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Applied statistics is more than data analysis, but it is easy to lose sight of the big
picture. David Cox and Christl Donnelly draw on decades of scientific experience to
describe usable principles for the successful application of statistics, showing how
good statistical strategy shapes every stage of an investigation. As one advances from
research or policy questions, to study design, through modelling and interpretation,
and finally to meaningful conclusions, this book will be a valuable guide. Over 100
illustrations from a wide variety of real applications make the conceptual points
concrete, illuminating and deepening understanding. This book is essential reading for
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Preface

Statistical considerations arise in virtually all areas of science and tech-
nology and, beyond these, in issues of public and private policy and in
everyday life. While the detailed methods used vary greatly in the level
of elaboration involved and often in the way they are described, there is a
unity of ideas which gives statistics as a subject both its intellectual chal-
lenge and its importance.

In this book we have aimed to discuss the ideas involved in applying
statistical methods to advance knowledge and understanding. It is a book
not on statistical methods as such but, rather, on how these methods are to
be deployed. Nor is it a book on the mathematical theory of the methods
or on the particular issue of how uncertainty is to be assessed, even though
a special feature of many statistical analyses is that they are intended to
address the uncertainties involved in drawing conclusions from often
highly variable data.

We are writing partly for those working as applied statisticians, partly for
subject-matter specialists using statistical ideas extensively in their work
and partly for masters and doctoral students of statistics concerned with
the relationship between the detailed methods and theory they are study-
ing and the effective application of these ideas. Our aim is to emphasize
how statistical ideas may be deployed fruitfully rather than to describe the
details of statistical techniques.

Discussing these ideas without mentioning specific applications would
drive the discussion into ineffective abstraction. An account of real investi-
gations and data with a full discussion of the research questions involved,
combined with a realistic account of the inevitable complications of most
real studies, is not feasible. We have compromised by basing the discussion
on illustrations, outline accounts of problems of design or analysis. Many
are based on our direct experience; none is totally fictitious. Inevitably
there is a concentration on particular fields of interest!
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x Preface

Where necessary we have assumed some knowledge of standard statis-
tical methods such as least-squares regression. These parts can be skipped
as appropriate.

The literature on many of the topics in the book is extensive. A limited
number of suggestions for further reading are given at the end of most
chapters. Some of the references are quite old but are included because we
believe they retain their topicality.

We are grateful to the many colleagues in various fields with whom we
have worked over the years, particularly Sir Roy Anderson, through whom
we met in Oxford. It is a special pleasure to thank also Manoj Gambhir,
Michelle Jackson, Helen Jenkins, Ted Liou, Giovanni Marchetti and Nancy
Reid, who read a preliminary version and gave us very constructive advice
and comments.

We are very grateful also to Diana Gillooly at Cambridge University
Press for her encouragement and helpful advice over many aspects of the
book.
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Some general concepts

An ideal sequence is defined specifying the progression of an investi-
gation from the conception of one or more research questions to the
drawing of conclusions. The role of statistical analysis is outlined for
design, measurement, analysis and interpretation.

1.1 Preliminaries

This short chapter gives a general account of the issues to be discussed
in the book, namely those connected with situations in which appreciable
unexplained and haphazard variation is present. We outline in idealized
form the main phases of this kind of scientific investigation and the stages
of statistical analysis likely to be needed.

It would be arid to attempt a precise definition of statistical analysis
as contrasted with other forms of analysis. The need for statistical analy-
sis typically arises from the presence of unexplained and haphazard varia-
tion. Such variability may be some combination of natural variability and
measurement or other error. The former is potentially of intrinsic inter-
est whereas the latter is in principle just a nuisance, although it may need
careful consideration owing to its potential effect on the interpretation of
results.

Illustration: Variability and error The fact that features of biological or-
ganisms vary between nominally similar individuals may, as in studies
of inheritance, be a crucial part of the phenomenon being studied. That,
say, repeated measurements of the height of the same individual vary er-
ratically is not of intrinsic interest although it may under some circum-
stances need consideration. That measurements of the blood pressure of
a subject, apparently with stable health, vary over a few minutes, hours
or days typically arises from a combination of measurement error and
natural variation; the latter part of the variation, but not the former, may
be of direct interest for interpretation.
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2 Some general concepts

1.2 Components of investigation

It is often helpful to think of investigations as occurring in the following
steps:

• formulation of research questions, or sometimes hypotheses;
• search for relevant data, often leading to
• design and implementation of investigations to obtain appropriate data;
• analysis of data; and
• interpretation of the results, that is, the translation of findings into a

subject-matter context or into some appropriate decision.

This sequence is the basis on which the present book is organized.
It is, however, important to realize that the sequence is only a model of

how investigations proceed, a model sometimes quite close to reality and
sometimes highly idealized. For brevity we call it the ideal sequence.

The essence of our discussion will be on the achievement of individu-
ally secure investigations. These are studies which lead to unambiguous
conclusions without, so far as is feasible, worrying caveats and external as-
sumptions. Yet virtually all subject-matter issues are tackled sequentially,
understanding often emerging from the synthesis of information of differ-
ent types, and it is important in interpreting data to take account of all
available information. While information from various studies that are all
of a broadly similar form may be combined by careful statistical analysis,
typically the important and challenging issue of synthesizing information
of very different kinds, so crucial for understanding, has to be carried out
informally.

Illustration: Synthesizing information (I) One situation in which such a
synthesis can be studied quantitatively occurs when several surrogate
variables are available, all providing information about an unobserved
variable of interest. An example is the use of tree ring measurements,
pollen counts and borehole temperatures to reconstruct Northern Hemi-
sphere temperature time series (Li et al., 2010; McShane and Wyner,
2011).

Illustration: Synthesizing information (II) The interpretation of a series of
investigations of bovine tuberculosis hinged on a consistent synthesis
of information from a randomized field trial, from ecological studies of
wildlife behaviour and from genetic analysis of the pathogens isolated
from cattle and wildlife sampled in the same areas.
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Illustration: Synthesizing information (III) The evidence that the Human
Immunodeficiency Virus (HIV) is the causal agent for Acquired Im-
munodeficiency Syndrome (AIDS) comes from epidemiological studies
of various high-risk groups, in particular haemophiliacs who received
blood transfusions with contaminated products, as well as from labora-
tory work.

It is a truism that asking the ‘right’ question or questions is a crucial
step to success in virtually all fields of research work. Both in investiga-
tions with a specific target and also in more fundamental investigations,
especially those with a solid knowledge base, the formulation of very
focused research questions at the start of a study may indeed be possible
and desirable. Then the ideal sequence becomes close to reality, especially
if the specific investigation can be completed reasonably quickly.

In other cases, however, the research questions of primary concern
may emerge only as the study develops. Consequent reformulation of the
detailed statistical model used for analysis, and of the translation of the
research question into statistical form, usually causes no conceptual prob-
lem. Indeed, in some fields the refinement and modification of the research
questions as the analysis proceeds is an essential part of the whole investi-
gation. Major changes of focus, for example to the study of effects totally
unanticipated at the start of the work, ideally need confirmation in supple-
mentary investigations, however.

An extreme case of departure from the ideal sequence arises if new data,
for example a large body of administrative data, become available and there
is a perception that it must contain interesting information about some-
thing, but about exactly what is not entirely clear. The term ‘data mining’
is often used in such contexts. How much effort should be spent on such
issues beyond the simple tabulation of frequencies and pair-wise depen-
dencies must depend in part on the quality of the data. Simple descriptions
of dependencies may, however, be very valuable in suggesting issues for
detailed study.

While various standard and not-so-standard methods may be deployed to
uncover possible interrelationships of interest, any conclusions are in most
cases likely to be tentative and in need of independent confirmation. When
the data are very extensive, precision estimates calculated from simple
standard statistical methods are likely to underestimate error substantially
owing to the neglect of hidden correlations. A large amount of data is in
no way synonymous with a large amount of information. In some settings
at least, if a modest amount of poor quality data is likely to be modestly
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misleading, an extremely large amount of poor quality data may be
extremely misleading.

Illustration: Data mining as suggestive Carpenter et al. (1997) analysed
approximately 106 observations from UK cancer registrations. The data
formed a 39 × 212 contingency table corresponding to 39 body sites
and occupational coding into 212 categories. Although there is a clear
research objective of detecting occupations leading to high cancer rates
at specific body sites, the nature of the data precluded firm conclu-
sions being drawn, making the investigation more in the nature of data
mining. The limitations were that many occupations were missing, by
no means necessarily at random, and multiple occupations and can-
cers at multiple sites were excluded. Crucial information on the num-
bers at risk in the various occupational categories was not available. A
largely informal graphical approach to the data was used. Some previ-
ously well-established relationships were recovered; otherwise the con-
clusions were very tentative.

Illustration: Data mining or a fresh start An industrial company that has
specialized in making virtually the same product for many years may
have very extensive records of routine tests made on the product as part
of their quality control procedures. It may be reasonable to feel that im-
portant lessons could be learned from careful analysis of the data. But it
is likely that the data have been recorded and the tests performed by dif-
ferent individuals using testing procedures that may have changed in im-
portant and possibly unrecorded ways and that many important changes
affecting product quality are unrecorded. Extensive effort may be better
directed at experimentation on the current system than at analyses of
historical data.

Furthermore, while the sequence from question to answer set out above
is in principle desirable, from the perspective of the individual investiga-
tor, and in particular the individual statistician, the actual sequence may
be very different. For example, an individual research worker destined to
analyse the data may enter an investigation only at the analysis phase. It
will then be important to identify the key features of design and data col-
lection actually employed, since these may have an important impact on
the methods of analysis needed. It may be difficult to ascertain retrospec-
tively aspects that were in fact critical but were not initially recognized
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as such. For example, departures from the design protocol of the study
may have occurred and it very desirable to detect these in order to avoid
misinterpretation.

1.3 Aspects of study design

Given a research question, a first step will be to consider whether data that
may give at least a partial answer are already available. If not, one or more
studies may need to be set up that are specifically aimed to answer the
question.

The first considerations will then be the choice of material, that is, the
individuals or contexts to study, and what measurements are appropriate.
For a generic terminology we will refer to the individuals or contexts as
units of analysis. We will discuss the criteria for measurements in more
detail in Chapter 4. For studies of a new phenomenon it will usually be
best to examine situations in which the phenomenon is likely to appear
in the most striking form, even if this is in some sense artificial or not
representative. This is in line with the well-known precept in mathematical
research: study the issue in the simplest possible context that is not entirely
trivial, and later generalize.

More detailed statistical considerations of design tend to focus on the
precise configuration of data to be collected and on the scale of effort ap-
propriate. We discuss these aspects in Chapters 2 and 3.

1.4 Relationship between design and analysis

The design and data collection phases of a study are intimately linked with
the analysis. Statistical analysis should, and in some cases must, take ac-
count of unusual features of the earlier phases. Interpretation is the ultimate
objective and so one objective of analysis is to get as close to incisive and
justified subject-matter interpretation as is feasible.

Moreover, it is essential to be clear at the design stage broadly how the
data are to be analysed. The amount of detail to be specified depends on
the context. There are two reasons for requiring the prior consideration
of analysis. One is that conclusions are publicly more convincing if es-
tablished by methods set out in advance. An aspect that is in some ways
more important, especially in studies with a long time frame, is that prior
specification reduces the possibility that the data when obtained cannot be
satisfactorily analysed. If, for quasi-legal reasons, for example to satisfy a
regulatory agency, it is necessary to pre-specify the analysis in detail, it will
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be obligatory to follow and report that analysis but this should not preclude
alternative analyses if these are clearly more appropriate in the light of the
data actually obtained.

In some contexts it is reasonable not only to specify in advance the
method of analysis in some detail but also to be hopeful that the proposed
method will be satisfactory with at most minor modification. Past experi-
ence of similar investigations may well justify this.

In other situations, however, while the broad approach to analysis should
be set out in advance, if only as an assurance that analysis and interpreta-
tion will be possible, it is unrealistic and indeed potentially dangerous to
follow an initial plan unswervingly. Experience in collecting the data, and
the data themselves, may suggest changes in specification such as a trans-
formation of variables before detailed analysis. More importantly, it may be
a crucial part of the analysis to clarify the research objectives; these should
be guided, in part at least, by the initial phases of analysis. A distinction
is sometimes drawn between pre-set analyses, called confirmatory, and ex-
ploratory analyses, but in many fields virtually all analyses have elements
of both aspects.

Especially in major studies in which follow-up investigations are not
feasible or will take a long time to complete, it will be wise to list the pos-
sible data configurations, likely or unlikely, that might arise and to check
that data will be available for the interpretation of unanticipated effects.

Illustration: Explaining the unexpected In preliminary discussion of a
study of hypertension, a group of cardiologists were unanimous that a
certain intervention would lower blood pressure. When challenged as to
their possible reaction if the data showed the opposite effect, their an-
swer was that in five minutes a plausible explanation would be suggested
and in ten minutes three different explanations. That is, even though
there was an initial quite strong belief that a particular process would
be operating, the possibility of alternative processes could and should
not be totally excluded. This made it desirable, so far as was feasible,
to collect data that might help clarify the situation should indeed blood
pressure surprisingly increase following the intervention.

1.5 Experimental and observational studies

A crucial distinction is that we use the term experiment to mean a study in
which all key elements are under the control of the investigator whereas a
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study is observational if, although the choice of individuals for study and
of measurements to be obtained may be made by the investigator, key ele-
ments have to be accepted as they already exist and cannot be manipulated
by the investigator. It often, however, aids the interpretation of an obser-
vational study to consider the question: what would have been done in a
comparable experiment?

Illustration: Conflicting observational and experimental evidence
A number of observational studies, reviewed by Grady et al. (1992),
suggested that women using hormone replacement therapy (HRT)
for long periods of time had a lower coronary heart disease rate than
apparently comparable control groups. In these studies the investigators
chose the women to enter the investigation and the variables to be
recorded but had no influence over whether any specific woman did
or did not use HRT. In a randomized experiment (Writing group
for Women’s Health Initiative Investigators, 2002), women giving
informed consent were assigned at random either to HRT or to an
inactive control, the decision and its implementation being in principle
concealed from the women and their treating doctor. After a period,
this trial was stopped because of evidence of a possible adverse
effect of HRT on total cardiovascular events and because of strong
evidence of the absence of any useful overall beneficial effect. That is,
the observational and experimental evidence were inconsistent with one
another.

In its simplest terms the interpretation is as follows. The two groups
of women compared in the observational studies may have been
systematically different not only with respect to HRT use but also
on a range of health-related features such as socio-economic status,
education and general lifestyle, including eating habits. While some
checks of comparability are possible, it remains the case that the clearly
statistically significant difference in outcome between the two groups
may be quite unconnected with HRT use.

By contrast, in the randomized trial the two groups differed only
by the play of chance and by the fact that one group was allocated to
HRT and the other to control. A clearly significant difference could
confidently be taken as a consequence of the treatment allocation.

In an experiment conducted in a research laboratory the investi-
gator could ensure that in all important respects the only difference
between the groups being compared lay in HRT use versus no HRT
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use. The conclusion would thus be virtually unambiguous. In the
more complicated environment of a clinical trial, however, especially
one lasting an appreciable time, departures from the trial protocol
might occur, such as a failure to take the allocated medication or the
taking of supplementary medication, such departures being indirect
consequences of the allocated treatment. Thus the primary comparison
of outcomes in the clinical trial includes not only the direct effect of
the medication but also its indirect effects. In this particular study, a
modest but nonnegligible failure to comply with the study medication
was reported but was judged not to modify the findings.

1.6 Principles of measurement

The primary requirements for measurements are:

• what is sometimes called construct validity, namely that the measure-
ments do actually record the features of subject-matter concern;

• in particular that they record a number of different features sufficient to
capture concisely the important aspects;

• that they are reliable, in the sense that a real or notional repetition of the
measurement process gives reasonably reproducible results;

• that the cost of the measurements is commensurate with their impor-
tance; and

• that the measurement process does not appreciably distort the system
under study.

We discuss measurements and most of the above points in more detail in
Chapter 4. In particular, we note now that measurements can be classified
by the structure of possible values (for example, binary or continuous) and,
even more importantly, by their potential role in interpretation, for example
as outcomes or as explanatory features.

The issue of dimensionality, especially that of the so-called outcome and
response variables, depends strongly on the context.

Illustration: Summarizing multidimensional data That the economic ac-
tivity of a nation, the quality of life of an individual or the status of a
complex organization such as a university can be wholly encapsulated
in a single number such as a gross domestic product (GDP), a quality-
adjusted life year (QUALY) or a league table ranking of the world’s
universities is patently absurd. In general, the description of complex
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multidimensional phenomena by a limited number of summary mea-
sures requires the careful specification of objectives. Pressure to produce
one-dimensional summaries, to be resisted except for highly specific
purposes, comes from the view that many situations can be explained in
terms of the optimization of an appropriate one-dimensional criterion.
This may be combined with the explicit or implicit assumption that util-
ity can be measured in money terms.

1.7 Types and phases of analysis

A general principle, sounding superficial but difficult to implement, is that
analyses should be as simple as possible, but no simpler. Some compli-
cation may be necessary to achieve precise formulation or to uncover the
issue of interest from a confusing background or, somewhat less impor-
tantly, to obtain meaningful assessments of uncertainty.

Moreover, the method of analysis should so far as feasible be transpar-
ent. That is, it should be possible to follow the pathways from the data
to the conclusions and in particular to see which aspects of the data have
influenced key conclusions, especially any that are surprising. Black-box
methods of analysis may to some extent be unavoidable in complex prob-
lems, but conclusions from them demand particularly careful checking and
verification.

Four main phases of analysis are usually needed:

• data auditing and screening;
• preliminary analysis;
• formal analysis; and
• presentation of conclusions.

Data auditing and screening, which should take place as soon as possible
after data collection, include inspection for anomalous values as well as for
internal inconsistencies. Other relatively common sources of concern are
sticking instruments, repeatedly returning the same value, for example zero
rainfall, as well as the confusion of zero values and missing or irrelevant
values. Sometimes, especially when extensive data are being collected in a
novel context, formal auditing of the whole process of data collection and
entry may be appropriate. Typically this will involve detailed study of all
aspects of a sample of study individuals, and the application of ideas from
sampling theory and industrial inspection may be valuable.
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Methods of analysis are broadly either graphical or quantitative, the for-
mer being particularly helpful at the preliminary stages of analysis and
in the presentation of conclusions. Typically, however, it will be desirable
that in a final publication the key information is available also in numer-
ical form, possibly as supplementary material. The reason is that reading
data from graphs makes further analysis subject to (possibly appreciable)
avoidable rounding error.

Graphical methods for handling large amounts of complex data, often
studied under the name visualization, may require specialized software
and will not be considered in detail here. For handling less complicated
situations Section 5.4 suggests some simple rules, obvious but quite often
ignored.

1.8 Formal analysis

Some methods of analysis may be described as algorithmic. That is to say,
relationships within the data are recovered by a computer algorithm typi-
cally minimizing a plausible criterion. The choice of this criterion may not
be based on any formal grounds and does not necessarily have any specific
probabilistic properties or interpretation. Thus the method of least squares,
probably the most widely used technique for fitting a parametric formula
to empirical data, can be regarded purely algorithmically, as in effect a
smoothing device; it gains some strength in that way. In most statistical
settings, however, the method of least squares is formally justified by a
probability model for the data.

We concentrate our discussions on analyses based on a formal prob-
ability model for the data, although certainly we do not exclude purely
algorithmic methods, especially in the initial stages of the reduction of
complex data.

1.9 Probability models

Most of our later discussion centres on analyses based on probability mod-
els for the data, leading, it is hoped, to greater subject-matter understand-
ing. Some probability models are essentially descriptions of commonly
occurring patterns of variability and lead to methods of analysis that are
widely used across many fields of study. Their very generality suggests
that in most cases they have no very specific subject-matter interpretation
as a description of a detailed data-generating process. Other probability
models are much more specific and are essentially probabilistic theories of
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the system under investigation. Sometimes elements of the second type of
representation are introduced to amend a more descriptive model.

The choice of statistical model translates a subject-matter issue into
a specific quantitative language, and the accuracy of that translation is
crucial.

We return to these issues in depth in Chapter 6.

1.10 Prediction

Most of this book is devoted to the use of statistical methods to analyse
and interpret data with the object of enhancing understanding. There is
sometimes a somewhat different aim, that of empirical prediction. We take
that to mean the prediction of as yet unobserved features of new study
individuals, where the criterion of success is close agreement between the
prediction and the ultimately realized value. Obvious examples are time se-
ries forecasting, for example of sales of a product or of the occurrence and
amount of precipitation, and so on. In discussing these the interpretation of
the parameters in any model fitted to the data is judged irrelevant, and the
choice between equally well-fitting models may be based on convenience
or cost.

Such examples are a special case of decision problems, in particular
problems of a repetitive nature, such as in industrial inspection where each
unit of production has to be accepted or not. The assessment of any pre-
diction method has to be judged by its empirical success. In principle this
should be based on success with data independent of those used to set up
the prediction method. If the same data are used directly for both purposes,
the assessment is likely to be misleadingly optimistic, quite possibly seri-
ously so.

There are some broader issues involved. Many investigations have some
form of prediction as an ultimate aim, for example whether, for a particular
patient or patient group, the use of such-and-such a surgical procedure will
improve survival and health-related quality of life. Yet the primary focus of
discussion in the present book is on obtaining and understanding relevant
data. The ultimate use of the conclusions from an investigation has to be
borne in mind but typically will not be the immediate focus of the analysis.

Even in situations with a clear predictive objective, the question may
arise whether the direct study of predictions should be preceded by a more
analytical investigation of the usefulness of the latter. Is it better for short-
term economic forecasting to be based on elaborate models relying on
possibly suspect economic theory or directly on simple extrapolation?
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Somewhat analogously, it may be better to base short-term weather fore-
casting on empirical extrapolation whereas longer term forecasting de-
mands the well-established laws of physics.

An important and perhaps sometimes underemphasized issue in empir-
ical prediction is that of stability. Especially when repeated application of
the same method is envisaged, it is unlikely that the situations to be en-
countered will exactly mirror those involved in setting up the method. It
may well be wise to use a procedure that works well over a range of con-
ditions even if it is sub-optimal in the data used to set up the method.

1.11 Synthesis

It is reasonable to ask: what are the principles of applied statistics? The
difficulty in giving a simple answer stems from the tremendous variety,
both in subject-matter and level of statistical involvement, of applications
of statistical ideas. Nevertheless, the following aspects of applied statistics
are of wide importance:

• formulation and clarification of focused research questions of subject-
matter importance;

• design of individual investigations and sequences of investigations that
produce secure answers and open up new possibilities;

• production of effective and reliable measurement procedures;
• development of simple and, where appropriate, not-so-simple methods

of analysis, with suitable software, that address the primary research
questions, often through a skilful choice of statistical model, and give
some assessment of uncertainty;

• effective presentation of conclusions; and
• structuring of analyses to facilitate their interpretation in subject-

matter terms and their relationship to the knowledge base of the
field.

All these aspects demand integration between subject-matter and statis-
tical considerations. Somewhat in contrast, the role of work in the theory
of statistics is to develop concepts and methods that will help in the tasks
just listed. In pursuing this particular aim it is sensible to use sets of data
to illustrate and compare methods of analysis rather than to illuminate the
subject-matter. The latter use is entirely appropriate but is not the focus of
discussion in the present book. Our emphasis is on the subject-matter not
on the statistical techniques as such.
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Notes

Detailed references for most of the material are given in later chap-
ters. Broad introductory accounts of scientific research from respectively
physical and biological perspectives are given by Wilson (1952) and by
Beveridge (1950). For a brief introduction to the formal field called the phi-
losophy of science, see Chalmers (1999). Any direct impact of explicitly
philosophical aspects seems to be largely confined to the social sciences.
Mayo (1996) emphasized the role of severe statistical tests in justifying
scientific conclusions. For an introduction to data mining, see Hand et al.
(2001). Box (1976) and Chatfield (1998) gave general discussions of the
role of statistical methods.



2

Design of studies

This, the first of two chapters on design issues, describes the common
features of, and distinctions between, observational and experimental
investigations. The main types of observational study, cross-sectional,
prospective and retrospective, are presented and simple features of
experimental design outlined.

2.1 Introduction

In principle an investigation begins with the formulation of a research ques-
tion or questions, or sometimes more specifically a research hypothesis.
In practice, clarification of the issues to be addressed is likely to evolve
during the design phase, especially when rather new or complex ideas
are involved. Research questions may arise from a need to clarify and
extend previous work in a field or to test theoretical predictions, or they
may stem from a matter of public policy or other decision-making con-
cern. In the latter type of application the primary feature tends to be to
establish directly relevant conclusions, in as objective a way as possible.
Does culling wildlife reduce disease incidence in farm animals? Does a
particular medical procedure decrease the chance of heart disease? These
are examples of precisely posed questions. In other contexts the objective
may be primarily to gain understanding of the underlying processes. While
the specific objectives of each individual study always need careful con-
sideration, we aim to present ideas in as generally an applicable form as
possible.

We describe a number of distinct types of study, each raising rather dif-
ferent needs for analysis and interpretation. These range from the sampling
of a static population in order to determine its properties to a controlled ex-
periment involving a complex mixture of conditions studied over time. In

14
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particular, the distinction between observational and experimental studies
is central, in some ways more for interpretation than for analysis.

Despite these important distinctions, common objectives can be formu-
lated. These are:

• to avoid systematic error, that is distortion in the conclusions arising
from irrelevant sources that do not cancel out in the long run;

• to reduce the non-systematic, that is haphazard, error to a reasonable
level by replication and by other techniques designed largely to eliminate
or diminish the effect of some sources of error;

• to estimate realistically the likely uncertainty in the final conclusions;
and

• to ensure that the scale of effort is appropriate, neither too limited to
reach useful conclusions nor too extended and wasteful, as revealed by
the achievement of unnecessarily high precision.

There are two further aspects, very important in some contexts, but
whose applicability is a bit more limited. These are:

• by investigating several issues in one study considerably more informa-
tion may be obtained than from comparable separate studies; and

• the range of validity of conclusions may be extended by appropriate
design.

In the discussion in this book we concentrate largely on the careful de-
sign and analysis of individual studies aimed to reach an individually se-
cure conclusion. Yet, while occasionally one comes across a unique largely
stand-alone critical investigation, in most situations the synthesis of infor-
mation from different kinds of investigation is required and this is an as-
pect that rarely lends itself to formal discussion. Even when conclusions
are reached by the synthesis of results from related similar studies, as
in so-called overviews, the quality of the individual studies may remain
important.

In connection with overviews the term meta-analysis is sometimes used.
The term may be misleading in the sense that no essentially different prin-
ciples of analysis are involved, merely the difficult issue of deciding what
data to include to ensure some comparability. More challenging still is a
broad review of all aspects of a field, assembling information of different
types as far as possible into a coherent whole.
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Illustration: Adverse results end a line of enquiry In a series of studies at
different sites, a modification of a textile process was found to produce
an improved product. Then in one further study disturbingly negative
results emerged. Although there were some questions over the design
of this last study it led to the abandonment of that whole line of inves-
tigation. Similar issues would arise if, in a series of studies of a new
medication, a therapeutic benefit appeared but one further study, pos-
sibly of questionable design, indicated a safety problem with the new
procedure. The point in both cases is that, while in a sense abandon-
ing the investigation because of one suspect study may be unreason-
able, it may be quite likely that such abandonment becomes almost
inevitable.

Especially in situations not motivated by an urgent decision-making re-
quirement, investigation will proceed sequentially and much depends on
the time scales involved. If, as in some laboratory work, new investigations
can be set up and completed quite quickly then the design of individual
component studies is less critical, and surprising or ambiguous results can
be tested by immediate repetition. In other fields the soundness of each
component study is of much more concern and independent confirmation
is at best a long-term prospect.

A final important element of study design is the formulation of a plan of
analysis, especially for studies which are expensive and take a long time
to complete. Not only should it be established and documented that the
proposed data are capable of addressing the research questions of concern,
but also the main configurations of answers that are likely to arise should
be set out and the availability of the data necessary for interpreting such
patterns checked. The level of detail of analysis specified depends on the
context. To take a simplified example, it might be enough to specify that the
relationship between a response variable, y, and an explanatory variable, x,
will be studied without setting out a precise method of analysis. In others it
may be a quasi-legal requirement, for example, of a regulatory agency, to
specify both the precise method to be employed, for example, linear least-
squares regression, and also the level of confidence interval or significance
test to be used.

A simple example of the need to contemplate potential patterns of out-
comes is that there may be a confident belief that outcomes in group A
will be higher than those in group B. The issues raised if the data point
in the opposite direction have already been mentioned in the illustration
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‘Explaining the unexpected’ (p. 6). If new data can be obtained relatively
speedily, this aspect of planning is of less concern.

Illustration: Explaining how badger culling increased cattle disease A
large randomized field trial was undertaken to estimate the effects of
two different forms of badger culling on the incidence of bovine tuber-
culosis in cattle (Donnelly et al., 2003, 2006; Bourne et al., 2007). Bad-
gers had long been regarded as a reservoir of infection and small studies
suggested that culling badgers might be an effective way of reducing
disease in cattle herds. One form of culling in the trial involved a series
of localized culls, each following the identification of tuberculosis in a
cattle herd. The other involved annual widespread culls.

Surprisingly, it was found that the localized culling approach led
to increased disease incidence in cattle herds (Donnelly et al., 2003).
Detailed data had been collected on the locations of culled badgers and
their infection status and data had been collected routinely on the inci-
dence of disease in cattle herds. However, these data were not sufficient
to explain the increase in disease incidence in cattle, and an additional
study had to be undertaken to examine badger density and ranging
behaviour in the areas subjected to culling and to matched areas not
subjected to culling (Woodroffe et al., 2006).

As noted in Section 1.4, even if pre-specified methods have to be used
it is, however, crucial not to confine the analysis to such procedures, es-
pecially in major studies. There are two rather different reasons for this.
First, careful analysis may show the initial method to be inappropriate. For
example, in a simple application of linear regression, the transformation of
variables may be desirable to deal with nonlinearity or with heterogeneity
of the variance. More importantly and controversially, the data, or expe-
rience gained during collection of the data, may suggest new and deeper
research questions or even, in extreme cases, abandonment of the original
objectives and their replacement. The first reason, the technical inappro-
priateness of the original analysis, may not be particularly controversial.
The second reason, a change in objectives, is more sensitive. In principle,
conclusions that depend on a radical change in objectives in the light of
the current data are particularly likely to need an independent confirmatory
study.

The general point remains, however, that, while an initial plan of analy-
sis is highly desirable, keeping at all cost to it alone may well be absurd.
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While we are mainly addressing detailed issues of technique, success-
ful design depends above all else on the formulation of important, well-
defined, research questions and on the choice of appropriate material and
the ability to obtain reliable data on the key features. The issues involved
in the choice of measurements are discussed in detail in Chapter 4.

2.2 Unit of analysis

Many investigations have the broad form of collecting similar data repeat-
edly, for example on different individuals. In this connection the notion of
a unit of analysis is often helpful in clarifying an approach to the detailed
analysis.

Although this notion is more generally applicable, it is clearest in the
context of randomized experiments. Here the unit of analysis is that small-
est subdivision of the experimental material such that two distinct units
might be randomized (randomly allocated) to different treatments. The pri-
mary analysis of such data will be based on comparison of the properties
of units. Randomization is aimed partly at achieving correct interpretation
of any systematic differences uncovered. The study of patterns of variation
within units may be either of subsidiary interest, in establishing how best
to assess inter-unit differences, or it may be of intrinsic interest, but in the
latter case the conclusions do not have the protection of randomization and
are subject to the additional possibility of biased interpretation.

Illustration: Unit of analysis; some examples In a typical randomized
clinical trial each patient is randomized to one of a number of regimens.
Patients are thus the units of analysis. In a cross-over trial each patient
receives one treatment for a period, say a month, and then after a gap
a possibly different treatment for another month. The unit of analysis is
then a patient-month. Similar designs are common in nutritional studies
and in parts of experimental psychology, where the unit of analysis is a
subject–period combination.

Illustration: Unit of analysis; large scale In a community-based public
health investigation, a study area is divided into communities, so far as
is feasible isolated from one another. One of a number of possible health
policies is then randomly allocated, so that all the families in a particu-
lar area receive, say, the same literature and possibilities for preventive
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care. Outcome data are then collected for each family. The primary unit
of analysis is the community, with the implication that outcome mea-
sures should be based in some way on the aggregate properties of each
community and a comparison of policies made by comparing commu-
nities randomized to different policies. This does not exclude a further
analysis in which distinct families within the same community are com-
pared, but the status of such comparisons is different and receives no
support from the randomization.

In more complicated study designs there may be several units of anal-
ysis, as for example in split-plot experiments in agricultural field trials
and comparable designs used in industrial experimentation on multi-stage
processes.

In investigations that are not randomized experiments it is often helpful
to consider the following question: what would the primary unit of analysis
in the above sense have been, had randomization been feasible?

In general the unit of analysis may not be the same as the unit of inter-
pretation, that is to say, the unit about which conclusions are to drawn. The
most difficult situation is when the unit of analysis is an aggregate of sev-
eral units of interpretation, leading to the possibility of ecological bias, that
is, a systematic difference between, say, the impact of explanatory variables
at different levels of aggregation.

Illustration: Unit of analysis: clash of objectives For country- or region-
based mortality data, countries or regions respectively may reasonably
constitute the units of analysis with which to assess the relationship of
the data to dietary and other features. Yet the objective is interpretation
at an individual person level. The situation may be eased if supplemen-
tary data on explanatory variables are available at the individual level,
because this may clarify the connection of between-unit and within-unit
variation.

In the complementary situation where the unit of analysis is potentially
smaller than the unit of interpretation then some details may be neglected
at the former level.

In some applications the primary response is a curve against time
showing, for example, the concentration in the blood of a radioactive
marker following its injection. In some contexts the objective may be a
detailed study of the typical shape of these curves and if possible their
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representation by a suitable nonlinear equation, perhaps derived from a
differential equation representing the process involved. If, however, the ob-
jective is the comparison of responses in different groups of individuals,
that is, units of analysis, treated in distinct ways then it may be more suit-
able to characterize the response curves by some simple measures, such as
the peak response attained and the area under the response-time curve.

The general moral of this discussion is that it is important to identify the
unit of analysis, which may be different in different parts of the analysis,
and that, on the whole, limited detail is needed in examining the variation
within the unit of analysis in question.

2.3 Types of study

An observational study is likely to comprise one or more of the following:

• secondary analysis of data collected for some other purpose;
• estimation of some feature of a defined study population which could

in principle be found exactly, for example the number of animals of a
specified species in a defined geographical area;

• tracking across time of such features; and
• determination of the relationship between various features of the study

individuals, examined

– at a single time point
– across several time points for different individuals
– across several time points for the same individual.

The studies listed above are observational in the sense that, although
in some of them the investigators may have substantial control over what
is measured, the system itself, in particular the potential explanatory vari-
ables, are not assignable in that way. For example, in a comparison of dif-
ferent treatment regimes for patients suffering from a particular disease,
in an observational study the investigator would have no control over the
allocation of a treatment to a particular patient.

By contrast in an experimental study the investigator would have es-
sentially total control, in particular over the allocation of treatments. In
the above example, some element of randomization would be typically be
involved. See the illustration ‘Conflicting observational and experimental
evidence’ (p. 7).

In some contexts an experimental approach, while in principle desirable,
is impracticable or even unethical. In such situations a powerful start to the
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design of an observational study is to consider a hypothetical experiment
and to design the observational study as far as possible to mitigate the dif-
ferences between the observational and the experimental approaches, in
particular to control any ambiguities of interpretation likely to arise in the
former.

2.4 Avoidance of systematic error

We use the term systematic error rather than bias to avoid confusion with
the much narrower term unbiased estimate as used in statistical theory.
There are broadly two ways in which systematic error can arise. One is
through the systematic aspects of, for example, a measuring process or the
spatial or temporal arrangement of units and the other is by the entry of
personal judgement into some aspect of the data collection process. The
first source may often be avoided by design or by adjustment in analysis.
The second source typically involves some element of randomization and
very often an important element of concealment, called blinding.

Illustration: Benefit of a balanced design Suppose that each run of an
industrial pilot plant takes half a day. Two conditions are compared, a
new treatment, T, and a control, C. All runs of T are in the morning and
all runs of C in the afternoon; see Table 2.1a. However many replicate
observations are taken, a comparison between the response variables for
T and those for C is also a comparison of morning and afternoon condi-
tions, and so there is the possibility of a systematic error. Unless, as is
just conceivable, there were strong prior reasons for establishing the ab-
sence of a temporal effect, such a configuration would not be adopted in
an experiment; typically the experiment would be arranged so that T and
C both occur equally often in both positions; see Table 2.1c. In an obser-
vational study in which the undesirable extreme configuration arose, the
only precaution against misinterpretation would be to look for external
evidence that any systematic time effect is likely to be negligible; for ex-
ample, some relevant measured features may show no systematic time
effect. If, however, most but not all runs of T are in the morning then
there is the possibility of eliminating a systematic effect by analysis.
See Table 2.1b.

The analysis of Table 2.1b would typically be based on a model
which, for approximately normally distributed quantitative outcomes,
would best be written in a symmetrical form. Thus on day i the
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Table 2.1 Simplified form of comparison of T and C.
(a) Extreme configuration; (b) unbalanced configuration;
(c) a standard experimental design

(a)

Day 1 2 3 4 5 6 7 8

morning T T T T T T T T
afternoon C C C C C C C C

(b)

Day 1 2 3 4 5 6 7 8

morning T T T C T T C T
afternoon C C C T C C T C

(c)

Day 1 2 3 4 5 6 7 8

morning T T C T C T C C
afternoon C C T C T C T T

observations yi j are given by

yi j = µ + τai j + δb j + εi j, (2.1)

where j = 1 for morning and j = 2 for afternoon; ai j = 1 if T is used
and ai j = −1 if C is used. Similarly, b1 = 1 for morning observations
and b2 = −1 for afternoon observations. The remaining terms εi j are
assumed to be independent random variables normally distributed with
mean zero and variance σ2. There are many variants of such a model;
for example, other kinds of response variable may be used.

Suppose that in a study continuing over n days, where n is even, treat-
ment T occurs pn times in the morning. Then application of the method
of least squares shows that, if τ̂ denotes the estimate of the treatment
parameter τ, which is one-half the difference between the means for T
and C, then

var(τ̂) = {8p(1 − p)n}−1σ2, (2.2)
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where σ2 denotes the variance of a single observation. Thus if p � 1
2

then there is an increase in the variance of the estimated treatment effect
following adjustment for a possible morning versus afternoon differ-
ence, although provided that the imbalance is not extreme the increase
in variance is not great. For example, the appreciably unbalanced con-
figuration in Table 2.1b would give var(τ̂) = 1

12σ
2, whereas the standard

balanced configuration in Table 2.1c would give var(τ̂) = 1
16σ

2.
In more complex observational situations in which adjustment for

several potential confounding features may be involved, the situation
is more problematic.

The second type of systematic error arises when personal judgement
enters, for example in a measuring process or indeed at any stage of an in-
vestigation. In many situations the use of randomization, that is, an imper-
sonal allocation procedure with known probability properties, often com-
bined with the so-called blinding of individuals, that is, concealment, is the
most effective way of removing such sources of systematic error. This ap-
plies both in the sampling methods used in observational studies and in the
design of experiments.

Illustration: Accurate assessment of precision In an investigation of the
reproducibility of a particular laboratory technique, duplicate samples
are available from a number of somewhat different sources. If the
duplicates are submitted for measurement very close together in time
and especially if the result from the first measurement is known when
the second measurement is taken, it is very likely that a misleadingly
optimistic estimate of precision will result. The presentation of material
not only in random order but with the source not being known to those
performing the measurements is very desirable. Note that very often
randomization without concealment would not be nearly so effective.

The need for randomization and concealment is even greater in measur-
ing processes relying directly on personal judgement, for example in con-
nection with taste testing. If randomization is not feasible then systematic
allocation may be the best route to the avoidance of personal bias.

Illustration: Systematic sampling To determine the twist in a textile yarn,
a property difficult to measure, the yarn is examined at a series of sam-
pling points. To space these randomly along the length of yarn under
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test would be cumbersome to implement. Instead the yarn may be ad-
vanced an exactly constant amount after each test, that is, the sampling
points are exactly equally spaced along the yarn. The object of the en-
forced systematic aspect of the sampling is to avoid subjective biases in
choosing the points for measurement. This assumes it to be known that
a strictly periodic component of variation is unlikely.

In relatively complex situations, systematic error may enter at any of a
number of phases and, for example, a single randomization may be insuf-
ficient.

2.5 Control and estimation of random error

Statistical analysis is particularly important in investigations in which hap-
hazard variation plays an important role. This may enter at any stage of
an investigation and a key aspect in analysis is the representation of that
variability in a way that is as reasonably realistic and yet economical as
possible. This will be a recurring theme of later chapters.

The steps in the design phase to lessen the impact of haphazard variation
are essentially:

• use of artificially uniform material;
• arranging that the comparisons of main interest are, so far as feasible, of

like with like;
• inclusion of background variables that will, in part at least, explain the

haphazard variation encountered; and
• replication.

Illustration: Comparing like with like The use of twins in a paired design
for some kinds of animal experiment may greatly enhance precision by
ensuring that conclusions are based largely on comparisons between the
twins in a pair, according to the second principle for precision enhance-
ment. The general disadvantage of using artificially uniform material
is the possibility that the conclusions do not extend to more general
situations.

Particularly in the initial phases of an investigation, it will usually be
wise to study the phenomenon in question in situations that are as clear
cut as is feasible. For example, in a study of possible control methods for
an infectious disease it is sensible to recruit regions on the basis of high
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incidence, rather than with the aim of obtaining results representative of
the whole population.

2.6 Scale of effort

In many investigations not only does the overall size of the investigation
need consideration but also such details as the amount of replicate observa-
tion that may be desirable at various levels. This requires some knowledge
of the relevant components of variance and their contribution to the overall
uncertainty. All considerations of the scale of effort are in a sense eco-
nomic, since the costs of observations must be balanced against the losses
implicit in reaching conclusions of low precision. It is, however, probably
rare that such considerations can be assessed fully quantitatively. Instead, a
judgement is typically made on the basis of the level of precision likely to
be achieved and, often, the level of precision thought fruitful in the field of
work concerned. While judgements of scale of effort made this way involve
arbitrary choices and are inevitably approximate, they do establish some
comparability between different but related studies and so it is important
that, especially for major investigations, some such calculations are made.
In situations where resources for an investigation are limited, for example,
the number of suitable patients for a clinical trial is small, the issue will be
not so much calculating the size of study desirable as establishing whether
the resources available and the number of patients likely to be accrued will
be sufficient.

Such calculations are often presented in terms of the power of signif-
icance tests, which give the probability of detecting a preassigned depar-
ture from a null hypothesis at a specified level of statistical significance.
In nearly all cases, however, it is simpler and probably more relevant to
consider the standard error of the estimate of the primary aspect of interest
in the study. If, for example, the latter is a comparison of two means each
based on m independent observations, the value of m required to achieve a
desired value c for the standard error of the estimated difference will be

m̃ = 2σ2/c2, (2.3)

where σ2 is the variance of the observations in each of the groups being
compared. To use this expression we need an approximate estimate of σ,
obtained either from a pilot study or from experience in similar earlier
investigations. Note that if the issue is formulated as requiring a power
β at a specified distance d from the null hypothesis in a significance test at
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a one-sided level α then the corresponding value of m is

2σ2(k∗α + k∗β)
2/d2. (2.4)

Here k∗α, for example, is the upper α point of the standard normal distribu-
tion.

There is one requirement, that of c, in the first formulation but in the sec-
ond formulation three choices are required namely of α, β, and d, many of
which will lead to the same value of m. A further reason for preferring the
standard error is a general preference for estimation over significance test-
ing and, importantly, that the standard error remains relevant for analysis
whereas once the data are available the power calculation becomes largely
irrelevant.

In most situations in which a number of qualitatively different treatments
or exposures are under comparison, it is reasonable to aim for exact or
approximately equal replication of the different treatments. An exception
occurs when there is a control and a number, t, of other treatments, and
interest focuses on comparisons of the other treatments, one at a time, with
the control. It is then reasonable to have approximately

√
t observations

on the control for each observation on the other treatments. For example,
with three new treatments this would require sets of five units, two for the
control and one each for the other treatments. In fact even for two additional
treatments over-replication of the control is often desirable.

2.7 Factorial principle

In some contexts, notably laboratory experiments that can be completed
relatively quickly, it may be best to progress by a chain of simple exper-
iments each informed by the preceding results. According to the facto-
rial principle, however, in complex situations it may be desirable or even
essential to examine several different aspects simultaneously. The issues
involved are best illustrated by one of the first applications of factorial
design.

Illustration: Factorial design The growth of an agricultural crop is
largely influenced by the availability of three components (factors):
nitrogen, N; potassium, K; and phosphates, P. Consider an investiga-
tion in which each factor may be added to a plot at either a high or a low
level and the resulting yield measured. Suppose that 24 plots are avail-
able. Two possible designs, each in blocks of eight plots, are as follows.
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Table 2.2 Three randomized replicates of the 23 factorial system.
The notation 1 indicates that all factors are at their lower level,
pk indicates the combination with N at its lower level and P, K at
their upper levels, etc.

Block 1 p nk 1 k npk n pk np
Block 2 npk n nk np 1 pk p k
Block 3 n k nk pk 1 p npk np

• Eight plots are used to test N, eight to test P and eight to test K. In the
plots used to test, say, N, the other two factors, P and K, are assigned
at the low levels.

• The eight combinations of N, P and K at the two possible levels are
each tested three times.

The second possibility, which may be described as three replicates of the
23 factorial system, is illustrated in randomized block form in Table 2.2.

There are two reasons for preferring the factorial arrangement in this
context. One is that if, say, P and K have no effect (or more generally
have a simple additive effect) then the estimated effect of N can be based
on all 24 plots rather than merely eight plots and hence appreciably
higher precision is achieved. More importantly in some ways, if there
were to be a departure from additivity of effect there is some possibility
of detecting this. An extreme instance would occur if any increase in
yield requires all three factors to be at their higher level.

A development of this idea is that factors may also represent a classi-
fication of the experimental units rather than a treatment. For example, in
the last illustration the experiment of Table 2.2 might be repeated, prefer-
ably but not necessarily with the same design independently randomized,
in a number of farms in different regions with different soil characteristics.
Replication of this sort would be essential if it were hoped that the conclu-
sions would have an extended range of validity beyond the conditions of
the single environment involved in Table 2.2.

We discuss factorial experiments further in Section 3.3.3. Similar ideas
apply in observational studies. The investigation of a number of explana-
tory variables simultaneously may also have substantial advantages.

There is an extensive literature, discussed briefly in Section 3.3.4, on
special designs for complex situations involving many factors. While these
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special designs have their uses, complex arrangements can have major dis-
advantages, in particular the difficulties of administering an intricate de-
sign and of slowness in obtaining complete results for analysis. Finally, we
emphasize that the central principles of design apply as much to simple
experiments as to complex ones.

Notes

Section 2.3. The terminology used for these different types of study varies
between fields of work.

Section 2.4. R. A. Fisher (1926; 1935), who introduced formal random-
ization into experimental design, emphasized its role in justifying ‘exact’
tests of significance, that is, its specifically statistical role. In many con-
texts it can be used somewhat similarly to justify estimates of variance in
both sampling and experimental design contexts. We have chosen here to
emphasize the somewhat more qualitative and often more important matter
of controlling conscious or unconscious selection effects.

Section 2.6. Instead of an estimated variance obtained by a pilot study it
may be possible to use the properties of simple distributions, such as the
Poisson, binomial and exponential distributions, in which the variance is
a known function of the mean. For example, if totally randomly occurring
point events are observed until n points have been observed then the frac-
tional standard error of the mean rate, that is, the standard error divided by
the mean, is 1/

√
n. A rather rare exception, in which an economic calcula-

tion of the scale of effort was made, is the calculation by Yates (1952) of
the amount of effort that it was reasonable to devote to fertilizer trials. The
cost of the trials was compared with the loss consequent on a sub-optimal
recommendation of the dressing of fertilizer.
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Special types of study

This second chapter on design issues describes the main types of
study in more detail. For sampling an explicit population of individu-
als the importance of a sampling frame is emphasized. Key principles
of experimental design are discussed, including the factorial concept.
Finally, various types of comparative observational investigation are
outlined.

3.1 Preliminaries

We now discuss in a little more detail the main types of study listed in
Section 2.3. The distinctions between them are important, notably the con-
trast between observational and experimental investigations. Nevertheless
the broad objectives set out in the previous chapter are largely common to
all types of study.

The simplest investigations involve the sampling of explicit populations,
and we discuss these first. Such methods are widely used by government
agencies to estimate population characteristics but the ideas apply much
more generally. Thus, sampling techniques are often used within other
types of work. For example the quality, rather than quantity, of crops in
an agricultural field trial might be assessed partly by chemical analysis of
small samples of material taken from each plot or even from a sub-set of
plots.

By contrast, the techniques of experimental design are concentrated on
achieving secure conclusions, sometimes in relatively complicated situa-
tions, but in contexts where the investigator has control over the main fea-
tures of the system under study. We discuss these as our second theme in
this chapter, partly because they provide a basis that should be emulated in
observational studies.

29
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3.2 Sampling a specific population

3.2.1 Sampling frame

Suppose that there is a specified target population and that one or more fea-
tures of the population are of concern. In principle, even if not in practice,
these features could be determined by measuring the whole population.
In virtually all settings, however, it is necessary to estimate the popula-
tion features by studying a subset, the sample. How should this sample be
chosen?

Normally, the first requirement, of freedom from the possibility of sys-
tematic error, can be securely achieved only by eliminating individual
choice by the investigator of the population members selected. This typ-
ically demands the existence of a sampling frame, that is, an explicit or
implicit list of the population members.

A sampling frame of adult individuals in an area might be provided by
the electoral register. If in an ecological study the population is a particular
field or an area of forest, the map coordinates provide a sampling frame.
For material passing along a conveyor belt at a constant speed, the times at
which material passes a reference point provide a sampling frame. In so-
called monetary-unit sampling for the auditing of accounts, the accounts
are arranged in order and the cumulative sum of their values is formed.
This produces a scale on which sampling takes place and so, implicitly, a
sampling frame.

In the simplest forms of sampling, each member of the population has
an equal chance of being chosen or, if there are unequal probabilities,
these are known and adjustment is made in analysis. The reason for using
probability-based methods is partly to ensure desirable statistical proper-
ties in the resulting estimates and, more specifically, to avoid systematic
errors arising from personal judgment in the selection of individuals for
inclusion. Systematic sampling, for example taking individuals at regular
intervals in a list, may in many but not all cases largely avoid the latter.

Illustration: Monetary-unit sampling Monetary-unit sampling, a widely
used technique in the auditing of accounts, is illustrated in Figure 3.1.
A starting point is taken at random, a sampling interval h chosen and
those items falling within the marked points selected as the sample. Thus
any item of value more than h is certain to be selected; otherwise the
probability of selection is proportional to the value.
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Figure 3.1 Monetary-unit sampling. The book values of items
1, . . . ,N are cumulated. The sampling interval is h. The sampling
origin is chosen at random over (0, h). A check is made of the
items sampled in each interval h. Items with book values h and
above are certain to be sampled. Otherwise the probability of
inclusion of an item is proportional to its book value.

In a general formulation, if the ith individual in the population has a
probability of selection πi and the observed value relating to individual i is
yi then the mean value in the population is estimated by

Σsyi/πi

Σs1/πi
, (3.1)

where Σs denotes summation over the sample. Indeed, for sampling dis-
cretely listed populations the specification of a sampling scheme sufficient
for the estimation of means and variances depends upon the values of πi

and πi j, where the latter is the probability that both individuals i and j are
included in the sample. The probabilities πi j directly determine the simpler
probabilities πi.

For monetary-unit sampling special issues are raised by the relevant ob-
jective, which is to study the incidence, typically small, of false values. In
this context most or even all the recorded errors may be zero and this may
call for special methods of analysis.

A general requirement is that either the probability of selection of a par-
ticular individual should not depend on the outcome variable for that indi-
vidual or, if it does, that the dependence should be of known form and be
allowed for in the analysis.

Illustration: Characterizing the distribution of lifetimes To study the distri-
bution of the lifetimes of a population of components in an engineering
system, a sample is taken at a particular time and the lifetimes of the
sample components determined. This sampling procedure distorts the
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Figure 3.2 Recurrence times for a process of point events ×
occurring in time. The sampling points are chosen at random over
long intervals. In the longer intervals, event are more likely to be
captured. The recurrence times are measured from the sampling
point backwards or forwards to the previous or succeeding events.

observed distribution because the chance of selecting a component of
lifetime y is proportional to y. Thus the frequency function of the data is
y f (y)/µ, where f (y) is the frequency function (probability density func-
tion) of the component lifetimes and µ is the mean of the distribution
f (y). This new distribution is formed by length-biased sampling. This is
a special case of a sampling procedure in which the chance of selecting
a particular individual depends in a known way on a property of that
individual, which may happen by design or by force of circumstances.

Another possibility is that one measures the current age of the indi-
vidual sampled, called the backwards recurrence time. There is a com-
plementary definition of forwards recurrence time as the time elapsing
before the next event in the process. The frequency distribution of this
quantity is ∫ ∞

y
f (z) dz/µ. (3.2)

See Figure 3.2. In all these cases the analysis must take account of the
particular sampling method used.

3.2.2 Precision enhancement

There are two broad techniques for precision improvement: stratification
and the use of control variables. In stratification the population is divided
into distinct groups, strata, and the population properties of the strata, in
particular the number of individuals in each stratum, are known. Then,
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in general by some combination of design and of analysis, the known
distribution in the population is imposed on the sample. In some situations
the strata are merely devices for guiding the sampling; in others there may
be an interest in individual strata or in comparisons of different strata, in
which case the strata are called domains of study.

Typical strata in studies of human populations are urban versus rural,
male versus female and so on. In sampling material from an agricultural
field trial for laboratory testing the domains of study might correspond to
different treatments.

In general if there are k strata containing (N1, . . . ,Nk) individuals and
data with means ( ȳ1, . . . , ȳk) from samples of sizes (n1, . . . , nk), the overall
population mean is estimated by

ΣNiȳi

ΣNi
(3.3)

with variance

ΣN2
i σ

2
i /ni

(ΣNi)2
. (3.4)

Here σ2
i is the variance in stratum i, provisionally assumed known although

typically estimated, and it is assumed that the sample is only a small pro-
portion of the population, so that the so-called finite population correction
is negligible. It can be shown from these formulae that for a given total
sampling cost the variance is minimized when ni is proportional to

Niσi/
√

ci, (3.5)

where ci is the cost of sampling one unit in stratum i. Similar arguments
may be used in more complicated situations. If the strata are domains of
study then it may be desirable, for example, to sample the small strata more
intensively than (3.5) suggests. In its simplest form, in which all strata have
very similar statistical properties except for the mean, the optimal formula
(3.5) forces an exact balance rather than the approximate balance induced
by totally random selection. Even without optimal allocation, the analysis
based on (3.3) and (3.4) corrects to some extent for any imbalance in the
allocation achieved.

The other route to precision improvement is via the use of variables
whose population distribution is known. Correction for any imbalance in
the sample may then be made either by proportional adjustment or, of-
ten better, by a regression analysis. Let variable z have a known popula-
tion mean z̄π and a sample mean z̄s, and let variable y be assumed to be
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proportional to z. For example, if z were the number of individuals in a
household, y might be a household’s weekly expenditure on food. Then a
proportional adjustment to the sample mean of the target quantity of in-
terest, say ȳ, would change it to ȳz̄π/z̄s. A regression adjustment would
establish a regression relationship between the response variable y and the
explanatory variable z and then use that relationship to estimate the mean
of y at z = z̄π.

Adjustments to improve precision and remove potential systematic er-
rors are common in the physical sciences. The adjustments may be based
on well-established theory or be essentially empirical. Thus measurements
of electrical resistance made at room temperature may be adjusted to a
standard temperature using a known value for the temperature coefficient
of resistivity of the material and the linear relationship between resistance
and temperature known to hold over relatively narrow ranges. This is in
effect a regression adjustment with a known rather than an estimated re-
gression coefficient. Studies of the relationship between the tensile prop-
erties and the molecular structure of textile fibres are complicated by the
fact that such fibres are not ideally elastic, so that their properties depend
in particular on the rate at which stress is applied. Empirical correction to
a standard rate may be needed, or results may be adjusted to a standard
fracture time in order to produce comparability for different studies.

Although the details are different, these two methods of precision en-
hancement are broadly comparable with the use of randomized block
designs and of precision improvement by covariates in the design of
experiments.

3.2.3 Multi-stage and temporal sampling

These ideas can be extended in various ways when the population has a
more complicated form. In multi-stage sampling the central idea of random
sampling is applied at more than one level.

Illustration: Sampling frame If a population comprises all primary
school children in a certain area, a sampling frame would be provided
by a list of primary schools, lists of classes within these schools and then
lists of children within classes. A sampling scheme would then specify a
choice of schools within the area, a choice of classes within the selected
schools and finally a choice of children within the selected classes.
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In many adaptations of these ideas, individuals are followed over time.
It may be wise in a complex study not to measure every feature at each
sampling point; it may be helpful to use sampling with partial replacement
of units and, at least in some situations, it may be necessary to pre-specify
the sampling time points and the sampling intervals.

Illustration: Studying a panel of individuals In some studies, for example
in studies of electoral behaviour, a panel of individuals is interviewed,
typically at regular intervals, say yearly, in order to study changes over
time in their potential voting preferences and attitudes. In sampling with
partial replacement of units, at each new sampling point some individ-
uals are omitted from the study and replaced by new individuals. Typi-
cally this has the dual object of reducing panel attrition by non-response
and also increasing representativeness.

Illustration: Designing with multiple objectives In some contexts multi-
ple objectives have to be addressed and this usually precludes the use
of any sampling scheme that is optimal in a specifically defined sense.
In a hydrological investigation 52 rain gauges were placed in a small
river basin, which, for sampling purposes, had been divided into 2 km
by 2 km squares; for a detailed discussion, see Moore et al. (2000). The
objectives were to estimate the total hourly precipitation per square, es-
sentially a problem of numerical integration, and to estimate local vari-
ability. In principle the latter could be achieved by comparing the values
recorded at duplicate sampling points within a square, by comparing the
values in different squares or by placing a large number of gauges in cer-
tain squares. The design adopted had 22 squares with one gauge, seven
squares with two gauges and two squares each with eight gauges. While
optimality calculations were used to a limited extent, especially in posi-
tioning the gauges in the two intensively sampled squares, a substantial
arbitrary element was involved in balancing the differing objectives.

3.2.4 Less standard sampling methods

All the above methods presuppose a sampling frame. Without one the pos-
sibility of systematic misrepresentation of a population must be a serious
concern, although analytical discussion of the relationship between the
properties of study individuals may be less problematic.
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In some studies of the genetics of rare human diseases, individuals hav-
ing a particular disease, called probands, are identified by any method open
to the investigator. Then close relatives of the proband are studied. In the
analysis the data on the proband are not used. Even though the sampling
procedure for finding a proband is ill-defined, so that the probands are not
necessarily representative of a defined population, nevertheless it may be
entirely reasonable to assume that interrelationships inferred from the rel-
atives of the probands are stable and informative.

Snowball sampling, and more specifically respondent-driven sampling,
uses similar ideas. In the latter, initial members of the population, say of
injecting drug users, are found by any possible method. Data on each are
recorded and then each member is given, say, three tokens to hand to oth-
ers. If these enter the study then they in turn are given tokens, and so on.
Some downweighting of the data from the first individuals may be used to
lessen the dependence on the vagaries of the initial choice. The estimation
of explicit population characteristics, in particular of the population size,
requires strong and largely untestable assumptions.

In other situations, explicit and to some extent testable assumptions may
aid the sampling procedure.

Illustration: Capture–recapture sampling In capture–recapture sampling
to estimate the size of a population of, say, animals in a defined area, m0

animals are captured, marked and released. Later a new sample of size
n1 is captured and the number m1 of marked individuals is noted. Under
some strong assumptions the population size is estimated as n1m0/m1.
These assumptions are that not only is the population closed, that is,
that birth, emigration, immigration and death are negligible, but all ani-
mals are equally likely to be selected at the second phase, in particular,
independently of whether they were marked in the first phase. There
are many extensions of the capture–recapture idea, although all involve
some version of this last largely untestable assumption. One example
where the impact of marking was tested is the toe clipping of frogs,
which was found to reduce the probability of recapture significantly,
raising doubts about the use of toe clipping for species that are of con-
cern to conservationists (McCarthy and Parris, 2004).

If the sampling procedure is indefinite, as for example when it depends
on voluntary enrolment, useful anecdotal information may be obtained but
this is unlikely to be a good guide to population properties.
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Illustration: Selective data collection The UK Meteorological Office has
compiled a list of severe and extreme storms of duration at least one
hour occurring in the UK since 1886. This was produced from a com-
bination of rain-gauge data and newspaper and other reports. The data
collection is thus selective, in that events in remote parts of the country
are relatively less likely to be covered and also that the extent of rain-
gauge coverage has changed greatly over the period. The finding that the
rate of occurrence of extreme events has been essentially constant over
the period is thus hard to interpret.

In other such contexts where the objective is primarily to obtain data
for comparative analysis, detailed representativeness of the target popula-
tion may not be of critical importance. Nevertheless some comparison of
population and sample properties may be helpful. For example, the plac-
ing of instruments for monitoring air pollution may be largely outside the
investigators’ control. For studying time trends and seasonal fluctuations
the detailed placing may not be critical; for studying the relationship with
health data the considerations might be different since matching with the
distribution of the human population becomes more relevant.

3.3 Experiments

3.3.1 Primary formulation

The experiments to be considered here are comparative in the sense that
their objective is to investigate the difference between the effects produced
by different conditions or exposures, that is, treatments. The general for-
mulation used for discussing the design of such experiments is as follows.

Experimental units and treatments are chosen. An experiment in its sim-
plest form consists of assigning one treatment to each experimental unit
and observing one or more responses. The objective is to estimate the dif-
ferences between the treatments in their effect on the response.

The formal definition of an experimental unit is that it is the smallest
subdivision of the experimental material such that any two different units
may experience different treatments.

Illustration: Cluster randomization In a clinical trial in which each pa-
tient is randomized to a treatment, the experimental unit is a patient.
In a multi-centre trial in which all patients in the same clinic receive
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the same treatment, through a system known as cluster randomization,
the experimental unit is a clinic. In the latter case the primary analysis
compares the experience of whole clinics; the comparison of different
patients within the same clinic may give useful supplementary infor-
mation but raises more difficult issues of interpretation. See also the
illustration ‘Unit of analysis; large scale’ (p. 18).

The first requirement of experimental design is the avoidance of system-
atic error and this is typically achieved by some form of randomization. In
some situations, as in some physical or engineering contexts, in which hap-
hazard variation is small and thought to be essentially completely random,
a systematic arrangement may be employed instead, particularly in small
experiments.

The pristine simplicity, in principle, of the interpretation of a randomized
experiment hinges on the following argument. Consider the comparison
of, say, two treatment regimes T and C for blood pressure control. Some
individuals are randomized to T and the remainder to C, all other aspects
remaining the same. A standardized outcome measure is recorded for each
individual. If there is an appreciable difference between the outcomes in
the two groups then either it is a consequence of the play of chance or it
represents an effect produced by the distinction between T and C; there are
no other possibilities. The former possibility can be assessed securely in
the light of the known properties of the randomization procedure.

Illustration: Design in the presence of a trend In a textile experiment on
the effect of relative humidity in processing on the properties of yarn,
nine runs were made. The runs occurred at weekly intervals and at one
of three different controlled levels of relative humidity, 50%, 60% and
70%. In addition, because of the way in which the raw material was
produced, it was thought possible that there would be a smooth, ap-
proximately quadratic, trend across the time period of the experiment.
Randomization in such a situation may produce a very unsatisfactory
configuration of treatments, and a systematic design allowing efficient
least-squares estimation of the treatment effects and trend is preferable.
This provides an instance where the design is formulated to achieve op-
timal estimation in a least-squares analysis. Randomization is confined
to naming the treatments. In this context subjective biases can reason-
ably be neglected. Table 3.1 gives the specific design used.
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Table 3.1 Experimental design for three treatments in the
presence of a temporal trend. There are nine equally spaced time
points. The treatments, T, are the levels of relative humidity

T60 T50 T70 T70 T60 T50 T50 T70 T60

It can be shown that for this particular design a linear trend in time
has no effect on treatment comparison and that a quadratic trend in time
has no effect on the comparison of T70 with T50; for other comparisons
of treatments there is some mixing of effects, which may be resolved by
a least-squares analysis.

Illustration: Protection against bias In a randomized trial to assess the
effect of culling badgers on the incidence of tuberculosis in cattle herds,
randomization was used to allocate culling regimes to trial areas. The
randomization was witnessed by an independent observer. The object
was, at least in part, to protect the investigators against suggestions of
conscious or unconscious bias in the study of what is in fact a con-
tentious issue.

There are, however, potential complications. One common occurrence
is noncompliance with the treatment allocated, particularly when this in-
volves regular application over an extended period. Those allocated to T
may not follow this regime and those allocated to C may indirectly fol-
low a regime close to T . Analysis by intention to treat, sometimes called
‘ever randomized, always analysed’, ignores such complications and in ef-
fect compares all the consequences of being randomized to T with all the
consequences of being randomized to C. It is clear that, at least in cases of
extensive noncompliance, this can lead at best to an incomplete interpre-
tation of the data. Satisfactory adjustment for noncompliance may require
quite strong assumptions; it is in principle desirable that, if feasible, the
reasons for noncompliance are recorded in each case. In some more gen-
eral contexts, if major departures from the proposed design occur then it
may be best to stop and restart the investigation afresh; when this is not
possible it seems clear that the analysis should be of the experiment as
actually performed!
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Illustration: Post-randomization differences New HIV prevention strate-
gies are being developed that include components such as the use of
vaginal microbicides. Clinical trials of these components include, as a
secondary intervention, condom provision and education to all random-
ized groups, to ensure that all trial participants are as far as possible
protected from HIV transmission. Complications arise in the interpreta-
tion of results from standard intention-to-treat analyses if condom use
differs between the randomized groups (Shiboski et al., 2010). Adjust-
ments to allow for post-randomization differences in condom use must
be based on strong, typically untestable, assumptions.

Randomization or, failing that, some other means of control, is needed at
every stage of an investigation at which appreciable error may enter. If any
element of personal choice by the investigator or other participant arises
then concealment becomes important, and this is often best achieved by
some element of randomization.

3.3.2 Precision improvement

In sampling an explicit population, precision is enhanced by the en-
forced balance of stratification or by the use of supplementary informa-
tion. Broadly similar ideas apply in the design of experiments. The first, an
elaboration of the simple idea of comparing like with like, is to form blocks
of units expected on general grounds to have similar responses in the ab-
sence of treatment effects. The idea can be elaborated in various ways but
in its simplest version, the balanced randomized block design, the number
of units per block is the same as the number of treatments and the arrange-
ment is randomized subject to the constraint that each treatment appears
just once in each block. The blocks may be formed in any way that the
investigator regards as convenient and likely to enhance precision by in-
ducing balance. Note that personal judgement may and should be used to
the full in forming blocks. Randomization protects the investigation against
bias. Poor judgement in forming blocks will degrade precision but will not
itself induce bias.

A common way of forming a block is either by the amount of work that
can be done, say, in a day, by observers or sets of apparatus or by spatial
proximity.

The usefulness of such designs is not confined to continuous responses
analysed by the method of least squares, even though the analysis is
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Table 3.2 Comparison of degrees
of freedom (DF) in a balanced
randomized block design with b
blocks, t units per block and t
treatments. The total number of
experimental units is bt

Source DF

mean 1
blocks b − 1
treatments t − 1
residual (b − 1)(t − 1)

simplest in that case. We will discuss such an analysis for a design in b
blocks, with t units per block and t treatments and thus n = bt units in
total.

The comparisons directly possible from this configuration are given in
Table 3.2. Here the expressions in the second column indicate the num-
bers of logically independent contrasts possible on an additive scale. For
example, among three things we may take the (independent) differences
between A and B and between B and C; that between A and C is the sum
of the separate differences.

This comparison structure suggests representation of the data through
the sum of a general effect, a block effect, a treatment effect and a residual
effect, to be considered temporarily as a source of error.

To be more specific still, if yis is the observation in block i and is assigned
to treatment s then it may be helpful to decompose the observations into
the form

yis = ȳ.. + (ȳi. − ȳ..) + (ȳ.s − ȳ..) + (yis − ȳi. − ȳ.s + ȳ..), (3.6)

where, for example, ȳ.s = Σiyis/b is the mean observation on treatment s
averaged over all blocks. It can be seen that the terms in the last set are
all zero if and only if all observations are exactly the sum of a block term
and a treatment term. The final set of terms is therefore called the residual.
When set out in a b × t table, it will be seen that all rows and all columns
sum exactly to zero by construction. Thus if (b − 1)(t − 1) of the values
are arbitrarily assigned, the table can be reconstructed and in that sense the
residual is said to have (b − 1)(t − 1) degrees of freedom.
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Table 3.3 Partitioned sums of squares (SS) in a
balanced randomized block design with b blocks,
t units per block and t treatments. The total number of
experimental units is bt

Source DF SS

mean 1 Σi,sȳ2
..

blocks b − 1 Σi,s(ȳi. − ȳ..)2

treatments t − 1 Σi,s(ȳ.s − ȳ..)2

residual (b − 1)(t − 1) Σi,s(yis − ȳi. − ȳ.s + ȳ..)2

It follows, on squaring (3.6) and summing over all i and s, noting that
all cross-product terms vanish, that we can supplement the decomposition
of comparisons listed above as shown in Table 3.3.

Readers familiar with standard accounts of analysis of variance should
note that the sums are over both suffices, so that, for example, Σi,sȳ2

.. = btȳ2
...

At this point the sum of squares decomposition (Table 3.3) is a sim-
ple identity with a vague qualitative interpretation; it has no probabilistic
content.

The simplest form of statistical analysis is based on the assumption that
a random variable corresponding to yis can be written in the symmetrical
form

yis = µ + βi + τs + εis. (3.7)

Here the parameters βi, typically of no intrinsic interest, represent the varia-
tion between different blocks of units whereas the τs correspond to different
treatments; describing the contrasts between the τs is the objective. Finally,
the εis are random variables in the simplest formulation independently nor-
mally distributed with constant and unknown variance σ2. The numbers of
block and treatment parameters can be reduced by one each to correspond
to the number of independent contrasts available, but the symmetrical form
is simpler for general discussion.

From this representation, application of the method of least squares
shows that contrasts of treatments are estimated by the corresponding con-
trasts of treatment means, as expressed by comparisons among the τs, and
that the residual variance σ2 is estimated by the sum of squares of residuals
divided by the residual degrees of freedom, (b−1)(t−1). Confidence inter-
vals for treatment effects are obtained by methods set out in any textbook
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of statistical methods. The sum of squares for treatments can be used to
construct a test of the hypothesis that all treatments are equivalent; this is,
however, rarely required.

We have given this simple description of the analysis of variance in or-
der to stress the following points. First, and in some ways most importantly,
the formalism of the analysis of variance sets out the comparisons that can
be made from a particular type of design. This aspect does not depend on
the type of variable measured or on specific assumptions about that data.
Also, the general idea of an analysis of variance does not depend in an im-
portant way on the balance assumed in the randomized block design, that
is, that each treatment appears once in each block. The analysis of variance
table is often a valuable route to understanding and developing the anal-
ysis of relatively complex data structures. Next, there is the arithmetical
decomposition of sums of squares. Finally, and it is only at this stage that
a probability model is needed, there are statistical procedures for estima-
tion and significance testing. These apply in the simple form given here
for balanced data with continuous distributions and simple forms of error.
It is important to note that, although the details become more complicated,
analogous procedures apply to other sorts of model and to unbalanced data.
An initial formulation of comparisons will show the broad form of model
appropriate to the situation.

One extension of the randomized block principle arises when the units
are cross-classified by two features, which we will call rows and columns.
The most widely used arrangement of this kind is the Latin square, in which
the experimental units are arranged in a t × t square and the treatment al-
location is such that each treatment occurs once in each row and once in
each column. Table 3.4 outlines the design of an investigation in experi-
mental psychology in which eight subjects’ reaction times are measured
under four different stimuli, A–D. Each subject is tested in four sessions,
suitably spaced in time, and the design ensures that the presence of sys-
tematic additive differences between subjects and between times do not
degrade the precision of the treatment comparisons. The eight subjects are
arranged in two separate 4× 4 Latin squares; more squares could be added
as appropriate.

The partition of information in the 32 observations is represented in
Table 3.5. The new feature here, to be developed in more detail in the next
section, is the difference in the roles of inter-subject variation and of inter-
treatment and inter-period variation. The essential point is that the listing
of subjects within each Latin square (section) is assumed to be arbitrary
and possibly even randomized: the first subject in the first section has no
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Table 3.4 Design for eight subjects in two
4 × 4 Latin squares, subject to stimuli A–D

Period 1 2 3 4

Square 1

subject 1 B C A D
subject 2 A D C B
subject 3 D A B C
subject 4 C B D A

Square 2

subject 5 D A C B
subject 6 C B D A
subject 7 B D A C
subject 8 A C B D

Table 3.5 The degrees of freedom in a study
of eight subjects in two 4 × 4 Latin squares
(for example, as in Table 3.4)

Source DF

mean 1
Latin squares 1
subjects within Latin squares 3 + 3
periods 3
periods × Latin squares 3
treatments 3
treatments × Latin squares 3
residual within Latin squares 6 + 6

special connection with the first subject in the second section. Subjects
are said to be nested within sections. However, the treatments, and indeed
the periods, are meaningfully defined across sections; treatments are said
to be crossed with sections. Thus the variation associated with subjects is
combined into a between-subject within-section component. The treatment
variation is shown as a treatment main effect, essentially the average effect
across the two sections, and an interaction component, essentially showing
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the differences between corresponding effects in the two sections. More
complex situations involving many factors are often best described by such
a mixture of nesting and cross-classification.

Both in experiments and in roughly comparable observational studies,
identifying the structure of the data in terms of treatments and explanatory
features of the units and in terms of crossing and nesting is often the key to
appropriate analysis.

The first route to precision improvement described above is by balanc-
ing, that is, comparing like with like. A second route is by measuring one or
more explanatory variables on each unit, preferably before randomization,
and, failing that, referring to the state of the unit before randomization. We
may then adjust for imbalance in these variables either by performing strat-
ification on them or by fitting a probability model in which the explanatory
variable is represented through unknown parameters.

3.3.3 Factorial experiments

In Section 2.7 we illustrated a simple form of complete factorial experiment
involving three factors N, P, K. We now illustrate some more general fea-
tures. We consider a number of treatments A, B, . . . each of which may be
used at one of a number, lA, lB, . . . of possible levels. There are thus lAlB · · ·
possible treatment combinations and if each of these is used r times the
experiment is called a complete lA × lB × · · · factorial experiment in r repli-
cates. The illustration ‘Factorial design’ (p. 26) was thus three replicates of
a 2 × 2 × 2 or 23 factorial experiment.

Much discussion of factorial experiments centres on a decomposition
into main effects and interactions of the contrasts possible between the dif-
ferent treatment combinations. This is best understood by repeated appli-
cation of the ideas leading to (3.6). It leads in general to the decomposition
of the treatment contrasts into a series of:

• main effects, involving lA − 1, . . . degrees of freedom;
• two-factor interactions involving (lA−1)(lB−1), . . . degrees of freedom;
• three-factor interactions involving (lA − 1)(lB − 1)(lC − 1), . . . degrees of

freedom;
• and so on.

Thus the main effect of, say, treatment A, is a comparison of the responses
at different levels of A averaged over all other factors. The two-factor in-
teraction A × B indicates the departure from additivity of the means at
different (A, B) combinations, averaged over the other factors, and so on.
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Initial analysis of such balanced data will typically consist of a tabu-
lation of one-way tables of means corresponding to the main effects, and
two-way tables of means corresponding to the two-factor interactions. The
discovery of appreciable interaction is typically a warning sign of depar-
tures from additivity of effect and these need careful study leading to spe-
cific interpretation; we return to this issue in Chapter 9.

3.3.4 Developments

There are many developments of the above ideas. They call for more spe-
cialized discussion than we can give here. Some of the main themes are:

• development of fractional replication as a way of studying many factors
in a relatively small number of experimental runs;

• response-surface designs suitable when the factors have quantitative lev-
els and interest focuses on the shape of the functional relationship be-
tween expected response and the factor levels;

• designs for use when the effect of a treatment applied to an individual
in one period may carry over into the subsequent period, in which a
different primary treatment is used;

• extensions of the randomized block principle for use when the number
of units per block is smaller than the number of treatments (incomplete
block designs);

• special designs for the study of nonlinear dependencies; and
• designs for sequential studies when the treatment allocation at one phase

depends directly on outcomes in the immediate past in a pre-planned
way.

3.4 Cross-sectional observational study

In some ways the simplest kind of observational investigation, one that is
partly descriptive and partly analytical, is based on information in which
each study individual is observed at just one time point, although at that
same point information about that individual’s past may be collected too.
We will not discuss here the possible impact of recall bias, when the
previous information is not collected from documented sources. We dis-
cuss issues of causal interpretation later, in Chapter 9, but note that, typ-
ically, to establish causality some notion of temporal flow is involved
and therefore a causal interpretation of cross-sectional data is particularly
hazardous.
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Illustration: Interpreting a cross-sectional study In a study of diabetic pa-
tients at the University of Mainz, described in more detail in Section 4.4
and by Cox and Wermuth (1996), data were collected for each patient
on various psychometric measures, in particular the patient’s knowl-
edge of the disease. An objective measure of the success of glucose
control was obtained at essentially the same time. In addition various
demographic features and aspects of the patient’s medical history were
recorded. There was a clear association between knowledge and success
at control. The data in this form being cross-sectional, it is not possible
to conclude from this study on its own whether improvement in knowl-
edge causes better control, whether success at control encourages better
knowledge or whether some more complex process relates the two fea-
tures. General background knowledge of medical sociology may point
towards the former explanation, and its policy implication of providing
more information to patients may be appealing, but direct interpretation
of the data remains intrinsically ambiguous.

The data in the above illustration were obtained over an extended time
period. In a rather different type of cross-sectional study a series of in-
dependent cross-sectional samples of a population is taken at, say, yearly
intervals. The primary object here is to identify changes across time. More
precise comparisons across time would be obtained by using the same
study individuals at the different time points but that may be administra-
tively difficult; also, if a subsidiary objective is to estimate overall popula-
tion properties then independent sampling at the different time points may
be preferable.

Illustration: Analysis of multiple cross-sectional studies In a study of
young people and obesity, data were analysed from three representative
cross-sectional surveys (conducted in the UK in 1977, 1987 and 1997)
(McCarthy et al., 2003). The key variables under study were waist cir-
cumference and body mass index (BMI, calculated as weight in kilo-
grams divided by the square of height in metres). Analysis showed that
waist circumference increased dramatically over the period under study,
particularly among girls. Smaller increases were observed in BMI but
again increases were greater in girls than in boys. The authors were
concerned, however, that the BMI gives no indication of the distribution
of body fat, because central body fatness is associated with increased
health risks.
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3.5 Prospective observational study

We now consider observational studies in which the same individual is
observed at more than one time point, leading to what is sometimes called
longitudinal data. The term ‘prospective observational study’ is used when
a group or cohort of individuals is followed forwards in time. There are a
number of rather different possibilities. In some contexts the objective is to
mirror a comparable randomized design as far as is feasible.

Illustration: Prospective observational study of long-term outcomes Over
many years, at Porton Down various biological agents were tested on
volunteers from the UK armed forces. To study the possible effect on
survival, and in particular on death from cancer, the volunteers formed
the ‘treated’ group (Carpenter et al., 2009). A comparable control group
was formed from armed service members entering the forces near the
same time point as assessed by their having adjacent record numbers,
allocated on initial recruitment. This was not a randomized allocation
but, subject to some checks, was reasonably assumed to be effectively
random and so to lead to an estimated treatment effect free of system-
atic error. Therefore this study was reasonably close to a randomized
experiment.

In structurally more complicated studies of this type the explanatory
variables may themselves evolve in time.

In sociological studies of so-called event-history profiles, data are col-
lected for each study individual of such events as completing full-time ed-
ucation, entering the labour market, obtaining employment, leaving em-
ployment, marriage, birth of children and so on. Here the objective is first
to describe incisively the interrelationships between the various transitions
of state involved and then, if possible, to detect systematic patterns of de-
pendence. The design problems concern the choice of baseline data, such
as the demographic details, to be obtained for each individual. For record-
ing critical events it is necessary also to determine the sampling interval.

3.6 Retrospective observational study

A retrospective investigation is particularly relevant when a prospective
study, while in principle desirable, is likely to be very inefficient because
few individuals experience the critical event which is the outcome of inter-
est. In the type of prospective study of concern here, we start with a group
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of individuals of interest, record appropriate explanatory features and wait
for the response of interest to occur; in an epidemiological context this
might be death or the occurrence of a heart attack. There are two con-
nected disadvantages of such an approach. The first is that one may have to
wait a considerable time to accrue an appreciable number of, say, deaths.
The second is that at the end we will have collected an unnecessarily large
amount of information on the non-cases.

By contrast, in a retrospective study we start with cases and for each
case choose one or more controls. Either these may be chosen at random
from the relevant population or each may be matched to a case with respect
to features causally prior to the explanatory variables of concern. Thus the
explanatory features are determined retrospectively. This leads to a much
more balanced and efficient distribution of effort in data collection but is
subject to the often serious disadvantage of the possibility of recall bias.

Put succinctly, a prospective study looks for the effects of causes
whereas a retrospective study examines the causes of effects.

The statistical argument that underpins a case-control study is, in its sim-
plest form, as follows. Consider a population with one binary explanatory
variable, z, taking values 0 and 1 and a binary outcome, y, also taking val-
ues 0 and 1. In the population there are thus probabilities πis corresponding
to z = i, y = s. See Table 3.6(a). In a cohort study separate samples are
drawn from the subpopulations z = 0 and z = 1 and the outcome is ob-
served; this leads to the conditional probabilities shown in Table 3.6(b).
By contrast, in a case-control study separate samples are drawn from the
subpopulations with y = 0 and y = 1 and the corresponding values of z are
observed; this leads to the conditional probabilities in Table 3.6(c).

The probabilities specified in Tables 3.6(b) and (c) are obtained by con-
ditioning the probabilities in the population study in Table 3.6(a) to repre-
sent respectively sampling based on z and on y.

The link between Tables 3.6(b) and (c) and therefore between cohort
and case-control studies is that the cross-product ratios for both tables,
(π11π00)/(π01π10), are the same as that for Table 3.6(a). This implies that
assessment of the effect of z on y as obtained from the cohort study can
also be estimated from the case-control study by treating y as an outcome
variable, even though in this sampling process it was controlled. The con-
clusion is restricted to this particular measure of comparison. In a more
general context it depends on the use of logistic regression.

Case-control studies are widely used in epidemiology. In econometrics
they were used initially in a study of modes of transport under the name
choice-based sampling (Ben-Akiva and Leman, 1985). In this particular
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Table 3.6 Distribution of a binary explanatory
variable, z, and a response variable, y, in (a) a
population study, (b) a prospective or cohort study,
(c) a retrospective or case-control study

(a) Population study

y = 0 y = 1

z = 0 π00 π01
z = 1 π10 π11

(b) Prospective study

y = 0 y = 1

z = 0 π00/(π00 + π01) π01/(π00 + π01)
z = 1 π10/(π10 + π11) π11/(π10 + π11)

(c) Retrospective study

y = 0 y = 1

z = 0 π00/(π00 + π10) π01/(π01 + π11)
z = 1 π10/(π00 + π10) π11/(π01 + π11)

US investigation there were few cyclists, who were therefore heavily
sampled.

Illustration: Retrospective case-control study In a long series of in-
ternational investigations of the possible impact of radon gas in the
home on lung cancer, the cases were hospital patients with lung can-
cer (Darby et al., 2005). For each such patient their places of residence
over the preceding 20 years were identified and either radon-measuring
counters placed in these homes for a suitable period or the likely inten-
sity of radiation in them was interpolated from data collected in nearby
residences. In such investigations, comparable data are needed on con-
trols and there are various ways in which these may be obtained, for
example from hospital data on patients with an unrelated disease, from
general practitioner (primary care physician) records or by sampling of
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the whole population using an appropriate sampling frame. Also, the
controls may be individually matched to cases, say, by age and sex. All
approaches have their advantages and disadvantages but we will not dis-
cuss them here.

Notes

Section 3.1. There are considerable, and largely disjoint, literatures on
sampling and on the design of experiments. The separateness of these lit-
eratures indicates the specialization of fields of application within mod-
ern statistical work; it is noteworthy that two pioneers, F. Yates and W. G.
Cochran, had strong interests in both topics. There are smaller literatures
on the design of observational analytical studies.

Section 3.2. A general introduction to sampling problems was given by
S. K. Thompson (2002); a more theoretical discussion was given by M.
E. Thompson (1997). Examples of industrial sampling, including an ac-
count of the statistical aspects of length-biased sampling, were given by
Cox (1969) and of monetary-unit sampling in auditing by Cox and Snell
(1979). An account of stereology, emphasizing the connection with tradi-
tional sampling problems, was given by Baddeley and Jensen (2005). For
sampling in human genetics, see Thompson (2002) and for respondent-
driven sampling see Gile and Handcock (2010).

Section 3.3. Modern discussions of experimental design stem from Fisher
(1926; 1935). A non-technical account strongly emphasizing design rather
than analysis is due to Cox (1958). An excellent modern account of these
ideas is that by Bailey (2008). For a wide-ranging, more mathematical ac-
count, see Cox and Reid (2000). The response-surface aspects were em-
phasized by Box, Hunter and Hunter (1978). For an account of the very
elaborate textile experiment within which the trend-balanced design of Ta-
ble 3.1 was imbedded, see Cox (1952). The analysis of variance has var-
ious meanings, of which the most literal is the decomposition of random
variations into component sources. The meaning discussed here of the de-
composition of contrasts in complex experimental arrangements may seem
a moribund art form. This aspect is, however, concerned with the structure
of data, not merely with deduction from a contrived linear model, and is
certainly not primarily a route for significance tests; hence it is of broad
concern. This approach can best be followed from one of the older books
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on statistical methods, for example Snedecor and Cochran (1956). A more
mathematical account was given by Scheffé (1959).

Section 3.5. For a systematic account of prospective studies in an epidemi-
ological context, see Breslow and Day (1987).

Section 3.6. For a systematic account of case-control studies, see Breslow
and Day (1980) and for an econometric perspective, see Amemiya (1985).
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Principles of measurement

The success of an investigation depends crucially on the quality and
relevance of the data analysed. Criteria for good measurement proce-
dures are outlined and the quantities measured are classified in various
ways, in particular by their role in the study in question.

4.1 Criteria for measurements

A crucial aspect of any analysis is the nature and quality of the data that
are involved, which we call measurements, using that term in a very general
sense. Criteria for satisfactory measurements typically include:

• relevance;

• adequate precision;

• economy; and

• absence of distortion of the features studied.

In fields with a solid history of investigation, the measurement tech-
niques necessary to capture the relevant features may well be firmly es-
tablished. In other contexts, defining a measurement procedure that will
yield insightful information may be crucial to successful work. Usually we
require of a procedure some mixture of face validity, that is, apparent rele-
vance, and construct validity. The latter implies that a procedure has proven
success in establishing meaningful and stable relationships with other vari-
ables. These further variables should include those for which there is strong
prior reason to expect a connection.

The costs, however measured, of obtaining the data should be commen-
surate with the objectives. In particular, while individual data quality is of
great importance, the collection of unnecessarily large amounts of data is
to be avoided; in any case the intrinsic quality of data, for example the re-
sponse rates of surveys, may be degraded if too much is collected. The use

53
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of sampling may give higher quality than the study of a complete popula-
tion of individuals.

Illustration: Questionnaire data When researchers studied the effect
of the expected length (10, 20 or 30 minutes) of a web-based question-
naire, they found that fewer potential respondents started and completed
questionnaires expected to take longer (Galesic and Bosnjak, 2009).
Furthermore, questions that appeared later in the questionnaire were
given shorter and more uniform answers than questions that appeared
near the start of the questionnaire.

However, human behaviour is complicated. Champion and Sear
(1969) found that their longer questionnaires were returned significantly
more often (nine-page questionnaire: 39%; six-page: 38%; three-page:
28%), even though the content was the same in all cases. Only the spac-
ing between questions varied. A possible explanation is that the three-
page questionnaire appeared unappealingly cluttered.

Finally, special precautions may be needed to minimize any direct or
indirect effect of the measurement process on the system under study.

Illustration: Measurement affects the system studied Studies of animal
behaviour may require considerable efforts to minimize the presence of
an observer on the effect under study. For example, a group of wild,
non-habituated, common marmosets (Callithrix jacchus) were observed
in 12 sessions (de Almeida et al., 2006). In half the sessions two ob-
servers, dressed in camouflage clothing, maintained visual contact with
the animals from 8 meters away, while in the other half the two ob-
servers were hidden inside a blind. The mean frequency of marmoset
alarm calls was more than 10 times greater in the sessions where the
observers were visible, with a mean of 8.65 calls per 10 minutes, than
when they were observing from within the blind, when the mean was
0.77 calls per 10 minutes.

Indeed, this effect is not limited to studies of wild animals. The
presence of observers has been found to affect a wide range of as-
pects of human behaviour including eating (Herman et al., 1979), re-
sponding to pain (Sullivan et al., 2004), teachers’ classroom behaviour
(Samph, 1976) and even which toys children choose to play with
(Wilansky-Traynor and Lobel, 2008).
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Another aspect is that the adoption of a particular measure of system
performance as a performance target may distort the whole behaviour
(Bird et al., 2005).

Illustration: Performance targets distort Shahian et al. (2001) described
various forms of ‘gaming’ in hospital management, including the up-
coding of mortality risk factors (comorbidities) to increase the predicted
mortality rate for patients and thus increasing the chance that the ob-
served mortality rate for patients will be less than or equal to that ex-
pected. They also described instances in which high-risk patients were
more likely to have their operations recorded as procedures for which
mortality rates were not published. Finally, they described a tendency
to transfer the patients most critically ill after surgery to other facilities
in anticipation of their impending deaths when databases included only
deaths occurring in the setting in which the surgery took place.

Illustration: Hawthorne effect An early study of industrial manage-
ment (Roethlisberger and Dickson, 1939) found what is now called the
Hawthorne effect. In its simplest form this showed that a modification
of a work process produced an improvement in productivity and a fur-
ther modification a further improvement; a final modification back to the
initial state produced yet more gain. The general moral to be drawn is
that it is the act of intervention rather than the nature of the intervention
itself that produces change, although this interpretation is controversial.

4.2 Classification of measurements

Variables may be classified in various ways, in particular by:

• mathematical properties of the measurement scale;
• whether they have been censored or otherwise degraded;
• their purpose in the investigation in question;
• whether they are direct or so-called derived measures; and
• whether they are observed in the system under study or are latent, that is,

either they are unobserved because they are purely abstract, like ability
at arithmetic, or they might have been observed but in fact were not.

The primary concern regarding the quality of measurements is to ensure
that the study under discussion reaches secure conclusions. Often, a second
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and important consideration, however, is to achieve comparability with re-
lated investigations, in particular to connect with the research literature in
the field. This can be a cause of tension, in that sometimes the standard
methods of measurement, and indeed of analysis, in a field are ripe for
worthwhile improvement.

Perhaps particularly in the physical sciences, the availability of interna-
tionally standardized measuring techniques of high precision has often un-
derpinned spectacular progress. At another extreme, skilful special choice
and definition may be involved. Thus in statistical literary studies of, for
example, disputed authorship, counts of features judged to be context free
are required. By contrast, content analysis emphasizes meaning and aims
to interpret the intrinsic subject-matter of complex material into associated
frequency distributions which can then be used for comparative purposes.

4.3 Scale properties

The most immediate classification of measurement procedures is by the
nature of the set of possible values, according to whether they are:

• binary, that is taking two possible values, for example success and fail-
ure;

• qualitative, with no implied ordering, for example religious affiliation;
• ordinal, for example socio-economic status (high, middle or low);
• integer-valued, typically counts of occurrences;
• continuous, with or without a meaningful scale origin; or
• functional responses.

By a functional response is meant a measurement of a function, particu-
larly a function of time. This differs from the ecological usage, in which the
relationship between the density of a predator and the density of its prey is
called the functional response.

Illustration: Growth curves Growth curves of animals or plants may be
summarized for further analysis by:

• fitting a parametric response versus time equation and characterizing
each response curve by the estimates of key parameters;

• fitting a smooth function not specified parametrically; or
• characterizing each curve by descriptive features such as the rate of

growth over an initial period, the apparent asymptote of the curve and
so on.
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These distinctions affect primarily the techniques of detailed analysis to
be used rather than the key questions to be investigated. Moreover, while
the distinctions are fairly clear cut, it may be wise to interpret them flexibly.
For example, on scales that are in the strict sense ordinal the borderlines
between the different possible outcomes are rarely totally arbitrary, so that
an assumption that such scale values as are found in questionnaire answers,
for example, very bad, bad, neutral, good, very good, can be treated as
numerical, say, −2, −1, 0, 1, 2, may be a reasonable basis for at least a
tentative analysis.

In some contexts a particularly important distinction is between exten-
sive and intensive variables. Extensive variables (or properties) have the
property of physical additivity, usually in virtue of their depending on the
size of the system or sample studied. Examples include mass, volume and
heat (thermal energy). By contrast intensive variables have no such addi-
tive feature. Examples include temperature and density. A particular sort
of intensive property is a specific property, which is a property defined per
unit mass. For example the specific volume, which is the volume occupied
per unit mass (e.g. cubic meters per kilogram), is a specific property.

Illustration: Extensive variables A standard example from physics is that
quantity of heat is extensive and temperature is not. If two bodies with
differing quantities of heat (thermal energy) and temperatures are al-
lowed to come to thermal equilibrium with one another, the quantity of
heat adds but the temperature neither adds nor averages. The yield of a
product and the quantity of money are additive as are, at least in some
contexts, length and duration.

An implication is that whatever the form of the distributions involved
the arithmetic mean on the extensive scale has a specific interpretation.

Illustration: Interpreting an extensive variable Often a set of non-negative
continuous variables may best be analysed on a log scale, especially
if the variables have approximately log normal distributions. But if an
outcome variable is extensive, at least some aspects of the interpretation
will be needed in terms of the mean on the original scale. For instance,
in some contexts individual earnings might be treated as approximately
log normally distributed and some interpretations made in terms of log
earnings. Yet if the requirement were to consider family or aggregate
community earnings, it would be the mean earnings not the mean log
earnings that would be relevant.
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Illustration: Ratio and difference of two probabilities In epidemiology the
effect of exposure on the occurrence of a disease is often measured by
the relative risk, that is, the ratio of the probability of the disease in ex-
posed individuals and the probability of the disease in otherwise similar
unexposed individuals. That ratio, or in practice its logarithm, may well
show statistically stable relationships with other explanatory features.
Yet in assessing the effect of, say, eliminating exposure in a specific pop-
ulation it is the difference, not the ratio, of two probabilities that would
determine the numbers of individuals affected by the change. The prob-
ability in this sense being extensive, it is differences in probabilities that
have an immediate interpretation. Ratios often have other important ad-
vantages, such as stability across different populations and as a guide to
potentially causal interpretation, so that analyses on both scales may be
required.

4.4 Classification by purpose

In many ways a particularly important classification of measurements is by
the role or roles of the variables in the study under analysis. A central idea
is that, in any given context, for each pair of variables either one can be
regarded as a response to the other as explanatory or the two variables are
to be treated on an equal standing. This, with some additional restrictions,
leads to the sorting of variables into groups in which all variables in a given
group are on an equal standing. Furthermore the groups can be placed in
an order preserving the direction of dependence, so that all the variables in
one group are potentially explanatory to all the variables in another group;
see Figure 4.1.

This leads to a broad classification of variables as response variables (or
outcomes) or as explanatory variables.

Illustration: Response and explanatory variables In the study of dia-
betic patients described in the illustration ‘Interpreting a cross-sectional
study’ (p. 47) and by Cox and Wermuth (1996), the final response vari-
able is success at controlling the disease as measured by a biochemi-
cal test. The primary explanatory variable is knowledge of the disease,
assessed by a standard psychometric test. Explanatory to this variable
are measures of disease attribution, assumed to influence motivation
to attain knowledge. Finally, variables such as age, gender, years of
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Figure 4.1 Simple regression chain. Circles represent variables.
Variables in the same box are of equal standing, i.e. none is a
response to or explanatory to another. Variables in a given box
depend in principle on all variables in boxes to their left. The
effect of treatment on response is obtained conditionally on the
variables to the left and ignoring the variables intermediate
between treatment and response. The total effect may be
decomposed, and possibly explained, according to the pathways
between treatment and response.

education and years for which the patient has had the disease in effect
define the individuals concerned. An interesting feature of this example
is that the biochemical test and the psychometric measurements were
obtained virtually simultaneously, so that the labelling of the biochem-
ical measure as a response to knowledge is a subject-matter working
hypothesis and may be false. That is, success at controlling the disease
might be an encouragement to learn more about it.

The example illustrates some further distinctions. Some explanatory
variables, such as gender or education, characterize the study individuals
and are to be regarded as given. We call them intrinsic. In more formal
analyses they are typically not represented by random effects but regarded
as fixed characteristics.

Other explanatory variables might in a randomized experiment be treat-
ments or conditions under the investigator’s control, and the objective is to
study the effect of these on the final outcome or response. Such variables
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are called primary explanatory variables. Conceptually, for each study in-
dividual a primary explanatory variable might have been different from the
choice actually realized.

A third kind of explanatory variable, a particular type of intrinsic vari-
able, may be called nonspecific. Examples are the names of countries in
an international study or the names of schools in an educational study in-
volving a number of schools. The reason for the term is that, depending of
course on context, a clear difference in some outcome between two coun-
tries might well have many different explanations, demographic, climate-
related, health-policy-related etc.

Other variables are intermediate in the sense that they are responses to
the primary explanatory variables and explanatory to the response vari-
ables.

At different stages of analysis the roles of different variables may
change as different research questions are considered or as understanding
evolves.

Illustration: Classification of variables In an agricultural fertilizer trial
the fertilizer applied to an individual plot is the primary explanatory
variable, the number of plants per m2 is an intermediate variable and the
yield of the product is the final outcome or response.

A surrogate endpoint is a particular sort of intermediate variable that is
used, for example, in clinical trials to compare the impact of treatments
on the final outcome, or true endpoint. Prentice (1989) defined a surrogate
endpoint to be ‘a response variable for which a test of the null hypothesis of
no relationship to the treatment groups under comparison is also a valid test
of the corresponding hypothesis based on the true endpoint’. In this way the
designation of a variable as a surrogate endpoint depends on the treatments
under study. In practice, variables may fail as surrogate endpoints for a
number of reasons, including the following (Fleming and DeMets, 1996):

• the variable might not be part of the same process as the true endpoint;
• there might be multiple pathways between the disease under study and

the true endpoint, so that the treatment only affects pathways not involv-
ing the proposed surrogate endpoint or it only affects a pathway that does
involve the proposed surrogate endpoint; and

• the treatment might affect the true endpoint independently of the disease
process.
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Illustration: Surrogate endpoint In the study of drugs for the treatment
of glaucoma, the intraocular pressure has been found to be a useful sur-
rogate endpoint for the true endpoint of interest, vision loss. Treatments
which lower intraocular pressure have been consistently found to reduce
the risk of the loss of visual field (Vogel et al., 1990).

4.5 Censoring

When failure time data (or survival data) are collected, often some units of
analysis do not have fully observed time-to-fail data. Other kinds of data
too may have measurements constrained to lie in a particular range by the
nature of the measuring process. The most common occurrence is right
censoring, in which at the end of the period of data collection some units
of analysis have not yet failed and thus, at least theoretically, would fail at
some future point in time if observation were continued.

The next most common type of censoring is interval censoring, in which
the exact failure time is not observed but is known to have occurred within a
particular interval of time. Such data are called interval-censored or doubly
censored.

Finally, left censoring occurs when, for some units of observation, the
time to fail is known only to have occurred before a particular time (or
age).

Survival analysis is very widely used for right-censored data on the time
to death, the time to disease onset (such as in AIDS diagnosis) or the du-
ration of a health event such as a coma. Interval-censored data frequently
arise in clinical trials in which the outcome of interest is assessed only at
particular observation times; such data might be for example a biomarker
dropping below a particular value or the appearance of a medical feature
not readily recognized by the patient which might be assessed at a visit to
the healthcare provider.

Illustration: Right-censoring Investigations of the strength of materials
and of their structures are commonly made by exposing them to re-
peated cycles of intensive stress. The resulting behaviour may be of in-
trinsic interest or may be a surrogate for behaviour under more normal
conditions, an often reasonable assumption if the failure mode remains
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determined by the same physical or biological process. In this latter con-
text it may be reasonable to stop testing, that is, to right-censor, all indi-
viduals that have survived a stress equivalent to the maximum likely to
arise in applications.

However, censoring is not limited to survival data. Studies of HIV/AIDS
often involve the analysis of quantitative plasma HIV-viral-load measure-
ments. The datasets are often complicated by left censoring when the virus
is not detectable, that is, the viral load is somewhere between 0 and the
lower limit of quantification for the test used.

Similar challenges arise in the study of environmental contaminants
when minimum detection levels in assays give rise to left-censored data
(Toscas, 2010; Rathbun, 2006).

In economic datasets, data on wages may be right-censored (or top-
coded) because the data are derived from a system, such as a social security
system, with an upper limit (Büttner and Rässler, 2008). Thus, the highest
wages are known only as being at least a particular value.

The statistical analysis of censoring is virtually always based on the of-
ten untestable assumption that censoring is in a special sense uninforma-
tive. That is, given the current observations at the time of censoring, the
choice to censor the individual is conditionally independent of the unob-
served potential failure time.

4.6 Derived variables

A further distinction is between variables that are directly measured, some-
times called pointer readings, and those formed from combinations of such
variables. There are a number of types of derived variable.

One type is a combination of a variable with another variable or variables
explanatory to the first. The object is to achieve some simplification and
standardization.

Illustration: A derived variable Studies of individual obesity often com-
bine weight and height into the body mass index (BMI), the weight in
kilograms divided by the square of the height in metres. Here height is
regarded as in part explanatory to weight, and, except in infants, as an
intrinsic variable, and the BMI is an attempt to achieve standardization
in comparisons of different groups of individuals. That is, in a study in
which body mass is a primary outcome, use of the BMI is a possibly
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crude attempt to standardize by height. A better procedure is likely to
be to treat the log of the weight as a response and to regress on the log
of the height as an intrinsic variable; a regression coefficient close to −2
indicates virtual equivalence to the use of the BMI.

By contrast, if all variables are on an equal standing then the derived
variable is both a simplification and a route to a more sensitive conclu-
sion, possibly obtained by combining measurements of limited individ-
ual accuracy.

Illustration: Principal components analysis Principal components analy-
sis is a particular mathematical technique for obtaining derived variables
in the form of linear combinations of the original directly measured
variables. These derived variables are uncorrelated and are typically re-
ported in order of importance (the most important being the one that
explains the most variation in the directly observed data). Nearly 2000
children (aged 6 to 10 years) participated in a study of children’s fears
that identified specific fears and their intensity (Salcuni et al., 2009).
Four factors were identified using principal components analysis:

1. death and danger;
2. injury and animal;
3. failure and criticism; and
4. fear of the unknown.

Girls were found to be significantly more fearful than boys.
In general, while principal component analysis may be helpful in sug-

gesting a base for interpretation and the formation of derived variables
there is usually considerable arbitrariness involved in its use. This stems
from the need to standardize the variables to comparable scales, typi-
cally by the use of correlation coefficients. This means that a variable
that happens to have atypically small variability in the data will have a
misleadingly depressed weight in the principal components.

In some time series collected by official statisticians, data are obtained
from sample surveys both to monitor issues of public policy and to form a
base for social science research into such matters as crime, unemployment
and so on. These series may continue over a substantial time period. Defi-
nitions, even of such basic variables as social class, may therefore reason-
ably change over time. In principle, when such changes occur both the new
and old versions should be recorded over a transition period. Unfortunately
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this overlap may not take place; then special precautions may be needed in
analysis.

Illustration: Price indices The UK Office for National Statistics
calculates the Consumer Prices Index (CPI) and the related Re-
tail Prices Index (RPI) to reflect the state of the UK economy
(Office for National Statistics, 2010). These variables reflect the price
of a basket of goods on a particular date. The contents of the basket
are reassessed each year, and the prices of the goods it contains vary,
as estimated from price data collected throughout the UK. The weights
given to the goods in the basket (and their prices) are chosen to reflect
the spending of a typical household. The change, implemented in 2010,
from RPI to CPI in tax and benefit calculations was particularly im-
portant since it had negative implications for many individuals in such
respects as tax allowances, state benefits and pensions.

4.7 Latent variables

4.7.1 Generalities

The formulations discussed in earlier parts of this chapter concerned di-
rectly observed features, that is to say, these formulations are representa-
tions of data that have been or might be collected. In some contexts, how-
ever, it may be fruitful, or even essential, to consider latent features, that
is, aspects that have not been, or sometimes even in principle cannot be,
observed. The general ethos of much statistical thinking is to stay as close
as is feasible to empirical data and therefore to avoid latent variables as far
as possible, but there are a number of situations where use of the latter is
almost unavoidable.

Thus the empirical study of classical dynamics is not based solely or
even primarily on direct measurements of distance, time and mass but
involves such latent variables as the potential and kinetic energy and the
momentum. Other areas of physics abound with such concepts, some quite
esoteric. While direct emulation of physical concepts, for example analo-
gies between social geographical issues and the notion of gravitational
potential, may be unduly forced, some use of latent features in theory con-
struction seems unavoidable.

Latent variables are those which cannot be measured directly. Variables
which can be so measured are sometimes called manifest variables in the
latent-variable literature. Latent variables are not limited to conceptual
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variables such as intelligence, trustworthiness or decisiveness. Latent vari-
ables such as the true disease status of a patient can be measurable in prin-
ciple but remain unobserved owing to the absence of an accurate method
of obtaining the measurement in a particular setting.

At a more directly empirical level, there are several reasons why the
use of latent variables is valuable in statistical analysis. First, the directly
measured variables may be intrinsically uninteresting.

Illustation: Latent variable Arithmetic ability may be studied by supply-
ing to a subject a series of items each consisting of a question with a
choice of two answers, the subject being required to mark the correct
answer. It is clear that the items are of no intrinsic interest. They are
worth studying only to the extent that they illuminate the respondent’s
arithmetical knowledge and/or ability, which for the purposes of quan-
titative study is a latent variable, in fact a latent random variable if a
population of individuals is involved.

Other somewhat similar situations may be less extreme in that some
individual items are of intrinsic interest.

Illustration: Manifest and latent variables Health-related quality of life
may be studied by questionnaires addressing the physical, social and
psychological state of a patient, leading to the initial notion of a three-
dimensional latent variable capturing the essence of a patient’s con-
dition. Here, however, some individual items may be of considerable
intrinsic concern. An example in the case of some medical conditions
is the question ‘Are you confined to a wheelchair’? Even if such data
are analysed using some notion of latent variables, the possible special
importance of specific items needs attention.

4.7.2 Role in model formulation

The second role of latent variables is as a convenient device for model con-
struction and occasionally model interpretation. An important application
is connected with regression analysis for binary variables. Here, if Y is a
binary response variable taking the values 0 and 1 and depending on one
or more explanatory variables x, the most direct approach is to consider a
representation of a form generalizing a linear regression:

P(Y = 1) = E(Y) = g( βx), (4.1)
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where β is a regression coefficient and g(.) is a suitable function. Here and
throughout P(A) denotes the probability of the event A and E(Y) denotes
the expected value, or long-run average, of the random variable Y . The
most commonly used functions are the logistic and the probit functions.
These are respectively

P(Y = 1) =
exp(αl + βl x)

1 + exp(αl + βl x)
(4.2)

or, in terms of Φ(.) the standard normal integral,

P(Y = 1) = Φ(αn + βnx). (4.3)

Here α denotes the intercept determining P(Y = 1) at x = 0 and β is a
regression coefficient. Different subscripts are used in (4.2) and (4.3) be-
cause, although numerically the two functional forms are for most purposes
virtually identical, the values of the corresponding parameters are not.

We will discuss the interpretation of these different parameterizations
further in Section 7.1.

An alternative and older approach, still useful for motivating more com-
plicated situations, is to suppose that there is an underlying latent random
variable Ξ, sometimes called a tolerance, such that if and only if Ξ ≤ α+βx
then the binary response Y takes the value 1. The distribution of Ξ is taken
to be of a simple form. Possibilities are the unit logistic density and the unit
normal density, namely

exp(ξ)
{1 + exp(ξ)}2 , and

1√
(2π)

exp

(
−ξ2

2

)
. (4.4)

With these forms the relationships (4.2) and (4.3) between the observed
binary response and x are obtained. See Figure 4.2.

This representation has greater appeal if the latent tolerance variable Ξ
is in principle realizable.

One use of such a representation is to motivate more elaborate models.
For example, with an ordinal response it may be fruitful to use a number of
cut-off points of the form αk + βx. Thus, for three cut-off levels an ordinal
response model with four levels would be defined; see Figure 4.3.

Multivariate binary and similar responses can be related similarly to the
multivariate normal distribution, although the intractability of that distribu-
tion limits the approach to quite a small number of dimensions.
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Figure 4.2 Dependence of a binary response, Y , on an
explanatory variable, x. An individual has an unobserved
tolerance, ξ, with distribution as shown. The stimulus α + βx
depends on the explanatory variable, x. If and only if the stimulus
exceeds the tolerance, the response Y = 1 is observed; otherwise
Y = 0.
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Figure 4.3 Ordinal observed value with levels 1, . . . , 4. The
unobserved latent variable has the distribution shown. The
exposure-dependent thresholds determine the observed response.
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4.7.3 Latent structure and latent class models

In some contexts all or many of the features in a study are addressed by
a combination of individual test scores. We have already mentioned such
features as arithmetical ability and health-related quality of life. There are
two broad approaches to the analysis.

One is to calculate simple summary scores for the items corresponding
to each identified feature, for example the proportion of correct answers to
a series of true–false questions. The notional expected value of this sum-
mary score is then taken as defining the aspect of interest and the basis of
interpretation.

The second possibility is to postulate a latent variable corresponding to
each feature and to regard the objective of study to be the relationship be-
tween these latent features. It is typically assumed that the observed vari-
ables are simply related to the relevant latent variable, with independent
errors. There are two broad types of such relationships, latent class models
and latent structure models.

In latent class models it is assumed that the study individuals each fall
into one of a small number of types or classes. Within each class the rele-
vant observations are independently distributed. The relationships between
different features are expressed solely by the presumed class membership.

The simplest form of latent class analysis takes p binary variables and
assumes that there are a small number k of classes and that within each
class the binary variables are mutually independent. Each class thus re-
quires the specification of p probabilities, and k − 1 parameters are needed
to specify class membership. Thus the model involves kp + k − 1 param-
eters. This approach may be attractive if kp + k − 1 is appreciably less
than 2p − 1, and especially if the latent classes can reasonably be given a
subject-matter interpretation. An adequate fit may always be achieved by
increasing the number, k, of latent classes but then there are clear dangers
of over-interpretation.

Latent class analysis has been used to assess the accuracy of diagnostic
tests when no ‘gold-standard’ diagnoses are available for the patients
under study, only the results of multiple imperfect diagnostic tests
(Pepe and Janes, 2007). In this case the true disease status is the latent
variable.

Illustration: Latent class analysis Bunting et al. (2008) used latent class
analysis to clarify the choice of variables for the main analysis of
a survey of patterns of art attendance in England. There were 729
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possible responses to questions about three domains: (i) theatre, dance
and cinema; (ii) music; (iii) visual arts, museums etc. For each domain,
the frequency of attendance in the previous 12 months was recorded as:
never; once or twice; three or more times. All possible response pat-
terns occurred with reasonable frequency in a sample of about 30 000
individuals.

Latent class analysis suggested grouping the responses to each do-
main into one of three sets: Little if anything; Now and then; Enthusias-
tic. For cross-domain analyses the subjects were grouped into four sets:
Little if anything in all three domains; Now and then in one or more
domains; Enthusiastic in one domain; Enthusiastic in two or in all three
domains.

These groupings were then used both for the simple tabulation of
frequencies and also for studies of the relationship of art attendance to,
for example, social status, education and health.

In latent structure analysis, by contrast, the latent variables are treated
as continuous and often as normally distributed and interrelated by
regression-like relationships.

4.7.4 Measurement error in regression

The last and in some ways most conceptually direct use of latent variables
is to represent features that could, in principle at least, be measured but
which are in fact not available. We concentrate the remainder of the dis-
cussion on this case. The most important application is to the effect, in
studies of dependence, of measurement error in the explanatory variables.

We start with the simplest case, that of the linear regression of a contin-
uous response variable Y on a continuous explanatory variable X. Random
measurement error in Y will add to the scatter around the fitted regression
but we will disregard that aspect to concentrate on the more subtle effects
of error in X.

The latent variable here is the notional ‘true’ value of X, denoted Xt. The
possibilities are that:

• Xt is the mean of a large number of hypothetical repetitions of the mea-
suring process under the same conditions;

• Xt is the outcome of a ‘gold-standard’ method of measurement, as
contrasted with the perhaps quicker and less expensive method actually
employed; or
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• Xt is a point value, or sometimes an average over a suitable time period,
of a property varying erratically over time.

An example of the last possibility is the measurement of blood pressure.
This is known to fluctuate substantially over relatively short time periods,
although typically only the value at one time point will be measured and
recorded.

The difference between the measured value Xm and Xt is the measure-
ment error, and its effect on the apparent relationship between Y and X
depends on a number of key features.

First, a systematic error that remained constant throughout a study would
displace the regression but leave its slope unchanged. A systematic error
that, say, drifted over time or was different for different sections of data
would possibly produce very misleading conclusions, and steps to avoid
such errors, by for example the recalibration of measuring devices, are
crucial.

For the remaining discussion, we assume that the differences between
the measured and true values represent random variation. There are two
main possibilities. The first, often called the classical error model, is that
for continuous measurements

Xm = Xt + ε, (4.5)

where ε is a random error that has mean zero and variance σ2
ε and, partic-

ularly importantly, that is independent of Xt.
If, however, Xt is binary, an error of measurement is a misclassification,

and the corresponding assumption is that

P(Xm = 1 | Xt = 0) = η0, P(Xm = 0 | Xt = 1) = η1, (4.6)

where the measuring procedure is characterized by the two error rates, η0

and η1. Here P(A | B) denotes the probability of event A given event B.
In the context of diagnostic testing and assuming that Xt = 1 in diseased
individuals, 1−η1 and 1−η0 are called, respectively, the sensitivity and the
specificity.

For continuous X the general effect is to flatten the regression rela-
tionship; this is called attenuation or regression dilution. In fact the least-
squares slopes βt and βm, for true and measured X, are such that

βm = βt
σ2

t

σ2
t + σ

2
ε

. (4.7)

Here σ2
t is the variance of Xt and the denominator is σ2

m, the variance of
Xm. If σ2

ε can be estimated, for example from independent replication on a
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Figure 4.4 Effect of measurement error on regression. (a) Close
linear relationship between Y and the true explanatory variable Xt.
(b) The points in the previous plot spread out horizontally owing
to the measurement error in X to give attenuated regression on the
measured value Xm. (c) Proportional measurement error confines
distortion to the upper end of range and induces a relationship
curved at the upper end.

subsample of individuals, the attenuating factor in (4.7) can be estimated
and hence an estimated slope obtained from Xm can be adjusted to provide
an unbiased estimate of βt.

An understanding of this issue is probably best obtained from some sim-
ple diagrams. Thus Figures 4.4(a), (b) show the flattening induced by ran-
dom variation in the measurement of X. Figure 4.4(c) shows that if the
errors are larger for large X, as for example they would be if they were
proportional to X, then a change in shape is induced. This has particu-
lar implications for the exploration of, say, dose–response relationships at
either extreme of a dose range.

For multiple regression with essentially independent explanatory vari-
ables, similar conclusions hold. If, however, there is strong dependence
between explanatory variables then the effect of measurement error may
be more confusing.

Illustration: Precision and true association in explanatory variables
An early investigation of AIDS among male homosexuals appeared to
show that HIV positivity depended on the extent of use of amyl ni-
trite pills and not on the number of sexual partners (Vandenbroucke and
Pardoel, 1989). These two potential explanatory variables were strongly
associated and it is likely that the former was relatively well recorded,
that is, it had only a small measurement error, whereas the latter had
a large measurement error. Regression on the ‘true’ but badly mea-
sured variable was in effect transferred to the ‘false’ but well-measured
correlate.
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That is, the formula corresponding to (4.7) for a single explanatory vari-
able becomes more complicated and requires knowledge of the measure-
ment variances (and in principle covariances) for all the components.

Somewhat similar conclusions apply to other forms of regression, such
as that for binary responses.

In addition to the technical statistical assumptions made in correcting
for measurement error, there are two important conceptual issues. First, it
is sometimes argued that the relationship of interest is that with Xm, not
that with Xt, making the discussion of measurement error irrelevant for di-
rect purposes. This may be correct, for example for predictive purposes,
but only if the range of future values over which prediction is required is
broadly comparable with that used to fit the regression model. Note, for ex-
ample, that if in Figure 4.4(b) the values to be predicted lay predominantly
in the upper part of the range then the predicted values would be system-
atically biased downwards by use of the regression on Xm. Second, it is
important that the variation used to estimate σ2

ε and hence the correction
for attenuation should be an appropriate measure of error.

Illustration: Correcting for measurement error In INTERSALT, a large
international study of the effect of salt intake on blood pressure, salt in-
take was estimated from analysis of urine (Stamler, 1997). For a small
proportion of subjects, duplicate observations of salt intake were made
a few days apart and used to estimate the variance associated with the
measurement error. This correction for measurement error greatly in-
creased the slope of the blood pressure versus sodium intake regression
and enhanced the implied importance of limiting salt intake for the pre-
vention of cardiovascular disease. There was, however, a dispute, not
clearly resolved, about whether the correction for attenuation was jus-
tified; did the error variance as estimated really reflect error or did it
in fact reflect true temporal variation in the salt intake and therefore in
blood pressure?

The above discussion applies to the classical error model, in which the
measurement error is statistically independent of the true value of X. There
is a complementary situation, involving the so-called Berkson error, in
which the error is independent of the measured value, that is,

Xt = Xm + ε
∗ (4.8)

where ε∗ is independent of Xm, implying in particular that the true values
are more variable than the measured values (Reeves et al., 1998). There
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Y Y

Xm Xt

Figure 4.5 Berkson error. Left-hand panel, the measured values,
equally spaced; right-hand panel, the true values (solid circles).
The true values are distributed around the measured values, as
shown by the arrows. The induced responses continue to lie on
the regression line. There is no attenuation but increased variance
about the regression line.

are two quite different situations where this may happen, one experimental
and one observational. Both are represented schematically in Figure 4.5. In
the experimental context a number of levels of X are pre-set, correspond-
ing perhaps to equally spaced doses, temperatures etc. These are the mea-
sured values. The realized values deviate from the target levels by random
amounts, making the formulation (4.8) appropriate.

An illustration of an observational context for Berkson error is the fol-
lowing.

Illustration: Berkson error In case-control studies of the effect of expo-
sure to radon in the home on lung cancer, the residence addresses for
subjects were identified over an appropriate time period and wherever
possible radon meters were placed in these homes to provide exposure
measures with small error. In those cases where the home was inacces-
sible, exposures were imputed by averaging values over neighbouring
similar sites. Under the assumption that the exposure at a particular site
varies randomly from the local geographical mean and that the latter
is estimated precisely, the Berkson error structure applies. If the error
in the local geographical mean is appreciable then we have a situation
intermediate between classical and Berkson errors.

Figure 4.5 illustrates in the case of a linear regression why the impact
of Berkson error is so different from that of classical error. The induced
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error translates into an additional error in the response Y , averaging to zero
and inducing no change in the regression relationship itself. For nonlinear
relationships a change is induced.

The distinction between classical and Berkson error is thus important.
The decision about which is at play has to be made on the basis of the nature
of the measuring process; it cannot be made on the basis of a statistical test.
The only exception is in the unlikely situation where independent estimates
are available of the variances of both Xt and Xm, when, if one turns out to
be clearly the greater, the broad nature of the error structure is implied.

Notes

Section 4.1. For a broad discussion of the principles of measurement see
Hand (2004). For a discussion of methods for assessing health-related qual-
ity of life, see Cox et al. (1992).

Section 4.2. For a brief account of content analysis, see Jackson (2008).

Section 4.7. Latent structure analysis is a development of factor analy-
sis, a method widely used in early work on educational testing. A key
paper is that of Jöreskog and Goldberger (1975). For a detailed discus-
sion of latent structure models, see Bollen (1989). Latent class analysis
was introduced by Lazarsfeld in a famous study, The American Soldier
(Merton and Lazarsfeld, 1950). For a detailed account of measurement er-
ror in regression analysis, see Carroll et al. (2006) and, for a brief intro-
duction, Reeves et al. (1998).
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Preliminary analysis

An outline is given of some of the steps needed to ensure that the
data finally analysed are of appropriate quality. These include data
auditing and data screening and the use of simple graphical and tabular
preliminary analyses. No rigid boundary should be drawn between
such largely informal procedures and the more formal model-based
analyses that are the primary focus of statistical discussion.

5.1 Introduction

While it is always preferable to start with a thoughtful and systematic
exploration of any new set of data, pressure of time may tempt those
analysing such data to launch into the ‘interesting’ aspects straight away.
With complicated data, or even just complicated data collection processes,
this usually represents a false time economy as complications then come to
light only at a late stage. As a result, analyses have to be rerun and results
adjusted.

In this chapter we consider aspects of data auditing, data screening, data
cleaning and preliminary analysis. Much of this work can be described as
forms of data exploration, and as such can be regarded as belonging to a
continuum that includes, at the other extreme, complex statistical analy-
sis and modelling. Owing to the fundamental importance of data screening
and cleaning, guidance on ethical statistical practice, aimed perhaps par-
ticularly at official statisticians, has included the recommendation that the
data cleaning and screening procedures used should be reported in pub-
lications and testimony (American Statistical Association Committee on
Professional Ethics, 1999).

Of course the detailed nature of these preliminary procedures depends
on the context and, not least, on the novelty of what is involved. For ex-
ample, even the use of well-established measurement techniques in the
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research laboratory needs some broad checks of quality control, but these
requirements take on much more urgency when novel methods are used
in the field by possibly inexperienced observers. Moreover, for large stud-
ies breaking new ground for the investigators, especially those requiring
the development of new standardized operating procedures (SOPs), some
form of pilot study is very desirable; data from this may or may not be in-
corporated into the data for final analysis. More generally any changes in
procedure that may be inevitable in the course of a long investigation need
careful documenting and may require special treatment in analysis. For ex-
ample, in certain kinds of study based on official statistics key definitions
may have changed over time.

5.2 Data auditing

By data auditing we mean the auditing of the process of identifying the ap-
propriate units for data collection, the measurement of variables and the
recording of data. In other contexts, data auditing is used to refer to the
process of identifying all datasets held within an organization, identifying
the individuals responsible for them and providing a structure to support
the sharing of sets of data, as appropriate, within an organization and with
others.

A data audit traces backward from the recorded data as far as reason-
ably possible. If the audit goes back to the original source of data, for
example by remeasuring subjects or by resurveying land for features of
interest, this process is sometimes referred to as ‘ground truthing’ the data.
It may be helpful to take just a small sample of data as part of a pilot
audit.

Illustration: Quality assurance audit and reanalysis Prominent examples
of large-scale data audits are the audits and reanalyses undertaken of the
Harvard Six Cities Study and the American Cancer Society (ACS) Study
(Krewski et al., 2000, 2003). A reanalysis team undertook a quality as-
surance audit of a sample of the original data and sought to validate the
original numerical results. The data subjected to the quality assurance
audit included both data on the study population and, for the Six Cities
Study, data on air quality. As to be expected in such large studies, the
reanalysis found a small number of errors in coding and in the inclusion
of a small number of subjects who should have been excluded. However,
these errors did not affect the conclusions.
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Illustration: Independent data extraction for quality assurance An inde-
pendent auditor was appointed to assess the quality of the data collected
in a large field trial of badger culling policies aimed to reduce the risk
of tuberculosis in cattle herds. The primary data were the number of
new detections of tuberculosis in cattle herds, termed tuberculosis herd
breakdowns, within the study areas. These data were extracted from a
multi-disease animal health database used to record surveillance data for
the government department with responsibility for animal health. The
data could not be traced back to the original cattle in which evidence
of tuberculosis was disclosed, because the animals involved had been
slaughtered to protect public health and to avoid further spread of the
disease. However, the auditor worked with staff in a government agency
to extract, independently of the scientists overseeing and analysing the
trial, the counts of tuberculosis herd breakdowns by area and time pe-
riod. This provided an important independent check of the quality of the
single most important type of data collected.

Illustration: Genetic test changes conclusion Data auditing can be criti-
cal even for studies with a small sample size. In October 2001 the UK
Department of Environment, Food and Rural Affairs announced that it
had been discovered that sheep brain tissues intended for testing for
bovine spongiform encephalopathy, BSE, also known as mad cow dis-
ease, had been contaminated with cattle brain tissues. Critically, the
brain sample that had been found positive for BSE was in fact bovine
tissue rather than ovine tissue. A positive pure sheep sample would have
had major implications for the British sheep industry. Previously, in
September 2001, ministers had released contingency plans that included
a worst-case scenario in which ‘the eating of lamb would be banned, and
the entire UK flock of up to 40 million sheep would be destroyed’. There
are a number of morals to this episode; one is the need for independent
replication within a single investigation.

5.3 Data screening

The purpose of data screening is an initial analytical, that is, non-audit,
assessment of data quality. Questions of data quality must, however, be kept
in mind throughout the process of data analysis and interpretation, because
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complex issues may well not be discovered until considerable analysis has
been undertaken.

The first thing to explore is the pedigree of the data. How were the data
collected? How were they entered into the current electronic dataset or
database? Were many people involved in data collection and/or data entry?
If so, were guidelines agreed and recorded? How were dates recorded and
entered? After all, 05/06/2003 means 5 June to some and May 6 to others.

A starting point in dealing with any set of data is a clear understanding
of the data coding structure and of any units associated with the variables.
Coding any missing values as −99 may not be confusing if the variable in
question is age in years. However, coding them as ‘Unk’ when the variable
denotes names of individuals, for example, of animals, may be confusing
particularly when many individuals have multiple entries in the dataset.
Thus, ‘Unk’ might be interpreted incorrectly as the name, albeit an unusual
one, of an individual.

Calculations of means, standard deviations, minima and maxima for all
the quantitative variables allow plausibility checks and out-of-range checks
to be made. An error could be as simple as a misinterpretation of units,
pounds being mistaken for kilograms, for example. Input and computa-
tional errors may become apparent at this stage.

It may help to consider multiple variables simultaneously when search-
ing for outliers (outlying individuals), the variables being selected if possi-
ble only after detailed consideration of the form in which the data were
originally recorded. For example, it may become clear that height and
weight variables were switched at data entry. Furthermore, from a plot
of two variables that are strongly related it may be easy to detect outly-
ing individuals that are not anomalous in either variable on its own. Such
individuals may have a major, often unwanted, effect on the study of rela-
tionships between variables.

Illustration: Spreadsheet errors Powell et al. (2009) examined spread-
sheets to characterize the frequency and types of error that arise during
their use. On this basis they defined six error types: logical errors, where
a formula was used incorrectly; reference errors, where a formula refers
to another cell incorrectly; the placing of numbers in a formula, not
necessarily an error but considered bad practice; copy and paste errors;
data input errors; and omission errors, where an input cell required by a
formula is missing. They estimated that 1% to 2% of all formula cells
in spreadsheets contain errors. As many spreadsheets contain a large
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number of formula cells, the potential for error is considerable. Care-
ful inspection of the original spreadsheet(s) or program commands is
clearly warranted whenever possible if the data were processed in any
way following data entry.

Identifying univariate outliers may in a few cases be relatively simple,
whereas detecting multivariate outliers usually requires more work. Out-
liers will affect the descriptive statistics such as sample means and vari-
ances, so it is possible that outliers may be obscured when simple rules
based on these quantities are used to identify them. More challenging, in
some respects, than the identification of outliers is determining what to do
about them. Outliers that arise from errors should be excluded if they can
be thus identified conclusively. However, outliers may arise from rare but
accurate observations which could provide important insight into the sys-
tem under study. In the investigation of outliers, subject-matter expertise is
important in identifying observations that go beyond what would have rea-
sonably been expected. Judging exactly how rare or implausible a particu-
lar sort of outlier is may be particularly difficult when previously published
analyses have excluded such observations and have presented little or no
detail on them.

In some situations with very large amounts of data, a small proportion
of which are subject to large errors of measurement, it is important to use
methods that are automatically insensitive to such extremes.

Illustration: Outlier detection to detect foul play In some settings, the de-
tection of outliers may be one main purpose of the analysis. An example
of this is financial fraud detection based on the detection of anomalous
transaction data and/or user behaviour (Edge and Sampaio, 2009). Simi-
larly, possible intrusions into or misuses of computer systems can be de-
tected by analysing computer use patterns and assuming that instances
of computer misuse are both rare and different from patterns of legiti-
mate computer use (Wu and Banzhaf, 2010).

Illustration: Data exclusion to avoid undue influence of irrelevant factors
Data screening may lead to some data being excluded not because
they were errors but because they were dominantly affected by aspects
other than the phenomenon under study. A study of aerosol particles
detected in Chichi-jima of the Ogasawara Islands in the northwestern
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Pacific aimed to characterize the black-carbon mass fractions in anthro-
pogenic aerosols from the source regions, China, Japan and the Korean
peninsula (Koga et al., 2008). However, because aerosol concentrations
are strongly affected by rain, particle data were excluded during time
periods when local precipitation records indicated that it had rained.
Furthermore, the coefficient of variation, that is, the standard devia-
tion divided by the mean, in the concentrations was calculated for four
particle-size classes for each hour. If the coefficient of variation was
greater than one-half in one or more of the size classes then all data
from that time interval were excluded to remove the influence of local
sources of carbon particles.

Patterns of missing data should be explored at an early stage to en-
sure that any potential problems connected with missingness are identi-
fied promptly. The first assessment should examine on a univariate basis
the proportion of data which are missing for each variable. If a particular
variable, not the strong focus of the investigation, has a high proportion
of missing data then consideration should be given to whether the variable
could or should be dropped from further analyses. However, a rule such as
‘drop the variable if more than 25% of values are missing’ should never be
applied blindly. Furthermore, in some situations variables may have data
missing by design, so-called planned missingness.

Illustration: Planned missingness Planned missingness might arise if
a questionnaire were divided into sections and respondents were
only asked questions from some sections of the questionnaire
(Raghunathan and Grizzle, 1995). Alternatively, a two-stage design
would give rise to planned missingness if the first stage involved the
testing of all subjects with a relatively cheap diagnostic test while the
second stage involved testing only a subset of these subjects with a more
expensive test. See for example McNamee (2002).

Further investigations into correlates of missing values, or outliers, could
include logistic regression models to predict which individuals will be
missing or will have an outlier value for a particular variable. Depending
on the amount of missing data and the extent to which it is non-random,
techniques such as expectation-maximization (EM) imputation may be ap-
propriate to obtain estimates that make effective use of all the available
data. Indeed, virtually all the more elaborate methods of imputing missing
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values assume that missingness is random and in particular that it is con-
ditionally independent of the value that would have been observed if com-
plete data collection had been achieved. Techniques for dealing with so-
called informative missingness depend on strong and typically untestable
assumptions.

Illustration: Exploring patterns of data missingness Patterns of miss-
ingness in multiple variables may be explored using standard de-
scriptive techniques. Data on health-related quality of life (QOL)
were collected from a melanoma trial that compared two treatments
(Stubbendick and Ibrahim, 2003). Once patients enrolled in the trial
they were asked to complete QOL questionnaires at baseline, after one
month, after six months and after one year. Of the 364 patients enrolled,
54 cases died before all four measurements could be taken and 33 cases
had no QOL data at any time point. From the remaining 277 patients,
11% had data missing at baseline, 17% at one month, 22% at six months
and 27% at one year. Unsurprisingly, even among the 277 with some
QOL data, the missing data were clustered with 159 patients having
complete QOL data and 34 patients having only one of the four QOL
measures complete, which may be compared with the expected values
118 and 6 respectively, had data been missing at random.

Pairwise relationships between variables should be assessed to deter-
mine whether the variables are too highly correlated for some purposes.
For example, from a set of highly correlated variables a single variable may
need to be chosen for inclusion as a predictor in a regression model, the
others being regarded as, in a sense, redundant. If such exclusions are not
made, the precision of regression slopes is likely to be reduced and, more
importantly, individual estimates of slope may be misleading. In contrast,
all variables regardless of collinearity may be included in a factor analysis
without any ill effects. This is discussed further in Section 7.3.

In some situations the pattern and amount of random variability may
vary either haphazardly or systematically, and this may be both of intrinsic
concern and have important implications for the subsequent analysis.

For studies in which relatively little is known about the spatial distri-
bution of an outcome of interest, there is a range of exploratory tech-
niques available, the use of which is sometimes referred to as exploratory
spatial data analysis. Depending upon the specifics of the study at hand,
aims may include the identification of hot spots (clusters) and cool spots, a
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particularly treacherous issue in epidemiology. Somewhat easier to inves-
tigate are systematic spatial associations, the detection of spatial outliers
and the identification of sources of spatial heterogeneity. The characteriza-
tion of spatial heterogeneity may be a central aim of the project or, at the
other extreme, a nuisance required to avoid an overestimation of precision
if account has not been taken of substantial spatial correlation.

5.4 Preliminary graphical analysis

A wide range of graphical tools for the description and exploration of
data is easily accessible. A histogram shows the distribution of a variable,
whereas a boxplot gives in more compact form the median, skewness and
any outliers in the distribution. Boxplots may also be a convenient way of
illustrating comparisons between a small number of datasets. Maps also
may be important tools. New data visualization tools have been developed
within geographic information systems (GISs) to assess patterns hidden
within large spatial sets of data, for example those collected from satellites.
Dynamic graphical representations are likely to be particularly helpful for
studying both empirical data and the output of complex computer models
where the temporal or spatial development of processes is involved.

Illustration: Graphical demonstration of association A famous early
graphical display of data was the map used by John Snow to show the
locations of cholera deaths and of sources of drinking water on the same
London city map in 1854 (Snow, 1855). See Figure 5.1. Historical re-
search indicates that rather than using the map to discover the likely
source of the epidemic, Snow used the map to convey the conclusions
he had made on the basis of his theory of how cholera was transmit-
ted (Brody et al., 2000). Snow had seen the map published by an Exeter
doctor, Thomas Shapter, showing the locations of cholera deaths on a
map of Exeter; however, this map crucially did not show the locations
of sources of drinking water (Shapter, 1849).

Illustration: Graphical depiction of complex data structure Graphical rep-
resentation can be particularly helpful in understanding networks. A
study was undertaken to describe a cluster of HIV transmission in South
Wales (Knapper et al., 2008). The identification and notification of part-
ners following diagnosis of the index case allowed reconstruction of the
sexual network through which infection was spread. While a plot of the
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Figure 5.1 Part of a map of cholera deaths, showing sources of
drinking water (Snow, 1855).

Figure 5.2 Plot of a sexual contact network in which individuals
are plotted as nodes and sexual contacts are plotted as edges.
Plotting symbols are used to distinguish the different attributes of
the nodes.

network using individuals as nodes and sexual contacts as edges pro-
vides insights, further information is conveyed through the use of dif-
ferent shapes and shading to distinguish attributes of the nodes (as in
Figure 5.2).
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A scatterplot describes a bivariate distribution and allows bivariate out-
liers to be identified visually. A scatterplot matrix is a multi-panel display
presented in much the same way as a correlation matrix, in which each col-
umn relates to the same x-axis and each row to the same y-axis. Thus, for
the variables included, a scatterplot matrix presents all the bivariate rela-
tionships, each combination appearing both above and below the diagonal
owing to symmetry. While a traditional single-panelled two-dimensional
scatterplot displays only two variables, additional information can be added
to reflect other variables through varying the size, shape or colour of the
datapoints or even through the addition of a ‘tail’ to each data point in
which the angle of the tail reflects an additional variable. The term ‘glyph
plot’ is used for graphics including such glyphs, defined as symbols which
display data by changing their appearance. Weather maps frequently use
such symbols to show wind speed and wind direction simultaneously. Their
general use for statistical analysis is probably restricted to situations with a
small number of distinct points on the graph. For example, it is reasonable
to show intercountry relationships between pairs of features by plotting a
point for each country, provided that the number of countries involved is
not too large.

Some of the most rapidly developing aspects of graphical methods cen-
tre on the use of powerful computer-based techniques, in particular to ex-
amine dynamic high-dimensional dependencies. At a more primitive level,
important aspects of traditional graphical methods are often disregarded,
both in preliminary analysis and also in presenting conclusions. These
include the following:

• axes should be clearly labelled;
• related graphs should normally be on the same scales to ensure compa-

rability;
• false origins should be marked by a scale break;
• so far as is feasible, distinct points should be of roughly equal precision;
• so far as is feasible, distinct points should have independent sampling or

measurement errors;
• while some indication of the precision of points on a plot is desirable, the

provision of large numbers of confidence intervals and/or significance
tests may invite misinterpretation;

• the interpretation of plots with substantial noise should not be compro-
mised by imposing on them prominent smooth curves; and

• so far as is feasible, the legend attached to the diagram should make the
meaning self-explanatory without reference back to the text.
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Figure 5.3 A forest plot comparing the results of six randomized
controlled trials (Ahern et al., 1984; De Silva and Hazleman,
1981; Gøtzsche et al., 1996; Kremer et al., 1987; ten Wolde et al.,
1996; Van der Leeden et al., 1986). Four trials showed that
patients who remained on their initial dosage of disease-
modifying antirheumatic drugs were at significantly lower risk of
flares or worsening of their rheumatoid arthritis than patients who
discontinued treatment, as reviewed by O’Mahony et al. (2010).

One implication of these points is that there is at most a limited and spe-
cialized role for smoothing methods other than simple binning. The reason
is that smoothness which is artefactually generated is virtually impossible
to distinguish from real smoothness implicit in the data. Put differently, un-
dersmoothed data are easily smoothed by eye, or more formally, but over-
smoothed data are vulnerable to misinterpretation and can be unsmoothed
only, if at all, by delicate analysis.

A common method, in some epidemiological studies, of presenting the
analysis of a series of related investigations, sometimes called a forest plot,
is less than ideal in some respects. Usually the primary outcome plotted is
a log relative risk, that is, the log of the ratios of the estimated probabilities
of death for individuals exposed or unexposed to a particular risk factor.
Figure 5.3 shows a typical forest plot, in which each study provides an
estimate and a 95% confidence interval.

Imperfections in this are as follows:

• confidence intervals are appropriate for assessing uncertainty in a single
estimate but are less so for comparative purposes;
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• they invite the misinterpretation that two studies are mutually consistent
if and only if the confidence bands overlap;

• they misleadingly suggest that the studies in a set are mutually consistent
if and only if there is a single point intersecting all the study intervals
shown; and

• to obtain the standard error and confidence intervals for comparison of
pairs or groups of studies is not as direct as it might be.

It is probably better to show the standard error of each estimate. There
are further issues connected with such summary analyses, in that quite of-
ten the different estimates are adjusted for other risk factors in a way that
differs between studies. Also, care is needed is indicating the precision of
the overall assessment; some methods of analysis lead to the serious un-
derestimation of potential errors in the final summary.

5.5 Preliminary tabular analysis

Tabular analysis has a long history. Indeed, such analysis was the topic of
a paper read to the Royal Statistical Society in 1879 (Guy, 1879), refer-
ring to an 1831 book on the same topic (Todd, 1831). Simple descriptive
tables typically gave counts, possibly accompanied by means, for a partic-
ular combination of attributes.

Illustration: Early tabular analysis Tables were published in 1841 of 134
cases of typhoid fever in Paris, stratifying them by symptoms and sever-
ity (Walshe, 1841a,b,c). The author found the tables ‘of considerable
utility, in affording a ready means of comparing the symptomatology of
the form of the malady existing in the French capital, and that prevailing
in other quarters. Believing it possible that this analysis might similarly
serve the purpose of others, I venture to publish it’.

Although such methods are sometimes considered uninteresting, owing
to their relative simplicity, simple descriptive tables can play important
roles in describing a sample under study. They can provide key data for
subsequent analyses seeking a synthesis of different but related results from
distinct studies. Furthermore, they can demonstrate the extent to which a
study’s conclusions were well grounded in the observed data.
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Illustration: Tabular analysis demonstrates some results were off support
Messer et al. (2010) explored the effects of neighbourhood characteris-
tics (economic deprivation and racial segregation) on the risk of preterm
birth. Their tabulation of women and preterm births by every combi-
nation of level of economic deprivation and racial segregation and by
county, race and maternal education level demonstrated how unevenly
the data were distributed, some combinations of economic depriva-
tion and racial segregation being entirely absent. On the basis of these
tables, the authors concluded that their logistic regression results were
‘off support’ (Manski, 1993), in that they involved extrapolation to pre-
dict the risk of preterm births for groups of women for whom no data
were available. Although not necessarily to be avoided, the interpreta-
tion of off-support results should be particularly cautious.

The primary reporting of the conclusions of statistical analysis is by de-
scriptive statistics and by estimates of parameters together with standard
errors, sometimes accompanied by standard errors of associated contrasts.
Unnecessary digits hinder the reader; at the same time a future user of the
estimates should not be faced with a loss of accuracy due to appreciable
rounding errors. Some broad guidelines based on those considerations are
as follows.

Units should always be stated and chosen so that, as far as is feasible,
estimates are neither very large numerically nor very small. For physical
measurements this can be achieved within the SI system (Le Système Inter-
national d’Unités); for example, for mass the following units can be used:
. . . ,µg, mg, g, kg, . . . Standard errors should be given to two or at most
three working digits and primary estimates should have a rounding error
of less than one-tenth of a standard error. For example, a mass might be
quoted as 0.453 kg with a standard error of 0.026 kg.

5.6 More specialized measurement

Much laboratory-based work, which years ago would have largely used
apparatus built in the local workshop, now uses intricate externally manu-
factured equipment, quite often with built-in computerized analysis giving
key summaries or graphical displays and allowing, where appropriate, di-
rect entry into a data base for a whole study. These changes do not, how-
ever, diminish the need for quality control of the data, even if the detailed
procedures may take different forms.
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Perhaps the most difficult aspect to assess is that a large amount of pre-
liminary processing may have taken place before the primary data become
available for analysis.

Illustration: Particle physics data The primary data for analysis from an
experiment on the large hadron collider at CERN, the European Orga-
nization for Nuclear Research, are counts of collisions grouped into a
large number of bins defined by the energy involved. A background of
occurrences arises in Poisson processes, that is, completely randomly,
at a rate that varies smoothly with energy. Above this background,
occurring in narrow energy bands are apparently high counts, which
may represent:

• known phenomena of no immediate concern;
• occurrences expected on theoretical grounds but not yet observed,

most notably an appearance of the Higgs boson;
• unexpected occurrences, so-called new physics;
• chance fluctuations to be expected in view of the very large number

of energy bands studied.

The data for analysis are, however, the product of an elaborate screening
procedure in which extremely large numbers of irrelevant events are
removed, and this may be a data quality aspect of concern. For a general
review of statistical problems in particle physics, see Lyons (2008).

In other contexts where the evaluation and scoring of complex data are
involved, blind scoring of a subsample by independent experts is desirable.
When data are collected over a substantial time period, calibration checks
are important and also checks for sticking instruments, that is, instruments
that repeatedly record the same value, often at the extreme of the feasible
range for the instrument concerned. Thus a long sequence of zero rain-
falls recorded in a tipping-bucket rain gauge may be strong evidence of a
defective gauge.

5.7 Discussion

It is impossible to draw a clear line between analyses which are exploratory
and those which form the main body of an analytical study. Diagnostic
investigations into the fit of a particular model may lead back to further
exploratory analyses or even to further data screening and cleaning. The
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process is usually, and indeed should be, iterative as further insights are
gained both into the phenomenon under study and into other processes
which have contributed to the generation of the observed data.

The documentation of methods and results is important throughout to
avoid confusion at later stages and in publications about the work. More
generally, for data of an especially expensive kind and for data likely to
be of broad subsequent interest, early consideration should be given to the
subsequent archiving of information. Material to be recorded should in-
clude: the raw data, not summaries such as means and variances; a clear
record of the data collection methods and definitions of variable coding
schemes (including the coding of missing values); any computer programs
used to retrieve the study data from a complex database.
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Model formulation

More formal methods of statistical analysis are based on a probability
model for the data. This represents in idealized form the main features
of the variability encountered and possibly also summarizes the data-
generating process. Such models contain parameters some of which
encapsulate the research questions of concern. The main aspects of
probability models are reviewed and simple examples are given.

6.1 Preliminaries

Simple methods of graphical and tabular analysis are of great value. They
are essential in the preliminary checking of data quality and in some cases
may lead to clear and convincing explanations. They play a role too in pre-
senting the conclusions even of quite complex analyses. In many contexts
it is desirable that the conclusions of an analysis can be regarded, in part at
least, as summary descriptions of the data as well as interpretable in terms
of a probability model.

Nevertheless careful analysis often hinges on the use of an explicit prob-
ability model for the data. Such models have a number of aspects:

• they may encapsulate research questions and hypotheses in compact
and clear form via parameters of interest, or they may specify a sim-
ple structure, deviations from which can be isolated and studied in
detail;

• they provide a way of specifying the uncertainty in conclusions;
• they formalize the discounting of features that are in a sense accidents

of the specific dataset under analysis;
• they may represent special features of the data collection process;
• they allow the comparison of different methods of analysis and, in par-

ticular, they specify methods of analysis that are in a well-defined sense
efficient under the conditions postulated.

90
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In connection with this last point note that, while it is appealing to use
methods that are in a reasonable sense fully efficient, that is, extract all
relevant information in the data, nevertheless any such notion is within
the framework of an assumed model. Ideally, methods should have this
efficiency property while preserving good behaviour (especially stability
of interpretation) when the model is perturbed.

Essentially a model translates a subject-matter question into a mathe-
matical or statistical one and, if that translation is seriously defective, the
analysis will address a wrong or inappropriate question, an ultimate sin.

The very word ‘model’ implies that an idealized representation is in-
volved. It may be argued that it is rarely possible to think about complex
situations without some element of simplification and in that sense models
of some sort are ubiquitous. Here by a model we always mean a probability
model.

Most discussion in this book concerns the role of probability models as
an aid to the interpretation of data. A related but somewhat different use of
such models is to provide a theoretical basis for studying a phenomenon.
Furthermore, in certain cases they can be used to predict consequences in
situations for which there is very little or no direct empirical data. The
illustration concerning Sordaria discussed below in Section 6.3 is a simple
example of a model built to understand a biological phenomenon. In yet
other contexts the role of a probability model may be to adjust for special
features of the data collection process.

Stereology is concerned with inferring the properties of structures in sev-
eral dimensions from data on probes in a lower number of dimensions; see
Baddeley and Jensen (2005). In particular, many medical applications in-
volve inferring properties of three-dimensional structures in the body from
scans producing two-dimensional cross-sections.

Often, more detailed models involve progression in time expressed by
differential equations or progression in discrete time expressed by differ-
ence equations. Sometimes these are deterministic, that is, they do not
involve probability directly, and provide guidance on the systematic varia-
tion to be expected. Such initially deterministic models may have a ran-
dom component attached as an empirical representation of unexplained
variation. Other models are intrinsically probabilistic. Data-generating
processes nearly always evolve over time, and in physics this manifests
itself in the near-ubiquity of differential equations. In other fields essen-
tially the same idea may appear in representations in terms of a sequence
of empirical dependencies that may be suggestive of a data-generating
process.
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More formal detailed models incorporating specific subject-matter con-
siderations can be classified roughly as either ‘toy’ models, where the word
‘toy’ is not to be taken dismissively, or as quasi-realistic. Toy models are
used to gain insight into possibly quite complex situations, such as epi-
demics, by concentration on a few key features. Such models are often best
studied by mathematical analysis, although a purely numerical approach
is always available. Quasi-realistic models virtually always demand com-
puter simulation. Sometimes a combination of the two approaches may be
effective. The output from a quasi-realistic model may be compared with
that from the nearest toy model. This smoothes the output from the simu-
lation and exposes those conditions under which the toy model is adequate
and those in which it is seriously inadequate. This latter information may
itself be enlightening. The greatest difficulty with quasi-realistic models is
likely to be that they require numerical specification of features for some of
which there is very little or no empirical information. Sensitivity analysis
is then particularly important.

Illustration: Parallel development of ‘toy’ and quasi-realistic models To
analyse data on the 2003 Severe Acute Respiratory Syndrome (SARS)
epidemic in Hong Kong, Riley et al. (2003) created a stochastic trans-
mission model in which the population of Hong Kong was stratified by
infection status (susceptible, latently infected, infectious, hospitalized,
recovered or dead) which could vary over time. The population was also
stratified by geographic district, and this was assumed fixed over the
time period of analysis. During the analysis, the authors developed and
analysed in parallel the above complex transmission model and a sim-
plified and analytically tractable differential-equation-based transmis-
sion model. The agreement obtained between the results of these two
approaches, when they could reasonably be compared, helped in check-
ing the computer code and provided reassurance that the complex and
hopefully more realistic model was giving useful results.

We suppose in most of our discussion that a specific set of data is avail-
able for analysis. Of course, this presupposes that certain choices have been
made already.

6.2 Nature of probability models

It is first useful to distinguish conceptually two broad situations. In one,
ideally data could be obtained largely free of haphazard variation and the
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aspects of interest studied directly but in fact perturbations of no intrin-
sic interest distort the position; such variability, which may be called er-
ror, needs consideration. This is the position in some laboratory investiga-
tions, especially in the physical sciences. The other possibility is that there
is substantial natural variability in the phenomenon under study. In some
statistical writing this variability too is called error, but this is potentially
misleading.

Illustration: Variation may or may not be of intrinsic interest Repeat de-
terminations of the rate constant of a well-defined chemical reaction
may show relatively small variability around the mean. Such variabil-
ity may reasonably be called error and may need assessment if refined
estimation is required of contrasts between the rates in slightly differ-
ent set-ups. Care to avoid appreciable systematic error is crucial. The
distribution of the random part of the error is normally of no intrinsic
interest but, say, if laboratory mice are infected with a pathogen then
their time to death is likely to have an appreciably dispersed distribu-
tion and the characterization of this distribution is of intrinsic interest;
typically it makes no sense to talk of the time to death. For contrasts,
say of different pathogens, any systematic change in the distribution
will be of interest. It may be very helpful to describe the distribution
in terms of a small number of parameters, contrasts of which can then
be studied, but even then it is the distribution itself that is of ultimate
concern.

In one broad class of situations we have data on study individuals for
each of which a number of features are recorded. That is, there is repetition
of the same or a very similar process across individuals. In other contexts
the repetition may be across time, across space or across space and time.
The different features typically serve different purposes, as discussed in
Chapter 4.

Model formulation may proceed in a number of stages but a first step is
often to consider how certain outcome or response variables depend on the
explanatory variables. This translates in probabilistic terms into studying
the conditional distribution of a variable Y given the values of explanatory
variables x. Typically both Y and x are vectors. For this we produce a rep-
resentation of the conditional distribution of Y given x, written in the form
fY(y, x; θ). Here θ is a vector of unknown constants.

Thus a first question in model formulation concerns what is to be treated
as random and what as fixed, that is, taken conditionally for the specific
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analysis. This is to a large extent a subject-matter question, not something
to be decided by a statistical procedure.

We denote by Y the set of observations to be represented by random
variables in a probability model. A model then specifies the distribution of
Y . In a few special cases the model will contain a single completely known
probability distribution.

Illustration: Probability distribution with no unknown parameters A num-
ber n of organisms are released in a supposedly homogeneous environ-
ment and their direction of first movement is recorded as an angle in
(0, 2π) relative to a defined reference direction. The initial probability
model is that the vector of n observations has the distribution of n mu-
tually independent random variables uniform on (0, 2π). Here the re-
search question of interest concerns the consistency of the data with the
specified model. Depending on the context, and possibly influenced by
preliminary inspection of data, we might look for concentration of the
first-movement directions around a direction given a priori, or around an
unknown direction or around several specific directions or possibly for
the avoidance of a particular set of directions. Alternatively, we might
look to see whether organisms tended to follow or avoid the paths of
organisms tested before them.

Illustration: Model tailored to a specific research question Suppose that
observations are obtained, on a sample of individuals, of systolic blood
pressure, body mass index (BMI), age and gender and that the research
question of interest concerns the dependence of systolic blood pressure
on BMI for individuals of a given age and gender. All four variables
vary across individuals and in different contexts all could be modelled
as random variables. For the present specific purpose, however, only the
systolic blood pressure is regarded as a random variable. If we denote
the four variables by y and x = (x1, x2, x3) respectively, a model could
take various forms but a simple version would specify the dependence
of E(Y) on the explanatory variables x, perhaps by a linear function.
A second and important aspect of such a model concerns the assump-
tion of statistical dependence or independence of the data for distinct
individuals.

If the research question of interest changes and now we are interested
in the relationship between BMI and age the formulation changes and
the BMI is regarded explicitly as a random variable.
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Much more commonly, however, we start not with a single distribution
but with a family of possible distributions for Y . We write for the fam-
ily of possible probability distributions the expression fY(y; θ), where each
possible value of θ specifies a particular distribution. Here to simplify the
notation we omit the dependence on any explanatory variables x. An initial
broad classification of such formulations is:

• parametric;
• nonparametric; or
• semiparametric.

We will concentrate largely on parametric formulations in which θ has a
finite, sometimes relatively small, number of components. Familiar exam-
ples are the standard forms of generalized linear regression, in particular
those with independent normally distributed deviations; in this case the pa-
rameter θ consists of the unknown regression coefficients and the variance
of the associated normal distribution. One of the simplest such forms is
a straight-line relationship between the explanatory variables x j and the
response variables Yj, namely

Y j = β0 + β1x j + ε j, (6.1)

where for j = 1, . . . , n the deviations ε j are independently normally dis-
tributed with mean zero and unknown variance σ2 and each value of j
corresponds to a distinct study individual. The vector parameter is θ =
(β0, β1, σ

2), although in particular instances one or more of the components
might be known. The systematic component of the model can be written as

E(Y j) = β0 + β1x j. (6.2)

Many widely used models are essentially generalizations of this.
By contrast a nonparametric formulation of such a relationship might be

Yj = φ(x j) + ε j, (6.3)

where φ(x) is an unknown function of x constrained only by some smooth-
ness conditions or by being monotonic, and the ε j are mutually independent
random variables with median zero and with otherwise unknown and arbi-
trary distribution.

There are two broad forms of semiparametric formulation. In one the
distribution of the ε j remains nonparametric whereas the regression func-
tion is linear or has some other simply parameterized form. In the other
the roles are reversed. The function φ(x) remains as in the nonparametric
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form but the ε j are assumed, for example, to be independently normally
distributed with constant variance.

In this book we concentrate mostly on parametric formulations, although
many of the points to be discussed apply quite broadly. Parametric models
typically represent some notion of smoothness; their danger is that particu-
lar representations of that smoothness may have strong and unfortunate im-
plications. This difficulty is covered for the most part by informal checking
that the primary conclusions do not depend critically on the precise form
of parametric representation. To some extent such considerations can be
formalized but in the last analysis some element of judgement cannot be
avoided.

One general consideration that is sometimes helpful is the following. If
an issue can be addressed nonparametrically then it will often be better to
tackle it parametrically; however, if it cannot be resolved nonparametri-
cally then it is usually dangerous to resolve it parametrically.

Illustration: Survival analysis with two modes of failure An industrial
component may fail in one of two quite different failure modes. A person
in remission after treatment for cancer may have a local recurrence or
may have a widely dispersed recurrence. Such situations are commonly
modelled by supposing that for each individual there are two notional
failure times, T1, T2, corresponding to the two modes and that all that is
observed is the smaller of the two times, min(T1, T2), and an indicator
of which mode occurred. These questions might arise. Are T1 and T2

statistically independent? What is the marginal distribution of, say, T2?
It can be shown that the first question cannot be answered nonparamet-
rically: any possible set of data is consistent with the independence of
T1 and T2. Yet it could be answered parametrically, for example by as-
suming (T1, T2) to have a bivariate log normal distribution. The resulting
estimate of the correlation coefficient between log T1 and log T2 is then
extremely sensitive to the assumption of log normality and it would be
wise to use such a resolution only exceptionally.

The word ‘model’ implies that a representation is at best an idealiza-
tion of a possibly complicated real physical, biological or social system.
Once a model is formulated two types of question arise. How can the un-
known parameters in the model best be estimated? Is there evidence that
the model needs modification or indeed should be abandoned in favour of
some different representation? The second question is to be interpreted not
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as asking whether the model is true but whether there is clear evidence of
a specific kind of departure implying a need to change the model so as to
avoid distortion of the final conclusions.

More detailed discussion of the choice of parameters is deferred to
Section 7.1, and for the moment we make a distinction only between the
parameters of interest and the nuisance parameters. The former address
directly the research question of concern, whereas typically the values of
the nuisance parameters are not of much direct concern; these parameters
are needed merely to complete the specification.

In the linear regression model (6.1) the parameter β1, determining the
slope of the regression line, would often be the parameter of interest. There
are other possibilities, however. For example interest might lie in the inter-
cept of the line at x = 0, i.e. in β0, in particular in whether the line passes
through the origin. Yet another possible focus of interest is the value of
x at which the expected response takes a preassigned value y∗, namely
(y∗ − β0)/β1.

6.3 Types of model

Models can be classified in many ways, of which probably the most impor-
tant is by the extent to which they are either substantive or purely empiri-
cal. Substantive models contain aspects that are specific to the underlying
subject-matter, for example being derived from a quantitative theory of the
subject-matter. Some of these models are directly probabilistic whereas
others essentially consist of a deterministic theory with a perhaps largely
empirical representation of random variability superimposed on it.

To some extent the two types of model correspond to different types
of objective; in many contexts both may be involved at different stages.
The first objective is to establish as securely as reasonably possible the
existence, or sometimes the complete absence, of particular kinds of de-
pendence. Ideally this involves the comparison of randomized treatments
under clearly specified conditions with clearly defined response variables.
The complementary task is to aim for understanding of the underlying pro-
cesses and this tends to be intrinsically more speculative. The general ethos
of most statistical discussion is cautious; this is usually appropriate and
fruitful in the first kind of objective but very much less so in the second.

Purely empirical models have very little or no specific subject-matter
base. They represent patterns of variability that commonly arise and in-
deed often derive their importance from their wide applicability to many
subject-matter fields. Many methods described in textbooks on statistical
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Figure 6.1 A schematic cross-section of the organism Sordaria.
Each group contains eight spores.

methods and implemented in widely available statistical software are of
this kind.

Illustration: Probability model directly representing underlying biological
mechanism Sordaria is a small fungus containing large numbers of
spores arranged in sets of eight spores (Ingold and Hadland, 1959). See
Figure 6.1. As each set is ejected from the organism the bonds join-
ing the spores may or may not break, so that each set may generate
one group of eight spores if none of the bonds breaks or eight separate
groups of a single spore if all seven bonds break or any other partition of
eight into components. Data are collected after a large number of spores
have been ejected, giving the proportion of groups of eight, seven, . . . ,
single spores. The proportions take on stable forms as more and more
observations are taken, leading to a probability model in which π j is the
probability that a group is of size j for j = 1, . . . , 8, where Σ π j = 1.

This model merely specifies an arbitrary set of marginal probabili-
ties. It contains no specific subject information and is a purely empirical
representation, potentially appropriate for any set of observations each
one of which may take on any of eight possible forms. Note that in
fact each primary observation is now a group of spores, not the original
set of eight which may have formed one group or many groups. Be-
cause of the special way in which the data have been generated, involv-
ing relatively subtle dependencies between the different frequencies, the
multinomial distribution over eight cells is not an appropriate model for
the full set of observed frequencies. At this stage the model is purely
empirical.
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We may, however, form a substantive model for this situation that
represents the data-generating process. Suppose that, on ejection of each
set, each bond breaks with unknown probability θ and that all bonds and
all sets are mutually independent. Then, for example, the probability
that the first two bonds break and the remainder survive is θ2(1 − θ)5;
this generates three groups, two with a single spore and one with six
spores. The enumeration of all cases, combined with a specification of
how the data are defined, generates the following set of probabilities:

π1 = 2θ(1 + 3θ)/(1 + 7θ),

π2 = 2θ(1 − θ)(1 + 5
2θ)/(1 + 7θ),

π3 = 2θ(1 − θ)2(1 + 2θ)/(1 + 7θ),

π4 = 2θ(1 − θ)3(1 + 3
2θ)/(1 + 7θ),

π5 = 2θ(1 − θ)4(1 + θ)/(1 + 7θ), (6.4)

π6 = 2θ(1 − θ)5(1 + 1
2θ)/(1 + 7θ),

π7 = 2θ(1 − θ)6/(1 + 7θ),

π8 = (1 − θ)7/(1 + 7θ).

This now leads to the technical statistical problems, not addressed in
this book, of estimating θ and of examining the adequacy of the model.
However, Figure 6.2 demonstrates the fit of the model to the observed
data.

Illustration: One- and two-hit models A slightly less specific example is
that of one- and two-hit models for the dependence of a binary response
on an explanatory variable x. In this the probability of, say, a positive
outcome is 1− e−θx in the one-hit model or 1− (1+ θx)e−θx in the two-hit
model. The motivation is that of an individual exposed for a period x to a
Poisson process of point events of unknown rate θ. The individual has a
positive response if it experiences at least one point event in the Poisson
process, in the first case, or at least two point events, in the second. This,
the Armitage–Doll model, was suggested as a representation of cancer
incidence (Knudson, 2001).

The two illustrations above of substantive models are both stochastic,
that is, they are essentially probabilistic in that they aim to represent the
random variation in the data as well as, in the second case, the systematic
dependence on the explanatory variable x. A relatively common type of
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Figure 6.2 Observed and fitted frequencies for the numbers of
Sordaria spores per projectile in an experiment conducted at
21–24 ◦C (Ingold and Hadland, 1959).

substantive model is based on a deterministic account of the systematic
component of the variation, quite often in the form of differential equations.
This is then combined with a relatively ad hoc empirical representation of
the haphazard component.

Illustration: Compartmental transmission model Important stochastic
models that are more complicated, in particular by being dynamic, arise
in studying epidemics. For example, Forrester et al. (2007) modelled
the epidemic process of Staphylococcus aureus in an intensive care unit
by treating patient colonizations as stochastic events, other key events
(hospital admission, isolation of patients and hospital discharge) treated
as specified and not modelled probabilistically (Figure 6.3). Imperfect
diagnostic tests for the presence of Staphylococcus aureus meant that
the process was only partially observable, even if patients were fre-
quently tested for colonization.

Illustration: Michaelis–Menten equation The Michaelis–Menten equa-
tion is widely used in biochemistry. It connects the rate of a reaction in
which substrate is converted into a product with an enzyme as a catalyst.
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Not (yet) hospitalized

Discharged from hospital

In hospital

Susceptibility Colonization Isolation

Figure 6.3 Schematic representation of the model developed by
Forrester et al. (2007) in which individuals move between
compartments representing their infection status, whether or not
they are hospitalized and for those hospitalized whether or not
they are in isolation following the detection of Staphylococcus
aureus.

If y(t) is the concentration of product at time t then

dy(t)
dt
=

vmaxy(t)
k + y(t)

. (6.5)

Here vmax is the limiting reaction rate at high concentrations.
Depending on the nature of the data, the solution of equation (6.5)

may be supplemented by the addition of a random term of mean 0 or
sometimes by multiplication by a random term of mean 1. Depending
again on the particular circumstances, the variance of the random term
may depend on the explanatory variables and, especially when obser-
vations on the same individual are repeated over time, dependence be-
tween the random terms, especially at nearby time points, may need
representation.

In other fields, in particular in the social sciences, processes tend to be so
complicated that the formation of relatively simple equations to represent
an underlying data-generating process is rarely possible. The study of the
underlying data-generating processes is, however, a main route to under-
standing and proceeds empirically by building up dependencies step-wise
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in a way to be exemplified later. First, however, we give an atypical social
science example where a relatively simple model is useful

Illustration: Social stochastic process A situation in which a simple sto-
chastic generating process is helpful in a social science context is a
study of the size of conversational groups gathered at a social occasion
(Coleman and James, 1961). The truncated Poisson distribution of the
numbers of groups of size 1, 2, . . . can be regarded as the equilibrium
distribution of a particular stochastic process.

The following illustration is much more typical, however, and shows
how a sequence of dependencies can be examined empirically.

Illustration: Hypothesized dependence structure Figure 6.4 summarizes
some aspects of a study done in the University of Mainz of the relation-
ship between patient knowledge of diabetes and success in controlling
the disease. Some of the variables recorded for each patient are named
in largely self-explanatory form in the diagram. A key to the analysis is
to determine for each possible pair of variables whether

• one of the two variables should be regarded as potentially explanatory
to the other as a response, or

• the two variables should be treated as on an equal standing in the
sense that, while they may be associated, the relationship is to be
regarded as symmetrical.

The different boxes contain the main variables: first, there is a box
containing intrinsic variables such as gender, and education; then there
is a series of psychometric variables concerning attribution, how the in-
dividual perceives their responsibility concerning the disease; then there
is a box containing a measure of knowledge of the disease; finally, there
is an outcome, an objective measure of the glucose control achieved.
The variables in any box depend in principle on all the variables in the
preceding boxes, a so-called regression chain.

From this a recursive representation of the distribution of the full set
of variables can be established in the form

fYq (yq) fYq−1 |Yq (yq−1 | yq) · · · fY1 |Y2,...,Yq(y1 | y2, . . . , yq). (6.6)

See Figure 6.4. Here Ym is a collection of variables on an equal standing.
The simplest case for discussion and interpretation is where each such
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(a)

(b)

Figure 6.4 Relationship between diabetes control and
explanatory features (based on Cox and Wermuth, 1996). As this
was a cross-sectional study the direction of dependence is
specified by hypothesis rather than by temporal ordering. (a)
General formulation. The baseline variables were education, etc.
The psychological attribution of disease was assessed by multiple
test scores. Knowledge of the disease was assessed by a single
test score. The variables (open circles) in a given box are of equal
standing. Glucose control was an objective biochemical measure.
(b) A simplified form after analysis. Glucose control depends on
knowledge of the disease and on the baseline variables, that is, the
duration of disease and the type of schooling, and on their
interaction.
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collection consists of a single component. Then each variable in the se-
quence is potentially dependent on all the variables preceding it. Quite
often the initial variables Yq may best be regarded as fixed, in which case
the first factor in (6.6) is omitted. Provided each factor in (6.6) is spec-
ified by a separate set of parameters the model can be fitted recursively,
that is, one factor at a time. In particular, if the components are single
variables then fitting is by a sequence of univariate analyses.

We will return later to the limitations on the conclusions of this study,
aspects of which illustrate the general difficulties of interpreting obser-
vational studies, especially those that are essentially cross-sectional, that
is, involve measurement at a single time point for each individual.

In general regression chains such as those in the above illustration are
intended to represent data-generating processes in the same spirit as differ-
ential equations do in the physical sciences.

A test of the meaningfulness of a possible model for a data-generating
process is whether it can be used directly to simulate data. This test pre-
cludes, for example, models in which for two variables (X, Y) the value of
Y appears in the equation defining X, together with random terms, and the
value of X appears in the equation defining Y . Such a model may quite pos-
sibly define a joint probability distribution for (X, Y), but it is not possible
to generate values, for example in a computer simulation, directly from this
specification and therefore we ask: could a real system have worked in that
way?

The above consideration precludes, in particular, certain types of simul-
taneous time series model. Therefore, to represent the feedback between
two series (Xt, Yt), a meaningful relationship should represent both com-
ponents at time t as depending on both components at time t − 1, with a
corresponding representation in differential equation form if the process is
considered in continuous time.

6.4 Interpretation of probability

In the above discussion we have freely used the word probability. It is used
in more than one way both in statistical contexts and in every-day life. One
such meaning concerns the measure of uncertainty of knowledge about, for
example, an event that may or may not occur or a hypothesis that may or
may not be true.

In the formulation of models as a base for statistical analysis a differ-
ent meaning is involved. Here, a probability is a proportional frequency of
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occurrence in repetitions of the process of observation, and, as we shall
see, these repetitions may be quite closely realizable, may be somewhat
hypothetical or may even be totally notional.

The essential point is that probability is used to represent, possibly in
highly idealized form, a phenomenon in the real world. As such it is not
essentially different from concepts like mass, force and energy or the den-
sity of a continuous medium, say a fluid, in which the limiting operation
involved in defining the density at a point cannot be pushed to a molecular
level.

Illustration: Repeated experimentation In the botanical example con-
cerning Sordaria (p. 98) the experiment in question can be repeated
many times under the same conditions and the stability of the resulting
frequencies can be demonstrated. The probability θ, defined as the lim-
iting frequency in a process that could in principle be observed directly,
is intended to capture an important property of the system.

In many fields the repetition involved in such an interpretation is notional
rather than realizable in practice.

Illustration: Gradual replication In the study of diabetic patients at the
University of Mainz, repetition is feasible over time, as new patients
accrue, and over different cities. In both cases, however, there may be
systematic changes from the original study. The parameters of the prob-
ability model to be employed in the analysis aimed to capture the essen-
tial features of the situation as it was over the period studied, decoupled
from the accidental features.

Illustration: Textual analysis In a study of the works of Plato the distri-
bution of the stress over the last five syllables of each sentence gave,
for each work, a distribution over the 32 possibilities (stressed versus
unstressed for each syllable) (Cox and Brandwood, 1959). Two large
works, Laws and Republic, are known to have been written early and
late respectively and a number of shorter works fall in unknown order
in between. Let {pir} denote the probabilities, assumed known; for Laws
i = 0 and for Republic i = 1, for r = 1, . . . , 32. Then for the kth smaller
work suppose that the distribution is the exponential mixture

c(θk) exp{θk log p1r + (1 − θk) log p0r}, (6.7)
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where c(θk) is a normalizing constant. Note that at θk = 0, 1 the distri-
butions for Laws and Republic respectively are recovered. The values
of θk place the works in order between the two large works, with the
possibility of values outside (0, 1) representing more extreme configu-
rations. This leads to a simple and intuitively plausible index for placing
the works in order relative to the two large works and could be regarded
purely descriptively. Of course, interpretation of the order as being in
fact temporal would raise further very large issues.

We are concerned here with the nature of the probability model. There
is no sampling involved since the data are from the whole of the relevant
works, nor are there are additional works by Plato. Clearly no explicit
randomization is involved. The working hypothesis is that the process
that generates the pattern of stresses is complicated and is such that it
generates data as if the data were the consequence of a simple random
process. To a limited extent this working hypothesis can be tested. If
both the large works are divided into four sections then there results
from each large work a 32 × 4 table showing the variation between sec-
tions within it. The standard chi-squared statistic from each such table
has expectation equal to the degrees of freedom, 93; the calculated val-
ues are very close to this. That is, some features at least of the data-
generating process are well represented by the probability model.

Rather similar considerations, namely the impossibility of effective rep-
etition, apply for example in macroeconomic time series analysis where
each, often quite short, section of each series is essentially unique. Believ-
ers in a particular economic theory might rely on that theory for support and
even approximate verification of the model. A more empirical approach is
to use the working assumption that at least some features of the series be-
have like the output of a random process and that the parameters of that
process capture interesting features which are free of the accidents of the
particular data being studied.

Illustration: Extrapolation of clinical trial results In a simple form of clin-
ical trial, patients giving informed consent are randomized between two
treatments, say a new treatment T and a control C, and an outcome
is recorded. Ignoring complications such as noncompliance with the
allocated treatment or nonresponse, the data are analysed by a simple
model for comparing two treatments that is appropriate for the kind of
response involved, continuous, binary etc.
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Suppose that reasonably strong evidence is obtained for the superior-
ity, in the respect tested, of T over C. A conclusion that can be drawn
with a very explicit statistical base concerns only the study individuals
themselves. This is that had the whole group been given T the overall
average outcome would have been better in some sense than had the
whole group been given C. Any extension to other individuals would
then be a qualitative judgement depending on, for example, an under-
standing of any underlying biological process; such a judgement would
imply a general belief in reproducibility of conclusions.

Had the study individuals been chosen by some well-defined sam-
pling procedure from a specific population of individuals, the conclu-
sions would have a formal justification in being applied to that popula-
tion. Note, however, that in a clinical trial, particularly because of the
requirement of informed consent, the patients are unlikely to be close to
a random sample of a target population even in the geographical area in
question. Indeed in a formal sense they are unlikely to be chosen by any
formal sampling procedure but, rather, to be individuals who happen to
be available and willing to take part. In a somewhat similar sense, agri-
cultural field trials are often done on experimental farms, which may be
atypical of farming practice.

An intermediate position is that the observations are to be regarded as
a sample from a hypothetical population of individuals and that the con-
clusions apply to that population. This expresses the notion that the con-
clusions do extend beyond the current individuals and are to some extent
independent of the special nature of those individuals, even though the
explicit character of the extended population cannot be specified.

In studies of a phenomenon at a relatively fundamental level it will of-
ten be best to start with situations in which the phenomenon may be most
easily observed and to disregard considerations of the generalizability of
conclusions.

Illustration: Generalizability of conclusions Much early study of genetics
used the fruit fly Drosophila. Results could be obtained quickly and rel-
atively inexpensively, as contrasted with, say, work on mammals. While
no doubt early workers considered to what extent their conclusions
could be generalized to other species, no formal statistical issue of gen-
eralization arose.
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The investigation concerning the culling of wildlife and bovine tu-
berculosis discussed above (see the illustrations on pp. 17, 39 and 77)
even though it had a strong policy-oriented motivation, chose as areas
for study those with the highest incidence. The choice was not made on
the basis of the representativeness of the cattle population. However, this
lack of representativeness was not of particular concern, as the areas of
greatest bovine tuberculosis incidence were of primary interest in terms
of targetting disease-control interventions.

It is an important principle of experimental design that if the wide appli-
cability of conclusions is desirable then factors should be inserted into the
design that produce a range of experimental units and conditions enhancing
the range of validity of the conclusions.

6.5 Empirical models

6.5.1 Generalities

In many fields of study the models used as a basis for interpretation do not
have a special subject-matter base but, rather, represent broad patterns of
haphazard variation quite widely seen in at least approximate form. This is
typically combined with a specification of the systematic part of the vari-
ation, which is often, although not always, the primary focus of interest.
Giving the probabilistic part of the model then often reduces to a choice
of distributional form and of the independence structure of the random
components.

The functional form of probability distributions is sometimes critical, for
example when the prediction of extreme events is involved and in single-
parameter families of distributions, where there is an implicit assumption
of a relationship between variance and mean. This applies to the geometric,
Poisson and binomial discrete distributions and to the exponential continu-
ous distribution. The assumption of any of these forms implies an indirect
estimate of variability without direct replication and, as such, is important
and possibly insecure. In many other cases the choice between alternative
parametric forms may be largely a matter of convenience.

To some extent, however, the simple situations that give rise to what
may be called the basic distributions of elementary probability theory, the
binomial, the Poisson, the geometric, the exponential, the normal and the
log normal, give some guide to empirical model choice in more complex
situations. Thus an initial analysis of the counts of haphazardly occurring
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events in space or time may be based on the Poisson distribution modified
for the systematic effects likely to be present.

In some specific contexts there is a tradition, possibly even supported
by empirical success, establishing the form of model likely to be suitable.
Sometimes the notion of stylized facts may be useful. These are broad gen-
eralizations which summarize the results of often complex statistical anal-
yses without the details associated with caveats or special cases. Solow
(1970) commented “There is no doubt that they are stylized, though it is
possible to question whether they are facts.”

Illustration: Time series For a financial time series of daily returns
Y(t) = log{P(t)/P(t − 1)}, where P(t) is the price of a stock at time t,
some stylized facts are as follows:

• the marginal distribution of Y(t) is long-tailed;
• the serial correlations among the {Y(t)} are small; and
• the serial correlations among the {Y2(t)} are appreciable.

A number of types of nonlinear time series correspond to these facts,
although that is, of course, no guarantee of their suitability in any
particular instance.

In other cases also, simple stochastic models may indicate a distribu-
tional form and the comparison of empirical data with theory may be in-
trinsically useful.

Illustration: Stochastic model suggests log normal distribution It can be
shown that if systems of particles in, say, a soil are produced by a large
number of proportional splittings of a system of large starting individ-
uals, then the distribution of particle size will be log normal. Thus the
comparison of an empirical distribution with the log normal form may
be interesting in itself, as well as providing a useful base for further
analysis.

6.5.2 Systematic variation

In many applications, although not in all, it is helpful to develop the ran-
dom and the systematic parts of the model largely separately. Sometimes
the systematic part, typically the aspects of the model that describe how
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response variables depend on explanatory variables, are strongly dictated
by subject-matter theory. In many situations, however, it is a matter of set-
ting out a sufficiently flexible empirical description, if at all possible con-
taining parameters that have clear subject-matter interpretation.

The use of models with well-developed computer software can seem,
in many contexts, to be almost obligatory and this tends to force analyses
towards the use of standard procedures or minor adaptations thereof. The
publically available R-project (R Development Core Team, 2007) makes
available a wide range of traditional and newer methods, however.

Unless there is good reason otherwise, models should obey natural or
known constraints even if these lie outside the range of the data. For exam-
ple a regression relationship may be known to pass through the origin, even
though the data, being remote from the origin, might suggest a relationship
having, say, a positive intercept. In some cases, especially in the physical
sciences where all or most variables are measured on a scale yielding pos-
itive values with a well-defined zero point, taking logs of such variables
may be appropriate, yielding power-law-like relationships in which the co-
efficients, being dimensionless numbers, may have the advantage of clear
interpretation. Such an argument would not justify taking logs of tempera-
ture in degrees Celsius even if these temperatures were all positive; in some
contexts reciprocals of degrees Kelvin would be appropriate.

There can be conflicting considerations connected with such physical or
logical constraints. For example, to describe the dependence of a binary
response variable Y taking values 0 and 1 on a continuous explanatory
variable x, the linear model

P(Y = 1) = α + βx (6.8)

incurs the constraint on its validity that for some values of x probabilities
that are either negative or above 1 are implied.

For this reason (6.8) is commonly replaced by, for example, the linear
logistic form

log
P(Y = 1)
P(Y = 0)

= α′ + β′x, (6.9)

which avoids any such constraint. The form (6.8) does, however, have the
major advantage that the parameter β, which specifies the change in proba-
bility per unit change in x, is more directly understandable than the param-
eter β′, interpreted as the change in log odds, the left-hand side of (6.9),
per unit x. If the values of x of interest span probabilities that are restricted,
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say to the interval (0.2, 0.8), the two models give essentially identical con-
clusions and the use of (6.8) may be preferred.

If the relationship between a response variable and a single continuous
variable x is involved then, given suitable data, the fitting of quite compli-
cated equations may occasionally be needed and justified. For example, the
growth curves of individuals passing through puberty may be quite com-
plex in form.

In many common applications, especially but not only in the social sci-
ences, the relationship between Y and several or indeed many variables
x1, . . . , xp is involved. In this situation, possibly after transformation of
some of or all the variables and preliminary graphical analysis, the fol-
lowing general ideas often apply:

• it is unlikely that a complex social system, say, can be treated as wholly
linear in its behaviour;

• it is impracticable to study directly nonlinear systems of unknown form
in many variables;

• therefore it is reasonable to begin by considering a model linear in all or
nearly all of the x1, . . . , xp;

• having completed the previous step, a search should be made for iso-
lated nonlinearities in the form of curved relationships with individual
variables xi and interactions between pairs of variables.

The last step is feasible even with quite large numbers of explanatory
variables.

Thus a key role is played in such applications by the fitting of linear re-
lationships of which the simplest is the multiple linear regression, where
for individual j the response Y j is related to the explanatory variables
x j1, . . . , x jp by

E(Yj) = β0 + β1x j1 + · · · + βpx jp. (6.10)

Here β1, say, specifies the change in E(Y) per unit change in x1 with the
remaining explanatory variables x2, . . . , xp held fixed. It is very important
to appreciate the deficiencies of this notation; in general β1 is influenced
by which other variables are in the defining equation and indeed in a better,
if cumbersome, notation, β1 is replaced by βy1|2...p. If, say, x2 were omit-
ted from the equation then the resulting coefficient of x1, now denoted by
βy1|3...p, would include any effect on E(Y) of the change in x2 induced by
the implied change in x1. It is crucial, in any use of a relationship such as
(6.10) to assess the effect of, say, x1, that only the appropriate variables are
included along with x1.
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For just two explanatory variables x1 and x2 the distinction between β1

in the simpler equation and βy1|2 is directly comparable with the relation-
ship between the total and partial derivatives of functions of two (or more)
variables. This is expressed by the equation

βy1 = βy1|2 + βy2|1β21, (6.11)

where β21 is the formal regression coefficient of x2 on x1. This corresponds
closely to

Dy(x1, x2)
Dx1

=
∂y(x1, x2)
∂x1

+
∂y(x1, x2)
∂x2

dx2

dx1
, (6.12)

the formula for total or directional differentiation of functions.
In some contexts different equations having similar forms may be under

consideration to describe the same set of data; a simple special case is
illustrated by (6.8) and (6.9). Sometimes examination of fit may indicate
an unambiguous preference. In others the situation may be less clear. A
general result is that if β̂1, β̂2 and β̂′1, β̂

′
2 denote the estimated parameters,

all clearly nonzero, in two such models then

β̂1/β̂2 � β̂′1/β̂′2. (6.13)

Essentially the reason is that both ratios measure the amount by which x2

must change to induce the same change as a unit change in x1 and this is
not critically dependent on how the response is measured.

6.5.3 Variational structure

There are broadly three attitudes to random variation, the ultra-naı̈ve, the
naı̈ve and the realistic. The first ignores such variation. This is sometimes
appropriate, although probably rarely so in any context outlined in this
book. The naı̈ve approach assumes that apparently random variation does
in fact correspond to truly random variation, thus in particular requiring
one random variable per study individual, values for different individuals
being assumed statistically independent. The often more realistic approach
is to recognize the possibility of structure in the random variation. This
may be a dependence between observations close together in time or space
or a hierarchical structure corresponding to different levels of aggregation.

While there may be the great advantage of simplicity in the naı̈ve ap-
proach and while such an approach is sometimes totally appropriate, par-
ticularly in carefully designed studies, on the whole ignoring structure in
the random variation is likely to give misleading assessments of precision
and in some cases may severely bias the conclusions.
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A simple example illustrates the role of such dependence. The most
basic formula underlying statistical analysis is that for n independent ob-
servations with the same mean and same standard deviation σ, the standard
error of the mean is

σ√
n
. (6.14)

If, however, the observations are mutually correlated, this becomes

σ√
n

(1 + Σρi j)
1/2 (6.15)

where ρi j is the correlation coefficient between observations i and j and
the sum is over all possibilities with i � j, so that each pair counts twice.
Thus if, for example, each observation is correlated with k other obser-
vations with correlation coefficient ρ then (6.15) gives a standard error of
approximately

σ√
n

(1 + kρ)1/2. (6.16)

Thus, especially if k is appreciable, correlation can induce a major change,
which with positive correlation is an increase, in the error of estimation.
Similar results apply to estimated regression coefficients and to more com-
plicated correlation patterns. The effect on, for example, confidence inter-
vals for parameters can be appreciable, typically leading to underestima-
tion of variability. Negative correlation is less likely in most contexts and
produces a decrease in the variance of the mean. Thus in some sampling
situations, and in particular in simulation studies, design to introduce neg-
atively correlated estimates by the use of so-called antithetic variables is
advantageous.

Illustration: Negative correlation In an animal feeding study in which an-
imals are caged in groups and food is provided separately for each cage
there may be negative correlations between the weight gains of two an-
imals in the same cage, arising from competition for limited resources.

The general implications of this are partly the desirability of steps in
design to avoid correlated errors, where these are indeed consequences of
the measurement process, and partly the need for a reasonably realistic
representation of patterns of variability where these are natural and part of
the system under study.
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6.5.4 Unit of analysis

In many applications it is important to be explicit about the unit of anal-
ysis. This, in particular, affects the level of definition appropriate for the
response and other variables and the level of modelling detail; it also
has a bearing on the important independence assumptions involved in
model formulation. Different definitions of the unit of investigation may be
needed at different stages of analysis, depending on the research questions
involved.

In a randomized experiment the unit of investigation is the smallest sub-
division of the material such that any two units might receive different treat-
ments. In some types of observational study the unit of investigation may
be defined by considering what would have been done in a corresponding
randomized experiment had one been possible.

Illustration: Individual and cluster randomization In a randomized clin-
ical trial, if individual patients are randomized to one of two or more
treatments then the patient is the unit of analysis. If all patients in the
same clinic receive the same treatment, through a system known as clus-
ter randomization, the clinic is the unit. In a cross-over design in which
patients receive one treatment for a period and a possibly different treat-
ment in a second period the unit is a patient–period combination.

Illustration: Multiple units of analysis in the same experiment In a study of
the possible effects of the culling of wildlife on the incidence of bovine
tuberculosis, 30 roughly circular areas were chosen in sets of three, each
being approximately 100 km2 in area and containing about 100 farms.
Within each set of three areas one was randomized to proactive culling,
another to reactive culling (that is culling only in response to a tubercu-
losis occurrence in cattle) and one was a no-culling control. The unit of
analysis for the randomized comparison was the circular area. In partic-
ular the primary variable for analysis was the number of TB cases in the
whole area.

In fact some data were obtained also on positions within the areas of
potentially infected wildlife. To study the distribution of TB incidence
within the circular areas involves non-randomized comparisons and the
use of a farm as the unit of analysis rather than an aggregate of farms,
as in the circular area.
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Figure 6.5 Blood concentration following injection. The data can
be characterized by fitting an equation or by summarizing
statistics such as peak concentration, time at which the peak was
achieved and total area under the concentration–time curve.

In some contexts there may be a clear hierarchy which establishes the
level of unit appropriate for each research question.

Illustration: Hierarchical data structure Suppose that data are obtained
on certain characteristics of school children, the children being arranged
in classes within schools with an appreciable number of schools within
each of several districts (Koukounari et al., 2006). For different pur-
poses the unit of analysis may be the child, the class or the school.
However, if the number of districts were very small, comparisons be-
tween them would be a largely descriptive issue.

Two general issues are that the assessment of precision comes primarily
from comparisons between units of analysis and that the modelling of vari-
ation within units is necessary only if such internal variation is of intrinsic
interest.

Illustration: Summarizing response curves In a comparison of the im-
pact of a number of different related compounds, suppose that the study
units are rats. For each rat, one compound is injected and then the con-
centration in the blood of a critical substance is measured hourly for the
next 24 hours; see Figure 6.5.
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To compare the treatments the complex response for each rat must
be reduced to a simpler form. One way that does not involve a spe-
cific model is to replace each set of values by, say, the peak concen-
tration recorded, the time at which that peak is recorded and the total
area under the concentration–time curve. Comparison of the treatments
would then hopefully be accomplished, for example by showing the dif-
ferences in some and the constancy of others of these distinct features.
An alternative approach would be to model the variation of concentra-
tion with time either by an empirical equation or perhaps using the un-
derlying differential equations. The treatment comparison would then
be based on estimates of relevant parameters in the relationship thus
fitted.

The general issue involved here arises when relatively complex re-
sponses are collected on each study individual. The simplest and often the
most secure way of condensing these responses is through a number of
summary descriptive measures. The alternative is by formal modelling of
the response patterns. Of course, this may be of considerable intrinsic in-
terest but inessential in addressing the initially specified research question.

In other situations it may be necessary to represent explicitly the differ-
ent hierarchies of variation.

Illustration: Hierarchical determinants of the response variable An in-
vestigation of the factors affecting the judicial sentencing of offend-
ers (Johnson, 2006) allowed for the hierarchical nesting of sentences
within judges as well as the nesting of judges within courts or coun-
ties. While this study found that individual-level variables, for example
prior criminality, had the strongest effects on sentencing, for understand-
ing the observed variation the judge- and county-level variables were
important.

Illustration: Hazards of ignoring hierarchical data structure An analysis of
the success of in vitro fertilization pre-embryo transfer (IVF-ET) used
hierarchical logistic regression models to analyse the effect of fallopian
tube blockage, specifically hydrosalpinx, on the probability of embryo
implantation success. Variation was modelled both at the individual-
woman level and the embryo level, allowing for variability in women’s
unobservable probability of implantation success. Hogan and Blazar



Notes 117

(2000) found evidence of considerable heterogeneity among women,
which if ignored would lead to biased parameter estimates and underes-
timates of their associated standard errors.

Notes

The role of empirical statistical models is discussed in many books on sta-
tistical methods. For a general discussion of different types of model with
more examples, see Lehmann (1990) and Cox (1990).
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Model choice

Detailed consideration is required to ensure that the most appropriate
parameters of interest are chosen for a particular research question.
It is also important to ensure the appropriate treatment of nonspecific
effects, which correspond to systematic differences that are not of di-
rect concern. Thus in the present chapter we discuss aspects relating
to the choice of models for a particular application, first the choice be-
tween distinct model families and then the choice of a specific model
within the selected family.

7.1 Criteria for parameters

7.1.1 Preliminaries

In some applications analysis and interpretation may be based on non-
parametric formulations, for example the use of smooth curves or sur-
faces summarizing complex dependencies not easily captured in a sim-
ple formula. The reporting of estimated spectral densities of time series
or line spectra representing complex mixtures of molecules are examples.
Mostly, however, we aim to summarize the aspects of interest by parame-
ters, preferably small in number and formally defined as properties of the
probability model. In the cases on which we concentrate, the distribution
specified by the model is determined by a finite number of such unknown
parameters.

For a specific research question, parameters may be classified as param-
eters of interest, that is, directly addressing the questions of concern, or
as nuisance parameters necessary to complete the statistical specification.
Often the variation studied is a mixture of systematic and haphazard com-
ponents, with attention focused on the former. In such a case the parameters
of interest will concern the systematic variation. The nuisance parameters
relate to the haphazard variation together with any aspects of the systematic

118
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variation not of direct interest. The roles are reversed, however, when
attention is focused on the haphazard variation.

The choice of parameters involves, especially for the parameters of inter-
est, their interpretability and their statistical and computational properties.
Ideally, simple and efficient methods should be available for estimation and
for the assessment of the precision of estimation.

7.1.2 Parameters of interest

Commonly, the parameters of interest assess dependencies, for example
distinctions in the response patterns for different levels of an explanatory
variable or, in other cases, rates of change in the response. It is essential
that the subject-matter interpretation of a parameter is clear and that it is
measured in appropriate units, which should always be stated, and it is
preferable that the units are chosen to give numerical answers that are nei-
ther inconveniently small nor inconveniently large. If the zero point of a
scale of measurement has a special meaning, this must be respected. For
example, the transformation of temperatures from degrees Kelvin to de-
grees Celsius is not always appropriate.

For response variables that are extensive, that is physically additive, the
mean value will typically be an aspect of its distribution that is of interest.

Illustration: Interpreting analyses of extensive variables Whatever the
shape of the distribution of the yield of a product per plot in an agri-
cultural field trial, yield is an extensive variable; that is, the yield of
the combined area of two plots is the sum of the separate yields. This
implies that, say, the differences between the yields experienced over a
large area from two different treatments is estimated by the difference
in the means per unit area times the total area. There may be a clash
here with other interpretative aspects in that, for example, analysis might
show that over replication of the comparison in different contexts it is the
ratio of the yields that is stable, not the difference. That is, it might be
that one treatment gives a particular fractional increase in yield rather
than a particular difference. Then, even if the final interpretation is in
terms of differences, care is needed regarding the generalizability of the
conclusions.

Illustration: Expressing impact using the population attributable fraction
Assessment of the effect of exposure to specific risk factors is often
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specified in terms of a ratio or percentage effect, but the public health
interpretation for a specific population in terms of the numbers of indi-
viduals affected is in terms of a difference in rates, not a ratio. A pref-
erence for ratios, simple dimensionless numbers, such as the factor 10
increase in the risk of lung cancer due to cigarette smoking, stems partly
from a greater ease of intuitive understanding, partly from the potential
relative stability of the ratio across different populations and partly from
a desire to assess the possible effect of unobserved confounders. Nev-
ertheless the public health importance of such an effect in terms of the
number of individuals affected per, say, 103 individuals at risk requires a
difference not a ratio of probabilities. To address this need, epidemiolo-
gists often calculate the population attributable fraction, that is, the pro-
portion of the disease risk that would be eliminated from a population if
the risk factor(s) under study were eliminated (Greenland and Robins,
1988).

In some contexts, especially with quantitative variables with a natural
origin, it may be possible to achieve representations of systematic variation
in which the parameters are dimensionless and indeed are simple integers
or simple rational numbers. This is achieved by fitting relationships of the
form

y ∝ xβ1

1 · · · x
βp
p . (7.1)

Here the indices are intrinsically dimensionless, that is, unchanged by a
change in units of any component variable.

The logarithmic transformation of all variables then leads to a linear re-
lationship, often with simple additive error structure. A logarithmic trans-
formation is suggested by the assumed systematic structure. If the trans-
formation happened to produce normality of the distribution of departures
and constancy of the conditional variance of y, that would be a bonus.

When, all variables are measured in units derived from the basic units of
mass, length and time, as would be the case in some physical and biologi-
cal problems, the principles of dimensional analysis will imply constraints
among the coefficients in (7.1).

Illustration: Constraints on parameters arising from physical dimensions
The flow of a fluid along a tube may be smooth (laminar) or erratic
(turbulent). The type of flow depends among other things on the veloc-
ity of flow x1, the radius of the tube x2, the density x3 and the viscosity
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x4 of the fluid. If to a first approximation the probability that the flow is
turbulent is a function of

xβ1

1 · · · x
β4

4 (7.2)

then the dimensionless character of any probability function imposes
constraints on the βi.

To see this we will use [x] to denote the dimensions of the variable
x; in a physical context this will be some combination of length, time
and mass. In fact, viscosity is a force per unit area and force has the
dimensions of mass times acceleration, i.e. [M][L][T −2]. That is,

[x1] = [L][T ]−1, [x2] = [L],

[x3] = [M][L]−3, [x4] = [M][L]−1[T ]−1.

Thus the dimensions of (7.2) are

[L]β1+β2−3β3−β4 [M]β3+β4 [T ]−β1−β4

and the dimensionless requirement leads to

β1 = β2 = β3 = −β4,

and thus to consideration of the quantity:

velocity times radius times density divided by viscosity.

This quantity is called the Reynolds number. Empirical experience is
that Reynolds numbers in the high hundreds usually correspond to tur-
bulent flow. The dimensional argument is not commonly presented in
a statistical context but in fact applies to any simple model of the sys-
tematic component of variability of measurements on standard physical
types of scale.

We will illustrate some of these points, in particular the importance of
considering the units of measurement, first by a simple linear regression.

Illustration: Interpreting the slope parameter of a linear regression In the
straight-line model (6.2),

E(Y j) = β0 + β1x j, (7.3)

the parameter β1 represents the change in expected response correspond-
ing to a unit change in the explanatory variable x. It is measured in units
of y per unit of x and, when the units are derived from the standard units
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of mass, length and time, it is conventional to write the dimensional
form as [β1] = [y][x]−1. An appropriate choice of specific units, for ex-
ample kilograms, grams etc., may be largely conventional in a specific
field but should, if possible, be chosen to ensure that β1, if this quantity
is of primary concern, is not far outside the range (1/10, 10).

The general meaning of β1 is as set out above. The more precise
meaning depends strongly on the specific subject-matter context and in
particular on the study design. The strongest interpretation, in a reason-
able sense causal, would be justified if the study individuals had been
independently randomized to levels of x. Then β1 would quantify the dif-
ference between the hypothetical responses of the same individual under
two levels of x that are a unit apart. In other contexts the interpretation
would be much weaker, being confined either to empirical prediction of
y over future individuals drawn from the same population or to assessing
the effect of changing x while allowing for unspecified variables related
both to x and to y to change appropriately.

As an example of dimensional considerations consider a simple situation
involving survival or response times.

Illustration: Interpreting parameters from analyses of failure time data In
many situations, as noted above, times from a defined origin to a clearly
specified outcome, for example system failure or patient death, have a
long-tailed distribution. An initial model for such observations may then
be the exponential distribution with density ρe−ρy and mean 1/ρ. Note
that [ρ] = [T−1], so that ρ is measured, say, as a rate per year. This
form will apply if failure occurs in a Poisson process, that is, as the
first of a completely random series of point events. If the distribution is
long-tailed but not exponential then the next step may be to consider a
two-parameter family. There are many possibilities, in particular:

• a gamma distribution;
• a log normal distribution; or
• a Weibull distribution

All have their uses and it may be difficult to choose between them em-
pirically. The log normal distribution does not include the exponential
distribution as a special case and has for some, but not all, purposes
the disadvantage of leading to an analysis that is very sensitive to small
survival times.
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We use the Weibull family to illustrate some points about parameter-
ization. The family is defined by the survivor function

P(Y > y) = exp{−(ρy)γ} (7.4)

and hence by the density

γ(ρy)γ−1 exp{−(ρy)γ}. (7.5)

In this expression γ is dimensionless, that is, it is unchanged by a change
in the units of time, say from hours to days. It can be regarded as defin-
ing the shape and dispersion of the distribution relative to that of the
exponential distribution, the special case γ = 1. Because ρy is also
dimensionless, [ρ] = [T−1] is a rate per unit time.

Of course, many other parameterizations are possible. For example
the survival function could be written as

exp(−αyγ).

While this is perfectly adequate as a base for numerical fitting, dimen-
sionality arguments lead to [α] = [T−1/γ] showing that substantive inter-
pretation of the numerical value of α will be difficult, if not impossible.

One desirable property of a parameter of interest is that it can be esti-
mated with reasonable precision from specific sets of data and that its value
remains relatively stable across distinct situations.

Especially in many situations involving cross-classified explanatory
variables, symmetry may suggest redundant parameterizations, those hav-
ing more parameters than are estimable. Numerical fitting usually depends
on the use of free parameters and hence the imposition of constraints that
break the symmetry of the original form. An additional feature is that the
revised form may lead to estimates with a relatively complicated error
structure involving, as a minimum, a covariance matrix of errors and not
just a variance for each estimated parameter.

Illustration: Equivalent parameterizations A simple example is provided
by a normally distributed response variable y that is dependent on two
explanatory variables, both of which take a discrete set of levels. In
a symmetrical form of model with no interaction, if Ykl represents an
observation at levels k, l respectively of the two variables then

E(Ykl) = µ + αk + βl. (7.6)
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Potentially, the extension of such a model to more than two factors is
useful much more broadly.

Arbitrary constants may be added separately to αk and βl and sub-
tracted from µ, leaving the model unchanged. Note that our interest is
focused on internal contrasts among the two sets of parameters and that
these contrasts are unaffected by the reparameterization.

In the absence of special considerations, a common approach is to
choose baseline levels of the two explanatory variables, say (1, 1);
note that in unbalanced data the chosen levels should have apprecia-
ble frequency of occurrence in the data. The model then can be written
as

E(Ykl) = ν + α
∗
k + β

∗
l , (7.7)

where

α∗1 = β
∗
1 = 0.

The new parameters can now be estimated together with their standard
errors. This is all that is needed if in fact the only interest is in compar-
ing the levels with the baseline. If other contrasts are to be examined,
for example level 3 with level 2, a point estimate is directly obtained as,
for example, the difference in estimators α̂3 − α̂2 but the standard error
requires an estimate of the covariance cov(α̂3, α̂2). While in principle
there may be no difficulty in obtaining the latter, it is not commonly
specified, other than optionally, in standard software; in reporting con-
clusions it may be impracticable to record full covariance matrices of
estimates, especially in large systems.

Often the difficulty can be largely avoided by a different, so-called
floating, reparameterization in which for estimating, say, contrasts
among the αk we write

E(Ykl) = α
∗∗
k + β

∗
l , (7.8)

where the α∗∗k are unconstrained. The α̂∗∗k may then have very small
covariances.

7.2 Nonspecific effects

7.2.1 Preliminaries

A common issue in the specification of models concerns aspects of the
system under study that may well correspond to systematic differences
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in the variables being studied but which are of no, or limited, direct
concern.

Illustration: Effects arising from variables of little or no direct interest
A clinical trial may involve several or many centres, an agriculture field
trial may be repeated at a number of different farms and over a number
of growing seasons and a sociological study of the relationship between
class and educational achievement may be repeated in broadly similar
form in a number of countries. In a laboratory study different sets of ana-
lytical apparatus, imperfectly calibrated, may be used. Here the centres,
farms, seasons, countries and sets of apparatus may well correspond to
important differences in outcome but are not the direct object of study.

One general term for such features is that they are nonspecific. Two dif-
ferent centres in a trial may vary in patient mix, procedures commonly
used, management style and so on. Even if clear differences in outcome
are present between clinics, specific detailed interpretation will be at best
hazardous.

It may be necessary to take account of such features in one of two differ-
ent ways. The simpler is that, on an appropriate scale, there is a parameter
representing a shift in level of outcome. The second and more challenging
possibility is that the primary contrasts of concern, treatments, say, them-
selves vary across centres; that is, there is a treatment–centre interaction.
We will deal first with the simpler case.

The possibility arises of representing the effects of such nonspecific vari-
ables by random variables rather than by fixed unknown parameters. In a
simple example, within each of a fairly large number of centres, individuals
are studied with a binary response and a number of explanatory variables,
including one representing the treatment of primary concern. For individu-
als in centre m the binary response Ymi might be assumed to have a logistic
regression with

log

{
P(Ymi = 1)
P(Ymi = 0)

}
= αm + β

T xmi, (7.9)

where xmi is a vector of explanatory variables, the vector of parameters β is
assumed to be the same for all centres and the constant αm characterizes the
centre effect. A key question concerns the circumstances under which the
αm should be treated as unknown constants, that is, fixed effects, and those
in which it is constructive to treat the αm as random variables representing
what are therefore called random effects.
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7.2.2 Stable treatment effect

In a fairly general formulation when there is assumed to be no treatment–
centre interaction, the outcome of interest is represented by a combination,
usually linear, of a treatment effect, a centre effect and terms representing
other features of concern. This might be a direct representation, for con-
tinuous approximately normally distributed variables, or a linear logistic
representation, for binary variables.

We are not concerned here with the technical details of how such mod-
els are fitted but rather with whether parameters representing centre effects
should be regarded as ‘fixed’ parameters on the same conceptual standing
as other parameters or as random variables. Typically the latter involves
treating the centre effects as independent and identically distributed ran-
dom variables, often normally distributed with unknown mean and variance
although of course other possibilities are available.

Effective use of such a random-effects representation will require es-
timation of the variance component corresponding to the centre effects.
Even under the most favourable conditions the precision achieved in that
estimate will be at best that from estimating a single variance from a sam-
ple of a size equal to the number of centres. This suggests that use of a
random-effects representation will be very fragile unless there are at least,
say, 10 centres and preferably considerably more.

Next, if centres are chosen by an effectively random procedure from a
large population of candidates, individual distinctions between which are
of little interest, then the random-effects representation has an attractive
tangible interpretation. This would not apply, for example, to the countries
of the European Union in a social survey. The countries would be of in-
dividual interest and the total number of such countries small. Even if the
countries sampled showed essentially the same effect of interest, extrapo-
lation to all countries of the EU would require judgement about possible
anomalous behaviour of the countries omitted from the study.

It is important to note that in relatively balanced situations the distinc-
tion between treating centres as random or fixed often has little or no ef-
fect on the formal conclusions about the treatment effect. This can be seen
in its simplest form in the traditional randomized block design shown in
Table 7.1(a). There are t = 3 alternative treatments and the experimental
units are arranged in b = 5 blocks each consisting of t = 3 similar units. A
key feature is that each treatment occurs once in each block.

For continuous variables, a least-squares analysis of a model in which
each observation is the sum of a treatment effect and a block effect and
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Table 7.1 (a) Randomized block design with t = 3
treatments in b = 5 blocks. (b) An unbalanced
arrangement with a similar structure

(a) Block 1 2 3 4 5

T2 T1 T3 T3 T1
T1 T2 T1 T2 T3
T3 T3 T2 T1 T2

(b) Block 1 2 3 4 5

T1 T2 T1 T2 T3
T1 T3 T2 T2 T2
T2 T3 T3 T3 T1

also has a random error leads to estimation of the parameters via respec-
tively the treatment means and the block means. It is fairly clear on general
grounds, and can be confirmed by formal analysis, that estimation of the
treatment effects from the corresponding marginal means is unaffected by
whether the block effects are:

• arbitrary unknown constants;

• random variables with an arbitrary distribution; or

• some known and some unknown constants, for which all or some block
differences are unimportant.

For the first two possibilities, but not the third, estimation of the residual
variance is also unaffected. Thus the only difference between treating the
block constants as random rather than fixed lies in a notional generalization
of the conclusions from the specific blocks used to a usually hypothetical
population of blocks.

If, however, the complete separation of block and treatment effects in-
duced by the balance of Table 7.1(a) fails, the situation is different. See
Table 7.1(b) for a simple special case with an unrealistically small number
of blocks! The situation is unrealistic as the outcome of an experiment but
is representative of the kinds of imbalance inherent in much comparable
observational data.

If now the block parameters are treated as independent and identically
distributed with variance, say, σ2

B and the residuals in the previous model
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have variance σ2
W then all observations have variance σ2

B + σ
2
W and two

observations have covariance σ2
B if and only if they are in the same block

and are otherwise uncorrelated. The so-called method of generalized least
squares may now be used to estimate the parameters using empirical es-
timates of the two variances. Unless σ2

B/σ
2
W is large the resulting treat-

ment effects are not those given by the fixed-effect analysis but exploit
the fact that the block parameters are implicitly assumed not to be greatly
different from one another, so that some of the apparent empirical varia-
tion between the block means is explicable as evidence about treatment
effects. It is assumed that reasonable estimates of the two variances are
available. If in fact the ratio of the variances is very small, so that inter-
block variation is negligible, then, as might be expected, the block struc-
ture can be ignored and the treatment effects again estimated from marginal
means.

Indeed in the older experimental design literature the above proce-
dure, presented slightly differently, was called the recovery of inter-block
information.

We now move away from the relatively simple situations typified by a
randomized block design to consider the broad implications for so-called
mixed-model analyses and representations. The supposition throughout is
that in the model there are explanatory variables of direct and indirect inter-
est and also one or more nonspecific variables that are needed but are typi-
cally not of intrinsic interest. The issue is whether such variables should be
represented by unknown parameters regarded as unknown constants or by
random variables of relatively simple structure, typically, for each source
independent and identically distributed. The following considerations are
relevant.

• Unless there is appropriate replication, estimation of the variance of the
random effect terms cannot be effectively achieved. Such estimation is
required implicitly or explicitly for an analysis based on the random
effects model to be secure.

• If two analyses, one treating the nonspecific effects as fixed but nonzero
and the other assuming them all to be zero, give essentially the same es-
timates of the effect of important explanatory variables and the relevant
standard errors, then it is unlikely that a random effects model will give
anything substantially different.

• In other cases, however, it is in principle possible that a random ef-
fects analysis will give either appreciably different estimated effects or
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improved estimates of precision and, moreover, estimated effects mostly
intermediate between the two fixed effect analyses.

• Representation of the nonspecific effects as random involves indepen-
dence assumptions which certainly need consideration and may need
some empirical check. If in applications of the type represented in
Table 7.1 the blocks are all the same size and treatments are allocated
in accordance with a randomized design in which there are more treat-
ments than units per block, then this ensures that the block effects may
be treated as random. However, in an observational study such random-
ization is not available. If, for example, in an observational study the
blocks contained differing numbers of units and the block effects were
larger in blocks with more units then bias would be introduced by assum-
ing the block effects to be totally random. That apart, the crude analysis
suggested in the second list item will often give a pointer to the potential
gains of the random effects formulation.

With widely available software all these procedures are relatively eas-
ily implemented unless the data are either extremely extensive or of very
complex form. The point of the above discussion is that it is important in
applications to understand the circumstances under which different meth-
ods give similar or different conclusions. In particular, if a more elaborate
method gives an apparent improvement in precision, what are the assump-
tions on which that improvement is based? Are they reasonable?

7.2.3 Unstable effect

The previous discussion presupposed that the effects of the explanatory
variables under study are essentially the same across varying levels of the
nonspecific variable. If this is not the case, that is, if there is an interac-
tion between an explanatory variable and a nonspecific variable, the first
step should be to explain this interaction, for example by transforming the
scale on which the response variable is measured or by introducing a new
explanatory variable characteristic of the levels of the nonspecific variable.
That is, a deterministic explanation should be sought.

Illustration: Interpreting a variable treatment effect Two medical treat-
ments compared at a number of centres show appreciable discrepancies
between centres in the treatment effect, measured as a ratio of the two
event rates. Is an explanation, for example, that it is the difference of
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event rates that is stable rather than the ratio? Or does the ratio depend
in a systematic way on the socio-economic make-up of the patient pop-
ulation at each centre? While any such explanation is typically tentative
it will usually be preferable to the other main possibility, that of treating
interaction effects as random.

An important special application of random-effect models for interac-
tions is in connection with overviews, that is, the assembling of information
from different studies of essentially the same effect. Many issues discussed
in this book are in fact relevant to overviews, but we shall not develop the
topic in detail.

7.3 Choice of a specific model

Having considered the nature and properties of probability models, we now
turn to the choice of models for fitting to a specific application. Often
this will involve at least two levels of choice, first between distinct sep-
arate families and then between specific models within a chosen family.
Of course all choices are to some extent provisional. As we have seen,
in many situations the systematic and random components of variability
require distinct, even if related, choices.

Illustration: Choosing between model families For the analysis of sur-
vival data that are approximately exponentially distributed, both the
gamma family and the Weibull family provide distributions with two
parameters to be estimated. The distributions are separate except in
the special case of exponentially distributed data. As an example, for
the representation of the dependence of a continuous response Y on an
explanatory variable x, the two families

E(Y) = β0 + β1x, E(Y) = γ0/(1 + γ1x) (7.10)

are separate unless there is no dependence on x, that is, β1 = γ1 = 0. For-
mal tests to determine which is the more suitable family of models are
probably rarely necessary. When considering two families of models, it
is important to consider the possibilities that both families are adequate,
that one is adequate and not the other and that neither family fits the
data. Informal comparison of the maximized log likelihoods achieved
under the two models may be helpful, especially if the numbers of ad-
justable parameters in the two models are the same. For a formal test
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of a model family specified by β against an alternative family specified
by γ the best procedure is often to simulate sets of data from the first
model using the estimated values β̂ and to compare the maximum log
likelihoods achieved with the second family with those obtained from
the empirical data. The procedure should then be repeated, interchang-
ing the roles of the two models. Such comparisons are sometimes made
using Bayes factors, which aim to give the probability of correctness of
each model. Bayes factors are, however, misleading if neither model is
adequate.

We have discussed previously the use of specific subject-matter consid-
erations to determine a suitable model. Even in more empirical situations
there may be special circumstances, appeal to which may be valuable.

For dependencies of Y on x that are gently curved, or for testing the
adequacy of a linear representation, a low-degree polynomial, in particu-
lar a quadratic, may be entirely adequate. But if it is known on general
grounds that the relationship approaches an asymptote for large x then the
form

E(Y) = α + γe−δx (7.11)

may lead to a more stable interpretation.
In a different situation it may be known that any general relationship

must pass through the origin, yet a straight line not through the origin may
give an entirely adequate fit, if for example all the observed values of x are
positive and quite far from zero. If all observations are positive, a linear
relationship of log Y on log x may be preferred because it automatically
satisfies the external constraint even if there is no improvement in fit by its
use.

We concentrate now on the more widely occurring issue of how to make
a choice within a specified family using formal techniques.

In some contexts there is a family of models with a natural hierarchy of
increasing complexity, and the specific issue is to decide how far down the
hierarchy to go.

Illustration: Polynomial regression models Systematic polynomial rela-
tionships in one or more explanatory variables provide a flexible family
of smooth relationships for empirical fitting, although it should be noted
that polynomials often provide a particularly poor base for even mod-
est extrapolation. Thus with one explanatory variable, x, measured from
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some suitable reference point, we may fit

E(Y) = β0 + β1x + · · · + βp xp (7.12)

to the data.
With two explanatory variables, x1 and x2, a comparable relationship

in the case p = 2 is

E(Y) = β00 + β10x1 + β01x2 + β20x2
1 + 2β11x1x2 + β02x2

2.

It will typically be wise to measure the xi from a meaningful origin near
the centre of the data. The β jk then specify first- and second-order partial
derivatives of the fitted function at that origin.

Somewhat similarly, time series may be represented by autoregres-
sive processes of order p= 1, 2, . . . or by more complicated mixed
autoregressive-moving average processes.

In all these expressions, unless there are special considerations, all terms
of degree up to and including the final term will be used. For example, in
the second equation it would not normally be sensible to include β11 and
to exclude β20 and β02. For both equations we have a clear hierarchy of
models corresponding to increasing values of p.

For a single set of data it would be typical to use in such a model the
smallest value of p achieving adequate consistency with the data, and there
are a number of rather different procedures for assessing this. An exception
to the general strategy might be where, say, a linear representation is ade-
quate but it is required to put limits on the amount of curvature that might
be present.

Often, however, there are a number of similar sets of data, each of which
may be represented in the above form. Typically it is then desirable to fit
all these sets by a model with the same value of p, usually close to the
largest value needed in any individual set. The practice of, for example,
fitting straight lines, p = 1, to some sets and quadratics, p = 2, to others,
and so on, is potentially confusing and may establish false distinctions be-
tween different sets as well as making comparison of estimates of specific
parameters difficult.

In the case of the dependence of a response on qualitative features,
the hierarchical principle implies, again with very rare exceptions, that
models with interaction terms should include also the corresponding main
effects.
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Illustration: Implication of no main effect in the presence of two-way inter-
action terms In an experiment in which animals are fed different diets,
where for each diet there are equal numbers of males and females, and
gain in body weight is measured for each animal, the outcomes could
be summarized in a two-way table of means. In this the rows would
be defined by diet and the two columns by gender. A model with in-
teraction but no diet (row) effect would represent the possibility that,
although the differences between diets are not the same for males as for
females, nevertheless averaged over males and females the diets give
exactly the same mean gain, an implausible possibility. If a limited
amount of each food were fed collectively to single groups of ani-
mals then the non-hierarchical form would be, perhaps, slightly more
plausible.

Illustration: Requirement for no row effect despite the inclusion of column
and interaction terms Suppose that in an industrial setting a rectangu-
lar piece of material is cut into horizontal strips, the cuts being exactly
the same distance apart. Suppose that it is also divided by vertical lines
that are nominally the same distance apart but which in fact vary errati-
cally. Thereby nominally equal rectangular small pieces of material are
formed. Suppose that these are weighed and the weights compiled in
a two-way table of rows and columns. Then the procedure as described
would require a representation with zero row effects but nonzero column
and interaction terms.

In the discussion that follows we assume that, where applicable, a hierar-
chical principle is satisfied by all models in that, for example, interactions
in a model are accompanied by the corresponding main effects.

We now discuss in more detail the choice of model within a family of re-
gression models of a response y on a set of explanatory variables x1, . . . , xp,
where p may be quite large. The same principles apply to least-squares and
other forms of generalized linear models, those dealing for example with
binary data or survival data. We will assume that data become available on
n individuals. In most cases n is much greater than p; we will comment
later on the other possibility.

Suppose that, at some point in the analysis, interest is focused on the role
of a particular explanatory variable or variables, x∗ say, on the response, y.
Then the following points are relevant.
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• The value, the standard error and most importantly the interpretation of
the regression coefficient of y on x∗ in general depends on which other
explanatory variables enter the fitted model.

• The explanatory variables prior to x∗ in a data-generating process should
be included in the model unless either they are conditionally indepen-
dent of y given x∗ and other variables in the model or are conditionally
independent of x∗ given those other variables. These independencies are
to be consistent with the data and preferably are plausible a priori.

• The variables intermediate between x∗ and y are to be omitted in an
initial assessment of the effect of x∗ on y but may be helpful in a later
stage of interpretation in studying pathways of dependence between x∗

and y.
• Relatively mechanical methods of choosing which explanatory variables

to use in a regression equation may be helpful in preliminary explo-
ration, especially if p is quite large, but are insecure as a basis for a final
interpretation.

• Explanatory variables not of direct interest but known to have a sub-
stantial effect should be included; they serve also as positive controls.
Occasionally it is helpful to include explanatory variables that should
have no effect; these serve as negative controls, that is, if they do not
have the anticipated positive or null impact then this warns of possible
misspecification.

• It may be essential to recognize that several different models are essen-
tially equally effective.

• If there are several potential explanatory variables on an equal footing,
interpretation is particularly difficult in observational contexts.

It is helpful in relatively complicated cases to distinguish at least two
phases in the analysis. The first phase consists of the search among perhaps
several possibilities for a base for interpretation. In the second phase the
adequacy of that base is checked.

For the first phase a number of fairly different routes may reach the same
goal. One broad approach is as follows. Suppose that there are explanatory
variables x∗ which we require to include in a model, because of their in-
trinsic interest, and other variables x̃ which are potential confounders, that
is, they are conceptually prior to x∗ and may influence both x∗ and y.

Here is one strategy set out in a series of steps:

• fit a reduced modelMred with only x∗;
• fit, if possible, a full modelMfull with x∗ and x̃;
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• compare the standard errors of the estimated regression coefficients of y
on x∗ in the two models.

Except possibly for minor consequences connected with the estimation
of a residual mean square, the standard errors fromMred will be less than
those fromMfull, and possibly much less. If in fact there is relatively little
change in standard error between the two models then the use ofMfull may
seem the more secure base for interpretation. It may be helpful in showing
conclusions to give adjusted and unadjusted estimates of important param-
eters alongside one another.

If, however, the reduced model gives substantial improvements in no-
tional precision, as is likely to be the case if p is large, it is worth exploring
the potential omission of some components of x̃. A mixture of the back-
wards elimination of components of x̃ and the reintroduction of compo-
nents by forward selection, starting from none or a few of the components
of x̃ may be used. The ultimate object is, we repeat, assessment of the effect
of the variables, x∗, rather than the study of the components of x̃.

A more challenging situation arises when potentially a large number of
components of x∗ are of concern.

Illustration: Analysis of an extensive case-control questionnaire To study
the possible effect of farm management practices on the incidence of
bovine tuberculosis, farmers having experience of a recent outbreak
were compared with farmers who had not had an outbreak by the use
of a comprehensive questionnaire about the nature of their farm and its
management. Retrospective case-control studies of this kind are anal-
ysed by logistic regression of the formal binary response, outbreak ver-
sus no outbreak, on the explanatory variables, the questionnaire an-
swers, themselves mostly taken in binary form. The questionnaire was
extensive and simplification by omission of some components unavoid-
able. To implement the broad strategy set out above, the variables could
be divided into x∗, those that represent management features that are
in principle modifiable, and x̃, those that are in a sense intrinsic to
the farm, the nature of the soil, the size and location of the farm and
so on.

When the dimension of x∗ is greater than one then, even though choos-
ing an appropriate model may raise no special difficulties, interpretation of
the estimated parameters may be ambiguous, especially in observational
studies.
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In some studies, especially in the process industries, specification of the
effect of several quantitative factors on the response may best be under-
stood by considering a response surface specifying the expected response
as a function, linear or often quadratic in the components of x∗. The coef-
ficients of individual components of x∗ refer to the change in the response
consequent on changes of one component variable with the others held
fixed, for example the change consequent on a change in temperature of
a chemical process with the pressure and concentrations of the reactants
held fixed. It may be better if the emphasis in these studies is on the sur-
face itself rather than on the individual coefficients and indeed it may be
helpful to transform x∗ into a new set of derived variables that will clarify
description of the surface.

The situation is formally similar in observational studies but typically
the interpretation of the parameters is more difficult.

Illustration: Characterizing a response surface Consider the relationship
between blood pressure y and the sodium, Na, and potassium, K, levels
in the blood, denoted jointly by x∗. From suitable data a response surface
may be fitted, possibly linear on a log scale of all variables, or perhaps
more complicated, and possibly adjusted for background variables. In-
terpretation of this surface and its associated parameters depends greatly
on the context. We now illustrate some key principles in idealized
form.

Suppose first that in an experimental setting the values of Na and K
are in intakes per day and that for each study individual these values are
controlled at a set level for each individual, the levels being randomized
to individuals according to a suitable experimental design. The regime
is continued until the systolic blood pressure has come to an equilib-
rium; this value is taken as the response variable of interest. Then the
regression parameters in the fitted model have a direct interpretation as
representing the mean change in blood pressure consequent on a spec-
ified change in Na and K intake, for example on a unit increase in Na
with K fixed.

Suppose next that the observations are on a collection of study in-
dividuals whose daily intake of Na and K is measured over a period.
Their blood pressure is also recorded. This is an observational setting;
the daily intakes depend on the diets chosen by the individuals in ques-
tion and are not assigned by the investigator. The initial method of sta-
tistical analysis of such data might be the same as for the experiment
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described above. The interpretation of the parameters is, however, more
restricted.

For example, any demographic or lifestyle variable considered to be
prior to Na and K in a data-generating process can in principle be in-
cluded in the model if measured and hence in effect held fixed when no-
tional changes in Na and K are considered. Any such variables affecting
both Na, K intake and blood pressure and which are unobserved distort
the conclusions. Thus if the amount of exercise taken is not recorded and
influences both Na and K levels and blood pressure, a notional change
of, say, Na used to interpret a regression coefficient includes an implied
but unobserved change in the amount of exercise.

If the individual data values refer to distinct individuals, the data
would estimate the response surface connecting blood pressure with the
Na and K concentrations. If the analysis were on a log scale then the
extraction of meaningful combinations of the two concentrations would
be possible. In general, however, interpretation of the individual regres-
sion coefficients, assuming that both are appreciable, would be difficult
without further information, because the notion of changing, say, Na,
while holding K fixed is unlikely to correspond to a real situation.

A particular issue that may arise at the initial stage of an analysis con-
cerns situations in which a number of conceptually closely related mea-
sures are recorded about the same aspect of the study individuals.

Illustration: Characterizing a multi-faceted risk factor Smoking behaviour
can be recorded in a number of different ways. Examples of relevant
variables include: current smoker, yes or no; for previous smokers,
years since cessation; cigarettes, including number smoked, pipe, and/or
cigar; inhaler, yes or no. It would not be sensible to treat these as en-
tirely separate variables. If the effect of smoking is a key issue under
study, careful attempts to isolate which of the variables, or combina-
tions thereof, provides the best explanation are required. If, however,
data on smoking is included only to avoid the contamination of other
effects, some initial simplification to one or two summary measures is
desirable. In either case it would be unwise to treat the variables as con-
ceptually unrelated, even though correlated.

For the second phase of analysis at least two different considerations
arise. First certain explanatory variables x̃ that were potential candidates
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for inclusion in the model may have been omitted. It will be wise to add
them back into the model, one (or a very small number) at a time, and
to check whether any major change in the conclusions is indicated. Sec-
ond, and very important, the initial discussion was predicated on a linear
fit. Now, especially in relatively complex situations it is unlikely that lin-
earity of response is other than a crude first approximation. While specific
nonlinear effects can, of course, be included from the start, a general form
of nonlinearity with many explanatory variables is not a feasible base for
analysis, unless p is small. A compromise is that, probably at the end of the
first phase of analysis but perhaps earlier, nonlinear and interaction effects,
such as are expressed by x2

j and x jxk, are explored one at a time by their
addition to the model as formal explanatory variables to describe curvature
of the response to the explanatory variables. The resulting test statistics, as-
sessed graphically, provide a warning process rather than a direct interpre-
tation; for example, the detection of interaction signals the need for detailed
interpretation.

The choice of a regression model is sometimes presented as a search for
a model with as few explanatory variables as reasonably necessary to give
an adequate empirical fit. That is, explanatory variables that are in some
sense unnecessary are to be excluded, regardless of interpretation. This
approach, which we do not consider, or in general recommend, may some-
times be appropriate for developing simple empirical prediction equations,
although even then the important aspect of the stability of the prediction
equation is not directly addressed.

A topic that has attracted much interest recently is that of regression-like
studies in which the number, p, of explanatory variables exceeds the num-
ber, n, of independent observations. In these applications typically both n
and p are large. Some key points can be seen in the simple case studied
in the industrial experimental design literature under the name ‘supersat-
urated design’. In this one might wish to study, for example, 16 two-level
factors with only 12 distinct experimental runs feasible. If it can be safely
assumed that only one of the 16 factors has an important effect on response
then, especially if a suitable design (Booth and Cox, 1962) is chosen, there
is a good chance that this factor can be identified and its effect estimated.
If, however, several factors have appreciable effects then it is likely that
confusing and potentially misleading results will be obtained. That is, suc-
cess depends crucially on the sparsity of the effects. Whether it is ever wise
in practice to use such a design is another matter!

It has been shown recently that for general linear regression problems
with p > n and with sparse effects, that is, most regression coefficients
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are negligible, estimation and identification of the nonzero components is
possible but the sensitivity of the answers to moderate failure of the sparsity
requirement is often unclear; see, however, Meinshausen and Bühlmann
(2010).

Notes

Section 7.1. For more discussion of the choice of parameters, see Ross
(1990). Dimensional analysis is described in textbooks on classical
physics. For a general discussion of the use of floating parameters, see
Firth and de Menezes (2004). There is an extensive literature on the anal-
ysis of survival data, variously with engineering, medical or social science
emphasis. Kalbfleisch and Prentice (2002) gave a thorough account in a
largely medical context. For the comparison of different parametric forms,
see Cox and Oakes (1984).

Section 7.2. For recovery of inter-block information, see Cox and Reid
(2000).
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Techniques of formal inference

Assessment of the uncertainty implicit in conclusions is often an im-
portant feature of statistical analyses. Although the primary empha-
sis in this book is not on the specialized concepts and methods in-
volved in such assessments, the present chapter reviews the main ideas
involved under the following headings: confidence limits, posterior
distributions and significance tests.

8.1 Preliminaries

The details of specific statistical methods and the associated mathemati-
cal theory will not be discussed here. We shall, however, outline the main
forms in which statistical conclusions are presented, because understand-
ing of the strengths and limitations of these forms is essential if misunder-
standing is to be avoided.

We discuss first analyses in which interpretation centres on individual
parameters of interest; that is, in general we investigate component by
component. We denote a single such parameter by ψ. This can represent
some property of interest, such as the number of individual animals of a
specific wildlife species in a particular area, or it can represent contrasts
between groups of individuals in an outcome of interest or, in a linear
regression application, ψ can be the slope of the relationship.

It is desirable that ψ is considered in ‘sensible’ units, chosen to give
answers within or not too far outside the range from 0.1 to 10. For example,
a slope of a relationship of length against time, that is a speed, might be in
mm per hour or km per day, etc., as appropriate and an incidence rate might
be in the number of cases per 100 000 person-years or in cases per 100
person-days. It is good practice always to state and repeat units explicitly.

Then conclusions about ψ can be presented as:

• confidence limits or intervals at one or more levels, for example 95%,
99%, etc.;

140
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• a summary, formally similar to the above, of a posterior distribution for
ψ;

• a significance test of a null hypothesis, that ψ takes a specific value ψ0 of
interest; for example this could be ψ0 = 0, corresponding to zero slope
of a regression line;

• an estimate t and its estimated standard error st.

We will discuss these in turn. The last is often, but not always, able in
effect to encompass the others; the third, the significance test, is by far
the most likely to be misunderstood. In the final section of the chapter we
discuss the complications that can arise affecting interpretation of these
procedures. We use idealized numerical examples as illustrations.

8.2 Confidence limits

The most satisfactory form of specification using confidence limits is to
give an upper limit and a lower limit at conventionally chosen levels, thus
forming an interval. For example, an upper 97.5% limit and a lower 2.5%
limit combine to form a 95% confidence interval. In some cases only the
upper limit, say, is of interest. Unfortunately, in many cases only the level
of the interval is given, without any explanation of how the upper and lower
limits separately have been specified, but this is not ideal. There is, in prin-
ciple, no restriction to using a single confidence level and in most cases a
confidence distribution can, in principle at least, be considered.

The empirical interpretation of, for example, a 97.5% upper limit is
that it is calculated by a procedure which in a long run of repeated ap-
plications would give too small a value in only about 2.5% of cases. As
such it summarizes information about ψ provided by the data considered
on their own, always, of course, in the light of the model assumptions
involved. The issues involved in examining sets of confidence intervals
for related parameters derived from different studies will be discussed
later.

Consideration, at least in principle, of a confidence distribution shows
that in most cases the values near the centre of a confidence interval are
more likely than those at the extremes and that if the true value is actually
above the reported upper limit it is not likely to be far above it. Conven-
tional accounts of confidence intervals emphasize that they are not state-
ments of probability. However, the evidential impact of, say, a 97.5% upper
confidence limit is much the same as that of an analogous upper probability,
or credible, limit. The crucial distinction is that different confidence-limit
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statements, even if statistically independent, may not be combined by the
laws of probability.

The following complications arise occasionally and need special discus-
sion.

• It can happen that values of ψ which are reasonably consistent with the
data fall into two or more disjoint intervals, in which case specification
simply by a single upper limit and a single lower limit is unsatisfactory.

• In some situations no allowable parameter values are consistent with the
data.

• In some situations, notably in the estimation of a ratio as in some bio-
assays and in the method of instrumental variables in econometrics, the
natural confidence region may sometimes consist of all values except
those in a specified interval. Further, in some cases the data are such
that no value should be excluded from the set of values reported as con-
sistent with the data. These superficially anomalous conclusions are in
fact a natural consequence whenever the denominator of a ratio is badly
determined.

Illustration: Comparing counts with the Poisson distribution A rather ide-
alized version of a counting problem in particle physics occurs when
the number of events counted in a particular time has a Poisson dis-
tribution with a mean that is the sum of a background contribution of
known mean and a signal, which may be zero. If the observed count is
substantially less than the expected background then a reasonable con-
clusion may be that the data are inconsistent with the proposed model.
The consequence would be the need to check the proposed background
assessment and possible complications in the recording process.

Confidence limits for functions of multiple parameters such as the ratio
α/β should never be approximated by plugging the univariate confidence
limits into the functional form. Instead local linearization, the delta method,
can be used to obtain asymptotic means and variances for nonlinear func-
tions of random variables.

8.3 Posterior distributions

The posterior distribution of a parameter is in most contexts the parallel
to a confidence distribution, forming what used to be called an inverse
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probability statement. This is nowadays called the Bayesian approach.
In it the model specification is augmented by a probability distribution,
termed the prior distribution, representing information about the parame-
ters other than that supplied by the data under analysis. The availability of
this distribution enables the standard rules of probability theory to be ap-
plied to determine the probability distribution as revised in the light of the
data, termed the posterior distribution. There are a number of different pos-
sibilities. Sometimes the prior distribution is ‘flat’ over a particular scale,
representing the absence of initial information. Then in relatively simple
problems the posterior distribution is virtually equivalent to the confidence
distribution, both numerically and in interpretation. In complex problems
with many nuisance parameters the use of flat prior distributions is suspect
and, at the very least, needs careful study using sensitivity analyses.

The use of historical data to form a prior distribution is equivalent to a
pooled analysis without, however, the necessary check of mutual consis-
tency; if the prior distribution and the data are in conflict then absurd con-
clusions are likely to arise. The insertion of expert opinion directly, in the
form of a probability distribution rather than through the data on which
that expertise is based, raises interesting possibilities especially in inves-
tigations with a strong decision-making focus. A key requirement is that
there should be sufficient agreement among experts that elicitation of their
opinions merits consideration on an equal footing with the empirical data.
For interesting examples, see Choy et al. (2009) and Martel et al. (2009).

The general issue is not whether any external information should be used
in interpretation. Rather it is whether that information can and should be
reasonably represented by a probability distribution and the resulting infor-
mation seamlessly integrated with that from the data.

A mild note of warning is perhaps needed over the use of the adjec-
tive Bayesian in current statistical discussions. Thomas Bayes (1701–1761)
related the conditional probability of an event A given an event B to the
conditional probability of B given A and the overall probabilities of the
individual events. He then applied this formula to a special inference prob-
lem to obtain the conditional probability of an explanation given the data
from the probability of the data given the explanation, i.e. from the implied
model and from the individual probabilities, in particular here the proba-
bility of the explanation without knowledge of the data, that is, the prior
probability of the explanation.

In the nineteenth century this method, applied to problems of statistical
inference, was called the method of inverse probability and, as noted above,
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used a prior distribution intended to represent initial ignorance. This latter
notion was severely criticized by nineteenth-century mathematicians such
as Boole and Venn and, while never abandoned totally, fell into disfavour in
most of the first half of the twentieth century. The most important exception
was the work of Jeffreys (1939), who attempted a systematic justification of
an approach in which probability represents an objective degree of belief.
In the middle of the century attention shifted to a personalistic view of
probability, as concerned with individual belief as expressed by individual
choice in a decision-making context. It was at this point that the adjective
Bayesian came into common use, replacing the term ‘inverse probability’.

Towards the end of the twentieth century the personalistic view received
much less emphasis, probably because of its inappropriateness for scien-
tific discussion whatever its virtues might be for individual decision mak-
ing or even, perhaps, for describing what an individual scientist in his or
her heart of hearts really believes, a different matter from what is reason-
ably soundly based on evidence. The word Bayesian, however, became ever
more widely used, sometimes representing a regression to the older usage
of ‘flat’ prior distributions supposedly representing initial ignorance, some-
times meaning models in which the parameters of interest are regarded as
random variables and occasionally meaning little more than that the laws
of probability are somewhere invoked.

When a statistical discussion or analysis is described as Bayesian, the
following points should be checked in order to avoid any misunderstanding
of the meaning of the procedure.

• Is the prior distribution a positive insertion of evidence? If so, what is its
basis and has the consistency of that evidence with the current data been
checked?

• If so-called indifference or ignorance or reference prior distributions
have been used, how have they been chosen? Has there been a sensitiv-
ity analysis? If the number of parameters over which a prior distribution
is defined is appreciable then the choice of a flat prior distribution is
particularly suspect and indeed potentially misleading.

• Each of a substantial number of individuals may have been allocated a
value of an unknown parameter, the values having a stable frequency dis-
tribution across individuals. The use of a so-called empirical Bayesian
argument to estimate the parameters for specific individuals, or contrasts
of such values, is clear cut here.

• In some contexts the Bayesian approach is probably best seen as a com-
putationally convenient way of obtaining confidence intervals.
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8.4 Significance tests

8.4.1 Types of null hypothesis

Suppose that there is a value ψ0 of the parameter ψ of special interest. We
call the hypothesis ψ = ψ0 the null hypothesis, H0. To understand sig-
nificance tests it is essential to distinguish between different types of null
hypothesis and, slightly less importantly, to deal separately with the differ-
ent levels of problem formulation.

In one context, common in some applications, H0 divides the parameter
space into two qualitatively different regions. These may, for example, be
regions of positive slope as contrasted with regions of negative slope or
regions in which treatment A gives a higher (perhaps clinically more ben-
eficial) mean outcome than treatment B versus the contrary. There may be
no special reason for thinking the null hypothesis to be even approximately
true. Its importance stems from the implication that, so long as H0 is rea-
sonably consistent with the data, the sign or direction of the effect under
study has not been securely established. In most cases use of a significance
test is essentially equivalent to recording the level at which the confidence
interval just overlaps zero, that is, the data are reasonably consistent with
effects in both possible directions. In one sense, therefore, no special dis-
cussion is required. In Bayesian discussions the analogue of a null hypoth-
esis involves the posterior probability that the true value is in one particular
part of the set of possible values. As noted previously this will often yield
conclusions nearly identical to those from non-Bayesian discussion.

In the second type of null hypothesis there is distinct interest in the pos-
sibility that H0 is exactly true or can be treated as true to an adequate ap-
proximation. For example, H0 may correspond to the prediction of a firmly
based theory. Another possibility is that there may be strong reasons for
supposing that a certain modification to a system has no effect on a speci-
fied response variable. We shall call any such null hypothesis atomic.

Illustration: Testing an atomic null hypothesis Maconochie and Roman
(1997) analysed data on singleton births in Scotland for the period 1975
to 1988. The null hypothesis was that gender occurred completely ran-
domly at a fixed probability per birth. They tested for dependence on
the genders of previous siblings in the family, on birth order, on ma-
ternal age and social class and on year and period of birth. From data
on over half a million births they found no evidence against the null
hypothesis.
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8.4.2 Test of atomic null hypothesis

In the narrowest interpretation of an atomic null hypothesis, only that null
hypothesis is formalized; for example it could represent the consequences
of one theory, no alternative theory being available or even at the stage of
formal development. Typically, some idea of the departures of interest will
be available, but very possibly only qualitatively.

It is worth drawing a parallel between the testing of an atomic null hy-
pothesis and the testing of a comparable deterministic hypothesis. For the
latter, the procedure would be as follows:

• find a property, ν, whose value, ν0, is predicted by the theory and which
is expected to be, say, larger than ν0 if the theory is false;

• measure ν;

• if ν = ν0, the data are consistent with the theory but if ν > v0 then the
hypothesis is to be rejected and the theory that generated it is itself either
rejected or modified; or

• if unexpectedly ν < ν0, reconsideration of the whole approach may be
appropriate.

If ν = ν0 then the data could be regarded as not merely consistent with
the theory but as providing support for the theory to the extent that no al-
ternative explanations are available, that is, that any alternative explanation
would have been detected by the design of the study.

In the case of a statistical atomic null hypothesis H0 we may aim to
parallel the above steps. For this, the procedure is as follows:

• find a function v of the data such that under H0 the corresponding ran-
dom variable V has, to an adequate approximation, a known distribution,
for example the standard normal distribution, or, in complicated cases, a
distribution that can be found numerically;

• collect the data and calculate v;

• if the value of v is in the lower or central part of the distribution, the data
are consistent with H0; or

• if v is in the extreme upper tail of the distribution then this is evidence
against H0.

The last step is made more specific by defining the p-value of the data y,
yielding the value vobs, as

p = p(y) = P(V ≥ vobs; H0). (8.1)
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It is assumed that this can be found numerically, at least to a reasonable ap-
proximation. The p-value is in a sense the unique measure of the extremity
of the value of v in the light of H0.

More explicitly, the p-value has the following hypothetical interpreta-
tion.

If we were to accept the current data as barely decisive evidence against
H0 then out of a large number of cases in which H0 is true, it would be
falsely rejected in a long-run proportion p of cases.

In this formulation the statistic v is chosen on largely intuitive grounds
as one that is likely to be sensitive to the kinds of departure from H0 of
interest. If there is a parametric model in which a parameter ψ represents
the focus of interest then the statistic used to form the best confidence in-
tervals for ψ will be used for v, and the p-value essentially specifies the
level at which a confidence interval for ψ just fails to contain the null
value ψ0.

Some accounts of the philosophy of science put an emphasis on the test-
ing and especially the rejection of atomic null hypotheses. This emphasis
may stem from a preoccupation with the physical sciences, with their pow-
erful theory base. Inconsistency with the null hypothesis may then point
constructively to minor or not so minor modification of a theoretical anal-
ysis. In many other fields atomic null hypotheses are less common, and
significance tests are more often used to establish the directions of effects
and may best be considered as subsidiary to confidence distributions.

8.4.3 Application and interpretation of p-values

The outcome of a significance test should be reported by giving the p-value
approximately. The conventional guidelines are roughly as follows:

• if p � 0.1 there is a suggestion of evidence against H0;
• if p � 0.05 there is modest evidence against H0;
• if p � 0.01 there is strong evidence against H0.

The following points of interpretation arise.

• The values mentioned above are not to be interpreted rigidly. The inter-
pretation of 0.049 is not essentially different from that for 0.051.

• This use of tests to assess evidence must be distinguished from a
decision-making rule, as for example in industrial inspection, in which
inevitably somewhat arbitrary choices have to be made at the borderline.
There is, however, no justification in that kind of application for standard
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choices such as the level 0.05. The critical level that is sensible depends
strongly on context and often on convention.

• The p-value, although based on probability calculations, is in no sense
the probability that H0 is false. Calculating that would require an ex-
tended notion of probability and a full specification of the prior proba-
bility distribution, not only of the null hypothesis but also of the distribu-
tion of unknown parameters in both null and alternative specifications.

• The p-value assesses the data, in fact the function v, via a comparison
with that anticipated if H0 were true. If in two different situations the
test of a relevant null hypothesis gives approximately the same p-value,
it does not follow that the overall strengths of the evidence in favour of
the relevant H0 are the same in the two cases. In one case many plausible
alternative explanations may be consistent with the data, in the other
very few.

• With large amounts of informative data, a departure from H0 may be
highly significant statistically yet the departure is too small to be of
subject-matter interest. More commonly, with relatively small amounts
of data the significance test may show reasonable consistency with
H0 while at the same time it is possible that important departures are
present. In most cases, the consideration of confidence intervals is desir-
able whenever a fuller model is available. For dividing null hypotheses,
the finding of a relatively large value of p warns that the direction of
departure from H0 is not firmly established by the data under analysis.

8.4.4 Simulation-based procedures

The calculation of p-values and associated quantities such as confidence
intervals is based on mathematical theory. The procedures may be exact or
may derive from so-called asymptotic or large-sample theory. Here ‘exact’
means only that no mathematical approximations are involved in the cal-
culation. Of course, any calculation is made in terms of a model, which
at best can be only a very good approximation, so that its exactness must
not be overinterpreted. Large-sample procedures involve mathematical ap-
proximations, essentially that the effect of random variation on estimates
and test statistics is relatively small, so that nonlinear functions are lo-
cally linear, and that some associated quantities are normally distributed.
It is probably rare that these approximations have a critical effect on in-
terpretation; specialized advice is needed when, for example, the level of
significance achieved or the width of confidence intervals are judged to be
critical.
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An alternative approach uses computer simulation instead of mathemat-
ical theory. Such procedures are of a number of types. The simplest simply
mimics the mathematical theory. That is, to test a null hypothesis, for ex-
ample, repeat observations corresponding in structure to the data and for
which H0 is satisfied are made again and again, the test statistic is calcu-
lated for each and its distribution is built up until the position of the data in
the simulated distribution is sufficiently clear.

An appealing approach due to Efron (1979), which uses only the data
under analysis, that is, not drawn afresh from the probability model, goes
under the general name of bootstrap. The reference is probably to the old
expression ‘pulling yourself up by your own shoe-laces’. Here, repeat hy-
pothetical data are constructed by sampling the real data repeatedly with
replacement to generate, for example, the distribution of an estimate or test
statistic. In sufficiently simple situations this gives a close approximation
to the results of mathematical analysis. It does, however, not cope so eas-
ily with situations having a complex error structure; whether an answer
achieved in this way is more secure than one obtained by mathematical
analysis is by no means always clear.

In Bayesian approaches broadly similar issues arise. A posterior dis-
tribution that cannot be obtained in an mathematical exact form may be
approximated, typically by the method called Laplace expansion, or sim-
ulated by the powerful computer-intensive technique of Markov chain
Monte Carlo (MCMC). This leads to the simulation of pseudo-data from
which the posterior distribution of the quantities of interest can be built up.
There may be issues about whether the convergence of certain processes
has been achieved, and the whole procedure is a black box in that typically
it is unclear which features of the data are driving the conclusions.

8.4.5 Tests of model adequacy

Formal statistical analysis rests, as we have repeatedly emphasized, on
the formulation of a suitable probability model for the data. The question
whether a model is adequate or whether it should be modified or indeed
even replaced by a totally different model must always be considered. In
some situations informal inspection may be adequate, especially if the con-
clusions from the analysis are relatively clear cut. The key issue is then
whether there could be an aspect of the model which, if changed, would
alter otherwise clear-cut conclusions.

If a formal test is needed, the model is taken as the null hypothesis and
the principles outlined above are followed. Occasionally two quite different
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model families will be available. Then the most fruitful approach is usually
to take each model as the null hypothesis in turn, leading to a conclusion
that both are consistent with the data, or that one but not the other is consis-
tent or that neither is consistent with the data. Another possibility is to form
a single model encompassing the two. Methods are sometimes used that
compare in the Bayesian setting the probabilities of ‘correctness’ of two or
more models but they may require, especially if the different models have
very different numbers of parameters, assumptions about the prior distri-
butions involved that are suspect. Moreover such methods do not cover the
possibility that all the models are seriously inadequate.

More commonly, however, there is initially just one model family for
assessment. A common approach in regression-like problems is the graph-
ical or numerical study of residuals, that is, the differences between the ob-
served and the fitted response variables, unexpected patterns among which
may be suggestive of the need for model modification. An alternative, and
often more productive, approach is the use of test statistics suggestive of ex-
plicit changes. For example, linear regression on a variable x can be tested
by adding a term in x2 and taking the zero value of its coefficient as a
null hypothesis. If evidence against linearity is found then an alternative
nonlinear representation is formulated, though it need not necessarily be
quadratic in form.

The status of a null hypothesis model as dividing or atomic depends on
the context. Some models are reasonably well established, perhaps by pre-
vious experience in the field or perhaps by some theoretical argument. Such
a model may be regarded as an atomic null hypothesis. In other situations
there may be few arguments other than simplicity for the model chosen,
and then the main issue is whether the direction in which the model might
be modified is reasonably firmly established.

8.4.6 Tests of model simplification

A type of application in a sense complementary to that in the previous
subsection is that of model simplification. We shall describe this initially in
the context of multiple regression, although the considerations involved are
quite general. Suppose that we consider the linear regression of a response
variable Y on explanatory variables x1, . . . , xd. A residual sum of squares,
RSS1...d, will result. Suppose now that a reduced model of interest uses
as explanatory variables a subset of the original variables, say x′1, . . . , x′d′ ,
where d′ < d. This will have a larger residual sum of squares, RSS1′...d′ . We
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call the difference

RSS1′...d′ − RSS1...d (8.2)

the sum of squares for the included variables adjusted for the omitted vari-
ables, that is, those not in (x′1, . . . , x′d′ ). If this sum of squares is too large,
there is evidence that the improvement in fit from the more complex model
is too large to be a chance effect and thus the proposed simplification is in
conflict with the data. A formal test uses the variance-ratio, or F, distribu-
tion to compare (8.2) with the residual sum of squares from the full model,
RSS1...d, allowing for the numbers of parameters (degrees of freedom)
involved.

In a much more general setting we have a full model and a reduced
model and we obtain the maximized log likelihoods under each, lfull and
lred, say. Then under the null hypothesis that the reduced model has gener-
ated the data, the test statistic

2(lfull − lred) (8.3)

has an approximately chi-squared distribution with the number of degrees
of freedom equal to the number of parameters suppressed in the simpler
model, that is d − d′. This result requires some technical conditions which
may need checking in applications.

Occasionally Occam’s razor is put forward as a philosophical justifica-
tion for the relentless simplification of models. In some situations where it
is thought that some relatively simple process is involved, drastic simplifi-
cation to the essentials may indeed be wise. In many applications, however,
for example in observational studies in the social sciences, the statistical
models are already very considerably idealized models of complex phe-
nomena and the wisdom of further simplification is less clear. There are
two rather different reasons which may even in such situations demand
simplification.

One concerns presentation. It is distracting to list a large number of re-
gression coefficients most of which are small and not interpretable. This
argument applies only when d is not small. If when a model is simplified
the subject-matter interpretation remains essentially the same as for the full
model, that fact should be reported even if the details are omitted.

The second reason is that if there is appreciable internal correlation in
the explanatory variables then a substantial nominal gain in the precision
with which key coefficients are estimated may be achieved by exclud-
ing apparently irrelevant variables from the model. This is best assessed
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by comparing, for parameters important for interpretation, the estimates
and standard errors obtained from the fit of a full model with those ob-
tained from one or more simplified models. If it is essential to follow
this approach, so far as is feasible insensitivity to the particular choice of
simplification should be examined.

The approach to mathematical formulation taken in virtually all sta-
tistical work may be contrasted with that in classical applied mathemat-
ics, that is, mathematical physics in which relativistic and quantum effects
are negligible. There, the key equations are Newton’s laws of motion, the
Navier–Stokes equations of fluid dynamics and Maxwell’s equations of
electrodynamics. Thus if the forces acting on a moving body are measured,
together with its mass and acceleration, and if force is not equal to mass
times acceleration then this is taken to imply either a missing component
or a misspecification of force. This defect must if possible be defined and
identified. That is, a lack of fit implies a deficiency in the data, not a de-
fect in Newton’s laws. This approach has, of course, been outstandingly
successful. By contrast, in the contexts that we are considering a clash be-
tween the data and the model nearly always represents a defect in the model
rather than in the data.

8.5 Large numbers of significance tests

8.5.1 Generalities

There are a number of situations which, at first sight at least, amount to
examining the outcomes of a large number of significance tests. In all such
cases it is desirable to see whether a formulation in terms of estimation
may not be preferable.

In a microarray study of a particular disease, data from diseased and
control subjects are compared at a large number of loci. Is there evi-
dence of any association and if so at which loci? In a genome-wide asso-
ciation study (GWAS) (Wellcome Trust Case Control Consortium, 2007)
somewhat similar statistical issues arose with a very large number of loci.

Illustration: Testing multiple energy cells Data arising from particle col-
liders, such as the large hadron collider (LHC), require complex pre-
processing but can be considered as Poisson-distributed counts corre-
sponding to events collected into a large number of energy bands. There
is a background count rate, which is a smooth function of energy that, to
a first approximation, may be assumed known. Interest lies in the energy
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cells in which the observed counts exceed the background. A very large
number of individual cells may need to be examined unless the energy
associated with the events of specific interest is known.

Illustration: Testing multiple plant varieties A plant breeding programme
may start with field trials of a very large number of varieties. On the
basis of the yields (and other properties) a subset of varieties is chosen
for a second phase, and so on, until one variety or a relatively small
number of varieties are chosen for possible commercial use.

In all these examples, except probably the last, the issue may appear to
be how to interpret the results of a large number of significance tests. It is,
however, important to be clear about objectives. In the last illustration, in
particular, a decision process is involved in which only the properties of
the varieties finally selected are of concern.

8.5.2 Formulation

In fact, despite the apparent similarity of the situations illustrated above, it
is helpful to distinguish between them. In each situation there is a possibly
large number r of notional null hypotheses, some or none of which may be
false; the general supposition is that there are at most a small number of
interesting effects present. Within that framework we can distinguish the
following possibilities.

• It may be that no real effects are present, that is that all the null hypothe-
ses are simultaneously true.

• It may be virtually certain that a small number of the null hypotheses
are false and so one must specify a set containing false null hypotheses,
such a procedure to have specified statistical properties.

• The previous situation may hold except that one requires to attach indi-
vidual assessments of uncertainty to the selected cases.

• The whole procedure is defined in terms of a series of stages and only
the properties of the overall procedure are of concern.

8.5.3 Multi-stage formulation

Many applications are essentially multi-stage, in that provisional conclu-
sions from the first stage of data collection and analysis in principle need
confirmation.
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Illustration: Lack of independent replication of findings Webb and Houl-
ston (2009), in a review of statistical considerations in modern genetical
research connected with cancer, report, disturbingly, that relatively few
reported conclusions about the relationship between single-nucleotide
polymorphisms (SNPs) of candidate genes and cancer have been con-
firmed in independent replication.

If, however, as in the plant-breeding illustration mentioned above, the
whole procedure is explicitly planned on a multi-stage basis to be imple-
mented in a relatively predetermined way, the relevant statistical properties
of the whole procedure should be assessed; issues of statistical significance
at each stage will not be directly relevant.

Illustration: Clinical trial phases The development of pharmaceutical
products through a series of phase 1, phase 2, phase 3 clinical trials
might, for some general managerial purposes, be usefully modelled as
a multi-stage procedure. In any specific instance, however, the decision
to move from one phase to the next would involve careful assessment of
the evidence available at that particular phase.

8.5.4 Bonferroni correction

The following discussion applies to situations in which a global null hy-
pothesis may be effectively true. The argument can be put in its simplest
form as follows.

Suppose that independent predictors are available. Each is tested for
statistical significance in r independent tests and the most significant
effect found is at level p∗, that is, p∗ is the smallest of the individual levels
achieved. Suppose, for example, r = 20 and that p∗ is approximately 0.02
for a particular predictor variable x∗.

Now, had x∗ been tested on its own then fairly clear evidence against the
relevant null hypothesis would have been found. Equivalently, a new inves-
tigator approaching the topic with only x∗ in mind as a potential explana-
tory variable would reach the same conclusion. Suppose, however, that x∗

is considered solely because it corresponds to the smallest p-value. Then it
is clear that if the hypothetical interpretation of p-values used to motivate
their use, namely their relationship to the probability of false rejection of
hypotheses when true, is to relate to the procedure actually employed then
the direct use of p∗ is misleading; if r is sufficiently large, an apparently



8.5 Large numbers of significance tests 155

important effect will be found even if all null hypotheses hold. If p∗ corre-
sponds to the smallest of r independent tests then the appropriate probabil-
ity of false rejection is

1 − (1 − p∗)r. (8.4)

In the special case this becomes 1 − 0.9820, which is approximately 0.33.
That is, there is nothing particularly surprising in finding p∗ = 0.02 when
20 independent tests are considered. In some contexts, such as discovery
problems in particle physics and genome-wide association scans in genet-
ics, very much larger values of r, possibly as high as 105, will arise.

If rp∗ is small then the corrected p-value approximately equals the Bon-
ferroni bound rp∗. Moreover this provides an upper limit to the appropriate
adjusted significance level even if the tests are not independent.

It is important that adjustment to the significance level is required not so
much because multiple tests are used but because a highly selected value
is being considered. Thus in a factorial experiment several or sometimes
many effects are studied from the same data. Provided each component of
analysis addresses a separate research question, confidence intervals and
tests need no allowance for multiple testing. It is only when the effect for
detailed study is selected, in the light of the data, out of a number of possi-
bilities that special adjustments may be needed.

Illustration: Considering the least significant finding In a study of patients
suffering from lung disease that examined a possible association with
the forced expiratory volume (FEV) of six somewhat similar biochem-
ical substances, five showed highly significant effects but the sixth, X,
had a p-value of only about 0.05. In considering the effect of X was
there any allowance for the selection of this as the least significant
effect? This is in contrast with the situation previously discussed. While
no formal solution is proposed here, it seems on general grounds that
if anything the p-value of X should be decreased rather than increased.
A theoretical formulation of Bayesian type is possible but would re-
quire the quantitative specification of a number of essentially unknown
features.

No adjustment is normally required when the details of a model are ad-
justed to make the specification more realistic, leaving the research ques-
tion unchanged. Thus the relationship between y and x, intended for study
by a linear regression, may better be examined by the regression of log y
on log x if the data show that the latter relationship is more nearly linear.
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Of course, when trying out several tests of the same issue, choosing one
just because it gives the smallest p-value amounts to the misuse of a tool.

8.5.5 False discovery rate

In one approach to the analysis of a large number of p-values, they are ar-
ranged in decreasing order and all those smaller than some threshold are
selected as evidence against the relevant null hypothesis. The threshold
may be chosen to achieve a pre-assigned level of the false recovery rate,
that is, the expected proportion of hypotheses that are selected as accept-
able where in fact the null hypothesis is true. The chosen individual effects
might then pass to a second phase of verification.

A disadvantage of this approach from some points of view is that, of
the effects selected, some may show overwhelming evidence against the
relevant null hypothesis, others being borderline. There is a parallel with
the use of significance tests at a pre-assigned level, in which the threshold
between acceptable and unacceptable null hypotheses is treated as rigidly
defined.

8.5.6 Empirical Bayes formulation

Probably the most satisfactory formulation for dealing with large numbers
of p-values involves an explicit model of their distribution. In such a model,
with probability, say, θ the test statistic t has a null hypothesis distribution,
say f0(t), whereas with probability 1−θ it has some alternative distribution,
say, f1(t). If θ and the two densities f0(t), f1(t) are treated as known, the
probability that a specific t comes from, say, the alternative distribution
f1(t) can be found.

Note that this formulation distinguishes cases where the assignment is
somewhat tentative from those in which it is relatively clear cut. In the most
elaborate of these methods, θ, f0(t) and f1(t) are all treated as unknowns
to be estimated whereas in the crudest version f0(t) is the theoretical null
hypothesis distribution, for example the standard normal distribution, and
f1(t) is a somewhat arbitrarily chosen displacement of that distribution,
leaving only θ to be estimated from the data.

8.6 Estimates and standard errors

In many applications, especially when relatively standard models are fit-
ted to fairly large amounts of data, the evidence is best summarized by an
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estimate of each parameter of subject-matter interest together with an as-
sociated standard error. Tests and confidence intervals may then be found
immediately. The proviso is that the standard normal distribution provides
an adequate approximation for the probability calculations involved. An
advantage of this approach is not only its conciseness and clarity but the
opportunity it gives an independent worker to make their own assessments.
For example, an estimate t1 with standard error st1 can be compared with
an independent estimate t2 with standard error st2, perhaps from an inde-
pendent source, by noting that t2 − t1 has standard error

√
(s2

t1 + s2
t2).

The comparison of correlated estimates needs some information about the
dependence between the errors of estimation.

8.6.1 A final assessment

It is a characteristic of statistical analysis, although not always the most
important one, that some assessment is provided of the uncertainty in the
conclusions reached. As we have stressed, these assessments depend on as-
sumptions about how the data were obtained and about the underlying data-
generating process. The most important assumption is that the research
questions of interest are captured directly in the model specification. After
that, there are usually assumptions about the distributional form, often not
critical, and assumptions about statistical independence, often much more
critical, especially in systems with hierarchies of error structure when in-
correct assumptions may lead to error estimates that are much too small.

Significance tests, confidence intervals and posterior distributions about
single parameters summarize what the data on their own (or supplemented
by an explicit prior distribution) tell us about the parameters of interest.
The interpretation of collections of tests or confidence intervals needs par-
ticular care. For example, checking that the confidence intervals for two
parameters, say ψ1 and ψ2, overlap is not a wise way to check the null hy-
pothesis that ψ2 = ψ1. In fact, if the 95% level confidence limits only just
overlap, there is strong evidence against this null hypothesis. The reason
is that if the associated standard errors are roughly equal and the estimates
independent then the difference between the means is four individual stan-
dard errors, or 4/

√
2 = 2.8 times the standard error of the difference. Again,

it is hard to see from an appreciable number of confidence intervals ob-
tained in an overview whether the results of different studies are or are not
mutually consistent.
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The pitfalls of selecting from a considerable number of tests only those
that are significant at some nominal level, such as 0.05, are obvious. One
possible general moral is that, so far as possible, fragmentary interpretation
of portions of the data is to be avoided.

A final issue concerns the level of statistical detail to be given when
conclusions are reported. Tables of estimates should preferably give also
standard errors, but the reporting of p-values in the main text should be
confined to situations where these are central to interpretation. The relent-
less recording of p-values and confidence intervals for every effect reported
is more likely to irritate than to inform. Of course, much must depend on
the conventions of the field of study.

Notes

Section 8.1. Cox (2006) gives a general introduction to the concepts un-
derlying statistical inference.

Section 8.4. Tippett (1927) was probably the first to produce tables of
random digits to aid empirical random sampling studies. The bootstrap
approach was introduced by Efron (1979); for a thorough account, see
Davison and Hinkley (1997). For a general account of simulation-based
methods, see Ripley (1987) and for MCMC, see Robert and Casella (2004).

Section 8.5. For an early account of the analysis of large numbers of p-
values, see Schweder and Spjøtvoll (1982). The basic idea of false discov-
ery rates is due to Benjamini and Hochberg (1995); see also Storey (2002).
For an elegant general account of methods for problems with a large num-
ber of similar parameters, see Efron (2010). For a simple approach to the
interpretation of p-values, see Cox and Wong (2004). The notion of false
discovery rates is similar to the notion of experiment-wise error rates exten-
sively studied under the general heading of multiple comparisons (Scheffé,
1959). For Bonferroni’s inequality, see Feller (1968).
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Interpretation

Interpretation is here concerned with relating as deeply as is feasi-
ble the conclusions of a statistical analysis to the underlying subject-
matter. Often this concerns attempts to establish causality, discussion
of which is a main focus of the chapter. A more specialized aspect
involves the role of statistical interaction in this setting.

9.1 Introduction

We may draw a broad distinction between two different roles of scien-
tific investigation. One is to describe an aspect of the physical, biological,
social or other world as accurately as possible within some given frame
of reference. The other is to understand phenomena, typically by relating
conclusions at one level of detail to processes at some deeper level.

In line with that distinction, we have made an important, if rather vague,
distinction in earlier chapters between analysis and interpretation. In the
latter, the subject-matter meaning and consequences of the data are em-
phasized, and it is obvious that specific subject-matter considerations must
figure strongly and that in some contexts the process at work is intrinsically
more speculative. Here we discuss some general issues.

Specific topics involve the following interrelated points.

• To what extent can we understand why the data are as they are rather
than just describe patterns of variability?

• How generally applicable are such conclusions from a study?
• Given that statistical conclusions are intrinsically about aggregates, to

what extent are the conclusions applicable in specific instances?
• What is meant by causal statements in the context in question and to

what extent are such statements justified?
• How can the conclusions from the study be integrated best with the

knowledge base of the field and what are the implications for further
work?

159



160 Interpretation

The balance between description and understanding depends strongly
on context but is not synonymous with a distinction between science and
technology or between basic science and, for example, studies connected
with public policy.

For example, studies of the possible health effects of exposure to mobile
phone signals depend not only on epidemiological investigations of the
occurrence of brain tumours but also on fundamental investigations of
the possibility that such signals penetrate to the brain and of the effect
that they might have on the performance of simple tasks, as assessed in an
experimental psychology laboratory.

9.2 Statistical causality

9.2.1 Preliminaries

In traditional philosophical thinking a cause is necessary and sufficient for
a subsequent effect. This notion is inappropriate for the kinds of situation
contemplated in this book: some smokers do not get lung cancer while
some non-smokers do. Yet some notion of causality underpins most sci-
entific enquiry and the need to perceive some explanation of the world is
fairly basic: Jung saw the three basic human needs to be for food, sex and
a perception of causality.

At least until recently, use of the word causal in the statistical literature
has been quite restricted, probably partly because of the strongly empirical
emphasis of most statistical work and partly because of the cautious, some
say overcautious, recognition of the difficulty of reaching clear unambigu-
ous conclusions outside the research laboratory. While in one sense any
use of words in a reasonably clearly defined way is acceptable, observation
suggests that, particularly in reporting research in a health-related context,
harm is often done by the uncritical reporting of conclusions with an un-
justified explicit or implicit causal implication. The credibility of solidly
based conclusions is undermined by a stream of often contradictory infor-
mation on, for example, dietary matters, certainly justifying caution in that
sphere.

For most statistical purposes an explanatory variable C, considered for
simplicity to have just two possible values, 0 and 1, has a causal impact on
the response Y of a set of study individuals if, for each individual:

• conceptually at least, C might have taken either of its allowable values
and thus been different from the value actually observed; and
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• there is evidence that, at least in an aggregate sense, Y values are ob-
tained for C = 1 that are systematically different from those that would
have been obtained on the same individuals had C = 0, other things
being equal.

The definition of the word ‘causal’ thus involves the counterfactual no-
tion that, for any individual, C might have been different from its measured
value. As such, C cannot be an intrinsic variable in the sense in which we
have used that term.

Illustration: Gender as a possible cause In the great majority of con-
texts, gender is not to be considered as a possible cause. It usually
makes no sense to consider what the outcome on a male would have
been had that individual been female, other things being equal. Excep-
tions are studies of sex-change operations and of discriminatory employ-
ment practices. In the latter case it is reasonable to attempt to answer the
question: how much would this person been paid if, with the same work
skills, experience, education, etc., she had been male rather than female?

A central point in the definition of causality and its implementation con-
cerns the requirement other things being equal. We discuss this in the next
subsection. Note also that in this formulation there is no notion of an ulti-
mate cause. That is, the cause C may itself be regarded as the outcome of
some further process, typically occurring earlier in time or, say, at a deeper
level biologically.

9.2.2 Causality and randomized experiments

It is convenient to start by discussing the interpretation of a randomized
experiment. We have experimental units such that any two units may pos-
sibly receive different treatments. Each unit is then randomized to one of
a number of possible treatments, in a design the details of which need not
concern us here. Among the possible variables involved are the following:

• variables, B, measured before the instant of randomization, called here
baseline variables;

• unobserved variables, U, defined before the instant of randomization;
• the treatment, T , applied to each unit;
• variables, I, measured and defined after randomization and before the

outcome of interest, called intermediate variables; and
• response or outcome variables Y .
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Figure 9.1 Schematic representation of a randomized
experiment. The baseline variables are defined before
randomization; the upper are observed and the lower are
unobserved. The randomizer defines treatments in such a way that
any unit is equally likely to receive each treatment, although the
precise design may depend on the observed baseline variables.
Treatment comparisons are independent of both types of baseline
variable.

See Figure 9.1.
In some contexts it may be reasonable to include in the first category

variables defined before randomization but not measured until later. The
absence of serious recall bias would be required.

The randomization used may depend on the baseline variables, notably
so if these are used to group the units into blocks for implementation of a
randomized block design.

In this formulation the requirement other things being equal means that
we need to contemplate the effect, for fixed B,U, of changes in the treat-
ment. The intermediate variable I may have been affected by the treatment
and is to be ignored, that is, allowed to vary in its appropriate distribution,
in an initial analysis of Y .

In the most direct analysis any effect of B on the outcome is ignored,
except in so far as it influences the randomization scheme used; the ef-
fect of T on Y is studied directly. Any influence of U on Y is random
in such an analysis. More complicated analyses may involve a regression
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analysis of Y on T and B and interpretation of the effect of T on Y for
fixed B. A further development allows for an interaction between B and T .
In all these analyses any effect of U is simply to inflate the random error
involved.

In some very limited cases intermediate variables may be used for con-
ditioning in such an analysis. In these cases there is sound evidence that an
intermediate variable is conditionally independent of T , given B,U. Some
intermediate variables may be of intrinsic interest, especially if they are
predictive of the final response variable Y . Their main role, however, is
likely to be in setting out pathways of dependence between the primary
explanatory variables and the response.

Illustration: Adjustment for post-randomization conditions In an investi-
gation of a number of alternative textile spinning processes, the response
variable was the end breakage rate. This was known to be affected by the
relative humidity in the spinning shed, which could not be controlled.
The humidity was determined by the current weather conditions and
there were sound reasons for considering it to be unaffected by the pro-
cess current at the time. Therefore, even though the humidity was not
determined until after randomization, it was reasonable to adjust for
it in analysis, that is, in effect to aim to condition the analysis on the
observed relative humidity.

The intermediate variables are ignored in the first direct analysis of the
effect of primary explanatory variables on the response. As mentioned
above, however, the intermediate variables may themselves be response
variables in further analyses. In other situations it is helpful to decompose
the dependence of Y on T into a path through I, sometimes called an indi-
rect effect, and a remainder, sometimes misleadingly called a direct effect;
a better name for this remainder would be an unexplained effect. In terms
of linear regression this decomposition is expressed as

βYT |B = βYT |B,I + βYI|T,B βIT |B. (9.1)

Here, for example, βYT |B,I denotes the regression coefficient of Y on T in
the multiple regression of Y on T, B and I, that is, I also is treated as ex-
planatory in addition to B. The two terms on the right-hand side specify
respectively the unexplained effect of T on Y and the pathway of depen-
dence from T to I and thence to Y .

See Figure 9.2.
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Figure 9.2 Pathways from exposure (treatment) to response. In
assessing the overall effect of exposure, the intermediate variable
is ignored. The effect can be represented exactly or approximately
as a combination of an indirect effect via an intermediate variable
and a direct effect. The latter is the unexplained effect, that is, the
one for which, as yet, no explicit intermediate explanation is
available.

9.2.3 Observational parallel

In some observational studies it is a reasonable aim to parallel as far as is
feasible the argument of the previous subsection. To do this the following
considerations are involved.

• For any pair of variables (V,W), either V is explanatory for W, or vice
versa or the two variables are to be treated as of equal standing.

• To study C as a potential cause of the behaviour of a response variable
Y we examine the relationship between Y and C conditionally on all
variables that are explanatory to C.

• The possibility that there is an unobserved confounder U is considered
qualitatively. Such variables may be either known and unmeasured or
unknown.

There are thus two sources of uncertainty in observational studies that
are not present in randomized experiments. The first is that the ordering of
the variables may be inappropriate, a particular hazard in cross-sectional
studies.

Illustration: Interpreting cross-sectional data In an analysis at the Uni-
versity of Mainz of the relationship between glucose control and patient
knowledge of diabetes, the working hypothesis used was that knowl-
edge is explanatory to success. Yet the two variables were determined
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at essentially the same time and it is not impossible that the incentive
to learn more about the disease is influenced by the level of success
achieved in controlling it.

Indeed in a sense the notion of causality is intrinsically confined to de-
velopment in time. As in the previous illustration, if the data are tied to one
time point then any presumption of causality relies on a working hypothe-
sis as to whether the components are explanatory or responses. Any check
on this can only be from sources external to the current data. With temporal
data, models in which the values Xt, Yt at time t are such that Xt depends
on Yt, and vice versa, should be avoided and replaced by models in which
the variables at time t depend only on the variables at earlier times. There
are special difficulties when, as in macroeconomics, the recorded series are
heavily aggregated in time.

The second source of uncertainty is that important explanatory variables
affecting both the potential cause and the outcome may not be available. In
the application just mentioned it might be hoped that the relevant medical
history would cover such aspects, but in many cases there may be cause
for concern. Bradford Hill (1965) gave guidelines to help strengthen the
case for the establishment of a causal effect in a context of interest, and in
the next section we review these guidelines. Cochran (1965) reported that,
when years before, he had asked R. A. Fisher about establishing causality
from observational data he had received the the gnomic reply ‘Make your
theories elaborate’, meaning that one should bring to bear as varied a set of
considerations as possible; this links with some of Bradford Hill’s points.

9.2.4 Qualitative guidelines

Bradford Hill’s guidelines, in a form close to the original, are as follows.
Evidence that an association is causal is strengthened if:

• the association is strong;
• the effect is found consistently over a number of independent studies;
• the observation of a potential cause precedes its postulated effect;
• the relationship is monotonic with respect to the level of exposure;
• the association has an underlying theoretical explanation;
• the association is based on a suitable natural experiment;
• the association is confined to the particular outcome studied.

It is to be stressed that these are guidelines or considerations, not cri-
teria. Any or indeed all of them might be false and yet causality could
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still hold. Conversely, a check that they are all satisfied is no guarantee of
causality.

The reason behind the first point is that the larger the effect the less
likely it is to be the consequence of an unobserved confounder. Point 5 has
greater cogency if the explanation is both clearly evidence-based and avail-
able beforehand. Retrospective explanations may be convincing if based on
firmly established theory but otherwise need to be treated with special cau-
tion. It is well known in many fields that ingenious explanations can be
constructed retrospectively for almost any finding.

In point 6, a natural experiment means a large intervention into a system,
unfortunately often harmful.

Illustration: Natural interventions Many early conclusions about HIV/
AIDS were based on studies of haemophiliacs accidently injected
with contaminated blood, some becoming HIV positive. The mortal-
ity among those so infected was about 10 times that of the uninfected.
Much information about the effects of radiation on health stems from
H-bomb survivors from Hiroshima.

The most difficult of the guidelines to assess is the last, about the speci-
ficity of effects. In most contexts the pathways between the proposed cause
and its effect are quite narrowly defined; a particular physical, biological
or sociological process is involved. If this is the case then the proposed re-
lationship should be seen as holding only in quite restricted circumstances.
If the relationship in fact holds very broadly there are presumably many
different processes involved all pointing in the same direction. This is not
quite in the spirit of causal understanding, certainly not in the sense of the
detailed understanding of an underlying process.

9.2.5 A further notion

A final definition of a causal link, probably closest to that used in the natu-
ral sciences, is that there is evidence that an underlying process has gener-
ated the data in question. This evidence may be based on well-established
theory or on empirical evidence of a different kind from that immediately
involved in the study under analysis, or often on a mixture of the two.

In macroscopic aspects of the physical sciences, a causal link would typ-
ically correspond to the deduction of results in classical physics or chem-
istry from a quantum-mechanical calculation. In the biological sciences, a
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causal link would correspond to an explanation in terms of knowledge at
a finer scale, for example when a large-scale phenomenon is explained in
terms of cellular processes. In sociology it has been suggested that expla-
nation in terms of so-called rational action theory is causal; explanations
of social regularities in terms of conclusions from psychology about indi-
vidual behaviour could also be appropriately described as causal.

That this approach, applied one cautious step at a time, is often needed
for deepening understanding does not imply a philosophical position of
ultimate reductionism.

Illustration: Understanding the link between smoking and lung cancer
Cornfield et al. (2009) discussed the evidence that smoking is a cause
of lung cancer. They looked at the evidence from population compar-
isons, from prospective and retrospective special studies, from random-
ized trials and from laboratory work. They examined in largely qual-
itative terms the alternative explanations that had been proposed and
came to the conclusion that overall there was overwhelming evidence
for a causal link. It is interesting that in 1959 three leading statisti-
cians, R. A. Fisher, J. Neyman and the influential medical statistician,
J. Berkson, all had reservations on the issue, even though they came
from very different perspectives. It is possible that their view came
in part from their assessing the evidence in a somewhat fragmentary
way.

9.3 Generality and specificity

Two apparently contrasting but linked concepts concern the extension of
conclusions to new situations and the applicability of conclusions from
statistical analysis, inevitably concerned with aggregates, to individual
situations.

In fundamental studies of new phenomena it is usual to study situations
in which the aspects under study appear in their simplest and most strik-
ing form. Other considerations include the speed with which results can
be obtained. In more applied contexts, the broad representativeness of the
material used is one consideration but demonstration of the absence of in-
teraction between the estimated treatment effects and key intrinsic features
is probably more important.



168 Interpretation

Illustration: Stability of conclusions An important notion in the tradi-
tional approach to the design of experiments is the inclusion and planned
variation of factors characterizing the experimental units, as contrasted
with a very detailed study of particular situations. Thus the generality
of the conclusions from an agricultural field trial would not hinge on
whether the fields used were a random sample from the population of
fields of interest; such a random sample would in any case not be achiev-
able. Rather, the stability of the conclusions would depend on replica-
tion over space, in particular over soil types, and over time, representing
meteorological conditions. Stability, that is the absence of any major in-
teraction of the effects due to the spatial and temporal variables, would
be the most secure base for the generality of the conclusions. The same
idea, under the name of noise factors, is explicit in some approaches to
industrial quality control.

Illustration: Determining treatment recommendations for specific patients
Important medical treatments based on pharmacological products un-
dergo a range of trials to establish their efficacy and safety. Typically
they are based also on some pharmacological understanding of the mode
of operation at, for example, the cellular level. Any randomized clini-
cal trial involves patients who satisfy a formal protocol and have given
informed consent; they do not form a random sample from the popu-
lation of potential patients. Generality comes from repetition under a
range of conditions and from biological understanding. From the per-
spective of a treating clinician, the issue is more that of specificity. Con-
clusions from randomized trials may unambiguously establish that, in
aggregate, patients do better if they have all had a new treatment T than
they would have done had they all received the previously standard ther-
apy C. Clearly this is far short of showing that T is preferable to C for
every patient, but the clinician wants to recommend the treatment ap-
propriate for a particular patient in his or her care. The more it can be
established that there is no major interaction of treatment effect with
intrinsic features of patients, for example age, gender, ethnicity and pre-
vious relevant medical history, the more likely does it become that T is
indeed preferable for this specific patient.

The general issue of applying conclusions from aggregate data to spe-
cific individuals is essentially that of showing that the individual does not
belong to a subaggregate for which a substantially different conclusion
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applies. In actuality this can at most be indirectly checked for specific
subaggregates.

In the particular context of a clinical trial the most direct approach is
subgroup analysis. That is, the patients are divided into distinct subgroups
to be analysed separately. This is in general a bad procedure, certainly if
many subgroups are involved. On the one hand, the individual group anal-
yses will be of low sensitivity. On the other hand, especially in the rather
different situation of establishing whether there are differences in effect be-
tween T and C, the most extreme subgroup difference is likely to be quite
large. As such it may be tempting to interpret it and even to forget to make
an allowance for selection of the biggest effect. It is not unknown in the
literature to see conclusions such as that there are no treatment differences
except for males aged over 80 years, living more than 50 km south of Birm-
ingham and life-long supporters of Aston Villa football club, who show
a dramatic improvement under some treatment T . Despite the undoubted
importance of this particular subgroup, virtually always such conclusions
would seem to be unjustified.

A more secure approach consists of choosing a limited number of intrin-
sic variables, preferably in advance, and examining the interaction between
the treatment effects of such variables. Such tests are of reasonable sensitiv-
ity since each uses all the data. The prior assumption is in effect that, in the
general context of such trials, interactions are most likely to be small and
few will be important. By contrast the isolation of anomalous subgroups
leaves any anomaly uncovered unexplained.

The situation is easier when fairly quick independent replication is fea-
sible. The usual procedure is then that any potential conclusions that have
a different focus from that originally intended are subject to confirmatory
study. The investigator is thus freer to follow up and even report questions
not contemplated in advance.

9.4 Data-generating models

Many statistical analyses are based on models that are essentially purely
descriptive accounts of patterns of variability and give relatively little guid-
ance towards a deeper interpretation. At the other extreme some analy-
ses involve directly a model built up essentially as a description of the
data-generating process. A simple example is the discussion of Sordaria in
Section 6.3.

An important intermediate possibility is to use data built up over time
to study patterns of change and development. Such studies, often called
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Figure 9.3 A regression chain. The variables, represented by
nodes, are on an equal standing if in the same box. The variables
in any box are considered conditionally on the variables in all
boxes to the left. (a) A general case with arbitrary dependencies.
One task of analysis is to isolate box by box the major
dependencies and independencies. (b) The special case of a
Markov process. The boxes correspond to time points and each
box depends only on the previous box.

longitudinal, even if observational rather than experimental are such that
the passage of time indicates unambiguously the direction of dependence.

This leads to the notion of a regression chain; see Figure 9.3. Here all
variables in the same block are on an equal standing and commonly refer
to the same time point. The variables in later boxes are responses to the
variables in earlier boxes, regarded as explanatory. The idea is that by re-
peated regression analyses a description can be built up of a possible data-
generating process. Note that no variable in any box has variables in the
same box as explanatory to it; causality does not operate instantaneously!
The approach is broadly comparable to the modelling of physical systems
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Table 9.1 Artificial example of interaction removed by
transformation. Factor 1 and factor 2 have respectively
two and three levels.

Factor 2

Factor 1 Level 1 Level 2 Level 3

level 1 4 6 7
level 2 8 12 14

by differential equations based on the laws of classical physics, although
there the implicit assumption is typically that the variables at any time de-
pend only on the variables at the immediately preceding time.

9.5 Interaction

9.5.1 Preliminaries

Interaction may seem to be more a detailed issue of statistical analysis than
one of interpretation, but in some contexts it has a valuable interpretive
role.

First, the term interaction itself is in some ways a misnomer. There is
no necessary implication of interaction in the physical sense or synergy in
a biological context. Rather, interaction means a departure from additivity
of the effects of two or more explanatory variables. This is expressed most
explicitly by the requirement that, apart from random fluctuations, the dif-
ference in outcome between any two levels of one factor is the same at all
levels of the other factor.

In Table 9.1 the factor effects combine multiplicatively rather than ad-
ditively and so the interaction is removed by log transformation. In more
general situations the interaction may be removable by a less familiar trans-
formation, although if this is to an uninterpretable scale of measurement it
may be best to retain the representation with interaction especially if the
original scale is extensive in the sense of Section 4.3. Table 9.2 shows a
complementary empirical case where the data are consistent with no inter-
action on an additive scale but not with a simple multiplicative effect.

The most directly interpretable form of interaction, certainly not remov-
able by transformation, is effect reversal. This, while relatively rare in most
contexts, may have strong implications. Table 9.3 shows an example where
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Table 9.2 An example where the data are
consistent with no additive interaction but
inconsistent with no multiplicative interaction.
The data give the relative risk of lung cancer.
The risks are approximately additive but far
from multiplicative (Gustavsson et al., 2002)

Asbestos exposure

Smoking No Yes

no 1.0 10.2
yes 21.7 43.1

Table 9.3 Qualitative interaction
(effect reversal). The relative risk
of endometrial cancer for cyclic-
combined hormone replacement
therapy users versus non-users
classified by body mass index
(BMI) (Beral et al., 2005)

BMI Relative risk

low 1.54
medium 1.07
high 0.57

hormone replacement therapy (HRT) appears to have beneficial or harmful
consequences depending on the level of body mass index (BMI, weight in
kilograms divided by the square of height in meters).

A more formal definition of interaction is as follows. Suppose that µi j is
the expected response at levels i, j of the two factors under consideration.
Then, the absence of two-factor interaction requires that

µi j = µ.. + (µi. − µ..) + (µ. j − µ..), (9.2)

where, for example, µi. is the average of µi1, µi2, . . . This implies and is
implied by the requirement that the difference in response between any
two levels of the first factor is the same at all levels of the second factor.
In the light of this definition, the interaction components could be defined
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in general as the difference between the left-hand and right-hand sides of
(9.2), that is by

µi j − µi. − µ. j + µ.. (9.3)

although this definition is rarely useful for direct interpretation.
We shall not discuss in detail the formal statistical procedures for testing

for interaction. In principle they are based on comparing the fits of models
with and without the relevant interaction.

If a representation without interaction is used as the basis for interpre-
tation then the study of the effect of, say, the first factor would typically
be based on appropriate contrasts of the mean responses at different levels,
rather than directly on the comparison with an overall mean used in (9.2).

9.5.2 Interpretation of interaction

If an interaction is detected between the effects of two explanatory vari-
ables, subject-matter interpretation is necessary. Merely reporting the pres-
ence of interaction is rarely adequate. The approach to be used is typically
different depending on whether the explanatory variables considered are

• exposures, risk factors, treatments or quasi-treatments;
• intrinsic features of the study individuals; or
• nonspecific features of the study individuals.

The primary object of study is the effect of changes in the level of the
first type of explanatory variable, to be thought of in a randomized experi-
ment as a treatment or, in an observational study, what would be a treatment
were an experiment feasible. Intrinsic features characterize individuals and
are not subject to hypothetical change. Nonspecific features are intrinsic
features that are ill-specified or multiply specified, such as countries or
centres in a multi-centre clinical trial. In the latter case, for example, there
may be many ways in which centres and the patients at them may differ
systematically from centre to centre and it may be neither necessary nor
possible to specify these differences with any precision.

Our interest is in the interaction between an exposure and another factor.
There are thus three cases to consider.

Exposure–exposure interactions where the factor levels are quantita-
tively specified are usually best discussed in terms of the response sur-
face relating the expected response to the explanatory variables in ques-
tion. In the relatively simple case where the surface can be represented
by a second-degree polynomial, interaction corresponds to a cross-product
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term. The transformation of variables may be helpful. In any case interest
is typically focused on the form of the response surface rather than on the
interpretation of individual parameters. If one factor has quantitative levels
and the other has qualitative levels then the most fruitful approach is likely
to be to summarize the response to the quantitative factor, for example by
slope, slope and curvature, or slope and asymptote, and to then specify how
these characteristics change with the level of the qualitative factor. If both
factors have unordered qualitative levels then a more ad hoc approach is
needed. Just one of many possibilities is that most factor combinations give
essentially the same mean response with only a few discrepant combina-
tions. Caution is needed in interpreting any such patterns that are uncovered
only retrospectively. If interaction is present, the study of the effects of one
factor averaged over the levels of others may not be useful.

Illustration: Suitability of the average effect Suppose that, in an experi-
ment comparing a number of diets fed to pigs, equal numbers of males
and females are used. An interaction between diets and gender means
that the differences between diets are not the same for males and for
females, justifying separate interpretations of inter-diet differences for
the two genders. The parameters implicit in (9.2) are average effects
over the two genders and these might be a useful quick summary if the
interactive effect were relatively small. The average effect would be a
totally appropriate summary if and only if it were necessary to make a
practical recommendation for feeding the same diet to an equal mix of
male and female pigs.

For an exposure–intrinsic interaction, the asymmetry of the two factors
means that we may concentrate on summarizing the effect of the expo-
sure separately at each level of the intrinsic factor. For example, the pat-
tern of treatment effects for males may be different from the pattern for
females.

Finally, an exposure–nonspecific interaction should, if possible, be given
a direct interpretation via any specific information that is available but
otherwise treated as a random component inducing error in the primary ex-
posure comparisons of main interest. For example, suppose that two treat-
ments are compared in a number of different centres or countries, that, as
would often be anticipated, the treatment effect is not the same at all centres
and that analysis confirms that indeed there is a treatment–centre interac-
tion. It may be that this interaction can be described adequately by one
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or more features of the centres, for example their geographical location in
predominantly urban or rural areas. Any such explanation is likely to be
provisional. The alternative is to suppose that the interaction is generated
by an effectively totally random process characterized by a component of
variance. This component inflates the estimated variance of the treatment
effect, the latter being defined implicitly as an average over an ensemble
of repetitions of the interaction process. Note that this is not the same as
regarding the centres themselves as a random sample from an explicit pop-
ulation of centres, typically a wholly unrealistic fiction.

9.5.3 Interaction in contingency tables

When all the variables under consideration are nominal, that is their dif-
ferent possible values are described qualitatively, or possibly ordinally, the
data may be regarded as a contingency table of cell frequencies. For exam-
ple, with three variables W, X, Y we may write

P(W = i, X = j, Y = k) = pi jk, (9.4)

and the corresponding observations form a three-dimensional array. Sum-
mation over each index in turn gives three two-dimensional tables summa-
rizing the two-dimensional distributions of respectively (X, Y), (Y,W) and
(W, X), and further summation yields the one-dimensional marginal fre-
quency distributions.

The analysis of such tables should follow the general approach we have
discussed previously. In particular, if, as is often the case, one variable, Y ,
say, is best regarded as a response variable and the others as explanatory
then emphasis should be placed on the form of the conditional distribution
of Y given the other two variables. Such a dependence may or may not
involve an interaction between X and Z on, say, the logistic scale.

If, however, three or more variables are to be treated symmetrically then
there is some need to simplify the form of the joint distribution. With just
two variables independence can be represented by an additive, that is, no-
interaction, model on a log scale:

log pi j = log pi. + log p. j. (9.5)

In a general representation we would have

log pi j = log pi. + log p. j + ξi j, (9.6)
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say. For a closer parallel with representations for continuous variables, we
rewrite (9.6) in the form

log pi j = µ + αi. + α. j + γi j, (9.7)

where, for example,

αi. = ave j log pi j − avei, j log pi j. (9.8)

No interaction, that is, the vanishing of all the γi j, is another way of ex-
pressing the independence of the two variables, conventionally denoted by
X ⊥⊥ Y .

For three or more variables, care is needed in interpreting the condi-
tional as contrasted with the marginal independence of variables, for ex-
ample the marginal independence X ⊥⊥ Y as contrasted with the conditional
independence X ⊥⊥ Y | Z. In fact unless (X, Y) ⊥⊥ Z, that is, the combined
variable is independent of Z, the two notions of independence will not be
the same. In this context independence is expressed in terms of log proba-
bilities, whereas marginalization involves the addition of probabilities.

Illustration: Strength of association varies between countries In some
studies of social mobility (Erikson and Goldthorpe, 1992), the interest
lies in the relationship between current social class, Y , and parental so-
cial class, X, using data from a number of different countries Z. While
Z is an intrinsic or even a nonspecific variable and Y and X may be rea-
sonably be regarded as response and explanatory variables respectively,
interest has focused on the empirical finding that while the interaction,
that is, the lack of independence, between X and Y is different for dif-
ferent countries, the broad pattern is essentially constant. This can be
formulated by a model in which each country has a model of the form
(9.6) with separate parameters for each level k of Z, constrained only by

ξk
i j = ρkξi j; (9.9)

here ρk characterizes the strength of association in country k.

9.5.4 Three-factor and higher-order interactions

Formally, interactions of any order can be defined recursively. Thus, the
absence of a three-factor interaction means that the pattern of two-factor
interactions is the same at all levels of the third factor. On an additive
scale this definition is symmetrical between the three factors, despite the
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apparent asymmetry of the definition. An explicit definition is that if µi jk

denotes the expected response at levels i, j, k of the three factors then the
absence of three-factor interaction requires that

µi jk = µ... + (µi.. − µ...) + (µ. j. − µ...) + (µ..k − µ...)
+ (µi j. − µi.. − µ. j. + µ...) + (µi.k − µi.. − µ..k + µ...)
+ (µ. jk − µ. j. − µ..k + µ...). (9.10)

In practice, except in some contingency tables and balanced factorial ex-
periments, three- and higher-factor interactions seem only rarely to be used
directly. In balanced factorial experiments with continuous approximately
normally distributed responses, in principle interactions of all orders are
easily calculated and easily set out in the form of an analysis of variance
table. The distinction between treatment factors and intrinsic factors defin-
ing the experimental units remains important for interpretation.

One general point that can emerge from such an analysis of variance is
that if there are many interactions involving a particular factor, especially
an intrinsic feature, then it is likely that there are quite different patterns of
response at the different levels and that the data and analysis are best split
into parts. Thus it may be better to analyse data on males and on females
separately if many appreciable interactions involving gender appear in the
analysis.

Another possibility is that nearly all the factor combinations have es-
sentially the same response, only one or a small number showing a clearly
different outcome from the majority. Then interactions of all orders are
likely to be appreciable, revealing that the chosen representation in terms
of overall factor effects and interactions is inappropriate.

9.6 Temporal data

9.6.1 Types of data

The study of progression in time is often a key to understanding. Special
statistical methods for such data fall into at least two broad types.

The first is based on the availability of quite long series of data behaving
in a relatively stable way. Typical examples are meteorological data, for
example on hourly, daily, monthly, annual, etc. rainfall, and some kinds of
neurological data recording electrical signals between cells.

Somewhat similar methods apply to the analysis of spatial and spatial–
temporal data but there is a crucial distinction between time and space: the
arrow of time has a uniquely defined direction!
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The second kind of data are relatively short series collected on a large
number of essentially independent individuals. Thus a panel of individu-
als may be interviewed every year for a few years to enquire about their
voting intentions, attitudes to key political and social issues and so on.
In another type of investigation, following injection of a monitoring sub-
stance the blood concentration may be recorded at regular intervals for, say,
a 24 hr period. The object is to assess the resulting concentration-time re-
sponse curves, possibly in order to compare different groups of individuals.

Both types of data lead to a wide variety of statistical methods, which
we shall not attempt to summarize. Instead we give a few broad principles
that may help an initial approach to such data. An important general precept
applying to both types of data, and indeed more generally, is that qualitative
inspection of the data, or of a sample of it, is crucial before more formal
methods of analysis are applied.

9.6.2 Time series analysis

A central notion in time series analysis is that of time scales of variation.
These may take various forms, for example local statistical dependencies,
periodic fluctuations of known wavelength and slow trends or drifts. These
types of variation should be decoupled as far as possible before detailed
analysis if confusion is to be avoided.

The sampling interval, that is, the spacing between successive observa-
tions, plays an important role. Moreover, if, say, daily temperature data are
being analysed then it needs to be clear whether the individual values are
point values at some specified time of day or are in some sense aggregated
or averaged values over a period.

Short-term haphazard variation is usually best studied by a series of
plots of the value at time t against first the preceding value yt−1 and then
yt−2, yt−3, . . . Each value of t gives one point on each plot. If the relation-
ships are reasonably linear, the information may then be summarized in
serial correlation coefficients, r1, r2, . . . , that is, the standard correlation
coefficients from the above plots. Analyses of this broad type, including
the study of lagged relationships between different variables, are said to
be in the time domain. The correlation pattern may be used essentially de-
scriptively or as a basis for fitting formal models typically representing the
relationship between the value at time t and previous values.

The use of correlations implies a restriction to essentially linear rela-
tions. Nonlinear time series models are of special interest as examples of
the sometimes exotic behaviour of nonlinear systems.
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Methods based on correlations or covariances may be contrasted with
the frequency domain approach, which is popular for good reasons, espe-
cially in the physical sciences. In this approach, for n equally spaced obser-
vations at unit time spacing, a series of sinusoidal fluctuations is considered
that span the range from very rapid to very slow change. These have the
form

cos(ωpt), sin(ωpt), (9.11)

where the values of ωp = 2πp/n span the interval (0, 2π). An analysis of
variance is now possible showing how much of the variance in the data
is assigned to the various ranges of ω. While conceptually this is quite
different from time domain analysis, mathematically and numerically it is
essentially equivalent, both approaches being based on a large number of
quadratic functions of the data. When there is no strict periodicity in the
data, a smoothed version of the analysis of variance gives the power spec-
tral density function of the data, in effect showing how the power, synony-
mous here with the variance, is distributed across the range from small ω,
that is, long-term variation, to large ω, that is, short-term variation. For to-
tally random data the power spectrum is flat and the term white noise is
therefore used for such data.

A clear periodic fluctuation of known wavelength, such as a dependence
on the time of day or season of the year, will be shown by strong contri-
butions at the relevant values of the frequency ω or associated wavelength
2π/ω but is better handled by a more elementary method. In the latter we
reorganize the data as a two-way table in which, for example, the columns
correspond to the time of day at which data are available and the rows to
days. Marginal means and residuals may now be found and interpreted.

More elaborate methods suitable for studying some kinds of local be-
haviour use a decomposition not into sinusoidal components but into
wavelets.

9.6.3 Longitudinal data

There are broadly three main approaches to the analysis of longitudinal
data, any one or combination of which may be needed. We consider the
simplest case where data are available on a number of independent indi-
viduals. The three approaches are as follows.

• Summarize the data on each individual by a few statistics chosen on
general grounds and treat these as initial variables in an analysis con-
centrating on comparisons between individuals.
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• Analyse the data in two phases, first fitting a suitable model to the data
for each individual and then in a second phase analysing inter-individual
variation.

• Fit a single multi-level model in which all variation is represented con-
sistently in a single form.

The choice clearly depends on the focus of interest. We have already
discussed the first approach in connection with the illustration ‘Summariz-
ing response curves’ (p. 115) and so now we discuss briefly just the second
and third possibilities.

Probably the simplest possibility is that for each individual there are
observations of a response y at a series of time points and that a broadly
linear relationship holds for each individual. If the time points are fairly
widely spaced then a linear regression model for individual i,

yit = αi + βi(t − t0) + εit, (9.12)

with independent errors εit might be taken; otherwise time series models for
the correlations between errors at different time points might be needed.

In the simple version, for the first stage of analysis we would have an
estimated linear regression coefficient bi and an intercept ai, the latter cal-
culated at the reference time point t0 common to all individuals. In the
second phase of analysis the estimates (ai, bi) are studied. How variable
are they? Are they related to other observed features of the individuals? In
a study in which the data for all individuals are taken at the same set of
time points the (ai, bi) will be of equal precision, but in many applications
the configuration of time points will not be the same and any need to allow
for differing precisions may complicate this essentially simple procedure.

In the third approach we use a multi-level model in which

ai = µa + ηi, bi = µb + ζi, (9.13)

where ηi and ζi are random terms of mean zero having an unknown co-
variance matrix that is independent of εi. The representation (9.13) can be
augmented, for example by terms representing systematic dependencies on
explanatory variables defined at the individual level. The random variation
is now described by three variances and a covariance; software is available
for estimating the full model (9.12), (9.13).

9.7 Publication bias

Publication bias is most commonly thought of in simple terms: statisti-
cally significant, or positive, study results are more likely to be published.
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The effect, recognized for many years (Sterling, 1959; Dawid and Dickey,
1977), was labelled the “file drawer effect” in 1979 (Rosenthal, 1979) and,
although files are now more likely to be computer- rather than drawer-
based, the phenomenon remains. There are other related biases that make
significant results more readily available than their non-significant counter-
parts. The Cochrane Collaboration (no date) listed four additional biases:
statistically significant results are more likely to be published rapidly (time-
lag bias); they are more likely to be published in English (language bias);
they are more likely to be published more than once (multiple publication
bias); and they are more likely to be cited (citation bias). Furthermore, sig-
nificant results are more likely to be published in journals with high impact
factors. These effects have been well documented in the clinical literature
but they have also been examined in areas as diverse as studies of political
behaviour (Gerber et al., 2010), of the potentially violent effects of video
games (Ferguson, 2007) and of climate change (Michaels, 2008).

Efforts to reduce such biases include trial registries, such as the US clin-
icaltrials.gov, which aim to document all clinical trials undertaken regard-
less of the significance or direction of their findings. Funnel plots are often
used to detect publication bias in studies bringing together results from
previously published studies. The aim of these is to recognize asymmetry
in the published results such as might arise from publication bias, as well
as from time-lag bias and, potentially, from English-language bias depend-
ing on the form of the literature search. Regression methods are sometimes
available to adjust for the effects of publication bias.

9.8 Presentation of results which inform public policy

Particular challenges arise when results of analyses which directly influ-
ence debate and decisions on public policy are to be presented. There may
be considerable pressure to provide results which can be seen as justifying
a particular decision or for a level of precision which indicates the un-
ambiguous superiority of one policy over all others under consideration.
While the broad principles for explaining policy-relevant scientific results
are no different from those for any other scientific results (see Section 5.4
for points regarding the graphical presentation of data and results), the risks
of misinterpretation, deliberate or otherwise, may well be greater if difficult
decisions hinge in part on the results.

Thus, it is critical that in presenting results scientists are careful to ensure
that:
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• where necessary, important conclusions are explained directly to key
decision makers, not through intermediaries;

• possibly unwelcome aspects of the conclusions are not suppressed or
hidden;

• the underlying assumptions are clearly set out;
• key conclusions are given with some indication of uncertainty;
• the extent to which conclusions change if the analytical approach is

varied is explained;
• results are placed in the context of information from other relevant

studies;
• the representativeness of the data under study for the conditions under

which the conclusions are to be applied is discussed; and
• the data underlying the analysis, as well as the basis of the analysis,

are made publicly available. for example by providing the raw data as
supplementary material published with a paper in the subject-matter
scientific literature.

With regard to uncertainty, there may well be contexts where two dif-
ferent analyses yield different estimates of precision. The results may be
naively interpreted as implying that the analysis yielding the greater cer-
tainty (as reflected by a narrower confidence interval or lower p-value) is
better, and it is a particular challenge to explain clearly to non-specialists,
in particular non-scientists, which is the more appropriate analysis and
why.

Illustration: Disease control policy based on multiple independent epidemi-
ological analyses In 2001 there was a large outbreak of foot-and-mouth
disease (FMD), a disease of cloven-hooved mammals, in the UK. The
UK had been clear of FMD for many years and thus the disease spread
rapidly amongst the fully susceptible populations of cattle, sheep and
pigs. The then Chief Scientific Advisor, Sir David King, brought to-
gether independent groups of epidemiologists to analyse data on the
spread of the disease and on the implementation of disease control
through the slaughtering of animals in herds or flocks in which infec-
tion had been detected. Independent analyses conducted by groups at
Imperial College London, the University of Cambridge and the Uni-
versity of Edinburgh all indicated that the original test-confirm-and-
slaughter policy was insufficient to control the epidemic, and on the
basis of these consistent results the Chief Scientific Advisor recom-
mended that a more ambitious control policy be implemented. This
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policy aimed to slaughter animals from infected herds or flocks within
24 hours of detection and to slaughter animals from herds or flocks con-
tiguous to those infected within 48 hours of the detection. The epidemic
was brought under control following the implementation of this pol-
icy, although whether other policies might have been equally effective
is still debated.

Notes

Section 9.5. For a general discussion of interaction, see Cox (1984) and
Berrington de Gonzáles and Cox (2007). The analysis of variance is de-
scribed at length in some older books on statistical methods, for example
Snedecor and Cochran (1956).

Section 9.6. For methods for time series analysis see Brockwell et al.
(2009), for longitudinal data see Diggle et al. (2002) and for multi-level
modelling see Snijders and Bosker (2011). There are extensive literatures
on all these topics.
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Epilogue

In this chapter we deal with various issues which evaded discussion in
earlier chapters and conclude with a broad summary of the strategical
and tactical aspects of statistical analysis.

10.1 Historical development

The development of new statistical methods stems directly or indirectly
from specific applications or groups of related applications. It is part of
the role of statistical theory in the broad sense not only to develop new
concepts and procedures but also to consolidate new developments, often
developed in an ad hoc way, into a coherent framework. While many fields
of study have been involved, at certain times specific subjects have been
particularly influential. Thus in the period 1920–1939 there was a strong
emphasis on agricultural research; from 1945 problems from the process
industries drove many statistical developments; from 1970 onwards much
statistical motivation has arisen out of medical statistics and epidemiol-
ogy. Recently genetics, particle physics and astrophysics have raised major
issues. Throughout this time social statistics, which gave the subject its
name, have remained a source of challenge.

Clearly a major force in current developments is the spectacular growth
in computing power in analysis, in data storage and capture and in highly
sophisticated measurement procedures. The availability of data too exten-
sive to analyse is, however, by no means a new phenomenon. Fifty or more
years ago the extensive data recorded on paper tapes could scarcely be anal-
ysed numerically, although the now-defunct skill of analogue computation
could occasionally be deployed.

Currently, many areas of the sciences and associated technologies in-
volve statistical issues and often statistical challenges; some have been
mentioned in previous chapters. An interesting group of ideas, largely from
a computer science context, comes under the broad names data mining and

184
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machine learning. The characteristics of some, although not all, such ap-
plications are the following.

• Large or very large amounts of data are involved.
• The primary object is typically empirical prediction, usually assessed by

setting aside a portion of the data for independent checks of the success
of empirical formulae, often judged by mean square prediction error.

• Often there is no explicit research question, at least initially.
• There is little explicit interest in interpretation or in data-generating pro-

cesses, as contrasted with prediction.
• Any statistical assessment of errors of estimation usually involves strong

independence assumptions and is likely to seriously underestimate real
errors.

• In data mining there is relatively little explicit use of probability models.
• Methods of analysis are specified by algorithms, often involving nu-

merical optimization of plausible criteria, rather than by their statistical
properties.

• There is little explicit discussion of data quality.

A broader issue, especially in machine learning, is the desire for wholly,
or largely, automatic procedures. An instance is a preference for neural
nets over the careful semi-exploratory use of logistic regression. This pref-
erence for automatic procedures is in partial contrast with the broad ap-
proach of the present book. Here, once a model has been specified, the
analysis is largely automatic and in a sense objective, as indeed is desir-
able. Sometimes the whole procedure is then relatively straightforward.
We have chosen, however, to emphasize the need for care in formulation
and interpretation.

Breiman (2001) argued eloquently that algorithmic-based methods tend
to be more flexible and are to be preferred to the mechanical use of standard
techniques such as least squares or logistic regression.

10.2 Some strategic issues

We discuss here a few general points that may arise at any stage of an
investigation but are probably of most relevance to the analysis of data.

So far as feasible, analyses should be transparent in the sense that one
can see in outline the pathways between the data and the conclusions.
Black-box methods, in which data are fed into a complex computer pro-
gram which emits answers, may be unavoidable but should be subject to
informal checks.
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Sometimes data arise in a number of sections, each with a viable analy-
sis. It may then be best, partly for the reason sketched in the previous para-
graph, to analyse the sections separately and then, as appropriate, synthe-
size the separate answers. The alternative of a single analysis with checks
for interactions between sections and key features may in a sense be more
efficient but is likely to be less secure and certainly less transparent. Thus
in a large social or medical study it may be best first to analyse the data
for men and for women separately. The alternative is a single model with
interactions with gender as judged appropriate. If, however, the component
parts of such an analysis contain little information then a single analysis
will be preferable.

It has to be recognized that approximations are involved in all thinking,
quantitative or qualitative, about complicated situations. The approxima-
tions are explicit in formal statistical analysis through the specification of a
model. Judgement has to be exercised in how simple a model may be used,
but it is often a good strategy to start with a rather simple model and then to
ask the question ‘What assumptions have been made that might seriously
affect the conclusions?’ It may or may not be clear that no change in the
model assumptions is likely seriously to change the conclusions.

To deal with this last issue, it is desirable that models are set out explic-
itly either in mathematical notation or in words. In particular, independence
assumptions about random terms should be specified. The tempting prac-
tice of specifying a model solely by the computer package used to fit it
should be shunned. It hides the assumptions implicit in the analysis.

It is essential with large investigations that a plan of analysis is formu-
lated at the design stage, in principle flexible enough to deal with the un-
expected. While there may be pressures to follow it with some rigidity, it
is likely that some minor, or maybe not so minor, changes are essential in
the light of experience gained in collecting the data and during analysis.

10.3 Some tactical considerations

We now turn to some more detailed but still broadly applicable issues of
statistical analysis.

The key features of any statistical model used as a base for analysis and
interpretation are, in decreasing order of general importance, that the form
of systematic variation is well specified, that independence assumptions
about random terms are appropriate and that any assumptions about the
parametric forms of probability distributions are reasonable. A particular
issue concerning large amounts of data is that uncritical assumptions about
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statistical independence may lead to a gross underestimate of the real error
in conclusions.

It is important that the main stages in the output of statistical analyses
are properly annotated, so that the analyses are readily understandable at
some unspecified time in the future. Even though purely numerical ana-
lytic flaws in analysis due to rounding-off errors are unlikely, mistakes can
arise, and it is important to have ways of checking that answers are ‘rea-
sonable’; even some old-fashioned facility at mental arithmetic is not to be
despised.

The essential principles are as follows.

• Study design should aim to give clear answers to focused questions,
should be of appropriate size and have at least an outline scheme of
analysis.

• The intended role in interpretation of different kinds of measurement
should be clear.

• The measurements should be of appropriate quality and this quality
should be monitored directly or indirectly.

• Both the preliminary and more formal analysis should be as simple and
transparent as possible.

• Conclusions of a statistical analysis should be clearly stated in a form
linked as directly as possible to the subject-matter conclusions. The sen-
sitivity of the conclusions to any simplifications made in the analysis
should be assessed.

Flexible formulation of the research questions at issue is important so
that later statistical analysis addresses and quite possibly modifies and clar-
ifies those questions. The requirements may range from obtaining secure
information about the state of the world as it is to the more speculative task
of understanding underlying processes. The natural time scale of an inves-
tigation, roughly the average time taken from conception of the idea to the
summarization of conclusions, has a great bearing on how such investiga-
tions should proceed.

10.4 Conclusion

In the light of the title of the book, the reader may reasonably ask: What
then really are the principles of applied statistics? Or, more sceptically,
and equally reasonably: in the light of the great variety of current and po-
tential applications of statistical ideas, can there possibly be any universal
principles?
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It is clear that any such principles can be no more than broad guide-
lines on how to approach issues with a statistical content; they cannot be
prescriptive about how such issues are to be resolved in detail.

The overriding general principle, difficult to achieve, is that there should
be a seamless flow between statistical and subject-matter considerations.

This flow should extend to all phases of what we have called the ideal se-
quence: formulation, design, measurement, the phases of analysis, the pre-
sentation of conclusions and finally their interpretation, bearing in mind
that these phases perhaps only rarely arise in such a sharply defined
sequence. To put this in slightly more personal terms, in principle seam-
lessness requires an individual statistician to have views on subject-matter
interpretation and subject-matter specialists to be interested in issues of
statistical analysis.

No doubt often a rather idealized state of affairs. But surely something
to aim for!
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Berrington de Gonzáles, A., and Cox, D. R. (2007). Interpretation of interaction: a
review. Ann. Appl. Statist. 1, 371–385. (Cited on p. 183.)

Beveridge, W. I. B. (1950). The Art of Scientific Investigation. First edition. Heinemann,
(Third edition published in 1957 by Heinemann and reprinted in 1979.) (Cited on
p. 13.)

Bird, S. M., Cox, D., Farewell, V. T., Goldstein, H., Holt, T., and Smith, P. C. (2005).
Performance indicators: good, bad, and ugly. J. R. Statist. Soc. A 168, 1–27. (Cited
on p. 55.)

Bollen, K. A. (1989). Structural Equations with Latent Variables. Wiley-Interscience.
(Cited on p. 74.)

Booth, K. H. V., and Cox, D. R. (1962). Some systematic supersaturated designs. Tech-
nometrics 4, 489–495. (Cited on p. 138.)

Bourne, J., Donnelly, C., Cox, D., et al. (2007). Bovine TB: the scientific evidence.
A science base for a sustainable policy to control TB in cattle. Final report of the
independent scientific group on cattle TB. Defra. (Cited on p. 17.)

Box, G. E. P. (1976). Science and statistics. J. Am. Statist. Assoc. 71, 791–799. (Cited
on p. 13.)

189



190 References

Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978). Statistics for Experimenters:
Design, Innovation, and Discovery. John Wiley & Sons. (Second edition published
in 2005 by Wiley-Interscience.) (Cited on p. 51.)

Breiman, L. (2001). Statistical modeling: the two cultures. Statist. Sci. 16, 199–231.
(Cited on p. 185.)

Breslow, N. E., and Day, N. E. (1980). Statistical Methods in Cancer Research. Vol. 1:
The Analysis of Case-Control Studies. International Agency for Research on Cancer.
(Cited on p. 52.)

Breslow, N. E., and Day, N. E. (1987). Statistical Methods in Cancer Research. Vol. II:
The Design and Analysis of Cohort Studies. International Agency for Research on
Cancer. (Cited on p. 52.)

Brockwell, P., Fienberg, S. E., and Davis, R. A. (2009). Time Series: Theory and Meth-
ods. Springer. (Cited on p. 183.)

Brody, H., Rip, M. R., Vinten-Johansen, P., Paneth, N., and Rachman, S. (2000). Map-
making and myth-making in Broad Street: the London cholera epidemic, (1854).
Lancet 356(07), 64–68. (Cited on p. 82.)

Bunting, C., Chan, T. W., Goldthorpe, J., Keaney, E., and Oskala, A. (2008). From
Indifference to Enthusiasm: Patterns of Arts Attendance in England. Arts Council
England. (Cited on p. 68.)
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logistic, 49, 80, 87, 116, 125, 135, 185
polynomial, 131

regulatory agency, 16
inhibitory role of, 5

relative risk, 58, 85, 172
reliability, measurements of, 8
replication, 15
research question, formulation of, 2
residual, 41
respondent-driven sampling, 36
response

curve, 20, 56
surface, 46, 136, 173

Retail Prices Index, 64
Reynolds number, 121
robust methods, 79

routine testing, 4

sampling
capture–recapture, 36
choice-based, 49
frame, 30
inspection, 9
length-biased, 32
monetary-unit, 30
multi-stage, 34
respondent-driven, 36
snowball, 36
systematic, 30
temporal, 34

scale of effort, 15
semiparametric model, 95
sensitivity, 70
sequence, ideal, 2, 188
serial correlation, 178
Severe Acute Respiratory Syndrome

(SARS), 92
significance test, 25, 145–156
simulation, 92, 104, 113, 131, 146,

148
smoking, 120, 137, 160, 167, 172
smoothing, 10, 85, 96
snowball sampling, 36
social mobility, 176
Sordaria, 98, 105
sparsity, 138
spatial outlier, 82
specificity, 70, 168
split-plot design, 19
standing, equal, 170
stochastic model, 92, 100
study

case-control, 49, 73, 135
cross-sectional, 46, 164
observational, 7, 20
pilot, 25, 76

stylized facts, 109
subgroup analysis, 169
sum of squares, 42, 150
surrogate

endpoint, 60
variable, 2

survival analysis, 61, 96
synthesis of information, 2
systematic

error, 15, 21, 70
sampling, 30
variation, 109
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tabular analysis, 86–87
target, performance, 55
temporal sampling, 34
textile, 16, 23, 38, 163
theories, elaborate, 165
time series, 11, 63, 104, 106, 109,

132, 178
time scale of investigation, 16,

187
tolerance, 66
toy model, 92
transformation, 119, 129, 136,

174
transmission of infection, 40, 82, 92,

100; see also bovine tuberculosis,
foot-and-mouth disease, HIV

transparency of analysis, 9
trial

clinical, 18, 25, 106, 125, 154, 168,
181

field, 17, 19, 28, 29, 33, 60, 77, 107,
119, 125, 153, 168

two-hit model, 99

unbalanced design, 127
unbiased estimate, 71
unit of analysis, 5, 18–20, 114

validity, 8, 53
range of, 15, 27, 108

variability, natural, 1, 93
variable

antithetic, 113
baseline, 161
derived, 62
extensive, 57, 119
intensive, 57
intermediate, 60, 161
intrinsic, 59, 102
latent, 64
manifest, 64
nonspecific, 125
random, 94

variation, systematic, 109
visualization, 10

Weibull distribution, 122, 130

Yates, F., 51
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