),

Proof: Viewing m as fixed, we use induction on n. The statement P(n) in this
induction (without the part in parentheses) is, “If m > n, then m - n € IN.” We also use
the equivalent form “m < norm -~ ne€ N.”

To prove this for n = 1, apply Theorem 4.16(b). It says thatm =1 orm - 1 € .
Of course, this impliesm < 1 orm - 1 € IN.

For the induction step, assume m < n or m - n € IN. We want to prove that if
m>n+1,thenm - (n+ 1) € N. So assume m > n + 1. It follows that m > n, so by the
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induction hypothesis, m - n € N. Now apply Theorem 4.16(b) to the number m - n. So
m-n=1or(m-n)-1€eN. Butifm- n=1, thenm =n+ 1; this contradicts the
assumptionm>n+ 1. Sowemusthave (m - n)- 1 e N.But(m-n)-1=m - (n+1),
so we have the desired conclusion.

The claim in parentheses follows immediately from the main claim. For if
m-neN,thenm - n>1,by Theorem 4.16(a). ®

The next corollary appeared in Exercises 5.1.

Corollary 8.3: (a) Z=NU {0} U {-k|ke N}

(b) N c Z, and N is the set of all positive integers.

Proof: (a) Let k € Z. Then, by definition, k=n - m for some m and n € N, We
proceed by cases, based on trichotomy. If k> 0, then n > m, and so k € IN by Lemma
8.2. If k<0, then m > n; thus -k, which equals m - », is in N. Finally, if k=0, there’s
nothing to prove.

Conversely, if k€ N, then k= (k+ 1) - 1, which is in Z. Also, -k=1 - (k+ 1),
whichisin Z. And 0=1 - 1, which is in Z.

(b) Follows immediately from (a). ®

Lemma 8.4: The system Z is closed under addition and multiplication.

Proof: Let i and j be any two integers. Then, by the definition of Z, there are
natural numbers m, n, a, and b such that i = n - m andj = g - b. Then we know that
i+j=(-m)+(a-b)=(n+a)- (m+Db). Since we already have that N is closed
under addition (Theorem 4.10), this is a difference of natural numbers, so it’s in Z.
Also, ij = (m - n)(a - b)=(ma + nb) - (mb + na), by elementary algebra (see Exercise
2). Since N is closed under multiplication as well as addition (Section 4.5, Exercise 3),
this is also an integer. ™

Theorem 8.5: The integers form an ordered commutative ring with unity; that is,
they satisfy all the ordered field axioms except possibly axiom V-11.

Proof: Clearly, Z c R. It follows that most of the ordered field axioms, namely
the ones that don’t contain an existential quantifier, are automatically established for Z.
(For example, here is a proof of the commutative law of addition for Z: Let i and j be
arbitrary integers. Then i and j are real numbers, since Z < R. Therefore i +j =j + 7, by
axiom V-5 for R.) Thus, axioms V-3 through V-7 and V-13 through V-17 are true in Z.

By Lemma 8.4, field axioms V-1 and V-2 are true in Z. It remains to show that
field axioms V-8, V-9 and V-10 are also true in Z. We leave this for Exercise 6. B

Definitions: Let 4 be aring, and B ¢ 4. Then B is called a subring of 4 provided
B is a ring, using the same addition and multiplication operations as in 4. Similarly, we
may refer to a subfield of a particular field. As usual, if B ¢ 4, we add the word proper
to these expressions. Some mathematicians may refer to a subfield of a ring that is not
a field, but this usage is not standard.
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Lemma 8.6: Suppose B is a subring of 4. Then;
(a) The additive identity of B is the same as that of 4.
(b) For any x € B, its additive inverse in B equals its additive inverse in 4.
Proof: (a) Let 0, and 0, denote the additive identities of B and 4, respectively.
Then the equation 0, + 0, = 0, must hold in B. But since B ¢ 4 and B has the same
addition operation as 4 does, this equation must also hold in 4. So, working in 4, we
can add -0, to both sides of this equation; this yields 0, = 0,, as desired.
(b) The proofis left for Exercise 8. ®

Lemma 8.6 may seem pointless, but it states important and subtle facts. As
evidence of its subtlety, it fails completely with the word “additive” replaced by
“multiplicative.” In fact, 4 could have unity and B not or vice versa, or they could both
have multiplicative identities that are not the same. Specific instances of these
phenomena are given in Example 3 and in Example 6 of Section 8.3.

Lemma 8.7: Suppose 4 is aring and B ¢ 4. Then:
(a) B is a subring of 4 iff field axioms V-1, V-2, V-8 and V-10 hold in B.
(b) If multiplication is commutative in 4, then it is commutative in B.
Proof: (a) The forward direction is trivial. The idea of the reverse direction was
already explained in the proof of Theorem 8.5: any field axiom rot containing
existential quantifiers that holds in 4 automatically holds in any subset of 4.
(b) Field axiom V-6 has no existential quantifiers, so if it holds in 4, it must hold
inB, ®

Example 2: The system Z is a subring of R, in fact a subring with unity. This is
just a restatement of Theorem 8.5. But Z is not a field, so it isn’t a subfield of R (see
Exercise 7).

N is not a ring because it does not satisfy the additive inverse property. (For
instance, -3 is not in IN, by Corollary 8.3. It follows that 3 has no additive inverse in IN.)
Therefore, N is not a subring of R (or of Z).

Example 3: Let B be the set of all even integers. The set B is closed under addition
and multiplication, contains 0, and contains the negative of each of its elements. So by
Lemma 8.7, B is a commutative subring of R or of Z. Theorem 8.10 generalizes this
example and shows that B does not have unity. This is possibly the simplest example
of a subring without unity of a ring with unity.

Mathematicians like to characterize sets and number systems as the smallest one
or the largest one with a certain property. We now make this terminology precise.

Definitions: We say A is the smallest set with a certain property provided that 4
has that property and 4 is a subset of every set with that property. Similarly, we say 4
is the largest set with a certain property provided that 4 has that property and every set
with that property is a subset of 4.
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Theorem 8.8: If the smallest (respectively, largest) set with a certain property
exists, then it is unique and in fact is the intersection (respectively, union) of all sets
with that property.

Proof: Let 4 be the smallest set with some property P. Since this means that there
is at least one set satisfying P, we can form the intersection of all of them; call this
intersection B. Since A is one of the sets we have intersected to form B, B ¢ 4. But since
A is a subset of every set that is used in this intersection, we also have 4 ¢ B. Therefore
A = B, as desired. Uniqueness is immediate: if there were two smallest sets with a
certain property, each would be a subset of the other, and this would make them equal.

The proof for the largest set is analogous. ®

Theorem 8.8 gives us a way of defining smallest and largest sets explicitly.
However, there is a big if involved: the smallest or largest set with a certain property
need not exist, as Example 5 shows.

Example 4: Suppose we want to form the smallest closed interval (within R)
containing the numbers 3, 7, and 15. By Theorem 8.8, we can try to do this by forming
the intersection of all such intervals. It is not hard to show (see Exercise 10) that this
intersection is the single interval [3, 15]. Since this interval is closed and contains 3, 7,
and 15, it is in fact the smallest such interval.

Example 5: Now suppose we want to form the smallest open interval containing
3,7, and 15. Once again, we would take the intersection of all such open intervals. But
this intersection is once again the closed interval [3, 15] (see Exercise 11). Since this is
not an open interval, there simply is no smallest open interval containing these numbers.

These examples illustrate some typical behavior: operations involving intersections
tend to work better with closed intervals than with open ones; for unions, it’s the
opposite.

Example 6: Recall the axioms for IN, group VI of Appendix 1. The first two say
that the set IN contains 1 and is closed under the operation of adding 1. Some
mathematicians call such a set progressive. Then another way to state the set form of
mathematical induction is that N is a subset of every progressive set. Therefore, the
whole group of natural number axioms can be summarized very simply: N is the
smallest progressive set. Equivalently, IN is the intersection of all progressive sets.

Theorem 8.9: Z is the smallest subring of R with unity (and therefore, the
intersection of all subrings of R with unity).

Proof: We have already shown that Z is a subring of R with unity. We must still
show that if 4 is any subring of R with unity, then Z c A4. First, note that 1,1,=1,
Also, 1, # 0,=0, by axiom V-12 and Lemma 8.6(a). So we can divide both sides of the
equation 1,1,=1,by 1, to obtain 1,= 1. In other words, 1 € 4. It follows easily that 4
is obviously progressive. Thus, by the set form of mathematical induction, N < 4. Also,
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axiom V-8 holds in 4, so O is in 4. Finally, axiom V-10 holds in 4; therefore, since
every natural number is in 4, so is the negative of any natural number. By cases, we
conclude that every integer isin 4, ®

We have been talking about subrings of R; now let’s look at some subrings of Z
(which of course are also subrings of R).

Notation: For any n, nZ denotes the set of all integer multiples of #; in symbols,
nZ = {kn|keZj}.

Example 7: The product 1Z = Z, because 1 is the multiplicative identity. Also,
(-1)Z =Z. Theorem A-5 of Appendix 1 tells us that 0Z = {0}. And 2Z is the set of all
even integers, by the definition of what it means to be even.

Theorem 8.10: For every integer n, nZ is a subring of Z.. Unless n =1 or -1, it
is a subring without unity.

Proof: Let n be an arbitrary integer. By Lemma 8.7(a), to show that nZ is a
subring of Z, we need to show it is closed under addition and multiplication, contains
0, and includes the negative of each number in it. To show closure under addition, let
aand b € nZ. Thena =jnand b =kn, forsomejand k. Soa+b=jn+ kn=(j+ k)n,
which is also in nZ, since j + & is also an integer. The rest of this part of the proof is left
for Exercise 12(a). The proof of the second statement is left for Exercise 12(b). m

Theorem 8.16 shows that every subring of Z is of the form nZ for some n.
The Field of Rational Numbers

The ring of integers is an extension of the natural numbers, obtained from N by
adjoining zero and additive inverses (negatives) to obtain a number system that is closed
under subtraction. It is logical to repeat this extension process with Z, adjoining
multiplicative inverses (reciprocals) to obtain the field Q of all rational numbers.

We have shown that Z is an ordered commutative ring with unity and is the
smallest subring of R with unity. We now establish parallel results for Q. We already
know that Z < Q, by Exercise 11(c) of Section 5.2.

Theorem 8.11: The system Q is an ordered field (and so, it is a subfield of R).

Proof: Since Q is a subset of R, it is automatic (as in the proof of Theorem 8.5)
that ordered field axioms V-3 through V-7 and V-13 through V-17 are true in Q.

Closure of Q under addition and multiplication means simply that the sum and
product of any two fractions are still fractions. This is straightforward (the verification
for sums is Exercise 15 of Section 4.5). Technically, this proof also uses the fact that Z
is a ring to show that when you add or multiply two rational numbers, you still get a
quotient of integers.
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Since Z < Q, both 0 and 1 are rational numbers, and so field axioms V-8, V-9, and
V-12 hold in Q. Also, since x/y + (-x)/y = 0, as is easily seen, axiom V-10 is true in Q.

Finally, to verify axiom V-11, let x/y be any nonzero rational number. Then we
must have x # 0, since otherwise 0(1/y) would be zero. It follows that (x/y)(y/x) = 1, so
y/x is the multiplicative inverse of x/y. ®

Theorem 8.12: The system Q is the smallest subfield of R (and therefore, the
intersection of all subfields of R).

Proof: The previous theorem shows that Q is a subfield of R. We must also show
that if 4 is any subfield of R, then Q c 4. To see this, first note that 4 is of course a
subring of R, so by Theorem 8.9, Z < A. But then, for every nonzero integer j, 1/j must
be in A, since A satisfies axiom V-11. Therefore, by multiplicative closure, for any two
integers i and j such thatj # 0, i/jisin4. SoQc 4. ®

Exercises 8.1

(1) Using only the ring axioms, prove rigorously:

@ (D+EY)=-x+y) ®) x-y=-(-x)

It follows that these equations are true in every ring.

(2) Using only the ring axioms, carefully prove the equation used in the proof of
Lemma 8.4: (m - n)(k - j) = (mk + nj) - (mj + nk).

(3) Determine whether each of the following algebraic structures is a ring. If it is,

determine whether it is commutative, has unity, or is a field.

(a) The set of all real numbers, with addition defined normally, but xy defined
to equal 0, for all x and y

(b) The set of all real numbers, with addition defined normally, but xy defined
to equal 1, for all x and y

(c) The set of all real numbers, with these special operations: x @ y is defined
to be 2x + 2y, and x ® y is defined to be 4xy

(d) The set of all positive real numbers, with these special operations: x @ y
is defined to be xy, and x ® y is defined to be x™”

() R x R, with addition and multiplication defined pointwise; that is,
(6, 9)+ (u,v) = (x+u, y+v) and (x, ), v) = (xu, V)

(f) The set of all functions from R to R, with addition and multiplication of
functions defined in the usual way (as in Exercise 13, Section 7.1)

(g) ©@Y), with addition and multiplication defined to be union and intersection,
respectively

(h) ©(N), with multiplication defined to be intersection, and addition defined
to be 4 A B, as in Exercise 15 of Section 5.3.

(4) Determine whether each of the following subsets of R is a subring of R. (Your
main tool for this should be Lemma 8.7(a).) If it’s not, name at least one ring axiom that
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is not satisfied, If it is, state whether it’s a subring with unity; if so, state whether it’s a
subfield of R.

(a) The set of integers that are multiples of 6

(b) The set of all odd integers

(c) The set of all nonnegative integers

(d) The set of all integer multiples of 1/2

(e) The set of all rational numbers

(f) The set of all numbers of the form i-2/, where i and j are integers

(g) The set of all numbers of the form i + /2, where i and j are integers

(h) The set of all numbers of the form i + j{/2, where i and j are rational

(i) The set of all numbers of the form i + j"/'z' , where i and j are integers

(j) The set of all numbers of the form i +j3\/5 + kVZ , where i, j, and k are
integers s s
(k) The set of all numbers of the form i +j /2 + k'/4 , where i, j, and k are
rational numbers

(5) (a) Determine exactly which of the ordered field axioms are satisfied by the
set of positive rational numbers.
(b) Find a subset of R, other than Z, that satisfies all the ordered field axioms
except one.

(6) Complete the proof of Theorem 8.5.

(7) (a) Prove thatifnisnot0, 1, or -1, then 1/n ¢ Z. You may use Corollary 8.2.
But don’t just assume that 1/n ¢ IN; prove it. This result generalizes Exercise 10(b) of
Section 5.2,

(b) Prove that, in contrast to Theorem 8.5, Z is not a field; that is, it does not
satisfy axiom V-11.

(8) Prove Lemma 8.6(b).
(9) Prove the following generalization of Lemma 8.6(a): Let B be a subset of a ring
A. If B has an additive identity (for addition within B), then that identity element must
be 0, (and is therefore unique).
(10) Prove the claim made in Example 4.

(11) Prove the claim made in Example 5.

(12) (a) Complete the proof of the first part of Theorem 8.10.
(b) Prove the second part of Theorem 8.10. You may use Exercise 6(a).
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(13) Critique the following proof. (If necessary, refer back to the instructions for
this type of problem in Exercises 4.2.)

Theorem: If 4 and B are subrings of a ring C, then so is 4 N B.

Proof: By Lemma 8.7(a), we only need to verify axioms V-1, V-2, V-8, and V-10
for ANB.

To verify axiom V-1 (additive closure), assume xand y € 4 (VB. Thenx and y € 4.
Therefore x + y € 4 because A4 is closed under addition. Similarly, x + y € B. So
x +y € AN B, as desired. The verification of axiom V-2 is almost identical.

To verify axiom V-8, note that since 4 and B are subrings of C, they both contain
0. Therefore, 0 € A N B. Similarly, for any x € 4 N B, -x must be in both 4 and B. So -x
is also in 4 N B. This verifies axiom V-10, completing the proof. ®

(14) Prove or find a counterexample: if 4 and B are subfields of a field, so is 4 N B.
(15) Prove or find a counterexample: if 4 and B are subrings of a ring, so is 4 U B.

(16) Prove or find a counterexample: if & is a collection of subrings of a ring C,
then so is M.

(17) An element x of a ring is called idempotent iff x* = x. A boolean ring is one
in which every element is idempotent.
(a) Prove that x + x = 0 for every x in any boolean ring.
(b) Prove that a boolean ring must be commutative.

8.2 Introduction to Number Theory

In basic mathematics, including elementary algebra, geometry, and calculus, the word
“number” usually means “real number.” There are several good reasons for this, one of
which is that real numbers seem to be the best way of representing most of the quantities
that occur in science and other applied situations. But there are also many situations that
occur in which makes sense to restrict one’s attention to natural numbers, integers, or
rational numbers. This type of restriction can make simple-looking problems very
difficult.

Example 1: Suppose you are asked to find a solution of the equation x* + y* = 47.
Under normal circumstances, this is trivial: one solutionis x =1 and y = \/E ,and it’s
easy to write as many solutions as you want. But if it is specified that x and y must be
rational, you suddenly have a much harder problem, which may require sophisticated
methods to analyze completely.

The branch of mathematics that studies problems about natural numbers, integers
and rational numbers is called number theory. It is one of the main branches of
mathematics invented by the ancient Greeks. Among other things, number theory deals
with Diophantine equations, which are equations whose solutions must come from IV,
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Z., or Q, as in Example 1. Number theory is a subject in which the concepts are simple
but the problems can be extremely hard. It is generally considered part of pure
mathematics. Yet it has important applications, in particular, in cryptography and
cryptanalysis (the theories of creating and deciphering codes), which have become
highly sophisticated with the advent of powerful computers.

In this section we look at some of the classic results of number theory, some of
which were first proved well over 2000 years ago. The next three definitions are given
here for all integers, but most of the time they are applied only to nonnegative ones. The
first one also appears in Section 6.3 but is important enough to repeat.

Definitions: For integers m and n, we say m divides n, denoted m|n, iff for some
integer k, n = km. The notation m|n may also be read “m is a divisor of n,” “n is
divisible by m,” “m is a factor of n,” or “n is a multiple of m.”

An integer n is prime iff it is not 1 or -1 and its only factors are 1, -1, n, and -n.
Two integers are relatively prime iff the only integers that divide both of them are 1
and - 1.

Theorem 8.13: (a) The number 1 divides every integer; so does - 1.

(b) Every integer divides 0.

(c) Ifi|j and j|k, then i|k.

(d) For any integers a, b, i, j, and k, if i|j and i|k, then 7| (aj + bk).

(0) JIK iff (=) | K iff ] (-k) iff ()| (-5).

(f) Ifj|kand k| j, thenj == k.

(g) The only factors of 1 or -1 are 1 and -1.

(h) The number 1 is relatively prime to every integer; so is - 1.

Proof: (a)-(e) The proofs are straightforward and are left for Exercise 5.

(f) Assume j|k and k|j. Then k = mj and j = nk, for some integers m and n.
Substitution yields £ = mnk. In the case that k= 0, we have j = n'0 = 0, and we are done.
Otherwise we can divide both sides by & and obtain 1 = mn, or m = 1/n. By Exercise
6(a) of Section 8.1, n=x1,s0j==%*k.

(g) Assume m]|1. By (a), 1|m. So, by (f), m ==+ 1. Similarly, if m|-1,m = £ 1.

(h) By part (g), since the only factors of 1 (or -1) are + 1, the only factors that
1 (or - 1) can have in common with another number are + 1. ®

Recall that in a field, division is always possible (as long as the divisor is nonzero)
and yields a quotient in the field. But Z is not a field and so is not closed under division.
The following classic theorem and corollary state that the next-best situation holds in
Z.: if you divide two integers, it’s possible to find an integer quotient, but there may also
be a remainder.

Theorem 8.14 (Division algorithm): Let n be any nonnegative integer, and m
any positive one. Then there are unique integers g and r such that n = mg + r and
0<sr<m.
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Proof: This proof provides an instructive opportunity to use Theorem 5.6, the
well-ordering property of N. Given # and m as in the theorem, we first prove existence
of gand r. Let A = {k € N | mk > n}. The set 4 is not empty because it contains 7 + 1
(see Exercise 6). So, by Theorem 5.6, there is a least number £ in 4. Define ¢ to be
k-1,and r=n - mq.

The definition of » immediately gives n = mq + r. Also, by the definition of g,
mq < n <m(q + 1) = mq + m. By subtracting mq from all parts of this inequality,
0 < n - mg=r<m. We still have to show ¢ and r are unique. In other words, we must
show thatif n=mg +rwithO < r<m,andn=mgq’ +r' with 0 < ' <m, then ¢ = ¢’ and
r = r'. So assume the hypothesis of this implication. We then have n = mg + r =
mgq’ +r'. We proceed by cases, using trichotomy on the relationship between g and ¢'.

Case 1: If g =¢', we can say mq + r=mgq + r'. So r =r’, and we are done.

Case 2: Assume g < ¢q’'. Then ¢’ - q is a positive integer; this means that it is at
least 1. We canrewrite mg+r=mq’'+ r'asm(g - q')=r'-r.Sinceq-q' > 1 andm
is positive, the left side of this equation is at least m. But since r' <m and r > 0, it
follows easily that 7' - » < m. This is a contradiction, so this case is impossible.

Case 3:If ¢’ < g, we similarly reach a contradiction. Thus the only possible case
leads to the desired conclusion. ®

Corollary 8.15: Let n and m be any integers, with m # 0. Then there exist unique
integers ¢ and r as in Theorem 8.14, except that we must now say 0 < » < |m]|.

Proof: We omit this proof, which consists of several cases, each of which either
follows directly from Theorem 8.14 or has a proof that is very similar to the proof of
that theorem (see Exercise 8). ®

Example 2: The application of Corollary 8.15 to negative dividends and divisors
can be confusing. If you are asked to divide 23 by 5, obviously the quotient is 4 and the
remainder is 3. But what about dividing -23 by 57 It’s tempting to say that ¢ = -4 and
r = -3. But the theorem says that the remainder must be nonnegative. So it turns out that
we must use ¢ = -5 and » = +2 for this problem. See Exercise 1 for some additional
problems of this sort.

In Section 8.1 we briefly discussed subrings of Z of the form nZ. We can now
prove an important result that tells us exactly what subrings of Z look like.

Theorem 8.16: Every subring of Z is of the form #nZ for some unique n > 0.

Proof: Let 4 be any subring of Z. Note that 0 is in 4, by field axiom V-8 and
Lemma 8.7(a). One possibility is that 4 = {0}. Then 4 = 0Z, as desired. Otherwise, 4
contains at least one nonzero integer k. Either k> 0 or k < 0. In the latter case, -k is also
in 4 and is positive. In either case, 4 contains at least one positive integer. In other
words, A NN is not empty. By the well-ordering property of IN (Theorem 5.6), A N 1N
therefore has a least element; call it n. So » is the smallest positive number in 4. We
show that 4 = nZ.
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To show 4 c nZ, assume j € A. We must show that j is a multiple of n. By the
division algorithm, we can write j = gn + r. By the previous paragraph, gn € A. By the
additive inverse property, this means -gn € A. Therefore, by closure under addition,
j - qn € A. That is, r € A. But the remainder » must be less than the divisor n. Therefore
r can’t be positive, because n is the smallest positive number in 4. But we also know
that r is nonnegative. Thus » = 0. This makes j a multiple of n, as desired.

The proof that nZ < A is straightforward and is left for Exercise 9. Finally, we need
the uniqueness of . So suppose A4 = nZ = mZ. Thus n € mZ and m € nZ. In other
words, m|n and n|m. So by Theorem 8.13(f), m = % n. If we restrict our attention to
nonnegative m and n, as in this theorem, then they must be equal. =

Definitions: For any integers m and n, we define their greatest common divisor,
denoted GCD(m, n), to be the largest natural number that divides both m and » and their
least common multiple, denoted LCM(m, n), to be the smallest nonnegative integer that
both m and » divide.

We can also talk about the GCD and the LCM of three or more numbers.

Theorem 8.17: (a) Every pair of integers (not both zero) has a unique GCD and
LCM.

(b) If GCD(m, n) =k, then there are integers a and b such that am + bn = k.

(c) Given any pair of integers (not both zero), every number that divides both of
them also divides their GCD.

Proof: (a) Letm and »n be given. To show that they have a GCD, consider the set
C={am+bn|a,beZ}. (We call C the set of all linear combinations of m and n,
with integer coefficients. It is somewhat analogous to nZ, except that instead of
consisting of all multiples of a single number , it is generated by two numbers m and
n.) We wish to show that C is a subring of Z. This is a simple consequence of Lemma
8.7(a) and is left for Exercise 10. Therefore, C = kZ for some k, and we may choose &
to be positive. (We know & # 0 since m and » are not both 0.) We claim k£ = GCD(m, n).

To see this, first note that both m and » are in C. So, by the definition of kZ, k
divides both m and n. And if j is any other divisor of both m and n, then j also divides
any number of the form am + bn, by Theorem 8.13(e). In particular, j| k. Therefore,
J < k. Uniqueness of the GCD is clear since there can be at most one greatest number
with a certain property in IN.

The set of positive common multiples of m and » is not empty, since it includes
|mn|. So this set has a least element, which is unique and is the LCM of m and n.

(b) Follows immediately from the definition of C and the fact that k is in C.

(c) This is proved as part of the proof of (a). =

The proof of Theorem 8.17 is concise and elegant but gives no clue as to how to
compute GCDs and LCMs. Here is the most efficient method, known as the Euclidean
algorithm. To find the GCD of two numbers, divide the larger by the smaller and
replace the larger original number by the remainder. Repeat the process. The last
nonzero remainder is the GCD.



8.2 Introduction to Number Theory 273

For finding LCMs, it is useful to know that GCD(m, n) x LCD(m, n) = |mn|. So
the LCM can be found immediately once the GCD is known (see Exercises 11 and 20).

Example 3: To find the GCD of 42 and 120: 120 + 42 gives a remainder of 36,
42 + 36 gives a remainder of 6, and 36 + 6 gives a remainder of 0. So
GCD(42, 120) = 6. LCM(42, 120) =42 x 120 + 6 = 840.

We can compute GCDs of three or more numbers by the inductive formula
GCD(a,, a,, ... , a,,,) = GCD(GCD(a,, a,, ... , a,), a,.;)

LCMs of three or more numbers can be computed similarly. This means we never need
to find the GCD or LCM of more than two numbers at a time (see Exercise 15).

Example 4: Suppose we want the GCD and LCM of the numbers 120, 216, 300,
and 52. By the methods just described, we find that GCD(120, 216) = 24 and
LCM(120, 216) = 1080. Then

GCD(120, 216, 300) = GCD(24, 300) = 12
LCM(120, 216, 300) = LCM(1080, 300) = 1080 x 300 + GCD(1080, 300)
= 1080 x 300 + 60 = 5400
Finally,

GCD(120, 216, 300, 52) = GCD(12, 52) = 4
LCM(120, 216, 300, 52) = LCM(5400, 52) = 5400 x 52 + GCD(5400, 52)
= 5400 x 52+ 4 = 70,200

We have to be careful when using this method. Note that we did not say
LCM(120, 216, 300) = LCM(1080, 300) = 1080 x 300 +~ GCD(120, 216, 300)
because that would lead to an incorrect answer.

Lemma 8.18: (a) If k and m are relatively prime and k|mn, then k|n.
(b) If p is prime and p| jk, then p|j or p|k.

Proof: (a) If k and m are relatively prime, then GCD(k, m) = 1, so by Theorem
8.17(b) there are integers a and b such that ak + bm = 1. Therefore akn + bmn = n. Since
k|mn, the left side is a multiple of k. Thus so is n.

(b) Assuming that p is prime, p|jk and p /j, we need to show that p|k. First note
that since p is prime, GCD(p, n) equals 1 or p for any n, since p has no other positive
factors. But we also know that p is not a factor of j. So GCD(p, j) = 1. The conclusion
p|k then follows from part (a). ®

For the rest of this section, the word “prime” means a positive prime number.
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Lemma 8.19: Ifp, q,, g5, ... , q,, are all prime and p|q,q, ... q,, then p must equal
one of the gs.

Proof: We prove this by induction on n. As usual, this means that for each value
of n, we must view p and the ¢’s as universally quantified.

For n =1, we just need to show that if p and g are primes and p|q, then p = q. But
p|gq means that g = pk for some integer k. Then, since g is prime, k must be 1, -1, g, or
-q. Since p and g are positive, k can’t be -1 or -g. Also, if k = g, we get p = 1 (since
g # 0), which is impossible since p is prime. Therefore k=1, s0p =g4.

For the induction step, we assume the statement is true whenever there are n primes
multiplied together. Then we assume that p, q,, g5, ... , ¢,,, are all primes, and
p|9.95 - ¢, So we can write p|(q,4, ... 4,)9,+» and apply the previous lemma. Thus
either p|q,q; .. 4,5 OF P|q,u1- If p|q,.,, then the argument just given for n = 1 shows that
P =q,.,- On the other hand, if p|q,q, ... g,, then the induction hypothesis says that p must
equal one of the gs. In either case, we’re done. ®

Complete Induction and the Fundamental Theorem of Arithmetic

Our next theorem is important for at least two reasons. Most significant is what it says:
a natural number is completely determined by its prime factors, repeated as necessary.
But the proof of the theorem is also noteworthy, because it requires a variant of
mathematical induction that we have not yet seen, called complete induction or
course-of-values induction.

To illustrate this principle, imagine we want to prove that every integer greater than
1 has a prime factor. (This is a weak version of Theorem 8.21.) We could attempt this
by ordinary induction (starting at #» = 2) on the statement “n has a prime factor.” But
then, for the induction step, we must prove that #» + 1 has a prime factor from the
assumption that n does. And this is essentially an impossible task, because knowing
factors of n doesn’t help us find factors of # + 1; in fact, consecutive numbers have no
factors in common. For example, how would knowing that 2158 has a prime factor help
us to know that 2159 has one?

However, we can easily show that n + 1 has a prime factor if we are allowed to
assume not just that # does, but that every number (larger than 1) up to and including
n does. And if you think about the rationale for mathematical induction, you can see that
this stronger assumption ought to be allowed. That is, an induction is meant to establish
some property for natural numbers one at a time, in increasing order. Therefore, at the
point where you’ve established P(n) and want to proceed to P(n + 1), you also know that
P holds for all natural numbers less than #, and there’s no harm in including this
knowledge in the induction hypothesis. Compare this idea to the generalization of the
method of inductive definitions given in Corollary 7.12.

The principle of induction with the usual assumption P(#) in the induction step
replaced by the stronger assumption Vm < n P(m) is called complete induction. Let’s
now show that this principle follows from ordinary induction.

Lemma 8.20 (Principle of complete induction): For any proposition P(#), with
n representing a natural number, we have
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[P(1Y AVYn((Ym < n P(m)) = P(n + 1)] = Vn P(n)

Proof: Assume the statement in brackets, and define Q(#) to be the predicate
Vm < n P(m). We show Vn Q(n) by ordinary induction. Since Q(n) clearly implies P(n),
that suffices.

We have assumed P(1), and since 1 is the smallest natural number by Exercise 7(a)
of Section 4.5, this implies Q(1). Now for the induction step, assume Q(n). By our
assumption, this implies P(n + 1). Thus we have ¥m < n P(m) and P(n + 1); and since
Lemma 8.1 tells us that there are no integers between # and n + 1, we have
¥m < n+ 1 P(m), which is precisely Q(n + 1). ®

Although complete induction looks more complicated than ordinary induction, it’s
really just a way of making life easier. In practice, it allows you to make the stronger
induction hypothesis Vm < n P(m) whenever it suits you to do so.

Theorem 8.21 (Fundamental theorem of arithmetic): Every integer greater than
1 can be written as a product of (one or more) prime numbers. Furthermore, this
factorization is unique except for the order of the factors. That is, if we specify that the
prime factors must be written in nondecreasing order, then the factorization is unique.

Proof: We prove the first claim, existence of the factorization, by complete
induction. We begin at #» = 2: since 2 is prime, the claim holds for 2. Now assume that
every integer between 2 and n (inclusive) can be written as a product of primes. Looking
at n + 1, we have two cases. If n + 1 is prime, then we are done. If not, then we can
write n + 1 = km, where k and m are both larger than 1 and less than n + 1 (see Exercise
13). By Lemma 8.1, we have k and m < n, and so by the induction hypothesis, k and m
both can be factored into primes. Simply putting these factorizations together gives us
the desired factorization of n + 1.

We still need to show the uniqueness of the factorization. So assume that
k=p,ps .. D= 4,4, --- 4, Where the p’s and the ¢’s are all primes and each factorization
of k is written in nondecreasing order. We need to show that m = n and that for each i
between 1 and n, p;= g,. We first show that p, = ¢,. If p, were less than g,, then p, would
have to equal one of the later ¢’s, by Lemma 8.19. But this would contradict the fact that
the g’s are in nondecreasing order. Similar, it is impossible for g, to be less than p,. By
trichotomy, this means p, = gq,.

So we can cancel the first term of each of the products to obtain p,p; ... p,, =
4.4, --- ¢, But then we can repeat the argument of the previous paragraph to obtain
P>= ¢,. Then we cancel these terms and repeat the argument to get p, = g,, and so on.

We can continue in this manner until one or both products run out of factors. But
if one runs out before the other, we would have the product of one or more primes equal
to 1, which is impossible (see Exercise 14). Thus m = n, and we’re done. ®

The uniqueness proof in Theorem 8.21 is not completely rigorous. A more rigorous
proof would use induction on m or n or perhaps m + n (see Exercise 16).
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Corollary 8.22: Every integer greater than 1 can be written as a product of distinct
prime numbers to positive integer powers. This factorization is unique except for the
order of the primes.

The fundamental theorem of arithmetic provides a more elegant way of computing
GCDs and LCMs. Suppose

L by

m=2"13%_p"* and n = 23% P
where p is the largest prime factor of either m or n. (For this to make sense, some of the
exponents shown may have to be zero.) Then

GCD(m,n) = 2°3% ... p* and LCM(m,n) = 23% . p*%

where each c; is the smaller of @, and b,, while each 4, is the larger of g, and b,. This
method works the same with three or more numbers. In fact, this method is often more
efficient than the Euclidean algorithm for finding the GCD and LCM of several numbers
that are not very large. But the Euclidean algorithm is much more efficient when the
numbers are very large. ®

Example 5: Suppose we want the GCD and LCM of the numbers 120, 216, and
300. It is easy to compute that 120 =2° x 3 x 5,216 = 2° x 3°, and 300 = 2% x 3 x 52,
So the GCD of these numbers is 2> x 3 =12, and their LCM is 2* x 3% x 52 = 5400.

We haven’t said anything about rational numbers for awhile. We are now in a
position to prove some important facts about them.

Theorem 8.23: Every rational number can be put in lowest terms, that is, in the
form j/k, with j and k relatively prime.

Proof: Let a/b be any rational number. Then set j = a/GCD(a, b) and
k= b/GCD(a, b). Clearly j/k=alb, and GCD(j, k)=1. =

Theorem 8.24: The number /2 is not rational. That is, there is no rational number
r such that # = 2.

Proof: Assumne, on the contrary, that there is such a rational number. By Theorem
8.23, it can be written in lowest terms j/k, so we have (j/k)* = 2 and GCD(j, k) = 1. The
first equation becomes j* = 2k Since 2 is a factor of /> and 2 is prime, we can apply
Lemma 8.19. Thus 2| j; that is, j is even. So write j = 2i. Then (2i)’ = 2k*. Multiplying
out the left side yields 4i* = 2k?, or 2/ = k2. But then 2|k?, so by Lemma 8.18(b), 2|£.
Thus j and k are both even; this contradicts that j and k are relatively prime. ®

Theorem 8.24 is a special case of a much more general fact: for any natural
numbers m and #, if /n is not an integer, then it’s not a rational number. Exercise 17
asks you to prove this.
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Even though the name Pythagoras may be familiar to more people
than any other mathematician’s, very little is known of his life. This
is partly due to the fact that his school was secretive and mystical and
put almost nothing in writing,

Pythagoras was bormn around 570 B.C. and lived until some time
after 500 B.C. He lived in many places and eventually founded the
society now known as the Pythagoreans in Croton, a Greek colony in
Italy, in around 520 B.C. This society was as much a religious cult as
it was a school of scholarly inquiry. Among other things, members of
the society believed in reincamation, the mystical powers of whole
numbers (indicated by their motto, “All is number”), and the “music
of the spheres” (“spheres” in this case referring to the planets). They
led an ascetic life, were vegetarians, and were swom to the strictest
secrecy.

At the same time, the Pythagoreans did important investigations in
philosophy, science, and mathematics, notably in geometry. It is
impossible to know what was done by Pythagoras himself, as opposed
to his followers (both during his life and after). For instance,
Pythagoras’s theorem had been known empirically for at least a
thousand years, but was probably first proved by Pythagoras or one of
his followers. Certainly, the Pythagoreans were among the very first
people to do mathematics systematically and deductively, with
reasonably sound proofs. The first two books of Euclid’s Elements
were attributed to the Pythagoreans, although many scholars believe
this is an exaggeration.

The Pythagoreans knew that numbers like {2 must exist in nature.
(For example, consider a right-angled triangle in which each of the
legs is one unit long.) They are also credited with proving Theorem
8.24. But they were quite disturbed at the discovery of irrational
numbers, since it meant that there were quantities that could not be
represented in terms of whole numbers. Reportedly, some members of
their society attempted to suppress this information, perhaps by
less-than-honorable means.

We conclude this section with a sampler of well-known theorems (with proofs not
provided) and conjectures of number theory. Rather than worry now about how to prove
these theorems, you should just try to appreciate the combination of simplicity and depth
that characterizes many results in this subject. The list of conjectures that follows the
theorems is also intended for your pleasure and fascination. Many of these conjectures
look very simple, at least in the sense that they involve simple concepts and are easy to
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understand. And yet no one has been able to prove or disprove any of them, even though
some of them were proposed several centuries ago.

Many of the theorems and conjectures in these lists involve prime numbers.
Mathematicians have long been fascinated with prime numbers and the way they are
arranged within IN. But it is often very difficult to prove things about prime numbers.

Some Well-Known Theorems of Number Theory

Theorem (Lagrange): Every positive integer can be written as the sum of four
squares (of integers).

Theorem (claimed by Pierre de Fermat in 1640; first published proof by Leonhard
Euler in 1754): For any odd prime p, p is the sum of two squares iff p = 1 (mod 4), that
is, iff 4|(p - 1).

Fermat’s little theorem: If p is prime and p/k, then k7' = 1 (mod p).

Wilson’s theorem (actually proved by Joseph-Louis Lagrange (!), in 1771): For
any positive integer », n is prime iff (n - 1)! = -1 (mod #).

Dirichlet’s theorem: If GCD(m, n) = 1, then the arithmetic sequence m, m + n,
m+ 2n, m + 3n, ... contains infinitely many primes.

Bertrand’s postulate (conjectured by Joseph Bertrand but proved by Pafnuti
Chebyshev in 1850; of course, it should not be called a postulate any more, but names
tend to stick!): If n > 1, then there is a prime strictly between n and 2x.

Prime number theorem (Jacques Hadamard and C. J. de la Vallee Poussin,
independently, in 1896): Let x(m) denote the number of prime numbers that are less
than or equal to m. Then, for large values of m, 7 (m) is approximately equal to m/In m.
More precisely,

lim [(7r(m)In m)/m] = 1

Fermat’s last theorem: There are no natural numbers n, a, b, and ¢ such that
n>2anda" +d"=¢".

The story behind this theorem is one of the most famous ones in all of
mathematics. While studying Pythagorean triples (introduced in Exercise 9, Section 1.2)
in about 1637, Fermat wrote a note in his copy of the works of Diophantus, saying he
had a “truly wonderful proof” of the theorem. The many marginal notes in this book
were discovered after Fermat’s death. Every other claim he made in that book turned out
to be correct. But for over 300 years after the note was discovered, despite an enormous
amount of empirical evidence in favor of the conjecture, no one was able to prove it.
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Pierre de Fermat (1601-1665) was born to a well-to-do and
influential French family. He studied the classics, languages, and law
and became a successful lawyer and judge. He never worked as a
professional mathematician or as any type of academic but did
mathematics strictly as a hobby. This makes his achievements even
more remarkable, considering that he made major contributions to at
least three branches of mathematics.

The first field of mathematics in which Fermat did important work
was analytic geometry and calculus. By 1636, he had worked out a
system of analytic geometry that was almost identical to Descartes’s.
He also appears to have been the first person to devise the general,
efficient method for calculating derivatives (tangent slopes) of curves:
starting with an algebraic expression for a secant slope (a “difference
quotient™), simplifying that fraction, and finally letting the change in
the independent variable become zero. Descartes and others had
calculated tangent slopes, but their methods were primarily geometric
and not applicable to a wide variety of curves.

Another field in which Fermat did important work was probability
theory. In fact, he and Pascal are generally regarded as the cofounders
of the subject. (To be fair, Geronimo Cardano laid some important
groundwork a century earlier, and Christiaan Huygens made many
important improvements to Fermat and Pascal’s work in the 1650s.)
Fermat and Pascal developed the theory through a very productive
correspondence that continued for many years. The impetus for this
development was a question about a betting game that had been posed
to Pascal.

But Fermat’s most important work was in the field of number
theory. In addition to proving many theorems in the subject, he also
made several brilliant conjectures that have stimulated work in
number theory ever since.

Finally, in 1994, the theorem was proved by the eminent English mathematician
Andrew Wiles. Wiles’s proof is complex, deep, and long (about 200 pages!), using
many sophisticated methods of modern mathematics that don’t have any obvious
connection to number theory. It took the world’s best number theorists, including Wiles,
over a year to check the proof and be sure it was correct, and the issue was in severe
doubt for many months, Fermat certainly could not have understood this proof, let alone
discovered a similar proof on his own. And most mathematicians doubt that Fermat saw
a simple proof that thousands of later mathematicians have been unable to recreate. It
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is considered likely that Fermat saw the proof for the case » = 3 and mistakenly thought
he had a way to generalize it to all larger values.

Some mathematicians now correctly call this result Wiles’s theorem. But the name
“Fermat’s last theorem” will probably continue to predominate, in part because of the
enormous length of time it has been in use and in part as a tribute to Fermat’s amazing
insight into number-theoretic problems.

Some Famous Conjectures of Number Theory

All the following conjectures are believed to be true by almost all mathematicians, and
some of them have been verified by computer in many thousands or even millions of
cases. Also, various interesting special cases have been proved for many of them.

The first and third conjectures in this list were discussed in Chapter 1.

Goldbach’s conjecture (1742): Every even integer greater than 2 can be written
as the sum of two primes.

Twin Prime conjecture: There are an infinite number of prime numbers p such
that p + 2 is also prime.

De Polignac’s conjecture: The full version of this conjecture is that every even
integer is the difference of two primes in infinitely many ways. That is, for every even
number #, there are an infinite number of primes p such that p + n is also prime. Note
that this also includes the twin prime conjecture as a special case (n = 2).

Catalan’s conjecture (1842): The numbers 8 and 9 are the only consecutive
natural numbers that are both powers (that is, of the form ¢" with n > 1).
Exercises 8.2

(1) Find the correct quotient and remainder for the following divisions, in
accordance with Corollary 8.15:

(@ 7+4 ®) (-D+4
© 7+(-4) @ N+
(2) Find the GCD and the LCM of each of the following sets of numbers, using the
Euclidean algorithm.
(a) 42 and 1000 (b) 360 and 84
(c) 616 and 27 (d) 24, 60, and 88
(e) 20,27,and 40 (f) 30, 18, 66, and 40

(3) Repeat Exercise 2 using prime factorizations instead of the Euclidean
algorithm, as discussed after Corollary 8.22.
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(4) For each pair of numbers given in parts (a) through (c) of Exercise 2, find a
linear combination of the numbers that equals their GCD, as is guaranteed by Theorem
8.17(b). You may need to rely primarily on trial and error.

(5) Prove parts (a) through (e) of Theorem 8.13.

(6) (a) Prove the claim, made in the proof of Theorem 8.14, that n + 1 € 4.
(b) Prove that the quotient ¢ obtained in this proof is nonnegative.

*(7) Reprove the existence part of Theorem 8.14, using ordinary induction on n
instead of Theorem 5.6. This proof is longer than the one given in the text but has the
advantage of showing how the quotient and remainder change as # is increased.

(8) Prove Corollary 8.15.
(9) Complete the proof of Theorem 8.16 by showing that nZ c 4.

(10) Prove the claim, made in the proof of Theorem 8.17, that C is a subring of Z.

(11) Prove the formula, given before Example 3, relating LCMs to GCDs.

(12) Prove that every multiple of both m and » is also a multiple of LCM(m, n).

(13) Prove, without using Theorem 8.21 or anything after it, that if » is greater than
1 and nonprime, then n = km for some k and m that are greater than 1 and less than ».

(14) Prove the claim, made in the proof of Theorem 8.21, that a product of prime
numbers cannot equal 1.

(15) Prove the inductive formula given for GCDs and LCMs after Example 3.

*(16) Give a more rigorous proof of the uniqueness part of Theorem 8.21, as
suggested after the theorem.

*(17) Prove the generalization mentioned after Theorem 8.24.

*(18) Review the rules of the game of Nim, introduced in Exercise 11 of Section 1.2.
State and prove a theorem about which player (first or second) has a winning strategy
when there are two piles of sticks, with m sticks and n sticks.

(19) Consider a rectangular billiards table (no pockets) of dimensions # units by »
units, where m and » are natural numbers, A ball is shot from one of the corners at a 45°
angle to the sides, and always reflects at a 45° angle whenever it hits a side.

(a) Prove that the ball will eventually hit a corner of the table.
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(b) Determine how far the ball travels and how many times it hits a side of the
table before it hits a corner,

(c) Prove that the first corner the ball hits cannot be the one from which it
started.

(d) Determine and prove a rule for predicting which corner the ball will first
hit, depending on the numbers m and n.

This problem was created by Joseph Becker and appears in the book Mathematics:

A Human Endeavor, by Harold R. Jacobs (3rd. ed., W. H. Freeman and Co., 1994).

*(20) Consider a round-robin tournament in which n people play each other once in
a game or sport like tennis, in which there are no ties. Let’s denote by W, and L, the

number of wins and losses by the ith player. It is clear that E W, = E L, . Prove the
=1 i=1

n n
much less obvious fact that Y W} = Y L by

Hint: One way to prove'tl;is is by (ioluble induction, an induction proof within an
induction proof. The main induction can be on n, the number of players. For the
induction step, think of a tournament with n + 1 players as a toumament with » players,
after which one more player arrives and plays against the original # players. Within the
induction step, you can use induction on the number of games the new player wins.

Critique the proofs in the remaining exercises. (If necessary, refer to the
instructions for this type of problem in Exercises 4.2.)

(21) Corollary to Theorem 8.17: Given any integers m and n (not both zero) and
j,J is a linear combination of m and n iff j is 2 multiple of GCD(m, n).
Proof: The proof of Theorem 8.17(a) shows that C, the set of all linear
combinations of m and n, consists of all multiples of GCD(m, n).

(22) Theorem: Assuming the results of exercises 11 and 15: for any nonzero
integers m, n, and k, GCD(m, n, k) x LCM(m, n, k) = |mnk|.
Proof: LCM(m, n, k) = LCM(LCM(m, n), k) By the result of Exercise 15
= |k| LCM(m, n) + GCD(LCM(m, n), k) By the result of Exercise 11
|k| (|mn| + GCD(m, n)) + GCD(LCM(m, n), k) Again by Exercise 11
|mnk| + [GCD(m, n) GCD(LCM(mn, n), k)]
|mnk| + GCD(m, n, k)

*8.3 More Examples of Rings and Fields

Abstract algebra is one of the most important branches of mathematics, and it would be
impossible to give more than a very brief introduction to it in this text. Appendix 2 and
Section 8.1 attempt to convey some of the flavor of abstract algebra, but they stress
familiar number systems such as Z, Q, and R. In this section we give examples of rings
and fields that are quite different from the standard number systems, in an attempt to
show you how much variety there can be within one type of algebraic structure.
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Remember that a field must satisfy several properties beyond what a ring must satisfy.
It follows that there is a greater variety of rings than of fields. Yet there is quite a bit of
variety even among fields.

Example 1 (A noncommutative ring): Remember that addition in a ring must be
commutative by definition but multiplication need not be. There are many ways to
define a noncommutative ring. The most important examples (though perhaps not the
simplest) are rings of matrices.

For any natural number n, let M, be the set of all # by » matrices with real-valued
entries. Then, with the usual addition and multiplication operations on matrices, M, is
a ring with unity; and this ring is noncommutative if n > 1.

Showing that M, is a ring is not difficult, but it is rather long and tedious. For the
most part, the properties pertaining to addition are pretty trivial to show, whereas the
ones pertaining to multiplication are not. In particular, a somewhat messy computation
is required to show that multiplication is associative. Exercise 1 asks you to carry out
some of this.

Clearly, the additive identity of M, is the matrix in which all the entries are 0. This
is called the n by # zero matrix. Also, the additive inverse of any matrix B is the matrix
usually denoted by - B, obtained from B by multiplying each entry by -1. It’s less
obvious what the multiplicative identity is; but if you have ever studied matrices, you
probably know that it’s the so-called » by n identity matrix, which has 1s down the
main diagonal and Os everywhere else. For example, the 3 by 3 identity matrix is

100

010
001

Perhaps you also recall that not every nonzero matrix is invertible. In other words,
the multiplicative inverse property V-11 does not hold in M,. For example, the matrix

W

does not have a multiplicative inverse in M, (see Exercise 2).
To show that multiplicaticn in A, is not commutative when n# > 1, a bit of trial and
error should suffice. For example, in M, we have

10 01 01 10
#
00 00 00/\00
Exercise 3 asks you to find examples for larger values of n.

Technically, the rings we have been discussing should be denoted M, (R), to make
it clear that we are allowing real coefficients in these matrices. More generally, we can
take any ring 4 and define M,(A), the set of all n by n matrices with entries in 4. This
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generalization changes nothing that we’ve said in the context of real entries: M(4)is
a ring; if 4 is a ring with unity, so is M,(4); and M,(4) is noncommutative for n > 1,
regardless of whether 4 is commutative (provided 4 has more than one member). We
can think of M, as a method, or operator, for defining new rings from old ones.

Example 2 (Rings without unity, commutative and otherwise): A simple
example of a ring with no multiplicative identity is the set of all even integers. More
generally, for any > 1, Theorem 8.10 shows that nZ is a ring without unity. The rings
nZ are commutative. Are there also noncommutative rings without unity? The answer
is yes, and one simple way to construct one is to combine the ideas in this example and
Example 1. For instance, M,(2Z) is such a ring (see Exercise 4).

Example 3 (Polynomial rings): Examples 3, 4, and 5, like Example 1, are not just
examples of specific rings; they also provide important methods for constructing new
rings from old ones. For any ring 4, let 4[x] denote the set of all polynomials in the one
variable x, with coefficients in 4. This notation looks a lot like function notation, and
it may be read “4 of x” (or “4 bracket x”). But note that A[x] is certainly not a function,
though it may be viewed as a set of functions.

You presumably know what polynomials are and how to add, subtract, and
multiply them. Actually, there are two reasonable interpretations of what the word
“polynomial” means here. We can view a polynomial, like x ?+3x - 5, as a function
from A to A; or we can view it as just a formal expression, a sequence of symbols. Most
of the results about polynomial rings work equally well under either interpretation, but
the usual viewpoint in abstract algebra is the second one.

We leave the following results to Exercise S: for any ring 4, the set A[x] is also a
ring. Furthermore, if 4 is commutative, so is A[x]; and if 4 has unity, then so does A[x].
These facts are all straightforward to show. One small but important point to remember
is that constants count as polynomials. So the additive identity of 4 works as the
additive identity of A[x], and similarly for multiplicative identities. Also, the usual
convention is that the variable x automatically commutes with all elements in 4, even
if 4 is noncommutative. For example, if a and b € 4, then (ax)(bx) = abx’ by definition.

Obviously, it’s not very important what letter is used for the variable of our
polynomials. In other words, there’s no significant difference between A[x] and 4[ y].
On the other hand, we can define structures like A[x, y] and A[x, y, z}—sets of
polynomials with two or three variables, or more. These are also rings and have many
similarities to A[x], but also have some important differences.

Definitions: Two nonzero elements x and y of a ring such that xy = 0 are called
zero-divisors. A commutative ring with unity that has no zero-divisors is called an
integral domain.

Every field is an integral domain, by Exercise 12 of Section 4.5. If 4 is a field, then
there are many similarities between the rings 4[x] and Z. Both of them are integral
domains but not fields. Both satisfy a unique factorization property similar to Theorem
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8.21. And both of them satisfy a property involving division with remainder, similar to
Theorem 8.14 (see Theorem 10.10). An algebraist would sum this up by saying that
both 4[x] and Z are Euclidean domains.

Example 4 (Fields of rational functions): We just said that 4[x] is not a field,
even if 4 is. To see this, consider the polynomial x. This is not the zero polynomial, so
if A[x] were a field, x would have to have a reciprocal. That is, there would have to be
a polynomial p(x) such that x p(x) = 1. This is impossible (see Exercise 6).

If 4 is an integral domain, it is not difficult to define a structure similar to A4[x] that
is a field: let A(x) be the set of all rational functions in the variable x with coefficients
in A. A rational function is a quotient of two polynomials, with nonzero denominator.
As with polynomials, there are two permissible interpretations of this: we can think of
a rational function as a function or as a symbolic expression.

However, there is a subtle problem with the latter approach. For example, 1/x and
5x/5x* are technically different expressions, but they should not be considered two
different rational functions. They should be viewed as two different ways of writing the
same rational function. The preferred and most rigorous way of handling this point
involves equivalence relations, based on the idea that two numerical fractions like 1/2
and 3/6 may be called equivalent to formalize the fact that they represent the same real
number. This idea was introduced in Exercise 8 of Section 6.2.

The relationship between 4[x] and A(x) is very similar to that between Z and Q.
In both cases, we take an integral domain, which is a rather well-behaved ring, and
obtain a field of quotients (with nonzero denominators) from the integral domain. The
construction of Q from Z in this way is carried out in Section 9.5.

Like the notation A[x], A(x) is also read “4 of x,” though it does not stand for a
function either. This is an example of some genuinely ambiguous mathematical
notation; but it’s universal, so we’re probably stuck with it.

Example 5 (Product rings): Here is another way of constructing new rings.
Given any two rings 4 and B, we can form the cartesian product 4 x B. Then, we can
turn 4 x B into an algebraic structure by performing addition and multiplication
coordinate by coordinate or pointwise. You are probably familiar with this type of
addition, since it is the usual algebraic way of adding vectors; and we are going to do
multiplication in the same way. For example, in R x R (orZ x Z,Q x R, and so on)
we have (3, 5) + (-2, 3)=(1, 8), (3, 5)(-2, 3) = (-6, 15), and so on.

The following results are all fairly straightforward to verify (see Exercise 8): for
any rings 4 and B, A x B (with addition and multiplication defined as above) is also a
ring. If A and B are both commutative, then so is 4 X B; and if 4 and B both have unity,
then so does 4 x B.

The ring A x B defined in this manner is called the direct product of the rings 4
and B. Strangely enough, it can also be called the direct sum of 4 and B. It is possible
to extend this notion to the product and sum of three or more rings, or even an infinite
number of rings. When an infinite number of rings are involved the terms “direct
product” and “direct sum” no longer mean the same thing.
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The algebra of product rings is pretty straightforward. For example, the additive
identity of 4 x B is (0, 0), as you might guess. Technically, this notation is a bit sloppy.
If A and B are different rings, then the two Os in this (0, 0) are not the same. The first is
the additive identity of 4, and the second is the additive identity of B. The same goes for
multiplicative identities. Naturally, in 4 x B the additive inverse of (x, y) is (-x, -y).

Even if 4 and B are fields, their product is not. To see this, note that (1, 0) and
(0, 1) are both nonzero but their product is (0, 0). In other words, a product ring 4 x B
always has zero-divisors, as long as 4 and B each has at least one nonzero element. Thus
A x B cannot be an integral domain, let alone a field. Generally, product rings like
R x R or Z x Z are straightforward to work with; but their having zero-divisors makes
them quite different from rings like Z, R, and Z[x].

Example 6: Now we can give examples of two phenomena mentioned after
Lemma 8.6. First, consider the ring A = Z x 2Z. Since 2Z does not have unity, neither
does 4. But Z x {0} is a subring of 4 that does have unity, because (1, 0) is its
multiplicative identity.

Now let B be the ring Z x Z. It has unity; (1, 1) is its multiplicative identity. But
its subring Z x {0} has a different multiplicative identity, namely (1, 0).

Modular Arithmetic

We spend the rest of this section studying an extremely important type of ring, for which
we give two equivalent definitions. The main concept was discussed a bit in Section 6.2,
but we did not go into the algebra involved. In this discussion, n always denotes a
positive integer.

Definition: The ring of integers modulo n, denoted Z, (not to be confused with
nZ.) is defined as follows: the elements of the ring are the integers 0, 1, ..., n - 1. (So
there are exactly n members.) To add or multiply two numbers in Z,, first add or
multiply them in the usual way. Then divide this result by #. The remainder obtained is
the sum or product in Z,.

Example 7: InZ, wehave2+3=5,5+4=2,2+5=0,4%x4=2,and
6x2=5InZ,wehave5+4=3,2x2=4,2x3=0,and4 x5=2,

The algebra of Z, is called modulo » arithmetic. Recall that the equivalence
relation a = b (mod n) means that a - b is an integer multiple of n. So the calculations
in the previous example can be rewritten 2 +3 = 5 (mod 7),5+4 =2 (mod 7),2+5=0
(mod 7), 2 x 3 = 0 (mod 6), and 4 x § = 2 (mod 6).

One easy way to think of modular arithmetic is as clock arithmetic. Imagine an
ordinary clock with hands, except with the numeral 0 on the top instead of 12. Then
everyone would know what you meant if you said that, on the clock, 9 + 3 =0 or
10 + 5 = 3, This is just modulo 12 arithmetic.
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The ring Z, is commutative, with unity provided n > 1. Exercise 11 asks you to
prove this and some other basic facts about Z,.

Alternative Definition: Consider the equivalence relation a = b (mod n) on Z.
The elements of Z, are defined to be the equivalence classes under this relation. Let [k]
denote the equivalence class of k. Addition and multiplication in Z, are defined by the
apparently simple rules {a] + [b] = [a + b] and [a] [b] =[ab], for all a and b € Z. But we
soon see that there are pitfalls inherent in such definitions.

Remarks: (1) The set [k] is the set of all integers that differ from k by an integer
multiple of n. For example, if n = 8, then [3] = {..., 21, -13, -5, 3, 11, 19, 27, ...}.

(2) Just as before, Z, contains exactly n elements. For the n equivalence classes
[0], (1], ... , [#n — 1] are all different, and these are the only ones.

(3) Under the alternative definition, the “numbers” of Z, are sets of numbers
(equivalence classes). This takes some getting used to, but it’s a very important way of
defining new algebraic structures. An algebraic structure whose members are
equivalence classes of members of another algebraic structure is called a quotient
structure. Our altemnative definition of Z, provides an example of a quotient ring.

“Well-Definedness” of Operations on Quotient Structures

What are the pitfalls involved in the second definition of Z,? The tricky point is that we
must define how to add and multiply equivalence classes, not single numbers. To add
or multiply two classes, it would seem logical to choose one number from each class,
add or multiply them, and then take the equivalence class of the result. For example,
suppose we want to add [6] and [8] in Z,. Since 6 + 8 = 14, the answer is [14]. But we
could also note that 24 € [6], -55 € [8], and 24 + (-55) = -31, so the answer is [-31].
Does this mean we get two different solutions to the same addition problem? The
answer is an emphatic no! For 14 = -31 (mod 9), so [14] = [-31]. So the two solutions
are the same; the simplest way to express the sum might be [5].

I"  The preceding calculation illustrates an extremely important point: when
you define algebraic operations in a quotient structure, you have to make sure these
operations are well defined. The simple rules for addition and multiplication in Z, (in
the alternative definition) are valid only if the right side of these equations does not
change when you pick different members of the equivalence classes on the left side (see
Exercise 12).

Can you see how the two definitions of Z, are essentially the same? In the first
definition, the elements of Z, are the numbers 0, 1, ..., n - 1. In the second definition,
the elements are the equivalence classes [0], [1], ..., [# - 1]. The definitions of addition
and multiplication are set up so that, except for the brackets, the first definition and the
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second definition produce exactly the same algebra. For instance, in Z,,, with the first
definition we’d have 7 + 5§ = 2 and 7-4 = 8. With the second definition we’d have
[7] + [5] = [2] and [7] [4] = [8]. So the two versions of Z, are the same in a structural
sense. If there’s any difference between them, it’s just a matter of notation, or the
“names” given to the elements. The technical term for this is to say the two versions of
Z., are isomorphic. This important notion is defined and discussed in Section 8.4.

Why have we defined Z, in two different ways? Why didn’t we just stick with the
first, simpler definition? One answer is that defining Z, as a quotient structure is of
more general and theoretical interest than the first definition. We use quotient structures
extensively in Section 9.4. Also, using both definitions allowed us to introduce the
concept of isomorphism.

Finite Fields

Now we come to perhaps the most interesting feature of the rings Z,. If n is composite,
Z has zero-divisors and so is not an integral domain. For example, in Z,, we have
3 x 2 =0, but neither 3 nor 2 is zero. But now suppose that » is prime. Then there do not
exist two natural numbers less than n whose product is a multiple of p, so Z, is an
integral domain. But we can say more: if p is a prime and m is any natural number less
than p, then there’s a & such that mk = 1 (mod p) (see Exercise 13). Thus, if » is prime,
every nonzero number in Z, has a reciprocal, so Z, is actually a field.

Example8: InZ,, wehave 1 x1=1,2x4=1,3x5=1,and 6 x 6 = 1. So every
nonzero number in Z, has a reciprocal. It’s easy to carry out similar verifications for
other small prime values of n (see Exercise 14).

The fields Z, (p being prime) are quite important in abstract algebra. For our
purposes, they are being presented primarily as examples of small fields. The only fields
we have discussed before these are Q and R, which are infinite sets. It is interesting to
note that there is field with only two elements, one with three elements, and so on.
Remember that a field must obey all the usual laws of addition, subtraction,
multiplication, and division. A natural question is: if » is not prime, is there a field with
n elements? Although we do not have the means to prove the answer to this question,
we include it in the following theorem, which also summarizes the basic facts about the
rings Z,.

Theorem 8.25: (a) For any n, Z, is a commutative ring. If n > 1, it also has unity.

(b) If n is not prime, then Z, has zero-divisors and so is not a field, or even an
integral domain.

(c) If n is prime, then Z, is a field.

(d) For any natural number n, a field with n elements exists iff 7 equals a prime
number to a positive integer power.

(e) Suppose n = p™. Then there is only one field with n elements, structurally
speaking. (More technically, any two fields with » elements are isomorphic, a term
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defined in the next section.) This field has characteristic p, which means that any
number added to itself p times equals zero. This means that if m > 1, the field with »
elements does not look like Z,, for if m > 1, then p < n, and so 1 added to itself p times
in Z, is nonzero.
Proof: (a), (b), and (c) These parts were discussed previously and some of them
are assigned in the exercises.
(d) and (¢) These proofs are beyond the scope of this book. m

It is worth taking some time to understand what parts (d) and (e) of Theorem 8.25
say. If n is a prime number, then there is essentially just one field with n elements,
which is Z,. If n is not prime but is a power of a prime, like 4 or 32 or 81, then there is
a field with » elements but it does not look like Z, . For example, in the field with 81
elements, 1 + 1 + 1=0. Exercise 15 asks you to investigate finite fields in more detail.
On the other hand, if #» has more than one prime factor, like 6 or 10 or 50, then there is
no field with » elements.

Exercises 8.3

Several exercises ask you to prove something is a ring. In these proofs, it is important
to use your judgment to avoid getting bogged down in petty details. If a certain ring
property is particularly obvious, it is fine to say so rather than prove it rigorously. Of
course, there are potential pitfalls to this practice, but every mathematics student needs
to learn to make this sort of judgment.

(1) (@) Explain briefly why all the field axioms pertaining only to addition hold
in the system M.
(b) By direct computation, show that field axioms V-4 and V-7 hold in M,.

10
(2) Show that the 2 by 2 matrix [ 0 0) does not have a multiplicative inverse.

(3) (a) Find 3 by 3 matrices B and C such that BC = CB.
(b) Generalize part (a) to n by n matrices.

(4) As claimed in Example 3, show that the ring M,(27Z) is not commutative. Also
show that this ring has no multiplicative identity.

(5) Without getting bogged down in too many details, prove the claims about the
ring A[x] made in the third paragraph of Example 3.

(6) Every nonzero polynomial has a degree—the highest power of x occurring in
it, with a nonzero coefficient. (The degree of the zero polynomial is usually left
undefined.) What is the degree of the product of two nonzero polynomials? Prove your
assertion.
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(7) Prove that the polynomial x has no multiplicative inverse in the ring A[x].
(8) Prove the claims made about 4 X B in the second paragraph of Example 5.

(9) Explain how the definition of product rings in Example 5 can be generalized
to define the ring (4, X 4, X ... X 4,), where each 4, is a ring.

(10) (a) Let A be aring, and B be any set. Recall that 4 is the set of all functions
from B to 4. Since A is a ring, we can add and multiply any two such functions in the
usual way (as in Exercise 13 of Section 7.1). Prove that 4® is a ring with these
operations. Rings of this type are called rings of functions and have many applications.

(b) Under what circumstances, if any, is this ring an integral domain or a field?

(11) Prove that Z , as it is first defined in Example 7, is a commutative ring and has
unity provided n > 1.

(12) (a) Prove that whenever a = a’ (mod n) and b = b’ (mod n), thena + b =
a’' + b’ (mod n) and ab = a’b’ (mod n). This shows that the definitions of addition and
multiplication given in the second definition of Z, are in fact well defined.

(b) We can also try to define an absolute value function on Z, by the rule
lla]| = [a] if a 2 0, and |[a]| = [-a] if a < 0. Show that this function is not well defined.

(13) Prove the claim made in the discussion of Z, that if p is prime and 0 <m < p,
then there is a & such that km = 1 (mod p).

(14) Find the multiplicative inverse of every nonzero number in Z,, Z,,, and Z, .

*(15) (a) Work out complete addition and multiplication tables for the field with four
elements.
(b) Repeat part (a) for the field with nine elements.

Critique the proofs in the remaining exercises. (If necessary, refer to the
instructions for this type of problem in Exercises 4.2.)

(16) Theorem: For any ring 4 and any nonzero fand g in A[x], the degree of f+ g
is the larger of the degree of f'and the degree of g.

Proof: Assume fand g are nonzero polynomials in A[x]. Let ax™ and bx" be
the highest power terms in f'and g, respectively. If m > n, then ax™ is the highest power
term in f+ g. Thus f+ g, like f, has degree m, which is the larger of the degree of fand
the degree of g. Similarly, if n > m, then f'+ g, like g, has degree n, which is the larger
of the degree of fand the degree of g. Finally, if m = n, then f+ g has the same degree
as both fand g.

(17) Theorem: If 4 is a ring with unity, x € 4, and x* = x, then x must be 0 or 1.
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Proof: Ifx*=x, then x? - x = 0; this factors to x(x - 1) = 0. Therefore x = 0 or
x — 1 =0. The latter equation becomes x = 1.

*8.4 Isomorphisms

In Section 8.3 we mentioned the notion of isomorphism, which is supposed to express
that two algebraic structures are essentially the same, It is now time to make this precise.

Definitions: An isomorphism between two rings 4 and B is a bijection f from A
to B such that, forallx and y € 4,

fe+y)=f@)+f(y) and f()=f®)f()

For these equations to make sense, the addition and multiplication operations mentioned
on the left sides of the equations must take place in 4, and those on the right must take
place in B. From now on we usually do not mention this point.

Two rings are said to be isomorphic iff there is an isomorphism between them.

Example 1: Let 4 =R x Z, and B = Z x R, product rings as defined in the
previous section. Then 4 and B are isomorphic, an isomorphism (the only one) being
given by f((x, y)) = (, x). More generally, for any rings C and D, the product rings
C x D and D x C are isomorphic (see Exercise 1).

Example 2: The ring Z, is isomorphic to Z, X Z,. An isomorphism is given by
f (x) = (a, b), where a and b are the remainders when x is divided by 2 and 3,
respectively. For example, f(3) = (1, 0) and f(5) = (1, 2). Exercise 6 asks you to verify
that f'is an isomorphism, and Exercise 7 gives a generalization of this example.

Remarks: (1) It takes a while to get a feel for what it means for two rings to be
isomorphic. First of all, an isomorphism is a bijection, so the rings are in one-to-one
correspondence. But we have additional conditions that say that any algebraic
relationship among elements in A is preserved when these elements are mapped to B.
For example, if 4 is commutative, B must also be commutative (and conversely).
Mathematicians like to think of isomorphic rings as structurally identical. They also like
to view an isomorphism as a renaming; except for this renaming of elements,
isomorphic rings have exactly the same addition and multiplication tables.

The example of an isomorphism mentioned in Section 8.3 illustrates these ideas.
There we had two versions of Z,; one had members {0, 1, ... , n -1}, the other
{[0], [1], ... , [» - 1]}. The function f from the first Z, to the second, defined by
f(x) = [x], is clearly a bijection. But it is easy to show (see Exercise 5) that it is also an
isomorphism. Therefore, except for the way the elements are named—one with
brackets, the other without—there is no difference between these two versions of Z,.
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(2) Ifthe word “onto” in the above definition is relaxed to “into,” then f'is called
an isomorphic embedding. In this situation, it is straightforward to show (see Exercise
2) that the range of fmust be closed under addition and multiplication; this makes it a
subring of B. In other words, an isomorphic embedding from 4 to B is the same as an
isomorphism between A4 and a subring of B.

If we weaken the definition further by dropping the words “one-to-one,” then f'is
called a homomorphism.

(3) The concept of isomorphism is useful for every type of algebraic structure but
must be modified accordingly. The type of isomorphism we have defined is ring
isomorphism, since it specifies conditions for addition and multiplication. In contrast,
a group has only one algebraic operation defined on it, so a group isomorphism would
need to satisfy only one algebraic condition. On the other hand, if we have two ordered
rings, we could have an ordered ring isomorphism between them. This would have
to be a ring isomorphism and also be order preserving: whenever x <y, f(x) <f(y).

Theorem 8.26: Assume fis an isomorphism between rings 4 and B. Then:
() £(0)=0
(b) Forevery x € 4, f(-x) = -f(x).
(c) A4 is commutative iff B is.
(d) A has unity iff B does; and, in this case, f(1) = 1.
(e) For every x € A, x has a multiplicative inverse iff f(x) does; and, in this
case, f(x™) = [f()] ™.
(f) Thus, A is a field iff B is.
Proof: We prove just parts (a) and (b) and leave the rest for Exercise 3.
(a) More precisely, we must show that £(0,) = 0, But f(0 ) =0 ;+ 0 )=
f(0,) + f(0,). Subtracting f(0,) from both sides of this equation yields 0, =f(0,).
(c) Assume A4 is commutative, and x and y are any members of B. Since fis onto
B, we have f(u) = x and f(v) = y for some u and v € 4. So xy = f(u) f(v) =f(uv) =
Svu) =f(v)f(u) = yx, as desired. ®

Theorem 8.27: (a) For any ring 4, id, is an isomorphism between 4 and 4.
(b) The inverse of any isomorphism is an isomorphism.
(c) The composition of any two isomorphisms is an isomorphism.
(d) Therefore, being isomorphic is an equivalence relation on the class of all
rings.
Proof: See Exercisc 4. ®

Example 3: Using Theorem 8.26 and careful thinking about algebraic properties,
one can often quickly see that particular rings are nof isomorphic. For instance, Q and
Z. are not, because only Q is a field. Also, Z and 2Z are not, because only Z has unity
(but see Exercise 8).

We can also see that R and Q are not isomorphic, simply because R has greater
cardinality than Q. A more algebraic argument might use the fact (proved in Chapter 9)
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that only R has a square root of 2. Let’s show this in more detail: assume f'is an
isomorphism between R and Q. Then f(1) = 1, by Theorem 8.26(d). So /(2) =f(1 + 1) =
F(1) +f(1) =1 + 1 = 2. Now, since y2 2 =2, f(y2)f(y/2) =/(2) = 2. This would
mean that f(y/2) is a square root of 2 in Q, and this violates Theorem 8.24.

The ability to see reasons why rings are not isomorphic comes with experience
(see Exercises 11 and 12).

Theorems 8.9 and 8.12 are very similar results, characterizing Z and Q as special
subsystems of R. Using the terminology of isomorphisms, we can prove important
generalizations of these theorems, after proving two preliminary lemmas.

Lemma 8.28: Let A be any ring with x and y € A. Then:
(@) (-x)y=x(-y)=-()
() (x)(-»)=xy

Proof: See Exercise 9. ®

Lemma 8.29: Let A be an ordered ring with unity. Then:
(a) A has no zero-divisors.
(b) Ifxe Aand X’ =x,thenx=0o0rx=1.
(¢) If Bis a subring of A with unity, then B has the same multiplicative identity
as 4.

Proof: (a) Assume x and y € 4, both nonzero. We must prove that xy # 0. We do
this by cases, using axiom V-17: if x and y > 0, we have xy > 0y =0, so xy = 0. Ifx<0
and y > 0, then xy < Oy = 0, so xy * 0. The case x > 0 and y <0 is similar. Finally, if x
and y < 0, then —x and -y are positive (why?). We have xy = (-x)(-) by Lemma
8.28(b), and (-x)(-y) > 0 by the first case of this proof. So xy > 0, and thus is nonzero.

() fx*=x,then0=x"-x=x(x - 1). By (@),x=0orx- 1=0.Sox=00rx=1.

(c) Let B be any subring of 4 with unity. By Lemma 8.6(a), B has the same
additive identity as A4, which we continue to denote 0. If c is the multiplicative identity
of B, then ¢* = ¢. By part (b), ¢ = 0 or ¢ = 1. The former case is ruled out by axiom V-12,
soc =1, as desired. ®

Theorem 8.30: For any ordered ring with unity 4, there is a unique isomorphism
(in fact, an ordered ring isomorphism) between Z and a subring of 4. This subring is
also the smallest subring of 4 with unity.

Proof: We define f Z — A. First of all, we define fon N, inductively: f(1) =1,
and for the induction step, f(n + 1) =f(n) + 1,. We also let f(0) = 0, and f(-n) = -f(n),
Vn € N. This completes the definition of /. Since A4 is ordered, 0, < 1,, and therefore
f(n) <f(n+ 1), Vn € N. An easy induction then shows that if 0 < m < n, then
0, <f(m) < f(n). Using several cases, we can extend this to yield that whenever m and
n € Z and m < n, then f(m) <f(n) (see Exercise 13). In other words, fis order preserving
(and therefore it is also one-to-one).

We must still prove that f preserves addition and multiplication. To show that
f(m + n) = f(m) + f(n), the easiest way is to first assume m and n > 0, and prove it by
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induction on m or n. The extension to zero and negative values of m and/or » is again
easily handled by cases. The details of this argument, and the one for multiplication, are
also left for Exercise 13. Thus fis an isomorphic embedding, as desired.

To prove fis unique, assume g is any isomorphic embedding from Z to 4. We
show g =f. Let B be the range of g. Then B is a subring of 4. By Theorem 8.26(d), B
has unity and g (1) = 1,. But Lemma 8.29(c) says that 1,=1,, so g(1) = 1,=f(1). A
simple induction then yields that g (n) = f(n), Vn € IN. By Theorem 8.26(a) and Lemma
8.6(a), g (0) = 0,=f(0). Finally, for any n € N, Theorem 8.26(b) and Lemma 8.6(b)
yield g(-n) = -g (n) = -f(n) =f(~n). Thus g (n) = f(n) for all integers n; that is, g = f.

Finally, let C be any subring of 4 with unity. Since 1,=1,, C contains f(1). The
same reasoning as in the previous paragraph shows that C contains f(n), Vr € IN; f(0);
and f(-n), Vne N (see Exercise 13). Thus Rng( /') < C. This shows that Rng( 1) is the
smallest subring of 4 with unity, ®

There are various ways to describe the meaning of this theorem. We can say that
every ordered ring with unity contains a copy of Z. Mathematicians might also say,
“Every ordered ring with unity contains Z, up to isomorphism.” The words “up to
isomorphism” may even be omitted, but technically they should not be.

The simplest way to paraphrase the last part of the theorem is that Z is the smallest
ordered ring with unity. Similarly, the next theorem tells us that every ordered field
contains a copy of Q and that Q is the smallest ordered field.

Theorem 8.31: For any ordered field 4, there is a unique isomorphism (in fact,
an ordered ring isomorphism) between Q and a subfield of 4. This subfield is also the
smallest subfield of 4.

Proof: This proof is a minor modification or extension of the proof of Theorem

8.30. We want to define an isomorphic embedding f/* Q — 4. The definition of fon Z
is precisely as before. We then want to extend fto the rest of Q by the obvious rule
f(m/n) = f(m)/f (n). However, we have to be careful about this, because one rational
number can be represented by many different fractions. We have to show that this rule
can’t give more than one output for a single rational number: note that if m/n and a/b are
equal fractions, then mb = na. Therefore, since f'is an isomorphism on Z, f(m) f(b) =
f(n)f(a) in A. We thus obtain f(m)/f(n) = f(a)/f(b), so f(m/n) = f(a/b). So fis indeed a
function on Q. [This is really a well-definedness argument of the type discussed in the
previous section.] The rest of the modifications needed to complete this proof are left
for Exercise 14. m

Corollary 8.32: Every ordered field with no proper subfields is isomorphic to Q.
(Therefore, any two such ordered fields are isomorphic to each other.)

Proof: Let A be an ordered field with no proper subfields. Let /> Q — A4 be the
isomorphic embedding of Theorem 8.31. Then Rng(f) must be a subfield of 4 (see
Exercise 2). Thus it is all of 4, so Q and 4 are isomorphic. The claim in parentheses
follows from Theorem 8.27(d). =
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The fact that Q has no proper subfields was already established by Theorem 8.12.
What Corollary 8.32 adds to this is that Q is, up to isomorphism, the unique ordered
field with no subfields. Similarly, we could use Theorem 8.30 to conclude that Z is, up
to isomorphism, the unique ordered ring with unity with no subrings with unity.

Exercises 8.4
(1) Prove the general assertion made about product rings in Example 1.

(2) Show that the range of an isomorphic embedding must be a ring, as asserted in
the second remark of this section.

(3) Prove the remaining parts of Theorem 8.26.
(4) Prove Theorem 8.27.

(5) Prove the claim, made in the first remark of this section, that f is an
isomorphism between the two versions of Z,.

(6) Show that the function f defined in Example 2 is an isomorphism between Zg
and Z, x Z,.

*(7) Generalizing Example 2, prove that if m and » are positive and relatively prime,
then Z,_, is isomorphic to Z,, X Z,.

(8) Show that the function f* Z — 2Z defined by f(n) = 2n satisfies all the
conditions of isomorphism except the one involving multiplication. So we say that Z
and 27 are isomorphic as groups under addition but not isomorphic as rings (as pointed
out in Example 3).

(9) Prove Lemma 8.28. Be careful not to assume any more about 4 than the fact
that it is a ring.

(10) Show that Lemma 8.29 fails if the word “ordered” is deleted. In fact, find a
single ring with unity in which all three parts are false.

(11) Explain why each of the following pairs of rings is not isomorphic. Hint: You
might want to refer to Example 3 for some ideas.
(@) 2Z and Z,
(b) ZandZ x Z
() Z,xZ,and Z,
(d) mZ and nZ,where0 <m<n
(e) Zand Z[x]
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*(12) Determine whether each of the following pairs of rings is isomorphic. If so,
specify an isomorphism between the rings. If not, explain why not.
() Z x Z and the ring of diagonal 2 by 2 matrices with integer coefficients
(that is, matrices whose top right and bottom left entries are 0)
(b) ZxZand ZxQ
(c) Z x4Z and 27 x 27
(d) The function rings R™ and RZ, as defined in Exercise 10 of Section 8.3

*(13) Prove the three omitted steps mentioned in the proof of Theorem 8.30.

*(14) Complete the proof of Theorem 8.31, making appropriate modifications to the
proof of Theorem 8.30.

(15) Prove that if fis a bijection from a ring 4 to a set B, then there is a unique way
to define addition and multiplication on B to make f'a ring isomorphism.

(16) The function fdefined by f(n) = 2n is a bijection between Z and E, the set of
even integers. Use fand the previous exercise to define a ring structure on E that makes
the resulting ring isomorphic to Z.

(17) The function f defined by f(x) = e” is a bijection between R and R, the set of
positive reals. Use f and Exercise 15 to define a ring structure on R that makes the
resulting ring isomorphic to R.

*(18) Let Cbe a fixed set. Given any A and B < C, define ABtobe AN B, and 4 + B
to be A A B, as defined in Exercise 15 of Section 5.3.
(a) Show that these operations make £(C) into a boolean ring (see Exercise 17,
Section 8.1).
(b) Prove that this ring is isomorphic to the function ring (Z,)".

Suggestions for Further Reading: Two excellent introductory texts on abstract
algebra are Fraleigh (1994) and Herstein (1996). For more thorough coverage of number
theory, see Burn (1982), Burton (1997), Niven and Zuckerman (1980), or the classic
Hardy and Wright (1979). A very clear treatment of the integers as an algebraic structure
is given in Feferman (1989). For a short, well-written outline of Wiles’s proof of
Fermat’s last theorem, see the November 1997 Scientific American.



Chapter 9

The Real Number System

9.1 The Completeness Axiom

The development of calculus in the seventeenth century was certainly one of the most
important events in the history of mathematics. Not only does calculus provide methods
and solutions for a wide variety of problems in mathematics, science, and engineering;
many other branches of mathematics invented since then also owe their existence, at
least partially, to problems that arose in calculus. In particular, the need to clarify the
concept of limits led, in the eighteenth and nineteenth centuries, to an intensive study
of the real number system, functions, sequences, and finally sets. The rigorous study of
the foundations of calculus and the real number system is called real analysis. In this
chapter we examine some basic concepts of this important subject.

Completeness of the Real Number System

We have already discussed some of the similarities and differences between the system
of rational numbers Q and the system of real numbers R. The major similarity is
algebraic: they are both ordered fields. One of the main differences was mentioned in
Section 7.5: R has greater cardinality than Q. Theorem 8.24 indicates a more concrete
difference: numbers like /2 cannot be in Q. In this chapter we prove that such numbers
are in R.

In this section we pinpoint the special property of R that sets it apart from Q. We
begin with some pictures, since this special property is more geometric than algebraic.
If you were asked to draw a picture of the set of real numbers, you would know exactly
what to do. We all learn that the real number system can be represented as a straight
line, extending without limit in both directions (see Figure 9.1). This representation
makes sense because our intuition and experience tell us that any possible length or
distance corresponds to a positive real number. So if we draw a line and then choose an
origin, a unit of length, and a direction on the line to be considered positive, it’s
reasonable to believe that the points on the line are in one-to-one correspondence with
the set of all real numbers (with the bijection given by the directed distance from the
origin).

If you were then asked to draw a picture of the set of integers as a subset of R, this
would also be no problem. The integers are spaced one unit apart from each other on the
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Figure 9.1 The usual real number line

number line, so it’s easy to single them out. (Technically, Z is called a discrete subset
of R; that means every number in it is isolated—separated from all other numbers in
the set by a positive distance, as shown in Figure 9.2.) But now suppose you were asked
to show the set of all rationals as a subset of a number line. How would you do that?
There’s no way to do it. Within every interval in R, there are an infinite number of
rational numbers but also an infinite number of irrationals (see Exercises 13 and 14). So
there are rational numbers “all over” the real line, but there are also “holes” in Q, all
over. The purpose of this discussion is to pinpoint the difference between Q and R.
Intuitively, it’s simply that while Q is full of holes, R has no holes in it; it’s a complete
line. The axiom that states this property of R rigorously is number V-18 in our axiom
system. It is the one real number axiom that is not included in the ordered field axioms.

In the second half of the nineteenth century, when many of the world’s best
mathematicians were attempting to develop a rigorous theory of real numbers and
functions, several equivalent forms of the completeness axiom were postulated. We
need to define a few concepts before we can actually discuss the axiom.

Definitions: Let 4 c R, and x € R. We say that x is an upper bound of 4 iff x is
equal to or greater than every number in 4; that is, Yy € 4 (x > y). Also, a set of real
numbers is called bounded above iff it has an upper bound. Similarly, x is a lower
bound of 4 iff Vye A (x < y), and a set of real numbers is called bounded below iff
it has a lower bound. A set that is both bounded above and bounded below is simply
called bounded.

Recall that the word “bounded” has already been defined for subsets of N, in
Section 7.5. Every subset of N is bounded below {by the number 1, for instance), so for
these sets “bounded” means “bounded above.”

Figure 9.2 Z, a discrete, infinite subset of R
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Example 1: The interval [-5, 3) is bounded. The number 3 is an upper bound of
this set, and so is any greater number. Similarly, -5, -73, and -5.2 are some lower
bounds of this set. More generally, every interval that does not involve the symbols o
or -« is bounded. Recall that intervals that do involve those symbols are called
unbounded, because they are in fact unbounded.

Example 2: The set R is not bounded above or below. No number x is an upper
bound of R, because x < x + 1. Similarly, R has no lower bounds either.

Definitions: Let 4 ¢ R, and x € R. We say that x is the least upper bound of 4
or the supremum of 4 (written x = LUB(4) or x = Sup(4) ) iff x is an upper bound of
A and x is less than every other upper bound of 4. Similarly, x is the greatest lower
bound of 4 or the infimum of 4 (written x = GLB(4) or x = Inf(4) ) iff x is a lower
bound of 4 and x is greater than every other lower bound of 4.

Clearly, a set can’t have more than one supremum or infimum (recall Exercise
16(a) of Section 6.3). This justifies the use of the word “the” in these definitions.

Example 3: Let 4= {-2,0, 3, 5.2, 8}. Then 8 is an upper bound of 4, and so is
any number greater than 8; but no number less than 8 is an upper bound of 4. Therefore
Sup(4) = 8. Similarly, Inf(4) = -2,

Let’s generalize this simple example.

Theorem 9.1: Assume 4 c R.
(a) If 4 has a largest (respectively, smallest) member, then that member of 4
is Sup(4) (respectively, Inf(4)).
(b) If 4 is a nonempty finite set, then 4 has a largest member and a smallest
one. Therefore, 4 has a least upper bound and a greatest lower bound.
Proof: (a) Obvious.
(b) Best proved by induction on the cardinality of 4 (see Exercise 2). ®

Example 4: Let A be the empty set. Then every number is both an upper bound
and a lower bound of 4. It follows that 4 does not have a supremum or an infimum.

Example 5: The set N has a least member, namely 1. Therefore, 1 = Inf(IN). But
we soon see (Theorem 9.4) that IN is not bounded above, and so has no supremum.

Example 6: Let 4 be the set of all negative real numbers. Then 4 is unbounded
below; that is, it has no lower bounds. But 0 is an upper bound of 4, and so is any
positive number. Since there is no largest negative number (why?), no negative number
is an upper bound of 4. It follows that Sup(4) = 0. Exercise 3 asks you to show the
details of this. Note that Sup(4) is not in 4. This is a common phenomenon.
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Completeness axiom: If a nonempty set of real numbers has an upper bound, then
it has a least upper bound.

An ordered field satisfying the completeness axiom is called complete. So the
entire group V of axioms can be summarized as saying that R is a complete ordered
field. It can be proved that every complete ordered field is isomorphic to R. Essentially,
that means R is the only complete ordered field.

The completeness axiom is supposed to express rigorously the idea that there are
no holes in the real number system. How does it say that? To see this, imagine some set
of real numbers A that is bounded above (see Figure 9.3). Now think of an upper bound
of 4 as a sort of wall, to the right of the entire set 4. Since 4 has many upper bounds,
we can think of the wall as movable. We can move the wall as much as we please to the
right and still have an upper bound of 4. But we can only move the wall a certain
amount to the left and still have an upper bound of 4. When the wall is moved as far as
it can be to the left without going to the left of any member of A4, the wall is at Sup(4),
which may or may not be in 4. Geometrically, the completeness axiom says that
wherever this wall ends up in this process, there’s a real number at that point. In other
words, the real numbers are everywhere on the line.

After the next simple technical fact, we demonstrate the power of the
completeness axiom to prove the existence of irrational numbers in R.

Theorem 9.2: The completeness axiom is equivalent (using the rest of the axiom
system) to this statement: every nonempty set of real numbers with a lower bound has
a greatest lower bound.

Proof: For the forward direction, assume the completeness axiom. Let 4 be any
set of reals with a lower bound. Define -4 to be {-x | x € 4}. If u is any lower bound
of A, it is easy to show that -« is an upper bound of -4. So, by completeness, -4 has
a supremum y. It is then easy to show that -y is the greatest lower bound of 4. The
details of this proof are left for Exercise 4.

The proof of the reverse direction is similar. ®

Figure 9.3 Illustration of the completeness axiom
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Theorem 9.3: The number \/5 is in R. That is, there’s a real z> 0 such that 22 = 2.

Proof: Let A be the set of all positive real numbers whose square is less than 2.
Then A is bounded above, for instance by 2 (see Exercise 6). So by the completeness
axiom, 4 has a supremum; call it z. Our goal is to show thatz = \/21 .

Since A contains positive numbers like 1, z is clearly positive. We must also show
that z% = 2. We do this by trichotomy and indirect proof; that is, we show that each of
the inequalities z2 < 2 and z* > 2 is impossible. In order not to get bogged down in the
details of the proof to follow, let’s outline the main idea behind it: what makes the proof
work is that the function f(x) = x* is continuous. Essentially that says that when x is
changed by a small amount, the quantity x* also does not change by very much.

First assume that z2 < 2. We show there is a number larger than z that is in 4. Let
c=2-2% Weknowz> 1,s0c < 1. Let d = ¢/3z. Then d is positive, and we have

(z+dy=(+c/32) =2+ 2c/3 + (c/32)’
<2+2c3+ (B <2+ Tc/9<Z+c=2

So (z + d)* < 2; this means that z + d € A. But this would mean that z is not an
upper bound of 4, contradicting the assumption.

Now assume that z* > 2, We show there is a number less than z that is an upper
bound of 4. This time, let ¢ = z2 - 2, and then let d = ¢/2z. Both ¢ and d are positive. We
have (z - d)?=(z - ¢/2z)* =z* - ¢ +d*>z* - ¢ =2. We claim that z - d is an upper
bound of 4. Let x be any member of 4. Then x* < 2, by definition of 4, and we just
showed that (z - d)?> 2. It follows easily (see Exercise 6) thatx < z - d. Since x was
an arbitrary member of 4, z - d is an upper bound of 4. But this contradicts the fact that
z is the Jeast upper bound of 4.

Since both z? < 2 and 2% > 2 are impossible, we have Z2=2. ®

The proof of Theorem 9.3 is involved, but the ideas used are fairly simple. It would
be a good idea to study it until you are certain that you understand it. The theorem can
be generalized to show that for any posmve real number x and any natural number »,

\/; is a real number. The next result is another important consequence of the
completeness axiom.

Theorem 9.4: The set Z is unbounded in both directions.

Proof: We first show, indirectly, that Z is unbounded above. So assume Z has an
upper bound. Then it has a supremum; call it . Since ¢ - 1 <¢, ¢ - 1 cannot be an upper
bound of Z. In other words, for some integer kX, k>c - 1. Butthenk+ 1>c¢,and k+ 1
is also an integer. This contradicts the assumption that c is an upper bound of Z. So Z
is unbounded above. Similar reasoning shows it’s unbounded below (see Exercise 7). ®

The statement of Theorem 9.4 is one version of the Archimedean property, and
an ordered field in which Z is unbounded is called Archimedean. So the theorem says
that R is Archimedean. So is Q, since it is a subfield of R. The original form of the
Archimedean property, an axiom for the ancient Greeks, is the subject of Exercise 8.
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Archimedes (287?-212 B.C.) was the most productive
mathematician of ancient Greece and one of the greatest of all time.
He introduced a variety of brilliant and innovative methods and
advanced many branches of mathematics far beyond the work of his
contemporaries. Among other things, he calculated (with rigorous
proofs) areas and volumes of numerous planar regions, surfaces, and
solids with curved boundaries. This work became the foundation for
the theory of integration some nineteen hundred years later.

Archimedes was also a brilliant engineer who devoted much
energy to designing war machines for King Hieron of Syracuse to use
against the siege by the Romans under Marcellus. It was reported that
he used a system of mirrors reflecting sunlight to set Roman ships on
fire, but most historians doubt this. Another anecdote has it that
Archimedes, while at a public bathhouse, suddenly saw how he could
use principles of water displacement to determine whether Hieron’s
crown was pure gold. He then ran home, naked, shouting, “Eureka”
(“I have found it”).

Even Archimedes’s death was extraordinary. When the Romans
finally overtook Syracuse, he was apparently drawing geometric
figures in the sand, oblivious to the war going on around him. When
a Roman soldier walked toward him, he reportedly said, “Don’t
disturb my circles,” upon which the enraged soldier killed him.
Marcellus, who had greatly admired Archimedes, built him a tomb
displaying the figure of a sphere inscribed inside a cylinder.

Decimal Representation of Real Numbers

A computer or calculator will tell you that y2 = 1.4142 ... . What exactly does this
mean? You may know that the decimal expansion of y/2 or of any irrational number
never terminates and never goes into a permanent repeating pattern. So there is no way
to evaluate /2 numerically, except to give its decimal expansion to a finite number of
places, followed by “...”. Let’s now use the completeness axiom to analyze the meaning
of such decimals more precisely.

Consider again the set used in the proof of Theorem 9.3: 4 = {x e R| x>0 and
x* < 2}.Since 1*=1and 2>=4,1 € Abut2 ¢ 4. So 2 is between 1 and 2. Going now
to the first decimal place, we find that (1.4)* = 1.96, and (1.5)* = 2.25. So 1.4 € 4 but
1.5 € A. So /2 is between 1.4 and 1.5; that is, 2 =1.4 ... Increasing the accuracy to
the next decimal place, it tumns out that 1.41 € 4 but 1.42 ¢ 4; so we can say that
y2 = 1.41... . Now let B = {1, 1.4, 1.41, 1.414, ...}, the set of all the decimal
approximations to y/2. What we’ve just said is that B c 4, but none of the numbers
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obtained by adding 1 to the last decimal place of any member of B is in 4. More
important, it can be shown that Sup(B) = Sup(4) (see Exercise 9); and we just proved
that Sup(4) = 2.

In summary, when we say that a real number equals some positive nonterminating
decimal, this technically means that the number is the supremum of all the truncated
(cut-off) approximations to that decimal. (For a negative decimal, change “supremum”
to “infimum.”) We continue our discussion of decimals in the next section.

Exercises 9.1

(1) Determine, with brief explanation (as opposed to proof), the supremum and
infimum of the following sets of real numbers if they exist.
(a) The set of all negative numbers  (b) QM [3, 8]
(©) {x|¥ <7} @) {x|x' <7}
€ {x|xX<T7} (® {Vn|neNj
(2) Prove Theorem 9.1.
(3) Fill in the details of the claim, in Example 6, that Sup(4) = 0.

(4) (a) Complete the proof of the forward direction of Theorem 9.2.
(b) Prove the reverse direction of Theorem 9.2.
(5) Show that if the symbol > is changed to > in the definition of an upper bound,
then the completeness axiom becomes false.
(6) (a) Prove the claim in the proof of Theorem 9.3 that 2 is an upper bound of 4.
(b) Prove the later claim in the proof of Theorem 9.3 thatx <z - d.
(7) Complete the proof of Theorem 9.4 by showing that Z is unbounded below.
(8) The classical statement of the Archimedean property is: Given any two positive
real numbers a and b, there is a natural number n such that na > b. Without using
completeness, prove the equivalence of this statement with Theorem 9.4.

(9) Prove the claim that Sup(4) = Sup(B) in the last paragraph of this section.

(10) Prove that for any x € R and 4 < R, x = Sup(4) iff x is an upper bound of 4
and, for every u > 0, there is a member of 4 that is greater than x - u.

'(1 1) Prove or disprove: if Sup(4) = x and Sup(B) =y, then Sup(4 - B) =x - y.
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(12) ForanydandBeR,letd+B={x+y|x€4 and y € B}. Prove or disprove:
If Sup(4) = a and Sup(B) = b, then Sup(4 + B) = a + b. (Note that, in contrast to the
definition of 4 - B, the definition of A + B is based on addition of numbers.)

*(13) (a) Prove that every interval in R contains a rational number.

(b) Using the result of part (a), show that every interval in R in fact contains
an infinite set of rational numbers.

*(14) Prove that every interval in R contains an infinite set of irrational numbers.
You may use the result of Exercise 13, whether or not you did it. Also, you may use the
fact that if » is rational and nonzero, then /2 is irrational.

9.2 Limits of Sequences and Sums of Series

Recall the discussion of sequences in Section 7.4. In this chapter, the word “sequence”
always refers to a sequence of real numbers, unless stated otherwise.

Intuitively, when we say that a sequence a has a limit L, we mean that the terms
a, eventually get “arbitrary close” to L. But this is not at all rigorous. It took
mathematicians a long time to find a correct definition of this concept, but eventually
this was achieved: to say that the limit of a is L should mean that, given any target
interval around L, no matter how small, there is a term in the sequence beyond which
all terms are inside that target interval. Here is the rigorous statement.

Definitions: For any sequence a and real number L, we say that 31_130 (a)=1L,
or simply lim (a,)=L or a,— L, iff Ve>03mVn>m(|a,- L| <e).

(The use of the Greek letter € (epsilon) in this definition is standard; it has nothing
to do with the modified epsilon (€) we are using to denote set membership.)

The notation ’}1}& (a,) = L is read “the limit as n approaches infinity of a, is L”

The notation a, — L is read “a, approaches L” or “a, converges to L”»
A sequence that has a limit is called convergent; otherwise, it’s called divergent.

Every mathematician needs to understand this definition, so you should probably
spend some energy on it now. The variable € represents a distance extending left and
right from the number L, forming a target interval. The variable m represents a term in
the sequence beyond which all terms are within a distance & of L. Note that the
quantifier structure of this definition specifies that m is to be found in terms of g, or, if
you wish, as a function of €. The smaller € is, the farther you may need to go in the
sequence before the terms stay within that distance of L. But if the terms do approach
L, it should be possible to find such an m for any positive &, no matter how small.

Example 1: Consider first a constant sequence, like a, = 5. We claim that
lim (a,) = 5. To show this, given any positive number &, just let m = 1. Since all the
terms of this sequence equal 5, it is trivial that all the terms after the first are within a
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distance € of 5. Note that we can say that a, approaches 5, even though it seems strange
to say that numbers that are 5 are approaching 5.

Example 2: Consider the sequence (1, 1/2, 1/3, 1/4, ...) given by the formula
a, = 1/n. It should be easy to guess that this sequence converges to 0. To prove this, let
€ > 0 be given. By Theorem 9.4, there is an m such that m > 1/¢. Pick such an m. Then
if n > m, we have n > 1/¢, which becomes 1/n < &. We also know that 1/n > 0 (by
Theorem A-13), so |a, - 0| = |a,| = |1/n| = 1/n <. This shows that a, — 0.

Example 3: Recalling the discussion of /2 in the previous section, consider the
sequence (1.4, 1.41, 1.414, 1.4142, ...), in which the nth term is \,/5 to n decimal places,
rounded down or truncated. (To state this more rigorously, a, is the largest fraction
whose numerator is an integer, whose denominator is 10", and whose square is less than
2.) It should be obvious that this sequence converges to ﬁ . In fact, by its definition, the
difference between a, and y2 is no more than 10™". Exercise 11 asks you to prove the
limit of this sequence is /2.

We have now seen three ways to think of an irrational number like /2
numerically: as a decimal; as the supremum (or infimum) of a set, as in Theorem 9.3;
or as the limit of a sequence. It can also be thought of as an infinite sum, as we see
shortly.

Example 4: Consider the sequence (1, 2, 1,2, ...). This is a typical example of an
oscillating sequence. It can be defined by the formula a, = [3 + (-1)")/2. You might
think this sequence should have two limits, 1 and 2. But it has no limit. To prove this,
we must find € in terms of any L such that the terms never stay within a distance € of L.
Since successive terms are always 1 apart, € = 1/2 works for any L (see Exercise 5). This
example illustrates the following result.

Theorem 9.5 (Uniqueness of limits): A sequence cannot have more than one
limit,

Proof: Assume, on the contrary, that some sequence (a,) has two limits Z, and L,,
with L, > L,. Let e = (L, - L,)/2. By the assumption, there exist m, and m, representing
how far you have to go in the sequence before the terms stay within a distance ¢ of L,
and L,, respectively. But now let n be any integer greater than both m, and m,. Then g,
is within a distance € of both L, and L,. Figure 9.4 shows the impossibility of this, but
an algebraic argument is more rigorous: note that2e =L, - L,=(L, - a,) + (a, - L,). But
both of the expressions in parentheses have absolute value less than €; this implies they
are less than . This violates the triangle inequality, Theorem A-15(b). =

It would be easy to fill a book discussing the theory of limits of sequences and
series. We restrict ourselves to a few of the major results.

Definition: A sequence (a,) is called bounded above iff its range, that is the set
{a;, a,, a, ...}, is bounded above as a subset of R. Similarly, a sequence may be called
unbounded above, bounded below, bounded (in both directions), and so on.
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Figure 9.4 Illustration of the proof of Theorem 9.5

Theorem 9.6: If a sequence converges, it must be bounded.

Proof: Suppose that (a,) converges to L. Then, using € = 1 in the definition of
what this means, choose an m such that all the terms after the mth term are between
L - 1and L + 1, Now consider the finite set {a,, @y, ... , @, L - 1,L + 1}. By Theorem
9.1(b), this set has a smallest member and a largest member; let’s call them b and c,
respectively. It is now easy to show (see Exercise 4) that b is a lower bound for the
range of (a,) and ¢ is an upper bound for it. ®

The converse of Theorem 9.6 is false, as the oscillating sequence of Example 4
demonstrates. But the next theorem shows that the converse holds under the additional
assumption that the sequence does not oscillate at all.

Definitions: A sequence is called increasing iff each term (after the first) is equal
to or greater than the one before it; symbolically, Vn (a,,, > a,). A sequence is
decreasing iff Vn (a,., < a,). A sequence is monotone iff it’s increasing or decreasing.

These definitions allow two or more terms of a sequence to be equal. For example,
a constant sequence is both increasing and decreasing. The terms strictly increasing,
strictly decreasing, and